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Preface

Thecreation of this second edition was guided primarily
by two distinct imperatives: to incorporate the peda-
gogical insights gained in the classroom over the past
dozen years, and to bring the book in step with the
fast-moving edge of optical technology. Accordingly,
several sections have been reorganized, some con-
densed, others extended, and the exposition updated
and improved throughout. in the process I have added
a numberof graphs, drawings and photographs, as well
as a gooddealof new textual material—always with the
motivation of enlivening and clarifying the treatment.

As well as the very many small but significant
refinementsthatare incorporatedin this secondedition,
there are also some substantive improvements in
methodology and emphasis. For example, atomic pro-
cesses associated with radiation and absorption are con-sidered earlier and in more detail. The central role of
scattering in optics (e.g., in reflection, refraction, and
dispersion) can thereafter he understood more intui-
tively (Chapter 3). Huygens’s principle, which is so
useful and yet so contrived, then takes on a physical
significance that is far moresatisfying. Accordingly,
several of the original classic derivations (those associ-
ated with the propagation oflight andits interaction
with material interfaces) have been recast, and addi-
tional ones have been included as well (e.g., internal
reflection as viewed from the perspective of atomic
scattering, p. 106, Fig. 4.35).

With the realization that a picture is indeed worth a
thousand words, newillustrations have been added to
the discussion of geometrical optics (Chapters 5 and 6),

  
primarily to facilitate a better understanding of ray
tracing and image formation. Notsurprisingly, the dis-
cussion of fiberoptics has been considerably extended
to include the remarkable developments of the last
decade. The introduction to Fourier methods (Chapter
7) has been strengthened, in part, so that these ideas
can be applied more naturally in the remaining exposi-
tion. Often unduly troublesome, the notion of waves
leading and lagging one another is given additional
attention as it relates to polarization (Chapter 8). The
ramifications of the limited coherence ofa typicallight
source are now examined, if only briefly, during the
study of interference (Chapter 9). Using a new set of
wavefront diagrams (e.g., Figs. 10.6, 10.10, 10.19) the
plane-wave Fourier-component representation of
diffraction (Chapter 10) is unobtrusively introduced
early on. Enlarged and refined, the discussion of Four-
ier optics (Chapter 11) now contains a simpler, more
pictorial representation that complements the formal
mathematical treatment (there are 25 new diagramsin
Chapter 11 alone). The intentionis to makethis material
increasingly accessible to an ever wider readership.
Muchof the treatment of coherence theory (Chapter
12) has been reworked andreillustrated to produce a
simpler, more accessible version. The discussions of
Jasers and holography (Chapter 14) have also been
appropriately extended and broughtup to date,

The natural tendency in a textbook is to isolate the
principle ideas, focusing exclusively on each of them in
turn: Thus there are the traditional chapters on inter-
ference, diffraction, polarization, and so forth. Thefirst

vit
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edition more or less followed that approach, while at
the same time underscoring conceptualinterrelation-
ships and the unity of the entire subject—afterall,
optics,like all of physics, is the study of the interaction
of matter and energy. This secondedition subtly moves
a bit further toward a holistic approach. The text now
introduces manyof the unifyingideas, albeit on a simple
level, as soon asis appropriate. For example. the concept
of interference is used qualitatively to understand
propagation phenomena(p.63) longbeforeit’s studied
formally in Chapter 9. Amongother benefits, this tech-
nique of presenting advanced concepts in simplified
form early in the exposition allows the student to
develop an integrated perspective.

Respondingto requests from users, I have consider-
ably increased the amount of material devoted to the
analysis and solution of problems. The book now con-
tains an abundanceof problems, roughly twice the num-
ber that appearedin thefirst edition. Moreover,a por-
tion of these are specifically designed to develop needed
analyticalskills. Because a balance was maintained,with
as many “easy” problems addedas hardones, the exer-cises should better serve the needsof the student reader.
This is especially true because, as in the first edition,
the complete solutions to many of the problems (those
withoutasterisks) can be foundat the back of the book.

Over the years many people have been kind enough
to share their thoughts about the book with me and I
take this opportunity to express my appreciation to them
all. In particular I thank Professors R. G. Wilson of
Illinois Wesleyan University, B. Gottschalk of Harvard
University, E. W. Jenkins of The University of Arizona,
W. M. Becker of Purdue University, L. R. Wilcox of
$.U.N.Y. Stony Brook, R. Talaga of the University of
Maryland, R. A. Llewellyn of the University of Central
Florida, R. Schiller of Stevens Institute of Technology,
S. P. Almeida of Virginia PolytechnicInstitute and State
University, G. Indebetouw of Virginia Polytechnic
Institute and State University, and J. Higbie of the
University of Queensland. Wherever possible I have
incorporated photographsandsuggestions by students
and encourage their continued participation. Anyone
wishing to exchange ideas should write to the author
c/o Physics Department, Adelphi University, Garden
City, N.Y. 11530.

1 am especially grateful to Lorraine Ferrier, who
oversaw the production of this second edition. She
worked long hours, good naturedly bringing to bear a
rare combination ofskill, patience, and knowledgethat
madethis book physically as fine asit is. Finally, I nod
appreciatively to my friend Carolyn Eisen Hecht for
going throughall this, one more time.
Freeport, New York E.H.

Contents

1 A Brief History
1.1 Prolegomenon ....... 7
12 In the Beginning
1.3. From the Seventeenth Century
1.4 The Nineteenth Century
1.5 Twentieth-Century Optics
2 The Mathematics of Wave Motion
2.1 One-Dimensional Waves
2.2 Harmonic Waves
2.3. Phase and Phase Velocity ....... .
2.4 The Complex Representation2.5 Plane Waves
2.6 The Three-DimensionalDifferential Wave

Equation
2.7 Spherical Wayes
2.8 Cylindrical Waves
2.9 Scalar and Vector Waves
Problems

3 Electromagnetic Theory, Photons, and Light
3.1 Basic Laws of Electromagnetic Theory... .
3.2 Electromagnetic Waves
3.8 Energy and Momentum3.4 Radiation
3.5 Light and Matter
3.6 The Electromagnetic-Photon SpectrumProblems

4 The Propagation of Light4.1 Introduction

4.2 The Laws of Reflection and Refraction
4.3. The Electromagnetic Approach
44 Familiar Aspects of the Interaction of Light andMatter
4.5 The Stokes Treatmentof Reflection and

Refraction
4.6 Photons and the Laws of Reflection and

Refraction
Problems

5 Geometrical Optics—Paraxial Theory5.1 Introductory Remarks... 2...5.2
53
5.4 Mirrors
5.5 Prisms
5.6 Fiberoptics
5.7 Optical Systems

6 More on Geometrical Optics
6.1 Thick Lenses and Lens Systems... .
6.2 Analytical Ray Tracing6.3. Aberrations
Problems

7 The Superposition of Waves
The Addition of Waves of the Same Frequency
7.1 The Algebraic Method
7.2 The Complex Method 



6

 

x Contents

7.3 Phasor Addition ©... 2... oe ee
74 Standing Waves 2...
The Addition of Waves of Different Frequency75 Beats 2.2... ke ee
7.6 Group Velocity 22.0... 0.00004
7.7 Anharmonic Periodic Waves—Fourier Analysis
7.8 Nonperiodic Waves—Fourier Integrals . . . -7.9 Pulses and Wave Packets... 2.2...
7.10 Optical Bandwidths 2.2... 1. Le
Problems .- 22... 2.200.208 .

8 Polarization
8.1 The Nature of Polarized Light82 Polarizers 2... 2.0... se -
83 Dichroism .. 2... ee ee
84 Birefringence... 2.2.2... 0.0004
8.5 Scattering and Polarization ....,....
8.6 Polarization by Reflection... 2... 2.
87 Retarders - 2... 2.2.0. ..-02.0,
88 Circular Polarizers . 2.2... LL
8.9 Polarization of Polychromatic Light
8.10 Optical Activity 2.2... 2...
8.11 Induced Optical Effects—Optical Modulators
8.12 A Mathematical Description of Polarization . .
Problems. 2... ee ee

 

9 Interference
91 General Considerations . 2. .,.....002.
9.2 Conditions for Interference... 2. 0...
9.3 Wayefront-Splitting Interferometers . . . . .
9.4 Amplitude-Splitting Interferometers . . . . .
9.5 Types and Localization of Interference Fringes
96 Multiple-Beam Interference ........
9.7 Applications of Single and Multilayer Films
98 Applications of Interferometry... ... .
Problems . 2-2... . ee. ee ee

10 Diffraction
10.f Preliminary Considerations 2... 4 6
10.2 Fraunhofer Diffraction ..... . see
10.5 Fresnel Diffraction ........ tee
10.4 Kirchhoff’s Scalar Diffraction Theory . . . .
10.5 Boundary DiffractionWaves 2...) 0
Problems 2... 7... 2.2 ee eee 

247
248
250
250
252
254
259
261
263
266

270
270
277
279
282
292
296
300
305
306
309
314
321
326

333
334
337
339
346
361
363
373
378
388

392
392
401
434
459
463

11 Fourier OpticsLL. Introduction... ee eee ee ee eee
11.2. Fourier Transforms . 2. 2 ee ee
11.3. Optical Applications 5.6... 02 ee
Problems ....... sew ee ne es

12 Basics of Coherence Theory121 Introduciion 2.0. ee see
12.2 Visibility 2... 22. cae
12.3 The Mutual Coherence Theory and the

Degree of Coherence»... 2... an
12.4 Coherence andStellar Interferometry. «
Problems 22... 2... 2. ee

13 Some Aspects of the Quantum Nature of
Light

13.f Quantum Fields 2.22. 2...
13.2 Blackbody Radiation—Planck’s Quantum

Hypothesis 2... 1 oe eee ee
13.3. The Photoelectric Effect—Einstein’s Photon

Concept... ee ee
13.4 Particlesand Waves 2 2 2 2 2 2
18.5 Probability and Wave Optics . 2... 2.
13.6 Fermat, Feynman, and Photons ..... ~
13.7 Absorption, Emission, and ScatteringProblems . 2-2-7. ee ee ee ee

14 Sundry Topics from Contemporary Optics
14.1 imagery—The Spatial Distribution of OpticalInformation «1... eee ee ee
14.2 Lasers and Laserlight ...........
14.3 Holography .......00....00.
14.4 Nonlinear Optics 2...Problems

Appendix 1
Appendix 2Table 1
Solutions to Selected Problems
Bibliography
Index of Tables
Index

a7
472
472
483
512

nN

516
516
519

523
530
535

538
538

5389

541
544
548
550
552
556

559

559
577
593
610
616

620
623
624
629
661
665

 
OPTICS
Second Edition

 



7

iA BRIEF HISTORY

 
1.1 PROLEGOMENON

In chapters to come we will evolve a formal treatment
of muchof the scienceof optics with particular emphasis
on aspects of contemporary interest. The subject
embraces a vast body of knowledge accumulated over
roughly three thousand years of the human scene.
Before embarking on a study of the modern view of
things optical, let's briefly trace the road that led us
there, if for no other reason than to putit all in per-
spective.

The complete story has myriad subplots and charac-
ters, heroes, quasi-heroes, and an occasionalvillain or
two, Yet from our vantage in time, we cansift out of
the tangle of millennia perhaps four main thermes—the
optics of reflection and refraction, and the wave and
quantum theories oflight.
 
1.2 IN THEBEGINNING

Theorigins of optical technology date back to remote
antiquity. Exodus 38:8 (ca. 1200n.c.) recounts how
Bezaleel, while preparing the ark and tabernacle,recast
“the looking-glasses of the women” into a brass laver
(a ceremonial]basin). Early mirrors were made of pol-
ished copper, bronze, and later on of speculum, a cop-
per alloy rich in tin. Specimens have survived from
ancient Egypt—-a mirror in perfect condition was
unearthed along with some tools from the workers’

quarters near the pyramid of Sesostris II (ca. 1900 B.c.)
in the Nile valley. The Greek philosophers Pythagoras,
Democritus, Empedocles, Plato, Aristotle, and others
evolved several theories of the nature of light (that of
the last narned being quite similar to the aether theory
of the nineteenth century). Therectilinear propagation
oflight was known,as was the law of reflection enunci-
ated by Euclid (300 B.c.) in his book Cetoptrics. Hero of
Alexandria attempted to explain both these phenomena
by asserting that light traverses the shortest allowed
path between two points. The burningglass {a positive
lens} was alluded to by Aristophanes in his comic play
The Clouds (424 s.c.). The apparent bendingof objects
partly immersedin water is mentioned in Plato’s Repub-
lic. Refraction was studied by Cleomedes(50 a.p.) and
later by Claudius Ptolemy(130 a.p.) of Alexandria, who
tabulated fairly precise measurementsof the angles ofincidence and refraction for several media.It is clear
from the accounts of the historian Pliny (23-79 a.p.)
that the Romansalso possessed burningglasses. Several
glass and crystal spheres, which were probably used to
start fires, have been found among Romanruins, and
a planar convex lens was recovered in Pompeii. The
Roman philosopher Seneca (3 8.c-65 a.D.) pointed out
that a glass globe filled with water could be used for
magnifying purposes. Andit is certainly possible that
some Romanartisans may have used magnifyingglasses
to facilitate very fine detailed work.

After the fall of the Western Roman Empire
(475 a.p.), which roughly marksthestart of the Dark

i
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Ages,little or noscientific progress was made in Europefor a great while, The dominance of the Greco-Roman-
Christian culture in the lands embracing the Mediter-
ranean soon gaye way by conquest to the rule of Allah.
Alexandria fell to the Moslemsin 642 A.p., and by the
endofthe seventh century,the landsof Islam extended
from Persia across the southern coast of the Medizer-
ranean to Spain. Thecenter of scholarship shifted to
the Arab world, wherethescientific and philosophical
treasures of the past were translated and preserved.
Rather than lying intact but dormant,as much ofscience
did, optics was extended at the hands of Alhazen (ca.
1000 a.p.). He elaborated on the law ofreflection, put-ting the angles of incidence and reflection in the same
plane normalto the interface; he studied spherical and
parabolic mirrors and gave a detailed description of thehumaneye.

By the latter part of the thirteenth century, Europe
was only beginningto rouse from its intellectual stupor.Alhazen’s work was translated into Latin. and it had a
greateffect on the writings of Robert Grosseteste (1175—
1253), Bishop of Lincoln, and on the Polish
mathematician Vitello (or Witelo), both of whom were
influential in rekindling thestudyof optics. Their works
were known to the Franciscan Roger Bacon (1215-
1294), whois considered by manyto bethefirst scientist
in the modern sense. He seems to have initiated the
idea of using lenses for correcting vision and even
hinted at the possibility of combining Jenses to form a
telescope. Bacon also had some understanding of the
way in which rays traverse a lens. After his death, optics
again languished, Evenso, by the mid-1300s, European.
paintings were depicting monks wearing eyeglasses.
And alchemists had come up with a liquid amalgam of
tin and mercury that was rubbed onto the back ofglass
Plates to make mirrors, Leonardo da Vinci (1452-1519)
described the camera obscura, later popularized by the
work of Giovanni Battista Della Porta (1585-1615), who
discussed multiple mirrors and combinations ofpositive
aud negative lenses in his Magia natwralis (1589).

This, for the most part, modest array of events con-
stitutes what might becalled the first period of optics.
It was undoubtedly a beginning—but on the whole a
dull one. It was more a time for learning howto play
the game than actually scoring points. The whirlwind

of accomplishmentand excitement was to comelater,
in the seventeenth century.
>
1.3 FROM THE SEVENTEENTH CENTURY

It is not clear who actually invented the refracting
telescope, but records in the archives at The Hague
show that on October2, 1608, Hans Lippershey (1587-
1619), a Dutch spectacle maker, applied for a patent
on the device, Galileo Galilei (1564-1642), in Padua,
heard aboutthe invention and within several months
had built his own instrument, grinding the lenses by
hand. The compound microscope wasinventedatjust
about the same time, possibly by the Dutchman
Zacharias Janssen (1588-1632). The microscope’s con-
cave eyepiece was replaced with a convex lens by Fran-
cisco Fontana (1580-1656) of Naples, and a similar
change in the telescope was introduced by Johannes
Kepler (1571-1630). In 1611, Kepler published hisDioptrice. He had discovered total internal reflection
and arrived at the small angle approximationto the law
of refraction, in which case the incident and trans-

Figure 1.1 Johannes Kepler (1571-1630).

mission angles are proportional. He evolved a treatment
of first-orderoptics for thin-lens systems andin his book
describes the detailed operation of both the Keplerian
(positive eyepiece) and Galilean (negative eyepiece) tele-
scopes. Willebrord Snell (1591-1626), professor at Ley-
den, empirically discovered the long-hidden law of
refraction in 1621—this was one of the great moments
in optics. By learning precisely how rays oflight are
redirected on traversing a boundary hetween two
media, Snell in one swoop swung open the door to
modern appliedoptics. René Descartes (1596-1650) was
the first to publish the now familiar formulation of the
law of refraction in termsof sines. Descartes deduced
the law using a model in whichlight was viewed as a
pressure transmitted by an elastic medium:as he putit
in his La Dioptrique (1637)

, +. recall the natnre that [ have attributed to light, when
I said thatit is nothing other than a certain motion or
an action conceived in a very subtle matter, which fills
the poresofall other bodies...

The universe was a plenum. Pierre de Fermat (1601-
1665), taking exception to Descartes’s assumptions,
rederived thelaw of reflection from his own principle
ofleast time (1657). Departing from Hero’s shortest-path
statement, Fermat maintained that light propagates
from one point to anotheralong the route taking the
least time, evenif it has to vary from the shortest actual
path to doit.

The phenomenon of diffraction, i.e., the deviation
from rectilinear propagation that occurs when light
advances beyond an obstruction, was first noted by
Professor Francesco Maria Grimaldi (1618-1663)at the
Jesuit College in Bologna. He had observed bands of
light within the shadowofa rodilluminated by a small.
source. Robert Hooke (1635-1703), curator of experi-
ments for the RoyalSociety, London,later also observed
diffraction effects. He was the first to study the colored
interference patterns generated by thin films (Micro-
graphia, 1665) and correctly concluded that they were
due to an interaction betweenthe light reflected from
the front and back surfaces. He proposed the idea that
light was a rapid vibratory motion of the medium propa-
ating at a very great speed. Moreover “every pulse or
vibration of the luminous body will generate a

1.3 From the Seventeenth Century 3

Figure 1.2 René Descartes (1596-1650).

sphere’”—this was the beginning of the wave theory.
Within a year of Galileo’s death, Isaac Newton (1642—
1727) was born. Thethrust of Newton's scientific effort
is clear from his own description of his work in optics
as experimental philosophy. It was his intent to build on
direct observation and avoid speculative hypotheses.
Thus he remained ambivalent for a long while about
the actualnature oflight. Wasit corpuscular—a stream
of particles, as some maintained? Or waslight a wave
in an all-pervading medium, the aether? At the age of
23, he began his now famous experiments ondispersion.

I procured mea triangularglass prism to try therewith
the celebrated phenomenaofcolours,

Newton concluded that white light was composed of a
mixture of a whole range of independentcolors. He
maintained that the corpusclesof light associated withthe various colors excited the aether into characteristic 
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Figure 1.3 Sir Isaac Newton (1642-1727),

vibrations. Furthermore, the sensation of red corre-
sponded to the longest vibration of the aether, and
violet to the shortest. Even though his work shows a
curious propensity for simultaneously embracing both
the wave and emission (corpuscular) theories, he did
become more committedto thelatter as he grew older.
Perhaps his main reason for rejecting the wave theory
asit stood then was the blatant problem of explaining
rectilinear propagation in terms of waves that spreadoutin all directions,

After someall-too-limited experimenta, Newton gave
up trying to remove chromatic aberration from refract-
ing telescope lenses, Erroneously concluding that it
could not be done, he turned to the design ofreflectors.
Sir Isaac’s first reflecting telescope, completed in 1668,
was only 6 inches long and 1 inch in diameter, but itmagnified some 30 times.

At aboutthe sametimethatSir Isaac was emphasizing
the emission theory in England, Christiaan Huygens
(1629-1695), on the continent, was greatly extending
the wave theory. Unlike Descartes, Hooke, and Newton,

Huygens correctly concluded that light effectivelyslowed down on entering more dense media. He was
able to derive the Jawsofreflection and refraction and
even explained the doublerefraction of calcite, using
his wave theory, Andit was while working with calcite
that he discovered the phenomenonofpolarization.

As there are two different refractions, I conceived also
that there are two different emanations of the waves of
light... .

Thuslight was either a scream of particles or a rapid
undulation of aethereal matter. In any case, it was

 
Figure 1.4 Christiaan Huygens(1629-1695).

generally agreed that its speed of propagation was
exceedingly large. Indeed, many believed that light
propagatedinstantaneously, a notion ibat went back atleast as far as Aristotle. The fact chat it was finite was
determinedby the Dane Ole Christensen Rémer(1644-
1710). Jupiter's nearest moon, Jo, bas an orbit about
that planetthat is nearly in the plane of Jupiter's own
orbit around the Sun. Rémer made a careful study of
the eclipses of Io as it moved throughthe shadow hehind
Jupiter. In 1676 he predicted that on November9th Io
would emerge from the dark some 10 minutes later
than would have been expected onthe basisofits yearly
averaged motion, Precisely on schedule, Io performed
as predicted, a phenomenon Rémercorrectly explained
as arising from thefinite speed oflight. He was able to
determinethat light took about 22 minutesto traverse
the diameter of the Earth’s orbit around the Sun—a
distance of about 186 million miles. Huygens and
Newton, among others, were quite convinced of the
validity of Romer's work. Independently estimating the
Earth’s orbital diameter, they assigned values to ¢
equivalent to 2.3 X 10° mjs and 2.4 x 10° m/s, respec-
tively. Still others, especially Hooke, remained skeptical,
arguing that any speedso incredibly high actually hadto be infinite.*

The great weight of Newton's opinion hunglike a
shroud over the wave theory during the eighteenth
century, all butstifling its advocates. There were too
many content with dogma and too few nonconformist
enough to follow their own experimental philosophy,
as surely Newton would have had them do. Despite this,
the prominent mathematician Leonhard Euler (1707—
1783) was a devotee of the wave theory, even if an
unheeded one. Euler proposed that the undesirable
color effects seen ina lens were absentin the eye (which
is an erroneous assumption) because the different media
present negated dispersion. He suggested that achro-
matic lenses might be constructed in a similar way.
Enthused by this work, Sarnuel Klingenstjerna (1698-
1765), a professor at Upsala, reperformed Newton's
experiments on achromatism and determined them to
be in error. Klingenstjerna was in communication with
 
* A. Wrdblewski, Am. J. Phys. 53 (7), July 1985, p. 620.

1.4 The Nineteenth Century 5

a Londonoptician, John Dollond (1706-1761), who was
observing similar results. Dollond finally, in 1758, com-
bined two elements, one of crown andthe otherofflint
glass, to form a single achromatic lens. This was an
accomplishment of very great practical importance.
Incidentally, Dollond’s vention was actually preceded
by the unpublished work of the amateur scientist
Chester MoorHall (1703-1771) of Moor Hall in Essex.

1.4 THE NINETEENTH CENTURY

The wave theory of light was reborn at the hands of
Dr. Thomas Young (1773-1829), one of the truly great
mindsof the century. On November 12, 1801, July 1,
1802, and November 24, 1803, he read papers before
the RoyalSociety extolling the wave theory and adding
to it a new fundamentalconcept, the so-called principle
of interference:

Whentwo undulations, from diflerentorigins, coincide
either perfectly or very nearly in direction, their joint
effect is a combinationof the motions belonging to each.

Hewas able to explain the colored fringes of thin films
and determined wavelengths of various colors using
Newton’s data. Even though Young, time and again,
maintained thathis conceptions had their very origins
in the research of Newton, he wasseverely attacked. In
a seriesof articles, probably written by Lord Brougham,
in the Edinburgh Review’, Young's papers were said to
be ‘destitute of every species of merit”—and that’s
going pretty far. Under thepall of Newton's presumed
infallibility, the pedants of England were not prepared
for the wisdom of Young, who in turn becamedisheart-ened.

Augustin Jean Fresnel (1788-1827), born in Broglie,
Normandy, beganhisbrilliant revival of the wave theory
in France, unaware of the efforts of Young some 13
years earlier. Fresnel synthesized the concepts of
Huygens’s wave description andthe interference prin-
ciple. The mode of propagation of a primary wave was
viewed as a succession of stimulated spherical secondary
wavelets, which overlapped and interfered to reform
the advancing primary wave as it would appear aninstant later. In Fresnel’s words:
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The vibrations of a luminous wave in any oneofits
points may be consideredas the sum of the elementary
movements conveyed toit at the same moment, from
the separate action ofall the portions of the unobstruc-
ted wave considered in anyoneofits anterior positions,

These waves were presumed to be longitudinal in
analogy with sound wavesin air. Dorninique Frangois
Jean Arago (1786-1853) was an early convert to
Fresnel’s wave theory, and they becamefast friends andsometime collaborators. Under criticism from such
renowned men and proponents of the emission
hypothesis as Pierre Simon de Laplace (1749-1827) and
Jean-Baptiste Biot (1774-1862), Fresnel’s theory took
on a mathematical emphasis. He wasable to calculate
the diffraction patterns arising from various obstacles
and apertures and satisfactorily accounted for rec-
tilinear propagation in homogeneousisotropic media,
thus dispelling Newton’s main objection to the undula-
tory theory. When finally apprised of Young's priority

 
Figure 1.5 Augustin Jean Fresnel (1788-1827).

to the interference principle, a somewhat disappointed
Fresnel nonetheless wrote to Youngtelling him that he
was consoled by finding himself in such good com-
pany—the two great men becameallies.

Huygens was aware of the phenomenonof polariz-
ation arising in calcite crystala, as was Newton. Indeed,
the latter in his Opticks stated,

Every Rayof Light has therefore two opposite Sides...
Hefurther developedthis conceptof Jateral asymmetry
even though avoiding any interpretation in terms of
the hypothetical nature of light. Yet it was not until
1808 that Etienne Louis Malus (1775-1812) discovered
that this two-sidedness of light became apparent upon
reflection as well; it was not inherent co crystalline
media. Fresnel and Arago then conducted a series of
experiments to determinethe effect of polarization on
interference, but the results were utterly inexplicable
within the framework of their longitudinal wave pic-
ture—this was a dark hour indeed. For several years
Young, Arago, and Fresnel wrestled with the problem
until finally Young suggested that the aethereal vibra-
tion might be transverse as is a wave onastring. The
two-sidednessoflight was then simply a manifestation
of the two orthogonal vibrations of the aether, trans-
verse to the ray direction. Fresnel went on to evolve a
mechanistic description of aetheroscillations, which led
to his now famous formulasfor the amplitudeof reflec-
ted and transmitted light. By 1825 the emission (or
corpuscular) theory had only a few tenacious advocates.

The first terrestrial determination of the speed of
light was performed by ArmandHippolyte Louis Fizeau
(1819-1896) in 1849. His apparatus, consisting of a
rotating toothed wheel and a distant mirror (8633 m),was set up in the suburbs of Paris from Suresnes to
Montmartre. A pulse oflight leaving an opening in the
wheel struck the mirror and returned. By adjusting the
knownrotational speed of the wheel, the returning
pulse could be made either to pass through an opening
and be seen or to be obstructed by a tooth. Fizeau
arrived at a value of the speed of light equal to
315,300km/s. His colleague Jean Bernard Léon
Foucault (1819-1868) was also involved in research on
the speedoflight. In 1834 Charles Wheatstone (1802-
1875) had designed a rotating-mirror arrangement in  
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order to measure the duration of an electric spark.
Using this scheme, Arago had proposed to measure the
speed of light in dense media but was never able to
carry out the experiment. Foucault took up the work,
which was later to provide material for his doctoral
thesis. On May 6, 1850, he reported to the Academy of
Sciences that the speed oflight in water was less than
that in air. This result was, of course, in direct conflict
with Newton's formulation of the emission theory and
a hard blow to its few remaining devotees.

While all of this was happening in optics, quite
independently, the study of electricity and magnetism
wasalso bearing fruit. In 1845 the master experimen-
talist Michael Faraday (1791~1867) established aninter-
relationship between electromagnetism andlight when
he found thatthepolarization direction of a beam could
bealtered by a strong magnetic field applied to the
medium. James Clerk Maxwell (1831-1879) brilliantly
summarized and extendedall the empirical knowledge
on the subject in a single set of mathematical equations.
Beginning with this remarkably succinct and beautifully
symmetrical synthesis, he was able to show, purely
theoretically, that the electromagnetic field could
propagate as a transverse wave in the luminif-
erous aether. Solving for the speed of the wave, he
arrived at an expression in terms of eleciric and
magnetic properties of the medium (c= 1/Vep#o).
Upon substituting known empirically determined
values for these quantities, he obtained a numerical
result equal to the measured speed of light! The con-
clusion was inescapable—light was “an electromagnetic
disturbance in the form of waves” propagated through the
aether. Maxwell died at the age of 48, eight years too
soonto see the experimental confirmationofhis insights
and far too soon for physics. Heinrich Rudolf Hertz
(1857-1894) verified the existence of long electromag-
netic waves by generating and detecting them in an
extensive series of experiments published in 1888.

The acceptance of the wavetheory oflight seemed
to necessitate an equal acceptance of the existence of
an all-pervading substratum, the luminiferousaether.
If there were waves,it seemed obvious that there must
be a supporting medium. Quite naturally, a great deal
of scientific effort wentinto determining the physical
natureof the aether, yet it would have to possess some
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Figure 1.6 James Clerk Maxwell (1831-1879).

rather strange properties. 1c had to be so tenuousas to
allow an apparendy unimpeded motion of celestial
bodies. At the same timeit could support the exceed-
ingly high-frequency (~10'° Hz) oscillations of light
traveling at 186,000 miles/s. That implied remarkably
strong restoring forces within the aethereal substance.
Thespeed at which a wave advances through a medium
is dependent uponthe characteristics of the disturbed
substratum and not upon any motion of the source.
This is in contrast to the behaviorofa streamofparticles
whose speed with respect to the source is the essential
parameter.

Certain aspects of the nature of aether intrude when
studying the optics of moving objects, and it was this
area of research, evolving quietly on its own, that ulti-
mately led to the next great turning point. In 1725
James Bradley (1693-1762), then Savilian Professor of
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  Astronomy at Oxford, attempted to measure the di:
tance to a star by observing its orientation at two
different times of the year. The position of the Earth
changedasit orbited around the Sun andthereby pro-
videdalarge baseline fortriangulation on the star. To
his surprise, Bradley found that the “fixed”stars dis-
played an apparentsystematic movementrelated to the
direction of motion of the Earth in orbit and not depen-
dent, as had been anticipated, on the Earth’s position
in space. This so-called stellar aberration is analogous to
the well-known falling-raindropsituation. A raindrop,
although traveling vertically with respect to an observer
at rest on the Earth, will appear to changeits incident
angle whenthe observer is in motion. Thus a corpus-
cular model of light could explain stellar aberration
rather handily. Alternatively, the wave theoryalso offers
a satisfactory explanation provided thatit is assumed
thatthe aether remainstotally undisturbed as the Earth plows
through it. Incidentally, Bradley, convinced of the cor-
rectness of his analysis, used the observed aberration
data to arrive at an improvedvalueof ¢, thus confirming
Rémer’s theory of the finite speedoflight.

In response to speculation as to whether the Earth’s
motion throughthe aether might result in an observahle
difference betweenlight from terrestrial and extrater-
restrial sources, Arago set out to examine the problemexperimentally. He found thatthere were no observable
differences, Light behaved justas if the Earth were at
rest with respect to the aether. To explain theseresults,
Fresnel suggested in effect that light was partially
dragged alongasit traversed a transparent medium in
motion. Experiments by Fizeau, in which light beams
passed down moving columns of water, and by”Sir
George Biddell Airy (1801-1892), who used a water-
filled telescope in 1871 to examinestellar aberration,
both seemed to confirm Fresnel’s drag hypothesis.
Assuming an aether at absolute rest, Hendrik Antoon
Lorentz (1853~1928) derived a theory that encom-
passed Fresnel’s ideas.

In 1879in a letter to D. P. Todd of the U.S. Nautical
Almanac Office, Maxwell suggested a scheme for
measuring the speed at which the solar system moved
with respect to the luminiferous aether. The American
physicist Albert Abraham Michelson (1852-1931), then
a naval instructor, took up the idea, Michelson, at the

 tender age of 26, had already established a favorable
reputation by performing an extremely precise deter-
mination of the speed oflight. A few yearslater, he
begananexperimentto measuretheeffect of the Earth’s
motion throughthe aether. Since the speedoflight in
aether is constant and the Earth, in turn, presumably
movesin relation to the aether (orbital speed of 67,000
miles/h), the speed oflight measured with respect to
the Earth should be affected by the planet’s motion.
Michelson’s work was begun in Berlin, but because of
traffic vibrations,it was moved to Potsdam, and in 1881
he published his findings. There was no detectable
motion of the Earth with respect to the aether—the
aetherwas stationary. But the decisiveness of this sur-
prising result was blunted somewhat when Lorentz
pointed out an oversightin the calculation. Severalyears
later Michelson, then professorof physics at Case School
of Applied Science in Cleveland, Ohio, joined with
Edward Williams Morely (1838-1923), a well-known
professor of chemistry at Western Reserve, to redo the
experiment with considerably greater precision. Ainaz-
ingly enough, their results, published in 1887, once
again were negative:

It appears from all that precedes reasonably certain that
if there be anyrelative motion between the earth and
the luminiferous aether, it must be small; quite small
enough entirely to refute Fresnel's explanation ofaberration.

Thus, whereas an explanation of stellar aberration
within the context of the wave theory required the
existence of a relative motion between Earth and aether,
the Michelson—Morley experimentrefuted that possibil-
ity. Moreover,the findings of Fizeau and Airy necessi-
tated the inclusion of a partial drag of light due tomotion of the medium.
es
1.8 TWENTIETH-CENTURY OPTICS

Jules Henri Poincaré (1854-1912) was perhapsthefirst
to grasp the significance of the experimental inability
to observe any effects of motion relative to the aether.
In 1899 he began to make his views known, and in 1900he said:

Ouraether, doesit really exist? I do not believe that
more precise observations could ever reveal anything
more than relative displacements.

In 1905 Albert Einstein (1879-1955) introduced his
special theory of relativity, in which hetoo, quite indepen-
dently, rejected the aether hypothesis.

The introduction of a “luminiferous aether” will prove
to be superfluous inasmuch as the view here to be
developed will not require an “absolutely stationary
space.”

He further postulated:
lightis always propagated in empty space with a definite
velocity ¢ which is independentof the state of motion
of the emitting body.

 
Figure 1.7 Albert Einstein (1879-1955). (Photo by Fred Stein.)
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The experiments of Fizeau, Airy, and Michelson—
Morley were then explained quite naturally within theframework of Einstein’s relativistic kinematics.*
Deprived of the aether, physicists simply had to get
used to the idea that electromagnetic waves could propa-
gate throughfree space—there was no alternative. Light
was now envisaged asa self-sustaining wave with the
conceptual emphasis passing from aether to field. The
electromagnetic wave became an entity in itself.

On October 19, 1900, Max Karl Ernst Ludwig Planck
(1858-1947) read a paper before the German Physical
Society in which he introduced the beginnings of what
was to becomeyet anothergreat revolution in scientific
thought—quantum mechanics, a theory embracing sub-
microscopic phenomena. In 1905, building on these
ideas, Einstein proposed a new form of corpuscular
theory in which he asserted thatlight consisted of globs
or “particles” of energy. Each such quantum ofradiant
energy or photon, f as it cameto be called, had an energy
proportionalto its frequency », i.c., 8 = hv, where his
known as Planck’s constant. By the end of the 1920s,
through the efforts of Bohr, Born, Heisenberg,
Schrédinger, De Broglie, Pauli, Dirac, and others, quan-
tum mechanics had becomea weil-verified theory,It
gradually became evidentthat the concepts of partide
and wave, which in the macroscopic world seem so
obviously mutually exclusive, must be merged in the
submicroscopic domain. The mentalimage of an atomic
particle (e.g., electrons and neutrons) as a minutelocal-
ized lump of matter would no longer suffice. Indeed,
it was found thatthese ‘‘particles” could generate inter-
ference and diffraction patternsin precisely the same
way as would light. Thus photons. protons, electrons,
neutrons, and so forth—the whole lut—have both par-
ticle and wave manifestations. Still, the matter was by
no meanssettled. “Every physicist thinks that he knows
what a photon is,” wrote Einstein. “I spent mylife to
find out what a photon is andIstill don't know it.”

Relativity liberated light from the aether and showed
the kinship between mass and cnergy (via € = mc’).
 
* See, for example, Special Relativity by French, Chapter5.
+ The word photon was coined by G. N. Lewis, Nature, December 18,1926.
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What seemed to be two almost antithetical quantities
now became interchangeable. Quantum mechanics
went on to establish that a particle* of momentum p
had an associated wavelength A, such that p h/A
(whether it had rest mass or not). The neutrino, a
neutral particle presumably having zero rest mass, was
postulated for theoretical reasons in 1930 by Wolfgang
Pauli (1900-1958) and verified experimentally in the
1950s. The casy images of submicroscopic specks of
matter became untenable, and the wave-particle
dichotomy dissolvedinto a duality.

Quantum mechanics also treats the manner in which
light is absorbed and emitted by atorns. Suppose we
cause a gas to glow byheatingit or passing an electrical
discharge through it. The light emitted is characteristic
of the very structure of the atoms constituting the gas.
Spectroscopy, whichis the branch of optics dealing with
spectrum analysis, developed from the research of
Newton. William Hyde Wollaston (1766-1828) madethe earliest observations of the dark lines in the solar
spectrum (1802). Because of the slit-shaped aperture
generally used in spectroscopes, the output consisted
of narrow colored bandsoflight. the so-called spectral
lines. Working independently, Joseph Fraunhofer
(1787-1826) greatly extended the subject. After
accidentally discovering the double line of sodium. he
wentonto study sunlight and made the first wavelength
determinations using diffraction gratings. Gustav
Robert Kirchhoff (1824-1887) and Robert Wilhelm
Bunsen (1811-1899), working conjointly at Heidelberg,
established that each kind of atom hadits ownsignature
in a characteristic array of spectrallines. And in 1913
Niels Henrik David Bohr (1885-1962) set forth a pre-
cursory quantum theory of the hydrogen atom, which
was nonetheless able to predict the wavelengthsof its
emission spectrum. Thelight emitted by an atom is now
understood to arise from its outermost electrons. An
atom that somehowabsorbs energy(e.g., through col-
lisions) changes from its usual configuration, known as
the groundstate, to what's called an excited state. After
somefinite time, it relaxes back to the groundstate, the
electrons returningto their original configuration with
respect to the nucleus, giving up the excess energyoften 
* Perhapsit might help if we just called them all wavicles.

in the form of light. The process is the domain of
modern quantum theory, which describes the most
minute details with incredible precision and beauty.

The flourishing of applied optics in the second half
of the twentieth century represents a renaissance in
itself, In the 1950s several workers began to inculcate
optics with the mathematical techniquesandinsights of
communications theory. Just as the idea of momentum
provides another dimension in whichto visualize aspects
of mechanics, the concept of spatial frequency offers a
rich new way of appreciating a broad range of optical
phenomeoa. Bound together by the mathematical for-
malism of Fourier analysis, the outgrowths of this con-
temporary emphasis have been far-reaching. Of par-
ticular interest are the theory of image formation and
evaluation, the transfer functions, and the ideaofspatial
filtering.

The advent of the high-speed digital computer
brought with it a vast improvement in the design of
complex optical systems. Aspherical lens elernents took
on renewed practical significance, and the diffraction-
limited system with an appreciablefield of view became
a reality. The technique of ion bombardment polishing,
in which one atom at a time is chipped away, was
introduced to meet the need for extreme precision in
the preparation of optical elements. The use of single
and multilayer thin-film coatings(reflecting. antireflect-
ing, etc.) became commonplace. Fiberoptics evolved
into a practical tool, and thin-film light guides were
studied. A great deal of attention was paid to the
infrared end of the spectrum (surveillance systems, mis-
sile guidance, ete.), and chis in turn stimulated the
developmentofinfrared materials. Plastics began 10 be
used in optics (lens elements, replica gratings, fibers,
aspherics, etc.). A new class of partially vitrified glass
ceramics with exceedingly low thermal expansion was
developed. A resurgence in the construction of astro-
nomical observatories (both terrestrial and extraterres-
trial) operating across the whole spectrum was well
under way by the end of the 1960s and vigorouslysustained in the 1980s.

‘The first laser was built in 1960, and within a decade
laser beams spanned the range from infraredto ultra-
violet. The availability of high-power coherent sources
led to the discovery of a number of new optical effects

 

Figure 1.8 These photos, which
were made using electronic
amplification techniques, are a com-
pelling illustration of the granular
ity displayed by light in its interac-tion with matter, Under exceed-
ingly faint iNumination the pateern
{each spot corresponding to onephoton) seems almost random,but
as the light level increases the quan-tal character of the process
gradually becomes obscured. (See
Advances in Biological and Medical
Physics V, 1957, 211-242.) (Photos
courtesy Radio Corporation of
America.)

(harmonic generation, frequency mixing, etc.) and
thence to a panorama of marvelous new devices, The
technology needed to producea practicable optical com-
municationssystem was evolving fast. The sophisticated
use of crystals in devices such as second-harmonic gen-
erators, electro-opticand acousto-optic modulators, and
the like spurred a great deal of contemporary research
in crystal optics, The wavefront reconstruction tech-
nique known as holography, which produces mag-
nificent three-dimensional irnages, was found to have
numerous additional applications (nondestructive test-
ing, data storage, etc.).

The military orientation of much of the develop-mental work in the 1960s continued in the 1970s and
the 1980s with added vigor. That technologicalinterest
in optics ranges across the spectrum from “smart
bombs”and spysatellites to “death rays” and infrared
gadgets that see in the dark. But economic coosider-
ations coupled with the need to improve the quality of
life have brought products of the discipline into the
consumer marketplace as never before. Todaylasers

15 Twentieth-Century Optics i

 
are in use everywhere: reading videodiscs in living
rooms, cutting steel in factories, setting type in news-
papers, scanning labels in supermarkets, and perform-
ing surgery in hospitals. Millions of optical display sys-
tems on clocks and calculators and computersare blink-
ing all around the world. The almost exclusive use, for
the last one hundredyears,ofelectrical signals to handle
and transmit data is now rapidly giving way to more
efficient optical techniques. A far-reaching revolution
in the methodsofprocessing and communicating infor-
mation is quietly taking place, a revolution that will
changeourlives immensely in the years ahead.

Profoundinsights are slow in coming, What few we
have took over three thousand years to glean, even
though the pace is eyer quickening. It is marvelous
indeed to watch the answer subtly change while the
question immutably remains—whatis light?* 
* For mote reading on the history of optics, see F. Cajori, A Historyof Physics, and V. Ronchi, Fhe Nature ofLight, Excerpts from a numker
of original papers can conveniently be foundin W. F. Magic, A Source
Book in Physics, and in M. H. Shamos, Great Experiments in Physics.
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Tree are a great many, seemingly unrelated, phy-sical processes that can be described in terms of the
mathematics of wave motion. In this respect there are
fundamentalsimilarities amonga pulse traveling along
a stretched string (Fig. 2.1), a surface tension ripple in
a cup of tea, and thelight reaching us from some remote
point in the universe. This chapter will develop some
of the mathematical techniques needed to treat wave
phenomena in general. Wewill begin with some fairly
simple ideas concerning the propagation of distur-bances and from these arrive at the three-dimensional
differential wave equation. Throughout the study of
optics one utilizes plane, spherical, and cylindrical
waves. Accordingly, we'll develop their mathematical
representations, showing them to be solutions of the
differential wave equation. This chapter will be a com-
pletely classical treatment; even so, it can be shown,
although wewill not do so, that our results do indeed
obey the requirements of special relativity.
 
2.1 ONE-DIMENSIONAL WAVES

The essential aspect of a propagating waveis thatit is
a self-sustaining disturbance of the medium through
whichit travels. Envision somesuch disturbance y mov-
ing in the positive x-direction with a constant speed v.
Thespecific nature of the disturbanceis at the moment
unimpertant. It might be the vertical displacement of
the string in Fig. 2.1 or the magnitudeof an electric or
magnetic field associated with an electromagnetic wave
2

THE MATHEMATICS OF
=~ WAVE MOTION

(oreven the quantum-mechanical probability amplitude
of a matter wave).

Since the disturbance is moving,it must be a function
of both position and time and can therefore be writtenas

w= f(x, t). @1)

 

 
 
Figure 2.1 A wave ona string.
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Theshapeofthe disturbanceat anyinstant, say t = 0.

can be found by holding titime constantat that value. Inthis case,
Hx, Dhi-o©fle, 0)©f(x) 2.2)

represents the shape or profile of the wave at that time.For example, if f(x) = ¢ mast , where @ is a constant, the
profile has the shape of a bell, i., it is a Gaussianfunctiou. The processis analogousto taking a “photo-
graph”ofthe pulseasit travels by. For the moment we
will limit ourselves to a wave that does not change ils shape
as it progresses throughspace. Figure 2.2 is a “double
exposure”of such a disturbancetaken at the beginning
and end of a timeinterval t. The pulse has moved along
the x-axis a distance vt, but in all other respects it
remains unaltered. We now introducea coordinate sys-
tem 5S’, which travels along with the pulse at the speed
v. In this system is no longer a function of time, and
as we move along with S’ we see a stationary constant
profile with the same functional form as Eq.(2-2). Here,the coordinateis x’ rather than x, so that

w= f(x’). (2.3)
The disturbance looks the sameat any value of ¢ in S’as it did at f= 0 in S when S$ and S’ had a common
origin. It follows from Fig. 2.2 that

= vt, (2.4)
so that can be written in termsofthe variables associ-

Figure 2.2 Moving reference frame.

  

 

2.1 One-Dimensional Waves wy 

ated with the stationary S system as
w(x, t)=fe — vi). (2.5)

This then represents the most general form of the
one-dimensional wave function. To be morespecific,
we have only to choose a shape (2.2) and then substitute
(x wt) for x in f(x). The resulting expression describes a
moving wave having the desired profile. Thus, (x, t) =
eee"ig a bell-shaped wave traveling in the positive
x-direction with a speed v. lf we check the form of Eq.
(2.5) by examining ¥ after an increase in time of At and
a corresponding increase of v At in x, we find

fl(e + vAl— vi + AD)> fe-vt)
andthe profile is unaltered.

Similarly, if the wave were traveling in the negative
x-direction, Le., to the left, Eq. (2.5) would become

w= fx ot),
We may concludethereforethat, regardless of the shape
of the disturbance, the variables x and ¢ must appear
in the function as a unit, i.e., as a single variable in the
form (x vf). Equation (2.5) is often expressed
equivalently as some function of (f— x/v), since

with uv>0. (2.6)

fut) = r(-==*) =F xf). 27)
Incidentally, the pulse shown in Fig. 2.1 and the

disturbance described by Eq. (2.5) are spoken of as
one-dimensional because the waves sweep over points
lying ona line—it takes only one space variableto specify
them. Don’t be confused by the fact that in this par-
ticular case the rope happensto rise up into a second
dimension. In contrast, a two-dimensional wave propa-
gates out across a surface, like the ripples on a pond,
and can be described by two space variables.Wewish to use the information derived so far to
develop the general form of the one-dimensional
differential wave equation. To thatend, take the partial
derivative of (x, t) with respect to x, holding ¢ constant.
Using x'= x vt, we have

aw ofa’af ax’
ox Tax ae Taq Smee Toe 1. (2.8)  

If we hold x constant, the partial derivative with respect
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to time is

ou he we, (2.9)at ax’ at ax
Combining Eqs. (2.8) and (2.9) yields

I (2.10)a ax

This says that the rate of change of ¢ with ¢ and with
x are equal, to within a multiplicative constant, as shown
in Fig. 2.3. Knowing beforehand that we'll need two
constants to apecify a wave, we can anticipate a second-
order wave equation. The second partial derivatives of
Eqs. (2.8) and (2.9) yield

au esax” ax’?
and
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Figure 2.3 Variation of # with x and 4.

 
Since

au_afatoat’
it follows, using Eq. (2.9), chat

at’ ax
Combining these equations, we obtain

vy
 

(any

which is the one-dimensional differential wave
equation. It is apparent from the form of Eq. (2.11)
that if two different wave functions #, and #p are each
separate solutions, then (4+ ¢) is also a solution.*
Accordingly, the wave equation is most generally
satisfied hy a wave function having the form

bem fe
where C, and Cy are constants and the functions are
twice differentiable. This is clearly a sum of two waves
traveling in opposite directions along the x-axis with
the same velocity but not necessarily the same profile,
The superposition principle ia inherentin this equation,
and wewill come back to it in Chapter 7.

Webegan with a special case, an important ane to be
sure, hut a special case nonetheless—most waves do not
propagate with a constant profile. Still, that simple
assumption has led us to the central formulation, the
differential wave equation. If a function is a solution of
that equation, it represents a wave. As we've seen,it
will at the same time be a function of (x ¥ vt)
specifically, one that is twice differentiable with
respect to both x and t.

utyt+ Cog(x vt), (2.42)

SH
* Since both y, and &, are solutions
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Adding these, we get
Phy Py 1 fat
at ath te) =  ax’ ax® ax

so that (ih+ Wo) is also a solution of Eq. (2.11).

Figure 2.4 An ulteashort pulse of green light from a neodymium-
doped glass laser. The pulse passed through a water cell whose wallis marked in millimeters. During the 10-picosecond exposure the
pulse moved abou 2.2 mm. (Photo courtesy Bell Laboratories.)

2.2 HARMONIC WAVES

Let’s now examine the simplest wave form for which
the profile is a sine or cosine curve. These are variously
known assinusoidal waves, simple harmonic waves. or
more succinctly as harmonic waves. We shall see in

| Chapter 7 that any wave shape can be synthesized by asuperposition of harmonic waves, and they therefore
take on a special significance.

| Choose as the profile the simple function

| Wx. Oho=expe A sin ke fx),where & is a positive constant known as the propagation
number. It’s necessary to introduce the constant &
simply because we cannot take the sine of a quantity

@.13)

that has physical units. Accordingly, ke is properly inradians. The sine varies from +1 to —1 so that the
Maximum value of #(x) is A. This maximum distur-
bance is known as the amplitude of the wave (Fig; 2.5).
To transform Eq. (2.18) into a progressive wave travelingat speed v in the positive x-direction, we need merely
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replace « by (x— vt), in which case
Ux,= Asin A(x vt) = fix — vt). (2.24)

This is clearly (see Problem 2.8) a solution of the
differential wave equation (2.11). Holding either x or ¢
fixed resuits in a sinusoidal disturbance, so the wave is
periodic in both space and ime. The spatial period is
known as che wavelength andis denoted by A, as shown
in Fig. 2.5. The unit of A is the nanometer, where
1nm= 10m;although the micron (1 pm = 107m)

lL
Wax,

  
Figure 2.5 A progressive waveat three different times.
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is often used, and the older angstrom (ft A=10°'? m)can still be found in the literature. An increase or
decrease in x by the amount A should leave y unaltered,that is,

wd, 1)=u(x=A, t), (2.15)
In the case of a harmonic wave, this is equivalent to
altering the argument of the sine function by +27.Therefore,
sin A(x~ul) sin A[(x + A)— vt]™sin [A(t wt) + 2]

and so

|kA}=2a,
or, since both k and A are positive numbers,

k@ Qa/a. (2.16)
In a completely analogous fashion, we can examine the
temporal period, 7. This is the amountof time it takes
for one complete wave to pass a stationary observer. In
this case. it is the repetitive behavior of the wave in time
thatis of interest, so that

WG, = dO tt 7) (2.17)
and

sin k{s~vt)=sin A[x ~ v(t & 7)]
sin (A(x vt) 4 Qrr].

Therefore,
[kur] = Qa.

But theseareall positive quantities: hence
kur=Qa (2.18)

or

Qn
,7 2n,

frorn which it follows that
T A

Te (2.49)v

The period is the numberof units of time per wave
(Fig. 2.6), the inverse of which is che frequency ¥, or

lay. th
A

 
Figure 2.6 A harmonic wave.

the number of waves per unit of time. Thus,
1

v ; (cycles/s or Hertz),
and Eq. (2.19) becomes

v= vA (mis). (2.20)
There are two other quantities that are often used in
the literature of wave motion andthese are the angular
frequency

 aa (radians/s) (2.21)7
and the wave number

x «m7?). (2.28)

The wavelength, period, frequency, angular frequency.
wave number, and propagation numberall describe.
aspects of the repetitive nature of a wave in space and
time. These concepts are equally well applied to waves
that are not harmonic, as long as cach waveprofile is
made up of a regularly repeating pattern (Fig. 2.7). We
havethusfar defined a numberofquantities that charac-
terize various aspects of wave motion. There exist,
accordingly, a number of equivalent formulations of

Spatialperiod

Spatialperiod

Spatialperiod,

 
Figure 2.7. Anharmonic periodic waves.

the progressive harmonic wave. Someof the most com-monof these are
© Asin k(x F vt) {2.14}

7 xt
Y= Asin on(2 aa ‘) (2.23)Af,
w= Asin Qa(xx= ri) (2.24)
a= Asin (kx=wt) (2.25)

ye Asin am(2 | ‘ (2.26)v

OF these, Eqs. (2.14) and (2.25) will be encountered
most frequently. It should be noted that these waves
are all of infinite extent,i.e., for any fixed value of |,
there is no mathematical limitation on x, which varies
from 00 to +00, Each wave has a single constant
frequency andis therefore said to be monochromatic.

2.9 Phase and Phase Velocity 17

2.3 PHASE AND PHASE VELOCITY

Examine any one of the harmonic wave functions, suchas

dx, t)=A sin (kx~wf),
The entire argumentof the sine function is known as
the phase ¢ of the wave, so that

p=(kx — wl). (2.27)

WX 0], YO, 0)=0.1=0

which is certainly a special case. More generally, we canwrite
yx Qo Asin (kx wt + 6), (2.28)

where © is the initial phase or epoch angle. To get a
sense of the physical meaning of e, imagine that we
wish to produce a progressive harmonic wave on a
stretched string, as in Fig. 2.8. In order to generate
harmonic waves, the hand holding che string would
have to movesuchthat its vertical displacement y was
proportional co the negative ofits acceleration, thatis,
in simple harmonic motion (see Problem 2.9). But at
{=O and x= 0, the hand certainly need not be on the
x-axis about to move downward, asin Fig. 2.8. It could,
of course, begin its motion on an upward swing, in
which case €=7, as indicated in Fig. 2.9. In this lattercase,

WON= 9
which is equivalent to

Asin (kx wl» 1),

v(x, (= A sin (@t— bx)
or

w= A cos (a kx 2).
Theinitial phase angle is then just the constant contribu-
tion to the phasearising at the generaterand is indepen-
dentof howfar in space, or how long in time, the wavehastraveled,

 

15



16

 

 

8 Chapter 2 The Mathematics of Wave Motion

The phase of a disturbance such as (x, t) given by
Eq.(2.28) is

(x, ) > (kx~at © e) 12.29)
and is obviously a function of x and & In fact, the partial
derivative of @ with respect to 4 holding x constant, is
the rate of change of phase with time, or

Cie
Similarly, the rate of change of phase with distance, holding{ constant,is

 (2) | A (2.34)ax), |
These two expressions should bring two mind an

equation from the theory of partial derivatives. one
used quite frequently in thermodynamics, namely,

(2) (ag/at).at}, —pibx),
The term on the left represents the velocity of propaga-
tion of the condition of constant phase. Return for a
momentto Fig, 2.9 and choose any point on the profile,

  (2.32)

 
Figure 2.8 With ¢ = 0 note that at x= 0 and (= s/4 = 7/20, 9Asin (~7/2) =A.

See eeeyeeeeeeeeem

Figure 2.9 With ©=9 note that at x= 0 and t=</4, 9=Asin (7/2) = A.
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for example, the crest of the wave. As the wave moves
throughspace, the displacement y of the point remains
constant. Since the only variable in the harmonic wave
function is the phase, it too must be constant. Thatis,
the phaseis fixed at such a valueasto yield the constant
y corresponding to the chosen point. The point moves
along with the profile at the speed v and so too does
the condition of constant phase.

‘Taking the appropriate partial derivatives of y as
given, for exarnple by Eq. (2.29) and substituting them
into Eq, (2.32), we get

(2) te nsy (2,53)
saa Tatu ,.
al, ¢

Thisis the speed at which the profile moves and is known
commonly as the wave velocity or, more specifically, as
the phase velocity. The phase velocity carries a positive
sign when the wave moves in the direction of increasing
x and a negative one in the direction of decreasing x
This is consistent with our development of v as the
magnitude of the wavevelocity.

Consider the idea of the propagation of constant
phase and how it relates to any one of the harmonic
wave equations, say

hb Asin kt F vt)
with

go k(x — vt) = constant;
as ¢ increases, x must increase. Even if s <0 so that
¢ <0,x mustincrease (i.e., becomeless negative). Here,
then, the condition of constant phase moves in the
increasing x-direction. For

¢©k(x + vt) = constant.
as ¢ increases x can be positive and decreasing or nega-
tive and becoming more negative. In either case, the
constant-phase condition moves in the decreasing x-direction.

Figure 2.10 depicts a source producing hypothetical
two-dimensional waves on the surface of a liquid. The
essentially sinusoidal nature of the disturbance, as the
medium rises and falls, is evident in the diagram. But
there is another useful way to envision what's happen-
ing, The curves connecting all the points with a given phase

24 The Complex Representation 19

 
 

Figure 2.18 Sdealized circular waves. (Photo by F.H.)

form a set of concentric circles, Furthermore, given that
A is everywhere constant at any one distance from the
source, if y is constant over a circle, & too must be
constant over that circle. In other words, all the corre-
sponding peaks andtroughs fall on circles and we speakof these as circular waves.
 
2.4 THE COMPLEX REPRESENTATION

As we develop the analysis of wave phenomena,it willbecome clear that the sine and cosine functions that
describe harmonic waves are somewhat awkward for
our purposes. As the expressions being formulated
become more involved. the trigonometric manipula-
tions required to cope with them become even more
unattractive. The complex-number representation of
waves offers an alternative description that is
mathematically simpler to use. In fact, the complex
exponential form of the wave equation is used exten-
sively in both classical and quantum mechanics, as well
as in optics.
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The complex number z has the form
2a ip, (2.34)

where i The real and imaginary parts of « are
respectively x and y, where both x andy are themselves
rea) numbers. This is illustrated graphically in the
Argand diagramin Fig, 2.11. In termsof polar coordin-ates (r, 0), we have

x= ros 6, yo rsinéd
and

2a xr iy
The Euler formula*

2”=cos 8

r(cos 6 + isin 6).

isin @
allows us to write ia oe

z= re rcos 6+ irsin 8,

where 7 is the magnitude of z, and 9 is the phase angle
of z, in radians. The magnitudeis often denoted by[|and referred to as the modultés or absolute value of the
complex number. The complex conjugate, indicated by
an asterisk, is found by replacing i whereverit appears,with —£, so that

 =(x+ iy (x iy)*z r(cos @ - i sin @)
and

 
The operations of addition and subtraction are quitestraightforward:

21=tg (x1 + in) H (xp tty)
and therefore

ay4tg = (e, £ Xp) + Hy + yp).
Notice that this processis very muchlike the componentaddition of vectors.
ee
* If you have any doubrs about this identity, take the dilferenual of2-= C080 + isin #, where y= 1. This yields dz; iz d8, and integrationgives 2=exp (36).

imaginary

Real 
Figure 2.11 Argand diagram.

Multiplication and division are most simply expressein polar form ?
Zypdo=Fryeree

and

 Th 8,8,es 8),Be 2

4 numberof facts that will be useful in future caleula-
tions are well worth mentioningatthis point. It follows |
readily from the ordinary trigonometric addition for- )mulas that

ents = gig,
whence, if 2)=x and zy~i,

ee OT em oe

The modulus of a complex quantityis given by
(a2*)/",

so that

le}=e%
Inasmuch as cos 27=| and sin27™ 0,

similarly,

The function ¢* is periodic, thatis, it repeatsitself everyilar:
cette et, 

Any complex numbercan be represented as the sum
of a real part Re («) and an imaginary part Im(z)

z= Re (z)+ i Im (z),
such that

1

Re(z)= 4z2+2*) and Im{z) ae a*)e
From the polar form where

Re(z)~ rcos@ and Im(z)™ rsin @,
it is clear that either part could be chosen to describe
a harmonic wave. It is customary, however, to choose
the real part, in which case a harmonic wavejs-writtenas

w(x, t)=Re Laer], (2.35)
which is, of course, equivalent to

a, t)
Henceforth, wherever it’s convenient, we shall write the
wave function as

Acos (wl kx+ 6),

Ux, 2) = AetleOhTO = Agel? (2.38)
andutilize this complex form in the required computa-
tions. This is done to take advantage of the ease with
which complex exponentials can be manipulated. Only
after arriving at a final result, and then onlyif we want
to represent the actual wave, must we take the realpart.
It has, accordingly, beéome quite common to write
w(x, t), as in Eq. (2.36), where it is understood that the
actual wave is the real part.
 
2.5 PLANE WAVES

The plane waveis perhaps the simplest example of a
three-dimensionalwave, It exists at a given time, when
all the surfaces upon which a disturbance has constant
phase form asetof planes, each generally perpendicular
to the propagation direction. There are quite practical

2.5 Plane Waves ar

reasons for studying this sort of disturbance, one of
which is that by using optical devices, we can readily
producelight resembling plane waves.

The mathematical expression for a plane that is per-
pendicular to a given vector k and that passes through
some point(xy, yo, 29) is rather easy to derive (Fig. 2.12).
The position vector, in termsofits components in Car-tesian coordinates, is

ro [x,y].
Jt begins at somearbitrary origin O and endsat the
point(x, y,z), which can, for the moment, be anywhere
in space. By setting

(r~rp) 7k = 0, (2.37)
we force the vector (f — ry} to sweepout a plane perpen-
dicular to k, as its endpoint(x, y, 2) takes onall allowedvalues. With

k=[A,. hy Re] (2.38)
Eq. (2.37) can be expressed in the form

R(x — X09)tRF To) Be(Z~29)=0 (2.39)or as

kat hy t hz a, (240)

 
Figure 2.12 A plane wave movingin the k-direction,
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where

a~ kxo + kyo + ky > constant. (242)
The mest concise form of the equation of a plane
perpendicular to k is then just

k+r constant=a. (2.42)
Theplaneis the locusofall points whoseposition vectors
each have the same projection onto the k-direction.

Wecan nowconstruct a set of planes over which (r)
yaries in space sinusoidally, namely,

g(r) Asin (kr) (2.43)
utr) = A cos (K+ r) (2.94)

or

wr)~Ae™*", (2.45)
Foreachof these expressions /(r) is constant over every
plane defined by k+ r= constant. Since we are dealing

ee
+4 
  Displacementin thedyection of kK

Figure 2.13 Wavefronts for a harmonic plane wave.

with harmonicfunctions, they should repeat themselves
in space after a displacement of A in the direction of
k. Figure 2.13 is a rather humble representationofthis
kind of expression. We have drawn only a few of the
infinite number of planes, each having a different #(r).
The planes should also have been drawn with an infinite
spatial extent, since no limits were put on r. The distur-
bance clearly occupies all of space.

The spatially repetitive nature of these harmonic
functions can be expressed by

Ak

yr) ofr + “*), (2.46)
where & is the magnitude of k and k/& is a unit vector
Parallel to it (Fig. 2.14). In the exponential form, this
is equivalent to

Ae? = AckTAH) ogotlergiak,
Forthis to be true, we must have

eh a] a pit

therefore, AR = Qn

22
and k rl
Thevector k, whose magnitudeis the propagation number
& (already introduced),is called the propagation vector.

At any fixed point in space where r is constant, the
phase is constant and so too,is #(r), in short the planes
are motionless. To get things moving, ¢(r) must be
made toyary in time. something we can accomplish by
introducing the time dependence in an analogousfashion to that of the one-dimensional wave. Here then

ole, = Agitreo (2.47)
with A, o, and & constant. As this disturbance travels
along in the k-direction we can assign a phase corre-
sponding to it at each point in space andtime. At any
given time, the surfaces joining all points of equal phase are
known as wavefronts or wave surfaces. Note that the wavefunction will have a constant value over the wavefront
only if the amplitude A hasa fixed value at every point
on the wavefront. In general, A is a function of r and
may not be constant over all space or even over a

2.6 The Three-Dimensional Differential Wave Equation 23

 
Figure 214 Plane waves.

wavefront. In the Jatter case, the wave is said to be
inhomogeneous, but we will not be concerned with this
sort of disturbanceuntil Jater, when we consider laser-
beamsand total internal reflection.

The phase velocity of a plane wave given by Eq.(2.47)
is equivalent to the propagation velocity of the wave-
front. In Fig. 2.14, the scalar component of r in the
direction of k is %. The disturbance on a wavefront is
constant, so that after a time di, if the front moves along
ka distance dry, we must have

Wr, 0 = Unt dn, t
In exponential form,this is

dt) dlr, 0). (2.48)

AcierFa  Ayiitrythi,Forew ds 4pFFan),
therefore,

kdy~ +odt,
and the magnitude of the wavevelocity, dr/dt, is

rie, & 9i to @A9)
We could have anticipated this result by rotating the
Coordinate system in Fig. 2,14 so that k was parallel tothe x-axis. For that orientation

Wie, = Aer,

since k-r- ky, = kx, The wave has thereby been
effectively reduced to the one-dimensionaldisturbance
already discussed in Section 2.3.

Theplane harmonic waveis often written in Cartesiancoordinates as
We, 9, at) Aetherhzzon (2.50)

or

Ws, 4t)©Aeilerytrzatl @5n
where a, §, and y are the direction cosines of k (see
Problem 2.19). In terms of its components, the magni-
tude of the propagation vectoris given by

Wim he (A+ yt kt? (2.52)
and of course

a?) BF+y% 1. (2.53)
We have examined plane waves with a particular

emphasis on harmonic functions. The special sig-
nificance of these waves is twofold: first, physically,
sinusoidal waves can be generatedrelatively simply by
using some form of harmonic oscillator: second, any
three-dimensional wave can be expressed as a combina-
tion of plane waves, each having a distinct amplitude
and propagation direction.

Wecan certainly imaginea series of plane waves like
those in Fig. 2.13 where the disturbance varies im some
fashion other than harmonically,It will be seen in the
next section that harmonic plane wavesare, indeed, a
special case of a more general plane-wave solutian.

2.6 THE THREE-DIMENSIONAL
DIFFERENTIAL WAVE EQUATION

Ofail the three-dimensional waves, only the plane wave
(barmonic or mot) moves through space with an
unchanging profile. Clearly, then, the idea of a wave
being the propagation of a disturbance whose profile
is unaltered is somewhatlacking. This difficulty can be
overcome by defining a wave as any solution of the
differential wave equation. Obviously, what we need
now is a three-dimensional wave equation. This should
be rather easy to obtain, since we can guessatits form
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by generalizing from the one-dimensional expression
(2.11). In Cartesian coordinates, the position variables
x, y, and 2 must certainly appear symmetrically* in the
three-dimensional equation, a fact to be kept in mind.
The wave function ys, 9, 2.¢) given by Eq. (2.51) is a
Particular solution of the differential equation we are
lookingfor. In analogy with the derivation of Eq,(2.11),
we compute the following partial derivatives from Eq.
(2.51)

 
(2.54)

(2.55)

(2.56)

and

zt = oy,  
Adding the three spatial derivatives and utilizing the
fact that a? + 67+ y° = 1, we obtain

ayy= Ry
az” ¥

eu
oy ooax? ay”

  
(2.58)

Combiningthis with the time derivative Eq. (2.57) and
remembering that v©w/k, we arrive at

ry Fy Fp Layve ,ee =
ax?|ay ax? war?

  
(2.59)

the three-dimensional differential wave equation. Note that
x, y, and z do appear symmetrically, and the form is
precisely what one mightexpect from the generalization
of Eq. (2.11).

Equation (2.59) is usually written in a more concise
form by introducing the Laplacian operator2

 2 FF e
ax" ay

 32 (2.60)
an ‘ 

* There is no distinguishing characteristic for any one of the axesin
Cartesian coordinates. We should therefore be able to change the
namesof, say, xto x, to x,and 2to y {keeping the systemright-handed)
without altering the differential wave equation.

whereupon it becomes simply
iz)
ar  vey (2.61)

Nowthat we have this most important equation, let’s
briefly return to the plane wave and see howit fits into
the schemeofthings. A function of the form

W(x % 2, 0}
is equivalent to Eq. (2.51) and,as such,is a solution of
Eq.(2.61), It can also be shown (Problem 2.22) that

(a, % 2 L= flax + By + yz — ut)

AetherBetray (2.62)

(2.63)
and

d(x, 9%,= glax|By t+ yz + vt) (2.64)
are both plane-wave solutions of the differential wave
equation. The functions f and g, which are twice
differentiable. are otherwise arbitrary and certainlyneed not be harmonic. A linear combination of these
solutionsis also a solution, and wecan write this in a
slightly different manner as

we, ) = Cyfr k/k - vt)
where C, and Cs are constants.

Cartesian coordinates are particularly suitable for
describing plane waves. However, as various physical
situations arise, we can often take better advantage of
existing symmetries by making use of some othercoor-
dinate representations.

Cog(t *k/k+ vt), (2.65)

2.7 SPHERICAL WAVES

Toss a stone into a tank of water. The surface ripples
that emanate from the point of impact spread out in
two-dimensionalcircular waves. Extending this imagery
to three dimensions, envision a smail pulsating sphere
surrounded by a fluid. As the source expands and
contracts, it generates pressure variations that propa-
gate outwardas spherical waves.

Consider now an idealized point sourceoflight. The
radiation emanating from it streams out radially, wni-
formlyin all directions. ‘The sourceis said to be isotropic,
and the resulting wavefronts are again concentric
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Figure 2.15 The geometry of spherical coordinates.

spheres that increase in diameter as they expand outinto the surrounding space. The obvious symmetry of
the wavefronts suggests that it might be more con-
yenient to describe them mathematically, in terms of
spherical polar coordinates (Fig. 2.15). In this rep-
resentation the Laplacian operator is

2 1ef,a 1o@ ( . =)
Pe 5{ Piles — 6

v au =) sin 030" "a8
 

(2.66)
 

where 7, @, @ are defined by
x= rsin @ cos ¢, y= rsin @sin d z™ rcos@,

Remember that we are looking for a description of
spherical waves, waves that are spherically symmetrical
(ve., ones thar do not depend on @ and 4) so that

Yee)=WC, 8.4)>G(r). 2.67)
The Laplacian of #(r) is then simply

7 lée/f aw“ery soir). 2.68)
Vie(r) ely *) (2.68

Wecan obtain this result without being familiar with
Eq.(2.66). Start with the Cartesian form of the Laplacian
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(2.60), operate on the spherically symmetrical wave
function y(r), and convert each term to polar coordi-
nates. Examining only the x-dependence, we have

 

 

auyarax ar ax
and

since
HE) = Hr)

Using
tyee P,

we have
x

oT
and 
Now having 8y/ax®, we form y/ay® and a°y/az*, andon adding get

2 ayy2 aw 2a"
Ve wr) Bt op

which is equivalent to Eq. (2.68). This result can be
expressed inaslightly different form:

léyaad
We var

 
(np). (2.69)

The differential wave equation (2.61) can then bewritten as

(2.70) 
Multiplying both sides by 7, we obtain2 2

@.71)
 

 
 

 



20

26 Chapter 2 The Mathematics of Wave Motion

Notice that this expression is now just the one-
dimensional differential wave equation (2.11), where
the space variable is + and the wave function is the
product (7H). The solution of Eq. (2.71) is then simply

pcr, O~ f(r vt)

fra uy+vind (2.72)

This represents a spherical wave progressing radially
outward from the origin, at a constant speed 4, and
having an arbitrary functional form f, Another solution
is given by

wr, ye BD,r

and in this case the wave is converging toward the
origin.* The fact that this expression blows up at r = 0
is of little practical concern. :

A special case of the general solution

vir, OC a ; = o,f (2.733
is the harmonic spherical wave

u(r, t) (2) cos k(r F wt) (2.74)
or

ot) (2) or (2.75)
wherein the constant s is called the source strength. At
any fixed value of time, this represents a cluster of
concentric spheresfilling all space. Each wavefront, or
surface of constant phase, is given by

ky = constant.
 
* Other more complicated solutionsexist when the wave is pot spheri-
cally symmetrical. See C. A. Coulson, Waves, Chapter1.

 
Figure 2.16 A “quadruple exposure” of a spherical pulse.

Notice that the amplitude of any spherical waveis a
function of ry, where the term 7”! serves as an attenua-
tion factor. Unlike the plane wave, a spherical wave
decreases in amplitude, thereby changingits profile, as

 
Figure 2.17 Spherical wavefronts.
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itexpands and movesout from the origin.* Figure 2.16
jllustrates this graphically by showing a “multiple
exposure”of a spherical pulse at four different times.
The pulse has the same extent in space at any point
along any radiusr; that is, the width of the pulse along
the r-axis is a constant. Figure 2.17 is an attempt to
relate the diagrammatic representation of #(r, t) in the
previous figure toits actual form as a spherical wave.
It depicts hali the spherical pulse at two differenttimes,
as the wave expands outward. Remember that these
yesults would obtain regardless of the direction of 7,
because of the spherical symmetry. We could also have
drawn a harmonic wave, rather than a pulse, in Figs.
2.16 and 2.17. In this case, the sinusoidal disturbance
would have been bounded bythe curves

w= t/r and p~ —s¥/r.
The outgoing spherical wave emanating from a point

source and the incoming wave converging to a point
are idealizations, In actuality, light only approximates
spherical waves, as it also only approximates planewaves.

Asa spherical wavefront propagates out, its radius
increases. Far enough away from the source, a small
area of the wavefront will closely resemble a portion of
a plane wave (Fig. 2.18).

|
2.8 CYLINDRICAL WAVES

We will now briefly examine another idealized
waveform, theinfinite circular cylinder. Unfortunately,
a precise mathematical treatmentis far too involved to
do here. We shall, however, outline the procedure, so

feSSS
* Theattenuation factoris a direct consequence of energy conserva-tion, Chapter 3 contains a discussion of how these ideas applySpecifically to electromagnetic radiation,

HT
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Figure 218 The flattening of sphericalwaves with distance.

that the resulting wave functionwill evoke no mysticism.
The Laplacian of in cylindrical coordinates (Fig. 2.19}

 
 

Ss

af a~\ lay ay
vw? 2( ae c+, 76)Wear)*308? a” @7)

where
x ros 8, yersing, and z7 2

The simple case of cylindrical symmetry requires that
YE)=Wr, 8, 2) = Yer).

The 6-independence meansthat a plane perpendicular
to the z-axis will intersect the wavefront in a circle,
which mayvaryin +, at different valuesof z, In addition,
the z-independence furtherrestricts the wavefront to
a right circular cylinder centered on the z-axis and

 

 
Figure 2.19 The geometry ofcylindrical coordinates.
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having infinite length. ‘The differential wave equation
is accordingly

le ( *¥)
rit

rar\ ar

Weare looking for an expression for #(r), a solution
of this equation. Afier a bit of manipulation, in which
the time dependence is separated out, Eq. (2.77)
becomes something called Bessel’s equation. The
solutions of Bessel’s equation for large values of r
gradually approach simple trigonometric forms.
Finally, then, whenris sufficiently large, we can write

(2.77)
 

v6, hen
a on,

wy, t) Fp 008 Mr F at). (2.78)
This represents a set of coaxial circular cylindersfilling
all space and traveling toward or away from aninfinite
line source. Nasolutions in terms ofarbitrary functions
can now be found as there were for both spherical (2.73)
and plane (2.65) waves.

A plane wave impinging on the back of a flat opaque
screen containing a long thin slit will result in the
emission, from thatslit, of a disturbance resembling
a cylindrical wave (see Fig. 2.20). Extensive use has
been made of this technique to generate cylindrical
lightwaves. Rememberthat the actual wave, however
generated, only resembles the idealized mathematical
representation.

 
Figure 2.20 Cylindrical waves emerging from a long. nartaw sht,

a*=
2.9 SCALAR AND VECTOR WAVES

There are two general classifications of waves: longi-tudinal and transverse. The distinction between the two
arises from a difference between the direction alongwhich the disturbance occurs and the direction, k/&, in

 

 
 

Figure 2.21 (a) A longitudinal wave in a spring. (b) A transversewave in a spring.

 
which the disturbance propagates. This is rather easy
to visualize when dealing with an clastically deformable
material medium (Fig. 2.21). A longitudinal wave occurs
when the particles of the medium are displaced from
their equilibriumpositions, in a direction parallel to k/&.
A transverse wave arises wheo the disturbance, in this
case the displacementof the medium,is perpendicular
to the propagation direction, Figure 2.22(a) depicts a
transverse wave (as on a stretchedstring) traveling in
the z-direction, In this instance, the wave motion is
confined to a spatially fixed plane called the plane of
vibration, andthe waveis accordingly said tobelinearly
or plane polarized. To determine the wave completely,
we must nowspecify the orientation of the plane of
vibration, as well as the direction of propagation. This
is equivalent to resolving the disturbance into com-
ponents along (wo mutually perpendicular axes, both
normalto z [see Fig. 2.22(b)]. he angle at which the
plane of vibration is inclined is a constant, so that at
any time ¥, and 4, differ from ye by a multiplicativeconstant and are both therefore solutions of the
differential wave equation. A significant fact hasevolved: the wave function of a transverse wave behaves
somewhatlike a vector quantity. With the wave movingalong the z-axis, we can write

RD2, OFF Uy(e OF (2.79)
where, of course, i, i. and are the unit base vectorsin Cartesian coordinates.

A scalar harmonic plane wave is given by theexpression
et) = Aeter res [2.47}

A lineaily polarized harmonic plane waveis given by thewave vector

wr, t)=Aaron (2,80)
or in Cartesian coordinates by

WG, LOS ATF AT + Aeron oxi
For this latter case in which the plane of vibration is
fixedin space, so toois the orientation of A. Remember
that y and A differ only by a scalar and.as such, are
Parallel to each other and perpendicularto k/A. 

2.9 Scalar and Vector Waves 29

 
wh

Figure 2.22 Linearly polarized waves.

Light behaves likea transverse wave, and an appreciation
of its vectorial nature is of great importance. The
phenomenaofoptical polarization can readily be treated
in terms ofthis sort of vector wave picture. For unpotar-
qed light, in which the wave vector changes direction
randomly and rapidly, scalar approximations become
useful, as in the theories of interference and diffraction.
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PROBLEMS
2.1 How many “yellow”light waves (A~580 nm)will
fit into a distance in space equal to the thicknessof a
piece of paper (0.003 in)? Howfarwill the same number
of microwaves (7 = 10'° Hz,i.e., 10 GHz, and u= 3x
10° m/s) extend?

2.2* The speed of light in vacuum is 3 X 10° m/s. Find
the wavelength ofred light having a frequency of 5 x
10'* Hz, Compare this with the wavelength of a 60-Hz
electromagnetic wave.

2.3* It is possible to generate ultrasonic wavesin crys-
tals with wavelengthssimilar to light (5 x 107° em) but
with lower frequencies (6 X 10° Hz), Computethe corre-
sponding speed of such a wave.

2.4" Make upatable with columnsheaded by values
of @ running from —z/2 to 2a in intervals of 7/4. In
each column place the corresponding value of sin 8beneath those the values of cos @, beneath those the
values of sin(@— 7/4), and so on, with the functions
sin (@ — 7/2), sin (@ — 37/4), and sin (@ + 7/2), Plot each
of these functions, noting the effect of the phase shift.
Doessin @ lead orlag sin (@—7/2); in other words, does
oneof the functions reach a particular magnitude at a
smaller value of @ than the other and therefore lead
the other (as cos @ leadssin #)?

2.5* Make up a table with columns headed by values
of kx running from x = —A/2 to x =+A in intervals of
x of A/4—of course, k™ 27/A. In each column place
the correspondingvaluesofcos (kx—7/4) and beneath
that the values of cos (kx + 32/4). Next plot the func-
tions t5 cos (kx — 9/4) and 25 cos (kx + 37/4).

2.6* Make upatable with columns headed by values
of wi running from {= —7/2 to©+7 in intervals of £
of 7/4—of course, w=27/7. In each columnplace the
corresponding valuesof sin (wi + 7/4) and sin (4/4 —
wi) and then plot these two functions.
2.7. Using the wave functions

yh = 4sin 27(0.2x—32)
 

and
_ sin (x + 3.59

2 = 25 >
determine in each case the values of (a) frequency, (b)
wavelength,(c) period, (d) amplitude,(e) phasevelocity,
and (8) direction of motion. Time is in seconds and xis in meters.

2.8* Show that
WO, 0) = Asin K(x ~ vt) [2.44

is a solution of the differential wave equation.

2.9 Show thatif the displacementofthe string in Fig.
2.8 is given by

a(x) Asin [kx — wt + 2],
then the hand generating the wave must be moving
vertically in simple harmonic motion.

2.10 Write the expression for a harmonic wave of
amplitude 10° V/m,period 2.2 x 107'* s, and speed 3 x
10° m/s. The wave is propagating in the negative x-
direction and has a value nf 10° V/m at t= 0 and x=0.

2.11 Consider the pulse described in termsofits dis-
placementat t= 0 by

x, Oh-o = FT
90% Ohno=5

where C is a constant. Draw the wave profile. Write an
expression for the wave, having a speed vin the negative
x-direction, as a function of time ¢. If v = 1 m/s, sketch
the profile att 2s.

2.12* What is the magnitude of the wave function
dz, t) = A cos[k(z + vt) + a] at the point z = 0, when
t= 7/2 and when tf = 37/4?

2.13 Does the following function, in which A is aconstant,
UO, = (> vA

represent a wave? Explain your reasoning.
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Use Eq. (2.32) to calculate the speedof the wave
- representation in SI units is

wy, t) = A cos (3 x 10°y +9 x 10!%0),
 

2.15 Create an expression forthe profile ofa harmonic
wave traveling in the z-direction whose magnitude at
7 = ~A/12is 0.866, at z= +A/6 is 1/2, and at 2 =A/4is 0.

2.16" Show that the imaginary part of a complex num-
ber # is given by (2 ~ 2*)/2i.

Q.17* ‘Determine which of the following describe
traveling waves:

#9, ty 7 go (aytbP2abyy)
wz, £)©Asin (az? bt) 2

W(x, ) = Asin an(2 +4)a 6

w(x, t)= A cos’ Qa(t— x).
Where appropriate drawthe profile and find the speedand direction of motion,

2.18 Giventhetraveling wave ¥(x, !) =5.0 exp (ax? —
ut? - QVab xt), determineits direction of propagation.
Calculate a few values of ¢ and make a sketch of the
wave at t= 0, taking a©25m™" and 6 = 9.0s°*. What
is the speed of the wave?

2.19 Beginning with Eq. (2.50), verify that
W(x, 9, 2, = Aethoxtiyteren

and that
a+ p+ y2— 1,

Draw a sketch showingall the pertinent quantities.

2.20 Consider a lightwave having a phase velocity of
3 108 m/s and a frequencyof 6 ¥ 10'* Hz. Whatis the
shortest distance along the wave between any two points
hat have a phase difference of 30°? What phase shift

Occurs at a given point in 10-°s, and how many waves
have passed byin that time?

 

  
Problems a

2.21 Write an expression for the wave shownin Fig.
2.23, Find its wavelength, velocity, frequency, and
period.

—20 
 

Ee p= 0.66 4 107s.5

3 en
S

p= 133 x 10's

  
Figure 2.238 A harmonic wave.

2.22" Show thatEqs.(2.63) and (2.64), which are plane
waves of arbitrary form, satisfy the three-dimensional
differential wave equation.
2.23 De Broglie’s hypothesis states that every particle
has associated with it a wavelength given by Planck’s
constant (hk = 6.6 x 10-4 Js) divided by the particle’s
momentum. Compare the wavelength of a 6.0-kg stone
moving at a speed of 1.0 m/s with that of light.

2.24 Write an expression in Cartesian coordinates for
a harmonic plane wave of amplitude A and frequency
© propagatingin the direction of the vector k, which
in turnlies on a line drawn from the origin to the point
(4.2.1). Hint: first determine k and then dotit with r.
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2.25* Write an expression in Cartesian coordinates
for a harmonic plane wave of amplitude A and
frequency » propagating in the positive x-direction,
2.26 Show that y(k +r, #) may represent a plane wave
where k is normalto the wavefront. Hint; let r, and fy
be position vectors drawnto any two points on the plane
and show that #(r;, 4) = re, #).

2.27* Make upa table with columns headed byvalues
of 9 running from —7/? to 27 in intervals of w/4. In
each columnplacethe correspondingvalueofsin @, and
beneath those the values of 2sin 8. Next add these,
column by column,to yield the corresponding valuesof the function sin>2 sin @, Plot each of these three
functions, noting their relative amplitudes and phases.

2.28" Make upa table with columns headed by values
of 6 running from —1/2 to 27 in intervals of 7/4. In

each columnplacethecorresponding value of sin 6, and
beneath those the values of sin (@— 7/2). Next add
these, column by column, to yield the correspondingvalues of the function sin 6 + sin (@ — 77/2). Plot eachof
these three functions, noting their relative amplitudes
and phases.

2.29* With the last two problemsin mind, draw a plot
ofsin #, sin (9 — 3/4), and sin @ + sin (@ — 37/4). Com.
pare the amplitude of the combined function in this
case with that of the previous problem.

2.30" Make upatable with columns headed byvalues
of kx running from x= —A/2 to x = +A in intervals of
x of A/4. In each columnplace the correspondingvalues
of cos kx and beneath that the values of cos (kx + 7).
Nextplot the functions cos kx, cos (kx + a), and cos kx +
cos (kx + 17).

ey ELECTROMAGNETIC
=—— THEORY, PHOTONS,
=== AND LIGHT

T. work ofJ. C. Maxwell and subsequent develop-ments since the late 1800s have madeit evident that
ight is most certainly electromagnetic in nature.
Glassical electrodynamics, a8 we shall see, unalterably
feads to the picture of a continuoustransfer of energy
by way of electromagnetic waves. In contrast, the more
modern view of quantum electrodynamics describes
electromagnetic interactions and the transport of
energy in terms of massless elementary “particles”
‘knownas photons, which are localized quanta of energy.
The quantum nature of radiant energy is not always
readily apparent, nor indeedis it always of practical
concern in optics. There is a range ofsituations in which
the detecting equipmentis such thatit is impossible,
‘and desirablyso, to distinguish individual quanta. More
often than not, the stream of incident light carries a
telatively large amount of energy, and the granularity
is obscured in any event.

If the wavelength oflight is small in comparison to
the size of the apparatus, one mayuse,as a rst approxi-
mation, the techniques of geometricaloptics. A somewhat
More precise treatment, which is applicable as well when
fhe dimensions of the apparatus are small, is that of

rie optics. In physical optics the dominant propertylightis its wave nature. Et is even possible to develop
Most of the treatment without ever specifying the kind
of wave oneis dealing with. Certainly, as far as the
‘dassical study of physical optics is concerned, it will
Suffice admirably to teat light as an electromagneticWave.

We can think of light as another manifestation of

matter. Indeed, one of the basic tenets of quantum
mechanicsis that both light and material objects each
display similar wave-particle properties. As Erwin C.
Schrédinger(1887-1961), oneof the founders of quan-tum theory, putit:

In the new setting of ideas the distinction [between
particles and waves] has vanished, because it was dis-
covered that all particles have also wave properties, and
vice versa. Neitherofthe two concepts mustbe discarded,
they must be amalgamated, Which aspect obtrudesitself
dependsnot on the physical object, but on the experi-
mental device set up to examineit.*

The quantum-mechanicaltreatmentassociates a wave
equation with a particle, be ita photon, electron, proton,or whatever. In the case of material particles, the wave
aspects are introduced by way of the field equation
known as Schrédinger’s equation. For photons we havea representation of the wave nature in the form of the
classical electromagnetic field equations of Maxwell.
With these as a starting point one can construct a
quantum-mechanical theory of photons and theirinter-
action with charges, The dual nature of light is evi-
denced by the fact that it propagates through space
in a wavelike fashion and yet can display particlelike
behavior during emission and absorption processes.
Electromagnetic radiant energy is created and
destroyed in quanta or photons and not continuously
as a classical wave. Nonetheless its motion through aSe
“Erwin C. Schrédinger, Scrence Theory and Man.
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Jens, a hole, or a setofslits is governed by wave charac-teristics. If we’re unfamiliar withthis kind of behavior
in the macroscopic world,it’s because the wavelength
of an object varies inversely with its momentum (see
Chapter 13), and even a grain of sand (which is barely
moving) has a wavelength so small as to be indiscernible
in any conceivable experiment,

The photon hasseveral properties that distinguish it
from all other subatomicparticles. These properties are
of considerable interest to ua, because they are respon-
sible for the fact that quite often the quantum aspects
of light are thoroughly obscured. In particular, there
are no restrictions on the numberof photonsthat can
exist in a region with the same linear and angular
momentum.Restrictionsofthis sort (the Pauli exclusion
Principle) do exist for most other particles (with the
exception for example of thestill hypothetical quantum
of gravity, i.c., the graviton, He, and mesons). The
photon has zero rest mass, and therefore exceedingly
large numbersof low-energy photons canbe envisioned
as present in a beam oflight. Within that model dense
streams of photons (many of which mayhaveessentially
the same momentum) act on the average to produce
well-defined classical fields. We can draw a rough
analogy with the flow of commuters through a train
station durivg rush hour. Each one presumably behaves
individually as a quantum of humanity, butall have the
same intent andfollow fairly similar trajectories. To a
distant. myopic observer there is a seemingly smoothand continuous How. The behavior of the stream en
masse is predictable from day to day, so the precise
motion of each commuteris unimportant, at least to
the observer. The energy transported by a large number
of photonsis, on the average, equivalent to the energy
transferred byaclassical electromagnetic wave.It is for
these reasons that the field representation of elec-
tromagnetic phenomenahas been,and will continue to
be, so useful. It should be noted, however, that when
we speak of overlapping electromagnetic waves,it is
essentially a euphemism for the interference of proba-
bility amplitudes, but more about that will have to wait
for Chapter 13.

Quite pragmatically, then, we can consider light to
be a classical electromagnetic wave, keeping in mind

bertCreSSE,

that there are situations (on the periphery of our
concern) for which this description is wochatlinadequate.

3.1 BASIC LAWS OF
ELECTROMAGNETIC THEORY

Ourintent im this section is to review and develop, if
only briefly, someof the ideas needed to appreciate the
concept of electromagnetic waves.

We know from experiments that charges, even
tt arsed in Vac LE, expenenceamuctalirer.
action. Recall the familiar electrostatics demonstration
in which a pith ball somehow senses the presence of a
charged rod withoutactually touching it. As a posdhh:
explanation we might speculate that each charge emits
(and absorbs) a stream of undetected particles (virtual
photons). The exchange of these particles among the
charges may be regarded as the mode ofinteraction.
Alternatively, we can take the classical approach and
imagine instead that every charge is surrounded by
something called an electric field. We then need only,suppose that each charge interacts directly with the
electric field in which it is immersed. Thusif a charg.
q experiencesa forceFr, the electricfield Eat the positi
of the charge is defined by Fg = gE. In addition,
observe that a moving charge may experience another
force F,,, which is proportional to its velocity ¥, We aré
thusled to define yet another field, namely, the magneti
induction B, such that Fy = ¢vXB. Uf forces Fe ant
Fy, occur concurrently, the chargeis said to be moving
through a region pervaded by both electric and mag-
netic fields, whereupon F = gE + qv xB.

There are several other observations that may be
interpreted in termsofthese fields, and in so doing we
can get a better idea of the physical properties that must
be attributed to EandB. As weshall see, electric fields
are generated by both electric charges and by time
varying magnetic fields. Similarly, magneticfields are gen-
erated by electric currents and by time-varying electris
fields, This interdependence of E and B is a key point
in the description of light, and its elaboration ia the.motivation for much of whatfollows.

  

3.11 Faraday’s Induction Law
chgel Faradaymade a numberof major contributions
electromagnetic theory. One of the mostsignificant

his discovery that a time-varying magnetic fux
ing througb a closed conducting loop resutts in theration of a current aroundthat loop. The flux of

netic induction (or magnetic flux density) B through
open area A boundedbythe conducting loop(Fig.

yl) is given by

 
 

 
 

Dy= ff B- aS. (3.1)A

The induced electromotive force, or emf. developed
around the loop is chen

dD,emf =-—. (3.2)
at 6

We should not, however, get too involved with the
image of wires and current and emf. Ourpresent con-
cern is with the electric and magnetic fields themselves.
Indeed. the emf exists only as a result of the presence

 
Figure 3.1 B-fReld through an open area A.
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of an electric field given by

emf $ E+ dl, (3.3)c
taken aroundthe closed curve C, corresponding to the
loop. Equating Eqs. (3.2) and (3.3), and making use of
Eq. (3.1), we get

d-dl=-— B- ds. (BA,
} E-dl a if, S. (3-4)

We began this discussion by examining a conducting
loop and have arrived at Eq. (3.4); this expression,
except for the path C, contains no reference to the
physical loop. In fact, the path can be chosen quite
arbitrarily and need not be within, or anywhere near,
a conductor. The electric field in Eq. (3.4} arises not
from the presence of electric charges but rather from
the time-varying magnetic field. With no charges to act
as sources or sinks, the field lines close on themselves,
formingloops (Fig. 3.2). For the case in which the path

  
Inereusing
,

Figure 3.2. A time-varying B-feld, Surrounding cach point where
, is changing, the E-field formsclosed loops.
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is fixed in space and unchanging in shape, the induction
law(Eq. 3.4) can be rewritten as.

$ E- dl (| SB as. 35)C a ot
This, in itself, is a rather fascinating expression, since
it indicates that a time-varying magnetic field will havean electric field associated with it.

3.1.2 Gauss’s Law —Electric

Another fundamental law of electromagnetism is
namedafter the German mathematician Karl Friedrich
Gauss (1777-1855). It relates the flux of electric field
intensity through a closed surface A

on= ff E-dS (3.6)A
to the total enclosed charge. The circled double integra!
is meant to serve as a reminderthat the surfaceis closed.
The vector d§ is in the direction of an outward normal,
as shownin Fig. 3.3. If the volume enclosed by A is V,
andif within it there is a continuous chargedistribution
of density p, then Gauss’s law is

4p E- ds Lf ff pav. an)A € v

The integral on the left is the difference between the
arnountofflux flowing into andoutofany closed surface
A.If thereis a difference,it will be due to the presence
of sources or sinks of the electric field within A. Clearly
then, the integral must be proportional to the total
enclosed charge, inasmuch as charges are the sources
(+) and sinks {—) ofthe electric field.

The constant ¢ is knownas the electric permittivity
of the medium. For the special case of a vacuum,
the permittivity of free space is given by €=
8.8542 x 107 GN“! mm®. One function of the ¢ in Eq.
(3.7) is, of course, to balance out the units, but the
concept is even more basic to the description of the
parallel plate capacitor (see Section 3.1.4). Thereit's
the medium-dependent proportionality constant
between the device’s capacitance and its geometric
characteristics. Indeed € is often measured by a pro- 

 

Figure 3.3 E-field through a closed area A.

cedure in which the material under study is placed
within a capacitor. Conceptually, the permittivity]embodies the electrical behavior of the medium: in a
sense, it is a measure of the degree to which the material
is permeated bytheelectric field in whichit is immersed.

In the early days of the developmentof the subject,
people in various areas worked in different systems of
units, a state of affairs leading to some obvious difficul-tes. This necessitated the tabulation of numericalvalues
for € in cach ofthe different systems, which was,at best,
a waste oftime. Recall that the same problem regarding
densities was neatly avoided by using specific gravity
(.e., density ratios). Thus it was advantageous to tabu-
late values not of € but of a new related quantily
independentofthe system of units being used. Accord,
ingly, we define K, as €/€9. This is the dielectric conster,
(or relative permittivity), and it is appropriately unitless.
The permittivity of a matcrial can then be expresseditl]terms of €y as

en K€.

Ourinterest in K, anticipates the fact that the permit]
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tivity is related to the speed of light in dielectric
materials, such as glass, air, quartz, and so on.

31.3 Gauss's Law—Magnetic

Yhere is no known magnetic counterpart to the electric
charge, that is, no isolated magnetic poles have ever
been found, despite extensive searching, even in lunar
soil samples. Unlike the electric field, the magnetic
induction 8 does not diverge from or converge toward
some kind of magnetic charge (a monopole source or
sink). Magnetic induction fields can be described in
terms of current distributions. Indeed we might
envision an elementary magnet as a small current loopjn which the lines of B are themseives continuous and
élosed. Any closed surface in a region of magnetic field
would accordingly have an equal numberof lines of B
entering and emerging trom it (Fig. 3.4). This situation
arises from the absence of any monopoles within the
enclosed volume. The flux of magnetic induction ®y
throughsuch a surface is zero, and we have the magnetic

Figure 3.5 Currentdensity through an open area A.

  

31 Basic Laws of Electromagnetic Theory 37 
equivalent of Gauss’s law:

on-§f3-d5=0, aa
3.1.4 Ampére’s Circuital Law

Another equation that will be of great interest to usis
due to André Marie Ampére (1775-1836). Known as
the circuitallaw, it relates a line integral of B tangent
to a closed curve C, with the total current ¢ passingwithin the confines of C:

$ wea=p ff yds= yi 0.10)Cc 4

The open surface A is bounded by ©, and J is the
current per unit area (Fig. 3.5). The quantity y, is calledthe permeahility of the particular medium. For a
vacuum 44 = j4g (the permeability of free }» Which i
defined as 49 K 1077 Ns? C, nines -
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Asin Eq. 3.8),
w= Kubo: G1)

with K,, being the dimensionless relative permeability.
Equation (3.10), although often adequate, is not thewhole truth. Moving charges are not the only source of

a magnetic field. While charging or discharging a
capacitor, one can measure a B field in the region
between its plates (Fig. 3.6), which is indistinguishable
from the field surroundingthe leads, even though no
current actually traverses the capacitor. Notice,
however, that if A is the area of each plate, and Q the
charge on it,

-2cA

‘As the chargevaries, the electric field changes, and
gE ie—=
ata

is effectively a current density. James C. Maxwell
hypothesized the existence of just such a mechanism,
which he called the displacement current density,* defined
by

oE=e—. Bi
Jom eG

* Maxwell's uwn words and ideas concerning this mechanism are
examined in an article by A. M. Bork, Am. J. Phys, 31, 854 (1963).

 
E increasing

Figure 3.6 B-ficld concomitant with a time-varying E-field in the
gap of a capacitor.

_—qQ ¢

Sec, Se

Co 
Increasing

Figure 3.7. A time-varying E-feld. Surrounding each point where, is changing, the B-field forms clased loops.

The restatement of Ampére’s law as

b Beaty | f (1+ <%) -as (3.13)c A ae
was one Of Maxwell's greatest contributions. It points
out that even when J = 0, a time-varying E-Zeld will be
accompanied by a B-field (Fig. 3.7).

3.1.5 Maxwell's Equations

Theset ofintegral expressions given by Eqs. (3.5), (3.7),
(3.9), and (3.13) have cometo be known as Maxwell’s
equations. Remember that these are generalizations of
experimental results. The simplest statement of Max-
wel!’s equations governsthe behaviorof the electric and
magnetic fieldsin free space, where € = €9, # = fy, and
both p and J are zero. In thatinstance,

oB

$ E-dl= If 4S, (Bit)c aa
dE

§ B-dl~ woe || —-dS, (3.15)c a at

ff B-dS=0, (3.16)A

ff E-dS=0. 3.17)a

Observe that except for a multiplicative scalar, the
electric and magnetic fields appearin the equations with
a remarkable symmetry. HoweverE affects B, B will in
turn affect E. The mathematical symmetry implies a
good deal of physical symmetry.

Maxwell’s equations can be written in a differential
form, which will be somewhat more useful for our
Purposes. The appropriatecalculation is carried out in
Appendix 1, and the consequent equations for free space,in Cartesian coordinates, are as follows:

 i)
(3.18)

dE, dE, oB.
—— tii)az ax at
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3E, 6B, 6B,
 

 
  

  

——, (iit (3.18;
ax ay at a) ory

aB, @B. oE,ts os i
ay az Bf ay? (a)oB, 3B.x98: ii (3.19)
az ax OG? ODaB. y = am=poto—. (iii
x By Mofo oy (iii)

aB,
a (3.20)
aE, + (3.21)ox ay oz

The transition has thus been madefrom the formulation
of Maxwell's equations in termsof integrals over finite
regions to a restatementin termsof derivatives at poinis
in space.

We nowhaveall that is needed to comprehendthe
magnificent process whereby electric and magnetic
fields, inseparably coupled and mutually sustaining,
propagate out into space as a single entity, free of
charges and currents, sans matter, sans aether. 
3.2, ELECTROMAGNETIC WAVES
We have relegated to Appendix ! a complete and
mathematically elegant derivation of the electromag-
netic wave equation. Wewil] spend sometime here at
the equally importanttask of developing a more intui-
tive appreciation of the physical processes involved.
Three observations, from which we mightbuild a quali-
tative picture, are readily available to us: the general
perpendicularity of the fields, the symmetry of Max-
well’s equations, and the interdependence of E and B
in those equations.

In studying electricity and magnetism one soon
becomesawarethatthere are a numberof relationships
described by vectorcross-productsor,if you like, right-
handrules. In other words, an occurrence of one sort
producesa related, perpendicularly directed response.
Of immediate interest is the fact that a time-varying

 

26



27

4o Chapter 3 Electromagnetic Theory, Photons and Light

E-field gencrates a B-field that is everywhere perpen-dicular to the direction in which E changes(Fig. 3.7).
In the same way, a time-varying B-field generates an
E-field thatis everywhere perpendiculartothe direction
in which B changes (Fig. 3.2). We might. accordingly,
anticipate the general transverse nature of the E- and
B-fields in an electromagnetic disturbance.

Consider a charge that is samehowc {to aceel-
erate from rest. Whenthe charge is motionless, it has
associated with iva radial E-field extendingin all direc-
tions to infinity, AU the instant the charge begins to
move, the E-field is alteredin the vicinity ofthe charge,
and this alteration propagates out into spice at some
finite speed. The time-varying electric held induces a
magnetic fied by means of Ey, (3.15) or (3.19). But the
chargeis accelerating, JE/4 is itself not constant, so theinduced B-field is tnne-dependent, The time-varying
B-field generates an E-field, (8.14) or (3.18), and the
process continues, with E and B coupledin the form ot
a pulse. As one field changes, it generates a new ficldthat extends a bit further, and the pulse moves out
fromonepointtothe next Uiroughspace.

We can draw an overly mechanistic but rather pic-
turesque analogy,if we imagine the electricfield lines
as a dense radial distribution of strings. When somehow
plucked, each string is distorted, forming a kink thattravels outward from the source. All these kinks com-
bineat any instantto yield a three-dimensional expand-
ing pulse.

The E- and B-felds can more appropriately be con-
sidered as two aspects of a single physical phenomenon,
the electromagnetic field, whose source is a moving
charge. The disturbance, onceit has been generated in
the electromagnetic field, is an untethered wave that
movesbeyondits source and independentlyofit. Bound
togetherasa single entity, the time-varying electric and
magnetic fields regenerate each other in an endless
cycle. The electromagnetic waves reaching us from the
relatively nearby center of our own galaxy have been
on the wing for 30,000 years.

We have not yet considered the direction of wave
propagation with respect to the constituent fields.
Notice, however, that the high degree of symmetry in
Maxwell's equations for free space suggests that the
disturhance will propagate in a direction that is sym-

 
 

 
 

  
 

metrical to both E and B. That implies that an elec.
tromagnetic wave cannot be purely longitudinal{e., as
long as E and B are not parallel). Let’s nowreplace
conjecture with a bit of calculation.

Appendix 1 shows that Maxweil’s equationsfor free
space can be manipulated into the form of two
extremely concise vector expressions:

VE = eyo TE [AL.26}
and

 VB©Ea Ko [41.27]ar

The Laplacian.* ¥*, operates on each componentof E
and B,so that the two vector equations actually rep-
resent a total of six scalar equations. Two of these
expressions, in Cartesian coordinates, are

PE,4 (3.22) 
and

Eyae (3.23)a 
with precisely the same form for E,, B,, B,, and B,.
Equations ofthis sort, which relate the space and time
variations of some physical quantity, had been studied
long before Maxwell’s work and were knownto describe
wave phenomena. Each and every component of the
electromagnetic field (E., E,, E., Be, B,, B.} therefore
obeysthe scalar differential wave equation

    Py ot at by ;
ae ne ao =: {2.59}

provided that
ve Iveouo. (3.24)

Toevaluate v Maxwell made use of the resultsof elec-
trical experiments performed in 1856 in Leipzig by
Wilhelm Weber (1804-1891) and Rudolph Kohlrauschss
* In Cartesian coordinates,

WE = iV°E, + VFR, + hve,
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809-1858 ). Equivalently, nowadays y., is assigned aalue of 47 * 1077 mkg/C’ in SI units, and one canine €y directly from simple capacitor measure-
ments. In any event,
en ~ B85 % 107"? §° C?/m? key(4ar x 107? m kg/C?)or

€o pty © 11.12 X 1078 sym?
‘And now the moment of truth—in free space, the pre-
dicted speed ofall electromagnetic waves would thenbe

I 
v= = 3x 10% m/s.VeuHo

This theoretical value was in remarkable agreement
with the previously measured speed of light
315,300 km/s) determined by Fizeau. The results of
izeau's experiments, performedin 1849 with a rotating
othed wheel, were available to Maxwell and led him

to comment:
This velocity[i.c., his theoretical prediction] is so nearly
that of light, that it seems we have strong reason to
conclude that lightitself (including radiant heat, and
other radiations if any) is an electromagnetic distur-
bance in the form of waves propagated through the
electromagnetic field accordingto electromagnetic lays.

This brilliant analysis was one of the greatintellectual
riumphsofall time.

It has become customary to designate the speed of
light in vacuum bythe symbol ¢, which comes from the
Latin wordceler, meaning fast. In 1988 the 17th Confér-
ence Générale des Poids et Mesures in Paris adopted a
new definition of the meterand therebyfixed the speed
of light in vacuum as exactly

¢ = 2,99792458 x 10° m/s.
The experimentally verified transverse character of
‘ht must now be explained within the context of the

magnetic theory. To that end, consider the fairly
imple case of a plane wave propagating in the positiveion. Fhe electric field intensity is a solution of
-(A1.26), whereEis constant over each of an infinite

<1 of planes perpendicularto the x-axis. It is therefore
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a function only of x and #; that is, E = E(x, t), We now
tefer back to Maxwell's equations, and in particular to
Eq. (3.21), which is generally read as the divergence of E
equals zero. SinceEis nota functionof eithery or z, the
equation can be reduced to

ak,
32 0. (3.25)

If £, is not zero—thatis, if there is seme component
of the field in the direction of propagation—this
expressiontells us that it does not vary with x. At any
given time E,is constant forall values of x, but of course,
this possibility cannot therefore correspond toa travel-
ing wave advancing in the positive x-direction. Alterna-
tively, it follows from Eq. (3.25) that for a wave, E, = 0;
the electromagnetic wave has noelectric field com-
ponent in the direction of propagation. The E-field
associated with the plane waveis then exclusively trans-
verse. Without any loss of generality, we shall deal with
plane or linearly polarized waves, in which the direction
of the vibrating E-vector is fixed. Thus we can orient
our coordinate axesso that the electric field is parallel
to the y-axis, whereupon

B® jEMs, 0. (3.26)
Returning to Eq. (3.18), it follows that

eEy aby or
ox at B27

and that B, and B, are constant and therefore of no
interest at present. The time-dependentB-field can only
have a component in the z-direction. Clearly then, in
free space, the plane electromagnetic wave is indeed transverse
(Fig. 3.8). Exceptin the case of normal incidence, such
waves propagating in real material media are generally
not transverse—a complication arising from the fact
that the medium maybe dissipative and/or contain free
charge.

We have not specified the form of the disturbance
other thanto say thatit isa plane wave. Our conclusions
are therefore quite general, applying equally well to
pulses or continuous waves. We have already pointed
out that harmonic functions are of particular interest,
because any waveform can be expressed in terms of
sinusoidal waves by Fourier techniques. We therefore
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Figure 3.8 The field configuration in a plane harmonic electromag:netic wave.

limit the discussion to harmonic waves and write E,(x, £)as

E,(% 1) ~ Egy cos [w(t x/e) + el,
the speed of propagation being ¢ The associated mag-
netic Aux density can be found by directly integrating
Eq. (3.27), that is,

ak,- — dt,
B, j iz di

(3.28)

Using Eq, (3.28), we obtain

a, ~—E2®|sin (ot x/e)vedt
1

Bux,= : Eo, cos [w(t~x/c)+ €]. (3.29)
The constant of integration, which represents a time-
independent field, has been disregarded. Comparison
of this result with Eq. (3.28) makesit evident that

E,©cB,. 3.30)
Since E, and B, differ only by a scalar, and so have the

 
Figure 3.9 Orthogonal harmonicE- and B-helds.

sametime dependence, Eand Bare in phase at all pointsin space. Moreover, E = jE,(x, i) and B =«B,(x, t) are
musually perpendicular, and their cross-product, E x B,
points in the propagation direction, i Wig. 3.9).

Plane waves, although of great importance,are not.
the onty solutions to Maxwell’s equations. As we saw in

 
x

Figure 3.10 Portion of a spherical wavetcont far from the source.

  

 
 
 
 

 
 
 
 

 
  

  
 
 
 
    

  
  
  
 

  
  

 

 

 

28

ie previous chapter, the differentia) wave equation
ows many solutions, among which are cylindrical and

spherical waves (Fig. 3.10).

3.3. ENERGY AND MOMENTUM

3.3.1 (radiance

One of the most significant properties of the elec-
fffemagneric wave is that it transports energy. Thelightom even the nearest star beyond the Sun travels 25

Filion million miles to reach the Earth,yetirstill carries
enough energy to do work on theelectrons within your
eye. Any electromagnetic field exists within some region
of space, and it is therefore quite natural to consider
the radiant energy per unit volume, or the energy density,
». For an electric field alone, one can compute (Problem
9:3) che energy density (e.g., between the plates of a
capacitor) to be

_
Ure 7. (3.31)

Similarly, the energy density of the B-field alone(as it
might be computed within a toroid)is

1=o~ BY
ta Rus

Wederived the relationship E = cB specifically for a
plane wave; nonetheless itis quite general in its applica-
bility. Since ¢ = L/Veojto,it follows chat

Up = Ug. (3.53)
The energy streaming through space in the form of an
electromagnetic wave is shared between the constituent
electric and magnetic fields, Since

(2.82)

Um te + dg, (3.34)
glearly,

Un &E* (3.35)

ge equivalently,

Figure 9.11 The flowof electramagactic energy.
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To representthe flow of electromagnetic energy, let §
symbolize the transport of energy per unit time (the
power) across a unit area. In the SI system it would
then have units of W/m”. Figure 3.11 depicts an elec-
tromagnetic wave traveling with a speed ¢ through an
area A. During a very smail interval of tirne Aé, only
the energy contained in the cylindrical volume,

 
u(c AtA), will cross A. Thus

= 3.37)
ATA uc (3.

or, using Eq. (3.35),
I

S» — EB. (3.38)Ho

We now make the reasonable assumption(for isotropic
media)that the energy flowsin the direction of propaga-
tion of the wave. The correspondingvector S is then

1
S=—EXxB (3.39)Bo

or

Sm cPegE XB. (3.40)
The magnitudeof S is the power per unit area crossing
a surface whose normal is parallel to S. Named after
John Henry Poynting (1852-1914), it has come to be
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known as the Poynting vector. Let's now apply these
considerations to the case of a harmonic,linearly polar-
ized plane wave traveling through free space in thedirection of k:

E= E, cos (k+ r—- wt)
B® Bocos (k+r— wt).

GAD
(3.42)

Using Eq. (3.40) we find
S=c?euE, X By cos’ (k-r— ot).

It should be evident that E x B cycles from maxima to
minima. At optical frequencies, Sis an extremely rapidly
varying function of time (indeed, twice as rapid as the
fields, since cosine-squared has double the frequency
of cosine), so its instantaneous value would be an
impractical quantity to measure. This suggests that we
employ an averaging procedure. That is to say, we
absorb the radiant energy during some finite interval
of time using, for example, a photocell, a film plate, or
the retina of a human eye. The time-averagedvalue of
the magnitude of the Poynting vector, symbolized by
(S), is a measure of thesignificant quantity known as
the irradiance.” J. In this case. since (cos? (k + r— wt))

(see Problem 3.4), 2€ &

(8) =F" [Bo * Bol (3.43)or

To (sy> 2 ee, 344)2
Theirradiance is therefore proportional to the square
of the amplitude of the electric field. Two alternative
ways of saying the same thing are simply

fs (8% (3.45)Ho
and

I= €9c(E*). (3.46)
Within a linear, homogeneous,isotropic dielectric, the 
* In thepast physicists generally used the word intensity to mean theflow of energy per unit urea per unit time, By international, if not
universal. agreement, thatterm is slowly being replaced in optics bythe word irradiance.

expression for the irradiance becomes

T= elE%, (3.47)
Since, as we have seen, E is considerably moreeffective
at exerting forces and doing work on chargesthanis
B, weshall refer to E as the optical field and use Eq.(3.46) almost exclusively.

The time rate of fow of radiant energy is the power
or radiantflux, generally expressed in watts. If we divide
the radiant flux incident on or exiting from a surface
by the area of the surface, we have the radiant flux density
(W/m). In the former case, we speak of the irradiance,
in the latter the exitance, and in either instance the flux
density, The irradiance is a measure of the concentration
of power. Whether recorded by a photograph or a
meter,it is the primary practical quantity corresponding
to the “amount” oflight flowing.

There are detectors, like the photomultiplier, that
serve as photon counters. Each quantum of the elec-
tromagnetic field, having a frequency », represents an
energy hy (Planck’s constant, A = 6.625 x 10°" Js), If
we have a uniform monochromatic beam of frequency
», the quantity I/hv is the average numberof photons
crossing a unit area (normalto the beam) per unit time,
namely, the photon flux density. Were such a beam to
impinge on a counter having an area A, then AI/Ay
would be the incident photon flux, that is, the average
number of photons arriving per unit oftime.

Wesaw earlier that the spherical wave solution ofthe
differential wave equation has an amplitude thatvaries
inversely with 7. Let's now examine this same feature
within the contextof energy conservation. Consider an
isotropic point source in tree space, emitting energy
equally in all directions (i.e., emitting spherical waves).
Surround the source with two concentric imaginary
spherical surfaces of radii r,; and r2, as shown in Fig.
3.12. Let Ey(r,} and Eofr) represent che amplitudes of
the waves over the first and second surfaces, respec-
tively. If energy is to be conserved, the total amountof
energy flowing through each surface per second must
be equal, since there are mo other sources orsinks
present. Multiplying J by the surface area and taking
the square root, we get

n1Eo(ti)=1Enlts).
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Figure 3.12 The geometryof the inverse squarelaw.

inasmuch as 7, and rz are arbitrary, it follows that
rE,{r)=constant,

and the amplitude must drop off inversely with r. The
irradiance from a point source is proportionalte L/r.
Thisis the well-known inverse-square law, whichis easily
verified with a point source and a photographic
exposure meter. Notice that if we envision a beam of
photons streaming radially out from the source, the
same result clearly obtains.

3.3.2. Radiation Pressure and Momentum

As‘long ago as 1619 Johannes Kepler proposedthatit
was the pressure of sunlight that blew back a comet's
tail so that it always puinted away from the Sun. That
rgumentparticularly appealed to the later proponents
f the corpuscular theory of light. After all, they

envisioned a beam oflight as a stream of particles, and
sucha stream would obviously exerta force as it bombar-
ded matter. For a while it seemed as thoughthis effect
might at last establish the superiority of the corpuscular
over the wave theory, but all the experimental efforts
to that endfailed to detect the force of radiation, andinterest slowly waned. 
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Ironically, it was Maxwell in 1873 who revived the
subject by establishing theoretically that waves do
indeed exert pressure. ‘In a medium in which waves
are propagated,” wrote Maxwell, “‘there is a pressure
in the direction normal] to the waves, and numerically
equal to the energy in a unit of volume.”

When an electromagnetic wave impinges on some
material surface, it interacts with the charges that con-
stitute bulk matter. Regardless of whether the waveis
partially absorbed orreflected, it exerts a force on those
charges and hence on the surface itself. For example,
in the case of a good conductor,the wave’s electric field
generates currents, and its magnetic field generatesforces on those currents.

It's possible to compute the resulting forcevia classical
electromagnetic theory, whereupon Newton’s second
law (which maintainsthat force equals the time rate of
change of momentum)suggests that the waveitselfcarries
momentum. Indeed, whenever we have a flow of energy.
it’s reasonable to expect that there will be an associated
momentum—the two are the related time and space
aspects of motion.

As Maxwell showed,the radiation pressure, ?, equals
the energy density of the electromagnetic wave. From
Eqs. (3.31) and (3.32), for a vacuum, we knowthat

€ 1
ue Se2 and ug®> B®.2 ey

Since P= ue uz tug,
fo p2, 1 pePam — EX += B*. (3.48)2 2hy

Alternatively. using Eq. (3.37), we can express the pres-
sure in terms of the magnitude of the Poynting vector,
namely, 5s

P- 3.43)

Notice that this equation has the units of powerdivided
by area, divided by speed—orequivalently, force times
speed divided by area and speed, or just force over
area, This is the instantaneous pressure that would be
exerted on a perfectly absorbing surface by a normallyincident beam.

Inasmuchas the E- and B-fields are rapidly varyii 
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S is rapidly varying. so it’s eminently practical to deal
with the average radiation pressure, namely,

iS) _1
<P) =S_! (3.50)ce c

expressed in newtons per square meter. This same
pressure is exerted on a source that itself is radiatingenergy.

Referring back to Fig. 3.11, if p is momentum, the
force exerted by the beam on an absorbing surface is

Apg
AP a

(3.5)

If py is the momentum per unit volume of the radiation,
then an amount of momentum Ap=py (c ALA) is trans-
ported to 4 during each timeinterval At, and

 ag = tcl) 48At c

Hencethe volume density of electromagnetic momen-tum is

bv = (3.52)

When the surface under illumination is perfectly
reflecting, the beam chat entered with 2 velocity +c will
emerge with a velocity —c. This correspondsto twice
the change in momentum that occurs on absorption,and hence

wy gS¢

Notice, from Eqs. (3.49) and (3.51), that if some
amount of energy € is transported per square meter
per second, then therewill be a corresponding momen-
tum @/c transported per square meter per second.

Inthe photonpicture, we envisian Particlelike quanta,
each having an energy € = hv. We can then expect a
Photonto carry a momentum bp €/e— A/A, Its vectormomentum would be

p= tk, (3.53)
where k is the propagation vector and 4 = h/27. This
all fits in rather nicely with special relativity, which

relates the rest mass mo, energy, and momentum ofaparticle by
€ = (ep)? + (mg?PP*.

For a photon my= 0 and & = ep.
These quantum-mechanical ideas have been con.

firmed experimentally utilizing the Comptoneffect,
which detects the energy and momentum transferred
to an electron uponinteraction with an individual xrayphoton,

The average flux density of electromagnetic energy
from the Sun impinging normally on a surface just
outside the Earth’s atmosphere is about 1400 W/m?,
Assuming complete absorption, the resuiting pressure
would be 4.7 x 10° N/m”, or 1.8 X 10~® ounce/cm®, as
compared with, say, atmospheric pressure of about
10° N/m”, The pressure of solar radiation at the Earth
is tiny, bucit is still responsible for a substantial planet-
wideforce of roughly 10 tons. Even at the very surface
of the Sun, radiation pressure is relatively small (see
Problem 3.19). As one might expect,it becomes appreci-
able within the blazing body of a large brightstar, where
it plays a significant part in supporting the star against
gravity. Despite the modest size of the Sun’s flux density,
it nonetheless can produce appreciable effects over long
acting times. For example, had the pressure of sunlight
exerted on the Viking spacecraft during its journey
been neglected, it would have mised Mars by about15,000 km. Caiculations show thatit is even feasible to
use the pressure of sunlight to propel a space vehicle
amongtheinner planets.* Ships with immense reflect-
ing sails driven by solar radiation pressure may some
dayply the darkseaoflocal space. The pressure exerted
by light was actually measured as long ago as 1901 by
the Russian experimenter Pyotr Nikolaievich Lebedev
(1866-1972) and independently by the Americans
Ernest Fox Nichols (1869-1924) and Gordon Ferrie
Hull (1870-1956). Their accomplishments were for-
midable, considering the light sources available at the
time. Nowadays, with the advent of the laser, light can
be focused down toa spotsize approachingthe theoreti-
cal limit of about one wavelength in radius. The result-SS

* The charged-particle flux called the “solar wind”is 1900 t0 100,000times Jess effective in providing a propulsive force thanis sunlight.
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Figure 3.13 The tiny starlike speck is a minute (one-thousandth of
an inch diameter) transparent glass sphere suspendedin midair onan upward 250 mW laserbeam.(Photocourtesy Bell Laboratéries.)

ing irradiance, and therefore the pressure is appreci-
able, even with a laser rated at just a few watts. I¢ has
hus becomepractical to considerradiation pressurefor

I’ sorts of applications, such as separating isotopes,
celerating particles, and even optically levitating small
jects (Fig. 3.13).
Light can also transport angular momentum, butthis

will certainly not happen witha linearly polarized wave.
Accordingly, we shall defer this rather important dis-fEssion to Chapter 8, in which circular polarization isexamined.

3.4 RADIATION

Athoughall formsof electromagnetic radiation propa-
ate with the same speed in vaceum, they nontheless

differ in frequency and wavelength. As we will seePresently, that difference accounts for the diversity of
behavior observed when radiant energy interacts with

3-4 Radiation 47

matter. Even so, there is only one entity, one essence
of electromagnetic wave. Maxwell’s equations are
independent of wavelength and so suggest no funda-
mental)differences in kind. Accordingly, it is reasonableto Jook for a common source-mechanism for all radi-
ation. Whatwe findis that the various types of radiant
energy seem to have a commonorigin in that they are
all associated somehow with nonuniformly moving charges.
Weare,of course, dealing with wavesin the electromag-
netic field, and charge is that which gives rise ta field,
so this is not altogether surprising.

A stationary charge has a constant E-field, no B-field,
and hence preduces no radiation—where would the
energy come fromifit did? A uniformly moving chargehas both an E- and a B-field, butit does not radiate. If
youtraveled along with the charge, the current would
thereupon vanish, hence B wouldvanish, and we would
be back at the previous case, uniform motion beingrelative. That's reasonable,since it would make no sense
at all if the charge stopped radiating just because you
started walking along next toit. That leaves nonuniformly
moving charges, which assuredly do radiate. In the
photon picture this is underscored by the convictionthat the fundamentalinteractions between matter and
radjant energy are between photons and charges.

We know in general that free charges (those not
bound within an atom) emit electromagnetic radiation
when accelerated. That muchis true for charges chang-
ing speed along a straight line within a linear
accelerator,sailing aroundin circles inside a cyclotron,
or simplyoscillating back andforth in a radio antenna—
if a charge moves nonuniformly, it radiates. A free
charged particle can spontaneously absorb or emit a
photon, and anincreasing numberof important devices,
ranging from the free-electron laser (1977) to the syn-
chrotronradiation generator, utilize this mechanism on
a practical level.
  

3.4.1 Linearly Accelerating Charges

At constant speed the charge essentially has attached
to it an unchangingradialelectric field and a surround-ing circular magnetic field. Although at anystationary
point in space the E-field changes from moment to 
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fay wb)
Figure 3.14 (a) Electriy field of a stalionaryelectron. (b) Electric
field of 2 moving electron,

moment, at any instant its value can be determined by
supposing that the field lines move along,fixed to the
charge. Thus the field does not disengage from the
charge, and there is no radiation,

Theelectric field of a charge at rest can be represen-
ted, as in Fig. 9.14, by a uniform, radial distribution of
straight field linas, or lines offorce. For a charge moving
at a constant velocity v, the field lines are still radial
and straight, but they are no longer uniformly dis-
tributed, The nonuniformity becomes evident at high
speeds andis usually negligible when v « ¢

In contrast, Fig. 9.15 showsthe field lines associated
with an electron accelerating uniformly to the right.
The points O;, Oz, Os, and O,are the positionsof the
electron after equal time intervals. The field lines are
now curved, andthis, as we shall see, is a significant
difference. As a further contrast, Fig. 9.16 depicts the
field of an electron at somearbitrary time tg. Before
4 = 0 the particle was always at rest at the point O, The
charge was then uniformly accelerated until time 4,
reaching a speed v, which was maintained constant
thereafter. We can anticipate that the surrounding field
lines will somehowcarry the information thatthe elec-
tron has accelerated. We have armple reason to assume
that this “information” will propagate at the speed c.
if, for example, ty = 10s, no point beyond 8m fromO would be aware of the fact that the charge had even
moved. All the lines in that region would be aniform,
straight, and centered on O,as if the charge were still

 

  
Figure 3.16 A kink in the E-field lines.

 

   
 

   
  

   
  
  

there. At time fy the electron is at point Oz,and itis
moving with a constant speed v. in thevicinity of Op
thefield Jines must then resemble those in Fig. 3.44(b).
Gavse’s hw requires thar the lines outside the sphere
of sadius ct, connect to those within the sphere of radius
(te f)s since there are no charges between them.It
js now apparentthat during the interval when the par-
ticle accelerated, the field lines became distorted and a
kink appeared. The exact shapeof the lines within the
region of the kink is of hele interest here. What is
significant is that there now exists a transverse component
of the electric field E,, which propagates outward as a
pulse. At some point in space the transverse electricfield will be a function oftime, andit will therefore be
accompanied by a magnetic eld.

The radial componentof the electric field drops off
as \/r?, while the transverse component goesas 2/7. At

be distances from the charge the only significant field

 

     
 
  
  

  
All be the E,-componentof the pulse, which is known

‘as the radiation field.* For a positive charge moving
‘slowly (v « c), the electric and magnetic radiation fields

be shown tebe proportionaltor = (r X a) and (a Xr),
pectively, where a is the acceleration. For a negativethe reverse occurs, as shownin Fig. 3.17. Observe

fat the irradiance is a function of 6 and that [(0) =
7(180°) = 0 while 1(90°) = I(270°) is a maximum.

“The energy thatis radiated outinto the surrounding
ce is supplied to the charge by sorne external agent.
« agent is responsible for the accelerating force,

fich in turn does work on the charge.

  

   
  
   
  
  
      
 3.4.2 Synchrotron Radiation 
 free charged particle traveling on any sort of curved

is accelerating and so will radiate. This behavior
idea a powerful mechanism for producingradiant

ergy, both naturally and in the laboratory. The
Synchrotron radiation generator, one of the most exciting

Ee... OF this calculation J. Thomson’s method of
lyzing the kink can be found in J. R. Tessman and J. T. Finnell,Electric Field of an Accelerating Charge.” Ams J, Phye 35, 5237), Asa general reference for radiation,see, for example, Marion
‘Heald, Classical Electromagnetic Radiation, Chapter 7.

 
  
  
  
   
  
 
      
 
 

31

3-4 Radiation

7 Sl een

 EXB

Figure 3.17. ‘The toroidal radiation pattern of a linearly acceleratingcharge (split to show cross section).

research tools to be developed in the 970s, does just
that. Clumps of charged particles, usually electrons or
positrons, interacting with an applied magnetic field
are made to revolve aroundalarge,essentially circular
track at a precisely controlled speed. The frequency of
the orbit determines the frequency of the emission
(which also contains higher harmonics), and that is
continuously variable, more orless, as desired.
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A chargedparticle slowly revolvingin a circular orbit
radiates a doughnut-shapedpattern similar to the one
depicted in Fig. 3.17. Again the distribution of radiation
is symmetrical around a, which is now the centripetal
acceleration acting inward along the radius drawn from
the center of the circular orbit to the charge. The higher
the speed, the more an observerat rest in the laboratory
will “see” the backward lobe of the radiation pattern
shrink while the forward lobe elongatesin the direction
of motion. At speeds approaching ¢, the particle beam
(usually witha diameter comparable to that ofa straight
pin) radiates essentially along a narrow cone pointingtangentto the orbit in the instantaneousdirection of v
(Fig. 3.18). For v = ¢ the radiation will be very strongly
polarized in the plane of the motion,

This “searchlight,” often less than a few millimeters
in diameter, sweeps aroundasthe particle clumpscircle
the machine, muchlike the headlight on a train round-
ing a turn. With each revolution the beam momentarily
(< ns) flashes through one of many windows in the
device. The result is a tremendously intense source of
rapidly pulsating radiation, tunable over a very broad
range of frequencies, from infraredto light to x-rays.
When magnets are used to make the circulating elec-
trons wiggle in and out of their circular orbits, bursts
of high-frequency x-rays of unparalleled intensity can
be created. These beams, which are hundreds of
thousands of times more powerful than a dental x-ray
emission of a fraction of a watt, can easily burn a finger-
sized hole through a 3-mm-thicklead plate.

Figure 3.18 Radiation pattern for an orbiting charge.

Figure 3.19 The first beam of light. from the National Synchrotron
Light Source (1982) emanatingfrom its ultraviolet electron storage
ring.

‘Though this technique wasfirst used to producelight
in an electron synchrotron as long ago as 1947, it took
several decades to recognize that what was an energy-
robbing nuisance to the accelerator people mightbe a
major researchtoolin itself (Fig. 9.19).

In the astronomical realm, we can expect that some
regions cxist that are pervaded by magnetic induction
fields. Charged particles trapped in these fields will
movein circular or helical orbits, and if their speeds
are high enough, they wil] emit synchrotron radiation.
Figure 3.20 showsfive photographsof the extragalactic
Crab Nebula.* Radiation emanating from the nebula
* The Crab Nebula is believedto he expanding debris left over afterthe cataclysmic deat h ofa star. Fromits rate of expansion, astronomers,
calculated that the explosion took place in 1050 A.D. This was sub-sequently corroborated when a study of old Chinese records (the
chronicles of the Peiping Observatory) revealed the appearance of
an extremely bright star, in the sameregion of the sky, in che year1064 a.v.

In the first year of the period Chihha, the kifth moon, the day
Chi-chou[i.e., July 4, 1054), a greatstar appeared... Aftermorethanayear, it gradually becameinvisible.

thereis little doubt that the Crab Nebula is the remnant of that
supernova.

32

gure 3.20) Synchrotron radiationarising from the Crab Nebula.
these photos only light whose E-field direction is as indicated was

fextends over the range from radio frequencies to thextreme ultraviolet. If we assume the source to be
rapped circulating charges, we can anticipate stronglarization effects, These are evidentin the first four
hotographs, which were taken through a polarizingker. The direction of the electric field vector is indi-

cated in each picture. Since in synchrotron radiation,

Radiation 5E

recorded. (Photos courtesy Mt. Wilson and Palomar Observatories.)

the emitted E-field is polarized in the orbital plane, we
can conclude that each photograph corresponds to a
particular uniform magnetic field orientation normalto the orbits and to E.

It is believed that a majority of the low-frequency
radiowaves reaching (he Earth from outer space have
their origin in synchrotron radiation. In 1960 radio 
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Figure 3.20(b) The Crab Nebula in unpolarizedlight.

astronomers used these long-wavelength emissions to
identify the aew class of objects known as quasars. In
1955 bursts of polarized radiowaves were discovered
emanating from Jupiter. Their origin is nowattributed
to spiraling electrons trapped in radiation belts sur-
rounding the planet.

3.4.3. Electric Dipole Radiation

Perhaps the simplest electromagnetic wave-producing
mechanism to visualize is the oscillating dipole—two
charges, one plus and one minus,vibrating to and fro
along a straightline. Andyet this arrangementis surely
the most importantofall.

Both light and ultraviolet radiation arise primarily
from the rearrangement of the outermost, or weakly
bound, electrons in atoms and molecules. It follows
from the quantum-mechanicalanalysis that the electric
dipole momentof the atom is the major source of this
radiation. Therate of energy emission from a material
system, although a quantum-mechanical process, can
be envisioned in terms oftheclassicaloscillating electric
dipole. This mechanism is therefore of considerable
 

importance in understanding the manner in which
atoms, molecules, and even nuclei emit and absorb
electromagnetic waves, It will be of particular interes,
when westudythe interaction of light with matter.

Weshall again simply use the results of a lengthyand
rather complicated derivation. Figure 3.21 schematj,
cally depicts the electric field distribution in the region
of an electric dipole, Im this configuration, a negative
charge oscillates linearly in simple harmonic motion
aboutan equal stationary positive charge. Lf the angulay
frequency of the oscillation is a, the time-dependent
dipole moment #(t) has the scalar form

#@fig COS wt. (3,54)
Note that g(t) could represent the collective moment
of the oscillating charge distribution on the atomicscale
or even an oscillating current in a linear televisionantenna.

Att= 0, # = fo = qd, wheredis the initial maximum
separation between the centers of the two charges (Fig.
3.21a). The dipole moment is actually a vector in the
direction from —¢ to +q. The figure shows a sequence
of field line patterns as the displacement, and therefore
the dipole moment decreases, then goes to zero, and
finally reverses direction. When the charges effectively
overlap, # = 0 and the field lines must close on thern-selves.

Very near the atom, the E-field has the form of a
static electric dipole. A bit farther out, in the region
where the closed loops form, there is no specific
wavelength. The detailed treatment shows thatthe elec-
tric field is composed offive different terms, and things
are obviously complicated. Far from the dipole, in what
is called the wave or radiation zone, the field configu-
ration is particularly simple. In this zone a fixed
wavelength has been established; E and B are trans-
verse, mutually perpendicular, and in phase.
Specifically,

5 =Bok?sin@cos(hr=wl)(3.55)
Ane, T

and B = E/c, where the fields are oriented as in Fig.
3.22. The Poynting vector S = E x B/yo always points
radially outward in the wave zone. There, the B-field
jinesare circles concentric with, and in a plane perpen-

to, the dipole axis, This is understandable,since
be considered to arise from the time-varying

tor current. ' .
"The irradiance (radiated radially outward from the

geurce) follows from Eq.(3.44) andis given by
fie’ sin’ 3.56332mey r . 3.50)
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 igure 3.21 The E-feld of an oscillating electric dipole.
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 The angular flux density distribution is toroidal, as in
Fig. 3.17. The axis along which the acceleration takes
place is the symmetry axis of the radiation pattern.
Notice the dependenceof the irradiance on »'—the
higher the frequency, the stronger the radiation; that
feature will be important when we considerscattering.

Ic’s not difficult to attach an AC generator between
two conducting rods and thereby send currents of free
electrons oscillating up and down that “transmitting
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Figure $.22 Field orientationsfor an
oscillating electric dipole.

antenna.” Figure 3.23 shows the arrangementcarried
to its logical conclusion—afairly standard AM radiotower. An antenna of this sort wil] function most
efficiently if its length corresponds to the wavelength
being transmitted or, more conveniently, to 3A. The
wave being radiated is then formed at the dipole in
synchronization with the oscillatmg current producing
it. AM radiowaves are unfortunately several hundred
meters long. Consequently, the antenna shown in the
figure has half the 3A-dipole essentially buried in the
earth, That at least saves some height, allowing us to
build the device only [A tall. Moreover, this use of the
Earth also generates a so-called ground wave that hugs
the planet's surface, where most people with radios are
likely to be located. A commercial station usually has a
range somewhere between 25 and 100 miles.

3.4.4 Atoms and Light

Surely the most significant mechanism responsible for
the natural emission and absorptionof radiant energy-—
especially of light—is the bound charge, electrons
confined within atoms. These minute negative particles,
which surround the massive positive nucleus of each
atom, constitute a kind of distant, tenuous charged
cloud. Much of the chemical and optical behavior of
ordinary matter is determined byits outer or valence

 
Figure 3.23 Electromagnetic wavesfrom a transmitting tower.

electrons. The remainder of the cloud is ordinarily
formed into “closed,” essentially unresponsive, shells
around andtightly bound to the nucleus, These closed
or filled shells are made up of specific numbers of
electron pairs. Even though it is not completely clear
what occurs internally when an atom radiates, we do
know with somecertainty that light is emitted during
readjustments in the outer charge distribution of the
electron cloud. This mechanism is ultimately the pre-
dominantsourceoflight in the world.

Usually, an atom exists with its clutch of electrons
arranged in somestable configuration that corresponds
to their lowest energy distribution or devel. Every elec-
tron is in the lowest possible energy state available to
it, and the atom as a whole is in its so called ground
state configuration. There it will likely remain
indefinitely, if left undisturbed. Any mechanism that
pumps energy into the atom will alter the groundstate.
Forinstance, a collision with another atom,an electron,
or a photon can affect the atom’s energy state pro-
foundly. According to quantum-mechanical theory, an
atom can exist with its electron cloud in only certain
specific configurations corresponding to only certain
values of energy. In addition to the groundstate, there
are higherenergylevels, the so-called excited states, each
associated with a specific cloud configuration and a
specific well-defined energy. When one or moreelec-
trons occupiesa level higher thanits ground-state level,

the atom is said to be excited—a conditionthatis inher-
ently unstable and temporary.

Atlow temperatures, atoms tendtobe in their ground
state; at progressively higher temperatures, more and
more of them will becomeexcited through atomic col-
lisions. This sort of mechanism is indicative of a class
of relatively gentle excitations—glow discharge, ame,
spark, and so forth—which energize only the outermost
unpaired valence electrons. We will mitially concentrate
on these outer electron transitions, which give rise to
the emission of light, and the nearby infrared andultraviolet.

When enough energy is imparted toan atom (typically
to the valence electron), whatever the cause, the atom
can react by suddenly ascending fromalower toa higher
energy level. The electron will usually make a very rapid
transition, a quantumjump, from its ground-state orbital
configuration to one of the well-delineated excited
states, one of the quantized rungs onits energy ladder.
Asa mule, the amount of energy taken upin the process
equals the energy difference between the initial and
finalstates, and since thatis specific and well defined,
the amountof energy that can be absorbed by an atom
is quantized(i.¢., limited to specific amounts). This state
of atomic excitation is a short-lived resonance
phenomenon. Usually, after about 10™ or 10-*s, the
excited atom spontaneously relaxes back toa lowerstate,
most often the groundstate,losing the excitation energy
along the way. This energy readjustment can occur by
way of the emission of light or (especially in dense
materials) by conversion to thermal energy throughinteratomic collisions within the medium.

if the atomic transition is accompanied by the
emission of light (as it is in a rarefied gas; see Section
18.7}, the energy of the photon exactly matches the
quantized energy decrease of the atom. That corre-
sponds to a specific frequency, by way of AS = hy, a
frequency associated with both the photon and the
atomic transition between the two particular states, This38 said to be a resonance frequency, one of several (each
with its own likelihood of occurring) at which the atom
very efficiently absorbs and emits energy. The atom
radiates a quantum of energy that presumablyis created
spontaneously, on the spot, by the shifting electron.

Even though what occurs during that interval of 107° s
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is far from clear,it can be helpfulto imagine theorbital
electron somehow making its downward energy transi-
tion via a gradually damped oscillatory motion at the
specific resonance frequency. The radiated light can
then be envisioned in a semiclassical way as emitted in
a short oscillatory pulse, or waverrain, lasting leas than
roughly 10-°s—a picture that is in agreement with
experimental observation (see Section 7.10, Fig, 7.19).
It is useful to think of this electromagnetic pulse as
associated in someinextricable fashion with the photon.
Ina way, the pulse is a semiclassical representation of
the manifest wave nature of the photon. But the cwo
are not equivalent in all respects: the electromagneticwavetrain is a classical creation that can be used to
describe the propagation andspatial distributionoflight
extremely well, yet its energy is not quantized, not
localized, and thac is an essential characteristic of the
photon (see Chapter 15). So when wetalk about photon
wavetrains keep in mind thar there is moreto the notion
than just a classical oscillatory pulse of electromagneticwave.

The emission spectra of single atoms or low-pressure
gases, whose atoms do not interact appreciably, consist
of sharp “lines,”that is, fairly well-defined frequencies
characteristic of the atoms. There is always some
frequency broadening (see Section 7.10) of that radi-
ation due to atomic motion,collisions, and 80 forth, so
it’s never precisely monochromatic (i.e., a single color
or frequency). Generally, however,the atomic transition
from one level to another is characterized by the
emission of a well-defined narrow range of frequencies.
Onthe other hand,the spectra of solids and llquids, in
which the atoms are now interacting with one another,
is broadened into wide frequency bands. When two
atoms are brought close together, the result is a slight
shift in their respective energy levels, because they act
upon each other. The manyinteracting atoms in a salid
create a tremendous number ofsuch shifted levels, in
effect spreading out each oftheir originallevels, blur-
Ting them into essentially continuous bands. Materials
of this nature emit and absorb over broad ranges of
frequencies,

Light emitted from a large assemblage of randomly
oriented independent atoms will consist of wavetrains
in ali directions. Each oneofthese will bear noparticular
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consistent phase relation with any of the others, nor
will they share a commonpolarization. Thisis in markedcontrast to the continuous, polarized, extended
wavetrains generated by sustained current oscillations
in a transmitting antenna (Fig. 3.23). Even in thatcase,
however, the radiation is not truly monochromatic. The
simple harmonic functions containing only one
frequency are idealizations—attimes reasonable ones,but idealizations nonetheless. Before switching on even
a perfect. generator, the radiation will obviously havebeen zero. Yet a harmonic function has no such limita-
Gons on its time dependence and clearly cannot, by
itself, represent such a wave.If the generator has been
on for a long enough time, the waveit emits will be, at
best, nearly monochromatic or quasimonochromatic.
For many applications, laser light or light passed
through a narrow hand filter can be adequately rep-
resented by a single harmonic function. Even so, since
it is not possible to produce monochromatic radiation,
the term can be used only loosely, and this point mustbe borne io mind.
EE
3.5. LIGHT IN MATTER

The response of dielectric or nonconducting materials
to electromagnetic fields is of special concern to us in
optics. We will, of course, be dealing with transparent
dielectrics in the form of lenses, prisms, plates, films.
andso forth, not to mention the surrounding sea of air.

The net effect of introducing a homogencous,
isotropic dielectric into a region af free space is to
change€o to € and #9 to » in Maxwell’s equations. The
phase velocity in the medium now becomes

va lven. (3.57)
The ratio of the speed of an electromagnetic wave in
vacuumto that in matter is knownas the absolute index
of refraction n andis given by

©
r= ‘ (3.58)vo €ypo

In terms oftherelative permittivity and relative per-
meability of the medium, » becomes

ne VEBu (3.59)

Thegreat majority of substances, with the exception of
ferromagnetic materials, are only weakly magnetic,
noneis actually nonmagnetic. Even so, K,, generally
doesn’t deviate from 1 by any more than a few parts in
10* (e.g., for diamond K, = 1-2.2 x 10). Setting,KE =1 in the formula for n results in an expressiog
known as Maxwell’s relation, namely,

n VK, (3.60)
wherein K, is presumedto bethestatic dielectric constant,
As indicated in Table 3.1, this relationship seemsto
work well only for some simple gases. The difficulty
arises because K, and therefore »are actually frequency.
dependent. The dependenceof n on the wavelength(or
color) of light is a well-known effect called dispersion,
Indeed, Sir Isaac Newton used prismsto disperse white
lightintoits constituentcolors over three hundred years
ago, and the phenomenon was well known if not wellunderstood even then.

There are two interrelated questions that come %
mindatthis point: (1) What is the physical hasts fr toe
frequency dependence of n? and (2) What is rhe
mechanism whereby the phase velocity in the rerdiure

 
Table 3.1 Maxwell's relation.ee

 

t 1.000294 1a
Helium 1.000034 1.000036,i 1.000131 1.000132

= " 45

Waer 8.96 1.333
Ethyl alcohol (ethanol) 5.08 1.36]Carbontetrachloride 4.63 1.461

Amber 16
Fusedsilica 1.94 
  Values of K, correspond to the lowest possiblelow as 601 ereas n is measured ut about 0.5 >was nsed (4=589.29 run}  

 

, effectively made different from c? The answers, to
oth these questions can be found by examining thection of an incident electromagnetic wave with
ihe array of atomsconstituting a dielectric material. Ancep can react to incoming light in two different ways,
jepending Of the incident frequency or equivalently

gathe jncoming photon energy (8 - hv). Generally theatom will “scatter” the light, redirecting it withoutwise alteringit. On the otherhand,if the photon’s
energy matches that of oneof the excited states, thetom will “absorb” the light, making a quantum jump
ffo that higher cnergy level. In the dense atomic land-
cape of ordinary gases (at pressures of about 10° Pa

Ee up), solids, and liquids, it’s very likely that thistation energy will rapidly be transferred, via col-
javens. to random atomic motion, thermal energy,
fbefore a photon can be emitted. This commonplaceocess (the taking up of a photon andits conversion
hnco thermal energy) was at one time widely known as

bsorption,” but nowadays that word is more often
used to refer just to the “taking up” aspect, regardless
of what then happensto the energy. Consequently, it’s
now better referred to as dissipative absorption.

In contrast to this excitation process, ground-state or
nonresonant scattering occurs with incoming radiant
energy of other frequencies—that is, other than reso-
nance frequencies (see Section 13.7), Imagine an atom
in its lowest state and suppose that it interacts with a
photon whose energyis too small to a cause a transition
Piany of the higher, excited states. Despite that, the

ectromagnetic field of the light can be supposed toKiive the electron cloud into oscillation. There is no
ting atomic transition; the atom remainsin its

nd state while the cloudvibrates ever so slightly at
sreequency of the incidentlight. Once the electron.

Starts to vihrate with respect to the positive
apleus, the system constitutes an oscillating dipole and
Bll presumably immediately begin to radiate at that

frequency. The resulting scattered light consists
ePhoton that sails off in some direction carrying the
amount of energy as did the incident photon—the

ng is elastic. In effect, we are supposing that the
tesembles a little dipole oscillator, a model

gyed by Hendrik Antoon Lorentz (1878) with
Batkable success,
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Whenan atom isinan active environment, the process
of excitation and spontaneous emission is rapidly
repeated. In fact, with an emissionlifetime of ~107*s
an atom could spontaneously emit upward of 10°
photons per second in a situation in which there was
enoughenergy to keep reexciting it. Atoms have a very
strong tendency to interact with resonantlight (they
have a large absorption cross-section), This means that the
saturation condition, in which the atoms of a low-
pressure gas are constantly emitting and being re-
excited, occurs at a modest value of irradiance
(~10" W/m”),So it's not very difficult to get atomsBring
out photons at a rate of 100 million per second.

Generally, we can imagine that in a medium iltumi-
nated by an ordinary beamof light, each atom behaves
as though it was a “source’’ of a tremendous number
of photons (scattered either elastically or resonantly)
thatfly off in all directions. A stream of energylike this
resembles a classical spherical wave. Thus we imagine
an atom (even thoughitis simplistic to do so) as a point
source of spherical electromagnetic wavetrains—
provided we keep in mind Einstein’s admonition that
“outgoing radiation in the form of spherical waves doesnot exist.”

When a material with no resonances in the visible is
bathed in Hight, nonresonant scattering occurs and it
gives each participating atom the appearance of being
a tiny souree of spherical wavelets. Asa mule, the closer
the frequency of the incident beam is to an atomic
resonance, the more strongly will the interaction occur
and,in dense materials, che more-energy will be dissipa-
tively absorbed.It is precisely this mechanism of selec-
tive absorption (see Section 4.4) that creates much of
the visual appearance of things.It is primarily respon-
sible for the color of yourhair, skin, and clothing, the
color of leaves and apples and paint.

3.5.1 Dispersion

Maxwell's theory treats matteras continuous, represent-
ingits electric and magnetic responses to applied E-
and B-fields in terms of constants, « and y». Con-
sequently. K, and K,, are also constant, and n is there-
fore unrealistically independent of frequency. To deal
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theoretically with dispersion, the well-known frequency
dependence of the refractive index, it is necessary to
incorporate the atomic nature of matter and, obviously,
to exploit some frequency-dependent aspect of that
nature. Following H. A. Lorentz, we can then average
the contributions of large numbersof atoms to represent
the behavior of an isotropic dielectric medium.

Whena dielectric is subjected to an applied electric
field, the internal chargedistributionis distorted under
its influence. This corresponds to the generation of
electric dipole moments, which in turn contribute to
thetotal internal field. More simply stated, the external
field separates positive and negative charges in the
medium (eachpair of which is a dipole), and these then
contribute an additional field component. The resultant
dipole moment per unit volumeis called the electric
polarization P. For most materials P and E are propor-
tional and cansatisfactorily be related by

(€~ &JE =P. 3.61)
The redistribution of charge and the consequent
polarization can occur by the following mechanisms.
There are molecules that have a permanent dipole
momentas a result of unequalsharing ofvalence elec-
trons. These are known aspolar molecules; the nonlinear
water molecule js a fairly typical example (Fig. 3.24).
Each hydrogen-oxygen bondis polarcovalent, with the
H-end positive with respect to the O-end. Thermal
agitation keeps the molecular dipales randomly orien-ted. With the introduction of an electric field, the
dipoles align themselves, and the dielectric takes on an
orientational polarization. In the case of nonpolar molecules
and atoms, the applied field distorts the electron cloud,
shiftingit relative tn che nucleus and thereby producing
a dipole moment. In addition to this electronic polar-
ization, there is another process that is applicable
specifically to molecules, for example, the ionic crystal
NaCl. In the presence of an electric field, the positive
and negative ions undergoashift with respect to each
other. Dipole momentsare therefore induced. resulting
in whatis called ionic or atomic polarization.

If the dielectric is subjected to an incident harmonic
electromagnetic wave, its internal charge structure will
experience time-varying forces and/or torques. These
will be proportional to the electric field component of

i} A~ 62% 10 2 Cm
*

waysrour®
Osygen

A= 040 x 107m>
QS

343 x 107°C

Figure $.24 Assorted moiccules and their dipole moments.

the wave.* Far polar dielectrics the molecules actually]
undergo rapid rotations. aligning themselves with the
E(t)-field. But these moleculesare relatively large and
have appreciable momentsof inertia. Ac high drivingg
frequencies , polar moleculeswill be unable to followNTN
* Forces arising from the magnetic componentof the field ?form Fy, = qv * B in comparison to F; = gE for the cléucric "7
ponent; but v« ¢, so it follows from Eq. (3.30) that Fy, is genes?negligible.
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Jd alternations. Their contributions to P will
e, and K, will drop markedly. Therelative per-of wateris fairly constant at approximately 80,

about 10'° Hz, after which it falls off quite rapidly.
‘contrast, electrons havelittle inertia and can con-low the field contributing to K,(w) even at

‘cal frequencies (of about 5x 10" Hz), Thus the
pendence of n on w is governedby theinterplay ofis variouselectric polarization mechanisms contribu-

the particular frequency, With this in mind,it
ible to derive an analytical expression for n(a)

5 of what's happening within the medium on an

,fie!

leursby an attractive electric force that sustainsit in
some sort of equilibrium configuration. Without know-‘uch more about the details of all the internal

ic interactions, we can anticipate that, like other
stable mechanical systems which arenottotally disrupted
by small perturbations, a nei force, F, must exist thats the system to equilibrium. Moreover, we can

asonably expect that for very small displacements, x,
equilibrium (where F «= 0), the force will be linear

in x. In other words, a plot af F(x} versus x will cross
the x-axis at the equilibrium point (x = 0) and will be
ittrainte line very close on either side. Thus for small

{isplacements it can be supposed that the restoringforce has the form F=—éx, Once somehow momen-

BY disturbed, an electron bound in this way willcillate about its equilibrium position with a natural or
resonantfrequency given by w, = Jé/m,, where m, is
is mass. Thisis the oscillatory frequencyof the undrivenwystem.

A material medium is envisioned as an assemblage,
um, of a very great many polarizable atoms, each

ich is small (by comparison to the wavelength of
Andclose to its neighbors. When a lightwave

es on such a medium, each atom can be thought
a classical forced oscillator being driven by theVarying electric field E(t) of the wave, which is
d here to be applied jn the x-direction. Figure

) is a mechanical representation of just such anitor in an isotropic medium where the negatively
ed shell is fastened to a stationary positive nucleus

gontical springs, Even under the illumination of
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bright sunlight, the amplitudeoftheoscillations will be
no greater than about 107’? m. Theforce (F;;) exerted
on an electron of charge q, by the E(t) field of a har-
monic wave of frequency is of the form

Fi gE) > q-Eq cos wl. (3.62)

aEeeeeeeeeeeaaed

- EOC-S—-

Figure 3.25 (a) Distortion ofthe electron cloud in response to anapplied E-feld. (by The mechanical oscillator modelfor an isotropic
medium—all the springs are the same, and theoscillator can vibrate
equally in all directions. 
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Consequently, Newton's second law provides the
equation of motion; thatis, the sum ofthe forces equals
the mass times the acceleration:

&xm5. £3.68)Ey COS wt—Mwax =Goku 0: ae
‘The first term on theleftis the driving force, the second
is the opposing restoring force. To satisfy this
expression, x will have to be a function whose second
derivative isn't very much different from < itself. Fur-
thermore wecan anticipatethatthe electron will oscillate
at the same frequency as E(t), so we “guess” at thesolution

x(U)™ xo COs wot
and substitute it in the equation to evaluate the ampli-
tude x9. [n this way we find that

q.im,x)=
*) {wo w")

  Eg cos wt (3.64)
or

= hel Be(wi a")x(t) E(t). (3.65)

This is the relative displacement between the negative
cloud and the positive nucleus. It’s traditional to leave
4. positive and speak about the displacement of the
oscillator. Without a driving force {no incident wave)
the oscillator will vibrate at its resonance frequency wo. In
the presence ofa field whose frequencyis less than wy,
E(t) and x(t) have the samesign, which meansthat the
oscillator can follow the applied force (ie., is in phase
with it). However, when w > wy, the displacementx(t)
is in a direction opposite to that of the instantaneous
force q,E(!) and therefore 180° out of phase with it.
Rememberthat we are talking aboutoscillating dipoles
where for wo > w, the relative motion of the positive
chargeis a vibration in the direction of the field. Above
resonancethe positive charge is 180° out of phase with
the field, and the dipoleis said to lag by 7 rad.

The dipole momentis equal to the charge ¢, times
its displacement, andif there are N contributing elec-
trons per unit volume, the electric polarization, or
density of dipole moments, is

 

P= qXn. (3.66)

Hence

geNE lm,
(we w?) 8.67,

and from Eq.(3.61)
Pw) q:Nim,

€ oF Fu) €q (oe wy" 4
Using the fact that n°=K,~ €/€), we can arrive at an
expression for n as a function of , which is known as
a dispersion equation: 2

nw) 1+Mu(1), o€om, Kay — @"
At frequencies increasingly above resonance, (w?4

w”) < 0,and theoscillator undergoesdisplacementstha
are approximately 180° out of phase with the drivir
force. The resulting electric polarization will therefoy
be similarly out of phase with the applied electric fiel
Hencethe dielectric constant and therefore the index

of refraction will hoth be less than 1. Ataincreasingly helowresonance, (w§ — @”) > 0, the electri
polarization will be nearly in phase with the applied]electric field. The dielectric constant and the corre-
sponding index ofrefraction will then both be ¢
than 1. This kind of behavior, fh aectually repaeternity
only part of what happens, is nonetheless 4observed in all sorts of materials.

Asa rule, any given substance will actually uncerseveral of these transitions from 2 > 1 to n < t as thy
illuminating frequency is madeto increase. ‘Lhe impli
tion is that instead of a single frequency w» at whid
the system resonates, there apparently are several suchy
frequencies. It would seem reasonable to generali:
matters by supposing that there are N molecules p'
unit volume, each with f; oscillators having natur:
frequencies wy;, where j = 1,2, 3, , In that case.2

n*(w) 1+ ME(gm. 5

  
 

 

  @,

This is essentially the same result as that arising from
the quantum-mechanical treatment, with the except
that some of the terms must be reinterpreted. A
ingly, the quantities wo; would then be the chara:
frequenciesat which an atom may absorb or emit radi
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terms, which satisfy the requirementthat
gocrsy.The weighting factors known as oscillator
Bhs ‘They reflect the emphasis that should be
e ced om each one of the modes. Since they measure
Byelikelibood that a given atomic transition will occur,
thefj terms are also known as transition probabiliites.similar reinterpretation of the f; terms is even

ived classically, since agreement with the experi-
| data demands that they be less than unity. This
ously contrary to the definition of the f; that led
(3.70). One then supposes that a molecule has

y oscillatory modes but that each of these has a
Betinct natural frequency and strength.

Notice that when w equals any of the characteristic
egvencies, n is discontinuous, contrary to actual
(bservation. This is simply the result of having neglec-ted the damping term, which should have appeared in
B8Sicnominator of the sum. Incidentally, the damping.‘part, is attributable to energy lost when the forced

cillators reradiate. In solids, liquids, and gasesat high
pressure (~1i)" atm), the interatornic distances areroughly 10 times Jess than those of a gas at standard

aeand pressure. Atoms and molecules in this

 

 
 

atively close proximity experience strong interactions
resulting “frictional” force. The effect is a damp-

pre of the oscillators and a dissipation of their energywithin the substance in the form of “heat” (random
molecular motion).

Had we included. a damping force proportional to
the speed (of the form m,ydx/dt) in the equation of
imotion, the dispersion equation (3.70) would have been

Na: fi
€gM, 7 wy — O + tye
 

 ym + G71)

Qlthough this expressionis fine for rarified media such
as gases there is another complication that must be
xercome if the equation is to be applied to dense
Substances. Each atom interacts with the local electric
field in which it is immersed. Yet unlike the isolated

considered above, those in a dense material will
‘perience the induced field set up by their breth-

,, Consequently an atom “sees” in addition to the

 Ecsult, which applics to isotropic media, is derived in almoston electromagnetic theory.
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Without goinginto the details here, it can be shown that

n?-1 Ng? §
+2 Baym, Ff w5j— 0? + yo"

 
(3.72)

‘Thus far we have been consideringelectron-oscillators
almost exclusively, but the same results would have been
applicable to ions bound to fixed atomic sites as well.
In that instance m, would be replaced by the consider-
ably larger ion mass. Thusalthough electronic polariz-
ation is importantover the entire optical spectrum,che
contributions from ionicpolarization significantly affect
n only in regions of resonance (wa, = ).”

The implications of a complex index of refraction
will be consideredlater, in Section 4.3.5. At the moment
welimit the discussion, for the most part, to situations
in which absorption is negligible (.e., @6;— w” » 70)and n is real, so that

2 2

n-1_ Nae —— (3.73)1 +2 Seqm, 7 @
 

Colorless, transparent materials have their charac-
teristic frequencies outside the visible region of the
spectrum (which is why they are, in fact, colorless and
transparent).In particular,glasses haveeffective natural
Frequencies above the visible in the ultraviolet, where
they become opaque.In cases for which w4; » #7, by
comparison, w* may be neglected in Eq. (3.73), yielding
an essentially constant index of refraction over that
Frequency region. For example, the important charac-
teristic frequencies tor glasses occur at wavelengths of
about100 nm. The middle of thevisible rangeis roughly
five times that value, and there, @%, » w*. Notice that
aS increases toward ,, (a3; —w”") decreases and n
gradually increases with frequency, asis clearly evident in
Fig. 3.26. This is called normaldispersion.In the ultra-
violet region, as # approaches a natural frequency, the
oscillators wilt begin to resonate, Their amplitudeswill
increase markedly, and this will be accompanied by
damping anda strong absorption of energy from the
incident wave. When @»; = w in Eq. (3.72), the damping
term obviously becomes dominant. The regions
immediately surrounding thevarious wo; in Fig. 3.27
are called absorption bands. There dn/dw is negative, and
the process is spoken ofas anomalous(i.¢., ahnormal)
dispersion.If white light passes througha glass prism,
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Figure 3.26 The wavelength dependenceof the index of refractionfor various materials

0 ‘ °ay eh 53
Infrared Visible Ultra violet X-ray

Figure 3.27 Refractive index versus frequency,

the blue constituent will have a higher index than the
red and will therefore be deviated through a larger
angle (see Section 5.5.1). In contrast, if we use a liquid-
cell prism containing a dye solution with an absorption
band in the visible, the spectrum will be altered
markedly (see Problem 3.29), All substances possess
absorption bands somewhere within the electromag-
netic frequency spectrum, so that the term anematous
dispersion, being a carryover from the late 1800s, is
certainly a misnomer.

As we have seen, atoms within a molecule can also
vibrate abouttheir equilibrium positions. But the nuclei
are massive, and so the natural oscillatory frequencies

will be low, in the infrared. Molecules such as HeO andCG, will have resonances in both the infrared an,
ultraviolet. If water was trapped within a piece of
during its manufacture, these molecular oscillato;
would be available, and an infrared absorption ban,
would exist. The presence of oxides will also result
infrared absorption. Figure 3.28 shows the (w) cury,
fora numberof importantopticalcrystals ranging froy
the ultraviolet to the infrared. Note how they rise j
the ultraviolet andfallin the infrared. At the even low
frequencies of radiowaves, glass will again be tran;
parent. In camparison,a piece of stained glass eviden
has a resonance in the visible where it absorbs out
particular rangeof frequencies, transmitting the com-
plementary color.

As a final point, notice that if the driving frequen
is greater than any of the wo; terms, then 2" < I an
# <1, Such a situation can occur, for example,if ws
beam x-rays onto a glass plate. This is an intriguin,
result, since it leads to v > ¢, in seeming contradictio,
to special relativity. We will considerthis behavioragai
later on, when we discuss the group velocity
tion 7.6).
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Figure 3.28 Index of refraction versus wavelength and frequeng}for several importantoptical crystals, (Adapted from data publishby The Harshaw Chemical Co.}
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ial summary then, over the visible region of
pectrum, electronic polarization is the operativeanism determining 7(a). Classically oneimagines

mron-oscillators vibrating at the frequency of the
nt wave. When the wave’s frequency is appreci-

Sifferent from a characteristic ornatural frequency,
scillations are small, and there is little dissipative
otion. At resonance, however, the oscillator ampli-
‘are increased, and the field does an increased

Srpint of work on the charges. Electromagneticenergy
Bed from the wave and converted into mechanical

eTBYiS dissipated thermally within the substance, and
Rpeaks of an absorption peak or band. The material,
ough essentially transparent at other frequencies,

airly opaqueto incidentradiation atits characteristicuencies (Fig. 3.29).

 
  
 
 
 
  

4.5.2 The Propagation of Light
Througha Dielectric Medium

feu process whereby light propagates through a
tmedium at a speed other than¢ is a fairly complicated
‘one, and this section is devoted to making it at least

ysically reasonable within the context of the simplecillator model.
Consider an incident or primary electromagnetic wave

icae impinging ona dielectric. As we have seen,it will polarize the medium and drive the electron-
oscillators into forced vibration. They, in turn, will
Héradiate or scatter energy in the form of electromag-

Swavelets of the sare frequency as that of the
wave, Ina substance whose atoms or molecules

€ arranged with some degree of regularity, these
Wavelets will tend to mutually interfere. Thatis, they
Will overlap in certain regions, whereupon they willhér' reinforce or diminish each other to varying

i gure 3.30 illustrates a plane wave incident from
e and the resulting clutter of scattered spherical

s. These superimpose in the forward direction
um plane wavefronts, which weshall refer to as the
dary wave. The waythis actually occurs can better

preciated in Fig. 3.31, which depicts a sequence
showing two molecules A and B interacting with
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Figure 3.29 A group of semiconductorlenses made fram ZnSe.CdTe, Gads, and Ge. These materials are particularly useful in the
infrared (2 um to 30 wm), where they are highly transparent despite
the fact thatthey are quite opaquein the visible region of the spectrum,Photo courtesy Two-Six Incorporated.)

an incoming plane wave-—a solid line represents a wave
peak(a positive E-field}, and a dashed line corresponds
to a trough (a negative E-field).In Part (a) of the figure
che incoming plane wavefrontimpinges on molecule A,
which begins to scatter a spherical wavelet. The phase
ofall such wavelets (as compared with the incident wave)
will be examined presently; for the moment, let it be
anything, say 180°. Accordingly, molecule A begins to
yadiate a troughin responseto being driven by a peak.
Part (b) showsthe scattered spherical wavelet and the
primary plane wave overlapping, marchingoutofstep
but marching together. And another wavelet is emerg-
ing from A.In (¢) a trough of the primary wavefront
is incident on 8, and it, in turn, begins to reradiate a
wavelet, which must also be out of phase by 180°. In
(d) we see the whole point of the diagram—all the
wavelets are mnoving forward with the primary wave. In
the forward direction the wavelets from A and B arein phase
with each other but out of phase with the primary wave.
That would be true for all such wavelets, regardless of
how many molecules there were, how close together
they were, or how they were distributed.

Asa result of the asymmetryintroduced by the beara
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Figure 3.30 A downward plane wave incident on an ordered array
of atoms. Waveletsscatter in all directions and overlap to form an

itself, all the scattered wavelets add to each other in
phase; they rise and fall together at points tangent to
a plane andthus consiructively (see Section 7.1) combine
to form a forward-moving secondary plane wave. This
does not happen in the backward direction or, indeed,
in any otherdirection. If the scatterers are randomly
located.andfar apart,the total radiation in any direction
but forward will be an uncorrelated mixture of egsen-
tially independentwavelets showingno significantinter-
ference, This is approximately the situation existing
about 100 miles up in the Earth’s rarefied higb-altitude
atmoaphere (see Section 8.5). By contrast, in anordinary
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ongoing secondary plane wave traveling downward,

gas (and even the atmosphere at standard temperature.

andpressurehas about8 million molecules ina A* oothe wavelets (A ~ 500 nm) scattered by sourcesso clos
together (3 nm) cannot properly be viewed as random!
Norare they randomin a solid er liquid, in which the
atoms are 10 times closer and arrayed in a far mor¢
orderly fashion. Here again, the scattered wavelets:
interfere constructively in che forward direction—thaq
much is independent of the arrangement of the
molecules—butdestructive interference, in which the!
wavelets cancel one another (see Section 7.1), now P)
dominates in all other directions. In dense media there
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sly no scatering i any direction but forward; the the secondary wave will combine with what is left of the
a ceases through the medium in the forward primary wave to yield the only observed disturbanceeam F* aia within the medium, namely, the refracted wave. Both

aargarical reasons alone we can anticipate that the primary and secondary electromagnstic waves propagate
 

through the interatomic void with the speed ¢. Yet the
medium cancertainly possess an index of refraction
other than I, The refracted wave may appear to have
a phase velocity less than, equal to, or even greater than
¢ The key to this apparent cantradiction residesin the
phase relationship between the secondary and primarywaves.

The classical model predicts that the electron-oscil-
lators will be able to vihrate almost completely in phase
with the driving force (Le., che primary disturbance)
only at relatively low frequencies. As the frequency of
the electromagnetic field increases, the oscillators will
fal] behind,lagging in phase by a proportionately larger
amount. 4 detailed analysis reveals that at resonance
the phase lag will reach 90°, increasing thereafter to
almost 180°, or half a wavelength,at frequencies well
above the particular characteristic value. Problem 3.28
explores this phase lag for a damped driven oscillator,
and Fig. 3.32 summarizea the results.

In additionto these lags there is anothereffec thatmust be considered. When the scattered wavelets re-
combine, the resultant secondary wave"itself lags the
oscillators by 90°.

The combined effect of both these mechanismsis that
at frequencies below resonance, the secondary wave lags
the primary (Fig, 3.38) by some amount between
approximately 90° and 180°, and at frequencies above
resonance,the lag ranges from about 180° to 270°. But
a phase lag of § = 180° is equivalent to a phase lead of
360° — 8 [e-g., cos (9 — 270°) = cos (9 + 90°)]. This much
can be seen on the rightside of Fig. 3.32(b).

Within the transparent medium the primary and
secondary waves overlap and, depending on their
amplitudes and relative phase, generate the net refrac
ted disturbance. Except for the fact thatit is weakened
by scattering, the primary wavetravels into the material
just as if ic were traversing free space. By comparison
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“This point will be made more plausible when we consider the
predictions of the Huygeos-Fresnel theory in the diffrection chapter.‘Most texts on E & M treet the problem of radiation from a sheet of
excillating charges,in which ease the 90° phase lag is « natural result,

 
 
 Fonphnar wavefronts—trough with trough, peak with peak, 
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Figure 3.32 A schematic representation of (a) amplitude and (b)phase lag versus driving frequency for a damped oscillator. The
dashed curves correspond to decreased damping. The correspondingindex of refraction is shown in (c).
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Figure 3.33 A primary wave (a) and two possible secondary wave
In (b} the secondary lags the prmary—it takes longer to reach af
given value. In (c) the secondary wave reaches any given value befog(at an earlier time than) the primary; that 1s, it leads.

to this free-space wave, whichinitiated the process, the
refracted wave is phase shifted, and this phasqdifference is crucial.

Whenthesecondary wavelags(ar leads) the primar
the refracted wave must also lag (or lead) it by som;
amount (Fig. 3.34). This qualitative relationship wil
serve our purposes for the moment,althoughic shoul

  that the phase of the resultant also depends
Bie amplitudes of the interacting waves [see Eq.

Ret), Accordingly at frequencies below w, the refrac-; the free-space wave, whereasat frequen-
ove ait leads the free-space wave. For the special

&. which w = @o the secondary and primary waves
at of phase by 180°; the former works against the
go that the refracted wave is appreciably reduced
tude although unaffected in phase.
e refracted wave advances through the medium,
mg occurs over and over again. Light traversing

ibstance is progressively retarded (or advanced)
se. Evidently, since the speed of the waveis the

 
 

 
 
 

 

 

lange in the phase should correspond to a change inthe speed.

Secondary

  
Lag

igure 3.34 If the secondary leads the primary the resultant willuso leard it,
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We now wish to showthat a phase shift is indeed
tantamount to a difference in phase velocity. In free
space, the disturbance at some point P may be written as

Ep(t)%Ey cos wt. B78
If P is now surroundedbya dielectric, there will be a
cumulative phase shift ep, which was built up as the
wave moved through the medium to P. At ordinary
levels of irradiance the medium will behave linearly,
and the frequency in the dielectric will be the same as
that in vacuum, even thoughthe wavelength and speed
may differ. Once again, but this time in the ‘medium,the disturbanceat P is

Ep(t)™ Epcos (wt—ep), (3.75)
wheresubtraction of ¢p corresponds to a phase lag. An
observer at P wiil have to wait a longer timefor a givencrest to arrive when she is in the medium than she
would have had to wait in vacuum. Thatis, if you
imagine two parallel waves of the same frequency, onein vacuum and onein the material, the vacuum wave
will pass P a time €p/w before the other wave. Clearly
then, @ phase lag of ep corresponds to a reduction in speed,
uv <cand n> I. Similarly, a phase lead yields an increase
in speed, v > c and n <1. Again, the scattering process
is a continuous one, and the cumulative phase shift
builds as the light penetrates the medium. That is to
say, £ is a function of the length ofdielectric traversed,
as it must be if uvis to be constant(see Problem 3.30).

The overall form of n(w), as depicted in Fig, 3.32ic),
can now be understood,as well. At frequencies far below
w, the amplitudes of the oscillators and therefore of
the secondary waves are very small, and the phase angles
are approximately 90°. Consequently, the refracted
wave lags only slightly, and n is only slightly greater
than I. As w increases, the secondary waves have greater
amplitudes and lag by greater amounts. Theresult is a
gradually decreasing wave speed and an increasing
value of 2 > 1. Although the amplitudes of the secon-
dary waves continue to increase, their relative phases
approach 180° as # approaches w). Consequently, their
ability to cause a further increase in the resultant phase
lag diminishes. A turning point (# = w’) is reached
where the refracted wave begins to experience a
decreasing phase lag and an increasing speed, (dn/da <
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0). That continuesuntil w©wy), whereupon the refrac-
ted wave is appreciably reduced in amplitude but unal-
tered in phase and speed. At that point, x = 1, v=,
and we are moreorless at the center of the absorptionband.

At frequencies just beyond wo the relatively large-
amplitude secondary waves lead; the refracted wave is
advanced in phase, andits speed exceeds ¢ (a < 1). As

increases the whole scenario is played out again in
reverse (with some asymmetry due to frequency-depen-
dent asymmetry in oscillator amplitudes andscattering).
Ateven higher frequencies the secondary waves, which
now have very small amplitudes, lead by neatly 90°.
‘The resulting refracted wave is advanced very slightly
in phase, and n gradually approaches 1.

Theprecise shape of a particular n(w) curve depends
on the specific oscillator damping, as well as on the
amount of absorption, which in turn depends on the
number ofoscillators participating.

A rigorous solution to the propagation problem is
known as the Ewald—Oseen extinction theorem. Although
the mathematical formalism, involving integrodifferen-
tial equations, is far too complicated to treat here, the
results are certainly of interest. It is found that the
electron-oscillators generate an electromagnetic wave
having essentially two terms. One of these precisely
cancels the primary wave within the medium. Theother,
and unly remaining disturbance, moves through the
dielectric at a speed v= e/n as the refracted wave.*
Henceforth we shall simply assume that a lightwave
propagating throughanysubstantive medium travels at
a speed u #c.
ey
3.6 THE ELECTROMAGNETIC-PHOTON

SPECTRUM

In 1867, when Maxwell published the first extensive
account of his electromagnetic theory, the frequency
band was only known to extend from the infrared,
acrossthevisible, totheultraviolet. Although this region 
* For a discussion of the Ewald-Oseentheorem, see Principles ofOptics
by Born and Wolf, Section 2:.2; this is heavy reading. Aisu look at
Reali, "Reflection from Dielectric Materials.” Am. J, Phys. 50, 1133(1982),

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

  
 

jor concern in optics, it is a small segmeny of
m isce Fig. 8.35), This
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3.6.1 Radiofrequency Waves

In 1887, eight years after Maxwell's death, Hi
Hertz, then professor of physics at the Technis
Hochschule in Karlsruhe, Germany, succeededin gierating and detecting electromagnetic waves.*
transmitter was essentially an oscillatory disch:
across a spark gap (a form ofoscillating electric dip}
Fora receiving antenna, be used an open loop ofwi;
with a brass knob on one end anda fine copper poiz4
on the other. A small spark visible between the two endl
marked the detection of an incident electromagne!
wave. Hertz focused the radiation, determined
polarization, reflected and refracted it, caused it td
interfere, setting up standing waves, and then event
measured its wavelength (on the order of a meter). Ayhe put it:

I have succeeded in producing distinct rays ot electric
force, and in carrying out with them the elementary
experiments which are commonly performed with light
and radiant heat... We may perhapsfurtherdesignate
them as rays of light of very great wavelength. The
experiments described appear to me, at any rate,

 

emimently adapted to remove any doubtas ta the iden-
tity of light, radiant heat, and electromagnetic wavemotion.

The waves used by Hertz are now classified in the
radiofrequency range, which extends from a few hertz
te about 10° Hz (A, from many kilometers to 0.3m or
so). These are generally emitted by an assortment «|
electric circuits. For example, the 60-Hz alternating]
current Circulating in power Jines radiates with 4
wavelength of 5 X 10° m, or about 3 X 10° miles. [het *
SEReee
* David Hughes may well have been the Grst person who acuallperformed this feat, but bis experiments in 1879 went unpublishgand unnoticed for many vears
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is no upper limit to the theoretical wavelength; one
could leisurely swing the proverbial charged pith ball

ed. in so doing, produce a rather long if not very
trang wave. Indeed. waves more than 18 million miles

long have been detected streaming down toward Earth
ifjom outer space. The higher frequency end of the
bandis used for television and radio broadcasting.

At | MHz(10° Hz) a radiofrequency photon has an
nergy of 6.62% 10°" J or 4x 10% eV, a very small

Bosnny by any measure. The granular nature of theFadiation is generally obscured, and unly a smooth
fisnsfer of energy is apparent.

$6.2 Microwaves

microwave region extends from about 10° Hz up
it 8X 10" Hz, The corresponding wavelengths

© trom roughly 80.cn to 1.0mm, Radiation capable
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of penetrating the Earth’s atmosphere ranges from lessthan 1 em to about 30m. Microwaves are therefore of
interest in space-vehicle communications, as well as
radio astronomy. In particular, neutral hydrogen
atoms, distributed over vast regionsof space, emit 21-cm
(1420-MHz) microwaves. A good deal of information
aboutthe structure of our own and other galaxics has
been gleaned from this particular emission.

Molecules can absorb and emit energy byaltering the
state of motion of their constituent atoms—they can bemadeto vibrate and/or rotate. Again, the energy associ-
ated with either motion is quantized, and molecules
possess rotational and vibrational energy levels in addi-
tion to those due to their electrons. Only polar motecules
will experience forces via the E-field of an incident
electromagnetic wave that will cause them to rotate into
alignment, and only they can absorb a photon and makea rotational transition to an excited state. Since massive
molecules are not uble to swing around easily, we can
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Figure 9.36 A photograph of an 18 by 75 mile area northeast of
Alaska. It was taken by the Seasat satelline 800 kilometers (500 miles}
above the Earth. Theoverall appearance is somewhat strange because
this isactually a radar or microwave picture. The wrinkled gray region
on the right is Canada, The small,bright abel shape is BanksIsland,

anticipate that they will have low-frequency rotational
resonances (far IR, 0.1 mm, to microwave, | cm). For
instance, water molecules are polar (see Fig. 3.24), and
if exposed to an electromagnetic wave, they will swing
around, trying to stay lined up with the alternating
E-field. This will occur particularly vigorously at any
one ofits rotational resonances. Consequently, water
molecules efficiently dissipatively absorb microwave
radiation at or near such a frequency. The microwave
oven (12.2 cm, 2.45 GHz) is an obvious application, On
the other hand, nonpolar molecules, such as carbon
dioxide, hydrogen, nitrogen, oxygen, and methane,
cannot makerotationaltransitions by way of the absorp-
tion of photons.

Nowadays microwavesare used for everything from
transmitting telephone conversations and interstation
television to cooking hamburgers, from guiding planes
and catching speeders(by radar) to studying the origins
of the Universe, opening garage doors, and viewing the
surface of the planet (Fig. 3.36). They are also quite
useful for studying physical optics with experimental
arrangements that are scaled up to convenient
dimensions,

Photonsin the low-frequency end of the microwave
spectrum havelittle energy, and one might expect their
sources to be electric circuits exclusively. Emissions of
this sort can, however, arise from atomic transitions, if
the energy levels involved are quite near each other.

 

  
  
 
 
 
 
 
  

 embedded in a black band of shore-fast,first-year sea ice, Adjacenr
to that is open water, which appears smooth and gray. The dark grablotchy area at the fer left ia the main polar ice pack. There are 1i9
clouds because the radar “sees”right through them.

The apparentgroundstate of the cesium atom isa woolexample.It is actually a pair of dosely spaced energy
Tevels, and transitions between them involve an ene!
of only 4.14% 10%eV. The resulting microwax
emission has a frequency of 9.19263177 x 10° Hz. This
is the basis for the well-known cesium clock, the stan-
dard of frequency and time.

3.6.3 Infrared

Theinfrared region, which extends roughly from 3x
10” Hz to about 4 x 10"? Hz, wasfirst detected by the
renowned astronomer Sir William Herschel (17383
1822) in 1800. The infrared, or IR,is often subdivided

(780-3000 nm), the intermediate IR (3000-6000 nm.
the far IR (6000-15,000 nm), and the extreme 18into four regions: the near IR, i.e., near the oon)
(15,000 nm-!.0 mm). This is again a rather loose]
division, and there is no universality in the nomen=
clature. Radiant energyat the long-wavelength extrem
can be generated by either microwave oscillators oF

Indeed, any material will radiate and absorb 1R vi:
thermalagitation of its constituent molecules.

The molecules of any object at a temperature above
incandescent sources (i.e, molecular oc |
absolute zero (-273°C) will radiate IR, even if |weakly (see Section 13.2). On the other hand, infraré

  aouiy erectedittfs spectrum bres bey
such a8 electric hi rs, glowing, coals, andac redliaoes. Roughly hall the eleceroamag:

from the Sun is I, and a commonli
diates far more IR than ligbt. Like allparas, we too are infrared emitters.

body radiates IR quite weakly, starting at
1, peaking in the vicinity of 10,000 nm,

 

, teveritl. This emission is exploited by see-in-
sniperwepes, as well as by some rather nasty

Gjratenilive snakes {Crotalidae, pit vipers, and
jy sise, constrictors) that tend to be active at night.

4e.ies rotating, a molecule can vibrate in several
ifferent ways, with its atoms movingin various direc-

fans with respect to one another. The molecule need
‘ot be polar, and even a linearsystem such as CO; has’
ree basic vibrational modes and a numberof energy

levels, each of which can be excited by photons. The
sociated vibrational emission and absorption spectra
are, as a rule, in the IR (1000 nm to 0.1mm). Many
qnolecules have both vibrational and rotational reso-
nances in the IR and are good absorbers, which is one
reason IR is often misleadingly called “heat waves”—

just put yourface in the sunshine andfeelthe resulting
id-up of thermalenergy.

infrared radiant energy is generally measured with
ice that responds to the heat generated on absorp-
of IR by a blackened surface. There are, for

mpie, thermocouple, pneumatic (e.g., Golay cells),
oelectric, and bolometer detectors. These in turn
end on temperature-dependent variations in
poed voltage, gas volume, permanent electric

tion, and resistance, respectively. The detector
coupled by way of a scanning system to a cathode

he to produce an instantaneous television-like IR
(Fig. 3.87) known as a thermograph (which is

‘aseful for diagnosing all sorts of problems, from
transformers to faulty people). Photographicsitive to near IR (<1800 nm)areals available.
.are IR spy satellites that look out for rocket

88, IR resourcesatellites that look out for crop
peseases, and IR astronomicalsatellites that look out

SPace—one of which discovered a ring of matter
id the star Vega (1983); there are “heat-seeking”
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missiles guided by 1R, and IR lasers and telescopes
peering into the heavens.

Small differences in the temperatures of objects and
their surroundingsresult in characteristic IR emission,
which can be used in many ways. from detecting brain
tumors and breast cancers to spotting a lurking burglar.
The CO, laser, because it is a convenient source of
continuous power at appreciable levels of 100 W and
more,is widely used in industry, especially in precision
cutting and heat treating. Its extreme-IR emissions
(18.3 wm-23.0 zm) are readily absorbed by human
tissue, making the laserbeam aneffective bloodlessscal-
pel that cauterizes asit cuts.

3.6.4 Light

Light correspondsto the electromagnetic radiation in
the narrow band of frequencies from about 3.84
10'* Hz to roughly 7,69 x 10'4 Hz (see Table 3.2). It is
generally produced by a rearrangementof the outer
electrons in atoms and molecules. (Don’t forget syn-

 
Figure 3.37 Thermograph of the author. Note the cool beard.
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Table 3.2 Approximate frequency and vacuum wavelength rangesfor the variouscolors.————————_——————_

Color Ag(am) (TH2)r _*Red 780-622 384-482
Orange 622-597 482-503Yellow 597-577 503-520
Green 577-492 520-610
Blue 492-455 610-659
Violet 455-390 659-769re

*1terahertz (FH2) = 10'* Hz, | nanometer (nm) = 10~% m.

chrotron radiation, which is a different mechanism.)*
In an incandescent material, a hot glowing metal

filament, or the solar fireball. electrons are randomly
accelerated and undergofrequentcollisions. The result-
ing broad emission spectrumiscalled thermal radiation,
and it is a major sourceoflight. In contrast, if we fill
a tube with some gas and pass an electric discharge
through it, the atoms therein will become excited and
radiate. The emitted light is characteristic of the par-
ticular energy levels of those atoms, andit is made up
of a series of well-defined frequency bandsor lines.
Such a device is known as a gas discharge tube. When
the gas is the krypton 86 isotope, the lines are par-
ticularly narrow (zero nuclear spin, therefore no
hyperfine structure). The orange-red line of Kr 86,
whose vacuum wavelength is 605.7802105 nm, has a
width (at half height) of only 0.00047 nm, or about
400 MHz. Accordingly, until 1983 it was the inter-
national standard of length (1,650,763.73 wavelengths
equaled a meter).

Newton was thefirst to recognize that white light is
actually a mixture ofall the colors of the visible spec-
trum, that the prism does not create color by altering
white light to different degrees, as had been thought
for centuries, but simply fans out the light, separating
it into its constituent colors. Not surprisingly, the very
concept of whiteness seems dependenton our perception
of the Earth’s daylight spectrum—a broad frequency

* There is no needhere to define light in termsof human physiology.
On the contrary, there is plenty of evidence to indicate that this would
not be 2 very good idea. For example, see T. J. Wang, “Visual
Responseof the Human Eye to X Radiation.” Am. J. Phys. 35, 779(1967).

 

 distribution thatfalls off more rapidly in the violet
in the red (Fig. 3.38). The human eye-brain dete,
perceives as white a wide mix of frequencies, usyaj
with about the same amountof energy in each portig;
Thatis whatwe shall mean when we speak about“whilight”—much of the color of the spectrum, with
region predominating. Nonetheless, many different
tributions will appear moreor less white. We ret
a piece of paper to be white whetherit’s seen indg
under incandescent light or outside under skylighleven though those whites are quite different. In
there are manypairs of coloredlight beams(e.g., 6§
nm red and 492-nm cyan) that will producethese:
tion of whiteness, and the eye cannot alwaysdisting
one white from another; it cannot frequency anal
light into its harmonic components the way the ear oaanalyze sound (see Section 7.7).

Colors are the subjective human physiological an
psychological responses, primarily, to the afrequency regions extending from about 384 THz fay
red, through orange,yellow, green, and blue, to viol]
at about 769 THz(Table 3.2). Color is not a prope:
of the light itself but a manifestation of
electrochemical sensing system—eye, nerves, brain. Ty
be more precise, we should not say “yellow light”
rather “light that is seen as yellow.” Remarkably;
variety of different frequency mixtures can evoke
samecolor response from the eye-brain sensor. A beam)
of red light (peaking at, say. 690 THz) overlapping

f green light (peaking at, say, 540 THz)will
> jeveit or not, in the perception of yellow light,

galt,beligh cnere are no frequencies present in the
ted yellow band. Apparently, the eye-braines the input and “sees” yellow (Section 4.4).

al Be why @ color television screen can manage with
; ie three phosphors: red, green, and blue.
BY a flood of bright sunlight where the photon flux
daasity might be 10photons/m*s, we can generallyect the gaantus nature of the energy transport to
ie thorougbly obscured. However,in very weak beams,
Jie photonsin thevisible range (hy = 1.6 eV 10 3.2 eV)gus zengetic enough to produceeffects on a distinctly
jhdividual basis, the granularity will become evident.
Hesearch ou hurnan vision indicates that as few as 10
[ight photons. and possibly even 1, may be detectablely the eye.

 
    
  

   
 

  
 

   
  

4.65 Ultraviolet

  

 
ai phd milic ayers. at traviniet rgin
feppreaiimately® x Lil"! Hz to about3.4 x Wr" Hz), dis-ed by Johann Wilhelm Ritter (1776-1810). Photon

ies therein range from roughly 3.2 eV to 100 eV,
aviolet, or UV, rays from the Sun will thus have
than enough energyto ionize atoms in the upper

sphere and in so doing create the ionosphere.
These photon energies are also of the order of the
fGagnitude of many chemical reactions, and ultraviolet

aj become important in triggering those reactions.
ately, ozone (Os) in the aumosphere absorbs whatotherwise be a lethal stream of solar UV. At

glengths less than around 290 nm, UVis germicidal
Eyhit kills microorganisms). The particlelike aspects

of radiant energy become increasingly evident as theicy rises.
mans cannotsee UV very well, because the cornea

tbs it, particularly at the shorter wavelengths, while
eye lens absorbs most strongly beyond 300 nm. Awhohas had a lens removed because of cataracts
See UV (A > 300 nm), In addition toinsects, such

I neybees, a fair number of other creatures can
ne fekreae’ to UV. Pigeons, for example, are cap-

Tecognizing patternsilluminated by UV and

 

 

 
 

 
 
 
 

  Relativeeneray  

 400 0) on 7K
Wavelength (nm)

Figure 8.88 A graph of sunlight compared with the lighttungsten lamp.
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 probably employthatability to navigate by the Sun even
on overcast days.

Anatom eauits a UV photon when an electron makes
a long jump down from a highly excited state. For
example, the outermostelectron of a sodium atom can
be raised to higher and higherenergy levels untilit is
ultimately torn loose altogether at 5.1 eV, and the atom
is ionized. If the ion subsequently recombines with a
free electron, the latter will rapidly descend to the
groundstate, most likely in a series of jumps, each
resulting in the emission of a photon.It is possible,
however, for the electron to make one long plunge to
the groundstate, radiating a single 5.1-eV UV photon.
Even more energetic UV can be generated when the
inner, tightly bound clectrons of an atom are excited,

The unpairedvalence electronsofisolated atoms ¢an

  
   

    
   

  
       

      
   

   
  
   
 
  
 

   
  
     
  
  
  
      
    
   
    
  

     
     
  
     Figure 3.39 An ultraviolet photograph of Venus taken by Mari-nex 10.  
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74 Chapter 3 Electromagnetic Theory, Photons and Light

be an importantsourceofcolored light. But when these
same atoms combine to form moleculesorsolids, the
valence electrons are ordinarily paired in the process
of creating the chemical bonds that hold the thing
together. Consequently, the electrons are often more
tightly bound, and their molecular-excited states are
higher up in the UV. Molecules in the atmosphere, such
as No, Oy, CO», and H,O,havejust thissort of electronic
resonance in the UV (see Section 8.5).

Nowadays there are ultraviolet photographic films
and microscopes, UV orbiting celestial telescopes, syn-
chrotron sources, and ultraviolet lasers (Fig. 3.39).

3.6.6 Xrays
X-rays were rather fortuitously discovered in 1895 by
Wilhelm Conrad Réntgen (1845-1923). Extending in
frequency from roughly 2.4 x 10'® Hz to 5 x 10!9 Hz,
they have extremely short wavelengths; most are smaller
than an atom. Their photon energies (100eV to
0.2 MeV) are large enough so that x-ray quanta can
interact with matter one at a timein a clearly granular
fashion, almostlike bullets of energy. One of the most
practical mechanismsfor producing x-raysis the rapid
deceleration of high-speed charged particles. The
resulting broad-frequency bremsstrahlung (German for
“braking radiation”) arises when a beam of energetic
electronsis fired at a material target, such as a copper
plate. Collisions with the Cu nuclei produce deflections
of the beam electrons, which in turn radiate x-ray
photons.

In addition, the atoms of the target may become
ionized during the bombardment. Should that occur
through removalof an inner electron strongly bound
to the nucleus, the atomwill emit x-rays as the electron
cloud returns to the groundstate. Theresulting quan-
tized emissions are specificto the target atom, revealing
its energy level structure, and accordingly are calledcharacteristic radiation.

Traditional medical film-radiography generally pro-
duces little more than simple shadow castings, rather
than photographic imagesin the usualsense; it has not
been possible to fabricate useful x-ray lenses. But
modern focusing methods using mirrors (see Section
5.4) have begun an era of x-ray imagery, creating

Figure 3.40 X-ray photograph of the Sun taken March,1976.limb of the Moonis visible in the southeast corner.‘asurwe [
Vaiana and NASA.)

 

 detailed picturesofall sorts of things, from
fusionpellets to celestial sources, such as the Sum (Fig.
3.40), distant quasars, and black holes—objects at temy
peratures of millions of degrees that emit
dominantly in the x-ray region. Orbiting x-ray
scopes have given us an exciting neweye on the
verse, There are x-ray microscopes, picosecond 4
Streak cameras, x-ray diffraction gratings, and li
ferometers, and work continues on x-ray belr
In 1984 a group at the Lawrence Livermore [%
Laboratory succeeded in producinglaser radiation iil
wavelength of 20.6 nm. Thoughthis is more ele
in the extreme ultraviolet (XUV),it’s close
the x-ray region to qualify as thefirst soft x-ray Lisi?

ing)

 
 
 

 

 

3.6.7 Gamma Rays
These are the highest-energy (10° eV to about
lowest-wavelength electromagnetic radiations.
emitted by particles undergoing transitions within lL! 

 

3, A single ma
at incor bevelemgth has become so ¥

wt bo observe any warellke
 
  

  
 

 

 Reve gone full cycle from the radiofrequency
elle response to gamma-ray particlelike behavior.here, not far from the (logarithmic) center of
Reecrac, thereis light. As with all electromagneticjon,its energy is quantized,butherein particular

 
PROBLEMS

Consider the plane electromagnetic wave (in SI
) given by the expressions E,- 0, E,

cos [27 X 10'(t  x/e) + 7/2], and EF, = 0.
‘@) Whatare the frequency, wavelength, direction ofmotion, amplitude, initia] phase angle, and polariz-

ation of the wave?
b) Write an expression for the magnetic flux density.
§.2 Write an expression for the E- and B-fields that

‘itute a plane harmonic wave traveling in the +z-
Posioue The waveis linearly polarized with its planeEkvibration at 45° to the yz-plane.
$3.3" Calculate the energy input necessary to charge a

arallel plate capacitor by carrying charge from one
late to the other. Assumethe energy is stored in the

field between the plates and compute the energy per
unit volume, us, of that region, i.e., Eq. (3.31). Hint:

heelectric field increases throughoutthe process,
integrate or use its average value E/2.

  

 
 
 4 The time ayerage of somefunction f(t) taken over

interval T is given by

(Hoy =F |
Where 1 is just a dummyvariable. If 7 —Qa/w is theBétiod of a harmonic function, show that

 Tr
fey ar,

(sin® (k +x — @t)) =
A

(cos? (k +r — wt) =$,

Problems 75
and

(sin (k +r — wt) cos (k-r—wt)) 0,
when T +t and when T » +.

3.5* Considera linearly polarized plane electromag-
netic wave trayeling in the +x-direction in free space
and havingasits plane ofvibration the xy- plane. Given
that its frequency is 10 MHzandits amplitude is Ey =0.98 Vim,
a) find the period and wavelength of the wave,
b) write an expression for E(t) and B(t),
c) find the flux density, (5), of the wave.

3.6 A linearly polarized harmonic plane wave with a
scalar amplitude of 10 V/mis propagating along a line
in the xy-plane at 45° to the x-axis with the xy-plane as
its plane of vibration. Please write a vector expression
describing the wave assumingboth k, and &, are positive.
Calculate the flux density taking the wave to be invacuum.

3.7 Pulses of UV lasting 2.00 ns each are emitted froma laser which has a beam of diameter 2.5 mm. Given
that each burst carries an énergyof 6.0 J, (a) determine
the length in space of each wavetrain, and (b) find the
average energy per unit volumefor such a pulse.
3.8 A 1.0-mW laser has a beam diameter of 2mm.
Assumingthe divergence of the beam to be negligible,
computeits energy density in the vicinity of the laser.

3.9* A cloudoflocusts having a density of 100 insects
per cubic meter is flying north at a rate of 6 m/min.
Whatis the flux density of locusts, i.¢., how manycross
an area of | m® perpendicular to their flight path persecond?

3.10 Imagine that you are standingin the path of an
antenna which is radiating plane waves of frequency
100 MHzand flux density 19.88 x 10°* W/m*, Compute
the photon flux density, i.c., the numberof photons per
unit time per unit area. How many photons, on the
average, will be found in a cubic meterof this region?
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3.11* Howmany photonsper secondare emitted from
a 100 W yellow light bulb if we assume negligible ther-
mal losses and a quasimonochromatic wavelength of
550 nm? In actuality only about 2.5% of the total dissi-
pated power emergesasvisible radiation in an ordinary100 Wlamp.

 
3.12 A 3.0-Vflashlight bulb draws 0.25 A, converting
about 1.6% of the dissipated powerinte light (A = 580
nin). EH the beamhas a cross-sectional area of 1) cm2,
andis approximately cylindrigal,

  
 

a) how many photonsare emitted per second?
b) how many photons occupy each meter of the beam?
c) what is the flux density of the beam asit leaves che

Aashlight?

3.13* An isotropic quasimonochromatic point source
radiates at a rate of 100 W. Whatis the ux density at
a distance of 1 m? Whatare the amplitudes of the E-
and B-fields at that point?

3.14 Using energy arguments, show that the ampli-
tude ofa cylindrical wave mustvary inversely with V7.
Drawa diagram indicating what's happening.

3.15" What is the momentum of a 10"-Hz x-rayphoton?

3.16 Consider an electromagnetic wave impinging on
an electron. It is easy to show kinematically that the
average value ofthe time rate of changeofthe electron’s
momentum p is proportional to the average value of
the time rate of change of the work, W, done on it bythe wave. In particular,

(2) ei (# ;at o\de fo

Accordingly, if this momentum change is imparted tosome completely absorbing material, show that the
pressure is given by Eq. (3.50).

3.17* Derive an expression for the radiation pressure
when the normally incident beam oflight is totally
reflected. Generalize this result to the case of obliqueincidenceat an angle @ with the normal.

3.18 A completely absorbing screen receives if} "
light for E00s. Compute the total tinea momentransferred to the screen.

3.19 The average ruagnitude of the Poynting vec,4
for sunlight arriving at the top of Earth's atmosphes(1.8 10"m from the Sun)is about 1.4 kWim?,

a) Compute the average radiation pressure exerted @a metal reflector facing the Sun.
b) Approximate the average radiation pressure at thsurface ofthe Sun whose diameteris 1.4 X 10° m)

3.20 What force onthe averagewill be exerted on uf(40m X50 m) flat, highly reflecting side of a Spat
station wallif it’s facing the Sun while orbiting Eartha! |
3.21 A parabolic radar antenna with « 2-mdiam
transmits 200-kW pulses of energy. If ks repetition
is 500 pulses per second, each lasting 2 ps, determi
the averagereaction force on the antenna.

3.22 Consider the plight of an astronaut floatingi
free space with only a 10-W lantern (mexhaustibly sujplied with power). How longwill it take to reach a
of 10m/s using the radiation as propulsion?astronaut's total mass is 100 kg.

3.28 Consider the uniformly moving charge depicte;
in Fig. 3.14(b). Draw a sphere surroundingit and sho
via the Poynting vectorthat the charge doesnotradia

3.24" A plane, harmonic,linearly polarizedlight wavhas an electric field intensity given by
 

E,=E 10 ( ¢- =)pcos m (: aa
while traveling in a piece of glass. Find
a) the frequencyof the light,
b) its wavelength,
¢) the index of refraction of the glass.

$.25 The low-frequency relative permittivity of wa
varies from 88,00 at 0°C to 55.33 at 100°C. Explain #
behavior, Over the sane range in temperature, the
index of refraction (A = 589.3 nm) goes from roughly

y is the change in » so much simalier2. Wh 7
gato}? nding change in K,?ip the correspo

that for substances of low density, such as
have a single resonant frequency oy, the

omis given by
Nq?

ne TFmlo3

j

zg) Show
eases. which

Brivex ot-r
 

 
#)

In the next chapter, Eq. (4.47), we'll sec that areflects radiant energy appreciably when its
differs most from the medium: in whichit is

mae"  

 
) Betielectric constantof ice measured at microwave

: frequenciesis roughly 1, whereas that for wateris
about 80 times greater—why? /

b) Howisit that a radar beam easily passes through icepur is considerably reflected when encountering a
dense rain?

3.28 ‘The equation for a driven dampedoscillatoris
GE (A).

a) {Explain the significance of each term.
b) Let E=oe“ and x = aye, where Ey and xo

are real quantitics. Substitute into the above
expression and show that

F F 2
m,X + Mm, ys + MWOX =

 GE tx 2 a2 -
“om, [w= a+ 707]

3 yve an expressionforthe phaselag, a, and discuss
% & Varies as @ goes from @ « @, LO @™We to

O> wy.

Fuchsinisa strong(aniline) dye, which in solution
cohol has a deep red color. Itappears red because
ebs the green componentof the spectrum. (As

might expect, the surfaces of crystals of fuchsin
Green light rather strongly.) Imagine that you

a thin-walled hollow prism filled with this solution.
will the spectrum look like for incident white
By the way, anomalous dispersion was first

rved in about 1840 by Fox Talbot, and the effect
christened in 1862 by Le Roux. His work was
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promptly forgotten, only to be rediscovered eight years
later by C. Christiansen.

3.30 Imaginethat we have a nonabsorbingglass plate
of index » and thickness Ay, which stands between asource § and an observer P.

a) If the unobstructed wave (without the plate present)is E, = Ey exp iw(t~ 3/c}, showthat with the plate in
place the observer sees a wave

I Axle 4
Lor Ay is very small, then

E, > Eyexp iolt~ (n
b) Showthatif either »

-— ay fae
B, = 5, + SROpier,¢

The second term on the right may be envisioned as
the field arising from the oscillators in the plate.

3.31" Take Eq, (3.70) and check outthe units to make
sure that they agree on both sides.
3.32 The resonant frequency of lead glass is in the
UV fairly near the visible, whereas that for fused silica
is far into the UV. Use the dispersion equation 10 make
a rough sketch of » versus for the visible region of
the spectrum.

3.33 Augustin Louis Cauchy (1789-1857) determined
an empirical equation for (A) for substances that are
wansparent in the visible. His expression corresponded
to the powerseries velation

ne Cyt CofrPt C/A tees,
where the C’s are all constants. In light of Fig. 3.27,
whatis the physical significance of C,?

3.34 Referring to the previous problem, realize that
there is a region between each pair of absorption bands
for which the Cauchy equation (with a new set of con-
stants) works fairly well. Examine Fig. 3.26: what can
you say about the various values of C, as » decreases
across the whole spectrum? Droppingall but the first
two terms, use Fig. 3.27 to determine approximate
values for C, and Cy for borosilicate crownglass in thevisible.
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8.35" Crystal quartz has refractive indices of 1.557
and 1.547 at wavelengths of 410.0nm and 550.0nm,
respectively. Using only the first two terms in Cauchy's
equation, calculate C, and C, and determine the index
of refraction of quartz at 610.0 nm.
3.36" In 1871 Sellmeier derived the equation

Aja?
w= 14>,FAT Rog

where the A, terms are constants and each Aq; is the
vacuum wavelength associated with a natural frequence

Chapter 3 Electromagnetic Theory, Photons and Light

¥o;. such that Ajo; = ¢. This formulation is a con:
able practical improvement over the Cauchy equ;
Show that where A» Ag; Cauchy's equation ;

and expandagain.

3.37* If anultraviolet photonis to dissociate the
gen and carbon atoms im the carbon monoxii
molecule, it must provide 11 eV of energy. Whatis
minimum frequency of the appropriate radiation?

 
 

. Say
approximation of Sellmeier’s. Hint? write the abo,
expression with only the first term in the surn; expa
it by the binomial theorem,take the square rootof

 
  
 
 
 
  

  
   

 
   
 

  

OF LIGHT  

4) INTRODUCTION
 

fe now consider a number of phenomenarelated to
gation of light andits interaction with material

In particular, we shall study the characteristics
of fightwaves as they progress through various sub-
stances, crossing interfaces, and being reflected and
pefracted in the process. For the most part, we shall
fenvision lightas a classical electrormagnetic wave whose

through any medium is dependent upon that
a electric and magnetic properties. It is an

g fact that manyof thebasic principles of optics
redicated on the wave aspects of light but are

Bletely independentof the exact natureof the wave.
ve shall see, this accounts for the longevity of
ens’s principle, which has served in turn to describe
anical aether waves, electromagnetic waves, and

i after three hundred years, applies to quantumi.
ippose, for the moment, that a wave impinges on
interface separating two different media (e.g4 2

Plece of glass in air), As we know from our everyday
pPeriences, a portion of the incident Aux density will

diverted back in the form of a reflected wave, while
ainderwill he transmitted across the boundary

3 refracted wave. On a submicroscopic scale we canNan assemblage of atomisthatscatter the incident
energy. The manner in which these emitted

superimpose and combinewith each other
sid on the spatial distribution of the scattering
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  THE PROPAGATION

atoms. As we know from the previous chapter, the
Scattering process is responsible for the index of refrac
tion, as well as the resultantreflected and refrocted waves.
This atomistic description is quite satisfying concep-
tually, even though it is not a simple matter to treat
analytically, It should, however, be kept in mind even
when applying macroscopic techniques, as indeed weshall later on.

‘We now seek to determine the general principles
governingorat least describing the propagation,reflec-
tion, and refraction of light. In principle it should be
possible to trace the progress of radiant energy through
any system by applying Maxwell’s equations and the
associated boundary conditions. In practice, however.
this is often an impractical if not an impossible task (see
Section 10.1). So we shall take a somewhat different
route, stopping, when appropriate, to verify that our
results are in accord with electromagnetic theory.

4.2 THE LAWS OF REFLECTION AND REFRACTION

4.2.1 Huygens’s Principle

Recall that a wavefrontis a surface over which an optical
disturbance has a constant phase. As an flustration, Fig.
4.1 shows a small portion of a spherical wavefront ©
emanating from a monochromatic point source 5 in a
homogeneous medium. Clearly, if the radius of the
wavefrontas shownis 7, at some later time¢itwill simply
be (r+ vf), where v is the phase velocity of the wave.

79
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 80 Chapter 4 The Propagation of Light

But suppose instead that the light passes through a
nonuniform sheet of glass, as in Fig. 4.2, so that thewavefrontitself is distorted. How can we determineits
new form £’? Orfor that matter, what will 2’ look like
at some later time, if it is allowed to continue unob-
structed?

A preliminary step toward the solution of this prob-
lem appeared in print in 1690 in the work entitled
Traité de la Lumifre, which had been written 12 years
earlier by the Dutch physicist Christiaan Huygens. Itwas there that he enunciated what has since become
known as Huygens’s principle, that every point on a
primary wavefront serves as the source of spherical secondary
wavelets, such that the primary wavefront at some later time
is the envelope of these wavelets. Moreover, the wavelets
advonce with a speed and frequency equal to those of the
primary wave at each point in space. If the medium is
homogeneous, the wavelets may be constructed with
finite radii, whereasifit is inhomogeneous,the wavclets
must have infinitesimalradii. Figure 4.3 should make
this fairly clear, it shows a view of a wavefront 2, as
well as a numberof spherical secondary wavelets, which,
after a time 4, have propagated out to a radius of vt,
The envelope of all these wavelets is then asserted to
correspondto the advanced primary wave 2’. It is easy
to visualize the process in terms of mechanicalvibrations
of an elastic medium. Indeed this is the way that
Huygens envisioned it within the context of an all-
pervading aether, as is evident from this comment byhim:

 

Wehavestill to consider,in studying the spreading out
of these waves, that eachparticle of matter in which a
wave proceeds not only communicatesits motionto the
next particle to it, which is on the straight line drawn
from the luminous point, but that it also necessarily
gives a motionto all the others which touchit and which
opposeits motion. Theresultis that aroundeach particle
there arises a wave of whichthis particle is a center.

Wecan makeuse of these ideas in twodifferent ways.
On one level, a mathematical representation of the
wavelets will serve as the basis for a valuable analytical
technique in creating diffraction theory. One can trace
the progress of a primary wave pastall sorts of apertures
and obstacles by summing up the wavelet contributions 

 

  
  
    
    
 

Tare 4.3 The propagation
igsre 4 Cc via Huymens’s“ofa wave  

 
 
 
 
    
 
 
 
 

Figure 4.1 segment of a spherical wave.  
   
  
 
 

mathematically. On anotherlevel, Fig. 4.3 represents a
graphical application of the essential ideas and as such
is known as Huygens's construction.

     
  

Thusfar we have mercly stated Huygens’s principle
without any justification or proofofits validity, As «®
shall see (Chapter 10), Fresnel successfully modifie
Huygens’s principle somewhat in the 1890s. A

later on, Kirchhoff showed that the HoosenFredprinciple was a direct consequence of the differenti

wave cquation (2.59), thereby puttingit ona firm|

 

matical base. That there was a need for a reformulatig,

  
Figure 4.2 Distortion of a portion of a wavefrontonpassing thtga material of nonuniform thickness.
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Rie principle is evident from Fig. 4.3, where we
ptively only drew hemispherical wavelets.* Had we

awn them as spheres, there would have been a back-
moving toward the source—something that is not

scrved. Since this difficulty was takencare of theareti-
by Fresnel and Kirchhoff, we need not be disturbed

In fact, we shall overlook it completely when
ing Huygens’s construction, which, in the end, is
houghtofas a highlyuseful fiction.

ill, Huygens’s principlefits ir. rather nicely with our
carlier discussion of the atomic scattering of radiant

Each atarn of a material substance that interacts
incident primary wavefront can be regarded as

1 FeiML source of scattered secondary wavelets. Things
are not quite as clear when we apply the principle to

pagation of light through a vacuum.It is helpful,
€r, to keep in mind that at any point in empty

© on the primary wavefront there exists both a
‘arying E-field and a time-varying B-field. These
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in turn create new fields that move out fromthe point.
In this sense each point on the wavefront is analogous
to a physical scattering center.

4.2.2 Snell's Law and the Law of Reflection

The fundamental laws of reflection and refraction can
be derived in several different ways: the first approach
to be used here is based on Huygens’s principle. It
should be said, however, that our intention at the
momentisas muchto elaborate onthe use of the method
as to arrive at the endresults. Huygens’s principle will
provide a highly useful and fairly simple means of
analyzing and visualizing some complex propagation
problems, for example, those invalving anisotropic
media (p. 287) or diffraction (p. 392). Consequently, it
is to our advantage to gain somepractice in using the
technique, even if it is not the most ¢legant procedure
for deriving the desired laws.

Figure 4.4 shows a monochromatic plane wave
impinging normally down onto the smooth interface
separating two homogeneoustransparent media. Whenanincident wave comesinto contact with the interface,
it can be imagined as split into two: we observe one
wave reflected upward and another transmitted down-ware. If we consider an incident wavefront %, coin-
cident with the interface splitting into Z, and E,, both
also congruent with the interface, we can utilize
Huygens’s construction (neglecting the back-waves).
Every point on 5, serves as a source of secondary wave-
Jets, which travel more or less upwardintotheincident
mediumat a speed v,. At atime ¢ later, the front will
advancea distance v,/ and appearas 2. Similarly, every
point on the downward-movingfront ©, will serve as a
source for wavelets essentially heading down with a
speed v,. After a time { the transmitted front will appear
a distance uf belowas 2}.

The process is ongoing, repeating itsclf with the
frequency of the incident wave.* The media are

 

 
* This assumesthe use of light whose flux density is not so extraor-
dinarily high that the fields are gigantic. With this assumption thesneditm will behavelinearly, as is most often the case. 1b contrast,
observable harmonics can be generatedil the fields are made largeenough(Section 14.4).
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eb)

Figure 4.4 A monochromatic plane wave impinging down onto a
homogeneous, isotropic mediumof index »,. ¥,, E,, and Z, should
actually overlap.
assumedto respondlinearly, so the reflected and trans-
mitted waves have that same frequency (and period),
as do all the secondary wavelets. Taking 7, > 7,, it
follows that ¢/u,>c¢iy, thus u4<w%, and the
wavelengths (the distances between wavefronts drawn
in consecutive intervals of +) will be such that A; > Ay
and A, = A,,as shownin Fig. 4.4(b). The incoming plane
wave is perpendicular to the interface, and symmetry
produces both reflected and transmitted plane waves
that also travel out from the interface perpendicularly.

 4:2 The Lawsof Reflection and Refraction &3

Now suppose the incident wave comesin at so;
other angle, as indicated in Fig. 4.5. Clearly, it swe,
across the interface again, essentially splitting into
waves; one reflected and onerefracted. Let's follow
progress of a typical front in Fig. 4.6, envisioningy
diagram as if it were a series of snapshots taken
successive intervals of time 7. Start when %, Makesd
contact with the interface at point 2, At thar point, both,the reflected and transmitted wavefronts begin, so,
which lies on both fronts, can be taken as a source
both an upwardly emitted wavelet traveling at a speg
v, and a downwardly emitted wavelet traveling at
speed v,. Now focus on another point, say, 6 on £;,

Afteratime f, the plane %, will have movedadi:
in the incident medium of w,,, so that & then coryAM
sponds to 6’, Presumably, wo wavelets will then proj
gate out from 4’ into the incident and transmitti:
media, contributing to the reflected, 5‘, and trans:
ted, 21, wavefronts. These wavelets are shownhereafte
a time k, where 7= ¢ + ty. The rest of the diagra  

 
  

 Figure 4.6 Reflection and transmi:
wa Huygens's principle.   

Hat an interface

  
  
   
  

1. lif be self-explanatory. Figure 4.7 is a somewhat
plied version in which ¥,, #,, and @,, as before, are

ngles of incidence, reflection, and transmission (or
yaction), respectively. Notice that

 focident

sin, sin @, sind 1
BD AC AE AD

vimeen with Fig. 4.6, it should be evident that
" BD ut, Aout, AE= xg,

 thd}
   

  
  
  
  
  
  
  
    

  

   

Hiueting into Eq. (4.1) and canceling 4 we have
sin 6, sin @, sinSSS (4.2)u uy ty

‘ies from the first two terms that the angle of
© equals the angle of reflection, thatis,

6,=6. (4.3)

sas the law of reflection,it first appeared in the
= titled Catopirics, which was purported to have“n Written by Euclid.

Refiacied
 
  Figure 4.5 Reflection and transmissionofplane waves. Figure 4.7 Reflectedand transmitted wavefronts at a given instant, 
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84 Chapter 4 The Propagation of Light

Thefirst and last terms of Eq. (4.2) yield
sin@, vu,aes (4.4)sind,

or since u,/u,=n/t, .
nmsin #, = n, sin &. (4.5)

Thisis the very importantlaw ofrefraction, the physical
consequences of which have been studied,at least on
record, for over eighteen hundred years. On the basis
of some fine observations, Claudius Ptolemy of Alexan-
dria attempted unsuccessfully to divine the expression.
Kepler nearly succeeded in deriving the law of vefrac-
tion in his book Supplements to Vuelo in 1604, Unfortu-
nately he was misled by some erroncous data compiled
earlier by Vitello (ca, 1270). The correct relationship
seems to have been arrived at first by Snell* at the
University of Leyden and then by the French
mathematician Descartes.t In English-speaking coun-
tries Eq. (4.5) is generally referred to as Snell’s law.Notice that it can be rewritten in the form

sin &<= hig 46)
sin@, | ;

where ri = m/n, is the ratio of the absolute indices of
vefraction, In other words,it is the relative index of refrac
tion of the two media. [t is evident in Fig. 4.6, where
nm, >| (Le, m, > m, and v,> u,), that A, > a,, whereas
the opposite would betrue if nj; < 1.

Onefeature of the above treatment merits some fur-
ther discussion. It was reasonably assumed that each
point on the interface, such as ¢ in Fig. 4.6, coincides
with a particular point on each ofthe incident, reflected,
and transmitted waves. In other words,thereis a fixed
phase relationship between each of the wavesat points
a, b,c, and so forth, As the incidentjront sweeps across
the interface. every point on it in contact with the
interface is also a point on both a correspondingreflec-
ted front and a correspondingtransmitted front. This
situation is known as wavefront continuity, and it will beeeee
* This is the common spelling, although Snel is probably moreaccurate,

 

1 For a more detailed history, see Max Herzberger, “Optics fromFuclid to Huygens.” Appl Opt,5,1383 (1966). 
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Figure 4.8 The reflection of a wave as the result of scattering. 
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Figure 4.9 Wavelronts and rays.
 

 justified in a more mathematically rigorous treatmentGn Section 4.3.1. Interestingly, Sommerfeld* has shown
at the laws of reflection and refraction (independent

pf the kind of wave involved) can be derived directly
from the requirementof wavefront continuity without

courke to Huygens's principle, and the solution
Froblern 4.9 demonstrates as much.
A far more physically appealing view of the whole

peaatss is depicted in Fig. 4.8. An electromagnetic dis-
mee whose wavelength(A) is several thousand times

=.the spacing between the atoms (d = 0.1 nm)ps across an interface. Each atom is driven succes-
and scatters a wavelet. The tilt of the incident
letermines the phase delay betweenthescattering

‘H atom in turn (see Section 10.1.3 for the details).
yont runningfromCto D is composed of wavelets

that arrive in phase, superimpose, and interfere con-
tively. Since every point on the incident front
ging from A to B in Fig. 4.7) has the same phase,

EAC=BD,the distances traveled and therefore the
hases of the wavelets arriving at C and D will be equal,ndeed they will be all across the front, From the

metry, this can happen only for a reflected wave-
Gat propagating in the onedirection such that 0; = 6,.

8 picture of scattered interfering wavelets is
eea an atomic version of the Huygens-Fresnelu ple,

Although theoretically all the dipoles throughout the

  
  

  
 
 
  
  
  
 
 
 
 
 

 
 
 
 
    

  
    

49

 
4.2 The LawsofReflection and Refraction 85 

medium contribute to the reflected wave, the dominant
effect is due toa surface layer only about$A thick, which
is nonetheless typically several thousand atoms deep.
Furthermore, the condition that only one beamis reflec-
ted is true provided that A »d; it would notbe the case
with x-rays where A d, and there several scattered
beamsactually result; noris it the case with a diffraction
grating, where the separation betwecnscatterersis again
comparable to A, and several reflected and transmitted
beams are produced.A similar argument can be made
for the scattering process giving rise to the transmitted
wave and Snell's law, as Problem 4.11 establishes. 
 
 4.2.3 LightRays

The concept ofa light ray is one that will be of interest
to us throughout our study of optics. A ray is a line
drawn in space corresponding to the direction of flow of
radiant energy, As such, it isa mathematical device rather
than a physical entity. In practice one can produce very
narrow beams or pencils of light(e.g., a laserbeara), and
we might imaginea ray to be the unattainable limit on
the narrowness of such a beam. Bear in mind that in
an tsotropic medium (i.e., one whose properties are the
same in al] directions) rays are orthogonal trajectories of
the wavefronts, That is to say, they are lines normal to the
wavefronts at every point of intersection. Evidently, in such
@ medium a ray is parallel to the propagation vector k. As
you might suspect, this is not true in anisotropic sub-
stances, which wewill considerlater (see Section 8.4.1).
Within homogeneous isotropic materials, rays will be straight
lines, since by symmetry they cannot bend in any pre-
ferred direction, there being none. Moreover, because
the speed of propagation is identical in all directions
within a given meclium, the spatial separation between
two wavefronts, measured along rays, must be the same
everywhere.” Points where a single ray intersects a sct
of wavefronts are called corresponding points, for
example, A, A',and A" in Fig. 4.9. Evidently the separation
in lime between any two corresponding points on any two  
* When the material is inhomogencous or when there is more than
one medium involved, it will be the optical path length (see Section4.2.4) between the twowavefronts that is the sume. °
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sequential wavefronts is identical. In other words, if wavefront 2 is transformedinto 2"aftera time t", the distance
between corresponding points on any and all rays willbe traversed in that sametime ¢”. This will be true even
if the wavefronts pass from one homogeneous isotropic
medium into another. This just means that each point
on X can be imaginedas fallowing the path of a ray toarrive at 3" in the time ¢”.

If a group ofrays is such that we can find a surface
that is orthogonalto each and every one of them, they
are said to torm a normal rongruence. For example, the
rays emanating from a point source are perpendicular
to a sphere centered at the source and consequently
form a normal congruence.

We can now briefly consider an alternative to
Huygens’s principle thatwill also allowus tofollow the
progress of light through variousisotropic media, The
basis for this approach is the theorem of Malus and Dupin
(introducedin 1808 by E. Malus and modified in 1816
by C. Dupin), according to which a@ group of rays will
preserveits normal congruence after any numberof reflections
andrefractions(as in Fig. 4.9). From our present vantage
point of the wavetheory, this is equivalent tothe state-
ment that rays remain orthogonal to wavefronts
throughout all propagation processes in isotropic
media. As shown in Problem 4.12, the theorem can be
used to derive the law of reflection as well as Sneli's
law. It is often most convenient to carry out a ray trace
through an optical system using the lawsofreficctionand refraction and then reconstruct the wavefronts.
Thelatrer can be accomplished in accord with the above
considerations of cqual transit times between corre-
sponding points and the orthogonality of the rays andwavefronts.

Figure 4.10 depicts the parallel ray formation con-
comitant with a plane wave, where 6;, 6,, and 6, which-
have the exact same meanings as before, are nowmeasured from the normal to the interface. The
incident ray and the normal determine a planc known
as the plane of incidence. Because of the symmetry of
the situation, we must anticipate that both the reflected
and transmitted rays will be undeflected from that
plane. In other words, the respective unit propagation
vectorsk;, k,, and k, are coplanar.

In summary, then, the three basic laws of reflection

 
 
  

 
 
   
 

andrefraction are:

1. The incident, reflected, and refracted raysall lie inthe planeof incidence.
2. 6,=4. . (43)
3. n,sin 6; n, sin 6). [4.57
These arcillustrated rather nicely with a narrow lightbear in the photographsofFig. 4.1L. Here, the incidegy
mediumis air (7, = 1.0), and the cransmitting medium
is glass (n, * 1.5), Consequently, n; < 7, and it follows   

™ 
Ray representation

Figure 4.10. The wave and ray representationsof an incident, "gfted, and transmicted beam.

 

50

      
 
 

 
 
 
  

 
 

 
 
 

 
 
 
 
 
 

  
  
  

 

1

°

= 7

Spe ttl Refraction at various angles of incidence. (Photos cour-
FESEESSCCottege Physics, D. C. Heath & Co., 1968.)

erl's law that sin @, > sin @. Since both angles,
d 6,, vary between 0° and 90°, a region over which

EE... functionis smoothly rising,it can be concludedwhat 0, > 6,. Reys entering a higher-index medium from a
dower one refract toward the normal and vice versa. This

sh is evident in the figure. Notice that the bottomis cut circular so that the transmitted beam

ee the glass alwayslies along a radius andis there-ormal to the lower surface in every case. If a ray
® fermen to an interface. 6, = 0 = 6, andit sails right
u with no bending.

#he incident beam in each portion of Fig. 4.11 is
ffacrow and sharp, and the reflected beam is equally
s1l| flefined. Accordingly, the process is known as

ular reflection (from the word for a common mir-
ey in ancient times, speculum).In this case,as in
12(a), the reflecting surface is smooth, or more

ty, any irregularities in it are small compared
wavelength.* In contrast, the diffuse reflection

 

 

 

  
gourface ridges andvalleys are small compared with A, the
<i, wavelets will sull interfere constructively in only one direc-
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in Fig. 4.12(b) occurs when the surface is relatively
rough. For example, “nonreflecting” glass used to cover
picturesis actually glass whose surface is roughened so
that it reflects diffusely. The law of reflection holds
exactly over any region that is small enough to beconsidered smooth. These two forms of reflection are
extremes; a whole range of intermediate behavioris
possible. Thus, although the paper of this page was
manufactured deliberately to be a fairly diffuse scat-
terer, the cover of the bookreflects in a mannerthatis
somewhere between diffuse and specular,

Let 4, be a unit vector normal to the interface point-
ingin the direction from the incidentto the transmitting
medium(Fig. 4.13). As you will have che opportunity
to prove in Problem 4.13, the first and third basic laws
can be combined in the form of a vector refraction
equation:

nitk, G,)= atk, XG) (47)
or, alternatively,

nye,~yk; = (n, cos 6,~ 2; cos 6,¥44,. (48)

4.2.4 Fermat's Principle

Thelaws of reflection and refraction, and indced the
mannerin which light propagates in gencral, can be
viewed from an entirely different and intriguing per-
spective afforded us by Fermat's principle. The ideas
that will unfeld presently fave had a tremendous
influence on the development of physical thought in
and beyond the study of classical optics. Apart from its
implications in quantum optics (Section 13.6, p. 552),
Fermat’s principle provides us with an insightful and
highly useful way of appreciating and anticipating the
behavioroflight.Hero of Alexandria, who lived some time between
150 o.¢. and 250 a.p., was the first to set forth what has
since become known as a variational principle. In his
formulation ofthe law of reficction, he asserted that the
path actually taken by light in going from some point S to a
point P vie a reflecting surface wasthe shortest possible one.Thiscan be seen rather easily in Fig. 4.14, which depicts
a point source S$ emitting a numberof rays that are
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Specular
 

Figure 4.12

then “reflected” toward P. Of course, only one of these
paths will have any physicalreality. If we simply draw
the rays as if they emanated from 53’ (the image of 5),
noneofthe distances to P will have beenaltered (i.c.,
SAP = S'AP, SBP©S’BP, etc.). But obviously the
straight-line path 5’ BP, which corresponds to 8; = 8,.
is the shortest possible one, The samekind of reasoning
(Problem 4.15) makes it evident that points 5, B, and
P mustlie in what has previously been defined as the
plane of incidence. For over fifteen hundred yearsHero's curious observation stood alone, until in 1657
Fermat propoundedhiscelebrated principle of least time.
which encompassed both reflection and refraction.
Obviously, a beam oflight traversing an interface does

(a) Specular reflection, (b) Diffuse reflection, (Photos courtesy Donald Dunitz.)

   

  

  
 
    

not take a straight line or minimum spatial path eena pointin the incident medium and onein the transi
ting medium. Fermat consequently reformulat
Hero’s statement to read: the actual path between
points taken by a beam of light is the one thal is (rauersedj
the least time. As we shall see, even this form of 1¢
statementis somewhat incomplete anda bit erronedig]
at that. For the moment then, let us embrace it but nog
passionately.

Asan exampleof the application of the principlé
the case of refraction, refer to Fig. 4.15, where:
minimize 4, the transit time from S$ to P, with respgy
to the variable x. In other words, changingx shifts PQ
O, thereby changing the ray from § to P, ‘The smallg
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jgure 4.13 The ray geometry,

time will then presumably coincide with the
i| path. Hence SO OPt= +—

Ui ur 

  

  
  
  

- G24" [b+ -x)"uy uy
 © i(x) with respect to variationsin x, we set

thatis, 
oo +de uP +x
 
 

=
xy)

tars the diagram, we can rewrite the expression as
sin, _ sin 6,>uh th

of course no less tHan Snell’s law (Eq. 4.4).
a beam of light is to advance from S to P in

R ible time,itmust comply with the empiricalaction.
gPPose that we havea stratified material composed

islyers, each having a differentindex of refraction,
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as in Fig. 4.16. The transit time from S$ to P will then be

 
 n&petiye:Bo Ue Un

b= 2 slayted

where s, and vu, are the path length and speed, respec-
tively, associated with the ith contribution. Thus
  

L t Lo nese (4.9)os

in which the summation is known as the optical path
Jength (OPL) traversed by the ray, in contrast to
the spatial path Jength 14. Clearly, for an in-
homogeneous medium wheren isa function ofposition,
the summation must be changed to an integral:

 

P

(OPL) = j n(s) ds, 410)s

 
 

  

  

 

Figure 4.14 Minimum path from the source: S to the observer's eyeat P.  
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Figure 4.15 Fermat's principle appliedto refraction.

Inasmuchas ¢ = (OPL)/¢, we can restate Fermat's prin-
ciple: light, in going from points S to P, traverses the route
having the smallest optical path length. Accordingly, when
light rays from the Sun pass through the in-

 
WiD

aag
Figure 4.16 A ray propagating through a layered material.

 

 

 

Apparent position

passed below the horizon. In the same way, 4
viewed ata glancing angle,as in Fig. 4.17(b), will appto reflect the environsasif it were covered with a
of water, The air near the roadwaywill be warmer
less dense than that farther above it. Rays will §

Coolair

road at near glancing incidence, because the rays bendvery gradually.
The original statement of Fermat's principle of least

time has some serious failings andis, as we shallsee, jn
needofalteration, To that end, recall that if we have
a function,say f(x), we can determinethespecific valne
of the variable x that causes f(x) to have a stationaryvalueby setting df/dx = 0 andsolvingfor x. Bya station-
ary value we mean one for whichthe slope of f(x) versus
x is zero or equivalently where the function has a
maximum “", minimum WZ,or a point of inflection
with a horizontal tangent —«

Fermat's principle in its modern form reads: a light
ray in going from point S to point P must traverse an optical
path length that is stationary with respect to variationsof thal)
path. In other words, the OPL for the true trajectoi
will equal, to a first approximation, the OPL of
immediately adjacentto it.* Thus there will be many)
curves neighboring the actual one, which would tal
nearly the same time forthe light to traverse. This
point makesit possible to begin to understand howlig)
manages to be soclever in its meanderings. Sup}
that we have a beam oflight advancing through a
homogeneous isotropic medium so that a ray
from points S to P. Atoms within the materialare driveg}
by the incident disturbance, and they reradiate in
directions, Generally, wavelets originating in th@
immediatevicinity of a stationary path wilt arrive at B
by routes that differ only slightly and will therefo!

surface
 ro)

4,17 The bending of rays through inhomogeneous media,

 nearly in phase and reinforce each other (see
fii6n 7.1). Wavelets taking other paths will arrive at
  

ine rglia being the case, energywill effectively propa-along that ray from S to P thatsatisfies Fermat'sciple.
To ey that the OPL for a ray need notalways beum, examine Fig. 4.18, which depicts a segment
a hollow three-dimensionalellipsoidal mirror. If the
ce S and the observer P are at the foci of the

id, then by definition the length SQP will be
nt, regardless of where on the perimeter Q hap-

be.It is also a geometrical property of theellipse
8, for any location ef Q. All optical paths from

via a reflection are therefore precisely equal—

im isa minimum, and the OPLis clearly stationaryTespect to variations. Rays leaving S and striking
the fnirror will arrive at the focus P. From another

point we can say that radiant energy emitted by S
be scattered by electrons in the mirrored surface

Suchthat the wavelets will substantially reinforce each
nly at P, where they have traveled the same

=and have the samephase.In anycase, if a plane
was tangentto theellipse at Q, the exact same

 

 
 

 

 
 
 
 
 

   *The first derivative of the OPL vanishes in its Taylor serialexpansion, since the path is stationary.
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Figure 4.18 Reficctionoff an ellipsoidal surface. Observe the reflec-
tion of waves using a frying pan filled with water. Even thoughthese
are usually circularit is well worth playing with, (Photo courtesy PSSC
College Physics, D. C. Heath & Co,, 1968.)
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path SQP traversed by a ray would then bea relative
minimum.Atthe other extreme,ifthe mirrored surface
conformedto a curve lying within the ellipse, like the
dashed one shown,that same ray along SQP would now
negotiate a relative maximum OPL. This is true even
though other unused paths (where @, # 6,) would
actually. be shorter (Le., apart from inadmissible curved
paths). Thus in all cases the rays travel a stationary OPL
in accord with the reformulated Fermat’s principle.
Note that since the principie speaks only about the path
andnot the direction along it, a ray going fram P to S$
will trace the same route as one from S$ to P. This is
the very useful principle of reversibility.

Fermat's achievementstimulatedagreat deal of effort
to supersede Newton’s laws of mechanics with a similar
variational formulation. The work of many men,not-
ably Pierre de Maupertuis (1698-1759) and Leonhard
Euler, finally led to the mechanics of Josepb Louis
Lagrange (1736-1813) and hence to the principle ofleast
action, formulated by Willian Rowan Hamilton (1805-
1865). The striking similarity between the priuciples of
Fermst and Hamilton played an important part in
Schrédinger's development of quantum mechanics, In
1942 Richard Phillips Feynman (b. 1918) showed that
quantum mechanics can be fashioned in an alternative
way using a variational approach. The continuing evo-
lution ofvariational principles brings us back to optics
via the modern formalism of quantum optics (see Chap-
ter 13).

Fermat’s principle is not so much a computational
device asit is a concise way of thinking about the propa-
gation oflight. It is a statement about the grand scheme
of things without any concern for the contributing
mechanisms, and as such it will yield insights under a
myriad of circumstances,

 
4.3 THE ELECTROMAGNETIC APPROACH

Thus far we have been able to deduce the laws of
reflection and refraction using three different
approaches: Huygens’ s principle, the theorem ofMalus and
Dupin, and Fermat's principle. Each yields a distinctive
and valuable point of view. Yet another and even more
powerful approach is provided by the electromagnetic

 

    
 

theory of light. Unlike the previous techniques, wh;
say nothing about the incident, reflected, and 4
mitted radiant Max densities(i.e. Ii, L,, J: Tespectiy,
the electromagnetic theory treats these within.
framework of a far more complete description.

The body of information thac forms the subject €
optics has accrued over many centuries. As our kn
edge of the physical universe becomes more exteng}
the concomitant theoretical descriptions must beco;
ever more encompassing. This, quite generally, bri;
with it an increased complexity, And so, rather thay
using the formidable mathematical machinery of the
quantum theory oflight, we will often avail ourse]
of the simpler insights of simpler times(e-g., Huygengi
and Fermat's principles). Thus even though we are n@
going to develop another and moreextensive descr;
tion of reflection and refraction, we will not put
those earlier methods, In fact, throughoutthis st
we shall use the simplest technique that can

  

  sufficiently accurate results for our particular pun     

    
4.3.1 Waves at an Interface

  
  Suppose that the incident monochromatic lightwave ig.

planar, so that it has the form
E, = E,; exp (i(k, r —- @,4)] aly   

or, more simply,    
  
  

E, = Eo; cos (k;-r~ @f). aly
Assume that Eo,is constant in time, that is, the wave is
finearly or plane polarized. We'll find in Chapter8 th
any form oflight can be represented by two orthogon;

linearly polarized waves, so that this doesn’t aclrepresent a restriction. Note that just as the origin
time, t= 0, is arbitrary, so too is the origin O in spat
where r = 0. Thus, making no assumptions aboutth
directions, frequencies, wavelengths, phases, or amp)
tudes, we can write the reflected and transmitted wavas

  

    

     
  

 

E, = Ep, cos (k,- r~ @,f + €,) 18]
and

E,©Eo, cos (k, + r— wf + €;}-
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nd &; are phase constants relative to Ei and are
if ee 8 because the position of the origin is not4.19 depicts the wavesin the vicinity ofy between two homogeneouslossless
sar media of indices n, and 7.

ae ee ol cleenrce sc theory (Section 3.1) lead
Pacertain requirementsthet must be met by the fields,

isese are referred to as the boundary conditions.; fically, one of these is that the componentof theGeld intensity E that is tangent to the interface
{ be continuous across it (the sameis true for H).
ther words, the total tangential component of Eon
ide of the surface must equal that on the otherm 4.22). Thussince 4,is the unit vector normal

interface, regardless ofthe direction of the electric
ithin the wavefront,the cross-productof it with

I be perpendicular to G, and therefore tangentinterface. Hence

Spirndvceques Fs
he
iel=
  

  

 
   

a, XE, +a, XE, = 0, x E, (4.15)
or

G, X Eg; cos (Ri F — @t)
+, X Eo, cos (k, 1 r— @,t + €,)

=f, X Ep, cos(k,tr— tte). (4.16)
lationship must obtain at any instant in time and

By, point on the interface (y = 6). Consequently, E,,
~, and E, must have precisely the same functional“idence on the variables ¢ and 7, which meansthat

Ker et)? (her ot + esr
= (ker wf +yay (4.17)

h this as the case, the cosines in Eq. (4.16) cancel,
in expression independentof #and », as indeed

‘be. Inasmuchasthis has to be true forall values
Ef ume, the coefficients of ¢ must be equal, to wit

Oy = Dy = Ore (4.18)

Recall that the electrons within the media are under-ing (linear) forced vibrationsat the frequencyof the
cident wave. Clearly, whatever Tight is scattered has

same frequency, Furthermore,
Oy yes Ket eyes

= (ker + elses ID
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Figure 4.19 Plane waves incident on the boundary between two
homogeneous, isotropic, lossless dielectric media.

wherein r terminates on the interface. The values of ¢
and «, correspond to a given position of O, and thus
they allow the relation to be valid regardless of that
location. (For example, the origin might be chosen such
that r was perpendicular to k; but not to k, or k,.) From.the first two cerms we obtain

[dk; — ky) + Jan = &. (4.20)
Recalling Eq. (2.42), this expression simply says thatthe
endpoint of r sweeps out a plane (which is of course
the interface) perpendicular to the vector (k; —k,). To
phrase it slightly differently, (k; —&,) is parallel ro d,.
Notice, however, that since the incident and reflected
waves are in the same medium, k, = &,. From the fact
that (k:—k,) has no component in the plane of the
interface, that is, @, X (k; —k,) = 0, we conclude that

k, sin 6; = h,sin @,;
hence we have the law ofreflection, thatis,

6; = 6.
Furthermore,since (k; —k,) is parallel to di, all three
vectors, k;, k,, and fi,are in the same plane, the plane
of incidence. Again, from Eq, (4.19) we obtain

{k,~ k,)-r]j->& 20)
and therefore (k, — k,) is also normai to theinterface.
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Thus k;, k,. k;, and i,are all coplanar. As before. the
tangential components of k; and k, must be equal, and
consequently

k, sin 8, = &, sin @,. 4.22)
But because w; *
to get

, we can multiply both sides by c/w,

nz sin @,=n, sin 6,
which is Snell's law. Finally, if we had chosen the origin
O to be in the interface, it is evident from Eqs. (4.20)
and (4.21) that &, and «, would both have been zero.
That arrangement, although notas instructive, is cer-
tainly simpler, and we'll use it from here on.

43.2 Derivation of the Fresnel Equations

Wehave just found the relationshipthat exists among
the phases ofE,(r, ¢), E,(r, ), and E,(r,¢) at the boun-
dary. There is still an interdependence shared by the
amplitudes Ep;, Eo,, and Eo,, which can now be evalu-
ated. To that end, suppose that a plane monochromatic
waveis incident on the planar surface separating two
isotropic media. Whatever the polarization of the wave,we shall resolve its E- and B-fields into components
parallel and perpendicular to the plane of incidence
andtreat these constituents separately.
Case l.E perpendicular tothe plane ofincidence. We
now assumethat E is perpendicular to the plane of
incidence and that B is parallel to it (Fig. 4.20). Recall
that E = vB, so that

KY ESuB 14.23)
and, of course,

k-E=0 24)

(ie., E, B and the unit propagation vector k form a
right-handed system). Again making use of the con-
tinuity of the tangentialcomponents of the E-field, wehave at the boundary at any time and any point

Eo, + Ey, = Ene: 4.25)
where the cosines cancel, Realize that the field vectors

  
   as shownreally ought to be envisioned at y = 0 (6.4m similarly, the normalcomponentof Bis con-

i the tangential componentof wR, Herethe ae from which they have been displaced isthe sakeofclarity. Note too that although E,a ps, 4 ia 2] via their per-
must be normal to the plane of incidence by sym effect of oecraamecitiner willbe
we are guessing that they point outward at the int, ofoa ticularly as applied to reflection
when E,does, The directions of the B-fields then sof ples 0 SeeCoen * Thus the continuity
from Eq, (4.23). pore oamentioitB//sWeqqiresttiat

Wewill need to invoke another of the bound gential compconditions in order to get one more equation,
presence of material substances that becomeek
polarized by the wave has a definite effect on the
configuration. Thus, although the tangential »

 
 

  
 
 

 

    
 

 
 
  
    = B: cos 6, + B, cos 4, = — Bi cos 4, (4.260br Be Be

the left and rightsides are the total magnitudes
yu parallel to the interface in the incident andemitting media, respectively. The positive direction

of increasing x, 50 that the componentsof B; and
ppear with minus signs. From Eq. (4.28) we have

   
    
 

  
  
   
  
    

 

 

B,= Ey, (4.27)
B, = E,/v,, (4.28)

Bow E,iv,. (4.29  
Tjfius since v, = v, and 8, = @,, Eq. (4.26) can be written

  
  
    
  
    

1
— (E,~ E,) cos 8,ae, Path FE, cos 8. (4.30)

   
  
  

 
hi 7 Rey.
(Ey,~Eor) cos 8, = — Ey, £08 8. (4.31)Hy He

FBinbined with Eq. (4.25), this yields

  
Ry a m 8— cos & — cos

(=) aH 3
(4.32)

Foi). 2, n
— cos @, +— cos 6By Ba  
  

 
 
 1 with our intent to use only the E- and B-fields, at least

‘ly part of this exposition, we have avoided the usual state-ons of H, where 
Figure 4.20. An incoming vave whose E-ficld is normal to the piasof incidence. HewB. 
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and

2cos 6

(2) -_——ht (4.33)a coe 0, +“es 6,HeMs
  

The L subscript serves as a reminderthat we are dealing
with the case in which E is perpendicular ¢o the plane
of incidence. These two expressions, which are completely
general statements applying to any linear, isotropic,
homogeneous media, are two of the Fresnel equations.
Quite often one deals with dielectrics for which j: ~
ft; © fyi consequently the most common form of these
equationsis simply
 fer)

—_ =. 4.34, ]
™ (ce a 00s 8; +n, cos 6, as

and |

- (2) a Boni (4.35)Eo: Ty COS O; +f, CoB B
Here r, denotes the amplitude reflection coefficient,
and ?, is the amplitude transmission coefficient.

Case 2:E parallel to the plane of incidence. A similar
pair of equations can be derived when the incoming
E-field lies in the plane of incidence, as shownin Pig.
4.21. Continuity of the tangential components of E oneither side of the boundaryleads to

Eg; cos 6;~Eq, cos 8,™ Ey cos &. (4.36)
In much the same way as before, continuity of the
tangential components of B/# yields

1 1 I
Eu; + —~ Eo, =~ Eo.

a “4.37)
Hall, at, HY,

Using the fact that 4; = #, and 8,= @,, we can combinethese formulas to obtain two more of the Fresnel
equations:

  

  
thy

Bur) _ fe Bi :
1 Eyl) ™ % (4.38)ON Theos 0, +008 6Hh Me
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and

08 8,

ia (2) -— Pe)Egi/ | i n— cos @, + —+ cos 8,He a

When both media formingthe interface are dielectrics,
the amplitude coefficients become

__ th cos8; — m, cos 8, 4.10)
n; cos 0, 40)n, Cos 6.

 
 I a

Figure 4.21 An incoming wave whose E-ficld is in the plane ofincidence
 

and

r 2n, cos 4
2, COS 8, + 2, cos 8,

One further notational simplification can be mad
availing ourselves of Snell's law, whereupon the
equations for dielectric media become (Problem 4

_ sa (4 ~ 6)
sin (0; + 6}

4 an (6 = 8)tan (8, + 6)

 

r=

2sin & cas &
sin (8; + 6)

2 sist 4, cos 6;
sin (8, + @,) cos (8; — 6)"

A note of caution must be introduced before we
on to examinethe considerable significance of thep
ceding calculation. Bear in mindthat the directions

 

 

  

  

we shall be concerned with any possible phase
might be incurredin the process.

Mare este
jelly examine the form of the amplitudeover the entire range of 9; values. At nearly
ncidence (8; = 0) the tangents in Eq. (4.43) are

iy equal to sines, in which case

ra[BereInyleco = orden=|sin ae AD Jo, 20"
in, will come back to the physical significance of the

sign presently. After we have expanded thesines
+ +] Snell’s law, this expression becomes

 

 

(* cos 8, — 7, cos 4] 146Mifia = (~7]e.20 17cos 8, + 1; cos 8, aa
ef [alamesas well from Eqs. (4.34) and(4.40). In the

Yiret. as 0; gos to 0, cos @; and cos 6, both approach 
more precisely, the phases) of the fields in Figs.
and 4.21 were selected ratherarbitrarily. For examplg

  
  

 

 

ie acd consequently
 
 in Fig. 4.20 we could have assumed that E, point

inward, whereupon B, would have had to be reversed
as well. Had we donethat, the sign of r, would ha!
turned out to be positive, leaving the other amplitu
coefficients unchanged, The signs appearing in
(4.42) through (4.45), in this case positive, except
the first, correspondto the particular set offield dir
tions selected. The minus sign, as we will see,just me
that we didn’t guess correctly concerning E,in Fig. 4.200
Nonetheless, be aware that theliterature is notstand
ized, and all possible sign variations have been labeled
Fremel squations—to avoid confusion they must be related)to the specific field dérections from which they were deriné

  

 
    
 

4.3.3 Interpretation of the Fresnel Equations   

 This section is devoted to. an examination ofthe phy!
implications of the Fresnel equations. In particul
are interested in determining the fractional amp!
and flux densities that are reflected and refracted.

 
   

  
 
 
 
  
     
 
 
   

 

 

  

ia?
lane ™ (-1Ja-0= (4.47)n>n,

» for example, at an air (m, = 1) glass (nm,=1.5)
face at nearly normal incidence, the reflection
dents equal +0.2.

hen n, > 2; it foliows from Snell's law that 8 > 6.
dn, is negative for all values of 0, (Fig. 4.22). In

vy Starts out positive at ¢,= 0 and decreases
ally until it equals zero when (8; + @,) = 90°, since

is infinite. The particular value of the incident
which this occurs is denoted by @, and is

‘0 as the polarization angle (see Section 8.6.1).
yacreases beyond 6, 7, becomes progressively

is Hegative, reaching —1.0 at 90°. If you place a
Alngle sheet of glass, a microscopeslide. on this page
and I6bk straight down into it (@,= 9}, the region
ee the glass will seem decidedly grayer than thethe paper, because the slide will reflect at both

aces, and the light reaching and returning from
‘will be diminished appreciably. Now hold the
your eye and again view the page throughit

it, increasing @,, The amountof light reflected» and it will become more difficult to see
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Amplitudecoufficients  
 1, degrees)

Figure 4.22- The amphiude coefficients of reflection and trans-
mission as a functionof incident angle. These correspond to external
reflection x, > n; at anair-glass interface (m, = 1.5).

the page through the glass. When 0; = 90° theslidewill
look like a perfect mirror as the reflection coefficients
(Fig. 4.22) go to ~1.0. Even a rather poor surface, such
as the cover of this book,will be mirrorlike at glancing
incidence. Hold the book horizontally at the level of
the middle of your eye andface a brightlight; you will
see the source reflected rathernicely in the cover. This
suggests that even x-rays could be mirror-reflected at
glancing incidence (p.210), and modern x-ray tele-
scopes are based on that very fact,

At normalincidence Egg.(4.35) and (4.41) lead rather
straightforwardly to

2n, 
[eyl<0 (418)n, tn"

It will be shown in Problem 4.24 that the expression
iticrn)=L (4.49)
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holdsforall @;,, whereas
tty Sh (4.50)

is rue only at normalincidence.
The foregoing discussion, for the most part, was

restricted to the case ofexternal reflection (i.¢., n, > n;).
The opposite situation of internalreflection, in which
theincident medium is the more dense (n, > 1,), is of
interest as well. In that instance @,> 6, and r,, as
described by Eq. (4.42), will always be positive. Figure
4.28 shows that , increases from its initial value (4.47)
at 0; = 0, reaching +1atwhatis called the critical angle,
6,. Specifically, 8, is the special value of the incident
angie for which @, = 1/2. Likewise, r, starts off nega-
tively (4.47) at 6; = 0 and thereafter increases, reaching
+1 at 6, = 6,,’as is evident from the Fresnel equation
(4.40). Again, 7 passes through zero at the polarization
angle 6}, It is left for Problem 4.84 to show that the-
polarization angles @, and 4, for internal and externalreflection at the interface between the same media are
simply the complements of each other. We will return
to internalreflection in Section 4.3.4, where it will be
shown that r, and 1 are cnmplex quantities for 6; > 6,.

ii) Phase Shifts
It should be evident from Eq.(4.42) that 7, is negative
regardless of 6; when n, > n;. Yet we saw earlier that
had we chosen[E,], in Fig. 4.20 to be in the opposite
direction, the first Fresnel equation (4.42) would have
changedsigns, causing r, t9 becomea positive quantity.
Thusthe sign of r, is associated with the relative direc-

\ tions of [Eo;], and [Eo,],. Bear in mind that a reversal
! of [Ep,]. is tantamount to intraducing a phase shift,

Ag,, of 7 radians into (E,],. Hence at the boundary
(E;], and (E,], will be antiparallel and therefore out
of phase with each other,as indicated by the negative
value of r,. When we consider components normal to

| the plane of incidence, there is no confusion as towhether two fields are in phase or 7 radians out of
phase: if parallel, they’re in phase; if antiparallel,
they’re 7 out of phase. In summary,then, the component
of the electricfield normal to the plane of incidence undergoes
G phase shift of w radians upon reflection when the incidentmedium has a lower index than the transmitting medium.

“6; < 8,.

 
 nents are antiparallel. Notice that when two

gare out of phase so too are their associated
a onal vice versa. With this definition we need

} k at the vectors normalto the planeof incidence,
[ oN hey be Bor B, todeterminethe relative phase

= accompanying felds in theincident plane. Thus4.94(a) E; and & are in phase, as are B; and B,,
3 E; and E, are out of phase, along with By and
larly, in Fig. 4.24(b) E,, E,, and E,are in phase,

B;, B,, and By
the amplitude reflection coefficient for the

id componentis given by

 
     
  
 035     
  os    
 
 Amplitudecoefficients
 _ Cos 8 — 7; cos &1 i

Wn, Cos ®, +2; C08
 
  

    

Host

Wiawll [s positive (Ap) = 0) as long as
n, cos 8, — 0; cos @, > 0,

 

 
L. ia As  o 0 6

G, (degrees)
 sin @; cos & — cos @, sin 6, > 0  

 areg ly 
 
 

 

 

 

sin (@ — 8) cos (6; + 9) > 0. 45
fiihis will be the case for n, <n, if

ie (6, + 6) < a/2 (4.52)

Figure 4.23 The amplitude coefficients of reflection as a funclill)ofincident angle, ‘These correspond to internal reflection 1" ar
an air-glass interface (n= 1/1.5).

Similarly, ¢, and 4 are always positive and Ag =fL
Furthermore, when n,> nm, no phase shift in the novmdll
component results on reflection, that is, Ag, = 0 so long Bf

Things are a bit less obvious when we deal with [E
(E,],, and [E,]). It now becomes necessary to dei
more explicitly what is meant by in phase, since the
yectors are coplanar but generally not colinéar.
field directions were chosen in Figs. 4.20 and 4.21 8
that if you Jooked down any one of the propagati
vectors toward the direction from which thelight
coming, E, B, and k would appear to have the
relative orientation whether the ray was incident,
ted, or transmitted. We can use this as the regt
condition for two E-fields to be in phase. Equit
but more simply, two fields in the incident plane omg
phaseif their y-components ore paraliel and are out of PiGY

 
   
 
 
   
    
   (by 
 PPE AB Field orientations and phase shifts.
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and for 7; > m when
(8 + 0) > 7/2. (4.53)

Thus when 1; <7, [Eoy]j and [Eo;]; will be in phase
(Ag) = 0) until 6, = 8, and outof phase by 7 radiansthereafter. The transition is not actually discontinuous,
since [Ey,}, goes to zero at . In contrast, for internal
reflection 7, is negative until 8}, which means that Ag) =
7. From 6', to 9,,1) is positive and Ay, = 0. Beyond @,,
1 becomes complex, and 49,gradually increases to 7,at @, = 90°.

Figure 4,25, which summarizesthese conclusions,willbe of continueduse to us. Theactual functional form
of Ag) and Ag, for internal reflection in the region
where 9, > 6, can be foundin the literature,* but the
curves depicted here will suffice for our purposes.
Figure 4.25(e) isa plotofthe relative phase shift between
the parallel and perpendicular components, that is,
Ag,— Ay,. It is included here becauseit will be useful
later on (e.g., when we consider polarization effects),
Finally, many of the essential features of this discussion
are illustrated in Figs. 4.26 and 4.27. The amplitudes
ofthe reflected vectors are in accord with those of Figs.
4,22 and 4.23 (for an air—glassinterface), and the phase
shifts agree with those of Fig. 4.25.

Many of these conclusions can be verified with the
simplest experimental equipment, namely, two linear
polarizers, a piece of glass, and a small source, such as
a flashlight or high-intensity lamp. By placing one
polarizer in front of the source (at 45° to the plane of
incidence), you can easily duplicate the conditions of
Fig. 4.26. For example, when 6; -: 6, [Fig. 4.26(b)] no
light will pass through the second polarizer ifits trans-
mission axis is parallel to the plane of incidence. In
comparison, at near-glancing incidence the reflected
beam will vanish when the axes of the two polarizers
are almost normalto each other.

 ii) Reflectance and Transmittance
Considera circular beam oflight incident on a surface,
as shownin Fig, 4.28, such that thereis an illuminated
spot of area A. Recall chat the power per unit area 
* Born and Wolf, Principles of Optics. 9. 49. 
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crossing a surface in vacuum whose normalis parajto S, the Poynting vector, is given by
S$) feE/B.

Furthermore, the radiant flux density (W/m”)or inance is

 (hg
 
 
  
 
 
   
  
 

  
 
   

 

 
 

  

Thisis the average energy per unit time crossing a y it
area normal to § Gin isotropic media§$is parallel to I
In the case at hand (Fig. 4.28), let f;, J,, and I, beg 2

ineident, reflected, and tranamitted flux ccrespectively. The cross-sectional areas of the incide
reflected, and transmitted beams are, respectively,Acos@,, Acos 6, and Acos%. Accordingly, the
incident power is [,A cos #,: this is the energy perunit
time flowingin theincident beam andit’s therefore the
power arriving on the surface over A. Similarly,
f,Acos 4, is the power in the reflected beam, and]
1A cos 8, is the power being transmitted through A. Ws
define the reflectance R to be the ratio of the refleé]power(or flux) to the incident power:

 
    wir <M,

= Oy
Ty hy
8,20,  

2; < ty
8, <0, tby

 
(ap

 Thereflected E-field at various angies concomitant witl: external reflection.

R= J,.cos 8, i,Tcos@, I, if?
In the same way, the transmittance T is defined as"neratio of the transmitted to the incident flux and&gipen
by

J, cos &
E, cos

The quotient ,/% equals (1,¢,£3,/2)/(v@£/2), dlsince the incident and reflected waves are in the =1!@
medium, vu, = vj, &=€, and

Re (2) Pr. 4.55)En,
 
 
 
  

 

Inlike fashion (assuming 4; ~ g, = to),

pweG(2) = (Bowe-_ ae oTmy cos @\Eo, Ty COs;     
  

 
 

ny > my
<6, to)

mot,
60, <8, where use was made of the fact that poe, = vv? andl

Hots, = hfe. Notice that at normal incidence. #littt
a situation of great practical interest, 8, = @, =   
 

Thereflected E-field at various angles concomitant with internalreflection.

o7
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Figure 4.28 Reflection and transmission of an incident beam.

the transmittance (Eq. (4.55), like the reflectance [Eq.
(4.54)], is thensimplytheratio of the appropriate irradi-
ances. Since R = r*, we need not worry aboutthe signof r in any particular formulation, and that makes
reflectance a convenient notion, Observe that in Eq.
(4.57) T is not simply equalto ¢?, for two reasons.First,
the ratio of the indices of refraction must be there, since
the speedsat which energy ts transported into and out
of the interface are different, in other words, I < v,
from Eq. (3.47), Second,the cross-sectional areas of the
incident andreflected beams are different, and so the
energy flow per ynit area is affected accordingly, and
that manifests itself in the presence of the ratio of thecosine terms.

Let’s now write an expression representing the con-
servation of energy for the configuration depicted in
Fig. 4.26. In other words, the total energy flowing into
area A per unit time must equal the energy flowing
outward from it per unit time:

LA cos 6, IAcos 6, + LA cos 6. (4.58)
Whenboth sides are multiplied by ¢ this expression

becomes

n,EG; cos 6;,= n:EG, cos 4,~nE3: Cos 6,

(i) (aaa)Eyi my 08 O:/\Eoi/ *
Butthis is simply

R+T-=1,
where there was no absorption.It is convenientty
the component forms, that is,

whichareillustrated in Fig. 4.29. Furthermare, it cafflbe shown (Problem 4.39)that

Rw Ty (66a
and

R.+T. <1. 4.68]
When 6; = 0 the incident plane becomes undefine

and anydistinction between the parallel and aedicular components of R and T vanishes. In this
Eqs.(4.61) through (4.64), along with (4.47) and (4.489lead to

ay?

Re Ry a= (224)mtn,

_ nny
* (yt ay

Thus 4% of the light incident normally on an ait-#)
interface will be reflected back, whether internally. nm,, or externally, n, <n, (Problem 4.40). This

58
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transmittance
A, (degrees)tb

Figure 4.29 Reflectance and transmittance versus incident angle.

Ely be of great concern to anyonewhois working
complicated lens system, which might have 10

‘or 20 such air-glass boundaries. Indeed, if you look
p dicularly into a stack of about 50 microscope

6 (cover-glass slides are muchthinner andeasier ta
le in large quantities), most of the light will be
ed. The stack will look very much like a mirror

penne) rHecdsn olf i aaik ol niktrodeepe abd

St the image of the camera that took the picture. (Photo :

(Fig. 4.30). Figure 4.31 is a plot of the reflectance at a
single interface, assuming normalincidence for various
transmitting mediain air. Figure 4.32 depicts the corre-sponding dependence of the transmittance at normal
incidence on the number of interfaces and the index
of the medium. Of course, this is why you can’t see
through a roll of “clear” smooth-surfaced plastic tape,

2 3
Refractive index (27,1

Figure 4.31 Reflectance at normal incidence in air (n, = 1.0) atasingle interface. 
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a earlier, the critical angle is that special value of
ohibh y= 90°. For incident angles greater than
alto 8. all the incoming energyis reflected back

incident medium in the process known astotal
reflection. It shouldbestressed that the transi-

mm the conditions depicted im Fig. 4,33(a) to those
) takes place without any discontinuities. ThatFs 6, becomeslarger,the reflected beam grows

d stronger while the transmitted beam grows
ntil the latter vanishes and the formercarries

kenergyat 0, = @,. san easy matter to observe
tion of the transmitted beam as 4; is made

, Just place a glass microscopeslide on a printedthis time blocking out any specularly reflected
t At 6; ~ 0, @, is roughly zero, and the page as seen
gh the glass is fairly bright and clear. But if you

move Bee head, allowing (the angle at which you
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unpolarized light
 

Figure 4.82 Transmittance through a number of surfaces in air(; = 1.0) at normalincidence.    
 
 
 

 

interface) to increase, the region of the printed
feved by the glass willappear darkerand darker,

ng that T has indeed been markedly reduced.
@ritical angle for our air—glassinterface is roughly

Table 4.1). Consequently, a ray incident nor-
nm the Jeft face of either of the prismsin Fig. 4.34

     
andit’s also why the many elements ina periscope must
be coated with antireflection Alms (Section 9.9.2).

 
  

 
 

 
 

 43.4 Totatinternal Reflection 

 In the previous section it was evident that something
| ratherinteresting was happeningin the case of internal

reflection (n; > 7,) when @, was equalto or greater than
| 6,, the so-calledcritical angle. Let’s now returnto thati situation for a somewhatcloser look. Suppose that we

    (degrees)50.2849
49.7612

(radians)
0.7297
0.7238
   41.8103

41.4718     
   
   
 

   
  

  
 

  
        
    
  
 
 
 

have a source imbeddedin an optically dense medium, eee 32 pee 0.7180
| and we allow @; to increase gradually, as indicated in ae us 40.8152 pris
i Fig. 4.33. We know from the precedingsection (Fig. 477946 155 401778 0.70124.23) that r, and 7, increase with increasing @,, and 47.3321 0.8261 1.56 39.8683 0.6958

therefore t, and t, both decrease. Moreover 6, > 6;, 46.8803 0.8182|157 99.5642 (0.6908since 464387 9.8105|1.58©39.2652 (0.4853,46.0070 0.8080|1.59 38.9713 0.6802
. ny. 48.5847 0.7958|1.60©38.6822 0.6751

sin 4; 7 0, 45.1715, 0.7884 1.61 38.3978 0.67027 j 44.7670 162 38,1183 0.6683,
and 1, > n,, in which case ny <1. Thus as 6; becomes a 163 37.8428 (0.6605
larger, the transmitted ray gradually approaches ‘3.628 ths 373082 OuBlt
tangency with. the boundary,and as it does so more and 43.2309 1.66 87.0497 0.6468more of the available energy appears in the reflected 42.86.49 167 36.7842 0.6490
beam.Finally, when 6, = 90°, sin 6, =1 and 42.5066 36.5296 0.6376

   
Figure4.83 Internal reflection and thecritical angle, (Photo OURof EducationalService, Inc.)

42.1552 36.2789 0.6332 
sin 6, > 4. (4.69)   
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Figure 4.84 Total internal refleaion.

will havea 6; > 42° and therefore be internally refleced.
This is a convenient way to reflect nearly 100% of the
incident light without having to worry about thedeterioration that can occur with metallic surfaces.

Another useful way to view the situation is shown in
Fig. 4.35, which can be thoughtofas either a Huygens
construction or a simplified representation of scattering
off atomic. oscillators. We know that the net effect of
the presence of the homogeneousjsotropic media is to
alter the speed of the ligbt from ¢ to vu; and m, respec-
tively (p. 63). This is equivalent mathematically (via
Huygens’sprinciple) to saying that the resultant wave
is the superposition of these wavelets propagating at
the appropriate speeds. In Fig. 4.35(a) an incident wave
results in the emission of wavelets successively from
scattering centers A and B. These overiap to form the
transmitted wave. The reflected wave, which comes back
downinto the incident medium asusual(6; = 6,), is notshown. In a time t the incidentfront cravels a distance
u¢ = TB,while the transmitted front movesa distance
ut = AD > CB.Since one wave moves from A to E in
the same time that the other moves from C to B, and
since they have the same frequency and period, they
soust change phase by the same amountin the process.
‘Thus the disturbance at point E must be in phase with
that at point B; both of these pomts must be on thesame transmitted wavefront.

It can be seen that the greater y, is in comparison to
2, the more tilted the transmitted frontwill be {i.e., the
larger @, will be). That much is depicted in Fig. 4.35(b),
where 7,; has been taken to be smaller by assuming n.
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Figure 4,95 An examinationof the transmitted wavein the processaf total internal reflection from a scattering perspective, Here we
keep 6, and n, constant andin successive parts ofthe diagram decrease
n,, thereby increasing 1%. The reflected wave (8, = 4) is not drawn.  

 
   tobe smaller. Theresultis a higher speed v;, inereg

AD and causing a greater transmission angle. In
4,35(c) a special case is reached: AD = AB=y,.
the wavelets will overlap in phase only along the Jane
the interface, @,= 90°. From triangle ABC,
vit/ud = 7,/n;, which is Eq. (4.69). For the two

Fig. 4. 36. Once again using Snell’s law, wea

    

 

  ae V2
sin® 6;

f, cos & = aa(i ~ aE) (4.72)#

 

  
ent concerned with the case wheresin 4 >ect?

sin® 8, td
hy = =n"- 1) +igwave.

If we assume that there is no transmitted waved
becomes impossible to satisfy the boundary conditi
using only the incident and reflected waves—thing
notat all as simple as they might seem. Furthermg
we can reformulate Eqs. (4.34) and (4.40) (Probl
4.43) such that

fyye=— sin 0;. 
  ‘Hence
 By = EqBtettheem, (4.73)  
  

the positive exponential, which is physically
5 we have a wave whose amplitude drops off
ally as it penetrates the less dense medium,

bance advancesin the 2-direction as a surface

 _ cos 6; ~ (ni ~ sin? @,)'?r= saa
+~cos 6; + (23 — sin? ay?  
 
  and   
 ni cos 0; — (ni, — sin’ 6,)'*_ RiCOS8: 3 i

= 7 7 ai of constant phase (parallel to the »-plane) are
ne cos @, + (n& — sin® 9;)'? i F plane)wdicular to the surfaces of constant amplitude

to the xz-plane), and as such the wave is
peneous (sce Section 2.5). Its amplitude decays

       
 Clearly then, since sin 6, = 2, when 6; > 4,4 sin @; >

and both 7, and 7 become complex quantities. Dag
this (Problem 4.44), r.rf = ryrf = 1 and R= 1,
meansthat I, = J;and I, = 0. Thus,although there
be a transmitted wave, it cannot, on the average,
energy across the boundary. Weshall not perform
complete and rather lengthy computation neede
derive expressions forall the reflected and transmi
fields, but we can get an appreciation of what's h
ing in the following way. The wave function fo) ing point remains, inasmuchasthereis still atransmitted electric field is Berey to be accounted for, namely, that associated

| scvanescent wave that moves along the boundary
E. = Ep, exp i(ky+r— wt), lane of incidence. Since this energy could nottrated into the less dense medium under the

circumstances (so long as 0; = #,), we must look
re for its source. Under actual experimental

Hons the incident beam would havea finite cross
on and therefore would obviously differ from a

  
    to the second mediumofonly a few wavelengths.

Eyou arestill concerned about the conservation of@pergy, a more extensive treatment would have shown
  
 
 
   
  
  
  
   
   
    where
 
   
  Kor = hx t kyy,    

there being no z-componentof k. But    
  
     

fey=hy Sin he wave. This deviation gives rise (via diffrac-
and Slight transmission of energy across the inter-

ky = kh, cos 6, 4H Is manifested in the evanescent wave.
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Figure 4,36 Propagation vectors for internal reflection.

Incidentally,it is clear from (c) and (d) in Fig. 4.25
thatthe incident and reflected waves (except at 6; = 90°)
do not differ in phase by + and cannottherefore cancel
each other.It followa from the continuity of the tangen-
tial component ofE that there must be an oscillatory
fieid in the less densemedium with a component parallel
to the interface having a Frequency o (j.e., the evanes-
cent wave).

The exponential decay of the surface wave, or boun-
dary wave, as it is also sometimes called, has been
confirmed experimentally at optical frequencies.*

Imaginethat a beam of light traveling within a block
ofglass is internally reflected at a boundary. Presum-
ably, if you pressed another piece of glass against che
first, the air-glass interface could be made to vanish,
and the beam would then propagate onward undis-
turbed. Furthermore, you might expect this transition
from total to no refiection to occur gradually as the air
film thinned out. In much the sameway,if you hold a
drinking glass or a prism, you can see the ridges of your
fingerprints in a region that, because oftotal internal
reflection, is otherwise mirrorlike. In more general
terms, if the evanescent wave extends with appreciable
amplitude across the rare medium into anearby region
occupied by a higher-index material, energy may flow
through the gap in whatis known as frustrated total 
* Take a look at the fascinating article by K. H. Drexhage.
“Monomoleculae Layers and Light.” Sei. Am, 222, 108 (1970).
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Figure 4.37 Frustrated total internal reflection.

internal reflection (FTIR). In other words, if the
evanescent wave, having traversed thegap,isstill strong
cnoughto drive electrons in the “frustrating” medium,
they in turn will generate a wavethatsignificantly alters
the field configuration, thereby permitting energy to
flow. Figure 4.37 is a schematic representation of FTIR.
The width of the lines depicting the wavefronts
decreases across the gap as a reminderthat the ampli-
tude of the field behaves in the same way. The process
as a whole is remarkably similar to the quantum-
mechanical phenomenonofbarrier penetration or tunnel-
ing, which has numerousapplications in contemporary
physics.

One can demonstrate FTIR with the prism arrange-
mentof Fig. 4.38 in a manner thatis fairly self-evident.
Moreover,if the hypotenuse faces of both prisms are
made planar and parallel, they can be positioned so as
to transmit and reflect any desired fraction of the
incidentflux density. Devices that perform this function
are known as beam-splitters. A beam-splitter cube can be
made rather conveniently by using a thin, low-index
transparentfilm as a precision spacer. Low-loss reflec-
tors whose transmittance can be controlled by frustrat-
ing internal reflection are of considerable practical
interest. FTIR can also be observed in other regions of
the electromagnetic spectrum. Three-centimeter micro-

  

waves are particularly easy to work with, inasmycp@
the evanescent wave will extend roughly 10° uffarther than it would at optical frequencies. On
duplicate the above optical experiments with
prisms made ofparaffin or hollow onesofacrylic Plfilled with kerosene or motor oil. Any one of
would have an index of about 1.5 for 3-cm waved
then becomes an easy matter to measure the dem
dence of the field amplitude on ».

  
 
 
  

  

 
 
  

  

 
  

 
 
  
 
 

  

43.5 Optical Properties of Metals

The characteristic feature of conducting mediais y
presence of a numberoffree electric charges (freq
the sense of being unbound,ie., able to circulate wif
the material). For metals these charges are of cour
electrons, and their motion constitutes a current. T
current per unit area resulting from the applicationE
a field E is related by means of Eq. (AL.15)
conductivity of the medium o- Fora dielectric thereno free or conduction clectronsand a 0.
actual metals @ is nonzero and finite. In contrast4]
idealized “perfect” conductor would have an infi
conductivity. This is equivalent to saying that the ¢
trons, driveninto oscillation by a harmonic wave, woull
simply follow the field’s alternations. There “r
no restoring force, no natural frequencies, and Mb
absorption, only reemission. In real metals the condi
tion electrons undergo collisions with the thermal
agitated lattice or with imperfections and in so det
irreversibly convert electromagnetic energy into
heat. Evidently the absorption of radiant energy bi #
material is a function of its conductivity.

 

 

i) Wavesin a Metal
If we visualize the medium as continuous, Maxw
equations lead to

PE OE vE we oETatra trey = METS
ae ay on OP

which is Eq. (A1.21) in Cartesian coordinates.
term, uo dE/dt, is a first-order time derivative.
daroping forcein theoscillator modeldiscussed
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Figure 4.38 (a) A beam-spliuter utilizing FTIR. (b) A typical modern
application of FTIR: a conventional beam-splitter arrangementused
to take photographs through a microscope. (c) Beam-splitter cubes,(Photo courtesy Melles Griot)
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tion 3.5.1. The time rate of change of E generates a
voltage, currents circulate, and since the material is
resistive, light is converted to heat—ergo absorption.

be reduced to the unattenuated
wave equation,if the permittivity is reformulated as a
complex quantity, This in turn leads to a complex index
of refraction, which, as we saw earlier (Section 3.5.1),
is tantamountto absorption. We then need only sub-
stituie the complex index

as the skin or penetration depth. For a material tp
transparent the penetration depth must be largell
comparisontoits thickness. The penetration depth fametals, however, is exceedingly smail. _
copperat ultraviolet wavelengths (Ao
miniscule penetration depth, about 0.6 nm, while j
still only about 6 nm in the infrared (Ao ~ 10,000:
This accounts for the generally observed opaci
metals, which nonetheless can become partly
parent when formed into extremely thin films feg!the case of partially silvered two-way mirrors),
familiar metallic sheen of conductors corresponds,
highreflectance, which arises from the fact that
incident wave cannot effectively penetrate the matemm
Relatively few electrons in the metal“see”the transgiy

although each absoy
strongly, little total energy is dissipated by
Instead, most of the incoming energy reappearsas}
reflected wave. The majority of metals, including}

This expression For exampm
90 nm) Bagg

     

(where the real and imaginary indices ng and ny; are
both real numbers) into the correspondingsolution for
a nonconducting medium. Alternatively, we can utilize
the wave equation and appropriate boundary conditions
to yield a specific solution. In either event, we can find
a simple sinusoidal plane-wave solution applicable
within the conductor. Such a wave propagating in the
y-direction is ordinarily written as

and therefore,

43 The Electromagnetic Approach mur

  gpersion Equation Fuy
the conductor as an assemblage of driven,

oscillators. Some correspondto free electrons
therefore have zero restoring force, whereasbound to the atom, muchlike those in the
media of Section 3.5.1. The conduction elec-

‘e, however, the predominant contributors to
properties of metals. Recall that the displace-we n was gi '

a vibrating electron was given by in phase

   

      
  

 

   

 Fin = 80)
 

  
 
   
    
   

 

  

 
   

9 restoring force, w= 0, the displacementis
Birtsign tothe driving force ¢,F(¢) and therefore weeBoundelectronsparent dielectrics, where the resonancees are abovethe visible and the electronsoscil-

  
  
  less common ones (e.g.. sodium, potassium, ces

vanadium, niobium, gadolinium, holmium,
scandium, and osmium) havea silvery gray appea
like that of aluminum,tin, or steel. They reflect al
all the incident light regardless of wavelengths andl
therefore essentially colorless.

Equation(4.77) is certainly reminiscentof Eq.(4!
and FTIR. In both casesthere is an exponential
of the amplitude. Moreover, a
show that the transmitted waves are not strictly tram
verse, there being a component of the field in%ill
direction of propagation in both instances.

The representation of metal as a continuous mm
worksfairly well in the low-frequency, Jong-wavel
domain of the infrared. Yet we certainly might ex
that as the wavelength of the incident beam dec
the actual granular nature of matter would have &9
reckoned with. Indeed, the continuum model sh¢
large discrepancies from experimentalresults at OBY
frequencies. And so we again turn to the
atomistic picture initially formulated by Heng
Lorentz, Paul Karl Ludwig Drude (1863-1906),
others. This simple approach will provide quail
agreementwith the experimentaldata, but the ultitreatment nonetheless requires quantum theory

E= Ep,cos (wt  
    or as a function of n,

 
 
   
   
 

E> Ey cos w(t
but herethe refractive index must be taken as complex.
Accordingly, writing the wave as an exponential and
using Eq. (4.75), we obtain

Ex EgeerOgintiong!) complete analysis
E> Ege°"""cos w(t

    
  

The disturbance advances in the ydirection with a
speed ¢/ng, precisely as if ng were the more usual index
of refraction. As the wave progresses into the conductor,
its amplitude, Ep exp (—wnyy/c), is exponentially attenu-
ated. Inasmuch as irradiance is proportional to the
square of the amplitude, we have

(9) = foe,

 
    

    where I~ 1(0), thatis, Ip is the irradiance at y = 0 (the
2en,/c is called the absorption

coefficient or (even better) the attenuation coefficient.
The flux density will drop by a factor of ¢~' = 1/2.7 = 5
after the wave has propagatedadistance y = 1

   
interface), and @

  

 
 

180° out
vadiate wavelets that tend to cancel the incom- a

bance. The effect, as we have already seen, is
y decaying refracted wave,
ning that the average field experienced by an

n moving about within a conductoris just the
giied field E(t), we can extend the dispersion equation

medium (3.71) to read

 OF byx

{ fr 180outallw

 

 Freeelectron
 

  

Ne Figure 4.39 Oscillations of bound andfree electrons.Se ] -tpgBestia7 @o,~ w+ ty;

 
 
    
   

    

a7 because 7, increases with wavelength, and the larger
rs bracketed term is the contribution from the values of A are reflected more strongly. Thus, for
Ectrons, wherein N is the numberof atoms per example, gold should be fairly opaque to the longer
ume. Each of these has f, conduction electrons, visible wavelengths. Consequently, under white light, a

ave no natural frequencies. The second term gold foil less than roughly 10-°m thick will indeed
mm the bound electrons andis identical to Eq. transmit predominantly greenish blue light.

Ut should be noted thatif a metal hasa particular Wecan get a rough idea of the response of metals to
+ttindicates that the atoms are partaking of selec- light by making a few simplifying assumptions. Accord-

orption by way of the boundelectrons, in addi- ingly, we neglect the bound electron contribution and
the general absorption characteristic of the free assume that y, is also negligible for very large w,fRecall that a medium thatis very strongly whereupon

Ing at @ given fequency doesn’t actually absorb
the incidentlight at that frequency but rather

Y Teflects it. Gold and copper are reddish yellow

 

 

  
mw) =1 ~My:cma (4.80)  
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Thelatter assumption is based on the fact that at high
frequencies the electrons will undergo a great manyoscillations between eachcollision. Free electrons and
positive ions within a metal may be thought of as a
plasma whose density oscillates at a natural frequency
w,, the plasma frequency. This in turn can be shown to
equal (Nq2/egm,}', and so

n*(w@)~1-(w,Jw). (4.81)
The plasma frequency serves as a critical value below
which the index is complex and the penetrating wave
drops off exponentially (4.77) from the boundary; at
frequencies above w,, ” is real, absorption is small, and
the conductoris transparent. In thelatter circumstance
n is less than 1, as it was for dielegtrics at very high
frequencies. Hence we can expect metals in general to
befairly transparentto x-rays. Table 4.2 lists the plasma
frequencies for someof thealkali metals that are trans-
parent even to ultraviolet.

The index of refraction for a metalwill usually be
complex, and the impinging wave will suffer absorption
inan amountthatis frequency dependent, For example,
the outer visors on the Apollo space suits were overlaid
with a very thin film of gold (Fig. 4.40). The coating
reflected about 70% ofthe incidentlight and was used
underbright conditions, such as low and forward sun
angles. It was designed to decrease the thermal load on
the cooling system by strongly reflecting radiant energy
in the infrared whilestill transmitting adequately in the
visible. Inexpensive metal-coated sunglasses which are
quite similar in principlearealso available commercially
andthey're well worth having just to experiment with.

The ionized upper atmosphereof the Earth contains
a distribution of free electrons that behave very muchlike those confined within a metal. The index of refrac-
tion of such a medium will be real and less than | for
frequencies above ,. In July of 1965 the Mariner IV
spacecraft madeuseofthis effect to examine the iono-
sphereofthe planet Mars, 216 million kilometers fromEarth.*

If we wish to communicate betweentwo distant terres-
trial points, we might bounce low-frequency waves off
the Earth’s ionosphere. To speak to someone on the 
*R. Von Eshelman, Sci. Am. 220, 78 (1969).

 
 

Table 4.2 Critical wavelengths and trequencies for so, will become aligned with the surfaces ofmetals.
1G, will approachme iret  

     
 
 
 
 
     

dp Ay Is in a good conductor the(observed) (calculated) wave propagates in a direction normal to
Metal am nm s ? diess of 6,.

Lithium (Li) 185 155 eure!eeaace thereflectance, R = I,/Iy, far the
Sodium (Na) 210 209 F i yjese case Of normal incidence on a metal. Taking
Potassium (K) 315 287 7 Be and m = Me (ey the complex index), we have
Rubidium (Rb) 340 322 eq, (4.47) that0.88 x ae   

_ mat) (mat) 492R= m+l)\n +1)? 82)
erefore, Since Te=Me~in),

(na —+nt
(ae TPen

(fis onductivity of the material goes to zero, we
e pale. of a dielectric, whereupon in principle

Moon, however, we should use high-frequency
to which the ionosphere would be transparent.

R= (4.83)iit) Reflection From a Metal
 

Imaginethat a plane wave initially in air impingea conducting surface. The transmitted wave advay
at some angle to the normalwill be inhomogenes
Butif the conductivity of the medium is increased:

  
 
  

iting medium n,is ng, and thereflectance (4.83)
is identical with that of Eq. (4.67). If instead n,

  
 § at Ay©589.3nm the parameters associated

Solid sodium are roughly ng = 0.04, n,=2.4, and
and those for bulk tin are np = 1.5, 2 = 5.3,
0.8; whereasfor a gallium single crystal 1, =

g5-4, and R=0.7,
Baxurves of Ry and R, for oblique incidence shown

28 dig. 4.41 are somewhat typical of absorbing media.
a piectosh R at 6,= 0 is about 0.5 for gold, asto nearly 0.9 forsilver in white light, the two
pigtals have reflectances that are quite similar in shape,

ing 1.0 at 6, = 90°, Just as with dielectrics (Fig.
Gropsto a minimum at whatis nowcalled the
angle of incidence, but here that minimum is
Figure 4.42 illustrates the spectralreflectance

Figure 4.40 Edwin Aldrin Jr.at Tranquility Base on the MU pent for a number of evaporated metalphotographer, Neil Armstrong,is reflected in the gold-coatggi ’ ‘al conditions. Observe that although gold
Photo courtesy NASA} pirly well in and below the green region of
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  Reflectance      

    
    2, so
  Figure 441 Typical refiecance for a linearly polarized beam of

white light incident on an absorbing medium:
  
  
    the spectrum, silver, which is highly reflective across

the visible, becomes transparent in the ultraviolet atabout 316 nm.
Phase shifts arising from reflection off a metal occur

in both components ofthefield (Le., parallel and per-
pendicular to the plane of incidence). These are gen-
erally neither 0 nor », with a notable exception at
6, = 90°, where, just as with a dielectric, both com-
ponents shift phase by 180° on reflection.
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  Figure 4.42 Reflectance versus wavelength forsilver, gald, copper,and aluminum.   
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4.4 FAMILIAR ASPECTS OF THE

INTERACTION OF LIGHT AND MATTER

Let’s now examine some of the phenomenathatpaint
the everyday world in a marvel of myriad colors.

As we saw earlier (p. 72), light that contains a roughly
equal amountof every frequency in the visible region
of the spectrum is perceived as white. Thus a broad
source of white light (whether natural or artificial) is
one for which every pointonits surface can be imagined
as sending out, moreorlessin all directions, a stream
oflight of every visible frequency. Similarly,a reflecting
surface that accomplishesessentially the same thing will
also appear white: a highly reflecting, frequency-
independent,diffusely scattering objectwill be perceived
as white under white light.

Althoughwateris essentially transparent, water vapor
appears white, as does ground glass. The reason is
simple enough—ifthegrainsize is small but muchlarger
than the wavelengths involved, light will enter each
transparentparticle, be reflected and refracted several
times, and emerge. Therewill be no distinction among
any of the frequency components, so the reflected light
reaching the observerwill be white. This is the mechan-
ism accountable for the whiteness of things like sugar,
salt, paper, clouds, talcum powder, snow, and paint,
each grain of which is actually transparent. Similarly, a
wadded-up piece of crumpled clear plastic wrap will
appear whitish, as will an ordinarily transparent
material filled with small air bubbles (e.g., beaten egg
white). Even though weusually think of paper, talcum
powder, and sugar as each consisting of some sort of
opaque white substance, it’s an easy matter to dispel
that misconception. Cover a printed page with a few of
these materials (a sheet of white paper, some grains of
sugar, or talcum) and illuminate it from behind. You'll
havelittle difficulty in seeing through them.In the case
of white paint, one simply suspendscolorless trans-
parentparticles, such as the oxidesofzinc, titanium, or
lead, in an equally transparent vehicle, for example,
linseedoil or the newer acrylics. Obviously, if the parti-
cles and vehicle have the same index of refraction, there
will not be any reflections at the grain boundaries. The
particles will simply disappear into the conglomeration,

 

 
 
   whichitself remainsclear. In contrast,if the ind
 

tion at all wavelengths (Problem 4.42), and thes 
will appear white and opaque [take anotherlook g
 
 
  
 range.

Carrying the logic in the reverse direction, jy
reduce the relative index, ng, at the grain or
thereby decreasing the overall whiteness of the obid
Consequently, a wet white tissue will have a gray
more transparent look. Wet talcum powder loses
sparkling whiteness, becoming a dull gray, as does 

 
 
    

colors then being deep andrich like those ofag
water-color painting. 
  
  
  

all the light and appears black. A surface that
perhaps 70% or 80% or more, but does so cd
will appear the familiar shiny gray of a typical &
Metals possess tremendous numbers of free ele@
(p. 111) that scatter light very effectively, indepe:
offrequency: they are not bound tothe atoms and

   
 

no associated resonances. Moreover, the amplitntig 
the vibrations are an order of magnitude largey
they were for the bound electrons. The incident}
cannotpenetrate into the metal any more thana
of a wavelength or so beforeit's canceled comple!
Thereislittle or no refracted light; most of the ens
is reflected out, and only the small remainder1

 

 
 

sorbed, Note that the primarydifference between ¥ surface and a mirrored surface is one of diffuse"
specular reflection. An artist paints a picture ofa
ished “white” metal, such as silver or aluminum,
“reflecting” images of things in the room on top
gray surface.

Whenthe distribution of energy in a beamof lig
is not effectively uniform across the spectrum,the

 
 
 
 

 

 
   
 

lessit reflects, the darker the gray,untilit absorbs alg 
  
 
 
 

  

 

  
   
   
 
  

appears colored. Figure 4.43 depicts typical frequgy
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 election curves for blue, green, and red pigments.f

i, but there isa great deal of possible variation among
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distributions for what would be perceived as red,green,
and blue light. These curves show the predominant
frequency regions, but there can be a great deal of
variation in the distributions, and they will still provoke
the responsesof red,green, and blue. In the early 1800s
Thomas Young showed that a broad range of colors
could be generated by mixing three beams of light,
provided their frequencies were widely separated.
Whenthree such beams combine to produce white light
they are called primary colors. There is no single
unique set of these primaries, nor do they have to be
quasimonochromatic. Since a wide range of colors can
be created by mixing red (R), green (G), and blue (B),
these tend to be used most frequently. They are the
three components (emitted by three phosphors) that
generate the whole gamut of hues seen on a colortelevision set.

Figure 4.44 summarizes the results when beamsof
these three primaries are overlapped in a numberof
different combinations: Red plus blue is seen as magenta
(M), a reddish purple; blue plus green is seen as cyan
(C), a bluish green or turquoise; and perhaps most
surprising, red plus greenis seen asyellow (Y}. The sum
of all three primaries is white:

R= B+G-W,
M+G=W,since R+B® M,
C+R=W,since B+G~ C,
Y+B=W,since R+G=Y.
  

Anytwo colors that together produce white are said to
be compiementary,and the last three symbolic state- 
 Figure 4.44 Three overlap-

ping beamsofcolored light. A
color television set uses these Redsame three primary light sour-
ces—red, green, and blue.

Green
Yellow
White

Magenta Gyan

Blue
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ments exemplify thatsituation. Now suppose we overlap
a beam of magenta and a beam ofyellow:

M+Y¥=<(RiB)+(R+G)=WHR:;
the result ig a combination of red and white, or pink.
That raises another point: we say a coloris saturated,
thatit is deep and intense, when it does not contain any
white light. As Fig. 4.45 shows, pink is unsaturated
red—red superimposed on a backgroundof white.

The mechanism responsible for the yellowish red hue
of gold and copperis, in some respects, similar to the
process that causes the sky to appear blue. Putting it
rathersuccinctly (see Section 8,5 for a further discussion
of scattering in the atmosphere), the molecules of airhave resonances in the ultraviolet and will therefore
be driven into larger-amplitude oscillations as the
frequency of the incident light increases toward the
ultraviolet. Consequently, they will effectively take
energy from and reemit (i.e., scatter) the blue com-
ponent of sunlight in all directions, tranamitting the
complementary red end of the spectrum with litle
alteration. This is analogousto the selective reflection
or scattering of yellow-red light that takes place at the
surface of a gold film and the concomitanttransmission
of blue-green light. In contradistinction, the charac-
teristic colors of most substances have their origin in
the phenomenon of selective or preferential absorpiion.
For example, water has a very light green-blue tint
because ofits absorption of red light. Thatis, the HO
molecules have a broad resonance in the infrared, which
extends somewhatinto the visible. The absorption isn’t
very strong,so there is no accentuatedreflection of red,
light at the surface. Instead it is transmitted and
gradually absorbed out until at a depth of about 30m
of sea water, red is almost completely removed from
sunlight. This same process of selective absorption is
responsible for the colors of brown eyes andbutterflies,
of birds and bees and cabbages and kings. Indeed the
great majority of objects in nature appear to have
characteristic colors as the result of preferential absorp-
tion by pigment molecules. In contrast with most atoms
and molecules, which have resonances in the ultraviolet
and infrared, the pigment molecules must obviously
have resonancesin the visihle. Yet visible photons have
energies of roughly 1.6eV to 3.2eV, which, as you

 we having 4 Teargy (exets
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Figure 4.45 Spectral refiection of a pink pigment.

    
  

 
 might expect, are on the low side for ordinary electron

excitation and on the high side for excitationyglls
molecularvibration, Despite this, there are atoms
the boundelectrons form incomplete shells (gold,
example) and variations in the configuration of ¢
shells provide a mode for low-energy excitati
addition, there is the large group of organicy
molecules, which evidently also have resonances i¥
visible. All such substances, whether natural or ga
thetic, consist of long-chain molecules madeup of f
larly alternating single and double bonds in Wi
called a conjugated system. This structure is typi
by the carotene molecule CygHsg (Fig. 4.46).
carotenoids range in color from yellow to red and
found in carrots, tomatoes, daffodils, dandelis
autumn leaves, and people. The chlorophyllsg
another group of familiar natural pigments, but
a portion of the long chain is turned around on §
to form a ring. In any event, conjugated systems
sort contain a numberof particularly mobile elect
known as pi electrons, They are not boundto specy
atomic sites but instead can range over the relati
large dimensions of the molecular chain or ring. Ia
phraseology of quantum mechanics, we would say @
these are long-wavelength, low-frequency, and the
fore low-energy, electron states, The energy requ
to raise a pi electron to an excited state is accord
comparatively low, corresponding to that of
photons, In effect, we can imagine the molecule @
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446 The carotene molecule. 

65

 
 

 
  

sonance frequency in the visible.
f an individual atom areprecisely

is. the resonances are very sharp. With
s, however; the proximity of the atoms
dening of the energy levels into wide

Jn other words, the resonances spread over a£ frequencies. Consequently, we can
a dye will not absorb just a narrow portion

m; indeedif it did, it would reflect most
cies and appear nearly white.

00 ne a piece ofstained glass with a resonance in
here it strongly absorbs, If you look through

yhite-light source composed ofred, green, and
the glass will absorb blue, passing red and green,

yellow (Fig- 4,47). Theglass looksyellow: yellowpaper, dye, paint, and inkall selectively absorb
If you peer at something that is a pure blue

a yellow filter, one that passes yellow and
blue, the object wil] appearblack. Herethe filter

tot6 8we
a4oe

 

Carotene molecule

44 Familiar Aspects of the Interaction of Light and Matter 
Predominantly yellow B wh» ike

 
; Yellow

Figure 4.47 Ycllow stainedglass.

of the procesa as subtractive coloration, as opposed to
additive coloration, which results from overlapping
beamsof light.

In the same way, fibers of a sample of white cloth or
Paper are essentially transparent, but when dyed each
fiher behaves as if it were a chip of colored glass. The
incidentlight penetrates the paper, emerging for the
most part as a reflected beam only after undergoing
numerousreflections and refractions within the dyed
fibers, The exiting light will be colored to the extent
thatit lacks the frequency componentabsorbed by the
dye. This is precisely why a leaf appears green, or a
banana yellow.

A bottle of ordinary blue ink looks blue in either
reflected or tranamitted light. Butif the ink is pained
on a glass slide and the solvent evaporates, something
ratherinteresting happens. ‘The concentrated pigment
absorbs so effectively that it preferentially reflects at the
resonant frequency, and we are back to the idea that a
strong absorber (large ;) is a strong reflector. Thus,

 



66

 
ud Chapter 4 The Propagation of Light

 

Yellow

 
E05

0.0) 380 oT) Si ea 70
Wavelength (nm)

SSTal
Magenta |

Buse
é

a0 SHO seu S40 620 700
Wavelength (am)

we yon

Bos
2é

O0 1B80) don S40 620 70
Wavelength (nm)

Figure 4.48 Transmission curves for coloredfilters.

 

   

 
 
 

   
  
  
 
 
 

 4.5 The Stokes Treatment of Reflection and Refraction 1g 

concentrated blue-green ink reflects red, wherea
blue ink reflects green, Try it with a felt markin,
but you must use reflected light, being careful o
inundate the sample with unwanted light from be| '
(Wipe theink to obtain a thin layer and then placeslide on a piece of black paper.)

The whole range of colors (including red, &reen, ai
blue) can be producedbypassinglight throughva; oocombinations of magenta, cyan, and yellow filters ay
4.48). These are the primary colors of subtractive #
ing, the primaries of the paint box, although theyoften mistakenly spoken of as red, biue, and yellg
They are the basic colors of the dyes used to m;
photographsandtheinks used to print them,Idea
if you mix all the subtractive primaries together (aif
by combiningpaints or by stacking filters), you géf 2a
color, no light—black. Each removesa region of ispectrum, and togetherthey absorbitall.

 

 
flection and refraction via the Stokes treatment.

ret 8 
 

    

    
  
  

   
 

 

fig on the planar interface separating two dielectric is to be identical with thatin Fig. 4.49(b). then obviouslymedia, as in Fig. 4.49(a). As we saw earlier in this 

  

 

If the range of frequencies being absorbed spr: mpter, since r and # are the fractional amplitudes Foitt! + Eoirr™ Eo: 488)across the visible, the object will appear black. Thats fected and transmitted, respectively (where nj = 7, and
notto say thatthereis no reflection at all—you ob ' na), then Eo, = rEp; and Eg, = tEy;. Again we Eg, tt? Eptr’ = 0. (4.85)
can see a reflected image in a piece of black faded ofthe fact that Fermat’s principle led to Henceleather, and a rough black surface reflects also, 1 ciple of reversibility, which implies that the
diffusely. If you still have those red andblue inks, iif depicted in Fig. 4.49(b), where all the ray ifm |—/? 4.86)
them, add somegreen, and you'll get black. are reversed, mustalso be physically possible. and
 In addition to the above processes specifically

 
   

 
 

 
  

 
  
  
  
  

  
  
  
  
  
    

 
 
 

 
 

 
 

 

 

rption), a wave’s meanderings must be revers- 1 A= (4.87)
» Equivalently, in the idiom of modern physics one the latter two equations being known as the Stokes

Hof time-reversal invariance, that is, if a process relations. Actually this discussion calls for a bit more
) the reverse process can also occur. Thusif we caution than is usually grantedit. It must be pointed

diffraction gratings on their wing cases, and wavelen; Giletypothetical motion picture of the wave incident outthat the amplitude coefficients are functions ofthe incident
dependentinterference effects contribute to the 3 cting from, and transmitting through the inter- angles, and therefore the Stokes relations might better
patterns seen on vil slicks, mother-of-pearl, soap Bre, the behavior depicted when the film is run back- be written as
bubbles, peacocks, and hummingbirds. Tust also be physically realizable. Accordingly, . Py

Fig. 4.49(0), where there are now two incident HOH) 1 A) 438)Jf amplitudes Eo;r and Ko,t. A portion of the and
4.5  THESTOKES TREATMENT OF Whose amplitude is F,;¢ is both reflected and *(0,)at—11 8 139)REFLECTION AND REFRACTION c ed at the interface. Without making any (6) 761). (£89)j supHong, Ict r’ and ¢’ be the amplitude reflection where 7, sin 0; = ng sin #2. The second equation indi-
A ratherelegant and novel wayoflookingatrefleatio smission coefficients, respectively, for a wave cates, by virtue of the minussign, that there is a 180°
and transmission at a boundary was developed by/™ from below (i.e, m: =m, m,=7,). Con- phase difference between the waves internally and externally
British physicist Sir George Gabriel Stokes (1819-18 Hs the reflected portionis Eqitr’, and the trans- reflected. It is most importantto keep in mind that here
Since we will often make use of his results in futtllg ediportion is Eoit’, Similarly, the incoming wave 6, and @» are pairs of angles that are related by way of
chapters, let's now examine that derivation. SUPP mplitude is Eo:r splits into segments of ampli- Snell's law. Note as well that we never did say whether
that we have an incident wave of amplitude Eo; IiP"\MB mr and Eo;rt. 1f the configuration in Fig. 4.49(c) ay was greater or less than np, sv Eys. (4.88) and (4.89) 
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apply in either case. Let’s return for a momentto one
of the Fresnel equations:

_sin (0-6)
1 sin (6, + 6)"

Ifa ray enters from above, as in Fig. 4.49(a), and we
assume Ng > 71,7, is computed bysetting @, = 8, and
0, = 4 (external reflection), the latter being derived
from Snell’s law. If, on the other hand, the wave is
incidentat that same angle from below (in this instance
internal reflection), @, = 6, and we again substitute-in
Eq. (4.42), but here #, is not 6, as before. The values
of 7, for internal and external reflection at the same
incident angle are obviously different. Now suppose, in
this case of internal reflection, that 0; @. Then @,
6,, the ray directions are the reverse of those in the
first situation, and Eq.(4.42) yields

14.42}

_sin (@2.~ #1)
sin (6 + 61)"

Although it may be unnecessary we once again point
out thatthisis just the negative of what was determined
for # = 0, and externalreflection, thatis,

r)(92)

(8) —1,(8)). (4.90)
The use of primed and unprimed symbols to denote
the amplitudecoefficients should serve as a reminder
that we are once more dealing with angles related by
Snell's law. In the same way, interchanging 9; and @,in
Eq. (4.43) leads to

782)=—7y(61). (4.91)
The 180° phase difference between each pair of com-
ponents is evident in Fig. 4.25, but do keep in mind
that when 0, ~ @,, 0, = 8), and vice versa (Problem 4.46).
Beyond 6;©6, there is no transmitted wave, Eq. (4.89)
is not applicable, and as we have seen, the phase
difference is no longer 180°.

It is common to conclude that both the parallel and
perpendicular components of the externally reflected
beam change phase by @ radians while the internally
reflected beam undergoes nophase shiftat all. By now,
within the particular convention we've established, this
should be recognized as incorrect, or at least almost
obviously [compare Figs. 4.26(a) and 4.27(a)].

Suppose thatlight consists of a stream of Photon
that one such photonstrikes the interface betwe,
dielectric media at an angle 6; and is subseq,transmitted acrossit at an angle @,. We know that jf
were just one ofbillions of such quanta in a ng} Helaserbeam,it would obediently conform to Snell,
Toappreciate this behaviorlet’s examine the dyng
associated with the odyssey ofoursingle photon,that

  
 
 

  
   

or

If we use Eq. (3.53), this becomes

and hence

Multiplying both sides by ¢/», we have

which of course is Snell’s law. In exactly the s:
if the photonreflects off the interface instead ti!
transmitted, Eq. (4.92) leads to

 

4.6 PHOTONSAND THE LAWS OF
REFLECTION AND REFRACTION

servation of the component of momentum paralthe interface takes the form

 

 

‘san

  
po hk,  

Pic = Pox

p. sin 8,—p, sin 6.

&; sin 6; = &, sin @,

1. 1.
— sin 0, =— sin &.Ai AL

n sin @, 7, sin 8,

A; sin 6, = &, sin 8,,
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 6, = 9. It is interesting to note that1 
  

  
> 1, p> p. Experiments dating back as4 Foucault, have shown that when

propagation is actually reduced india, even though the momentum

   
 
 
  

d that we have been dealing with a
tation that leaves much to be

le, it says nothing about the atomic
“ce of the media or about the probability that a
a will traverse a given path, Even though this
a is obviously simplistic, it is appealing

agogically (see Chapter 13).

 
  
  

15 an increase in the photon’s effective mass. See F. R.‘On Snell's Law and the Gravitational Deflection of
Phys, 36, 1001 (1968). Take a cautious look at R. A.  

  
 

PROBLEMS
4,1 Calculate the transmission angle for a ray incident
in air at 30° on a block of crown glass (n, = 1.52).

4,2" A ray of yellow light from a sodium discharge
lamp falls on the surface of a diamondinairat 45°. If
at that frequency ny = 2.42, compute the angular devi-
ation suffered upon transmission.

4.3 Use Huygens’s construction to create a wavefront
diagram showing the form a spherical wave will have
after reflection from a planar surface, as in the ripple
tank photosof Fig. 4.50. Draw the ray diagram as well.
4.4* Given aninterface between water (n,=1.33) and
glass (n, = 1.50), compute the transmission angle for abeam incidentin the water at 45°. [f the transmitted
beam is reversed so that it impinges on the interface,
show that 6, 45°.

4.5 A beam of 12-cm planar microwaves strikes the
surface of 2 dielectric at 45°. Lf ny = 3, compute(a) the
wavelength in the transmitting medium, and (b) the
angle 4.

 

   

  

  
 
 
 
 
 
 
 
  
   
 
  
 
 
  



68

 

122 Chapter 4 The Propagation of Light

4.6" Light of wavelength 600 nm in vacuum enters a
block of glass where n, = 1.5. Compute its wavelength
in the glass. What color would it appear to someone
imbedded in theglass (see Table 3.2)?

4.7 Figure 4.51 shows a bundleof rays entering and
emerging from a glass disk (a tens). From the configu-
ration ofthe rays, determine the shape of the wavefronts
at various points. Draw a diagram in profile.

Figure 4.51

4.8 Make a plotof 6; versus 6, for an air-glass boun-
dary where ny, = 1.5.

4.9 In Fig. 4.52 the wavefronts in the incident medium
match the fronts in the transmitting medium every-

8

 
Figure4.52

 

where on the interface—a concept known as wayepdl ; ong warrdionts. derive the law of reflection and
continuity, Write expressions for the mumberof ya eejaw. The ray diagram of Fig. 4.54 should be
perunit length alongthe interface in terms of9, , ns
4; in one case and 9, and A, in the other. Use thenderive Snell’s law. Do you think Snell's law app}sound waves? Explain.

    
   
    
     
 

  
 
 
  
 
 

 

4.10" With the previous problem in mind, cep
Eq. (4.19) and take the origin of the coordinate g
in the plane of incidence and on the interface #
4.20), Show that that equation is then equivaleg Eequating the x-componentsof the various pro a
vectors. Show thatit is also equivalentto the n
wavefront continuity.

4.11" Figure 4.53 depicts a wavefront at AB.

along it, which in turn radiate transmitted wavelg
Since the refracted wave travels at a speed v,, a
the transmitted wavelets also propagate at v,,
wavelets then overlap and interfere (which is esse:
the Huygens—Fresnel principle) to form the re
wave. Showthat the transmitted wavelets will ar
phase along DC,provided Snell’s law obtains.

 
 

 
  
  
 
 

   

Sjarting with Snell’s law, prove that the vector
ion equation hasthe form

 
  
    nik, — ane, = (m, cos 9, — 1; cos 6;)8,. [4.8]    

MH Derive a vector expression equivalent to the law
ion. As before, let the nermal go from the

mat to the transmitting medium, even though it
sly doesn’t really matter.

   
 412 Making use of the ideas of equal transitzamed

berweencorrespondingpoints and the orthogonaliag
 

 
 In the case of reflection from a planar surface,

‘ermat's principle to prove that the incident and
ed rays share a common plane with the normal
mely, the plane of incidence. 

 

 16” Derive the law of reflection, @  6,, by using
taleulus to minimize the transit time, as required
ermat’s principle.
 
 
 

Stcording ‘to the mathematician Hermann
hv fi, there is one triangle that can be inscribedWith an acute triangle such that it has a minimal

r, Using two planar mirrors, a laserbeam, and
8 principle, explain how you can show thatthis
d triangle has its vertices at the points where

des of the acute triangle intersect its corre-iB sides,

 
 

  
Figure 4.58
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Problems 123

 4.18 Show analytically that a beam entering a planar
transparent plate, as in Fig. 4.55, emerges parallel to
its initial direction, Derive an expression for the lateral
displacement. of the beam. Incidentally, the incoming
and outgoing rays would be parallel even fora stack of
plates of different material.

Figure 4.55 (Source unknown.)

4.19" Show that the two rays that enter the system in
Fig. 4.56 parallel to each other emerge from it being
parallel.

i
 

  

Figure 4.56

4.20 Discuss the results of Problem 4.18 in thelight
of Fermat’s principle,thatis, how does therelative index
ng, affect things? Tosee the lateral displacement, look
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at a bread source through a thick piece of glass (=4
inch) or a stack (four will da) of microscopeslides held
at an angle. There will be an obviousshift between the
region ofthe source seen directly and the region viewed
through theglass.
4.21 Suppose a lightwave that is linearly polarized
in the plane of incidence impinges at 30° on a crown-
glass (ny = 1.52) plate in air. Compute the appropriate
amplitude reflection and transmission coefficients at the
interface. Compare your results with Fig. 4.22.

4,22 Show thateven in the nonstatic case the tangential
componentoftheelectric field intensity E is continuous
acrossan interface. (Hint: using Fig. 4.57 and Eq.(3.5),
shrink sides FB and CD, thereby Jetting the area
bounded goto zero.]

bie

By Ey

 
Figure 4.57

4.23 Derive Eqs. (4.42) through (4.45) for r.6), f1,
and t).
4.24 Prove that

to+(-rnjel [4.497
for all @,, first from the boundary conditions and then
from the Fresnel equations.

  Problems 125  

  
 
  

 
     
 
 
 
 

4.25" Verify that
 

ition) we
for 6;~30° at a crown glass and air interface \1.52).

4.26* Calculate thecritical angle beyond which
is totalinternalreflection at an air-glass (i, = 1,
face. Compare this result with that of Problem 43,
4.27 Derive an expression forthe speedof the
cent wavein the case of internalreflection. Writ
terms of ¢, n;, and 4.

4.28 Light having a vacuurn wavelength of 600
traveling in a glass (n, = 1.50) block,is incident at
on a glass—air interface. It is then totally intery
reflected. Determine the distance into the air at wi
the amplitude of the evanescent wave has droppef]a value of Ie of its maximum valueat theinter:

 
   Figure 4.58 (Photo and diagram cour-

tesy §. Reich, The Weizmann Instituteof Science, Israel.)  
 
    

 

    
media, in 4.36" Makinguse of the definitions of the azimuthal

angles in Problem 4.35, show that
general tan 0,    4.29 Figure 4.58 showsa laserbeam incident on g

piece of filter paper atop a sheet of glass whose
 
 
  

   
 
       

soni 2 . 2

of refraction is to be measured—the prowErey 4:34 Show that the polarization angles for internal R= Rycos’ y+ Risin’ % 4.98)
theresulting hight ae Explain wee cr ail and external reflection at a given interface are com- andand derive an expression for n, in terms ofRai - Pe that is, 6, 4 0; ° 5 .

qlenitinary, that is, 6,46,+90° (see Problem 4.32). T= Ti coty©Ty sin? (09)  
   
  4,30 Consider the common mirageassociated w

inhomogeneous distribution of air situated aboyda
warm roadway. Envision the bending of the rays
it were instead a problem intotal internal reflection,
an observer, at whose head n,~1.00029, sees a
apparent wetspotat #,=88.7° downthe road, find
indexof the air immediately above the road.

useful to work with the azimuthal angle
as the angle between the plane of

plane of incidence. Thus forlinearly
1.5 and

   4.37 Make a sketch of R, and Rj for n,n, =1(ie., internalreflection).       
  tan y, = (Eo hi/[Eody (4.94) 135°

tan y, = (Eo)./[Eodh (4.95)
  
    
 

4.31* Use the Fresnel equations to prove that light
incidentat 8, — da 6, results ina reflected beam thal
is indeed polarized.

  
  
  4 tan y= [EorliMEorly- (4.96)-% 90

gure 4.59 isa plot of y, versus @, for internal and
glection at an air-glass interface (n,, = 1.51).gi5°. Verify a few of the points on the curves

  
 

 

  4.32 Show thattan 6~n,/n; and calculate the p
ation angle for external incidence onaplate of
      
   

45° Led

glass (n,=1.52) in air. on show that ia|
= 1. .

tan y, cos (0; — 92, . @, (degrees). petan Yi 4.97
4.33* Beginning with Eq. (4.38), show that cos (@, 40) 0" % G9) Figure 4.59
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4.38 Show that

 

 

T= sin 26, sin 20, 4.100)0" gin’ (6; + 8) cos* (8;—6) ;
and

— Sin 24 sin 28,
sin’ (8, + 0)" eaten)

4.39" Using theresults of Problem 4.38, that is, Eqs.(4.100) and (4,101), show that

Ry+ i=l [4.65]
and

Rpt T, #1.
4.40 Suppose that we lookat a source perpendicularly
through a stack of N microscope slides. The source
seen through even a dozen slides will be noticeably
darker. Assuming negligible absorption, show that the
total transmittanceof the stack is given by

T= (RP

{4.66}

and evaluate T, for three slides in air.

4.41 Makinguse of the expression
TO)= Ibe”? £4.78}

for an absorbing medium,we define a quantity called
the unit transmittance T,, At normal incidence (4.55)
T= 1/1,,andthuswhen y = 1, T; = J(1)/fo. [f the total
thicknessoftheslides in the previous problem is d and
if they now have a transmittance per unit length 7).show that

T(- RY Ty.
4.42 Show that at normalincidence on the boundary
between two dielectrics, as ny©t, R>0,and T>1.
Moreover,provethat as m1, Ry > 0, R,--0, T > 1,and T, > 1 for all @;. Thus as the two media take on
moresimilar indices of refraction, less and less energy
is carried off in the reflected wave. It should be obvious
that when n, 1 there will be no interface and noreflection.  

   4.43* Derive the expressions for r, and 1 given)Eqs. (4.70) and (4.71).

4.44 Show that when @, > 6, at a dielectric inter;and r, are complex and 7, rt -=].

4.45 Figure 4.60 depicts a ray being multiply reflecnby a transparent dielectric plate (the amplitudesya)
resulting fragments are indicated). As in Section
we use the primed coefficient notation, beraaie)
angles are related by Snell's law.
a) Finish labeling the amplitudes of the last [uy
b) Show, using the Fresnel equations, that

 

 

= 7
ei 7,2

ry Ry
and

rere rR.
= “

T *

Figure 4.60 % ‘5

incidence, impinges on the interface betweGies
dielectric media. If 2; > 7, and 6, = 0). there
reflected wave, thatis, rj(6,)~0. Using Suet: 8

  
  
   
 
  
  
  
  
    
   
 
 
 
  

  
  
 
   

  

 

    
  
  

   
  
  

  

start from scratch to show that ¢;(6,)&(85) = 1,
e. 0, and & = % (Problem 4.34). How doesthis
Pe with Eq. (4.102)?

yar P_aking use of the Fresnel equations, show that
HMO) = I> 2S in the previous problem.

448 Figure 4,61 depicts a glass cube surrounded by§ prisms in very close proximity to its sides.fenithe paths that will be taken by the two rays
ad Prd discuss a possible application for the device.

 

 
e..

449 Figure 4.62 isa plot of n; and ng versus A for a
mon metal. Identify the metal by comparingits

ics with those considered in the chapter andoptical properties.

Figure 4.63 shows a prism-coupler arrangement
ped at the Bell Telephone Laboratories. Its func-

Gon is to feed a laserbeam into a thin (0.0000 1-inch)film, which then serves as a sort of
yee. One application is that of thin-film laser-

uitry—a kind of integrated optics. How doit works?
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Figuee 4.62

Figure 4.63
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jest] GEOMETRICAL
OPTICS—PARAXIAL
THEORYil
 
5.1 INTRODUCTORY REMARKS

Suppose we have an object thatis either self-lurninous
or externally illuminated, and imagine its surface as
consisting of a large numberof point sources. Each of
these emits spherical waves, thatis, rays emanateradially
in the direction of energy How or,if you like, in the
directioo of the Poynting vector (Fig. 4.1). In this case,
the rays diverge from a given point source S, whereas
if the spherical wave werecollapsing to a point, the rays
would of course be converging. Generally one deals only
with a small portion of a wavefront. A point from which
@ portion of a spherical wave diverges, or one toward which
the wave segment converges, is hnount as a focal point of the
bundle of rays.

Now envision the situation in which we have a point
source in the vicinity of some arrangementofreflecting
and refracting surfaces representing an optical system,
Of the infinity of rays emanating from S$, generally
speaking, only one will pass through an arbitrary point
in space. Eyenso,it is possible to arrange foran infinite
numberofrays to arrive at a certain point P, as in Fig.
5.1. Thus, if for a cone of rays coming from S$ there is
a corresponding cone of rays passing through P, the
system is said to be stigmatic for these two points. The
energy in the cone (apart from some inadvertent losses
due to reflection, scattering, and absorption) reaches P,
which is then referred to as a perfect image of S. The
wave could conceivably arrive to form a finite patch of

128

 
 
 
  
 
   
 
 
 
 
   
   
 light, or blur spot, about P;it wouldstill be an ireaye5 butno longera perfect one.

It follows from the principle ofreversibility (sey
tion 4.2.4) that a point source placed at P wield &
equally well imaged at S, and accordingly the big
spoken of as confugate points. In an ideal optical syste
every pointof a three-dimensional region will be pay
fectly (or stigmatically) imaged in another region, &
formerbeing the object space, the latter the image spa

Most commonly, the function of an optical devigg
to collect and reshape a portion of the incident wayg
front, often with the ultirnate purpose of formil
image of an object. Notice that inherentin reali
systems is the limitation of being unable to colle¢
the emitted light; the system accepts only a segmenil
the wavefront. As a result, there will always

  
  

    
   i Reshaping a spherical wave at a refracting interfaceFigureala   tt deviation from rectilinear propagation even

fogencous media—the waves will be diffracted.ainable degree of perfection in the imaging
ity of a real optical system will therefore beou-limited (there will always be a blur spot). As
Velength of the radiant energy decreases in com-
Ato the physical dimensionsof the optical system,

cts of diffraction becomeless significant. In the
ceplual limit as A o> 0, rectilinear propagation

jomogeneous media, and we have the ideal-
of geometrical optics,* Behavior that is

ttributable to the wave nature oflight (e.g.,
anddiffraction) would no longer be observ-
are many situations in which the great

   
     
       
   
           
    
  
  
  
  
 
 
 
 
  Otyect  
 pptics deals with situations in which the nonzero wavelength

t be reckoned with. Analogously, when the de Broglie
of a material object is negligible, we have classecal
hen it {§ not, we have the domain af quantum mechanicster 19).
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Figure 5.1. Converging and diverging waves.
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5.2 LENSES

No doubt the most widely used optical device is the
jens, and that notwithstanding the fact that we see the
world through a pair of them. Lenses date back to the
burning glasses of antiquity, and indeed who can say
when peoplefirst peered through theliquid lens formed
by a droplet of water?

As aninitial step toward an understanding of what
lenses do and how they manageto doit, let’s examine
what happens when light impinges on the curved sur-
face of a transparent dielectric medium.

5.21 Refraction at Aspherical Surfaces
Imagine that we have a point source S§ whose spherical
waves arriye at a boundary between two transparent
media, as shownin Fig. 5.2. We would like to determine
the shape that the interface must have for the wave
traveling within the second medium to converge at a
point P, there forming a perfect image of S. Practical
reasonsfor wanting to focus a diverging wave to a point
will become evident as we proceed.

The time it takes for each and every portion of a
wavefront leaying $ to converge at P mustbeidentical,
if a perfect image is to be formed—that much was
implied by Huygensin 1678. Or as we saw in Section

Figure 5.3. The Cartesian oval.
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4,2.3, the distance between corresponding points on
any and all rays will be traversed in that same time,
Anotherway to say essentially the same thing from the
perspective of Fermat's principle is that if a great many
different rays are to go from S to P (ie., if point A in
Fig. 5.3 can be anywhere on theinterface), each ray
must traverse the same optical path length. Thus, for
example, if S is in a medium of index n, andPis in
an optically more dense medium of index ng,

Env Ging=snp + sno, (5.1)
where 5, and s, are the object and image distances
measured from the vertex or pole V, respectively. Once
we choose s, and s;, che right-hand sideof this equationbecomes fixed, and so

é,n, + &ma ™ constant. 5.2}
This is the equation of a Cartesian oval whose sig-
nificance in optics was studied extensively by René
Descartesin the early 1600s (Problem 5.1). Hence, when
the boundary between two media has the shape of a
Cartesian oval of revolution about the SP, or optical

 

 

axis, $ and P will be conjugate points, that isa
source at eitherlocation will be perfectly imaged
other. What’s actually occurringphysicallyis rathenes
to comprehend. Since n>, those regions gf |
wavefronttraveling in the optically more dense m,
move slower than those regions traversing thejim
material. Consequently, as the wave begins ¢
through thevertex of the oval, the segment im
aboutthe opticalaxis is lowed dows from c/n, 10m
Regions of the same wavefront remote from the
are still in the first medium traveling with a grspeed,¢/n,, Thus the wavefronts bend,and if the h
dary is properly configured (in the form of a Cary
ovoid), the wavefronts will be inverted from dive;
to converging spherical segments.

In addition to tocusing a spherical wave, we tuk)
like to be able to perform a few other reshagl
operations using refracting interfaces; some of
areillustrated in Fig. 5.4. We shall consider then)
briefly and more for pedagogical than practical
The surfaces in Fig. 5.4(a) and (b) are eli
whereas those in (c) and (d) are hyperholoidal. Ng

(ch (dy
Figure 5.4 Ellipsoidal and hyperboloidal refracting surfaces (ny > 1).
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reioc! The arrowheads have been “il to
: that the rays can gO either way, In other words,

ent plane wave will converge to che farthest
£ an ellipsoid just as a spherical wave emitted

ec focus will emerge asa plane wave. Further-
was you might expect. if we let the point S in Fig,we out to infinity, the ovoid would gradually
porphose into an ellipsoid.than deriving expressions for these surfaces,

justify the above remarks. To that end, examinewhich relates back to Fig. 5.4(a). The optical
. hs from any point D on the planar wavefront

Eietiocus F; mustall be equalto the same constanta

 

 

  
 
     

(FAjn, + (ADIn,=C       
  

(FA) + (AD), =
We ae theethis relationship is indeed satished by an

id fof revolution, recall that if £ corresponds to
F of the ellipse, (Fp4) = e(AD), wheree is
Reritricity. Thus if ny, the left-hand side of

Ci ngs (5.3)    
 
        
 
   
 .€., 1 > ng)the curve would

ita hyperboia instead {compare(a) with (c) and
in Fig. 5.4). If all this brings back memories

geometry, you might keep in mindthat that
Hé originated by Descartes. Interestingly, it was

er who first (1611) suggested using conic sectionsandlenses.
wledge we have at hand now may be used

tenses such that both the object and image
tbe in the same medium, which is usually air.
uch device to be considered Fig. 5.6(a)] is a

PSUS Ayberhalle lens, which utilizes the response
ized in Fig. 5.4(c), A diverging spherical wave
Planar after traversing the first hyperbolic
hd then spherically converging onleaving the

Vely, if the second surface is made planar
Be ave a hyperbolic planar convex Jena, as in Fig.Mere waves within the lens will strike the

iia PerPendicularly and emerge unaltered.
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Figure 5.5 Geometry ofan ellipsoid. z

Another arrangement that will convert diverging
spherical waves into plane wavesis illustrated in Fig.
5.6(¢). This is a sphere-elliptic convex lens, where F, is
simultaneously at the center of the spherical surface
and at the focus of the ellipsoid, Rays from F, strike
the first surface perpendicularly and are therefore
un deviatedbyit. As in Fig. 5.4(a), the exiting wavefronts
are planar. All the elements thus far examined have
been thickerat their midpoints than at their edges and
are for that reason said to be convex (from the Latin
convenus, meaning arched). In contrast, the planar hyper
bolic concave lens (from the Latin concavus, meaninghollow, and easily remembered becauseit contains the
word cave)is thinner at the middle than at the edges,
as is evidentin Fig. 5.6(d). A numberofother arrange-ments are possible, and a few will be considered in the
problemis (5.3). Note that each of these lenses will work
just as well in reverse: the waves shown emerging can
instead be thoughtof as entering from the right.

If a point source is positioned on the optical axis at
the point F; of the lens in Fig. 5.6(a), rays will converge
to the conjugate point F,. A luminous image of the
source would appear ona screen placed at Fy, an image
thatis therefore said to be real, On the other hand,in
Fig. 5.6(d) che point source is at infinity, and the rays
emerging from the system this time are diverging. Theyappear to come from a point F;, but no actual luminous
image would appear on a screen at that location. The
image here is spoken of as virtual, as is the familiar
image generated bya plane mirror.

Optical elements (lenses and mirrors) of the sort we
haye talked about, with one or both surfaces neither
planar nor spherical, are referred to as aspherics.
Although their operationiseasy to undersand and they
Perform certain tasks exceedingly well, they are still
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fe)

difficult to manufacture with great accuracy. Nonethe-
less, where the costs are justifiable or the required
precision is not restrictive or the volume producedis
large enough, asphericsare being used extensively and
willsurely have an increasingly important role. The first
quality glass aspheric to be manufacturedin great quan-
tities (tens of millions) was a lens for the Kodak disk
camera (1982). And the small-scale production of
diffraction-limited molded-glass aspheric lenses has
been reported in recenttimes. Today aspherical lenses
are frequently used as an elegant meansof correcting
imaging errors in complicated optical systems.

A new generation of computer-controlled machines,
aspheric generators,is producing elements with toler-
ances (i.e., departures from the desired surface) of
better than 0.5 wm (0.000020 inch). Thisis still about
a factor of 10 away from the generally required toler-
ance of A/4 for quality optics, but that will surely come
in time. Nowadays aspherics made in plastic ana glasscan be found inall kinds of instruments across the whole
range of quality, including telescopes, projectors,
cameras, and reconnaissance devices.

Figure 5.6 (a) A double hyperbolic lens. (b) A
convexlens. (6) A sphero-elliptic lens, (4) A planar by
(c) Photo courtesy Melles Griot.

5.2.2 Refraction at Spherical Surfoces

Imagine that we have two pieces of material,
a concave and the other a convex spherical surfaéey
having the same radius, It is a unique propert
sphere that such pieces will fit together in ii
contact regardless of their mutual orientation.
we take two roughly spherical objects of sumabte

    
  
  
       
  
  
      
  
   
 
 

Figure 7 Polishinga spherical lens. (Photo courtesy OWof America.)

at.

 
 ae shir a disk of glass,

Brheso with some abrasive, and then randomlyma with respect to each other, wecan anticipate
igh spots on either object will wear away. Asyr, both pieces will gradually become more

Beal (Fig. 5.7). Such surfaces are now commonly
ted in batches by automatic grinding and polish-
chines. In contrast. high-quality aspherical
require considerably more effort to produce.

hould therefore comeas no surprise that the vast
fyjof quality lenses in use today have spherical. Ourintent here is to establish techniques for

 

 
    
  
  

   
  
 

  
  
  

FEchnology to construct high-quality sphericaltems whose aberrations are so well controlled
ge fidelity is limited only by diffraction.

that we know why and where we are going, let's

‘on, Eo 5.8 depicts a wave from the point

 

     
  

:Smpinging on a spherical interface of radiusat C. The ray (SA) will be refracted at the
  
  
 
  
    

(OPL)~ nif nog. (6.4)
Bilir law of cosines in triangles SAC and ACP

fe fact that cos y©~cos (180— ¢), we get
+ RY’ -2R(s, + R) cos e}” 

© (5—RY + 2R(s,— R) cos gp]!
“an be rewritten as

BURY (5,8 RB)? 2Ris,—R) cos g]!”
PER’ + (5,.— Ry + 2R(s,~R)cos gp)

"in the diagram (5,5 5.5, etc.) are
fa _and these form the basis of a signWhich is gradually unfolding and to which  
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a a

Figure §.8 Refraction ata spherical interface,

 we shall return time andagain (see Table 5.1). Inasmuch
as the point A movesat the end of a fixed radius(ie.,
R constant), pis the position variable, and thussetting
d(OPL)/de— 0, via Fermat’s principle we have

wy R6s, + R)sing _neR(s; — R)sin @ 
 

 

 

20," 26, °
from which it follows that

nm ry lf mys; mys,Stoeas ~ >). 5.
2 6 R ( a6 ) oe

‘This is the relationship that must hold amongthe para-
metersfor a ray going from S to P by wayof refraction
at the spherica] interface. Although this expression is
exact, it is rather complicated. We already know thatif
A is moved to a newlocation by changing ¢, the new
ray will not interceptthe optical axis at P—this is not a

 
  
 Figure 5.9 Raysincident at the same angle. 
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Table 5.1 Sign conventionfar spherical refractingsurfaces and thinlenses* (light entering from the left).

Sar fy +leftof V
% + left of F,
ah + right of ¥x, + rightof F,
R +i€ C is right of V
Jor i + above optical axis

* This table anticipates the imminent introduction of a few quantities not yetspoken of

Cartesian oval. The approximations that are used, to
represent é, and ¢;, and thereby simplify Eq. (5.5), arecrucial in all that is to follow. Recall that

°°
 

 

cos @ en (5.6)
and

3 8g?
: _ eePy,

sing =P 3 BIT + 62
ff we assume small values of y (ie., A close to V),
cos g = 1. Consequently, the expressions for ¢, and ¢
yield ¢, = s,. & * 5, and to that approximation

 

Rg eanpTgy2.
S&S R

  
+ (5.8)

We could have begun this derivation with Snell's law
rather than Fermat's principle (Problem 5.4), in which
case small values of @ would haveled to sin g = y and
Eq. (5.8) once again, This approximation delineates the
domain of what is called first-order theory—we’ll exam-
mine third-order theory (sin y ~ p — ¢°/3!) in the next
chapter. Rays that arrive at shallow angles with respect
to the optical axis (such that ¢ and A are appropriately
small) are known as paraxial rays. The emerging wave-
front segment correspondingto these paraxialrays is essentially
spherical and will form a “perfect” image at its center P
located at s;. Notice that Eq. (5-8) is independentof the
location of A over a small area about the symmetry axis,
namely, the paraxial region. Gauss, in 1842, was thefirst
to give a systematic exposition of the formation of
images underthe above approximation,and theresult

is variously known as first-order, paraxial, or Gaussian
optics. Itsoon becamethebasic theoreticaltool by which
lenses would be designed for several decades to come,
If the optical system is well corrected, an incident
spherical wave will emerge in a form very closely resem-
bling a spherical wave. Consequently, as the perfection
of the system increases, it more closely approachesfirst-
order theory. Deviations from that of paraxial analysis
will provide a convenient measure of the quality of an
actual optical device.

If the point F, in Fig. 5.10 is imaged at infinity
(5,=00), we have

a eT mh
Sy @ R

Thatspecial object distance is defined as the first focat
length or the object focal length, s,~ f,, 80 that

Bi
= F (5.9)

fe Nea Ry
Thepoint F, is knownasthe first or object focus, Similarly
the second or image focus is the axial point F;, where the
image is formed when s,=0%, thatis,

my|Ne+
wos, F

 
Figure 5.10 Plane waves propagatingbeyond a spherical interface—the object focus.

 

   
Figure 5.11 The reshaping of plane into spherical waves at a
spherical interface—the image focus.

  
  

Defining the second or imagefocallength f, as equalto s,
in this special case (Fig. 5.11), we have  

    (5.10)  

    
 

Recall that an imageis virtual whentherays diverge
from it (Fig. 5.12). Analogously, an object is virtual when
the rays converge toward it (Fig. 5.13), Observe that the
virtual object is now on the right-handside of the vertex,
and therefore 4, will be a negative quantity. Moreover,
the surface is concave, andits radius will also be nega-
tive, as required by Eq.(5.9), since f, would be negative.
In the same way the virtual image distance appearing
to the left of V is negative.

    
  

  
 
 
 
  
 
 
 
 
 

   
  
 

  
 

 
Figure 5.12 A virtual image point. 
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Figure 5.13 A virtual object point.

5.2.3 Thin Lenses

Lenses are madein a wide range of forms; for example,
there are acoustic and microwave lenses; some of the
latter are made of glass or wax in easily recognizable
shapes, whereasothers are far more subtle in appear-
ance (Fig. 5.14). In the traditional sense, a lens is an
optical system consisting of two or more refracting interfaces,
at least one of which is curved. Generally the nonplanar
surfaces are centered on a common axis. These surfaces
are most frequently spherical segments and are oftencoated with thin dielectric films to control their trans-
mission properties (see Section 9.9), A lens that consists
of one element(i.e., it has only two refracting surfaces)
is a simple lens, The presence of more than oneelement
makesit a compound lens. A lensis also classified as to
whetherit is thin or thick, that is. whetherits thickness
is effectively negligible or not. We will limit ourselves,
for the most part, to centered systems (for which all sur-
faces are rotationally symmetric about a common axis)
of spherical surfaces. Under these restrictions, the
simple lens can take the diverse forms shownim Fig.
5,15. Lenses that are variously known as convex, converg-
ing, or positive are thicker at the center and so tend to
decrease the radius of curvature of the wavefronts; In
other words, the wave converges more asit traverses
the lens, assuming, of course, that the index of the lens
is greater than thatof the media in whichitts immersed.
Concave, diverging, or negative lenses, on the other hand,
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Figure 5.14 A lens for short-wavelength radiowaves. The disks serveto refract these waves muchas rows of atomsrefract light. (Photo
courtesy Optical Sodety of America.)

are thinner at the center and tend to advance that
portion of the wavefront, causing it to diverge morethen it did upon entry.

In the broadest sense,alenis is @ refracting device that
is used to reshape wavefronts in a controlled manner.
Although this is usually done by passing the wave
throughatleast one specially shaped interface separat-
ing twodifferent homogeneous media, it is not the only
approach available. For example, it is also possible to
reconfigure a wavefront by passing it through an
inhomogeneous medium. A gradient-index, or GRIN,lens is one where the desired effect is accomplished by
using a medium in which the index ofrefraction varies
in a prescribed fashion. Different portions of the wave
propagateat different speeds, and the front changes
shapeasit progresses, In the commercial GRIN material
{available only since 1976) the index varies radially,
decreasing parabolically out from the central axis.

Figure 5.16 Cross sections ofvarious centered spherical simplelenses. The surface on the leit is
# L sinceit is encountered hirst. Its
radius is Ry, (Photo courtesy ofMelles Griot.)
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Today GRIN lensesarestill fabricated in quantity only
jn the form of small-diameter,parallel, Hat-faced rods.
Usually grouped together in large arrays, they have
been used extensively in such equipment as facsimile
machines and compact copiers. There are other uncon-
yentional lenses, including the holographic lens and
even the gravitational lens (where, for example, the
gravity of a galaxy bends light passing in its vicinity,thereby forming multiple images of distant celestial
objects. such as quasars). We shal] focus our atiention
yn the remainderofthis chapter on the moretraditional
types of lenses, even though youare actually readingthese words through a GRIN lens(p.379).

i) Thin-Lens Equations
Return for a moment to the discussion of refraction at
a single spherical interface, where the location of the
conjugate points S andPis given by

ny Me Meha,2ieo
ue Rr 4p

 

Whens, is large for a fixed (nz 7,)/R, 5 is relatively
small. As s, decreases, 3; moves away from the vertex,
that is, both 8, and @, increase until finally s,~f, and
5, = 0. At that point, m/s, = (nz~ m)/R, so thatif s,
gets any smaller, s; will have to be negative, if Eq. (5.8)
is to hold. In other words, the image becomesvirtual
(Fig. 5.16). Let's now locate the conjugate points for
the lens of index n, surrounded by a medium of index
Nm) aS in Fig. 5.17, where another end has simply been
ground onthepiece in Fig. 5.16(c). This certainly isn’t
the most generalset of circumstances, butit is the most
common, and even morecogently,it is the simplest.*
We knowfrom Eq, (5.8) that the paraxial rays issuing
from $ at s,, will meet at P’, a distance, which we now
call s,, from V,, given by

sao Ry em
Thus asfar as the second surfaceis concerned,it “sees”
rays coming toward it from P’, which servesasits object
eT* : :

See Jenkins and White, Fundamentals af Opts, p. 57, for a derivation
containing three different indices.

 
5-2 Lenses 137

 

 “4
 ta

(bi

(or

Figure 5.16 Refraction at a spherical interface.

pointadistances,> away. Furthermore. the rays arrivingat chat second surface are in the medium of index m.
Thus, the object space for the second interface that
contains P' has an index »,. Note that che rays from P'
to that surface are indeed straight lines. Consideringthe fact that

|soal +4,
since 4,» is on the left and thereforepositive, 8,9 = |s,l,
ands;, is also on theleft and therefore negative, —5;;
Isis], we have

—sy> a (5.12)
Thusat the second surface Eq.(5.8) yields

nm Mn
sat d) Sin Ry (5.19)
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Figure 5.17 A spherical lens, (a) Refraction at the interfaces. Theradius drawn from C, is normal to the first surtace, and as the rayenters the lens it bends down toward that normal. The radius from

Here x > n,, and Ry < 0, so that the right-hand sideis
positive. Adding Eqs. (5.13) and (5.13), we have

a 11 Ag
aire Gag) ata (5.14)

If the lensis thin ¢nough (d-0), the Jast term on the
right is effectively zero. As a further simplification,
assume the surrounding medium to beair(i.e., ne * 1).
Accordingly, we have the very useful thin-lens equa-
tion, often referred to as the lensmaker’s formula:

14 1 1
Pies (ny v(e-z): 6.15)

where welet 5;=5, and s,.=s,. The points V, and Vg
tend to coalesce as d-- 0, so that s, and s,; can be
measured from either the vertices or the lens center.

Just as in the case of the single spherical surface, if
5. is moved outto infinity, the image distance becomes
the focal length f;, or symbolically,

lim 5;=fy.

Similarly
Jim 5,©f,.

Cy is normal to the second surface; and as the ray emerges, since
ny > n,,the ray bends down away from that normal. {b} The geometry.

It is evident from Eq. (5.15) that for a thin lens fi=f,,
and consequently we drop the subscripts altogether.Thus

t 1 I

om ve -¢) (5.16)
and

area (5.47)
which is the famous Gaussian lens formula. As an
example of how these expressions mightbe used, et’s
computethe focal length in air of a thin planar-convex
lens having a radius of curvature of 50 mm and anindex
of 1.5, With light entering on the planar surface (R, =
o, Ry = —50),

joss)
whereasif insteadit arrives at the curved surface (R,
+50, Ry=00),

1 lot

t~as-0(35-4),
and in eithercase f = 100 mm. If an objectis alternately

placed at distances 600 mm, 200 mm,150 mm, }00 mm,and 50mm from the lens on either side, we can find
the image points from Eq,(5.17). Hence

on600s; 100
and s, = 120mm. Similarly, the other image distances
are 200mm, 300mm, ©, and —100 mm, respectively.
Interestingly enough, when s,~%, =f; as 3,
decreases, §, increases positively until s, =f and Sis
negative thereafter. You can qualitatively check this outwith a simple convex lens and a small electric Jight--the
high-intensity variety that uses auto lamps is probablythe most convenient. Standingas far as you can from
the source, project a clear imageoiit onto a white sheet
of paper. You should be able to see the lamp quite
clearly and not just as a blur. That image distance
approximates f, Now movethe lens in toward S, adjust-
ing s, to produce a clear image.It will surely increase.
Ass, > fa Clear imageof the filamentcan be projected,

 

5-2 Lenses 139

but only on an increasingly distant scrcen. For s, < fL
there will just be a blur wherethe farthest wall intersects
the diverging cone of rays—the imageis virtual.

il) Focol Points and Planes
Figure 5.18 summarizes pictorially some of the situ-
ations described analytically by Eq. 5.16. Observe that
if a Jensof index 7; is in a medium of index n,,.

= t (¢-2) (5.18)(nin (R= Re): .
Thefocal lengths in (a) and (b) of Fig. 5.18 are equal,because the same medium exists on either side of the
lens. Since n, > n,, it follows that n,, > 1. In both cases
R, > Oand Ry <9,so that each focal lengthis positive.
We have a real object in (@) and a real image in (b). In
(c), % < n,,, and consequently f is negative. In (d) and
(e). Ry, > 1 but Ri <0, whereas Ry > 0, so f is again
negative, and the object in one case and the image in

 
 

   
w

Figure 5.18 Focal lengths for converging anddiverging lenses.
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the other are virtual. Thelast situation shows 2,< 1,
yielding an f > 0.

Notice that in each instance it is particularly con-
venient to draw a ray through the center of the lens,
which, becauseit is perpendicular to both surfaces, is
undeviated. Suppose, however, that an off-axis paraxial
ray emerges from thelensparallel to its incident direc-
tion, as in Fig. 5.19. We maintain thatall such rayswill
pass through the point defined as the optical center of
the lens O. To see this, draw two parallel planes, one
on each side tangentto the lens at any pair of points A
and B. This can easily be done by selecting A and B
such that the radii AC) and BC, are themselvesparallel.
It is to be shown that the paraxial ray traversing ABenters and leaves the lens in the same direction.It is
evident from the diagram that triangles AOC, and

  

 
Figure 5.19 Theoptical centerof a lens. (Photo by E.H.) 

 
Figure 5.20 Focusing of several cay bundles.
BOC, aresimilar, in the geometric sense, and therefore
their sides are proportional. Hence, |R,l(OC) =
|R|(O€,), and sincethe radii are constant, the location
of O is constant, independent of A and B. As we saw
earlier (Problem 4.19 and Fig. 4.55), a ray traversing a
medium boundedbyparallel planes will be displaced
laterally but will suffer no angular deviation. This dis-
placementis proportional to the thickness, which for a
thin lensis negligible. Revs passing through O may, accord-
ingly, be drawn as straight lines. It is customary when
dealing with thin lenses simply to place O midwaybetween the vertices.

Recall that a bundle of parallel paraxial rays incident
on a spherical refracting surface comesto a focus at a
point on the optical axis (Fig. 5.11). As shownin Fig.
5.20, this implies that several such bundles entering in
a narrowcone will be focused on a spherical segment@, also centered on C. The undeviated rays normal to
the surface, and therefore passing through C, locate
the foci on o. Since the ray cone must indeed be narrow,
@ can satisfactorily be represented as a plane normal
to the symmetry axis and passing through the image
focus. It is known as a Focal plane. In the same way,
limiting ourselves to paraxial theory, a Jens will focus
all incident parallel bundles of rays* onto a surface
called the second or back focal plane, as in Fig. 5.21. Here
each point onois located by the undeviated ray through
O. Similarly, the first or front focal plane contains the
object focus F,   

 * Perhaps the earliest literary reference tothe focal properties of 2
iens appears in Aristophanes’ play, The Clouds, which dates back to
423.u.c. In it Strepsiades plors to use a burning glass to focus the
Sun's rays onto a wax tablet and thereby mele out the record of a
gambling debt.
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Figure 5.21 The foral plane ofa lens.

iil) Finite Imagery
Thusfar’ we've dealt with the mathematical abstraction
of a single-point source, but now let’s suppose that a
great many such points combine to form a continuous
finite object. For the moment,imagine the objectto be
a segment of a sphere, o,, centered on CG,as in Fig.
5.22. If o, is close to the spherical interface, point S$
will have a virtual image P (s; < 0 and therefore on the
left of V). With S farther-away,its image will be real
(s; > 0 and therefore on the right-handside). In either
case, each point on a, has a conjugate pointon 9, lying
on a straight line through C. Within the restrictions of
paraxial theory, these surfaces can be consideredplanar.
Thus a small planar object normal to the optical axis
will be imaged into a small planar region also normal
to that axis. It should be noted thatif o, is moved out
to infinity, the coneofrays from each source pointwill
becomecollimated (i.c., parallel), and the image points
will lie on the focat plane (Fig. 5.21).

By cutting andpolishingtherightside of the piece
depicted in Fig. 5.22, we can construct a thin lens, just
as was donein Section (i). Once again, the image (a; in
Fig, 5.22) formed hythe first surface of the lens will
Serve as the object for the second surface, which in turn 
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will generate a final image. Suppose thenthat ; in Fig.
5.22(a) is the object for the second surface, which is
assumed to have a negative radius. We already know
whatwill happen next—thesituationis identical to Fig.
5.22(b) with the ray directions reversed. The final image
formed by a lens of a small planar object normalto the optical
axis unill itself be a small plane normalto that uxis.

The location, size, and orientation of an image pro-
duced byalens can be determined,particularly simply,
with ray diagrams. To find the image of the object in
Fig. 5.23, we must locate the image point corresponding
to each object point. Sinceall rays issuing from a source
point in a paraxial cone will arrive at the image point,
any two suchrayswill suffice to fix that point. Since we
knowthe positions of the focal points, there are three
rays that are especially easy to apply. Twoof these make
use of the fact that a ray passing throughthe focal point
will emerge from the lens parallel to the optical axis
and vice versa; the third is the undeviated ray through

 

Figure 5.22. Finite imagery. 
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Figure 5.23 Tracing a fewkey rays through a positive and negativelens.

O, Figure 5.24 shows how any two of these three rays
locate the image of a point on the object. Incidentally,
this technique dates back to the work of Robert Smith
as long ago as 1738,

This graphical procedure can be made even simpler
by replacing the thin lens with a plane passing through
its center (Fig. 5.25). Presumably, if we were to extend
every incoming ray forwarda little and every outgoing
ray backward a hit, each pair would meet on this plane,Thusthe total deviation of any ray can be envisaged as
occurring all at once on that. plane. This is equivalent
to the actual process consisting of two separate angular
shifts, one at each interface. (As we will see later, this
is tantamountto saying that the two principal planes ofa thin lens coincide.)

In accord with convention, transverse distances above
the optical axis are taken as positive quantities, and
those below theaxis are given negative numericalvalues.
Thereforein Fig. 5.25 y, > O andy; <. 0, Here the image
is said to be inverted, whereasif y, > 0 when y, > 0,itis
erect. Observe that triangles AOF, and P,P,F; are
similar. Ergo

 BAa= . (5.29)
lal Gin)

Likewise, triangles S$,$,O and P.,P,O are similar and

Je 22 (5.20)Inl si
where all quantities other than y; are positive. Hence

So f2a 5.21)
6 GD ‘and
11)
fos

which is, of course, the Gaussian lens equation (5.17).
Furthermore, triangles S2$,F, and BOF, are similarand

r £ A = be 6.22)
Using the distances measured from thefocal points and
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 {c)

Figure 5.24 {a) A reai objec: and a positive lens. (b) A real objectand a negative lens. (c} A real iinage projected on the viewing screen

combining this information with Eq. (5.19), we have
xox f?.

This is the Newtonian form ofthe lens equation, the
first statement of which appeared in Newton’s Opticks
in 1704, The signsofx, and x; are reckoned with respect
to theirconcomitant foci. By convention x, is taken tobe positive left of F,, whereas x, is positive on the right
of F. To he sure, it is evident from Eq.(5.23) that
and % havelike signs, which means that the objeri and
imagemust be on opposite sides of their respective focalpoints,
This is a good thing for the neophyte to remember

(5.23)

 

(a)
much as the eye projects its image on theretina, (d) The minified,
rightside-up, virtual image formed by a negative lens.

 
Figure 5.25 Object and image location for a thin lens.
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when making those hasty freehand ray diagrams for
which heis already infamous.

The ratio of the transverse dimensions of the final
image formed by any optical system to the correspond-
ing dimension of the object is defined as the lateral or
transverse magnification, M, thatis,

Mw,Yo (5.24)

Or from Eq. (5.20)
Si

Mpa,5, (5.25)

Thusa positive My connotes an erect image, while a negative
value means the imageis inverted (see Table 5.2). Bear in
mind that s, and s, are both positive for real objects
and images. Clearly, then, all such images formed bya single
thin lens will be inverted. The Newtonian expression for
the magnification follows from Eqs. (5.19) and (5.22)
and Fig. 5.24, whence

Me fox
The term magnification is a misnomer,since the magni-
tude of My can certainly be less than 1, in which case
the imageis smaller than the object. We have My = ~1
when the object and image distances are positive and
equal, and that happens (5.17) only when s,©5;©2fThis turns out to be the configuration in which the
object and image are as close together as they can
possibly get (i.e., a distance 4f apart; see Problem 5.6).
Table 5.3 summarizes a numberofimage configurations
resulting from the juxtaposition of a thin lens and a
real object. Figure 5.26 illustrates the behavior pic-

(5.26)

Table 5.2 Meanings associated with the signs of various thin Jens
and spherical interface parameters.

Quantity Sign7 =

 
  
 
 

Virtual object
Virtual image
Diverging lens
Inverted objectInverted image
Inverted image

Realobject
Real image
Converging lens
Erect object
Erect image
Erect image  
 

 
Figure 5.26 The image-forming behaviorof a thin positive Iens
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able 5.3. Images of real objects fermedby thin lenses. 
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Figure 5.27. The transverse magnification is different from the

Our purpose here is not ta become proficient in the

Convex== SSObject Image
Location Lype Location Orientation | Relative size

mos >of] Real|f<s,<2f[ Inverted Minified
22h Real|5, =9; Inverted Samesize
f<s <2)|Real|o> s>2/] Inverted Magnified
sof fica
ast Virtual|[s,] > 5, Erect Magnified longitudinal magnification.

Concave
Object image

Lncation Location eave se, Thinelens CombinationsAnywhere [Virtual|Isl<|fl|Erect Minified
& > |s)

  
 

torially. Observe that as the object approachesthelens,
the real image moves away from it.

Presumably, the image ofa three-dimensionalobject
will itself occupy a three-dimensional region of space.
The optical system can apparently affect both the trans-
verse and longitudinal dimensions of the image. The
longitudinal magnification, M,, which relates to the axial
direction, is defined as

dadx,”M, (5.27)

This is the ratio of an infinitesimal axial length in the
tegion of the imageto the correspondinglength in the
region of the object. Differentiating Eq. (5.23) leads to

 My —= Me (5.28)
for a thinlensin a single medium (Fig. 5.27). Evidently,
M, <0, which implies that a positive dx, corresponds
toa negative dx, and vice versa.In ther words,a finger
Pointing toward the lensis imaged pointing. away fromit (Fig, 5.28),

Form the image of a window on a sheet ofpaper,
using a simple convex lens. Assuming a lovely arboreal
Scene, image the distant trees on the screen. Now move
the paper away from the fens, so thatit intersects aferent region of the image space. Thetrees will fade
while the nearby windowitself comes into view.

subtle intricacies of modern lens design, but rather to
begin to appreciate, utilize, and adapt those systems
already available.

In constructing a new optical system, one gencrally
begins by sketching out a rough arrangementusing the
quickest approximate calculations. Refinements are
then added as the designer goes on to the prodigious
and more exact ray-tracing techniques. Nowadays these
computations are most often carried out by electronic
digital computers. Even so, the simple thin-iens concept
provides a highly useful basis for preliminary calcula-
tions in a broad rangeofsituations.

Nolens is actually a thin Jens in thestrict sense of
having a thickness that approaches zero. Yet many
simple lenses, for all practical purposes, function in a
fashion equivalent to that of a thin lens. Almost all

 
Figure 5.28 Imageorientation for a thin lens.
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spectacle lenses, which, by the way, have been used at
least since the thirteenth century, are in this category.
Whenthe radii of curvature are large and the lens
diameter is small, the thickness will usually be small as
well. A lens of this sort would generally have a large
focal length, compared with which the thickness would
be quite small; many early tclescope objectives fit that
description perfectly.

Wewill now derive some expressions for parameters
associated with thin-lens combinations. The approach
here will be fairly simple, leaving the more elaborate
traditional treatment for those tenacious enough to
pursue the matter into the next chapter.

Suppose we have two thin positive lenses L, and Ly
separated by a distance d, which is smaller than either
focal length, as in Fig. 5.29. The resuking image can
be located graphically as follows. If we overlook Ly for
a moment,the image formed exclusively by L, is con-
structed with rays 1 and 3.As usual, these pass through
the lens object and imagefoci, F,, and F;,, respectively.
Theobject isin a normal plane, so that two rays deter-

— Figure5.29 Twothin lenses separatedby a distance(by smaller than either focal length.

mine its top, and a perpendicular to the optical axis
finds its bottom. Ray 2 is then constructed running
backward from P} through O,. Insertion of Le has no
effect on ray 2, whereas ray 3 is refracted through the
image focus Fiz of Ly. The intersection of rays 2 and
3 fixes the image, which in this particular caseis real,
minified, and inverted.

A similar pair of lensesis illustrated in Fig. 5.30, in
which the separation has been increased. Once again
rays | and 3 through F;, and F,; fx the position of the
intermediate irnage generated by L, alone. As before,
ray 2 is drawn backward from O, to P; to S,. The
intersection of rays 2 and 3, as the latter is refracted
through Fy», locates the final image. ‘This timeit is real
and erect. Notice that if the focal length of L» is
increased with all else constant, the size of the image
increases as well.

Analytically, we have for Ly
t 1 1_—P (5.29)
Safi Son

 

 

 

Su 5,30)Soi

This is positive, and the intermediate image is to the
right of L,. when s,; > f, and f, > 0. For Ly

So=E> Sry 15.92)
and if d > s;,, the object for Lg is real (as in Fig. 5.30),
whereasif d < 5,1, it is virtual (s,» <0. as in Fig. 5.29).
In the former instance the rays approaching L2 are
diverging from P{, whereas in the latter they are con-verging towardit. Furthermore,

bolo
sig fe + Son

or

spede,Soa—fa

 
Figure 5.30 Twothin lenses separated by a distance greater
chan the sum of their focal lengths.

Using Eq.(5.31), we obtain
(d= she

(d= 517 fo)”
Sia (5.32)

In this same way we could compute the response of anynumberof thin lenses. It will often be convenient to
haveasingle expression,at least when dealing with only
twolenses, so substituting for s,, from Eq. (5.29), we get

£ So fills=fy)
d—fo—snhiloa—f) (5.33)

Here 5,; and s;, are the object and image distances,
respectively, of the compound lens. As an example, let’s
compute the image distance associated with an object
placed 50 cm from the first of two positive lenses. ‘These

Se
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in turn are separated by 20 cm and have focal lengths
of 30cm and 50cm, respectively. By direct substitution
(8.33)

_ 50(20) — 50(50)(30)/(50 — 30) _ og
20-50 — 5030/5030)

Sig

and the imageis real. Inasmuch as Ly “magnifies” the
intermediate image formed hy £,, the total transverse
magnification of the compound lens is the product of
the individual magnifications, thatis,

Mr MrMro.
It is left as Problem (5.25) to show that

_ fism
451 — fy) — Sf

in the above example

My (5.34)

gg.20(50 — 80) — 50(80)

and just as we should have guessed from Fig. 5.29, the
image is minified and inverted.Thedistance from theJast surface of an optical system
to the second focal point of that systern as a whole is
known as the back focal length, or b.f.l. Likewise, the
distance from the vertex of the first surface to thefirst
or object focus is the front local fength, or f£.£.L. Con-
sequently if we let 5,2 0%, %2 approaches fz, which
combined with Eq. (5.31) tells usthat s;;-* d~ fy. Hence
from Eq. (8.29)

a) ho attSodaex fi (df) fild— fy
Butthis special value of 5,, is the £.£.1.:

{d= fo} -err (3.38)
d- (fit fe)

Inthe sameway, letting s,,=0 in Eq.(5.33), ($1~fi) >
So, and since s;» is then the b.f.1., we have

fold = fd
a-(fit fay

To see fow this works numerically, let's find beth the
b#l. and £41. for the thin-lens systern in Fig. 5.31 {a},

 

b£L = (3.36)

 —30 cm and fg = +20cm. Then
20[10 — (—80y]_
10 — (80 + 20)

and similarly f.£.. = 15cm. Incidentally. notice
a= f,+/s, plane waves entering the compound
from either side will emerge as plane waves (Probja
5.27), as in telescopic systems.

Observe thatif d + 0, thatis, if the lenses are b;
into contact, as in the case of some achromatic di

hin lens has an effective focal length, f, 
 
 
 
 

that if chere are N such lenses in contact, 

ny of these conclusions can be verified, at leastwith a few simple lenses. Figure 5.29 is
to duplicate, and the procedure should be

11, whereas Fig. 5.30 requires a bit more care.
the focal lengths of the two lenses by

a distant source. Then hold oneofthe lenses
a fixed distance slightly greater than its focal length

¢ plane of observation (i.¢., a piece of white
¢). Now comes the maneuver that requires someKort if you don't have an optical bench. Move the

A lens (L,) toward the source, keeping it reason-
entered. Without any attempts to block out light

% Ly directly, you will probably see a blurred£ your hand folding £;. Position the Jenses so
region on the screen corresponding to L; is as

ible. The scene spread across L(ie., its
the image) will become clear anderect, as

 

b.f.l. = £6L = So.   
       
  
 
    
  
      10 one$$$hf,a    

         
    
    
     
  
 cally finite natureofall lenses demandsthat

only a fraction of the energy emitted by a
. The physical limitation presented by the

of a simple Iens therefore determines which
es Enter the systern to form an image. In that
the unobstructed or clear diameter of the lens

asan aperture into which energy flows. Any
beit the rim of a lens ara separate diaphragm,

des the amount oflight reaching the image
the aperture stop, abbreviated as A.S. The

diaphragm thatis usually located behind

  
 
   

     
   
  

Figure 5.31 A positive and negative thin-lens r=    
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Figure 5.32 Aperture stop andfeld stop.

the first few elements of a compound cameralens is
just such an aperture stop. Evidently it determines the
light-gathering capability of the lens as a whole. As
shownin Fig. 5.38, highly oblique rayscanstill enter a
system of this sort. Usually, however, they are deliber-
ately restricted in order to control the quality of the
image. The elementlimiting thesize or angularbreadth
of che object that can be imaged by the system is called
the field stop or F.S.—it determines the field of view
of the instrument. In a camera, the edge of the film
itself bounds the image plane and serves as the field
stop. Thus, while (Fig. 5.82) the aperture stop controls
the numberof rays from an object point reaching the
conjugate image point,it is the field stop that will or
will not obstruct those rays tn toto. Neither the very top
nor the bottom of the object in Fig. 5.32 passes the field
stop. Opening the circular aperture stop would cause
the system to accept a larger energy cone and in so
doing increase the irradiance at each image point. In
contrast, opening the field stop would allow the
extremities of the object. which were previously
blocked, to be imaged.

5.3.2 Entrance andExit Pupils

Another concept, quite useful in determining whether
or nota given raywill traverse the entire optical system,
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is the pupil. This is simply an image of the aperture stop.
The entrance pupil of a system is the image of the
aperture stop as seen from an axial point on the object
utrough those elements preceding the stop. If there are
no lenses between the object and the A.S., the latter
itself serves asthe entrance pupil. Toillustrate the point,
examine Fig, 5.33, whichis a lens with a rear aperture
stop. The image of the aperturestopin L is virtual (see
Table 5.3) and magnified.It can be located by sending
a few rays out from the edges of the A.S. in the usual
way. In contrast, the exit pupil is the image of the A.S.
as seen from an axial point on the image plane through
the interposedlenses, if there are any. In Fig. 5.33 there
are no such lenses, so the aperture stopitself serves as
the exit pupil. Notice that all of this just meansthat the
cone of light actually entering the optical system is
determined by the entrance pupil, whereas the cone
leavingit is controlled by the exit pupil. No rays from
the source point proceedingoutside of either conewill
makeit to the image plane.

If you wanted to use a telescope or a monocularas a
cameralens, you might. attach an externalfron! aperture
stop ta control the amount of incoming light for
exposure purposes, Figure 5.34 represents a similar
arrangementin whichthe entrance and exit pupil loca-tions should be self-evident. The last two diagrams

Entrance
pupil

  
Figure 5.33 Entrance pupil andexit pupil.

pupil

7 | Entrance

 
Figure 5.34 A front apesture stop.

included a ray labeled the chief ray. 11 is defined to be
any ray from an off-axis object point that passes through the
center of the aperture stop. The chief ray enters the optical
system along @ line directed toward the midpoint of the
entrance pupil, Ex, and leaves the system along a line passing
trough the center of the exit pupil, £.,. The chief ray,associated with a conical bundle of rays from a point
on the object, effectively behaves as the central ray of
the bundle andis representative ofit. Chief rays are of
particular importance when the aberrations of a Jens
design are being corrected.

Figure 5.35 depicts a somewhat more involved
arrangement. The two rays shown are those that are
usually traced through an optical systern, Oneis the
chief ray from a point on the periphery of the objectthat is to be accommodated by the system. The other
iscalled a marginalray, since it goes from theaxial object
point to the rim or margin of the entrance pupil (oraperture stop).

Ina situation where it is not clear which elementis
the actual aperture stop, each componentofthe system
must be imaged by the remaining elements to its left.
The image that subtendsthe smallest ongle at the axtad object
point is the entrance pupil. The element whose image is
the entrance pupil is then the aperturestopof the system
for that object point. Problem 5.30 deals with just this
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pupil Entrance
pupil

kind ofcalculation.
Notice how the cone of rays, in Fig. 5.36, that can

reach the image plane becomes narroweras the objet.
point movesoff-axis. The effective aperture stop, whichfor the axial bundle of rays was the rim of L,, has been
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Figure 5.35 Pupils and stops for athree-lens system.

markedly reduced for the off-axis bundle. The result
is a gradual fading out of the image at points near its
periphery, a process known as vignetting.

The locations and sizes of the pupils of an optical
system are of considerable practical importance. In

 

Figure 5.86 Vignetting.
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visual instruments, the observer's eye is positioned at
the center of the exit pupil. The pupil of the eye itself
will yary from 2mm to about 8 mm, depending on the
generalillumination level. Thusatelescope or binocular
designed primarily for evening use might have an exit
pupil of at least 8 mm (you may have heard the term
night glasses—they were quite popular on roofs during
the Second World War). In contrast, a daylight version
will suffice with an exit pupil of 3 or 4mm. Thelarger
the exit pupil, the easier it will be to align your eye
properly with the instrument. Obviously a telescopic
sight for a high-poweredrifle should have a large exit
pupil located far enough behind the scope so as to avoid
injury from recoil.

5.3.3 Relative Aperture and f-Number

Suppose we wish to collect the light from an extended
source and form an imageofit using a lens (or mirror).
The amountof energy gathered bythe lens (or mirror)
from some small region of a distant source will be
directly proportional to the area of the lens or, more
generally, to the area of the entrance pupil. A large
clear aperture will intersect a large cone of rays.
Obviously, if the source werea Jaser with a very narrow
beam, this would not necessarily be true. If we neglect
losses due to reflections, absorption, and so forth, the
incoming energywill be spread across a corresponding
region of the image. Thus the energy per unit area per
unit time (i.¢., the flux density or irradiance) will be
inversely proportional to the image area. The entrance
pupil area, if circular, varies as the square ofits radius
and is therefore proportional to the square of its
diameter D. Furthermore, the image area will vary as
the square ofits lateral dimension, which in turn [Egs.
(5.24) and (5.26)] is proportionalto f*, (Keep in mind
that we are talking about an extended object rather
than a point source. In the latter case, the image would
be confined toa very small area independentof f.) Thus
the flux density at the image plane varies as (D/f)’. The
ratio D/f is knownasthe relative aperture, and its inverse
is said to be the fenumber, or //#, thatis,

(5.40)
 

 

fh fis
Figure 5.37 Stopping downa lens to change the s-number,

where {/# should be understood as a single symbol,
For example, a lens with a 25-mm aperture anda 50-mm
focal length has an f-number of 2, which is usually
designated f/2. Figure 5.37illustrates the point by show-
ing a thin lens behind a variableiris diaphragm operat-
ing at either f/2 or f/4. A smaller fnumber clearly
permits morelight to reach the image plane.

Camera lenses are usually specified by their focal

lengths and largest possible apertures; for raeyou might see “50 mm, f/1.4” on the barrel of a ince
the photographic exposure timeis proportional to the
square of the f-rumber the Jat ig sometimes spokenof as the speed of the lens, Ar f/1.4 lens is said to be
twice as fast as an f/2 lens. Usually lens diaphragms
have f-number markings of-¥, 1.4, 2, 2.8, 4, 5.6, 8, 11,
16, 22, and so on. The largest relative aperture in this
case correspondsto f/1, and that's a fast lens—f/2 is
more typical. Each consecutive diaphragm setting
increases the f-number by a muitiplicative factor of V2{numerically rounded off). This corresponds to a
decrease in relative aperture by a multiplicative factor
of 1/¥2 and therefore a decreasein flux density by one
half. Thus, the same amountoflight wil! reach the film
whether the camera is set for f/1.4 at 1/500th of a
second, f/2 at 1/250th of a second,or f/2.8 at 1/125th
of a second? oeThe| refracting telescope in the world, located
at the Yerkes Observatory of the University of Chicago,
has a 40-inch diameter Jens with a focal length of 63
feet and therefore an f-number of 18.9. The entrance
pupil and focal length of a mirror will. im exactly the

same way, determine its fnumber. Accordingly, the
gQU-inch diameter mirror of the Mount Palomar tele-
scope, With a prime focal length of 666 inches, has an
fnumber of 3.33.For precise work, in which reflection and absorption
Josses in the lensitself must be taken into consideration,
the T-numdberis highly useful. In effect,it isa modified
(increased) f-numderthat a given real lens would actually
have to have wereit to transmit an amount of light
correspondingto a particular value of {/D.

————
5.4 MIRRORS

Mirrorsystems are being used in increasingly extensive
applications, particularly in the x-ray, ultraviolet, and
infrared regions of the spectrum. Although itis rela-
tively simple to construct a reflecting device that will
perform satisfactorily across a broad-frequency band-
width, the same cannot be said of refracting systems.
For example,a silicon or germaniumlens designed for
the infrared will be completely opaque in the visible
(Fig. 3.29). As we will see later, when we considertheir
aberrations, mirrors have other attributes that con-
tribute to their usefulness.

A mirror might simply be a pieceofblack glass or
finely polished metal surface. In the past mirrors were
usually madeby coating glass withsilver. the Jatter beiog
chosen because-ofits high efficiency in the UV and IR
(see Fig. 4.42), and the former because ofits rigidity.
In recent times, vacuum-evaporated coatings of
aluminum on highly polished substrates have become
the accepted standard for quality mirrors. Protective
coatings of silicon monoxide or magnesium fluoride are
often layered over the aluminum as well. In special
applications(e.g., in lasers), where even the smalllosses
due to metal surfaces cannot be tolerated, mirrors
formed of multilayered dielectric films (sce Section 9.9)
are indispensable.

A whole new generationoflightweight precision mir-
Tors is being developed for usein large-scale orbiting
telescopes—the technology is by no meansstatic.
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5.4.1 Planar Mirrors

Aswith all mirror configurations, those that are planarcan be either front- or back-surfaced. Thelatter is the
kind most commonly found in everyday use becauseit
allows the metallic reflecting layer to be completely
protected behind glass. In contrast, the majority of
mirrors designed for morecritical technical usage are
front-surtaced (Fig, 5.38).

Figure 5.38 A planar mirror. (a)
Reflection of waves. (bj Reflection ofrays.

 
 

(9)
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From Sections 4.2.2 and 4.2.3, it's a rather easy matter

to determinethe irnage characteristics of a planar mir-
ror. Examining the point source and mirror arrange-
mentof Fig. 5.38, we can quickly show that|s,| = |s,|.
that is, the image P andobject S are equidistant from
the surface, To wit, 6, = 6,, from the law of reflection;
4, +, is the exterior angle of triangle SPA and is
therefore equal to the sum ofthe alternate interior
angles, 4 VSA+ x VPA. But x VSA©@,, and therefore
4VSA=<2 VPA, This makestriangles VAS and VPA
congruent, in which case|s,| = |s,|. (Go back and take
another look at Problem 4.3 and Fig. 4.50 for the wave
picture of the reflection.)

Weare now faced with the problem of determining
a sign convention applicable to mirrors. Whatever we
choose, and you shouldcertainly realize that there is a
choice, we need only be faithful unto it for all to be
well. One obvious dilemma with respect to the conven-
tion for lenses is that nowthe virtual image is to the
tight of the interface, The observer sees P to be posi-
tioned behind the mirror, because the eye (or camera)
cannotperceive the actualreflection; it merely interpo-
lates the rays backward along straight lines. The rays
from P are diverging, and nolightcan be cast upon a
screen located at P—the image is certainly virtual.
Clearly, it is a matter of taste whether s; should be
defined as positive or negative in this instance. Since

 

 

 
Figure 5.89 (a) The imageof an extendedobject in a planar mirror,(b) Images in a planar mirror.

we rather like the idea of virtual object and image
distances being negative, we shall define s, and 5, as
negative when they lie to the right of the vertex V. This will
have the added benefit of yielding a mirror formula
identical to the Gaussian Jens equation (5.17). Evidently,
the same definition of the transverse magnification

 
Figure 5.40 Mirror images—inversion.
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(5.24) holds, where now,as before, My=+1 indicates
q life-size, virtual, erect image. -ach point of the extended object in Fig. 5.39, a
pezpendicular distance s; from the mirror, is imagedthat same distance behind the mirror. In this way, the
quire image is built up point by point. This is much

diferent from the way a lens locates an image. The
objectin Fig.5.28 wasa left hand, and the imageformed
by the Jens was also a left hand; to be sure, it mightpave been distorted (M, * My), but it wasstill a left
hand. The only evident change was a 180° rotation
about the optical axis—an effect known as reversion,
Contrarily, the mirror image of the left hand, deter-
mined by dropping perpendiculars from each point, is
a right hand (Fig. 5.40). Such an image is sometimes
said to be perverted. In deference to the more usual lay
connotation of the word, its use in optics is happily
waning. Theprocess that converts a right-handed coor-
dinate system in the object spaceinto a left-handed one
in the imagespaceis known as inversion. Systems with
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Figure 5.41 Inversions via reflection,
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Figure 5.42 Rotation of a mirror and the concomitant angulardisplacement of a beam.

more than one planar mirror can be used to produce
either an odd or even number of inversions. In the
latter case a right-handed (r-h) object will generate a
right-handed image (Fig. 5.41), whereas in the former
instance, the imagewill be left-handed (I-h).

There are a numberofpractical devices that utilize
rotating planar mirror systems, for example. choppers,
beam deflectors, and image rotators. Mirrors are
frequently used to amplify and measuretheslight rota-
tions of certain laboratory apparatus (galvanometers,

 
 

 

torsion pendulums, current balances, etc.). As Fy
shows, if the mirror rotates through an angle @ g
reflected beam or image will move through an any :of 2a, I

5.4.2 Aspherical Mirrors

Curved mirrors that form images very muchli]
of lenses or curved refracting surfaces have bee
since the time of the ancient Greeks. Euclid,
presumedto have authoredthe bookentitled Gaydiscussesin it both concave and convex mirrors,*
nately, we developed che conceptualbasis for designysuch mirrors when we spoke earlier about Fert
principle as applied to imagery in refracting sys
Suppose then, that we would like to determing
configuration a mirror must have in order thafjaincident plane wave be reformed upon rfl
a converging spherical wave (Fig. 5.48). If the pla
wave is ultimately to converge on somepoint F, tf]
optical path lengths for all rays must be eyut
ingly, for arbitrary points A, and Ay

 
 

OPL«W,A| + aie©Wodet Al
Since the plane & is parallel to the incident«a

WA, + AD,©WeAg + ADs. 
Equation (5.41) will therefore besatisfied for a suri
for which A,F * A,D, and AjF = AD,or, more &
erally, one for which AF = AD for any point A on
mirror. This same candition was discussed in Seqd
5.2.1, in which we found AF = e(AD), where # il
eccentricity of a conic section, Here the second me
is identicalto the first, n, = »,,and ¢ =n, = 1; ino
words, the surface fs a paraboloid with F asits fa
and & asits directrix. The rays could equally
reversed (.¢.,a point source at the focus of a para
would result in the emission of plane waves from
system. The paraboloidal configuration ranggg
present-day applications from flashlight and aug
headlight reflectors to giant radiotelescope

 
 

 

 
  

  ercay ra
Ney* Dioptrics denotes theoptics ofrefracting elements, whi: Paraboloidal radio antenna. (Photo courtesy of thedenotes the optics of reflecting surfaces. Sand Information Bureau.) 
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(Fig. 5.44), from microwave horns and acoustical dishes
to optical telescope mirrors and moon-based communi-
cations antennas. The convex paraboloidal mirror is
also possible butis less widely in use. Applying what we
already know, it should be evident from Fig. 5.45 that
an incident parallel bundle of rays will form a virtual
image at F when the mirroris convex andareal imagewhenit is concave,

There are several other aspherical mirrors of some
interest, namely, the ellipsoid (¢ < 1) and hyperboloid
(e> 1). Both produce perfect imagery between a pair
of conjugate axial points corresponding to their two

“foci (Fig. 5.46), As we shall see imminently, the Casse-
grainian and Gregorian telescope configurations utilize
convex secondary mirrors that are hyperboloidal and
ellipsoidal, respectively.

  
 
  
 
  
 
   

Figure 5.45 Real and virtual images for a paraboloidal mirror. 
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{b) Convex elliptical

 
(c) Concave hyperbolic {d) Concave elliptical

Figure 846 Hyperbolic andelliptical mirrors.

It should be noted thatall these devices are readily
available commercially. In fact, one can purchase off-axis
elements, in addition to the more common centered
systems. Thus, in Fig. 5.47 the focused beam can be
further processed without obstructing the mirror.

Figure 5.47 An off-axis parabolic mirror element.

Chapters Geometrical Optics—Paraxial Theory

Incidentally, this geometry also obtains in largewave horn antennas, which have a significantmodern communications.
  

Parabol
- lold
 
 
 
  
 
  

5.43 Spherical Mirrors

Weare again remindedofthe fact that precis
surfaces are considerably mare difficultto fab;
are spherical ones. The high one» are commensifiwith the increased time and meticulouseffort
Motivated by these practical considerations, wee
more turn to the spherical configuration to de
the circumstances under which it might perfog
adequately.

   
 

 
 
 
 
  
  

@ {b) ry

i) The Paraxiat Region
The well-known equation for the circular cross
of a sphere [Fig. 5.48(a)] is

P+ RP AR’,
  

 where the centerCis shifted from theorigin (lif
radius R. After writing this as

6.47) 
  

   this difference will be appreciable only when
ively large [Fig. 5.48(c)] in comparison to R. In
al region, that is, in the immediate vicinity of the

ne RE (RE sh!t, . ond two configurations will be essentially indis-1 vé. Thus if we talk about the paraxial theory

y-2Ret x= 
  we can solve for x:
  
  
 
  
  
 
  
 
 

Let’s just concern ourselves with values of = less0
R, thatis, we will study a hemisphere, open on
corresponding to the minus sign in Eq. (54
expansion in a binomialseries, x takes the form

x4)yi 1-3y°2R 2OIR? 2°31R°

This expression becomes quite meaningfulas 5
we realize that the standard equation for a Pal@
withits vertex at the origin andits focus a distan®
the right (Fig. 5.48(b)] is simply

yr a4fx.

  tent
oon

   eee that relates conjugate object and
fe physical parameters of a spherical

3ae rathereasily with the help ofFig.
by oe observe that since 8, = 6, the 4SAP

ag » Which therefore divides theside SPanto segments proportional to the

  
  
  
 

 
  

Thusby comparing these two formulas, we §@4f=2R (ie.if f= R/2), the first contributg
series can be thoughtofas parabolic, and the
  
 

 

  Figure 5.49 A concave spherical mirror.
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remaining two sides, thatis, In the paraxial regionSA ~ 5,, PA * «,, aes * Ee EN

xe _@& se becomes lim > fosEx PA" ow) a
Furthermore, y or image focus corresponds to

Si =s,-|R| and CP=|R|~—s, or lim sf.
from Eg. (5.49)

ie dee 2etoectos na
f © © f OR

where s, and 5; are on the left and therefore positive.
If we use the same sign convention for R as we did
when we dealt with refraction, it will be negative here,
becauseCis to the left of V (Le., the surface is concave).
Thus |R|=—R and

BCs, +R

  

which is often referred to as the mirror frm;
equally applicable to concave (R <0) and conve
0) mirrors. The primary or object focus is again fy = ~R/2. as we know From Fig. 5.45(c).. 4 ux the subscripts on the focal lengths, we

= (5, +R).

that f will be positive for concave mirrors«a: for convex mirrors (R > 0). In the

gaining mirror properties ave so similar to those
and spherical refracting surfaces that we need

jon them briefly, without repeating the entire
 
 
 
 theory, any parallel off-axis bundle of rays

[Scused to a point on the focal plane passing
# normalto the optical axis. Likewise, a finite

F object perpendicular to the optical axis will be

 
  
 
 
 Corresponding image point in the plane.

jainly true for a plane mirror, but it only
ates the case for other configurations. To be

if spherical mirror is appropriately restricted in
WPeration, the reflected waves arising from each

Btited object point will closely approximate
oe #aves. Under such circumstances goodfinite
Sf fextended objects can be formed(Fig. 5.51).
ach image point produced by a thin lens lies
Straightline through the optical center O. each

 
  

 
 
 
 
 

 Figure 5.50 Focusing of rays via a spherical mirror. (Photos by E.H.)  
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Figure 5.51
  

Finite imagery with spherical mirrors.

image point for a spherical mirror will lie on a ray
passing through both the center of curvature C and
the object point. As with the thin lens (Fig. 5.24), the
graphic location of the imageis quite straightforward.
Once morethe topofthe imageis located at the intersec-
tion of two rays, one initially parallel to the axis and
passing through F afterreflection, and the other going
straight through C (Fig, 5.52). The ray from anyoff-axis
object pointto the vertex forms equal angles with the
optical axis on reflection and is therefore particularly
convenient to construct as well. So too is the ray that
first passes throughthe focusand after reflection emer-
ges parallel to the axis.

Notice that triangles $,S,V and P,P, Vin Fig. 5.51 (a)
are similar, and hence their sides are proportional.
Taking 3; to be negative, as we did before, since it is
below the axis, we find that y;/y,= —s,/s,, which of
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 nm moved byall of this to 
_ mirtety
pya shiny ape de will be keer

  

 
 
 
 
 
 
 
 

Figure 5.52 (a) Reflection from a concave mirror, (b) Reflectionfrom a convex mirror.

courseis equal to My, the transverse magnification, iden-
tical to that of the lens (5.25),

The only equation that contains information about
the structure of the optical element (n, R, etc.) is that
for f and so, rather understandably, it differs for the
thin Jens and spherical mirror. The other funcional
expressionsthatrelate s,, s;, and f or ¥,, %, and My are,
however,precisely the same. Theonlyalteration in the
previous sign convention appears in Table 5.4, where
4 On theleft of V is now taken as positive. Thestriking
similarity between the properties of a concave mirrorand a convex lens on one hand and a convex mirror
and a concavelens onthe otherare quite evident from
a comparison of Tables 5.3 and 5.5, which are identical
in all respects.

Theproperties summarized in Table 5.5 and depicted
Pictorially in Fig. 5.53 can easily be verified empirically.
If you don’t have a spherical mirror at hand,a fairly
crude but functional one can be made by carefully
Table 5.4 Sign convention for spherical mirrors.
Quantity; Sign

Left of V, real object
Left of V, real imageConcave mirror
G tight of ¥, convexAbove axis, erect object
Aboveaxis, erect image

 

 
  
 

 Rightof V. virtual imageConvex mirror
C Jett of V, concave
Belowaxis, inverted objectBelow axis, inverted image   

    
 
 Table 5.5 {mages of real objects formed by spherical   Concave  

Oba | ImageLocation ‘Type Location
wm>a> offre|/<5 <2F
=f fReal|y= oF

|
=  

Orientation|Relativets
Inverted|MinifiedInverted Same
 

  

  

f<5,5 2f|Real > 5, > 2 Inverted May
=f 00
BSS Virtwal|[51> 5, Erect

__ Convex:Object Image
Location|Type* Location Orientation|Relative: 
 
 

Anywhere|Virtual||s)<I/l, Ereet$0 > Jil
Minified      
  

shaping aluminum foil over a spherical form,
the end of a light bulb (in that particular casey
therefore f will be smail). A rather nice quail
experimentinvolves examiningthe image of some]
object formed by a short focal-length concave}
As you move it toward the mirror from beyond!
tance of 2f = R,the image will gradually increas€:
at 5, = 2f it will appear inverted andlife-size. Bring
it oser will cause the image to increase even Hii
until it fills the entire mirror with ap unrecog®blur. As s, becomes smaller, the now erect, mags
image will continue to decrease untilthe objectrests on the mirror, where the image is again

 

   
       

 BES The image- forming behavior of @ concave spherical or  
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you ark7 examining the image

                   
 
   

    
  
  
  
    
  

 

5.5 PRISMS

Prisms have many different roles in optics; there are
prism combinations that serve as beam-splitters (see
Section 4.3.4), polarizing devices (see Section 8.4.3), and
even interferometers. Despite this diversity, the vast
majority of applications make use of only one of two
main prism functions. First, a prism can serve as a
dispersive device, as it does in a variety of spectrum
analyzers. Thatis to say,it is capable of separating, to
some extent, the constituent frequency componentsin
a polychromatic light beam. You mightrecall that the
term dispersion was introducedearlier (Section 3.5.1) in
connection with the frequency dependenceofthe index
of refraction, n(w), for dielectrics. In fact, the prism
provides a highly useful means of measuring (ca) over
a broad rangeoffrequencies and for a wide variety of
materials (including gases andliquids). Is second and
more common function is to effect a change in the
orientation of an image or in the direction of propaga-
tion of a beam, Prisms are incorporated in many optical
instruments, often simply to fold the system into a
confined space. There are inversion prisms, reversion
prisms, and prismsthat deviate a beam without inver-
sion or reversion—andall of this without‘dispersion.

  

  

§.5.1  Dispersing Prisms

Nowadays prisms comein a great vatiety of sizes and
shapes and perform an equally greatvariety of functions
(Fig. 5.54). Let’s first consider the group known as
dispersing prisms. Typically, a ray entering a dispers-
ing prism, as in Fig. 5.55, will emerge having been
deflected fromitsoriginal direction by anangle 6 known
as the angular deviation. At the first refraction the ray
is deviated through an angle (6;,— 4.), and at the
second refractionit is further deflected through (6,.—
#2). The total deviation is then
 B= (8~Bn) + (Or Bix).

Since the polygon ABCD contains two right angles,
4 BCD must be the supplementofthe apex angle a. As
the exterior angle to triangle BCD, @ is also the sum
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of the alternate interior angles, thatis.
a& A+ Ag. (5.51)

Thus .
6=O17 Og— a (3.52)

What we would like to do now is write 6 as a function
of both the angle of incidence for the ray (i.e., #,;) and
the prism angle a; these presumably would be known.
If the prism indexis # andit is immersedin air (n, = 1),it follows from Snell’s law that

6.=sin” (x sin @2)=sin”! [n sin (a~AJ).

 
Figure 8.54 Prisms. (Photo courtesy Melles Griot.)

 

    
  

  
 
 

2 Bim (itn and @ are fixed) is a function only
; sacnt angle at the first face, 8. A plot of the

~__s ‘ot E4- (5.53) as applied to a typical glass prismta Fig. 5.56. The smallest value of 8 is known.
_ omum devistion, 8,, and it is of particularganinis practical reasons. It can be determined

tydifferentiating Eq. (6.53)and then settingbut a more indirect route will certainly be
Mpifferentiating Eq. (5.52) and setting it equal

 
  

   

    pgere, We BCE

  
 |, Ma

day ayFigure 5.55 Geometryof a dispersing prism.
 Sere. = -)- Taking the derivative of Snell’s lawores:

#terface, we get
 
 

Upon expanding this expression, replacing ons Ba cos 6,; d0;,™ 2 COs Oy 26.)
(1 —sin® @,)'", and using Snell’s law we have= sin7' Ii 2_ gal leo

8. sin”! [(sin a)(n?—sin? 6,1) sin 6) cr af cos Buy dBjy = 1.608 Bip 0,9.

  
  
  
  
    
  

The}deyiguion is then fe as well, on differentiating Eq. (5.51), that d9,) =fis, since da = 0. Dividing the last two equations and
ituting for the derivatives, we obtain

 $~ 8, + sin” [(sin &)(n? - sin? 6.)   
sin 6, cosa]~a.

cos §, cos By
COS Hy COS Bg”

   
Apparently6 increases with n, which is itself a &
of frequency, so we might designate the d
5(2) or 6(A). For most transparent dielectrics of,
concern, 2(A) decreases as the wavelength Wig
across the visible (refer back to Fig. 3.27 for a ploti
n{A) versus A for various glasses]. Clearly, then, Mi]
will be less for red light than it is for blue.

Missionary reports from Asia in the early 1600s iif
cated that prisms were well known and highly valugg
in China because oftheir ability to generate chit: 2
number of scientists of the era, particularly Maes 9, = Oy
Grimaldi, and Boyle, had made some observationg
prisms, but it remained for the great Sir Isaac Ne qto perform the first definitive studies of dispersiog
February 6, 1672, Newton presenteda classic PaPSm
the Royal Suciety entitled “A New Theory aleut [8%and Colours.” He had concluded that white l!e®
sisted of a mixture of various colors andthat the
of refraction was color-dependent.

Returningto Eq.(5.53), it is evident that the
suffered by a monochromatic beam on tra’

  
(isking use of Snell's law once again, we can rewrite-thisas 

  
  
  
  
  
  

L-sin?@, n?=si
 1-sin? 6, 2? - si 

 he value of 6;; for which this is true is the one for
hich d5/d9,, = 0. Inasmuch as n # 1, it follows that
 
 BS Weereefcere:

    
 Gum Og.
 
  
  

WSspheans that the ray for which the deviation is a
emia traverses the prism symmetrically, that is,

lel to its base. Incidentally, there is a lovely argu-
Byvhy 0, must equal 9, which is neither asai noras tedious as the one we have evolved.

BeeDPose a ray undergoes a minimum deviation
Thenif we reverse the ray, it will retrace
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8(degrees!  
  

 
  
  
  

“30 400 «UDO
Aly (degrees)

Figure 5.56 Deviation versus incident angle. .

the same path, so 8 must be unchanged {i.e., 5= 6,).
But this implies that there are two different incident
angles for which the deviation is a minimum, and this
we knowis not true—ergo 61" 2.

In the case when & = 6,, it follows from Eqs. (5.51)
and (5,52) that 6,=(6,+a@)/2 and 6, = a/2,
whereupon Snell's law at the first interface leads to

n (8, + @)/2] 4nase {5.54}
This equation forms the basis of oneof the most accurate
techniques for determining the refractive index of a
transparentsubstance. Effectively, one fashions a prism
out of the material in question, and then, measuring a
and 6,,(A), (A) is computed employing Eq. (5.54) at
each wavelength of interest. Hollow prisrns whose sides
are fabricated of plane-parallel glass can befilled with
liquids or gases under high pressure; the glass plates
will not result in any deviation of their own.

Figures 5.57 and 5.58 show two examples of constant-
deviation dispersing prisms, which are important
primarily in spectroscopy. The Pellin-Broca prism is
probably the most commonofthe group.Albeit a single
block of glass, it can be envisaged as consisting of two
30°-60°-90° prisms and one 45°-45°-90° prism. Sup-
pose chatin the position shown a single monochromatic
ray of wavelength A traverses the component prism
DAE symmetrically, thereafter to be reflected at 45°
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Figure 5.57 The Pellin-Broca prism,

from face AB, The ray will then traverse prism CDB
symmetrically, having experiencedatotal deviation of
90°. The ray can be thoughtof as having passed through
an ordinary 60° prism (DAE combined with CDB) at
minimum deviation. All other wavelengths present in
the beam will emerge at other angles. If the prism is
now rotated slightly about an axis normalto the paper,
the incoming beam will have a new incident angle. A
different wavelength component, say A», will now
undergo a minimum deviation, which is again 90°—
hence the name, constant deviation. With a prism ofthis
sort, one can conveniently set up the light source and
viewing system at a fixed angle (here 90°) and then
simply rotate the prism to look at a particular
wavelength. The device can be calibrated so that the
prism-rotating dial reads directly in wavelength.

5.5.2 Reflecting Prisms
We now examine reffecting prisms, in which dispersion
is not desirable. In this case, the beam is introduced in
such a way that at least one internal reflection takes
place, for the specific purpose of either changing the

  
 

 
 
 
  
 
 
 
 
 
  
 
 
 
 

direction of propagationortheorientation oor both.
Let's first establish thatit is actually Possible

such an internal reflection without concomitant
sion. In other words,is 8 independentof A> The
in Fig. 5.59 is assumed to haveas its profile an j
triangle—this happensto be a rather common
ration in any event. Theray refracted at the fxg
face is later reflected from face FG. As we say =
(Section 4.3.4), this will occur when the internal is
angle is greater than thecritical angle @,, def

 
 

sin 6, = ny.

Fora glass-air interface, this requiresthat 0, be 8than roughly 42°. To avoid any difficulties at sy
angles, let's further suppose that the base a
hypothetical prism is silvered as well—certain py
doin fact require silvered faces. The angle of deyigh
between the incoming and outgoing raysis

& = 180° — xBED.

 
 9 Geometry of a reflecting prism, ts   
   and therefore @, = 6:9. From Snell's law we know that

this is equivalent to 6,, 62, whereupon the deviationbecomes
 

 
From the polygon ABED wehave

a+XADE +XBED +XABE©360°,   ADE 90° + 6.  
  ting for BED in Eq. (5.55), we get

6 = 8, + Got a (6.56)  b= 26, +a, (5.57)   Moreover,at the two refracting surfaces   which is certainly independent of both A and n. The
reflection will occur without any color preferences, and
the prism is said to be achromatic. If we unfold the prism,
that is, if we draw its image in thereflecting surface
FG, as in Fig. 5.59(b), we see thatit is equivalent in a

    XABE = 90° + 6,  he ray at point C has equal angles of incidence
flection, 4BCF = x.DCG. Thus, because the
ibisosceles,BFC = 4DGG,andtriangles FBC© are similar. It follows that 4FBC = 4 CDG.

  
  
  
 
 
 
 
 
 
 

 
  
 
 

 

 
  

Figure 5.58 The Abbeprism. HRi The vight-angle prism. Figure 5.62 The Doveprism.

 
Figure 5.61 ThePorroprism. 
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Figure 5.63 The Amici prism,

sense to a parallelepiped or thick planar plate. The
image of the incident ray emerges parallel to itself,
regardless of wavelength.

A few of the many widely used refecting prisms are
shownin the next severalfigures. These are often made
from BSC-2 or C-1 glass (see Table 6.2). For che most
part, the illustrations are self-explanatory, so the
descriptive commentarywill be brief.

Theright-angle prism(Fig. 5.60) deviates rays normal
to the incident face by 90°. Notice that the top and
bottom of the image have been interchanged,thatis,
the arrow has been flipped over butthe right and left
sides havenot. It is therefore an inversion system with
the top face acting like a plane mirror. (Te see this,
imagine that the arrow and lollypop are vectors and
take their cross-product. Theresultant. arrow x lolly-
pop. wasinitially in the propagation direction but is
reversed by the prism.)

The Porro prism (Fig. 5.61) is physically the same as
the right-angle prism butis used in a different orienta-
tion. After two reflections, the beam is deviated by 180°.
Thus,if it enters right-handed, it leaves right-handed.

The Dove (Fig. 5.62) is a truncated version(to reduce
size and weight) of the right-angle prism, used almost

- splittirig the image downthe middle andinter-right and left portions.* These prisms are
yuu the 90° roof angle must be hetd to     

 result, They are often used in simple tele-
15 to correct for the reversion introduced

 
  

angle prism with a roof section added en to) fil
hypotenuse face. In its most common useit hai

 
        
   gvsed as endreflectors in small range finders.

omboid prism (Fig, 5.65) displaces the line of
jout producing any angular deviation or

Sin the orientation of the image.
n—Springer prism (Fig. 5.66} also has a 90°

ere the line of sight is displaced without being

                   
  
  

Gand looking directly inta the combination, If you wink
Bye, the imagewilt winkiits right cye. Incidentally, if your
      
  
  
   Figure 8.65 The rhomboid prism andits mirror equivalgiigy
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Figure 5.67 ‘The double Porro prism.

deviated, but the emerging image is right-handed and
rotated through 180°. The prism can therefore serve
to erect images in telescope systems, such as gun sightsand thelike.

There are many more reflecting prisms that serve
specific purposes, For example, if one simply cuts a cube
so that the piece removed has three mutually perpen-
dicular faces,it is called a comer-cube prism. It has the
property of being retrodirective: thatis, it will reflect
all incoming rays back along their original directions.
One hundredofthese prismsare sitting in an 18-inch
square array 240,000 miles from here, having been
placed on the Moon during the Apollo 11 flight.*

The most common erecting system consists of two
Porro prisms, as illustrated in Fig. 5.67. These are
relatively easy to manufacture and are shown here with
rounded corners to reduce weight and size. Since there
are four reflections, the exiting image will be right-
handed. A small slot is often cut in the hypotenuseface
to obstruct rays that are internally reflected at glancing
angles. Finding theseslots after disrnantling the family’s
binocularsis all too often an inexplicable surprise.  
“J. E. Foller and E. J. Wampler, “The Luar Laser Reflector.” Sci,
Am., March 1970, p. 38.
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ed
5.6 FIBEROPTICS

In recent times, techniques have been evolved for
efficiently conducting light from one point in space to
anothervia transparent,dielectric fibers. As long as the
diameter of these fibers is large compared with the
wavelength of the radiant energy, the inherent wave
nature of che propagation mechanistnis oflittle impor-tance, and the process obeys the familiar laws of
geometrical optics, On the other hand, if the diameter
is of the order of A, the transmission closely resembles
the manner in which microwaves advance along
waveguides. Someof the propagation modes are evident
in the photomicrographic end views of fibers shown in
Fig. 5.68, Here the wave nature of light must be reck-
oned with and this behavior therefore resides in the
domain of physical optics. Although optical waveguides,
particularly of the thin-film variety, are of increasinginterest, this discussion will be limited to the case of
relatively large diameter fibers.

Consider the straight glass cylinder of Fig. 5.69 sur-
rounded byair. Lightstrikingits walls from within will
be totally internally reflected, provided thatthe incident
angle at each reflection is greater than 6, = sin”! n,/nj,
where n, is the index of the cylinder or fiber. As we
will show, a meridionalray (i.e., one thatis coplanar with
the optical axis) might undergoseveral thousand reflec-
tions per foot as it bounces back and forth alonga fiber,
until it emerges at the far end (Fig. 5.70). If the ber
has a diameter D anda length L, the path length ¢
traversed by the ray will be

€= Licos6, (5.58)
or from Snell's law

€= nL(nj~sin® 6,17. (5.59)
‘The numberofreflections N is then given by

éa
Djsin 6,

(5.60)sm 8,
“Dako entayzth

N= DoF an? ay *!

 
   
 

 
30°, N turnsout to

ately 2000 reflections per foot. Fibers are
in diameters from about 2 4m to } inch or so

Hep, 204 if mp7 1-6 and 6,  
 

seldom used in sizes much smaller than about
The large-diameter rods are generally called

% Extremely thin glass (or plastic) filaments are
ible and can even be woven into fabric.

smooth surface of a single fiber must be kept
moisture, dust, oil, etc,), if there is to be no

fee of light(via the mechanism of frustrated totalflection). Similarly,if large numbersoffibers
ed in close proximity, light may leak from one

Wither in what is knownascross-talk, For these
fs now customary to enshroudeach fberin

t sheath of lower index called a cladding.
Fimeed only be thick enough to provide the

 
 

  
 
   
      
    
 
   
 

f= g@bout one tenth of the cross-sectional area.
1 feferences in theliterature to simple “light
fie 100 years, the modern era of fiberoptics

sally the introduction of clad fibers in 1953.
ically, a fiber core might have an index (n,)} of
nd ihe cladding an index (n,) of 1.52, althoughalses is available. A clad fiber is shown in

= that there is a maximum value 8,,,.. of
Which the internal ray will impingeat thecritical

6, Ray: incident on the face at angles greater

 
  Figure 5.68 Optical waveguide mode patterns seen in ¢
of small-diameterfibers. (Photo courtesy of Narinder §, 

    
 
   

 
   

  
 Figure 5.69 Rays reficcted within a dielectric cylinderg    

rounded off to the nearest whole number. The&
which depends on wheretheray strikes the end 3g
is of no significance whenNislarge,asit is in pradg
Thus if D is 504m (.e., 50 microns where|ii
10° m = 39.37 x 107° in), which is about 2 x 10 a Uphair from the head of a human is roughly 4
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Figure 5.71 Raysin a clad optical fiber.

than @pay will strike the interior wall at angles less than
8.. They will be only partially reflected at each such
encounter with the core-cladding interface and will
quickly leak out of the fiber. Accordingly, Ona. which
is knownas the acceptance angle, defines the half-angleof the acceptance cone of the fiber. To determineit wewrite

sin 8 = n/n,—sin (90-4).
Thus

n fry=cos 6, (5.61)or

n/n = (L— sin® 6)".
Making use of Snell's Jaw and rearranging matters, wehave

. Lad pate 56
sin 6a. > 2 ne (5.62)

The quantity 1, sin 0,,.. is defined as the numerical
aperture, or NA.Its square is a measureof thelight-
gathering powerof the system. The term originates in
microscopy, where the equivalent expression character-
izes the corresponding capabilities of the objective lens.
it should clearly relate to the speed of the system, and,in fact,

 

fit = BINA) (5.63) Thus for a fber

NA™ (n7 neyue, (6.64)
Theleft-hand side of Eq. (5.62) cannot exceed 1, and
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in air (i,~1.00028=1) that means that the largest
value of NAis I. In this case, the half-angle @,,,, equals
90°, and the fiber cotally internally reflects all lightentering its face (Problem 5.55). Fibers with a wide
variety of numerical apertures, from about 0.2 up to
and including 1.0, are commercially obtainable.

Bundlesoffree fibers whase ends are bound together
{e.g., with epoxy), ground, and polished form flexible
light guides. If no attempt is made to align the fibers
in an ordered artay, they form an incoherent bundle,
This unfortunate use of the term incoherent (which
should not be confused with coherence theory) just
means, for example, that thefirst fiber in the top row
at the entrance face may haveits terminus anywhere in
the bundle at the exit face. These flexible light carriers
are, for thatreason, relatively easy to make and inexpen-
sive. Their primary function is simply to conductlight
from one region toanother. Conversely, when the fibers
are carefully arranged sothattheir terminations occupy
the same relative positions in both of the bound ends
of the bundle, it is said to be coherent. Such an arrange-
ment is capable of transmitting images and is con-
sequently, known as a flexible image carrier. Incidentally,
coherent bundlesare frequently fashioned by windingfibers on a drum to make ribbons, which are then
carefully layered. When one end of such a device is
placed face downflat on an illuminated surface. a point-
by-point image of whatever is beneathit will appear at
the other end (Fig. 5.72). These bundles can be tipped
off with a small lens, so that they need notbe in contact
with the object under examination. Nowadaysit is com-
monto use fiberoptic instruments to pokeintoall sorts
of unlikely places, from nuclear reactor cores and jet
engines to stomachs and reproductive organs. When a
device is used to examine interna! body cavities, it's
called an endoscope. This categoryincludes broncho-
scopes, colonoscopes, gastroscopes, andso forth, all of
which are generally less than about 200 cmin length.
Similar industrial instrumentsare usually two or three
times as long andoften contain 5000 to 50,000 fibers,
depending on the required image resolution and theoverall diameter that can be accommodated. An addi-
tional incoherent bundle incorporated into the device
usually supplies the illumination.

Not alt fiberoptic arrays are made flexible; for

  

 

 
 ber commonapplication of mosaics
 
 
 
 
  
 

example, fused. rigid, coherent fiber face, nat :
mosaics, are used to replace homogencii le Peea js the field flattener, If the image
resolution sheet glass on cathode-ray tubes, y oe a lens system resides ona curved surface, it
imageintensifiers, and other devices. Mosaics ¢9; sirable (2 reshapeit into a plane,for example,of literally millions of fibers with their claddin, ‘a film plate. A mosaic can be ground and
together have mechanical properties almost ident 4 on oneofits end surfaces to correspond to
homogeneousglass. Similarly, a sheet of fused afihe image and on the other to match the
fibers can either magnify or minify an image, dep a naturally occurring fibrous
on whetherthe light enters the smaller or large fn as ® when polished, responds sur-
of the fiber. The compound eye of an insect Relyilike « = « mosaic. (Hobby shops often.
the housefly is effectively a bundle of taperetif feforusse in making jewelry.) /
optical filaments. The rods and cones that make § have never seen the kindof light conduction
human retina mayalso channellight throughtotal int int ahout, try looking down the edgesri Even better are the much

{0.18-mm) cover-glass slides. Figure 5.73 shows
Plightis conveyed to the upper surface of astackFp hundred of these slides held together by aid.

fiberoptics has three very different applica-
as: itis used for the direct transmission of images

Wnination,it serves as the core of a new family
and it provides a variety of remarkable

sused in telecommunications. The idea of
images overdistances of a few meters withj dles, however beautiful and howeveruse-

is really a rather unsophisticated business chatGesn't start to utilize the full potential inherent in
SesDuring the past few decadesthe application

65 to telecommunications has begun some-
revolution. Even more recently, fiberoptic
ices that measure pressure, sound, tem-

| Bxolare, current, liquid levels, electric anda Bgicids, rotations, and so forth—have becomemanifestation of the versatility of fibers.

“ | is now in the beginning stages of a newtelecommunications, with radiant energy
| meong fibers replacing electricity moving in

| Bees—Notfor transmitting power, but informa-

Figure 5.72 A coherent bundle of 10 ym glass fibers tran!

he Imuch higher frequencies of light allow for
dible increase in data-handling capacity. For

an image even though knotted and sharply bent. (Photo cogAmencan Cystoscope Makers, Inc.)
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Figure 5.73 A stack of cover-glass slides held together by a rubber
bandserves as a coherent light guide, (Photo by E.H.)

1300 simultaneoustelephone conversations, and that,
in turn, is roughly the equal of sending some 2500
typewritten pages each second, Clearly, at presentit’s
quite impractical to attemptto sendtelevision over cop-
per telephonelines.Yetit’s already possible to transmit
in excess of 12,000 simultaneous conversations over a
single pair of fibers—that’s more than ninetelevisionchannels, Each such fiber has a line rate of about 400
million bits of information per second (400 Mb/s), or
6000 voice circuits. This is only the beginning; rates of
2000 Mb/s will be widely available before long. The
technologyis in its infancy.

Capacitiesachieved to date don’t even begin to
approach the theoretical limit. Still, the accomplisb-
ments of recent times are impressive. For example, the
new transatlantic cable TAT-8isa fiberoptic system that
is designed, using some clever data-handling tech-
niques, to carry 40,000 conversations at once over just
twopairs of glass fibers. TAT-1, a coppercable installed
in 1956, could carry a mere 51 conversations, and the
last of the bulky copper versions, TAT-7 (1983), can
handle only about 8000. Significantly, the TAT-8 is
designed to have regeneratars or repeaters (to boost
the signal strength) every 50 km (30 mi) or more. That
should be compared with the copper TAT-7, whichhas
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amplifiers eyery 10km or so. This feature is trernen-
dously important in long-distance communications.
Ordinary wire systems require repeaters roughly every
kilometer; electrical coaxial networks extend that range
to about 2 to 6 km; even radio transmissions through
the atmosphere need regeneration every 30 to 50 km.
It is anticipated that high-performance fiber systems
will extend the repeater separation to upward of{50 km.

A major determining factor in the spacing of
repeaters is the power loss due to attenuation of the
signal asit propagates downtheline. The decibel (4B)
is the customary unit used to designate the ratio of two
powerlevels, and as such it can provide a convenient
indication of the power-out (P,) with respect to the
power-in (P;). The numberof dB = ~10 log (P,/P;), and.
hence a ratio of 1:10 is 10 dB, 1:100 is 20 dB, 1:1000
is 30dB, and so on. The attenuation (a) is usually
specified in decibels per kilometer (dB/km) of fiber
fength (L). Thus —aL/10 = log (P,/P,), and if we raise
10 to the powerof both sides,

P,/P,=19710, (5.65)
Asa rule, reamplification of the signalis necessary when
the power has dropped bya factor of about 107°. Gom-
mercial optical glass, the kind of material available for
fibers in the mid-1960s, has an attenuation of about
1000 dB/km. Light, after being transmitted 1 km
through the stuff, would drop in powerby a factor of
107", and regenerators would be needed every 50m
(whichis little better than communicating with a string
and two tin cans). By 1970 @ was down to about
20dB/km for fused silica (quartz, SiO), and it was
reducedto aslittle as 0.16 dB/km in 1982. This tremen-
dous decrease in attenuation was achieved mostly by
removing impurities (especially the ions ofiron, nickel,
and copper) and reducing contamination by OH
groups,largely accomplished by scrupulously elizninat-
ing any traces of waterin the glass (p.62).

Figure 5.74 depicts the three major fiber configu-
rations used in communicationstoday.In (a) the core is
relatively wide, and the indices of core and cladding
are both constant throughout. This is the so-called
Stepped-index fiber, with a homogeneous core of 50 to
150 wm or more and cladding with an outer diameter

 
   
 

d is usually digitized in some coded
n sent along the fibers as a flood of

5 or bits per second. The differenthe undesirable effect of changing
he pulses oflight that representthesignal.sharp rectangular pulse can smear

traveling 2 few kilometers within the fiber,
unrecognizable blur (Fig. 5.76).

tal ime delay between the arrival of che axial
‘the slowest ray, che one traveling the longest

is AL = Lmax ~ fimins Here,referring back to Fig.
minimem time of travelis just the axial length

by the speed oflight in the fiber:

{UU 
  
 
 
 
  
 
 
 
  

 Figure 5.76 Rectangular pulses of light smeared outby increasing
amounts of dispersion. Note how the closely spaced pulses degrade route (¢), given by Eq. (5.58), is longest

s incidentat thecritical angle, whereupon 
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Figure 5.74 The three major Hiberoptic configurations

Asan example, suppose %-= 1.500 and », = 1.489. Thedelay, A/’L, then turns out to be 37 ns/km. In other
words, a sharp pulse oflight entering the system willbe spread out jn time some 37 ns for each kilometer
of fiber traversed. Moreover, traveling at a speed
uy= city = 2.0 x 108 m/s, it will spread in space over alength of 7.4 m/km. To makesure that the transmitied
signal will still be easily readable, we might require that
the spatial (or temporal) separation beat least twice the
spread-out width (Fig. 5.77). New imaginethe line to
be 1.0 km long.In that case the output pulses are 7.4 m
wide on emerging from the fiber and so musi be sepa-
rated by 14.8 m. This means that the input pulses must
beat least 14.8 mapart; they must be separated in time
by 74 ns and so cannot comeany faster than oneevery
74 ns, whichis a rate of13.5 million pulses per second.
In this way the intermodal! dispersion (which is typ-
ically 15 to 80 ns/km) limits the frequency ofthe input
signal, thereby dictating the rate at which infarmation
can be ted throughthesystem.

This problem of delay differences can be reduced as
much as a hundredfold by gradually varying the refrac-
tive index of the core, decreasingit radially outward to
the cladding [Fig. 5.74(b)]. Instead of following sharp
zigzag paths, the rays then smoothly spiral around the

 
fuilows that, subtracting Eq. (5.66) from Eq. 

   
of roughly 100 to 250 wm.
the stepped-index fiber was widely used in firs!
ation systems (1975-1980). The comparatively
central core makes it rugged and easily infuse
light, as well as easily terminated and coupled.
least expensive but also, as we will see pret
least effective of the lot, and for long-range appit has some serious drawbacks.

Depending onthe launchangle into the fibegygy
can be hundreds, even thousands,of different
or modesby which energy can propagate down &%
(Fig. 5.75). This then is a muitimode fiber, whe’
mode corresponds to a slightly different transit
Higher-angle rays travel longer paths; reflectifi
side to side, they take longerto get to the end
fiber than do rays moving alongtheaxis. This isspoken of as intermodal dispersion (or often JUSt ii
dispersion), even though it has nothing to d0
frequency-dependentindex ofrefraction. Infor

oldeof the three
 
  
 
 
 
  
  
   
 
 
 
 
 Intermodal dispersion in a stepped-index muhimode   
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 Figure 5.77 Thespreadingof an input signal due to intermodaldispersion.

central axis. Because the index is higher along the
center, rays taking shorter paths are slowed down by
proportionately greater amounts, and rays spiralling
aroundnearthe cladding move moreswiftly over longer
paths, The result is that all the rays tend to stay more
or less together in these multimode graded-index fibers.
Typically, a graded-index fiber has a core diameter of
about 20 4m to 90 pm and an intermodaldispersion of
only around 2ns/km. They are intermediate in price
and widely used in medium-distance intercity applica-dons.

Multimodefibers with core diameters of 502m or
more are often fed by light-emitting diodes, or LEDs.
These are comparatively inexpensive and are com-
monly used over relatively short spans at low trans-
mission rates, The problem with them is that they emit
a fairly broad rangeof frequencies. Asa result, ordinary
material or spectral dispersion, the fact that the fiber index
is a function of frequency, becomesa limiting factor.
That difficulty is essentially avoided by using spectrally
pure laserbeams. Alternatively, the fibers can be oper-
ated at wavelengths near1.3 4m, wheresilica glass (see
Figs. 3.27 and 3.28) haslittle dispersion.

Thelast, and best, solution to the problem of inter-
modal dispersion is to make the core so narrow(less
than 10 jm)thatit will provide only one mode wherein
the rays travel parallel to the central axis (Fig. 5.74(o)]-
Suchsingle-mode fibersofultrapureglass (both stepped-
index and the newer graded-index) provide the best
performance. Typically having core diameters of only
2pm to 9pm, they essentially eliminate intermodal
dispersion. Although theyarerelatively expensive and

  

  

 
   
  
   

es (feeding into channels resembling optical
: the most rudimentary, those that simplyII lensless hole (p.199). In addition

ip 7

el
andih a sma!   

last group.
yeaa uystems of the first type have evolved
alently and remarkably similarlyin at least three

J cinds of organisms. Some of the more advancedis g., the octopus), certain spiders (e.g., the=; and the vertebrates, ourselves included,
5 eyes that each form a single continuous realona light-sensitive screen or retina. By com-he multifaceted compound eye (Fig. 5.78)

independently among arthropods, the
ith articulated bodies and limbs(e.g., insects
). It produces a mosaic sensory image com-
yany small-field-of-view spot contributions,

hi tiny segment ofthe eye (asif one were
he world through a tightly packed bundle

fine tubes). Like a television picture

 

    
  
 require laser sources, these single-mode fibers

at 1.55 zm (where the attenuation is about0,
not far from the ideal silica value of 0.1 dB;
today’s premiere long-haul lightguides. A pai
fibers may someday connect your home toa y
network of communications and computerfa¢if
making the era of the copper wire seem charmifl
primitive.

 
 
  
 
 
   
  
   
 
  5.7 OPTICAL SYSTEMS
 
 Wehave developed paraxial theory to a point wil

is now possible to appreciate the principles undgy
the majority o£ practical optical systems. To bejst
the subtleties involved in controlling aberration
extremely important andstill beyond this discul
Even so, one could build, for example, a i
{admittedly not a very good one, but a
nonetheless) using the conclusionsalready i
first-order theory.

Whatbetter starting point for a discussion off
instruments than the most common of all—the,

  
 

    
5.7.1 Eyes  
For our purposes, three main groupings of ey¢
readily be distinguished: those that gather Jenergy and form images via a single centety
system, those thatutilize a multifaceted aTt®78
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with 30,000, as compared with some ants that manage
with only about 50. The morefacets, the more image
dots, and the better the resolution, the sharper the
composite picture. This may well be the oldest of eye
types: trilobites, the little sea creatures of 500 million
years ago had well-developed compound eyes, Remark-
ably, howeverdifferentthe optics, the chemistry of the
image-sensing mechanismsin all Earth animals is quitesimilar.

i) Structure of the Human Eye
The humaneye can be thoughtofas a positive double
lens arrangement that casts a real image on a light-
sensitive surface. That notion, in a rudimentary form,
was apparently proposed by Kepler (1604), who wrote
“Vision, I say, occurs when the imageof the...external
world... is projected onto the ... concaveretina.” This
insight gained wide acceptance only after a lovely
experiment was performed in 1625 by the German
Jesuit Christopher Scheiner (and independently, about
five years later, by Descartes). Scheiner removed the
coating on the back of an animal's eyebal] and, peering
throughthe nearly transparent retina from behind, was
able to see a minified, inverted image of the scene
beyond the eye. Thoughit resembles a simple camera,

 

   
 
 
 

Corneal bens Figure 5.78 (a) The compound eye
made up of many ommatidia. (b) An
ommatidium, the little individual eye
that cach “sees” a small region in a par-ticular direction. The corneal lens and
crystalline cone channel the light into the
sensingstructure,the clear, rod-shapedthabdom. Each of these is surrounded
byretinalcells which lead via nerve fibers
ta the brain. (From Ackerman etal.,
Biophysical Science, © 1962, 1979. Engle-
wood Cliffs, NJ: Prentice-Hall, Inc, p. 31.After R. Bushman, Animals Without
Backiones.)

Crystalline cone
Iris pigment cells 
Rhabdom

Retinalcells
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the seeing systern (eye, optic nerve, and visual cortex)
functions much morelike a closed-circuit computerizedtelevision unit.

The eye (Fig. 5.79) is an almost spherical (24 mm long
by about 22 mmacross)jellylike mass contained within
a tough flexible shell, the sclera, Except for the front
portion, or cornea, which is transparent, the sclera is
white and opaque. Bulging upward from the body of
the sphere,the cornea’s curved surface (whichisslightly
flattened, thereby cutting down onspherical aberration)
serves as the first and strongest convex element of the
lens system. Indeed most of the bending imparted to a
bundle of rays takes place at the air-cornea interface.
Incidentally, one of the reasons you can’t see very well
under water (ny * 1.33) is thatits index is too close to
that of the cornea (n¢ * 1.376) to allow for adequaie
refraction. Light emerging from the cornea passes
through a chamberfilled with a clear watery Auid called
the aqueous humor (ng, ~ 1.336). A ray that is strongly
refracted towardthe optical axis at the air-cornea inter-
face will be only slightly redirected at the cornea—
aqueous humorinterface because of the similarity of
their indices. Immersed in the aqueousis a diaphragm
known as the iris, which serves as the aperture stop
controlling the amountoflight entering the eye through
the hole, or pupil. It is the iris (from the Greek word
for rainbow) that gives the eye its characteristic blue,
brown, gray, green, or hazel color. Made up ofcircular
andradial muscles, the iris can expand or contract the
pupil over a range from about 2 mmin brightlight to
roughly 8 mm in darkness. In addition to this function,
it is also linked to the focusing responseandwill contract
to increase image sharpness when doing close work.
Immediately behind theiris is the crystalline lens. The
name, which is somewhat misleading, dates back to
about 1000 a.p. and the work of Abé ‘Alt al Hasan ibn
al Hasan ibn al Haitham,alias Alhazen of Cairo, who
described the eye as partitioned into three regions that
were watery, crystalline, and glassy, respectively. The
lens, which has both thesize and shape ofa small bean
(9 mm in diameter and 4 mmthick), isa complex layered
fibrous mass surrounded by an elastic membrane. In
structure it is somewhat like a transparent onion,
formed of roughly 22,000 very fine layers. It has some
remarkable characteristics that distinguish it from man- 

 
  

imately 1,386 at the tess dense cortex and, as
dintents a GRINsystem (p. 136), The crystai-
revdes the needed fine-focusing mechanism
eae in its shape, thatis, it has a variableah—a feature we'll come back to presently.
efracting components of the eye, the cornea
falline fens, can be treated as forming an
double-element Jens with an object focus of

smm in front of the anterior surface of the
dan image focus of about 24.3 mmbehindit
na, To simplify thingsa little we can take the

dlens to have an optical center 17... mm in
the retina, which falls just at the rear edge ofalline Jens.

the lens is another chamber filled with a
nt gelatinous substance known as the wilreous1.337). Asanaside, it should be noted that
jus humor contains microscopic particles of

freely about. You can easily see
wel with diffraction fringes, within

by squinting at a light source or looking
rourh a pinhole—strangelittle amoebalike
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ly, a marked increase in one's percep-

loaters may be indicative of retinal detach- 

pletely, you'll actually be able to see the
periphery of your own pupil, beyond

glare of light will disappear into blackness.it believe it, block and then unblock some of
the glare circle will visibly expand and con-

ively, You are seeing the shadow cast by
am the inside! Seeing internal objectslike this
as entoptic perception.
the tough sclerotic wall is an inner shell, the

$ a dark layer, well supplied with blood
hly pigmented with melanin. The choroid

ofstraylight,as is the coat of black paint
Geof a camera. A thin layer (about 0.5 mm
fick) of light receptorcells covers much of

Bi 1e Of the choroid—thisis the retina (from
Meaning net). The focused beam of light

a electrochemicalreactionsin this pinkish
Structure. The human eye contains two

 

 

  
  

Figure 5.79 The humaneye.

  madelensesin use today, in addition to the Fea
continues to grow in size, Becauseofits laminarg
ture, rays traversing it will follow paths made
minute, discontinuous segments. The lens 452
quite pliable, albeit less so with age. Moreovelst
ofrefraction ranges from about1.406at the 10g
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kinds of photoreceptorcells: rods and cones (Fig. 5.80).
Roughly 125 million of them are intermingled nonuni-
formly over the retina. The ensemble of rods (each
about 0.002 mm in diameter) in some respects has the
characteristics of a high-speed, black and white film
(such as Tri-X). It is exceedingly sensitive, performing
in light too dim for the cones to respondto, yetit is
unableto distinguish color, and the imagesit relays are
not well defined. In contrast, the ensemble of 6 or 7
million cones (each about 0.006 mm in diameter) can
be imagined as a separate, but overlapping, low-speed
color film. It performs in bright light, giving detailed
colored views, butis fairly insensitive at lowlight levels.

The normal wavelength range of humanvisionis said
to be roughly 390nm to 780nm (Table 3.2, p.72).
However, studies have extended these limits down to
about 310nm in the ultraviolet and up to roughly
1050 nm in the infrared—indeed people have reported
“seeing” x-radiation. The limitation on ultraviolet
transmission in the eye is set by the crystalline lens,
which absorbs in the UV. People who have hadalens
removed surgically have greatly improved UV sensi-
tivity.

  

  
   
  
  
  
  

  
  
  
    

    
  

     
 
    
  
      
   
 
 
 

  
     
     
  
  Figure 5.89 An electron micrograph of the retina of a salamander

(Necturus Maculosus). Two visual cones appear in the foregroundandseveral rods behind them. Photo from E. R. Lewis, ¥. ¥. Zeevi,
and F. $. Werblin, Brain Research 15, 589 (1969).      
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The area of exit of the optic nerve from the eye
contains no receptorsandis insensitive to light; accord-
ingly it is known as the blind spot (see Fig. 5.81).he
optic nerve spreads out over the back of the interior of
the eye in the form oftheretina.

Just about at the center of the retina is a small
depression from 2.5 to 3mm in diameter knownas the
yellow spot, or macula. Thereis a tiny rod-free region
about 0.3 mm in diameteratits center, the fovea centralis,
(In comparison, the image of the full Moon on the
retina is about 0.2mm in diameter—Problem 5.59.)
Here the cones are thinner (with diameters of
0.0030 mm to 0.0U15mm) and more densely packed
than anywhereelse in the retina. Since the fovea pro-
vides the sharpest and most detailed information, the
eyeball is continuously moving, so that light coming
from the area on the object of primaryinterestfalls on
this region. An image is constantly shifted across
different receptorcells by these normal eye movements.
If such movements did not occur and the image was
kept stationary ona given set of photureceptors, it would.
actually tend to fade out. Another fact that ‘indicates
the complexity of the sensing system is that the rods
are multiply connected to nervefibers, and a single such
fiber can be activated by any one of about a hundred
rods. By contrast, cones in the fovea are individually
connected to nerve fabers. The actual perception of a
scene is constructed by the eye-brain system in a con-
tinuous analysis of the time-varying retinal image. Just
think how little trouble the blind spot causes, even with
one eye closed.

Between the nerve-fiber layer of the retina and the
humor is a network oflarge retinal blood vessels, which

Figure 5.81 Toverify the existence of the blindspot, close one eyeand, at a distance of about10 inches, look directly at the X—the 2
will disappear. Moving closerwill cause the 2 to reappear while the1 vanishes.

 

  
 

  ject comesstill closer, the ciliary
e Beeensely contracted, and thelensR n smaller radii. The closest point

vee can focus is known asthe near point.
pepe it might be about 7 cm fora teen-ager,

i for a young adult, roughly 28 to 40 cm inpt .d, and about 100 cm by 60 yearsof age.
Beeees are designed with this in mind, so

i Ped not strain unnecessarily, Clearly, thecus on two different objects at once, This
obviousif, while looking througha piece

a try te focus onit andthe scene beyond at
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 fenerally accommodateby varying the lens
Rat there are other means. Fish move only

itself toward or away from theretina, just as4 lens is moved to focus. Some mollusks
the same thing by contracting or expanding
eye, thus altering the relative distance

and retina. For birds of prey, which must
idly moving object in constant focus over aof distances as a matter of survival, the

dation mechanism is quite different. They
fdate by greatly changingthe curvature of the
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   Figure 5.82 Accommodation—changesin the lens conf   
 
 can be observedentoptically. One wayis toffl

eye andplace a bright small source against the
“see” a pattern of shadows(Purkinje figuresVeasg
bluod vessels on the sensitive retinal layer,

 
 
  
 
 ii) Accommodation

Thefine focusing, or accommodation, of the hum

is a function performedbythecrystallineiis suspended in position behind the iris
that are connected to the ciliary muscles. Ordi
these muscles are relaxed, and in that state theyi
back on the network offine fibers holding
the lens. This draws the pliable lens into 2 fatty
configuration, increasing its radii, which imincreasesits focal Iength (5.16), With the mug
pletely relaxed, the light from an object at i
be focused ontheretina (Fig. 5.82). As the ab}
closer to the eye, the ciliary muscles contract,
the external tension on the peripheryof the
then bulgesslightly under its own elastic £0
doing the focal length decreases such thal

 
 vere probably invented sometimein thelate

tury, possibly in Italy. A Florentine manu-
eriad (1299), which no longerexists, spoke
recently invented for the convenience of

Ose sight has begunto fail."* These werelenses, little more than variations on the hand-
fying or reading glasses, and polished gem-

were no doubt employed as lorgnettes long
that®Roger Bacon (ca, 1267) wrote about nega-ther carly on, but it was almost another

Years before Nicholas Cusa first discussed
eglasses and a hundredyears more before
fased to be a novelty, in the late 1500s.

¥,it was considered improper to wear specta-
Public even as late as the eighteenth century,*iess in the paintings up until that time.
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In 1804 Wollaston, recognizing that traditional(fairly
flat, biconvex, and concave) eyeglasses provided good
vision only while one looked through their centers,
patented a new, deeply curved lens. This was the
forerunner of modern-day meniscus(from the Greek
meniskos, the diminutive for moon, i.e., crescent) lenses,
which allow the turning eyeball to see through them
from center to margin withoutsignificant distortion.

It is customary and quite convenientin physiological
optics to speak aboutthe dioptric power. 2, of a lens,
whichis simply the reciprocalof the focal length. When
jis in meters, the unit of power is the inverse meter,
or diopter, symbolized by D:1 m7)=1 D. For example,
if a converging lens hasa focal length of +1 m, its power
is +1 D; with a focal length of —2 m (a diverginglens),
@  —$D; for f=+10cm, B= 10D. Since a thin lens
of index 7; in air has a focal length given by

1 14
- iu-v(e-z)s {5.16}its power is

a=m-v(b-2). anR, Ro .
You can get a sense of the direction in which we are
moving by considering, in rather loose terms, that each
surface of a lens bends the incoming rays—the more
bending, the stronger the surface. A convex lens that
strongly bends the rays at both surfaces has a short focal
length and a large dioptric power. We already know
that the focal length for two thin lenses in contactis
given by

bliyaff fh
‘This means that the combined poweris the sum of the
individual powers,thatis,

Da DB + BD.

£5.38}

Thus a convex lens with 9, = +10Din contact with a
negative lens of= —10 Dresultsin 2 = 0; the combi-
nation behaves like a parallel sheet of glass, Further-
more, we can imagine a lens, for example, a double
convex lens, as being composed of two planar-convex
lenses in intimate contact, back to back. The power of
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each of these follows from Eq. (5.69); thus for the frst
planar-conyex lens (R,=%),

g = 70}
1 R, 6.

andfor the second,
-1

g, =), 71 

These expressions may be equally well defined as giving
the powers of the respective surfaces of the initial double
convex lens. In other words, the power of uny thin lens is
equal to the sum of the powers of its surfaces. Because Ry
for a convexlens isa negative number, both , and 2,
will be positive in that case. The power of a surface,
defined in this way, is not generally the reciprocal of
its focal length, although it is when immersed in air.
Relating this terminology to the generally used model
for the human eye, we note that the power of the
crystalline lens surrounded by air is about +19D. The
cornea provides roughly +43 of the total +58.6D of
the intact unaccommodatedeye.

A normaleye, despite the connotation of the word,
is not really as common as one might expect. By theterm normal, or its synonym emmetropic, we meanatl
eye that is capable of focusing parallel rays on the retinawhile in a relaxed condition, thatis, one whose second
focal pointlies on the retina. For the unaccommodated
eye, we define the point whose imagelies on the retina
to be the far point. Thus for the normal eye the most
distant point that cau be brought to a focus on the
retina, the far point, is located at infinity (which forall
practical purposes is anywhere beyond about 5 m). In
contrast, when the second focal point does not lie on
the retina, the eye is ametropic(e.g., it suffers hyperopia,
myopia,or astigmatism). This can arise either because
of abnormal changesin the refracting mechanism (cor
nea, Jens, etc.) or because of alterations in the length
of the eyebail that alter the distance between the lens
andthe retina. Thelatter is by far the more common
cause. Just to put things in proper perspective, note
that about 25% of young adults require 0.5 D orless
of eyeglass correction, and perhaps as many as 65%
need only +1.0 D orless.

i) Nearsightedness — Negative Lenses

Myopia is the condition in which paralle| a
broughtto focus in frontof the retina: thefegy
the lens system as configured is too large fh
anterior—posterior axial length of the eye. Ingdistant objects fall in front of the retina,the g
is closer in than infinity, and all points beyond)
appear blurred. This is why myopia is oftenynearsightedness—an eye with this defect sees
objects clearly (Fig. 5.83). To correct the cond
at least its symptoms, we place an additiona|
front of the eye such that the combinedspe.
lens system has its second focal point on the™™
Since the myopic eye can clearly see objects clo:
the far point, the spectacle lens must cast rel at
nearby images of distant objects. Hence we inty
a negative lens that will diverge the rays a bi
the temptation to suppose that we are merely
the powerof the system. In pointoffact, the pq
the lens-eye combination is most often made t@
that of the unaided eye. If you are wearing gli
correct myopia, take them off; the world gets
but it doesn’t change size. Try casting a realit
a piece of paper using your glasses—it can't

Suppose an eye has a far point of 2m, U2
wellif the spectacle lens appearedto bring mo}    
     
 
  
 
 

NEARSIGHTCD FYE
   
   
  

  
 
  
 
   
 

    

  

 
   
and f = —2mwhile @=—3D. Notice that the
distance, measured from the correction lens,
focallength (Fig. 5.84). The eye viewsthe righ
virtual images ofall objects formed by the £0
lens, and those images are located between Its far
near points. Incidentally, the near point also I
away a little, which is why myopes often fl
remoye their spectacles when threading nee
reading small print; they can then briny
closer to the eye, thereby increasing the mat
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of the unaided eye occurs. Many people have
eyes, yet both yield the same magnification. A

M; for one and not the other would be a
Wpzlacing the correcting lens at the eye’s first

f avoids the problem completely, regardless
T of that lens [take a look at Eq. (6.8). To

ypust draw a ray from the top of some object
Buehat focal point. The tay will enter the eye

Parallel to the optic axis, thus establishing
if the image. Yet, since this ray is unaffected“ace of the spectacle lens whose centeris at
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the focal point, the image's location may change on
insertion of such a lens, but its height and therefore
Mywill not (see Eq. 5.24).

The question now becomes: What is the equivalent
powerof a spectacle lens at some distance d from the
eye (i.e,, equivalent to that of a contact lens with a focal
length f, that equals the far-point distance). It will do
for our purposes to approximate the eye by a single
lens and take d from thatlensto the spectacle as roughly
equal to the cornea-eyeglass distance, usually around
16mm.Given that the focal length of the correction
lens is f; and the focal length of the eye is f., the
combination has a focal length provided by Eq. (5.36),thatis,

fita-f) osDAL = i 57.
4-Gith om

This ‘is the distance from the eye-lens to the retina.
Similarly, the equivalent contact lens combined with the
eye-lens has a focal length given by Eq. (5.38):

2 1,1
=+-, (6.73)fof

where f = b.f.l, Inverting Eq. (5.72), setting it equal to
Eq. (5.73), and simplifying, we obtain the result 1/f,
1/(fi— 2), independentof the eyeitself. In terms of
power,

Dy
1- 2d
 

G74)

A spectacle lens of power 2, a distance d from the
eye-lens has an effective power the same as that of a
contactlens of power %,. Notice that since dis measured
in meters and thusis quite small, unless @, is large, as

  Thefar point

Figure 5.84 ‘he far-point distance equals the focal length of thecorrection lens.
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it often is, @, ~ @,. Usuaily, the point on your nose
where you chooseto rest your eyeglasseshaslittle effect,
but that's certainly not always the case—an improper
value of d has resulted in many a headache.

ii) Farsightedness — Posifive Lenses
Hyperopia (or hypermetropia) is the defect chat causes the
second focal point of the unaccommodated eye to lie
behind theretina (Fig. 5.85). Farsightedness, as you might
have guessed it would becalled, is often due to a short-
ening of the anteroposterior axis of the eye—thelensis too close to the retina. To increase the bending of
the rays, a positive spectacle lens is placed in front of
the eye. The hyperopic eye can and must accommodate
to see distant objects distinctly, butit will be at its hmit
to do so for a near point, which is much farther away
than it would be normally (this we take as 25cm). It
will consequently be unable to see clearly. A converging
corrective lens with positive powerwill effectively move
a close object out beyond the near point where the eye
has adequateacuity, thatis, it will form a distant virtual
image, which the eye can thensee clearly. Suppose that
a hyperupic eye has a near point of 125cm. For an
object at +25 cm to have. its image at s;~—125cm so
chatit can be seenas if through a normaleye, the focal
length must be

eects _,_1 __1f 125)" 0.25 0.31’
or f=0.3)m and @ +3.2D. This is in accord with
Table 5.3, where s, < f These spectacles will cast real
images—try it if youre hyperopic.

As shownin Fig. 5.86, the correcting lens allows the
relaxed eyeto view objectsatinfinity. In effect,it creates
an image onits focal “plane,” which then serves as a
virtual object for the eye. The focus (whose imagelies
on the retina) is once again the far point, and it’s a
distancef; behind the lens. The hyperope can comnfort-
ably “see” the far point, and anylens located anywhere
in frontof the eye that has an appropriate focal length
will serve that purpose.

Very gentle finger pressure on the lids above and
below the cornea will temporarily distort it, changing
your vision frum blurred to clear and vice versa.

 

  
   

 
 
 
 
 
 
 

  
 
 
 
 

  
 
  
 
 
  

  
 
 
 

 
  
   
  
  
  
 

    

FARSIGHTED EYE.

Object at ce

The near point

Distant obyect | iw

Nearbyabject

Figure 5.85 Correction of the farsighted eye.

ii} Astigmatism — Anamorphic Lenses
Perhaps the most commoneye defectis astignnaarises from an uneven curvaturetil the ci In ou
words, the cornea is asymmetric. Suppose‘=[eM
meridional planes (ones containing the pF

 

 
 ib)

  
|

Figure 8.86 Again the far-point distance equals the focal lthe correction lens.
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through the eye such that the (curvature or) powerismaximal on one and minimal on the other. If these
planes are perpendicular,the astigmatismis regular and
correctible; if not, it is irregular and noteasily corrected.
Regular astigmatism can take different forms; the eye
can be emmetropic, myopic, or hyperopic in various
combinations and degrees on the two perpendicular
meridional planes. Thus, as a simple example, the
columnsof a checker board might be well focused while
the rows are blurred due to myopia or hyperopia.
Obviously these meridionalplanes need not be horizon-tal and vertical.

The great astronomer Sir George B. Airy used a
concave sphero-cylindrical lens to ameliorate his own
myopic asliginatism in 1825. This was probablythefirst
time astigmatism had been corrected. But it was not
until the publication in 1862 ofa treatise on cylindrical
lenses and astigmatism by the Dutchman Franciscus
Cornelius Donders (1818-1889) that ophthalmologists
were moved to adoptthe methodona largescale.

Any optical system that hay a different value of My
or @ in twoprincipal meridiansissaid to be anamorphic.
Thus, for example, if we rebuilt the system depicted in
Fig. 5.31, this time using cylindrical lenses (Fig. 5.87),
the image would be distorted, having been magnified
in only one plane. This is just the sort of distortion
needed to correct for astigmatism whena defect exists
in only one meridian. An appropriate planar cylindrical
spectacle Jens, either positive or negative, would restore
essentially normal vision. When both perpendicular
meridians require correction, the lens may be sphero-
cylindrical or even toric as in Fig. (5.88).

Figure 5.88 Toricsurfaces.
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Just as an aside, we note that anamorphiclenses are
used in other areas, as for example, in the making of
wide-screen motion pictures, where an extra-large
horizontalfield of view is compacted onto the regular
film format. When shown through a special lens the
distorted picture spreads out again. On occasion a
television station will show short excerpts without the
special lens--you may haveseen the weirdly elongatedresult.

5.7.3 The Magnifying Glass

An observer can cause an object to appearlarger, for
the purpose of examiningit in detail, by simply bringing
it closer to her eye. As the object is brought nearer and
nearer, its retinal image increases, remaining in focus
until the crystalline tens can no longer provide adequate
accommodation. Should the object come closer than
this near point, the irnage will blur (Fig. 5.89). A single
positive lens can be used, in effect to add refractive
powerto the eye, so that the object can be broughtstill
closer andyet be in focus. The lensso used is referred
to variously as a magnifying glass, a simple magnifter, or
a simple microscope. In any event, its functionis to provide
an imageofa nearby object that is larger than the image seen
by the unaided eye, Devices of this sort have been around
for along time. In fact, a quartz convex lens (f = 10 cm),
which may have served as a magnifier, was unearthed
in 1885 among the ruins of the palace of King
Sennacherib (705-681 B.c.) of Assyria.

Evidently, it would be desirable for the lens to form
a magnified, erect image. Furthermore, the rays enter-
ing the normal eye should notbe converging. Table 5.3
(p. 145} immediately suggests placing the object within
the focal length (i.e., 5, < f). The result is shown in Fig.
5.90. Becauseoftherelatively tiny size of the eye’s pupil,
it will almost certainly always be the aperture stop, and
as in Fig. 5.33 (p.150), it will also be the exit pupil.

The magnifying power, MP, or equivalently. the
angular magnification, M4, of a visual instrument is
defined as the ratio of the size of the retinal image as seen
through the instrament over the size of the retinal image as
seen by the unaided eye at normal viewing distance. The
latteris generally taken as the distance to the nearpoint,
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 | Entrance
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Figure §.89 Images in relution to the near point.

d,. The ratio of angles a, and a, (which are mad@l
chief rays from the top of the objectin the instan
the aided and unaided eye, respectively) is equito MP,that is,

MP = ay

Keeping in mind that weare restricted to the pai
region, tan a, = 9,/L = a, and tan a, = y)/d, ©co

— vide
MP 3L"

wherein 9; and y, are above the axis and positives
make d, and L positive quantities, MP will be pi
whichis quite reasonable. When we use Eqs.(5.24)
(§.25) for Mz along with the thin-lens equatioggj iexpression becomes

   
  the magnifying power equals d, 9, (2) When  
  

   
[MPleno= dy (G+ ).

Wi rare (i= largest yalue of MP correspondsto the
allest fYalue of L, which,if vision is to be clear, mustThus
 5d,MP~—

Sob.
 

   
  Inasmuch as the image distance is negativ@ 4—(L- 6), and consequently,   (MPY,L=d,  

=d,.2+1. 5.77) 
 

  Mp = 2114 DL- O).  i for the standard observer, we have
  Figure 5.90 (a) An unaided view of an object. (b) The aided view

[MP] 9=0.25941 (6.78) through a magnifying glass. (c) A positive Jens used as a magnifyingmi . ” glass. The object is less than one focal lengthfrom the lens.  ® of course being the power of the magaifiThere are three situations of particular int  
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As L increases, MP decreases, and similarly as ¢
increases, MP decreases. If the eyeis very far from the
lens, the retinal image will indeed be small. (3) Thislast
is perhaps the most commonsituation. Here we position
the object at the focal point (s, f), in which case the
virtual imageis at infinity (L=0). Thus from Eq. (5.76)

[MP]1=0 = dp (5.79)
for all practical values of & Because theraysare parallel,
the eye views the scenein a relaxed, unaccommodated
configuration, a highly desirable feature. Notice that
My ~ —s/s, approachesinfinity as s, > f, whereas in
marked contrast, M, merely decreases by | under thesame circumstances.

A magnifier with a power of 10D has a focal length
(1/@) of 0.1m and a MP equal to 2.5 when L=o,
This is conventionally denoted as 2.5x, which means
that the retinal imageis 2.5 times larger with the object
at the focal length of the lens than it would be were the
object at the near point of the unaided eye (where the
largest clear imageis possible). The simplest single-lens
magnifiers are limited by aberrations to roughly 2X or
3x, A large field of view generally implies a largelens,
for practical reasons usually dictates a fairly small cur-
curvature of the surfaces. The radii are large, asis f,
and therefore MPis small. The reading glass, the kind
Sherlock Holmes made famous, is a typical example.
The watchmaker’s eye loupe is frequently a single-
elementlens, also of about 2X or 3x. Figure 5.91 shows
a few more complicated magnifiers designed to operate
in the range from roughly 10x to 20X. The double lens
is quite common in a number of configurations.
Although notparticularly good, they perform satisfac-
torily, for example, in high-powered loupes. The Cod-
dingtonis essentially a sphere with a slot cut in it to
allow an aperture smaller than the pupil of the eye. A
clear marble (any small sphere of glass qualities) will
also greatly magnify—but not without a good deal ofdistortion,

Therelative refractive index of alens andthe medium
in whichit is immersed, nm, is wavelength dependent.
Butsince the focal length of a simple lens varies with
Mtm{A), this means that f is a function of wavelength,
and the constituent colors of white light will focus at
different points in space. The resultant defect is known 

 | and perhaps most fruitful, approach is
or slightly modify one of the existing   

= i (of the inter-
sai}, most often located at or near infinity,

% De comfortably viewed bia ncematre, siron the ce
waveye point at enh the observer's eye is placed
onvenient location, preferably at least 10 mm

m the last surface. As before, ocular mag-
the product 4,%, or asit is often written,

(250 mm)/f .Huygens ocular, which dates back over 250till in wide use today (Fig. 5.92), particularly
opy. The lens adjacentto the eye is known

Gye-lens, and the first lens in the ocular is the'The distance from the eye-lensto the eye point

   
 

# exit Doublet Coddington

 oe
Doublet TripletHastings  

Figure 5.91 Magnifiers.

as chromatic aberration. In orderthattheimtar tes frp
of this coloration, positive and negative lenses madell
different glasses are combined to form achromate:
Section 6.3.2). Achromatic, cemented, doubletMan
triplet lenses are comparatively expensive andl a
usually found in small, highly corrected, high:
magnifiers.

virtualobject forthe eye-lens. Clearly then,
g eyepiece cannot be used as an ordinary

ts contemporary appealrests in its low pur-
(see Section 6.3.2). Another old standbyis

n eyepiece (Fig. 5.93). This time the prin-
is in front of the field-lens, so the intermedi-

  

 

5.7.4 Eyepieces  
 
 The eyepiece, or ocular, is a visual optical inst

Fundamentally a magnifer,it views not an actual
butthe intermediate image of that object as for
a preceding lens system. In effect, the eye lookg
the ocular, and the ocularlooksinto the optical
beit a spotting scope, compound microscope,
or binocular. A single lens could serve the P
poorly. If the retinal image is to be more satlthe ocular cannot have extensive aberration:
piece of a special instrument, however, might bier
signed as part of the complete system,so that #can be utilized in the overall scheme to balan
aberrations. Evenso, standard eyepieces are us¢gi
changeably on most telescopes and compoun
scopes. Magecvrn. eyepliaces 27e od .

tfand intermediate image are in the same

Eye relief
Eye-lens
  

 
 
 Field

Stop

Bapeenseyepiece
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 | Fleld-lens Eye-lens

  

  
 

Field Exit
stop pupil

   Figure 5.93 The Ramsdeneyepiece.
 

  
 
  
  

  
  
 

IField Exit
stop pupil  

   
Figure §.94 The Kellnereyepiece.

 
  
   plane, both will be in focus at the same time. The

roughly 12-mm eye relief is an advantage over the
previous ocular. The Ramsdenisrelatively popular and
fairly inexpensive (see Problem 6.2). The Kellnereye-
piece represents a definite increase in image quality,
althougheye relief is between that of the previous two
devices. The Kellner is essentially an achromatized
Ramsden (Fig, 5.94). It is most commonly used in mod-
erately wide-field telescopic instruments. The ortho-
scopic eyepiece (Fig. 5.95) has a wide field, high mag-
nification, and long eye relief (~20mm). The sym-
metrical (Pléssl) eyepiece (Fig. 5.96) has characteristics
similar to thoseof the orthoscopic ocular butis generally
somewhatsuperior to it. The Erfle (Fig. 5.97) is probably
the most commonwide-field (roughly +30°) eyepiece.
It is well corrected forall aberrations and comparatively
expensive.*

  
  
  
  
  

 
  

    
  
  
  
 

   
 

  
  
 

  
*Deailed designs of these and other oculars can be foundin the
Military Stendardication Handbook—Optical Design, MIL-HDBK-141,  
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Although there are many other eyepieces, including
yariable-power zoom devices and ones with aspherical
surfaces, those discussed above are representative. They
are the ones you will ordinarily find on telescopes and
microscopesandonlonglistsin the commercialcatalogs.

 
5 Exit pupil

Figure 5.95 The orthoscopic eyepiece.

 

 Exit puplt
Figure 5.96 The symmetrical (Plissl) eyepiece.

 
Exit pupil

Figure 5.97 The Erfie eyepiece.
 

5.7.5 The Compound Microscope
The compound microscope goes a step
simple magnifier by providing higher angulaynification (greater than about 30%)of nearby obj,
invention, which may have occurred as earlyghis generally attributed to a Dutch spectaclé
Zacharias Janssen of Middleburg. Galileo rung
second, haying announcedhis invention ofa ¢%
microscope in 1610. A simple version, which 1S
to theseearliest devicesthanit is to. a modernlabo,
microscope, is depicted in Fig. 5.98. The lens
here a singlet, closest to the objectis referred
objective. It forms a real, inverted, and usnalit
nified image of the object. This imageresides in
on the plane of the field stop of the eyepiece. |
diverging from each point of this image will eg
from the eye-lens (which in this simple caseis thy
piece itself) parallel to each other, as noted in th
vious section. The ocular magnifies this intermega
image still further. Thus the magnifying pr
entire system is the product of the transverse, lings
magnification of the objective, Mz,, and the an
magnification of the eyepiece. M,,, thatis,

MP=My,Mae-
Recall that My = —x/f, Eq. (5.26). With this in
most, but not all, manufacturers design their mscopes such thatthedistance (correspondingto x),
the second focus of the objective to the first fou
the eyepieceis standardized at 160 mm. This dist
knownas the tube length, is denoted by L in the
(Someauthors define tube length asthe image di
of the objective.) Hence, with thefinal image at
and the standard near point taken as 10 ME
(254 mm),

oro 2598fLINLP
and the imageis inverted (MP <0). Accord
barre) of an objective with a focal length fo
32mm will be engraved with the marking 5%
indicating a power of 5. Combined with a 10x
(/. = Linch), the microscope MP would then bt

To maintain the distance relationshipsobjective, field stop, and ocular, while a fo@

beyond

mit
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mediate image of the object is positioned in the first
focal planeof the eyepiece, all three elements are moved
as a single unit.

‘The objective itself functions as the aperture stop and
entrance pupil. Its image, formed by the eyepiece, is
the exit pupil into which the eyeis positioned. Thefield
stop, whichlimits the extent of the largest object that
can be viewed, is fabricated as part of the ocular. The
imageof thefield stop formedby the optical elements
following it is called the exit window, and the image
formed hy the optical elements preceding it is the
entrance window. The cone angle subtendedatthe center
of the exit pupil by the periphery of the exit window
is said to be the angular field of view in image space.

A modern microscope objective can be roughly
classihed as one of three different kinds. It might be
designed to work best with the object positioned below
a coverglass, with no cover glass (metallurgical instru-
ments), or with the object immersed in a liquid thatis
in contact with the objective. In somecases, the distinc-
tion is not critical, and the objective may be used with
or without a cover glass. Four representative objectives
are shownin Fig. 5.99 (see Section 6.3.1). In addition,
the ordinary low-power (about 5X) cemented doublet
achromate is quite common. Relatively inexpensive
medium-power (10X or 20x) achromatic objectives,
because of their short focal lengths, can conveniently
be used when expanding andspatially filtering laser-beams.

There is one other characteristic quantity of impor-
tance, which must be mentioned here even if only
briefly. The brightnessofthe imageis, in part, depen-
dent on the amountoflight gathered in by the objective.
The f-number is a useful parameter for describing this
quantity, particularly when the object is a distant one
(see Section 5.3.3). However, for ao instrument working
at finite conjugates (s, and s, both finite), the numerical
aperture, NA,is more appropriate {see Section 5.6). In
the present instance

NA®= 7, sin Oraes (5.82)
where n, is the refractive index of the immersing
medium (air, oil, water, etc.) adjacent to the objective
lens, and 9,,,,x is the half-angle of the maximum cone
of lighe picked up bythatlens [Fig. 5.99(b)]. In other

193
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Figure 5.99 Microscope objectives: (a) Lister objective, LUX , NA =
0.25, f= 16 mm (wo cemented achromates). (b) Amici objective, from
24, NA=0.5, f=8mm to 40%, NA=OR, f=4mm. (©) Oil

words, Omax is the angle made by a marginal ray with
the axis. The numerical apertureis usually the second
numberetchedin the barrel of the objective. It ranges
from about 0.07 for low-power objectives to 1.4 or so
for high-power (100%) ones. Of course, if the object is
in the air, the numerical aperture cannot be greater
than 1.0. Incidentally, Ernst Abbe (1840-1905), while
working in the Carl Zeiss microscope workshop, intro-
duced the concept of the numerical aperture. It was he
who recognized that the minimum transverse distance
between two object points that can be resolved in the
image, that is, the resolving power, varied directly as A
and inversely as the NA.

5.7.6 The Telescope

It is not at all clear who actually invented the telescope.
In pointoffact. it was probably invented and reinvented
many times. Recall that by the seventeenth century
spectacle lenses had beenin use in Europe for about
three hundred years. During that long span of time,
the fortuitous juxtapositioning of two appropriate
lenses to form a telescope seems almost inevitable. In
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  is to enlarge theretinal
riject. In theillustration, the object

distance fram the objective, so that the
e image is formedjust beyondits second

This image will be the object for the next
oma, that is, the ocular. It follows from Table
45) that if the eyepiece is to form a virtualiq final image (within the range of normal

, dation), the object distance mustbeless than
Hi to thefocallength,f.. |1n practice, the position

  

 

 
. — Henmediate image is fised, and only the eyepiece as; the instrument. Notice that the final image

s a Mut as long as the scopeis used for astronomi-5, this is of little consequence, especially
js photographic.

eci distances the incident rays are
ely jealle intermediate image resides atf of the objective. Usually the eyepiece

a second focus
sphjedive in which case rays diverging from a

on thi fintermediate image will leave the ocular
cach other. A normal viewing eye can then

co) (ay

   immersion objective, 100 x, NA= 1.8, f= 1.6mm(see Fignkil(d) Apochromatic objective, 55>, NA = 0.95. [= 3.2 (eamfluorite lenses).   

anyevent,itis mostlikely chat a Dutch optician,
even the ubiquitous Zacharias Jenssen of mie
fame, first constructed a telescope andin additf
inklings of the value of what he was peering
earliest indisputable evidence ofthe discovery,
dates to October 2, 1608, when Hans Lippers
tioned the States-General of Holland for a
device for seeing at a distance (which is what
means in Greek). Incidentally. as you might{@

 

the governmentpurchased therights to the instigand he received a commission to continue Tesealg
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focus the rays in a relaxed configuration.If the eye is
nearsighted orfarsighted, the ocular can be moved in
or out so that the rays diverge or converge a bit to
compensate. (If you are astigmatic, you’ll have to keep
your glasses on when using ordinary visual instru-
ments.) We saw earlier (Section 5.2.3) that both the back
and front focal lengths of a thin-lens combination go
to infinity when the twolenses are separated bya dis-
tance d equal to the sum of their focal lengths (Fig.
5.101). The astronomicaltelescope in this configuration
of infinite conjugates is said to be efocal, that is, without
a focal length. As a side note,if you shine a collimated
(parallel rays, i.e., plane waves) narrowlaserbeam into
the back endofa scope focusedatinfinity,it will emergestill collimated but with an increased cross-section.Itis
often desirable to have a broad, quasimonochromatic,
plane-wave beam, and specific devices of this sort are
now available commercially.

The periphery of the objective is the aperture stop,
and it encompasses the entrance pupil as well, there
being no lensesto theleft ofit. If the telescopeis trained
directly on some distant galaxy, the yisual axis of the

 
 
 
 
 
 
 
 
 
  

organ pipe as a tube. It was not long before
constructed a numberof greatly improvedinst
and was astounding the world with the astromdiscoveries for which he is famous.

i} Refracting Telescopes
A simple astranomical telescope is shown in Fig
Unlike the compound microscope, which #5 Final image
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Figure 5.100 Keplerian astronomical telescope (accommodatingeye).
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Exit pupil

 

     
Poijective Erecting Ocular Figure 5.103 A terres-systern trial telescope

Figure 5.101 Astronomicalinfinite conjugates.
 

  Tobe useful when the orientation of the objectis of
 
    

 

  

 

 

     

eye will presumably be collinear with the central axis of the exit pupil, however the eye moves. ay has a negative slope. Observe that the . scope must contain an additionalerecting
of the scope. The entrance pupil of the eye should then Suppose that the marginofthevisible obje rhrough the first focus of the objective passes importance, 8 pen emment is known as a terrestrial
coincide in space with the cxit pupil of the scope. a hall-angle of « at the objective (Fig. 5.163 Esccond focus of the eyepiece, that is, Fa iimsce le erecting lens or lens system is usually
However, the eye is not immobile. It will move about essentially the same as the angle a,, which Breconjugate points. Inthe paraxial approxima ‘ anne ong ‘h ie d objective, with the result
scanning the entire field of view, which quite often subtended atthe unaided eye. Asin previous =e, tan, and @, ~ tan a,. The image fills cated daeerevistaddewp. Fieure 8.103 shows one
contains many points of interest. In effect, the eye the angular magnificationis lon ofthe field stop, and half its extent ego aa neaet becctive anda Kellncr eye-
examines different regions ofthefield by rotating so mce BC = DE. Thus, from triangles Fa BC and itheno aocn long draw tube
that rays from a particular area fall on the fovea cen- MP = he ratio of the tangents yields piece. It will ol intthatesmestomind wien you think
tralis. The direction established by the chief ray through ee f tne piehenchive and canponballe ,
the center of the entrance pupil to the fovea centralis Here a, and a, are measures of the field of vi MP= wf 6.83) ° Fovthat. . ee oie (binocular telescopes) gen-
is the primary line of sight. The axial point, fixed in object and image space, respectively. The first . Dputilizeerecting prisins, which accomplish the samme
referenceto the head, through which the primaryline _half-angle of the actual cone of rays collected. vine inless apace etd alee increase the ceparation ofof sight always passes, regardless of the orientation of second relates to the apparent cone of rays. thing in less space and als P'
the eyeball, is called the sighting intersect. When it is arrivesat the objective with a negativeslope,it
desirable to have the eye surveying the field, the sighting _the eye with a positive slope and vice versa.
intersect should be positioned at the center ofthe tele- the sign of MP positive for erect images, and th fe f
scope’s exit pupil. In that case, the primaryline of sight consistent with previous usage (Fig. 5.90), eitl Mr.» — x “fywill always correspond toa chief ray throughthe center a, must be taken to be negative—we choose HER ° °e, if D, is the diameter of the objective and

lameter of its image, the exit pupil, then Mr, =
two expressions for My, compared withField stop Exit

pupi. plane

“be 6.84)
ly a negative quantity, since the image 

 
 

 ris an easy matter to build a simple refract-
¥ holding a lens with a long focal Jength in

meeWith a short focal length and making sure
+f. But again, well-corrected telescopic

| @enerally have mutltielement objectives,
y ets or triplets. Figure 5.104 A binocular.

 

 
    

Figure 5.102 Fas ot
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the objectives, thereby enhancing the stereoscopic infinity, point it at the sky; and observe the
effect. Most often these are double Porro priems, as in a
Fig. 5.104 (notice the involved modified Erfle eyepiece,
the wide field stop, and the achromatic doublet abjec- Bythe way, as long as d * f, + f., the sep
tive), Binoculars customarily. bear several numerical afocal, evenif the eyepiece is negative (i.¢. La
markings, for example, 6 X 30, 7 X 50, or 20 X 50. The telescope built by Galileo (Fig, 5.105) had a
initia] number is the magnification, here 6X, 7X, or negative lens as an eyepiece and therefore fg,
20X. The second numberis the entrance-pupil diameter erect image [f,< 0 and MP>0 in Eq. 6.gg)
or, equivalently, the clear aperture of the objective, telescope, the system is now mainly of his
expressed in millimeters. It follows from Eq. (5.84) that pedagogical interest, although one can st;
the exit-pupil diameter will be the second number two such scopes mountedsidebyside to form
divided by the first, or in this case 5, 7.1, and 2.5,all field glass. It is quite useful, however, as
in millimeters. You can hold the instrument away from expander, because it has no internalfocal pointsyour eye and see the bright circular exit pupil surroun- a high power beam would otherwise ionize
ded by blackness. To measure it, focus the device at rounding air:

sharp disk of light, using a piece of paper <j,
Determine the eyerelief while you'reat jt, ,

  
   
   
   

i) Reflecting Telescopes
The difficulties inherent in making large lense
underscored when we note that the largest re :
instrumentis the 40-inch Yerkestelescope in Wi
Bay, Wisconsin, whereas the reflector on
Palomar in southwestern California is 200 i”
diameter, and the Soviet Union has a 236-inc
at their Crimea Observatory. The ol inema
a lens must be transparent andfree ofinternalg
etc. A front-surfaced mirror obviously need noal
indeed it need not even be transparent. A lens
supported only byits rim and may sagt
weight; a mirror can be supported byits rman
as well. Furthermore, since there is no refracti
therefore no effect on the focal length du
wavelength dependenceof the index, mirrors3
chromatic aberration. For these and other rea
their frequency response), reflectors predo’
large telescopes. J

Invented by the Scotsman James Gregory ¥
1675),in 1661, the reflecting telescope was first $i
folly constructed by Newton in 1668, and onlybag
an important research tool in the hands of Wi
Herschela centurylater. Figure 5.106 depict

 
       Figure 5.105 ‘The Galifean telescope. Galileo's first scope had a of reflector arrangements, each havna nee ‘

Planar-convex objective (.6emin diameter, f= 17 m,R=98.5em) __boloidal primary mirrors. The 200-inch HS omand a planar-concave eyepiece, both of which he ground himself. It is so large that a little enclosure, where an Obswas $x in contrast to his last scope, which was S2%. (Photo by E.H.) sit, is positioned at the prime focus. In the
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Newtonian (by

 
  

  
   
  Gregorian (cb

 
Cassegrainian (0

Bie telescapes.
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version, a plane mirror or prism brings the beam out
at right angles to the axis of the scope, whereit can be
photographed, viewed, spectrally analyzed, or photo-
electrically processed. In the Gregorian arrangement,
which is not particularly popular, a concaveellipsoidal)
secondary mirror reinverts the image, returning the
beam throughahotein the primary. The Cassegrainian
systern utilizes a convex hyperboloidal secondary mirror
to increase the effective focal length (refer hack to Fig.
5.46, p. 158). It functionsas if the primary mirror had
the same aperture but a larger focal length or radiusof curvature,

 

  

 

ii) Catadiopiric Telescapes
A combination of reflecting (catepiric) and refracting
(dioptric) elements is called a catadiopiric system. The
best known of these, although not the first, is the classic
Schmidt optical system. We musttreatit here, even if only
briefly, because it represents the precursor of a new
outlook in the design of large-aperture, extended-field
reflecting systems. As seen in Fig. 5.107, bundles of
parallel rays reflecting off a spherical mirrorwill form
images, let’s say of a field of stars. on a spherical image
surface, the latter being a curved film plate in practice.
The only problem with such a schemeis that although
it is free of other aberrations (see Section 6.3.1), we
know that rays reflected from the outer regions of themirror will not arrive at the same focus as those from
the paraxial region. In other words, the mirror is a
sphere, not a paraboloid, andit suffers spherical aberra-
tion [Fig. 5.107(b)]. Lf this could be corrected, the systern
(in theory at least) would be capable of perfect imageryover a wide field of view. Since there is no one central
axis, there are. in effect, no off-axis points. Recall that
the paraboloid forms perfect images only at axial points,
the image deteriorating rapidly off axis. One evening
in 1999, while sailing on the Indian ocean (return-
ing from an eclipse expedition ta the Philippines),
Bernhard Voldemar Schmidt (1879-1935) showed a
colleague a sketch of a system he had designed to cope
with the spherical aberration of a spherical mirror. He
would use a thin glass corrector plate on whose surface
would be ground a very shallow toroidal curve [Fig.
5.107(c)). Light rays traversing the outer regions would
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The Schmidtoptical system. 

 
be deviated by just the amountneeded to be
focused on the image sphere. The corrector mii
come one defect without introducing app
amountsof other aberrations, Thisfirst system
in 1930, and im 1949 the famous 48-inch Schyn
scope of the Palomar Observatory was comple;
a fast (}/2.5), wide-field device,ideal for surye n Le
night sky. A single photograph could encom) Fe facing the viewing screen with a photosensitive
region the size of the bowl of the Big Dipper such 23 a film plate, the obscura becomes a
compared with roughly 400 photographs by thes “in the modern sense of the word. The firstinchreflector to cover the same area, q

photograph was made in 1826 by JosephMajor advances in the design of catadi Niépee (1765-1833), who used a box camera
instrumentation have occurred since the introd, convexlens, a sensitized pewterplate, and
of the original Schmidt system.* There are an eight-hour exposure. It is a roof-top scene,
catadioptric satellite and missile tracking instrup mpthe workroom window of his estate nearmeteor cameras, compact commercial tele: gesur-Sadne in France. Although blurry and
telephoto objectives, and missile-homing guidaries in its unretouched form), the large slanting roof
tems. Innumerable variations on the theme exist; a pigeon house, and a distanttree are stillreplace the correcting plate with concentric me
lens arrangements (Bouwers-Maksutov), othesd)
solid thick mirrors. One highly successful apputilizes a triplet aspheric lens array (Baker).

Kepler, the renowned astronomer, had a
ion, which he used while surveyingin

g tent Vvcer part of the 1600s, the small hand-
Ta ura was commonplace. Note that the

Poeulus, a litle cotlefsh, is literally an open
oe which simply fills with sea water on

 
 

 
 
  

 

 

 
  
 
 

well-defined, practically undistorted image
out an extremely wide angularfield (due

h of focus) and over a large range of
depth of field). If initially the entrance

The prototype of the modern photographic camel g very large, no imageresults. Asit is decreased
was a device known as the camera obscura, the Mimeter, the image forms and growssharper. Afterform of which wassimply a dark room with asma further reduction in the hole size causes the
in one wall. Light entering the hole cast an inveé 5 blur again, and one quickly finds that the
image of the sunlit outside scene on an inst ze for maximum sharpness is proportional
Theprinciple was knowntoAristotle, and his 0} ce from the image plane. (A hole with a
tions were preserved by Arab scholars througl [diameter at 0.25 m from thefilm plate is con-
Europe's long Dark Ages. Alhazenutilizedit to}
solar eclipses indirectly over eight hundredy:The notebooks of Leonardo da Vinci contain sevél
descriptionsof the obscura, butthefirst detailed
ment appears in Magia naturalis (Natural Ma
Giovannidella Porta. He recommendedit asa dra
aid, a function to which it was soon quite popularly

5.7.7. The Camera     
    
 
 
 
    
 ‘so no defects in that mechanism are respon-

drop-off in clarity. ‘The problemis actually  
  
 
  
 

One overriding drawbackis thatit is insuffer-
OW (roughly f/500). This means that exposure

generally be far too long, even with the most
@ films. The obvious exception is a stationary

@ such as a building (Fig. 5.109), for which the
Elis excels,2

* For further reading see J. J. Villa, “Catadioptric LenseSpectra (March/April, 1968), p. 57. 5
+ See W.H. Price, “The Photographic Lens,”Sci. dm. 1¥EByp. 72.

  
'5 depicts the essential components of a 
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Figure §.108 The pinhole camera. Note the variation in imageclarityas the hole diameter decreases. (Photos courtesy Dr. N. Joel,
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Figure 5.109 Photograph takea with 2 pinhole camera. (Science
Building, Adelphi University), Hole diameter 0.5mm, film plane
distance 24 cm, A.S.A. 3000,shutter speed 0.25 s. Note depth offield.(Photo by EH.)

fairly popular and representative modern camera—the
single-lens reflex, or SLR. Light traversing thefirst few
elements of the lens then passes through aniris dia-
phragm, used in partto control the exposuretine or,
equivalently, the f-number—it is in effect a variable-
aperture stop. On emergingfromthelens,light strikes
a movable mirrortilted at 45°, then goes up through
the focusing screen to the penta prism and out the
finder eyepiece. When the shutter release is pressed,
the diaphragmcloses downto a preset value, the mirror
swings up out of the way, and the focal-plane shutter
opens, exposing the film. The shutter then closes, the
diaphragm opens fully, and the mirror drops back in
place. Nowadays most SLR systems have any one of a
numberofbuilt-in light-meter arrangements, which are
automatically coupled to the diaphragm and shutter,

Chapters Geometrical Optics—Paraxial Theory

 

 5-7 Optical Systems
 

 
Shutterspeed

Shuuer release dial Film advance lever  
 
  
  

   
  
 

more required that the entire photographsurface corre-
spond to a region of satisfactory image quality. More
precisely, the angle subtended at the lens, by a circle
encompassing the film area,is the angular field of view
yg (Fig. 5.111). Asa rough but reasonable approximation
of a common arrangement, take the diagonal distance
across the film to equalthe focal length. Thus ¢/2 =

is art: excluded from the diagram 

 
 

i gansera, Tee © hens in mibeeddia
, tthe film plane. Since its focal length isso too must %. The angular field of

jy, be thoughtof as relating to the fraction
‘jadedin the photograph. It is further-    
 ¢ 

 
   
  

 Iris diaphragm Film plane:
Figure 5.110 A single-lens reflex camera.

  
Cooke (Taylor) triplet

 Zeiss Onchometer  
 
  
 
 

Petzval
 
 
 
 
 
 
  Tessar t&)

 

 
 Figure 5.111 Angularfield of view when focused at infil Camera lenses. MagaarTelephoto
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tan‘, that is, g ~ 53°. Hf the object comesin from
infinity, s; must increase. The lens is then backed away
from the film plate to keep the image in focus, and the
field of view, as recorded on the film whose periphery
is the field stop, decreases. A standard SLR lens has a
focal length in the range of about 50 to 58mm anda
field of view of 40° to 50°. With the film size kept
constant, a reduction off results in a wider field angle.
Accordingly, wide-angle SLR lenses range from f ~
40 mm down to about 6mm, and ¢ goes from about
50° to a remarkable 220° (the latter being a special-
purpose lens wherein distortion is unavoidable). The
telephoto has a long focal length, roughly 80 mm or more.
Consequently, its field of view drops off rapidly, until
it is only a few degrees at f ~ 1000 mm.

‘The standard photographic objective must have a
largerelative aperture, 1/(f/ # ). to keep exposure times
short. Moreover, the image is required to be flat and
undistorted, and the lens should have a wide angularfield of view as well. All of this is no mean task, andit
is not surprising that a high-quality innovative photo-
graphic objective remains particularly difficult to
design, even with our marvelous, mathematical, elec-
tronic idiot savanis. The evolution of a modernlensstill
begins with a creative insight that leads to a promising
new form.In thepast, these were laboriously perfected
relying on intuition, experience, and, of course trial
and error with a succession of developmental lenses,
Teday, for the most part, the computer serves this
function without the need of numerous prototypes.
Many contemporary photographic objectives are vari-
ations of well-known successful forms. Figure 5.112
illustrates the general configuration of several impor-
tant lenses, roughly progressing from wide angle to
telephoto. Particular specifications are not given,
because variations are numerous. The Aviogon and Zeiss
Orthometer are wide-angle lenses, whereas the Tessar
and Bioler are often standard lenses. The Cooke triplet,
described in 1893 by H. Dennis Taylor of Cooke and
Sons,is still being made (note the similarity with the
Tessar). It contains the smallest numberof elements by
which all seven third-order aberrations can essentially
be made to vanish. Even earlier (ca. 1840), Joscf Max
Petzval designed what was then a rapid (portrait) lens
for Voightlander and Son. Its modern offshoots are
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Problems

Figure 5.113 A telephoto iens.

 myriad. In general, a telephoto objective Ing ;
front grouping and a distant negative rear gre
It often resembles the Galilean scope exce pd that
lenses are shifted a bit so that the system is no}
These are usually rather large and heavyat the iefocal lengths, although calcium fluoride eleme;
begunto help in both respects. As can be seen]5.113, the telephoto has a large effective focal
e.f.L, thatis, it behaves asif it were a positive }

Figure 6.115

5.6 Prove that the minimum separation between con-
jugate rea! object and image points for a thin positive
lens is 4f.

 

5.7 A biconcavelens(n, = 1.5) has radii of 20 cm and
10 cmand anaxial thicknessof 5 cm. Describe the image
of an object 1-inchtail placed 8 cm from thefirst vertex. 
 
  
   
 

    
  
 
 
  
  
 
 
  
  
   
   

    
  

 
  
 

 
5.8* Use the thin-lens equation on the previous prob-
lem to see how faroff it is in determiningthefinal-imagelocation.

back focal length is conveniently short, allowing
to be handily slipped into a standard camera

5.9 An object 2 cm high is positioned 5 cm to the right
of a positive thin lens with a focal length of LO cm.
Describe the resulting image completely, using both the
Gaussian and Newtonian equations.

PROBLEMS
5.1 We wish to construct a Cartesian oval sud
the conjugate points will be separated by I}
the object is 5 cm from the vertex. If 2,@Laer
drawseveral points on the required surface.

 

 
5.10 Make a rough graph of the Gaussian lens
equation, that is, plot s, versus s,, using unit intervals

5.2* Figure 5.114 depicts a point source at 4 of f along each axis. (Get both segmentsof the curve.)
curved interface between two homogeneggj
(n, > n;). Show that for rays co propagate in the
mitting medium asa parallel bundle, the interfagg
be byperbolic with an eccentricity of (n,/1:)=

 
 5.11 What must the focal length of a thin negative

Dt lens be forit to form a virtual image 50 cm away of an
ant that is 100 cm away? Given that the antis to the
right of the lens, locate and describeits image. 

5.3 Diagrammatically construct an_ ellipto:
negative lens, showing the form of both rays ane
fronts as they pass throughthe lens. Do the Saif
an aval-spheric positive lens.

 
5.12* Computethe focal length in air of a thin bicon-
vex lens (n; = 1.5) having radii of 20 and 40 cm. Locate
and describe the imageof an object 40 cm from the lens.

thf image of an object placed 1.2 m from
“igypsy’s crystal ball, which has 2 20-cm

W=[.5). Make a sketch of the thing (not theTays),

 5.13 Determine the focal length of a planar-concave
lens (nm,©1.5) having a radius of curvature of 10cm.
Whatis its power in diopters?

5.4* Making use ofFig. 5.115, tne
that in the paraxial region @ = h/s. ="
hfs, derive Eq. (5.8).
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5.14* Determine the focal length in air of a thin
spherical planar-convex lens having a radius of cur-
yature of 50.0 mm andan index of 1.50. What, if any-
thing, would happen tothe focal lengthif the lens were
placed in a tank of water?

5.15* We wish to place an object 45cm in front of a
lens and haveits image appear onascreen 90 cm behind
the lens. What mustbethe focal tength of the appropri-
ate positive lens?

5.16 The horsein Fig. 5.27 is 2.25 m tall, andit stands
with its face 15.0m ‘from the plane of the thin lens
whose focal length is 3.00 m.
a) Determinethe jocation of the image of the equinemiose.
b) Describe the image in detail—type, orientation, and

magnification.
cj Howtall is the image?
d) Ifthe horse's tail is 17.5 m from the lens, how long,

nose-to-tai], is the image of the beast?

5.17* A candle that is 6.00 cm tall is standing 10cm
from a thin concave lens whose focal length is —30 cm.
Determine the location of the image and describeit in
detail. Draw an appropriate ray diagram.

5.18" ‘Twopositive lenses with focal lengths of 0.30 m
and 0.50m are separated by a distance of 0.20m. A
small frog rests on the central axis 0.50 m in front of
the first Jens. Locate the resulting image with respectto the secondlens.

5.19 The image projected by an equiconvexlens(rn =
1.50) of a frog 5.0 cm tall and 0.60 m fromascreenis
co be 25 cm high. Please compute the necessary radii of
the lens.
5.20 A thin double convex glass lens (with an index
of 1,56) while surrounded by air has a 10-cm focal
length. If it is placed under water (having an index of
1,33) 160 cm beyonda smallfish, where will the guppy’s
image be formed?
5.21 A homemadetelevision projection system uses a
large positive lens to cast the image ofthe screen onto

 a wall. The final picture is enlarged three»
although rather dim,it's nice and clear. If the faa focal length of 60cm, what should be the angbetween the screen andthewall? Whyuse
Howshould we mounttheset with respectiy

‘a ray diagram for the combination of two
Res wherein their separation equals the sum

spective focal lengths. Do the samething for|. achich ane of the lensesis negative.

 
 

      
 

  
  

Berar the ray diagram for a compound micro-
(6:98), butthis timetreat the intermediateif it were a real object—this approach should

simpler.

5,22 Write an expression for the focal length @
a thin lens immersed in water (n, = $) in termefocal length whenit’s in air (f,).
  

  
 
 5.23* A convenient way to measure the focal Jeff

of a positive lens makes use of the following face
pair of conjugate object and (real) image points (amP)are separated by a distance L > 4f, there will he
locationsof the lens, a distance d apart, for «hy
same pair of conjugates obtain. Show that

-@
“aE

fRedraw the telescope in Fig. 5.101, taking
mantage (of the fact that the intermediate image can

ule of as a real object (as in the previous
      
 

   
  
 
  
    

 
  
   

asiderthecase of two positive thin lenses, L,ated by 5cm. Their diameters are 6 and
ctively, and their focal lengths are f, = 9cm

Som. If a diaphragm with a hole lem in
eter js located between them, 2cm from Lz, find

‘ stop and (b) thelocations and sizes of
for an axial point, $, 12cm in front of (to
d,.

  
 

Note that this avoids measurements made speci
from the vertex, which are generally not r2ay in 

    5.24 An equiconvexthin lens L, is cemented iif
mate contact with a thin negative lens, L2, such thal
combination has a focal length of 50cm in air. tf
indices are 1.50 and 1.55, respectively, and ii thie
length of L, is —50.cm, determineall the radifvature,

 

  
 

[ike a sketch roughlylocating the aperture stop= re and exit pupils for the lens in Fig. 5.117.
    
 
  
   

5.25 Verify Eq. (5.34), which gives M; fura aanGon of two thin lenses.   
  
  

        
  
    

5.26 Compute the image location and magnifig]
of an object 30 cm from the front doublet of
lens combination in Fig. 5.116. Do the cl
finding theeffect of each lens separately. Make:of appropriate rays.

  
etch Toughlylocating the aperture stop

exit pupils for the Jens in Fig, 5.118,Sbyect point to be beyond (to the left

    
  
 
  

 
Figure 5.116 Sia 4 Bis A  
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Eyck's painting of John Arnolfini and His Wife (Fig.5.121).

 

   

  
    

Problems 205,

5.33 Drawaray diagram locating the images of a point
source as formed bya pair of mirrors at 90° (Fig. 5.119).

Figure 5.119

5.34* Make a sketch of a ray diagram, locating the
images ofthe arrow shownin Fig. 5.120.

Q&
Figure 5.120

5.35 Show that Eq. (5.49) for a spherical surface is
equally applicable to a plane mirror. 
5.36 Locate the image of a paperclip 100cm away
from a convex spherical mirrorhaving a radius of cur-vature of 80cm.

8.87* Describe the image you would see standing 5feet from, and looking directly toward, a hrass ball 1
foot in diameter hanging in front of a pawn shop.

5.58 ‘The image of a red rose is formed by a concave
spherical mirror on a screen 100 cm away. If the rose
is 25cm from the mirror, determine its radius of cur-vature.

5.39 From the image configuration determine the
shape of the mirror hanging on the back wall in van
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5 c y in Velasquez's painting of Venus andlooking at herself in the mirror?

p

f

Min Manet’s painting The Bar afthe FoliesBA, 23) is standingin front ofa large planar
in it s her back and a man in evening

Bom she appears to be talking. It wouldgent ayan greg the lneaning feeling
. iy standing where that gentleman must
laws of geometrical optics, whatis amiss?

 

 
to design an eye for a robot, using a

eeviral mirror such that the image of an
tall and 10 m awayfills its 1.0-cm-square

tive “tetector (which is movable for focusing
Where should this detector be located withut? What should be the focal length

yar. Draw a ray diagram.

 
 

 
 
 
 
 You are herewith requested to designalittlei 7 be fixed at the end ofa shaft for use

gfeouth of some happy soul. The requirements
at the image be erect as seen by the dentisthat when held 1.5 cm from a tooth the mirror

  

    
  
 

 

  
 

 Figure 5.121 Detail of fohn Amolfint und His Wife by Jan vanEyck—National Gallery. London. fProve that with a spherical mirror of radius R,
Bhject at a distance s, will result in an image thatis

w of the cornea of the eye, which is
fitting contactlenses.In effect,

ted object is placed a known distance from 
 
 instrument allows the operator to

: of thatvirtual image. Supposechat the
= is found to be 0.087% when the objectat 100mm. Whatis the radius of cur-

 
 
 
 
 
 
 
 

re
 

=pa spherical mirror, show that the
ihe and imageare given by

P= WMr and 5,=—f(Mr—- 1).
 Figure 5.122 Venus and Cupid by Diego Rodriguez de Silva y Figure 5.123 The Bar at the Folies Bergéres by EdouaullCourtauld Institute Galleries, London.

 
Velasquez—National Gallery, London.
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Problems

5.47 Looking into the bowl of a soupspoon, a man
standing 25cm away sees his image reflected with 2
magnification of —0.06+4. Determine the radius of cur-vature of the spoon.

5.48* A large upright convex spherical mirror in an
amusementpark is facing a plane mirror 10.0m away.
A girl 1.0 m tall standing midway between the two sees
herself twiceas tall in the plane mirrorasin the spherical
one. In other words, the angle subtended at the observer
by the inrage in the plane mirror is twice the angle
subtended by the imagein the spherical mirror. What
is the focal length of the latter?

5.49* Thetelescope depicted in Fig. 5.124 consists of
two spherical mirrors. The radius of curvature is 2.0m
for the larger mirror (which has a hole throughits
center) and 60cmfor the smaller. How far from the
smaller mirror should the film plane be locatedif the
object is a star? Whatis the effective focal length of the
system?

Figure 5.124

5.50* Suppose you have a concave spherical mirror
with a focal length of 10cm. At what distance must an
object be placedif its image is to be erect and one and
a half times as large? Whatis the radius of curvature
of the mirror? Check with Table 5.5.

5.51 Describe the image that would result for an object
3 inchestall placed 20cm from a spherical concave
shaving mirror having a radius of curvature of —60.cm.

5.52* Figures 5.125 and 5.126 are taken from an
introductory physics book. What's wrong with them? 

207
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Figure 5.125

7 .
ject 20 m from the abjective (f, = 4m) of

l i telescope is imaged 30cm from the at 50 cm?
1 ll (¥, = 60cm). Find the total linear mag- b) How much accommodation is required to see an

Figure 5.127 io | ws the scope. object at a distance of 50 cm?{ c) What power mustthe eye haveto see clearly an objectExY bop 5,129, which purports to show an erect- at the standard near-pointdistance of 25 em?

5.53 Figure 5.127 showsa lens system, an object, and
the appropriate pupils. Diagrammatically locate theimage.

5,54 Referring to the dove prism in Fig. 5.60, rotate
it through 90° about an axis along the ray direction.
Sketch the new configuration and determine the angle
through whichthe imageis rotated.

5.55 Determine the numerical aperture of a single
clad optical fiber, given that the core has an index of
1.62, and the clad 1.52. Whenimmersedin air, whatis
its maximum acceptance angle? What would happen toa ray incident at, say, 45°?

5.56 Given a modern fusedsilica ber with an attenu-ation of 0.2 dB/km, how far can a signal travel alongit
before the power level drops by half?

Figure 5.126

 

 
Problems
 

20g
  

   
  

5.65 A field-lens, as a cule, is a positive lens placed at
{or near) the intermediate image plane in order to
collect the rays that would otherwise miss the next lens
in the system. In effect, it increases the field of view
without changing the powerof the system. Redraw the
ray diagram efthe previous problem to include a field-
lens. Show that.asa consequencetheeyereliefis reduced
somewhat.

 98 shows an arrangement in which
dthrough a constant angle o, equal

ween the plane mirrers, regard-Provethatthis is indeed

ire 5.1
deviate
angle 8 bet
agle of incidence.  

 
 

  
   
 
    

5.66" Deseribe completely the image that results when
a bugsits af the vertex of a thin posicive lens. How does
this relate directly to the mannerin which a feld-lens
works (see previous problem)?

  
  
  §.67* Ic is determined that a patient has a near point

at 50cm. Ef the eye is approximately 2.0. cm long.  
  a) How much power doesthe refracting system have

when focused on an object at infinity? When focused   

   
     
 
 
 
 
 

 
  d) How much powershould be added to the patient’sem,js taken from anold, out-of-print optics

vision system by a correcting jens?'s wrongwith it?

 5.68* An optometrist finds that a farsighted person
has a near pointat 125 cm, What powerwill be required
for contact lenses if they are effectively to move that
point inward to a more workable distance of 25 cm so
that a book can be read comfortably? Use the fact thar
if the objectis imaged at the nearpoint, it can be seen
clearly.

Bia photograph of a moving merry-go-round
exposed, but blurred,at grs and f/11, what
iaphragm setting be if the shutter speed is
35 in order to “stop” the motion?

 5.57 The number of modesin a stepped-in
is provided by the expression

No©37D NA/Ag)*.

 
  
      
  
 Given a fiber with a core diameter of 50 pmjand

1,482 and n,; = 1.500, determine N,, when the
illuminated by an LED emitting at a central
of 9.85 zm.

 Thefield of view of a simple two-element astro-
ital fElescope is restricted by the size of the eye-

ke a ray sketch showing the vignetting that

 
     
  

 
5.69 A farsighted person can see very distant moun-
tains with relaxed eyes while wearing +3.2-D contact
lenses. Prescribe spectacle lenses that will serve just as   
 
 
  
 
 

  
5.58" Determine the intermodal delay (in 3
a stepped-index fiber with a cladding of ifand a core of index 1.500. 

5.59 Using the information on the eye in Se ctioncompute the approximate size (in millimetel
image of the Moonascast on the retina. The MS
a diameter of 2160 miles and is roughly
from here, althoughthis, of course, vate   

 
 Figure 5.129
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well when worn 17 mminfront of the cornea. Locate
and comparethe far point in both cases.

5.70* A jeweler is examining a diamond 5.0 mm in
diameterwith a loupe havinga focal length of 25.4 mm.
a) Determine the maximum angular magnification of

the loupe.
b) How big does the stone appear through themagnifier?
<) Whatis the angle subtended by the diamondat the

unaided eye when held at the near point?
d) What angle doesit subtendat the aided eye?

5.71 Suppose we wish to make a microscope (that can
be used with a relaxed eye) out of two positive lenses,
both with a focal length of 25 mm. Assumingthe object
is positioned 27mm from the objective, (a) how far
apart should thelenses be, and (b) what magnification
can we expect?

5.72" Figure 5.130 showsa glancing-incidence x-ray
focusing system designed in 1952 by Hans Wolter. How
doesit work? Microscopes with this type of system have
been used to phocograph, in x-rays, the implosion of
fuel pellet targets in laser fusion research. Similar x-ray
optical arrangements have been used in astronomical
telescopes (Fig. 3.40).

 

Figure 5.130 (a) X-ray focusing system. (b) X-ray mirrors§ (Phacourtesy Lawrence Livermore National Laboratory.)
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y, for che most part, dealt with
1 spherical lenssystems.

pr approximations were, ratherlus we had thin lenses and that first-order
iy eufivie rr, for their analysis, Neither of these

Fions can be maintained throughoutthe design
Fision optical system,but, taken together, they
he basis for a first rough solution. This chapter
thingsa bit further by examiningthick lenses

ions; even at that, it is only a beginning.
ent of computerized lens design requires a

shift in emphasis—thereislitttle need to do what
ptiter can do better. Moreover, the sheer wealth

gg Material developed over centuries demands
judicious pruning to avoid a plethora of

  

  
 
     

(by

  
  
 

 
  

  
  
   

(BRCKLeNsEs AND LENS SYSTEMS 6.1 depicts a thick lens (i.e., one whose thickness
BO means negligible). As we shall see. it could
y well be envisioned more generally as an optical

lowing for the possibility that it consists of a
‘of simplelenses, not merely one. Thefirst and
Ocal points, or if you like, the object and image

; ind F,, can conveniently be measured fram theey etmost) vertices. In that case we have the
front and back focal lengths denoted by f-fd.
: When extended, the incident and emerged
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Primary

principal
plane\

First focal
point, a

° vy RY 
 
 

 
 

cond focal

Secondary
principalplane

Figure 6.1.Athick lens.
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rays will meet at points, the locus of which forms a
curved surface that may or may not reside within the
lens. The surface, approximatinga plane in the paraxial
region, is termedthe principalplane(see Section 6.3.1).
Points where the primary and secondary principal
planes {as shown in Fig. 6.1) intersect the optical axis
are knownas the first and second principal points, H,
and Hg, respectively. They provide a set of very useful
references from which to measureseveralof the system
parameters. Wesawearlier (Fig. 5.9, p.140) that a ray
traversing the lens through its optical center emerges
parallel to the incident direction. Extending both the
incoming and outgoingrays until they cross the optical
axis locates what are called the nodal points, N; and
Ng in Fig. 6.2. When the lens is surrounded on both sides
by the same medium, generally air, the nodal and principal
points will be coincident. The six points, two focal, two
principal, and two nodal, constitute the cardinal points
of the system. As shownin Fig. 6.3, the principal planes
can lie completely outside the lens system. Here,
although differently configured, each lens in either
group has the same power. Observe that in the sym-
metricallens the principal planes are, quite reasonably,
symmetrically located. In the case of either the planar-
concave or planar-conyex lens, one principal planeis
tangent to the curved surface—as should be expected
from the definition {applied to the paraxial region). In
contrast, the principal points can be external for menis-
cus Jenses. One often speaksof this succession of shapes
with the same power as exemplifying fens bending. A

Figure 6.2. Nodalpoints.

 

  

i
|

Figure 6.3. Lens bending.

rule of thumbforordinary glass lensesin airis thseparation HH; roughly equals one third the
thicknessVjVo.

The thick lens can be treated as consisting|o
spherical refracting surfaces separated by 4 di
between their vertices, as in Section 5.2.3, whe
thin-lens equation was derived. After a great
algebraic manipulation,* wherein d is not ne;
onearrivesat a very interesting result for the
immersed in air. The expression for the co
points once again can be putin the Gaussian ff

1 ii
5 of

providedthatboth these object and imagedis
measured from the first and second principal
respectively. Moreover, the effective focal
simply the focal length, f, is also reckoned withyr
to the principal planes andis given by

1 1 1 @m-ld— ay
7, vlan Rt tee

The principalplanesare located at distances off
hy and VoH2 = he, which are positive when thePi
to the right of their respective vertices. Figure 6.4 4g

 

and Physical Optics, p. 87.
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 # the various quantities, The values

the same way the Newtonian form of the lensholds,as is evident from thesimilar triangles

f is given the presentinterpretation. And

   ff d > 0, Eqs. (6.1), (6.2), and (6.5) are trans-
in-lens expressions (5.17), (8.16), and

 
 ‘an object positioned 30 cm from the vertex

convex lens having radii of 20 cm and 40 cm,
£ t cm, and an index of 1.5. From Eq.(6.2)

lt {in centimeters) is

. Furthermore,

 * For the complete derivation, see Morgan, Introducti¢nggie =440.92 cm

 

 
 
 

  _26.8(0.5)1
20(1.5)

which means that Hi,is to the right of V,, and Hg is to
the left of V,. Finally, s, = 30+ 0.22, whence

a a
30.2 26.8"

and s,~ 238cm, measured from Ho.

hy = -0.44 cm,  
  

      
 
     
  
 
 
     
  
 

  
 
  
 
 

  
  
  

  
  

 
 
 

 
(b)

 
 Figure 6.5 A compoundthicklens.  
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The principal points are conjugate to each other. In
other words, since f = s,5;/(s, + s,), when s, = 0, s, must
be zero, because f is finite and thus a point at H, is
imaged at H,. Furthermore, an objectin thefirst prin-
cipal plane (x, := ~f) is imagedin the second principal
plane (x, = —f) with unit magnification (M;. = 1). It is
for this reason that they are sometimes spoken of as
unit planes. Hence any ray directed toward a point on
the first principal plane will emerge from the lensas it
it originated at the corresponding point (the same dis-
tance above or below the axis) on the second principalplane.

Suppose we now have a compoundlensconsisting of
two thick lenses, L; and Ly (Fig. 6.5). Let 5), si, and
frand 5,2. sg, and fy be the object and image distances
and focal lengths for the two lenses, all measured with
respect to their own principal planes. We know that the
transverse magnification is the product of the mag-
nificaiions of the individuallenses, thatis,

5S, 5 5:
Mr = (-=)(-) =a, (6.7)Sor S02, So

where s, and 5; are the object and image distances for
the combination as a whole. Whens,is equal to infinity
So S12 Si fis Soe=(Sin a) ands, f. Since

t 1 1
+=,Se Sia fe

it follows (Problem 6.1), uponsubstituting into Eq.(6.7),that

 
 

Siz
~ft for

f oeHence

t Agel _¢ » (6.3)fh k ff
Thisis the effective focal length of the combination oftwo thick lenses whereall distances are measured from
principal planes. The principalplanes for the system as

 
e right, the system resembles a telephoto

st be placed 15cm from the film plane, yetive focallength of 30cm.
ieprocedures can be extendedto three, four,

p32)
the first two lenses can be envisioned as

7 form a single thick Jens whose principalfocal length are calculated. ft, in turn, is
jth the third lens, and so on with each

  
  
    

    
  
    

  
  
    

 
  
 
  

    

   d AN)E61, = 150m

Figure 6.6 A compoundlens.  
 

a whole are located using the expressions
—— fd
oat

clement.
2

and   
gis unquestionably oneof the designer's chief

formulated an optical system on paper,
yhematically shine rays throughit to evaluate
nce. Any ray, paraxial or otherwise, can be
  
 
 

 
 which will not be derived here (see Section ji,

havein effect found an equivalentthick-lens,
tion of the compoundlens. Note that if the
lenses are thin, the pairs of points H,,, H,3
Hy coalesce, whereupon d becomes the
center lens separation,as in Section 5.2.3. F
returningtothe thin lenses of Fig, 5.31 slit
fo = 20, and d= 10. as in Fig, 6.6,

t t 1 10= +—-—-— '
f 30 20 (—30)(20)

so f= 30cm, We found earlier (p,148) that ff
40 cm and f.f.1. = 15 cm. Moreover,sinceitime
lenses, Eqs. (6.9) and (6.10) can be written as

 
  
  ni(k; x a,)=ade, x G,) (a7)

    
 
  
 

  
 
 
 
 
 
 
 
  

 

 

 

== 10:
OF,~OOO 4.15 em

and

oor 209) 10cm.-30
we inl

Both are positive, and therefore the planes is

right of O, and Og, respectively. Both computeg i: MeePuterlens display. (Photo by E.H,} (6) Computeragree with the results depicted in the diagram; Maecutr<sy of Optical Research Associates.)
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 6.2 Analytical Ray Tracing 215  
   at the first surface, locating where the transmitted ray

then strikes the second surface, applying the equation
once again, and so onall the way through. At one time
meridional rays (those in the plane of the optical axis)
were traced almost exclusively, because nonmeridional
or skew rays (which do not intersect the axis) are con-
siderably more complicated to deal with mathematically,
The distinction is of less importance to a high-speed
electronic computer (Fig. 6.7) which simply takesa trifle
longer to make the trace. Thus, whereasit would prob-
ably take LO or 15 minutesfor a skilled person with a
desk calculator to evaluate the trajectory of a single
skew ray through a single surface, a computer might
requireless than a thousandthof a secondfor the same
job, and equally important, it would be ready for thenext calculation with undiminished enthusiasm.

The simplest case that will serve to illustrate the ray-
tracing process is that of a paraxial, meridional ray
waversing a thick spherical lens. Applying Snell's law
in Fig. 6.8 at point P, yields

m1 81~ A Oy

My (ayr to) my (oe, + a).  
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Figure 6.8 Ray geometry.

Inasmuch as @,©y,/R,, this becomes
maar + y/Ri) = male > yfRi).

Rearranging terms, we get
faa

My Ory MA) rs dp
 
 

but as we saw in Section 5.7.2, the power of a single
refracting surface is

(My = Pia]
R
 

B=
Hence

Ni= Mia — Diy. (6.12)
This is often called the refraction equation pertaining to
the first interface. Having undergonerefraction at point
P|, the ray advances through the homogeneous medium
of the lens to point Ps, on the second interface. The
height of P, can be expressed as

yom nt dara, (6.13)

on the basis that tan @,,=a4. This is known as the
transfer equation, because it allows us to follow the ray
from P; to P2. Recall that the angles are positive if the
ray has a positive slope. Since we are dealing with the
paraxial region dy, ~ V2V, and 9g is easily computed.
Equations (6.11) and (6.12) are then used successively
to trace a ray through the entire system. Of course,
these are meridional rays and because of the lenses’

 

 
very insightful, since we merely replaced

9) by the symbol yi andthenlet jy = 3n-business is for purely cosmetic purposes,
jna moment. In effect,it simply says that

Pit of reference point P, above the axis in the
‘edium (ji1) equals its height in the transmit-

Owhich is obvious. But now the pair
fans can be recast in matrix form as

mast | [; a4: aroJn 9 1 yu

gould equally well be written as

fe]-[oe" Mayet] sengn a I Ms
at the precise form of the 21 column matrices

ally a matter of preference. In any case, these
i ibe rvisioned as rays on either side of Pi, one

Eefore and the other after refraction. Accordingly,
Brg; and #,; fur the two rays, we can write

=|"| and 1= ["]. (6.18)Ya Ja
The f= 2 “iaizix is the refraction matrix, denoted as

1 -2.
a= Fe a (6.19)

Eq. {6.16) can be concisely stated as

 
 
  

 
   

   
 

 
 
 
   
 

symmetry aboutthe optical axis, such a py
the same meridionalplane throughoutits soi
process is two-dimensional; there are two equatié
two unknowns, a, and yo. In contrast, a skew rahave to be treated in three dimensions.

  
  
   

 6.2.1 Matrix Methods     
 

 
In the beginning of the 1930s, T. Smith formula
rather interesting way of handling the ras-t
equations. The simple linear form of the expres
and the repetitive manner ia which they are %
suggested the use of matrices. The processesof
tion andtransfer might then be performed ma
cally by matrix operators. These initial insight
not widely appreciated for almost thirty years.
the early 1960s saw a rebirth of interestin this
which is now flourishing.* Weshail only oui
of the salient features of the method, leavingj®
detailed study to the references.

 
    
  
 
 
 
     t= Rit, (6.20)

says that #, transformstheray 2, into the
refraction at the first interface. From Fig.

WO Have nz aig 2:1 a,,, thatis,

     
       
  
 

 
     
 
  

Let’s begin by writing the formulas Nig Gig MyM +O (6.21)
Ray = Mei ~ Dir

qd ordi + Yay (6.22)

we O+%, 5.13) fie = M1, a2 ce), and use was made of Eq.With yy rewritten as Jes to make things pretty. 
*For further reading see K. Hallbach, “Matrix Represent
Gaussian Optics.” Am. J. Phys, 32, 90 (1964); W. BrouWery
Methods in Optical Instrument Design; E. L. O'Neill, /ntrodSiatistical Optics; or A. Nussbaum, Geometric Optres.

    
 
 [s*]-[,.! Oo] fra] 6.29)dee dolny LLL xe J" "
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The transfer matrix

Fy -| } ‘| (6.24)dyyingy
 

takes the transmitted ray at P, (i.e., ¢,,) and transforms
it into the incident ray at Pp:

["2"|
ae :Je

Hence Eqs. (6.21) and (6.22) become simply
tie Fat. (6.25)

If we makeuse of Eq.(6.20), this becomes
tig = Fn Bit. (6.26)

The 2 x 2 matrix formed by the productof the transfer
and refraction matrices Fp ®, will carrythe ray incident
at P, into the ray incidentat P,. Notice that the deter-
minantof 4g, , denotedby|F>;|, equals 1, thatis, (1)(1)
(0)(do,/n))= 1. Similarly |#@,| = 1, and since the deter-
minant of a matrix product equals the product ot the
individual determinants, |72,@,|~ t. This provides a
quick check on the computations. Carrying the pro-
cedure through the second interface (Fig. 6.8) of the
lens, which has a refraction matrix ®g, it follows that

tig = Rats, (6.27)
or from Eq,(6.26)

4 RT Ayr. (6.28)
The system matrix ./ is defined as

Me RF | R, (6.29)
and hasthe form

” ie “). enG2) G22
Since

ical gl el 1 "I iloe B 1 dyinn SLO 1or

ed [} “2 1 -2, |“LO 1 Shderft —Prdoufme + 1]? 
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we can write

[ce alda, Age.

- fr Dedoiim, —Ddeine
(B_D, dorian)

~Didariny |b *|
’

(6.31)

and again |.2¢|= 1 (Problem 6.15). The value of each
elementin is expressed in termsof the physicallens
parameters, such as thickness, index, and radii (via 2).
Thusthe cardinal points that are propertiesof the Jens,
determinedsolely by its make-up, should be deducible
from s. The system matrixin this case (6.31) transforms
an incidentrayat the first surface to an emerging ray
at the second surface; as a reminder we will write it as
war.

The concept of image formation entersrather directly
(Fig. 6.9) after introduction of appropriate object and
image planes. Consequently, the first operator Fo
transfers the reference point from the object (i.e.. Po
to P,). The next operator #,, then carries the ray
through the lens, and a final transfer F;2 brings it to
the image plane (i¢., P;). Thus the ray at the image
point (2;) is given by

ty = FredyFoto, 16.32)
where to is the ray at Po. In component form this is

Late, LS 22]M dieiny Atha, aa»

x [ 1 | ["~|. (6.33)dioino IL yo
Notice that Fioto = 4and that o;tj) ~ t2. hence
Trot. = 4. The subscripts O,1,2,...,/ correspond
to reference points Po, P;, P2, and so on, and subscriptsi and ¢ denote the side of the reference point (.e.,
whetherincidentor transmitted). Operation by a refrac-
tion matrix will change i to ¢ but not the reference point
designation. On the other hand,operation by a transfer
matrix obviously does change the latter.

Ordinarily the physical significances of the com-
ponents of of are found by expanding outEq. (6.33),butthisis too involved to do here. Instead,let’s return
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obviously a horrendousalthough conceptually simple
calculation, one presumably will get

0.848
«| 1,338 -0.|0.867 J"   

 

 Vv,

and from that, f = 5.06, Vy—0.67.
Asa last point, it is often convenient to consider a

system of thin lenses using the matrix representation.
To that end, return to Eq. (6.31). It describes the system
matrix for a single lens, and if we let da, > 0, it corre-
spondsto a thin lens. This is equivalent to making 72;
a unit matrix, thus

0.77, and V>Hs

diy day   
Ser Principal planes and focal lengths.

 
 

example of how the technique can be used,
ly it, at least in principle, to the Tessar lens*

mpg. G1) The system matrix has the form
GFRTF sg RFishFT929RoTR,

to Eq. (6.31) and examine several of the termiexample,  
(6.38)

if = B®, F at 90),0 1  
~My = By By — Bp D, dering.

If we suppose, for the sake of simplicity, Live: lye
is in air, then Butas we saw in Section 5.7.2, the powerof a thin lens@ is the sum of the powersof its surfaces. Hence

bk i
 and Dp

 
(6.39)

as in Eqs. (5.70) and (5.71). Hence  
 

  
  
  

  
 
  
  
  
  
    
    

  
  

 

 
   

 

14
—aqg= ( oz -=een LR Rs 1 0 math met

Butthis is the expression for the focal| Fes =| 0.081 : wate Mame t6053 asm 15123
lens (6.2); in other words, 1.6053 eo = L616

ay =f Semh Furthermore, i

If the imbedding media were differenton ! 1 1.6116 —1
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In addition, for two thin lenses separated by a distance
d, in air, the system matrix is

fe|
 

or

= [’ ~ dif Vf + dif fe— ve]d —d/fp +t
Clearly then,

1 til d
OR FRAR’

and from Eqs. (6.36) and (6.37)
OH = fdif, OpHa = -faifi,

all of which by now should be quite familiar. Note how
easy it would be with this approach to find the focal
length and principal points for a compoundlens com-
posed of three, four, or more thin lenses.

6.3 ABERRATIONS

To be sure, we already know that first-order theory is
no more than a good approximation—anexact ray trace
or even measurements performed on a prototype sys-
tem would certainly reveal inconsistencies with the cor-
respondingparaxial description. Such departures from
the idealized conditions of Gaussian optics are known
as aberrations, There are two main types: chromatic
aberrations (which arise from the fact that n is actually
a function of frequency ar color) and monochromatic
aberrations. The latter occur even with light that is
highly monochromatic, and they in turn fall into two
subgroupings. There are monochromatic aberrations
that deteriorate the image, making it unclear, such as
Spherical aberration, coma, and astigmatism, In addition,
there are aberrations that deform the image, for
example, Peixval field curvature and distortion.

We have known ail along that spherical surfaces in
general would yield perfect imageryonly in the paraxial
region. Now we must determine the kind and extent
of deviations that result simply from using those sur-

 

   
 
 
 
 
 
   
 
 
 

  
    

  
  
 
 
  
 
 

 
  
  
 
 
 
 
  
 
 
  
 
 

 

faces with finite apertures. By the judicious
tion of a system’s physical parameters(e.g., th,
shapes, thicknesses, glass types, and separa '
lenses, as well as the locationsofstops), these aga
can indeed be minimized. In effect, one cancai
most undesirable faults by a slight change in #™
of a leas here ora shift in the position of a,
(very muchlike trimming upa circuit with sma
capacitors, coils, and pots). When it’s all fram
unwanted deformations of the wavefronting ,
passes throughonesurfacewill, it is hoped, by
asit traverses some other surfacesfurther down

As early as 1950 ray-tracing programs were bal
developed for the new digital computers, and
efforts were already under waytocreate lens-da
software. In the early 1960s computerized lens¥q
was a tool of the trade used by inanufacturerd
wide. Today there are elaborate computer
for “automatically” designing and analyzing they
mance of ail sorts of complicated optical
Broadly speaking, you give the computer a q)
(or merit function) of some sort to aim fox
essentially tell it how much of each aberration
willing to tolerate). Then yougive it a roughly di
system (e.g., some Tessar configuration), which
first approximation meetsthe particular F
Alongwith that, you feed in whatever parametel
be held constant, such as a given f-number, focal
or lens diameter, the field of view, or magnific
The computer will then trace several rays thro
system and evaluate the image errors. Havin
given leave to vary, say, the curvatures and 4rations of the elements, it will calculate the
effect of such changeson the quality factor, mal
and then reevaluate. After a numberof iteral
will have changedtheinitial configuration so Sigg
meetsthe specifiedlimits on aberrations, Th
design will still be a Tessar, but not the
Theresult is, if you will, an optimum configuTiegg
probably not the optimum, We canbefairly cert
all aberrations cannot be made exactly zero
real system comprising spherical surfaces.there is no currently known wayto determin
to zero we can actually come. A quality iactong
whatlike a crater-pocked surface in a multidim®)

gxgomputer will carry the design from one
next until it finds one deep enough to meet

gons. ‘There it stops and presumably pre-
a perfectly satisfactory configuration. But

9 way to tell if that solution corresponds to
¢ hole, without sending the computer out

again to meander along totally differentmention all of this so that the reader may
the currentstate of the art. In a word, it is
rt butstill incomplete; it is “automatic” but

gftcall

ih

j

1 Bifiechromatic Aberrations
al treatment was based on the assumption

gas in Fig. 5.8, could be represented satisfac-
g alone; that is, the system was restricted to

in an extremely narrow region about thei, Obviously, if rays from the periphery of a
‘0 be included in the formation of an image,

Btement siny + y is somewhat unsatisfactory.
Silly +. also occasionally wrote Snell's law simply

n,6,, which again would be inappropriate. In
it, if the first two terms in the expansion 3 7

mo=o-f-+e—-2 4...
sine =e teat [5.7]

eta
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are retained as an improved approximation, we have
the so-called third-order theory. Departures from first-
order theory that then result are embodiedin the five
primary aberrations (spherical aberration, coma, astig-
matism, field curvature, and distortion). These were
first studied in detail by Ludwig von Seidel (1821-1896)
in the 1850s. Accordingly, they are frequently spokenof as the Seidel aberrations. In addition to the first two
contributions, the series obviously contains many other
terms, smaller to be sure, butstill to be reckoned with.
Thus, there are most certainly higher-order aberrations,
The difference betweentheresults of exact ray tracing
and the computed primary aberrations can therefore
be thoughtofas the sum ofall contributing higher-order
aberrations. We shall restrict this discussion to the
primary aberrations exclusively.

i) Spherical Aberration
Let’s return for a moment to Section 5.2.2 (p.134).
where we computed the conjugate points for a single
refracting spherical interface. We found that for the
paraxial region,

My ng
So Si R OB} 

lf the approximations for ¢, and é, are improved a bit
(Problem 6.23). we get the third-order expression:

m Ne_tem|of m f1 ) nfl Ly)
+4 tht [(-+—} +2 (--=
Sos R : [= (; R to, Ros} \(6.40)
 

The additional term, which varies approximately as h”,
is clearly a measure of the deviation from.first-order
theory, As shownin Fig. 6.12, rays striking the surface
at greater distances above the axis (hk) are focused nearer
the vertex. In brief, spherical aberration, or SA, corre-
spondsto a dependenceoffocal length on aperture for
nonparaxial rays. Similarly, for a converginglens,as in
Fig. 6.13, the marginalrays will, in effect, be bent too
much, being focused in front of the paraxial rays. Keep
in mind that spherical aberration pertains only to object
points that are on the optical axis. The distance between
the axial intersection of a ray and the paraxial focus,
F;, is knownas the longitudinal spherical aberration,
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y tb)

Figure 6.13 Spherica) aberration for a lens. The envelope of the
refracted rays is called a caustic. The intersection af the marginal
rays and the caustic locates Dy¢.

or L.- SA, of that ray. In this case, the SA is positive. In
contrast the marginal rays for a diverging lens will
generally intersect the axis behind the paraxial focus,
and we say that its spherical aberration is therefore
negative.

If a screenis placed at F; in Fig. 6.13, the image of
a star will appear as a bright central spot on the axis
surrounded by a symmetrical halo delineated by the
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cone of marginalrays. Foran extended image, gqreduce the contrast and degradethe details 7.
above the axis where a given ray strikes this geiCal
or TSAfor short. Evidently, 5A can a ;
stopping down the aperture—but that red a
amountoflight entering che system as wel}, N
if the screen is movedto the position labeled 4s)
imageblur will have its smallest diameter.This
as the circle of least confusion, and By¢ is Beners
best place to ohserve the image. If a lens gail
appreciable SA,it will bave to be refocused
stopped down, because the position of
approach F, as the aperturedecreases,

The amountof spherical aberration, when

aooee hat Pei tech aa peers
«ux well. These are shown in

depicts rays issuing from P and
aoe na if they came from P”,It is left as

to showthat the appropriate locations of P

 and P" are those indicated in the figure. Just as with
the aspherical lenses, spherical lenses can be formed
that have this same zero SA for the pair of paints P and
P', One simply grinds another surface of radius PA
centered on P to form either a positive- or negative-
meniscuslens. Theoil-immersion microscope objective

os usesthis principle to great advantage. The object wider
— studyis positioned at P and surroundedby oil of index

a Np, as in Fig. 6.16. P and P’ are the proper conjugate
- Points for zero SA for the first element, and P’ and P"—~ are those for the meniscuslens,

 
 
   
  
    
  
     
 
 
   1} Cama

    
  
    

. a " Coma, or comatic aberration, is an image-degrading, |
ture and focal length are fixed, varies with b monochromatic, primary aberration associated with an }
object distance and the lens shape. For a co; object point even a short distance from the axis. Its
lens, the nonparaxial rays are too strongly beng) origins lie in the fact that the principal “planes” canwe imagine the lens as roughly resembling two # ‘ actually be treated as planes onlyin the paraxial region.

: ‘They are, in fact, principal curved surfaces (Fig. 6.1).
F * ® In the absence of SA a parallel bundle ofrays will focusat the axial point Fi, a distance b£.l. from the rear

vertex, Yet the effective focal lengths and therefore the
transverse magnificationswill differ for rays traversing
off-axis regions of the lens. When the image pointis on
the optical axis, this situation is of little consequence,

joined at their bases, it is evident that the ij
will undergo a minimum deviation when it makes, 6
less, the same angle as does the emerging ray (Section fl
A striking exampleis illustrated in Fig. 6.14,
simply turning the Jens around markedly red,
SA. When the object is at infinity « simple cong
convexlens that has an almost, but not quite,
side will suffer a minimum amountofspheri¢
tion. In the same way,if the object and image’
are to be equal (s, = s; = 2f), the lens shouldvex to minimize SA. A combination of a conveng
and a diverging lens (as in an achromatic doubled
also be utilized to diminish spherical aberratit

Recall chat the aspherical lenses of Section
completely free of spherical aberration for a
pair of conjugate points. Moreover, H=eyarr

  
  
  

 
 

    
   
 
  
 
 
 
 
 

 
 

 
 

 
Figure 6.14 SA for a plesEtapterding sce) pedis for which HA

 
Figore 6.16 An ocilimmersion microscope objective,
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but when the ray bundle is oblique and the image point
is off-axis, coma will be evident. The dependence of M,
on h, the ray height at the lens, is shown in Fig. 6.17.
Here meridional rays traversing the extremities of the
lens arrive at the image planecloser to the axis than do
the rays in the vicinity of the principal ray (i,¢., the ray
that passes through the principal points). In this in-
stance, the least magnification is associated with the
marginal rays that would form the smallest image—the
comais said to be negative. By comparison, the coma
in Fig. 6.18 is positive, because the marginal rays focus
farther frotn the axis. Several skew rays are drawn from
an extra-axial object point S in Fig. 6.19 to illustrate
the formation of the geometrical comatic image of a
point, Observe that each circular cone of rays whose
endpoints (1-2-8-4-1-2-8-4) form a ring on the lensis
imaged in what H. Dennis Taylor called a comatic circle
on &;. This case corresponds to-positive coma, so the
larger che ring on the lens, the more discant its comatic
circle from the axis. When the outer fing is the intersec-
tion of marginal rays, the distance from 0 to 1 in the
image is the tangential coma, and the length from 0 to
$ on %, is termed the sagittal coma,Alittle more than
half of the energy in the image appearsin the roughly
triangular region between 0 and 3. The coma flare,
which owesits nametoits cometliketail, is often thought
to be the worst of all aberrations, primarily because of
its asymmetric configuration.

Like SA, coma is dependenton the shapeofthe Jens.
Thus,a strongly concave positive-meniscus lens ) with
the object at infinity will have a large negative coma.
Bending the lens so that it becomes planar-convex ).

  
Figure 6.17 Negative coma

 

Figure 6.18 Positive coma. (Photo by E.H.)

then equiconvex }, convex-planar (,and
meniscus (will change the comafrom negative.&
to positive. The fact that it can be made exacl
for a single lens with a given object distance
significant. The particular shape it then has (
almost convex-planar and nearly the configminimum SA.

Ic is importantto realize that a lens that is well 2
forthe case in which one conjugate pointis at infin
may not performsatisfactorily when the object is ®wouldtherefore do well, when using off-the-$
in a aystem operating at finite conjugates,t0
two infinite conjugate corrected lenses, a5 17
In other words,since it is unlikely that a lens
desired focal length, which is also corrected
particular set of finite conjugates, can be B
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Corresponding
points on E;

Points on lens

weitical cama image of a poins, The central
point image at the vertex of the cone.

» this back-to-back lens approach is analternative.
an also be negated by using a stop at the

ion, as William Hyde Wollaston (1766-
qiered in 1812. The order of the list ofsrrations (SA, coma, astigmatism. Petzval

=, and distortion) is significant, because

6.3 Aberrations

Figure 6.20 A combination of two infinite conjugate lenses yielding
a system opcrating at finite conjugates.

any oneof them, except SA and Petzval curvature, will
be affected by the position of a stop, but only if one of
the preceding aberrations is also present in the system.
Thus while SA is independentofthe location along the
axis of a stop, coma will not be, as long as SA is present.
This can be appreciated by examining the representa-
tion in Fig. 6.21. With the stop at Z), ray 3 is the chief
ray, there is SA but no coma;thatis, the ray pairs meet
on 3. If the stop is moved to Z2, the symmetry is upset,
ray 4 becomesthe chief ray, and the rays on either side
of jt, such as 8 and 5, meet above not on it—there is
positive coma. Withthe stop at 2,, rays 1 and 3 intersect
below the chief ray, 2, and there is negative coma. In
this way, controlled amounts of the aberration can be
introduced into a compound lens in order to cancel
coma in the system as a whole.

The optical sine theorem is an importantrelationshipthat must be introduced here even if soace precludes

Figure 6.21 Theeffect of stop location on coma.
 



121

 
226 Chapter 6 More on Geometrical Optics

its formal proof. it was discovered independently in
1873 by Abbe and Helmholtz, althoughadifferent torm
of it was given 10 years earlier by R. Clausius (of ther-
modynamics fame). In any event,it states that

NN SiN @,=Ny, sin a,, (641)
where fg, Ye &, and 7,, fy, & are the index, height, and
slope angle of a ray in object and image space, respec-
tively, at any aperture size* (Fig. 6,9). If coma is to bezero,

 My, = 5.2
re [5.24]

must be constantforall rays, Suppose then that we send
a marginal anda paraxial ray through the system. The
former will comply with Eq. (6.41), the latter with its
paraxial version (in which sin @, = a,,, sin a, = ay).
Since My is to be constant over the entire Jens, we
equate the magnihcation for both marginal and paraxialTays to get

SING, Ge 5 = constant, (642)sina ain

which is known as the sine condition A necessary
ctiterion for the absence of coma is that the system meet
the sine condition. If there is no SA, compliancy with
the sine condition will be both necessary and sufficientfor zero coma.

It’s an easy matter to observe coma. in fact, anyone
who has focused sunlight with a simple positive lens has
no doubt seen theeffects of this aberration, A slight tilt
of the fens,so that the nearly collimated rays from the
Sun makean angle with the optical axis, will cause tbe
focused spotto flare out into the characteristic comet
shape.

iii) Astigmatism
When an object point lies an appreciable distance from
the optical axis the incidentconeofrays will strike the
lens asymmetrically, giving rise to a third primarySSeS
* Tobe precise, the sine theoremis valid forall values of «, only inthe sagittal plane (from the Latin sagitta, meaning arrow}, which isdiscussed in the next section.

aberration known as astigmatism, The word deriy,
from the Greek a-, meaning not, and stigma, meanj
spot or point. To facilitate its description, envision
meridional plane(also called the tangential plane) cons
taining both thechief ray {i.c., the one passing through,
the center of the aperture) and the optical axis, The
sagitial planeis then definedas the plane containing the
chief ray, which, in addition, is perpendiculer to the |meridional plane(Fig, 6.22). Unlike thelatter, which

unbroken from one end of a complicated tens io

 
 

to the other, the sagittal plane generally changessl
as the chief ray is deviated at the various eleme:
Hence to be accurate we should say that there are
actually several sagittal planes, one attendant with
region within the system. Nevertheless, all skew
from the object pointlying in a sagittal plane are terme:Ssagitial rays.

 
 
  
  ‘Rays ini Rays inmeridionalplane vr,Sagittal plane 

Figure 6.22 Thesagittal and meridional planes.

 
Meridional

plane

Sagittal Optical
plane system 

[igure 6.23 Astigmatison

In the case of anaxial object point, the cone of rays
{symmetrical with respect to the spherical surfaces of

aJens. There is no need to make a distinction between
fMeridional andsagittal planes. The ray configurations

in all planes containingtheoptical axis are identical. In
Ee absence of spherical aberration, all the focal lengthsre the same, and consequentlyall rays arrive at a single

‘acus. In contrast, the configuration of an oblique.
arallel ray bundle will be different in the meridional
nd sagittal planes. Asa result, the focal lengths in theselanes will be different as well. In effect, here the

meridional rays are tilted more with respect to the Iens
than are the sagittal rays, and they have a shorter focal
length, i can be shown," using Fermat's principle, that
the focal length difference depends effectively on the

wer of the lens (as opposed to the shape or index)
and the angle at which the rays are inclined. This astig-

ic difference, as it is often called, increases rapidly as
Tays become more oblique, that is, as the object

int moves further off the axis, andis, of course, zero

 

 refraction (Fig. 6.23). The cross-section of the
as it leaves the lens is initially circular, but it

dually becomeselliptical with che major axis in the
See A. W. Barton, 4 Fext Book on Light, p. 124.
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Circle of least

confusion

 
 

 
 

 aS
| |Primary Secondary

image image

sagittal plane, until at the tangential or meridional focus
Fy, the ellipse degeneratesintoa fine (at least im third-
order theory). All rays from the object point traverse
this line, which is known as the primary image, Beyond
this point the beam’s cross-section rapidly opens out
until it is again circular. At that location the image is a
circular blur knownas the cercle of least confusion. Moving
further from the Jens the heam's cross-section again
deforms into a line, called the secondary image. This time
it’s in the meridional plane at the sagittal fecus, Fs.
Remember that in all of this we are assumingthe absenceof SA and coma.

Since the circle of least confusion increases in
diameter as the astigmatic difference increases (i€., as.
the object moves further off-axis), the image will
deteriorate, losing definition aroundits edges. Observe
thatthe secondary line image will change in orientation
with changes in the object position, but it will always
point toward the optical axis, that is, it will be radial.
Similarly, the primary line image will vary in orienta-
tion, but ic will remain normal to the secondary image.
This arrangement causes the interesting effect shown
in Fig. 6.24 when the object is made up of radial and
tangential elements. The primary and secondary images
are, in effect, formed of transverse and radial dashes,
which increase in size with distance from the axis. In
the latter case, the dashes point like arrows toward the
center of the image—ergo, the namesagitta.

 

121



122

 

 

 
Chapter 6 More on Geometrical Optics

 Ovjeet

“Tangentfocal
plane

Sagittatfocal
plane
 

Figure 6.24 Imagesin the tangentand sagittal facal planes.

Theexistence of thesagittal and tangential foci can
be verified directly with a fairly simple arrangement.
Place a positive ens with a short focal length (about 10or 20mm) in the beam of a He-Ne laser. Position
anotherpositive test lens with a somewhatlongerfocal
length far enough away sothat the nowdiverging beam
fills that lens. A convenient object,to be located between
the twa lenses, is a piece of ordinary wire screening (or
a transparency). Align it so the wires are horizontal (x)
andvertical (y). If the test lens is rotated roughly 45°
about the vertical (with the x-, », and z-axes fixed in
the lens), astigmatism should be observable. The
meridional is the xz-plane (z being the lens axis, now
at about 45° to the laser axis), and the sagittal plane
correspondsto the plane of y and the laser axis. As the
wire mesh is moved toward the test lens, a point will bereached where the horizontal wires are in focus on a
screen beyond the lens, whereas the vertical wires are
not. This is the location of the sagittal focus. Each point
on the objectis imaged as a shortline in the meridional
{horizontal} plane, which accounts for the fact that only
the horizontal wires are in focus. Moving the mesh
slightly closer co the lens wil} bring the vertical lines
into clarity while the horizontal anesare blurred. This
is the tangential focus. Try rotating the mesh about thecentral laser axis while at either focus.

Notethat unlike visual astigmatism, which arose from
an actual asymmetryin the surfaces of the optical sys-

tem, the third-order aberration by that same bangapplies to spherically symmetricallenses.
Mirrors, with the singular exception of the pla;

mirror, suffer much the same monochromatic abery!
tions as do lenses. Thus althougha paraboloidal mirr¢is free of SA for an infinitely distant axial object p
its off-axis imageryis quite poor due Ww aaci
coma. This strongly its use to narrow
devices, such as searchlights and astronomical tf,
scopes. A concave spherical mirror shows SA, cos
and astigmatism. Indeed one could draw a diagram jugf
like Fig. 6.23 with the lens replaced by an obliquelyilluminated spherical mirror. Incidentally, such a mir
ror displays appreciably less SA than would a simplg,convex lens of the samefocal length.

  
 

iv) Fleld Curvature
Suppose we had an optical system that was free ofall
the aberrations thus far considered. There would then
be a one-to-one correspondence between points on the,
object and imagesurfaces(i.e., stigmatic imagery). Wa
mentioned earlier (Section 5.2.3) that a planar object
normalto the axis will be imaged approximately as a
plane only in the paraxial region. At finite apertures
the resulting curved stigmatic image surface is a
manifestation of the primary aberration known as
Petzval field curvature, after the Hungarian

 
imageplane

Figare 6.25 Ficld curvature.
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thematician Josef. Max Petzval (1807-1891). The

ect can readily be appreciated by examining Figs.
9 (p. 141) and 6.25. A spherical object segment ¢, is

maged by the lens as a spherical segment 7;, both
ventered at QO.Flattening out o, into the plane a, will
use each object point to move toward the lens along

‘¢ concomitantchiefray, thus forming a paraboloidal
Prtrval surface Zp, Whereas the Petzyal surface for a

i ositive lens curves inward toward the object plane, for
egative lensit curves outward, that is, away from that

fplane. Evidently, a suitable combination ofpositive and& ve lenses will negate field curvature. Indeed, the
isplacement Ax of an image point at height 5 on thetzval surface from the paraxial imageplaneis given by

 
 
 2 omy (643)
 

where n, and fj are the indices and focal lengths of them thin lenses forming the system. This implies that the
Petaval surface will be unaltered by changes in the
positions or shapes of the lenses or in the location of
the stop, 50 long as the values of n; and fj are fixed.
Notice that for the simple case of two thin lenses (m = 2)
having any spacing, Ax can be made zero provided that

l t 
 0

or, equivalently,
rfp ryfre 0. (6.44)

Thisis the so-called Petzual cordition, As an example of
its use, suppose we combine twothinlenses, one positive,

 
   

the other negative, such that fy&—fgand n> vy. Since

debia [6.85fh hh

f
 

7

the systern can satisfy the Petzval condition, have a Aat
field, andstill have a finite positive focal length.In visual instruments a certain ammount of curvature
can be tolerated, because the eye can accommodatefor
it, Clearly, in photographiclensesfield curvatureis most
undesirable, since it has the cffect of rapidly blurring
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the off-axis image when the film plane is at F,. An
effective meansof nullifying the inward curvature of a
positive lens isto place a negative field flaitener lens near
the focal! plane. This is often done in projection and
photographic objectives when it is not otherwise practi-
cable to meet the Petzval condition (Fig. 6.26). In this
position the flattener wil] have little effect on other
aberrations (take another look at Fig. 6.7).

Astigmatism is intimately related to field curvature.
In the presence of the former aberration,there will be
two paraboloidal image surfaces, the tangential, Z,and
the sagittal, Ey (as in Fig. 6.27), These are the loci of
all the primary and secondary images, respectively, as
the object point roams overthe object plane. Ata given.
height(3,), a. point on Z> alwayslies three times as far
from Zp as does the corresponding point on Zs, and
both are on the sameside of the Petzval surface (Fig.
6.27). When thereisno astigmatism Zs and 3coalesee
on Ep. It is possible to alter the shapes of Zs and L7
by bending or relocating the lenses or by moving the
stop. The configuration of Fig. 6.27(b) is known as an
artificiallyflauened field. A stop in frontofan inexpensive
meniscus box camera lensis usually arranged to produce
just this eflect. The surface of least confusion, %;,¢:. is

  
 

ve
fa} Pelzwal lens with, ifattence

 

 

{6} 16 mm projection lens
Figure 6.26 Thefield Nlattener, 
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PacaxialFocal
plane

 
ta}

Figure 6.27 Thetangential, sagittal and Petzval image surfaces.

planar, and the image there is tolerable, losing
definition at the margins because of the astigmatism.
‘Thatis to say, although their loci form Z,,, the circlesof Jeast confusion increase in diameter with distance off
the axis. Modern good-quality photographic objectives
are generally anastigmats; that is, chey are designed so
that Zs and Ey cross each other,yielding an additional
off-axis angle of zero astigmatism. The Cooke Triplet,
Tessar, Orthometer, and Bioar (Fig. 5.112) are all

Slopeofchiefray(degrees)  
“06 “029 020406

(am)Focal plane
Figure 628 A typical Sonnar. The markings C, S, and E denote
the ILmits of the 85mm film formate (Beld stop), i.e., comers, sides,
and edges. The Sonnarfamilylies between the double Gauss and thetriplet.
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aniastigmats, asis the relatively fast Zeiss Sony
residual astigmatism isillustrated graphicg
6.28. Note the relatively flat field and smati 4 4astigmatism over mostof the film plane.

Let's return briefly to the Schmidt Ter
Fig. 5.107 (p.198), since we are now io aheiter y,to appreciate howit functions. With a stop atof curvatureof the spherical mirror,all chief
by definition pass through C,are incident nogs
the mirror. Moreover,each pencil of raysfrom
object pointis symmetrical aboutits chief ra,
each chief ray serves as an optical axis, so
off-axis points and,in principle, no comaor.
Instead of attempting to fatten the image
designer has coped with curvature by simplythe film plate to conform with it.

thereby increasing M, and introducing pincushiondis-
tortion. Inierchanging the object and image thus has the
effect of changing the sign of the distortion for a given lens
and stop. The aforementioned stop positions will pro-
duce the opposite effect when the lens is negative.

All of this suggests the use of a stop midway betweenidentical lens elements. The distortion from the frst
lens will precisely cancel the contribution from the
second, This approach has been used to advantage in
the design of a number of photographic lenses (Fig.
5.112). To be sure,if the lens is perfectly symmetrical
and operating asin Fig. 6.30(d), the object and image
distances will be equal, hence My = 1. (Incidentally,
coma andlateral color will then be identically zero as
well.) This appliesto (finite conjugate) copy lenses used,
for example, to record data, Nonetheless, even. when
My is not 1, making the system approximately sym-
metrical about a stop is a very comimonpractice, since
it markedly reduces these several aberrations.

Distortion can arise in compoundlens systems, as for
example in the telephoto arrangement shown in Fig.
6.31. For a distant abject point, the margin of the
positive achromat serves as the aperture stop. In effect,
the arrangementis like a negative lenswith a front stop,
so it displays positive or pincushion distortion.

Suppose a chief ray enters and emerges from an
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 fompanied by distortion, as indicated in

One exception is the case in which the aper-
= ac tir Jens, so thatthe chief ray is, in effect,

ray (i.e., it passes through the principalcoalesced at Q). Lf the stop is in front of a
g, as in Fig. 6.30(b), the object distance
long the chief ray will be greater than it waswp at the lens (SoA > S,Q). Thusx, will be

(5.25) M; will be smaller—ergo, barrelfin other words, M, for an off-axis pointwill
a front stop in position than it would be

ihe difference is a measureofthe aberration,
fhe way, exists regardless of the size of the

mure, In the same way, a rear stop [Fig. 6.30(0)]
eases x, along the chief ray (ie., $,0 > $)B),

  
 
   
  
  

  
  

 
 v) Distortion  

Thelast of the five primary, monochromatic:
is distortion.its origin lies in che fact that they
magnification, Af;, may be a function of the Sf
image distance, y,. Thus, that distance may di
the one predicted by paraxial theory in whichconstant. In other words, distortion arises
different areas of the lens have different focal
and different magnifications. In the abarnoe cf
the other aberrations, distortion is manifest mam
shapingof the imageas a whole, even though
is sharply focused. Consequently, when pi
an optical system suffering positive or pin
tion, a square array deforms,as in Fig. 6.291
instance, each image pointis displacedradial
from the center, with the most distant points
the greatest amount (i.e. Afy increases
Similarly, negative or barrel distortion corresp
situation in which My decreases with the axtayg
and in effect, each point on the image moves
inward towardthe center [Fig. 6.29(c)]. Disto
easily be seen by just looking through an aber¥
at a piece of lined or graph paper. Fairly thinwill show essentially no distortion, whereas 8
positive or negative, thick, simple fenses will g
suffer positive or negative distortion, respect"
introduction of a stop into a system of thitt

 
   

    
  

  
 
  
      

  
 
 
 
 
 
 
 
 
  

  
 

 Fan-cushion

   Peet, ; .* S404 of stop location on distortion.
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 Chie

Aperture stop

 =i

en

Figure 6.31 Distortion in a compoundlens.

optical system in the same direction as, for example. in
Fig. 6.30(d). The point at which the ray crosses the axis
js the optical center of the system, but since this is a
chiefray,it is also the center of the aperture stop. This
is the situation approachedin Fig. 6.30(a), with the stop
up against the thin lens. In both instances the incoming
and outgoing segments ofthe chief ray are parallel, and
there is zero distortion, thatis. the system is orthoscopic.,
This also implies that the entrance and exit pupils will
correspond to the principal planes {if the system is
immersed in a single medium—see Fig. 6.2). Bear in
mind thatthe chief ray is now a principal ray. A thin-lens
system will have zerodistortion if its optical centeris coincident
with the center of the aperture stop. By the way, in a pinhole
camera, the rays connecting conjugate object and image
points are straight and pass through the center of the
aperture stop. The entering and emerging rays are
obyiously parallel (being one and the same), and thereis no distortion.

6.3.2 Chromatic Aberrations

The five primary or Seidel aberrations have been con-
sidered in terms of monochromatic light. To be sure,
if the source has a broad spectral bandwidth, these
aberrations are infuenced accordingly; but the effects
are inconsequential, unless the system is quite well cor-
rected. ‘There are, however, chromatic aberrations that
atise specifically in polychromatic light, which are far
moresignificant. The ray-tracing equation (6.19)is a
function of the indices of refraction, which in turn vary
with wavelength, Different “colored” rays will traverse

a system alongdifferent paths, andthis is th,tal feature of chromatic aberration,
Since the thin-lens equation

= aepoi og, x)
is wavelength-dependentvia 7,(A},the focal fa
also vary with A, In general (Fig. 3.96, g
decreases with wavelength over the visible:
thus f(A) increases with A. The result is 5
Fig. 6.32. where the constituent colors in a collin
beam of white light are focused at differeny painthe axis. The axial distance between wo su!
points spanning a given frequency range (e.g4
red) istermedtheaxial (or longitudinal) chroma
tion, A+ CA for short.

It’s an easy matter to observe chromatical
or CA, with a thick, simple converging i
illuminated by a polychromatic point source ¥
flame will do}, the lens will cast a real image st
by a halo. If the plane of observation is th
nearer thelens, the periphery ofthe blurred!
becometingedin orange-red. Movingit back-a
the lens, beyond the best image, will causeto become tintedin blue-violet. The location of
of least confusion (.c., the plane 3,,-) eornelpal
the position where the best image will aj
looking directly through thelensat a soure
ation will be far morestriking.

The tmage of an off-axis point will be formed G
constituent frequency components, each arriv
different height ahove the axis (Fig. 6.33). In 656
the frequency dependence of f causes a #

  

    
   

Larrabee   
   
  

 
{the transverse magnification as well. The

between two such image points (most
een to be blue and red) is a measure of theatic aberration, L* CA,or lateral color. Con-
fh, chromatically aberrant lens illuminated by

® will fill a volume of space with a continuum
, less overlapping images, varying in size and.

use the eye is most sensitive to the yellow-
on of the spectrum, the tendencyis to focus

‘or that region. With such a configuration one
all the other colored images superimposed

 
  

  
  
   
  
    
 
  
  
    
    
   

  
 flay.

he blue focus, Fy, is to the left of che red
   
 

  

  
  g to originate at the right of the red focus.

Bawhat is happeningis that the lens, whether
oncave, is prismatic in shape; that is, itjer thinner orthicker as the radial distance
is increases, As you well know, rays are
viated either toward or away from che axis,
Jn both cases the rays are bent toward the

" ase” of the prismatic cross-section. But the
Bax deviation is an increasing function of n, andHore it decreases with A. Hence blue light is devi-aé Most and is focused nearest the lens. In other

St convex lens the red focus is farthest and
ETENt; for a concavetensit is farthest and to the

  
   
     

  
   
  
  

   
  
 

 
 

  
 

 

 

Matic Doublets
is that a combinationof two thinlenses,

Figure 6.32 Axial chromatic aberration. one negative, could conceivably result 
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in the precise overlapping of Fx and Fy (Fig. 6.34).
Such an arrangementissaid to be ackromatized for those
two specific wavelengths. Notice that what we would
like to do is effectively eliminate the total dispersion
fi.e.. the fact that each color is deviated by a different
amount) and notthe total deviation itself. With the two
lenses separated by a distance d.   

1oiyliafof fe fe
Rather than retain the second term in the thin-lens
equation (5.16), let’s abbreviate the notation and write
Vif, = (my — Wp; and 2/fe™ (ty~ 1)p2 for the ewo ele-ments, Then

[6.8)

T= (my Uae Ute Dea arr Naylt D.(6.45)

This expressionwill yield thefocallength of the doublet
for red ({4) and blue (fg) light when the appropriate
indices are introduced, namely, m, x. Mer, try, and nya.
Butif fe is to equal fy, then

fa = Uh  
and

(ya — Ver) Gee~Yeem dle” Vpilee>Ves
= (tye>Lert Oya~Dee

d(myy— Vei(men lps. (6-46)

One case of particular importance correspondsto d= 0,
thatis, the two lenses are in contact. Expanding out Eq.

 

 
Figure 6.34 An achromatic doublet. Thepaths of therays are muchexaggerated,
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(6.46) with d = 0 then leads to

Pr _ManaPep' (6.47)P2 Min Nir ,
Thefocal length of the compoundlens (fy) can con-
veniently be specified as that associatedwith yellow light,
Toughly midway between the blue and red extremes.
For the component lenses in yellow light, L/fiy =
(my~Der and I/foy = (nay — 1)pe. Hence

pr (may 1) faype hy 7D fix
Equating Eqs. (6.47) and (6.48) leads to

fey _(ap=RawMrigs=D)
fiy  (us~mai(my~ 1)"

 (6.48)

 
@49)

 
The quantities

feaanggy —1
Rig Mg
ty —1

are knownas the dispersive powers of the two materials
formingthe lenses. Their reciprocals, Ve and Vj, are
variously known as the dispersive indices, V-numbers, orAbbe numbers. The lower the Abbe numbers, the
greater the dispersive power. Thus

  fy OM
fiy Voor

fi, + farvVe~= 0. (6.50) 
Since the dispersive powers are positive, so too are the
V-numbers. This implies, as we anticipated, that one
of the two componentlenses must be negative, and the
other positive, if Eq. (6.50) is to obtain, thatis. if fy is
to equalfr.

At this point we could presumably design an
achromatic doublet, and indeed we presently shall, but a
few additional points must be made first. The designa-
tion of wavelengthsas red, yellow, and blueis far too
imprecise for practical application. Instead it is cus-
tomary to refer to specific spectral lines whose
wavelengths are known with great precision. The
Fraunhofer fines, as they are called, serve as the needed
reference markers across the spectrum. Several of these
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Table 6.1 Several strong Fraunhoferlines.

5895.923 Yellow

   
D Center of doublet 5892.9 3De 889.959 Yellow ; ,
Ds or d 5875,618 Yellow faim of Optical Glacres 190b, 5183.618 Green aes] nn 20500 ont Se ,by 5172.699 Green‘ 4957.609Green 
  

  
 
  

=
4861.327 Blue Spmbele4340.465 Violet isecuca-*
4226.72Violet gsce . aefehert ins» «9 KESfomacgiants oe res3933.666 Violet

Tiber own wine rymbot logether
waiveFld give the gloss type

  epo+o
  
"1A = 0.1 nm.

Table 6.2 Opticalglass. OPTICAL GLASS (ne., DURYEA,PUNBYLYANIA 126¢r 

    
 

  

 
   
    
      
   
   

  
    

Type
number Name 1s

511:635|Borosilicate rrown—BSC-1 3
517:645|Borosilicate crown—BSC-2 q513:605|Crown—C f it0
518:596|Crown i
523:586|Crown—C-l ‘529:516|Crown flint—CF-1 u5
541:599|Light barium crown—LBC-1 3
573:574|Barium crown—LBC-2 ?574:577|Barium ccown 130
611:588|Dense barium crown—DBC-1 :617:580|Dense barium crown—DBC-2 Hl
611:572|Dense barium crown—DBC-8562:510|Light barium flint—LBF-2
568:584|Light barium fint—LBF-1584:460}Barium flint—BF-1

ones, nae eindex versus Abbe number for various glasses, which have high indices of refraction and low dispersions,soo etaoe ensin the upper shaded area are the rare-earth580:410|Light Rint—L¥-2
605:880|Dense flint—DF-1 F
617:366)Dense flint—DF-2 gion are listed in Table 6.1. The lines (Takea lookat Table 6.2 as weil.) Thus Eq. (6.50) might
621 :362|Dense Hint—DF-3 Ds) aré mostoften used (forblue,red, better be written as
649.998|Extra dense flintEDF-1 one generally traces paraxial rays in
666:924}Extra dense flint—ED) 5 gmanufacturers will usually list thei a fiaViat freaVoa = 0. (6.52)673:322|Extra dense fint—EDF-2 ‘Ab suey gates a >680:809|Extra dense fintEDF be number, as in Fig. 6.35, which is . .720:293|Extra dense flint-EDF-3 fa “fractive index versus where the numericalsubscripts pertain tothe twoglasses used in the doublet, and theletter relates to the d-line.
Type number is given by (p= 1)2{10 Va), where no is round Vy = teal 51) Incidentally, Newton erroneously concluded,on thedecimal places. For more data sec Sraith, Modem Optical Eng Ry — basis of experiments with the very limited range of

 From T. Calvert, “Optical Components." Eteciromeritarical D  
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236 Chapter 6 More on Geometrical Optics

materials available at the time, that the dispersive power
was constantforall glasses. This is tantamountto saying
(Eq. 6.52) that fz ~—fea, in which case the doublet
would have zero power. Newton, accordingly, shifted
his efforts from the refractingto the reflecting telescope,
and this fortunately turned out to be a good movein
the long run. The achromatwas invented around 1733
by Chester Moor Hall, Esq., but it lay in limbo until it
was seemingly reinvented andpatented in 1758 by the
London optician John Dollond.Several forms of the achromatic doublet are shown
in Fig. 6.36. Their configurations depend onthe glass
types selected, as well as on the choice of the other
aberrations to be controlled. By the way, when purchas-
ing off-the-shelf doublets of unknownorigin, be careful
notto buy a lens that has been deliberately designed to
include certain aberrations in order to compensate for
errors in the original system from which it came. Per-
haps the most commonly encountered doublet is thecemented Fraunhofer achromat. It’s formed of a
crown* double-convex lens in contact with a concave-
planar (or nearly planar) flint lens. The use of a crown
front elementis quite popular because ofits resistance
to wear. Since the overall shape is roughly convex-
planar, by selecting the proper glasses, both spherical
aberration and comacan be corrected as well. Suppose
that we wish to design a Fraunhofer achromatoffocal
length 50cm. We can get some idea of how to select
glasses by solving Eq. (6.52) simultaneously with the
compound-lensequation

 

Safie fea fe
to get

I Via—e (6.53)
fia fe(Yia~ Vea)

and
1 Vo,

2 (6.5.4)
Toa Td Vaa— Via) 

* Traditionally the glasses in the range nz > 1.60, V, > 50, and ny <
1.60, V, > 55 are knownas crowns, and the others are flints, Note the
letter designations in Fig. 6.35.

 

to avoid smallvalues of f,gand foa, which
te strongly curved surfaces on the com-

the difference Vig — Via Should be made
iy 20 or more is convenient). From Fig.rrivalent) weselect, say, BK | and F2. These

Bed indices of mc = 1.50768, ng = 1.51009,= 1.61503, nyo 1.62004, np
Likewise, their V-numbers are

Acher accurately, and we needn't com-
his instance they are Vj,

, respectively. The focal lengths, or if youRowers of the two lenses, are given by Eqs.

 
  
  
    
  

yeisen and Mc       
      
    

“Fi 0.80(27.09)   
  
   
 i0.50(-27.09)°

ce (= 4.685D and Gq™ —2.685D, the sum
Were 2D, which is 1/0.5, as it should be. For ease of
Wetication let the first or positive lens be equiconvex.

quentlyits radii R,, and Ri» are equal in magni-

     
  
  
   
  
   
      
  
 
  

ta-1 0.51009
 
  
 
 
 esi that is, the second surface of the first lens

*@ first surface of the second lens. For the
   
   
 
 
 
   
 
 

   
~0.2177 Roy 0.62004
9 mm. In suramary. the radii of the crown

 
Figure 6.36 (a) Achromatic doublets. (b) Doublet(Photo courtesy Melles Griot.)
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 element are R,, = 21.8cm and Ry = —21.8cm while
the flint has radii of Ry,» —21.8cm and Rgy=
—381,9 cm,

Note that for a thin-lens combination the principal
planes coalesce, so that achromatizing the focal length
corrects both A: CA and L-CA. In a thick doublet,
however, even though the focal lengths for red and
blue are madeidentical, the different wavelengths may
have differentprincipal planes. Consequently, although
the magnification is the same for all wavelengths, the
focal points may notcoincide; in other words, correctionis made for L- CA butnot for A- CA.

In the above analysis only the C- and F-rays were
brought to a commonfocus, and the d-line was intro-
duced toestablish a focal length for the doublet as a
whole. It is not possible for ali wavelengths traversinga doublet achromat to meet at a cormmon focus. The
resulting residual chromatism is known assecondary spec-
trum. The elimination of secondary spectrum is par-
ticularly troublesome when the designis limited to the
glasses currently available. Nevertheless, a fluorite
(CaF,) element combined with an appropriate glasselement can form a doublet achromatized at three
wavelengths and having verylittle secondary spectrum.
Moreoften triplets are usedforcolor correction at three
or even four wavelengths. The secondary spectrum of
a binocularcaneasily be observed by looking at a distant
white object. Its borders will be slightly haloed in
magenta and green—tryshifting the focus forward and.backward.

i} Separated Achromatic Doublets
It is also possible to achromatize the focal length of a
doublet composed of two widely separated elements of
the sameglass. Returnto Eq. (6.46) and set n)p = Rer =
ng and %15 = igs = Ng. Alter a bit of straightforward
algebraic manipulation, it becomes

(mg~nall(pr> P2)— piped(ng + ma —2))= 0or
L

2,1)(Mette 2) ho. pe
Again introducing the yellow reference frequency, as
we did before, namely, I/fry = (myy — Ip. and I/fey = 
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Figure 6.37 Achromatized lenses.

(ney L)po, we can replace p; and pp. Hence

q- shyt fryMoy—1)Ny + mg —2
where 2, = gy = ny. Assuming my (my + ng) /2. wehave

Ey
d= -2

or in d-light

ate (6.55)
Thisis precisely the form taken by the Huygens ocular
(Section 5.7.4), Since the red and blue focal lengths are
the same, but the corresponding principal planes for
the doublet need notbe, the two rays will generally not
meetat the same focal point. Thus the ocular’s lateral
chromatic aberration is well corrected, but axial chro-matic aberration is not.

In order for a system to be free of both chromatic
aberrations,the red and blue rays must emerge parallel
to each other (no L- CA) and mustintersect the axis at
the same point (no A+ CA), which means they must
overlap. Since this is effectively the case with a thin
achromat,it implies that multielementsystems, asa rule,
should consist of achromatic components in order to
keep the red and bluerays from separating (Fig. 6.37).

| As with all such invocationsthere are exceptions. The
Taylor triplet (Section 5.7.7) is one. The two colored (b)
rays for which it is achromatized separate within the
lens but are recombined and emerge together.

 

  
2) New Orleans and the Mississippi River photo-

500 m ‘41,000 ft) with [tek’s Metritek-21 cameraad resolution, 1 my scale, 1359,492, (b) Photo scale,D scale, 1:2500,  
 
 Figure 6.38 a, b
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63.3 Concluding Remarks

For the practical reason of manufacturing ease, the.vast
majority of optical systemsare limited to lenses having
spherical surfaces. There are, to be sure, toric and
cylindrical lenses as well as many other aspherics.
Indeed, very fine, and asa rule very expensive devices,
such as high-altitude reconnaisance cameras and track-
ing systems, may haveseveral aspherical elements. Even
so, spherical lenses are here to stay and with them are
their inherent aberrations which tustsatisfactorily be
dealt with. As we have seen, the designer (and his
faithful electronic companion) must manipulatethesys-
tem variables (indices, shapes, spacings, stops, etc.) inorderto balance out offensive aberrations. This is done
to whatever degree and in whatever orderis appropriate
for the specific optical system. Thus one might tolerate
far more distortion and curvature in an ordinarytele-
scope than in a good photographic objective. Likewise,
thereis little need to worry about chromatic aberration
if you want to work exclusively with laser light of almost
a single frequency. In any event, this chapter has only
touched on the problems (more to appreciate than solve
them). Thatthey are most certainly amenable to solution
is evidenced, for example, by the remarkable aerial
photographsin Fig. 6.38, which speak rather eloquentlyfor themselves.

PROBLEMS

6.1* Work outthe details leading to Eq. (6.8).
6.2 According to the military handbook MIL-HDBK-
141 (23.3.5.3), the Ramsden eyepiece (Fig. 5.93) is made
up of two planar-convex lenses of equalfocal length f’
separated by a distance 2f'/3. Determine the overall
focal length f of the thin-lens combination andlocate
the principal planes and the position of the field stop.

6.3 Write an expression for the thickness d of a
double-convex lens such thatits focal length is infinite.

6.4 Suppose we have a positive meniscus lens of radii
6 and 10 and a thickness of 8 (any units, as long as
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 Knowingthatthefirst radiusis 0.5 cm,that the thickness
is 0.3 cm, and that the index of the lensis 1.5, find theother radius.

you're consistent), with an index of 1.5. Dete;
focal length and the locations ofits Princip(compare with Fig. 6.3). 1

elevision screen js placed 1.0m from the
wherewill thereal image of the picture

   
 6.20* A concave-planar glass (n = 1.50) lens in air has

a radius of 10.0 cm and a thickness of 1.00 cm. Deter-
mine the system matrix andcheck thatits determinant
is 1. At whatpositive angle (in radians measured above
the axis), should a ray strike the lens at a height of
2.0 cm, if it is to emerge from the Jensat the same height

~ but parallel to the optical axis?

6.5 Using Eq.(6.2), derive an expression [uy thi
length of a homogeneous transparent sphes, fR. Locate its principal points.

agine two identical double-convex thickted by a distance of 20 om between their
@artices. Given that all the radii of curvature
fe refractive indicesare 1.5, and thethickness

Hens is 5.0cm, calculate the combined focal

 
6.6* A spherical glass bottle 20cm in diame
walls that are negligibly thin is filled with war
bottleis sitting on the backseatof a (a=: nn a sips eyday. What’s its focal length? 7

 

 
compoundlensis composed of twothin lenses — /

y 10 cm. Thefirst ofthese has a focal length 6.21% Considering the lens in Problem 6.18, deter-My and the second a focal length of —20cm. mineits focal length andthe location of the focal points
ze the focal lergth of the combination and with respect to its vertices V, and Vp.

sexe fhe CSrresponding principal points. Draw a
am @f the syste.

 6.7* With the previous two problemsin sini
pute the magnification that results when the j
a flower 4.0 m from thecenter of a solid, clea;
sphere with a 0.20-m diameter(and a refractix
of 1.4) is cast on a nearby wall. Describe theiidetail.

 

6.22 Referring back to Fig. 6.15, show that when
PP} Rnrofn, and PC = Rnj/ng all rays originating at P
appear to come from P’.

 

@ AGGnvex-planar lens of index 3/2 has a thick-
of f.2cm and a radius of curvature of 2.5cm.je the system matrix whenlightis incident on

  
6.8* A thick glass lens of index 1.50 has radi i i ‘ i iven by Eq.
+23 cm and +20 cm, so thatboth wemnes ae 6.23 Starting with the exact expression given by Eq.(5.5), show that Eq,(6.40) results, rather than Eq. (5.8),

when the approximations for ¢, and ¢; are improved
how that the determinantofthe system matrix a bic.
31) is equal to 1.
 the thicknessis 9.0 cm,find thefocal fier

Showthat in general R; — Ry = d/3 for such afe
powerlenses. Draw a diagram showing what ba
to an axial incidentparallel bundle of rays as ij
through the system.

 
6.24 SupposingthatFig. 6.39 is to be imaged bya lens
system suffering spherical aberration only, make asketch of the image.(Show that Eqs. (6.36) and (6.37) are equivalent

fE3) and (6.4), respectively.   6.9 Iris found that sunlightis focused toa
from theback face of a thick lens, which hasitsigg
points at H, = +0.2cm and H,=—0.4cm.4
the location of the image of a candle that49.8 cm in frontof the lens.

Sw that the planar surface of a concave-planar
plan: 4 doesn't contribute to the systern

 
  

r oa the system matrix for a thick biconvexOREndex 1.5 having radii of 0.5 and 0.25 and a6.10* Please establish that the separation betw
g 6f 0.3 (in any units you like). Check thatprincipal planes for a thick glass lens is rol

third its thickness. The simplest geometry 06
a planar-convexlens tracing a ray from the obi
What can you say aboutthe relationship bet
focal length andthe thickness for this lens ‘YP

  
 

Figure 6.39

 
  
 6.11 A crown glass double-convex lens, LI! E [es 26).and operatingat a wavelength of 900 nm, has 02 08of refraction of3/2. Given thatits radii are

15cm, locate its principal points and computg=
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THE SUPERPOSITION
OF WAVES

 

I. succeeding chapters we shall study the phenomena
of polarization, interference, and diffraction. Theseall
share a common conceptualbasis in that they deal, for
the mostpart, with various aspects of the same process.
Stating this in the simplest terms, we are really con-
cerned with what happens when twoor morelight waves
overlap in some region of space. The precise circum-
stances governing this superposition, of course, deter-
minethefinaloptical disturbance. Amongother things
we areinterested in learning how thespecific properties
of each constituent wave (amplitude, phase, frequency,
etc.) influence the ultimate form of the composite dis-turbance.

Recall that each field componentof an electromag-
netic wave (E,, E,, E,, B,, B,,and B,) satisfies the scalar
three-dimensionaldifferential wave equation,

eC ce eesto =
t

325 (2.59;
ax? ay? az? vat (2.59)

A significant feature of this expressionis thatit is linear;
in other words, #(r, ¢) and its derivatives appear only
to the first power. Consequently, if g(r, ),
Yor, ),.--.¥a(r,f) are individual solutions of Eq.
(2.59), any linear combination of them will, in turn, be asolution. Thus

vO N= Y Cher} myfu

satishes the wave equation, wherethe coefficients C, are
simply arbitrary constants. Known as the principle of
superposition, this property suggests that the resultant
aq2

disturbance at any point in a mediumis the
sum ofthe separate constituent waves(Fig. 7.1),

 
interested only in Jinear systems where the

principle is actually applicable. Do keep
fever, that large-amplitude waves, whether
fear waves ON string, can generate a non-

sponse. The focused beam of a high-intensitythe electric field might be as high as
is easily capableof eliciting nonlinear effects
er 14). By comparison, the electric field

with sunlight here on Earth has an amplitude
out 10 V/cm.

are many instances in which we need not be
< with the vector nature of light, and for'the

Met we will restrict ourselves to such cases. For
e,if the lightwavesall propagate along the same
d share a commonconstantplane ofvibration,

id each be described in terms of one electric-
mponent. These wouldall be either parallel or

lel at any instant and couldthusbetreated as
good deal morewill be said about this point

Progress; for now, let’s represent the opticalce as a scalar function E(r,?), which is a so-
of Eq. (2.59). This approach leads to a simple
theory that is highly useful as long as we are
‘aboutapplyingit.

 
 
 

 
  
 
 
 
 
 
  
    

  
   
  

     
 
  
 DITION OF WAVES OF THE SAMENCY 
 
 BLGEBRAIC METHOD   

 we can write a solution of the differential
ati in the form     

 E(x, ) = Ey sin [wt — (he + e)], (7.2)
  BS ©: is the amplitude of the harmonic distur-

r “eehatinw along the positive x-axis. Alterna-
 
  

a(x, 6) =—(kx + €) (7.3) 
 E( %!)= Eq sin [wt + a(x, €)}. (7-4) 

Figure 7.1. The superposition of two disturbances: 
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Suppose then that we have two such waves
E,=Eo, sin (wt + a) (75a)

and
Ey=Egg sin (wl + 2), (7.56)

each with the same frequency and speed, overlapping
in space. Theresultant disturbance is the linear super-
position of these waves. Thus

E=E,+£s
or, on expanding Eqs.(7.5a) and (7.5b},

E = Eo,(sin wt cos a, + cos wf sin @)
+ Eng(sin wfcos ay + coswf sin ay).

Whenwe separate outthe time-dependent termsthisbecomes
E=(Ep, cos @ + Egg cos Gg) sin wt

(Eg, sin a,*Egg sin ag) cos wt. (7.6)
Since the bracketed quantities are constant in time,let

Eo cos a = Ep, cos @ + Ego COS Gy (7.2)
and

Ep sin @©Eq, sin a, ~ Egg sin ay. (78)
This is not an obvious substitution, butit will be legiti-
mate as long as we can solve for E, and a. To that end,
square and add Egg.(7.7) and (7.8) to get

EQ = Eby~ Eby t+ 2EqEoz 608 (a2a) (7.9)
and divide Eq.(7.8) by (7.7) to get

ona ZationsBates
Provided these last two expressions are satisfied for Eo
and @, the situation of Eqs. (7.7) and (7.8)is valid. Thetotal disturbance then becomes

(7.40)

E= Ecos a sin w! + Ey sin a cos wt
or

E= Egsin (wt + a). (7.11)
Thusa single disturbance results from the superposition

 

 

 



130

 

 
244 Chapter 7 The Superposition of Waves

 
Figure 7.2 The superposition of two harmonic waves in and outof
phase.

of the sinusoidal waves £, and Ey. The composite wave
(7.11) is harmonic and of the same frequency as the con-
stituents, although ils amplitude and phase are different. The
flux density of a light wave is proportionalto its ampli-
tude squared, by way of Eq. (3.44). Hence it follows
from Eq. (7.9) that the resultant flux density is not
simply the sum of the componentflux densities—there
is an additional contribution 2£oEo2 cos{a,~a),knownas the interference term. The crucial factor is
the difference in phase between the two interfering
waves E, and Ey, 6=(ag—a)). When 6=0, +27,
+47,,.,the resultant amplitudeis a maximum, whereas
S= 47, +37,... yields a minimum (Problem 7.3). In 
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the formercase, the wavesaresaid to be in p
overlapscrest. In the latter instance the waves
out of phase and trough overlapscrest, as shot
7.2. Realize that the phase difference may arise Fl
difference in path length traversed by the two
as well as a differencein theinitial phase iar gles

& = (kx; + €1) ~ (hee 4 ep)or
Qa

5 = SPan) + (er €-).

   
Figure 7.3. Waves out of phase by kAx. 

Here x, and x are the distances from ti4
the two waves to the point of observation, and 4Hwavelengthin the pervading medium.If the wag
initially in phase at their respective emitters,
&g, and

  

  conditions,as will be seen later. If Ax « A, the resultant
has an amplitude that is nearly 29, whereas if Ax =
A/2, it is zero. The formersituation is referred to as
constructive interference, andthelatter as destructive
interference (see Fig. 7.3).

By repeated applications of the procedure used to
arrive at Eq. (7.11), we can show thatthe superposition
of any number of coherent harmonic waves having a given
frequency and traveling in the same direction leads to a
harmonic wave of that same frequency (Fig. 7.4). We hap-
pen to have chosen to represent the two waves above
in terms of sine functions, but the same results would
prevail if we used cosine functions. In general, then,
the sum of N such waves,

id to be coherent, a situation weshall assume
‘oughoul most of this discussion.
cial case of someinterestis the superposition

    
    Qn

5="G1 a).
  

 
E, = Eo, sin [wt k(x + Ax)]

      
This would alse apply to the case in which two di
bances from the same sourcetraveled differert{rol
before arriving at the point of observation. Sing@c/o = Agfa,

     Ey~ Epo sin (ot — kx),
    
 

n particular Ey) = Eog and a, — a, = k Ax. It is  
 

 
Qa

&= 4, ue = %p).     
  The quantity (x,~x) is known as the optice

difference and will be represented by the abb i
OPDorby the symbol A.It’s the difference inei
optical path lengths [Eq. (4.9)]. Bear in mind thal
possible, in more complicatedsituations, for
to travel through a numberofdifferent thiekn
different media (Problem 7.6). Notice =: ine
(x; — x,)/A is the number of waves in the meg
spondingto the path difference; one route 18
wavelengths longer than the other.
wavelengthis associated with a 27 radian phas¢ Gm
& = 2n(x, — x)/A, or, more succinctly,

5= KoA,

    

N
E= ¥ Ey; cos (a; + wt),1 § Out ratherclearly the dominantrole played

blength difference, Ax, especially when the
emitted in phase (6; = 69). There are many

Eisstances in which one arranges just these
    is given by  
   E= Eycos(a + wt), (7.18)
   
 
 
 
  
  

  

  

 

ko being the propagation numberin vacuway
Qar/A. One route is essentially 6 radians Inthe other.

Waves for which €) — é2 is constant,
 

 Figure 7.4 The superposition ofthree har-
monic waves yields a harmonic wave.

 
 regen
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246 Chapter 7 The Superposition of Waves
where

x NON
L Ese +2 EY EyiEop cos (az— ey) (7.29)=I iste

and
N
D £g:sin a,

tana=45 7 (7.20)
Eq, cos a:1

Pause for a moment and satisfy yourself chat theserelations are indeed true.
Consider a number (NV)ofatomic emitters comprising

an ordinary light source (an incandescentbulb, candle
flame, or discharge lamp). Each atom is effectively an
independent source of photon wavetrains (Séecion
3.4.4), and these, in turn, each extend in time for
roughly 1 to 10 ns. In other words, the atorms generally
emit wavetrains that have a sustained phase for only
up to about10 ns, after which a new wavetrain may be
emitted with a totally random phase, andit 100 will be
sustained for less than approximately 10 ns, and so
forth. On the whole each atom may be thoughtof as
emitting a disturbance composed ofa stream ofphotons
that varies in its phase rapidly and randomly. In any
event, the phase of the light from one atom, @;(¢)}, will
remain constant with respect to the phase from another
atom 4;(t), for only a time of at most 1Qns before it
changes randomly: the atoms are coherent for up to
ahout10~* s, Since flux density is proportional to the time
average of£3, generally taken over a comparativelylong interval of time,it follows that the second summa-
tion in Eq. (7.19) will contribute terms proportional to
{cos {a:(f)— @,(t)}), each of which will average out to
zero because of the random rapid nature of the phase
changes. Only the first summation remainsin the time
average, andits terms are constants. If the atoms are
tach emitting wavetrains of the same amplitude Ep),thea

E}~ NE}. (7.21)

The resultant flux density arising from N sources having
random, rapidly varying phases is given by N timestheflux
density of any one source, In other words,it is determined

by the sum of the individual flux densities, A fy
whose atoms are all emitting a random ty:
ght, which, as the superposition of th

shill
ese eg

“incoherent” wavetrains, is itselfrapidly and rari
varying in phase. Thus two or more such bulbslight that is essentially incoherent(ie., for
longer than about 10ns), light whose total com
irradiance will simply equal the sum ofthe 9%
contributed by each individual bulb. This j
for candle flames, flashbulbs, andall thermal!
from laser) sources. We cannot expect to seence when the lightwaves from two
overlap.

Atthe other extreme,if the sources are cal
in phase at the paint of observation (ie., a,(7.19) will become

e N e NEo= 2 Eat 2¥i= iis

ae

-($ a).

N
L EqEo,=I

or, equivalently.

Again supposing that each amplitudeis Eo,, #e Bia
EG = (NEm)"=N°ES..

In this case of in-phase coherent sources, we bat

 
 

's
mult pe    
 
 

 
 
  

readily
 
    

 
 

E, = Ep, €08 (a, F wt)as  reat
E, = Eye! (7.24) 

 
erler that we are interested only in the real

.4). Suppose that there are N such
ig Faves having the same frequency andthe positive x-direction. The resultant wave

    

  
 

E = Eyelet”)  
r to Eg. (7.18) or, upon summation

TOE waves,
XN +

E~} 3 Eye’ fersjl

  
   
 (7.25)

 
    
    .

Ege™=Y Ege’ {7.26}=
 complex amplitude of the compusite wave       

 
  

Em (Ege(Ee?)*, (7.27) 

in which the amplitudes are added first and then sq
determine the resulting flux density. The super)
 
 
   Blways compute the resultant irradiance from

6) and (7.27), For example, if N=2, 
coherent waves generally has the effect of alte
 

spatial distribution of the energy but not beamountpresent. If there are regions where Eig Mt
density is greater chan the sum of the individ
densities, there will be regions whereit is #4sum.
 

 
   

7.2 THE COMPLEX METHOD  
It is often mathematically convenient to ma
the complex representation of trigonomett¢
when dealing with the superposition of harturbances. The wave

E, = Ep, cos (kx>wt + £1)

 
BES SEs(r'™ + Boze)Ege! + Enye™™),  
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whence

ER = Eb, + Bog + Eos Bogle? + ess]

 4 £2, + Ebn + 2Eo Eng cos (ay
which is identical to Eq. (7.9).

as),

7.3 PHASOR ADDITION

The summation described in Eq. (7.26) can be represen-
ted graphically as an addition of vectors in the complex
plane (recall the Argand diagram in Fig. 2.11). In the
parlance of electrical] engineering, the complex ampli-
tude is known as a phasor, andit is specified by its
magnitude and phase,often written simply in the form
Eda. The method of phasor addition to be developed
now can be employed without any appreciation ofits
relationship to the complex-number formalism. For
simplicity’s sake, we will for the most part circumvent
the use of that interpretation in what is to follow.
Imagine, then, that we have a disturbance described by

E, = Ey, sin (ot + ay).
Tn Fig. 7.5(a) we represent the waveby a vectorof length
Ey, rotating counterclockwise at a rate w such thatits
projection on thevertical axis is Eo, sin (@t + aj). If we
were concerned with cosine waves, we would take the
projection on the horizontalaxis. Incidentally, the rotat-
ing vectoris, of course, a phasor Ey;2q,, and the R and

  

adh By   
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248 Chapter 7 The Superposition of Waves

I designations signify the real and imaginary axes.
Similarly, a second wave

Ey = Epox sin (wt + a)
is depicted along with E, in Fig. 7.5(b). Their algebraic
sum, E = E, + Eg, is the projection on the axis of the
resultant phasor determined bythe vector addition of
the component phasors, as in Fig. 7.5(c). The law of
cosines applied to the triangle of sides Ey,, Egg, and Ey
yields

EG = Eb, + Eig + 2Eo: Eog cos (ag — 1),
where use was madeofthefact that cos [7 — (a — @,)] =
C08 (a— a). This is identical to Eq. (7.9), as it must
be. Using the same diagram, observe that tan @ is given
by Eq. (7.10) as well. We are usually concerned with
finding Ep rather than E(i), and since Ep is unaffected
by the constantrevolving ofail the phasors,it will oftenbe convenient to set f= 0 and thus eliminate that
rotation.

Some rather elegant schemes, such as the vibration
curve and the Cornu spiral (Chapter 10), will be predi-
cated on the technique of phasor addition. Moreover,

 
Figure 7.6 The sum of By, Ez, By, Egand E,. 

 

   itisa pictorial approach,and thatoften. he};
insights. As a final example,let’s briefly. @wave resulting from the addition of

and arrive at a general solution* much liketon 7-1. There are, however, some valnable
bis to be gained by takingaslightly moreproach.

Bitial phase &, May be set to 7ero by merelyclock ata time when £, =£,,sin ky, Certain
ins determined by the physicalsetup inust be

mathematical solution, and these are known
Roundary conditions. For example, if we were

arope with one end tied toa wall at x = 0,
ast always have a zero displacement. The

E,=8 sin (wt + 180°), ping waves, one incident and the othertet aye to add in such a way asto yield
where w is ia degrees per second. The approg} Reenc atx = 0. Similarly at the boundary
phasors 540°, 10245°, 12-15", 102120°,and §| 8 conducting sheetthe resuitantelectromag-
are plotted a Fig. 76. Notice that each phase sig ust have a zero electric-fleld component
whether positive or negative, is referenced to if e surface, Assuming Eg; = Egr, the boun-
horizontal. One need only read off Eo/.a witha ge ions require that at x=0, E ~ 0, andsince
and protractor to get E = Eysin (wt + a). It ip ollows from Eqs. (7.28) and (7.29) that eg = 0.
that this technique offers a tremendous advan - site disturbance is thenspeed and simplicity, if not in accuracy. po 4

 E,=8 sin wt
Ey = 10sin (wt + 45°)
Ey = sin (wt — 15°)
E, = 10sin (wt + 120°)  and  
 
    
      
     

Fo = Feo lsim (hx + eat) + sin (kx — wt).
a fic identity

Hine +1in £ = 2sin Xa + B) cos$(a ~ B).
 7.4 STANDING WAVES

Wesaw in Chapter 2 that the general solution Sil
differential wave equation consisted of the sumol
traveling waves,

U(x t) = Cy fle — vt) + Cog(x + v0).
In particularlet us choose to examinefte0 hermanit a
of the same frequency propagating in opposite direct eint ®=x', the amplitudeis a constant equal to
situation of practical concern arises when the inelé &e, and £(x', §) varies harmonically as cos w4.
wave is reflected backward off somesort of mitt gi Points, namely, x=0, A/2, A, 3A/2,...,the
rigid wall will do for sound waves or a conduct meence will be zero at all times, These are known
for electromagnetic waves. Imagine that an in6gg Leet Nodal points (Fig. 7.7). Halfway between
wavetraveling to the left, Meat node, that is, at x=A/4, 3A/4,

-amplitude hasa maximum value of £2Eo,,
ts are known as the antinodes. The dis-

#) will be zero at all values of x whenever
eS) When ¢=(2m+ 1)r/4, where m =

7 is the period of the component waves.
off the mirror is not perfect, as is

 
E(x, t)=2Eo; sin kx cos wt, (7.30)

ieeyueunnfora standing orstationary wave,
toa traveling wave. Its profile does not move
ce; it is clearly not of the form f(x + vt). At
 

  

  
      

  
 

 

  
E; = Eo; sin (kx + wt + 1)

 
strikes a mirror at x=Oandis reflected to [5
the form

Eg = Egg sin (he — wl + €p)-
The composite wave in the region to the Tig!
mirror is E = E, + Ex. We could perform the    M. Pearson, A Theory of Waves.

132

 
 

 
 

   
  

 
  
  
   

  
    
  
    
  
  
  
   

   
  
     
      

 
    
     
  
  
  

7-4 Standing Waves 249

Figure 7.7 A standing wave at various times.

often the case, the composite wavewill contain a travel-
ing component along with the stationary wave. Under
such conditions there will be a net transfer of energy,
whereas for the pure standing wave there is none.

It was by measuring the distances between the nodes
of standing waves that Hertz was able to determine the
wavelength of the radiation in his historic experiments
(see Section 3.6). A few yearslater, in 1890, Otto Wiener
first demonstrated the existence of standinglightwaves.
The arrangement he used is depicted in Fig. 7.8. It
sHows a normally incident parallel beam of quasi-
monochromatic light reflecting of a front-silvered
mirror, A transparent photographicfilm,less than A/20
thick, deposited on a glass plate, was inclined to the
mirror at an angle of about 107° radians. In that way
the film plate cut across the pattern of standing plane
waves. After developing the emulsion it was found to

Antinodal Planes

  22
a2
ua

Figure 7.8 Wiener's experiment.
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250 Chapter 7 The Superposition of Waves

be blackened alonga series of equidistantparallel bands.
These corresponded to the regions where the photo-
graphic layer had intersected the antinodalplanes. Sig-
nificantly, there was no blackening of the emulsion atthe mirror’s surface. It can be shown that the nodes
and antinodes of the magnetic field component of an
electromagnetic standing wave alternate with those of
the electric field (Problem 7.10). We might suspect as
much from the fact that at t= (2m + 1)7/4, E=0 for
all values of x, so to conserve energy it follows that
B 0. In agreementwith theory, Hertz had previously
(1888) determinedtheexistence of a nodalpoiatof the
electric field at the suriace of his reflector. Accordingly,
Wiener could conclude that the blackened regions wereassociated with antinodes of the E-field. Thus i is the
electric field that triggers the photochemical process. In a
similar way Drude and Nernst showed that the E-field
is responsible tor fluorescence. These observations are
all quite understandable, since the force exerted on an
electronby the B-field componentofan electromagnetic
wave is generally negligible in comparisonto thatof theE-field. It is for these reasons that the electric held is
referred to as the optic disturbance or hight field.
  
THE ADDITION OF WAVES OF DIFFERENT
FREQUENCY

Thusfar the analysis has beenrestricted to the superpo-
sition of waves, all having the same frequency. Yet one
never actually bas disturbances, of any kind, chat are
strictly monochromaiic.It will be far morerealistic, as
we shall see, to speak of quasimonochromatic light,
which is composed of a narrow range of frequencies.
The study of such light will lead us to the important
concepts of bandwidth and coherence time.

The ability to modulate light effectively (Section
8.11.3) makesit possible tocouple electronic and optical
systems in a waythat has had and will certainly continue
to have far-reaching effects on the entire technology.
Moreover, with the adventofelectro-optical techniques,
light already has a new and significantrole as a cartier

* of information. This section is devoted to developing
some of the mathematical ideas needed to appreciate
this new emphasis. 

 
7.5 Beats 251
 
 

  
  

 

 
   
  

 

7.5 BEATS

Consider the composite disturbancearising f§bination of the waves

E, = Ey, cos (i) x~18)and  
Eq=Ep: COs (Rox wat),

which have equal amplitudes and zero inhig
angles. The net wave ‘=

E= Ey[eos (kx — @,t) + cos (kox
 

 
  

   

 
   
 
 
 

ri
   can be reformulated as

E = 2E5) cos a[(ki + Re)x — (w) = engi
X cos of(ky~ Au)x — (a, — 2),

using the identity
cos a + cos B = 2 cos Ha + B) cos {a fat

Wenow define the quantities 6 and & which
average angularfrequency and averagepropaga
respectively. Similarly the quantities o,, ang
designated the modulation frequency and ff
propagation number, respectively. Let   

“The superposition of two harmonic waves of diflerent 
 
 

  
  
  
  
  
  

5weHes, + me : , ,
orselan hes) onl oe lowly, whereas E(x, 1) will vary quite rapidly Zeeman effect. When the atoms of a discharge lamp, in

and Theirradiance is proportional to this case mercury, are subjected He a CCaL dik, — hoy em ay 2 their energy levels split. As a result the emitted light
BAL + ky) hm @ (Ry—Be Fels, t)= 423, cos’ (kx Wt) contains two frequency components, ; and 7», whichthus differ in proportion to the magnitude of the applied  
  field, When these components are recombined at the

surface of a photoelectric mixing tube, the beat
frequency, ¥;— ¥2, is generated. Specifically, the field
was adjusted so that 7, —¥,=10'°Hz, which con-
veniently corresponds to a §-cm microwave signal. The
recorded photoelectric current had the same form as

   Exley t) = 2E2E1 + cos (hx = 2ont))-
EQ(x, ) oscillates about a value of 2£3, with

frequency of 2w,, or simply (w;~w), which
the beat frequency. In other words, Ep
fmodulation frequency, whereas EG varies

E=2Ey, C08 (kX — Wl) Cos (ax~Gt).  
   Thetotal disturbance may be regarded as a 1%

wave of frequency & having a time-varying}= ™
lated amplitude Ep(x, ¢) such that     
    
  
   

E(x, 0% Fale 0108 (Fx — 2), hamely, the beat frequency. the Ex) curvein Fig. 7.9(d).
where first observed with the use of light in 1955 The adventof the laser has since made the observa-

Eg(x, t)=QEqy COS (bax~Prat) Cudmundsen, and Johnson.” To obtain tion of beats using light considerably easier. Even a beatii l=" Slightly different frequency they used the frequency of a few Hz out of 10'* Hz can be seen asa   
 

   2 variation in phototube current. The observationofbeats
: now represents a particularly sensitive andfairly simple

means of detecting small frequency differences. For
In applications of interest here, w; and «;
beratherlarge, In addition, if they are ®
each other, @) #9, then G >On and

 

Het, R.A. Gudmundasen, and P. O. Joknson, “Photo-
IE of Incoherent Light." Phys Rev. 99. 1691 (1955).    
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 252 Chapter 7 The Superposition of Waves

example, a modern version of the famous Michelson—
Morley experimentthat beats two infrared laserbeams
will be considered in Section 9.8.3. The ring laser (Sec-
tion 9.8.5), functioning as a gyroscope,utilizes beats to
measure frequency differences induced as a result of
the rotation of the system. The Dopplereffect, which
accounts for the frequency shift when lightis reflected
off a moving surface, provides anotherseries of applica-
tions of beats. By scattering light off a target, whether
solid, tiquid, or even gaseous, and then beating the
original and reflected waves, we get a precise measure
of the target speed. fn much the same way on an atomic
scale, laser light will shift in phase upon interacting with
sound waves moving in a material (this phenomenonis
called Brillouin scattering). Thus 2, becomes a
measure of the speed of sound in the medium.
a
7.6 GROUP VELOCITY

The disturbance examinedin the previoussection,
E (x,t)©E(x, t) cos (ke~68), {7.34}

consists of a high-frequency (@) cartier wave, amplitude-
modulated by a cosine function. Suppose, for a moment,
that the wave in Fig. 7.9(b) were not modulated, that
is, Ej=constant. Each small peak in the carrier would
travel to theright withthe usual phase velocity. In other
words,

(@g/at).a. —oo {2.32}
(eax),

From Eq. (7.34) the phase is given by @=(Ax — at),hence
v= afk (7.36)

Clearly, this is the phase velocity whether the carrieris
modulatedornot. In the formercase the peakssimply
change amplitude periodically as they stream along.

Evidently, there is another motion to be concerned
with, and that is the propagation of the modulation
envelope. Return to Fig. 7.9{a) and suppose that the
constituent waves, E\(x, !) and E,(x,t), advance with the
same speed, v, = vg. Imagine,if you will, the two har-
monic functions having different wavelengths and 

frequencies drawn on separate sheets of cleapWhenthese are overlayed in some way [as
the resultantis a stationary beat pattern, If th,are both movedto the right at the same
resemble traveling waves, the beatswill obyjoys
with that same speed. Therate at which the m
envelope advances is knownas the group ye)
Ug: In this instance the group velocity equals
velocity of the carrier (the average speed,
words, uv, =u =

 
1 = 02. This applies specificalh

dispersive media in which the phase velocityis iy
dent of wavelength so that the two wavesco
the same speed, For a moregenerally applicable

in Fi
Spee

alk),

examine the expression for the modulation ep
Eo(a, 1) = 2Eo: COs (hak~Wt).

The speed with which that wave movesis agaiflby Eq. (2.32), but now we can forget the «&
ate desThe modulation therefore advancesata r: 

on the phase of the envelope (Ajx —— Waal
=m

uaeor
w— 0, _ do
ay AR

 
Ug

Realize, however, that w may be dependenjamAE
equivalently on &. The particular function © ™
called a dispersion relation. When the freque’
Aw, centered about4, is small, Aa/Ak is
€qualto the derivative of the dispersion. relatix

dwu=,
dk

), ar

appro

The modulation or signal propagatesat a speed Ug
be greater than, equalto, or less than v, the phase ve
the carrier, Equation (7.37) is quite gene
true, as well, for any group of overlapping
Jong as their frequency rangeis narrow.

Since w = kv, Eq. (7.37) yields
u, dv
put ne

As a consequence, in nondispersive me 

ral

dia int
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7-6 Group Velocity
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letm of A, dv/dh = 0 and vu, = v. Specifically,

- he, v = cand v, = ¢. In dispersive media8, Useful to reformulate Us as
_¢_ kednWynnon? dk

(7.39)
Itiedis, j ;

di, in regions of normal dispersion, the 

   
    

  
 
 
  
 
  Figure 7.10 Group and phase velocities.
 

refractive index increases with frequency (dn/dk > 0),
and as a result v, < ». Clearly, one should also define
a group index of refraction

Ny cfUg. (7.40)

which must be carefully distinguished from n. In 1885
A. A. Michelson measured , in carbon disulfide using
pulses of white light and obtained 1.758 in comparisonto n = 1.635.

The special theory of relativity makesit quite clear
that there are no circumstances under whichasignal
can propagate at a speed greater than c. Yet we have
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already seen that undercertain circumstances (Section
3.5.1) the phasevelocity can exceed c. The contradiction
is only an apparent one, arising from the “fact that
although a monochromatic wave can indeed have a
speed in excessof ¢, it cannot convey information. In
contrast, a signal in the form of ary modulated wave
will propagateat the groupvelocity, whichis alwaysless
than ¢ in normally dispersive media.*

7.7 ANHARMONIC PERIODIC
WAVES — FOURIER ANALYSIS
Figure 7.11 depicts a disturbance thatarises from the
superposition of two harmonic functions having
different amplitudes and wavelengths. Notice that
something rather curious has taken place—the com-
posite disturbance is anharmonic; in other words, it is
not sinusoidal. As we have already said, and will cer-
tainly say again, purely sinusoidal waves have no actual
physical existence. This fact emphasizes the practical
significance of anharmonic disturbances andis the moti-
vation for our present concern with them. Figure 7.11]
suggests that by using a number ofsinusoidal functions
whose amplitudes, wavelengths, and relative phases
have been judiciously selected, it would be possible to
synthesize some rather interesting wave profiles. An
exceptionally beautiful mathematical technique for
doing precisely this was devised by the French physicist
Jean Baptiste Joseph, Baron de Fourier (1768-1830).
This theory is predicated on what has cometo be known
as Fourier’s theorem, which states that a function f(x),
having a spatial period A, can be synthesized by a sum of
harmonic functions whose wavelengths ave integral submulti-
ples of A (that is, A, A/2, A/3, etc.). This Fourier-series
representation has the mathematical form

f(x)©Cot C, cos (2 + a)2a
+ 2008(2% xe) te, (7.41) 

* In regionsof anomalousdispersion (Section 3.5.1) where da/dk < 0,
vq may be greater than c. Here, however, che signal propagatesat
yet a different speed, known as the signal velocity, v,. Thus v, = v,¥ exceptin a resonance absorption band.In all cases v, correspondsto
the velocity of energy transfer and never exceeds ¢.

 

ification it will lead to later on. The process.sag the coefficients Ay, A, and B, for a
‘odic function f(x) is referred to as Fourier

§ We'll spend a moment now deriving a set of
pusforthese coefficientsthat can be used hence-

5that end, integrate bothsides of Eq. (7.42)‘al interval equal to A, for example, from
if! co +A/2 or, more generally, from

Since over any suchinterval

   
 
 
   
 A

sin mux dx { cos mkx dx=0,0
x

 0
 

‘one nonzeroterm to be evaluated, namely,
n “Ao A
i fax | oa = Ags:a

 
 

Figure 7.11 The superpositionfrequency.  
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Ag == { F(x) dx. 49)Ado 
 where the C-values are constants, and ofcoi

profile f(x) may correspondtoatraveling wavg
To get some sense of how this scheme work3y

  
  and B,, we will make use of the prthBhar bs che face
  
 
 

 

that although Cybyitself is obviously a pe i
for theoriginalfunction, it will be i sin akx cos bx dx= 0 (749)fewpoints whereit crosses the f(x) curve.L! A

way, adding on the next term improves th ri [ cos akx cos bhx de =4s, (7.45)since the function 2 [Cy + GC, cos (2ax/A=€1)]
 

a

{ sin akx sin bkx dx = (7.46)0
  will be chosen so as to cross the f(x) curve €

frequently. If the synthesized function {the aside of Eq. (7.41)] comprises an infinite
terms, selected to intersect the anharmonic ft
an infinite numberof points, theseries will presybe identical to f<{x).

Icis usually more convenient to reformuldtg
by making use of the trigonometric identit?

 
and } are nonzero positive integers and &,,,

the Kronecker delta, is a shorthand notation
Bem when a # b and equal to 1 when a= b

peel we now multiply bothsides of Eq. (7.42) hy
“WB a positive integer, and then integrate

HI period. Only one term is nonvanishing,
she Single contribution in the second sum,eeris in €= m, in which case

  

 
  
 
 Gp 608 (rns + ey)=Ay cos mix + A   

where k= 277/A, A being the wavelength ul
Cn C08 Eg, and By = —Cpy Sin ey. Thus

fe) oe r An Cos mks + Basilmet ms

.

abet -{ Ay cost mkx dz ~*~ An. rn
 
 
 ofA

A, = i {, f(x) cos mhx dx. (747) Thefirst term is written as Aq/Z because©©
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 This expressioncan be usedto evaluate A,for all values
of m, including m = 0, as is evident from a comparison
of Eqs. (7.43) and (7.47). Similarly, multiplying Eq.
(7.42) by sin ékx and integrating, leads toa

By = [ f(x) sin mkx dx. (7.48)°

In summary,a periodic function f(x) can be representedas a Fourier series

f(x) Ao ¥ Ap cos mix~ 5 By sin mkx,com \
[7A]

where, knowing f(x), the coefficients are computed
using

apa
An 2f F(z) cos mkx dx {747}a 0

and
are

3, =| f(x) sin mhx dx. {748}Ado
Be aware that there are some mathematical subtleties
related to the convergenceofthe series and the number
of singularities in f(x), but we need not be concernedwith these matters here.

There are certain symmetry conditions that are well
worth recognizing, because they lead to some computa-
tional shortcuts. Thusif a function f(x) is even, thatis,
if f(-x) = f(x), or equivalently,if it is symmetric about
x= 0, its Fourier series will contain only cosine terms
(B,,=0 forall m) that are theinselves even functions.
Likewise odd functions that are antisymmetric about
x=, thatis, f(x) = —/(x), will haveseries expausions
containing only sine functions (A,,~ 0 for all m). In
either case, one need not bother to calculate both sets
of coefficients. This is particularly helpful when the
location of the origin (x = 0) is arbitrary, and we can
chooseit so as to makelife as simple as possible. None-
theless, keep in mind that many commonfunctions are
neither odd nor even (e.g., €*).

As an example of the technique, let’s compute the
Fourier series that corresponds to a square wave. We
select the location of the origin as shown in Fig. 7.12,
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Ha)

 
Figure 7.12 A periodic square wave.

and so
+1 whenO<x<a/2
1 whena/2<x<a,Ax) -{

Since f(x) is odd, A,, = 0, and

B,. >[so
ae are

{ (+1) sin mkx dx 4 I (+1) sin mkx dx,o Adis
thus

Bek cos mex? +2 .at vant cos mkx]q +o ip [eos mkx]3.2.
Remembering that k ~ 22r/A, we obtain

2
B, =~ (1 — cos mz).mr

The Fourier coefticients are therefore
4 4Bye, oS =—

Ee By =U, Bs 3
4

B= 9, Ba = ake
and the requiredseries is simply

4.
fix)~— (sin kx + }sin 3ke + 4sin Ske ++ --), (749)

Figure 7.13 is a plot of a few partial sumsofthe series
as the number ofterms increases. We could pass over
to the time domain to find f(t) by just changing kx to
wi. Suppose that we have three ordinaryelectronic oscil-
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 Figure 7.13 Synthesis of a periodic square wave: IF
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se output voltages vary sinusoidally and are
sheit)both frequency and amplitude.If these

in series with their frequencies set at
andthe total signal is examined on an 
  
   
 enough, the haman ear-brain audio system

@PFourier analysis of a simple composite wave 

We postponedanydetailed consideration of
et Periodic functions, such as those in Fig.

tPerposition of harmonic constituents ofUencies whose individual behavior can be
tely. Accordingly, we can write

ya to, =+ 3 A, cos mk(x=vt)med
«

+ 3 B,, sin ma(x + vt) (7.50)man
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or equivalently

 

°
v= ZC, cos[mk(x + vt)te,] 7.50maaf{(x-

 
for any such anharmonic periodic wave.

Asa last example let’s now analyze the square wave
of Fig. 7.14 into its Fourier components. We notice that
with the origin chosen as shown, the function is even,
andall the B,, terms are zero. The appropriate Fourier
coefficients (Problem 7.25) are then

4 (= ninie)mala ]*
4

Ag™— and A, = —a a (7.52)
 

Unlike the previous function, this one has a nonzero
value of Ag. You might have already noticed that Ay/2
is actually the mean value of f(x), and since the curve
lies completely abovetheaxis,it will clearly not be zero,

‘The expression (sin u)/u arises so frequently in optics
that it is given the special] name sinc u, and its valucs
are listed in Table 1 (p. 624). Since the limit of sinc u
as u goes to zero is t, A, can represent all the
coefficients, if we let m—0,1,2,....

The form we are using is rather general, inasmuch
as the width of the square peak, 2(A/a), can be any
fraction of the total wavelength, depending on a. TheFourier series is then
  
 
 

  
 

fia) = 2 +3 4 snc m2a/e cos mk. (7.53)@ mt

 

 Ma 0 Ale a

Figure 7.14 A periodic anharmonic function.
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If we were syuthesizing the corresponding function of
time. f(t}, having a square peak of width 2(r/a), the
sameexpression (7.53) would apply wherekx wassimply
replaced by wt. Here w is the angular temporal frequency
of the periodic function f(t) and is known as the funda-
mental. It is the lowest frequency of the cosine term
and arises when m = 1. Frequencies of 2, 3a, 4w,...,
are known as harmonics of the fundamental and are
associated,of course, with m = 2,3,4,.... In much the
same way, since A is the spatial period, x ™ 1/A is the
spatial frequency, and k= 2m« might be called the
angular spatial frequency. Once again one speaks of
the harmonics, of frequency 2k, 3k, 4k,..., where these
are spatial alternations. Evidently, the dimengions of «
are cycles per unit length (e.g., cycles per mm orpossibly
just cm), and those of & are radians per unit length.

Before we press on it's important to clarify a few
points so as to avoid a common confusion concerning
the use of the terms spatial frequency and spatial period
(or wavelength). Figure 7.14 shows a one-dimensional
periodicsquare-wave function spread out in space along
the x-axis. This might be a pattern seen on the face of
an oscilloscope or the profile of a rather extraordinary
disturbance moving alonga taut rope. In eithercase,it
repeats itself in space over a distance known as the
wavelength and oneoverthatis the spatial frequency,
Now suppose instead that the pattern corresponds to
an irradiance distribution, a series of bright and dark
stripes, for instance, the kind of thing you might see
looking through a narrowhorizontalslit against a picketfence ar, even better, while scanning on a line across a
groupofalternately clear and opaque bands(Fig. 14.2)
illuminated by monochromatic light. Again the pattern
will have somespatial period and frequency determined
by the rate at which it repeats in space, but this ime
thelightitself will also have a spatial frequency (k) and
period (A), as well as a temporal frequency andperiod,
quite apart from the other. The pattern might have a
wavelength (A) of 20cm, and the light generating it a
wavelength (A) of 500 um. Hereinlies the area of poten-
tial confusion. Henceforth, we will reserve the symbols
k and A for the lightwave itself and use k and A to
describe spatial optical patterns,

Now return to the square function of Fig. 7.14 and
suppose that. we set @ = 4, or in other words, we cause
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the square peak to have a width of A/2.
  pYQDIC WAVES — FOURIER INTEGRALS

 
  
  

   
    
  

  
 
 

 
  

 
  
 

f(z) he aero ke ~ $008 Skx 4 5 |200 7.14.andimagine that we keep the width é@ : 1re ile A is madeco increase 8 maa DAAce peak constant while : i 1/4 0 1/4 Item
Asa matter offact, if the graph of the functig, it, As A approachesinfinity, the resulting = |
such that a horizontal line could divideit int, jl] no longer appear periodic, We then have a mn
shaped segments, above and belowthatline, tht gle square pulse, the adjacent peaks having 0 a aaa 7 mk
series will consist of only odd harmonics, _ 4 off co infinity. This suggests a possible way of 0k tk 3k 4k 5k 8k 0k
plot the curve representing the partial sum of ff izing the method of Fourier series to include 0 ln 4x 62 8x J0n \én 20%
through m =9,it would closely resemble iodic functions. As we shall see, these are of fa) veical interest in physics, particularly in opticsin mechanics.

yu thincits be accomplished,let’sinitially set
4.and «choose some value of A; anything will do,

  wave, In contrast, if the width of the peak is
the numberof terms in the series needed to
the sarne general resemblanceto f(x) will be: eres
This can be appreciated by examiningtheratio
  
  
     
    

   

  
   

     

  

 
   

  
      
     

. cm. The peak then has a width of 3 cm,that @
An _, Sinm2a/a centered at x = 0, as illustratedin Fig. 7.15(a). 2 ale |
A; msin2n/a Bbrtance of each particular frequency, mk, can g aya ° 7 em) |

Observe that for a = 4, the ninth term @ weciated by examining the value of the corre- &
is fairly small, Ay ~ 10% Aj. In comparison ig Fourier coefficient, in this case Ay. The 7
100 times narrower (that is,¢= 400), A. Raimay be thought of as weighting factors that _
Similarly, whereas it takes terms through m ily emphasize the various harmonics. Figure 0k 2h 3RAKSKE iok
cate the curve of Fig. 7.13(b) when a = 4,i ins a plot of a numberof values of An 0 tn 4n 6x Sn lOni2n  \6n  20n ,1,2,...) versus mk for the foregoing

e—such a curve is known as the spatial
Spectrum. We can regard A, as a function,

f mk, which may be nonzero only at values of
62, If the quantity @ is now made equalto A=4em
A is increased to 2.cm, the peak width will be 7

ly unaffected. The only alteration is a doubling
Bpace between peaks, Yet a very interesting
in the spatial frequency spectrum is evident in * mus a,Se

45(0). Note that the density of components along t
Wrkaxis has increased markedly, Nonetheless, mk

pee TO when mk = 4m, 81, 127,..., but since kKSk neOW @ rather than 27, there will be more terms eoeak Bka . “ Onin 4n x ida én 20n
zero points, Finally, let 2 =16 and

em. Again the individual peaks are unal-
», butthe termsin the frequency spectrum Figure 7.15 The square pulse as a limiting case. The negative

ae Tr Gre densely packed.In effect, the pulse, coefficients correspondtu a phase shift of w radians.
With A, is getting smaller and smaller,

ing higher frequencies to synthesizeit.
He envelope of the curve, which was barely for a scale factor, It is determined only by the shape of
Fig. 7.15(a), is quite evidentin Fig. 7.15(c). the original signal and will be quite different for otherelope is identical in each case, except configurations. We can concludethatas A increases and

up to m = 8 to produce roughly the equival:
when a = 8, Making the peak narrowerhas the $i
of introducing higher-order harmonics, which fi
have smaller wavelengths. We might guess, then
it ig not the total numberof termsin the series tis
of prime importancebutrathertherelative d
of the smallest features being reproduced ani
sponding wavelengths available.* If there
details in the profile, the series must contain 6PM
tively short-wavelength (or in the time domaltiesperiod) contributions.

The negative values of A,, in Eq.(7.53)
(7.15) should simply be thoughtof as the amy
those harmonic contributions that are to be a
thesynthesis with their phases shifted by 18
pared with the positive terms. The equivalen
a negative amplitude and a w-rad phase §
from the fact that Aq cos (kx + 7) = ~Am €O8

 oy  
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    Fouriercoefficients.  
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* Evidently oneis not goingto be able to build a castesthe blocks are a good deal smaller than the castle.  
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260 Chapter 7 The Superposition of Waves

the function takes on the appearance ofa single square
pulse, the space between each of the A(mk) contribu-
tions in the spectrum will decrease. Thediscrete spectral
lines, while decreasing in amplitude, will gradually
merge, becoming individually unresolvable. In other
words,in thelimit as A approaches ©, the spectrallines
will becomeinfinitely close to each other. As k becomes
extremely small, m must consequently become exceed-
ingly large, if mk is to be atall appreciabie. Changing
notation, we replace mk, the angular frequency of the
harmonics, by &,. Although it comprises discrete terms,
in the limit &,, will be transformed into k (i.e., a con-
tinuous frequency distribution). The function A(R») in
che limit will become the envelope shownin Fig. 7.15.
It is obviously no longer meaningful to talk about the
fundamental frequency and its harmonics. The pulse
being synthesized, f(x). has no apparent fundamental
frequency.

Recall that an integral is actually the limit of a sum
as the number of elements goes to infinity and their
size approaches zero, Thus it should not be surprising
that the Fourier series must be replaced by the so-called
Fourier integral as A goes to infinity. That integral,which we state here withoutproof,is

f(x) = [I A(k) cos kx dk + [ Bw) sin tatTho 7
(7.56)

provided that

Ak) = [ Jos) cos kee dx
and

Bik) | F(x) sin kx dx, (7.57)
Thesimilarity with the series representation should be
obvious. The quantities A(k) and B(k) are interpreted
as the amplitudes of the sine and cosine contributions
in the range of angularspatial frequency between k
and k + dk. They are generally spoken of as the Fourier
cosine and sine transforms, respectively. In the
foregoing example of a square pulse,it is the cosine
transform, A(k), that will be found to correspond to
the envelope in Fig. 7.15.

  
£5 ANE Wet PACKETS0.50)  

seine the Fourier-integral representa-
pulse in Fig. 7.17, which is described

 ic 
  

ai
eo

Eo
f(x) { 0

(a) isarteven function, the sine transform, B(k),
Jenne to be zero (7.87), and

 when \x| < L/2
| > Li2. 

 
 
 

=7k =3k
— 6k —Sk —4e when—lk-k Dk
   Figure 7-16 A symmetrical frequency spectrum for

in Figure 7,15(@). Note that the zeroth term is actually
is indced the amplitude of the m = 0 contribution to: tHe
 
 

 

ks +2

[ f(x) cos koe dx = { Ep coskx dx.J -u2
 

+L/2
  

QE,
A(k) = sin kee = ssi KL/2. 
 

2
A careful examination of Fig. 7.15 and Eg

reveals that except for the zero-frequency
amplitudes of the contributionsto the synth
(4/a) sinc m2a/a: the envelope of the curvefunction, Rememberthatthe first term in tee
3A, not Ap, which suggests another way to reprethe frequency spectrum. Inasmuch as cog
cos (~mkx), we can divide the amplitude of
bution beyond m = 0 in half andplotit twice
a positive value of k and again with a negative
7.16). This mathematical contrivance provides
symmetrical curve, but it’s introduced here
is commonpractice to represent frequency $
that fashion. As we will see in Chapter 11,
powerful Fourier transform methodsinvolve a
representation that automatically gives rise 12
metrical distribution of positive and negal
frequency terms. Certain optical phenomen:
diffraction) also occur symmetrically in spacey
marvelous relationship can be constructed} i
spatial frequency spectrum, provided that #
passes positive and negative frequencies. The
frequencyis a useful mathematical device, and
redeeming grace.Still, all physical processes
expressed exclusively in terms of positive 8
and we shall continue to do just that thro!
remainderofthis chapter.

 numerator and denominator by L£ and re-
terms, we have

sin KL/2
All) = Bobs
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or equivalently
A(k)=EoL sinc (AL/2). (7.58)

The Fourier transform of the square pulse is plotted in
Fig. 7.17(b) and should be compared with the envelope
in Fig. 7.15. Realize that as L increases, the spacing
between successive zeroes of A(k) decreases and vice
versa, Moreover, when k = 0, it follows from Eq.(7.58)
that A{O) = E,L.

Ic is a simple matter to write out the integral rep-
résentation of f(x) using Eq. (7.56):

f(x) i i EL sinc (kL/2) cos kx dk. (7.59)Tilo

An evaluation ofthis integral is left for Problem 7.26.
Earlier, when we talked about monochromatic waves,

we pointed out that they were in factfictitious, at least
physically. There will always have been some pointin
time when the generator, however perfect, was turned
on. Figure 7.18 depicts a somewhat idealized harmonic
pulse corresponding to the function

Encos kx when -L= x= L
EQ) {6 when |x| > L.

We chose to work in the space domain butcould cer-
tainly have envisioned the disturbanceas a function of
time. We are effectively examining the spatial profile
of the wave E(x — ut) at ¢=0 rather than the temporal
profile at x = 0. The spatial frequency ky is that of the
harmonic region of the pulseitself. Proceeding with the
analysis, we note that E(x) is an even function, con-
sequently B(k)= O and+L

A(k) = | Eo cos kp cos kx dx.L
This is identical to

+L
A(k) Eoalcos (ky>k)x + cos (ky~k)x] dx,L

which integrates to

Atk) = sot|SetOEoeaka on(ky — KYL 
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At‘

 
or, if you like,

A(k}©EoL[sinc (ky + K)L + sinc (kp~ K)L]. (7.60)
Whenthere are many wavesin the train (Ap « L), kL >
2a. Thus (k, + k)L » 2a, and therefore sinc (ky + OL
is downto fairly small values. In contrast, when k, =k,the secondsincfunction in the brackets has a maximum
value of 1. In other words, the function given by Eq.
(7.60) can be thoughtof as having a peak at k = —k,,
as shownin part(b) of the drawing. Since only positive
valuesof k are to be allowed, only thetailofthatleft-side
peak that crosses into the positive & region will con-
tribute. As we have just seen, such contributions will be
negligible far from k = —k,, especially when L » A, and
the peaks are both marrow and widely spaced. The
positive (ail of the left-side peak then falls off rapidly
beyond k = —k,, Consequently, we can neglect the firstsine in this particular case and write the transform as

A(k)~ EoL sinc (ky—OL (7.61)
[Fig. 7.18(c)]. Even though the wavetrain is very long,
sinceit is notinfinitely long it must be synthesized from
a continuous range of spatial frequencies. Thus it can
he thought of as the composite of an infinite ensemble
of harmonic waves. In that context one speaks of such

 Alw) = EoT sinc (wy ~ @)T,
= kare related by the phase velocity. Theexcept for the notational change

w and L to T, is identical co that of Fig.
  
 
 
 
 
 

 
  
 
  
 
 
 

  

Figure 7.18 A finite cosine wavetrain and!

pulses as wave packets or wave groups. As we ¥expected, the dominant contribution is
k= k,. Had the analysis been carried outin the
domain, the same results would have obtainéd]

For the particular wave packet being studied
age of angular frequencies (w or &)} that the

m comprises is certainly not finite. Yet if we
t speak of the width of the transform (4m or Ak),c) suggests that we use AK = 2n/L or bw =n contrast, the spatial or temporal extent of the

vaunambiguous at Ax = 2f or At = 2T, respec-
@he product of the width of the packet in what
called k-space andits width in x-space is Ak Aw =

logously Aw At = 47. Onespeaksof the quan-
nd Aw as the frequency bandwidths. Had we
fferently shaped pulse, the product of the

and the pulse length might certainly have
that different. The ambiguity arises because

chosen one of thealternative possibilities
gAw and Ak. For example, rather than

GBs minima of A(k) (there are transformsBuch minima, such as the Gaussian function
 
 

 
 
 
 

 
 
 
 
 
 

 

the transform was centered about the temporal
frequency w,. Quite clearly, as the wavetraii
infinitely long (ic., Lo), its frequency spect
shrinks, and the curve of Fig. 7.18(c) closes]dowmg
single tall spike at k, (or w,). This is of ilimiting case of the idealized monochromati

Since we can think of A(k) as the amplit
contributions to E(x) in the range & to kK +ig
mustberelated to the energy of the wavein}
(Problem 7.27). We'll come backto this poit
11 when we consider the power spectrum
moment, merely observe [Fig. 7.18(c)] that 3g
energy is carried in the spatial frequency
k, — w/L to k, + w/L, extending between the
on either side of the central peak. An incre:
length of the wavetrain causes the energy of
to become concentrated in an ever narrowing ij
k aboutkp. ,

The wave packet in the time domain, (= ¥®

Eqy= [Roser when -T =!* T0 when|t| > 7
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 710 Optical Bandwidths 263

of Section 11.2), we could have let Ak be the width of
A’(k) at a point where the curve had dropped to $ or
possibly t/e of its maximum value. In anyevent,it will
suffice for the time being to observe that

Av ~ 1/dt, (7.63)
thatis, the frequency bandwidth is the sarne order of
magnitude as the reciprocal of the temporal extent of
the pulse (Problem 7.28). If the wave packet has a
narrow bandwidth,it will extend over a large region of
space and time. Accordingly, a radio tuned to receive
a bandwidth of Av will be capable of detecting pulses
of duration no shorter than Al ~ t/Av.

These considerations are of profound importance in
quantum mechanics where wave packets describe parti-
cles, and Eq,(7.63) is akin to the Heisenberg uncertainty
principle.
 ——OEeEeaETS—=====
7.10 OPTICAL BANDWIDTHS

Suppose that we examinethe light emitted by whatis
loosely termed a monochromatic source, for example,
a sodium discharge lamp. When the beam is passed
through somesort of spectrum analyzer wewill be able
to observeall its various frequency components. Typi-
cally we will find that there are a numberof fairly
narrow frequency ranges that contain most of the
energy and that these are separated by much larger
regions of darkness. Each such brightly colored band
is known as a spectral line. There are devices in which
the light enters by way of a slit, and eachlineis actually
a colored image ofthatslit. Other analyzers represent
the frequency distribution on the screen of anoscillo-
scope. In any event, the individual spectral lines are
never infinitely sharp. They alwaysconsist of a bandof
frequencies, however small (Fig. 7.19).

The electron transitions responsible for the gener-
ation of light have a duration on the order of 107s to
107°. Because the emitted wavetrainsare finite, there
will be a spread in the frequencies present, known as
the netural linewidth (see Section 11.3.4). Moreover,since the atoms are in random thermal motion, the
frequency spectrum will be altered by the Dopplereffect. In addition, the atomssuffercollisions that inter-
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alg Chapter 7 The Superposition of Waves

rupt the wavetrains and again tend to broaden the
frequency distribution. The total effect of ail these
mechanismsis that each spectral line has a bandwidth
Av rather than onesingle frequency. The time that
satishes Eq. (7.63) is referred to as the coherence time
thenceforth to be written Ai), and the length Ax, given
by

ax, = c At, 7.64)
is the coherence length. As will become evident pres-
ently, the coherence length is the extent in space over
which the waveis nicely sinusoidal so thatits phase can
be predicted reliably. The corresponding temporal dur-
ation is the coherence time. These concepts are
extremely important in considering the interaction of
waves, and we will come back to them later in che
discussion of interference.

Though the concept of the photon wavetrain is
already familiar, we are now in a position, armed with
a little Fourier analysis, to deduce something aboutits
configuration. This can be done byessentially working
backward from the experimental observation that the
frequency distribution of a spectral line from a
quasimonochromatic (nonlaser) source can be represen-
ted by a bell-shaped Gaussian function (Section 2.1).
Thatis, the irradiance versus frequencyis found to be
Gaussian. Butirradiance is proportional to the electric
field amplitude squared, and since the square of a
Gaussian function is a Gaussian function,it follows that
the net amplitudeofthelight field is also bell-shaped.

Now suppose a single photon wavetrain, one of Y
identical such packets making up the beam, resembles
Fig. 7.20(a) in thatit is a harmonic function modulated
by a Gaussian envelope. Ita Fourier transform, A(w),is
also Gaussian. Imagine that we look at only one and
the same harmonic frequency componentthat goes into
making up each photon wavetrain, for example, the
ore corresponding to w'. Remember that this com-
ponent is an infinitely long, constant-amplitude
sinusoid. Lf every packet is indeed identical, the ampli-
tude of the Fourier componentassociated with w’ will
be the samein each. At any point in a stream of photons
these w'-component monochromatic waves, one from
each wavetrain,will have a random relative phase distri-
bution that rapidly changes in time with the arrival of

jeof cach frequency  
| line corresponds to

of the Peadieand beam, to be sure,
spoeicls to the power spectrum of an

 
 

 
  
 
 
    
 
  

$f,
. with the mean fr wqquency 7),the resultant as being “almost”

 eytiary, the composite lightwave can be pictured21. We might imagine the frequency and
9 be randomly varying, the former over a

wAy BPicred at ¥. Accordingly, the frequencyfined as Av/v,isa useful measure of spectral
ven a coherence time as short as 10°°

roughly a few million wavelengths of the
gillating carrier (¥), so that any amplitude oryariations will occur quite slowly in com-
quivalently we can introduce a time-varying

tor such that the disturbance can be written as
E(t) = Eg(t) cos [e(t) — 2ar¥t],

 
      
 

Figure 7.20 A cosinusoidal wavetrain modulaved
envelope along with its transform,which is also Ga
  
 each photon. Thus all such con

together (7.21) will correspond on average
monic wave of frequency w’ having an ampli
portional to N¥*, and this is the w’ part 0)observed field. The samewill be true {
Frequency constituting the packets.there is the same amountof energy prese!
frequency in the netlightfield of the beam
in the totality of the separate constituent

e know all about this energy-freq
's Gaussian, so the transformof

wavetrain must be Gaussian too. In other #
observed spectral line corresponds to the po
trum ofthe beam,butit also corresponds(0
spectrum of an individual photon packet.diance is Gaussian, the photon wavevrain. gg CaAsa regult of the randomness of the wavelra
individual harmonic components of the resulta
will not have the same relative phases as th ;
each packet. Thus thg profile ofthe resultant wi}from that of the separate wave packets©

 
  
 

G@szparation between wave crests changes in time.
duration of a wave packetis Al,, so two

Bithe wave in Fig. 7.21 separated by more than
different contributing wayetrains. These

thus be completely uncorrelated in phase.
ords, if we determined the electric field of
ite wave as it passed by an idealized detector,

‘ ppredict its phase fairly accurately for times
bess than Ai,later, butnotat all for times greater

tn Chapter 12 we will consider the degree of
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coherence that applies over the region between these
extremes as well,

‘White light has a frequency range from 0.4 x 10'° Hz
to about 0.7 x 10"? Hz, thatis, a bandwidth of about
0.3 x 10'® Hz. The coherence time is then roughly 3
1071° s, which corresponds(7.64) to wavetrains having
a spatial extent only a few wavelengths long. Accord-
ingly, white light may be envisaged as a random succession
of very short pulses. Were we to synthesize white light, we
would have to superimpose a broad, continuous range
of harmonic constituents in order to produce the very
short wave packets. Inversely, we can pass white light
through a Fourier analyzer, such as a diffraction grating
or a prism, and in so doing actually generate those
components.

The available bandwidth in the visible spectrum
(=300 THz)is so broad thatit represents something of
a wonderland for the communications engineer. For
example, a typical television channel occupies a range
of about 4 MHzin the electromagnetic spectrum (Ay is
determined by the duration of the pulses needed to
control the scanning electron beam). Thus the visible
region could carry roughly 75 million television chan-
nels. Needless to say, this is an area of active research
(see Section 8.11).

Ordinary discharge lamps have relatively large band-
Widths leading to coherence lengths only on the order
of several millimeters. In contrast, the spectral linesemitted hy low-pressure isotope lamps such as Hg'™
(Asir = 546.078 nm)or the international standard Kr®
(Ayr = 605.616nm) have bandwidths of roughly
1000 MHz. The corresponding coherence lengths are
of the order of 1 m, and coherencetimesare about| ns.
The frequencystability is about one part per million—
these sources are certainly quasimonochromatic.

Haliinitt fiivl H Figure 7,21 A quasimonochromaticlightwave.
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The mostspectacularof all present-day sourcesis the
faser. Under optimum conditions, with temperature
variations and vibrations meticulously suppressed, a
laser was actually operated at quite close ¢o its theoretical
limit of frequency constancy. A short-term frequency
stability of about 8 parts per 10"? was attainedt with a
He-Necontinuous gaslaser at Ag = 1153 nm. Thatcor-
responds to a remarkably narrow bandwidth of about
20 Hz. More commonandnotvery difficult to obtain
are frequency stabilities of several parts per 10°. There
are commercially available CO, lasers that provide a
short-term (~ 107! s) Av/# ratio of 10° and a long-term
(~103 s) value of 107°.

PROBLEMS
7.1 Determine the resultant of the superposition of
the parallel waves E, = Eosin (wt+e¢,) and E,=
Eog sm (wt + €g) when w = 1207, Eo, © 6. Eng = 8, 61 =
0, and ¢, = 2/2, Plot each function and the resultant.

7.2* Considering Section 7.1, suppose we began the
analysis to find E = E, + EF. with two cosine functions
E,=Ep, cos(@t +a.) and Ey = Ey, cos (wt + ag). To
makethingsalittle less complicated,let Ey, = Eos and
a, = 0, Add the two waves algebraically and make use
of the familiar trigonometric identity cos 6+ cos @ =
2 cos@ + &) cos 4(6 +) in order to show that E ~
E, cos (wt + a}, where Ey = 2E) cos ao/2 and a = ay/2.
Now show that these sameresults follow from Eqs. (7.9)
and (7.10).

7.3* Show that when the two wavesof Eq,(7.5) are in
phase, the resulting amplitude squared is a maximum
equal to (Eo, + Eos)”, and when they are out of phase
it is a minimum equalto (Eo, — Ens)”.

7.4" Showthat the optical path, defined as the sum of
the products of the variousindices timesthe thicknesses
of media traversed by a beam,thatis. 2,7,x;. is equivalent 
tT. S, Jaseja, A. Javan, and G. H. Townes, “Frequency Stability of
Helium-NeonLasersand Measuremenis of Length.”Phys. Rev. Letters10, 165 (1963).

 
 he complex representation to find the resul-to the length of the path in vacuum that ««

sametimefor that beam to negotiate. + E., where
and E,=—Ep cos(hx — wt). 7.5 Answer thefollowing:

a) How many wavelengths of Ag = 500 nm tispan a l-m gap in vacuum? ‘ghg
b) How many waves span the gap when a gl

5.cm thick (n=1.5) is insertedin the pathp
c) Determine the OPD between the two situation”
d) Verify that A/Ao corresponds to the ij

between thesolutions to (a) and (b) above,

the somposite wave. 

he electric field of a standing electromagneticjb pier” by
E(x, t) = 2Esin kx cos we.

 
(7.30)

 
expression for B(x, t). (You might want to

her look at Section 3.2.) Makea sketch of the
7.6" Determine the optical path nce hori yeane.
waves A and B, both having vacuum wave} - ; - . q i i
500 nm, depicted in Fig. 7.22; the glass (n = 1, eseWiener :Seeen7 ii a atic light of waveleng! I»
is filled with water (n=1.33). If the waves aan Faye 1.0° to the reflecting surface, deter-phase andall the above numbersare exact, - 5
relative phase difference at the finishing line, fumberof bright bands per centimeter that

  
   
 
  ar atiit.

(Microwaves of frequency 10’° Hz are beamedat a metal reflector. Neglecting the refractive
(Pair. determinethe spacing between successive

Sia cies resulting standing wave pattern.

 

fi waerling waveis given by
E = 100 sin 3acos 5 mt.

i¢ two waves that can be superimposed to gen-
Figure 7.22    

gine that we strike two tuning forks, one
aPeauency of 340Hz, the other 342 Hz. What4 io

 
7.7* Using Eqs. (7.9), (7.10), and(7.11), alety tetresultant of the two waves

E, = Eo) sin [wt — k(x t Sx)]  
¢ 7.23 showsa carrier of frequency @, beingand podulated by a sine wave of frequency ,,

Eo, sin (wt~kx)  
E=E,(1+ a cos ont) cos wt.

is equivalent to the superposition of three
gHencies w,, w,-+w,, and w,—w,. When

E2

ka:
E = 2Eo) cos C2) sin [a - of

= Bealating frequencies are present, we7.8 Add the two waves of Problem 7.7 sinrutlt he
Eq. (7.17). term:

 
 

Sw. +@,, constitute what is called the 
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Fourier series and sum overall values of 

 
 Problems 267

 upper sideband, and all the #, — «, terms form the lowersideband, What bandwidth would you need in order to
transmit the complete audible range?

    
    

  ak*, compute
  

7.16 Given the dispersion relation # =
both the phase and group velocities.

  
 

  
  7.17 The speed of propagation of a surface wave in

a liquid of depth muchgreater than A is given by  
    
             
  where

 
 

  
g = acceleration of gravity

  
A = wavelength

   p= density  
  Y©surface tension.
  
  Compute the group velocity of a pulse in the long

wavelength limit (these are called gravity waves).  
    
  7,18* Show that the group velocity can be written as

du
Up Somadh  

      

  7.19 Show that the group velocity can be written as
      

  
Ug

¢

“n+ eldnjdoy

  7,20" Determine the groupvelocity of waves when the
phase velocity varies inversely with wavelength.

   
  
    
     

    
   

     Figure 7.23
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7.21" Show that the group velocity can be written as
¢  acdn

 
7.22 Using the dispersion equation,

Na: f
n%{o) =) MEy(t, . 19.70}eam, Ff \ws,— w

 

show that the group velocity is given byc

"eT + Nq?/egm.w?2
for high-frequency electromagnetic waves (e.g., x-rays).
Keepin mind thatsince f, are the weighting factors,
%)f; 1. What is the phase velocity? Show that vu, ~ c?,

7.23*  Analytically determine the resultant when the
two functions E, = 2E,coswt and Fs $F, sin Qwi are
superimposed. Draw E,, Ey, and E ~ E,~ Ey. Is the
resultant periodic;if so, whatis its period in termsof w?
7.24 Show that

A

} sin akx cos bkx dx©0 £2.44}a
* A

[ cos akx cos dkx dx = 2 Bay (7.45]°

“ A
{ sin akx sin bkx dx = 3 Babs {7.46}0

where a ~ 0, b # 0, and a and b are positive integers.

7,25 Compute the Fourier series componentsfor the
periodic function shown in Fig. 7.14.

7.26 Change the upperlimit of Eq. (7.59) from © to
@ and evaluate the integral. Leave the answer in terms
of the so-called sine integral:

Sifz) sinc wdw,@

which is a function whose values are commonly tabu-lated.

 

 
  

 
 

 
  
 
 
 

 

 
 
 
 
  
 
 
  
 
  
 
 

  . : eid tech: fur siatiising a He
7.27 Write an expression for the trang pragncticshel. ‘ en J " taei been patented, At; & parts in 4 « fn
soa armonic Pulse of Fig. 7-24. Check Be sabe the ochertiice beachof 2 beer50% or greater for values of u roughly
With that in mind, show that Av At~ 1, iajjep
the bandwidth of the transform at half its any
amplitude, Verify that Av At ~ 1 at half the
irradiance as well. The purpose hereis tosense of the kind of approximationscussion.

1 et
*—— stability?

 

that we chop a continuouslaser beamfc at Ap = 632.8 nm)into
isang Some sort of shutter, Compute the

reitith 4A, bandwidth, and coherence
the bandwidth and linewidth that would

i, could chop at 10°Hz.

oat :sg Lie serine  
Tet

ey

i
7.28 Derive an expression for the coherenc
(in vacuum) of a wavetrain that has a frequengy
width Av; express your answerin termsofthe Hig
AAo and the mean wavelength Xp of the train.

Nouepee that we haveafilter with a pass band
a caniereal at 600 nm,and weilluminateit with

Gompute the coherence length of the emerg-

Figure 7.24  

7.29 Consider a phaton in the visible regio}
spectrum emitted during an atomic transitiong
10°*s, How longis the wave packet? Keeping!
the results of the previous problem (if you've
estimate the linewidth of the packet (Ao=504
What can you say about its monochromaticit
cated by the frequency stability?

7,30 The firstt experiment directly measly
bandwidth of a laser (in this case a continuo
PhogsSno,12Te diodelaser) has been successfully
out, The laser, operating at Ao = 10,600%g%
heterodyned with a CO,laser, and bandwit
row as 54 kHz were observed, Compute the 60
ing frequency stability and coherence lengfhlead-tin-telluride laser.

+D. Hinkley and C. Freed, Phys Rev. Lettets 28, 277
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7.34" A filter passes light with a mean wavelength of
Xq = 500 nm. IE the emerging wavetrains are roughly
20%, long, what is the frequency bandwidth of the
exiting light?

7.35* Suppose we spread white light ovtinto a fan of
wavelengths by meansofa diffraction grating and then
pass a small select region of that spectrum out througha slit, Because of the width of the slit, a band of
wavelengths 1.2 nm wide-centered on 500 nmemerges.
Determine the Frequency bandwidth and the coherence
Jength of this light.  
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Ey POLARIZATION
 

es
8.1 THE NATURE OF POLARIZED LIGHT

It has already beenestablished thatlight may be treated
asa transverse electromagnetic wave. Thus far we have
considered only linearly polarized or plane-polarized
light, that is, light for which the orientation of the
electric field is constant, although its magnitude and
sign vary in time (Fig. 3.9). Theelectric field or opticaldisturbance therefore resides in what is known as the
plane of vibration, Thatfixed plane contains both E
and k, the electric field vector and the propagation
vector in the direction of motion. Imagine now that we
have two harmonic,linearly polarized light wavesof the
same frequency, moving through the same region of
space, in the samedirection. [ftheir electric field vectors
are collinear, the superimposing disturbances will
simply combine to form a resultant linearly polarized
wave. Its amplitude and phase will be examined in
detail, undera diversity of conditions, in the next chap-
ter, when weconsider the phenomenonofinterference.
In contradistinction, if the two lightwaves are such that
their respective electric field directions are mutually
perpendicular, the resultant wave may or may not be
linearly polarized. The exact form thatlight will take
(Le., its state of polarization) and how we can observeit,
produce it, change it, and make use of it will be the
concern ofthis chapter.

270

8.1.1 LinearPolarization

We can represent the two orthogonal op!bancesthat were considered abovein the fo:

E,(2, t) = 1B, cos(kt~wt)
and

E,(z, £) = JEoy cos (kz~wt + 6),
where « is the relative phase difference bet
waves, both of which are traveling in the bt
Keep in mind from the start that because Ue
in the form (kz — wt}, the addition of a positives
that the cosine function in Eq. (8.2) will not atf
same value as the cosine in Eq. (8.1) until a &
(e/@). Accordingly, E, lags E, by e > 0. Of co
is a negative quantity, E, leads £, by « <0. The
tant optical disturbanceis the vector sum ofthi
perpendicular waves:

E(z, t) = E,(z, ) + E,(z i).
If e is zero or an integral multiple of +277,
are said to be im phase. In that particular cabecomes

E= (Ep.~jEos} cos (kz ~ ot)-

The resultant wave therefore has a fixed amp
equal to (1£y, + jEo); in other words, it too iq li.

  

 in Fig. 8.1. The waves advance
: Beerention where the fields are to
Ere one seesa single resultant E osciliat-
tilted line, cosinusoidally in time [Fig.
F-field progresses through one complete

ie as the wave advances along the z-axis
avelength. This process of addition can

: equally well in reverse; that is, we can
ne-polarized wave into two orthogonal

 
   
 
   
  : snow that ¢ is an odd integer multiple of +.

“ques are said to be 180° out of phase, and
 
 B= (Eo — }Foy) cos(x~wt). @5) 

is age’m linearly polarized, but che plane of  

@1 finear light.
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81 The Nature of Polarized Light 271

vibration has been rotated (and not necessarily by 90°)
from that of the previous condition,as indicated in Fig.
8.2.

81.2 Circular Polarization

Another case of particular interest arises when both
constituent waves have equal amplitudes (j.e., Eo, =
Ey, = Ey), and in addition, their relative phasedifference « = —1/2+ 2mm, where m= 0,41,+2,....
In other words, ¢= —a/2 or any value increased or
decreased from —2/2 by whole number multiples of
2a. Accordingly

E,(z, t) = TE, cos (kz~wt) 6.6)
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272 Chapter 8 Polarization

¥

Figure 8.2 Linearlight.

and

E,(z, t)=JEq sin (kz~wt). (a7
The consequent wave is given by

E = Eq{i cos (kz — wt) + j sin (hz~wt)] (8.8)
(Fig. 8.3). Notice that now the scalar amplitude of E,
thatis, (E+E)! = Ep, is a constant. But the direction
of E is time-varying, andit is not restricted, as before,
to a single plane. Figure 8.4 depicts what is happening
at some arbitrary point zp on the axis. At t = 0, E lies
along the reference axis in Fig. 8.4(a), and so

E, = i£)coskzo and E, =jEqsin hep.
At a later time, t = ko/w, E, =f, B, = 0, and E isalong the x-axis, The resultantelectric field vector E is
rotating clockwise atan angular frequency of , as seen
by an observer toward whom the wave is moving (i.c.,

8. The Nature of Polarized Light 273
 

     
 
 
  
  
  
 

  
 

Figure 8.3 Right-circular light.

looking back at the source). Such a waveis said
right-circularly polarized (Fig. 8.5), and one
simply refers to it as right-circular light. The
makes one complete rotation as the wave!
through one wavelength. In comparison,if @
52/2, 97/2, and so on (e., & = 7/2 + 2mm
G, +1, +2, +3,...), then

E = E(t cos (ka — wt) — j sin Gz=ath
The amplitudeis unaffected, but E now rotates cop
clockwise, and the wave is referred to as left-citpolarized.

A linearly polarized wave can be synthes
two oppositely polarized circular waves of etude. In particular, if we add the right-cir
Eq.(8.8) to the left-circular wave of Eq. (6:

E = 2Epi cos (kz~wt),

constant amplitude vector of 2Eoi and is
nearly polarized.

dependence. Expand the expression for EF, into
E,/Eoy = cos (kx — wt) cos « — sin (hz ~ wt) sin e

and combineit with E,/Ep, to yield
E,{ Polarization E12 x   
 

cos é = —sin (kz—wt) sin &. (8.13)

 

the mathematical description is concerned, Eo, Euxand circularlight may be considered to be It follows from Eq. (8.11) that
f elliptically polarized light. or more . ene 1

ica light, This meansthat, in general, the sin (Az~wt)=[1~ (Ex/Eo)T",electric field vector E will rovate and change so Eq.(8.13) leads to
jtude as well. In such cases the endpointof E E

2 2

ut an slbpes, in a fixed space perpendicular (2- Fe cog <) = [1 (Ee) | sin? «.Eoy Eox Ox.  45 the wave sweeps by. Wecan see this better by
ting an expression for the curve traversed Finally, on rearranging terms, we havef E. To that end, recall that Ey {EY E,\( £.ah | —= -9{—=]/— 12

(=) (e) (E)(E) arid8.14}
E, = Ep, cos (kz~wt) (BL)

  
  
 
 
 
 
 
 
  
  
 
 
 
  

wt + &). This is the equation of an ellipse making an angle «
with the (£,, E,)-coordinate. system (Fig. 8.6) such that

2E.Ep, C08 &EE- Eh,

E, = Eo, cos (hz (8.12)
 mation of the curve we are looking for should

he a fiinction of either position or time: in other
we thould be able to get rid of the (kz— wt)
 
 tan 2e = (8.15)
 

wot = 36 
Ss)

(a) tb)
  

      
  S ofthe electric vector ina right-circular wave.fon rate is w and Az = a/4. Figure 8.5. Right-circular light.
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Figure 8.6 Elliptical light.

Equation (8.14) might bea bit more recognizableif the
principal axes ofthe ellipse were aligned with the coor-
dinate axes, that is, «a = 0 or cquivalently « = 47/2,
+37/2, t52/2,..., in which case we have the familiar
form

 

 E}|E:
Ei, EE, =1. (8.16)

Furthermore, if Ey, = Eo, ~ Eo, this can be reduced to
E}+ Ei= EG, 8.17)

which, in agreement with our previousresults,isa circle.
If ¢ is an even multiple of 7, Eq. (8.14) results in

E

E, = ne (8,18)
andsimilarly for odd multiples of =,

E,~ 4a E,. 8.19)Fox
These are bothstraightlines having slopes of +Eo,/E,3
in other words, we havelinearlight.

Figure 8.7 diagrammatically summarizes most of
these conclusions. This very important diagram is
labeled across the bottom “E, leads E, by: 0, 2/4, 7/2,
3a/4,...,”” where these are the positive values of & to
be used in Eq. (8.2), The sameset of curves will occur
if “E, leads E, by: 2a, 77/4, 30/2, 5a/4,...,”” and that
happens when e€ equals —22, —7a/4, —37/2, —a/4,
and so forth. Figure 8.7(b) illustrates how E, leading
E, by 27/2 is equivalentto E, leading E, by 32/2 (where
the sum of these two angles equals 22). This will be of
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continuing concern as we go on tg shift aldphases of the two orthogonal compongthe lightwave.
We are now in a position to refer to

lightwave in termsof its specific state of patil
Weshall say thatlinearly polarized or pilightis in a #-state, and right- or leftug:
in an &-or 2-state, respectively. Similarly,ofelliptic polarization corresponds to an,
already seen that a P-state can be re;
superposition of R- and £-states, and the
for an -state. In this case, as shown in,
amplitudesof the twocircular waves are @
analytical treatmentis left for Problem 9,83)

ha
™m

wi Bald 7 Said 3al2 Tid an

 linear momentumtothat body (Section 3.3). Moreover,
wi} if the incident planewaveis circularly polarized, we can

expect electrons within the material to be set into cir-
cular motion in response to the force generated by the
rotating E-field. Alternatively, we mightpicture the fieldas being composed of two orthogonal #-states that are
90° out of phase. These simultaneously drive the elec-
tron in two perpendicular directions with a a/2 phase
difference. The resulting motion is again circular. In
effect the torque exerted by the B-field averages to zero
over an orbit, and the E-field drives the electron with
an angular velocity # equal to the frequency of the
electromagnetic wave. Angular momentumwill thus be
imparted by the wave to the substance in which the
electrons are imbedded and to which they are bound.
Wecantreat the problem rather simply withoutactually
going into the details of the dynamics. The power
delivered to the system is the energy transferred per

 
 

8.1.4 NaturalLight at
  Anordinarylight source consists of a very

of randomly oriented atomic emitters, ¥
atom radiates a polarized wavetrain forto
Ail emissions having the same frequency
to forma single resultant polarized wave,#
for no longer than 10-* s. New wavetrains 4emitted, and the overall polarization chan;
pletely unpredictable fashion (see Section 84
changes take place at so rapid a rate as to
single resultant polarizationstate indiscernibi
is referred to as naturallight.It is also known
izedlight, butthisisa bit of a misnomer,sineél
the light is composedof a rapidly varying su
the differentpolarization states.

We can mathematically represent nal
termsof two arbitrary, incoherent, orthog
polarized waves of equal amplitude(.e.,
the relative phase difference varies ra!
domly).

Keep in mindthatan idealized monochroy
wave must be depicted as an infinite wavéig
disturbanceis resulved into two orthogonal
perpendicularto the direction of propaga
turn, must have the same frequency,
extent, and therefore be mutually cohet
constant). In other words, a perfectly mono!
waveis always polarized. In fact, Eqs. (8-1)

  
various polarization configurations. The light would= nior 31/2 if Ep, = Eoy, but here for the sake

Ep, was taken to be larger than Eo,. (b) E, leads E, (ornaternatively, F,leads , (or E, lags E,) by 3/2

 

    
 

(@irtesian componentsof a transverse (E,=0)ic plane wave.
nether al in origin orartificial, light is gen-

Geither completely polarized nor completely
d; both cases are extremes. More often, the

d vectorvaries in a way thatis neithertotally
Hier totally irregular, and one refers to such an
Beturbance as being partially polarized. One use-
Gf describing this behavioris to envision it as
Bot the superposition of specific amounts of

Ned polarizedlight.

  
   
  
  
 
 

  
   
 
 
 
  
 if Momentum and

ton Picture 
 
 

 
 
 

 
 
 

lady seen that an electromagnetic wave
# "= an object can impart both energy and Figure 8,8 Elliptical light as the superposition of an @- and Z-state.
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4} C>  ee-state

 
Figure 8.9 Angular momentum of a photon.

unit time, d&/dt. Furthermore, the power generated by
a torque T' acting on a rotating bedyis just wD (which
is analogousto uF for linear motion), so

ae Tr. .
rn w (8.20)

Since the torqueis equal to the time rate of change of
the angular momentum J,it follows that on the average

dé aLTt es 22
a dt een

A charge that absorbs a quantity of energy # from the
incident circular wave will simultaneously absorb an
amount of angular momentum L such that

=. 8.22)

If the incident waveis in an @-state, its E-vector rotates
clockwise, looking toward the source. This is the direc-
tion in which a positive charge in the absorbing medium
would rotate, and the angular momentum vectoris
therefore taken to pointin the direction opposite to the
Propagation direction,* as shown in Fig, 8,9,

According to the quantum-mechanical description,
an electromagnetic wave transfers energy in quantized
packets or photons such that € = hy. Thus & = fie (4 =
4/2e), and the imurinsic or spin angular momentum of 
* This choice of terminology is admittedly a bit awkward. Yetits use
in optics is fairly well established, even thoughit is completely anti-
thetic to the more reasonable conveution adopted in elementaryparticle physics.

 
 
 

a photonis either ~# or +f, where1

right or left-handedness, respectively, Noticengular momentum of a photon is completely ij
its energy. Whenevera charged Particle emits oy
electromagnetic radiation, along with chan,
energy and linear momentum, it will dongsyof +4 in its angular momentum.* a

The energy transferred to a target by av
monochromatic electromagnetic wave can van
as being transportedin the form of a streaniiM
photons. Quite obviously, we can anticipal
sponding quantized transport of angular
A purely left-circularly polarized plane wave!
angular momentum to the targetas if all the &
photons in the beam had their spins alij
direction of propagation, Changingthe ligh
circular reverses the spin orientation of the pwell as the torque exerted by them on the
1935, using an extremely sensitive torsion per
Richard A. Beth (b. 1906) was actually able to psuch measurements.t

Thus far we've had no difficulty in de:
right- and left-circular light in the photon
whatis linearly orelliptically polarizedlight
light in a P-state can be synthesized by th
superposition of equal amounts oflight ing
states (with an appropriate phase difference)¥a
Photon whose angular momentum is
measured will be found to have its spin eithéigitg
paralle) or antiparallel to k. A beam oflinear ii
interact with matter as if it were composedy
instant, of equal numbers of right- and Jeftd
photons. Thereis a subtle point that has to B
here. We cannotsay that the beam is actuby

he signs!   Ry
 

   

 

 

  
 
 
   

* Asa rather importantyet simple example, consider
atom, It is compused of a proton andan electron,each
of /2. The atom hasslightly more energy when the
particles are in the same direction. It is possible, howe
in a very long time, roughly 10°years, ane of the spins™
andbe antiparaliel ta the other. The change in angula!
of the atom ig then h, and this is imparted to an emitted pitcarriesoff theslight excess in energyas weil. This is
22-cm microwave emissfon, whichis so significantin

+ Richard A. Beth, “Mechanical Detection and Mere ;Angular Momentum of Light,” Phys. Rev. 80, 115 (28H
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irthe

yai arnounts of well-defined Tight- and
;otons; che photons are all identical,
dividual photen exists in eitherspin stateinood. If we measured the angular

constituent photons, —# would result
‘This is al] we can observe. We are not

M he photon is doing before the measure-dit exists before the measurement). As
PS,m will therefore impart no total angular

a target.
if each photon does not occupy both spin

¢ same probahility, one angular momen-
#, will be found to Occur somewbat more
the other, ~#. In this instance,a netpositive

RIZERS

[linespolarizer,

omentum will therefore be imparted to the
e result en masseis elliptically polarizedlight,

A ruperposition of unequal amounts of @- and
ring a particular phase relationship.

we jue some idea of what polarized fightis,
logicalstep is to develop an understanding of

niques used to generate it, change it, and in
‘ipulateit to fit our needs. An optical device

it is natural light and whose output is some
polarized light is quite reasonably known as a
- For example, recall that one possible rep-

Detector

82 Polarizers

resentation of unpolarized lightis the superposition of
two equal-amplitude, incoherent, orthogonal #-states.
An instrument that separates these tvo components,
discarding one and passing on the other, is known as
a linear polarizer, Depending on the form of the output,
we could also have circular or elliptical polarizers. All
these devices vary in effectiveness down to what might
be called leaky or partial polarizers.

Polarizers come in many different configurations, as
we shall see, but they are all based on one of four
fundamental physical mechanisms: dichroism, or selec-
tive absorption; reflection; scattering; and birefringence,
or double refraction. There is, however, one underlying
property that they all share, which is siroply that there
must be some form ofasymmetry associated with the process.
This is certainly understandable, since the polarizer
must somehowselect a particular polarization state and
discard all others. In truth, the asynimetry may be a
subtle one related to the incident or viewing angle, but
usuallyit is an obvious anisotropy in the material of the
polarizer itself.
8.2.1 Malus’s Law

One matter needs to be settled before we go on: how
do we determine experimentally whetheror nota device
is actually a linear polarizer?

By definition, if natural light is incident on an ideal
linear polarizer, as in Fig. 8.16, only light in a ?-state

 
Polarizer Natural

Tight
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 Analyzer
Detector

Figure 8.11 A linear polarizer and analyzer—Malus's law.

will be transmitted. That ?-state will have an orientation.
parailel to a specific direction, which we will call the
transmission axis of the polarizer. In other words, only
the componentofthe optical field parallel to the trans-
mission axis will pass through the device essentially
unaffected. If the polarizerin Fig. 8.10 is rotated about
the z-axis, the reading of the detector(¢.g., a photocell)
will be unchanged because of the complete symmetry
of unpolarized light. Keep in mind that we are most
certainly dealing with waves, but because of the very
high frequency oflight, our detector will, for practical
reasons, measure only the incident irradiance. Since the
irradiance is proportionalto the square of the amplitude
of the electric held [Eq. (3.44)], we need only concern
ourselves with that amplitude.

Now suppose that we introduce a second identical
ideal polarizer, or analyzer, whose transmission axis is
vertical (Fig. 8.11). If the amplitade of theelectric field
transmitted by the polarizer is Ey, only its component,
£,, cos 6, parallel to the transmission axis of the analyzer
will be passed on to the detector (assuming no absorp-
tion). According to Eq. (3.44), the irradiance reaching

 
 
 nse the term dichroinn refers to the

oa;a‘of one of the two orthogonal #-state
Beanincident beam. The dichroicpolarizer

  
 
 
 
 

being essentially transparentto the other. ‘Natural
Polarizer Tight   
 
 

jest device of this sort is a grid of parallel
wires, as shown in Fig, 8.12. imagine that
ed electromagnetic wave impinges on the

the right. The electric field can be resolved
al two orthogonal components,in this case,

n to be parallel to the wires and the other
Jar to them. The y-componentofthe field

conduction electronsalong the length of each
generating a current. The electronsin curnA lattice atoms, imparting energy to them and
eating the wires (joule heat), In this manner

transferred from the fieid to the grid. In
Mettrons accelerating alongthe y-axis radiate

‘forward and backward directions. As should
he incident wave tends to be canceled by

din the forwarddirection, resulting
moutransmission of the y-componentof the
idiation propagating in the backward direc-

 
 
  
 
  

  the detectoris then given by  
 eo

2 {
The maximumirradiance, I (0)=ceo £3/2, nocunelethe angle @ between the transmission axesj off
analyzer and polarizer is zero. Equation (8.
accordingly be rewritten as

(8) = I(0) cos” 6. ¢
This is known as Malus’s law, having first bEEnP
lished in 1809 by Etienne Malus,military engaieers
captain in the army of Napoleon,

Observe that 1(90°) = 0, This arises from
the electric field that has passed through
is perpendicularto the transmission axis of
(the two devices so arranged aresaid to be
field is therefore parallel to whatis called
axis of the analyzer and hence obviously ft
ponentalong the transmission axis. We cam USS
setup of Fig, 8.11 along with Matus’s law te delim

whether a particular device is a linear pauline |

 
1(8) ==E} cos? 6.
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tion simply appears as a reflected wave. In contrast, the
electronsare notfree to movevery far in the a-direction,
and the corresponding field component af the wave is
essentially unaltered as it propagates through the grid.
The transmission axis ofthe grid is perpendicularto the wires,
It is a common error to assume naively that the )-
component of the field somehowslips through the
spaces between the wires.

Onecan easily confirm our conclusions using micro-
waves and a grid made of ordinary electrical wire. It is
not so easy a matter, however, to fabricate a grid that
will polarize light, butit has been done! In 1960 George
R. Bird and Maxfield Parrish, Jr., constructed a grid
having an incredible 2160 wires per mm.* Their feat
was accomplished by evaporating a stream of gold (or
at other times aluminum) atoms at nearly grazing
incidence ontoaplastic diffraction grating replica (see
Section 10.2.7). The metal accumulated along the edges
of each step in the grating to form thin microscopic
“wires” whose width and spacing were less than one
wavelength across.

Although the wire grid is useful, particularly in the
infrared, it is mentioned here more for pedagogical
than practical reasons. The underlying principle on
which it is based is shared by other, more common,
dichroic polarizers.

8.3.2 Dichroic Crystals
Thereare certain materials that are inherently dichroic
because of an anisotropy in their respective crystalline
structures, Probably the best known of these is the
naturally occurring mineral tourmaline, a semiprecious
stone often used in jewelry. Actually there are several
tourmalines, which are horon silicates of differing
chemical composition [e.g., NaFesBsAlgSigO2;(OH),}.
For this substance there is a specific direction within
the crystal known as the principal or optic axis, which
is determined by its atomic configuration. The electric
field componentofan incidentlightwave that is perpen-
dicular to the principal axis is strongly absorbed by the

*G.R. Bird and M. Parrish,Jr., “The Wire Grid as a Near-Infrared
Polarizer,” J. Opt. Soc, Am. 56, 886 (1960).
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sample. The thicker the crystal, the more complete the
absorption (Fig. 8.13). A plate cut from a tourmaline
crystal parallel to its principal axis and several mil-
limetersthick will accordingly serve asa linear polarizer.
In this instance the crystal's principal axis becomesthe
polarizer’s transmission axis. But the usefulness of
tourmalineis rather limited by the fact thatits crystals
are comparatively small. Moreover, even the transmit-
ted light suffers a certain amount of absorption. To
complicate matters, this undesirable absorption is
strongly wavelength dependent and the specimenwill
therefore be colored. A tourmaline crystal held up to
natural white light might appear green (they come in
othercolors as well) when viewed normalto the prin-
cipal axis and nearly black when viewedalong thataxis,
whereall the E-fields are perpendiculartoit (ergo the
term dichroic, meaning two colors). . .

Thereare several other substancesthat display similar
characteristics. A crystal of the mineral hypersthene, a
terromagnesian silicate, might look green under white
light polarized in one direction and pink for a diflerent
polarization direction.

We can get a qualitative picture of the mechanism
that gives rise to crystal dichroism by considering the
microscopic structure of the sample. (You might want
to take another look at Section 3.5.) Recali that the
atoms within a crystal are strongly bound together by
short-range forces to form a periodiclattice. The elec-
trons, which are responsible for the optical properties,
can be envisionedaselastically tied to their respective
equilibrium positions. Electronsassociated with a given
atom are also under the influence of the surrounding
nearby atoms, which themselves may not be symmetri-
cally distributed, As a result, the elastic binding forceson the electronswill be differentin differentdirections.
Accordingly, their response to the harmonic electric
field of an incident electromagnetic wave will vary with
the direction of E. If in addition to being anisotropic
the materialis absorbing, a detailed analysis would have
to include an orientation-dependentconductivity. Cur-
rents will exist, and energy from the wave will be conver-
ted into joule heat. The attenuation, in addition to
varying in direction, may be dependent on frequency
as well.-This meansthatif the incoming white light is
in a #-state, the crystal will appear colored, and the
color will depend on the orientation of E. Substances

 

 
 
 
 

 
 

Herbert Land, thena 19-year-old under-rd College, invented thefirst dichroic
known commercially as polaroid J-sheet.

2 4 a synthetic dichroic substance called
for maining sulfate periodide.* Land’s own

fe account of his early work is rather infor-
akes fascinating reading,It is particularly
follow the sometimes whimsical origins

F,. po doubt, the most widely used group‘The followingis an excerpt from Land’s

 
     
 
   
 
  

 
  
    
 
  1 cure there are a few pertinenthigh spots in

mentof polarizers. particularly the work of
Bird Herapath,a physician in Bristol, England,

e pupil, a Mx. Phelps, had found that when hejodine into the urine of a dog that had been

    
  ¢, little scintillating green crystals formedin

jon liquid. Phelps went to his teacher, andWiven did something which J [Land] think was
Fier che circumstances; he lookedatthe crys-
Frmicroscope and noticed that in some places

 
  

       
 were dark, He was shrewd enoughto recog-

here was 2 remarkable phenomenon, a new   
ng material {now known as herapathite]. ..«

path's wark caught the attention of Sir David
FP who was workingin those happy days on the

mabe. ... Brewster, who invented the kaleido-
irote a book aboutit, and in that book he men-

at he would like to use herapathite crystals for
ere. When I was reading this book, back inarc 1927, I came across his reference to these

Suarkable crystals, and that started my interest in
Fapathite.

    
   
  
     
 

    
 
 
 

Figure 8.13 A diochroic crystal. The naturally ocougiy
evidentin the photograph of the tourmaline crystals
the optic axis. (Photo by E.H.) iat} finitial approach to creating a new form of

was to grind herapathite into millions
popic crystals, which were naturally needle-

iiicir small size lessened the problem of the
Bof light. In his earliest experiments the crys-

ligned nearly parallel to each other by means

that display two or even three different culo am
to be dichroic ortrichroic, respectively.*

  
 
 
   * Morewill be said aboutthese processes later on whg

birefringence. Suffice it to say nowthat for crystals aggthere are two distinct directions, and therefore wo
displayed by absorbing specimens. In biaxial cr
distinct directions and the possibility of three olf

      
me Aspects of the Developmentof Sheet Polarizers.”"Et, 957 Go51), 

 

148

83 Dichroism 201

of magnetic or electric fields. Later Land foundthat
they would be mechanically aligned when a viscous
colloidal suspension of the herapathite needles was
extruded through a long narrow slit. The resulting
J-sheet was effectively a large Mat dichroic crystal. The
individual submicroacopic crystals still scattered light a
bit, and asa result, J-sheet was somewhathazy. In 1938
Land invented H-sheet, which is now probably the most
widely usedlinear polarizer. It does not contain dichroic
crystals but is instead a molecular analogue of the wire
grid. A sheet of clear polyvinyl alcohol is heated and
stretched in a given direction, its long hydrocarbon
molecules becoming alignedin the process. The sheet
is then dipped into an ink solution rich in iodine. The
iodine impregnates the plastic and attaches to the
straight long-chain polymeric molecules,effectively for-
ming a chain of its own. The conduction electrons
associated with the iodine can move along the chains as
if they were long thin wires. The component of E in
an incident wavethatis parallel to the molecules drives
the electrons, does work on them, andis strongly ab-
sorbed. The transmission axis of the polarizeris there-
fore perpendicular to the direction in which the filmwasstretched.

Each separate miniscule dichroic entity is known as
a dichromophore. In H-sheet the dichromophores are of
molecular dimensions,so scattering represents no prob-
lem. H-sheet is a very effective polarizer across the

W->
Figure 8.14 A pair of crossed polaroids. Each polaroid appears gray
because it absorbs roughly half the incident light. (Photo by E.H.)
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entire visible spectrum but is somewhat less so at the
blue end. When a bright white light is viewed through
a pair of crossed H-sheet polaroids, as in Fig. 8.14, the
extinction color will be a deep blue as a result of this
leakage. HIN-50 would be the designation of a
hypothetical, ideal A-sheet having a neutral color (N)
and transmitting 50% of the incident naturallight while
absorbing the other 50%, which is the undesired polar-
ization component. In practice, however, about 4% of
the incominglightwill be reflected back at each surface
(antireflection coatings are not generally used), leaving
92%. Half of this is presumably absorbed, and thus we
might contemplate an HN-46 polaroid. Actually, large
quantities of HN-38, HN-32, and HN-22, each
differing by the amoumtofiodinepresent, are produced
commercially and are readily available (Problem 8.7).

Manyotherformsof polaroid have been developed.*
K-sheet, which is humidity- and heat-resistant, has asits
dichromophorethe straight-chain hydrocarbon poly-
vinylene. A combination of the ingredients of H- and
A-sheets leads to HR-sheet, a near-infrared polarizer,

Polaroid vectograph is a commercial material designed
to be incorporated in a process for making three-
dimensional photographs. The stuff never was success-
fulatits intended purpose,butit can be used to produce
some rather thought-provoking, if not mystifying,
demonstrations. Vectograph film is a water-clear plastic
laminateof two sheets of polyvinyl alcohol arranged so
that their stretch directions are at right angles to each
other. In this form there are no conduction electrons
available, and the film is not a polarizer, Using an iodinesolution, imagine that we draw an X on oneside ofthe
fim and a ¥ overlappingit on the other. Undernatural
illumination the light passing through the X will be in
a P-state perpendicular to the P-state light coming
from the Y. In other words, the painted regions form
two crossed polarizers. They will be seen superimposed
on each other. Now,if the vectographis viewed through
a linear polarizer that can be rotated,either the X, the
Y, or both will be seen. Obviously, more imaginative
drawings can be made (one need only remember to
take the one onthe farside backward), 
*See Polarized Light: Production and Use, by Shurcliff, or its morereadablelittle brother, Polarized Light, by Shurcliff and Ballard,

8.4 BIREFRINGENCE Becondary wav
 Manycrystalline substances{i.e., solids whos
arranged in some sort of regular Tepetitiye
optically anisotropic. In other words,their ogg
ties are not the samein all directions withizh
sample. The dichroic crystals of the prevign
are but onespecial subgroup. We saw therd ‘
crystal’s lattice atoms were not completely syfaayarrayed. the binding forces on theelectroyi
anisotropic. Earlier, in Fig. 3.25(b) we repreg
isotropic oscillator using the simple mechani
of a spherical charged shell bound by identi
to a fixed point. This wasa fitting repres,
optically isotropic substances (amorphoussol
glass and plastic, are usually, but not always
Figure 8,15 showsanother charged shell, thisi@iyby springs of differing stiffness (.c., having
spring constants). An electron that is dig
equilibrium along a direction parallel to
“springs” will evidently oscillate witha differé Ct
teristic frequency than it would were it d
someotherdirection. As we have pointed ou
(Section 3.5.2), light propagates through a tae
substance by exciting the electrons within thels
Theelectrons are driven by the E-field and ey

Pssorropy
pe fight Wep that it en

 
 
 

 

  

 
 

 

 
 
 

erly BPiarized,
Figure 8.15 Mechanical model depicting a negativel
bound to a positive nucleus by pairs of springsstiffness.
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elets recombine, andthe resul-
on. The speed of the wave,

the index of refraction,is determined by
R, betweenthe frequencyofthe E-field and
. characteristic frequency of the electrons.
en the binding force will therefore be manifest

; in the refractive index. For example,ifre to move through some hypothetical
countered electrons that could be 7

ed by Fig. 8-15, its speed would be governedtation of E. If E were parallel to the stiff
mar is, in a direction of strong binding, here

axis, the electron’s naturalfrequency would
nortional to the squarerootof the spring

fa contrast, with E along the y-axis, whereMeme force is weaker, the natural frequency
Pe newhat lower. Keeping in mind ourearlier tis ag
i dispersion and the n(w) curve ofFig. 3.26,te indices of refraction might looklike

wave moves

F nity of w,, in Fig. 8.16,
Bein the absorption band of n,(w), A crystal so

@d will be strongly absorbing for one polar-ion (y) and transparent for the other (x).
ates gent material that absorbs one of the

P-states, passing on the other, is in fact
‘Furthermore, suppose that the crystal sym-

petry is such that the binding forces in the y+ and
ions are identical; in other words, each of these
as the same natural frequency and they are. The x-axis now defines the direction of

xis. Inasmuch asa crystal can be represented
of these oriented anisotropic charged oscil-

Be, lhe optic axis is actsally a direction and not merely a
Jinz,ffhe model works rathernicely for dichroic

ce if light were to propagate alongthe optic
the y-plane), it would be strongly absorbed,

Mamoved normal to that axis, it would emerge

ght appearsin the vi

 

refringence used to be used instead of our present-day
Tecomesfrom the Latin refractus by way of an etymo-

beginning with frangere, meaning to break.
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  Figure 8.16 Refractive index versus frequency alongtwo axes in a

crystal. Regions where dn/dw <0 correspond (o absorption bands.   
  
 

  Often the characteristic frequencies of birefringent
crystals are above the optical range, and they appear
colorless, This is represented by Fig. 8.16 where the
incidentlight is now considered to have frequencies in
the region of w,. Two different indices are apparent,
but absorption for either polarization is negligible.
Equation (3.70) shows that n(w) varies inversely with
the natural frequency. This means thata largeeffective
spring constant(i.e., strong binding) corresponds to a
low polarizability, a low dielectric constant, and a lowrefractive index.

Wewill construct,if only pictorially,a linear polarizer
utilizing birefringence by causing the two orthogonal
#-states to follow different paths and thusactually sep-
arate. Even more fascinating things can be done with
birefringent crystals, as we shall see later.

 
     
         

    
  
    
   

        
 

  
 

  
   
  

     
 

8.41 Calcite  

   Let’s now spend a momentrelating the aboveideasto
an actual and somewhattypical birefringent crystal,
calcite. Calcite or calcium carbonate (CaCO,) is a rather
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Carbon @

Caicum @ iS)

Oxygen O
Figure 8.17 Arrangement of atomsin calcite.

common naturally occurring substance. Both marble
and limestone are made up of many smallcalcite crystals
bonded together. Ofparticular interest are the beautiful
large single crystals, which,although they are becoming
Tare, can still be found,particularly in India, Mexico,
and South Africa. Calcite is the most common material
for making linear polarizers for use with high-powerlasers.

Figure 8.17 showsthe distribution of carbon,calcium,
and oxygen within the calcite structure; Fig. 8.18 is a
view from above, looking down along what has, inanticipation, been labeled the optic axis in Fig. 8.17,
Each CO,group formsatriangular duster whose planeis perpendicular to the optic axis. Notice that if we
rotated Fig. 8.18 about a line normal to and passing
throughthe center ofany one of the carbonate groups,
the same exact configuration of atoms would appear
three times during each revolution. The direction we
have designatedas the optic axis correspondstoa ratherspécial crystallographic orientation, in thatit is an axis
of3-fold symmetry, Thelarge birefringence displayed by
calcite arises from the fact that the carbonate groups

 
    calcite (Fig. 8.18) are normal to

t . Asa crystal grows, atoms are
upon layer, following the same pattern.

ynaterial may be available to the growth
‘one side than on another, resuiting in a

ee an externally complicated shape. Even so,
‘planes are dependent on the atomic
ls d if one cuts a sample so that each

plane,its form will be related to
angement ofits atoms. Such a specimen is

: my as a sleavoge form In the case ofcalcite it is
B;phedron, with each face a parallelogram whose

Paws? 5’ and 101°58' (Fig. 8.19). Note that
ly two blunt comers wherethe surface planesthree obtuse angles. A line passing through

either of the biunt corners, oriented so

are all in planes normalto the optic ax
of their electrons, or rather themanaa
the induced oxygendipoles,is markedly a
E is either in or normalto those planes (PrIn any event the asymmetryis clear enoyd

Calcite samples can readily hesplit, forn
surfaces known. as cleavage planes. The
tially made to come apart between speci
atomswherethe interatomic bondingis relat

 
 

 
   
 
  
   
  
 

  
 
 
 
  

iP equal angles with each face (45.5°) and
Ore 8°), is clearly an axis of3-fold symmetry.ji be a bit more obvious if we cut the rhomb

2 of equal length.) Evidently such a line
5p ond to the optic axis. Whateverthe natural

O-®@ icular calcite specimen, you need only
Qs er and you havethe optic axis.us Bartholinus (1625-1692), doctor of
 iid professor of mathematics at the Univer-

penhagen (and incidentally, Rémer’s father-
upon a new and remarkable opticalin calcite, which he called double refraction.

been discovered not long before, near

 
 
  
  
   
 
       
      
   
    
 

Figure 8.18 Atomic arrangement for calcite looking! @optical axis.  
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Figuré820 Double image formed by a calcite crystal (not cleavage
farra), (Photo by ELH}

Eskifjordur in Iceland, and was then known as iceland
spar, in the words of Bartholinus:*

Greatly prized by all men is the diamond, and many
are the joys which similar treasures bring, such as pre-
<dous stones and pearls... but he, who, on the other
hand,prefers the knowledge of unusual phenomena to
these delights, he will, I hope, have no less joy ina new
sort of hody, namely, a transparent crystal, regently
brought to us from Iceland, which perhaps is one of
the greatest wonders that nature has produced,...

As my investigation of this crystal proceeded there
showed itself a wonderful and extraordinary
phenomenon:objects which are looked at through the
crystal do not show,as in rhe case of other transparent
bodies, a single refracted image, butthey appear double.

The double image referred to hy Bartholinus is quite
evident in the photograph in Fig, 8.20, If we send a
narrow beam ofnatural lightinto a calcite crystal normal
to a cleavage plane, it will split and emerge as two
parallel beams. To see the sameeffect quite simply, we
need only place a black dot on a piece of paper andthen cover it with a calcite rhomb. The image will now
consist of two gray dots (black where they overlap).
Rotating thecrystal will cause oneof the dots to remain
stationary while the other appears to move in a circlei
*W. F. Magie, A Source Book in Physics,
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aboutit, following the motion of the crystal. The rays
forming the fixed dot, whichis the one invariably closer
to the upperblunt corner, behaveasif they had merely
passed througha plateofglass. In accord with a sugges-
tion made by Bartholinus, they are known as the
ordinary rays,or o-rays, The rays coming from the other
dot, which behave in such an unusual fashion, are
knownasthe extraordinaryrays, or e-rays. If the crystal
is examined through an analyzer,it will be found that
the ordinary and extraordinary images are linearly
polarized (Fig. 8.21). Moreover, the two emerging ?-states are orthogonal.

Any number of planes can be drawn through the
rhombsoasto contain the optic axis, and these areall
called principal planes. More specifically, if the principal
plane is also normal to a pair of opposite surfaces of
the cleavage form, it slices the crystal across a principal
section. There are evidently three of these passing
through anyone point; eachis a parallelogram having
angles of 109° and 71°, Figure 8.22 is a diagrammatic
representation ofaninitially unpolarized beam travers-
ing a principal section of a calcite rhomb. Thefilled-in
circles and arrows drawn along the rays indicate that

 ans Within i ‘ he y
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Figure 8.21 A calcite crystal (blunt corner on the bottam). The
transmission axes of the wo polarizers are parallel to their short
edges. Where the image is doubled the lower, undeflected oneis the
ordinary image. Take a long look, there's a lotin this one. (Photo byEH)

 

 

Figure 8.22 A light beam with two orthogonal field compomtraversing a calcite principal section.

the o-ray has its electric field vector normal to
principal section, and the field of the e-rayis pto the principal section.

Tosimplify matters a bit, let E in the incident-gi
wave be linearly polarized perpendicular to ile aj
axis, as shown inFig. 8.23. The wavestrikes the
of the crystal, thereupon driving electronsints oantion, and they in turn reradiate secondary #194
The wavelets superimpose and recombine +
refracted wave, and the process is "epraled 7 ur
over again until the wave emergesfrom the,
represents a cogent physical argumentfor ap
ideas of Huygens’s principle. Huyge
although without benefit of electromagnt
used his construction to explain succe
aspects of double refraction in calcite as I}
1690,Itshould be made clear from the outs, ythat his treatmentis incomplete.* in whicly
appealingly, although deceptively, simple.

 
 

* A. Sommerfeld, Optics, p. 148.
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Exqincident plane wave polarized perpendicular to the

femuch at the E-field is perpendicular to the optic
‘one assumes that every point on the wavefront

tially corresponds to the surface) acts as aEpherical wavelets, all of which are in phase.
Aas long as the field of the wavelets is everywhere

Mi optic axis, they will expand into the crystal
Maitections with a speed v., as they would in an

fropic medium. (Keep in mind that the speed is a
in of frequency.) Since the o-wave displays no
lous behavior, this assumption seems a reason-

Theenvelope of the waveletsis essentially a
gion of { plane wave, which in turn serves aS a

bution of secondary point sources. The process
mrs and the wave moves straight across the

t, consider the incident wave in Fig. 8.24
ield is parallel to the principalsection. Notice

B tlow has a component normalto the optic axis,
4 Component parallelto it. Since the medium

ent, light of a given frequency polarized
to the optic axis propagates with a speed vj,

i In particular for calcite and sodium
H(A = 589 nm), 1.486= 1.658u,'YBens’s wavelets can we expect now? At the
tsimplifying matters, we represent each e-

. What
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 Figure 8.24 An incident plane wave polarized parallel to the prin-
 cipal section,
 
     

wavelet, for the momentat feast, as a small sphere (Fig.
8.25). But vj > v,, so that the wavelet will elongate in
all directions normal to the optic axis, We therefore
speculate, as Huygens did, that the secondary waveletsassociated with the e-wave areellipsoids of revolution
aboutthe optic axis. The envelope ofall the ellipsoidal
wavelets is essentially a portion of a plane wave parallel
to the incident wave. This plane wave, however, willevidentlyundergoasidewise displacementin traversing

      
 

  
   
  
   
 

 
 

    
  
 
 

      
  
      
  
   Figure 8.25 Wavelets within calate.
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the crystal. The bear: movesin a direction parallel to
the lines connecting the origin of each wavelet and the
pointof tangency with the planar envelope.It is known
as the ray direction and correspondsto the direction in which
energy propagates, This is an instance in which the direc-
tion ofthe ray is not normal to the wavefront.

If the incident beamis naturallight,the two situations
depicted in Figs. 8.23 and 8.24 wil! exist simultaneously,
with the result that the beam will split into two
orthogonal linearly polarized beams (Fig. 8.22). You
can actually see the two diverging beamswithin a crystal
by using a properly oriented narrow laserbeam (E
neither normal norparallel to the principal plane, which
is usually the case). Light will scatter off internal flaws,
making its path fairly visible.

The electromagnetic description of what is happening
is rather complicated but well worth examiningat this
point, even if only superficially. Recall from Chapter 3
that the incident E-field will polarize the dielectric; that
is, it will shift the distribution of charges, thereby creat-
ing electric dipoles. The field within the dielectric is
thus altered by the inclusion of an induced field, and

 
Figure 8,26 Orientations of the E-, D-, 8-, and k-vectors.

 

 
  

 8.4 Birefringence 28g

 
Table 8.1 Refractive indices of some uniaxial birefringent crystalsoneis led to introduce a new i

quantity, the ¢ (Ag=589.3 nm).
D (see Appendix 1). In isotropic media p ;
E bya scalar quantity, and the twoare th, a     
  
    
  
  
  
  
  
  
  
    
  
  
    
    

 
  

   

 
    
  
    
  
  
  

  
   

  
  

a  erefg

  
parallel. In anisotropic crystals D and ard Tourmaline
a tensor and are not always parallel. If Wa Calcite
Maxwell’s equations to the problem of a Quartz
throughsucha medium,wefindthatthefel featur nitratewithin the wavefront are D and B and not! Rutile (TiO3}
E and B.In other words, the propagatic
which is normal to the surfaces of consta;
now perpendicular to D rather than E. In fact
and k are all coplanar. Clearly then, the tay dimcorrespondsto the direction of the Poyni, il

The difference An =(n,—1,) is a measure of the
birefringence. In calcite vy > v,, (n.— Me) is —0.172,
andit is said to be negative uniaxial. In comparison,

ich i " lized
S=vu%cE xB, sf for: § there are other crystals, such as quartz (crystalk. Because hich SJgencrally cere fromiy " silicon dioxide) and ice, for which 7, >). Con-
distributed, E and D will, however,be cole - sequently, the ellipsoidal e-wavelets are enclosed withinee both ch wil, however, be collined the spherical o-wavelets, as shown in Fig. 8.29. (Quartzthey are both either parallel or perpendicnia# aaa | . f ; , piic axi i penciculaaa is optically active and therefore actually a bit moreoptic axis.* This meansthatthe o- let wi by EH! eeIp — : re o-wavelet will ef complicated.) In that case, (n, ~ n,) is positive, and the
an effectively isotropic medium and thusbe gi crystal is said to be positive uniaxial.
oe s and kae Oerae the e-wayey The remaining crystallographic systems, namely
accteenth = 2 Pargll i orthorhombic, monoclinic, andtriclinic, have two opticaxesi 5 Ae Dea and are therefore said to be biaxial. Such substances,points on the wavelet it is D that is tangent tg
ellipsoid, and therefore it is always D that a npthe envelope or composite planar wavefront weah in
crystal (Fig. 8.26).

 

mages in sodium chloride and calcite single crystals.  
  

ed directions in the material. It will have a
dex of refraction and be opticaliy isotropic (Fig.
thatcaseall the springsin the oscillator model

 
 
 ently be identical.

lb belonging to the hexagonal, tetragonal, and
al systems have their atomsarrangedso thatlight
gating in some general direction will encountermetric vipactwere. Such substances are optically
opic and birefringent. The optic axis corre-

Meads to a direction about which the atoms are
Bymmetrically. Crystals like these, for which
nly one such direction, are known as uniaxial.

Source of natural light imbedded within one of
Beeamens gives rise to spherical o-wavelets and-wavelets, It is the orientation of the field

KE to the optic axis that determines the speeds
these wavelets expand. The E-field of the

everywhere normalto the optic axis, so it moves
4 v, in all directions. Similarly the e-wave has

peed, only in the direction of the optic axis (Fig.
a), along which it is always tangent to the o-wave.

bi this direction, E is parollel to the optic axis,
rtion of the wavelet expands at a speed vy
niaxial materials have two principalindices

By 7, = c/u, and n, = c/w (Problem 8.22) asGin Table 8.1,

 

 

 
 8.4.2 Birefringent Crystals  

Cubic crystals, such as sodium chloride(Le., cogiy
salt), have their atoms arrangedin a relatively 9
and highly symmetric form. (There are fourm
symmetry axes, each running from one coreg to @
opposite corner, unlike calcite, which has one Sugg
Light emanating from a point source within such
crystal will propagate uniformly in all directogg
spherical wave. As with amorphoussolids, thé

 

    
  
 * In the oscillator model the general case correspond!

in whichEis not parallel to anyof the spring directit
will drive the charge, but its resultant motion will 90 =Udirection of E becauseof the anisotropyof the binding 5
charge will be displaced most, for 2 given force compomldirection of weakest restraint, The induced feld will chusgigthe same orientation as E.

 
"1

 
  

 
 Figure 8.28 Wavelets in a negative uniaxial crystal. 
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‘The balsam cementis transparent and
ex of b.55 almost midway between n, and n,.a ebeam enters the “prism,” the o- and e-rays

Optic axis ; mH eA they separate andstrike the balsam layer.
SS ; sgle at the calcite-balsam interface for the

put 69° (Problem 8.24). The o-ray (extering
arrow cone of roughly 28°) will be totally

iii flected and thereafter absorbed by a layer
Paint ‘on the sides of the rhomb. The e-ray: rally displaced but otherwise essentially
WF: least in the optical region of the spectrum1 absorbs in the ultraviolet).

Wee. roucault polarizer (Fig. 8.31) is constructed
Mother than calcite, which is transparent from

BF, 5000nmin the infrared to about 230nm inviolet. It therefore can be used over a broad
al range. The incoming ray strikes the surfaceand E can beresolved into componentsthat

completely parallel or perpendicular to the

= 8,30).

   
 

 
 
 
 
  
 
 
 

 
   

 
  Figure 8.29 Waveletsin a positive uniaxialcrystal.
 

for example, mica [K H2Als(SO,.)s], have three different
principal indices of refraction. Each set of springs inthe oscillator model would then be different. The bire-
fringence of biaxial crystals is measured as the nu-
merical difference between the largest and smallest ofthese indices.

8.4.3 Birefringent Polarizers
It will now be a rather easy matter, at least conceptually,
to make somesortoflinear birefringentpolarizer. Any
numberof schemes for separating the o- and e-waves
have been employed,all of them, of course, relying on
fact that n, # n,.

The most renownedbirefringent polarizer was intro-
duced in 1828 by the Scottish physicist William Nicol
(1768-1851). The Nicol prism, as it is called, is now
mainly of historical interest, having Jong been super-
seded by other, more effective polarizers. Putting it
rather succinctly, the device is madeby first grinding
andpolishing the ends (from 71° to 68°; see Fig. 8.23)
ofa suitably long, narrowcalcite rhombohedron; then, 7
after cutting the rhombdiagonally, the two pieces are Figure 9.30 The Nicol prism. Thelitle fat on the blunt
polished and cemented back together with Canadabal- locates the optic axis. (Photo by E.H.}

 
 SIRISEE 

153

 
 

8.4 Birefringence 291

optic axis. The two rays traverse thefirst calcite section
without any deviation. (We'll come back to this point
later on when wetalk about retarders.) Notice that if
the angle of incidence on the calcite-air interfaceis @,
one need only arrangethings so that n, < I/sin @ <n,
in order for the o-ray, and notthe ¢-ray,to betotally
internally reflected. If the two prisms are now cemented
together(glycerine or mineraloil are usedin the ultra-
violet) and the interface angle is changed appropriately,
the device is known as a Glan—Thompson polarizer. Its
field of view is roughly 30°, in comparison to about 10°
for the Gian-Foucault, or Glan—Air, asit is often called.
The latter, however, has the advantage ofbeing able to
handle the considerably higher power levels often
encountered with lasers. For example, whereas the
maximum irradiance for a Glan-Thompson could be
about t W/cm?(continuous wave as opposedto pulsed),
a typical Glan-Air might have an upper limit of
100 W/em® (continuous wave). The difference is, of

 Figure 8.31 The Glan-Foucault prism. (Photo by E.H.)
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‘a Opticaxis

 

Figure 8.32 The Wollaston prism.

course, due to deterioration of the interface cement
{and the absorbingpaint,ifit’s used).

The Wollaston prism is actually a polarizing beam-
splitter, because it passes both orthogonally polarized
components. It can be madeofcalcite or quartz in the
form indicated in Fig. 8.32. Observe that the two com-
ponent rays separate at the diagonalinterface. There,
the e-ray becomesan o-ray, changingits index accord-
ingly. In calcite n, < n,, and the emerging o-vay is bent
toward the normal. Similarly, the o-ray, whose field is
initially perpendicular to the optic axis, becomes an
¢-ray in the right-hand section. This time,in calcite the
e-ray is bent away from the normalto theinterface(see
Problem 8.25). The deviation angle between the two
emerging beamsis determined by the prism’s wedge
angle, #. Prisms providing deviations ranging from
about 15° to roughly 45° are available commercially.
They can be purchased cemented (e.g., with castoroil
or glycerine) or not cemented atall {i.e.. optically contac-
ted), depending on the frequency and power require-ments.
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fate electromagnetic energy at a
saciding with that of the incident light.

o ¢ ernission propagates outin the dipole
ae tig, 3.21- The remocalof energy from
a and the subsequent reemission of some

| aeogy is brown as scattering (Fig. 8.33). It
oe physical mechanism operative inad and diffraction; the scattering*

8.5 SCATTERING AND POLARIZATION Brerad
   
   

8.5.) An Iniroduction ta Scattering  
 Wecan begin to understand many apparey

phenomena in terms of differing aspectsTecurTing atomic processes, and so we
the electron, When an electromagnetic way
om an atom or molecule it interacts with
electron cloud, imparting energyto the ato
can bepicturedasif the lowest energy or
of the atom were set into vibration, The og
frequencyofthe electron cloud is equal to thd)frequency », that is, the frequency of the ha
E-field of the lightwave. The amplitude of thetion will be relatively large only whenpis theofthe resonantfrequency ofthe atom,In f
nance we can employthe simple descriptionf
as first being in its ground state; upon
photon (having the resonating frequency),transition to an excited state. In dense med
will most likely return to its ground state, bay
patedits excess energy thermally. In rarefied
atom will generally make the downward

 
    
  
  
  

damental indeed. |
en to electron-oscillators, which generally
nces in the ultraviolet, there are atomic-

which correspond to the vibration of the
oms within a molecule. Because of their
atomic-oscillators usually have resonances
ed. Moreover, they have relatively small

areplicudes and are therefore of Jittle con-

    
    
        
       

   Jitude of an oscillator, and thus the amount
sy (removed from the incident wave, increases
frequency of the wave approaches a naturalof the atom. For low-density gases, in which

 
            
   
  ypproachesa resonance. Thisresults in somesting effects when the atom’s naturalare in the ultraviolet and the incident wave

sible region. In thatcase, as the frequency
ming light increases, more and more ofit
ically scattered. As an example, imagine that

re @Uitsicke on a bright clear morning. The sky is
it blue, and you are surrounded, even inun-

wit blue light. Sunlight streaming into thefrom onedirection is scattered in all direc-
air molecules, Without an atrnosphere, the

Wm sky would beas black as the void of space, 2
dade in the Apollo lunar photographs(Fig.
yuwould then see only light that shone directly

weed! atmosphere, the red endof the spectrum
Part, undeviated, whereas the blue or

endis substantially scattered. This high-
tered light reaches the observer from

an making the entire sky appear bright8. 8.35). When the Sun is very low in the
ays (Ee through a great thickness of air. The

 
 
   
 

 Figure 8.34 A half-Earth, hanging in the black Moonsky. (Photocourtesy NASA)   

       
  
  S Gf
      
     
  
 
    

      
  
        Figure 8,33 Scattering of a spherical wavelet. Figure 8.35 Scattering of sky light.

154



155

294 Chapter 8 Polarization

blues and violets are scattered sideways out of the beam
much more strongly than are the yellows and reds,
which continue to propagate alonga line of sight from
the Sun to from the Earth’s familiar fiery sunsets.

Lord Rayleigh was the first to work out the depen-
dence of the scattered flux density on frequency. In
accord with Eq. (3.56), which describes the radiation
pattern for an oscillating dipole, the scattered flux density
is directly proportional to the fourth power of the driving
frequency. The scattering of light by objects that are
small in comparison to the wavelength is knownas
Rayleigh scattering. The molecules of dense trans-
parent media, be they gaseous, liquid, or solid, will
similarly scatter predominantly bluish light, if only
feebly. The effect is quite weak, particularly in liquids
and solids, becausethe oscillators are arrayed in a more
orderly fashion, and the reemitted wavelets tend to
reinforce each other only in the forward direction,
canceling sideways scattering.*

The smokerising from the end of a lightedcigarette
is made up of particles that are smaller than the
wavelength of light, making it appear blue when seen
against a dark background. In contrast, exhaled smoke
contains relatively large water droplets and appears
white. Each droplet is larger than the constituent
wavelengths of light and thus contains so many oscil-
lacors ic is able to sustain the ordinary processes of
reflection and refraction. These effects are not prefer-
ential to any one frequency componentin the incident
white light. The light reflected and refracted several
times by a droplet and then finally returned to theobserveris therefore also white. This accounts for the
whiteness of small grainsof salt and sugar, fog, clouds,
paper, powders, ground glass, and, more ominously,
the typical pallid, poliutedcity sky.

Particles that are approximately the size of a
wavelength (rememberthat atomsare roughly a fraction
of a nanometeracross)scatterlight in a very distinctive
way. A large distribution of such equally sized particles
can give rise to a whole range of transmitted colors. In
1883 the volcanic island Krakatoa, locatedin the Sunda
Strait west of Java, blew apart in a fantastic conflagra- 
* Recall that you can see the two beams passing through a birefringentcalcite crystal only if the sample contains enough flaws to act as
scattering centers.

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

Figure 8.36 Scattering of polarized light by 2 moledii@]
tion. Greatquantities offine «oloanic dest were

wa Te
of the Earth, For a few years afterward the| Sun
high into the atmosphere and drifted or
Moonrepeatedly appeared greenorblue,
and sunsets were abnormally colored.

In 1908 Gustav Mie (1868-1957) published
solution of the scattering problem for hag
spherical particles of any size. Although comply
his solution has great practical value, partig
applied to colloidal and metallicsuspensionsy
particles, fog, clouds, and the solar aanret
only a few.

8.5.2 Polarization by Scattering
Imagine that we have a linearly polari
incident on an air molecule, as pictured
Theorientation of the electric field of te
radiation (ie., E,) follows the dipole patter
E,, the Poynting vector S, and the oscillating
all coplanar (Fig. 3.22), The vibrations indi

plang
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Bhs equivalent to a superposition of the condi-

el find that Portion of the sky to be partially

  
Figure 8.37  Scauering of unpolarized light by a molecule,
   

 

 

  parallel to the E-field of the incoming light
re perpendicularto the propagationdirec-

nce again that the dipole does not radiate
A ofits axis. Now if the incident wave is

it can be represented by two orthogonal,
ae P-states, in which case the scattered light

 
      
    
            
   in Fig. 8.36, (a) and (b). Evidently, the

in the forward direction is completely
ff thataxis it is partially polarized, becom-

SY morepolarized as the angle increases,
Elirection of observation is normal to the

thelight is corapletely linearly polarized.
ly verify these conclusionsif you happenof polaroid. Locate the Sun and then
ion of the sky at roughly 90° to thesolar

     
   

    
  

  
  
 

    
 
 
 

 
 
    

  poralto the rays (see Fig, 8.38). It’s not
Polarized mainly because of molecular
the Presence of large particles in the air,
anzing effects of multiple scattering. The

 
   Figure 8.38 A pair of crossed polarizers. The upper polaroid is
noticeably darker than the lower one, indicating the partial palariz-ationof sky light. (Photo by E.H.)
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Figure 8.39 A piece of waxed paper betweencrossed polarizers.

latter condition can be illustrated by placing a piece of
waxed paper between crossed polaroids (Fig. 8.39).
Because the light undergoes a good deal of scattering
and multiple reflections within the waxed paper,a given
oscillator may “see” the superposition of many essen-
dally unrelated E-fields. The resulting emissionis almost
completely depolarized.

Asa final experiment, put a few drops of milk in a
glass of water and illuminate it (perpendicularto its
axis) using a bright flashlight. The solution will appear
bluish white in scattered hight and yellowish in direct
light, indicating that the operative mechanism is Ray-
leigh scattering. Accordingly, the scattered light will
also be partially polarized.

Using very much the same ideas Charles Glover
Barkla (1877-1944) in 1906 established the transverse
wave nature ofx-ray radiation by showingthatit could
be polarizedin certain directions asa result of scatteringoff matter.

86 POLARIZATION BY REFLECTION

Oneof the most common sourcesof polarized light is
the ubiquitous process of reflection from dielectric 
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Unpolarized fight

media. The glare spread across a window
of paper, or a balding head, the sheen on’
of a telephone,abilliard ball, or a bookgenerally partially polarized.

Theeffect wasfirst studied by Etienne May
TheParis Academy hadofferedaprize fora
cal theory of double refraction, and Malusa
undertook a study of the problem, He was§
the windowofhis housein the Rue d'Enfey one
examining a calcite crystal. The Sun was set as
its image reflected toward him from the windowsLuxembourgPalace not far away. He held t
and looked through it at the Sun’s f Trea
astonishment, he saw one of the double imagepearas herotated thecalcite. After the Sun faacontinuedtoverify his observationsinto the
candlelight reflected from the surfaces offN
glass.* The significanceof birefringence ane
nature of polarized light were becoming cleane
first time. At that time nosatisfactory explandgpolarization existed within the context of ¢He
theory. During the next 13 years the work of
men, principally Thomas Young and Augustin
finally led to the representation oflight as
transverse vibration. (Keepin mindthatall¢
the electromagnetic theory oflight by rough!

Theelectron-oscillator model provides afis
simple picture of what happens whenlight isf
on reflection. Unfortunately,it’s not a complet
tion, since it does not accountfor the behavior,
netic nonconducting materials.t Nonetheless ¢
an incoming jplane wavelinearly polarized, 80 UE-field is perpendicularto the plane of ineid
8.40). The wave is refracted at the interface,
the medium at sometransmission angle ®. Its
field drives the boundelectrons, in this ite
the plane of incidence, and they in turn rera@
portion of that reemitted energy appears gg)

  

 
  
 

Polarized

Partially
polarized
()

 
 

Figure 8.40 (a) A wave reflecting and refracting at an interface.
{b} Electron-oscillators and Brewster's law. (c) The polarization oflight that occurs on reflection from a dielectric, such as glass, water,
orplastic.

 

the incoming E-field is in the incidentplane, the elec-tron-oscillators near the surface will vibrate under the
influence of the refracted wave, as shown diagrammati-
cally in Fig. 8.40(b). Observe that a rather interesting
thing is happeningto the reflected wave. Its flux density
is now relatively low, because the reflected ray direction
makes a smal] angle @ with the dipole axis. Lf we could
arrange things so that @= 0, or equivalently @, + 6,

 
  
   
   

    refracted waves must also be in #-states* Try it with a candle Aame anda piece of glass. refre
@ the incident plane.* In contradistinction, if4, * 56° for the most pronouncedeffect. At nar gla

bath of the images will be bright and neitherwill vanié
the crystal—Malus apparently lucked out ata good aniwindow.  

 
 

   
    

 lection is determined by the scattering array, a5
B 10.2.7, The scattered wavelets in general combine

myevly onedirection, yielding a reflected ray at an
Maof the incidentray.
 

+W. T. Doyle, “Scattering Approach to Fresnel’s ©Brewster’s Law,” Am. J. Phys. 53, 463 (1985).
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90°, the reflected wave would vanish entirely. Under
those circumstances, for an incoming unpolarized wave made
up of two incoherent orthogonal P-states, only the component
polarized normalto the incident plane and therefore parallel
to the surface will be reftected. The particular angle of
incidence for which this situation occurs is designated
by @, and referred to as the polarization angle or
Brewster’s angle, whereupon 0, + 6, = 90°. Hence,from Snell’s law

n, sin 8, = msin 6,
and thefact that 9, = 90° — @,, it follows that

ny sin 6 = m, cos Op
and

tan @, = n,/n,. (8.25)
This is known as Brewster’s law after the man who
discovered it empirically, Sir David Brewster (1781-

 
   
  

  
  1868), professor of physics at St. Ang;

and, of course, inventorof the kaleido;
When the incident beam is in air yn. =

transmitting medium is glass, in which
the polarization angle is ~56°. Similarly if,
ized beam strikes the surface of a pond (dl
HO)at an angle of 53°, the reflected tual
completely polarized with its E-field perpen,the plane of incidence or, if you like, p
water’s surface (Fig. 8.41). This Suggests a ratpen
way to locate the transmission axis of an e
polarizer; one just needs a pieceof glass or i

The problem immediately encountered i is ki i
this phenomenonto constructaneffective pA gear fI812. Devices ofthis kind can be fabricated
in the fact that the reflected beam,although @ g plates in the visible, silver chloride plates inpolarized, is weak, and the transmitted bea: ed, and quartz or vycorin theultraviolet.It'spto consiruct a crude arrangementofthis

Hozen or so microscopeslides. (The beautiful
May appear whentheslides are io contactéd in the next chapter.)

  
                 
    
  
    

bart fips pile-of-plates polarizer.   
    
 
 
  
 
  trated in Fig, 8.42, is often referred to as a pie

polarizer. It was invented by DominiqueF.
 
    

  
  

Figure 8.41 Light
off a puddle is partiallygtized. (a) When viewed
a Polaroid filter who

& Application of the Fresnel Equations

 
td we obtained a set of formulas known as

pel eouulites, which describe the effects of an 
 
    
  

  
  
  
  
   
   
 

Eiictromagnetic plane wave falling on thebetweentwo different dielectric media. These
relate the reflected and transmitted field
to the incident amplitude by way of the

visibl
transmission axis is
dicular to the mala).
most of the glare
(Photo courtesy
Seymoor.)

  
 
    

 amplitudes, Similarly whentheelectric field
he incidentplane, we have 7, = [Eor/Eo.Ji«
onding irradiance ratio (the incident and

eams have the same cross-sectional area)is
reflectance, and since irradiance is propor-

the square of the amplitude of the field,
|e [Eor/Eni.

 
and R= rt

 
   

  

 

 
T© dpproprisie Fresnel equationsyields

y= tt (8; - 4)7 8.26}
tan® (0; + 4) (8.26) 
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_ sin? (0, — 01)+ ein? (8; + 8)’
(8.27)

Observe that whereas R, can neverbezero, R, is indeedzero when the denominatoris infinite, that is, when
6, + 8, = 90°. The reflectance, for linear light with E
parallel to the plane of incidence, thereupon vanishes;
E, = 0 and the Leam is completely transmitted. Thisisof course the essence of Brewster's law.

Ifthe incominglight is unpolarized, we can represent
it by two now familiar orthogonal, incoherent, equal-
amplitude ?-states. Incidentally, the fact that they are
equal in amplitude meansthat the amount of energy
in one of these two polarization states is the same as
that in the other (i.e., 1) = f= 1;/2), which is quite
reasonable. Thus

Ly0 Ey hl2ly = RL,
and in the same way J,, = RiJ,/2. The reflectance in
natural light, R = J,/%, is therefore given by

pda lewF7
Figure 8.43 is a plot of Egs. (8-26), (8.27), and (8.28)
for the particular case when n,;= 1 and », = 1.5. The
middle curve, which corresponds to incident natural
light, shows that only about 7.5% of the incominglight
is reflected when 6; = @,. The transmittedlightis then
evidently partially polarized. When 6; # 8, both the
transmitted and reflected waves are partially polarized.

Itis often desirable to make use of the conceptof the
degree of polarization V, defined generally as

 Ry + Ri). (8.28)
 

Ve ee (3.29)Int fy
in which I, and [, are the constituentflux densities of
polarized and unpolarized light. For example, if [,
4.W/m? and I, = 6 W/m”, then V©40% and the beam
is partially polarized. With unpolarizedlight f, = 0 and
obviously V = 0, whereas at the opposite extreme, if
£, = 0, V = 1 and thelightis completely polarized; thus
0< V<=l1. One frequently deals with partially polar-
ized, linear, quasimonochromatic light. In that case if
we rotate an analyzer in the beam, there will be an
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Figure 8.43 Reflectance versus incident angle.

orientation at which the transmitted irradiance is
maximum (Jpax), and perpendiculartothis, a direction
whereit is minimum (pin) Clearly £, °° Imax~Limi andso

veFonayTia (3.301Trax + Frsin
Note that V is actually a property of the bean, which
mayobviously be partially or even completely polarized
before encountering any sort of polarizer.
SSSeee
8.7 RETARDERS

Weshall nowconsidera class of optical elements known
as retarders, which serve to changethe polarization of
an incident wave. In principle the operation of a retar-
deris quite simple. One ofthe two constituent coherent
P-states is somehow caused to lag in phase behind the
other by a predetermined amount. Upon emerging
from the retarder, the relative phase of the two com-
ponentsis different than it wasinitially, and thus the
polarization state is different as well. Indeed, once we

 
 
 
 
 

  
 
  
 
  
 
  
 
 

have developed the conceptoftheretary,
able to convert any given polarization g te
other and in so doing create cirevlag!ae 5polarizers as well,

der,

8.7.1 Wave Plates and Rhombs

Recall that a plane monochromatic wave ined
uniaxial crystal, such ascalcite,is generally digtwo, emerging as an ordinary and an ex)
beam. In contrast, we can cut and polisha @
so that its optic axis will be normalto bot
and back surfaces (Fig. 8.44). A normally ing
wave can only haveits E-field perpendicularggy
axis. The secondary spherical and ellips:
will be tangent to each other in the di

  
 

.-_
fa A Opticaxis B      

costs plate cut perpendicular to the optic axis. 
 
   

as always, is the wavelength in vacuum (the  
 

[ee most generalstatement). Thestate of
= of the emergentlight evidently depends
  
 
 
        

and perpendicularto the optic axis, two §
waves will propagate throughthecrystal.
n, > n,, and the e-wave will move across,
morerapidly than the o-wave. After travé)of thickness d the resultant electromagnet
superposition of the e- and o-waves, which
relative phase difference of Ay. Keep in mindyare harmonic waves of the same frequency §y
fields are orthogonal. The relative optical
difference is given by

A= d(|n,— rel),

 
      
 j the e- and 9-waves are back in phase, and

bservable effect on the polarization of the™onochromatic beam. When the relative
9, which is also known as the retardancee,is

leVice is called a fudl-wave plate, (This does not
4.) In general the quantity |”,~2,| in

By,changeslittle over the optical range, so that
meeifectively as 1/A,. Evidently a full-wave plate

only in the mannerdiscussed for a par-
elength, and retarders of this sort are thus
chromatic, If such a device is placed at some
entation between crossed linear polarizers,
enteringit (in this case let it be white light)

» Only the one wavelengththatsatisfies Eq.
Pass through the retarder unaffected,

# fo be absorbed in the analyzer. All other
a will undergo some retardance and willEbatpe

    
   
        
   
  
     

   and since Ag©kA,
  
  
  ).
  2

Ag = d(ln,=heAo
ooo ill

* Tf you havea calcite rhomb,find the blunt conecrystal until you are looking slong the direction © he.through oneof the faces, The two images will contcompletely overlap.

  

  
 

   
  

from the wave plate as various  
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   Optic Opticaxis axis

Figure 845 A calcite plate cut parallel to the optic axis.
 

formsofelliptical light. Some portion ofthis light will
proceed through the analyzer, finally emerging as the
complementary color to that which was extinguished.
It is a common error to assumethat a full-wave plate
behaves as if ic were isotropic at all frequencies; it
obviously doesn’t.

Recalt thatin calcite, the wave whose E-field vibrations
are parallel to the optic axis travels fastest, that is,

> v,. The direction of the optic axis in a negativeuniaxial retarderis therefore often referred to as the
fast axis, and the direction perpendiculartoit is the
slow axis. Forpositive uniaxial crystals, such as quartz,
these principal axes are reversed, with the slow axis
corresponding to the optic axis.

The Haif-WavePlate
A retardation plate that introduces a relative phasedifference of 7 radians or 180° between the 0- and
é-waves is known as a half-wave plate. Suppose that the
plane ofvibration of an incoming beam oflineartight
makes somearbitrary angle @ with the fast axis, asshown.
in Fig. 8.46. In a negative material the e-wave will have
a higher speed (same ») and a longer wavelength than
the o-wave. When the waves emerge from the plate
there will be a relative phase shift of Ag/2 (that is, 20/2
radians), with the effectthat E will have rotated through
26. Going back to Fig. 8.7, it should be evident that a
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Opticaxis

 
 

Figure 8.46 A half-wave plate.

half-wave plate will similarly flip ellipticallight. In addi-
tion,it will invert the handednessofcircularorelliptical
light, changing rightto left and vice versa.

As the ¢ and owaves progress through any retarda-
tion plate, their relative phase difference Ay increases,
and the state of polarization of the wave therefore
gradually changes from one point in the plate to the
next. Figure 8.7 can be envisioned as a sampling of a
few of these states at one instant in time taken at
different locations. Evidently if the thickness of thematerial is such that

d(|n,~nl)=Qm+ Dao/2,
where m= 0,1,2,..., it will function as a half-wave
plate (Ag = 17, 32, 52,etc.).

Althoughits behavior is simple to visualize,calcite is
actually not often used to make retardation plates,It is
quite brittle and difficult to handle in thin slices, hut
more than that, its birefringence, the difference

 
  

Jectrons in the material do not experience
ding forees along and perpendicular to the

hese molecules. Substances ofthis sort are
,manently birefringent, even though they

  

 sstalline. . .
‘n make a rather nice half-wave plate by just
a strip of ordinary (glossy) cellophane tape

rface of a microscope slide. The fast axis,
eyibration direction of the faster of the two

- prresponds to the transverse direction across
ig width, and theslow axisis alongits length.
its fanusacture, cellophane (which is made
generated cellulose extracted from cotton or
ip) is formed into sheets, andin the processitss becomealigned, leaving it birefringent. If
your half-wave plate between crossed linearic will show no effect when its principal axes

ith those of the polarizers, If, however,it is
Bemwith respect to the polarizer, the E-field

Pm the tapewill be Aipped 90° and will thus
the transmission axis of the analyzer. Light

ough the region covered by the tapeasif
rele the black background ofthe crossed
ers (Fig. 8.47). A piece of cellophane wrapping
from certain cigarette packs) will generally also

ar a half-wave plate. See if you can determine
entation of each ofits principal axes using the

ter and crossed polaroids. (Notice the fine
Tidges on the sheet cellophane.)

ial
  

 
 

 

 
   
Detail ~ wit IEntrance ithin crystal)plane

 
  

  
 

  between 7, and n,, is a bit too large fo:
Onthe other hand, quartz with its m
fringence is frequently used, but it has no
cleavage planes and mustbe cut, ground, and
making it rather expensive. The biaxial cry:used most often. There are several forms of
serve the purpose admirably, for example,
phlogopite, biotite, or muscovite, The most com
occurring variety is the pale brown muscovite
easily cleaved into strong, Sexible, and exci
large-area sections. Moreover,its two princi
almost exactly parallel to the cleavage plathose axes the indices are about 1.599 and
sodium light, and although these numbers va
from one sample to the next, their differenceconstant. The minimum thickness of a mite &

 
 

 
 

  

   et-WavePlate 
 iler-treme plate is an optical elementthat intro-

ative phase shift of Ag = w/2 between the
: WiFt orthogonal o- and e-components of a wave.

@once again from Fig. 8.7 that a phase shift of
Shyer lineartoellipticallight and vice versa.

 
 
 
 
 
 
 
 

plate is about 60 microns. Crystalline quartay™ § pbe apparent that linear lightincident parallel
crystal magnesium fluoride (for the IR t Principal axis will be unaffected by any sort of8000 nm to about 6000 nm), and cadmium s Plate, You can't have a relative phase
the IR range from 6000 am to about 12,000 without having two components. With

ME lalural light, the two constituent P-states are also widely used for waveplates. f
Retarders are also made from sheets of polalcohol that have been stretched so as to

long-chain organic molecules. Because of the

 
? pest is, their relative phase differenceyLoomly and rapidly. The introduction of anfonstant phase shift by any form of retarder
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Figure 847 A hand holding a piece of Scutch tape stuck to a
microscope slide hetween two crossed polaroids. (Photo by E.H.}

will still result in a random phase difference and thus
have no noticeable effect. When linear light at 45° to
either principal axis is incident on a quarter-waveplate,
its o- and ¢-components have equal amplitudes. Under
these special circumstances a 90° phase shift converts
the wave into circular light. Similarly, an incomingcir-
cular beam will emerge linearly polarized.

Quarter-wave plates are also usually made of quartz,
mica, or organic polymeric plastic. In any case, the
thickness of the birefringent material must satisfy the
expression (jn, — n,l) = (4m + })Ao/4. You can make a
crude quarter-wave plate using household plastic food
wrap, the thin stretchy stuff that comes on rolls. Like
cellophane,it has ridges runningin the long direction,
which coincides with @ principal axis. Overlap about a
half dozen layers, being careful to keep the ridges
parallel. Position the plastic at 45° to the axes of a
polarizer and examine it through 2 rotating analyzer.
Keep adding onelayer at a time until the irradiance
stays roughly constant as the analyzer turns; at that
point you will have circular light and a quarter-wave
plate, This is easier said than donein white light, but
it’s welt worth trying.

Commercial wave plates are generally designated by
their linear retardation, which might be, for example,
140 nm for a quarter-wave plate. This simply means 
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that the device has a 90° retardanceonlyfor green light
of wavelength 560 nm (i.e.,4 X 140}. Thelinearretarda-
tion is usually not given quite that precisely; 140+
20 nm is morerealistic. The retardation of a wave plate
can be increased or decreased from its specified value
by tilting it somewhat. If the plate is rotated aboutits
fast axis, the retardationwill increase, whereasarotation
aboutthe slow axis has the opposite effect. In this way
a wave plate can be tunedto a specific frequency in a
region aboutits nominalvalue.

The Fresnel Rhomb
We saw in Chapter 4 that the process of total internal
reflection imtroduced a relative phase difference
between the twoorthogonalfield components. In other
words, the componentsparallel and perpendicular to
the planeofincidence were shifted in phase with respect
to each other. In glass (n = 1.51) a shift of 45° accom-
panies internalreflection at the particular incident angle
of 54.6° [Fig. 4.25(e)], The Fresnel rhomb shown in Fig.
8.48 utilizes this effect by causing the beam tobeinter-
nally reflected twice, thereby imparting a 90° relative
phase shift to its components, If the incoming plane
wave is linearly polarized at 45° to the plane of
incidence, the field components [F,]y and [E,], will

Figure 8.48 The Fresnel rhomb.
 

 

 
Figure 849 The Mooney rhomb.

initially be equal. After the first reflections ehs
within the glass will beelliptically polarize lho
second reflectionit will be circular. Since thé
is almost independent of frequency over aja the rhombisessentially an achromatic 90° retary
Mooney rhomb (x = 1.65) shown in Fig, 8.49
in principle, although its operating characte;
different in somerespects.

87.2 Compensators

A compensatoris an optical device that is capable df
ing a controllable retardance on a wave, Unlike
plate where Ag is fixed, the relative phase ¢
arising from a compensatorcan be varied cont}
Of the many different kinds of compensators}y™
consider only two of those that are used mo

=
pene 4‘

‘The Babinet compensator, depictedin Fi;
of two independentcalcite, or more cont
wedges whose optic axes are indicated by

  

dots in the figure. A ray passing vertically tle
through the device at some arbitrary point will
a thicknessof d, in the upper wedge and dpi
one. Therelative phase difference imparted
by thefirst crystal is 2d,(|n, — n-|)/Ao, and &
secondcrystalis —2mdo(|n, — iel)/Ao. Asin theg
prism, which this system closely resembles
haslarger angles and is muchthicker, the
in the upper wedge becomethe ¢- and 0-Tay
tively, in the bottom wedge, The compe
(the wedge angle is typically about 2.5°)

 
 

  
 

 

 
 
   
  
 

is negligible. The total phase  of the rays ieee  
 Qn

he=4, (4 g)(|%—Rel)» (8.33) ator is made of calcite, the e-wave leads
na the upper wedge, and thereforeif ay > dy,

Be as to the total angle by which the ¢
Eeads the o-component. The converse ja truecompensator; in other words, if d, > dy,

angle by which the o-wave Jeads the e-wave.
Brer, where dy = de, the effect of one wedge

is fanceled by the other, and 4g =0 for all‘The retardation will vary from point to
$8, surface, being constant in narrow regions

WM width of the compensatoralong which the
icknesses are themselves constant. If light
way of a slit parallel to one of these regions

Whiten move either wedge horizontally with a
Screw, we can get any desired Ag to emerge.

Babinet is positioned at 45° between
‘polarizers a series of parallel, equally spaced,Hnction fringes will appear across the width of

ftatur. These mark the positions where the
idk as were a full-wave plate. In white light
ga il be colored, with the exception of theband (4g= 0). The retardance of an
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ibs Babinet com pensator,
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Figure 8.51 The Soleil compensator.

unknownplate can be found byplacing it on the com-
pensator and examining the fringe shift it produces.

The Babinet can be modified to produce a uniform
retardation overits surface by merely rotating the top
wedge 180° aboutthevertical, so thatits thin edge rests
on the thin edge ofthe lower wedge. This configuration
will, however, slightly deviate the beam. Anothervari-
ation of the Babinet, which has the advantage of produc-
ing a uniform retardance overits surface and no beam
deviation, is the Soleil compensator shownin Fig. 8.51.
Generally madeof quartz {although MgF, and Cd§are
used in the infrared), it consists of two wedges and one
plane-paralle) slab whose optic axes are oriented as
indicated, The quantity 4, corresponds to the total thick-
ness of both wedges, whichis constant for any setting
of the positioning micrometer screw.

 
SD
8.8 CIRCULAR POLARIZERS
 

Earlier we concludedthatlinear light whose E-field is
at 45° to the principal axes of a quarter-wave plate will
emerge from that plate circularly polarized. Anyseries
combination of an appropriately oriented linear
polarizer and a 90° retarder will therefore perform as
a circular polarizer. The two elements function com-
pletely independently, and whereas one might bebire~
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fringent, the other could beofthe reflection type. The
handedness of the emergentcircular light depends on
whether the transmission axis of the linear polarizerisat +45° or —45° to the fast axis of the retarder. Either
circular state, ¥ or %, can be generated quite easily. In
fact, if the linear polarizeris situated between tworetar-
ders, one oriented at +45° and the other at —45°, the
combination will be ‘tambidextrous.” In short, it will
yield an &-state for light entering from one side and
an £-state when the inputis on the other side.

CP-HNis the commercial designation for a popular
one-piece circular polarizer. It is a laminate of an HN
polaroid anda stretched polyvinyl alcohol 90° retarder.
The input side of such an arrangementis evidently the
face of the linear polarizer. If the beam is incident on
the output side (i.e., on the retarder), it will thereafter
pass through the H-sheet and can only emerge linearly
polarized.

A circular polarizer can be used as an analyzer to
determine the handedness of a wave that is already
knownto be circular. To see how this might be done,
imagine that we have the four elements labeled A, B,
C, and D inFig. 8.52. The first two, A and B, taken
together form a circularpolarizer, as do C and D. The
precise handednessofthese polarizers is unimportant
now, as long as they are both the same, whichis tan-
tamountto saying that the fast axes of the retarders are
parallel. Linear light coming from A receives a 90°

polarizer

90° retarder

Figure 8.52 Two linear polarizers and two quarter-wave plates.
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 inustbe polarized. The two orthogonal
Ce jee 4 tg of such a wave have the same frequency,| Ps.., a constant amplitude. If the amplitude of

jdal component varied, it would be
Pyihe presence of other additional frequen-

wrier-analyzed spectrurn. Moreover, the
nents have a constant relative phase
pat is, they are coherent. A monochromatic
san infinite wavetrain whose properties

fuer! for all time; whetherit is in an &., L:,
Estate, the waveis completely polarized.fet sources are polychromatic; thatis to say,

Padiant energy having a range offrequencies.
Famine what happens on a submicroscopic

particular attention to the polarization
enitted wave. Envision an electron-oscillater

excited into vibration (possibly by a col-
ereuponradiates. Dependingonits precise
Escillator will ernit some form of polarized

Win Section 7.2.6, we picture the radiant energy
Regie atom as a wavetrain havinga finite spatial

‘Astume for the momentthatits polarization
4 emetmialy constant for a duration of the order

ogtereice time At, (which, as you recall, corre-
mis to the temporal extent of the wavetrain, ie.,

| A typical source generally consists of a large
of such radiating atorns, which we can

Bion as oscillating with different phases at some
Bt frequency 7. Suppose then that we examine

ming from a very small region of the source,
he emitted rays arriving at a point of observa-

ntially parallel. Duringa time thatis short
9 with the average coherence time, theand phases of the wavetrains from the

retardance from B, at which pointit js dn
passes through € another 90° retardan,
resulting once more in a linearly pola;
effect, B and C together forma halE-waya
merelyflipsthe linear light from A thre
angleof 26, in this case 90°, Since the linear aa
C is parallel to the transmission axis of D
throughit and outof the system,In this simp
we've actually proved something that is rathelIf the circular polarizers A+B and C+p
left-handed, we've shownthat left-circular
@ left-circular polarizer from the output side wilt Re
ted. Furthermore, it should be apparent, ary
some thought, that right-circular light will
#-state perpendicularto the transmission aye
so will be absorbed. The converseis true
is, of the two circular forms, only light in an
bass through a right-circular polarizer havingthe output side,

Reality
  
 

  

  
 
 
   

8.9 POLARIZATION OF POLYCHROMATIC HG
8.9.1 Bandwidth and Coherence Time @

Polychromatic Wave
 
  
   

Weare again reminded ofthefact thatbyits veg
purely monochromaticlight, which is of couradjng

me’ere to look toward the source in some
pn, we would, at least for an instant, “see” a

—_ BSPErposition of the waves emitted in that
other words we would “see” a resultant

26! given polarizationstate. Thatstate wouldBai 2n interval less than the coherence time
ged, but even so it would correspond to

oscillations at the frequency ¥, Clearly, if
AGth Ap is broad, the coherence time (At, ~
Se small, and any polarization state will be

90° retarder  
   polarizer  
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short-lived. Evidently the concepts of polarization and
coherencearerelated in a fundamental way.

Now consider a wave whose bandwidth is very small
in comparisonwith its mean frequency, in other words,
a quasimonochromatic wave. It can be represented by
two orthogonal harmonic #-states, as in Eqs. (8.1) and
(8.2), but here the amplitudes and epoch angles are
functions of time. Furthermore, the frequency and
propagation number correspondto the mean values of
the spectrum presentin the wave, namely, @ and i. Thus

    
       

    
   
         

    
E,(t) = 1Ey.(t) cos [iz—Gt + &,()]  (8.34a)    

  and

  E,(s) = JEpy(#) cos [kz — ae + 2,(2)). (8.346)
The polarization state, and accordingly Eox(t), Eo,(t),
e,(t), and ¢,(¢), will vary slowly, remaining essentially
constant over a large number ofoscillations. Keep in
mind that the narrow bandwidth implies a relatively
large coherence time. If we watch the wave during a
much longerinterval, the amplitudes and epoch angles
will vary somehow, either independently or in some
correlated fashion. Tf the variations are completely
uncorrelated, the polarizationstate will remain constant
only for an interval, small compared to the coherence
time. In other words, theellipse describing the polar-
ization state may change shape, orientation, and
handedness. Since, speaking practically, no existing
detector could discern any one particularstate lastingfor so short a time, we would conclude that the wave
was unpolarized. Antithetically,if the ratio Eo,(t)/Eoy(t)
were constant even though both termsvaried, and if
e =e,(t}— ,(t) were constant as well, the wave would
be polarized. Here the necessity for correlation among
these different functions is quite obvious. Yet we can
actually impress these conditions on the wave by merely
passing it through a polarizer, thereby removing anyundesired constituents. The time interval over which
the wave thereafter maintainsits polarization state is no
longer dependenton the bandwidth,because the wave’s
components have been appropriately correlated. The
light could be polychromatic (even white) yet completely
polarized. It will behave very muchlike the idealized
monochromatic waves treated in Section 8.1. Between
these two extremes of completely polarized and
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unpolarized lightis the condition ofpartial polarization.
In fact, it can be shown that any quasimonochromatic
wave can be represented as the sum of a polarized and
an unpolarized wave, where the two are independent
and either may be zero.

Interference Colors

Insert a crumpled sheet of cellophane between two
polaroidsilluminated by white light. Alternatively, take
an ordinary plastic bag (polyethylene), which shows
nothing special between crossed polaroids, and stretch
it. That will align its molecules, makingit birefringent.
Now crumple it up and examineit again. The resulting
pattern will be a profusion of multicolored regions,
which vary in hue as either polaroid rotates. These
interference colors, as they are generally called, arise
from the wavelength dependence of the retardation.
The usual variegated nature of the patterns is due to
local variations in thickness, birefringence, or both.

The appearanceof interference colors is quite com-
mon and can easily be observed in any number of
substances. For example, the effect can be seen with a
piece of multilayered mica, a chip of ice, a stretched
plastic bag, or finely crushed particles of an ordinary

Figure 8.53 Theorigin of interference colors.

 

 
 white (quartz) pebble. ‘To appreciaphenomenonoccurs, examine Fig. 8.53. 4of monochromatic linear lightis

passing through some small region of a
plate Z, Overthat area the birefringence aare both assumedto be constant. Thetra
is generally elliptical. Equivalently, we e:
emerging from & as composedof two g;
waves (i.e., the x- and y-components of thi
which havea relative phase difference ad
by Eq.(8.32). Only the componentsofthe
bances, which are in the direction of the
axis of the analyzer,will pass through it anal opobserver, Now these components, which
phase difference of Ag, are coplanar and
fere. When Ag = am, 3a, 50, ..., they are. compout of phase and cancel each other. When |
0, 2a, 47, ..., the waves are in phase and re
other. Suppose thenthat the retardancear}
point P, on & for bluelight (Ay = 435 nm) i
case blue will be strongly transmitted. It falloy
Eq. (8.32) that AgAge = 2ad(/n, — n,|) is essenti
stant determined by the thickness and the {
gence. At the point in question, there
1740 7 forall wavelengths. If we now changegm
yellow light (Ay = 580 nm), Ag = 3a and

etely canceled. Under white-light illumina-
jcular point on 2 will seem as if it had

Sliow completely, passing on all the other
none as strongly as blue. Another way of

put 5 that the blue light emerging from the
t P, is linear (Ay = 42) and parallel to the

mission axis. In contrast, the yellow light
3m) and along the extinction axis; the

gre elliptical. The region about Py behaves
ave plate for yellow and full-wave plate for
analyzer were rotated 90°, the yellow would

; , and the blue extinguished: By definition
Bee said to be complementary when their

F vields white light. Thus when the analyzer
through 90° it will alternately transmit or

Pamnplementary colors. In much the same wayfht be a point P, somewhereelse on = where
for red (Ag = 650 nm). Then, AgAg = 26007,

fp pres light (Ao = 520 nm)will havea retar-
Ker and be extinguished. Clearly then, if the

s from oneregionto the next over the
0 will the color of the light transmitted
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  = t= whichlightinteracts with material sub-
& tan yield a great deal of valuable information

ir molecular structures. The process to be
» althoughofspecific interest in the study

#had andis continuing to have far-reaching
F the sciences of chemistry and biology.
ail the French physicist DominiqueF, J. Arago

eel © rather fascinating phenomenon noweplical activity, It was then that he discovered
plane of vibration of a beam oflinear light

continuous rotationasit propagated along
8 of a quartz plate (Fig. 8.54). At about the

Jean Baptiste Biot (1774-1862) saw this same
using both the vaporous andliquid forms

ral substanceslike turpentine, Any such
ae the E-field of an incident linearar ppear to rotate is said to be optically
fas Biot found, one must distinguish*
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  ont |axis
  
  

Dexiro

   Quartz
  
    
    Figure 8.54 Optical activity displayed by quartz.    between right- andleft-handedrotation. If while look-

ing in the direction ofthe source, the plane ofvibration
appears to have revolved clockwise, the substance is
referred to as dextrorotatory, or d-rotatory (from the Latin
dextro, meaning right). Alternatively, if E appears to
have been displaced counterclockwise, the material is
levorotatory, or i-rotatory (from the Latin fevo, meaningleft).

In 1822 the English astronomer Sir John F. W.
Herschel (1792-1871) recognized that d-rotatory and
rotatory behavior in quartz actually corresponded to
two different crystallographic structures. Although the
molecules are identical (SiO,), crystal quartz can be
either right- or left-handed, dependingonthe arrange-
ment of those molecules. As shown in Fig. 8.55, the
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(a) Right (b) Left

  Figure 8.55 Right-and left-handed quartz crystals.
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(a) ) ©)

Figure 8,56 The superposition of an #- and an ¥state at 2 = 0.

external appearances of these two forms are the same
in all respects, except that one is the mirror image of
the other; they are said to be enantiomonphs of each
other. All transparent enantiomorphic substances are
optically active. Furthermore, molten quartz and fused
quartz, neither of which is crystalline, are not optically
active, Evidently, in quartz optical activity is associatedwith the structural distribution of the molecules as a
whole. There are many substances, both organic and
inorganic (e.g., benzil and NaBrOs, respectively),
which,like quartz, exhibit optical activity only in crystal
form. In contrast, many naturally occurring organic
compounds, such as sugar,tartaricacid, and turpentine,
are optically active in solution or in the liquid state.
Here the rotatory power, as it is often referred to, is
evidently an attribute of the individual molecules. There

A
(by

tallized.

men, the two circular

   
Figure 8.57 The superposition of an @- and an £-state at 2~0° (hy > dn).

are also more complicated substances for wi
activity is associated with both the molecules:
and their arrangementwithin the various
example is rubidium tartrate. A d-rotatg solug’
that compound will change to Lrotatory wha

In 1825 Fresnel, without addressitig] themechanism involved, proposed a simple
logical description of opticalactivity. Since!
linear wave can be represented as a superp
and &-states, he suggested that these ty
circular light propagate at different speed
material showscircular birefringence; that
twoindices of refraction, one for #-states{
for ¥-states (nz). In traversing an optically

jtant linear wave would appear to have
n see how this js possible analytically by
Eas. (8.8) and (8.9), which described
ic right- and left-circular lighs propagat-

direction. It was seen in Eq. (8.10) that the
z cwo wavesis indeed linearly polarized. We

ase expressions slightly in order to remove
meni cwo ithe amplitudeof Eq.(8.10), in which

 e
to

Romati  
 

 

  
tgs wt) +] sin (Raz — ot) (8.850)

 
 Ex -jcmiligt — of} —jsin (Ret — wt)] 6.358)et 

the right- and left-handed constituent waves.
Monstant, he=kone and ke = kong. The resul-

ce is given by Em Eg +Eg, and after a
metric manipulation, it becomes
  

 
ptt [lig + be)2/2— wf] [7 C08 (fe~he)2/2
fii (ke — bee)2/2}.ton where the wave enters the medium

linearly polarized along the x-axis, as shown
56, thatis,

 (8.36)
 

 
E = Epi cosot, (8.37)

ai any point along the path, the two com-
the same time dependenceandare there-
This just means that anywhere along the

@fFesultant is linearly polarized (Fig. 8.57),
its orientation is certainly a function of z.
if na > ny or equivalently ka > ky, E will

nterclockwise, whereas if ky > ha, the rota-
Kkwise (looking toward the source). Tradi-

angle 8 through whichErotatesis defined
whenit is clockwise. Keepingthis sign con-

i, tt should be clear from Eq.(8.36) that
pint x makesan angle of 8 = — (ha — ky)z/2(9 its original orientation. If the medium

4, the angle through which the plane of8 I$ then

waves would get of    
 

 
 
  

(8.38)
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     Figure 8.58 The superposition of an ®- and an #-state at 1= 4
(Bag > hey Re > hg, Ae < Ag, and Uy < va).

    
 

   where ny > ng is d-rotatory and ng > ng is L-rotatory(Fig. 8.58).
Fresnel wasactually able to separate the constituent

&- and &-states of a linear beam using the composite
prism of Fig. 8.59.It consists of a numberofright- and
left-handed quartz segments cut with their optic axes
as shown. The &-state propagates more rapidly in the
first prism than in the second and is thus refracted
toward the normal to the oblique boundary. The
opposite is true for the &-state, and the two circular

   
  
  
    
   

  
  
  

 
Optic axes

forall segments. 
 

    
 

  
 
   

Figure 8.59 The Fresnel composite prism.
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waves increase in angular separation at each interface.
In sodium light the specific rotatory power, which is

defined as B/d, is found to be 21.7°/mm for quartz.
Thus it follows that [ny~mal" 7.110for light
propagating along the optic axis. In that particular
direction ordinary double refraction, of course,
vanishes. However, with the incidentlight propagating
norma! to the optic axis {as is frequently the case in
polarizing prisms, wave plates, and compensators),
quartz behaves like any optically inactive, positive,
uniaxial crystal. There are otherbirefringent, optically
active crystals, both uniaxial and biaxial, such as cin-
nabar, HgS (n, = 2.854, 2, = 3.201), which has a rota-
tory power of $2.5°/mm. In contrast, the substance
NaClO,is optically active (3.1°/mm) but not birefrin-
gent. The rotatory powerof liquids, in comparison, is
so relatively small thatit is usually specified in terms of
10-cm path lengths; for example, in the case of turpen-
tine (CyoHg) it is only —37°/10em (10°C with Ag
589.3 nm). The rotatory powerofsolutions varies with
the concentration. This fact is particularly helpful in
determining,for example, the amountof sugar present
in a urine sample or a commercial sugar syrup.

You can observe optical activity rather easily using
colorless corn syrup, the kind available in any grocery
store. You won't need muchofit, since B/d is roughly
+30°/inch. Put about an inch of syrup in a glass con-

a
Figure 8.60 Right-handed quartz.

 

emistry of organic and inorganic
e one is concerned with the three-
distribution of atomswithin a given

 tical activity is extremely com-
earnOi can be treated in terms of

se rnagnetic theory, it actually requires acal solution.* Despite this, we will
ified model, which will yield a qualita

ble, description of the process. Recall that
Brad an optically isotropic medium by a

ous distribution of isotropic electron-oscil-
vibrated parallel to the E-field of an incident

cally anisotropic medium was similarly
’ OPe.cbotion of anisotropic oscillators thatsome angle to the driving E-field. We now

F the electronsin optically active substancesTei to move alongtwisting paths that, for
S"assumed to be helical. In other words,

fle is pictured muchasif it were a conduct-

 

 

6

tainer between crossed. polaroidsand illumingsd
a flashlight. The beautiful colors that,
analyzeris rotated arise from the fact tha
of Ag, an effect knownasrotatory dispersion Ulin
to get roughly monochromatic light, you ca
determine the rotatory power of the syfee

Thefirst great scientific contribution saga)Pasteur (1822-1895) came in 1848 and was
with his doctoral research, He showedtha:
which is an optically inactive form oftarta
actually composed of a mixture containin;
tities of right- andleft-handed constituentsmg
of this sort, which have the same moleculiz
but differ somehow in structure,are called #0
wasable to crystallize racemic acid and thems
the two different types of mirror-image
tiomorphs) that resulted. When dissolved
water, they formed d-rotatory and /-rotatory4
This implied the existence of molecules tha
chemically the same, were themselves mirrgyg
each other; such molecules are now kno}
stereoisomers. These ideas were thebasis for td

  
 
  
 

 

‘known to be arranged in either right- or
spirals about the optic axis, as indicated in

In the present representation this crystal
spond to a parallel array of helices. In

» an active sugar solution would be
to a distribution of randomly oriented

  

  
 

Korie). Phys. 9, 239 (1968), containsa fairly extensive
[or further reading. 

an to these solid and liquid states, there is a thirdibstances, which is rather useful because ofits 

 @ crystals are organic compoundsthat can flow and
= 7 ip characeristic molecular orientations Tn particular

* A gelatin liter works well, but a piece of colored Hicrystals have a helical structure and therefore exhibit
also donicely, Just rememberthat the cellophane will rotatory powers, of the order of 40,000°/mm. The
plate (sce Section8.7.2}, so don’t put it between the B iMBii-llke molecular arrangementis considerably smalleryou alignits principal axes appropriately.
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  on whetherit “saw” right- or left-handed helices. Thus

we could expect different indices for the @- and £-
componentsof the wave. The detailed treatmentof the
process that leads to circular birefringencein crystals
is by no means simple, butat least the necessary asym-
metry is evident. How, then, can a random array of
helices, corresponding to a solution, produce optical
activity? Let us examine one such moleculein this sim-
plified representation, for example, one whose axis
happensto be parallel to the harmonic E-field of the
electromagnetic wave. That field will drive charges up
and down alongthe length of the molecule, effectively
producing a time-varying electric dipole moment4(#},
parallel to the axis. In addition, we now have a current
associated with the spiraling motion of the electrons.  
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Figure 8.61 Theradiation from helical molecules.
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This in turn generates an oscillating magnetic dipole
moment #(?), which is also along the helix axis (Fig.
8.61). In contrast, if the molecule were parallel to the
B-field of the wave, there would be a time-varying Aux
and thusaninducedelectron currentcirculating around
the molecule. This would again yield oscillating axial
electric and magnetic dipole moments. In either case
Att) and x(t) will be parallel or antiparallel to each other
depending on the sense of the particular molecular helix.
Clearly, energy has been removed from the field, and
both oscillating dipoles will scatter (i.e., reradiate) elec-
tromagnetic waves. Theelectric field R, emitted in a
given direction by an electric dipole is perpendicular
to the electric field E,, emitted by a magnetic dipole.
Accordingly, the sum of these, which is the resultant
field E, scattered by a helix, will not be parallel to the
incidentfield E, along thedirection of propagation (the
same is of course true for the magnetic fields). The
plane of vibration of the resultant transmitted light(E, + E;) will thus be rotated in a direction determined
by the sense of the helix. The amountofthe rotation
will vary with the orientation of each molecule, but it
will always be in the same direction for helices of thesamesense.

Although this discussion ofoptically active molecules
as helical conductors is admittedly superficial, the
analogy is well worth keeping in mind. In fact, if we
direct a linear 3-cm microwave beam onto a boxfilled
with a large numberofidentical copper helices (e.g.,Icm long by 0.5cm in diameter and insulated from
each other), the transmitted wave will undergo a rota-tion ofits plane of vibration.*

810.2 Optically Active Biological Substances

Before moving on to other things, we should mention
a few of what are probably the most fascinating observa-
tions associated with optical activity, namely, those in
the field of biology. Whenever organic molecules are
syuthesized in the laboratory, an equal number of d-
and /-isomers are produced, with the effect that the
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automobile windshield ora telescope lens, will develop
internalstresses that can easily be detected. Information
concerning the surface strain on opaque objects can be
obtained by bonding photoelastic coatings to the parts
under study. More commonly, a transparent scale
model of the part is made out of a material opticdlly
sensitive to stress, such as epoxy, glyptol, or modified
polyester resins. The modelis then subjected to the
forces that the actual component would experience in
use. Since the birefringence varies from point to point
over the surface of the model, whenit is placed between
crossedpolarizers, a complicated variegated fringe pat-tern will reveal the internal stresses. Examine almost
any piece ofclear plastic or even a block of unflavored
gelatin between two polaroids; try stressing it further
and watch the pattern change accordingly (Fig. 8.63).

The retardance at any point on the sampleis propor-
tional to the principal stress difference; that is, (a,~¢»),
wherethe sigmas are the orthogonalprincipalstresses,
For example, if the sample were a plate undervertical
tension, 7; would be the maximum principalstress in
the vertical direction and o2 would be the minimum
principalstress, in this case zero, horizontally. In more
com plicated situations, the principal stresses, as well as

compoundis optically inactive, One migiy
thatif they exist at all, equal amounts of
stereoisomers will be found in Naturale
stances. This is by no means the case, Na~ Natu:
(sucrose, CieHy20,1), no matter wheref it 4
whetherextracted from sugarcane or g * is
always d-rotatory. Moreover, the simpleor d-glucose (CsH1:0,), which as its
d-rotatory, is the most important
human metabolism. Evidently, living
somehow distinguish between optical isome: iAll proteins are fabricated of compound, a
amino acids. These in turn are combinationshydrogen, oxygen, and nitrogen. Therrari
aminoacids, andall of them (with the eXceptysimplest one, glycine, whichis not enantiom
generally rotatory. This means that if we Tes
protein molecule, whetherit comes from an
eggplant, a beetle or a Beatle, the constitn
acidswill be -rotatory. One important ef
group of antibiotics, such as penicillin, whi
some dextro aminoacids. In fact, this may welllfor the toxic effect penicillin has on bacterig

It is intriguing to speculate aboutthe possi
oflife on this and other planets. For examy
on Earth originally consist of both mirror
Five aminoacids were foundin a meteorite
Victoria, Australia, on September 28, | ‘ifframd:
has revealed the existence of roughly equal
the optically right- and left-handed forms
markedcontrast to the overwhelmingpthe left-handed form foundin terrestrial rocks
implications are many and marvelous.*

», a magnetic or electric field) on the
r thereby changing the mannerin which
      
  
  

       
     ropic substancescould be madeoptically

e application of mechanicalstress. The
variously known as mechanical birefrin-

    
      

     

   
pt effective optic axis is in the directionss, and the induced birefringence is propor-

jto the stress. Clearly then, if the stress is notert Ihe sample, neitheris the birefringence
dance imposed on a transmitted wave [Eq.

 
    
  
          Gelasticity serves as the basis of a technique for

fhe stresses in both transparent and opaque
tructures (Fig. 8.62). Improperly annealed

mounted glass, whether serving as an

 
  
     
 

 
 
  
 
    
 
  
 

  
 
  
 

8.11 INDUCED OPTICALEFFECTS — OPTIMODULATORS

There are a numberof different physical e!
ing polarized light that all share the singh
feature ot somehow being externally indiinstances one exerts an external influg 

*1. Tinoco and M.P. Freeman, “The Optical Activity of OrientedCopper Helices,” J. Phys. Chem. 61, 1196 (1957).   * See Physics Today, Feb. 1971, p. 17, for additional &references for further reading.

 
* trtima® between polaroids. (Photo by E.H.) 
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Figure 8.63 A stressed piece of clear plastic between polaroids. (Photo by E.H.}

their differences, will vary from one region to the next.
Underwhite-lightillumination,the loci of all points on
the specimen for which (, — 2) is constant are known
as isochromatic regions, and each such region corresponds
to a particular color. Superimposed on these colored
fringes will be a separate system of black bands. At any
point, where the E-field of the incident linear light is
parallel to eitherlocal principalstress axis, the wave will
pass through the sample unaffected, regardless of
wavelength. With crossed polarizers, that light will be
absorbed bythe analyzer,yielding a black region known
as an isoclinic band (Problem 8.35). In addition to being
beautiful to look at, the fringes also provide both a
qualitative map of the stress pattern and a basis for
quantitative calculations,

6.11.2 The FaradayEffect
Michael Faraday in 1845 discovered that the manner
in which light propagated through a material medium
could be influenced by the application of an external
magnetic field. In particular, he found that the plane
of vibration oflinear light incident on a piece of glass
rotated when a strong magnetic field was applied in the
propagation direction. The Faraday or magneto-opticeffect was one of the earliest indications of the inter- 
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  ersal of handedness occurs in the case
Fal ctivity. For 4 convenient mnemonic,
cia to be generated by a solenoidalcoil

Ee sample. The planeofvibration, when
i, es in the samedirectionas the current

dless of the beam’s propagation direc-
“ts axis. The effect can, accordingly, be
isGecting the light back and forth a fewsample.

i ical treatment of the Faraday effect in-Ptum-mechanical theory of dispersion,
ects of B on the atomic or molecular

Ut will suffice here merely to outline the
argumentfor nonmagnetic materials.

fidentlightto be circular and monochro-
cally bound electron will take on a

ar orbit being driven by the rotating
mevave (the effect of the wave’s B-field is

troduction ofa large constant applied
ic field perpendicular to the plane of the orbitJt in radial force Fxg on the electron. That
‘scipl ctter toward or away from thecircle’s
hending on the handednessofthe light andn of the constant B-field. The total radial

MS the elastic restoring force) can therefore
t values andso too can the radius of

quently, fora given magneticfield there
sible valuesofthe electric dipole moment,

ation, and the permittivity, as well as two
of the index of refraction, ng and ny. The

Yan then proceed in precisely the sarne fash-
mpi Fresnel’s treatmentof opticalactivity. As
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  relationship between electromagnetistagé
,Althoughit is reminiscent of optical actiuiy

weshall see, an importantdistinction betyeffects.
The angle 8 (measured in minutes of are},

which the plane of vibration rotates is giveliempirically determined expression
B = VBd,

where B is the static magnetic flux den
gauss), d is the length of medium traversed
¥ is a factor of proportionality known
constant. The Verdet constantfor a parti¢t
varies with both frequency (dropping
decreases) and temperature.It is roughl
of 107° min of arc gauss” cm™for gases
of arc gauss“! cm™ for solids and liq
8.2). You can get a better feeling for the meal
these numbers by imagining, for examplemg
sample of HyO in the moderatelylarge fit

 
 
 
    
   
 

 

          
  

  
       

    constants for someselected substances.

| ¥ (min of arcweed Temperature (°C)_| gauss”? cm™!)18 0.0317 
 
 
 
 

 
    
 
  

  
 
 
 
 

(the Earth's field is about one half gaug 20 0.0131
ticular case, a rotation of 2” 11’ would res 16 0.0359
0.0131 20 0.0166° . 7 sat 3 26 —0.00058

By convention, o positive Verdet wi 6.97 x 10-8  
a (diamagnetic) material for which the Fa
Lrotatory when the light moves parallel 10 theeand d-rotatory when it propagates antipara

9.39 x 10°
    
 are givenin the usual handbooks. 
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 before, one speaks of two normal modes of propagation
of electromagnetic waves through the medium, the #-and £-states.

For ferromagnetic substances things are somewhat
more complicated. in the case of a magnetized material
B is proportional to the componentofthe magnetization
in the direction of propagation rather than the com-
ponentof the applied dc field.

There are a numberof practical applications of the
Faraday effect. It can be used to analyze mixtures of
hydrocarbons,since each constituent has a characteristic
magnetic rotation. Moreover, whenutilized in spectro-
scopic studiesit yields information about the properties
of energy states above the ground level. In recenttimes
the Faraday effect has been put to even more exciting
and promising uses. Since the adventofthelaser in the
early 1960s, a tremendous effort has been made to
utilize the enormous potential of laser light as a com-
munications medium (see Section 7.2.6). An essential
componentofany such system is the modulator, whose
functionit is to impress information on the beam. Such
a device must have the capability of somehow varying
the lightwave at high speeds andin a controlled fashion.
It might, for example, alter the waye’s amplitude,
polarization, propagation direction, phase, or
frequency in a mannerrelated to the signal thatis to
be transmitted. The Faraday effect provides one pos-
sible basis for such a modulator. Clearly, if a device of
this sort is to function efficiently, each unit length of
the medium mustabsorbaslittle light as possible while
imparting as large a rotation to the beam as possible.
To this end, a numberof rather exotic ferromagneticmaterials have beenstudied. An infrared modulatorof
this sort was constructed by R. C. LeCraw. Itutilizes
the synthetic magnetic crystal yttrium-iron garnet
{YIG), to which has been added a quantity of gallium.
YIG has a structure similar to that of natural gem
garnets. The device is depicted schematically in Fig.
8.64, A linear infrared Iaser beam enters the crystal
from the left. A transverse dc magnetic field saturates
the magnetization of the YIG crystal in that direction.
The total magnetization vector {arising from the con-
stant field and the field of the coil) can varyin direction,
being tilted toward the axis of the crystal by an amount
proportionalto the modulatingcurrentin the coil. Since
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the Faraday rotation depends on the axial component gates at some angle to thestatic field constants for some selected liquids (20°C, Ay where V is the applied voltage. Thus a nitrobenzene
of the magnetization, the coil current controls 8. The a/2, the Faraday and Cotton-Mouton wert cell in which d is one cm and@is several cm will require
analyzer then converts this polarization modulation to currently, with the former 8enerally K (in units of a rather large voltage, roughly 3 x 10* V, in order to
amplitude modulation by way of Malus’s law [Eq.(8.24)]. larger of the two. The Cotton-Mouton4 1077 em statvolt"*) respond as a half-wave plate. This is a characteristic
In short,the signalto be transmittedis introduced across analogue of the Kerr electro-optic cffe quantity known as the half-wave vollage, Vi. Another
the coil as a modulating voltage, and the emerginglaser sidered next. 32 drawback is that nitrobenzene is both poisonous
beam carries that information in the form of amplitude +e and explosive. Transparent solid substances, suchvariations.

There are actually several other magneto-optic 8.11.3 The Kerr and Pockels Effectseffects. We shall consider only two of these, and rather
succinctly at that. The Voigt and Cotton—Mouton effects Thefirst electro-optic effect was disco: interest as electro-optical modulators.
both arise when a constant magnetic field is applied to tish physicist John Kerr (1824-1907)in 7m ae Thereis another very importantelectro-opticaleffect: : . . . q | ts, hat t aa transparent medium perpendicular to the direction that an isotropic transparent substancéaaae oes in Sa40) 7Pol knownas the Pockels effect, after the German physicist
of propagation of the incidentlight beam. The former fringent when placedin anelectric field Fi er E ae _ that, as with the —— Friedrich Carl Alwin Pockels (1865-1913), who studied
occurs in vapors, whereasthelatter, which is consider- takes on the characteristics of a uniaxiaile gape. Onsen ‘ it extensively in 1893.It is a linear electro-opticaleffect,
ably stronger, occurs in liquids. In either case the optic axis correspondsto the direction ’ 7 F inasmuchasthe induced birefringence is proportionalmedium displays birefringence similar to that of a field. The two indices, my and nj, are moat é often referred oeeeeea to thefirst powerof the applied E-field andtherefore
uniaxial crystal whose optic axis is in the direction of the two orientations of the plane of vibrat emenon in liqui Pee at rete the applied voltage. The Pockels effect exists only in
the dc magneticfield, that is, normalto the light beam wave, namely, parallel and perpendicular pat pi gueten ae es by tas rf certain crystals that Jack a center of symmetry; in other
[Eq, (8.32)]. The two indices of refraction now corre-_electric field, respectively. Their diffe fife situation is considerably more compl Lords, crystals having no central point through which
spondto thesituations in which the planeof vibration birefringence, andit is found to be every atom can be reflected into an identical atom.of the waveis either normalorparallel to the constant a 2 : :
magnetic field. Their difference An (.e., the birefrin- dam KEG) pel Besarnetpeeae show the Pockels effect. Incidentally, these same 20

ence) is proportional to the square of the applied where K is the Kerr constani. When K is & merc es: WMC | os a Ps classes are also piezoelectric. Thus, many crystals and: 7 i: A cell, asit is called, is positioned between
magnetic field. It arises in liquids from an aligning of most often is, An, which can be thiryls| af 1 e hos: a issi ae all liquids are excluded from displayinga linearelectro-
the optically and magnetically anisotropic molecules of is positive, and the substance behaveslik acla, tee ie e sere optic effect.
the medium with that field. Ifthe incominglight propa-_—_—uniaxialcrystal. Values of the Kerr constant gape Beta itn Zen B Thefirst practical Pockelscell, which could perform

Figure 8.64 A Faradayeffect modulator.
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as the mixed crystal potassium tantalate niobate
(KTao6sNbo330s), KTN for short, or barium titanate
{BaTiOs), which show a Kerr effect, are therefore of

 
 
 

  
     

R ihe Kerr effect is proportional to the square 
 
     
 
 
       
   
  
     
 

depicts an arrangement knownas aa Thereare 32 crystal symmetryclasses, 20 of which may
  
  
      

  
 
 

  
 

  
  

 
 

    
 

light will be transmitted; the shutter is
‘pplication of a modulatingvoltage gener- as a shutter or modulator, was not madeuntil the 1940s,when suitable crystals were finally developed. The

  
 

id effectively to frequencies roughly as
Kerrcells, usually containing nitroben-

  
bon disulfide, have been used for a number x

@ variety of applications. They serve as 1
speed photography andas light-beam s

place rotating toothed wheels. As such, Polarizer 
 6n utilized in measurements of the speed

rr cells are also extensively used as Q-
@pter 14) in pulsed laser systems.
functioning as the electrodes have an
jof é cm and are separated by a distanceml is given by

 
 
 
  

 
 Modulating

Polarizer voltage 

 
 Ag = Qnkevya?, (8.41) Figure 8.65 A Kerrcell.Polarizer   
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Operating principle for such a device is one we've
already discussed. In brief, the birefringence is varied
electronically by means of a controlled applied electric
field. The retardance can bealtered as desired, thereby
changing the state of polarization of the incidentlinear
wave. In this way, the system functionsas a polarization
modulator. Early devices were made of ammonium
dihydrogen phosphate (NH,H.PO,), or ADP, and
potassium dihydrogen phosphate (KH,PO,), known as
KDP; botharestill widely in use. A great improvement
was provided by the intraduction of single crystals of
potassium dideuterium phosphate (KD,PO,), or KD*P,
which yields the same retardation with voltages less than
half of those needed for KDP. This process of infusing
crystals with deuterium is accomplished by growing
them in a solution of heavy water. Today cells made
with KD*P or CD*A (cesium dideuterium arsenate) are
available commercially. Tremendous effort has gone
into research on electro-optical crystals. The develop-
ment of these materials is continually adding exotic
names to the jargon of the new technology, such as
lithium tantalate, rubidium dihydrogen arsenate,
lithium niobate, barium titanate, and barium sodium
niobate, to mention anly a few.

A Pockels ceil is simply an appropriate noncentrosym-
metric, oriented, single crystal iramersedin a control-
lable electric field. Such devices can usually be operated

 
 

Transparent

Polarizer

Figure 8.66 A Pockels ceil.

 
 

 
  

 
 
 
 

 

at fairly low voltages (roughly 5 to 10 times leg, pg
that of an equivalent Kerrcell}; they arelinear, ‘
course there is no problem with toxic liquids
response time of KDPis quite sbort, typically leg.
10 ns, and it can modulatea light beam at up to aI
25 GHz (Le., 25 X 10° Hy). There are two commondil
configurations, referred toas transverse and, longitndy
depending on whether the applied E-fieldis pes
dicular or parallel to the direction of prop;
respectively. The longitudinal type is illustrated, j
most basic form, in Fig. 8.66. Since the beam travers
the electrodes, these are usually made of transpas@my
metal-oxide coatings (e.g., SiO, InO, or Cdo),
metal films,grids, or rings. Thecrystalitself is genes
uniaxial in the absence of an applied field, anal
aligned such that its optic axis is along the bean
propagation direction. For such an arrangement if
retardance is given by .

Ag = 2anbresViAa, hae
where 73 is the electro-optic constant in m/V, n, is the
ordinary index of refraction, V is the poten: |
difference in volts, and Ajis the vacuum wavelengtly
meters.” Since the crystals are anisotropic, their profs
ties vary in different directions, and they mus'
described by a group of termsreferredto collectivé
as the second-rank electre-optic tensor r,. Fortunaté!
we need only concern ourselves here with one off
components, namely, 153, values of which are given in
Table 8.4. The half-wave voltage correspondstoa valug
of Ag = a, in which case

4 
bg a 43)ale

and from Eq. (8.42)

Ve= cameInte,
As an example, for KDP, rag = 10.6 x 107? m/V, ©
1.51, and we obtain V,,2 = 7.6 X 10° Vat Ag = 546.1 nm.
 

  
 

* This expression, along with the appropriate anefor the s
mode,is derived rather nicely in A. Yariv, Quantum Electronics.so, the treatment is sophisticated and nat recommended forreading,

493
(units of 107 m/V) Gnkyy 

ckels cells have been used asultra-fast shutters,
witches for lasers, and de to 30-GHz light modu-
. They are also being applied in a wide range of
optical systems, for example, data processing

id display techniques.”

at2 AMATHEMATICAL DESCRIPTION OFPOLARIZATION

far we have considered polarized light in terms
¢ electric field component of the wave. The most

general representation was, of course,that of elliptical
fight. There we envisioned the endpoint of the vector
{f continuously sweeping along the path of an ellipse
ftaving a particular shape—thecircle andline being
Gpecial cases. The period over which the ellipse was
ffraversed equaled thar of the lightwave (.e., roughly
20" s) and was thus far too short to be detected. In
fentrast, measurements madein practice are generally

rages over comparatively long time intervals.

F. it would be advantageous to formulate anternative description of polarization in terms of con-
fenient observables, namely irradiances. Our motives

‘far more than the ever-present combination of ace-
ics and pedagogy. The formalism to be considered

has far-reaching significance in other areas of study,
fer example, partide physics (the photonis, after allan 

812 A Mathematical Description of Polarization gar

elementary particle) and quantum mechanics.It serves
in some respects to link the dassical and quantum-
mechanical pictures. But even more demanding of our
present attention are the considerable practical advan-
tages to be gleaned from this alternative description.
‘Weshall evolve an elegantprocedure for predicting the
effects of complex systems of polarizing elements on
the ultimate state of an emergent wave. The mathe-
matics, written in the compressed form of matrices, will
require only the simplest manipulation of those
matrices. The complicated logic associated with phase
retardations, relative orientations, and so forth, for a
tandem series of wave plates and polarizers is almost
all built in. One need only select appropriate matrices
from a chart and drop them into the mathematical mill.

8.12.1 The Stokes Parameters

The modern representation of polarizedlight attually
hadits origins in 1852 in the work of G. G. Stokes. He
introduced four quantities that are functions only of
observables of the electromagnetic wave and are now
known asthe Stokesparameters.* The polarization state
of a beam oflight (either naturalortotally or partially
polarized) can be describedin terms of these quantities.
‘Wewill first define the parameters operationally and
then relate ther to electromagnetic theory. Imagine
that we have a set of fourfilters, each of which, under
naturalillumination,will transmithalf the incidentlight,
the other half being discarded. The choice is not a
unique one, and a numberof equivalent possibilities
exist.Suppose then thatthefirst filteris simply isotropic,
passing all states equally, whereas the second and third
are linear polarizers whose transmission axes are
horizontal and at +48° (diagonal along the first and
third quadrants), respectively. Thelast filter is a arcular
polarizer opaqueto £-states, Each of these fourfilters
is positioned alone in the path of the beam under 

 
 
  

reader interested in light modulation in gencral should consult
Nelson, “The Modulation of Laser Light,” Scientific American

He 1968). Fos some of the practical details see R. S. Ploss, “A
giew of Electro-Optics Materials, Methods and Uses,” Optical
tra (fan. (Feb, 1969), or R. Goldstein, “Pockels Cell Primer,” Laser
8 Magnine (Feb, 1968}, bork of which contam useful bib-eeraphies

 * Muchof the material in this sectionis treated more extensively in
Shurcliff’s Polarized Light: Produchon and Use, whichis something of
a classic am the subject. You mightalso look at M. J, Walker, “Matrix

  
Calculus and the Stokes Parameters of Polarized Radiation,’ Am J.
Phys. 22, 170 (1954), and W.Bickel and W, Bailey, “Stokes Vectors,
Muciler Matrices, and Polarized Scattered Light,” Am. J. Phys. 53,
468 (1985),
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investigation, andthe transmitted irradiances Ip, I;, I2,
I, are measured with a type of meterthatis insensitive
to polarization (notall of them are). The operational
definition of the Stokes parametersis then given by therelations

So™ 20 (8.454)
8, =27,-2h (8.45b}
82 = 2Ig—Qly (8.450)
S37 2I,- 2p. (8.450)

Notice that 8» is simply the incidentirradiance, and 8,,
Sz, and 8, specify the state of polarization. Thus 8,
reflects a tendency for the polarization to resemble
either a horizontal P-state (whereupon 8, > 0) or a
vertical one (in which case 8, <0}. When the beam
displays no preferential orientation with respect to these
axes (3, = 0) it may beelliptical at +45°, circular, or
unpolarized. Similarly 8 implies a tendency for the
light to resemble a #-state oriented in the direction of
+45° (when 8, > 0) or in the direction of —45° (when
8. < 0) or neither (8. = 0). In quite the same way 85
reveals a tendencyof the beam toward right-handedness
(8s > 0), left-handedness (82 < 0), or neither (S, = 0).

Nowrecall the expressions for quasimonochromatic
light, *

E,(i) ~ 1Ep.(t) cos ((— t)+e()]  18.34¢a)7
and

E,(0) = JEo,(é) cos [(& — 62) + e,(t)],
where E(i)=E,(t)+ E,(t). Using these in a fairly
straightforward way, we can recast the Stokes para-meters* as

£8.94(6)}

8 = (E5,) + (ES) (8.460)
8, = (E5,) — (Eo) (8.466)
82 = (QEo,.Eo, cos £) (8.46)
$83 = (2EoxEoy sin €). (8.46d)

Here ¢ = ¢, — ¢, and we’ve dropped the constant €gc/2,
so that the parameters are now proportional to irradi-

B12 A

 ances. For the hypotheticalcase of Perfey nes vectors for somepolarization states.
matic light, Eox(t}, Eo,(2), and F(t) a
dent, and one need only drop the (
(8.46)to get the applicable Stokespara’
ingly enough, these same results can¥ ;
time averaging Eq.(8.14), whichis the °5forelliptical light.* ie

If the beam is unpolarized, (£2)
averages to zero, because the amplitude
always positive, In that case 89 = (E32) 4 (E
Se = 85 = 0. The latter two parameters Boe
both cos ¢ and sin ¢ averageto zero indey
the amplitudes. It is often convenienttp
Stokes parameters by dividing each one’
So. This has the effect of using an incid,
irradiance. The set of parameters (So;
natural light in the normalized represe;
(1, 0, 0, 0). If the light is horizontally po}no vertical component, and the normalize4
are {1,1,0,0). Similarly, for vertically
we have (1,—1,0,0). Representations ofy
polarizationstates are listed in Table 8.5 (th
are displayed vertically for reasonsto be d
Notice that for completely polarized light jam re
Eq. (8.46) that

andJo
Stokes vectors Jonesvectors 

 

 

   

  
 

 
85 = S74 83483.

   
Moreover, for partially polarized light it an bh
that the degree of polarization (8.29) iszivem b

V = (Si 4 83+ 88)'7/80.

 

 
—2), the composite wave has parameters
2). It is an ellipse of flux density 3, more

Be vertical than horizontal (8, <0), left-handed
and having a degree of polarization of V5/3.

"=08 parameters for a given wave can
Sa vectar; we have already seen how two
ent) vectors add.* Indeed,it will not be
of three-dimensionalvector,butthis sort

mis rather widely used in physics to
Be. More specifically, the parameters
ere arrangedin the form of whatis called

Imagine now that we have two quasimono
waves described by (S54, 81, 8, $$) and (So,
which are superimposed in some region of §long as the waves are incoherent, any one
parameters of the resultant will be thecorresponding parameters of the consti
which are proportional to irradiance). 48
the set of parameters describing the rest
8%, 8$ + Sf, 84 + 84, 54 + 84). For example,
density vertical P-state (,—1,0.0) is 4
incoherent L-state (see Table 8.5) of flux

 
  
  

 

 
  

  
* For the details sée E. Hecht, “Note on an Operational Definition
of the Stokes Parameters,” Am, J. Phys. 98, 1156 (1970).

 irements for a collection of objects to form a
emselves be vectorsim such a space are discussed*E. Collett, “The Description of Polarization in ”"Mt, Introduction to Vector Analysis.Am, J. Phys. 86,713 (1968).
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7 Anotherrepresentation of polarized light, which com-

a cable to coherent beams and at the same time being
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a column vector,
    
  
 
 
 
  8.12.2 The Jones Vectors
  
  
  plements that of the Stokes parameters, was invented

in 1941 by the American physicist R. Clark Jones. The
technique heevolved has the advantagesnf being appli-

  
       extremely concise. Yet unlike the previous formalism,

it is only applicable to polarized waves. In thatcase it would
seem that the most natural way to represent the beamwould be in termsof theelectric vector itself. Written
in column form, this Jones vector is

E,
ne [ 20),Ett)

where E,(i} and E,(t) are the instantaneousscalar com-
ponents of E. Obviously, knowing E, we know every-
thing about the polarization state. And if we preserve
the phase information, wewill be able to handle coher-
ent waves, With this in mind, rewrite Eq. (8.50) as

rl© LEoye?
where ¢, and ¢, are the appropriate phases. Horizontal
andvertical P-states are thus given by

E [ee af [ 0 | seh 0 an Yo Eqye'* > 52)
respectively. The sum of two coherent beams, as with
the Stokes vectors, is formed by a sum of the corre-
sponding components. Since E=E,+E,, when, for
example Eo, — Eo and y,~ yy, E is given by

[ ; i
E

Eoxe**=

  
     
      
   
     

8.50}

  

  
  
    

 
(8.51)

  
  
  

 
  
  
  
  

  (8.53)  
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or, after factoring, by

E= koe|, (8.54)
which is a @-state at +45°. This is the case since the
amplitudes are equal and the phase differenceis zero.
There are many applications in which it is not necessary
to know the exact amplitudes and phases. In such in-
stances we can normalize the irradiance to unity, thereby
forfeiting some information but gaining much simpler
expressions. This is done by dividing both elements in
the vectorby the same scalar(real or complex) quantity,such that the sum of the squares of the componentsIs
one. For example, dividing both terms of Eq. (8.53) by
V2 Eose'® leads to itt35], | (8.55)

Ba 9 [ A ‘
Similarly, in normalized form

1 |
= - : 8.56)

E, [4 and E, [? (8.56)
Right-circular light has Eo, = Zo,, and the component
leads the x-componentby 90°. Since we are using the
form (kz— wt), we will have to add —7/2 to @,, thus

Eyl
Ex * Enearr|"

Dividing both components by Enye®, we have

[ot-[5]
hence the normalized Jones vectorist

 Ex [4] and similarly E¢
The sum Eg + Egis

1 [ [+1] 2 (31Val-it+ijy v2lol°
aT
+ Had we used (at — hz) for the phase, the tertns in Eq would have
been interchanged. The present notation, although possibly a bit
more difficult to keep straight(¢.g., —17/2 for a phase lead), is moreoften used in modern works. Be wary when consulting references
(e.g. Shurcliff.

 
  

 

 

  This is a horizontal ?-state havinganathat of either component,a result in
ourearlier calculation of Eq. (8.10). THY
forelliptical light can be obtained by the
usedto arrive at Eg and Ey, where no;
be equal to Eo,, and the phase diferente
90°. In essence, for vertical and horizontal] i
we need to dois stretch outthe circular fom:
ellipse by multiplying either componenty by

L)2
V5L~i

describes one possible form of horizontalg
elliptical light.Two vectors A and B aresaid to be mr

fement, emerging as a new vector E, corre-é transmitted wave. The optical element
ed E; into E,, a process that can be
ematically using a 2x 2 matrix. Recall

trix is just an array of numbers that has
4 dition and multiplication operations. Let

Bihe nransformation matrix of the optical

 
  
  
  

t MP ,estion. Then
E, = #E;,

[en a|a age)’
ame to be treated like any other

we write Eq. (8.59) as

[E| =[e" aeEe, est)psy, M3) OglLEy.
Mecsparretg, we obtain

Ey GEig + dinky,
Ey©GeEi + Gg2Ey.

 (8.59)   

 
 

(8.60)

     
    

 
  
 orthogonal. For example,

Eq’ Eb = H(1)(L)* + vt  or
  
 E, + EF = [(1)(0)* + (0)(1)"] = 0,

where taking the complex conjugates of 14
Hl coxtsins a brief listing of Jones matrices for

tyjical elements. To appreciate how these are
‘seuscine a few applications. Suppose that E,
fi P-state at +45°, which passes through a
pave plate whosefast axis is vertical(i.¢., in the) The polarization state of the emergent
pundas follows, where we drop the constant-fieitira for convenience:

S 1t)-[E)

2 -[4]
4 : Fe 08 well know,is right-cireular. If the

ae ugha series of optical elements rep-matrices 1, e,...,@y, then

  
  
 

Eg: Ei = Ey EE = 1  
 and
  Ex - Ef @ Ey: E& = 0.  

Such vectors form an orthonormalset, as
As we haveseen,any polarization state @
by a linear combination of the vectors
the orthonormal sets. These sameideas
able importance in quantum mechanieydeals with orthonormal wave functions}

 

  
  

 
8.123 The Jones and Mueller Ma   
 

jzed in
Suppose that we have a polarized i1
resented by its Jones vector Ey, which pass
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Table 8.6 Jones and Mueller mairices.=
 

 
Linear optical element |_Jones matrix Mueller matrix

1 10 0]
Horizontal linear 10 ir oo

polarizer “ a0 gle o 9 0
0 0 0 0}
1-1 0 8)

Vertical linear 00 if-1 100polarizer 4 o1 2}0 0080
0 00
10 1 0]

Linearpolarizer yt i 1/0 0 0 0at +45° ” ali t 2]1 010
¢ 00 0]
10-1

Linear polarizer { i o-1 i|oo0 00at 45° ‘ 2l-r 1 2|-l @ 1 4
oo 0

i 00 0]
Quarter-waveplate, waft 0 ola 06

fast axis vertical ele = 000 -t
00 0]
10 04

Quarter-wave plate, wn] 0 01 0
fast axis horizontal lo a 00 0

oo -1 af
106 1

Homogeneouscircular a i]o 0 0 0
polarizer right =O] gl -i 1 2}0 0001001

100 -1
Homogeneouscircular fa -i i} oe 00 0

polarizer left o| Galeri 2} 000.090 1

  
the proper order. The wave leaving the first optical
elementin theseriesis .f,E,; after passing through the
second element, it becomes .,.0¢,E,, and so on. To
illustrate the process, return to the wave considered
above (i.¢., a P-state at +45°), but now have it pass
through two quarter-wave plates, both with their fast
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axes vertical. Thus, again discarding the amplitude fac-tors, we have
1 Of}/1 Off1E,

ob Alle SILh
whereupon

 
and finally

The transmitted beam is a P-state at —45°, having
essentially been flipped through 90° by a half-wave
plate. When the sameseries of optical elementsis beingused to examine various states it becomes desirable to
replace the product ,,.*-- s/g0f, by the single 2x 2
system matrix obtained by carrying out the multiplication
(the order in which it is calculated should be sow,
then Wyeaf, etc.).

In 1943 Hans Mueller, then a professor of physics at
the Massachusetts Institute of Technology, devised a
matrix method for dealing with the Stokes vectors.
Recall that the Stokes vectors havetheattribute of being
applicable to both polarized and partially polarized
light. The Mueller methodshares this quality and rhus
serves to complement the Jones method. Thelatter,
however, can easily deal with coherent waves, whereas
the former cannot. The Mueller, 4 x 4, matrices are
applied in much the same wayas are the Jones matrices.There is thereforelittle need to discuss the method at
length; a few simple examples, augmented by Table
8.6, should suffice. Imagine that we pass a unit-irradi-
ance unpolarized wave through a linear horizontal
polarizer. The Stokes vector of the emerging wave8,is

1 10 Offi 4

gotft 1 © 9) Jol _*~2fo 0 0 of fo] joy
0 0 0 Of LO 0

The transmitted wave hasan irradiance nf 48, = and
is linearly polarized horizontally (8, > 0). As another
example, suppose we have a partially polarizedelliptical 

   
  

Problems 327

    8.9* Suppose that we havea pairof crossed polarizerswith transmission axes vertical and horizontal. The
beam emerging from thefirst polarizer has flux density
I,, and of course nolight passes through the analyzer
(e., Ig=0}. Now insert a perfect linear polarizer (HN-
50) with its transmission axis at 45° to the vertical
between the two elements—compute Ig. Think about
the motion of the electrons that are radiating in each

wave whose Stokes parameters haye be:
tobe, say, (4,2, 0,8). Itsirradiance is 4; je
horizontal than vertical (8; > 0), itis rigng0), and it has a degree of polarization
none of the parameters can be larger th
of $,=3 is fairly large, indicating thar id
resembles a circle. If the wave is now ma, ,
@ quarter-wave plate with a vertical fast ania’ the

p

ically. show that the superposition of an R-
sically,

fe having different amplitudes will yield
shown jn Fig. 8.8. What must & be toa      pat igure?

   
    Me on expression for a P-state lightwave ofrice

De nency @ and amplitude Ey propagating
his with its plane of vibration at an angle   

 
 
    

    
   

  
 
  

 
 
      

 
 
  

     

100 ors Fo the xyplane. The disturbance is zero at != 0 polarizer.
g.=|° 19 Offa ar ° 8.10* Imagine that you have two identical perfect
‘|e 0 0 -1} J}o Gyrite an expression for a P-state lightwave of linear polarizers and a source of natural light. Place001 ols pt ency # and amplitude Ey propagating them one behind the other and position their trans-‘n the xyplane at 45° to the x-axis and mission axes at 0° and 50°, respectively. Now insert

ne of vibration corresponding to the xy- between them a third linear polarizer with its trans-
ee 0, and x = 0 thefield is zero. mission axis at 25°. If 1000 W/m?oflightis incident,£ how much will emerge with and without the middle

2 Gyrite an expression for an @-state lightwave of polarizer in place?
a= 3" ency © propagating in the positive x-direction ;

0 at #=0 and x =O the E-field points in the 8.11 Suppose that an ideal polarizer is rotated at a   rate w between a similar pair of stationary crossed
polarizers. Show that the emergent flux density will be
modulated at four times the rotational frequency. Inother words, show that

  
  The emergentwave has the sameirradiance

of polarization but is now partially linearl
Wehave only touched ona fewof the motel

aspects of the matrix methods. The full exter
subject goes far beyond these introductory] remg

   tially natural and of flux density
through two sheets of HN-32 whose trans-

§ are parallel, what will be the Aux density
erging beam?

 
        

 
 

  f,

I sail —cos 4 wt),
 

  
   
 be the irradiance of the emerging beam where I, is the Aux density emerging from the first

of the previous problem is rotated 30°?PROBLEMS polarizer andJis the final flux density.8.1 Describe completely the state of polari
each of the following waves:

      
   8.12 Figure 8.67 showsa ray traversinga calcite crystal

at nearly normal incidence, bouncing off a mirror, and
then going throughthe crystal again, Will the observer
see a double image of the spot on Z?

   a) E= iE, cos (kz — wt) — [Eq cos (kz — @?)
b) E= f£p sin 2a(zfA — vt) — JEo sin 2ac) E= 1k, sin (wt — Az) + jEp sin (wi — 2
dE ‘9 COs (wt ~ hz) + JEq cos (wt k
  
  
  
   
  
   
  
 

 

8.2 Consider the disturbance given by the
E(z, t) =[icos wt + j cos (et — 7/2)]Eo sin ke
of wave is it? Draw a rough sketch showizfeatures.

 

*One can weave a more elaborate and math
developmentin termsof something called the sohere
further, but more advanced, reading, sce O'NeilStatistical Optics. 
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8.18" A pencil mark on a sheet of paper is covered
by a calcite crystal. With illumination from above,isn’t
the light impinging on the paper already polarized,
having passed through the crystal? Why then do we see
two images? Test your solution by polarizing the light
from a flashlight and then reflecting it off a sheet of
Paper. Try specular reflection off glass; is the reflected
light polarized?

8.14 Discuss in detail what you see in Fig. 8.68. The
crystal in the photographis calcite, and it has a blunt
cornerat the upper ieft, The two polaroids have their
transmission axes parallel to their short edges.

ls

Figure 8.68

8.15 The calcite crystal in Fig. 8.69 is shown in three
different orientations. Its blunt corner is on the left in
(a), the lower left in (b), and the bottom in (c). The
polaroid’s transmission axis is horizontal. Explain each
photograph,particularly (b).

8.16 In discussing calcite we pointed outthatits large
birefringence arises from the fact that the carbonate
groups lie in parallel planes (normal to the optic axis).
Show in a sketch and explain whythe polarization of
the group will be less when E is perpendicular to the
CO,plane chan whenEis parallel to it. What does this
mean with respect to v, and v,, that is, thewave’s speeds
whenEis linearly polarized perpendicular or parallel
to the optic axis? Figure 8.69

e that we have a transmitter of micro-
ee: ates a linearly polarized wave whosesae to be parallelto the dipole direction,ect as much energy as possible off the

ad (having an index of refraction of 9.0).
ry incident angle and commenton the

 

 

atural light is incident on an air-
race (Mh; = 1-5) at 40°, Compute the degree
ion of the reflected light.

  

(a)
 

eflectance. How would this compare with
pe ineuleve® at, say, 56.3°? Explain.

‘of yellow lightis incident on a calcite plate
plate is cut so that the optic axis is parallelRi face and perpendicular to the plane of
ind the angular separation between the two

 

   
 

oflightis incident normally on a quartz
peptic axis is perpendicular to the beam. If

fim. compute the wavelengths of both the
and extraordinary waves. What are their”
 

 A beam oflight enters a calcite prism from the
S Bliown in Fig. 8.70. There are three possible

of the optic axis of particular interest, and
spondto the x-, », and z-directions. Imagine
ffhrme such prisms.In each case sketch the

eng and emerging beams, showing the state of
gation. How can any one of these be used toir A. and n,?
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8.23 The electric field vector of an incident ¥-state
makes an angle of +30° with the horizontal fast axis of
a quarter-wave plate. Describe, in detail, the state of
polarization of the emergent wave.

8.24 Computethecritical angle for the ordinary ray,
that is, the angle for total internal reflection at the
calcite-balsam layer of a Nicol prism.

8.25" Draw a quartz Wollaston prism, showingall per-
tinentrays and their polarization states.

8.26 The prism shown in Fig. 8.71 is known asa Rochon
polarizer. Sketch all the pertinent rays, assuming
a) thatit is made ofcalcite.
b) that it is made of quartz.
c) Why might such a device be more useful than a

dichroic polarizer when functioning with high-flux-
density laser light?

d) What valuable feature of the Rochon is lacking in
the Wollaston polarizer?

Figure 8.71

8.27* Take two ideal polaroids (the first with its axis
vertical and the second, horizonta]) and insert between
themastack of 10 half-wave plates, thefirst with its fast
axis rotated #/40 rad from the vertical, and each sub-
sequent one rotated 7/40 rad from the previous one.
Determine the ratio of the emergingto incidentirradi-
ance, showing yourlogic clearly.

 
   
   

8.28" Suppose you wereoriginally given only a linear
polarizer and a quarter-wave plate. How could youdetermine which was which?
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8.29" An &-state traverses an eighth-wave plate hav-
ing a horizontal fast axis. Whatis its polarization state
on emerging?

8,30* Figure 8.72 shows twopolaroidlinear polarizers
and between them a microscope slide to which is
attached a piece of cellophanetape. Explain what yousee.

 
Figure 8.72

8.31 A Babinet compensator is positioned at 45°
between crossed linear polarizers and is being i!lumi-
nated with sodium light. When a thin sheet of mica
(indices 1.599 and 1.594) is placed on the compensator,
the black bands all shift by } of the space separatingthem. Compute the retardance of the sheet and itsthickness.

8.32 Imagine that we have unpolarized room light
incident almost normally on the glass surface of a radar
screen. A portion of it would be specularly reflectedback toward the viewer and would thus tendto obscure
the display. Suppose now that we cover the screen with
a right-circular polarizer, as shown in Fig. 8.73. Trace
the incident and reflected beams, indicating their
polarization states. What happensto the reflected beam?

8.33 Is it possible for a bedm to consist of two
orthogonal incoherent -states and not be naturallight?
Explain. How might you arrange to have such a beam?

 
 
   

 
8.34* The specific rotato
solved in water at 20°C (Ay oe 5803an
10cm of path traversed through a solu aa
1g of active substance (sugar) per ann
vertical #-state (sodium light) enters. ate y\-m tube containing 1000 cm!of soh ong" eaten ution, Gf
is sucrose, At what orientation will the ;

   wa il
gna

=, detail the polarization states of each ofin

       
pone? light beams represented by
0,0, 8) are superimposed.   

     
   

«ne the resulting Stokes parameters of the
Pateam and describe its polarization state.
f degree of polarization?
the resulting light produced by overlapping

Rrerent beams (1, 1,0,0) and (1, -1, 0,0)?

 
 

 
   
  

8.35 On examining a piece of stressed
material between crossed linear polarize; oy
see a set of colored bands (sochromatics) an
posed on these, a set of dark bands (iso
might we removetheisoclinics,leaving only
matics? Explain your solution, Incidental}
arrangementis independentofthe orient.photoelastic sample.

 
 
   
  
 Ghow by direct calculation, using Mueller

hat a unit-irradiance beam of naturallight
ough a yertical linear polarizer is convertedwal #-state. Determineits relative irradiance
ef polarization.

    
     
  

8.36* Considera Kerrcell whose plates aregan
by a distance d. Let ¢ be theeffective engi
plates (slightly different from the actuallem
of fringing of the field). Show that

Ag = QaKévi/a?_

  how by direct calculation, using Mueller{a unit-irradiance beam of natural light
ugh a linear polarizer withits transmissionBPis converted into a P-state at +45°. Deter-

irradiance and degreeof polarization,

  
  
 
  
 
   
 

8.37 Computethe half-wavevoltagefor alle
Pockels cell made of ADA (ammonium
arsenate) at Ap ~ 550 nm, where res = 5.
tie = 1.58.

 
by direct calculation, using Mueller

ta beam of horizontal P-state light passing
-plate with its fast axis horizontal emerges

  
   
      
  
 8.38 Finda Jones vector Eg representing a

state orthogonalto
 

fonfirm that the matrix       

    
_f 14a96 O

F(a 000 -1Sketch both of these. 001 0
6810 0   

Glassseenaa
   Right circular polarizer &-85 a Mueller matrix for a quarter-wave plate

; at axis at +45°. Shine linearlight polarized atMough it. What happens? What emerges when aOnlal P-state enters the device?

      
  
 

Terie the Mueller matrix for a quarter-wave
ia its fast axis at —48°, Check that this matrixW cancels the previous one, so that a beam
through the two wave plates successivelyeanaltered,

  
 
 
 Figure 8.73   
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 8.45* Passa beam of horizontally polarized linearlight
through each oneofthe 4A-plates in the two previous
questions anddescribe the states of the emerginglight.
Explain which field component is leading which and
how Fig. 8.7 compares with these results.
8.46 Use Table 8.6 to derive a Mueller matrix for a
half-wave plate haying a vertical fast axis. Utilize your
result to convert an #-state into an Y-state. Verify that
the same wave plate will convert an £- to an &-state.
Advancing or retarding the relative phase by 2/2 should
have the sameeffect. Check this by deriving the matrix.
for a half-wave plate with a horizontal fast axis.

8.47 Construct onepossible Mueller matrix fora right-
circular polarizer madeoutof a linear polarizer and a
quarter-wave plate. Such a device is obviously an
mhomogeneoustwo-elementtrain and will differ from
the homogeneous circular polarizer of Table 8.6. Test
your matrix to determine that it will convert natural
light to an ®-state. Show thatit will pass 9-states, as
will the homogeneous matrix. Your matrix should con-
vert ¥-states incident on the input side to &-states,
whereas the homogeneouspolarizerwill totally absorb
them. Verify this.

8.48* If the Pockels cell modulator shownin Fig. 8.66
is illuminated bylight of irradiance fj, it will transmit
a bearn ofirradiance J, such that

J, = sin? (Ag/2).
Make a plotof J,/J, versus applied voltage. Whatis the
significanceof the voltage that corresponds to maximum
transmission? Whatis the lowest voltage above zero that
will cause I, to be zero for ADP (Aq = 546.1 nm)? How
can things be rearranged to yield a maximum value of
iff, for zero voltage? In this new configuration what
irradiance results when V=V,,9?

849 Construct a Jones matrix for an isotropic plate
of absorbing material having an amplitude transmission
coefficientof ¢. It might sometimes be desirable to keep
track of the phase, since eyen if ¢= 1, such a plate is
still an isotropic phase retarder. Whatis the Jones matrix
fora region of vacuum? What isit fora perfect absorber?
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8.50 Construct a Mueller matrix for an isotropic plate
of absorbing material having an amplitude transmission
coefficient of 4 What Mueller matrix will completely
depglarize any wave Without affectingits irradiance? (Ithas no physical counterpart.)

 
 
 

 
 
  
  

 
 
 

8.51 Keeping Eq. (8.29) in mind, write
for the unpolarized flux-density comp
partially polarized beam in terms of thy
meters. To check yourresult, add an unpe
vector of Aux density 4 to an R-state of gi
Then see if you get I, = 4 for the resultaril

 
 INTERFERENCE

ve color patterns shimmering across an oil
<msphalt pavementresult from one of the

eireti manifestations of the phenomenon of
On a macroscopic scale we might con-

ated problem of the interaction of surface
pool of water. Our everyday experience
f situation allowsus to envision a complex

the individual constituent disturbances. Briefly then,
optical interference may be termed an interaction of two or
more lightwaves yielding a resultant irradiance that deviates 

 

be regions where two (or more) waves
d, partially or even completely canceling

roti] other regions mightexist in the pattern,
sultant troughs and crests are even more
han those of any of the constituent waves.
uperimposed, the individual waves sepa-

Pentinue on, completely unaffected by their
ious Encounter.

Bipena arising from optical interference would,
be quite difficult to interpret in terms of a

scular model. The wave theoryofthe elec-
giature of light, however, providesa natural
phich to proceed. Recall that the expressionihe optical disturbance is a second-order,

linear, partial, differential equation
ave seen,it therefore obeys the important
exposition. Accordingly, the resultantelec-

sity E, at a point in space where two or
waves overlap, is equal to the vector sum of

 

  
  
 

  

  
 

    
  
   
  

 
 

    

 

  
  

 
Planar surface. The black asphalt absorbs thePreventing back reflection, which would tend to

Figure 9.1 Water waves [rom two point sourcesin a ripple tank.
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from the sum of the component irradiances.
Outof the multitude of optical systems that produce

interference, we will choose a few of the more important
to examine. Interferometric devices will be divided, for
the sake ofdiscussion, into two groups: wavefront split-
fing and amplitude splitting. In the first instance, por-
tions of the primary wavefrontare used either directly
as sources to emit secondary waves or in conjunction
with optical devices to produce virtual sourcesof secon-
dary waves. These secondary waves are then brought
together, thereuponto interfere. In the case of ampli-
tude splitting, the primary waveitself is divided into
two segments, which travel different paths before re-
combining andinterfering.

9.1 GENERAL CONSIDERATIONS

Wehave already examinedthe problem of the superpo-
sition of two scalar waves (Section 7.1), and in many
respects those results will again be applicable. Butlight
is, of course, a vector phenomenon;the electric and
magnetic fields are vector fields. And an appreciation
of this fact is fundamental to any kind of intuitive
understanding of optics. Still, there are manysituations
in which the particular optical system can be so
configured that the vector nature of light is of little
practicalsignificance. Wewill therefore derive the basic
interference equations within the context of the vector
model, thereafter delineating the conditions under
which the scalar treatmentis applicable.

In accordance with the principle of superposition,
the electric field intensity E, at a point in space, arising
from theseparate fields E;, Ez, ... of various contribut-
ing sources is given by

E=E,+E,+:--. (9.4)
Once again, note that the optical disturbance, or light
field E, varies in time at au exceedingly rapid rate,
roughly

4.3x10'Hz to 7.5 x 10" Hz,
making the actualfield an impractical quantity to detect.
Qn the other hand, the irradiance J can be measured
directly with a wide variety of sensors(e.g., photocells,

bolometers, photographic emulsions, op2
then, if we are to study interferenceg Me:approach the problem by wayofthe irradi

Much of the analysis to follow can be |
without specifying the particular shape ot
fronts, and the results are therefore quite; ge:
their applicability (Problem 9.1). For the atheplicity, however, consider two point sou: 3
emitting monochromatic wavesof thesa;
in a homogeneous medium. Furtherny A
separation @ be muchgreater than A. Located
of observation P far enough away from the
that at P the wavefronts will be planes (Fig. 9,9)
the moment, we will consider onlylinearly polawaves of the form @

E,(r, f)~Eo: cos (ky ~~ ast 4 py) fiffxes from two point sources overlapping in space.and
Eo(r, !) = Egg cos (kg +r atl + wgl  

. = z= (ED, (9.6)Wesaw in Chapter $ thatthe irradianceat P
I= eX{E’),

Tg = 2{E; * Ep). (9.7) 
Inasmuch as we will be concerned only with,
irradiances within the same medium, we will,
time beingatleast, simply neglect the constan

et expression is known as the interference term.
ate it in this specific instance, we form 

 

I= (8), E, - Ey = Eo, - Eos cos (ki *r — wi + €;)
What is meant by (E*) is of course the time X cos (ke +r — wt + 9) (9.8)
the magnitudeoftheelectric field intensity iyurvalently{E- E). Accordingly

Ey +E, = Exo + Eop [cos (ky “r+ 2)E?=E-E, X cos wt + sin (ky r+ ;
where now in (k, ++ €1) sin wt]x .

Ets (+E) i+ Eh [608 (ke+r + £9) cos wf+sin (ky i
and thus in (Ko+r+ €5) sin wi]. (9.9}

 € time average of some function f(#), taken
E? +E; + 2E;° Ee. Pilerval 7: iswe ntl

 
Taking the time average ofboth sides,irradiance becomes

T=h+hthe,
; 1 ferfo =4 | f'yae’. (9.10)

7 of the harmonic functions is 27/w, andt concern T » +, In that case the /T
TOnt of the integral has a dominanteffect.

provided that  

 1, = E)),
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9-4 General Considerations 335

Wavefronts

After multiplying out and averaging Eq. (9.9) we have
(Ei + Ez) = $Ep1 ¢ Eos cos (ky +r + 6) kg +r — €5), 1

where use was made of the fact that (cos? wt) = 4,
(sin? wt) = 4, and (cos wt sin wt) = 0. The interferenceterm is then

Tig = Ep; * Egg cos 8, 9.11)
and 6, equal to (k,+r—ky-r+6,~ 6), is the phase
difference arising from a combined path-length and
initial phase-angle difference. Notice that if Ep; and Egg
{and therefore E,; and Es) are perpendicular, I), =0
and I = I, + I,. Two such orthogonal ¥-states will com-
bine to yield an &-, &-, P-, or S-state, but the flux-
density distribution will be unaltered.

The most commonsituation in the work to follow
corresponds to E,, parallel to Egg. In that case, the
irradiance reduces to the value found in the scalar
treatment of Section 7.1. Under those conditions

Typ = Eo; Egg cos8,
This can be written ina moreconvenient way by noticingthat

  
  

(9.12) 
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and

i, = (ER) = (9.13)
Theinterference term becomes

Lig = 2VI,Ig cos 8,
whereuponthe total irradianceis

P=I+Ig+QWIIncos 6. (9.14)
At various points in space, the resultant irradiance can
be greater, less than, or equal to I, + Jp, depending on
the value of Iyg, that is, depending on 6. A maximum
in the irradiance is obtained when cos 6 = I, so that

Tnx = Ly + fy + WTIy (9.45)
when

6=0,+2a,+47,....
In this case the phasedifference between the two waves
is an integer multiple of 27, and the disturbances are
said to be in phase. One speaksofthis as fofal constructive
interference. When 0<cos& <1 the waves are out of
phase, I, + Ip< I <Ipqx, and the result is known as
constructive interference. At 8©7/2, cos 6 = 0, the optical
disturbances are said to be 90° out of phase, and J =
I,+I,. For 0>cos&>—I we have the condition
of destructive interference, I, + Ig > I > Imine The min-
imum in the irradiance results when the waves are
180° out of phase, troughs overlap crests, cos 5 = —-1,and

Toin @+ fg — VI. (9.16)
This occurs when 8= +9, +37, +50,..., and it is
referred to as total destructive interference.

Another somewhat special yet very important case
arises when the amplitudes of both waves reaching P
in Fig. 9.2 are equal(i.e., Eg; = Eog). Since the irradiance
contributions from both sources are then equal, let
I, = Ip©Ig. Equation (9.14) can now be written as

8

I= 2Ip(1 + cos 8) = 425 cos" 5. (9.17)
from whichit follows that Ipin =O and Imax 4p. 

 
Equation (9.14) holds equally we

waves emitted by S; and S,. Suchwed \as Ci
 

  

Ex(ri, t)~ Born) exp fir, are p i
p

Eo(rg, t) = Epo(r2) exp [i(kry —7
The terms r; and rz are the radit of th,
wavefronts overlapping at P; in other .
specify the distances from the sources to im

and  

 

5 Rlry ~ 19) + (ey—69),
The flux density in the region surroundaim

S_ will certainly vary from point to point ail
varies. Nonetheless, from the principle of ¢
of energy, we expect the spatial average of
constant and equalto the average of I, + Ty.5if
average of Ij) must therefore be zero,
verified by Eq. (9.11), since the averagetermis, in fact, zero (for further discussion
see Problem 9.2).

Equation (9.17) will be applicable whenfff
between S, and Sz is small in comparison
72 and when the interference regionis also sri
samesense. Underthese circumstances Ey ag
be considered independentofposition, that}
overthe small region examined.If the emithag
are of equal strength, £y; = Eos, ih = Ip =Ihave

 
 
       
  (b)  
 perboloidal surfaces of maximum irradiance for two

Note that m is positive where 7) > 79.
 

I 4Iy cas? Ha(r, — 12) + (e) — €9)]- Rivimum when
(> 12) = (wm! t (eg — ey)I/k. (9.206)Irradiance maxima occur when.  

Bagot these equations defines a family of sur-
which is a hyperboloid of revolution. The
hyperboloids are separated by distances

ight-handsides of Eqs. (9.20a) and (9.20b).
located at S, and S». If the waves are in

atthe emitter, e,— 2, = 0, and Eqs.(9.20a) and
WY 25 tg simplified to

5=2am,
 

provided that m©0, £1, +2,....%
which I = 0, arise when    

b= mm,

vor if youlikegfwhere m’ = +1, +8,45,... Cains a 7
Using Eq. (9.19) these two expressions 1%) Qarm/k=am. (9.210)rewritten such that maximum irradiance © (ny - 1) = am'/k= bm’ d Pr

(ry~to) = [2am + (227 LE i and minimum irradiance, respectively,
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 Figure 9.3(a) shows a few of the surfaces over which
there are irradiance maxima. The dark andlight zones
that would be seen on a screen placed in the region of
interference are known as interference fringes [Fig.
9.3(b)]. Notice that the central bright band, equidistant
from the two sources, is the so-called zeroth-order
fringe (m= 0), which is straddled by the m’ = +1
minima, and these, in turn, are bounded hythefirst-
order (m= +41) maxima, which are straddled by the
m'©+3 minima, andso forth.

  
    

   
    

   
   
 

a
9.2 CONDITIONS FOR INTERFERENCE

It should be kept in mind that for a fringe.pattern ‘to
be observed, the two sources need not be in phase with
each other. A somewhat shifted but otherwise identical
interference pattern will occur if there is someinitial
phase difference between the sources, so long as it
remains constant. Such sources (which may or may not
be in step but are always marching together) are said
to be eoherent.* Rememberthat because of the granu-
lar nature of the emission process, conventional quasi-
monochromatic sources produce light that is a mix
of photon wavetrains,At each illuminatedpointin space
there isa netfield that oscillates nicely (through roughly
a million cycles) for less than 10ns or so before it
randomly changes phase. This interval over which the
lightwave resembles a sinusoid is a measure of what is
called its temporal coherence. The average time inter-
val during which the lightwaveoscillates in a predictable
way we have already designated as the coherence time
of the radiation. The longer the coherence time, the
greater the temporal coherence of the source.

Asobserved from a fixed point in space, the passing
lightwave appears fairly sinusoidal for some number of
oscillations between abrupt changes of phase. The cor-
responding spatial extent over which the lightwave oscil-
fates in a regular, predictable way we have called the ‘
coherence length [Eq. (7.64)]. Once again, it will be
convenient to picture the light beam as a progression
of well-defined, moreorless sinuseidal, wavegroupsof

    
  
    
  
  
    
  
  
    
  
  
  
  

   
  
  
    
  
  
  
      
     
    
 

* Chapter 10 is devoted tothe study of coherence, so here we'll merely
touch on those aspects that are immediately pertinent.
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average length Ax,, whose phases are quite uncorrelated
to one another. Bear in mirid that temporal coherence
is a manifestation of spectral purity. If the light were
ideally monochromatic, the wave would be a perfect
sinusoid with an infinite coherence length. All rea! sour.
ces fall short of this, and all actually emit a range of
frequencies, albeit sometimes quite narrow. For in-
stance, an ordinary laboratory discharge lamp has a
coherencelength ofseveral millimeters, whereas certain
kindsoflasers routinely provide coherence Jengths oftens of kilometers.

Two ordinary sources, two light bulbs ar candle
flames, can be expected to maintain a constantrelative
phase fora time no greaterthan Aj,,so the interference
Pattern they produce will randomly shift around in
apace at an exceedingly rapid rate, averaging out and
makingit quite impractical to observe. Until the advent
of the laser, it was a working principle that no two
individual sources could ever produce an observable
interference pattern. The coherence time of lasers,
however, can be appreciable (of the order of mil-
liseconds}, and interference via independentlasers has
been detected electronically (though not yet by the
rather slow human eye). The most common means of
overcoming this problem, as we shall see, is to make
one source serve to produce two coherent secondarysources.

If two beams are to interfere to produce a stable
pattern, they must have very nearly the same frequency.
A significant frequency difference would result in a
rapidly varying, time-dependent phase difference,
which in turn would cause I, to average to zero during
the detection interval (see Section 7.1). Still, if the
sources both emit white light, the component reds will
interfere with reds, and the blues with blues. A great
many fairly similar, slightly displaced, overlapping
monochromatic patterns will produce onetotal white-
light pattern. It will not be as sharp or as extensive as
a quasimonochromatic pattern, but white light wit! pro
duce observable interference.

The clearest patterns will exist when the interfering
waves have equal or nearly equal amplitudes. The cen-
tral regions of the dark and light fringes wil] then
correspond to complete destructive and constructive
interference, respectively, yielding maximum contrast. 

  
 
 
 
   
   
   
  
     
   
 
 
   

In the previous section, we assum,
overlapping optical disturbance vec tha
polarized and parallel, Nonetheless, ee
Section 9.1 apply as well to more compliindeed the treatment is applicable ye
polarization state of the waves. To appre;
that any polarization state can be synthes
orthogonal #-states. For natural (uny
these P-states are mutually incoherentg but, *tesents no particular difficulty,

Suppose that every wave hasits Propag
in the sameplane,so that we can Jabe] the
orthogonal #-states with respect to that
example, Ey and E,, which are paralie]
dicularto the plane, respectively [Fig. 9.4@
plane wave, whether polarized or not, can
in the form (Ey + E,). Imagine that the wart
and (Ey. +E,2) emitted from two identi
sources superimpose in some region of §
resuiting Aux-density distribution will con:
independent, precisely, overlapping interf
tems ((Ey, + Ejys)") and (E., +E.2)),
although we derived the equations of the ff
tion specifically for linearlight, they are apy
any polarizationstate, including natural lights

Notice that even though E,, and E,sfare
Paralle] to each other, Ey; and Ey, which] ane
reference plane, need not be. Theywill be
when the two heams are themselves paralle
ks). The inherent vector nature of the
process as manifest in the dot-product repr
@.11) of Fig cannot therefore be ignored.
see, there are many practical situations mm
beams approach being parallel, and in thetes=
scalar theory will do rathernicely. Even so, @}
in Fig. 94 are included as an urge to cautongy
depict the imminent overlapping of Si
linearly polarized waves. In Fig. 9.4(b)t
tors are parallel, even though the beatinterference would nonetheless result. In
optical vectors are perpendicular, andwould be the case here evenif the bean

Fresnel and Arago made an extensly§
conditions under which the interfere
light occurs, and their conclusians sum)

 

 

   
 

 

 vmee. The Fresnel~Arago laws are  parakeet 
the:  
 jogonal, coherent -states cannot interfere

Rhe sense that I,, = 0 and nofringes result.
el, coherent #-states will interfere in the

gue way as will nacurallight.
orthogonal #-states of natural

interfere to form a readily observable
@ batfern even if rotated into alignment. This

is understandable, since these P-states are

 
 
 
     

 
 
 
 
 RONT-SPLITTING INTERFEROMETERS
 Bite icmeatto Fig. (9,3), where the equation

  (mre) = mA (P2103  
athe surfaces of maximum irradiance. Since
: th A for light is very small, a large numbers°rr€sponding to the lower values of m will
e: and on either side of, the plane m =0. A
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Figure 9.4 Interference ofpolarized light.

numberoffairly straight parallel fringes will therefore
appear on a screen placed perpendicularto that (m = 0)
plane and in thevicinity ofit, and for this case the
approximation r, * rz will hold. If S, and S, are then
displaced normal to the 5,5; line,the fringeswill merely
be displaced parallel to themselves. Two narrow slitswil] therefore increase the irradiance, leaving the cen-
tral region of the two-point source pattern otherwise
essentially unchanged.

Consider 2 bypothetical monochromatic plane wave
itluminating a long narrow slit. From that primaryslit
a cylindrical wave will emerge. Suppose that this wave,
in turn, falls on two parallel, narrow, closely spaced
slits, 5, and 5,. This is shown in a three-dimensional.
view in Fig. 9.5(a), When symmetry exists, the segments
of the primary wavefrontarriving at the twoslits will
be exactly in phase, and the slits will constitute two
coherent secondary sources. We expect that wherever
the two waves coming from S; and S; overlap,interfer.
ence will occur (providedthat the optical path difference
is less than the coherence length, ¢ At.}.

Consider the construction shown in Fig. 9.5(c). In a 
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Figure 9.5 Young's experiment. (a) Cylindrical waves superimposed
in the region beyond the aperture screen. (6) Overlapping waves
showing peaks and troughs. (c) The geometry of Young’s experiment.
{d) A path-length difference of onewavelength corresponds to m = +1
and the first-order maximum. (e) (Photo courtesy M. Cagnet, M.
Francon, and[.C. Thrierr: Atlas optiscker Erscheinungen, Berlin—
Heidelberg-New York: Springer, 1962.) (f) A modern version of
Young's experiment using a photodetector (e.g., a photovoltaic cell
or photodiode like the RS 805-462) and an X — ¥ recorder. Thedetector rides on a motor drivenslide and scans the interference
pattern.

 
fa) tr, @)

 

  
 

 

  
  

te)

hysical situation the distance between each of
¢ very large in comparison with the

ipngt Setern the twoslits, several thousandtimes
and all the fringes would befairly close to the

© of the screen. The path difference between
Blong 5,P and 33P can be determined, to a

foximation, by dropping a perpendicular
to 5,P. This path difference is given by

(SB)=(SP) — (SP) (9.22)

 

 
 
   

 
   (SB) = 4) — re.

Buing with this approximation (Problem 9.13),—Pisithe path difference as
 
 
 M—h a8, (9.23)
 

© *11 8. Notice that 
o=+, (9.24)8 
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Detector

 

 
 

a

none sy (9.25)
In accordance with Section 9.1, constructive interfer-

ence will occur when
Ty YT, = MA, (9.26)

Thus. from the last two relations we obtain

Im = 7 ma. (9.27)a

This gives the position of the mth bright fringe on the
screen, if we count the maximum at 0 as the zeroth
fringe. The angularposition of the fringe is obtained
by substituting the last expression into Eq. (9.24); thus

mA .
8, = (9.28)a

This relationship can be obtained directly by inspecting

  

   
 
 
 
  

 
 

 



179

  342 Chapter 9 Interference

Fig. 9.5(c). For the mth-order interference maximum,
m whole wavelengths should fit within the distance
+,~2. Therefore, from thetriangle 5,5)B,

asin 6,.= mA (9.29)or

6,=mAfa,

The spacingofthe fringes on the screen can be gotten
readily from Eq. (9.27). The difference in the positionsof two consecutive maximais

Ss
Smet In = = (m+ TA ~S amaa a

(9.50)

Since this pattern is equivalentto that obtained for two
overlapping spherical waves (at least in the 1; ~ 72
region), we can apply Eg. (9.17). Using the phasedifference

 

8 = k(r, — 12).
Equation (9.17) can be rewritten as

1 =4l,cos* Mae ‘2,

 
 and have equalirradiances Ip. With   m1 T2 = ya/s,   

the resultant irradiance becomes
 

I= 419 cos? 22SAT  
 As shown in Fig.9.6, consecutiv. i

by the Ay given in Eq.(9.30). Teshoultil
that we effectively assumed that the shits
infinitesimally wide, and so the cosine-sqi
of Fig. 9.6 are really an unattainable ideals

actual pattern, Fig. 9.5(e), drops off fe distang

  
  
 
 
  

either side of O because of diffractiong
In addition, as P in Fig. 9.5(¢) is taken fa

the axis, S,B (which is less than or equalincreases. If the primary source has.a shopy
length, as the optical path difference increg;
cally paired wavegroupswill no longerbe abl

  
          
  

amount of overlap in portions of uncom
wavegroups, and the contrast of the fringeddegrade.It is possible for Ax, to be less than &

   
  
  
 wavegroupswill overlap, and thefringes will

depicted in Fig. 9.?7(a), when the path-length
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Thefringe pattern can be directly observed by punch-
ing two small pinholes in a thin card. The holes should
be approximately thesize of the type symbolfora period
on this page, and the separation betweentheir centers
aboutthree radii. A street lamp,car headlight, or traffic
signal at night, located a few hundred feet away, will
serve as a plane wave source. The card shouldbe posi-
tioned directly in front of and very close to the eye. The
fringes will appear perpendicularto theline of centers.
The pattern is much morereadily seen with slits, as
discussed in Section 10.2.2, but you should give the
pinholes a try.

Microwaves, because of their long wavelength, also
offer an easy way to observe double-slit interference.
Twoslits (e.g., 4/2 wide by A long, separated by 2A)
cutin a piece of sheet metalorfoilwill serve quite well
as secondary sources (Fig. 9.8).

The interferometric configuration discussed above,
with either pointorslit sources, is known as Young’s
experiment. The same physical and mathematical con-
siderations apply directly to a number of other wave-
front-splitting interferometers. Most common among
these are Fresnel’s double mirror, Fresnel’s double
prism, and Lloyd’s mirror.

Fresnel’s double mirror consists of two plane front-
silvered mirrors inclined to each other at a very small
angle, as shown in Fig. 9.9. One portion ofthe cylin-
drical wavefront coming from slit S is reflected fromematic representation of how light, composed of a

wegroups with a coherence length Ax,, produces
(@) the path-length difference exceeds Ax, and (b)Hdiference is less than Ax,.

exceeds the coherence length, wavegrd
source 8, arrives at P with wavegroup-D,
is interference, butit lasts only for a sho:
the pattern shifts as wavegroup-D;
wavegroup-Co, since the relative phase’
If the coherence length was larger
difference smaller, wavegroup-D, would

T= Alycos? (=) interact withits clone wavegroup-De, andpair. The phases would then be con B
45 interference pattern stable [Fig. 9.7(b)]. Sine

light sourcewill have a coherencelength of &
three wavelengthsorso,it follows from Eq

  
     
 
  
  
 
 
  

rovided, of co i ip urse, that the two beams are coherent the first mirror, and another portion of the wavefront
is reflected from the second mirror. An interference

 

te fringes will be seen on either side ofmaximum.

 
 ig traveled equal distances from each aper- ‘Transmitter

oth-orderfringe will be essentially white,et higher order maxima will show a spread
hs, since yq is a function of A, according

7). Thus in white light we can visualize the
jun as the mth-order band of wavelengths;

: Will lead directly to the diffraction gratingBr chapter,

 
 

    

4 
  
 

 
“4 * Modifications of this pattern arising as a result ofwidth of either the primary S or secondary-sourc: sf

sidered in Jater chapters (10 and 12). In the
contrast will be used as a measureof the degree of
12.1), In the latter, diffraction effects become

 

    

 
Detector

 Figure 9.6 Idealized irradiance versus distance curve. Figure 9.8 A microwave interferomet. er.  

179



180

344 Chapter g Interference

field exists in spacein the region wherethetworeflected
waves are superimposed on each other. The images(5;
andS,) of theslit S in the two mirrors can be considered
aS separate coherent sources, placed at a distance a
apart.It follows from thelawsofreflection,as illustrated
in Fig. 9.9(a), that SA =S,A and SB = S,B, so that
SA+AP=r, and SB+BP=r,. The optical path-
length difference between the tworaysis then simply
1, —T,. The various maxima occur at 7;~7 = mA, as
they do with Young’s interferometer. Again, the separ-
ation ofthe fringes is given by

 

s
Ay==a,

7 a
where 5 is the distance between the plane of the two
virtual sources (S; , S9)and the screen. The arrangement
in Fig. 9.9 has again been deliberately exaggerated to
make the geometry somewhatclearer. Notice that the
angle @ between the mirrors must be quite small if the

3

Ss
(a)

Figure 9.9 Fresnel's double mirror, )

 

 
 
 
 
  
 
 
 
 
 
   

  

electric field vectors for each of the two §
be parallel, or nearly so. Let E, and §, "
lightwaves emitted from the coherent vine .
and S3. At any instant in timeat the poing
each ofthese vectors can beresolved into eo;
parallel and perpendicular to the Plane of a
With k; and kg parallel to AP and ‘BP, te
should be apparentthat the components
in the plane of the figure will approach beineonly for small @.

The Fresnel double prism or bipriin nou.
thin prisms joined attheir bases, as shownin
A single cylindrical wavefront impinges on
The top portion of the wavefront is refrg
ward, and the lower segmentis refracted upwayd
the region of superposition, interference
again, two virtual sources 5; and 5 fis, up
a distance a, which can be expressed in ten
prism angle @ (Problem 9.15), where :=

 
 

 
 
 

 

  
 
 
  

 
  
 
 

 

i fRresnel’s biprism.  
 

4oy te separation ofthe fringesis the same
  e last @velront-splitting interferometer that we

ider is Lloyd’s mirror, shown in Fig. Ql. It
fa flat piece ofeither dielectric or metal that‘ar. from whichis reflected a portion of

ical wavefront comingfrom slit 5. Another
Bethe wavefront proceedsdirectly from theslit

ithe fcreen. For the separation @, between the two
iirces, we take the distance between the
id its image S, in the mirror. The spacing

is once again given by (s/a)A. The distin-feature of this device is that at glancing
(6,=7/2) the reflected beam undergoes a
Gshift. (Recall that the amplitudereflection

ents are then both equal to —1.) With an addi-
Phase shift of +2,

 
  
  

 

BOR r+ 7,
einnidianc: becomes

T= 4Iysin? (=).SA

€ pattern for Lloyd’s mirror is complemen-
of Young’s interferometer; the maxima of

TA exist at values of y that correspond to
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minima in the other pattern. The top edge of the mirror
is equivalent to y = 0 andwill be the center ofa dark
fringe rather than a bright one, as in Young’s device.‘The lower halfof the pattern will be obstructed by the
presence of the mirror itself. Consider what would
happen if a thin sheet of transparent material were
placed in the path of the rays traveling directly to thescreen. The transparent sheet would have the effect of
increasing the number of wavelengths in each direct
ray. The entire pattern would accordingly move

 
Figure 9.11 Lloyd’s mirror,
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upward, where the reflected rays would travel a bit
farther before interfering. Because of the obvious
inherentsimplicity of this device, it has been used over
a very wide region of the electromagnetic spectrum.
Theactualreflecting surfaces have ranged from crystals
for x-rays, ordinary glass for light, and wire screening
for microwavesto a lake or even the Earth’s ionospherefor radio waves.*

All the above interferometers can be demonstrated
quite readily. The necessary parts, mountedona single
optical bench,are shown diagrammatically in Fig. 9.12.
The source oflight should be a strong one; if a Jaser is
not available, a discharge lamp ora carbonarcfollowed
by a watercell, to cool things downa bit,will do nicely.
Thelight will not be monochromatic, but the fringes,
whichwill be colored, canstill be observed.A satisfactory
approximation of monochromatic light can be obtained
with a filter placed in front of the arc. A low-power
He-Nelaseris perhapstheeasiest source to work with,
and you won't need a watercell or filter.
Se
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Supposethata lightwave was incidenton a half-silvered
mirror? or simply on a sheetof glass. Part of the wave
would be transmitted and part wouldbereflected. Both
the transmitted and reflected waves would,of course,
have lower amplitudesthanthe original one. One might
say figuratively that the amplitude had been “‘split.” 1f
the two separate waves could somehow be brought
together again at a detector, interference would result,
as long as the original coherence between the two had
not been destroyed. If the path lengths differed by a
distance greater than that of the wavegroup(i.e., the
coherence length), the portionsreunitedat the detector
* For a discussion of the effects of 2 finite slit width and a finite
frequency bandwidth, see R. N. Wolfe and F. C.Eisen, “Irradiance
Distribution in a Lloyd Mirror Interference Pattern,” J. Opt, Soc. Am.
38, 706 (1948).
+A Aalfsilvered mirror is onethat is semitransparent, because the
metalli¢ quating is too thin to be opaque. You can look throughit,
andat the sametime you can see your reflection in it. Beam-spiitiers,as devicesofthis kind are called, can also be made of thin stretched
plastic films, knownas pellicles, or even uncoated glass plate.
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Fi Condens ariety of coated optical devices, and by
lens F a

Carbon Watercell = @ yered coatings were in widespread use.arc and tens

Figure 9.12 Bench setupto study wavefront-spiitwith a carbonarc source.

would correspondto different wavegroup®| Mn,phase relationship would exist between them
case, and the fringe pattern would be unstabj
point of being unobservable. We will get
ideas when we consider coherencetheory i
For the moment werestrict ourselves, for ti
to those cases in which the path differenéey
the coherencelength.

Film 
9.4.1 Dielectric Films—Double-Beam,Interference

Interference effects are observable if sleet am
materials, the thicknesses of which vary ovel a
broad range, from films fess than the leng
wave {e.g., for green light Ay equals about
ness of this printed page) to plates several
thick. A layer of materialis referred toasa
a given wavelength of electromagnetic radia)
its thickness is of the order of that waveleng;
the early 1940s the interference phenomena
with thin dielectric films, although well kno
fairly limited practical applicability. The rath
tacular color displays arising from oil slicks am
films, howeverpleasing aesthetically and theanely
were mainly curiosities.

With the adventof suitable vacuum deposi
niquesin the 1930s, precisely controlled a=
be produced on a commercialscale, and thi:

   
  
 
 
  
  

  
     

ige pattern,
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of interest in dielectric films. Duringq War, both sides were finding the

ihe wave and ray representations of thin-film interfer-d from the top and bottom of the film interferes  
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Fringesof EqualInclination
Initially, consider the simple case of a transparent
parallel plate of dielectic material having a thickness 4
(Fig. 9.13). Suppose that the film is nonabsorbing and
that the amplitude-reflection coefficients at the inter-
faces are so low thatonly thefirst two reflected beams
E,, and E, (both having undergoneonly onereflection)
need be considered (Fig. 9.14). In practice, the ampli-
tudes of the higher-order reflected beams (Ey,, etc)
generally decrease very rapidly, as can be shown for
the air-water and air-glass interfaces (Problem 9.21).For the moment, consider $ to be a monochromatic
point source. The film serves as an amplitude-splitting
device, so that E,, and Ey, may be consideredas arising
from two coherentvirtual sources lying behindthe film;
thatis, the two images of S formedby reflection at the
first and second interfaces. The reflected rays are
parallel on leaving the film and can be brought together
at a point P on the focal plane ofa telescope objective
or on the retina of the eye when focusedat infinity,
From Fig. 9.14, the optical path-length difference for
the first two reflected beamsis given by

A = n((AB) + (BC)] — n(AD),
and since (AB) = (BC) = d/cos &,

aa ana. n;(AD).cos
Now, to find an expression for (AD), write

(AD) = (AC)sin @3
if we makeuse of Snell’s law, this becomes

BD) = (AC)sin A,where

(AC) = 2d tan 8. (9.32)
‘The expression for A now becomes

A = Pad — sin? &,)cos &
orfinally

A = 2nyd cos 6. (9.33)
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Figure 9.14 Fringes of equalinclination.

The corresponding phase difference associated with the
optical path-length difference is then just the product
of the free-space propagation number and A, that is,
AoA. IE the film is immersed in a single medium,the
index of refraction can simply be written as ny = ny =n.
Realize, of course, that n may beless than ny, as in the
case of a soap film in air, or greater than my, as with an
air film between two sheets of glass.In either case there
will be an additional phase shift arising from the reflec-
tions themselves. Recall that for incident angles up to
about30°, regardless of the polarization of the incoming
light, the two beams,oneinternally and one externally
reflected, will experience a relative phase shift of a
radians (Fig. 4.25 and Section 4.5). Accordingly,

b=khAta
and more explicitly

Am,
fd cos O47 9.34)Ao

$=
 
 

  

 
  
    

  
  
    
  

 

  
  

 
  
 

or Presponds to minima in the transmitted
bm Bice minima in refiected light (maximaee in? in? " when 5©(2m + 1)r,thatis,

5 i® (n? =n? gin? aes ed light) result ¢ }
Hies of 7. For such cases Eq. (9.34) yields The sign of the phase shift js immate;

choose the negative sign to make the
simpler in form. In reflected light an
maximum,a bright spot, appears at P hewnin other words, an even multiple of m, fy ya,(9.34) can be rearrangedto yield “7

dcos 6, = amit
ce of odd and even multiples of A,/4 in

(9.37) is rather significant, as wewill see
could, of course,haveasituation in which

me or 1 SYS My AS with a fluoride film
fp an optical element of glass immersed inMehase shift would then not be present, and

tions would simply be modified appropri-

“a S90 (9.37)e  
 
  

 
+ A,

(maxima) —d cos 6, = (2m + nF H =n, ‘ 
 where use has been made of the fact that &, 2a
 Meed to focus the rays has a small aperture,

t= fringes will appear on a small portion of
Gnily the rays leaving the point source that are

dfgirectly into the lens will be seen (Fig. 9.15).
 

Pinhole

Extended source

Figure 9.15 Fringes seen on 2 small port"  
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For an extended source,light will reach the lens from
various directions, and the fringe pattern will spread
out over a large area of the film (Fig. 9.16).

The angle 0; or equivalently 6,, determined by the
position of P, will in turn control 8, The fringes appear-
ing at points P, and P2 in Fig. 9.17 are, accordingly,
known as fringes of equal inclination. (Problem 9.26
discusses some easy ways to see these fringes.) Keep in
mindthat each source point on the extended source is
incoherentwith respect to the others.

Notice thatas the film becomesthicker, the separation
(AC) between E,, and Eg, also increases, since

(AC)©2d tan &. {9.32}
Whenonly oneof the tworaysis able to enter the pupil
of the eye, the interference pattern will disappear. The
larger tens of a telescope can then be usedto gather in
both rays, once again making the pattern visible. The
separation can also be reduced by reducing 6, and
 

 
Extended source
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

Figure 9.17 All rays inclined at the same angle arrive at the same
point.
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Circular fringes

 

 
 

Dielectrica

therefore6, thatis, by viewingthe film at nearly normal
incidence. The equal-inclination fringes that are seen
in this mannerfor thick plates are known as Haidinger
fringes, after the Austrian physicist Wilhelm Karl
Haidinger (1795-1871). With an extended source, the
symmetry of the setup requires that the interference
pattern consists of a series of concentric circular bands
centered on the perpendicular drawn from the eye to
thefilm (Fig. 9.18). As the observer moves,the interfer-
ence pattern follows along.

iewing
sereen(retina, ground glass}

 Exiended source

Beck background

Figure 9.18 Circular Haidinger fringes serieend a1

Fringes of Equat Thickness
A whole class of interference fringes &
the optical thickness, n;d, is the dominarather than 6;. These are referred to as 23
thickness. Under white-light illuminati
cence of soap bubbles, oil slicks (@ fg
thick), and even oxidized metalsu’

 

 

variations in film thickness. Interfereugg bas
kind are analogousto the constant-h i
of a topographical map. Each fringe 1s

 
  

 
 .e film for which the optical thickness is a

yeneral, n, doésnot vary,so that the fringespond to regions of constantfilm thick-
j, they can be quite useful in determining

L, features of optical elements(lenses, prisms,
pple, a surface to he examined may be

act with an optical flat,* Theair in the space
RPiwo generates a thin-film interference pat-

surface is flat, a series of straight, equally
Ms indicates a wedge-shapedairfilm,usually

yom dust between the flats. Two pieces of
separated at one end by a strip of paperwill
isfactory wedge with which to observe these

  

 

 

  

  ed at nearly normalincidence in the man-
din Fig. 9.19, the contours arising from a
film are called Fizeau fringes. For a thin

of small angle «, the optical path-length dif-
Between two reflected rays may be approxi-

Bby Eq. (9.33), where d is the thickness at a par-
it, thatis,
 

 d= xa, (9.38)
Ellaleesni 6; the condition for an interference

im becomes 44
(m+ Bap = Qnydz

Lo Wy,==

(me + 2)Aq = Zaxpny. Ny

 
 
 
 

 
4

ely, x, may be written as 2. ¢

 
  

distancestrom the apex given by A;/4a,
id consecutive fringes are separated by aen by Wo

Ar=A/2a Koyo > 
© be optically fiat whenit deviates by not more

yn. perfect plane. In the past, the best fats were
bartz. Now glass-ceramic materials (e.g., CER-

'y small thermal coefficients of expansion(about
artz) are available. Individual flats of 1/200 or a
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Notice that the difference in film thickness between
adjacent maximais simply A,/2. Since the beam reflected
from the lowersurface traversesthefilm twice (6; = 0, =  

  
   
  
 

0), adjacent i i er-in-opticat-pathlengthbyAy.Note, 60, that the film thickness at the various maxima
is given by

=(meHat
d,, = (m +3) 3 @A1)  

 
  

ne  

  which is an odd multiple of a quarter wavelength.
Traversing thefilm twice yields a phase shift of 7, which
when addedto the shift of 7 resulting from reflection,
puts the two rays back in phase.
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bry 2&4,
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 Figure 9.19 Fringes from a wedge-shaped film.
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Figure 9.20 is a photographofa soap film held verti-
cally so that it settles into a wedge shape under the
influence of gravity. Whenilluminated with whitelight,
the bands are various colors. The black region at the
top is a portion wherethe film is less than A,/4 thick.
Twice this, plus an additional shift of A,/2 due to the
reflection, is less than a whole wavelength. Thereflected
rays are therefore out of phase. As the thickness
decreases still further, the total phase difference
approaches 7. Theirradianceat the observer goes to a
minimum (Eq. 9,16), and the film appears black in
reflected light.* .

Press two weill-cleaned microscope slides together.
The enclosedair film will usually not be uniform. In
ordinary room lighta series of irregular, colored bands
(fringes of equal thickness) will be clearly visible across
the surface (Fig. 9.21). The thin glassslides distort under
pressure, and the fringes move and change accordingly.
Indeed, if the two pieces of glass are forced together
 
* Therelative phase shift of a betweeninternal and external reflection
is required if the reflected flux density is to go to zero smoothly, as
the film gets thinner andfinally disappears.

 
Figure 9.20 A wedge-shaped film madeof liquid dishwashingsoap.(Photo by E. H.)

  

  
 
  
  
 
 
 
  
   Figure 9.21 Fringes in anair film between inpa(Phote by E. H.)  
 
 at a point, as might be done by pressingtontheta sharp pencil, a series of concentric, nea

fringes is formed about that point(Fig. 9:
as Newton’s rings,” this pattern is more
examined with the arrangementof Fig. 9%

of uniformity in the concentric circularlf
measure ofthe degree of perfection bhbe.
lens. With R as the radius of curvature of the
lens, the relation between the distance x and.
thickness d is given by

xe R?-(R-dP
or more simply by » b)

x =2Rd- a Y
Since R » d, this becomes  
 

** rings with wo microscope slides. (Photos by

  
“Robert Hooke (1695-1708) and free Ne : ‘nate by assuming that we need onlystudied a whole range of thin-film phenomena, STS. LWO refl 9.to the afr Blm between lenses. Quoting from Newt _ ead ocmsEizjand[eeprheiricrence maximum willoccurin the thin

Be *hickness is in accord with the relationship
  

  
 
 

Ttook two Object-glasses, the one a Planoconvé
Foot Telescope, and the othera large double
of about Hfty Foot: and uporthis, laying UH
plane side downwards,I pressed them slowly fg
the Colours successively emerge in the middlg

2njd,, = (m + ¥)Ay.
of the mth bright ring is therefore found 
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by combiningthelast two expressions to yield
Xn = [(m + AR]? (9.42)

Similarly, the radius of the mth dark ring is
Xn = (mA,RY?, (9.43)

If the two piecesofglass are in good contact(no dust),
tbe central fringe at that point (xp = 0) will clearly be aminimumin irradiance, an understandableresult since
d goes to zero at that point. In transmitted light, the
observedpattern will be the complementofthe reflected
one discussed above, so that the center will now appear
bright.

Newton’s rings, which are Fizeau fringes, can be dis-
tinguished from the circular pattern of Haidinger’s
fringes by the manner in which the diameters of the
rings vary with the order m. Thecentral region in the
Haidinger pattern corresponds to the maximum value

  

   
  
 QuasimonochramaticPoint source

  Beam splitter
(glass plate}

  
Coltimatorlens

4d]

Optica at—_a,Black surface ba

 
Figure 9.23 A standardsetup to oberve Newton's rings.
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of m (Problem 9.25), whereas just the opposite applies
to Newton’s rings.

Anoptical shop, in the business of makinglenses,will
have a set of precision spherical test plates or gauges.
A designer can specify the surface accuracy of a new
Jens in terms of the number and regularity of the

. Newton rings that will be seen with a particular test
gauge. The use of test plates in the manufacture of
high-quality lenses, however,is giving way to far more
sophisticated techniques invalvinglaserinterferometers
(Section 9.8.4}.

9.4.2 Mirrored Interferometers

| There are a good numberof amplitude-splitting inter-ferometers that utilize arrangements of mirrors and
beam-splitters. By far the best known and historically
the most important of these is the Michelson inter-
ferometer. Its configuration is illustrated in Fig. 9.24.

lh Anextended source(¢.g., a diffusing ground-glass plate
illuminated bya discharge lamp) emits a wave, part of

t whichtravelsto the right. The beam-splitterat O divides
the wave into two, one segment traveling to the right

 
 Detector
 

 

 
 
 
  
 
   
 

 
 

 

and one upinto the background, The ban
reflected by mirrors M; and My and re
beam-splitter. Part of the wave coming fro
through the beam-splitter going downward
the wave coming from M,is deflected
splitter toward the detector. Thus the twa
united, and interference can be expected)

Notice that one beam passes through O
whereas the othertraversesit only once, Co.
each beam will pass through equal thickne:
only when a compensator plate C is inserted
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  Ghost reflection
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eet 885 A conceptual rearrangement
helson interferorheter.

F, with the exception of any possible silver-
fifilm coating on the beam-splitter. It is posi-

angle of 45°, so that O and©areparallel
shes. With the compensatorin place, any optical

rence arises from the actual path difference.
because of the dispersion of the beam-

Optical path is a function of A. Accordingly,tive work, the interferometer without the
tor plate can be used only with alochromatic source. The inclusion of a com-
Regates the effect of dispersion, so that even
with a very broad bandwidth will generatele fringes,
€rstand how fringes are formed, refer to the
Sn fhown in Fig, 9.25, where the physical

wi\th
eter. (c) The fri

Figure 9.24 The Michelson interferom rhadswith the tip of a hot soldering iron in one arm-
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componentsare represented more as mathematical sur-
faces, An observer at the position of the detector will
simultaneously see both mirrors M, and Mg along with
the source ¥ in the beam-splitter. Accordingly, we canredraw the interferometerasif all the elements were
in a straight lime. Here Mj correspondsto the image
of mirror M, in the beam-splitter, and % has been swung |over in line with O and Mg. The positions of these
elements in the diagram depend ontheirrelative dis-
tances from O (e.g., Mj can be in front of, behind, or
coincident with M, and can even pass throughit). The
surfaces %; and X» are the images of the source & in
mirrors M, and Mg, respectively. Now considera single
point $ on the source emitting light in all directions;
let’s follow the course of one emerging ray. In actuality
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a wave from § will be split at O, andits segments will
thereafter be reflected by M; and Mg. In our schematic
diagram werepresentthis by reflecting the ray off both
M, and M{, To an observerat D the two reflected rays
will appear to have come from the image points 5, and
Sq {note thatall rays shownin {a) and (b) of Fig. 9.25
share a commonplaneof incidence]. Forall. practical
purposes, 5, and S are coherent point sources, and we
can anticipate a flux-density distribution obeying Eq.
(9.14). As the figure shows,the optical path difference
for these rays is nearly 2d cos ®, which represents a
phase difference of &g2d cos @. There is an additional
phase term arising from the fact thatthe wave traversing
the arm OM,is internally reflected in the beam-splitter,
whereas the OM,-wave is externally reflected at O, If
the beam-splitter is simply an uncoatedglass plate, the
relative phase shift resulting from the two reflections
will (Section 4.5, p. 119) be a radians. Destructive, rather
than constructive, interference will then exist when

2d cos 6, = mAo, (944)
where m is an integer. If this condition is fulfilled for
the point 5,then it will be equally well fulfilled for any
point on = that lies on the circle of radius O'S, where
O’ is located on the axis of the detector. Asillustrated
in Fig. 9.26, an observerwill see a circular fringe system
concentric with the central axis ofher eye’s lens. Because
of the small aperture of the eye, the observer will not
be able to see the entire pattern without the use of a
large lens near the beam-splitter to collect most of the
emergentlight.

If we use a source containing a numberof frequency

 
Figure 9.26 Formation of circular fringes.

 
 
   
 
 
 
 

   
  
      
 
 
 
  
 
  

components (eg. a mercury dischay
dependenceof 6, on Ao in Eq.(9.44) requi;
such component generate a fringe system
Note, too, that since 2d cos 6, must be Icoherence length of the source,it follows
will be particularly easy to use in demon
interferometer(see Section 9.5). This Poi
madestrikingly evident were we to compar,

able effect.
Aninterference pattern in quasimono

typically consists of a large numberofalte

order m. As Mz is moved toward Mj, d d
according to Eq.(9.44), cos 8, increases
fore decreases. Therings shrink towardthe &
the highest-order one disappearing
decreases by Ao/2, Each remaining ring
more and morefringes vanish at the cenctent
a few fill the whole screen. By the time d
reached, the centralfringe will have sprea
the entire field of view. With a phaseshift off
from reflection off the beam-splitter, the whol
will then be an interference minimum.(Lack ofp
tion in the optical elements can renderthis w
able.) Moving Me still farther causes the ft
reappear at the center and move outwardg

Notice that a central dark fringe for which @g
Eg. (9.44) can be represented by

2d©mpAo-
(Keep in mind that this is a special case. The
region might correspondto neither a =a
minimum.) Even if d is 10 cm, which @ [il
in laser light, and Ag = 500 nm,mo will be q
namely 400,000. At a fixed value of d, sus!
rings will satisfy the expressions

2d cos 6, = (mg - 1)Ao
2d cos By = (19 — 2}Ao

2d cos 8, ~ (ity — PAo- 

produced bylaser lightwith those generated
light from an ordinary tungsten bulb of g calthe latter case, the path difference must bee
zero,if we are to see any fringes at all, where:
formerinstance a difference of 10 cm has little: a

and darkrings. A particular ring correspondg

 

sition of any ring, for example, the pth
Ha nined by combining Eqs. (9.45) and (8.46)

gd(1~cO8 Bp) = Po. (9.47)
“both are just the half-angle subtended

Fe Be by the particular ring, and since m =
9.47) is equivalent to Eq. (9.44). The new
what more convenient, since (using the

mple as above) with d= 10cm, the sixth darkspecified by stating that = 6, or in termsof the pth ring, that m 399,994. If 0, is

 

cos 8

(9.47)yields

(8)
ar radius of the pth fringe.
ction of Fig. 9.25 represents one possible
i in which we consider only pairs

frallel Emerging rays. Since these rays do not
eet, they cannot form an image without alens of some sort. Indeed, that lens is most

dby the observer's eye focused at infinity.
ting, fringes of equal inclination (@,,"constant)
infinity are also Haidinger fringes. A com-
Figs, 9.25(b) and 9.3(a), both showing two

int sources, suggests that in addition to these
es at infinity, there might also be (real)

Med by converging rays. These fringes do‘Hence,if you illuminate the interferometer
ource and shield outall extraneouslight,

Fase the projected pattern on a screen in
wom {see Section 9.5). The fringes will

ice in frontof the interferometer(i.e.,
ris shown), andtheirsize will increase

ce from the beam-splitter. We will
real) fringes arising from point-sourcettle later on.

ors of the interferometerare inclined
; go each other, making a small angle {i.e.,

and M, are not quite perpendicular), Fizeauved. The resultant wedge-shaped air

(9.48)

  
 
 
 

 
  
 
 
  
  
  
   
 
  
  
    

 

 

186

9-4 Amplitude-Splitting Interferometers B57

film between M, and M{ creates a pattern of straight
parallel fringes. The interfering rays appear to diverge
from a point behind the mirrors. The eye would have
to focus on this point in order to make these localized
fringes observable. It can be shown analytically* that by
appropriate adjustment of the orientation of the mir-
rors M, and Mp, fringes can be produced that are
straight, circular, elliptical, parabolic, or hyperbolic—
this holds as well for the real and virtual fringes.

It is apparent that the Michelson interferometer can
be used to make extremely accurate length measure-
ments. As the moveable mirroris displaced by Ao/2,
each fringe will move to the position previously
occupied by an adjacent fringe. Using a microscope
arrangement, one need only count the numberof frin-
ges N, or portions thereof, that have moved past a
reference point to determine the distance traveled by
the mirror 4d, that is,

Bd N (ao/2).
Of course, nowadays this can be donefairly easily by
electronic means. Michelson used the method to
measure the numberof wavelengths of the red cadmium
line corresponding to the standard meter in Sévres near
Paris.f

The Michelson interferometercan be usedalong with
a few polaroid filters to verify the Fresnel-Arago laws.
A polarizer inserted in each arm will allow the optical
path-length difference to remain fairly constant, while
the vector field directions of the two beams are easily
changed.A microwave Michelson interferometer can be con-
structed with sheet-metal mirrors and a chicken-wire
beam splitter. With the detector located at the central
fringe, it can easily measure shifts from maxima to
minimaas one of the mirrors is moved, thereby deter-
mining A. A few sheets of plywood, plastic, or glass
inserted in one arm will change the central fringe.
Counting the numberoffringe shifts yields a value for
the index of refraction, and from that we can computethe dielectric constant of the material. 
* See, for example, Valasek, Optics, p. 185.
TA discussion of the procedure he used to avoid counting the
3,106,327fringes directly can be foundin Strong, Concepts of Classical
Optics, p. 238, or Williams, Applications of Interferometry, p. 51.
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Mirror

Detector

Extended Mitror
source splitter

Figure 9.27 The Mach-Zehnderinterferometer.

The Mach-Zehnderinterferometer is another ampli-
tude-splitting device. As shown in Fig. 9.27, it consists
of two beam-splitters and twototally reflecting mirrors.
The two waves within the apparatustravel along sepa-
rate paths. A difference between the optical paths can
be introduced byaslight tilt of one of the beam-splitters.
Since the two paths are separated, the interferometer
is relatively difficult to align. For the same reason,
however,the interferometer finds myriad applications.
It has even been used, in a somewhataltered yet concep-
tually similar form, to obtain electron interference
fringes.*

Anobject interposed in one beam will alter the optical
path-length difference, thereby changingthefringe pat-
tern. A commonapplication of the device is to observe
the density variations in gas-flow patterns within
research chambers (wind tunnels, shock tubes, etc.).
One bear passes throughtheoptically flat windows of
the test chamber, while the other beam traverses
appropriate compensator plates. The beam within the
chamber will propagate through regions having a
spatially varying index ofrefraction. The rewulting dis-
tortions in the wavefront generate the fringe contours. 
*L, Marton, J. Arol Simpson, and J. A. Suddeth, Rev. Sci. Instr. 25,
1099 (1954), and Phys. Rev. 90, 490 (1953).
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Figure 9.28 Scylla IV,

 
Figure9.31 _Interferogram with plasma. (Photo courtesy Los AlamosScientific Laboratory.)9,80 [iterferogram withoutplasma.

A particularly nice application is shown in Fig,which is a photograph of the magnetic uineyy
device known as Scylla IV. It was used to
controlled thermonuclearreactions at the Low Al;
Scientific Laboratory. In this application the
Zehnder interferometer appears in the fori
parallelogram,asillustrated in Fig. 9.29, The.two
laser interferograms, as these photographs aré cal
show (Fig. 9.30) the background pattern witho

stable, An interesting application of the device is dis-
cussed in the last section of this chapter, where we
consider its use as a gyroscope. One form of the Sagnac
interferometer is shown in Fig. 9.32(a) and anotherin
Fig. 9.32(b); still others are possible. Notice that the

ibetube and the density contours within the
“ilprity a reaction (Fig. 9.81).

plitude-splitting device, which differs
i$ instrument in many respects, is the

iferometer.It is very easy to align and quite

Interference
filter val
Lens Tostreak |camera Discharge ttsDiCompression coil
Diaphragm

 Film . 1»plane
Plisma Fringefocation

Compensation
chamber ~_  

 vQuartz window

  
   

 051055Seale95 Figure 9.32 (2) A Sagnac inter-Inches ferometer. (b} Another variation of the
Sagnac interferometer.  Detect ‘b)

Figure 9.29 Schematic of Scylia IV. letector <b)
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Figure 9.33 The Pohlinterferometer.

main feature of the device is that there are two identical
but oppositely directed paths taken by the beams and
that both form closed loops before they are united to
produce interference. A deliberate slight shift in the
orientation of one of the mirrors will produce a path-
length difference and a resulting fringe pattern. Since
the beams are superimposed and thereforeinseparable,
the interferometer cannotbe putto any ofthe conven-
tional uses. These in general depend onthe possibility
of imposing variations on only one of the constituentbeams.

Real Fringes
Before we examine thecreation of real, as opposed to
virtual, fringes, let’s first consider another amplitude-
splitting interferometric device, the Pobl fringe-
producing system,illustrated in Fig. 9.33. It is simply
a thin transparentfilm illuminated by thelight comingfrom a point sour¢e. In this case, the fringes are real
and can accordingly be intercepted on a screen placed
anywherein the vicinity of the interferometer without
a condensing-lens system. A convenientlight source to 
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e   

 
since that is the region where we need to focus our
detector (eye, camera, telescope). In general, the prob-
lem of locating fringes is characteristic of a given inter-
ferometer; thatis, it has to be solved for each individualdevice.

Fringes can beclassified,first, as either real or virtual
and, second, as either nonlocalized or localized. Real
fringes are those that can be seen on a screen without
the use of an additional focusing system. The rays
forming these fringes converge to the point of observa-
tion, all by themselves. Virtual fringes cannot be projec-
ted onto a screen withouta focusing system.In this case

7 the rays obviously do not converge.
Nonlocalized fringes are real and exist everywhere

within an extended (three-dimensional) region of space.
The pattern is literally nonlocalized, in that it is not
restricted to some small region. Young’s experiment,
as illustrated in Fig. 9.5, fills the space beyond the

 

    
    
  
  
  
  
  
  
  
 

 
 

   
  
 
   

  

Small diverging “s secondary sources with a whole array of real fringes.
a Nonlocalized fringes of this sortare generally producedource sn A . ‘

fBoint-sourceillumination of inclined surfaces. by small sources, that is, point or line sources, be they  

   
rea] or virtual. In contrast, localized fringes are clearly

 
   use is a mercury lamp covered with a shialiij ha

small hole (*4 inch diameter) in it. As a thin film ‘$y aieet in the Pohlinterferometer. Let’s assume
a piece of ordinary mica taped to a dark-col@ree MP in the surrounding mediumis a pointat
cover, which serves as an opaque backingy If fs constructive interference. A screen placeda laser, its remarkable coherence length and ii jut would intercept this maximum,as well as
density will allow you to perform this same, ge pattern, without any condensing system.

 
  
    
     
  
   
  
  
  

  
    

with almost anything smooth and transpai Biverent virtual sources emitting the interfering
the beam to about an inch or twoin diameter Garé mirror images S, and 5S. of the actual point
it throughalens {a focal length of 50 to It should be noted thatthis kind ofrealfringe
do}. Then just reflect the beam off the surfaoa Mn can be observed with both the Michelson and
  9 interferometers (Fig. 9.36). If either device is

ed with an expanded laserbeam,a real fringe
will be generated directly by the emerging

is an extremely simple and beautiful

plate {e.g., a microscopeslide), and the frin;evident within the illuminated disk wherev
a screen.

The underlying physical principle invol
point-source illumination for all four gj
ferometric devices considered above can Bi
with the help of a construction, variationg
shownin Figs. 9.34 and 9.35.* ‘The two vertical :
Fig. 9.34, or the inclined ones in Fig. 9,35, AND LOCALIZATION OF
either the positions of the mirrors or the ¥@ BFERENCE FRINGESed
* A. Zajac, H. Sadowski, and S. Licht, “The Realandthe Michelson Interferometers," Am. J. Phys.

  
   
    
   
 
 
    
  

im .

= pageant to know where the fringes pro- Figure 9.36 Real Michelson fringes using He-Nelaserlight. (Photo“7 Interferometric system will be located, by E. H.)
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observable only over a particular surface. The pattern
is literally localized, whether near a thin film or at
infinity. This type of fringe will always result from the
use of extended sources but can be generated with a
point source as well.

The Pohl interferometer (Fig. 9.33) is particularly
useful in illustrating these principles, since with a pointsourceit will produce bothreal nonlocalized andvirtual
localized fringes. The real nonlocalized fringes (Fig.
9.37, upperhalf) can be intercepted on a screen almost
anywhere in front of the mica film.

For the nonconverging rays, realize that since the
aperture of the eye is quite small,it will intercept only
those rays that are directed almost exactly atit. For this
small pencil of rays, the eye, at a particular position,
sees either a bright or dark spot but not much more.
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 |

To perceive an extended friTINZe pattern 9.6 MULTIPLE-BEAM INTERFERENCE
parallel rays of the type shown in th
Fig. 9.37, @ large lenswill have to ba a i
in light entering at other orientation ahowever, the sourceis usually somewha;

ef Thus far we have examined a numberofsituations in
which two coherent beams are combined underdiverse

 
t F we 5

fringes can generally be seen by lookin, a %, i conditions to produceinterference patterns. There are,
with the eye focused at infinity, Theses 4 —_. however, other circumstances under which a muche larger number of mutually coherent waves are madeto

interfere. In fact, whenever the amplitude-reflection
coefficients, the r’s, for the parallel plate illustrated in
Fig. 9.14 are not small, as was previously the case, the
higher-orderreflected waves Es,, E,,,-.. become quite
significant. A glass plate, slightly silvered on both sides
so that the r’s approach unity, will generate a large
number of multiply internally reflected rays. For the
moment, we will consideronly situations in which the
film, substrate, and surrounding medium are trans-
parent dielectrics. This avoids the more complicated
phase changes resulting from metal-coated surfaces.

To begin the analysis as simply as possible, let the
film be nonabsorbingandlet n, = ny. The notationwill
be in accord with that of Section 4.5; in other words,
the amplitude-transmission coefficients are represented
by ¢, the fraction of the amplitude of a wave transmitted
onenteringinto the film, and ¢’, the fraction transmitted
when a wave leavesthe film. Keep in mind that the rays
are actually lines drawn perpendicularto the wavefronts
and therefore are also perpendicularto the optical fields
E,,, Ez,, and so forth. Since the rays will remain nearly
parallel, the scalar theory will suffice as long as we are
careful to account for any possible phase shifts. As
shownin Fig. 9.40, the scalar amplitudesofthe reflected

are localized at infinity and are equivalenj
inclination fringes of Section 9.4, Similarly, FP Region of localizationM, and Mgin the Michelson interferometé
the usual circular, virtual, equal-in
localized at infinity will be seen. We can
air film between the surfacesof the mirrorsacting to generate these fringes. As with ai

 (virtual fringes)

  
  
  
    
     
 
  
    
 
 
 
    
  
  

  
dl by a wedge-shaped film.   

  
fringes will also be present. ry of the fringe pattern seen in reflected

fransparent wedgeofsmall angle disshown‘The fringe location P will be determined
Hon of incidence of the incoming light.

Migs have this same kind of localization, as
elson, Sagnac, and other interferometers

#. equivalent interference system consists of
Janesinclinedslightly to each other. The

of the Mach-Zehnderinterferometeris
in that by rotating the mirrors, one can local-

ulting virtual fringes on any plane within the
nerally occupied by the test chamber (Fig.

 

 
 

 
 

    
 

  
    
  
 
  
  
 

 

 
 

Papo of eslocalization
waves E;,, Ez,, Esy,...,are respectively Eyr, Eoér’t’,
Eoir’*t’',..., where Ep is the amplitude of theinitial
incoming wave and r= —r’ via Eq. (4.89). The minus
sign indicates a phase shift, which we will considerlater.

| Similarly, the transmitted waves Ey, Eg,, Es;,... will
| have amplitudes Eyit', Egtr’®s’, Eotr'4t’,.... Consider
| the set of parallel reflected rays. Each ray bearsa fixedj phaserelationship to all the other reflected rays. The

/ phase differences arise from a combination of optical
path-length differences and phase shifts occurring at
the various reflections. Nonetheless, the waves are
mutually cohereot, andif they are collected and brought
to focus at a point P byalens, they will all interfere.

 

  

    Figure 9.37 A parallel Sa
are drawn neglecting rfp EBtees in the Mach-Zehnder interferometer. 
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Figure 9.43 Phasor diagram.
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dtr’)

4 rc Again, tt’ 1~1; therefore, as illustrated in Fig. 9.43,x pe 2r5 Or B Eo.
[IB shittsarising purely from the reflections (internal (+r)

  
 

Sincethis particular arrangementresultsin the addition
of the first and second waves, which have relatively large
amplitudes,it should yield a large reflected Aux density.

Figure 9.40 Maultiple-beam interference froma

      
  
   

  
 
   
  
    
  
  

 

  
    
    

   
    
  
    

The resultant irradiance expression has a particularly in odd powers. The sum ofthe scalar ampli ghen A = (m + 3)A. Now the first and second The irradiance is proportional to E%,/2, so from Eq.simple form for two specialcases. is, the total reflected amplitude at point P, is th Riis, andall other adjacent waves are 4/2 (8.44)
The difference in optical path length between adja- Egy © Eor ~(Eotrt! + Eotr°t' + Eylr't! ; that is, the second is out of phase with 4y? EB?centrays is given by ore e 9 yi the third is out of phase with the fourth, and i, “wee(=)- (9.50)7 or ‘The resultant scalar amplitude is then

A = 2nd cos 4. {9.33} i: Eor— Eotrt'(1-+ 2+ rt ty es + Eytrt?—Egtr®t! + Eour?t! Thatthis is in fact the maximum, (J,)max, Will be shown
All the waves exceptfor thefirst, E,,, undergo an odd a mel a Ba 07 Bote+Bair’ later.
numberofreflectionswithin the film. It follows from Where since A= mA, we've just replaced 1! li) = __ Wewill now consider the problem of multiple-beam
Fig. 4.25 that at each internalreflection the component geometric —- parentheses convergesto the f Ee, = For + Eyrtt'(1— 1? 4 pte interference in 2 more general fashion, making use of
of the field parallel to the plane of incidence changes sum 1/(1~ 1°) as long as 7* <I, so that . ay r a the complex representation. Again let m, = nz, thereby
phase by either 0 or 7, depending on the internal Equrt’ forenchescs in eawal to 1/(1 + 7°), in which avoiding the need to introduce different reflection and
incident angle, <4. The componentof the field Eo,©Eor — a-%, transmission coefficients at each interface. The opticalperpendicular to the plane of incidence suffers no ‘ “ fields at point P are given by
change in phase on internalreflection when 9< @,. It was shownin Section 4.5, when we 00) — 1 E,, = Ere
Clearly then, norelative change in phase amongthese treatment of the principle of reversibility = ———————— tr orewaves results from an odd numberofsuch reflections that it’ = 1 — 1°, andit follows that 5 —_— Eo,©Eqtr't!e'u-®
(Fig. 9.41). As the first special case, if A = mA, the second, Ey, =0. a Ey, = Eotr'3p! @itot-28)third, fourth, and successive waveswill all be in phase ad Sr 0
at P, The wave E,,, however, becauseofits reflection Thus when A = mA the second,third, four : ono
at the top surface of the film, will be out of phase by cessive waves exactly cancel the first rele atiia: En,©Egtr’® Df giferN—18)
180° with respectto all the other waves. The phaseshift shownin Fig. 9.42, In this case no ign o 7 . : where Ene™is the incident wave.is embodied in the fact that r~—r’ and r’ occurs only the incoming energyis transmitted. The 5 [ior diagram The terms 8, 28,...,(N—1)6 are the contributions  
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to the phase arising from an optical path-length
difference between adjacent rays (8 = RoA). There is an
additional phase contribution arising from the optical
distance traversed in reaching point P, butthis is com-
mon to each ray and has been omitted. The relative
phase shift undergone by the first ray as a result of the
reflection is embodied in the quantity r’. The resultant
reflected scalar wave is then

E, = Ey, + Egy + Ey $0 ++ + Eney
or upon substitution (Fig. 9.44)

E, = Egre’*' + Eptr’t!8) 4 0 + Egtr’ONSy
x gilet-av—na],

This can be rewritten as

E, = Eger + rite@(1 + (Py
FPOte treBAY,

If re" < 1, and if the numberof termsin the series
approachesinfinity, the series converges. The resultantwave becomes

(9.51)
iB

B= be™[ tae |
ee
1?

In the case of zero absorption, no energy being taken
out of the waves, we can use the relations r=—r' and
tt! = 1— 1? to rewrite Eq. (9.51) as

E, = Ege™[52|.€

yr

 
Figure 9.44 Phasor diagram.

  
 
 
 
  
 
   
 
 
 
  
 

 
 
 

 
  

  
 

 

 

Thereflected flux density at P is then 7: iAS,

y= Ferd =e*0 ~ 4"9 — Fey
which can be transformed into

pena: namely,heisth. (9.57)
Y

Ripe true, however,if the dielectric film is
ae shin layer of semitransparent metal. Sur-

duced in the metalwill dissipate a por-Jectromagnetic energy {see Section
L= 27°(1 — cos 8) cident ¢ eS
“+7585cog

The symbol i = F3/2 represents the
density, since, of course, Ey was the am
incident wave.Similarly, the amplitudeso}

r the transmitted waves as described by Eq.‘mum will exist when the denominatoris
as posible, that is, when cos 6 = 1, in whichSirin and

incidel

ted waves given by CUSmax = Li.

Ey, = Eoit' e™ F. eh na Eq. (9.52) indicates thattpt gi(wt—3}
Eg,=Egtt're U)min = 9,= 1 gt piluit-28)
a ene expect from Eq. (9.57). Again, from Eq.that a minimum transmitted flux density

‘nthe denominatoris a maximum,thatis,
yas —I. In that case § = (2m + 1)a and

Gory
a+ r*)F"

aaa Eqtt!#0pilotwnBBcan be addedtoyield
w= E,eie'| —#_

a [; =aa
Multiplying this by its complex conjugate,
(Problem 9.35) the irradiance of the transmil

Comin = I: (9.58)

sponding maximum in the reflected flux

z Ley 4p
zt (1 +79) — Br* cos 8g (Er)max = taaE (9.59)

Using the trigonometric dea ipe that f¥é constant-inclination fringe pattern has1 —2 sin? (8/2), Eqs. (9.52) and (9.54) becom

p= 1a=sin? ofTT + [27/1 = oPsin?

Lei,eaeOATS 27/0 — AYsin
where energy is not absorbed, that is, 4 +nindeed noneof the incident energy is 2084
flux density of the incoming wave should ex
the sum ofthe flux density reflected off thesthe total transmitted flux density emerg#
film.It follows from Eqs. (9.55) and (9.56)

a wben 8 = (2m + 1)or
TT

Re cos 6,™(2m + l)x,°

result we arrived at previously,
2), by using only the first two reflected waves.

Eq. (9.59) verifies that Eq. (9.50) wasmum.

of Eqs. (9.55) and (9.56) suggests that we
es New quantity, the coefficient offinesse F, such

ar \?
Fe (; =) : (9.60)

and
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a 0 7 Qn or 4n 6

Figure 9.45 Airy function.

whereupon these equationscan be written as
__Fsin® (8/2)L
i 1+ Fsin® 8/2) eanand

1
+ F in® (8/2)

The term [1 + F sin® (8/2))* = (6) is known as the
Airy function.It represents the transmitted Aux density
distribution andis plotted in Fig. 9.45. The complemen-
tary function [1 ~ sf(8)}, that is, Eq. (9.61),is plotted as
well, in Fig, 9.46. When 6/2 = mz the Airy function is
equal to unity for all values of F and therefore r. When
ry approaches 1, the transmitted Aux density is very
small, except within the sharp spikes centered about

(9.62)
 

 
in oe e 7 or jr an 8

Figure 9.46 One minus the Airy function.
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the points 6/2 © ma. Multiple-beam interference has
resulted in a redistribution of the energy density in
comparison to the sinusoidal two-beam pattern (of
which the curves corresponding to a small reflectance
are reminiscent). This effect will be further demon-
strated when we consider the diffraction grating. At
that time we will clearly see this same peaking effect,
resulting from an increased numberof coherent sources
contributing to the interference pattern. Remember
that the Airy functionis, in fact, a function of @ or 6;
by way ofits dependence on6, which follows from Eqs.
(9.34) and (9.35), ergo the notation sf(6). Each spike
in the flux-density curve correspondsto a particular 6
andtherefore a particular6,. For a plane-parallelplate,
the fringes, in transmitted light, will consist of a series
of narrow bright rings on an almost completely dark
background.In reflected light, the fringes will be nar-
row and dark on an almost uniformly bright back-
ground.

Constant-thickness fringes can also be made sharp
and narrow by applying a light silver coating to the
relevant reflecting surfaces to produce multiple-beam
interference. This procedure has a numberofpractical
applications, one of which will be discussed in Section
9.8.2, when weconsiderthe use of multiple-beam Fizeau
fringes to examine surface topography.

9.6.1 The Fabry-PerotInterferometer

The multiple-beam interferometer,first constructed by
Charles Fabry and Alfred Perot in the late 1800s,is of
considerable importance in modern optics. Besides
being a spectroscopic device of extremely high resolving
power,it serves as the basic laser resonant cavity. In
principle, the device consists of two plane, parallel,
highly reflecting surfaces separated by somedistanced,
This is the simplest configuration, and as we shall see,
other forms are also widely in use. In practice, two
semisilvered or aluminized glass optical flats fourmthe
reflecting boundary surfaces. The enclosed air gap gen-
erally ranges from several millimeters to several cen-
timeters when the apparatusis used interferometrically,
andoften to considerably greater lengths whenit serves
asa laser resonantcavity. If the gap can be mechanically 

 

  
    
    

varied by moying one of the mi a
an interferometer. When theae :
and adjustedfor parallelism by Screwi
sort of spacer (invar or quartz jg comme
said to be an elaion (although it is, of co
interferometer in the broad sense). Inde
surfaces of a single quartz plate are apprished and silvered,it too will serve asay
neednot be air, The unsilvered sides of
often made to havea slight wedge shapefy
of arc) to reduce the interference pattern arig
reflections off these sides. The etalon in Fi
shownilluminated by a broad source, which 7
a mercury arc or a He-Ne laser beam spreaddiameterto several centimeters. This can be dan
nicely by sending the beam into the backapd he esory-Perot etalon.telescope focused atinfinity. Thelight can th
diffuse by passing it through a sheet of
Only one ray emitted from somepointS$; on
is traced throughthe etalon. Entering by 4%
partially silvered plate, it is multiply refles
the gap. The transmitted rays are colled
and broughtto a focus oma screen, where
to form either a bright or dark spot.
particular plane of incidence, which con’
reflected rays. Any other ray emitted froma
point Sz, parallel to the original ray and in &
of incidence, will form a spotat the sameff
the screen. As we shallsee, the discussion off

 

 

netate

Etalon

 
  ‘completely incoherent with respect to thosepthat there is no sustained mutual interfer-

ontribution to the irradiance I, at P is just
@[ ¢ye two irradiance contributions.

incident on the gap at a given angle will
gle circular fringe of uniform irradiance

 
         
 
  
     section is again applicable,so that Eq. (9.54)   
  

  

  

the transmitted flux density I,. The
generated in the cavity, arriving at P frot
Sy, are coherent among themselves. But

 
vere. At large values ofd, the rings will be

fogether, and a telescope might be needed
nify the pattern. A relatively inexpensive mon-
will serve the same purpose and will allow

graphing the fringes localized at infinity. As€xpected from the considerations of Section

  

  
 
 
  
 
 

Figure 9.47 Fabry-Perotetalon.

  

 
 

©%possible to produce real nonlocalized fringesight point source.
Pattially transparent metal films that are often
Pmicrease the reflectance (R = r°) will absorb a

A ofthe flux density; this fraction is referredFocusing 16M)
abutpionce. 

 t+ r=]
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 or

T+R=1, * 4.60}
where T is the transmittance, must now be rewritten as

T+R+Ael (9.63)

One further complication introduced by the metallic
filmsis an additional phase shift 4(0,), which can differ
from either zero or m. The phase difference between
two successively transmitted waves is then

b= seq cos 6, + 2h. (9.64)0

For the present conditions, @, is small and ¢ may be
considered to be constant. In general, d is so large, and
Agso small, that ¢ can be neglected. We can now express
Eq. (9.54) as

I, T?=—__-~_____
I, 1+R?-2Rcosd

or equivalently

be (4SSSI \t—R/ 1+{4R/0 - R¥]sin® (6/2)
Makinguse of Eq. (9.63) and the definition of the Airy

(9.65)
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function, we obtain

i A?+= [: a al A(8), (9.66)
as compared with the equation for zero absorption

f,

in = of(8). [9.62]
Inasmuch as the absorbed portion A is never zero, the
transmitted flux-density maxima (L))max,Will always be
somewhatless than J,. {Recall that for (L,)maxs (0) = 1.]

Accordingly, the peak transmission is defined as
UhTmax! 2

wan _ [: A | . (9.67)i (= R)
A silver film 50nm thick would be approaching its
maximum value of R (e.g., about 0.94), while T and A
might be, respectively, 0.01 and 0.05. In this case, the
peak transmission will be down to 3. Therelative irradi-
ance of the fringe pattern will still be determined by
the Airy function, since

 

LsO = (8). (9.68)(Emax
A measure of the sharpness of the fringes, that is,

how rapidly the irradiance drops off on eitherside of
the maximum, is given by the half-width y. Shown in

int
1d 2sin LF)

HOD 
Saas = i™ Snax = 2r(m +1) 5i

8 = Sue — S12 8 = Snax + 842
Figure 9.49 Fabry-Perot fringes. 

 

  

  
  

  

  
    
  

  
  
  
  

    
    
    
  
  
  
  
    
    

 
 lism. Keep in mind that as the finesse

the half-width decreases, but so too does theon. Incidentally, finesse of about 1000
[—War hcurved-mirrorsystemsusing dielectric*Bn?

HDmax
4fr   MeroSpectroscopy

: Mrerot interferometer is frequently used toetailed structure of spectrallines. Wewill
, complete treatmentof interference spec-

but rather will define the relevant ter-
Byriefly outlining appropriate derivations.t

» have seen, a hypothetical, purely monochro-
Atwave generates a particular circular fringe

x 6 is a function of Ao, so thatif the source
Rip of two such monochromatic components,d ring systems would result. When the
fringes partially overlap, a certain amount
y exists in deciding when the two systems

yvidually discernible, that is, when they are said
SWealved, Lord Rayleigh’st criterion for resolving

irradiance overlapping slit images is well
n if somewhatarbitrarily in the present
s use, however, will allow a comparison

grating instruments. Theessential feature
nis thatthe fringesare just resolvable when
irradiance of both fringes’ at the center,

le point, of the resultant broad fringe is 8/7?
aximum irradiance. This simply means that

Mild see a broad bright fringe with a grey central
fa bit more analytic aboutit, examine Fig.

ping in mind the previous derivation of the
Consider the case in which the two con-

haye equalirradiances,(I,)max = (»)max+

 
 
 

 
 

° [Las8, Os     
Figure 9.50 Overlappingfringes.

   
Fig. 9.49, y is the width of the peak, in radiané£.= (L)maxi2. i

Peaks in the transmission occurat specificthe phase difference 6,4. 2am, Accord
irradiance will drop to half its maximum
(8) = 3) whenever 8 = 8... + 81/9. Inasm

 

 
 

(8) = [Lb + F sin? (8/2),  then when
{1+ Fsin® (8,o/2)1' =3

it follows that

Bye = 2sin™ (VF).
Since F is generally rather large,sin’ (I/andtherefore the half-width, y= 26.2,

ya4nF,
Recall that F = 4R/{1 — R)®,so that the la
sharper the transmission peakswill be.

Another quantity of particular interest
the separation of adjacent maxima to the lia
Knownas the finesse, “© Qar/y or, from Ea

Pen“a.

Over thevisible spectrum,the fineat: of sity5 7 hy
Fabry-Perot instrumentsis about 30. The prtation on & is set by deviations in the ™

 

 

 

    

  
    
  
  
  
   

  
iple Beam Interferometry,” by H. D.Polster, Appl.
should be of interest. Also look at “The Optical

braham, C. Seaton, and S. Smith, Sci. Am. (Feb.
2 discussion of the use of the Fabry-Perotinter-Moptical transistor.

  

 ete treatment can be found in Born and Wolf, Prin
and in W. E. Williams, Appltoasions of Interferometry,0, 

ybe reconsidered with respect to diffraction in theBea ig. 10.40),
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The peaks in the resultant, occurring at 6 6, and
6 = 8,, will have equalirradiances,

(i)max = Ua)max + 2’. (9.71)
Atthe saddle point, the irradiance, (8/7°) (Z,)max.is the
sum of the two constituentirradiances,so that, recallingEq, (9.68),

Ti
(8/n2)Dass — | (0))p-0,rs00 + LlOYlantvanrCa)mas

(9.72)
Using (I:)max given by Eq. (9.71), along with the factthat

oe
Tama PMOle-aran

we can solve Eq. (9.72) for Aé. For large values ofF,
4.2

(A8)
 . (9.73;

VF 4 |
This then represents the smallest phase increment,
(Ad)nin, Separating two resolvable fringes. It can be
related to equivalent minimum increments in
wavelength (AAo)min, frequency (A?)min, and wave num-
ber (Ax}min- From Eq. (9.64), for 6 = 2am, we have

A
MAg = 2n,d cos O, + Bro (9.74)7

Dropping the term @A)/7, which is clearly negligible,
and then differentiating, yields 4

m(AAg) + Ao(Am) = 0or
Ag m=_—.

(Ado) (Am)
 

The minuswill be omitted,since it means only that the
orderincreases when Ay decreases. When & changes by
27, m changesby 1, so

pone!
(AS) (Am)
 
 

and thus
Ag_2am==.

(Ado) (48)
 

(9.75)
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The ratio of Ao to the least resolvable wavelength
difference, (AAo)min, is known as the chromatic resolv-
ing power ® of any spectroscope. At nearly normalincidence’

Ao 2ndR= se GAL
(Adog}rain Ao
 

(9.76)
or

R= Fm.

For a wavelength of 500nm, nd = 10mm, and R=
90%, the resolving poweris well over a million, a range
only recently achievedby the finest diffraction gratings.
It follows as well, in this example, that (AAo)min is less
than a millionth of Ao. In terms of frequency, theminimum resolvable bandwidth is

¢

F2n,d°
inasmuchas |A»| = |eAAo/A3].

As the two componentspresentin the source become
increasingly different in wavelength, the peaks shown
overlapping in Fig. 9.50 separate. As the wavelength
difference increases, the mth-order fringe for one
wavelength Ag will approach the (m + 1)th-orderfor the
other wavelength (Ag — AAg). Theparticular wavelength
difference at which overlappingtakes place, (AAo)ssr, is
knownas the free spectral range. From Eq. (9.75), a
change in 6 of 2a correspondsto (AAo);., = Ao/m, or at
near normalincidence,

 
(AY)nin = (9.77)

(AAg)tor * AB/Qnyd, (9.78)
andsimilarly

(AV) eg. * c/2nyd. (9.79)
Continuing with the aboye example {ie., Ap = 500 nm.
and nd = 10 mm), (AAo)rer = 0.0125 nm. Clearly, if we
attempt to increase the resolving power by merely
increasing d, the free spectral range will decrease, bring-
ing withit the resulting confusion from the overlapping
of orders. What is neededis that (AAo)min be as small as
possible and (AAo)s, be as large as possible. But lo and
behold,

(ro)ror
(AAo)min

 (9.80}
 

 
 

This result should not be too isi
original definition ofFP8h icy

Both the applications and configu:Fabry-Perot interferometer are x
Etalons have been arranged inseriesw
as well as with grating and prism sp
multilayerdielectric films have beenuse,metallic mirror coatings.

Scanning techniques are now widely
take advantageof the superior linearity gdetectors over photographic plates, toi
reliable flux-density measurements. The bag}
central-spot scanningisillustrated in Fig. 9,5
is accomplished by varying 6, by changing
than cos @,. In some arrangements, nriss -by altering the air pressure within the etd
tively, mechanical vibration of one mirré
placement of Ao/2 will be enoughto scan
tral range, correspondingasit doesto A.
lar techniquefor accomplishingthis utiliges
tric mirror mount. This kind of material am
length, and therefore d, as a voltage is aDpHERl
The voltage profile determines the mirromjmo

Instead of photographically recordin
over a large region in space,at a single pop
this method records irradiance over a largél
time, at a single point in space.

The actual configuration of the etalonitself ia
undergone somesignificant variations. Pier
in 1956 first described the spherical-minioj] Faby
interferometer. Since then, curved-mirror systeri f
become prominentaslaser cavities and areiq
increasing use as spectrum analyzers.
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helmets and visors, are shielded with similar

fqtrol coverings. Multilayer broad and narrow       
   

Mtcameras, and in the infrared they’re used in
Giiidance systems, CO, lasers, and satellite
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horizon sensors. The applications of thin-film devices
are manifold,as are their structures, which extend from
the simplest single coatings to intricate arrangements
of 100 or morelayers.

The treatment of multilayer film theory used here
will deal with the total electric and magnetic fields and
their boundary conditions in the various regions. This
is a far more practical approach for many-layered sys-
tems than is the multiple-wave technique usedearlier.*

FF iNS OF SINGLE AND
LAYER FILMS

Bi sesto which coatings of thin dielectric films
in recent times are many indeed. Coatings

funwanted reflections off a diversity of sur-
Pnowcase glass to high-quality camera lenses,
nonplace. Multilayer, nonabsorbing beam-
dichroic mirrors (color-selective beam-split-d reflect particular wavelengths)

chased commercially, Figure 9.52 is a seg-justrating the use of a cold mirror in
wth a heat reflector to channel infrared

‘he rear of a motion-picture projector, The
anted infrared radiation emitted by the

gerd. from the beam to avoid heating
be photographicfilm. The top half of Fig.nary back-silvered mirror shown for com-

cells, which are one of the prime power-
s for space vehicles, and even the astro-

9.7.1 Mathematical Treatment
Considerthelinearly polarized wave shownin Fig. 9.53,
impinging on a thin dielectric film between two semi-
infinite transparent media.In practice, this might corre-
spond to a dielectric layer a fraction of a wavelength
thick, deposited on the surface of a lens, a mirror, or
a prism. One point must be madeclear at the outset:
each wave E,,, Ely, Eur, and so forth, represents the
resultantofall possible waves traveling in that direction,
at that point in the medium. The summationprocess is
therefore built in. As discussed in Section 4.3.2, the
boundary conditions require that the tangential com-
ponentsof both the electric (E) and magnetic (H = B/)
fields be continuous across the boundaries {i.e., equal
on both sides). At boundary I

 

Iters, ones that transmit only over a specific
can be made to span the region from

Itraviolet. In the visible, for example, they
yrtant partin splitting up the image in color E, = Egt Ea Eat Eny (9.81)

and

Hy = yf? (Eu Exi)no cos 81By
€

Back V = (Ex~ Etn)ny cos6115 (9.82)
0silvered

   
  

Visible i :
fa. and es where use is made of the fact that E and H in non-

iR Cold magnetic mediaare related throughthe indexofrefrac-  
 mirror tion and the unit propagation vector: 

Source
‘Th
 Pinkoleseregn

Figure 9.51 Central spot scanning.
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He 4/2nkxEfo

* For a very readable nonmathematical discussion, see P. Baumeisterand G.Pincus, “Optical Interference Coatings,” Sci. Amer. 228, 59
{December 1970).A composite drawing showing an ordinary system inand a coated one in the bottom.  
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*

Figure 9,53 Fields at the boundaries.

At boundary II
En = Eynt Env @ Eun (9.83)

and
€

Ay= (Ear~Eny)m, cos 9:11Ho
€

¥2 Exit, cos 67, (9.84)Ho

the substrate having an index n,. In accord with Eq.
(9.33), a wave that traverses the film once undergoes a
shift in phase of ko(2n,d cos 6,1:)/2, which will be
denoted by kok, so that

Ey = EyePoe (9.85)
and

Enp©Ene"o* (9.86)
 

 Equations (9.83) and (9.84) can now Lew 1, if p is the number of layers, each with ak all
    

Ey = Eqe7h" 4 py chy value of n and 4, then the first and thelasten >
and oa are related by .

E; a lilly call (9.95)Hy = (Ege""—Eyye*oy fr Hen, "© Ho
Theselast two equations can besolve,
which when substituted into Eqs.(9.8

 
eerunlie matrix of the entire system is the

: ‘the product(in the proper sequence) of thex2 matrices, thatis, 
 
d for F,
land ¢

Ey = Ey, cos koh + Hi(3 sin aby

   
 

 
my, m

oe( u |, (9.96)
 
  

and M21 Mee,

Ay EyYji sin koh + Hi cos boil how all this fits together, we will derivewhere ions for the amplitude coefficients of reflection 
nsmission using the above scheme. By reformu-  | &

Y= yf My COS Bix.Ko

WhenKisin the plane of incidence the
tions result in similar equations, providedte

feYisyfnifcos O,;.Ho
In matrix notation, the abovelinearre]form

[2] [ cos hgh (isin ‘onH, Yiisin koh coskgh Lae,

=f, le
li ‘LA

The characteristic matrix #, relates the Beh
adjacent boundaries. It follows, ttenela
overlaying films are deposited on the substratil]
will be three boundaries or interfaces, and naw T= EVE. and ¢= Eq /Eq.fac ettly

ER = | ( il.Li ali i

 
 
 Bo

feY.~yfn, cos On,Ho

| (Eat En) |-«] Ent |(Ex- EYo LemYS
the matrices are expanded, the last relation

  
 
  
 

 
  

 T+ r= mitt mpYt
  
 (1 r)V¥9 = mgt + meo¥ 
 
  
 
 1+ YoYgmig— tg: — Ym.
 
 
 
 

, « 9.97,
Multiplying both sides of this expression by 67M + YoYamie + ma, + Ymoe 697)obtain

E, j Em | 2Y,[ ‘| aoltn! gy t o . (9.98)Ay penne pe + YoY mig + may + Yymoe’  
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To find either r or ¢ for any configuration of films, we
need only compute the characteristic matrices for each
film, multiply them, and then substitute the resulting
matrix elements into the above equations.

9.7.2 Antireflection Coatings

Now consider the extremely important case of normal
incidence, that is,

931 = Bin = O11 = 0,
which in addition to being the simplest, is also quite
frequently approximated in practical situations. If we
put a subscript on r to indicate the numberoflayers
present, the reflection coefficient for a single filmbecomes

_ Bi(fig— 1) 608 gh + i(ngn, ~ n}) sin hgh eaTa(to + ,) 008 koh + i(ngn, + nj) sin koh
Multiplying 7 by its complex conjugate leads to thereflectance

_ Bile — mJ" cos* hgh + (non, — ni} sin® koh
(tip + ,)* cos" Koh + (ron, + ni)" sin® koh’

This formula becomes particularly simple when koh =
3m, which is equivalent to saying that the optical thick-
ness h of the film is an odd multiple of dag. In this case
d= ZA, and

nN

1 (9.100

eS
R= (ron,9" (9.101)(Ron, + ni)

which, quite remarkably, will equal zero when
NE = non. (9.102)

Generaily, d is chosen so that h equals {Aq in the yellow-
green portion of thevisible spectrum, wheretheeyeis
most sensitive. Cryolite (n = 1.35), a sodium aluminum
fluoride compound,and magnesium fluoride (n=1.38)
are common low-indexfilms. Since MgFeis by far the
more durable, it is used more frequently. On a glass
substrate, (n, ~ 1.5), both these films have indices that
are still somewhattoo large to satisfy Eq. (9.102). None-
theless, a single Ao layer of MgFwill reduce thereflect
anceofglass from about 4% toa bit more than 1%, over
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the visible spectrum.It is now commonpractice to apply
antireflection coatings to the elements of optical instru-
ments. On camera lenses, such coatings produce a
decrease in the haziness caused bystray internally scat-
tered light, as well as a marked increase in image bright-
ness. At wavelengthsoneitherside of the central yellow-
green region, R increases and the lens surface will
appearblue-redin reflected light.

For a double-layer, quarter-wavelengthantireflection
coating,

Me MM;
or more specifically

0 és if¥e]
" 9,103)

aly, 3 iY 0. —
At normalincidence this becomes

—nginy 0 |
= : 9.104)

“ 0 ~m/ne ad
Substituting the appropriate matrix elements into Eq.
(9.97), yields r., which, when squared, leads to thereflectance

Nitto — nant |”= |= (9.405)Teh + Hy
For R, to be exactly zero at a particular wavelength, weneed

2

(=) a* (9.106)ny no

This kind of film is referred to as a double-quarter,
single-minimum coating. When n, and nz are as small
as possible, the reflectance will have its single broadest
minimum equal to zero at the chosen frequency. It
should be clear from Eq. (9.106) that n> 7m); accord-
ingly, it is now commonpractice to designate a (glass)-
(high index)-(low index)-{air) system as gHLa. Zir-
coniumdioxide (n = 2.1), titanium dioxide (n — 2.40),
andzinc sulfide (n©2.32} are commonly used for H-
layers, and magnesium fluoride (n = 1.38) and cerium
fluoride (n = 1.63) often serve as L-layers.

Other double- and triple-layer schemes can be de-
signed to satisfy specific requirements for spectral 

Figure 9.54 Lens elements coated with @ trusie ling: of

 
 

  

Biitioyer Periodic Systems
kind of periodic system is the quarter-wave

= js made up of a number of quarter-wave
Ag jodic structure of alternately high- and
~materials, illustrated in Fig. 9.56, is desig-

 
  
  
 
    
 g(HL)*a.   

BY; illustrates the general form ofa portion
al reflectance for a few multilayerfilters.

&¢ the high-reflectancecentralzoneincreases
Bag values of the index ratio n,,/7i,, and its

Ninereases with the numberoflayers. Note thatMim reflectance ofa periodic structure such

  
  

   

 
     
 
  

iy arrangement.
all peak on the short-wavelength side of the 
   
   
 

can be decreased by adding an eighth-wave
iim to both endsof the stack, in which case

afsiegement will be denoted by  
 g(0.5L)(HL)"H (0.5L)a. 
 
 

Air  
    

 
 
  
Figure 9.55 Lenselements coated with a multilayer
(Photos courtesy Optical Coating Laboratory, Inc.California.)

response, incident angle, cost, and so on. Fig, 94scene photographed through a 15-element,
with a 150-W lamppointing directly inta
The lens elements were covered with asMgFy. ForFig, 9.55 a triple-layer anuire!
was used. The improved contrast and g)are apparent,

  
 
   
 
 | Stet Glags substrate
  
 QHLHLHLa

GHLYa
       
 Thre

kEeHodic structure.

Quarter-wave stack   
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io 0
0.8 0.2

g 4 4 g
3 0.8 a Eé02 0

Wavelength (am)
Figure 9.57 Reflectance and transmittance for several periodicstructures.

This has the effect of increasing the short-wavelength
high-frequency transmittance and is therefore known
as a high-pass filter. Similarly, the structure

gO.5SH)L(HL)"(0.5H)a
merely corresponds to the case in which the end H-
layers are Ao/8 thick. It has a higher transmittance at
the long-wavelength, low-frequency range and serves
as a low-passfilter.

At nonnormal incidence, up to about 30°, there is
quite frequently little degradation in the response of
thin-film coatings. In general, the effect of increasing
the incident angle is a shift in the whole reflectance
curve downto slightly shorter wavelengths. This kind
of behavioris evidenced by several naturally occurring
periodic structures, for example, peacock and hum-
mingbird feathers, butterfly wings, and the backs ofseveral varieties of beetles.

The last multilayer system to be considered is the
interference, or more precisely the Fabry-Perot, filter. If
the separation betweenthe plates of an etalonis of the
orderof A, the transmission peaks will be widely sepa-
rated in wavelength.It will then be possible to block all
the peaks butoneby using absorbingfilters of colored
glass or gelatin. The transmitted light correspondsto a
single sharp peak, and the etalon serves as a narrow
band-pass filter. Such devices can be fabricated by
depositing a semitransparent metal film onto a glass
support, followed by a MgF2 spacer and another metal
coating.
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All-dielectric, essentially nonabsorbing Fabry-Perot
filters have an analogous structure, two possibleexamples of which are

&ALHLLALHa
and

&HLHL HH LHLH a.
The characteristic matrix for the first of these is

MOO Mig MiMiMMMiMiMss,
but from Eq, (9.104)

f-1 0
MiMi 9 Bior

MiMn —F,
where J is the unity matrix. The central double layer,
corresponding to the Fabry-Perot cavity, is a half-

 
Scatiering

* grains

 
a

Silvered :
surface L ‘ Se!

Figure 9.58 Interference ofscattered light.

wavelength thick (d = 3A,). It therefore has no effect
the reflectance at the particular wavelength under considé
ation. Thus, it is said to be an absentee layer, and as Nconsequence,

Mm ~My MsMyMMM

The same conditions prevail over and over again at thecenter and will finally result in

#-[o th
At the special frequency for which the filter was de.
signed, 7 at normal incidence, according to Eq. (9.97),reduces to

BotsrT 3No + n,
the value for the uncoatedsubstrate. In particular,fo;
glass (n, = 1.5), in air (np = 1) the theoretical peak randmission is 96% (neglecting reflections from the back
surface of the substrate, as well as losses in both the
blocking filter and the films themselves).

9.8 APPLICATIONS OF INTERFEROMETRY

There have been many physical applications of the
principles of interferometry. Some of these are only of
historical or pedagogical significance, whereas others
are now beingused extensively. The adventofthe laser
and the resultant availability of highly coherent
quasimonochromaticlight have madeit particularly easyto create new interferometer configurations.

9.8.1 Scattered-Light Interference

Probably the earliest recorded study of interference
fringes arising from scattered lightis to be foundin Sir
Isaac Newton's Optiks (1704, Book Two, Part IV). Our
presentinterest in this phenomenon is twofold. First,
it provides an extremely easy way to see some rather
beautiful colored interference fringes. Second, it is the
basis for a remarkably simple and highly useful interyferometer.

 

197

 9.8 Applications of Interferometry 379
Quasimonochromaticpoint source

 

 Figure 9.59 Scatierplate setup. Adap-ted from R. M. Scott, Appl. Opt, 8, 531 Image Camera
(1969). plane Tens £ 2

Tosee the fringes, lightly rub a thin layer of ordinary
cum powder onto the surface of any common back-

ilvered mirror (dewwill do as well). Neither the thick-
ness nor the uniformity of the coating is particularly
fmportant. The use of a bright point source, however,
is crucial. A satisfactory source can be made by taping
a heavy piece of cardboard having a hole about 4 inch
in diameter over a good flashlight. Initially, stand back
from the mirror about $or 4 feet; the fringes will be
too fine and closely spaced to see if you stand much
hearer. Hold the Aashlight alongside your cheek and
illuminate the mirror so that you can see the brightest
teflection of the bulb in it. The fringes will then be
clearly seen as a numberofalternately bright and darkbands,

In Fig. 9.58 two coherent rays leaving the point source
are shownarriving at point P after traveling different
ffoutes. One ray is reflected from the mirror and then
[cattered by a single transparent talcum grain toward
P. The second ray is first scattered downward by theTain, after which it crosses the mirror andis reflected

fe toward P. The resulting optical path-length‘erence determines the interference at P. At normal

  
“U Scatter

plateBeam-
splitter SJTest misror

incidence, the pattern is a series of concentric rings ofradius*

. [ nmaate® \""lab>] °
Nowconsider a related device, which is very useful

in testing optical systems. Knownasascatter plate,it
generally consists of a slightly rough-surfaced, trans-
parentsheet. In an arrangementsuchas the one shown
in Fig. 9.59,it serves as an amplitude-splitting element.
In this application it must have a center of symmetry;
that is, each scattering site is required to have a dupli-
cate, symmetrically located about a central point.

In the system underconsideration, a point source of
quasimonochromaticlight S is imaged, by meansof lens
L, on the surface, at point A of the mirror being tested.
A portion ofthe light coming from the sourceis scat-
tered bythe scatter plate and thereafterilluminates the
entire surface of the mirror. The mirror,in turn,reflects
light back to the scatter plate. This wave, as well as the 
* For more of the details, see A. J. deWitte,“Interferencein Scattered
Light,” Am. J. Phys. $5, 301 (1967).
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light forming the image ofthe pinhole at point A,passes
throughthescatter plate again and finally reaches the
image plane(either on a screen or in a camera). Fringes
are formed on this latter plane. The interference pro-
cess, which is manifest in the formation of these fringes,
occurs because each point in the final image plane is
iNuminated bylight arriving via two dissimilar routes,
one originating at A and the cther at some point B,
which reflects scatteredlight. Indeed,as strange as they
may look at first sight, well-defined fringes do result,
as shownin Fig. 9,60.

Examining the passage of light through the system
in a bit more detail, consider the light initially incident
on the scatter plate and assumethat the wave is planar,
as shown in Fig. 9.61. Afterit passes throughthe scatter
plate, the incident plane wavefront E, will be distorted
into @ tranamitted wavefront Ey. Weenvision this wave,
in nurn,split intoa series of Fourier components consist-
ing of plane waves, that is,

E; = E, +E, +---. (9.107)
Two of these constituents are shown in Fig. 9.61(a).
Now suppose we attach a specific meaning to these
components; namely, E,is taken to representthelight
travelingto thepointAinFig, 9.59, and E, thattraveling
toward B. The analysis of the stages that follow could
be continued in the same way. Let the portion of the
wavefront returning from A be represented by the
wavefront E, in Fig. 9.61(b). The scatter plate will

 
py Es in Fig. 9.61(c). Upon traversing the

B Es will be reshapedinto the wave Ex r- One
i components of this wavefront, denotedyned at the angle 8 and will therefore bejoint P on the screen.

F Beaverarriving at P will be coherentin
hat interference occurs. Toobtain the resul-
ance Ip, first add the amplitudes of all theang at P, that is, Er, and then square and

Ep. /
cussion above, only two pointsourcesat the

i uidered. Actually, of course, the whole
‘. mirroris illuminated by the ongoinglight,

Bpoint of it will serve as a secondary source
ning waves. All the waves will be deformed by
er plate, and these, in turn, can besplit intocomponents. In each series of component

will be one inclined at an angle 8, andall
hese will be focused at the sare point P on the
en ieresultant amplitude will then have the form

Ep =Eyo +Enot-**-

    
  
   
    
  
  
  
 
 
 
     
 
  

  
 
 
 
 
 
 
 
 
 

nel:

  Tiss

Figure 9.60 Fringes in scattered light.

transform it into an irregulartransmitted ¥
by Ear in the same figure. This again copea complicated configuration, but it can
Fourier components consisting of plane wat
above case. In Fig. 9.61(b), two of theseBegmme
wavefronts have been drawn, one traveling %
and the other inclined at an angle @ The 4a
front, which is denoted by E,g, is focused hy
the point P on the screen (Fig. 9.59).

The wavefront returning from B

Preaching the imageplanecan be envisioned
Pini part of two optical fieldsof special interest.Frese results from light that was scattered only

¢ through the plate toward the mirror, and
esults from light that was scattered only on

toward the image plane. The former broadly
Z test mirror and ultimately results in an

Se vi lion the screen, Thelatter, which wasinitially
Bed to the region about A,scatters a diffuse blur

 

 

Scatterplate 
 
 ‘He screen, The point A is chosen so that the

Mire {in thevicinity of it is free of aberrations. Inathe wave reflected from it serves as a refer-
ath to compare the wavefront correspond-“tfilite mirror surface. The interference pat-

f a Will show, as a series of contour fringes, any7 ™ perfection in the mirror surface.”

 
  
 
 
    
 

iscussion of the scatter plate, the reader mightconsult
eect papers by J. M, Burch, Nature 17%, 889 (1953),

Am. 52, 600 (1962). Reference should be madeto J,
Hof Classical Optics, p. 383, Also see R. M, Scott, "Scatter

 
Exp Ear 

fay (by
Figure 9.61 Wavefronts passing throughthe scatter plate.

 

 
 
 

try,” Appl. Opt. 8, 532 (1969), and J, B. Houston,
ke and Use a Scatterplate Interferometer," Optical
TL p. 32, L
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9.8.2. Thin-Film Measurements by Multipie-
Beam Interferometry

Return to Fig. 9.32 and now suppose that the wedge
hasa stepin it. Figure 9.62 illustrates the fringe pattern
that might be seen under these circumstances. If the
wedge angle is the same for each surface,thatis, if the
top surfaces are parallel, the fringes will be equally
spaced.

When the separation of the fringes is b and the shift
is a, then the heightof the step is given by

ah,
t 62

Tf one of the boundaries of the film is an optical flat
and the other boundary is a crystal surface or some
other surface examinedfor fatness, then these Fizeau
fringes are contours of the surface under examination.

An actualoptical system for measuring the thickness
of a thin film deposited on a glass substrate is shown in
Fig. 9.63. Thefilm whose thicknessis to be determined
is coated with an opaque layer ofsilver, about 70 nm
thick, which accurately contours the undersurface. The

 
Figure 9.52 Fringesarising from a stepped wedge-shaped film.

 
 

 



199

 
382 Chapter 9 Interference

'
SIDE Everiece

Quasimono~chromate
point source

J\
t|1}
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Figure 9.63 Arrangement for measuring film thickness.

opposing silvered surfaces generate a sharp multiple-
wave Fizeau pattern. The upper plateis tilted slightly
to create an air film im the form of Fig. 9.62, so that
the same arrangementof fringes is now observed (Fig.
9.64). Film thicknesses of about 2.0 nm can readily be
determinedin this manner. Such methodsyield a reso-
lution in depth comparableto thelateral resolution of
an electron microscope. Tolansky, using the multiple-
beam techniques that he invented, has measured height
changes of 1 x 10°® inches, nearly the size of a singleatom.

9.83 The Michelson-Morey Experiment

Overthe yearssince 1881, the Michelson interferometer
has had innumerable applications, most of which are
now mainly of historical interest. One of the mostsig-

 

    
  
 

{. With chat assumption, the nature of thei to match terrestrial and astronomical
fe ‘At the time, there was no denying the

ay Beoce of acther; the debate centered onits
. oroperties. ‘Was the aether stationary in space,pviding a reference frame from which to

| : the absolute motion ofall other objects? Ored along by the planets as they moved.
2 ff the aether Werestationary, an obser-

h would be able to detect an aether wind
er its surface, as it moved in orbit. A. A.
ater joined by E. W. Morley, set out to

At effects of the aether wind, using his inter-
ich was designed specifically for that pur-

oriented, as shown in Fig. 9.65, with the
allel to the velocity v of the Earth through

basic reasoning of the Michelson—Morley
! " A derived from purelyclassical laws of physics,
| 1 lows: when the beam of light travels to theF Mistive speed with respect to the moving inter-

c~v, itis moving against the aether wind,
to travel the Jength OM,is
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Figure 9.64 Actualfringes from a stepped wedged he eturn trip, M,O, the beam travels with the
nificant of these was its use in the Mirlelay
experiment,

Duringthelast century scientists comm
that there existed a medium, the fuming
carrying) aetker, which permeated all matter pe
all space, was massless, and neither solid, lit
gas. As James Maxwell wrote in the PneyellhBritannica:  

Aethers were invented for the planets to Swill
constitute electric atmospheres and ogni
to convey sensations from one part of
another, and so on,until all space had heeRyyor four times over with aethers..-- Ti
which has survived is that which wae] Ae
Huygetis to explain the propagation of light

It was well established that light was aaonly natural to havea medium in which the

/-
PBBichetson-atoriey experiment, Overall configar-
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Figure 9.66 The Micheison-Morley experiment. Geometryfor thetransverse beam.

aether wind, and
a

ety
 

q=

Thetotal time, t{ + ¢{, to traverse OM,O is

& 4 4ae >e-v ¢cty
which can be written as

where

 
The time of travel toward the second mirrer can be

determined with the help of Fig. 9.66. From the right
triangle, where ¢) is the transit time to cover OMe,

wpe v2 + &,
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from which it follows that

=fLuae B.

Butthisis also the time¢8 thatit takes the beam oflight
to return from Mg to O, and sioce ig = th + #3,

26,
a2p.

Notice that even when ¢, ~ & = @, & # ig and
2¢ 09

ho ks7 — B).
Using the binomial expansion with ¢ > v, we obtain

BP (hve?) 1 + vse?
and

Bradwayor
Brlthye.

Wefind that with At = ¢,>ty

afoXc,

A time difference Ai in the two paths correspondsto a
difference in the numberof wavelengthsfitting between
OM,O and OM,0:

AN =At/r or AN=vat,
where + is the period and v the frequency. This is also
the numberofpairs of fringes (i.e., a maximum and a
minimum) that wouldshift past the telescope cross hairs,
ifa time difference Ai were somehowintroduced during
the obervation. Suppose that the Earth werestationary
in space aod thenstarted moving with a speed v, such
that AN =. Furthermore, suppose the observerset the
cross hairs initially at the center of a bright fringe. As
the Earth began to move,the brightfringe would sweep
by, and the cross hairs wouldshift to the center of the
adjacent dark fringe. We cannot, of course, stop the
world, but we can rotate the interferometer. If the
instrument is rotated 90°, the new transit time
difference, which can be determined byjust interchang-  

 
ing the I and 2 subscripts,is equal to rth, His results showed that this too was not 
 
   

  

54
that if the observer wereto rotate the in e aether theory was doomed. \
90°, a time difference of 2 Ai would be inca , fern version of the Michelson—Morley experi-
which, in that example, AN'= 1, and the ott Gro here in Fig. 9.68, compared the frequen-TOsg Hi
would end up on the nextbright fringe,

This is essentially what Michelson and
Their apparatus was multimirrored to m™
length as large as possible, (= & = 1] Gam
ona massive stone, which floated ona trou,
mercury (Fig. 9.67). Each man took te
around with the slowly revolving stoneltinuously observing the fringe pattern. Witte
assumedto be equalto the Earth’s orbitalg

M infrared lasers. (Recall that in Section 7.2.1
i ad the application of lasers to the problem

ing beats.) The combined beam reaching the
iltiplier, being the resultant of two coplanar

E ic waves, WAS amplitude-modulated by a relativelysation. These beats had a frequency equal to the
ence between! those of the two constituentlaser

me precise frequency of the mode in which
: operated was governedbythe length of the

30 km/s and Ay = 550 nm, the fringe shitte Wesonantcavity and the speedoflight therein.
would be rs, functioning at about 3 x 10'* Hz, were

2¢/\? * the aether wind would affect the speed of
AN =— (2) mm the cavities and therefore the frequencyANe figrenfé between them’ A relative change in » ofwuld be expected from the aether wind

, because of the Earth's orbital velocity. No
in the beat frequency, to within an accuracy of

yam of that predicted, was detected.

  
Morley
a
  
 
 

 
 
 

 
AN =0.4.  

‘They made many observationsat different 9
Earth’s daily cycle and ondifferent days du
orbit. Even though they could have detected
a minute fraction of a fringe, they saw none what
There was no aether wind; Michelson and Morley i
soundedthe preludeto special relativity.

Ten years later, Michelson interferometrk
the possibility that the aether was being dra:

  
feWyman-GreenInterferometer  
 man-Green is essentially a variation of the

son interferometer.It’s an instrument of great
tee in the domain of modern optical testing.
its distinguishing physica! characteristics (iHus-

Fig. 9.69) are a quasimonochromatic point
and lens L;, to provide a source of incoming

@laves, and a lens Ly, which permits all the light
Maric aperture to enter the eye so that the entire

f be ane. that is, any portion of M, and My. A
Miifus laser serves as a superior source in thatit

Bea ter cn ue of long path-length differen-
Eddition, short photographic exposure times.to minimize unwanted vibration effects.
ions of the Twyman-Green are among the

ectiVe testing tools in optics. As shown in the
the device is set up to examine a lens. The

  
     
 Adjustable mirror

. Silvered
Mirrors Mirrors} glass plate
 Unsilvered glass plate, Light source   

(opeae fTeiescope OOH Ly
oAeekee

   
   
 
  
       

 
A. Javan,J. Murray,andC, H, Townes,“Test of Special

of the Isotrapy of Space by Use of Infrared Masers,””A1221 (1964).  Figure 9.67 The Michelson-Morley experiment,  

200

 

9.8 Applications of Interferometry g85

   

Rotating shock-proof
plaiform 

 
  
  

 
 

Photomuitiplier
 

  
 

 

Recordingelectronics  
Figure 9.68 A variation of the Michelson-Morley experiment,

spherical mirror M, hasits center of curvature coin-
cidentwith the focal point of the lens. If the lens being
tested is free of aberrations, the emerging reflectedlight
returning to the beamsplitter will again be a plane
wave. If, however, astigmatism, coma, or spherical
aberration deforms the wavefront, a fringe pattern
clearly manifesting these distortions can be seen and
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photographed. Wheti Mgis replaced by a plane mirror,
a numberof other elements (prisms, optical Bats, ete.)
can be tested equafly well. The optician interpreting
the fringe pattern can then markthe surface for further
polishing to correct high or low spots. In the fabrication
of the finest optical systems, telescopes, high-altitude
cameras, and #0 forth, the interferograms may even be
scanned electronically, and the resulting data analyzed
by computer. Computer-controlled plotters can then
automatically produce surface contour mapsorperspec-
tive “three-dimensional” drawings of the distorted
wavetront generated bythe element being tested. These
procedurescan beused throughoutthe fabrication pro-
cess to ensure the highest-quality optical instruments.
Complex systems with wavefront aberrations in the frac-
tional-wavelength range are the result of what might
be called the new technology.*

9.85 The Rotating Sagnac Interferometer

Use of the Sagnac interferometer to measure the rota-
tional speed ofa system has generatedinterest in recent
times.~In particular, the ring laser, which is essentially
a Sagnac interferometer containing a laser if one or 
* Take a look at R. Berggren, “Analysis of Interferograms,” OpticalSpectra, (Dec. 1970), p. 22,

 

 
 
 
 

  
  
   

 

 
 
 

 
 

  
  
 
 
 
 
 
 
 
 

 
 

af navel of the light from A to D is

 Fringe pattern : .
= for counterclockwise and clockwise travelly by

8R
4 a2e+oR

to = 
i mat difference between these twointervals isFigure 9.69 The Twyman-Greeninterferometeni At = fg— ty

ie binomialseries,
8R°wat= 'Remore of its arms, was designed specifi

purpose. Thefirst ring laser gyroscope was
in 1963, and work is continuing on variou
this sort (Fig. 9.70). The tnitial experiment
impetusto these efforts were performed b
1911, Atthat time he rotated theentire intettams
mirrors, source, and detector, about a’ peri
axis passing throughits center (Fig. 9.71).
Section 9.4.2, that two overlapping beamsti
interferometer, one clockwise, the ather counteralg
wise. The rotation effectively shortens the p
by one beam in comparison to that of the othe
interferometerthe result is a fringe shift Propuall
to the angular speed of rotation w. In the ring: lam
is a frequency difference between the two beam
fs proportional to w.

Consider the arrangementtepicted| Fig. 9.
corner A {and every other corner) m with:
speed » =Ru, where K is half the diggonal
square. Using classical reasoning, we find that che
of travel of light along AB is

Rv2
‘acl c— v2

 

 
  
  
 or  
 

1 = BRAB Vac oR”
 
   

ng laser gyro. (Photo courtesy Autonetics, a Division
8 Rockwell Corp.) 
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T

Figure 9.71 ‘The rotating Sagnac imerferometer. Originally it wasLm X ig with ==120rev/min,

This can be expressed in termsof the area A = 2R? of
the square formed by the beams oflight as

4A
At= e
 

Let the period of the monochromatic light used be
7 = A/c; then the fractional displacementof the fringes,
given by AN ™ At/z,is

a result that has been verified experimentally. In par-
ticular, Michelson andGale* used this method to deter-
mine the angular velocity of the Earth.

The precedingclassical treatments obviouslylacking,
jnagmuch asit assumes speeds in excess of ¢, an assump-
tion that is contrary to the dictates of special relativity.
Furthermore,it would appear that since the system is

* accelerating, general relativity would prevail. In fact,
all these formalisms yield the same results.

* Michelson and Gale, Astrophys. J. 61, 140 (1925).
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PROBLEMS
9.1 Returning to Section 9.1, Jet

E,(t, 1) = E\(ryeand
E,(r, () = Ey(rje

where the wavefront shapesare not explicitly specified,
and E, and E, are complex vectors depending on space
and initia] phase angle. Showthatthe interference term
is then given by

Ty, = 3(E,: ES + Ej - E,). (9.108)
Youwill have to evaluate terms of the form

owe Et Be (7 ace gy
{E, + Exe) EE { et de

for T » 7 (take another look at Problem 3.4), Show that
Kg.(9.108) leads to Eq. (9.11) for plane waves.
9.2 In Section 9.1 we considered the spatial distribu-
tion ofenergy for two point sources. We mentioned
that for the case in which the separation a » A, liz
spatially averages to zero. Whyis this true? What hap-
pens when @ is muchless than A?

9.3 Will we get an interference pattern in Young’s
experiment (Fig. 9.5) if we replace the sourceslit S by
a single long-filamentlight bulb? What would occurif
we replaced theslits 5, and S, by these same bulbs?
9.4* Two 1.0-MHz radioantennas emitting in phase
are separated by 600m along a north-southline. A
radio receiver placed 2.0km east is equidistant from
both transmitting antennas and picks upa fairly strong
signal. How far north should that receiver be moved if
it is again to detect a signal nearly as strong?

9.5 An expanded beam ofred light from a He-Ne
laser (Ag = 632.8 nm)is incident on a screen containing
two very narrow horizontalslits separated by 0.200 mm.
A fringe pattern appears on a white screen held 1.00 maway.
a) Howfar(in radians and millimeters) above and belowthe central axis are the first zeros of irradiance?

b) Howfar (in mm) from the axis is the fifth brighyband?
c) Compare these tworesults.

9.6* Red plane waves from a ruby laser (Ay =
694.3 nm) in air impinge on two parallel slits in an
opaquescreen. A fringe pattern forms ona distant wall,
and wesec the fourth bright band1.0° abovethe centraj
axis. Kindly calculate the separation between theslits,

9.7* A 8X65 card containing two pinholes, 0.08 mm
in diameterandseparated centerto center by 0.10 mm,
js illuminated by parallel rays of blue light from aj
argon ion laser (Ag = 487.99 nm). If the fringes on aj
observing screen are to be 10 mm apart, how far awayshould the screen be?

9.8* White light falling on two long narrowslits emeny
ges and is observed on a distant screen. If red light
(Ap=780 nm) in thefirst-order fringe overlaps violeg
in the second-order fringe, what is the latter's,
wavelength?

9.9* Considering the double-slit experiment, derive
an equation for the distance y, from the central axisto the m'th irradiance minimum, such thatthefirst dark
bands on either side of the central maximum corre-
spond to m’ = © 1. Identify and justify all your approxlgmations,

9.10" With regard to Young's experiment, derive a
general expression for the shift in the vertical position
of the mth maximum as a result of placing a thin parallg
sheet of glass of index n and thickness ¢ directly ovey
oneoftheslits. Identify your assumptions.

9.11" Plane waves of monochromatic light impings]an angle 6; on a screen containing two narrow
separated by a distance a, Derive an equation for
angle measured from the central axis which locatesmth maximum.

9.12" Sunlight incident on a screen containing t¥
long narrowslits 0.20 mm apart casts a pattern on,
white sheet of paper 2.0 m beyond. Whatis the dista™ 
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yparating the violet (Aj = 400 nm) in the first-order
pand from the red (Ay=600 nm)in the second-order
fpand?

13 To examine the conditions under which the
FE pcosimations of Eq. (9.23) are valid:
a) Apply the law of cosines to triangle $,5,P in Fig.9.5(c) to get- aqe

[alenes OVPn 1 "

b) Expand this in a Maciaurinseriesyielding
2

72" 1,7 asin 8 +— cos” 6Qn,
¢) In light of Eq. (9.17), show thatif (7,

asin @, it is required that 7, »@/A,
72) is to equal

914 A stream ofelectrons, each having an energy of
(6.3 eV, impingeson a pair of extremely thinslits sepa-
rated by 107? mm. Whatis the distance between adja-
cent minima on a scrcen 20 m behindtheslits? (m,
9.108 10°"! kg, LeV=1.602 10°" J.)

9.15 Showthata for the Fresnel biprism ofFig. 9.10
lqieen by a= 2d(n— tye.

%.16* In the Fresnel double mirror s=2m, Ag =
39 um, and the separation of the fringes was found to

0.5mm. What is the angle of inclination of the
rors, if the perpendiculardistance ofthe actual pointrce to the intersection of the tvo mirrors is 1 m?

B.17" The Fresnel biprism is used to obtain fringes
from a point source thatis placed 2 m from thescreen,
End the prism is midway between the source and the

meen. Let the wavelength ofthe light be Ay©500 nm
the indexofrefraction of the glass be n = 1.5. What

he prism angle, if the separation of the fringes ismm?
.I . .

4 What is the general expression for the separationof  
 BE fringes ofa Fresnel biprism of index n immersed“ medium having an index ofrefraction n’?

 
 Problems 389

9.19 Using Lloyd’s mirror, x-ray fringes were
observed, the spacing of which was found to be
0.0025 cm, The wavelength used was 8.33 A. If the
source-screen distance was 3m, how high above the
mirror plane was the point source of x-rays placed?

9.20 Imagine that we have an antennaat the edge of
a lake picking up a signal from a distant radiostar (Fig.
9.72), which is just coming up above the horizon. Write
expressions for # and for the angular position of thestar when the antenna detectsits first maximum.

 
Lake

Figure 9.72

9.21* lf the plate in Fig. 9.14 is glass in air, show that
the amplitudes of £,,, £p,, and Es, are respectively
0.2 £y;, 0.192 Ey,, and 0.008 Ey;, where Ep; is the
incident amplitude. Makeuseof the Fresnel coefficients
at normal incidence, assuming no absorption. You
might repeat the calculation for a water film in air.

9.22 A soap film surrounded byair has an index of
refraction of 1.34. If a region of the film appearsbright
red (Ao = 633 nm) in normally reflected light, what isits minimum thickness there?

9.23" A thin film ofcthyl alcohol (2©1.35) spread on
a flat glass plate and illuminated with white light shows
a color pattern in reflection. If a region of thc film
refiects only green light (500 nm) strongly, how thickis it?
9.24" A soapfilm of index 1.34 has a region whereit
is 550.0 nm thick. Determine the vacuum wavelengthsof the radiation that is not reflected when the film is
illuminated from above with sunlight.
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9.25 Considerthe circular pattern of Haidinger’s frin-
ges resulting fromafilm with a thickness of 2mm and
an indexof refraction of 1.5. For monochromatic illumi-
nation of Ay=600 nm, find the value of m for the
central fringe (6,=0}. Will it be bright or dark?

9.26 Illuminate a microscopeslide (or even better, a
thin cover-glass slide}. Colored fringescan easily be seen
with an ordinary fluorescent amp serving as a broad
source or a mercury street light as a paint source.
Describe the fringes. Now rotate the glass. Does the
pattern change? Duplicate the conditions shownin Figs.
9.15 and 9.16, Try it again with a sheet of plastic food
wrap stretched across the top of a cup.

9.27 Figure 9.73 illustrates a setup used for testinglenses. Show that

d= x?(Ry~ RiZR, Re
when d) and dg are negligible in comparison with 2R,
and 2R2, respectively. (Recall che theorem from plane
geometry that relates the products of the segments of
intersecting chords.} Prove that the radius of the mth
dark fringe is then

Xm = [Ri RomAji(Re— Ry)J'?.
How does this relate to Eq. (9.43)?

| Test
plate

 
Figure 9.73

 

Figure 9.74

9.28* Newton rings are observed on a film with
quasimonochromatic light that has a wavelength of
500 nm. If the 20th bright ring has a radius of 1 cm,
whatis the radius of curvature of the lens forming one
partof the interfering system?

9.29 Fringes are observed when a parallel beam of
light of wavelength 500 nmis incident perpendicularly
onto a wedge-shaped film with an index of refraction
of 1.5. What is the angle of the wedge if the fringe
separation is }cm?

9.30* Suppose a wedge-shaped air film is made
between two sheets of glass, with a piece of paper
7.618 x 1075 m thick used as the spacer at their vt=}
ends. If light of wavelength 500 nm comes down from
directly above, determine the numberof bright fringes
that will be seen across the wedge.
9.31 A Michelson interferometeris illuminated with
monochromatic light. Oneofits mirrors is then moved
2.58 X 10° m, andit is observed that 92 fringe-pairsybright and dark, pass by in the process. Determine the
wavelengthof the incident beam.
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gg" One of the mirrors of a Michelson inter-
erometer is moved, and 1000 fringe-pairs shift past

e hairline in a viewing telescope during the process.
{the device is illuminated with 500-nm light, how far

fwas the mirror moved?
9.38" Suppose we place a chamber10.0 cm longwith

1 parallel windows in one arm of a Michelson inter-
frome thatis being Wuminated by 600-nmlight. Ifrefractive index of air is 1.00029 andall the air is

pertout of the cell, how many fringe-pairs will shiftin the process?

“9.34* A form of theJamin interferometerisillustrated
in Fig. 9.74. How does it work? To whatuse mightit
be put?

9,35 Starting with Eq. (9.53) for the transmitted wave,
compute the flux density, ie. Eq. (9.54).

9.36 Given that the mirrors of a Fabry-Perotinter-
ferometer have an amplitude reflection coefficient of
r= 0.8944, find
a) the coefficientof finesse,
b) the half-width,
© the finesse, and,
d) the contrast factor defined by

_ UBoe
OPnia

9.37. Tofill in some ofthe details in the derivation of
the smallest phase increment separating two resolvable
Fabry-Perotfringes, that is,

(08) ~ 4.2/VF, 19.78]
satisfy yourself that

{of OVlso5,2a8:2 ~ [54 ()ls-asre-
Show that Eq. (9.72) can be rewritten as
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Qoo-asi2 = O.B1{ + [0(4)]s-a5}-
WhenFjs large y is small, and sin (AS) ~ A&. Prove
that Eq. (9.73) then follows.
9.38 Consider the interference pattern of the Michel-
son interferometeras arising from two beams of equal
flux density. Using Eq. (9.17), compute the half-width.
Whatis the separation, in 6, between adjacent maxima?What then is the fnesse?

9.39* Satisfy yourselfof the fact thata film of thickness
Aj/4 and index n, will always reduce the reflectance ofthe substrate on which it is deposited, as long as n, >
7, > ny. Considerthe simplest case of normalincidence
and mg = 1. Show thatthis is equivalent to saying that
the wavesreflected back from the two interfaces cancel
one another.

9.40 Verify that the reflectance of a substrate can be
increased by coating it with a A,/4, high-indexlayer,
that is, 2) > n,. Showthat the reflected waves interfere
constructively. The quarter-wave stack g(HL)"Ha can
be thoughtof as a series of such structures.

“9.41 Determine the refractive index and thickness of
a film to be deposited on a glass surface (n, = 1.54) such
that no normally incidentlight of wavelength 540 nmis reflected.

9.42 A glass microscope lens having an index of 1.55
is to be coated with a magnesium fluoride film to
increase the transmission of normally incident yellow
light (Ay™ 550 nm). What minimum thickness should
be deposited on the lens?

9.43* A glass camera Jens with an index of 1.55 is to
be coated with a cryolite film (n ~ 1.30) to decrease the
reflection of normally incident green light (Ag =
500 nm). What thickness should be deposited on thelens?

 

 



204

 

ite} DIFFRACTION

10.1 PRELIMINARY CONSIDERATIONS

An opaque body placed midway between a screen and
a point source casts an intricate shadow made up of
bright and darkregions quite unlike anything one might
expect from thetenets of geometrical optics (Fig. 10.1).*The work of Francesco Grimaldi in the 1600s was the
first published detailed study of this deviation of light
from rectilinear propagation, somethinghecalled “diffrac-
tio.” The effect is a general characteristic of wave phenomena
occurring whenever a portion of a wavefront, be tt sound, a
matter wave, or light, is obstructed in some way. If in the
course of encountering an obstacle, either transparent
or opaque,a region of the wavefrontis altered in ampli-
tude or phase, diffraction will occur.t The various seg-
ments of the wavefront that propagate beyond the
obstacle interfere, causing the particular energy-density
distribution referred to as the diffraction pattern. There

* The effect is easily seen, but you needa fairly strong source. A
high-intensity lamp shining through a small hole works well. If you
look at the shadow pattern arising from a pencil under point-source
illumination, you will see an unusual bright region bordering the
edge and evenafaintly illuminated band down the middle of the
shadow. Take a clase look at the shadow cast by your handin dircat
sunlight.
+ Diffraction associated with transparentobstaclesis not usually con-
sidered, although if you have everdriven an automobile at night with
a few rain droplets on youreyeglasses, you are no doubt quite familiar
with the effect. If you have not, put a droplet of water or saliva on a
glass plate, hold it very close to your eye, and Iookdirectly through
it at a point source. You'll see bright and dark fringes.
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Figure 10.1 The shadow of a hand holding a dime, cast directly on
4X8 Polaroid A.S.A. 3000film using a He-Ne beam and no lenses.
(Photo by E.H.}

is no significant physical distinction between interference
and diffraction, It has, however, become somewhatcus-
tomary, if not always appropriate, to speak ofinterfer-
ence when considering the superposition of only a few
waves and diffraction when treating a large numaber of
waves. Even so, one refers to multiple-beam interfer-
ence in one context and diffraction from a grating inanother.

We might mention parenthetically that the wave

dealing with certain diffraction phenomena. For
ple, diffraction from a grating (Section 10.2.7) canEB althoughthe mostnatural, is notthe only meansalnalyzed using a corpuscular quantum app!

or our Purposes, however, the classical wave theory,
rich provides the simplest effective formalism, will
foore than suffice throughoutthis chapter.jt should be emphasized that optical instruments

ke use of only a portion of the complete incident
yefront. Diffraction effects are accordingly of great

ificance in the detailed understanding of devices
sataining lenses,stops, source slits, mirrors, and soon.
fall defects in alens system were removed, the ultimate

cpness of an image would be limited by diffractionroblem 10.23).
Asan initial approachto the problem,let’s reconsider

Huygens’s principle (Section 4.2.1). Each point on avefront can be envisaged as a source of secondary
Spherical wavelets. Fhe progress through space of thefyavefront or any portion thereof can then presumably
be determined. At any particular time, the shape of the
fravefrontis supposed to be the envelope of the secon-
dary wavelets (Fig. 4.3). The technique, however,Zcnores most of each secondary wavelet, retaining only

t portion common to the envelope, As a result of
is inadequacy, Huygens’s principle by itself is unable

®account forthedetails of the diffraction process. That
his is indeed the case is borne out by everyday
xperience. Sound waves {e.g., » = 500 Hz, A ~ 68 cm)

Bay “bend” aroundlarge objects like telephone polesand trees, yet these objectscastfairly distinct shadows
when illuminated by light. Huygens’s principle is
independent of any wavelength considerations,
fhowever, and would predict the same wavefront
configurations in both situations. The difficulty was
fesolved by Fresnel with his addition of the concept of
gnterferefice. The corresponding Huygens~Fresnel
rinciptestates that every unobstructedpoint ofa wavefront,
i a given instant in time, serves as a source of spherical
econdary wavelets (with the same frequency as that of the

imary wave). The amplitudeof the opticalfield at any point
jeyond is the superposition of all these wavelets (considering
ir amplitudes and relative phases). Applying these ideas

m the very simplest qualitativelevel, refer to the ripple
cad. Sci. 9, 158 (192!  
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tank photographs in Fig. 10.2 and the illustration in
Fig. 10.3. If each unobstructed point on the incoming
plane wave acts a5 a coherent secondary source, the
maximum optical path-length difference among them
will be Ajax = (AP — BF], corresponding to a source
point at each edgeof the aperture. But Aros i8 ess than
or equal to AB,the latter being the case when P is on

e
Mh:
Np

Figure 10.2 Diffraction through an aperture with varying A as seen
in a ripple tank. (Photo courtesy PSSC Physics, D. C. Heath, Boston,1960.)
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Screen

Figure 10.3. Diffraction at a small aperture.

the screen. When A » AB,asinFig. 10.3, it follows that
A > Amex, and since the waves were initially in phase,
they must all interfere constructively {to varying
degrees) wherever P happens to be[see Fig. 10.2(c)].
Theantithetic situation occurs when A « AB,as in Fig.
10.2{a). Now the area where A » Agax is limited to a
small region extending out directly in front of the
aperture, and it is only there that all the wavelets will
interfere constructively. Beyond this zone some of the
wavelets can interfere destructively, and the “shadow”
begins. Keep in mind thatthe idealized geometric shadow
corresponds to A > 0.

The Huygens-Fresnel principle has some shortcom-
ings (which we will examinelater), in addition to the
fact that the whole thing at this point is rather
hypothetical. Gustav Kirchhoff developed a more
rigorous theory based directly on the solution of the
differential wave equation. Kirchhoff, although a con-
temporary of Maxwell, did his work before Hertz’s
demonstration {and theresulting popularization)of the
propagation of electromagnetic waves in 1887. Accord-
ingly, Kirchhoff employed the olderelastic-solid theory
of light. His refined analysis lent credence to the
assumptionsof Fresnel] and led to an even moreprecise
formulation of Huygens’s principle as an exact con-
sequenceof the wave equation. Even so, the Kirchhoff
theory is itself an approximation that is valid for
sufficiently small wavelengths, that is, when the diffract-
ing apertures have dimensions that are large in com-

parison to A. Thedifficulty arises from the fact that werequire the solution of a partial differential equation
that meets the boundary conditions imposed by the
obstruction. This kind ofrigoroussolution is obtainabl,
only in a few special cases. Kirchhoff’s theory works
fairly well, even though it deals only with scalar waves
andis insensitive to the fact that light is a transvergevector field.*

It should be stressed that the problem of determini,
an exact solution for a particular diffracting seeration is among the most troublesometo be dealt wi
in optics. The first such solution, utilizing the elec.
tromagnetic theory of light, was published by Arnold
Johannes Wilhelm Sommerfeld (1868-1951) in 1896,
Although the problem was physically somewhatunreal-
istic, in that it involved an infinitely thin yet opaque,
perfectly conducting plane screen,the result was noned
theless extremely valuable, providing a good dealof
insight into the fundamental processes involved.

Rigorous solutionsofthis sort do notexist even todayfor manyof the configurations of practical interest. We
will therefore, out of necessity, rely on the approximate
treatments of Huygens-Fresnel and Kirchhoff. In
recent times, microwave techniques have been
employed to conveniently study features of the diffrac-
tion field that might otherwise be almost impossible to
examine optically. The Kirchhoff theory has held up
remarkably well underthis kind of scrutiny.t In many
cases, the simpler Huygens-Fresnel treatment will
prove adequate for our purposes.

10.1.1 Opaque Obstructions

Diffraction maybe envisioned asarising from the inter-
action of electromagnetic waves with somesort of phys-
ical obstruction. We would therefore do well to re-
examinebriefly the processes involyed; in other words,——
* A vectorsai tormulation ofthescalar Kirchhoff theory is discussed
in J.D. Jackson,Classical Electrodynamics, p. 283. Also see Sommerfeld,
Optics, p. 325. You might as well take a look at B. B. Baker and E.
T.Copson, The Mathematical Theory ofHuygens’ Principle, asa generalreferenceto diffraction. Noneof these texts is easy reading.
$C. L. Andrews, Am J. Phys. 19, 250 (1951); S. Silver, J. Oph Sos.Am, 52, 131 (1962).

what actually takes place within the material of the
opaque object?One possible description is that a screen may be con-
sidered to be a continuum; thatis, its microscopic struc-
ture may be neglected. For a nonabsorbing metal sheet
(no joule heating, therefore infinite conductivity) we
can write Maxwell’s equations for the metal and for the
surrounding medium, and then match the two at the
boundaries, Precise solutions can thus be obtained for
yery simple configurations. The reflected and diffracted
waves then result from the currentdistribution within
the sheet.

Examining the screen on a submicroscopic scale,
imagine the electron cloudof each atom set into vibra~
tion by the electric field of the incident radiation. The
classical model, which speaks of electron-oscillators
vibrating and reemitting at the source frequency (Sec-
tion 3.5.1), serves quite well so that we need not be
concerned with the quantum-mechanical description.
The amplitude and phase of a particular oscillator
within the screen are determined by the local electric
field surroundingit. This in turn is a superposition of
the incidentfield andthefields ofall the othervibrating
electrons. A large opaque screen with no apertures, be
itmadeof black paperor aluminumfoil, has one obvious
effect: there is no optical field in the region beyondit.

Figure 10.4 Ripple-tank photos. In one
case the wavesare simply diffracted by a slit;
in the other a series of equally spaced point
sources span the aperture and generate a
similar pattern. (Photos courtesy PSSC
Physics, D. C. Heath, Boston, 1960.)
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Electrons near the illuminated surface are driven into
oscillation by the impinging light. They emit radiant
energy, which is ultimately “reflected” backward,
absorbed by the material in the form of heat, or both.
In anycase, the incidentprimary wave and theelectron-
oscillator fields superimpose in such a wayas to yield
zero light at any point beyond the screen. This might
seem a remarkably special balance, butit actually is not.
If the primary wave were not canceled completely,it
would propagate deeperinto the material of the screen,
exciting moreelectrons to radiate. This in turn would
further weaken the primary wave until it ultimately
vanished (if the screen were thick enough). Even an
opaque material such as silver, in the form of a
sufficiently thin sheet, is transparent (recall the half-
silyered mirror),

Now, remove a small disk-shaped segment from the
center of the screen, so that light streams through the
aperture. The oscillators that uniformly cover it are
removed alongwith the disk, so the remaining electrons
within the screen are no longeraffected by them. Asa
first and certainly approximate approach, assume that
the muiual interaction of the oscillators is essentially negli-
gible; thatis, the electrons in the screen are completely
unaffected by the removal of the electronsin the disk.
The field in the region beyond the aperture will then
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be that which existed before the removal of the disk,
namely zero, minus the contribution from the disk
afone. Except for the sign, it is as if the source and
screen had been taken away, leaving only the oscillators
on the disk, rather than vice versa. In other words, the
diffraction field, in this approximation, can be pictured
as arising exclusivelyfromaset offictitious noninteract-
ingoscillators distributed uniformly over the region of
the aperture. This of course, is the essence of the
Huygens-Fresne!principle. .

Wecan expect, however, thatinstead of no interaction
at all between electron-oscillators, there is a short-range
effect, since the oscillator fields drop off with distance.
In this physically more realistic view, the electrons
within the vicinity of the aperture’s edge are affected
when the disk is removed. For large apertures, the
numberofoscillators in the disk is much greater than
the numberalong the edge. In such cases, if the point
of observationis far away and in the forwarddirection,
the Huygens—Fresnel principle should, and does, work
well (Fig. 10.4). Far very small apertures, or at points
of observation in the vicinity of the aperture, edge
effects become important, and we can anticipate difficul-
ties. Indeed, at a point within the aperture itself, the
electron-oscillators on the edge are of the greatest sig-
nificance becauseof their proximity. Yet these electrons
were certainly not unaffected by the removal of the
adjacent oscillators of the disk. Thus, the deviation from
the Huygens-Fresnel principle should be appreciable.

10.1.2 Fraunhofer andFresnelDiffraction

Imagine that we have an opaque shield, 2, containing
a single smal! aperture, which is being illuminated by
plane waves from a distant point source, 5. The plane
of observation o is a screen parallel] with, and very close
to, =. Under these conditions an image of the aperture
is projected onto the screen, whichis clearly recogniz-
able despite some slight fringing around its periphery.
If the plane ofobservation is moved farther away from
, the imageofthe aperture, althoughstill easily recog-
nizable, becomes increasingly more structured as the
fringes become more prominent. This phenomenonis
knownas Fresnelor near-field diffraction. If the plane

of observation is slowly moved out still farther, a cony
tinuous change in the fringes results. At a very Breat
distance from = the projected pattern will have sPreaqjout considerably, bearing little or no resemblance ¢g
the actual aperture. Thereafter moving o essentiallychanges only the size of the pattern and notits shape
This is Fraunhofer or far-field diffraction. If at thalfpoint we could sufficiently reduce the wavelength of
the incoming radiation, the pattern would revert to the
Fresnelcase. If A were decreased even more, so thatjy
approachedzero, the fringes would disappear, and th
image wouldtake on the limiting shapeof the apertur4
as predicted by geometrical optics. Returning to the
original setup, if the point source was now moveg
toward Z, sphericai waves would impinge on the aper-
ture, anda Fresnel pattern wouldexist, even ona distantplane of observation.

In other words, consider a point source S and a point
of observation P, where both are very far from = and
nolenses are present (Problem 10.1). As long as both the
incoming and outgoing waves approach being planar
(differing therefrom by a small fraction of a wavelength) over
the extent of the diffracting apertures (or obstacles),
Fraunhofer diffraction obtains, Another way to appreciate
this is to realize that the phase of each contribution at
P, due to differencesin the path traversed, is crucialta
the determination of the resultant field. Moreover,if
the wavefronts impinging on, and emerging from, the
aperture are planar, then these path differenceswill be
describable by a linear function of the two aperture
variables. This linearity in the aperture variables is the
definitive mathematical criterion of Fraunhofer diffraction.
Onthe other hand, when § or P or both are too near
2 for the curvature of the incoming and outgoing wave-
fronts to be negligible, Fresnel diffraction prevails.

Each point on the apertureis to be visualized as 2
source of Huygens wavelets, and we should bealittle
concerned about their relative strengths. When $ is
nearby, compared with the size of the aperture, 2
spherical wavefrontwill illuminate the hole. The dis-
tances from S$ to each point on the aperture will be
different, and the strength ofthe incident electric field
(which drops off inversely with distance) will vary from
point to point over the diffracting screen. That would
notbe thecase for incoming homogeneousplane waves]
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Much the samething is true for the diffracted waves
oing from the screen to P. Evenif they are all emitted

Bias the same amplitude(e.g., when the input beam isianar), if P is nearby, the waves converging onit are

pcs! and vary in amplitude, becauseof the differentistances from various parts of the aperture to P.
ideally, for P at infinity the waves arriving there will

K planar, and we need not worry about differences ineld strength. That too contributes to the simplicity of
the limiting Fraunhofercase.

Asa practical rule of thumb, Fraunhoferdiffraction
will occur at an aperture(orobstacle) of greatest widtha when

R> aa,
where R is the smaller of the two distances from S to
Zand = to P (Problem 10.1). Of course, when R=00
the finite size of the aperture is of little concern.
Moreover, an increase in A clearly shifts the
[phenomenon toward the Fraunhofer extreme.

A practical realization of the Fraunhofer condition,
there both S and Pareeffectively at infinity, is achteved
Y using an arrangementequivalentto that of Fig. 10.5.
he point source S is located at F), the principal focus

of lens L,, and the plane of observation is the second
focal plane of Lo. In the terminology of geometrical
optics, the source plane and & are conjugate planes.

These same ideas can be generalized to any lens
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4|Figure 10.5 Fraunhofer diffractign,a

system forming an image of an extended source or
object (Problem 10.5).* Indeed, the image would be a
Fraunhoferdiffraction pattern. It is because of these
importantpractical considerations,as well as the inher-
ent simplicity of Fraunhofer diffraction, that we will
examineit before Fresnel diffraction, even thoughit isa special case of thelatter, "

10.1.3 Several Coherent Oscillators

As a simple yet logical bridge hetween the studies of
interference and diffraction, consider the arrangement
in Fig. 10.6. Theillustration depictsa linear array of N
coherentpointoscillators (or radiating antennas), which
are all identical, even to their polarization. For themoment, assumethat the oscillators have no intrinsic
phase difference; thatis, they each have the sameinitial
phase angle. The rays shownareall almost parallel.
mecting at some very distant point P. If the spatial
extent of the array is comparatively small, the separate
wave amplitudes arriving at P will be essentially equal,
having traveled nearly equal distances, thatis,

Eo(ry) = Eg(r) = +++ = Eglty) © Eo(r).
 
*A He-Nelaser can be set up to generate magnificent patterns
without any auxiliary lenses, but this requires plenty of space.
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Figure 10.6 A lineararray of in-phase coherentoscillators. (a) Note
that at the angle shown & = a while at @=0, 8 would be zero. (b)
One of manysets of wavefronts emitted fromaline of coherentpointsources.

The sum ofthe interfering spherical waveletsyields an
electric field at P, given by the real part of
E = Eqfr)elt789 + Eg(r)etaooo t Eo(ryetennen,10.1)
It should be clear, from Section 9.1, that we need notbe concerned with the vectornatureofthe electric field
for this configuration. Now then

E> Egryete
X [Lt eergopeep gO],

The phase difference between adjacent sources is
obtained from the expression & = &gA, and since A
nd sin 6, in a medium of index n, 4 = kd sin 6. Making
use of Fig. 10.6, it follows that 8 = k(rg- 17), 26 =
(rs — 7), and so on. Thusthefield at P may be written

as

E = Eg(ryeeth
X [IL +(e) + (e+ (oPte fees

The bracketed geometric series has the value
(e®™—1)te® — 1),

which can be rearranged into the form
giN8/2giNSl?9-iN8/2)€
eRgee Bre

or equivalently
 

soreNBR).sin 5/2

(b)

  

Ty
 

 

 
 

 
then becomes

rigornomSOY, 0.8)
tice that if we define R as the distance from the
i: of the line of oscillators to the pointP,thatis,

 
E= Eo(re

R=HN~-Ldsnét+n, 
Be Eq. (10.3) takes on the form

aEneite(EBB).sin 6/2

ly, then, the flux-density distribution within the
ction pattern due to N coherent,identical, distant

: sources in a linear array is proportional to EE*/2
complex E or

 (10.4)

 
 
    
 (10.5)

 ere Ip is the flux density from any single source
4ving at P. (See Problem 10.2 for a graphic derivation
the irradiance.) For N = 0,1 =0, for N=1,I=Ig,

md for N = 2, I =4Jqcos®{8/2), in accord with Eq.
(-17)- The functional dependence of I on @ is more
{apparent in the form

___, sin® [N(kd/2) sin 4]
° sin? [(kd/2) sin @] *

The sin? [N(kd/2) sin 8] term undergoes rapid fluctu-
tions, whereas the function that modulates it,
sin [(kd/2) sin 6}°, varies relatively slowly. The com-
ined expression givesrise to a series of sharp principal
aks separated by small subsidiary maxima. The prin-

ipal maxirna occurin directions @, such that 6 = 2m,
where m = 0, +1, +2,.... Because 6 = Ad sin 0,

 
 
 

 
 
 10.6)

 
 
  
  
 sin O_ = mA. 0.7)

ince [sin® Nd/2]/{sin® 8/2] = N® for 6=2ma (from
- lospital’s rule), the principal maxima havevalues ofI,. This is to be expected, inasmuch as all the oscil-
tors are in phase at that orientation. The system will

Tadiate a maximum in a direction perpendicularto the
aay (m = 0, 0) =O and 7). As @ increases, 5 increases
nd £ falls off to zero at N&/2°~ 2,its first minimum.
Ote that if d<A in Eq. (10.7), only the m=0 or
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Figure 10.7 Interferometric radio telescope at the University of
Sydney, Australia (N = 32, A = Z1 cm, d = 7m, 2m diameter, 700ft.
east-west base line). (Photo courtesy of Prof. W. N. Christiansen.)

zero-order principal maximumexists. If we were looking
at an idealized line source of electron-oscillators separated by
atomic distances, we could expect only that one principal
maximum in the light field,

‘The antennaarray in Fig. 10.7 can transmit radiation
in the narrow beam orlobe correspondingtoaprincipal
maximum. (The parabolic dishes shown reflect in the
forward direction, and the radiation patternis no longer
symmetrical around the commonaxis.) Suppose that
we havea system in which we can introduce anintrinsic
phase shift of e between adjacentoscillators. In that case

= kdsin @ + €;
the various principal maximawill occur at new angles

dsin 6, = mA~e/h.
Concentrating on the central maximum m = 0, we can
vary its orientation @ at will by merely adjusting thevalue of «.

The principle of reversibility, which states that
without absorption, wave motion is reversible, leads to
the samefield pattern for an antenna used aseither a
transmitter or a receiver. The array, functioning as a
radio telescope, can therefore be ‘‘pointed” by combin-
ing the output from the individual antennas with an
appropriate phaseshift, ¢, introduced between each of
them. For a given ¢ the output of the system corre-
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sponds to the signal impinging on the array from a
specific direction in space.

Figure 10.7 isa photographofthefirst multiple radio
interferometer, designed by W. N. Christiansen and
built in Australia in 1951. It consists of 32 parabolic
antennas, each 2m in diameter, designed to function
in phase at the wavelength of the 2I-cm hydrogen
emission line. The antennas are arranged along an
east~west base line with 7 m separating each one. This
particulararray utilizes the Earth's rotation as the scan-
ning mechanism.*

Examine Fig. 10.8, which depicts an idealized line
source of electron-oscillators {e.g., the secondary sour-
ces of the Huygens-Fresnel principle for a longslit
whose width is muchless than A, illuminated by plane
waves). Each point emits a spherical wavelet, which wewrite as

E= (*) sin (wt~kr),T

explicitly indicating the inverse r-dependence of the
amplitude. The quantity & is said to be the source
strength. The present situation is distinct from that of
Fig. 10.6, since now the sources are very weak, their
number, N, is tremendously large, and the separation
between them is vanishingly small. A minute but finite
segmentof the array 44, will contain Ay,(N/D) sources,
whereDis the entire length of the array. Imagine that
the array is divided up into M such segments (i.e., é
goes from 1 to Mf). The contributionto theelectric field
intensity at P from the ith segmentis accordingly

15> (&) sin tar tr),
provided that Ay, is so small that the oscillators within
it have a negligible relative phase difference (r,
constant), and theirfields simply add constructively. We
can cause the array to becomea continuous (coherent)
line source by letting N approachinfinity. This descrip-
tion, besides being fairly realistic on a macroscopic scale,
also allows the use of the calculus for more complicated
geometries. Certainly as N approaches infinity, the
“See b. Brookner, “Phased-Array Radars,” Sci. Am. (Feb, 1985),
pO.

 
Figure 10.8 A coherent line source.

diminish to nearly zero, if the total outputis to befinit
We can therefore define a constant &; as the sourg
strength per unit dength of the array, that is,
source strengths of the individual oscillators nd

1.
Ey * Dp tim (€0N). 0g

The net field at P from all M segmentsis
» Ey.Es ¥ “sin (wt krdy.git

For a continuous line source the 4y; must becom:
infinitesimal (M > ©), and the summationis thentran:
formed into a definite integral+DID ge <

E e.| anorey (10.9)DIZ r
where y = 7r(y). The approximations used to evaluate

Eq. (10.9) must dependon theposition of P with ee,to the array and-will therefore make the distinctioybetween Fraunhofer and Fresnel diffraction. The
coherent optical line source does not now exist a8 4
physical entity, but we will make good use of it as 4mathematical device.

10.2 FRAUNHOFERDIFFRACTION

10.2.1 The Single Slit
Tn to Fig. 10.8, where now the point of observation

very distant from the coherentline source and R » D.
inder these circumstances r(y) never deviates appreci-

from its midpoint value R, so that the quantity
6,/R) at P is essentially constantforall elements dy. Itows from Eq. {10.9) that the field at P due to the
differential segment of the source dy is

dE = - sin (wt — kr) dy, (10.10)
where (E,/R) dy is the amplitude of the wave. Notice
that che phase is much moresensitive to variations in
ry) than is the amplitude, so that we will have to be
more careful about introducing approximationsintoit.
We can expand r{y}, in precisely the same manner as
was done in Problem (9.13), to make it an explicit
function of y; thus

r@e Ro ysind+O7/2R)cos*G+-++, Gait
where @ is measured from the xz-plane. The third term
can be ignored so long asits contribution to the phase
is insignificant even when y=+D/2; that is,
(7D?/4AR) cos® 8 must be negligible. This will be true
for all values of @ when R is adequately large. We now
have the Fraunhofer condition, where the distanceris
linear in y: the distance to the point of observation and
therefore the phase can be written as a linear function
of the aperture variables. Substituting into Eq. (10.10)
and integrating leads to

eo, pepe

E= | sin[@t— A(R~ysin 6)] dy, (70.12)R J-pp
and finally

&,D sin[(AD/2) sin 6] .ae f RR) 10,
Ri (kD/2) sin @ sin (a! ). 0.13)

To simplify the appearance of thingslet
B (kD/2) sin 6, O14
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so that
 

&,D (2 BgR\ B
The quantity most readily measuredis the trradiance
(forgetting the constants) I(8) = (E”) or2yan py?

1(8) =1(&2) (=) , (10.16)
where (sin? (wt~&R))©$. When 6 0, sin 8/8 = Land
I(@)= (0), which corresponds toa the principal
maximum. The irradiance resulting from an idealized
coherent line source in the Fraunhofer approximation is then.

) sin (wt—kR). (10.15)

sing
2

1) (224) ” 140.17)
or, using the sinc function (Section 7.9 and Table 1 of
the Appendix),

1(8) = 1(0) sinc? B.
Thereis symmetry about the y-axis, and this expression
holds for 6 measuredin any planecontainingthat axis.
Notice that since B = (wD/A)sin 6, when D »A, the
irradiance drops extremely rapidly as 6 deviates from
zero. This arises from thefact that B becamesvery large
for large values of length D (a centimeter or so when
usinglight). The phase of the line sourceis equivalent,
by wayof Eq.(10.15), to that of a point source located
at the center of the array, a distance R from P. Finally,
a relatively long coherent line source (D » A) can be
envisioned as a single point emitter radiating pre-
dominantly in the forward, 6=0, direction; in other
words, its emission resembles a circular wave in the
xz-plane. In contrast, notice that if A » D, B is small,
sin B ~ B, and /(8) * I(0). The irradiance is then con-
stant for ali 6, and the line source resembles a point
source emitting spherical waves.

We can nowturn ourattention to the problem of
Fraunhofer diffraction by a slit or elongated narrow
rectangular hole (Fig. 10.9). An aperture of this sort
might typically have a width of several hundred A and
a length of a few centimeters. The usual procedure to
follow in the analysis is to divide theslit into a series of
long differential strips (dz by @) parallel to the y-axis,
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aye  
Figure 10.9 (a) Single-slit Fraunhoferdiffraction. (b) Diffracion
pattern of 2 single vertical slit under point-sourceillumination.

as shown in Fig. 10.10. We immediately recognize,
however, that each strip is a long coherentline source
andcan therefore be replaced by a point emitter on the
z-axis. In effect, each such emitter radiates a circular
wave in the (y = 0 or) xz-plane. Thisis certainly reason-
able, since theslit is long and the emerging wavefronts
are practically unobstructedin the slit direction. There
will thus be very little diffraction parallel to the edges
of the slit. The problem has been reduced to that of
finding the field in the xz-plane due to an infinite
numberof point sources extending across the width of
the slit along the z-axis. We then need only evaluate
the integral of the contribution dE from each element
dz in the Fraunhofer approximation. But once again,
this is equivalent to a coherentline source, so that the
complete solution for theslit is, as we have seen,

1(8) 10(22) , 120.17)provided that
B = (kb{2) sin 6 (10.18)

and @ is measuredfrom the xy-plane(see Problem 10.3).
Note that here theline source is short, D = 6, B is not
large, and although the trradiance falls off rapidly,
higher-order subsidiary maximawill beobservable. The
extrema of [(#) occur at values of B that cause dI/dB

 

(b)

to be zero,that is,

aI _928in 8(B cos 6~sinB) _
iB 4{0} B =0.

(10.49)

The irradiance has minima,equal to zero, whensin 8 =
0, whereupon

Brta,+22,437,.... (20.20)
It also follows from Eq. (10.19) that when

Bcos8~ sinB =0
tan 3 = Bp. (10.219

The solutions to this transcendental equation can be
determined graphically, as shown in Fig. 10.11. The
points of intersection of the curves f,(8} = tan B with
the straight line (8)™8 are commonto both and so
satisfy Eq. (10.21). Only one such extremum exists
between adjacent minima (10.20), so that (8) musi
have subsidiary maximaat these values of 8 Gacscail#£2.45907, +3.4707 7, ...).

Thereis a particularly easy way to appreciate what's
happening here with the aid ofFig. 10.12. We envisioy
every pointin the aperture emitting raysin all direction
in the sz-plane. The light that continues to proj
directly forward in Fig. 10.12(a) is the undiffracté
beam,all the rays arrive on the viewing screen in ph
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‘igure 10.10 (a) Point P on ¢ is essentially infinitely far from 3. (b)uygens wavelets emitted across the aperture. (¢) The equivalent
presentation in eerms of rays, Fach point emits rays inall directions.

\¢ parallel rays in various directions are seen. (d) These ray bundles

fanda central bright spot will be formed by them. If the
fereen js notactually at infinity, the rays that converge

itare not quite parallel but withit at infinity, or better
a with a lens in place, the rays are as drawn. FigureS.1Mb} shows the specific bundle of rays coming off

{an angle 6, where the path-length difference between
e rays from the very top and bottom, & sin 6, , is made
lual to one wavelength, A ray from the middle of the
it will then lag $A behinda ray from the top and exactly

ncel it. Similarly, a ray from just below center will
meel a ray from just below the top, and so on;all

10.2 Fraunhofer Diffraction

5 ie)
correspond fo plane waves, which can be thought of as the three-
dimensional Fourier components. (e) A single slit illuminated by
monochromatic plane waves.

across the aperture ray-pairs will cancel, yielding a
minimum. Theirradiance has dropped from its highcentral maximum to the first zero on either side at
sin @, ~ +A/b.

As the angle increases further, some small fraction
of the rays will again interfere constructively, and the
irradiance will rise to form a subsidiary peak. A further
increase in the angle produces another minimum, as
shownin Fig. 10.12(c), when 4 sin 6, = 2A, Now imagine
the aperture divided into quarters. Ray by ray, the top
quarterwill cancel the one beneathit, and the next, the
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feBy

Figure 10.11 The points of intersection of the two curves are thesolutionsof Eq. (10.21).

third, will cancel the last quarter. Ray-pairs at the samelocations in adjacent segments are 4/2 out of phase and
destructively interfere. In general then, zeros of irradi-ance will occur when

bsin @,,"mA,
where m = +1,£2,+3,..., which is equivalent to Eq.
(10.20), since B = ma = (kb/2) sin 6.

‘We should inject 2 note of caution at this point: one
of thefrailties of the Huygens-Fresnelprinciple is that
it does not take proper regard of the variations in
amplitude, with angle, over the surface of each secon-
dary wavelet. We will come back to this when we con-sider the obliquity factor in Fresnel diffraction, where
the effect is significant. In Fraunhofer diffraction thedistance from the aperture to the plane of observation
is so large that we need not be concerned aboutit,
provided that @ remains small.

Figure 10.13 isa plotof the flux density, as expressed
by Eq, (10.17). Envision some point on the curve, for
example, the third subsidiary maximum at p=
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Figure 10.12. ‘Thediffractionoflight in variousdirections. Here tHapertureis a single slit, as in Fig. 10.10.  
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panera since B = (ab/A) sin 8, an increase in theslitjath 6 requires a decrease in 8 if 8 is to be constant.nder these conditions the pattern shrinks in toward
principal maximum, as it wouldif A were decreased,
the source emits white light, the higher-order maxima
ow a succession of colors trailing off into red with
greasing: @, Each different colored light componentjts roinima and dubsidiary maxima at angular posi-

jons characteristic of that wavelength (Problem 10.6).
eed, only in the region about @= © will all the
tituent colors overlap to yield white light.

‘The point source S in Fig. 10.9 would be imaged at
positionofthe center’ ofthe pattern,ifthe diffracting

nZ were removed. Under this sort ofillumination,
the pattern produced with the slit in place is a series of
dashes in the ye-plane of the screen 9, much like a

Figure 10.13 The Fraunhofer diffraction pattern of a single slit.
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spread-out image of S [Fig. 10.9(b)]. Anincoherent line
source (in place of S) positioned parallel to theslit, in
the focal plane of the collimator Ly, will broaden the
pattern outinto a series of bands. Any point on the line
source generates an independentdiffraction pattern,
which is displaced, with respect to the others, along the
y-direction. With no diffracting screen present, the
image of the line source would bealine parallel to the
original slit. With the screen in place theline is apread
out, as was the point image of 5 (Fig. 10.14). Keep in
mind that it’s the small dimension of the slit that doesthe spreading out.

‘The single-alit pattern is easily observed without the
use of special equipment. Any number of sources will
do (e.g., a distant street light at night a small incandes-
cent lamp, sunlight streaming through a narrow space

AYRO)
‘1.0
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x

AP
Ly

Figure 10.14 The single-slit pattern with a line source. See first
photographofFig. 10.17,

in a window shade); almost anything that resembles a
pointorline source will serve. Probably the best source
for our purposes is an ordinaryclear, straight-filament
display bulb (the kind in which the filamentis vertical
and about3 inches long}. You can use your imagination
to generate all sorts of single-slit arrangements (e.g., a
comb or fork rotated to decrease the projected space
between thetines, or a scratch across a layer of india
ink on a microscope slide). An inexpensive vernier
caliper makes a remarkably good variableslit. Hold the
caliper close to your eye withtheslit, a few thousandths
of an inch wide, parallel to the filament of the lamp.
Focus your eye beyondtheslit at infinity, so thatits lens
serves as Ly.

10.2.2 The DoubleSlit

It might at first seern from Fig. 10.10-that the location
of the principal maximum is always to bein line with
the center of the diffracting aperture; this, however,is
not generally true. The diffraction pattern is actually
centered aboutthe axis of the lens and has exactly the
same shape and location, regardlessof theslit’s position,
as longasits orientation is unchanged and the approxi-
mations are valid (Fig. 10.15). All waves traveling
parallel to the lens axis converge on the second focal
point of Lg; this then is the irmage of S and the center

   
 

  
  
  
  

 

 
 
 

of the diffraction pattern. Suppose now that we },
two longslits of width 6 and center-to-centersepa
a (Fig. 10.16). Each aperture,byitself, would genthe samesingle-slit diffraction pattern on the yi
screen . At any point on a,the contributions from
twoslits overlap, and even though each mustbe esgetially equal in amplitude, they may well differ
nificantly in phase. Since the sameprimary waveexe
the secondary sourcesat eachslit, the resulting waye|
will be coherent, and interference must occur. If the:
primary plane waveis incident on & at some angle
{see Problem 10.3), there will be a constant eephase difference between the secondary sources, At
normalincidence, the wavelets are all emitted in phasd
‘The interferencefringe at a particular point of obsew®
tion is determinedby the differencesin the opticalpaéilengths traversed by the overlapping wavelets from the
twoslits. As we will see, the Aux-density distribution
(Fig. 10.17)is the result of a rapidly varying double-slif]
interference system modulated by a single-slit diffrac.
tion pattern.

To obtain an expression for the optical disturbance
at a point on o, we need only slightly reformulate the
single-slit analysis. Each of the two aperturesis divided
into differential strips (dz by 4, which in turn behave
like an infinite numberof point sources aligned along
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  Figure 10.15 The double-slit setup.
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Figure 10.16 Double-slit
geometry. Point P on a isessentially infinitely faraway.
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the z-axis. The total contribution to the electric freld,
in the Fraunhofer approximation (10.12), is thenae ator

E=C I Fajdz+C | F(z) dz, (10.22)be abi2

where F(z)= sin [wl —k(R—zsin 9)], The constant-
amplitude factor C is the secondary source strength per
unit length along the z-axis (assumedtobe independent
of z over each aperture) divided by R, which is measured
from the origin to P andis taken as constant. We will
be concernedonly with relative flux densities on ¢,sothat the actual value of C is oflittle interest to us now.
Integration of Eq. (10.22) yields

E=0bC (22) [sin(we — AR) + sin (wt — AR + 2a)),(20.23)

Figure 10.17 Single-and double-slit Fraunhofer patterns. Thefaintcross-hatching arises entirely in the printing: proces, (Photos courtesy
M, Cagnet, M. Francon, and J. c Thrierr: Allas optischerErscheinungen, Berlin-Heidelberg-New York: Springer, 1962.)
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with a= (ka/2)sin @ and, as before, 6 '= (kb/2) sin 8.
This is just the sum of the two fields at P, one from
eachslit, as given by Eq. (10.15). The distance from the
first slit to P is R, giving a phase contribution of —AR.
The distance from the secondslit to P is (R~ asin 8)
or (KR — 2a/k), yielding a phase term equal to (-kR +
2a), as in the second sine function. The quantity 26 is
the phase difference (kA) between two nearly parallel
rays, arriving at a point P on a, from the edges of one
ofthe slits. The quantity 2a is the phase difference
between two wavesarriving at P, one havingoriginated
at any pointin thefirst slit, the other coming from the
‘corresponding pointin the secondslit. Simplifying Eq.(10.23) a bit further, it becames

E=26C (22) cos @ sin (wt~#R + a),
which when squared and averagedovera relatively longinterval in timeis the irradiance

in?

=e) cos® a.
In the 6 = 0 direction (ie., when B = a = 0), Ip is the
flux-density contribution from eitherslit, and I(0) = 4gis the total flux density. The factor of 4 comes from the
fact that the amplitudeofthe electric field is twice what
it would be at that point with oneslit covered.

If in Eq. (10,24) & becomesvanishingly small (kb « D,
then (sin 8)/8 ~ 1, and the equation reduces to the
flux-density expression for a pair of long line sources,
that is, Young's experiment, Eq. (9.17). If on the other
hand a = 0, the twoslits coalesce into one, a = 0, and
Eq. (10.24) becomes 1(0) = 41,(sin® 8)/8?. This is the
equivalent of Eq.(10.17) for single-slit diffraction with
the source strength doubled. We might then envision
the total expression as being gencrated by a cos’ a@
interference term modulatedbya (sin® 8)/B” diffraction
term. If the slits are finite in width but very narrow,
the diffraction pattera from eitherslit will be uniform
over a broad central region, and bands resembling the
idealized Young’sfringes will appear within that region.At angularpositions (8-values) where

 

i(6y= Aol 0.24)

Br +n, 4+20,437,...
diffraction effects are such that no light reaches o, and

 
Missing order

DS 4
“Hall-tringe™

Figure 10,18 A double-slit pattern (a=38).

clearly noneis available for interference. At points ono@ where

a= £0/2,+39/2, +57/2,...
the various contributions to the electric eld will be
completely out of phase and will cancel, regardless of
the actual amount of light made available from the
diffraction process.

Theirradiance distribution for a double-slit Fraun-
hoter patternisillustrated in Fig. 10.18. Notice thatit
is a combination of Figs. 9.6 and 10.13. The curve is

 

 
 

the particular case in which a = 36 (Le., a= 88).
e can get a rough idea of what the pattern will look
e since if a = mb, where m is any number,there will
om bright fringes (counting “fractional fringes” as
ell)* within the central diffraction peak @roblem
9.10). An interference maximum and a diffraction
nine (zero) may correspond to the same é-value.that case nolight is available at that precise position

to partake in the interference Process, and the sup-
regsed peakis said to be a missing order. ;

" The double-slit pattern is also rather easily observed,and the seeing is well worth the effort. A straight-
: ent, tubular bulh is again the best fine source. For

its, coat a microscope slide with India ink; if you
ppen to have some, a colloidal suspension of graphitealcohol works evenbetter(it’s mare opaque). Scratch.
pair ofslits across the dry ink with a razor blade andstand about 10 feet from the source. Hold theslits

parallel to the filament and close to your eye, which,when focusedatinfinity, will serve as the neededlens.
{nterpose red or blue cellophane and observe the
change in the width of the fringes. Find out what hap-pens when you cover one andthen both of theslits with
a microscope slide. Move theslits slowly in the z-direction; then holding them stationary, move your eye in
the z-direction. Verify that the position of the center
of the pattern is indeed determinedbythelens and not
the aperture.

 
 

10.2.3 Diffraction by ManySlits

The procedure for obtaining the irradiance functionfor a monochromatic wave diffracted by manyslits is
essentially the same as that used when considering two
slits. Here again, the limits of integration must be
appropriately altered. Consider the case of N long,
parallel, narrow slits, each of width & and center-to-
center separation 4, asillustrated in Fig. 10.19. With
the origin of the coordinate system once moreat the
center ofthefirst slit, the total optical disturbance at a
 
* Notice that m need notbe an integer. Moreover,if m is an integer,
there will be “half-fringes,” as shown in Fig. 10.18(b).

10.2 Fraunhofer Diffraction 409

r ae

Figure 10.19(a) Multi-slit geometry. Again point
P is on o essentially infinitely far from Z.

point on the screen¢is given by arbibie

E-c| Feder | F(z) dz— bi «0/2
Satbi2

+of Fzjdzt-->2o—bfe
ON RAE

+C I F(z) dz,(w-neR (10.25)

where as before, F(z) = sin [wi — A(R —z sin @)]. This
applies to the Fraunhofer condition, so that the aperture
configuration mustbe such thatalltheslits are close to
the origin, and the approximation (10.11)

rou R-2zsind (10.26)
applies over the entire array. The contribution from
the jth slit (where the first one is numbered zero),
obtained by evaluating only that one integral in Eq.
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Figure 10.20 Diffraction patternsforslit systems shown atleft.

(10.25), is then

R= wee i ¢~RR) sin (kz siij Pain 950 (o! }sin (kz sin 6)
— cos (wt — #R) cos (ka sin 6y}2*8/2,

provided that we require 6; ~ 6. After some manipulggtion this becomes,
 

B= 8C (22) sin (ot AR +20), cop
recalling that B ={kb/2)sin@ and a = (ha/2) sf
Notice thatthis is equivalentto the expression for a
source (10.15) or, of course, a singleslit, where in
with Eq. 10.26 and Fig. 10.19, Rj = R — jasin @, so
—kR + 20j = —kR;. The total optical disturbance ag
given by Eq. (10.25),is simply the sum of the contribugtions from each oftheslits; thatis,

 
 
 

 

 my i) bo SgRomy . °
oe

: N-1 il

B= yb(2oN ay
This in turn can be written as the imaginary part of a
complex exponential:

i Net

© E=Im [sc(#22) gik@taR) yz cerry. 10.29}50

 

 

 

My
JAK) £) sin (wt AR + 2a). (40,28),

 

 

But we have already evaluated this same geometric
series in the process of simplifying Eq.(10.2). Equation(10.29) therefore reduces to the form

=e (S28 sone) 7 -E wc( A \( sex sin [wt—AR + (N—Lal].
 
 

 

 

(10.30)

Thedistance from the center of the array to the point
P is equal to[R~(N—1){a/2)sin 6], and therefore the

> phase of E at P correspondsto that of a wave emitted
from the midpointof the source. Theflux-density distri-bution function is

« a\2/oin map\?

16) = 128) (#222) : (10.31)B sina

  
Figure £0.19(b, c, d}
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Note that Ip is the flux density in the 6=0 direction
emitted by any oneoftheslits and that I(0) = NJ. In
other words, the waves arriving at P in the forward
direction are all in phase, and their felds add construc-
tively. Each slit by itself would generate precisely the
same flux-density distribution. Superimposed, the
various contributionsyield a multiple wave interference
system modulated bythesingle-slit diffraction envelope.
If the width of each aperture were shrunkto zero, Eq.
(10.31) would become the flux-density expression (10.6)
for a linear coherent array of oscillators. As in that
earlier treatment (10.17), principal maxima occur
when (sin N@/sin a)=N, that is, when

a=0,+7,+27,...
or equivalently, since a = (ka/2) sin 6,

asin O_ "mA (20.82)
with m = 0, +1, £2,.... This is quite general and gives
rise to the same6-locations for these maxima, regardless
of the value of N = 2. Minima,of zero flux density,
exist whenever (sin Ne/sin a)”=0 or when

om te t+
 eNebe WebsMON? N? N ? N°

(10.33)
m 20 30

Between consecutive principal maxima(i.e., over the
range in a of 7) there will therefore be N ~ I minima.
And of course between each pair of minimatherewill
have to be a subsidiary maximum. The term
(sin Na/sin a), which we can think of as embodying
theinterferenceeffects, hasa rapidly varying numerator
and a slowly varying denominator. The subsidiary
maxima are therefore located approximately at points
where sin Na hasits greatest value, namely,

3a Sw
a= ON’ TON (10.34)

The N=2 subsidiary maxima between consecutive prin-
cipal maximaareclearly visible in Fig. 10.20. We can
get some idea of the Aux density at these peaks by
rewriting Eq. (10.31) as an BN? RNS

18) = a(=) (sexeNe) (10.35)sin

where at the points of interest [sin Na{ = 1. Fo:
N, @ is small and sin? a =a*, At the first sub:
peak a = $2/2N, in which case

rar0(@8)(2). a
and the flux density has dropped to about ¢5 of
the adjacent principal maximum (see Problem 10,1!
Since (sin 8)/8 for small 8 variesslowly,it will notdj
from 1 appreciably, close to the zeroth-order princi
maximum, so that 1/I(0)~ gy. This flux-density ratfor the next secondary peak is down to &,andit
tinues to decrease as a@ approaches a value
between the principal maxima, At that symmetry poi
a = 2/2, sina =], and the flux-density ratio has
lowest value, approximately 1/N*. Thereafter a > a/
and the flux densities of the subsidiary maxima begirgto Increase,

Try duplicating Fig. 10.20 using a tubular bulb and
homemadeslits. You'll probably have difficulty seeingthe subsidiary maximaclearly, with the effect that the
only perceptible difference between the double- andlmultiple-slit patterns may be an apparent broadeningin the dark regions between principal maxima. As in
Fig. 10.20, the dark regionswill become widerthan the
bright bands as N increases and the secondary peaks
fade out. If we consider each principal maximum tobe
boundedin width by two adjacent zeros, then eachwill]
extendover a length in @, (sin @ = 6) of approximately
24/Na. As N increases, the principal maxima maintain
their relative spacing (A/a) while becomingincreasing],narrow. Figure 10.21 shows the case ofsixslits, wit!a= 4b,

‘The multiple-slit interference term in Eq. 10,35 has
the form (sin? Na)/N*sin®a@; thus for large N,
(N?sin? a)! may be envisioned as the curve beneath
which sin? Na rapidly varies. Notice that for smail athis interference term lookslike sinc’ Na.

 

 

 
 

10.2.4. The Rectangular Aperture

Consider the configuration depicted in Fig. 10.22. A
monochromatic plane wave propagating in the x-direc-
tion is incident on the opaque diffracting screen Z. We
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Figure 10.21 Multiple-slit pattern (a ~ 44, N = 6).
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wish to find the consequent {far-feld) Aux-density dis-
tribution in space or equivalently at some arbitrary
distant point P. According to the Huygens—Fresnelprin-
ciple, a differential area d5, within the aperture, may
be envisioned as being covered with coherent secondary
point sources. But dS is much smaller in extent thanis
A, so thatall the contributions at P remain in phase and
interfere constructively. This is true regardless of 6:
that is, dS emits a spherical wave (Problern 10.13). If
&, is the source strength per unit area, asseemed to be
constant over the entire aperture, then the optical disturb-
ance at P due to dS is either the real or imaginary partof

&,

dE = (22)erorms dS. (10.87)r
Thechoice is yours and depends only on whether you
like sine or cosine waves, there being no difference
except for a phase shift. The distance from dS to P is

r= [X?4(¥-yP 4 (2-2, (10.38)
and as we have seen, the Fraunhofer condition occurs
when this distance approachesinfinity. As before, it will
suffice to replace r by the distance OP, thatis, R, in the

P 
Figure 10.22 Fraunhoferdiffraction from an arbitrary aperture,
where rand R are very large comparedto thesize of the hole.

amplitude term, as long as the aperture is relat,
small. But the approximation for r in the phase ne,to be treated a bit more carefully; & = 27/A is a
number. To that end we expand out Eq. (10.88)by making use of

R(t vrs Zr, (10.89)obtain

TO R[LE OP + 22YR?- Vy +ZIIRP cronIn the far-field case R is very large in comparison
the dimensions of the aperture, and the (+272
term is certainly negligible. Since P is very far from:
6 can still be kept small, even though Y and Zare fai;
large, andthis mitigates any concern about the direc?
tionality of the emitters (the obliquity factor). Now

re RiL—2(¥y + ZeR2P”,
and droppingall but the first two terms in the binomial
expansion, we have

r= RIL —(¥y + Zzy¥R*].
Thetotal disturbance arriving at P is

é€ 2iteren)
a eZ AS agaiyApertureR

Consider the specific configuration shown in Fig.
10.23, Equation (10.41) can now be written as

oe|eHYYR ay \-R
where dS=dy dz. With B’™ RbY/2R and a’we have

0/2

J BYR gy = of—e/2

gb2HR dy—big -al2
kaZ/2R,

" sin 6"
) ($F)

and similarly

afd
so that

 

 

7Ak”(# e) (=, (10.42)

 
Figure 10.23 A rectangular aperture.

whereA is the area of the aperture. Since I=((Re E)”),
sin.a"\"/sin p'\?

I(Y¥,Z)> 10(22) (Sf , (20.43)
where [{0) is the irradiance at Py; that is, at Y = 0,
Z=0 (see Fig. 10.24). At values of ¥ and Z such that

0 or B’ = 0, I(¥, Z) assumesthe familiar shape of
Fig. 10.13. When 8’or a’ are nonzero integer multiples
of w or equivalently when ¥ and Z are nonzero integer
multiples of AR/b and AR/a, respectively, I{¥, Z) = 0,
and we have a rectangular grid ofnodallines, as indi-
catedin Fig. 10.25. Notice that the pattern in the Y-,
Z-directions varies inversely with the y-, z-aperture
dimensions, A horizontal, rectangular opening will pro-
duce a pattern with a verticle rectangle atits center.

Along the 8’-axis, a’=0 and the subsidiary maxima
are located approximately halfway between zeros, that
is, at Bl, = +30/2, +5a/2, £7 7/2,.... At each sub-
idiary maximum sin 8{, = 1, and of course along the

Frat, since «’=0, (sin e’)/a’ ™ 1, so that the relative
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irradiances are approximated simply by
 I 1

TO" aF a
Similarly along the a’-axis

i 1
Toa (10.45)

The flux-density ratio* drops off rather rapidly from 1
to gg to gg to zig, and so on. Evenso,theoff-axis secondary

* These particular photographs were taken during an undergraduatelaboratory session. A 1.5-mW He-Nelaser was used as a plane-wave
source. The apparatus was set up in a long darkened room, and the
pattern wascast directly on 4 5 Polaroid (ASA $000) film. Thefilm
waslocated about30 feet from a small aperture.so that no focusing
lens was needed. The shutter, placed directly in frontof the laser,
was a student-contrived cardboardguillotine arrangement, and there-
fore no exposure timesareavailable. Any camera shutter(a single-lens
refiex with the lens removed and the back open)will serve, but thecardboard one was more fun.
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Figure 10.24 (a) Fraunhofer pattern of a square aperture. (b) Thesame pattern further exposed to bring out some of the faint terms.
(Photos by E. H.}

peaks are still smaller; for example, the four com,peaks (whose coordinates correspond to appropyi
combinations of p’ = +32/2 and a’ = +37/2) neato the central maximum each haverelative irradi
of ()*.

10.2.5 The Circular Aperture

Fraunhoferdiffraction at a circular apertureis an ef}
of great practical significance in the study of opticg
instrumentation. Envision a typical arrangement: plart
waves impinging on a screen = containing a circulary
aperture and the consequentfar-field diffraction pa
tern spread acrossadistant observing screen o. By usin,
a focusing lens Lz, we can bring o in close to the
aperture without changing the pattern. Now, if Ly
positioned within and exactlyfills the diffracting ope,
ing in 5, the form of the patternis essentially unaltere;
The lightwave reaching = is cropped, so that only a
circular segment propagates through L, to form an)
image in the focal plane. This is obviously the same
process that takes place in an eye, telescope, microscopg@]]or cameralens. The imageof a distant point source,a;

formed bya perfectly aberration-free converging olis never a point but rather some sort of diffractiol
pattern, Weare essentially collecting only a fraction ofthe incident wavefront and therefore cannot hopeto
form a perfect image. As shownin thelast section, the
expression for the optical disturbanceat P, arising from
an arbitrary aperture in the far-field case, is

Kut-aR)

ae If ehOrZn/8 gs adilAperture

For a circular opening, symmetry would sugges!
introducing spherical polar coordinates in both thi
plane of the aperture and the plane of observation, as
shown in Fig. 10.26, Therefore, let

z=pcoosé y=psing
Z@qcsh=Yqqgsin’.

The differential element ofarea is now
dS~pdp dd.

  

 
 

Mure 10.25 (2) The irradiance distribution for a square aperture.
ithe irradiance produced by Fraunhofer diffraction at a square. (c) The electric eld distribution produced by Fraunhofer

’ via a square aperture. (Photos courtesy R. G. Wilzon,
Wesleyan University.)

10.2 Fraunhofer Diffraction 47

i

 
 

Substituting these expressions into Eg. (10.41), itbecomes

giel~aR) fe 2a 7
ae titapdp= Ja=0

  E=
40.46)

Because of the complete axial symmetry, the solution
must be independent of ®. We mightjust as well solve
Eq. (10.46) with © = 0 as with any other value, thereby
simplifying things slightly.

The portion of the double integral associated with
the variable 4,

[ giibraiRicos oy0

is one that arises quite frequently in the mathematics
of physics. It is a unique functionin that it cannot be
reduced to any of the more commonforms,such as the
various hyperbolic, exponential, or trigonometric func-
tions, and indeed with the exception of these, it is
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Figure 10.26 Circular aperture geometry.

perhaps the most often encountered. The quantity29

Jou) as I eHcost dy (10.47)2a Jo
is known as the Bessel function (of thefirst kind) of order
zero. More generally,

i ir

sie) ff em
represents the Bessel function of order m. Numerical
values of Jo(u) and J,(u) are tabulated fora large range
of u in most mathematical handbooks.Justlike sine and
cosine, the Bessel functions have series expansions and
are certainly no moreesoteric than these familiar child-
hood acquaintances. As seen in Fig. 10.27, Jo(u} and
Ji(u) are slowly decreasing oscillatory functionsthat do
nothing particularly dramatic.

Equation (10.46) can be rewritten as

(20.48)

 
ya

on | Jotkeq/R)p dp. (10.49)0

Anothergeneral property of Bessel functions, referred 

 

to as a recurrencerelation, is
a ma Le Sn(UD Ont),du

When m = 1, this clearly leads to

[ w'Jolu’) dul = wh(u), 20.59)°
with u’ just serving as a dummy variable. If we now
return to the integral in Eq. (10.49) and change tf
variable such that w = keg/R, then do = (R/kg) dw andhea veohegiR

j Jotkog/R)p dp=(Rika) J Jo(w)w dw.=°° we
Making use of Eq. (10.50), we get

  Stk,

EQ=a Qmra2(Rikagy}ckag/R).
Theirradiance at point P is ((Re E)*) or $EE*, that is,

We 262A"deal) 9.52)RL kagiR 
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here A is the area of the circular opening. To find
the irradiance at the center of the pattern (ie., at Po),
get ¢ = 0. It follows from the above recurrencerelation
(m= 1) that

Jolu) = 4nw +22) (10.53)te u

From Eq.(10.47) we see that Jo(0)= 1, and from Eq.
0.48), J:(0) = 0. The ratio of f,(u)/u as u approacheszero has the samelimit (L’Hospital’s rule) as the ratio
of the separate derivatives of its numerator and
Benominator, namely, dJ,(u)/du over 1. But this means
khat the right-hand side of Eq. (10.53) is twice that
fimiting value, so that J,(u)/u = 4 at w= 0. The irradi-ance at Po is therefore

&4A”
2R?’

fshich is the same result obtained for the rectangular
pening (10.43), If R is assumed to beessentially con-
plant over the pattern, we can write

ole

0} = (10.54)

(10.55)

ce sin 6 = g/R, the irradiance can be written as a
ction of 8,

25,(ha sin ay
~*~. |e 10.56)

ka sin @ ae
EEdassuchis plotted in Fig. 10.28. Becauseof the axial

1(8) 10)
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symmetry, the towering central maximum corresponds
to a high-irradiance circular spot known as the Airy
disk. It was Sir George Biddell Airy (1801-1892),
Astronomer Royal of England, whofirst derived Eq.
(10.56). The central disk is surrounded by a dark ring
that correspondsto thefirst zero of the function J;(u).
From Table 10.1 J;(u)=0 when x = 3.83, that is,
kaq/R©3.83. The radius ¢, drawnto the centerofthis
first dark ring can be thoughtof as the extent of the
Airy disk, It is given by

RA
qi 1.22 Oa" 0.57)

Table 10.1 Bessel functions.*
    

  
 

Jus)" | Jus)0.0|0.0000||3.0 6.0 —0.2767
0.1|0.0499|]3.1 6.1 —0.2559
0.2|0.0995|)3.2 6.2 —0.2329
0.3|0.1483})3.3 6.3 —0.2081
04|0.1960|)3.4 6.4 0.1816
0.5|0.2423||3.5 6.5 —0.1538
0.6|0.2867||3.6 6.6 F250
0.7) 0.3290|]3.7 6.7 0.0953
0.8|0.3688||3.8 68 — 0.0652
0.9|0.4059|]3.9 6.9 —0.0349
1.0|0.4401|4.0 7.0 0.0047
Ll|0.4709|4.1 7 0.0252
1.2|0.4983||4.2 72 0.0543
1.3|0.5220 //4.3 23 0.0826
14|05419|[4.4 TA 0.1096
LB|0.5579 114.5 75 0.1352
16|0.5699|}4.6 76 0.1592
L7|0.5778|)4.7 a7 0.1813
1.8|0.5815|)4.8 78 0.2014
1.9|0.5812 949 79 0.2192
2.0|0.5767|]5.0 8.0 0.2346,
2.1|0.6683|]5.1 8.1 0.2476
2.2|0.5560|]5.2 0.3432 8.2 3.2580.
23|0.5399|5.3 —0,3460 83 0.2657
24|0.5202 5.4 0.3453 84 0.2708
2.5|0.4971 |/5.5 0.3414 8.5 0.2731
2.6|0.4708|]5.6 —0.3343 8.6 0.2728
2.7|0.4416 [15.7 0.3241 8.7 0.2697
2.8|0.4097 1/58 0.3110 8.8 0.2642
29|0.3754 2952 8.9 0.2559

         
eepeeeel

* fla) = 0 for x = 0, 3.839, 7.016, 10.178, 13.324,.Adapted from E. Kreyszig, Advanced Ewgheering Mathematics, Wiley.
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For a lens focused on the screen o, the focal length
f= R,so

A

qi = 1.22 B (10.58)
where D is the aperture diameter, in other words,
D~ Qa. (The diameter of the Airy disk in the visible
spectrumis very roughly equalto the f/ # ofthe lens in
millionths of a meter.) As shownin Figs. 10.29 to 10.31,
q; varies inversely with the hole’s diameter. As D
approaches A, the Airy disk can be very large indeed,and the circular aperture begins to resemble a point
source of spherical waves.

The higher-order zeros occur atvalues of kag/R equalto 7.02, 10.17, and so forth. The secondary maxima are
located where x satisfies the condition

4/0) —»dul u

which is equivalent to Jo(u) 0. From the tables then,

  te)

Figure 10.28 (a) The Airy pattern. (b) Electric field created by
Fraunhoferdiffraction at a circular aperture, (c) Inradiance rewainglfrom Fraunhofer diffractionat a circular aperture, (Photos courtesyR. G,Wilson, Illinois Wesleyan University.)

 
Figure 10.29 Airy rings (0.8-mm hole diameter), (Photo by E. H.)

©
A 

Figure 10.30 Airy rings (1.0-mm hole diameter). (Photo by E. H.)

these secondary peaks occur when kag/R equals 5.14,
8.42, 11.6, and so on, whereupon I/1{0) drops from I
fo 0.0175, 0.0042, and 0.0016, respectively (Problem
10.22).

Circular apertures are preferable to rectangular ones,
as far as lens shapes go, since the circle’s irradiance
curve is broader aroundthecentral peak and dropsoff
more rapidly thereafter. Exactly what fraction of the
total light energy incident on @ is confined to within
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Figure 10.31 (a) Airy rings—long exposure(1.5-mm hole diameter).
(b) Cental Airy disc—short exposurewith the same aperture, (Photosby E. H)

the various maxima is a question of interest, but one
somewhat too involved to solve here.* On integrating
the irradiance over a particular region of the pattern,
one finds that 84% of the light arrives within the Airydisk, and 91% within the bounds of the second dark
ring.
 
“See Born and Wolf, Principles of Optics, p. 398, or the very fineelementary text by Towne, Wave Phenomena, p. 464.
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10.2.6 Resolution of Imaging Systems

Imagine that we have somesort of lens system that
forms an image of an extended object. If the objectis
self-luminous,it is likely that we can regard it as made
up of an array of incoherent sources. On the other
hand, an object seenin reflected light will surely display
some phase correlation between its various scattering
points, When the point sources are in fact incoherent,
the lens system will form an imageof the object, which
consists of a distribution of partially overlapping, yet
independent,Airy patterns. In the finest lenses, which
have negligible aberrations, the spreading out of each
image point due to diffraction represents the ultimate
limit on image quality.

Suppose that we simplify matters somewhat and
examine only two equal-irradiance, incoherent, distant
point sources. For example, consider two stars seen
through the objective lens of a telescope, where the
entrance pupil correspondsto the diffracting aperture.
In the previous section we saw that the radius of the
Airy disk was given by g;"1.22/fA/D. If 46 is the corre-
sponding angular measure, then S@ = 1.22A/D, inas-
muchas 4\/f = sin A@ = A@. The Airy disk for each star
will be spread out over an angular half-width A@ about
its geometric image point, as shownin Fig, 10.32. If the
angular separation of the stars is Ag and if Ap > A@,
the images will be distinct and easily resolved. As the
stars approach each other,their respective images come
together, overlap, and commingle into a single blend
of fringes. If Lord Rayleigh’s criterion is applied, the
stars are said to be just resolved when the center of one
Airy disk falls on the first mintmum of the Airy pattern
of the otherstar. (We can certainly do a bit better than
this, but Rayleigh’s criterion, howeverarbitrary, has the
virtue of being particularly uncomplicated.*) The
minimum resolvable angular separation or angularlimit ofresolution is

(A)min = AP™ 1.222/D, (10.59)
 

 * In Rayleigh's own words: ““Phis rule is convenienton account of its
simplicity and it is sufficiently accurate in view of the necessary
uncertainty as to what exactly is meant by resolution.” See Section9.6.1. for furtherdiscussion,

as depicted in Fig. 10.83. If A? is the center-to-cen,
separation of the images, the limit of resolutionjs

(AQ mn=L-22fA/D. ‘tag
The resolving power for an image-forming systemfq
generally defined as either 1/(Ap),j, or 1/(A4,.;,.

Lf the smallest resolvable separation between in
 

 
 
 

microscopy allows for the perception of finer d
The electron microscopeutilizesequivalent waveleng
of about 107*to 107° that of light, This makes it possit
to examine objects that would otherwise be comple
obscuredby diffraction effects in the visible spect:
Onthe other hand, the resolving power of a telesco,
can be increased by increasing the diameter of
objective lens or mirror. Besides collecting more ofth
incidentradiation,this will also result in a smaller Airy
disk and therefore a sharper, brighter image. The
Mount Palomar 200-in telescope has a mirror 5 m in
diameter (neglecting the obstruction of a small region
at its center). At 550nm it has an angular limit of
resolution of 2.7 X 10°" s ofarc. In contrast, the Jodrell
Bank radiotelescope, with a 250-ft diameter, operates
at a rather long, 21-cm wavelength. It therefore has a
limit of resolution of only about 700 s of arc. The human
eye has a pupil diameter that of course varies. Taking
it, under bright conditions, to be about 2mm, with
A = 550 nm, (A@)mn turns out to be roughly 1 min of
arc. With a focal length of about 20 mm, (A@)min on the
retina is 6700nm, This is roughly twice the mean
spacing between receptors. The human eye should
therefore be able to resolve two points, an inch apartg
at a distance of some 100 yards. You wil! probably ndbe able to do quite that well; one part in one thousand
is more likely.

A more appropriatecriterion for resolving powerha
been proposed by C. Sparrow. Recall that at thy
Rayleigh limit there is a central minimum orsaddle
point between adjacent peaks. A further decrease in
the distance between the two point sources will cause
the central dip to grow shallower and ultimately disap
pear. The angular separation corresponding to that
configuration is Sparrow’s limit. The resultant

 10.2 Fraunhofer Diffraction $23

   

 
Figure 10.52 Overlapping images. Figure 10.33 Overlapping images.  
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maximum has a broad flat top; in other words, at the
origin, which is the center of the peak, the second
derivative of the irradiance function is zero; there is no
changein slope (Fig. 10.40).

Unlike the Rayleigh rule, which rather tacitly assumes
incoherence, the Sparrow condition can readily be gen-
eralized to coherent sources, In addition, astronomical
studies of equal-brightness stars have shown that
Sparrow’s criterion is by far the morerealistic,

10.27 The Diffraction Grating

A repetitive array of diffracting elements, either aper-
tures or obstacles, that has the effect of producing peri-
odic alterations in the phase, amplitude, or both of an
emergent waveis said to be a diffraction grating. One
of the simplest such arrangements is the multiple-slit
configuration of Section 10.2.3. It seems to have been
invented by the American astronomer David Ritten-
house in about 1785. Some years later Joseph von
Fraunhofer independently rediscovered the principle
and went on to make a numberof importantcontribu-
tions to both the theory and technology of gratings.
Theearliest devices were indeed multiple-slit assem-
blies, usually consisting of a grid offine wire or thread
wound about and extending between two parallel
screws, which served as spacers. A wavefront, in passing
through such a system, is confronted by alternate
opaqueand transparentregions, so thatit undergoes a
modulation in amplitude. Accordingly, a multiple-slit
configuration is said to be a transmission amplitude gral-
ing. Another, more commonform oftransmission grat-
ing is madebyruling or scratching parallel notches into
the surface of a flat, clear glass plate [Fig. 10.34({a)].
Each of the scratches serves as a source of scattered
light, and togetherthey form a regulararrayof parallel
line sources. When the gratingis totally transparent, so
that there is negligible amplitude modulation,the regu-
Jar variations in the optical thickness across the grating
yicld a modulationin phase, and we have what is known
as a transmission phase grating (Fig. 10.35). In the
Huygens-Fresnel representation you can envision the
wavelets as radiated with different phases over the grat-
ing surface. An emerging wavefront therefore contains

Ist order

fr iy Oh order
aGn = 05

7S onterOre 4
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ath order

I AB — CD —atsind,,~in) for

Figure 10.34 A transmission grating.

periodic variationsin its shape rather than its amplitude.
This in turn is equivalent to an angular distribution of
constituent plane waves.

Onreflection from this kind of grating,light scattered
by the various periodic surface features will arrive at
some point P with a definite phase relationship. The
consequentinterference pattern generated after reflec:
tion is quite similar to that arising from transmission.
Gratings designed specifically to frnction in this fashion
are knownasreflection phase gratings (Fig. 10.36). Con-
temporary gratings of this sort are generally ruled in
thin films of aluminum that have been evaporated onto
optically flat glass blanks. The aluminum,being fairly

leaner

Figure 10.85 Light passing through a grating. The region on the
leit is the visible spectrum, that on theright, the ultraviolet. (Photo
courtesy KlingerScientific Apparatus Corp.)

soft, results in less wear on the diamondruling tool and
is also a better reflector in the ultraviolet region.

The manufacture of ruled gratings is extremely
difficult, and relatively few are made. In actuality most
gratings are exceedingly goodplastic castings or replicas
of fine, master ruled gratings.

If you were to look perpendicularly througha trans-
mission grating at a distant parallel line source, your
eye would serve as a focusing lens for the diffraction
pattern. Recall the analysis of Section 10.2.3 and theexpression

asin 6,©mA, £10.32]
which is known as the grating equation for normal
incidence. The values of m specify the order of the
Various principal maxima. For a source having a broad
Continuous spectrum, such as a tungsten filament, the
™ = 0, or zeroth-order, image correspondsto the unde-
flected, 4 = 0, white-light view of the source. The grat-
mg equation is dependent onA, andso for any value
of m * 0 the various colored imagesof the source corre-
Spondingto slightly different angles (@,) spread out
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into a continuous spectrum. The regions occupied by
the faint subsidiary maximawill show up as bands seem-
ingly devoid of any light. The first-order spectrum
m = +] appearson either side of @ = G andis followed,
alongwith alternate intervals of darkness, by the higher-
order spectra, m=+2, +3,..., Notice that the smaller
@ becomesin Eg. (10.32), the fewer will be the numberof visible orders.

Ist order Gu==) 
 

\ Oth order (omist order (© 1) @)

mili order

AB~CD = alsin, — sin 8) )
Figure 10.36 A reflection grating.
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It should be no surprise that the grating equationis
in fact Eq. (9.29), which describes the location of the
maxima in Young's double-slit setup, The interference
maxima,all located at the same angles, are now simply
sharper (just as the multiple beam operation of the
Fabry-Perot etalon madeits fringes sharper). In the
double-slit case when the point of observation is snme-
whatoff the exact center of an irradiance maximum
the two waves, one from eachslit,will still be more or
less in phase, andthe irradiance, though reduced,will
still be appreciable. Thus the bright regions are fairly
broad. By contrast, with multiple-beam systems though
all the waves interfere constructively at the centers of
the maxima, even a small displacementwil! cause certain
onesto arrive out of phase by $A with respectto others.
For example, supposePis slightly off from @; so that
asin @ = 1.010A instead of 1.000. Each of the waves
from successive slits will arrive at P shifted by 0.01A
with respect to the previous one. Then 50 slits down
from the first, the path length will have shifted by 4A,
and thelight fromslit 1 andslit 51 will essentially cancel.
The same would betrueforslit-pairs 2 and 52, 3 and
53, and so forth. The result is a rapid fall off in irradi-
ance beyond thecenters of the maxima.

Consider next the somewhat more generalsituation
of oblique incidence, as depicted in Figs. 10.34 and
10.36. The grating equation,for both transmission and
reflection, becomes

a(sin 8,~sin 8) = mA. (0.61)
This expression applies equally well, regardless of the
refractive index of the transmission gratingitself (Prob-
lem 10.37). One of the main disadvantagesof the devices
examined thus far, and in fact the reason for their
obsolescence, is that they spread the available light
energy out over a numberof low-irradiance spectral
orders. For a grating like that shownin Fig. 10.36, most
of the incidentlight undergoes specular reflection, as if
from a plane mirror. It follows from the grating
equation that 6,,"@; correspondsto the zeroth order,
m=. All of this light is essentially wasted, at least
for spectroscopic purposes, since the constituent wave-
lengths overlap.

In anarticle in the Encyclopaedia Britannica of 1888
Lord Rayleigh suggested thatit wasat least theoretically 

possible to shift energy out of the useless zeroth ordeyinto one of the higher-order spectra. So motivate,
Robert Williams Wood (1868-1955) succeededin 19],in ruling grooves with a controlled shape,as sho
Fig. 10.37. Most modern gratings are ofthis shapeq
blazed variety. The angular positions of the no;
orders, 6,,-values, are determinedby a, A, and, of m
immediate interest, 6;. But 0; and 6, are meas
from the normal to the grating plane and not yw
respect to the individual groove surfaces, On theothe
hand,thelocation of the peak in the single-facet diffr,
tion pattern corresponds to specular reflection off tii
face, for each groove. It is governed by the dlaze ay
y andcan bevaried independently of 8,,. This is somey

 

 
 
  

 
 
 

Specular reffection
diffraction peak} 

Figure 10.37 Section of a blazed reflection phase grating,
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> bth order 
Figure 10.38 Blazed grating.

what analogousto the antennaarray of Section 10.1.3,
where we were able to control the spatial position of
the interference pattern (10.6) by adjusting therelative
phase shift between sources withoutactually changingtheir orientations.

Consider the situation depicted in Fig. 10.38 when
the incident wave is normal to the plane of a blazed
reflection grating; that is, @;=0, so for m =0, 6, = 0.
For specular reflection 8, — 6, = 2y (Fig. 10.37), most of
the diffracted radiation is concentrated about @," —2y.
(6, is negative because the incident and reflected rays
are on the sameside of the grating normal.) This will
correspond to a particular nonzero order, on oneside
of the central image, when @,, = —2y; in other words,
@ sin (-2y)™ma for the desired A and m.

Grating Spectroscopy
Quantum mechanics, which evolved in the early 1920s,
hadits initial thrust in the area of atomic physics. Predic-
tions were made concerning the detailed structure of
the hydrogen atom as manifested by its emitted radi-
ation, and spectroscopy provided the vital proving
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ground. Theneedfor larger and better gratings became
apparent. Grating spectrometers, used over the range
from soft x-rays to the far infrared, have enjoyed con-
tinued interest. In the hands of the astrophysicist or
rocket-borne, they yield information concerning the
very origins of the universe, information as varied as
the temperature ofa star, the rotation of a galaxy, and
the red shift in the spectrum of a quasar. In the mid-
1900s George R. Harrison and George W. Stroke
remarkably improved the quality of high-resolution
gratings. They used a ruling engine* whose operation
was contrnlled by an interferornetrically guided ser-vomechanism.

Let us now examine in somedetail a few of the major
features of the grating spectrum. Assume an
infinitesimally narrow incoherentsource. The effective
width of an emergent spectral line may be defined as
the angular distance between the zeros on eitherside
of a principal maximum; in other words, Aa = 2a/N,
which follows from Eq. (10.33). At oblique incidence
we can redefine a as (ka/2) (sin @—sin 6,), and so a
smal] change in a is given by

Aa ™ (ka/2Ycos #(A8) = 2r/N, (10.62)
where the angleof incidenceis constant, thatis, A8; = 0.
Thus even when theincidentlight is monochromatic

AG™ 2A/(Na cos 6,) (10.63)
is the angular width of a line, due to instrumental broaden-
ing. Interestingly enough, the angular linewidth varies
inversely with the width of the grating itself, Na.
Anotherimportantquantity is the difference in angular
position corresponding to a difference in wavelength.
The angular dispersion, as in the case of a prism,isdefined as

D™= dofda. 0.64)
Differentiating the grating equation yields

B= miacos 4. (10.65)
This means that the angular separation between two 
* For more details about these marvelous machines see A. R. Ingalls,
Sci. Amer: 186, 45 (1952), or the article by E. W. Palmer and J. F.
Verrill, Contemp. Phys. 9, 257 (1968)
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Film plate

Sourceslitsq
Figure 10.39 The Littrow autocollimation mounting.

different frequency lines will increase as the orderincreases.
Blazed plane gratings with nearly rectangular grooves

are most often mounted so that the incident propaga-
tion vector is almost normalto either one of the groove
faces. This is the condition of autecollimation, in which
6, and @,, are on the same side of the normal and
y= 6,——8» (see Fig. 10.39}, whereupon

D, 2tan 6,/A, (20.66)auto

whichis independent of a.
Whenthe wavelength difference betweentwolinesis

small enough so that they overlap, the resultant peak
becomes somewhat ambiguous, The chromatic resoly-
ing power & of a spectrometeris defined as

RZ AKBA)mins {9.76}
where (AA)nin is the least resolvable wavelength
difference, or limit of resolution, and A is the mean
wavelength. Lord Rayleigh'’s criterion for the resolution
of two fringes with equal flux density requires that the
principal maximum of one coincide with the firstminimum of the other. (Compare this with rhe
equivalent statement used in Section 9.6.1.) As shown
in Fig. 10.40, at the limit of resolution the angular

 
 

separation is half the linewidth, or from Eq. (10.63)
(A® min@A/Na cos 8,..

Applying the expression for the dispersion, we get
(BB)urin©(AA )snin IA /@ COS Bon.

The combination of these two equations provides us
with %, thatis,

ALAA)min ™ UNE (10.87)or

AR (10.68)

Theresolving power is a function of the grating wid!
Na, the angle of incidence, and A. A grating 6 inch
wide and containing 15,000 lines per inch will have
total of 9 x 10‘ linesanda resolving power,in the secon!
order, of 1.8 X 10°. In the vicinity of 540 nm the gratin:
could resolve a wavelength difference of 0.008 nmi
Notice that the resolving power cannot exceed 2Na/Ay
which occurs when 6; =8 = 90°. The largest val
of & are obtained whenthe grating is used in autoct
Ination, whereupon

Boro”2Nasin (10.69)a

aud again @ and @,, are on the sameside of the normal.
For one of Harrison’s 260-mm-wide blazed gratings at
about 75° in a Littrow mount, with 4 = 500nm,the
yesolving power just exceeds 10°.

Wenowneedto considerthe problem ofoverlapping
orders. The grating equation makes it quite clear that
a line of 600 nm in the first order will have precisely
the same position, @,, as a 300-nm line in the second
order or a 200-nm line when m= 3. If two lines of
wavelength A and (A + AA) in successive orders (m + 1)
and m just coincide, then

a(sin 6,—sin 6,) = (m+ [ja m{(A + AA).
Thatprecise wavelength differenceis knownas the free
spectral range,

{AA )ie=Alm, (40.70)
as it was for the Fabry—Perot interferometer. In com-
parison with that device, whose resolving power was

R= Fm, 19.76}
we might take N to be the finesse ofadiffraction grating
(Problem 10.38).

A high-resolution grating blazed for the first order,
soas to have the greatestfree spectral range, will require
a high groove density (up to about 1200 fines per mil-
limeter) in order to maintain &. Equation (10.68) shows
that @ can be kept constantby ruling fewerlines with
inereasing spacing, such that the grating width Na is
constant. But this requires an increase in m and a
subsequent decrease in free spectral range, character-
ized by overlapping orders. If this time N is held con-
stant while a alone is madelarger, 2 increases as does
m, So that (AA); again decreases. The angular width
of a line is reduced (ie., the spectral lines became
sharper), the coarser the grating is, but the dispersion
ina given orderdiminishes, with the effect that the lines
fin that spectrum approach eachother. °

Thus far we have considered a particular type of
Periodic array, namely, the line grating. A good dealmoreinformationis availablein theliterature* concern-Se
“SeeFKneubiihl, “Diffraction Grating Spectroscopy”, Appi. Opt. 8,
505 (1969); R.“S. Longhurst, Geometrical and Phystcal Optics; and theextensive article by G. W. Stroke in the Encyclopedia of Physics, Vol.

P29, edited by S. Fligge, p. 426.
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Figure 10,40 Overlapping point images.
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ing their shapes, mountings, uses, and so forth.
There are a few unlikely household items that can

be used as crude gratings, along with a small light
source. The grooved surface of a phonograph record
works nicely near grazing incidence, And surprisingly
enough, under the same conditions an ordinary fine-
toothed comb will separate out the constituent
wavelengths of white light. This occurs in exactly thesame fashionasit would with a more orthodoxreflection
grating. In a letter to a friend dated May 12, 1673,
James Gregory pointed out that sunlight passing
through a feather would produce a colored pattern,
and he asked that his observations be conveyed to Mr.
Newton. If you’ve got one, a feather makes a nice
transmission grating.

Two- and Three-Dimensional Gratings
Suppose that the diffracting screen = contains a large
number, N,of identical diffracting objects (apertures
or obstacles). These are to be envisioned as distributed
over the surface of 2 in a completely random manner,
Wealso require that each and every onebesimilarly
oriented. Imagine the diffracting screen to beillumi-
nated by plane waves that are focused by a perfect lens
Ly, after emerging from = (see Fig. 10.15). The
individual apertures generate identical Fraunhofer
diffraction patterns, ail of which overlap on the image
plane g. If there is no regular periodicity in the location
of the apertures, we cannot anticipate anything but a
random distribution in the relative phases of the waves
arriving at an arbitrary point P on a. We have to be
rather careful, however, because thereis one exception,
which occurs when P is on the central axis, that is,
P= Pp». All rays, from all apertures, parallel to the
central axis will traverse equal optical path lengths
before reaching Py. They will therefore arrive in phase
and interfere constructively.

Nowconsider a group of arbitrarily directed parallel
rays (not in the direction of the central axis), each one
emitted from a different aperture. Thesewill be focused
at some point on a,such that each corresponding wave
will have an equal probability of arriving with any phasebetween 0 and 2a. What must be determined is the
resultant field arising from the superposition of N

equal-amplitude phasors all having random relati
phages. The solution to this problem requires an elabg}
ate analysis in terms of probability theory, which ig
little too far afield to do here.* The important point idthat the surn of a numberof phasors taken at rando;
angles is not simply zero, as might be thought.
general analysis begins, forstatistical reasons,by as
ingthat there area large numberofindividual aperturl
screens, each containing N random diffracting apers
tures and eachilluminated,in turn, by a monochromarf
wave. We shouldn’t be surprised if there is some
difference, however small, between the diffraction Pat-
terns of two different random distributions of, say,N= 100 holes—after all, they are different, and the
smaller N is, the more obvioua that becomes. Indee
we can expect their similarities to show upstatistically
on considering a large number of such masks—ergothe general approach.

If the many individual resulting irradiance distribu.
tionsare all averaged for a particular off-axis point on
o,it will be found that the averageirradiance(J,,) there
equals N timesthe irradiance (Jo) due to a single aper-
ture: Ig,©NJo. Still, the irradiance at any pointarising
from any one aperture screen can differ from this
average value by a fairly large amount, regardless of
how great N is. These point-to-point fuctuations about
the average manifest themselves in each particular pat-
tern asa granularity that tends to showaradialfiberlike
structure.If this fine-grained mottling is averaged over
asmall region of the pattern, which nonetheless contains
many fluctuations, it will average out to NI.

Of course, in any real experiment thesituation will
not quite match the ideal—there is no such thing as
monochromatic light or a truly random array of (non-
overlapping) diffracting objects. Nonetheless, with a
screen containing N “random”apertures illuminated
by quasimonochromatic, nearly plane-wave illumina-
tion, we can anticipate seeing a mottled flux-density
distribution closely resembling that of an individual
aperture but N times as strong. Moreover,a bright spotee?

 

  

 

* For a statistical treatment, consult J. M. Stone, Radiation and Optics,
p. 146, and Sommerfeld, Optics, p. 194. Also takea lookat “Diffraction
Plates for Classroom Demonstrations.” by R. B. Hoover, Am. J. Phys.87, 871 (1969), and T.A. Wiggins,“Hole Gratings for Optics Exper
ments,” Am, J. Phys. 53, 227 (1985),
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will exist on-axis at its center, which will have a flux
aeosity of N® times that of a single aperture. Lf, forple, the screen contains N recangular holes Gig.
10-41(a))) the resultant pattern [Fig 10.41(b)] will
esemnble Fig. 10.24.Similarly, the array of circular holes
depicted in Fig. 10.41(c) will produce the diffraction

10.2 Fraunhofer Diffraction 4gu

rings of Fig. 10.41{d).
As the numberof aperturesincreases, there will be

a tendency for the central spot to becomeso bright as
to obscure the rest of the pattern. Note as well that the
above considerations apply whenall the apertures are
illuminated completely coherently. In actuality, the

 Figure 10.41 (a) A random array of rectangular apertures.
(b) Theresulting white-light Fraunhofer pattern. (c) A ran-domarrayof circular apertures. (d) Theresulting white-light
Fraunhofer pattern. (Photos courtesy The Ealing Corpor-
ation and Richard B. Hoover.) (e) A candle flame viewed
througha foggedpiece of glass. The spectral colorsare visibleas concentric rings. (Photo by E. H.)
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by the degree of coherence (see Chapter 12). The pat-tern will ran the gamut from nointerference wil
completely incoberentlight to the case discussed fe
for completely coberentillumination (Problem 10.40).

The same kind ofeffects arise from what we might
call a two-dimensional phass grating. For example, the
halo or coronaoften seen aboutthe Sun or Moonresults
from diffraction by random droplets of water vapor
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Richard B. Hoover.)

effect, rub a yery thin film of talcum powde,
microscopeslide and then fog it up with your
Look at a white-light point source. You shoul
pattern of clear, concentric, colored rings (10.
rounding a white central disk. If you just see
blur, you don’t have a distribution of rough!
sized droplets; have anothertry at the talcum. Striking},

432, Chapter re Diffraction
diffract. . ., jee ss 7

iffracted flux-density distribution will be determined (Le., cloud particles). If you wouldlike to di Hia ‘uplicate

beautiful patterns approximating concentric ring

Figure 10.42 (a) An orderedarray of recangular aper-
tures. (b) The resulting white-light Fraunhofer pautesn.
(©) An orderedarray of circular apertures, (d) The result-ing white-light Fraunhofer pattern. (Photos courtesy

scan be seen through an ordinary mesk nylon stock-
ing If you are fortunate enough toe have mercury-vaporeet lights, you'll have no trouble seeing all their

nstituent visible spectral frequencies. (If not, block
ut most of a fluorescent lamp,leaving something‘bling a small source.) Notice the increased sym-

as you increase the numberoflayers of nylon.
jdentally, this is precisely the way Rittenhouse, the

yentor of the grating, became interested in the prob-
jem, only he useda silk handkerchief.

Consider the case of a regular two-dimensional array
diffracting elements (Fig. 10.42) under normally
jdent plane-wave illumination. Each small element
aves as a coherent source. And because ofthe regu-

Jar periodicity of the lattice of emitters, each emergent
jave bears a fixed phase relation to the others. Therefwill now be certain directions in which constructive
finterference prevails, Obviously, these occur when the‘distances from each diffracting element to P are such
that the waves are nearly in phase at arrival, The
nenomenon can be observed by looking at a point

Pearce througha piece of square woven, thin cloth (ach
‘as nylon curtain material) or the fine metal mesh of a
tea strainer (Fig. 10.84), The diffracted image is
ffectively the superposition of two grating patterns at
ight angles. Examinethe centerof the pattern carefullyto see its gridlike structure.

As for the possibility of a three-dimensional grating,
there seems to be no particular conceptualdifficulty. A
regular spatial array of scattering centers would cer-
tainly yield interference maxima in preferred direc-tions. In 1912 Max von Laue (1879-1960) conceived
the ingenious idea of wsing the regularly spaced atoms
within a crystal as a three-dimensional grating. It is
apparent from the grating equation (10.61) thatif A is
much greater than the grating spacing, only the zeroth
order (m == 0) is possible. This is equivalent to Oy = 6,

» that is, specular reflection. Since the spacing between
atoms in a crystal is generally several angstroms (1 A=
10°' nm), light can be diffracted only in the zerothorder.

Von Laue’ssolution fo the problem wasto probe the
lattice, not with light but with x-rays whose wavelengths
were comparable to the interatomic distances (Fig.
10.48), A narrow beam of white radiation (the broad
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aeWhiteincidentbeam
Singie
crystal

Figure 10,48 Transmission Laue pauern.

 
Figure 10.44 X-ray diffraction pattern for quartz (SiOz).

continuous frequency range emitted by an x-ray tube)
was directed onto a thin single crystal. The film plate
(Fig. 10.44) revealed a Fraunhofer pattern consisting
of an array of precisely located spots. These sites of
constructive interference occurred whenever the angle
between the beam anda set of atomic planes within the
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Figure 10.45 Water waves in a ripple tank reflecting off an array of
pegs acting as point scatterers. (Photo'courtesy PSSC Physics, D. C.Heath, Boston,1960.)

crystal obeyed Bragg’s law:
2dsin 8 = ma. (10.71)

Notice that in x-ray work @ is traditionally measured
from the plane and not the normalto it. Each set of
planes diffracts a particular wavelength into a particular
direction. Figure 10.45 rather strikingly shows the
analogous behavior in a ripple tank. 7

Instead of reducing A to the x-ray range, we could
have scaled everything up by a factor of about a billion
and madea lattice of metalbails as a grating for micro-waves.

—_—eee
10.3 FRESNEL DIFFRACTION

10.3.1 The Free Propagation of aSpherical Wave

In the Fraunhofer configuration, the diffracting system
wasrelatively small, and the point of observation was
very distant. Underthese circumstances a few poten-
tially problematic features of the Huygens-Fresnel
principle could be completely passed over without con-
cern. But we are now dealing with the near-field region,

 
  
 
 
 
 
 

  

which extendsright up to the diffracting element
and any such approximations would be inappro inWetherefore return to the Huygens-Fresnel prj
in order to re-examine it more closely. At any ing
every point on the primary wavefrontis envision,
a continuous emitter of spherical secondary wayBut if each wavelet radiated uniformlyin all di
in addition to generating an ongoing wave,there warsalso be a reverse wavetraveling back toward the so
No such wave is found experimentally, so we
somehow modifythe radiation pattern of the seco 0
emitters. We now introduce the function K (9), kn; :as the obliquity or inclination factor, in order
describe the directionality of the secondary emissio;
Fresnel recognized the need to introduce a quantitythis kind, but he did little more than conjecture
its form,” It remained for the more analytic Kir
formulation to provide an actual expression for Kiwhich, as we will see in Section 10.4, turns outto be

K(8)=31 + cos 8). co7g
As shownin Fig. 10.46, @ is the angle made with the!
normal to the primary wavefront, k. This has its
maximum value, K (0) = 1, in the forwarddirectionaff
also dispenses with the back wave, since K(1) = 0.

Let us now examine the free propagation of a
spherical monochromatic wave emitted from a join}
source S. If the Huygens-Fresnelprinciple is coredwe should be able to add up the secondary waveletarriving at a point P and thusobtain the unobstrues
primary wave.In the process wewill gain some
recognize a few shortcomings, and developa verytechnique. Consider the construction shown in
10.47. Thespherical surface correspondsto thepi

 

 

   
* It is interesting to read Fresnel’s own words on the matter, tlin mind that he was talking aboutlight as an elastic vibration ofacther.

Since the impulse communicated to every part of the primitivewave was directed along the normal, the motion which each
tendsto impress upon the aether ought to be moreintense in
this direction than in any other; and the rays which wouldeuanate from i, if acting alone, would be less andless intense
as they deviated more and more from this direction. ‘The investigation of the law according ta which theirintensity varies about each center of disturbance is doubtless
a very difficult matter; ...

front at somearbitrary time ¢’ after it has beenited from S at ¢=0. The disturbance, having a
jus p, can be represented by any one of the mathe-
tical expressions describing a harmonic spherical

faves for example, .
E = © cos (wi ~ kp). (10,78)pe

  
 

Figure 10.47 Propagation ofa spherical wavefront.
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As illustrated, we have divided the wavefront into a
number of annular regions. The boundaries of the
various regions correspondto the intersections of the
wavefront with a series of spheres centered at P of
radius t+ A/2, tj +A, ro + 3A/2, and so forth. These
are the Fresnel or half-period zones. Notice that, for
a secondary point source in one zone, there will be a

‘econdary wavelet

Primary wave
Figure 10.46 Secondary wavelets.
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Figure 10.48 Propagation of a
spherical wavefront.

point source in the adjacent zone thatis further from
P by an amountA/2. Since each zone, although small,
is finite in extent. we define a ring-shaped differential
area elementdS, as indicated in Fig. 10.48, All the point
sources within dS are coherent, and we assume that each
radiates in phase with the primary wave (10.73). The secon-
dary wavelets travel a distance r to reach P, at a time 4,
all arriving there with the same phase, wf~&{p + 7).
‘The amplitude of the primary wave at a distance p from
S is Eqip. We assume, accardingly, that the source
strength per unit area €,of the secondary emitters on
a& is proportional to E/p by way of a constant Q,that
is, €4 = QE,/p. The contribution to the optical disturh-
ance at P from the secondary sources ondSis, therefore,

Ea
aE Ko Ecos [wt ka + ry aS. (10,74)

‘The obliquity factor must vary slowly and may be
assumedto be constant over a single Fresnel zone. To
get dS as a function of y, begin with

dS = pdp 2r(p sino).
Applying the lawof cosines, we get

T= p+ (p+ r)*— 2plp * 79) C08 @.
Upon differentiation this yields

Qrdr™ 2p(p©r9) sin @ de,

 
with p and rp held constant. Making wse of the value
of dg, we find that the area of the element is therefore

 

 

?dS 2a rdr. (40.75;
(+r) 1

The disturbance arriving at P from the {th zone is

Eap ihEve Kuh|°cos[wt—kip t ryder.
: aTTD J4

Hence

—KiEgpa a
Be Tagbin (ol bo~RNS.

Uponthe introduction of n_, =r) + (f— 1)a/Zand 7 =
vot A/2, the expression reduces (Problem 10.42) to

wo 2KEnpr
(p * ¥%)

Observe that the amplitude of E, alternates pe:positive and negative values, depending on whetheris odd or even. This means that the contributionsfro)
adjacent zones are out of phase and tend to cancel. It
is here that the obliquity factor makes a crucialdifference. As | increases, @ increases and K decreases,

60 that successive contributions do notin factre

E, = (-1) sin [wt ~k€p + ry)}. (10-76)

cancel each other. It is interesting to note that £)/K;
independent of any position variables. Although

greas of cach zone are almost equal, they do increase
jightly as / increases, which meansanincreased number
i emitters. But the mean distance from each zone toalso increases, such that F,/K, remains constant (see
[problem 10.43).The sum of the optical disturbances from all m zones
at Pis

E=E,+ Et Egt+++t+ En,
and since thesealternate in sign, we can write

  

   

Ee |E | |B+ (alt [En (10.77)
if mis odd, the series can be reformulated in two ways,
either as

MEW, (ELeygE (Ely) Esl)
Ea+ 3 IEd +> + 2 lEd +o +

+ (Sette, + Bal) oat (40.78)2 2} 2
or as

_ JEal (4- , Fa)E=|El-“y 9 \Eol +5

{Esl Ea)
al vey fesie
(ee

LE n— [Ena &
[Ex el + Se El

+ (Betas, Feel) ete10.79)

— are now two possibilities: either |E,| is greaterthe arithmetic mean of its two neighbors|£;—;| and
Hal,or itis less than that mean. This is really a question
joncerning the rate of change of K(é). When

1Ed > (Bal + En dy/2
each bracketed term is negative. It follows from Eq.
(10.78) that

LEW, En!<be 10.80)
Beats mee

fod from Eq. (10.79) that

Lea Bade
10.81

2 9 (081)E>|E,|
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Since the obliquity factor goes from|to 0 over a great
many zones, we can neglect any variation between adja-
cent zones, that is, JE,|=[E.| and [Bal = |Eal.
Expression (10.81), to the same degrec of approxima-
tion, becomes

E> Pa (10.82)aS 2 h
Weconclude from (10.80) and (10.82) that

[Ey] eadaly oe,
& 2 2

This same result is obtained when
MEd < (Eval + LEvab/2.

If the last term, |£,,], in the series of Eq. (10.77) corre-
sponds to an even m, the same procedure (Problem
10.44) leads to

(10.83)

[edd _ [El2 2°
Fresnel conjectured that the obliquity factor was such
that the last contributing zone occurred at @ = 90°, that
is,

 (10.84)

K(8)= 0 for w/2= || 7.
In that case Egs. (10.83) and (10.84) both reduce to

[EI
E 2

when |E,| goes to zero, because K,,(7/2) = 0. Alterna-
tively, using Kirchhoff’s correct obliquity factor, we
divide the entire spherica! wave into zones with the last
or mth zone surrounding O'. Now @ approaches 7,
K,,() = 0, [E_|=0, and once again E = |£,{/2. The
optical disturbance generated by the entire unobstructed wave-
front is approximately equal to one half the contribution from
the first zone.

If the primary wave were simply to propagate fromSto P in a time4it would have the form
Ey

(p +1)
Yet the disturbance synthesized from secondary wave-

(10.85)

 
cos [wt k(p + t9)}. (10.86)
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lets, Eqs. (10.76) and (10.85), is

aietin [ot — kp + roy). (10.87)
These two equations must, however, be exactly
equivalent, and we interpret the constants in Eq. (10.87)to make them so. Note that there is somelatitude in
how we do this. We prefer to have the obliquity factor
equal to 1 in the forward direction, that is, K; =1
(rather than 1/A)}, from whichit folfows that Q must be
equal to 1/A. In that case, EapA=&o, which is fine
dimensionally. Keep in mind that €, is the secondary-
wavelet source strength per unit area over the primary
wavefrontof radius p, and €5/p is the amplitude of that
primary wave Eo{p). Thus €4 = Eo(p)/A. There is one
other problem, and thatis the 7/2 phase difference
between Eqs. (10.86) and (10.87). This can be accounted
for if we are willing to assumethat the secondary sources
radiate one quarter of a wavelength out of phase with
the primary wave (see Section 3.5.2).

We have found it necessary to modify the initial
statement of the Huygens—Fresnel principle, but this
should not distract us from our rather pragmatic rea-
sonsfor usingit, which are twofold.First, the Huygens-
Fresnel theory can be shown to be an approximation
of the Kirchhoff formulation andas such is no Jonger
merely a contrivance. Second,it yields, ina fairly simple
way, many predictions that are in fine agreement with
experimental observations. Don’t forget that it worked
quite well in the Fraunhofer approximation.

10.3.2. The Vibration Curve

We now develop a graphic method for qualitatively
analyzing a numberof diffraction problems that arise
predominantly from circularly symmetric configu-rations.

Imagine thatthe first, or polar, Fresnel zone in Fig.
10.47 is divided into N subzones bythe intersection of
spheres, centered on P, of radii

To + AI2N, to + AIN, To+ BALZN, ..., T+ ALR.

Each subzonecontributes to the disturbance at P, the
resukant of which is of course just E. Siace the Phage
difference across the entire zone, from O toits edge
is @ rad (corresponding to A/2), each subzoneis shifted
by m/N rad. Figure 10.49 depicts the vector addition

* of the subzone phasors, where, for convenience, N =
10. The chain of phasors deviates veryslightly from the
circle, because the obliquity factor shrinks each succes.
sive amplitude. When the number of subzones j,
increasedtoinfinity (i.e., N > 00), the polygonofvectors
blends into a segmentof a smoothspiralcalled a vibra.
tion curve. For each additional Fresnelzone, the vibra.
tion curve swings throughonehaif-tum and a phase of
was it spirals inward. As shownin Fig. 10.50, the points
O.. Z, Z2, Z3,.-.,O% on the spiral correspond to
points O, Z,, 22, Z3,..., O", respectively, on the wave.
front in Fig. 10.47. Each point Z,,Z2,...,Z, lies on
the periphery of a zone, so each point Z,,, Z,2,..., za
is separated by a half-turn. We will see later, in Eq,(10.91), that the radius of each zone is proportional to
the square root of its numerical designation, m. The
radius of the hundredthzonewill be only 10 times that

 

710os
Figure 10.49 Phasor addition.

 
Figure 10.50 The vibration curve.

of the first zone. Initially, therefore, the angle 6
increases rapidly, the thereafter it gradually slows down
as m becomes larger. Accordingly, K(@) decreases
rapidly only for the first few zones. The result is that
as the spiral circulates around with increasing m, it

Figure 10.51 Wavefront and corresponding vibration curve,
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becomestighter and tighter, deviating fromacircle bya smaller amountfor each revolution.
Keep in mind that the spiral is made upofaninfinite

numberof phasors, each shifted by a small phase angle.
Therelative phase between any two disturbances at P,
coming from two points on the wavefront, say O and
A, can be depicted as shown in Fig. 10.51. The angle
madeby the tangents to the vibration curve, at points
O, and A,, is B, andthis is the desired phase difference.
If the point A is considered tolie on the boundary of
a cap-shaped region of the wavefront, the resultant at
P from the whole region is ©,A, at an angle 8.

The total disturbance arriving at P from an unim-
peded waveis the sum of the contributions from all the
zones between O and O’. Thelength ofthe vector from
O, to OF is therefore precisely that amplitude. Note that
as expected, the amplitude O,O% is just about one half
the contribution fromthefirst zone, O,Z,,. Observe that
0,07 has a phase of 90° with respect to the wave arriving
at P from O. A wavelet emitted at O in phase with the
primary excitation gets to P still in phase with the
primary wave. This meansthat O07 is 90° out of phase
with the uoobstructed primary wave. This, as we have
seen, is one of the shortcomings of the Fresnel formu-lation.
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10.3.3 Circular Apertures

i} Spherical Waves
Fresnel’s procedure, applied to a point source, can be
used as a serniquantitative method to studydiffraction
at a circular aperture. Envision a monochromatic
spherical wave impinging onascreen containing a small
hole, as illustrated in Fig. 10.52. Wefirst record the
irradiancearriving at a very small sensor placed at point
P on the symmetryaxis. Our intention is to move the
sensor around in space and so get a point-by-point map
of the irradiance of the region beyond 3.

Let us assumethat the sensor at P “sees”an integral
numberof zones, m, filling the aperture. Inactuality,
the sensor merely records the irradianceat P, the zones
having noreality. If m is even, then since K,,~0,

E=(Ej)~|Exl) + (Es) = [Bal) + + (Baal 
Because each adjacentcontribution is nearly equal,

E-0
and I ~ 0. If, on the other hand, m is odd,

E =|E,|~(Ex~|Esl)
(JEy|~LBs) - e

fh. Ai P we assume tha
a “and E = 0. At P, the secene zone has

lly obscured and the third begins to show
a gece Lraction of the

ne i ul ti tven more evident.
“ince the contributions from the first and third zonesein phase, the sensor, placed anywhere on the dotted
‘grcle passing through Py, records a bright spot. As it5 radially outward and portionsof successive zones

ncovered, the sensor detects a series of relative

 

  

 
 

S

2

move’
are Ww

Figure 10.52 A circular aperture.

and
ExlEil,

whichis roughly twice the amplitude of the unobstrif
ted wave. This is truly an amazing result. By insertirf
a screen in the path of the wave, thereby blocking ow
mostof the wavefront, we have increased theirradian@
at P by a factorof four. Conservation of energyclea,
demandsthattherebe other points where theirradia
has decreased. Because of the complete symmetry
the setup, we can expecta circular ring pattern. [f m
is not an integer (i.e., a fraction of a zone appearsj
the aperture), the irradiance at P is samewherebetwee
zero and its maximum value. You might sec this all a
bit more clearly if you imagine that the aperture J
expanding smoothlyfrom an initial value of nearly ze
The amplitude at P can be determined from the vibr.
tion curve, where A is any point on the edge of the
hole. The phasor magnitude O,A,is the desired ampli
tude of the optical field. Return to Fig. 10.51; as th
hole increases, A, moves counterclockwise around th:
spiral toward Z,; and a maximum. Allowing the secon
zone in reduces O,A, to O,Z,2, which is nearly zero, am

P becomesa dark spot. As the aperture increases, O-' qffoscillates in length from nearly zero to a number ©.
successive maxima, which themselves gradually
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maxima and minima. Figure 10.54 showsthe diffraction
patterns for a number of holes ranging in diameter
from 1mm to 4mm as they appear on a screen Im
away. Starting from the top left and moving right, the
first four holes are so smal! that only a fraction of the
first zone is uncovered. The sixth hole uncovers the
first and second zonesandis therefore blackatits center.
The ninth hole uncovers the first three zones andis
once again brightat its center. Notice that even slightly
beyond the geometric shadowat P,, in Fig. 10.53, the
first zone is partially uncovered. Each of the last few
contributing segments is only a small fraction of its
respective zone andas such is negligible. The sum of

the amplitudes of the fractional zones, although
small, is thereforestill finite. Furtherinto the geometric
shadow, however,the entirefirst zone is obscured, the
jast terms are again negligible, and this time the series
does indeed go to zero and darkness.

Wecan gain a better appreciation of the actual size
of the things we are dealing with hy computing the
numberof zones in a given aperture. The area of each
zone (from Prohlem 10.43) is given by

——~ Tip A. (10.88)
(pti

Figure 10.53 Zones in a circularaperture.
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If the aperture has a radius R, a good approximation
of the numberof zoneswithin it is simply

TR _ (pt reR®at 10.89)
A PTA

 
Figure 10,54 Diffraction a,for circular apertures of increaigsize

For example, with a point source 1 m behind the apey
ture (p = 1m), a plane of observation | m in front Q
it (7) = 1m), and A = 500nm, there are 4 zones whe
R=Imm,and 400 zones when R = lem. When
p and ftare increased to the point where only 4

[eure 10.55 Plane waves incident ona circularhole.

f a zone appears in the aperture, Fraunhofer
fraction occurs. This is essentially a restatement of

Beeornoter condition of Section 10.1.2; see Problemas well.
It follows from Eq. (10.89) that the numberof zones

F the aperture dependsonthe distance rp from P
of. As P movesin cither direction along the central

xis, the numberof uncovered zones, whetherincreas-
or decreasing, oscillates between odd and even

egers, AS a result, the irradiance goes througha series
axima and minima. Clearly, this does not occur in

fhe Fraunhofer configuration, where by definition,
more than one zone cannot appear in the aperture.*

 

 

 

[BPiane Waves

Fares: nowthat the point source has been moved so2' from the diffracting screen that the incominglight
“e! be regarded as a plane wave (p > 90). Referring to
Fig, 10.55, we derive an expression for the radius of
fhe mth zone, R,,. Since My, ™ Yo + mA/2,

RS,©(ro + malay? rb,
eS

* Burch, “Fremel Diffraction by a Circular Aperture,” Am. j.
Fir 58, 255 (1985),
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and so

Rim mrod + mPA/A, (10.90)
Under most circumstances the second term in Eq.
(10.90) is negligible as long as m is not extremely large;
consequently

Ri = moa, (10.91)
and the radii are proportionalto the squave roots of integers.
Using a collimated He-Ne laser (Ay = 632.8 nm), theradius of the first zone is 1mm when viewed from a
distance of 1.58m. Under these particular conditions
Eg. (10.91) is applicable as long as m « 10”, in which
case R, =m in millimetess. Figure 10.53 requires a
slight modification in that nowthe lines O; P|, OoP:,
and O3P, are perpendiculars dropped from the pointsof observation to 2.

  
 

10.3.4 Circular Obstacles

In 1818 Fresnel entered a competition sponsored by
the French Academy.His paper onthetheoryof diffrac-
tion ultimately won first prize and the title Mémoire
Courronné, but not until it had provided the basis for a
rather interesting story. The judging committee con-
sisted of Pierre Laplace, Jean B. Biot, Siméon D.
Poisson, Dominique F. Arago, and Joseph L, Gay-
Lussac—a formidable group indeed. Poisson, who was
an ardentcritic of the wave description oflight, deduced
a remarkable and seemingly untenable conclusion from
Fresnel’s theory. He showed that a bright spot would
be visible at the centerof the shadowofa circular opaque
obstacle, a result that he felt proved the absurdity ofFresnel’s treatment. We can come to the same con-
clusion by considering the following, somewhat over-
simplified argument. Recall that an unobstructed wave
yields a disturbance (10.85) given by E ~ |E,|/2. If some
sort of obstacle precisely covers the first Fresnel zone,
so that its contribution of |E,| is subtracted out, then
E = -|E,|/2. It is therefore possible that at some point
P on the axis, the irradiance will be unaltered by the
insertion of that obstruction. This surprising prediction,
fashioned by Poisson as the death blow to the wave
theory, was almost immediately verified experimentally
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by Arago; thespot actually existed. Amusingly enough,
Poisson’s spot, as it is now called, had been observed
manyyearsearlier (1723) by Maraldi, but this work had
long gone unnoticed.*

Wenow examinethe problemabit moreclosely, since
it is quite evident from Fig. 10:56 that there is a good
deal of structure in the actual shadow pattern. If the
opaque obstacle, be it a disk or sphere, obscures the
first @ zones, then

E~|Eeal
(where, as before, there is no absolute significance to
the signs other than that alternate terms must subtract).
Unlike the analysis for the circular aperture, E, now

[Eera| +++ +[Enl

 
*Se¢ J. E. Harvey and J. L. Forgham, “The Spot of Arago: NewRelevance for an Old Phenomenon,” Am. J. Phys. 52. 248 (1984).

 
Figure 10.56 Shadow of a 1/8-inch diameterball bearing. The bear
ing was glued to an ordinary microscope slide andilluminated witha He-Nelaserbeam. There are somefaint extraneous nonconcentric
fringes arising from both the microscopeslide and a fensin the beam,
(Photo by E. H.)

 
Figure 10.57 The vibration curve applied to a circular obstruGi

approaches zero, because K,, * 0. The series must
evaluated in the same mannerasthat of the unobst
ted wave (10.78 and 10.79). Repeating that proced;
yields

Eel
9° coag

and the irradiance on the central axis is generally on;
slightly less than that of the unobstructed wave.
ts a bright spot everywhere along the central axis
immediately behind the circular obstacle. The cdpropagating beyond the disk’s circumference meetin
phase on the central axis. Notice that as P moves closg,

to the disk, @ increases, Kz, 0, and the|

E  

gradually falls off to zero. If the disk is large, the (&
1}th zone is very narrow, and any irregularities in tht
obstacle’s surface may seriously obscure that zone. Foal
Poisson's spotto be readily observable, the obstacle mijbe smooth andcircular.

If A is a pointonthe periphery ofthe disk or spher@]A, is the corresponding point on the vibration cui
(Fig. 10.57). As the disk increases fora fixed P, A, spiral
in counterclockwise toward O/, and the amplitude AQ:
gradually decreases. The same thing happens asmoves toward a disk of constantsize.

Off the axis, the zones covered in Fig. 10.58 for the
circular aperture will now be exposed and vice versa4
Accordingly, a whole series of concentric bright anddark rings will surroundthecentral spot.

phe opaque disk images $ at P and wouldsimilarly
ym 2 crude image of every point in an extended. R. W. Pohl has shown that a small disk can

fore be used as a crudepositive lens.
The diffraction pattern can be seen with littleculty, but you need a telescope or binoculars. Glue
mail ball bearing (§ or } inch in diameter) to a
. pe slide, which then serves as a handle, Place

pearing a few meters beyond the point source and
it from 3 or 4 meters away. Position it so that

it is directly in front of and completely obscuring theurce. You will need the telescope to magnify the
age, SiNCe 7is so large. If you can holdthetelescope

eady, the ring system should be quite clear.

 
 

10.3.5 The FresnelZone Plate

n our previous considerations we utilized the fact that
yccessive Fresnel zones tended to nullify each other.
‘his suggests that we will observe a tremendousincrease

in irradiance at P, if we removeeitherall the even or
al] the odd zones. A screen thatalters the light, either
in amplitude or phase, coming from every otherhalf-
period zoneis called a zone plate.*

Suppose that we construct a zone plate that passes
only the first 20 odd zones andobstructs the even zones.

Ew E, + Egt Est-++++ Eso,
and each of these terms is approximately equal. For an
gnobstructed wavefront, the disturbance at P would be
E,/2, whereas with the zone plate in place, EF=20E,.
Theirradiance has been increased by a factor of 1600.
The same result would obviously be true if the even
zones were passed instead.

To calculate the radii of the zones shownin Fig. 10.58,
tefer to Fig. 10.59. The outer edge of the mth zoneis
marked by the point A,,. By definition, a wave that
travels the path S—A,,-P must arrive out of phase by

  
 

‘Lord Rayléigh seems to have invented the zone plate, as witnested
‘this entry ofApril 11, 1872,in his nowgbook: “The experiment of

locking out the odd Huygens zones so as to increase the light atCentre succeeded very well...”
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fa) {b)

 

©
Figure 10.58 (a) and (b} Zoneplates. (c) A zoneplate used to image
alphaparticles coming from a target | cm in front, on photographicfilm 5 cm behind.Theplate is 2.5 mm in diameter and contains 100
zones, the narrowest of which is 5.3 um wide. (Photo courtesy
Lawrence Livermore Laboratory.)

ma /2 with a wave that traverses the path S—O-P,thatis,
(Pm + Mm) — (po + Fo) = mA/2.

Clearly p,, = (R5, + 05)'? and rp = (R3, + 73)", Expand
both these expressions using the binomial series. Since
R,, is comparatively small, retaining only the first two
termsyields

(10.93)

Ri R?,Pn = Pots— and tm=m+t>™
°°" 2p 0" 21,
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Finally, substituting inte Eq. (10.93), we obtain
I a mA

be + ye) ORE 0.94)
0 To, >»

Under plane-wave illumination (p)9> 00), and Eq.
(10.94) reduces to

R2 = mrodA, 140.92}
which is an approximation of the exact expressionstated
by Eq. (10.90), Equation (10.94) has a form identical to
that of the thin-lens equation, which is not merely a
coincidence, since S$ is actually imaged in converging
diffracted light at P. Accordingly, the primary focal lengthis said to be

2

hh Ra (10.95)mA
(Note that the zoneplate will show extensive chromatic
aberration.) The points S and P aresaid to be conjugate
foci. With a collimated incident beam (Fig. 10.60) the
image distance is the primary orfirst-order focal length,
which in turn correspondsto a principal maximum inthe irradiance distribution. In addition to this real
image, thereis also a virtual image formedof diverging
light a distance f; in front of Z. Ata distanceof f, from
~ each ring ontheplate is filled by exactly one half-
period zone on the wavefront. If we move a sensor
alongthe S—P axis toward &, it registers a series of verysmall irradiance maxima and minimauntilit arrives at
a point f\/3 from &. Atthatthird-order focal point, there

 
Figure 10.59 Zone-plate geometry.

 

    
Figure 1060 Zone-plate foci.

isa pronouncedirradiance peak. Additionalfocalpoint:
will exist at fi/5, f,/7, and so forth, unlike a lens bin
even more unlike a simple opaque disk.

Following a suggestion by Lord Rayleigh, R. W. Wood
constructed a phase-reversal zone plate. Instead of block-
ing out every other zone, he increased the thickness of
alternate zones, thereby retarding their phase by 7.
Since the entire plate is transparent, the amplitude
should double, and the irradiance increase by a factor
of four.In actuality, the device does not work quite that
well, because the phase is not really constant over each
zone. Ideally, the retardation should be made to vary
gradually over a zone, jumping back by 7 at the startof the next zone.*

The usual way to make an optical zone plate is to
draw a large-scale version and then photographicallyreduceit. Plates with hundreds of zones can be made
by photographing a Newton’s ring pattern, in colli-
mated quasimonochromatic light. Rings of aluminum
foil on cardboard work very well for microwaves.
en
* See Ditchburn, Light, 2nd ed., p. 232; M. Sussman, “Elementary
Diffraction Theory of Zone Plates," Am. J. Phys. 2B, 394 (1960); Ora
E. Myers, Ir., "Studies of Transmission ZonePlates,” Am. J. Phys. 19.
359 (1951); and J. Higbie, “Fresnel Zone Plate: Anomalous Foci,”
Am. J. Phys, 44, 929 (1976).

 

gone plates can be made of metal with a self-
porting spoked structure, so that the transparent

yy ons are devoid of any material. These will function
as lenses in the range from ultraviolet to soft x-rays,
where ordinary glass is opaque.

40.3.6 FresnelIntegrals and theRectangular Aperture

We now considera class of problems within the domain
of Fresneldiffraction, which no longer havethe circular

metry of the previously studied configurations.
sider Fig. 10.61 where dS is an area elementsituated

Lt some arbitrary point A whose coordinatesare(y, z).
The location of the originOis determinedby a perpen-
dicular drawn to % from the position of the monochro-
matic point source. The contribution to the opticaldis-
turbance at P from the secondary sources on dS has
the form given by Eq. (10.74). Making use of what we
learned from thefreely propagating wave (E,4pA = Ey),
we can rewrite that equation as

 
Figure 10.61 Fresnel diffraction at a rectangular aperture,
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K(ay€,

dE, am KDE Og [Alo tr}— wt] dS. 40.98)pra

The sign of the phase has changed from that of Eq.
(10,74) and is written in this way to conform withtradi-
tional treatment. In the case where the dimensions of the
aperture are small in comparison to pg and T), we can
set K(@)©1 andlet l/pr equal 1/porg in the amplitude
coefficient. Being more careful about approximations
introduced into the phase, apply the Pythagorean
theorem to triangles SOA and POA toget

pa (per yee ny”
and

re gt yt 22?
Expand these using the binomial series and form

 fot Yo
Rpt

Observe thatthis isa more sensitive approximation than
that used in the Fraunhoferanalysis (10.40), where the
terms quadratic and higher in the aperture variables
were neglected. The disturbance at P in the complex
representation is

mia fy. 62,

E,= Sar | [ * gio”dy de. (10.98)PooA J3, Jay

ptr™ pot tot (+27) (10.97)

Following the usual form of derivation, we introduce
the dimensionless variables u and v defined by

te [2tgorn)" me oot)"pore ; Aporo (28.99)

Substituting Eq. (10.97) into Eq.(10.98) and utilizing
the new variables, we arrive at

My ote wo,

Ba gBiccrtarenan( omt an ("emt* 2(Bo " 7 (20.100)
‘The term in front of the integral represents the unob-
structed disturbanceat P divided by2; Jet us call it E,,/2.
Theintegralitself can be evaluated using two functions,
(wy and ¥(w), where w represents either u or v. These
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448 Chapter 10 Diffraction

quantities, which are known as the Fresnel integrals,are defined by

E(w) = {° cos (ww'?/2) dw’,0

F(w) = { sin (rw"?/2) dw’.° (10.101)

Both functions have been extensively studied, and their
numerical values are well tabulated. Their interest to
us at this point derives from the fact that

{ eit? dy! = G(w) + iP(w),0

andthis, in turn, has the form of the integrals in Eq.(10.100). The disturbanceat P is then

E, = (€(u)~iF(u)Nel Sv) + iF(v)]%2, 10.202)
which can be evaluated using the tabulated values of
Bus), Cus), ¥(u:), and so on. The mathematics
becomes ratherinvolved if we compute the disturbance
at all points of the plane of observation, leaving the
Position of the aperture fixed. Instead we will fix the
S-O-Pline and imagine that we move the aperture
through small displacements in the E-plane. This has
the effect of translating the origin O with respect to the
fixed aperture, thereby scanning the pattern over the
point P, Each new position of O corresponds to a new
set of relative boundary locafions 4;, 2, 2, and zp.
These in turn mean new values af My, Ug, MH, and vp,
which, when substituted into Eq. (10.102), yield a new
£,. Theerror encountered in such a procedure is negli-
gible, as long as the aperture is displaced by distances
that are small compared with po. This approach is there-
fore even more appropriate to incident planewaves. In
that case if Ep is the amplitude of the incoming plane
wave at Z, Eq.(10.96) becomes simply

_ FoK (8)
dE, erence (hr — wt) dS,

where,as before, €4 = Eo/A. This time, with
Q\t2 2\2

uw (2) 2 v=(2) : (40.103) 

where wehavedivided the numerator and denom
in Eq. (10.99) by pp and thenletit go to i
takes the same form as Eq. (10.102), where Ey i
the unobstructed disturbance. The irradiance ,
E,E}/2 (keep in mind that E, is complex);

1, = 2a) ~ (uP + [Flus) ~ Pou?)
{LC (v2) — GCP + [P(v2) — Fan),

where Io is the unobstructed irradiance at P,
As a simple example, envision a square hole 24

on each side underplane-waveillumination at 509i
If P is 4m away and directly opposite point O acenter of the « =10, vu =and yu, = ~1.0. v
tions,thatis,

Cw) =-€(-w) and P(w)= —F#(-w);
consequently

 

q, 
= Beet +esury,

and a numerical value is easily obtained. To find
irradiance somewhereelse in the pattern, for
0.1 mm to theleft of center, move the aperture
to the OP-line accordingly, whereupon ty = 1.1,
0.9, v2 = 1.0, and vy =—1.0. The resultant I, will
be equalto that foundat 0.1mm totherightof cent@ll_| :Indeed, because the apertureis square, the same valiobtains 0.1 mm directly above and below center as wi
(Fig. 10.62),

We can approachthelimitingcaseoffree pro]
by allowing the aperture dimensions to finer
indefinitely. Making useofthe factthat Elo)=S(O)
zand €(—00) = ¥(—co) = —S the irradianceat P, oppthe center of the aperture,is

 

 
  

  1, = To,

whichis exactly correct. Thisis rather remarkable,asidering that when the length OA is large,allapproximations made in the derivation are no lo!
applicable. It should be realized, however, that a
tively small aperturesatisfying the approximations
still be large enoughto effectively show no diffrat

 

 
 
  

(dy

fro 10.62 (a) A typical Fresnel pattern for a square aperture.HI(f} A series of Fresnel patterns for increasing square apertures
lunder identical conditions, Note that as the hole gets larger, the

in the region opposite its center. For example, with
fo = yo = 1 m an aperture that subtends an angle of
ebout 1° or 2° at P may correspondto valuesof|u| and

ilo of roughly 25 to 50. The quantities € and ¥ are
then very close to their limiting values of }. Further
ra es in the aperture dimensions beyond the point
Rhere the approximationsare violated can therefore
katroduce only a small error. This implies that we need
Dot be very concerned aboutrestricting the actual aper-re size {ag long as 7 > A and po » A). The contribu-
lons from wavefront regions remote from O must be
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ra)
pattern changesfrom a spread-out Fraunhofer-like distribution to a
far more localized structure, (Photos by E. H.}

quite small, a condition attributable to the obliquityfactor and the inverse r-dependence of the amplitude
of the secondary wavelets.

10.3.7 The CornuSpiral

Marie Alfred Cornu (1841-1902), professor at the Ecole
Polytechniquein Paris, devised an elegant geometricaldepiction of the Fresnel integrals, akin to the vibration
curve already considered. Figure 10.63, which is known
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as the Cornuspiral, is a plot in the complex planeofthepoints B(w)} = @(w) + 7¥(w) as w takes onall possible
values from 0 to +00, This just meansthat we plot ¢(w)
on the horizontal or real axis and ¥(w) on the vertical
or imaginary axis. The appropriate numerical values
are taken from Table 10.2. If df is an elementof arc
length measuredalong the curve, then

dé? = d6* + d¥?.
From the definitions (10.101),

dé? = (cos w*/2 + sin? rw*/2) dw?
and

af = du.

Values of w correspond to the arc length and are
marked off along the spiral in Fig. 10.63. As w

approaches +00,the curve spirals intoits lirniting
at B* =$+ igand B” = —} — i}. Theslope ofthe gfis

a@ cos rw)

 
   Figure 10.63 The Cornu spiral, 10.2 Fresnel integrals.
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340|0.4385|0.4296||645and so the angle between the tangentto the spiral qany point and the @-axis is 8 = aw?/2. 

     
   

The Cornu spiral can be usedeither as a conveniefig a peso ntoe8 a
tool for quantitative determinations or as an aid Wi 370|05420 0.8750 5.60gaining a qualitative picture of a diffraction patterd 380|0.4481 0.5656 6.65
(which was also the case with the vibration curve). 4 $90|0.4223|0.4752||6.70
an exampleofits quantitative uses, reconsider thepl
lem of a 2-mm-square hole, dealt with in the previ
section {A = 500 nm, 7 = 4m, and plane-waveillumition), We wish to find the irradiance at P di:
opposite the aperture’s center, wherein this case % 
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—1.0 and ug™ 1.0. The variable « is measured along
the arc; that is, w is replaced by u on the spiral. Place
two points on the spiral at distances from O, equal to
u and ug. (These are symmetrical with respect to O,,
because P is now opposite the aperture’s center.) Label
the two points B,(u) and Bo(u), respectively, as in Fig.
10.64. The phasor B2(u) drawn from B,(u} to Bg(u) is
just the complex number B»(u) — By(u),

Bio(u) = [C(u) + iFCu)hes,
andis the first term in the expression (10.102) for Ey.
Similarly for v) =—1.0 and vg = 1.0, Bo(v) — B,{v) is

Bio(v) = [€(o) + PONE,
which is the latter portion of E,. The magnitudes of
these two complex numbers are just the lengths of the
appropriate B,.-phasors, which can be read off the curve
with a ruler, using either axis as a scale. The irradiance
is then simply  £

fy =f BrowBiel, (20.106)
and the problem is solved. Notice that the arc lengths
along the spiral {i.e., Au = ug—u, and Av = up — v,} are
proportionalto the aperture’s overall dimensions in the
y- and z-direction, respectively. The arc lengths are
therefore constant, regardless of the position of P in the plane

¥ Lg

  
 

Figure 10.64 Cornuspiral.
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of observation. On the other hand, the phasors By2(x)
and B,»{v), which span the arc lengths, are not constant
and they do dependonthelocation of P.

Maintaining the position of P opposite the center of
the diffracting hole, now supposethat the aperturesize
is adjustable. As the square hole is gradually opened,
Av and Au increase accordingly. The endpoints B, and
By of either of these arc jengths spiral around counter-
clockwise toward their limiting values of B” and B*,
respectively. The phasors B,,(%) and Byo(v), which are
identical in this instance because of the symmetry, pass
through a series of extrema. The central spot in the
pattern therefore gradually shifts from relative bright-
ness to darkness and back. sill the while, the entire
irradiance distribution varies continually from one
beautifully intricate display to the next (Fig. 10.62). Forany particular aperture size, the off-center diffraction
pattern can be computedby repositioning P. It is helpful
to visualize the arc length as a piece of string, whose
measure is equal to either Av or Au. Imagineit Jying
onthe spiral, with O,initially at its midpoint. As P is
moved, for example, to the left along the y-axis (Fig.
10.61), y, and therefore u, both become less negative,
and yy and ty increase positively. The result is that our
Au-string slides up thespiral. As the distance between
the endpoints of the Avw-string changes, [B,o(t)
changes, and the irradiance (10.106) varies accordingly.
When FP is at the left edge of the geometric shadow.
yi = uy ™ 0. As the pointof observation moves into the
geometric shadow, u, increases positively, and the Au-
string is now entirely on the upper half of the Cornu
spiral. As u, and u, continue to increase, the string
winds ever more tightly about the B*-limit. Its ends,
B, and By, becomecloserto each other, with the result
that |B,2(u)| becomes quite small, and I, decreases
within the gcometric shadowregion. (We will come back
to this point in more detail in the next section.) The
same process applies when we scan in the z-direction;
Av is constant and Byo(v) varies.

If the aperture is completely opened out, revealing
an unobstructed wave, uw; ™ v,=—c0, which meansthat
Bu) = B,v)= Bo and Bou) = By(v)= BY. The
B”B*-line makes a 45° angle with the @-axis and has
a length equal to V2. Consequently, the phasors By,(u)
and B,9(v) each have magnitude V2 and phase 7/4, that

 

-

Figure 10.65 Cylindrical wavefront zones.

is, Byy(u) = V2 exp (im/4) and Byo(v)=V2 exp (im/4QQ]follows from Eq. (10.102) that
E, = E,e'™™, “arate

and as in Section 10.3.1, we have the unobstructe
amplitude, except for a 7/2 phase discrepancy.” Final
using (10.106), I, = fo.

Wecan construct a more palpable picture of what th
Cornu spiral represents by considering Fig. 10.65
which depicts a cylindrical wavefront propagating from!
a coherent line source. The present procedure is exactly]
the same as that used in deriving the vibration curve}
and thereaderis referred back to Section 10.3.2 fora
moreleisurely discussion. Suffice it to say that the wave-
frontis divided into half-period strip zonesby its intersec-
tion with a family of cylinders having a common axis
and radii of ry + 4/2, 7%) +A, ro + 34/2, and so on. The
contributions from these strip zones are proportional to their
areas, which decrease rapidly. This is in contrast to the
circular zones, whose radii increase, thereby keeping
the areas nearly constant. Each strip zone is similarly
divided into N subzones, which have a relative phase
Se!
“The phase discrepancy will be resolved by the Kirchhoff cheoryi?Section 10.4.
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Figure 10.66 Cornu spiral related to the cylindrical wavetront.

difference of m/N. The vector sum ofail the amplitude
ontributions from zones above the center line is a

piraling polygon. If N goes to © andthe contributions

Pere by the strip zones below the center line areincluded, the polygon smooths out into a continuous
Cornuspiral. This is not surprising, since the coherent
line source generatesan infinite numberof overlappingpoint-source patterns.

Figure 10.66 shows a numberof unit tangentvectors
t various positions along the spiral. The vectorat O,

Forresponds to the contribution from the central axispassing through O onthe wavefront. The points associ-
ted with the boundaries of cach strip zone can be
located on thespiral, since at those positionsthe relative
hase, B, is either an even or odd multiple of w. For
xample, the point Z,, on the spiral (Fig. 10.66), which

R related to z, (Fig. 10.65) on the wavefront, is bydefinition 180° out of phase with O,. Therefore Z,
toust be located at the top ofthe spiral, where w= V2
jinasmuch as there B = wu®/2 = 7

It will be helpful as we go along in the treatmentto
visualize the blocking out of these strip zones when
analyzing the effects of obstructions. Obviously one
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could even make an appropriate zone plate, which
would accomplish this to some advantage, and suchdevices are in use.

10.3.8 Fresnel Diffraction by a Slit

We can treat Fresnel diffraction at a long slit as an
extension of the rectangular-aperture problem. We
need only elongate the rectangle by allowing y; and y.
to move very far from Q, as shown in Fig. 10,67. As
the point of observation movesalongthe 9-axis, so long
as the vertical boundaries at either endof theslit are
still essentially at infinity, u2* 00, 2,» —oo, and
Byo(u) @ ¥2e'"". From Eq. (10.106), for either point-
source or plane-wave illumination,

Lf

4, io BGP,

 

(10.108)

and the pattern is independent of ». The values of z,
and zg, which fix theslit width, determine the important
parameter Av = v,- v;, which in turn governs Byo{v).
Imagine once again that we havea string of Jength Av

 
 

 

Figure 10.67 Single-slit geometry.
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lying alongthespiral. At P, opposite point O, the aper-
ture is symmetrical, and the string is centered on O,
(Fig. 10.68). The chord [B,9(v)| need only be measured
and substituted into Eq. (10.108) to find T,. At point
P,, x, and therefore v, are smaller negative numbers,
whereas z, and vy have increased positively. The arc
length Av (the string) movesup thespiral (Fig. 10.68),
and the chord decreases. As the point of observation
moves downinto the geometric shadow, the string winds
about 8*,and the chord goes througha seriesofrelative
extrema. If Av is very small, our imaginary piece of
stringis small, and the chord|B,9(v)| decreases appreci-
ably only when the radius of curvature of the spiral
itself is small. This occurs in the vicinity of B* or B-,
that is, far out into the geometric shadow. There will
thereforebelight well beyondthe edgesofthe aperture,
as long as the apertureis relatively small. Note too that
with small Av there wil] be a broad central maximum.
In fact, if Av is much less than 1, roA is much greaterthan the aperture width, and the Fraunhofer condition
prevails. This transition of Eq. (10.108) into the form
of Eq. (10.17) is more plausible when we realize that

  
Figure 10.68 Cornu spisal for theslit.

since Az is the slit width that corresponds to Av,
#4 curve in Fig. 10.70 is proportional to the irradiance
© -walient for @ given slit. For example, Fig. 10.70(@)

read as {Bio(v)[? versus (vy + vp)/2 for Av = 2.5.
sa relates to (z; + 22}/2, that is, the displace-

if observation from the centerof the
| Aw = 3.5, which meansthata slit

mug a Av ly has fringes appearing within
- eometric image as expected (Problem 10.45). The
ees could, of course, be plotted in terms of values
Bas or Ay explicitly, but that would unnecessarily limitjeer to one set of configuration parameters fo, To;

 and
 
 
  
 
 
 

 
 
        
 

s the slit is widenedstill further, Av approaches and  
1B,,60P

Figure 10.69 An irradiance minimum in theslit pattern. a

for large w the Fresnel integrals have trigonometrigrepresentations (see Problem 10.46).
Astheslit widens, Av becomeslarger, for a fixed To.

until a configuration like that in Fig. 10.69 exists fir a
point opposite theslit’s center. If the point of obseryaytion is moved vertically either up or down, Avslides
either down or up the spiral. Yet the chordincreases
in both cases, so that the centerofthe diffraction pattern
must be a relative minimum.Fringes now appearwithil
the geometric image oftheslit, unlike the Fraunhofe'
pattern.

Figure 10.70 shows two curves of |By9(w)|? plotted
against (w, + w2)/2, which is the center pointof the arc
length Aw. (Recall that the symbol w stands for either
u or v.) A family of such curves running the range in
Aw from about 1 to 10 would cover the region of
interest. The curves are computed by first choosing a
particular Aw and then reading the appropriate |B; 2(w)/
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 then surpasses 10. An increasing number of fringes
appear within the geometric image, and the pattern nolonger extends appreciably beyond thatimage.

‘The same kind of reasoning applies equally well to
the analysis of the rectangular aperture, where use can
also be made of the curves in Fig. 10.70.

Toobserve Fresnelslit diffraction, forma long narrow
space between two fingers held at arm's length. Make
a similar parallelslit close to your eye, using your other
hand. With a bright source, such as the daytime sky or
a large lamp,illuminatingthefarslit, observeit through
the nearby aperture. After inserting the near slit thefar slit will appear to widen, and rowsof fringes will beevident.
 
   
 1B, 2603]?

 
values off the Cornu spiral as Aw slides along it. For a
long slit (a, + wa? >f) 
 10.108} 

 = SBF,
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Figure 10.70 |B,2(w)|? versus (w, + we)/2 for (@) Aw = 2.5 and (b) Aw = 3.5.
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10.3.9 The Sermi-Intinite Opaque Screen

‘We nowform a semi-infinite planar Opaque screen, byremoving the upper half of 3 in Fig. 10.67. This is done
simply enough, byletting 2» = Ji ¥2 = 00, Remember-
ing the original approximations, we limit the geometryso that the point of observation is close to the screen’s
edge. Since uy=uy = 00 and uw;=~0, Eq.(10.104) or(10.108) leads te

L

Ayo SUB CaP +B Kel.—ao.10%
When the point P is directly opposite the edge, v; = 0,
(0) = ¥(0) =0,and I, = Ip/4. This was to be expected,
since half the wavefrontis obstructed, the amplitude of
the disturbanceis halved, and the irradiance drops to
one quarter. This occurs at point (3) in Figs. 10.71 and
10.72. Moving into the geometric shadow region to
peint (2) and thenon to (1) andstill further, the success-
ive chords clearly decrease monotonically {Problem
10.46). No irradiance oscillations exist within that

+o
i

ge
aan |f-

{
fear

ita
Figure 10.71 ‘The semi-infinite apaque screen.

 
(4)

 Shadowregion Edge

PI 1 ORRgS a
fb)

Figure 10.72 (a) The Cornu spiral for a semi-infinite screen. oo)‘The correspondingirradiance distribution.

 
xegion; the irradiance merely dropsoff rapidly. At any
point above (3) the screen's edge will be below it, in
other words, z; <0 and v, <0. At about », =~1.2 thechord reaches a maximum, and the irradiance is a
maximum. Thereafter, I, oscillates about J,, gradually
diminishing in magnitude. With sensitive electronic
techniques, many hundreds of these fringes can be
observed.*

it is evidentthat the diffraction pattern of Fig. 10.78
would appear in the vicinity of the edges of a wide slit
(Av greater than about 10) as a limiting case. The
irradiance distribution suggested by geometrical optics
is obtained only when A goes to zero. Indeed as A
decreases, the fringes move closer to the edge and
becomeincreasingly fine in extent.

The straight-edge pattern can be observed using any
kindofslit, held up in front of a broad lamp at arm's
length, as a source. Introduce an opaque obstruction
(e.g., a blackened microscope slide or a razor blade)
very nearyour eye. As the edge oftheobstruction passes
in front of the source slit parallelto it, a series of fringes
will appear.

10.310 Diffraction by a Narrow Obstacie

Refer back to the descriptien of the single narrow slit;
consider the complementary case in which the slit is
Opaque,and the screen transparent. Let’s envision, for
example, a vertical opaque wire. At a point directly
Opposite the wire’s center there will be two separate
Contributing regionsextending from 3; to 20 and from
Jz to +00. On the Cornu spiral these correspond to twoaeee.ee
* |. D. Barnett and F. 8.Harris, Jv., J. Opt. Soc. Amer, 52, 637 (1962).
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Figure 10.73 Thefringe pattern for ahalf-screen.

arc lengths from u, to B™ and from uy to B*. The
amplitude of the disturbanceat a point P on the plane
of observationis the magnitude of the vector sum ofthe
twa phasors Bu, and u;B”,illustrated in Fig. 10.74.As with the opaquedisk, the symmetry is such that there
will always be an illuminated region along the central
axis. This can be seenfrom thespiral, since when P ison the central axis, B°x, = u,B* and their sum can
never be zero. The arc Jength Au represents the
obscured region of the spiral, which increases as the
diameter of the wire increases. For thick wires, uy
approaches B™, ug approaches B*, the phasors decrease
in length, and the irradiance on the shadow's axis drops
off. This is evident in Fig. 10.75, which shows the pat-

 
Figure 10.74 The Cornu spiral as applied to a narrow obstacle.
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fay

fe)
{a) The shadow pattern cast by the lead from @Figure 10.75

mechanical pencil. (b) The pattern cast by a 1/8-inch diameter rod,(Photosby E. H.)

terns actually cast by a thin piece of lead from a
mechanical pencil andby a rod with a }-inch diameter.
Imagine that we have a small irradiance sensorat point
P onthe plane of observation (or the film plate). As P
movesoff the central axis to theright, y, and uw, increase
negatively, whereas yo and tz, which are positive,
decrease. The opaque region,Au,slides downthespiral.
Whenthesensoris at the right edge of the geometric
shadow jy = 9, uw = O, in other words,upis at O,. Notice
thatif the wire is thin, thatis, if Au is smail, the sensor
will record a gradual decrease in irradiance as ue
approaches O,. On the other hand,if the wire is thick,
4u is large and 1 and wp are large. As du slides duwn
the spiral, the two phasors revolve through a number
of complete rotations, going in and out of phase in the
Process. The resulting additional extrema appearing
within the geometric shadow are evident in Fig.

 

 

 
 
 
  
 

 
 
  
  
  
 
 
  
 
 
  
 
 
  

 

 

B,

10.75(b). In fact, the separation between i r
varies inversely with the width of the (Mpattern arose from the interference of :
(Young's experiment)reflected at the rod's.

10.3.1] Babinet's Principle r

Two diffracting screens are said to be eg :
whenthe transparent regions on one exacth
to the opaque regionson the otherandvice sam
two such screens are overlapped, the comby
obviously completely opaque. Now then, ler
be the scalar optical disturbancearriving at ji
either complementary screen 2) or Ze, resp ct
in place. The total contribution from each apes
determined by integrating over the area or
that aperture.If both apertures are present at ailare no opaque regionsatall; the limits off r
goto infinity, and we have the unobstructed
Ey, whereupon

«18 “The Cornuspiralillustrating Babiner’s principle.

Reens will generate equivalent irradiance distribu-
‘ isis, js, Ey = ~Ez (excluding point Pp). Nonethe-

Fs Eq§(10.110) is valid in Fresnel diffraction, evenMWe irradiances obey no simple relationship.
Bfexemplified by the slit and narrow obstacle of
76. Moreover,for a circular hole and disk, refer
o Figs. 10.52 and 10.58 and then examine Fig.

uation (10.110) is again clearly applicable, even
[the diffraction patterns are certainly not

E, + Ey= Eg,

which is the statement of Babinet’s principles Tak
close look at Figs. 10.69 and 10.74, which ict
Cornu spiral configurations for a transparéxg slita marrow opaqueobstacle. If the two arrangemaaal
made complementary, Fig. 10.76 illustraté
principle quite clearly. The phasorarisin;
row obstacle (BB, + B,B*) added to
8,Bzyields the unobstructed phasor B beauty of Babinet’s principle is most evidentThe principle implies that when Ey = 0, By Blied to Fraunhofer diffraction, as shown in
other words, these disturbances are precisely i (478. where the patterns from complementarymagnitude and180° outof phase. One woul Beem are almost identicalobserve exactly the same irradiance distril ”
either 2, or Zp in place, an interesting result int
is evident, however, that the principle cannot 8true, since for an unobstructed wave ix
source, there are no zero-amplitude points¢
everywhere). Yetif the sourceis imaged at
lenses, as in Fig. 10.9 (with neither 2, nor
there will be a large, essentially zero-amp i
beyond the immediatevicinity of Po (beyond [i
disk) in which Ey + Eg= Ep = 0, It is therefore, i
the case of Fraunhofer diffraction that compley

 
     

r Riechnorrs SCALAR DIFFRACTION THEORY   
have described a numberof diffracting configu-
MS, quite satisfactorily, within the context of the
Avely simple Huygens-Fresnel theory. Yet thegery of surfaces coveredwith fictitious point

Babich wasthebasisof that analysis, was merely
ed rather than derived from fundamentalprin-
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Figure 10,77 The vibration curve illustrating Babinet’s principle.

ciples. The Kirchhoff treatmentshowsthatthese results
are actually derivable from the scaler differential wave
equation.The discussion to follow is rather formal and in-
volved. Portionsof it have therefore been relegated to
an appendix, where we can indulge in succinctness and
risk sacrificing readability for rigor.

In the past, when dealing with a distribution of
monochromatic point sources, we computed the resuk
tant optica! disturbance at point P (i.e., £,) by carrying
out a superposition of the individual waves. Thereis,
however, a completely diferent approach, which is
foundedin potential theory. Here oneis concemed notwith the sources themselves but rather with the scalar
optical disturbance andita derivatives over an arbitrary
closed surface surrounding P. We assume that a Fourier
analysis can separate the constituentfrequencies, so that
we need only deal with one such frequencyat a time.
The monochromaticoptical disturbance E is a solution
of the differential wave equation

dO.y

Without specifying the precise spatial nature of the
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an unobstructed spherical wave originating at a point
ppt write it as heric ui source s, as shown in Fig. 10.80. The disturbance has

 

‘ =Bpitt
Se are es i (10.112) the form* + .
eee ed resents the complex space part of the dis- é
SIO OC OR “Gubstituting this into the wave equation, we E(p, t)= 2elo, (10.118)Sa ae od Pp
ees in whiSd PEt RE =O. (0.t13 in which caseears

See Se Chee eainown as the, Helmholtz equation andis solved, eo. (10.116)Pees lg i u 3
a) fie aid of Green’s theorera, in Appendix 2. The
Pe ead disturbance existing at a point P, expressed in If we substitute this into Eq. (10.114), it becomesed
od
Cd
toe eoeyPa ae aedCe ed

the optical disturbance andits gradient evalu-
a= arbitrary closed surface S, enclosing P,is  — “| cos (if, 6) dSi r the ihr

Fel [fives f, ale ) -as) -$ & rw 2 (£2) cos(6,8).45|,
  

  

See ed ar
a ee a ° 7 ~ .ee the Kirchhoff iniegral theorem, Eq. (10.114) Where dS — 8 dS, 8, f and # are unit vectors,

he geometric configurationillustrated in Fig. (“) i) ( ey
=r ar\ rT

apply the theoremto thespecific instance ofPo Hoe eee eeoe
and

 

beeeeete eree
tr eeee
beeereterees

Seo eo eeeeesres
(e) (a)

oe .
Fee ee eee eoeeasPee ee eeserereos “
tee eeterssecee VE(p) BaEiap.HOH eeeee ees . sats
Peete iteisloietete e« The differentiations underthe integral signs are
HHees eo eeeeeee a a fe
Hee eee seasons 5 op \Poe ee eesereees
eeeee ed beee oT
HHH eee Hee eeees Co
Foe eee eseteees crCecrr ee 4tHe bese eet eee ox ee = exp (iar)oe +
oe +oe +
+ ++ +.

 
Figure 10.78 (a}(d) White-light diffraction patterns for regulararrays of apertures and complementary obstacles in the form of
roundedplus signs.(c).and(£) Diffraction patternsfor a regular array
ofrectangular apertures and obstacles, respectively. (Photos courtesy
‘The Ealing Corporation and Richard B. Hoover.)

Figure 10.79 An arbitrary closed surface S enclosingpoint P.
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t (2)

and

3)--(¢-3)
When p » A and r® A the L/p” and 1/r* terms can be

mea1tion is fine in the opticalEy certainly need not be true for microwaves,
Proceeding, we write =

 $=ff Eo]eb.eos (a, asA dds pr 2 *
0.117)

which is known as the Fresnel-Kirc! i a
Real Ahoff diffraction

Take a long look at Eq. (10.96), which represents the
disturbance at P arising from an element dS in the
Huygens-Fresnel theory, and compare it with Eq.
(10.117). In Eg. (10.117) the angular dependence is
contained in the single term eos (f, 2) — cos (8, py},which we shall call the obliquity factor K(0), showing

 

 

 
Figure 10.80 A spherical wave emitted from pais |

it to be equivalentto Eq.(10.72) later on. Notice as wall
that & can be replaced by —k everywhere, since we’
certainly could have chosen the phase of Eq. (10.1 ig]
to have been (wt — Ap). Now multiply both sides of EA(10.117) by exp (~iwt); the differential elementis then.

Ke,
ab, = FOEhip + 2) — wt - n/21 8perk

co.
‘This is the contribution to E, arising from an elemeni
of surface area dS a distance r from P. The #/2 tert
in the phaseresults from the fact that i = exp (im,The Kirchhoff formulation thereforeleadsto the
total result, with the exception thatit includes the com
rect /2 phase shift, whichis lacking in the HuygeniFresnel treatment (10.96).

We have yet to ensure that the surface S can be made
correspond to the unobstructed portion of the wavefront,
does in the Huygens—Fresnel theory. For the case of a
Propagating spherical wave emanating from the p9)
source s, we construct the doubly connected re}
shown in Fig. 10.81. The surface $2 completely =P

nds the small spherical surface $,;. At p= 0 thehance E(p,t} has a singularity and is therefore
ly excluded from the volume V between S; and

‘phe integral must now include both surfaces S, and
But we can have S$» increase outward indefinitely

jequiringits radius to go to infinity. In that case, the
ntribution. to the surface integral vanishes. (This is

cue whatever the form of the incoming disturbance,
E Jong as it drops off at least as rapidly as a spherical

ye.) The yemaining surface 5, is a sphere centered
the point source. Since, over S;, fi and # are anti-

lel, it is evident from Fig. 10.80(b) that the angles
?) and (8,6) are 9 and 180°, respectively. Theiquity factor then becomes

cop@+1
a

ich is Eq. (10.72). Clearly, since the surfaceofintegra-
in $; is centered at s, it does indeed correspond to
spherical wavefront at someinstant. The Huygens—
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BBieore 10.81 A doubly connected region surroundingpoint s.
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Fresnel principle is therefore directly traceable to the scalar
differential wave equation.

We shan’t pursue the Kirchhoff formulation any
farther, other than to point outbriefly how it is applied
to diffracting screens. The single closed surface of
integration surroundingthe point of observation P is
generally taken to be the entire screen 2 capped by an
infinite hemisphere. There are thenthreedistinct areas
with which to be concerned. The contribution to the
integral from the region ofthe infinite hemisphereiszero. Moreover,it is assumed that there is no distur-
ance immediately behind the opaque screen, so that
this second region contributes nothing. The disturbance
at P is therefore determinedsolely by the contributions
arising from the aperture, and one needonly integrate
Eq. (10.117) over that area.

The fine results obtained by using the Huygens—
Fresnel principle are now justified theoretically, the
main limitations being that p » A and r »A.

Se
10.5 BOUNDARYDIFFRACTION WAVES

In Section 10.1.1 we said that the diffracted wave could
be envisionedas arising fromafictitious distribution of
secondary emitters spread across the unobstructed por-
tion of the wavefront, namely, the Huygens~Fresnel
principle. There is, however, another, completely
different, and rather appealing possibility. Suppose that
an incoming wave sets the electrons on the rear of the
diffracting screen 5 into oscillation, and these in turn
radiate. We anticipate a twofold effect. First, all the
oscillators that are remote from the edge of the aperture
radiate back toward the source in such a fashion as to
cancel the incoming wave atall points, except within
the projection of the apertureitself. In other words,ifthis were the only contributing mechanism, a perfect
geometrical image of the aperture would appear on the
plane of observation. There is, however, an additional
contributionarising from those oscillatorsin the vicinity
of the aperture’s edge. A portion of the energyradiated
by these secondary sources propagates in the forward
direction. The superposition of this scattered wave
(knownas the boundary diffraction wave) and the unob-
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structed portion of the primary wave (known as the
geometrical wave} yields the diffraction pattern. A rather
cogentreason for contemplating such a scheme becomes
apparent when one examines the following arrange-
ment. Teara small hole (~$ cm in diameter)of arbitrary
shapein a piece of paper, and holdingit at arm’s length,
yiew an ordinary light bulb some meters distant. Even
with your eye in the shadow region, the edges of the
aperture will be brightly illuminated. The ripple-tank
photograph in Fig. 10.82 also illustrates the process.
Notice how each edge ofthe slit seems to serve as a
center fora circular disturbance, which then propagates
beyond the aperture. There are no electron-oscillators
here, which implies that these ideas have a certain gener-
ality, being applicable to elastic waves as well.

The formulation of diffraction in termsof the inter-
ference ofa scattered edge wave and a geometrical wave
is perhaps more physically appealing than the fictitious
emitters of the Huygens-Fresnel principle. It is not,
however, a new concept. Indeedit wasfirst propounded
by the ubiquitous Thomas Youngeven before Fresnel’s

 
Figure 10.82 Ripple-tank waves passing througha slit. (Photo cour-
tesy PSSC Physics, D. C, Heath, Boston, 1960.)

  

 
 
  
 

 
 
 

 
   

   
 
 

  
 
 
 
   
 
 
 
  

 
  
 
 
  
 
 
 
 

 

celebrated memoir on diffraction. Butin ¢j
brilliant successes unfortunately conyinceg
reject his own ideas, and hefinally did so
Fresnelin 1818. Strengthened by Kirchhof™
Fresnel conception of diffraction becam
accepted and haspersisted {right up to Se ot
Theresurrection of Young’s theory beganjthat time, Gian Antonio Maggi proved that
analysis, for a point sourceat least, was eqs litwo contributing terms. Oneof these was x pad
wave, but the other, unhappily, was an inteaw
allowed no clear physical interpretation at
his doctoral thesis (1893) Eugen Maey show.
edge wave could indeed be extracted from
Kirchhoff formulation for a semi-infinite hal
Arnold Sommerfeld’s rigorous solution of fi
plane problem (see Section 10.1) showed thai
drical wave actually does proceed from the
edge. It propagates into both the geometrical sha
region and the illuminated region. In the lato
boundary diffraction wave combines with
geometrical wave, in complete accord with
theory. In 1917 Adalbert (Wojciech) Rubino I
able to prove that Kirchhoff’s formula for a plan
spherical wave can be appropriately decomp
the two desired waves, thereby revealing the
rectness of Young’s ideas. He also later establig
the boundary diffraction wave, toa fins apft
was generated byreflection of the primary;
the aperture’s edge. In 1923 Friedrich Kott
out the equivalence of the solutions off
Rubinowicz, and one now speaksof the ¥t
Rubinowicz theory. Mostrecently, Kenro
Emil Wolf (1962) have extended the bo
tion theory to the case of arbitrary incideny
very useful contemporary approachto the prob
been devised by Joseph B. Keller. He has devg)
geometric theoryof diffraction thatis closely Fey
Young’s edge wave picture. Along with thus
of geometrical optics, he hypothesizes the onediffracted rays. Rules governing these
which are analogous to the lawsofreflect
tion, are employed to determine the resy

i int source S is a perpendicular distance R
ae center of a circular hole of radius a in

me scree If the distance to the periphery is
ow that Fraunhofer diffraction will occur onant screen. when

AR > 07/2.

« smallest satisfactory value of R if the hole1mm, <A/10, and A = 500 nm?

g Fig. 10.83, derive the irradiance equation
Sy raberent oscillators, Eq. (10.5).

 
 

 

 
* A fairly complete bibliography can be
Rubinowicz in Progress in Optics, Vol. 4, p. 199.
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Problems 465

10.3" In Section 10.1.3 we talked about introducing
an intrinsic phase shift ¢ between oscillators in a linear
array. With this in mind show that Eq. (10.18) becomes

B = (kb/2\(sin 8—sin 6;)
when the incident plane wave makes an angle 6 with
the plane of theslit.

10.4 Referring back to the multiple antenna system
of Fig. 10.7, compute the angular separation between
successive lobes or principal maxima and the width ofthe central maximum.

10.5 Examinethe setupofFig. 10,5 in orderto deter-
minewhat is happeningin theimage space of the lenses;
in other words,locate the exit pupil andrelate itto the
diffraction process. Show that the configurations in Fig.
10.84 are equivalentto that of Fig. 10.5 and will there-fore result in Fraunhofer diffraction. Design at leastone more such arrangement.

  
Figure 10.84
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10.6 The angular distance between the center and the
firs minimum of a single-slit Fraunhofer diffraction
pattern is called the Aalf-angular breadth; write an
expression for it. Find the corresponding halfinear
width (a) when no focusing lens is present and the
slit-viewing screen distance is L, and (b) when a lens of
focal length f, is very close to the aperture. Notice thatthe half-linear width is also the distance between the
successive minima.

10.7" A singleslit in an opaque screen 0.10 mm wide
is illuminated (in air) by plane waves from a krypton
ion laser (Ap = 461.9 nm). If the observing screen is
1.0m away, determine whether or not the resulting
diffraction pattern will be of the far-field variety and
then compute the angular width of the centralmaximum.

10.8* A narrow singleslit (in air) in an opaque screen
is illuminated by infrared from a He-Ne laser at
1152.2 nm, and it is found that the center of the tenth
dark band in the Fraunhoferpattern lies at an angle of
6.2° off the central axis. Please determine the width of
the slit. At what angle will the tenth minimum appear
if the entire arrangement is immersed in water (n,, =
1,33) rather than air (nt. = 1.00029)?

10.9 A collimated beam of microwaves impinges on a
metal screen that contains a long horizontal slit that is
20 cm wide. A detector moving parallel to the screen
in the far-field region locates the first minimum of
irradiance at an angle of 36.87° above the central axis.
Determine the wavelength of the radiation.

10.10 Show thatfor a double-slit Fraunhofer pattern,
if a = mb, the number ofbrightfringes (or partsthereof)
within the central. diffraction maximum will be equalto 2m.

10.11* Two long slits 0.10 mm wide, separated by
0.20 mm,in an opaque screen are illuminated by light
with a wavelength of 500 nm. If the planeofobservation
is 2.5 m away,will the patterncorrespond toFraunhofer

 
or Freane]diffraction? How many Young,
be seen within the central bright band) =>

10.12 Whatis the relative irradiance of th
maxima in a three-slit Fraunhofer diffrac
Draw a graph oftheirradiance distributig28, for two andthen threeslits,

10,18* Starting with the irradiance exprea finite slit, shrink the slit down to «area element and show thatit emits equa
tions.

10.14" Show that Fraunhofer diffraction
have a center of symmetry {i.e., I(Y, Z) = I¢
regardless of the configuration ofthe apertureyg
as there are no phase variations in the field dim
region of the hole. Begin with Eq. (10.41). We’
Jater (Chapter 11) that this restriction is equivil
saying that the aperture function is real.

 
 
 
 
 

 
 
 
  
 
 
   

  
 
 

 
 

 

5 With the results of Problem 10.14 in mind,
tee symmetries that would he evident in the

Binhofer diffraction pattern of an aperture that is
mmetrical about a line (assuming normally

wasimonochromatic plane waves).

6 From symmetry considerations, create a rough
tth of the Fraunhofer diffraction patterns of an

triangular aperture and an aperture in the
a plus sign.

ré 10.85 is the irradiance distribution in
Gfora configuration of elongated rectangular

scribe the arrangementofholes that would
6 such a pattern and give your reasoning in

&. 10.86 (a) and (b) are the electric field
ce distributions, respectively,in thefar field
ration of elongated rectangular apertures,
arrangementof holes that would give rise

ns and discuss your reasoning,Fig. 10.85 Photo courtesy R. G. Wilson,IinoisWey ae
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10.19 Figure 10.87 is a computer-generated Fraun-
hoferirradiance distribution. Describe the aperture that
would give rise to such a pattern and give your reasoningin detail.

 
Figure 10.87 Photo courtesy R. G, Wilson, Ilinois Wesleyan Uni-
versity.

 

 



242

  
 

Chapter 10 Diffraction

I
h |
\ at

Figure 10.88 Photos courtesy R. G. Wilson, Illinois Wesleyan University,

10.20 In Fig. 10,88 (a) and (b) are theelectric field
andirradiancedistributions,respectively,in thefar field
for a hole of some sort in an opaque screen. Describe
the aperture that would give rise to such a pattern andgive your reasoning in detail.

10.21 In light of the five previous questions, identifyFig. 10.89, explaining whatit is and what aperture gaverise to it.

10,22" Verify that the peak irradiance I, of the first“ring” in the Airy pattern for far-field diffraction at a
circular aperture is such that J,/I(Q}= 0.0175. You
might wantto use the fact that

“u 1 1 1 ,uy =e) —— aay?4+tay-a?
Jitu) { qiat &%) + yay HY"~gig BY +].
10.23 No lens can focus light down to a perfect point,
because there will always be some diffraction. Estimate
the size of the minimumspotoflight that can be expec-
ted at the focus of a lens. Discuss the relationship among
the focal length, the lens diameter, and the spotsize.
Take the f-number of thelens to be roughly 0.8 or 0.9,

ais just about what you can expectfor the fastestlens.

 
  

 
 

 
 
 
 
 

 
 
 
  
 
 
 

 
  
 
  
 
 
 
 
 

  
  
 

 

pose that we have a laser emitting a diffrac-beam (Ao = 632.84 nm) with a 2-mm
How big a light spot would be produced on
of the Moonadistance of 376 x 10° km away
a device? Neglect any effects of the Earth’sae

Bf you peered through a 0.75-mm hole at anuy would probably notice a decrease jn visual
pute the angularlimit of resolution, assum~3 determined only by diffraction; take Ay =

FCompare your results with the value of 1.7%
Ewbich corresponds to a 4.0mm pupil.

The neoimpressionist painter Georges Seurat
ember of the pointillist school. His paintings
f an enormous numberofclosely spaced small

4, inch) of pure pigment. The jHusion of color
MEA produced only in the eye of the observer.

om sucha painting should onestand in order
the desired blending of color?

. GEEZ

§28* (fhe MountPalomartelescope has an objective
ith a 508-cm diameter. Determineits angular

resolution at a wavelength of 550 nm,in radians,
Band seconds of arc. How far apart must two

wc the surface of the Moonif they are to be
ible by the Palomartelescope? The Earth-Moon,

é is 3.844 x 10° m; take Ay = 550 nm. How far
hust two objects be on the Moonif they are to

Fy uished by the eye? Assumea pupil diametermm.

2

10.24 Figure 10.90 shows several aperti
rations. Roughly sketch the Fraunhofer
each. Note that the circular regions shot
Airy-like ring systems centered at the ori

A transmission grating whose lines are sepa-0X 10-6 m is illuminated by a narrow beam
(Ao = 694.3 nm) from a rubylaser, Spots of

light, on bothsides of the undeffected beam,
screen 2.0 m away. How far from the central
of the two nearest spots?Figure 10.89 Photo courtesy R. G. Wilson, tlinol#versity.
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10,80* A diffraction grating withslits 0.60 x 10° cm
apart is illuminated by light with a wavelength of500 nm. At what angle will the third-order maximum
appear?

40.31* A diffraction grating produces a second-order
spectrum of yellow light (Aj = 550 nm) at 25°, Deter-
mine the spacing between thelines on the grating.

10.32 White light falls normally on a transmission
grating that contains 1000lines per centimeter. At what
angle will red light (Ao=65@ nm) emerge in the first-order spectrum?

10.33* Light from a laboratory sodium lamphas two
strong yellow components at 589.5923 nm and
588.9953 nm. How far apart in the first-order spectrum
will these two lines be on a screen 1.00 m fromagrating
having 10,000 lines per centimeter?

10.34* Sunlight impinges on a transmission grating
that is formed with 5000 lines per centimeter. Does the
third-order spectrum overlap the second-order spec-
trum? Take red to be 780 nm andviolet to be 390 nm.

10.35 Light having a frequency of 4.0 x 10'4 Hz is
incident on a grating formed with 10,000 lines per
centimeter. Whatis the highest-order spectrumthat can
be seen with this device? Explain.

10.36* Suppose that a grating spectrometer while in
vacuum on Earth sends 500-nm light off at an angle of
20.0° in the first-order spectrum. By comparison,after
landing ontheplanetMongo,the samelightis diffracted
through 18.0°. Determine the index of refraction of the
Mongoian atmosphere.
40.37 Prove that the equation

a(sin 8,, — sin 6;) = mA, 710.61}
whenapplied to a transmission grating.is independentof the refractive index.

10.38 A high-resolution grating 260 mm wide, with
$00 lines per millimeter, at about 75° in autocollimation
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hasa resolving power ofjust about 10° for A = 500 nm.
Find its free spectral range. How do these values of R
and (SA);., compare with those of a Fabry-Perot etalon
having a I-cm air gap and a finesse of 25?

10.39 Whatis the total numberoflines a grating must
havein orderjust to separate the sodium doublet(A; =
5895.9 A, Ag = 5890.0 A) in the third order?

10.40* Imagine an opaque screen containing 30 ran-
domly located circular holes. The light source is such
that every apertureis coherently i/luminatedbyits own
plane wave. Each wavein turn is completely incoherent
with respect to all the others. Describe the resulting
far-field diffraction pattern.

10.41 Imagine that you are looking through a piece
of square woven cloth at a point source {Ag = 600 nm)
20 m away. [f you see a square arrangementof bright
spots located about the point source (Fig. 10.91), each
separated by an apparent nearest-neighhordistance of
12 cm, howclose together are the strands of cloth?

10.42" Perform the necessary mathematical
operations needed toarrive at Eq. (10.76).

 
Figure 10.91 Photo by E.H.

 

 
10.43 Referring to Fig. 10.48, integrate the
dS = 2rp* sin p d@ over the [th zoneto getthat zone,

* Make 2 rough sketch of a possible Fresnel
‘ jon pattern arising from each of the indicated

vas (Fig. 10-92)-  

 
 
  

 

  
 

 
 

 
  

 
 
 
 
 
 
 

~ Ame [ @i-1aAntenlet a |:
Show that the mean distance to the ith Zone ig

a + {2E- aym
so that the ratio A;/r; is constant.

10.44* Derive Eq. (10.84).

10.45 Use the Cornuspiral to make a rough g
of [B,o(w)|® versus (w, + wy)/2 for Aw = 5.5, Com

Tour Tesals with those of Eo Suppose the slit in Fig. 10.67 is made very: . : a
10.46 TheFresnelintegrals have the asympt sihat will the Fresnel diffraction pattern looklike?(correspondingto large values of w) given By

woio(2)e()
ro(ala) |

Using this fact, show that the irradiance in the §of a semi-infinite opaque screen decreasesi
to the inverse square of the distance to the€
and therefore v, becomelarge.

5" Collimated light from a krypton ion laser atm impinges normally on a circular aperture.
iewedaxially froma distanceof 1.00 m, the hole

10.47 What would you expect to see on the B
observationif the half-plane & in Fig. 10.71 ertransparent?

10.48 Plane waves from a collimated He-Ngj li
beam (Ao = 632.8 nm) impinge on a steel 19g
2.5-mm diameter, Draw a rough graphic reprey
of the diffraction pattern that would be seer ©3.16 m from the rod.

 

10.49 Make a roughsketch of the irradianc™®
for a Fresneldiffraction pattern arising from wislit. What would the Cornuspiral picture kpoint Py?
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uncovers the first half-period zone. Determine its
diameter.

10.58% Plane waves impinge perpendicularly on ascreen with a smal) circular holeinit. If is found that
when viewed from some axial point P the hole uncovers
of the first half-period zone. What is the irradiance at
P in terms of the irradiance there when the screen isremoved?

10.54* A collimated beam from a ruby laser
(694.3 nm) having an irradiance of 10 W/m?is incident
perpendicularly on an opaque screen containing a
square hole 5.0 mm on a side. Compute the irradiance
ata point on the central axis 250 cm from the aperture,

10.55* A long narrow slit 0.10 mm wide is illuminated
by light of wavelength 500nm coming from a point
source 0.90 m away. Determinethe irradiance at a paint
2.0 m beyondthe screen whentheslic is centered on,
and perpendicular to, the line from the source ta the
pointof observation. Write your answer in terms of theunobstructed irradiance.  
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TL FOURIER OPTICS
 
 
TL INTRODUCTION

In what is to follow we will extend the discussion of
Fourier methods introduced in Chapter 7. It is our
intent to provide a strong basic introduction to the
subject rather than a complete treatment, Besides its
teal mathematical power, Fourier analysis leads to a
marvelous way of treating optical processes in terms of
spatial frequencies.” It is always exciting to discover a
new bag of analytic toys, but it’s perhaps even more
valuable to unfold yet another way of thinking about a
broad range of physical problems—we shall do both.t

The primary motivation here is to develop an under-
standingof the wayoptical systems processlight to form
images. In the @nd we want te know all about the
amplitudes and phases of the lightwaves reaching the
image plane. Fourier methods are especially suited to
that task, so we first extend the treatment of Fourier
transforms begun earlier. Several transforms are par-
ticularly useful in the analysis and these will be con-
sidered first. Among them is the delta function, which
will subsequently be used to represent a point source 
“See Chapter 14 for a further nonmathemztical discussion.
f As general referencesfor this chapter, see RC, Jennison, Fourier
Transforms and Convotutions for the Experimentalist; N. F. Barber,
Experimental Correlograms and Fourier Transforms; A. Papoulis, Systems
aad TransformswithApplications in Optics; J, W. Goodman,Introduction
to Fourier Optics; Linear Systems, Fourier Transforms, and Optics,
J. Gaskill; and the excellentseries of booklets /magesand Information,B. W,Jones, et al.
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a

Bi) = { ” f(x") sin kx’ dx’, (7.57}00

 hely. Here the quantity x’ is a dummyvariable
Rich the integrationis carried out,so that neither

Fpor B(k) is an explicit function of x’, and the
of symbol used to denote it is irrelevant. The

nd cosine transforms can be consolidated into a
Mie complex exponential expression as follows: sub-
fing Eq. (7.87) into Eq. (7.56), we obtain

 

© 400

je) aa cos ke {___ {2) 608 ks! dt dk
of light. How an optical system responds tf
comprising a large numberofdelta-function!
ces wil] be consideredin Section 11.3.1. Th
between Fourier analysis and Fraunhofer @
explored throughout the discussion, but sffgw
tion is given it in Section 11.3.3, The chapter ef
a return to the problem of image evaluatidgy
froma different, thoughrelated, perspectivé:
is treated not as a collection of point souxd
scatterer of plane waves.

7 eo

Fe j sin kx | fix") sin kx’ dx’ dk.to ~co

i [since cos k(x’ — x) = cos ke coskx’ + sin ke sin kx’,pecan be rewritten as

Riz = + [ [oHcos k(a" - x) as |akT do 20
(1.1)

tity in the square brackets is an even function
d therefore changing the limits on the outeral leads to

i il [JF(x’) cos k(x"
as we are looking for an exponential rep-

tation, Euler’s theorem comes to mind. Con-
Bebtly, observe that

1.2 FOURIER TRANSFORMS
 "| dk, z

1.2.1 One-Dimensionaltransforms | a
It was seen in Section 7.8 that a one-dime!
tion of some space variable f(x) could be xp
a linear combination of aninfinite numberofcontributions:

fx)= 2Paw cos kx dk + fi B(k) sig hea

 

. i‘ { f(x’) sin k(x’ — x) a'| dk =0,
the factorin brackets is an odd function of k.

BE these last two expressions yields the complex
P Of the Fourier integral,L free pte

ie)= {" [{ fre a'|e™ dk. (11.3)
The weighting factors that determine the sig!
of the various angular spatial frequency (k) 00)
tions, that is, A(k) and B(x), are the Fourier
sine transforms of f(x) given by

A(k) = i ” Ae) cos kx’ dx"

=" can write
-i{™ thee

fey = [c F(k)e"™ dk, G14

244

sna Fourier Transform 473

 
 provided that $00

F(k)= i flxye™dx, (1.5)
having set x‘ = for Eq. (11.5). The function F{x) tssaid to be the Fourier tranaform of f(x), which is sym-
bolicaily denoted by

F(k) = Fi fla). 11.6)
Actually there are several equivalent,slightly different
ways of defining the transform that appear in the
literature. For example, the signs in the exponentials
could be interchanged or the factor of 1/2m could be
split symmetrically between f(s) and F(k); each would
then have a coefficient of 1//@2r. Note that A(k)is the |
real part of F(k), while B(&) is its imaginary part, thatis,

F(k) = Atk) + iB).
As wasseen in Section 2.4, a complex quantity like this
can also be written in cermsof a real-valued amplitude,
\F(K)|, the amplitude spectrum, and a real-valued phase,
(k), the phase spectrum:

F(k)= |Fe*,
and sometimes this form can be quite useful [see Eq.
(41.96)],

Just as F(k) is the transform of f(x), {(x) itself is saidto be the inverse Fourier transform of F(k), or symboli-
cally

(41.78)

GL7b}

fa) = FOLFUO} = FNFLOO, ans)
and f(x) and F(k) are frequently referred to as a Four-
ier-transform pair. It’s possible to construct the trans-
form and its inverse in an even more symmetrical form
in terms of the spatial frequency « > 1/A = k/2qr, Still,
in whatever wayit's expressed, the transform will not
be precisely the same as the inverse transform, because
of the minussign in the exponential. As a result (Prob-
lem 11.10), in the present formulation,

FFKEM Qarfl—x) while FFU) = f(x).
This is most often inconsequential, especially for even
functions where f(x) = f(—x), so we can expect a good
dea! of parity between functions and their transforms.
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Function Transform
feo Fil

* k
a)

hed Fl

x SIE NI i:eo)
Le Fw)

x &
AGS = f+ LO) © FO=RDS Flky

Fk) = Fifior
Figure I1.f A composite function and its Fourier transform.

Obviously, if f were a function of time rather than
space, we would merely have to replace x by | and then
k, the angular spatial frequency, hy w, the angular
temporal frequency, in order to get the appropriate
transform pair in the time domain,thatis,

t -2["r deo 11.9)fO=s5 |, Fe (11.9)
Ho,

Fle) [ frye de. (11.10)co

It should be mentioned that if we write f(x) as a sum
of functions,its transform (11.5) will apparently be the

 
 
 
 
  

 
 
  
  
  
 
  
  
  
  
 

 
  
 
  
  
  
 
 
 
  
 
 
  

 

sum of the transforms of the individual
functions. This can sometimes be quite a
way of establishing the transforms of complitions that can be constructed from wells]
stituents. Figure 11.1 makes this procedure fairlevident. t>

x Ta k(by}) Transforrn of the Gaussian Function elrc)

As an example of the method,let’s exami, ,Gaussian probability function,
f(ey= Co,

{Lt A Gaussian and its Fourier transform.

where C =Va/m and a is a constant. If you like; ycan imaginethis to be the profile of a pulse 447 =
The familiar bell-shaped curve (Fig. 11.2(a))8 quitsfrequently encountered in optics.It will be gern
a diversity of considerations, such as the nae
representation of individual photons,the
irradiance distribution of a laser beam in
mode, and thestatistical treatment of thern
coherence theory. Its Fourier transform,
obtained by evaluating

22 two-DimensionalTransforms

5 far the discussion has been limited to one-
sional functions, but optics generally involves

ensional signals: for example, the field across
re or the flux-density distribution over an

B plane. The Fourier-transform pair can readilyneralized to two dimensions, whereupon0

J J F(k,, ke4dk, dk (11.13)9
+00)

(Co)0de,  F(k)=

On completing the square, the exponent, —ar 4becomes —(2Va — ik/2Va) — k*/4a, and letting
iki2Va = B yields

Fk) = = cone | Pde,

ra

Fk, &,) = JJehde dy LEY
les k, and k, are the angularspatial frequen-

the two axes. Suppose we were lookingat the
a tiled floor madeupalternately of black and
fares aligned with their edges parallel to therections. If the floor wereinfinite in extent,

ical distribution of reflected light couldled in terms of a two-dimensional Fourier
heachtile having a length é the spatial period

ser axis would be 2¢, andthe associated funda-
= ngular spatial frequencies would equal 7/é
and their harmonics would certainly be neededguct a function describing the scene. If the

as finite in extent, the function would no
B'Tuly periodic, and the Fourier integral would

‘The definite integral can be foundin tables andmw, hence
Fik) _ ‘a“age

which is again a Gaussian function [Fig- 120)time with & as the variable. ‘he standard de
defined asthe rangeof the variable (x or &) over
the function drops by a factor of o'*=060imaximum value. Thusthe standard d :
two curves are 0, = 12a and a; = 2a
As a increases, f(x} becomes narrower whil
F(k) broadens. In other words, the sho!
length, the broader the spatial frequency bang

 

:
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have to replace the series. In effect, Eq, (11.13) says that
f(x, 9) can be constructed out of a linear combination
of elementary functions having the form exp {—i(kKx +
ky)], each appropriately weighted in amplitude and
phase by a complex factor F(k,, k,). The transform
simply tells you how much of and with what phase each
elementary component must be addedto the recipe, In
three dimensions, the elementary functions appear as
exp [-i(ks + ky + &2)] or exp(-ik+r), which corre-
spond to planar surfaces. Furthermore, if f is a wave
function, that is, some sort of three-dimensional wave
flr, §, these elementary contributions become plane
waves that look like exp [—i{k - r — w!)]. In other words,
the disturbance can be synthesized outofa linear combination
of plane waves having various propagation numbers and
moving in various directions, Similarly, in two dimensions
the elementary functions are “oriented” in different
directions as well. Thatis to say, for a given set of values
of k, and &,, the exponentor phase of the elementary
functions will be constant along lines

kx + ky = constant=Aor
k, A=Sxt—. ELL

3 i, x k, (1.18)
The situation is analogous to one in which a setof planes
normal to and intersecting the x}-plane does so along
the lines given by Eq. (11.15) for differing values of A.

 
Figure 11.3 Geometry for Eq. (11.15),
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A vector perpendicular to the set of lines, call it k,,
would have components k, and k,. Figure 11.3 shows
several of these lines (for a given x, and &,), where
A=0, 2a, +4a,... The slopes are all equal to —K/i,
or —A,/A, while the y-intercepts equal A/k, = AA,/2m.
Theorientation of the constant phase lines is

(1.16) 
the wavelength, or spatial period A,, measured along
k,,, is obtained from thesimilartriangles in the diagram,
where A,/A, = A,JVA5+A5 and

1
A, = 141?)

Wee oad
The angularspatial frequency k,, being 27/A,, is then

k, = VK +, (1.18)
as expected. All of this just means that in order to
construct a two-dimensional function, harmonic terms
in addition to those of spatial frequency &, and «& will
generally have to be included as well, and these are
oriented in directions otber than alongthe x-and y-axes.

Return for a momentto Fig. 10.10, which shows an
aperture, with the diffracted waveleaving it represented
by several different conceptions. One of these ways to
envision the complicated emerging wavefrontis as a
superposition of plane waves coming off in.a whole
range ofdirections. These are the Fourier-transform
components, which emerge in specific directions with
specific values of angularspatial frequency—the zero
spatial frequency term corresponding to the undeviated
axial wave, the higher patilreeaieney terms comingoff at increasingly great angles from the central axis
(Section 14.1.1). These Fourier components make up
the diffracted field as it emerges from the aperture,

i Transform of the Cylinder Function
Thecylinder function

1 Va8¥+s" <a
0 vat ty> a

[Fig. 11.4(a)] provides an importantpractical example
of the application of Fourier methods to two di-

aL1g9f(y) = |

 

 
 
 

gc ose Gedy = Tar dd. The transform, Fle},ana

lke 0) = i. [ [ OF itrcouemer ao rarreal Jeno
Lay

as f(, y) is circularly symmetric, its transformeametrical as well. This implies that F(k., a)
dent of a. The integral can therefore be

} od by letting @ equal some constantvalue, whichta be zero, whereuponet pen

Fike) = [ if eikareose aoras (21.22)°o

  

 
 

 
 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fk.)

\tlivet from Eq. (10.47) that

F(k,) = 20 { Jolkar)r dr, (11.23)o

Wi(kr) being a Bessel function of order zero.
lucing a changeof variable, namely, kar = w, we

kz} dw, and the integral becomes 1 (hse
al Jolwiw dw. (11.24)KE Jono

(sing Eq. (10.50), the transform takes the form of a
Bitorder Bessel function (see Fig. 10.27), thatis,

Ler 
 

Pha) genhi(kea)

Figure 11.4 The cylinder,or top-hat, ord aonan

F(k,) = aaSifkee)| (11.25)
milarity between this expression {Fig. 11.4(b)]
is formula for the electric field in the Fraunhoferacton pattern of a circular aperture (10.51) is, of

™ not accidental,

mensions. The mathematics will not be
simple,but the relevance of the calculation’
of diffraction hy creular apertures and
justifies the effort. The evidentcircular §
gests polar coordinates, and so let

ky = ky cosa nS cis a FourierTransformer¢11.5 shows a transparency, located in the front
Eene of a converginglens, being illuminated by
light. This object, in turn, scatters plane waves,

€ collected by the lens, and parallel bundles of
broughtto convergenceatits back focal plane.

k, = ky sin &
x=rcosé

y=rsin 4,
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Figure 11.5 Thelightdiffracted by a transparency atthe front (or
object) focal point of a lena converges to formthe far-field diffraction
pattern at the back (or image) fos! point of the lens.

If a screen were placed there,at ©,the so-called trame-
formplane, we would see thefar-field diffraction pattern
of the object spread across it [this is essentially the
configuration of Fig. 10.10(e)]. In other words, the
electric field distribution across the object mask, which
is known as the aperture function, is transformed by the
lensinto the far-field diffraction pattern, Remarkably,
that FraunhoferE-fieldpattern corresponds to the exact
Fourier transform of the aperture function—a fact we
shall confirm more rigorously in Section 11.8.3. Here
the object is in the front focal plane,andall the various
diffracted waves maintain their phase relationships
traveling essentially equal optical path lengths to the
transfarm plane. That deesn’t quite happen when the
object is displaced from the front focal plane. Then
there will be a phase deviation, but that is actually of
little consequence, since we are generally interested in
the irradiance where the phase information is averaged
got.and the phase distortion is unobservable.

Thusif an otherwise opaque object mask contains a
single circular hole, the E-field across it will resemble
the top hat of Fig. 11.4(a), and the diffracted field, the
Fourier transform, will be diseributed in space as a
Bessel function, looking very much like Fig. 11.4(b).
Similarly, if the object transparency varies in density
only along oneaxis,such that its amplitude transmission
profile is triangular (Fig. 11.6(a)}, then the atnplitude
of the electric field in the diffraction pattern will corre-
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E(x) F{E@}

>
0

fa) {b)
Figure 11.6 The transform of the triangle function is the sinc?function.

spond to Fig. 11.6(b)—the Fourier transform of the
triangle functionis the sinc-squared function.

1.2.3. The Dirac Delfa Function

There are many physical phenomena that occur over
very short durations in time with great intensity, and
one is frequently concerned with the consequent
response of somesystem to such stimuli. For example:
How will a mechanical device, like a billiard ball,
respondto being slammed with a hammer? Or how will
a particular circuit behave if the input is a short burst
of current? In much the sameway wecan envision some
stimulus that is a sharp pulse in the space, rather than
the time, domain, A bright minute source of light
imbeddedin a dark backgroundis essentially a highly
localized, two-dimensional, spatial pulse—a spike of
irradiance. A convenient idealized mathematical rep-
resentation of this sort of sharply peaked stimulus is
the Dirse delta function 8(x). This is a quantity that is
zero everywhere except at the origin, where it goes to
infinity in a manner $0 as to encompass a unit area, thatis,

0 «#08x) =
(xy {° :=0 (11.26)and
40

i 8(x) dz = 1. (11.27)
This is not really a function in the traditional mathe-
matical sense. In fact, becauseit is so singular in nature,

 
  

    
 
 

 
 

 
 

 
 
  
 
  

 
 

 
  
 
 

 
running from x= —y to

ed about the origin, f(x) = f(0) ~ constant,
unction is continuousat x = 0, From x = —00
and from x=+y to x =+00, the integralis

gir:pey because the 8-functionis zero there. Thus
gral equals

it remained the focusof considera Se
after it was reintroduced and rout ae2
by P, A. M, Dirac in 1930. Yet physicists
they sometimes are, found it so highlya
soon becamean established tool, despite as
a lack of rigorousjustification. The Precise Y
cal theoryofthe delta function evolved roy
yearslater, in the early 1950s, principally aeof Laurent Schwartz.

Perhaps the most basic operation to whirh ie
be applied is the evaluation of the integral

  

FO) { ” (3) de.
= 0 forall x other than 0, the interval can

is mall, that is,y> 0, and still
[ 5)fla) de. *= ty

j S(x}dx 1,-y

F@)=5G) (11.27). Hence we have the exact result that

C 5(x)f(x) dx = f(O). 1.28) 
vier: spoken of as the sifting property of the

rimon, because jt manages to extract only the one
of f(x) taken at x = 0 from all its possible values.

ly with a shift of origin of an amount Xp,
 

0 x Ky
wo x= x,"F(2)=A8() Bem) = { 11.29)

BBhe spike resides at x=) rather than x= 0, as
in Fig. 11.7. The correspondingsifting property
ppreciated byletting x — xy = x’, then with f(x’ +

Bix’),

[° 8¢e — xa)fle) dx = |
 00)

8(x")e(x") dx’=g(0),
 

 
LR)= 8x0) ince g(0) = f(x»),

I B(x — xo)flx) dx=f%0). (11.30)
'Y, rather than worrying about a precise defi-

BKOF 8(x) for each value of x, it would, be more
fo continue alongthelinesof defining the effect
on some other function f(x). Accordingly, Eq.
1s really the definition of an entire operation

x
(o) 

Figure 11.7 Theheight of the arrow representingcorrespondsto the area underthe function.
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that assigns a number {0} to the function {x}. Inciden-
tally, an operation that performsthis service is called a
functional.

It is possible to construct a number of sequences of
pulses, each member of which has an ever-decreasing
width and a concomitantly increasing height, such that
any one pulse encompasses a unit area. A sequence of
square pulses of height a/L and width L/a for which
a~ 1,2,3,...would fit the bill; so would a sequence of
Gaussians (11.11),

 

(131) 
as in Fig. 11.8, or a sequence ofsinc functions

8,(¢) = sine (ax). (41.82)7
Such strongly peaked functions that approachthesift-
ing property, that is, for which

| * a.cerfe) dx f(0), (41.33)
are known as delta sequences. It is often useful, but not
actually rigorously correct, to imagine (x) as the con-
vergence limit of such sequences as a>, The
extension ofthese ideasinto two dimensionsis provided
by the definition

Oo x= yr 03(x,9) = 11,94
&» {5 otherwise are)

 
Figure 11,8 A sequence of Gaussians.
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and

{! 5(x, y} dedy 1,a C135)

and the sifting property becomes+0

[m B(x~x0)5(9 — Fo) da dy = fo, 50)-
{12,36}

Another representation of the 6-function follows from
Eq.(11.3), the Fontier integral, which can be restated as

ter 7 ptt .
fe) I (in ena]fl} dx’,and hence

fx) = [ Sx—x"}f(x") dx’ (1.37)

Provided that

a(e-x=
(x—x'} Qn

Equation (11.37) is identical to Eq. (11.80), since by
definition from Eq. (11.29) 8(x — x!) = 8(x’ x), The
(divergent) integral of Eq. (11.38)is zero everywhere
exceptat x = x’, Evidently, with x’ = 0, d(x) = 8(-x) and

a

ehak, (1.38)-e

+00 1 ft(x) =—
) =" 2m Joo

This implies, via (11.4), that the delta function can be
thought of as the inverse Fourier transform of unity,
that is, 8(@)= $41} and so FAB(x)}= 1We canimagine a square pulse becoming narrower and taller
as its transform, in turn, grows broader, until finally
the pulse is infinitesimal in width, andits transform isinfinite in extent, in other words, a constant.

ike
eodk = e™ dk. (11.89)

 

i} Displacements and PhaseShifts
If the 8-spike is shifted of x0 to, say, ¥ xg, its
transform will change phase but not amplitude—that

 

 

 
   
 
 
 
  
 

fa)

 
 

    
4 ine + dain Sh +7

 &)

Figure 1L9 A shifted square wave showing the <*fchange in phase for each componentwave. 
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si to one. To see this, evaluate+00
(xF(B(x— ¥o)} = i xye™ dx,=

sifting property (11.30) the expression

FlB(x xo)} = ee, (1.40)
be onmpared with Bq. (11.76), What we see
the phaseis affected. the amplitude being

) was when x= ft. ‘This whole process can beif we switch to
ermualby nse rave

ch as a spark) occurring at t = 0, This results
generation of an infinite range of frequency‘ents, which are allinitially in phase at theinstant

ion (¢= 0). On the other hand, suppose the
Hecurs at a time to. Again every frequency is

 
 

   
 
 
 
 
 
 
 
 

 
 
  
  
   
 
  
 
 
 
 
   

iced, but in this situation the harmonic com-
Big are all in phase at ¢ = f), Consequently, if we

Jate back, the phase of each constituent at ¢=0
Mow have to be different, depending on the par-

frequericy. Besides, we know that all these com-
superimpose to yield zero everywhere except

that a frequency-dependentphase shift is quite
ble. This phase shift is evident in Eq. (11.40)

he space domain. Notethat it does vary with the
spatial frequency k.

f this is quite general in its applicabilicy, and we
that the Fourier transform of a function that is

d in space(or time)is the transform ofthe undisplaced
multiplied by an. exponentialthat is linear in phase

m 11.14). This property of the transform will
pecial interest presently, when we consider the
of several point sources that are separated but
Hse identical. The process can be appreciated
Hatically with the help of Figs. 11.9 and 7.13. To
é square wave by 1/4 to the right, the funda-
ust be shifted §-wavelength (or, say, 1,0 mm),

component must then be displaced an equal
.. 1.0 mm), Thus each component must be

‘Phase by an amountspecific to it that produces
displacement. Here each is displaced, in turn,

of mad,

  

 
 

 

 
 

 

xx.2 Fourier Transforms 48x

i) Sines and Cosines
‘We saw earlier (Fig. 11.1) that if the function at hand
can be written as a sum ofindividual functions, its
transform is simply the sum of the transformsof the
component functions. Suppose we havea string of delta
functions spread out uniformly like the teeth on a comb,

fx) = QL B(x — 4). (hlsi
When the number of termsis infinite this periodic
function is often called comb{x). In any event, the trans-
form will simply be a sum of terms, such as that of Eq.
(11.40):

Fi f(xy =H es. (11.42)I

In particular,if there are two 5-functions, one at X
d/2 and the other at x) = —d/2,

f(x)~Slax ~ (+a /2)} + Bix~(-d/2)]
and

FU f(x} = eitdl? y ghd
which is just

Fi fd}=2 cos (kd/2),
as in Fig. 11.10. Thus the transform of the sum of these
two symmetrical 6-functions is a cosine function and
vice versa. The composite is a real even function, and
F(k) = ¥(f(x)}will also be real and even. This should
be reminiscent of Young’s experiment (p. 389) with
infinitesimally narrow slits—we'll come backto it later.

(11.43)

Fy Atk)

be.dz 0 +42

Pik)

 | ()
Figure 11.19 Two delta functions and their cosine-functiontransform.
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IO BU

 
(2) } ()Figure 11.11 Two delta functions and theirsine-function transform.

If the phase of oneof the 8-functionsis shifted, as in
Fig. 11.11, the composite function is asymmetrical,it’sodd,

f(x)=Bla — d/2)] - 8[x  (~4/2)],
and

FE f(xy} = et?—eo M42 93 sin (kd/2). (11-44)
Therealsine transform (11.7) is then

B(k) = 2 sin (kd/2), 1.45)
andit too 3s an odd function.

This raises an interesting point. Recall that there are
two alternative ways to consider the complex transform:
either as the sum ofa real and an imaginary part, from
Eq. (11.7a), or as the product of an amplitude and a
Phase term, from Eq. (11.7b). It happensthatthe cosine
and sine are rather special functions; the former is
purely real and the latter is purely imaginary. Most
functions, even harmonic ones,will usually be a blend
ofreal and imaginary parts. For example, once a cosine
is displaceda little, the new function, which is typically
neither odd nor even, has both 2 real and an imaginary
part. Moreover, it can be expressed as a cosinusoidal
amplitude spectrum, which is appropriately phase-shifted (Fig. 11.12). Notice that when the cosine is
shifted JA into a sine the relative phase difference
between the two componentdelta functionsis again +rad,

Figure 11.13 displays in summary form a numberof
transforms, mostly of harmonic functions. Observe how
the functions and transformsin (a) and (b) combineto
produce the function andits transform in (d). Asa rule,
each memberof the pair of 5-pulses in the frequency

spectrum of a harmonic function
k-axis at a distance from the or:
mental angular spatial frequen:
well-behaved periodic famcen ea ot fe.Fourierseries, it can also be re

pairs of delta functions, each weighted a.
and each a distance from the k-origin 8angular spatial frequency of the Parti
contribution—the frequency Spectrum oftion will be discrete. One of the most
periodic functions is comb{x): as shown in Rig,its transform is also a comb function.

ake
a

Figure 11.12 The spectra of a shifted cosine functioRl]
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is locateda2 APPLICATIONS
igin equal to atTorn

7; ayes
in be expral rest yeres

Presented as 3 ==— beat
Peon which to evolve a description of the

a of images. And for the most part, this will
@ e ection in which we shall be moving, although

remarla ; fie excursions are unavoidable in order to
ES the needed mathematics. ;
ie, point in the analysis is the concept of a linear
Babich in turn is definedin terms ofits input

yelations. Suppose then that an input signal
SS : sing through some optical system results in an

4 y meal’, 2). The system is linearif:
Q | : -

F(X) =Aco8 ky (2-29)

 
g fly, 2) by a constant 4 produces an output

RZ).
Fre input is a weighted sum of two (or more)
ions, af;(), 2) + Ofe(9, z), the outputwill similarly

s the form agit¥, Z)+ bgo(¥, Z), where filo, 2)
f(y, z) generate 2,(Y, Z) and go(¥, Z} respec-

ore, a linear system will be space invariant ifs the property of stationarity; that is, in effect,
the position of the input merely changes thef of the output without altering its functional

he idea behind muchofthis is that the output
byan optical system can betreated asa linear

ition of the outputs arising from each of the
points onthe object.In fact, if we symbolically

Brit the operation ofthelinear system as £{ }, the
iput and output can be written as

B(¥, Z) = LAK,2}.
the sifting property of the 6-function (11.36),

a becomes

 
 

fk)
(11.46)

+2

ob af { pe. 2980" — 982"~2) ay’ «|.
gral expresses f(y, z) as a linear combination of

delta functions, each weighted by a numberBlt follows from the second linearity condition

ke
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fQ)=A F(k)

 

1 @

F)=A cos kox FO

(b) 
f(2)=A cos 3 kor

 

 

 
 

 @)

FURYFQ)RA sinskox
aA
+k k

a)

fe}

 
Figure 11.13 Some functions and their transforms.
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fy

Figure 11.14 (a) The comb function andits transform.(b)A shiftedcombfunction andils transform.

that the system operator can equivalently act on each
of the elementary functions; thus+2 4

BY, Z) = [10.292800" g)8(2"~2)} dy! dz’,
(11.47)

The quantity £{8(' — 9)5{z’ — z)} is the responseof the
system (11.46) to a delta function located at the point
6’,2') in the input space—it’s called the impulse
response. Apparently, if the impulse response of a
system is known, the outputcan be determined directly
from the input by meansof Eq.(11.47). If the elemen-
tary sources are coherent, the input and outputsignals
will have to be electric fields; if incoherent, they'll beflux densities.

Considertheself-luminousand,therefore, incoher-
ent source depicted in Fig. 11.15. We can imaginethat
each point on the object plane, Xo, emits light that is
processed by theoptical systern. It emerges to form a
spot on the focal or image plane, Z,. In addition, we
assumethat the magnification between object and image planes 

 
  |. .. ¥, Z)isknownas the point-spread function.

Bord, when the irradiance Ig(,z) over the
Femnent dydz is 1 Wim", 5(3, 2; ¥, Z) dydz is the

Bei ne resulting irradiance distribution in theB.. Because of the incoherenceofthe source,
bnsity contributions from eachofits elements

is one, The image will be life-sized and ¢;
makesit a little easier to deal with for thé a 4
Notice that if che magnification (Mz) was a
one, the image would be larger than the ob:
sequently, all of its structural details would,
and broader,so the spatial frequencies of the fs
contributions that go into synthesizing thej =
be lower than those ofthe object. For example
thatis a transparency of a sinusoidally varh
and white linear pattern (@ sinusoidal ampli
ing) would be imaged having a greater space mag
maxima and therefore a lower Spatial fe,
Besides that, the image irradiance would be deal
by M%, because the image area would beine: iya factor of M3.

If Jo(y, z) is the irradiance distribution on the
plane,an elementdy dzlocatedat(9,z} will emita.
flux of Io(y, 2) dydz. Because ‘of diffraction
possible presence of aberrations),this light is g
out into somesort of blur spot over a finite area
image planerather than focused toa point. Th
of radiantflux is described mathematically by ties
tion S{y, x3 Y, Z), such that the flux density arta Hirethe image point from dy dz is "

ICY, Z) = 8(9, 25 ¥, Z)Lo(y, 2) dy dz, (hl
This is the patch oflight in the image plane ai,

      
  
 
 

 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
  
 
 
  
 
 
 
 
 
 

 

Ge, so +00

=||oly, 2S(y, 2; ¥, Z) dy de. 49)HY) [ J ao-05002 ydyd2z, (11.49)
ect,” diffraction-limited optical system having

wns, $9, 2; Y, Z) would correspondin shape
Figraction figure of a point source at (9, z).

if we set the input equalto a 5-pulse centered
then Io(y. 2) = Ad(y — yo)8{z — to). Here the

MB, of magnitude one carries the neededunits
pentane: times area). Thus+00

z= aA | I 5(y — yo) 82 — %o)S(y, 2: Y, Z) dy dz,ew

the sifting property,
1(¥,Z)=AS(¥0, 20; ¥, Z).

point-spread function has a functional form
fl to that of the image generated by a 8-pulse

the impulse responseof the systern [compare
') and (11.49)], whether optically perfect or

fa well-corrected system S, apart from a multi-
constant, is the Airy irradiance distribution
‘Bl centered on the Gaussian image point
 

: is space invariant, a point-source input
meter about over the object plane without any

er than changing the location of its image.
tly, one can say that the spread function is

© for any point(9, z), In practice, however, the
‘unction will vary, but even so, the image plane

ed into small regions, over each of which
* change appreciably. Thusif the object, and

"5 image, is small enough,the systern can be
¢ space invariant. We can imagine a spread

Figure 11.15 A lens system forming an image. pene at every Gaussian image point on &;,
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each multiplied by a different weighting factor Io(y, z)
butall of the same general shape independentof(3, z).
Since the magnification was set at one, the coordinates
of any object and conjugate image point have the same
magnitude.

If we were dealing with coherentlight, we would have
to consider how the system acted upon an input that
was again a 6-pulse, but this time one representing the
field amplitude. Once morethe resulting image would
be described by a spread function, although it would.
be an amplitude spread function. For a diffraction-
limited circular aperture, the amplitudespread function
looks like Fig. 10.28(b). And finally, we would have to
be concerned aboutthe interference that would take ,
place on the image planeas the coherent fields interac-
ted. By contrast, with incoherent object points the pro-
cess occurring on the imageplaneis simply the summa-
tion of overlapping irradiances, as depicted in one
dimensionin Fig. 11.17. Each source point, with its own
strength, corresponds to an appropriately scaled 6-
pulse, and in the image plane each of these is smeared
out, via the spread function. The sum ofall the overlap-
ping contributions is the imageirradiance.

What kind of dependence on the image and object
space variableswill S{y,z; Y, Z) have? The spread func-  
 

Optical system

Figure 11.16 The point-spread function: the irradiance produced
bythe optical system with an input point source.
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tion can only depend on (y, x) as far as the location of
its center is concerned. Thus the value of S(3, z; Y, Z}
anywhere on Z; merely depends on the displacement
at that location from the particular Gaussian image point
(Y = y,Z =z) on which S is centered (Fig. 12.18). In
other words,

S(y, 25 ¥, Z} = SCY — 3, Z—2). GL89

 
| 80, Y)

, byhi

Y
5, Y} &)

 
Y

©)
Figure 11.17 Here (a) is convolved first with (b)to produce (and

| then with (d) to produce (e). The resulting pattem is the sum ofallthe epread-out contributions as indicated by the dashed curve in (¢).

 

  
   
  
 

 
  

 
 
 

 
  
 
 
 

 
  

  

 
Figure 11.18 The point-spread function.

When the object point is on the central axig
2=0), the Gaussian image point is as wal
spread function is then just $(Y, Z), as d
11.16. Underthe circumstancesof spaceinsincoherence, +00

ELY, Z) = j { Joly, 2)S(¥ — 9,2 — 2) dydag (0

11.3.2 The Convolution Integral

Figure 11.17 shows a one-dimensional repy
ofthe distribution of point-source $-funetio:
up the object. The corresponding image i§
obtained by “dealing out” an appropriately
point-spread function to the location of each |
point on Z; and then addingup all the con
at each point along Y. This dealing out of om
to every point of (and weighted by) anothe
a process known as convolution, and we say
function, [o(), is convolved with another,vice versa.

‘This procedure can be carried outintw
as well, and that’s essentially whatis being
(11.51), the so-called convolution integral.
sponding one-dimensional expression des

« of two functions f(x) and h(x),+00

g(X) = { F(x)h(X — x) dx, (1.52)
Berto visualize. im Fig. 11.17 one of the two func-a group of S-pulses, and the convolution

f, was particularly easy to visualize, Still, we can
y function to be composed of a “densely

continuum of 8-pulses andtreatit in much the
jon. Let us now examinein some detail exactly

jntegral of Eq.(11.52) mathematically manages
ym the convolution, The essential features of

puta

weighbag

(pat

5G, POM

 
   
 The overlapping of weighted spread functions.
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the process are illustrated in Fig. 11.19. The resulting
signal ¢(X;), at some point X, in the outputspace,is a
linear superposition of all the individual overlapping
contributions that exist at X,. In other words, each
source elementdx yields a signal of a particular strength
(x) dx, which is then smeared out by the system into a
region centered about the Gaussian image point (X =
x), The output at X; is then dg(X,) = Aix)h(Xy — x) de.
The integral sums up all of these contributions fromeach source element. Of couse the elements more
remote from a given point on 3; contribute less, because
the spread function generally drops off with displace-

fy)

 

 
 

ADK = x) ——Fano)

FOAL = 23)

SOMX,) dx
IVsa2
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ment. Thus we can imagine f(x} to be a one-dimensional show that they are equivalent.
irradiance distribution, such asa series of vertical bands, Suppose h(x) looks like the asymmetricafiam
as in Fig. 11.20. If the one-dimensional line-spread _Fig. 11.21 (a). Then A(~z) appears in Fig, #9)
function, h(X — x), is that of Fig. 11.20(d), the resulting its shifted form A(X — x) is shown in (,
imagewill simply be a somewhatblurred version of the lution of f(x) [depicted in (d)] and (x) ig zl #input [Fig. 11.20(e)]. by Eq. (11.52). This is often written more ¢

Let’s now examine the convolution a bit more as a F()@ A(x). Theintegral simply says that the
mathematical entity. Actually it’s a rather subtle beast, the product function f(x)k(X — x) for al, a 4
performinga process that mightcertainly not be obvious Evidently the product is nonzero only over ¢ a
at first glance, so let’s approach it from a slightly d wherein h(X — x) is nonzero,thatis, whe)
differentwiewpoint. Accordingly, we will have two ways curves overlap [Fig. 11.21(e)} At a parti e Th
of thinking aboutthe convolution integral, and weshail in the output space, the area under 1 | 4;

f(s)A(X, — x) is g(X). Thisfairly direct inte a} .
 

can berelated back to the physically more ple
of the integral in terms of overlapping poiny a

rE: a tions, as depicted previously in Fig. 11.19. Remey

[I

(bi

 that there wesaid that each source element w.
outin a blur spot on the image plane having Hiof the spread function. Now suppose wetake
approach and wish to compute the product aj

* 11.21 (e) at X,, that is, g(X,). A differential
iX-x) &) centered on any point in the region of| 11.22(a)], say x, will contribute an amount.

x) dx to the area. This same differential
make an identical contribution when 5

| ® > + x overlapping spread-function scheme. To seeel) ©) examine (b) and (c) in Fig. 11.22, which af naw dy
| \ in the output space. The latter shows the spread]

“centered” at X = x,. A source element ‘, if Hil
located on the object at x, generates a sq

* signal proportional to f(x,)k(X — x}, as im
“ fyX—) © f(x;) is just a number. Thepieceofthissi

at X, is f(,)k(X1 — x) dx, which indeedis
the contribution madeby dx at x; in (a). Si
y3 _ differential element of the product area (at

¥ ‘» in Fig. 11.22(a) has its counterpart in a curve5h) of (d) but “centered” on a new point (X =#beyond x = x» make nocontribution, becat B xy
x not in the overlap region of (a) and, ty ae 3
) because they are too far from X; for the sme a ee

it, as shown in (e). L | ©

we HK — x)

 ae x exx xfc) ©
 

LOG MUX =)

ey xa @

WX — xy

x
 

     

 Figure 11.20 Theirradiance distributionis converted to a function . : smple entsare simp!
f(x) shownin (a). This is convolved with a 8-function (b) to yield a If the functions being convolved ;7 « cate e112)
duplicateof /(x). By contrast, convolving f(x) with thespreadfunction g(X) can be determined roughly without i 1 The geometry of rhe canvalition process in the object Figure 11.22 The geometryofthe convolution process in the image« 3 es,
Ag in (d) yields a smoothedout curve represented by go(x) in (e). tions at all, The convolution of two id

coordinates.
  

252



253

 
 
 

  
  

   
  
 
  
 
 
 
 

 

 

 
 
 
  
 
 
 
 
 

 

  

490 Chapter 11 Fourier Optics

fu). a Hu =

a)

#2bxs breRy .a Xs Rs

Figure 11.23 Convolution of two square pulses, The fact that we
represented fix) byafinite numberofdelta funntions{viz., 7) accountsfor the meps in €0X). Figure 11.24 Convolution of two square pulses.

11.3 Optical Applications 494

pulses is illustrated, from both of the view,
cussed above, in Figs. 11.23 and 1194 1.8
each impulse constituting f(x) is spread ourld
pulse and summed. In Fig. 11.24 the Overling
as erie is plotted against X. In bath jresult is a triangular pulse. Incide :

ye h) = (h @ f), a8 can be seen byaca ay(ae! = X — x) in Eq. (11.52), bei ji
Gee Problem 11.15). Dyeing corel

Figure 11.25illustrates the convolution
tions Jo(y, z) and S{y, z) in two dimensions,
Eq,(11.51). Here the volume under the pir
Joly x) SLY — 3, Z— 2), thatia, the region fea

fo23

  
 

equals I,Y, 2) at (¥, 2); see Problem 11,11 s(y.2) ey

HY-n © $3
ee

8{—y, —2)
y sy

Figure 11.25 Convoiution in two dimensions.

iplution Theorem
@ have two functionsf(x) and h(x) with Four- ‘Thus

s Fifty} = F(k) and #{h(x)} = H{k),i: The convolution theorem states that if GiQ= {" [[cx ~ xe ax|p) dx.
Fig} = FLL@®h} = FLfh Fla} (11.53) If we put w = X — x in the innerintegral, then dX = dw= "7 and +0 40

r Gk) = FIRHW, (154) Gi) = (° S(xye™ de {" ACuye*™dur
‘ — SRig™ Gk). The proof isquite straightforward: prance

* n= {sexeax GK) = FOR,
faa ae ” which verifies the theorem, Asan example of its applica-

RE Ry olf *egx) as| ax. tion, refer to Fig. 11.26. Since the canvolution of two00 identical square pulses (f®-h) is a triangular pulse (g),
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Figure 11.26 Anillustration of the convolution theorem.

the product of their transforms(Fig. 7.17) must be the
transform of g, namely,

Fig} = {4 sine (kd/2)P.
Asan additional example, conyolve a squarepulse with
the two 6-functions of Fig. 11.11. The transform of the
resulting double pulse (Fig. 11.27) is again the productof the individual transforms.

The k-space counterpart of Eq. (11.53), namely, the
frequency convolution theorem, is given by

(11.55)

Flfe i=5 HNO Fh (£1.56)
thatis, the transform ofthe product is the convolutionof the transforms.

Figure 11.28 makes the point rather nicely. Here an
infinitely long cosine,f(%),is multiplied by a rectangular
pulse, h(x), which truncates it into a short oscillatory
wavetrain, g(x). The transform of f(x) is a pair of delta
functions, the transform of the rectangular pulse is a
sinc function, and the convolution of the two is the
transformof g(x). Compare this result with that of Eq.
(7.60).

i) Transform of the Gaussian Wave Packet
As a further example of the usefulness of the convo-
tution theorem, let’s evaluate the Fourier transform of 

a pulse oflight in the configuration of the wa
of Fig. 11.29. Taking a rather general apprthat since a one-dimensional harmonicform

one need only modulate the amplitude to Betaof the desired structure. Assuming the wayel@a.
to be independentof time, we can write it agj_

Shyer,

 
 
 
 
 
 
 
 

E(x, t) = Egetor-09,

E(x, 0)
Now, to determine #{ f(x)e“o*} evaluate

[iT ewrteom
Letting k’ = k~fy, we get

In other words, if F(k) = #{/{x)}, then,
Fi fxjeo"}. For the specific case of
envelope (11.11), asin the figure, f(x) =is,

From the foregoing discussion and Eq. (IL-1that

dx,

F(R’) = fe fixye*™ de = Fk by0

E(x, 0) = Va/a eo

FLE(x,Of

 
  

Figure 11.27 Anillustration of the convolution

ene,

de

 

 
 
 
 

 

 
 
 
 
 
 
 
 
 

arene.

i

254

ies An exam-
frequency con-

Aull
 

 
Ie,
| IPf

 
 
 

 x

VvF {gh= F (Fh}

F {EGO}

  
 

Gy

 
it

tea different way, the transform can be deter-
from Eq. (11.56). The expression E(x, 0) is now
as the product of the two functions f(x) =
p(-ax*) and A(x) =exp (-ikox). One way to
Fh} is to set f(x) = 1 in Eq.(11.57). This yields

nsform of 1 with & replaced by k— ko. Since
2n5(k) (see Problem 11,4), we have F{e""} =

—h). Thus F{E(x, 0)} is 1/27 times the convo-
Lof278(k — ko}, with the Gaussian ¢*"4* centered

ern holFiae

ie a 7
7A A Gaussian wave packet and its transform.
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A

 
# {A}

Hk) ® Fu)

ky &

on zero. The result™ is once again a Gaussian centeredek /40
on ko, namely, e & "0/42

11.3.3 Fourier Methodsin Diffraction Theory

) FrounhoferDiffraction .
Fourier-transform theory provides a particularly beau-
tiful insight into the mechanism of Fraunhofer diffrac-
tion. Let’s go back to Eq. (10.41), rewritten as

Egeitt-AR)
EY, 2)= j j eiYOFZR dy de (71.61)Aperture 

* We should actually have used the real part of exp(~ikgx) to startwith in this derivation, since the transform of the complex exponential
is different from the transform of cos fox and taking the real part
afterward is insufficient. This is the same sort of difficulty one always
encounters when forming products of complex exponentials. The
final answer (11.80) should,ir fact, contain an additional exp [-(4 +
tg)®/4a] term, as well as a multiplicative constant of $. This second
term is usually negligible in comparison, however. Even so, had we
used exp (+iigx) to start with (12.59), only the negligible term would
have resulted! Using the complex exponential to represent the sine
or cosine in this fashon is rigorously incorrect, albeit pragmatically
commonpractice. As a short-cut device,it should be indulgedin only
with the greatest caution! .
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This formula refers to Fig. 10.22, which depicts an
arbitrary diffracting aperture in the yz-plane upon
which is incident a monochromatic plane wave. The
quantity R is the distance from the centerof the aper-
ture to the output point where thefield is E(Y, Z). The
source strength per unit area of the apertureis denoted
by &,. We are talking about electric fields that are of
course time-varying; the term exp i(wt~AR) just relates
the phase of the net disturbance at the point (Y, Z) to
that at the center of the aperture. The 1/R corresponds
to the drop-off of field amplitude with distance from
the aperture. The phase term in front of the integral
is of little present concern, since we are interested in
the relative amplitude distribution of the field, and it_
doesn’t much matter what the resultant phaseis at any
particular output point. Thusif we limit ourselves to a
small region of output space over whichRis essentially
constant, everything in front of the integral, with the
exception of €,, can be lumpedinto a single constant.
The €, has thus far been assumedto be invariant over
the aperture, but that certainly need not be the case.
Indeed, if the aperture were filled with a bumpy piece
of dirty glass, the field emanating from each areaele-
ment dy dz could differ in both amplitude and phase.
There would be nonuniform absorption, as well as a
position-dependent optical path length through the
glass, which would certainly affect the diffracted field
distribution. The variations in €,, as well as the’ multi-
plicative constant, can be combined into a single com-
plex quantity

Ay, 2)=oly, ze, (11.62)
which we call the aperture function. The amplitude of
thefield over the apertureis described by sfo(y, 2), while
the point-to-point phase variation is represented by
exp [id(y, z)]. Accordingly, (9, z) dy dz is proportional
to the diffracted field emanating from the differential
source element dy dz. Consolidating this much, we can
reformulate Eq. (11.61) more generally as00

E(Y,Z)= j j Aly, zeROVE dy dx (11.68)
The limits on the integral can be extended to +0,
because the aperture function is nonzero only over the
region of the aperture.

 
 
 
 
 

  

 
 
 
 
 
 

 

 

I, gistribution in the image plane is the spatial-cn - 6
EF enecirum of the aperture function. The inverse

im is then .+00

Lo | | Elky, ke#2)dhey diz,
(11.68)

 0, 1) = FE(ky, kz)he (11.69)
ve seen time and again, the morelocalized the

more spread outis its transform—the same

he larger the angular spreadofthe diffracted
uivalently, the larger the spatial frequency

le Sit
stration of the method, consider the longslit

of Fig. 10.10, iluminated by a plane

=

Figure 11.30 A bit of geometry.

It might be helpful to envision dE(Y, Zjat a giv ® Atx)point P as if it were a plane wave propagal
direction of k as in Fig. 11.30, and havinga
determined by s#(y, z) dy dz. To underscore
ity between Eq. (11.63) and Eq. (21.145, lets
Spatial frequencies ky and kz as

ky = AY/R©ksin } = hcos Band
kz =kZ/R =~ hsin 6 = k cosy.

For each point on the image plane, there 1: 8 ETS)
Spatial frequency. The diffracted field can nowt
as jos

E (ky, kz) | ftom meet gealay
*

and we've arrived at the key point: the jf
in the Fraunhofer diffraction pattern is the
of the field distribution across the aperture
function). Symbolically, this is written as

Elky, kz) = Flan Dg

255

wo dimensions. The smaller the diffracting.
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wave. Assumingthat there are no phase or amplitude
variations across the aperture, 3(,z} has the form of
a square pulse (Fig. 7.17):

sty when |z{-= 4/2
- #02) {o when [z| > 5/2,

where fy is no longer a function of y and z If we take
it as a one-dimensional problem, .

tbr

E (kz) = FA(ayy = tf eth dzkmmbi2
= Gob sinc kzb/2.

With kz = k sin @, this is precisely the form derived in
Section 10.2.1. The far-field diffraction pattern of a
rectangular aperture (Section 10.2.4) is the two-
dimensignal counterpart of theslit. With s/(y, z) again
equal to “over the aperture (Fig. 10.23),

Etky, kz) = Ffsf(y, 2)}
2 tad

yme—bi2 dam—al2

 
Figure 11.31 An illustration ofthe convolution theorem.
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hence,
bRY akZElky, kz) = &% inc — sinc ——

(ky, kz) foba sinc oRoR
just as in Eq. (10.42), where 6a is the area of the hole.

Young's Experiment. The Double Siit
In ourfirst treatment of Young's experiment (Section
9.3) we took theslits to be infinitesimally wide. The
aperture function was then two symmetrical 6-pulses,
and the correspondingidealized field amplitude in the
diffraction pattern was the Fourier transform, namely,
a cosine function. Squared, this yields the familiar
cosine-squared irradiance distribution of Fig. 9.6. More
realistically, each aperture actually has some finite
shape, and the real diffraction pattern will never be
quite so simple. Figure 11.31 shows the case in which
the holes are actualslits. The aperture function, g(x),
is obtained by convolving the 6-function spikes, A(x),
thatlocate eachslit with the rectangular pulse,f(x), that
correspondsto the particular opening. From the convo-
lution theorem, the product of the transforms is the
modulated cosine amplitude function representing the
diffracted field as it appears on the image plane. Squar-
ing that would produce the anticipated double-slit
irradiance distribution shown in Fig. 10.17. The one-
dimensionaltransform curves are plotted against k, but
that’s equivalent to plotting against image-space vari-
ables by means of Eq. (11.64). (The same reasoning
applied to circular apertures yields the fringe pattern
of Fig. 12.2.)

Aperture function
SQ}

le.

Electric field
Fk)

 
 
   
  

   
    
 
 
  
 
  
 
 
 
 
 
 
 
 

 
   
 
 
 
 
 
 
 
  
 
 

ThreeSlits

Looking at Fig. 11.13(d) it should be de:
transform of the array of three 8-functi
diagram will generate a cosine that jg peamount proportional to the zero-frequen,
is, the 8-function at the origin, Whenthat de
has twice the amplitude of the other two, thtotally positive. Now suppose we have {
narrow paralle} slits uniformly illuminated
ture function correspondsto Fig. 11.32(a}, 5central 8-functionis half its previoussize, :
the cosine transform will drop one quarte
down,as indicated in Fig. 11.32(b). This
to the diffracted electric feild amplitude,a
Fig. 11.32(c), is the three-slit irradiance. pat

tion Canis Major—thebig dog), is actually one
vary system. It’s accompanied by a faint white
cy poth orbit about their mutual center of

Ee use of the tremendousdifference in bright-
fio 1), the image of the faint companion, as
Bin a telescope, is generally completely
ipy the side lobes of the diffraction pattern ofin star.

ation can be accomplishedin several ways, for
fe, by altering the shape of the aperture or its
i sion characteristics.* We already know from
66) that the diffracted field distributionis theom of sf(y, 2). Thus we couid effect a change in

besby altering So(y, z) or (9, z). Perhaps the
pproach is the one in which only s%o(y, 2) isMated. This can be accomplished physically by

Be the aperture with a suitably coated flat glass
‘coating the objective lensitself). Suppose that

g becomes increasingly opaque as it goesout from the center (in the yz-plane) towards
of a circular pupil. The transmitted field will

ndingly decrease off-axis until it is made to
negligible at the periphery of the aperture. In
ar, imagine that this drop-off in amplitude fol-

(Gaussian curve. Then s¢o(y, z) isa Gaussian func-
/2.6 its transform E(Y, Z), and consequently the
system vanishes. Even though thecentral peakis

Eidened, the side lobes are indeed suppressed (Fig.
Eng

other rather heuristic but appealing way to look
ifthe process is to realize that the higher spatial

cy contributions go into sharpening up the
Ws of the function being synthesized. As we saw

ii) Apodization
The term apodization derives from the G; eau
away, and wodec, meaningfoot. It refers to the Pi
of suppressing the secondary maxima(side lobesfeet of a diffraction pattern. In the case off
pupil (Section 10.2.5), the diffraction pattern,
spot surroundedby concentric rings. The
a flux density of 1.75% that of the central
small butit can be troublesome. About 16% of
incident on the image planeis distributed in
systern. The presence of theseside lobes af
the resolving powerofan opticalsystem toa
apodizationis called for,as is often the caseifll
and spectroscopy. For example, the star $
appears as the brightest star in the sky (it's in th

Trredianeg §stin one dimension (Fig. 7.13), the high frequen-
pro “rve 0 fill in the corners on the square pulse. In

time way, since sf(y,2) = F'{E(ky, kz)}, sharp
*, Fi on the aperture necessitate the presence of

\ fly fable contributions of high spatial frequency inracted field. It follows that making (3, z) fall
ually will reduce these high frequencies, which
is manifest in a suppression of the side lobes.

EXization is one aspect of the more encompassing
 

(a)
Figure 11.32 The Fourier transform ofthree equal -functions representingthree slits.

   

 
  

Extensive treatmentof the subject, see P. Jacquinot and B.
Dossier, “Apodization,”in Val. III of Progress in Optics.
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gE |

Figure 11.83 An Airy pattern comparedwith a Gaussian.

technique of spatial filtering, which is discussed in an
extensive yet nonmathematical treatmentin Chapter14.

ii) The Array Theorem
Generalizing some of our previous ideas to two
dimensions, imagine that we have a screen containing
N identical holes, as in Fig. 11.34. In each aperture,
at the same relative position, we locate a point
O1, Oo, ..., On at (91,21), (Jos Za), - ++» Ons Zw), TEspec-
tively. Each of these, in turn, fixes the origin of a
local coordinate system (y’, 2’). Thus a point {y’, 2‘) in
the local frame of the jth aperture has coordinates
Qyty.2;4+2') in the (y,z)}-system. Under coherent
monochromatic illumination, the resulting Fraunhofer
diffraction field E(Y, Z) at some point P on the image
planewill be a superposition of the individualfields at
P arising from each separate aperture; in other words,0

20.0 $ | [ aug entoroernancnay aeiat
(11.70)

or

E(Y, Z)= jo

+00

| trey, xyetore ayde!oo
N

XK eteyR (LID=3i
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9 vy
Figure 11.84 Multipie-aperture configuration.

where .;(y’,z’) is the individual aperture function
applicable to each hole. This can be recast, using Eqs.
(11.64) and (11.65), as+0

E(ky, kz} = | fs, ziyeies'hetdy! de’=e
N

xT git) eitha?,iat (11.72)

Notice that the integral is the Fourier transform of the
individual aperture function, while the sum is the trans-
form (11.42) of an array of delta functions

As ~L 80>9)8(z — 4)- 11.73)i

Inasmuchas E(ky,kz)itself is the transform #{sy, z)}
of the total aperture function for the entire array, wehave

Fly, 2}©Fh ots (y', z'Y} > FAs}. (11.74)
This equationisa statementof the array theorem, which
says that thefield distribution in the Fraunhofer diffraction
paitern of an array of similarly oriented identical apertures
equals the Fourier transform of an individual aperture func
tion (ie, its diffracted field distribution) multiplied by the
patlern thai would result from a set of point sources arrayed
in the same configuration (which is the transform of A).

 
  
 
 

This can be seen fromaslightly diffe
view, The total aperture function ma;
convolving the individual aperture fun,
appropriate array ofdelta functions, eachof the coordinate origins {y,, 2), 5Hencé  

   
 
 
 
 

 

pe

v | a emitted energy is proportional to
pia, With Flo) = FL/(O} it appears that [F(o)*
gy a measure of the radiated energy per uniti |. To be a bit more precise,

in terms of the appropriate
Inasmuch as [f(D=FOF) =

1‘ = (°role {~ F¥(w)e*™ dw di.
wing the orderof integration, we obtain

es 29a

AQ, 2) = 8:67, 2@ Ag,
whereuponthearray theorem follows dire,convolution theorem (11.53).

As a simple example, imagine that we 4
Young’s experimentwith twoslits along the
of width 5 and separation a. The individual gfunction for eachslit is a step function,

 

  
 
 

 
 
  
 
 
 

 
 
   
 
 

 
 
  
  
  

 

ohylz?) = {ee when ke'| s 6/20 when |z'| > 5/2,
 

1 ft +00
and so | rw)| oe «| dw=< co

Fl shy(2')}©Ssdrob sinc kzb/2,
With theslits located at z = 4.0/2, +40 1 tt

Ag = 8{z~a/2) + 5 + a/2), q { Lo)? dt = x] |F(w)P? dw,=1.76)and from Eq.(11.43)
F{A;} = 2 cos kza/2.

k,

E(kz)©2sf;ob sine (2) cos (‘<f
which is the same conclusion arrived at
11.31). The irradiance pattern is a set of
interference fringes modulated bya sinc-squaggg
tion envelope.

JF(o)|° = F*(@)F(w). This is Parseval’s formula.Seted, the total energy is proportionalto the area
ofthe |F(w)|* curve, and consequently |F(w)|? is

Rnctimes called the power spectrum orspectral energy
ifution. The corresponding formula for the space
ain is

‘Thus

oa iso

| LAs) de = | [FUP dk 1.77)Qn

jLorentzian Profile
fication of the mannerin which these ideas are
IN practice, consider the damped harmonic

fi, 4) x =0 depicted in Fig. 11.35. Here
11.3.4 Spectra and Correlation

 

D Parseval's Formula
Suppose that f(x) is a pulse offinite extent,
js its Fourier transform (11.5). Thinking back
7.8, we recognizethe function F(k) as the i
the spatial frequency spectrum of f(@).
then connotesthe amplitude ofthe contribt
pulse within the frequency range from

h 0 from f= —otor = 0
| foe? cosapt fromt=Otot= +0.

€ exponential dependencearises, quite gen-
enever the rate of change of a quantity

fon its instantancous value. In this case, we
ose that the powerradiated by an atom varies 
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Figure 11.35 A damped harmonic wave.

as(e“’”)'?, In any event,7 is knownasthe time constant
of the oscillation, and 7’~is the damping constant.
The transform of f(é) is

Fw) = { Ufoe7 cos motedt, (411.78)°

‘Theevaluation of this integralis explored in the prob-
lems. One finds on performingthecalculation that“1

Flw) -£[4- if + «| +8 [E- i{w~wo)
Whenf(t} is the radiated field of an atom, r denotes

the difetime of the excited state (from around 1.0 ns to
10 ns). Now if we form the powerspectrum F(w)F*(a),
it will be composed of two peaks centered on tw, and
thus separated by 2w9. At optical frequencies where
wo» y, these will be both narrow and widely spaced,
with essentially no overlap. The shape of these peaksis
determined by the transform of the modulation enve-
lope in Fig. 11.35, that is, a negative exponential. The
location of the peaksis fixed by the frequency of the
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modulated cosine wave, and the fact that there are two
such peaks is a reflection of the spectrum of the cosine
in this symmetrical frequency representation (Section
7.8). To determine the observable spectrum from
F(@)F*{w), we need only consider the positive
frequency term, namely,

|F(o)?aY (@— ag)+ 7/4
This has a maximumvalueoff§/y? at # = a9, as shown
in Fig. 11.36. At the half-powerpoints (w~ws) = + 7/2,
|F(w)/? = f8/2y°, whichis half its maximum value. The
widthof the spectralline between these points is equalto ¥.

The curve given by Eq. (11.79) is knownas the reso-
nance or Lorentz profile. The frequency bandwidth aris-
ing from the finite duration of the excitedstateis calledthe natural linewidth.

If the radiating atom suffers a collision, it can lose
energy and thereby further shorten the duration of
emission. The frequency bandwidth increases in the
Process, which is known as Lorentz broadening. Here
again, the spectrum is found to have a Lorentzprofile.
Furthermore, because of the random thermal motion
of the atoms in a gas, the frequency bandwidthwill be
increased via the Dopplereffect. Doppler broadening, as
it is called,results in a Gaussian spectrum (Section 7.10).
The Gaussian drops moreslowly in the immediate vicin-
ity of @) and then more quickly away from it than does
the Lorentzian profile. These effects can be combined
mathematically to yield a single spectrum by convolvingthe Gaussian and Lorentzian functions. In a low-
Pressure gaseous discharge, the Gaussian profile ts by
far the wider and generally predominates.

(12.79)

Veto?

fay

a @o
Figure 11.36 The resonance or Lorentz profile.

 
 
   
  
 
 
 
 
  
 
 

 
   
 
 
  
 
 
 
 
 
 
 
  

  
 

ii) Autocorrelation and Cross.cg,
Let's now gobackto the derivation of Pars,
and follow it through again,this time
modification. We wish to evaluate [°° fleusing much the same approach as befor qFlo)= FLO}, Thug

form of the Wiener—Khintchine theorem. It allows
mination of the spectrum by way of the

ation of the generating function. The

ive ¢g(7) applies when the function has finiteen it doesn’t, things will have to be changed

zt aly he integral can also be restated asipntly-

oy?) { APE 2) de
+0 eo

| S(t + rf) dis i ft +7) (184)
1 ft ole change ofvariable (¢ + 7 to 4). Similarly, the

. oe [*a F*taeey alation of the functions f(z) and Att) is
at a

« opt) = j PORE + 7) deChanging the orderof integration, we obtaixf anes)1 tte +00

xf Fre)|” fltt+ rei a] da)1 fee
=f] Preece +o do

tion analysis is essentially a means for compar-
signals in order to determine the degree of

y between them,In autocorrelation the original
js displaced in time by an amount+,the product
isplaced and undisplaced versions is formed,

area under that product (corresponding to the
fof overlap) is computed by meansoftheintegral.

1 Mftocorrelation function, cj(r), provides the result
feta=x] F(w)edeg “| be obtained in such a process forall values ofag e reason for doing such a thing, for example, is

@rdrict a Signal from a background of random noise.
Pisce how the business worksstep bystep,let’s take

the futocorrelation of a simple function, such as
Biwi +e), shownin Fig. 11.37. In each part of the

the function is shifted by a value of 7, the
ct f(t} - f(t + 7) is formed, and thenthe area under
oduct function is computed and plotted in part

ice that the processis indifferent to the value of
nal result is cy(r) = 3A? cos wr, wherethis func-
folds through onecycle as 7 goes through 27,
the same frequencyas f(2}. Accordingly, if we

process for generating the autocorrelation, we
m-Coustruct from that both the original amplitude

angular frequency w.-
Siming the functions to be real, we can rewritewr a

‘To evaluate the transform within thelastthat

by a changeof variable in Eq. (11.9). Hends, 4
fet r= FFwe},

so as discussed earlier, #{f(i + 7)} = Fle(11.80) becomes
+00 1

| fe + TP) dt = i F2 Jo  
   
 
 
 
    

  

and both sides are functions of the para
left-hand side of this formulais said to be
lation off(t), denoted by

oy(7) = i fet r)Pee) dt,
which is often written symbolicallyas f(t) ©
take the transform of both aides, Eq. (1) 86)
becomes (41.86)

+00

eat) = | FALE + 7) dt,2 «i
Fley(7)} = [FP is obviously similar to the expression for the 
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convolution of f(t) and (2). Equation (11.86) is written
symbolically as ¢a(7) = f(t) © A(?). Indeed,if either f(t)
or A(t) is even, then f() ® A(t) = f(t) © A(t), as we shall
see by example presently. Recall that the convolution
flips one of the functions over and then sums up the
overlap area (Fig. 11.21}, that is, the area under the
productcurve. In contrast, the correlation sums up the
overlap without flipping the function, and thusif the
function is even, f(#} = f(—t), it isn’t changed by being
flipped (or folded about the symmetry axis}, and the
two integrands are identical. For this to obtain, either
function must be even, since f(t) @ A(t} = h(t) ® fit).
The autocorrelation of a square pulseis therefore equa]
to the convolution of the pulse with itself, which yields
a triangularsignal,as in Fig. 11.24. This same conclusion
follows from Eg.(11.83) and Fig. 11.26. The transform
of a square pulse is a sinc function, so that the power
spectrum, varies as sinc® wu The inverse transform of
|F(w)f, that is, ¥7fsine? u}, is gz), which as we have
seen,is again a triangular pulse (Fig. 11.38).

It is clearly possible for a function to have infinite
energy (11.76) over an integration ranging from —0 to
+00 andyetstill have a finite average power

1 ft? °
Bin oe]LP

Accordingly, we will define a correlation thatis divided
bythe integration interval:

Cp(7) =
1 ft?

sel HOREt+ tdi. 1.82
liTs -

For example, if f(t) = A (i.e., a constant), its autocorre-lation, 1 fer
= lim sa (A)(A) dt = A®,Cyt) bese] {A)(A)

and the power spectrum, which is the transform ofthe
autocorrelation, becomes

F{Cy(a)} = AP2n6(w),
asingle impulse atthe origin (w = 0), which is sometimes
referred to as a de-term. Notice that C,(r) can be
thought of as the time average of a product of two
functions, one of which is shifted by an interval 7. In
the next chapter, expressions of the form (/*(é)R(é + 7))
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sine function.

arise as coherence functionsrelatingelectricfields. They
are also quite useful in the analysis of noise problems,
for example, film grain noise.

We can obviously reconstruct a function from its
transform,butonce the transform is squared, as in Eq.
(11.83), we lose information about the signs of the
frequency contributions, that is, their relative phases.
In the same way, the autocorrelation of a function
contains no phase information and is not unique, To
see this more clearly, imagine we have a number of
harmonic functions of different amplitude and
frequency.If their relative phases are altered, the resul-

Figure 11.37 The autocorrelation of a 2

 
  

 
 
 
  

Bigg The square of the Fourier
fhe réciangular pulse fe) Gess the Fourier transform of theof f(z).

in

creens with appropriate apertures could serve
f transparencies (e.g., for square pulses).* The

o¢ at any point P on the image is due toa
Mied bundle of parallel rays that has traversed both
Mearencies. The coordinates of P, (@f, pf), are xed

Sorientation of the ray bundie,that is, the angles
If the transparenciesare identical, a ray passing
any point(x, y) on the first film with a transmit-
(x,y) will pass through a corresponding point

%9+ Y) on the second film where the transmit-
g(x+ X,y¥+ Y). The shifts in coordinate are
X= é@ and Y = ¢, where¢is the separationthe transparencies. Theirradiance atPisthere-

tional to the autocorrelation of g(x, 9), that

  
 
  

 
  

  
  
 
 
 
 
 
 
 
 
 
 
  

er=A) cos]
A? [@)

tant function changes, as doesits transfornt
cases the amountof energy available at any
mustbe constant. Thus, whatever the form @
tantprofile, its autocorrelation is unaltered:
a problem to show analytically that
Asin (wt + ), Cy(r)=(A"/2)cos or, wlloss of phase information, ;

Figure 11.39 shows a meansof optical]
two two-dimensional spatial functions. B
signals is represented as a point-by-poifil ¥
the irradiance transmission property of @ bhotransparency (T; and T;). For relatively 5103]

+0

Gy(X ¥) = j fac. gate + X,9 + Z) de dy,
(£4.88)

flux-density pattern is called a correlogram.
parenci¢s are different, the imageis of course
‘Kovasznay and A. Arman, Rev, Sci, Instr, 28, 793 (1958),

Han, Jr., f. Opt Soc. Am. 52, 454 (962). 
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fe) FUE©F(ky

op = A) OF) [F(QP

NK”
representative of the croag-correlation of the functions.
Similarly, if one of the transparenciesis rotated by 180°
with respect to the other, the convolution can be
obtained (see Fig. 11.25).

Before moving on, let’s make sure that we actually
do have a good physical feeling for the operation per-
formedby the correlation functions. Accordingly, sup-

Broadoniform

 
Figure 11.39 Optical correlation of two functions.

 



260

.=__ oO = 7
504 Chapter rr Fourier Optics  

  
 

 
 pose we have a random noise-like signal eg,ing irradiance at a point in space or a j
voltage or electric field), as in Fig. 1]
autocorrelation of f(t) in effect compares the®
withits value at someothertime, f(¢+ 7), Fo,
with r= 0 the integral runs along the sign;
summing up and averaging the product off
f(t+ 7); in thiscaseit’s simply f*(2). Since at
of t, f7(¢) is positive, Cy(0) will be a comp
number. On the other hand, whenthenoiseig
with itself shifted by an amount +7, Gr
somewhat reduced. Therewill be points in (sy
fife + 71) is positive and other points wiser 7
negative, so that the valueof the integral dro)
11.40(b)]. In other words, by shifting the ¢
respect to itself, we have reduced the points
similarity that previously (7=0) occurred at ay
Asthis shift r increases, whatlittle correlation!
quickly vanishes, as depicted in Fig. 11.40(c)$

Wide bandwidth noise assume from the fact that the autocorrelation
powerspectrum forma Fourier transform pa

Cop) that the broader the frequency bandwidthoffthe narrower the autocorrelation. Thus for™
width noise even a slight shift markedly red
similarity between f(t) and f(t + 7). Furthermo)
signal comprises a random distribution of 7Ei@
pulses, we can see intuitively that the similarit}
of earlier persists for a time commensurate

Figure 11.40 A signal f(t) andits autocorrelation. width of the pulses. The wider(in time) the

 
 
  
 
   
 
 
  
 
  

  

   
 

 

 
  
 
 

    

T examine 

 
ond to the locationsin time of the random pul-
rly, Cy(r) shouldn't be affected by the position
lses along 4.
ry much the same way, the cross-correlation is

the moreslowly the correlation decreasesas 7, BMieasure of the similarity between two different
Butthis is equivalent to saying that reducing, 8, f(t) and A(t), as a function ofthe relative
bandwidth broadens Cyr).All of this is in keeping r, Unlike the autocorrelation, there is now
our previous observation thatthe autocorrelati special about 7 = 0. Once again, for each value
out any phase information, which in this case woul ayerage the product f(t)h(t+7) to get Cpr)

(11.87). For the functions shownin Fig. 11.41,
Would have a positive peak at 7 = 7).

ge the 1960s a great dealof effort has gone into
lopmentof optical processors that can rapidly
Pictorial data. The potential uses range from

ring fingerprints to scanning documents for
f phrases; from screening aerial reconnaissance
ito creating terrain-following guidance systemss. An example of this kind of optical pattern

mm, accomplished using correlation techniques,
in Fig. 11.42, The inputsignal f(x, 9) depicted

&) _ 
 

 
  
  
 
   
 
 

  

r=0
fo
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Figure 11.41 ‘the crow-corssliil]fit) and AQ).
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Figure 11.42 An example of optical pattern recognition.(a) Input
signal, (b) reference data, (c) correlation pattern. (Reprinted with
permission from the November 1980 issue of Flectro-Optical Systems
Design, David Casasent.)

in photograph {a) is a broad view of some region that
is to be searched for a particular group of structures
[photograph (b)] isolated as the reference signal A(x, 9).
Of course, that small frame is easy enough to scan
directly by eye, so to make things morerealistic, imagine
the input to be a few hundred feet of reconnaissance
film. Theresult of optically correlating these two signals
is displayed in photograph (c}, where we immediately
see, from the correlation peak (ie., the spike of light),
that indeed the desired group of structures is in the
input picture, and moreoverits location is marked by
the peak,

11.3.5 Transter Functions

i) An introduction to the Concepts
Until recenttimes, the traditional meansof determining
the quality of an optical element or system of elements
was to evaluateits limit of resolution. The greater the
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Spread function

Figure 11.43 The line-spread function.

resolution, the better the system was presumedtobe.
In thespirit of this approach one might train an optical
systerm on a resolution target consisting, for instance,
of a series of alternating light and dark parallel rec-
tangular bars. We have already seen that an object point
is imaged as a smear oflight described by the point-
spread function S(¥, Z), as in Fig. 11.18. Underinco-
herentillumination these elementary flux-density pat-
terns overlap and add linearly to create the final image.
The one-dimensional counterpartis the line-spread func-
tion 8(Z), which correspondsto the flux-density distri-
bution across the image of a geometrical line source
having infinitesiinal width (Fig. 11.43). Because even
an ideally perfect system is limited by diffraction effects,
the image of a resolution target (Fig. 11.44) will be

 

 
 
  
 
 
  
 
  
 

 
  
 
 
 
 
 
 
 
  
 
 
  
 
  

   
  
    
  

somewhatblurred (see Fig. 11.20). Thus, as thy
of the bars on thetarget is made narrowe, a is Wigbe reached where the fine-line structure
Ronchi ruling) will no longer be discernib), F
is the resolution limit of the system. We can a
a§ a spatial frequency cutoff where each bright ;
barpair constitutes one cycle on the object @measure of which is line pairs per mm). Apanalogy which underscores the shortco;
approach would be to evaluate a high-fid
system simply on thebasis ofits upper-freq
Thelimitationsof this scheme became quita
with the introduction of detectors such as the aitbicon, image orthicon, and vidicon. These +
a relatively coarse scanningraster, which fixes
utionlimit of the lens-tube system at a fairly low
frequency. Accordingly, it would seem reaso;
design the optics preceding such detectors so 4
provided the most contrast overthis limited freq
range.It would clearly be unnecessary and perlianwe shall see, even detrimental to select a mating
system merely because of its own high limit :
ution. Evidently it would be more helpful to
figure of merit applicable to the entire operarf
frequency range.

Wehave already represented the object as
of point sources, each of which is imaged aS]
spread function by the optical system, and that pal
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Figure 11.44 A bartarget resolution chart,

 
 

261

  
 

5 x

To

{A ~ Foxin)a aN

EUmint! nex)

—— 0 e

{145 Theirradiance into and outof a system.

tis then convolved into the image. Now we
he problem ofimage analysis froma different

mrelated perspective. Consider the object to be
ee of an inputlightwave, whichitself is made
lane waves. These traveloff in specific directions

nding, via Eqs. 11.64 and 11.65, to particular
Di spatial frequency. How doesthe system modify

itude andphase of each plane waveasit trans-
pm object to image?

ly useful parameterin evaluating the perform-
system is the contrast or modulation, defined

Foran ~ Frain
Exe Footer

ale cxaniple, suppose the inputis a cosinusvidal
gxe. distribution arising from an incoherently

Modulation (11,89)

11.3 Optical Applications 507

illuminated transparency (Fig. 11.45). Here the output
is also a cosine, but one that’s somewhataltered. The
modulation, which correspondsto the amountthe func-
tion varies aboutits mean value divided by that mean
value, is a measure of how readily the fluctuationswill
be discernible against the de background. Forthe input
the modulation is a maximum of 1.0, but the output
modulation is only 0.17. This is only the response of
our hypothetical system to essentially one spatial
frequency input—it wouldbenice to know whatit does
at all such frequencies. Moreover, here the input modu-
lation was 1.0, and the comparison with the output was
easy. In generalit will not be 1.0, and so we define the
ratio of the image modulation to the object modulation ai all
spatial frequencies as the modulation transfer function,or MTF.

Figure 11.46is a plot of the MTFfortwo hypothetical
lenses. Both start off with a zero-frequency (dc) value
of 1.0, and both cross the zero axis somewhere where
they can no longer resolve the data at that cutoff
frequency. Had they both been diffraction-limited lenses,
that cutoff would have depended only on diffraction
and, hence, on thesize of the aperture. In any event,
suppose one of these is to be coupled to a detector
whose cutoff frequency is indicated in the diagram.
Despite the fact that lens 1 has a higher limit of reso-
lution, lens 2 would certainly provide better perfor-
mance when coupled to the particular detector.

Os

Detectorcut-off
Spatial frequency (line pairs per mm}

Figure 11.46 Modulation versusspatial frequency for two lenses.
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Object and ideatized image(unit magnification) 

 
 
 

Trradiance ac level
Ta

a = Diffraction limited image

Irradiance
 

Asymmetrically aberrated image

 
Irradiance

 
 

Figure 11.47 Harmonic input and resulting output.

It should be pointed out that a square bar target
provides an inputsignalthatis a series of square pulses,
and the contrast in the imageis actually a superpositionof contrast variations due to the constituent Fourier
components. Indeed, one of the key points in what isto follow is that optical elements functioning as linear
operators transform a sinusoidal input into an undistorted 

 
 

  
  
    
   
 
 

  
 
 
  
  
  
 
  

 
  
 
 

 
 
 

   
  
 
 
 

sinusoidal output. Despite this, the input andirradiance distributions as a rule will hot rey oul
For example, the systern’s magnification,spatial frequency of the output (hencef
nification will be taken as one). Diffraction and
tions reduce the sinusoid’s amplitude (contrast),
asymmetrical aberrations {e.g., coma) and poor i
ing of elements produce a shift in the positey”
outputsinusoid correspondingto the introdug
phase shift. This latter point, which was con
Fig. 11.12, can be appreciated using a diagra
of Fig. 11.47. i

If the spread function is symmetrical, the imus
irradiance will be an unshifted sinusoid,éyvhe: ’
asymmetrical spread function will apparently 5outputovera bit, as in Fig. 11.48. In either cas
less of the form of the spread function, the imageis

Si

ia siZ}

if the object is harmonic. Consequently,if we eng Besconobject as being composed of Fourier compont
manner in which these individual harmo;
ponentsare transformed bythe opticalsys am AZ)
corresponding harmonic constituents of
the quintessential feature of the process,
that performsthis service is knownas the of
fer function, or OTF.It is a spatial freque
dent complex quantity whose modulusis the
transfer function (MTF) and whose phas
enough, is the phase transfer function (§formeris a measure of the reduction in contrasé from
object to image over the spectrum. Thelatter
the commensuraterelative phase shift. Phase 553
centered optical systems occur only off: and oftthe PTFis of less interest than the MT] 1 50, €4
application of the transfer function must be stud
carefully; there are situations wherein ht FIF
crucial role. In point of fact, the MTF has,becom
widely used meansof specifying the perf :
sorts of elements and systems, from lenses,
tape, and filmsto telescopes, the atmosphere)
eye, to mention but a few. Moreover,it fas thi -tage that if the MTFs for the individual indepemess
components in a system are known,the total
often simply their product. This is inapp)cascading oflenses, since the aberrations
can compensate for those of another lens

 

meli48 Harmonic input andoutput with an asymmetricspread

iE and they are therefore not independent. Thus
Pactograph an object having a modulation of 0.3
Bycles per mm,using a camera whoselensat the

ate setting has an MTFof 0.5 at 30 c/mm and
Wear such as Tri-X with an MTF of 0.4 at 30 c/mm,
"53modulation will be 0.3 x 0.8 x 0.4 = 0.06,

ly, the whole idea oftreating film as 2 noise-free linear
somewhat suspect, For further reading see J. B, De Velis

Farrent, Jr, “Transfer Function for Cascaded Optical
fand BJ: Opt. Soc. Am, 87, 1486 (1967).

262

11.3 Optical Applications 509

i) A More FormalDiscussion
Wesaw in Eq. (11.51) that the image (under the condi-
tions of space invariance and incoherence) could be
expressed as the convolution of the object irradiance
andthe point-spread function, in other words,

AY, Z) = Toly, 2) @ S{y,2).
Thecorresponding statement in the spatial frequency
domain is obtained by a Fourier transform, namely,

RILY, Zi Fol, 2 HS, Mh,
where use was madeofthe convolution theorem (11.53).
This says that the frequency spectrum of the imageirradiance
distribution equals the product of the frequency spectrum of
the object irradiance distribution and the transform of the
spread function (Fig. 11.49). Thus,it is multiplication by
F{S{y, 2)} that producesthe alteration in the frequency
spectrum of the object, converting it into that of the
image spectrum.In other words,it is F{S(y, z)} that, in
effect, transfers the object spectrum into the image
spectrum, This is just the service performed by the
OTF, and indeed weshall define the unnormalized
OTFas

11.90)

(19D

T(ky, kz) = FAS(3, )},
The modulus of 7(ky, kz) will effect a change in the
amplitudes of the various frequency componentsofthe
object spectrum, while its phase will, of course,
appropriately alter the phase of these components to
yield ¥{1,(¥, Z)}. Bear in mind thatin the right-hand
side of Eq. (11.90) the only quantity dependent on the
actualoptical system is S{y, z),so it’s not surprising that
the spread function is the spatial counterpart of theOTF.

Let’s.now verify the statement madeearlier that a
harmonic input transforms into a somewhat altered
harmonic output. To that end, suppose

Io(z) = 1+ a cos (kez + €),

1.92)

(11,93)
where for simplicity’s sake, we'll again use a one-
dimensionaldistribution. The | isa dc bias, which makes
sure the irradiance doesn’t take on any unphysical nega-
tive values. Insofar as f®@h=A@f, it will be moreconvenient here to use

F(Z) = 5) @ Lolz),
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Fi 1.49 The relationshi Jos ® . Ly, . ‘
beeen ‘he objet and.tree “en ee oa pat this is a function of the same form as the It has now become customary practice to define a set
spectra by way of the OTF, and y al (11-93), I,(2}, whichis just what we set out of normalized transfer functions by dividing T(Kz) byits
the object and image irradiances ne. If the line-spread functionis symmetrical _zero spatial frequency value, that is, (0) = [75 S(z) de.
by way of the point-spread func:ieayaeya ie F{S(2)} = 0, M{kz) = FAS) and (kz) = The normalized spread function becomestion—all in incoherent  illumi- en), Fs : sated in thi + no phase shift, as was pointed out in the S(z)nation. is Sc lodd dfune. Sn(z) = . (11.109)ges). For an asymmetric (0 ) spread func- a Foo

7 hd ji fs nonzero,as is the PTF. S(z) dzi ——

F {lo} x IS} ”

x =

Frequency spectrum of object Transfer function

reand so or
400 F(kz)~A(kz) + iBlkz).

I{Z) | {1 +a cos[ke(Z—2)+e]}S(2) de.
. a cos [kz(Z—z)+e]}S(z) dz. In addition,

Expanding out the cosine, we obtain ified UF(esNeO* ~ Lickel

Ma | S(2) de + a cos (keZ + | cos kytS{z)dz Where 2 anni -s [F(ke)|=[AP kz) + Bk)!”0

+a sin (kZ + €) | sin kyr S(z) dz. and  
: . g(k) = tan Bie),Referring back to Eq. (7.57), we recognize the second Alkz)

andthird integrals as the Fourier cosine andsine trans-
forms of S{z), respectively, that is to say, ¥,{S{z)} and
FA{S(z)}. Hence

In precisely the same way, we apply this to!
writing it as

F{S(e)} = F(kz)~Mike

  

+00

Eay= Cc S{z) de + FA{S(zy}a cos (kzZ + €} where A(kz) and ®(kz) are the unnormalthe PTF, respectively. It is left as a B
+ G{S(z)}a sin (kzZ + €). (194) that Eq. (11.94) can be recast as

Recall that the complex transform we've become so used 00 ; ae
to working with was defined such that E(Z) = C S(2) da batt ha} Boe |e 4B An exampleof the kind oflens design information  a sniayitie® techniques. (Photos courtesy OpticalFi FY FAFA+ iFAK)} (14.95)  
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while the normalized OTFis
FS(zyTz)= = FAS}, (1.10

S(z) dz
orin two dimensions

Tky, kz) = Mky, kze'or), 1.109)
where M (ky, kz) = M(ky, kz)/F(O, 0). Therefore I,(Z)
in Eq. (11.99) would then be proportional to

I + aM (kz) cos [kzZ + € — ®{kz)].
The image modulation (11.89) becomes aM(kz), the
object modulation (11.93)is a, and the ratio is, as expec-
ted, the normalized MTF = M{kz).

This discussion is really only an introductory one
designed more as a strong foundation than a complete
structure. There are many otherinsights to be explored,
such asthe relationship between the autocorrelation of
the pupil function and the OTF, and from there, the
means of computing and measuring transfer functions
(Fig. 11.50)—butforthis the readeris directed to theliterature.t

PROBLEMS
11.1 Determinethe Fourier transform of the function

_ [Eosin kyx, |x] <b
Fen {G le> L.

Make a sketch of ¥{E(x)}. Discuss its relationship to
Fig. 11.11.
7 See theseriesofarticles “The Evolution of the Transfer Function,”
by F. Abbott, beginning in March 1970 in Optical Spectra; thearticles
“Physical Optics Notebook,” by G. B. Parrent, Jr, and B. J.
Thompson,beginningin December 1964, in the S.P.LE. Journal, Vol.
3; or “Image Structure and Transfer,”by K. Sayanagi, 1967, available
from the Institute of Optics, University of Rochester. A numberof
books are worth consultingfor practical emphasis, e.g. Modern Optics,
by E. Brown; Modern Optical Engineering, by W. Smith; and Applied
Optics, by L. Levi. In all of these, be careful of the sign conventionin the transforms.

 
 

11.2* Determine the Fourier transform ofin?
sin® k,x,

fay= {anh bist0, le] >,Makea sketchofit.

11.3 Determine the Fourier transform of
cos* wt, lil < 7y= Ma

ro~{) I> 7
Makea sketch of F(w), then sketchT+ 20,

11.4* Show that ¥{1} = 298(k).

11.5* Determine the Fourier transform of the fition f(x) = A cos kpx.

11.6 Given that F{f(x)} = F(k) and Fih(x)}
if a and 6 are constants, determine F{af(x) +
11.7* Figure 11.51 shows two periodic é
and h{x), which are to be added to produc
g(x), then draw diagrams of the real andy
frequency spectra, as well as the amplitude spameach of the three functions.

f(xy

 
Figure 11.51

te the Fourier transform ofthe triangular
in Fig. 11.52. Make a sketch of your answer,

Elf the pertinent values on the curve.

 
Given that ¥{ f(x)} = F(k), introduce a constant
factor 1/a and determinethe Fourier transform

ia). Show that the transform off(—x) is F(—k).
® Show that the Fourier transform of the trans-

Pi F(kK)}, equals 2af(—x), and that this is not the
ransform of the transform, which equals f(x).

roblem was suggested by Mr. D. Chapmanwhile
mt at the University of Ottawa.

The rectangular function is often defined as
0, \e— xoial > 5

real—| =4a Me-xyal=4
1, te—xp)/a] <3,

B set equal to $ at the discontinuities (Fig.termine the Fourier transform of

F(x) = rect 
~*‘tat this is just a rectangular pulse,like that in

H.Ub), shifted a distance x9 from the origin.

ith thelast two problemsin mind, show that
i) Sinc (3x)} = rect(k}, starting with the knowl-

eat Flrect(x)} = sinc x), in other words, Eq.L=a, where a=1,
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Figure 11.58

11.18* Utilizing Eq.(11.38), show that #'{F{f(x}}} =ft).

11.14* Given ¥{f(x)}, show that ¥{ f(x — x»)} differs
from it only by a linear phase factor.

11.15 Prove that f@h=h@f directly. Now do itusing the convolution theorem.

11.16* Suppose we have two functions, f(x,y) and
A(& 9), where both havea valueof 1 over a square region
in the xy-plane andarezero everywhere else (Fig. 11.54).
If g(X, ¥) is their convolution, make a plot of g(X, 0).

 

 

Figure 11.54

11.17 Referring to the previous problem,justify the
fact that the convolution is zero for |X] = d + ¢ when }
is viewed as a spread function.
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11.18% Use the method illustrated in Fig. 11.23 to
convolve the two functions depicted in Fig. 11.55.

Figure 11.35

shifting one of the functions an amount %», we get
f(x — x9) © A(x) = g(X — x0).

11.20* Prove analytically that the convolution of any
function f(x) with a delta function, 6(x}, generates the
original function f(X). You might makeuseof the factthat 5(x) is even.

11.21 Prove that 8(x— xo) @ f(x) = f(X — xo) and dis-
cuss the meaning of this result. Make a sketch of two
appropriate functions and convolve them. Besure to
use an asymmetrical f(=).

11.22" Show that  #{f(x)cos kox} = LF(k — ko) +
F(k + ko)/2 and that Ff f(x) sin kox} = [F(k — ky) —
F(K + koy}/2i.

11.19 Given that f(x) @ h(x) = g(X), show thatafter

i

i {1.23* Figure 11.56 shows two functions. Convolvethem graphically and draw a plotof the result.

RG)

 
 Figure 11.56 

 
 
 
 

 
 
 
 
 
 
 
  
  
 
 
 

 

 
 
  

 
 
 

  
  
  
 

11.24 Given the function x fe) = E®
xa 4 1 

sta
li

a

determine its Fourier transform, (See Probleg ip
|

f(x)©rect + rect    

11.25 Given the function f(x) = 8(x +3) +)
8(x — 5), convolve it with the arbitrary functig| a ns
11.26* Make a sketch of the function arisin Show (for normally incident plane waves) that
convolution of the two functions depictedini

jan fperture has a center of symmetry {i.e., if thefunction is even), then the diffracted field in
feanhofer case also possessesa center of symmetry.

 
JLade oa Suppose a given aperture produces a Fraun-

Mield pattern E(Y, 2}. Show thatif the aperture’s
are altered such that the aperture function

Aly, 2) to sf(ary, Bz), the newly diffracted field
Biven by

Figure 11.57  

11.27 Figure 11.58 depictsa rect function (as
above) and a periodic comb function. Convolve fim
to get g(x). Now sketch the transform of each of i
functions against spatial frequency k/27 = JJ
your results with the convolution theorem,
relevant points on the horizontalaxesin tern
the zeros of the transform of f(x).

1 YZE'(Y, Z)=-— E(-,4}.
(¥, Z) ap (2, 2)

Show that when f{t}= Asin (wt + €), Cy(z) =
wr, which confirms theloss of phase informa-fithe autocorrelation.

Suppose wehavea singleslit along the y-direc-
f width 6 where the aperture function is constant
tat a value of sf,. Whatis the diffracted field if
apodizetheslit with a cosine function amplitude

fix) AG)

Figure 11.58
3.

11.28 Figure 11.59 shows,in one dimension,
tric field across an illuminated. aperture 60
several opaque bars forming a grating. Cont
to be created by taking the product ofaP
tangular wave A(x) and a unit rectangular
sketch the resulting electric field in the
region.

r
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mask? In other words, we cause the aperture function
to go from #pat the centerto 0 at +6/2 via a cosinusoidal
drop-off.

11.33* Show, from theintegral definitions, that f(x) ©
&(x) = f(x) @ g{—x).

11,34* Figure 11.60 shows a transparent ring on an
otherwise opaque mask. Make a roughsketch ofits
autocorrelation function, taking 1 to be the center-to-
center separation against which you plot that function.

Figure 11.60

41.35* Consider the function in Fig. 11.35 asa cosine
carrier multiplied by an exponential envelope. Use the
frequency convolution theorem to evaluate its Fouriertransform.
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BASICS OF

Ml

T... far in our discussion of phenomena involving
the superposition of waves, we've restricted the treat-
mentto that of either completely coherent or completely
incoherent disturbances. This was done primarily as a
mathematical convenience, since, as is quite often the
case, the extremes in a physical situation are the easiest
to deal with analytically. In fact, both of these limiting
conditions are more conceptual idealizations than actual
physical realities. There is a middle ground between.
these antithetic poles, which is of considerable contem~
porary concern—the domain of partial coherence. Even
so, the need for extending the theoretical structure is
not new;it dates back at least to the mid-1860s, whenEmile Verdet demonstrated that a primary source com-
monly cansidered to be incoherent, such as the Sun,
could produce observable fringes when it iluminated
the closely spaced pinholes (=0.05 mmm) of Young's
experiment (Section 9.3). Theoretical interest in thestudy of partial coherence lay dormant until it was
revived in the 1930s by P. H. van Cittert and later by

itz Zernike. And as the technology flourished, advanc-
ing from traditional light sources, which were eseentially
optical frequency noise generators,to the laser, a new
practical impetus was given the subject. Moreover, the
recent adventof individual-photon detectors has madeit possible to examine related processes associated with
the corpuscular aspects of the optical field. .

Optical coherence theory is currently an area of activeresearch. Thus, even though much ofthe excitement
in thefield is associated with material beyondthelevel
of this book, we shall nonetheless introduce some ofthe basic ideas.
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a quasimonochromatic point source.If the
ce length, ¢A¢,, is much larger than the distance

een P, and Pe, then a single wavetrain can
end over the whole separation. The distur-

, P, would then be highly correlated with the
ce occurring at P,. On the other hand,if this

L,dinal separation were much greater than the
ce length, many wavetrains, each with an unre-

phase, would span the gap rg. In that case, theces at the two points in space would be
dent at any given time. The degree to which a
jon exists is sometimes spoken of alternatively

e amount of longitudinal coherence. Whether we
nk in terms of coherence time (At.) or coherence
fh (cAi,), theeffect still arises from the finite band-of the source.
Fhe idea of spatial coherenceis most often used to

ihe effects arising from thefinite spatial extent of
ary light sources. Suppose then that we have a

sical broad monochromatic source. Two point
ators on it, separated by a lateral distance that is

ympared with A, will presumably behave quite
dently. That is to say, there will be a lack of
on existing between the phases of the two emit-

urbances. Extended sourcesofthis sort are gen-
exferzeil to as incoherent, but this description is
hat misleading, as we shall see in a moment.

Wy oneis interested not so muchin whatis happen-
mn the source itself but rather in whatis occurring
h some distant region of the radiation field. The
ion to be answeredis really: How do the nature
source and the geometrical configuration of the

lion relate to the resulting phase correlation
two laterally spaced points in the light field?

to mind Young’s experiment, in which a
monochromatic source $ illuminates two pin-

4n opaque screen. Thesein turn serve as secon-
irees, S, and Sz, to generate a fringe pattern

istant plane of observation, %, (Fig. 9.5). We
knowthatif S is an idealized point source, the

tsissuing from anyset of apertures S; and 52 on
Tmaintain a constantrelative phase; they will be'Y correlated and therefore coherent. A well-
Garray of stable fringes results, and the field is

EY coherent, At the other extreme, if the pinholes

i

12.1 INTRODUCTION

Earlier (Section 7.10) we evolved the highh
ture of quasimonochromaticlight as resem
of randomly phasedfinite wavetrains (Fig.
a disturbance is nearly sinusoidal, ak
frequency does vary slowly (in comparisong
of oscillation, 10'°Hz) about some mean valit
Moreover, the amplitude fluctuates as well, butth
is a comparatively slow variation. The averagé
stituent wavetrain exists roughly for a time
is the coherencetime given by the inverseof tbandwidth Av. -

It is often convenient, even if rather artifi
divide coherenceeffects into two classificat
andspatial, The formerrelates directly to the fi
of the source, the latter to its finite extent in

To be sure, if the light were mono
would be zero, and Af, infinite, but this 3
unattainable. However, over an interval mx
than Ai, an actual wave behaves essentiallymonochromatic. In effect the coherence thm
poral interval over which we can reasonably predi g
of the lightwave at @ given point in space. This 2is meantby temporal coherence; namely, if :
the wave has a high degree of temporal cohel

ice versa. 4 a
“The same characteristic can be viewed, i
differently. To that end, imagine that We :
separate points P, and P; lying on the same}
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are illuminated by separate thermal sources (even with
narrow bandwidths), no correlation exists; no fringes
will be observable with existing detectors, and the fields
at 5, and S, are said to be incoherent. The generation
of interference fringes is then seemingly a very con-venient measure of the coherence.

Wecan gain some importantinsights into the process
by returning to the general considerations of Section
9.1 and Eq. (9.7). Imagine two scalar waves E,(t}) and
£,{¢) traveling toward, and overlapping at, point P, as
in Fig. 9.2. If the light is monochromaticandboth beams
have the same frequency, the resulting interference
pattern will depend ontheir relative phase at P. If the
waves are in phase, E,(f)E2(t) will be positive for all ¢
as the fields rise and fall in together. Hence} Iyy =
2(E,(t)E2(t)) will be a nonzeropositive number, and the
net irradiance I will exceed I, + Ip. Similarly, if the
lightwaves are out of phase, one will be positive when
the other is negative, with the result that the product
£,(t)£(t) will always be negative, yielding a negative
interference term I;9, and the result that £ will be less
than I, + Iz. In both these cases, the product of the two
fields noment by momentis certainly oscillatory, butit
is nonetheless either totally positive or negative and so
averages in time to a nonzerovalue,

Now consider the morerealistic case in which the two
lightwaves are quasimonochromatic, resemblingthe dis-
turbance in Fig. 7.21, which has a finite coherence
length. If we again form the product E,(t)Eo(t), we see
in Fig. 12.1{c} thatit varies in time, drifting from nega-
tive to positive values. Accordingly, the interference
term (E,(t)F2(t)), which is averaged over a relatively
long interval compared with the periods of the waves,
will be quite small, if not zero: I ~ I; + Iz. In other
words, insofar as the two lightwaves are uncorrelated
in their risings and fallings, they will not preserve a
constant phase relationship, they will not be completely
coherent, and they will not produce the ideal high-
contrast interference pattern considered in Chapter 9,
We should be reminded here of Eq. (11.87), which
expresses the cross-correlation of two functions—with
7= 0. Indeed,if P is shifted in space (e.g., along the
plane of observation in Young’s experiment), thereby
introducinga relative time delay of + between the two
lightwaves, then the interference term becomes
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Figure 12.1 Two overlapping £-fields and their product as functions
of time. The more uncorrelated the fields, the more nearly the productwill averageto zero.

(E\(t)E9{t + 7)), which is the cross-correlation. Coher-
ence is correlation, a point that will be made formallyin Section 12.3.

Young’s experiment can also be used to demonstrate
temporal coherence effects with a finite bandwidth
source. Figure 12.2(a} shows the fringe patterns
obtained with two small circular apertures illuminated
bya He-Nelaser. Before the photograph in Fig. 12.2(b)
was taken, an optically flat piece of glass, 0.5 mm thick,
was positioned over one of the pinholes (say 5,). No
change in the form of the pattern (other than a shift in
its location) is evident, because the coherence length of
the laser light far exceeds the optical path-length
difference introducedby the glass. On the other hand,
when the same experimentis repeated usingthelight

 

 
  

 
  
 
 
  

   
 
 
 

from a collimated mercuryarc[(c} and
the fringes disappear. Here the coh
short enough and the additional optical pa
difference of the glass is long enoughfor up
wavetrains from the two apertures to arrive af
of observation, In other words, of any twolliN
wavetrainsthat leave 5; and So, the one frome
delayed so long in the glass that it fal
behind the other and arrives at =, to
different wavetrain from 52.

In both cases of temporal and spatial cohe,
are really concerned with one phenomeng Nam:the correlation between optical disturbances

()

 
Figure 12.2 Double-beam interference from a pair of
tures, (a) He-Nelaserlightilluminating the holes. (b) Saal
again but now a glass plate, 0.5 mm thick, is covering 0(©) Fringes with collimated mercury-arc iluminatiory
plate, (d) This time the fringes disappear when the Busing mercurylight. [From B. J, Thompson, J: Soc.

 

4, 7 (1965).]

generally interested in determining the effects(-- from relative Muctuations in the fields at two
ein space-time. Admittedly, the term temporalPe ence seems to imply an effect thatis exclusivelysi However,it relates back to the finite extent

jijpeteul’® In either space or time, and some
» prefer to refer to it as longitudinal spatial

shan temporal coherence. Even so, it does
Gi{intrinsically on the stability of phase in time,
srordingly we will continue to use the term tem-

Seiicoherence. Spatial coherence, orif you will, lateral
al coherence, is perhapseasier to appreciate, because

Josely related to the concept of the wavefront.
7 sf twolaterally displaced points reside on the same

Fontat a given time,thefields at those points arefo be spatially coherent {see Section 12.3.1).

(d) in Fig. poerence len;

Ss COmpiams
meet a top

 
 
  
 

 
  
 
 
 
 
 
  
  
 
   

piety, 2 VISIBILITYi} quality of the fringes produced by an inter-
| ic system can be described quantitatively usingibility 9”, which,as first formulated by Michelson,

by
|
ttl

Fonax — L,
Tenax + Lenin Ve a2)

mrse, this is identical to the modulation of Eq.
Here Ii... and Jp, are the irradiances corre-
g to the maximum and adjacent minimum in

S¢ system. If we set up Young's experiment, we
ty the separation of the apertures or thesize

[timary incoherent quasimonochromatic source,
Be” as it changes in turn, and thenrelateall this

dea of coherence. Ananalytic expression can be
$d for the flux-density distribution with the aid of

3.* Here we use a lens L tolocalize thefringeMore effectively, that is, to make the cones of
Tacted by the finite pinholes more completely

pon the plane %,. A point source 5S" located on
tral axis would generate the usual pattern given

 

      Part follows that given by Towne in Chapter 21See Klein, Optics, Section 6.8, or Problem 12.6
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by

I =4I,cos® (#2) (2.2)Sh

from Section 9.3. Similarly, a point source above or
below S' andlying on a line normalto the line 5,55,
would generate the samestraight band fringe system
slightly displaced in a direction parallel to the fringes.
Thusreplacing S’ by an incoherentline source (normal
to the plane of the drawing) effectively just increases
the amountoflight available. This is something we
presumably already knew, In contrast, an off-axis point
source,at say S”, will generate a pattern centered about
P",its image point on &,in the absence ofthe aperture
screen. A “spherical” wavelet leaving S” is focused at
P"; thusall rays from 5”to P”traverse equaloptic paths,
and the interference must be constructive; in other
words, the central maximum appears at P”. The path
difference S,P”—S,P” accounts for the displacement
P'P". Consequently, 5” produces a fringe system iden-
tical to that of 5S’ but shifted by an amount P’P” with
respect to it. Since these source points are incoherent,
their irradiances add on &,rather than their field ampli-tudes [Fig. 12.3(e)].

The pattern arising from a broad source having a
rectangular aperture of width 6 can be determined by
finding the irradiance due to an incoherentcontinuous
line sourceparallel to 5,52. Notice, in Fig. 12.3(b), that
the variable Yo describes the location of any point on
the image of the source when the aperture screen is
absent. With £, in place, each differential element of
the line source will contribute a fringe system centered
aboutits own image point, a distance Yo from the origin
on %,. Moreover, its contribution to the flux-density
pattern df is proportionalto the differentialline ele-
ment or, more conveniently, to its image, d¥), on X,.
Thus, using Eq. (9.31), the contribution to the total
irradiance arising from d¥o is

 

 

di Ad¥,cos? [=(v- vo), (12.8)
where A is an appropriate constant. This, in analogy

.to Eq. (12.2), is the expression for an entire fringe
system of minute irradiance centered at Yo contributed
by the tiny piece of the source whose image corresponds
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 Figure 12.8 Young’s experiment with an,source. (e) A simple representation of how

with the same spatial frequency overlap avform a netdisturbance of that same spatial #a reduced visibility (see Fig. 7.4).
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Minjg!

 a at: You By integrating over the extent w of the
of the line source, we effectively integrate over

Beurce and get the entire pattern:
‘i +w/2 an
qy=4 (~ cos? [fu v9 d¥o. (12.4)
sia good bit of straightforward trigonometricnfation, this becomes

SA

fy = St A A sin (2) cos (27 v).- SA SA
12.5)

2

jrradiance oscillates about an average value of
7/2, which increases with w, which in turn

ages with the width of the sourceslit. Accordingly,
i d

4=1+ (Seezelst) cos (2 S v) (12.6)

 2 an

IY) _ farw ( an )
Sots — —Y¥], 2.7)

T 1+sinc a} cos 2 SA Y (2.7)
filows that the extreme values ofthe relative irradi-

 

 
 

given by
L,

7 =1+Isinc (=| (12.8)

a 1— |sinc (22 12.9)7 sinc cA 2.9) 
ey is very small in comparison to the fringe widththe sinc function (p. 624) approaches 1 and

, while Ipin/f=0 (see Fig. 12.4). As w
ses, Iain begins to differ from zero, and thefringes
Intrast until they finally vanish entirely at w
ebween the arguments of a and 27 (i.c., w = sA/a

2sA/a), the sinc is negative. As the primaryslit
peice Widens beyond w = sA/a, the fringes reappear

4 ited in phase; in other words, previously there
Maximum at Y = 0, now therewill be a minimum.

¥. the light diffracted by the aperturesis
™ 10.2) so that the fringe system does

uniformly indefinitely as Y increases. 
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Figure 12.4 Fringes with varying sourceslit size. Here w is the width
of the image ofthe slit and sA/a is the peak-to-peak width of the
fringes.

Instead, the pattern of Fig. 12.4{a) will look more like
Fig. 12.5.

Asarule, the extent of the source (#) and the sepa-
ration of theslits (a) are very srnall compared with the
distances between the screens {/) and (s), and con-
sequently we can make some simplifying approxima-
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i

¥o

Figure 12.5 Double-beam interference fringes showing the effectof diffraction,

tions. While the above considerations were expressed
in terms of w and 4s, it follows from Fig. 12.3{c), using
the central angle 7, that 4= ly and w= 57; hence
w/s = b/L Accordingly, (eaw/sa) = (anrn/A) = (arb/IA).
Thevisibility of the fringes follows from Eq. (12.1):

i (=| = {sinc (=I (12.19)sinc TA 3 ay b
whichis plotted in Fig. 12.6. Observe that ¥ is a function
of both the source breadth and the aperture separation
a. Holding either one of these parameters constant and
varying the other will cause ¥ to change in precisely
the same way. Note that the visibilities in both Figs.
12.4(a) and 12.5 are equal to one, because Inn = 0.
Clearly then, the visibility of the fringe system on the
plane of observation is linked to the way the light is
distributed over the aperture screen. lf the primary

Y=
  

 
anvfsiae le ae 0 % on 3a

Figure 12.6 Thevisibility as given by Eq, (12.10).

 

 

 
 
 
  
 
  
 
  
 
 
   
 
 

   

 
 
 
   
 
 

source were in facta point, 6 would equal zeryvisibility would be a perfect 1. Shy of that.
(amb/1A)is, the better, that is, the bigger 4
clearer the fringes are. We can think of ¥ agg
of the degree of coherence ofthe light from:
source as spread over the aperture screen,Kj
that we have encountered the sinc function®
connection wtih the diffraction pattern resy
a rectangular aperture.

Whenthe primary sourceis circular, the;
a good deal more complicated to calculate.If
to be proportional to a first-order Bessel fun
12.7). This too is quite reminiscent of diffractig
time at a cireular aperture (10.56). These similarybetween expressions for ¥ and the carrespg
diffraction patterns for an aperture of the same
are not merely fortuitous butrather are a maj
of something called the van Cittert-Zern
as we will see presently.

Figure 12.8 shows a sequence of fringe,
which the circular incoherentprimarysour
in size but the separation @ between
increased. Thevisibility decreases from (a)
figure, then increases for (e) and decrease:
All the associated ¥-values are plotted in Fi
the shift in the peaks, that is, the change

the center of the pattern for each pointe

Ong Fro,

  
aged es om * 0 ®

fL7 The visibility for a circular source,

sdth will show up in a given fringe pattern as a
Mially decreasing value of ¥ with Y, as in Fig. 12.10

iioblern 12.3). When thevisibility is determined
hese cases, using the central region of each of a

im of patterns, the dependence of V on aperture
will again match Fig, 12.7.

lobe of Fig. 12.7 (the Bessel function is ni 2 OF
that range). In other words, (a), (b), and (q) la
central maximum, while (d) and (e) have @
minimum, and ({) on the third lobe is
maximum,In the same way,fora slit sour
where sinc (amw/sA) in Eq. (12.7) is positiv
will yield a maximum or minimum, respect
1(0\/E. These in turn correspond to the odd 9
lobes of thevisibility curve of Fig. 12.6. Bear
that we could define a complex visibility of aBy
¥, having an argument corresponding to t
shift—we'll come back to this idea later.

Since the width ofthe fringes isinversely’
to a, the spatial frequency of the bright an
increases accordingly from (a) to {f) in Fig:
12.9 results when the separation @ jsheldo
the primary incoherent source diamete!

Weshouldalso mention that the effect
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tarry the discussion a bit further in a more
fashion, Again suppose we have a broad, narrowsource, which generates a light field whose

plex tepresentation* is E(r, 1). We'll overlookation effects, and therefore a scalar treatment
. The disturbances at two points in space 5, andgen E(S., th and E(S»,t) or, more succinctly,

me Wavy line over quantities that are complex just as aPg reminder,
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£,(t) and £,(t}. Hf these two points are then isolated
using an opaque screen with twocircularapertures (Fig.
12.11}, we’re back to Young’s experiment. The two
apertures serve as sources of secondary wavelets, which
propagate out to some point P on Z,. There the resul-tant field is

E,() = KiE(t- 4) + BoEs(t),
where t, = r,/e and fy = ry/c. This says that the field at
the space-timepoint (?,¢} can be determined from the
fields that existed at S, and Sz at #; and ty, respectively,
these being the instants when the light, which is now
overlappi first emerged from the apertures. Thequantities K, and Ke, which are known as propagators,
depend on thesize of the apertures andtheir relative
locations with respect to P. They mathematically affect
the alterations in the field resulting from its having
traversed either of the apertures. For example, the
secondary wavelets issuing from the pinholes in this
setup are out of phase by 77/2 rad with the primary wave
incident on the aperture screen, £, (Section 10.3.1).
Clearly someoneis going to have to teil E(r, ?) to shiftphase beyond Z,—that’s just what the K factors are
for, Moreover, they reflect a reduction in the field that
might arise from a numberof physical causes: absorp-tion, diffraction, and so forth. Here,since there is a 7/2
phase shift in the field, which can be introduced by
multiplying by exp i#/2, K, and RK, are purelyimagi-nary numbers.

The resultant irradiance at P measured over some
finite time interval, which is long compared with the
coherence time,is

I= (Eo(QER®)),
It should be remembered that Eq. (12.12) is written
sans several multiplicative constants. Hence using Eq.
(12.11),

211

(12.12)

at)
ohSEolt—LyFFU ~ i)

K,BME(t~ (ERG - &))
+ KEKAENE 4)E(t - ty).

it is now assumedthat the wave field is stationary, as is
almost universally the case in classical optics; in other

ban
T= BRE+

+
2.18)
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Figure 12.8 Double-beam interference patterns using partially

a . 4 es

weianessangay with time, thermore if we let 7 =tj—4,, we can sh
origin we select. Thus, even though Tya (215) andweenee”a
ae the field variables, the time origin can be raya E.shifted, and the averages in Eq. (12.18) will be RRR(t+ NEO) + RAEN AOEunaffected. The i i

Particular moment over which we Butthis is a quantity plus its own comple uu
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The terms |K,[?Js, and |Kq|"Js,. if we again overlookdecide to measure I shouldn't matter. According! digtherefore just twiceits real part;thatis, it equalscoherent light. The photographs corres; eae:. spondto a variation in visibilityassociated with i ji y ; i
Toy the pacacrfonlberweeny the apertures, first two time averages can be rewritten as ORR RE + DEF multiplicative constants, are the irradiance at P arising1— [2h(u)ful. Several of the symbols will BhCuyal and fy, % Js, =(EQEKY) and Ig, =(E (eng [KR KEE (E+ r)ESG))). a when oneor the other of the apertures is open alone,
B. J. Thompson and E, Wolf, J, Obl Sac. Am. 47, 98(1087) rewh so . _— 4 factors are purely imaginary, and so K\K# = in other words, Ry = Oor K, ~ 0, respectively. Denoting

87). biased origin was displaced by amounts |K,||K.}. The time-average portion ofthis term these as I; and Ip, Eq. (12.15) becomesectively, Here the subscripts underscorg” r orrelation function [Section 11.3.4(ii)], which ee =
that these arethe irradiancesat points 5; 2 denote by Im I, + p+ 2|K,||Kq| Re Py2(7). (12.16)Note that when S, and S52 are madeto coincide, the

mutual coherence function becomes

Pa@ Get )£to)

Pratt) = Ett DESO), 42.14)
bfer to as the mutual coherence function of the
field at S, and S,. If we make useofall this, Eq.
8) takes the form or

THIRPI, + {Kl+ 21RillRel Re Pol). 02.15) Poo(7)>(Ea(t + ERO).

(12.13) and write them as
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ing Eq.(12.16) in mind, observe that
KillKal = VEENTOsTest®).

~e the normalized form of the mutual coherence
‘on is defined as .

Pir) _ E+nEt)® fp)= , 227,
MONTO8aO  SUBMER  ”
spoken of as the complex degree of coherence,

rmacas which will be clear imminently. Equationwe then be recast as
P= i,t fg+ VDE Re Fis(1),

he general interference law for partially coherent
(72.18)

- aer quasimonochromatic light the phase angle
nce concomitant with the optical path difference

pan 
  
  

 
  
 
 

g= Fon — 7) = 2a, (12.19)
\and are the mean wavelength and frequency.

j12(7) is a complex quantity expressible as
Fiol7)=Froee.

Kesphase angle of J,2(r) relates back to Eq. (12.14)
wee phase angle between the fields. If we set

~ &9(7)— g, then

(£2.20)

 

Re a(t) = |Fia(7)| cos [aie(7)
ivation (12.18) is then expressible as

PSL + By + 21fol Fi2(7)| cos [are(7) — 9].
2.21)

 @=05om
Y = Weal = 0.132

2= 05cm
¥ = ly] = 0.062

  
 
 
 
 
 

 
 
 

@) {b) ©
Wecan imagine that two wayetrains emerge 2g
coalesced source point and somehowpick up a
phase delay proportionalto 7. In the present 5

Figure 12.9 Double-beam inter- 7 becomes zero (since the optical path differesé a thon
ference patterns. Here the aper- to zero), and these functions are reduced to anil LP lonture separation was held constant, ding irradi Ly = (EERO) and PW PL ee
therebyyielding a constant num- mepoucing wradiances Js, = «Satta Bb hil Ww? i,berof fringes per unit displace- {E(QES(0) on Ly. Hence -mentin each photo. The visibility
wasaltered by varying the size ofthe primary incoherent source.
{From B. J. Thompson, J. Soc.
Photo. Inst, Engr, 4, 7 (1965).]

Tus(0)= Is, and Tax(0) = Ia"
andthese arecalled self-coherence funciigga TAus

1=1K,fT (0) and = 1KTa TE A finite bandwidth results im a decreasing value of ¥¥
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Figure 12.11 Young’s experiment.

It can be shown from Eq. (12.17) and the Schwarz
inequality that 0 = |F,(7)| = 1. In fact, a comparison of
Eqs. (12.21) and (9.14), the latter having been derived
for the case of complete coherence, makesit evident
that if |¥:0(7)] “1, £ is the sameas that generated by
two coherent waves out of phase at S, and Sz by an
amount @;9(r}, If at the other extreme [};9(7)| = 0, I =
J, + Iz, there is no interference, and the two distur-
bancesare said to be incoherent. When 0 < [Fis(r)| < 1
we have partial coherence, the measure of whichis |¥:2(7)]
itself; this is known as the degree of coherence. Insummary then,

IF] 1 coherentlimit
{412} =0 incoherent limit

0<|%2]<1 partial coherence.
Thebasic statistical nature of the entire process must

be underscored. Clearly I',9(r7) and, therefore, Fi2(7)
are the key quantities in the various expressionsfor the
irradiancedistribution; they are the essence of what we
previously called the interference term. It should be
pointed out that £,(t+ 7) and E(t) are in fact two
disturbances occurring at different points in both space
and time. Weanticipate, as well, that the amplitudes
and phases of these disturbances will somehowfluctuate
in time.If these fluctuationsat S$, and 5, are completely
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 independent, then f,,¢r) = (E,(¢ + r)E3()) will go tozero,since Z, Eg can beeitherpositive or negative
with equal likelihood, and their product averages ta
zero. In that case no correlation exists, and fol=
Fia(7) = 0. If the field at S, at a time (¢ + 7) were per-
fectly correlated with the field at S, at a time ¢, their
relative phase would remain unaltered despite indi-
vidual fluctuations. The time average of the product
of the fields would certainly notbe zero, just as it would
notbe zero evenif the two were only slightly correlated.

Both | ¥12(r)| and @,2(7) are slowly varying functionsof 7 in comparison to cos 277 and sin 27pr. In other
words, as P is moved across the resultant fringe system,
the point-by-point spatial variations in f are pre-
dominantly due to the changesin ¢ as(rx — 71) changes.The maximum and minimum values of J occur when
the cosine term in Eq. (12.21)is +! and —1, respectively.Thevisibility at P (Problem 12.7) is then

wivt,
th

  

  
  
   
    
  
    

  
 

v= [Fre(7)). (12.22)

Perhaps the most common arrangement occurs when
things are adjusted so that J; = f2, whereupon

V=lfralryhs
that is, the modulus of the complex degree of coherence is
identical to the visibility of the fringes (take another look
at Fig. 12.8).

It is essential to realize that Eqs. (12.17) and (12.18)
clearly suggest the way in which therealparts of Fya(r)and 12(7) can be determined from direct measure-
ments. When theflux densities of two disturbances are
adjusted to be equal, Eq. (12.23) provides an experi-
mental meansof obtaining |F:2(r)| from the resultant
fringe pattern. Furthermore, the off-axis shift in the
location of the central fringe (from ¢ = 0) is a measure
of o9(r), the apparentrelative retardation of the phase
of the disturbances at S; and S,. Thus, measurements
of the visibility and fringe position yield both the ampli-
tude and phase of the complex degree of coherence.

By the way,it can be shown* that |¥,2(7}| will equal
J forall values of r and anypair of spatial points,if

(12,23)

 

 
 

 
*The proofs are given in Beran and Parrent, Theory of PartialCoherence, Section 4.2.

 andonly if the opticalfield is stricth = o(t+ 7)~ $().For a strictly monochro-
and therefore such a situation 4 iaa : Fane waveof infinite coherence length, $(1) =
Moreover,anonzero radiation field for which ig u ot Ag = OT, and
0 for all values of 7 and anypairof spatial pointexist in free space either.

   
  
   
  

 F,3k7) = cos or — isin or
= | = fy the argument of 71, is just —2av7, and
complete coherence. In contradistinction, for

,onochromatic wave where7 is greater than the
ce time, Ao will be random, varying between Gg
ach thatthe integral averagesto zero, Vat) =
sponding to complete incoherence. A path

Eance of 60 cm, produced when the two armsof a
json interferometer differ in length by 30 cm,
sponds to a time delay between the recombiningsof T* 2ns. This is roughly the coherencetime

od isotope discharge lamp, and the visibility of
wern underthis sort of illumination will be quite

“If white light is used instead, Av is large, A! is
small, and the coherence length is less than one
length. In order for r to be less than Al, (ie., inthat the visibility be good), the optical path

nce will have to be a small fraction of a
length. The other extremeis laserlight, in which

gn be so long that a value of cr that will cause an
ble decrease in visibility would require an

sically large interferometer.
ee that I',(r), being a measure of temporal

, must be intimately related to the coherence
therefore the bandwidth of the source. Indeed,

transform of the self-coherence function, T(t),
TP bower spectrum, which describes the spectral energy
Boulton of the light (Section 11.3.4).

‘o back to Young’s experiment(Fig. 12.11) with
@natrow-bandwidth extended source, spatial
nce effects will predominate. The optical distur-
%& S, and S, will differ, and the fringe pattern

flepend on f'(S, , Sy, 7) =f'y9(z). By examining the
aboutthe central fringe where (rz — 1) = 0,7 =0
(0) and ¥,2(0) can be determined. This latter

ity is the complex degree of spatial coherenceof
‘© points at the same instant in time. I'j2(0) plays

al role in the description of the Michelsonstellar‘ometer to be discussed forthwith.
'¢ is a very convenientrelationship between the

Bedegree of coherence in a region of space and

 
 12.3.1 Temporal and Spatial Cohereneg

Let’s nowrelate the ideas of temporal angence to the above formalism.
If the primary source S in Fig, 12.11 shri

to a point source on the central axis havi
frequency bandwidth, temporal coherence
predominate. The optical disturbances at 5,
thenbeidentical. In effect, the mutual cohegeqe™
between the twopointswill be the self-coheren
field. Hence P(5,, $2.7)=Tie(t) = f(r) or
¥u:(7). Thesamethingobtains when 5; and $,¢¢and ;;{7) is sometimes referred to as the commla
degree of temporal coherence at that point fomp
instancesof time separated by an interval 7, Tiflis wo
be the case in an amplitude-splitting interfero
such as Michelson’s, in which 7 equals the path-
difference divided by c. The expression fori
Eq.(12.18), would then contain ¥;,{7) rathe:

Suppose a lightwave is divided into twoydisturbances of the form

E(t) = Eye#?
by an amplitude-splitting interferometer, whiclf lat
recombines them to generate a fringe patterns Then

Ber
i> Fepeo.
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Figure 12.12 (@) The geometry ofthe van Cittert~Zernike theorem.
(b) The normalized diffraction pattern correspondsto the degree ofcoherence. Here for a rectangular source slit the diffraction pattern |is sine (by/IA).

the corresponding irradiance distribution across the
extended source giving rise to the light fields. We shall
make use of that relationship, the van Cittert-Zernike
theorem,as a calculational aid without going through
its formal derivation. Indeed, the analysis of Section
12.2 already suggests some of the essentials. Figure
12.12 represents an extended quasimonochromaticincoherentsource, S, located on theplane o and having
an irradiance given by I(y, z). Also shownis an observa-
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tion screen on which are two points, P; and P,. These
are at distances R; and Re, respectively, from a tiny
elementofS. It is on this plane that we wish to determine
¥i2(0), which describes the correlation of the field vibra-
tions at the two points. Note that although the source
is incoherent, thelight reaching P, and Pswill generally
be correlated to somedegree, since each source element
contributes to the field at each such point,

Calculation of ;2(0) from the fields at P, and Pe.
results in an integral that has a familiar structure. The
integral has the same form and will yield the same
results as a well-known diffraction integral, provided
we reinterpret each term appropriately. For instance,
(9, z) appearsin that coherenceintegral where an aper-
ture function would beif it were, in fact, a diffraction
integral. Thus, suppose that $ is not a source but an
apertureof identical size and shape, and suppose that
I{y, 2) is not a description of irradiance,but instead its
functional form corresponds to the field distribution
across that aperture. In other words, imaginethat there
is a transparencyat the aperture with amplitude trans-
mission characteristics that correspond functionally to
I (9, 2). Furthermore, imaginethat the apertureis illumi-
nated by a spherical wave converging towardthe fixed
point P, (see Fig. 12.12b), so tharthere will be a diffraction
pattern centered on P,. This diffracted field distribution,

 
 
  

nce theory. The function of the stellar inter-
at uy, as it is called, is to measure the small angular

sth ions of remote astronomical bodies.a idely spaced movable mirrors, M, and Ma,
aaPunt niorapima S is song es, aesumed to be parallel, from a very distant
equals the normalized Fourier transform ofa The light is then channeled via mirrors Mg and
ancedistribution across the source, Furthennee fet ough apertures 5; and S: of a mask and thence
source has a uniform irradiance, then 4:20) is sind mim the objective of a telescope. The optical paths
a sinc function when the source ig a shit and 4 fod , and MM, Sp are madeequal, so that the rela-
function when it’s circular. Observe thatin Fig,i shase-angle differehee between adisturbance:at M,the sinc function corres; is i js the sameas that between S, and &,. The two
where f = (kb/2)sin @ teda Fes generate the usual Young’s experiment
distance y from Py, 8 + 4b8/2 and 6 = oh system in the focal plane of the objective.J¥12(0)| = sine (rby/IA)}. This result is explored, ly, the mask and openings are not reallyin the problem set. ; the mirrors alone could serve as apertures.

we now point the device so thatits central axis
-d toward oneof thestars in a closely spaced

star configuration. Because of the tremendous
ces involved, the rays reaching the interferometer
either star are well collimated. Furthermore, we

fie, at least for the moment, that the light has a
Bow linewidth centered about a mean wavelength of

isturbancesarising at S; and Se from theaxial
sin phase, and a pattern of bright and dark bands
centered on Po. Similarly, rays from the other
ive at some angle 8, butthis time the disturbances

‘and M. (and therefore at S, and 5S») are out of
by approximately &oh® or, if you will, retarded

time h8/c, as indicated in Fig. 12.13(b). The result-
ngé system is centered about a point P shifted

tangle 6’ from Pp such that h6/c = a6'/e. Since
ars behave as though they were incoherentpoint
» the individualirradiance distributions simply

i The separation between the fringes set up by
SY Star is equal and dependentsolely on a. Yet the

iility varies with h, Thusif h is increased from nearly

normalized to unity at Po, is everywhere jieequalto the valueof #,2(0) at that point, 7Cittert-Zernike theorem.
 

 
 
 
 
  
  
  
 
 
      
 
   
 
  
  
 
 
 
  
  
 
 
 
 

12.4 COHERENCE ANDSTELLAR INTERFEROM!

12.4.1 The MichelsonStellar Interferomelal,
In 1890 A. A. Michelson, following anearlier
by Fizeau, proposed an interferometric d ‘
12.13) that is of interest here both because it wal]
precursor of some important modern techniquesfaim
because it lendsitself to an interpretation in term#¢

Asin ® = 4B

     
 
 
  

Giintil kh@ = 2, that is, until

—3o20°
© fringe systems take on an increasing relative

‘Ment, until finally the maxima from one star
the minima from the other, at which point,if

radiances are equal, 7 =0. Hence, when the
cs “seal, one need only measure h to determine

h 2.27)

{a}
Figure 12.13 Michelsonstellar interferometer.
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the angular separation betweenthestars, 9. Notice that
the appropriate value of fh varies inversely with 8.

Note that even though the source points, the two
stars, are assumed to be completely uncorrelated, the
resulting optial fields at any two points {M; and M,)
are not necessarily incoherent. For that matter, as A
becomes very small, the light from each point source
arrives with essentially zero relative phase at M, and
Mz; ¥ approaches I, and the fields at those locations
are highly coherent.

In much the same way as with a double star system,
the angular diameter(6) of certain single stars can be
measured. Once againthe fringe visibility corresponds
to the degree of coherence of the optical field at M,
and Mg. If the star is assumed to be a circular distribu-
tion of incoherent point sources such that it has a uni-
formbrilliance, its visibility is equivalent to that already
plotted in Fig. 12.7, Earlier, we alluded to the fact that
¥ forthis sort of source wasgiven by a first-order Bessel
function, and in factit is expressible as

ahOia,
= [nto~ 2feee

Recall that J,(u)/u = 3 at u = 0, and the maximum value
of ¥ is 1. The first zero of ¥ occurs when 7h6/Ag = 3.83,
as in Fig. 10.28. Equivalently, the fringes disappearwhen

 (12.28)

As 1.2942, C229}
and asbefore, one simply measuresf to find 6.

In Michelson’s arrangement, the two outrigged mir-
rors were movable on a long girder, which was mounted.
on the 100-inch reflectorof the Mt. Wilson Observatory.
Betelgeuse (a Orionis) was thefirst star whose angular
diameter was measuredwith the device. It’s the orange-
lookingstar in the upperleft of the constellation Orion.
In fact, its name is a contraction for the Arabic
Phrase meaning the armpit of the central one (ie.,
Orion). The fringes formed by the interferometer,
one cold December night in 1920, were made to
vanish at h = 121 inches, and with 4) =570nm, 6 =
1.22{570 x 107°)/121(2.54 x 107°) = 22.6 x 107 rad,
or 0.047 secondsofarc. Usingits known distance, deter-
mined from parallax measurements,thestar’s diameter
turned out to be about 240 million miles, or roughly
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280 times that of the Sun. Actually, Betelgeuse is an
irregular variable star whose maximum diameter is so
tremendousthatit’s larger than the orbit of Mars aboutthe Sun. The main limitation on the use of the stellar
interferometeris due to the inconveniently long mirror
separations required for all but the largest stars. This
is true as well in radio astronomy, where an analogous
setup has been widely used to measure the extent of
celestial sources of radiofrequency emissions.

Incidentally, we assume,asis often done, that “good”
coherence meansa visibility of 0.88 or better. For a disk
source this occurs when A@/Ag in Eq. (12.28) equalsone, that is when

A= 0.32 4 32.30)For a narrow-bandwidth source of diameter D a dist-
ance R away, there is an area of coherence equal to
w(h/2) over which |Fr2l=0.88. Since D/R 6,

hea 0.92242, 2.81)
These expressions are very handy for estimating the
required physical parameters in an interference or
diffraction experiment. For example, if we put a red
filter over a l-mm-diameter disk-shaped flashlightsource and stand back 20m from it, then

Ah = 0,32(20)(600 x 107°)/10°* = 3.8 mm,
where the mean wavelength is taken as 600 nm. This
means that a set of apertures spaced at aboutA or less
should produce nice fringes, Evidently the area of
coherence increases with R, and this is why you can
always find a distant bright street light to use as aconvenient source.

12.4.2 Correlation Interferometry

Let’s return for a moment to the representation of a
disturbance emanating from a thermal source,as dis-cussed m Section 7.10, Here the word thermal connotes
a light field arising predominantly from the superposi-
tion of spontaneously emitted wavesissuingfrom a great

 
 

 
 
  
 
 
  
 
 
 

 
 
 

 

 
 
  
 
 
 

 
 
  
 
  
 
  

 
 

many independentatomic sources.* A quasimi
matic optical field can be represented by

E(t) = Eg(t} cos (e(#) ~ 22794],
The amplitudeis a relatively slowly varying f
time, as is the phase. For that matter, the way
undergotens of thousandsofoscillations bef
the amplitude(i.c., the envelopeofthe field vib
or the phase would change appreciably. Thudthe coherence timeis a measureofthe fluct i
val of the phase,it is also a measureoftheinte:
which E,(¢)is fairly predictable. Large fluctuate
are generally accompanied by corresponding!
fluctuations of Ey. Presumably, a knowledge d&iim
amplitude fluctuations of thefield could berelat
the phase fluctuations and therefore to the corre!
.e., coherence) functions. Accordingly, atgwo p
in space-time where the phases of the fieldlare com
lated, we could expect the amplitudesto berelatedwell,

Whena fringe pattern exists for the Michell
interferometer,it is because the fields at Mj]
the apertures, are somehowcorrelated, thatis, Pig!(EVXAES()) # 0. If we could measure thefield
tudes at these points, their fluctuations would lil
show an interrelationship. Since this isn’t pra
because of the high frequencies involved, weg
instead measure and comparethe fluctuationsiff

ne

(a)

 
«o)

ma Til Irradiance variations.

spe of this discussion, and we shali have to content
Ges with merely outliningits salient features.* Just

(12.14), we are interested in determining the
correlation function,this time, of the irradiances
Meoints ina partially coherentfield, (Iy(#+ 7)fo(2))-

buting wavetrains, which are again represen~
romplex fields, are assumed to have been ran-
mitted in accord with Gaussian statistics, with
result that

   

ance at the locations of My and Mz and (htt Dig) = Ula) + Poo? (12.32)
someas yet unknown way,infer |¥,9(0)|. In
if there are values of 7 for which f,o(7)is mig (het led) = AMIN + FrelPL 02.88)field at the two pointsis partially coherent, af
tion between the irradiance fluctuationg
locations is implied. This is the essentialit
series of remarkable experiments conductedé
1952 to 1956 by R. Hanbury-Brown in
with R. Q. Twiss and others, The culminatl
work was the so-called correlation interferomé

Thus far we have evolved only an intuly
tification for the phenomenonratherthan a firs J
retical treatment. Such an analysis, however,18 bey

Bstantaneous irradiance Auctuations AI,(t) and
© given by the variations of the instantaneous

a(t) and Ip(t) about their mean values {I,(t))
b)), as in Fig. 12.14. Consequently if we use
nt) = Ty(t)— (1h), ATa(t) = Ip(t) ~ Ua)
fact that

(QW) =O and (Ala(t))=9,

  
hue. for example, L. Mandel, “Flucu-

me ‘rnpres 1 Optics, Vol. LE, p. 198, or Frangon,; in
* Thermallight §s sometimes spoken of as Gaussia! aiai remriy p. 162amplitude of the field follows a Gaussian. probabiltt
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Eqs. (12.32) and (12.33) become
(AN(E+ ALi) = (Pro(ry® (12.34)

(AN (E+ NALCO)” (XNArl0P 2.35)
(Problem 12.11), These are the desired crose-correta~
tions of the irradiance fluctuations. They exist as long
as the field is partially coherent at the two points in
question.Incidentally, these expressions correspondto
linearly polarized light, When the wave is unpolarized,
a multiplicative factor of $ must be introduced on the
right-hand side.

The validity of the principle of correlation inter-
ferometry was first established in the radiofrequency
region of the spectrum, where signal detection was a
fairly straightforward matter. Soon afterward, in 1956,
Hanbury-Brown and Twiss proposed the optical stellar
interferometerillustrated in Fig. 12.15. But the onlysuitable detectors that could be usedat optical frequen-
cies were photoelectric devices whose very operation is
keyed to the quantized nature of the light field. Thus
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Figure 12.15 Stellar correlation interferometer.
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... it was by no meanscertain that the correlation would,
be fully preserved in the process of photo-electric
emission. For these reasonsalaboratory experiment wascarried outas described below.”

That experimentis shownin Fig. (12.16). Filtered light
from a Hg arc was passed through a rectangular aper-
ture, and different portions of the emerging wavefront
were sampled by two photomultipliers, PM, and PMs.
The degree of coherence was altered by moving PM),
that is, by varying A. The signals from the two photo-
multipliers were presumably proportional to the
incident irradiances J,{t} and Jp(t). These were then
filtered and amplified, such thatthe steady, or dc, com-
ponentof eachofthe signals (being proportionalto (J;)
and (I,)) was removed, leaving only the fluctuations,
in other words, AN,(t) = 1,(f)— (Ih) and Alg(t) = Ip(t)—
(Ja). The two signals were then multiplied together in
the correlator, and the time average of the product,
which was proportional to {AT,(t)AJ,()), was finally
recorded, Thevaluesof [#;2(0)}*for various separations,
A, as deduced experimentally via Eq. (12.35), were in
fine agreementwith those calculated from theory. For
the given geometry, the correlation definitely existed;
moreover, it was preserved through photoelectricdetection.

The irradiance fluctuations have a frequency band-
width roughly equivalent to the bandwidth (Av) of the
incidentlight, in other words, {A¢,)', which is about
100 MHzor more, This is much better than trying to
follow the field alternations at 10'> Hz. Even so, fast
circuitry with roughly a 100-MHz pass bandwidth is
required. In actuality the detectors have a finite resolv-
ing time T, so that the signal currents $, and %» are
actually proportional to averages of I)(t) and Ig(t) over
T and not their instantaneous values. In effect, the
measured fluctuations are smuvthed out, as illustrated
by the dashed curveof Fig. 12.14(b). For T > At,, which
is normally the case, this just leads to a reduction, by a
factor of At/T, in the correlation actually observed:A

(SH (OBF(O) = INI)FFP—296 
  * Taken from R. Hanbury-Brown and R. Q. Twiss, “Correlation

Between Photonsin Two Coherent Beams of Light,” Nature 127,27
(1958).

 

 
 
  

iy, The star Sirius was the first to be examined,Filtered o és found to have an angular diameter of 0.0069—|of arc. More recently, a correlation inter-

- TS BY er with a baseline of 618 feet has been construc-fJarrabri, Australia. For certain stars, angular
j, ‘Ssameepiities g? Boi as little as 0.0005 seconds of are can be

; with this instrument—that’s a long way from
Fangular diameter of Betelgeuse (0.047 seconds of

: electronics involved in irradiance correlationbe greatly simpliGed if the incidentlight were
karly monochromatic and of considerably higher

sity, Laserlightisn’t thermal and doesn’t display
Mme statistical fluctuations, but it can nonetheless

feaised to generate pseudothermalt light. A pseudo-source is composed of an ordinary bright
purce (a laser is most convenient) and a moving

of nonuniform optical thickness, such asa rotat-
Gigund glass disk. If the scattered beam emerging

fiom a stationary piece of ground glass is examined
For example,in the preceding laboratory = uficiently slow detector, the inherent irradiance
thefiltered mercury light had a coherence timegy ions will be smoothed out completely. By setting
Ins, while the electronics had a reciprocal pass fund glass in motion, irradiance fluctuations
widthoreffective integration time of =40 ns, Note with a simulated coherence time commensurate
Eq. (12.36) isn’t any different conceptually agi Bhe disk’s speed. In effect, one has an extremely
(12.35)—it’s just been madea bit more rea it thermal source of variable At, (from, say, 1s

Shortly after their successful laboratory }), which can be used to examine a whole range
Hanbury-Brown and Twiss constructed the rence effects, For example, Fig. 12.17 shows the
ferometer shownin Fig. 12.15. Searchlight mim DEation function, which is proportional to
used to collect starlight and focus it onto twe, E)(u)\", for a pseudothermal circular aperturemultipliers. One arm contained a delayline, 80 Bes determined from irradiance fluctuations. The
mirrors could physically be located at the same ent setup resemblesthatof Fig. 12.16, although
with compensation for any differences in. the 4 Y onics is considerably simpler.§
times of the light. The measurementof (AF(DAZ
at various separations of the detectors allows EN cussion of the photon aspects of irradiance correlation, seesquare of the modulus of the degree of © {Optical Physics, Section 6.2.5.2, or Klein, Optics, Section 6.4.
l7r2(0)2, to be deduced, and this in turn yiel " Pe
angular diameterof the source, just as it did :Michelson stellar interferometer. This time; i
the separation h could be very large, because] OD
longer had to worry about messing up the phase i
waves, as was the case in the Michelson device.
a slight shift in a mirror of a fraction of
was fatal. Here, in contrast, the phase Wi
so that the mirrors didn’t even haveto be 0
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 Figure 12.26 Hanbury-Brown and Twiss experiment,
  
 
 
  
   
 
 
  
 
 
 
 
   
 
 
 dartienssen and E. Spiller, “Coherence and Fluctuationsin

ina,” Am, J. Phys. 32, 919 (1964), and A. B. Haner and
ox, “Intensity Correlations from Pseudothermal Light

ee J. Phys $8, 748 (1970). Both of these articles are wellBRudying.

      
 
 netall reference for this chapter igthe review article by L.

Bes’ =. Wolf, “Coherence Properties of Optical Fieids,” Rews.
87, 23 1 (1965); this is rather heavy reading. Take a looknano,“Intercontinental Radio Astronomy,” Sci. Am.

Sdruary 1972),
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Correlation

—4 -20 20 2 4
A Gam)

Figure 12.17 A correlation function for a pseudothermalsource.
(From A. B. Haner and N. R. Isenor, Am J. Phys, 38, 748 (1970).]

PROBLEMS
12.1 Suppose we set up a fringe pattern using a
Michelson interferometer with a mercury vapor lamp
as the source. Switch on the lamp in your mind’s eye
and discuss what will happen to the fringes as the
mercury vapor pressure buildstoits steady state value.

12.2* We wish to examine the irradiance produced
on the plane of observation in Young's experiment
when the slits are illuminated simultaneously by two
monochromatic plane waves of somewhat different
frequency, E; and Eo. Sketch these againsttime, taking
A; = 0.8 Ao. Now draw the product E£;E» (at a point P}
against time. What can you say aboutits average over
a relatively long interval? What does (E, + E2)* look
like? Compareit with E?+ E3. Overa timethatis long
compared with the periods of the waves, approximate
(E+ Eo)’).

12.3" With the previous problem in mind, now con-
sider things spread across space at a given momentin
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time, Fach wave separately wouldresult in an irradiance
distribution I, and f. Plot both on the samespaceaxis
and then draw their sum J, + Z,. Discuss the meaning
of your results. Compare your work with Fig. 7.9. What
happensto the net irradiance as more wavesof different
frequency are added in? Explain in termsof the coher-
ence length. Hypothetically, what would happen to the
pattern. as the frequency bandwidth approached
infinity?

12.4 With the previous problem in mind, return to
the autocorrelation of a sine function, shown in Fig.
11.37. Now suppose we have a signal composed of a
great many sinusoidal components. Imagine that you
take the autocorrelation of this complicated signal and
plot the result (use three or four components to start
with), as in part (e} of Fig. 11.87. What will theautocorrelation function look like when the numberof
waves is very large and the signal resembles random
noise? Whatis the significance of the r= 0 value? How
does this compare with the previous problem?

12.5* Imaginethat we have the arrangementdepicted
in Fig. 12.3, If the separation between fringes (max. to
max.) is 1 mm andif the projected width of the source
slit on the screen is 0.5mm, computethe visibility.

12.6 Referring to the slit source and pinhole screen
arrangement of Fig. 12.18, show by integration overthe source that

TEvye b+eMos (QmaYas).

 
Figure 12.18

 
 
 

   
 
 
 
 
 

 
 
 
 

  
 
  
  
 

  
 
 
  
 
 
 
 
 
 

 

-density filter that cuts the irradiance by a factor
Bp, and the other hole is covered by a transparent

1of glass, so there is no relative phase shift intro-Compute the visibility in the hypothetical case
pletely coherent #lumination.

12.7 Carry out the details leading to the ™ [regefor the visibility given by Fq. (12.29), 5

12.8 Under whatcircumstanceswill the irradi
%,in Fig. 12.19 be equal to 41), where Jy is theance dueto either incoherent. point source a) :

Suppose that Young’s double-slit apparatusis
‘ated by sunlight with a mean wavelength of

, Determinetheseparation oftheslits that would
S the fringes to vanish.

We wish to construct a double-pinhole setup
ted by a uniform, quasimonochromatic, inco-

Rit source of mean wavelength 500 nm and width
nce of t.5 m from the aperturescreen. [f the

eg are 0.50 mm apart, how wide can the source
visibility of the fringes on the planeof observa-fot to be less than 85%?

5”  
Figure 12,19

12.9* Suppose we set up Young’s experimextf withsmall circular hole of diameter 0.1 mm in £3m
sodium lamp (i) = 589.3 nm) as the source. fifithe d
tance from the sourceto theslits is 1 m, ho y D
will the slits be when the fringe pattern di

Suppose that we have an incoherent, quasi-
gornatic, uniform slit source, such as a dis-
lamp with a mask ard filter in front ofit. We
illuminate a region on an aperturescreen 10.0m
uch that the modulus of the complex degree of
nee everywhere within a region 1.0 mm wideis

or greater than 90% when the wavelength isi. How wide can the slit be?

12.10 Taking the angular diameter of the}
from the Earth to be about1/2°, determine thg
of the corresponding area of coherence, negl
variations in brightness across the surface.

12.11 Show that Eqs. (12.34) and {1%.05) falar
Eqs. (12.32) and (12.33).

12.12* Return to Eq. (12.21) and separate
terms representing a coherent andan incohe
bution,thefirst arising from the superposil
coherent waves with irradiances of |F:s(t)/2i
[Fio(7)/Jo having a relative phase of a12(t) ~ @) ;
second from the superposition of ineghe!
irradiance [1-[He(7lh and 1 —Pas@ill
derive expressions for foon/Zimeon and for
Discuss the physical significance of thidaltemulation and how we mightview the visibilityin terms ofit.

12.13 Imagine that we have Young’s a
where one of the two pinholes 1s now can
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12.17* Figure 12.20 shows two incoherent quasi-
monochromatic point sourcesilluminating two pinholes
in a mask. Show that the fringes formed on the plane
of observation have minimum visibility when

aay — a) = 3m,
where m = +1, +3, +5....

 
Figure 12,20

12.18 Imagine that we have a wide quasimonochro-
matic source (A=500 nm) consisting of a series of ver-
tical, incoherent, infinitesimally narrow line sources,
each separated by 500 jm. This is used to illuminate a
pair of exceedingly narrow verticalslits in an aperture
screen 2.0 m away. How far apart should the apertures
be to create a fringe system of maximum visibility?
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=== OF LIGHT

O ur understanding of the physical world has
changed in a most profound manner since the begin-
ning ofthis century. We have come to appreciate funda-mental similarities between all of the various forms of
radiant energy and matter. Optics, which was tradi-
tionally the study oflight, has broadenedits domain to
encompass the entire electromagnetic spectrum.
Moreover, the advent of quantum mechanics has
broughtwith it yet another extension into what might
be called maiter optics (e.g., electron and neutron
diffraction).

Our main purpose in this chapter conceptually is to
weave some of the basic ideas of quantum mechanics
into the fabric of optics.
Ee
13.1 QUANTUM FIELDS

The nineteenth-century physicist envisioned the elec-
tromagnetic field as a disturbance ofthe all-pervading
aether medium.If two charges mteracted, it was because
the aether in which they were imbedded wasdistorted
by their presence, and the resulting strain was transmmit-ted from one to the other. Maxwell's field equations
described this measurable disturbance of the medium
without explicitly discussing the aetheritself. Light was
then simply a wavetrain consisting of oscillatory
mechanical stresses within the aether. Since there were
electromagnetic waves, there had to be a transmitting
medium—it was as clear as that. Yet curiously enough,
even after the Michelson—Morley experiment (Section
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idenersy Anotherfar-reachingdistinction between
and the classical picture is in the consideration oftions, Quantum field theory maintains that all
actions arise from the creation and annihilation of

icles. TO wit, forces, in the classical sense, are
joned as due to the exchangeof quanta or Jumps
e field in question. Chargedparticles can interact
bsorbing and emitting, in a mutual exchange,
ta of the electromagnetic field, that is, photons.

he gravitationalinteraction is similarly the
mf an exchange of quanta of the gravitational

witons.
then is something of a cursory view of the direc-

Mor aiken by contemporary quantum field theory. In
the giext few sections we will consider some of thements that led to the development of the

mechanical photon picture.9.10.3) and Einstein’s special theory of opiput aside the aether hypothesis, Maxwell’) equa
remained. Even thoughthe entire imagery had to
changed, the validity of those equations persisig
There seemedlittle conceptual alternative;g@ie fa
itself had to be a physical entity, indepen of
medium and capable of traversing othe: emp
space. An electromagnetic wave was seen as a, dist
bance propagatedin the electromagneticfield.

In the early part of this century it beca
that although Maxwell’s equations seemed.
truth, they could not be the whole truth, Thg
real enough, but experiments were
behavior inconsistent with the representat
field exclusively as a Auid-like continuum
tromagnetic field displayed particle-like propthat it was emitted and absorbed in lump:
and not at all continuously. Even in th
the formative years of quantum theory,fieicles were envisioned as separate entities.
becameevident, with the melding of gual
and relativity, that each particle, material or
could be envisioned as a quantized manifest
distinct field (e.g., the photon is a quant,
electromagnetic field). As with the photo
particles can be created and destroyed.
sponding fields can transport all obse
characteristics, such as energy, charge, an
advancing through space as waves. Within
of quantum field theory, as this descr}
particles are viewed essentially as localized

BLACKBODYRADIATION — PLANCK’S
QUANTUM HYPOTHESIS

Mfc turn of the nineteenth century, the electromag-
Mitheory of light, fashioned by Maxwell and

eticyfously verified by Hertz, was firmly established
of the cornerstones of science. But periods of

ent in physics are usually short-lived, and Max
tn 1900 unleashed a conceptual whirlwind that

vely led to a radical change in thepicture of the
universe. Planck, who had been a student of

joltz and Kirchhoff, was working ona theoretical
of a seemingly obscure phenomenon known as

fhily radiation. We know thatif an objectis in ther-
librium with its environment, it must emit as

adiant energyas it absorbs.It follows that a good
Beet isa good emitter. A perfect absorber, one which

ali radiant energy incident upon it, regardless of
» tS said fo be a blackbody. Generally, one
ates a blackbody in the laboratoryby a hollow
enclosure (an oven) that contains a smail hole

¢ wall. Radiant energy entering the holehaslittle
of being reflected out again, so that the enclosure

nearly perfect absorber. The “black”pupil of
mm y€ Suggests the mechanism. On the other hand,if

Sn ts heated, it can serve as a source emitting

277

13.2 Blackhbody Radiation—Planck’s Quantum Hypothesis 539

energy through the hole. In accord with common
experience, we can anticipate that the spectral distribu-
tion of the emitted radiant energy will be dependent
on the oven’s absolute temperature 7. As the tem-
perature increases, the hole will initially radiate pre-
dominantly infrared, and then gradually it will take on
a faint reddish glow that gets brighter and brighter,
shifting to yellow, white, and finally blue-white. Experi-
mental investigations (notably by O. Lummerand E.
Pringsheim, 1899) resulted in spectral curves similar to
those of Fig. 18.1. The quantity J,,, which is plotted
as the ordinate, is known as the spectral flux density or
spectral exitance. It corresponds to the emitted power
per unit area per unit wavelength interval leaving the
hole. Were we to make such measurements,at least in
principle, we could determine the exitance (in W/m”)
from the blackbodyata given wavelength A, using some
sort of power meter. But in actuality, any such meter
would accept a range of wavelengths Ad centered about
A, so we introduce the notion of spectral exitance. The
curves of I,, versus A can be plotted so that the area
beneath them is measured in W/m*. Notice how the
peaks in the curves shift toward the shorter wavelengthsas T increases.

In 1879 Josef Stefan (1835-1893) observed that the
total radiant flux density (or exitance, I,) of a blackbody

 
Visible Atom)

Figure 18.1 Blackbody radiation curves. The hyperbola passing
through peak points correspondsto Wien’s law.
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was proportional to the fourth powerof its absolute
temperature. A few years later, Ludwig Boltzmann
(1844-1906) derived thar relationship in a combined
application of Maxwell’s theory and thermodynamic
arguments. The Stefan—Bolitemann law, as it is nowcalled,is

I, @oT', (13.1)
where the Stefan-Boltzmann constant o is equal to
(5.6697 + 0.0029) x 10°° Wm? K~*. The last notable
success in applying classical theory to the problem of
blackbody radiation came in 1893 ae the hands of the
German physicist and Nobel laureate Wilhelm Car!
Werner Otto Fritz Franz Wien (1864-1928), known to
his friends as Willy. He was able to show that the
wavelength, Amax, at Which I, (the flux density per unit
wavelength interval emerging from the blackbody)is a
maximum, varies as

ArpaxT = 2.8978 X 107? m K. 3.2)
As T increases, Aj, decreases, and the peaks are dis-
placed, as we have already pointed out in connection
with Fig. 13.1. Accordingly, the expression (13.2) is
known as Wien’s displacement law.

it was at this point in time thatclassical theory began
to falter. All attempts to fit the entire radiation curve
(Fig. 13.1) with some theoretical expression based on
electromagnetism led only to the mostlimited successes.
Wien produced a formula that agreed with the observed
data fairly well in the short wavelength region but
deviated from it substantially at large A. Lord Rayleigh
[john William Strutt (1824-1919)] and later Sir James
Jeane (1877-1946) developed a description in terms of
the standing wave modes of the field within the
enclosure. But the resulting Raylsigh-Jeans formula
matched the experimental curvesonly in the very long
wavelength region. Thefailure ofclassical theory was
totally inexplicable; a turning point in the history of
physics had arrived.

Pianck’s approach to the problem wasa rather system-
atic and practical one. Hefirst matched the observed
data with an empirical expression. Then he set about
Andinga physical justification for that expression within
the framework of thermodynamics. In effect his model
pictured the atoms in the walls of the oven to be in

Chapter 13 Some Aspects of the Quantum Nature of Light
 
  
    
  
 
  
 
   
  
 
 
 
   
 

   
               
      
  
 
 
  
   
    
      
   
 
    

 

thermal equilibrium with the enclosed
He presumed that the atoms behaved jj
oscillators, absorbing and emitting radiant
further assumed thatall oscillator frequ :
possible, and thus every frequency should
in the emitted spectrum, All else havingregretfully turned to the method of Boltzp
which he hadlittle familiarity and less cong
apply this statistical analysis he introduced q 5
unprecedented ad hoc sumption whos , p
tification was a pragmatic one—it worked,
ted that en atomic resonator could absorb or emi
amounts of energy that were proportional io 4 7
frequency. Moreover, each such energy value Med
integral muitiple of what he called an “energy ele cae
Thusall possible oscillator energies $,, are giver by

€,, = mh,

ay poet that the true significance of Planck's workgrappresated for several years, and even he was5, a3 Witneesedd Up
pin

is coy ary Ok thie 

{je true that we shall not thereby prove that thisJynitt Pe prepeTia
wn of the elementary dynamical law

. ofoscillators, On the contrary J think
y probable that ft may be greatly improved as

afdy postin on eve che rece. 

 
mand ¢ ain.

jn itself or with experimentfs discovered in it,
nd as Jong as no more adequate hypothesis can bevapecl to replace it, it may justly claim a certain

(3 i” 4 |THE PHOTOELECTRIC EFFECT — EINSTEIN'S.
where m is a positive integer and h is a cons PHOTON CONCEPT
determined by fitting the actual data. After brit
bear statistical arguments, which are oflittle com
here (and not actually correct anyhow),” PI
the following formulaforthe spectral exits
he had already arrived at by fitting curves

Qmhe* 1
iy =a Fat |:

ther ironical that Heinrich Hertz, who helped to
gh the classical wave picture of radiant energy,

nwitting contributorto its ultimate reformula-
BU hiscameby wayofhisdiscovery ofthe photoelectric
whose description first appeared in 1887 in a
entitled “On an Effect of Ultraviolet Light upon

Electric Discharge.” While engaged in his now
experiments on electromagnetic waves (Section

I noticed that the spark induced in his receiving
Bawas stronger whenthe terminals of the gap were
mated by the light coming from the primary spark.

able to establish that the effect was most pro-
nced when ultraviolet impinged on the negative

ial of the gap, but he did not pursue the work
prther. Later, in 1889, Wilhelm Hallwachs(1859-
Bshowed that negative particles were released from

gy illuminated metal surfaces, such as zinc,
lum, and potassium. Thereafter Philipp Eduard
fn von Lenard (1862-1947), who was a colleague

- "tz, measured the charge-to-mass ratio of these
gees, thus confirming that the spark enhancementved by Hertz was the result of the emission of

{now referred to as photoelectrons). Using
=~ fhat were similarin principle to the one depicted

A
Herek is Boltzmann's constant. Planck’s'®
as given by Eq.(13.4), is in extremely goo!
with experimental results when A is choseg]
ately, The currently accepted value of Planck’is

f= (6.6256 + 0.0005) x 107Js.
The hypothesis that energy was emitted ay

in quanta of &» (which initially seemed only
tional contrivance) has proved to be a
statement of the nature of things. Moreover
tity A, rather than simply being a particularparameter, has shown itself to be a umive
of the greatest importance. Nonetheless, W
* Planck'soriginal derivation leads to erroneous
mhy, but it was later correctly reformulated by Bos  
+ Don’t confuse this with spectral energy density, wig and M, Masius, The Theory of Heat Radiation.
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Figure 18.2 Setup to observe the photoelectric elec.

in Fig. 13.2, a numberof researchers began to accrue
data on the photoelectric effect,that is, theprocess whereby
electrons are liberated from materials under the action of
radiant energy. It soon became apparentthat the photo-electric effect was another instance in whichclassical
electromagnetic theory was paradoxically impotent.
This protracted dilemma wasfinally resolved by Ein-
stein in a brilliant paper appearing in the Annalen der
Physik of 1905." It was there that he boldly extended
Planck’s quantum hypothesis and in so doing gave
impetus to the sweeping reinterpretation of classical
physics that was to take place later in the 1920s. Let's 
* 1905 was a good year for Einstein. It was then,at the age of about
26, that he published his theories of spedal relativity, Brownian
motion, and the photoelectric effect. Nonetheless, he once confided
in a friend that his theory of the photoelectric effect was the result
of five years of thinking about Planck’s hypothesis.
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now set the scene (c. 1905) so that we can appreciate
how insightful Binstein’s work actually was in light of
the limited existent data.

‘The early experiments of J. Elster and H.Geitel in
1889 hadrevealed that photoelectrons were frequently
forcibly ejected from the illuminated metal surfaces
understudy. Electrons apparently emerged with
but finite speeds ranging from zero to some maximum
vale, Umax: BY making the collecting plate negative with
respect to the iluminated plate, 2 retarding force couldbe exerted on the electrons. ‘The retarding voltage,
which would stop even the most energetic electrons
from reaching the collector, thereby bringing the photo-
current to zero, is known as the stopping potential Vo-Thus

}moViaax = GeVor (3.5)
where mig is the rest mass of the electron. Figure 18.3(@)
depicts the mannet jn which the photocurrent i, variesas the retarding voltage V is altered. There is nothing
about Fig. 1.3(@) that is at variance with the classical
picture. The distribution in energy of the emergingelectrons, which manifests itself in the gradual drop-off
of the curve, can satisfactorily be attributed to differen-
ces in the energy binding the various electrons to the
metal, Electrons do not spontaneously escape from
metal surfaces, so that such bindingis quite reasonable.

In 1893 it was observed that i, was directly propor-
tional to the incident irradiance,I, a8 indicated in Fig-
13.3(b). This too represented no departure from the
classical scheme. Increasing J increases the total energy
absorbedby the surface andshould thus yield a propor-
tionately larger numberof emitted photoelectrons.

In contrast, it had early been established that there
was no discernible dme delay between the instant the
plate was Pluminated and the initiation of photo-emission. This behavior iscompletely incomprehensible
within the context of the classical description. For
example, if I= 107! wim? (at Ap = 500 mm), theorypredicts {Problem 13.10) that it might take about 10hours before electrons could accuraulate the amount of
energy they had heen observed to possess. To thecontrary, Elster and Geitel, working with an even smal-
ler irradiance, found no measurable time lag whatever.

In 1902 Lenard discovered that for agiven metal the

the radiation field could only change
thatis, integer multiples of hy. This
ofthe fact that he had quantized the
ric oscillators. Going far beyondthis,
that the radiation field itself was quan-

1d be absorbed from it only in quantaanism of the photo-
becomes quite clear. Envision an
interior of the material, which has
hw, In rising to the surface it willand in escaping from the

ec. Let the total energy spent
be ®, The difference between

in the form of kinetic energy:

   
 
 
  

 
 
  
 
 

 
  
 

otons). The mech:

jyand © appears

the electron happensto be at the surface, ® hasyum value Po. Known as thi
respondsto the ene
free of the surface

e work function, Do
rgy needed by an electron
(see Table 18,1). In that
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Table 13.1 Photoelectric threshold frequencies and workfunctionsfor a few metals,  

   

 
 
 

Cesium
Beryllium Be 39Titanium=Ti ~4d
Mercury He 45
Nickel i 5.0
Platinum, 6.3

ing emission would just barely eject the electrons. Towit, Umax = 0 and
Yo = Dofh. (13.8)

In the photonpicture, an electronliterally absorbs a
blast of energy as opposed toa gradual trickle. Accord-
ingly, there will be no appreciable time delay in the
emission. Theinterrelationship betweenirradiance and
photocurrent is also quite understandable. An increase
jn I corresponds to more photons of the same energy
and thus an increase in i, but not in Vo.

The quantum theory rather neatly accounts for the
existence of a threshold frequency, the dependence of
(mv2.q/2) on v,the lack of a timelag, the independence
of Vo on J, and the relationship of I to i,. Even 80,
since quantitative data were scanty and the photon so
radical an ideait remained unaccepted by many.

The photoelectric equation went even furtber than
accounting for all of the known observations; it also
represented one of the great prognostications of all
times. After it had been published, a great flurry of
experimental work brought with it all sorts of confirma-
tion. The proportionality between Dand i, was exten-
ded over a range of 5% 10” in irradiance. Ernest O.
Lawrence and J. W. Beams (1928) used a Kerr cell to
create pulses of light and therewith foundthat ifa time
lag existed in the emission of electrons,it had to be fess
than* $ X 10°. In 1916 the American physicist Rohert
Andrews Millikan (1868-1953) published an extenaive
and remarkably accurate study of the relationship of
Einstein’s equation and the photoelectric effect. His own

+E, O. Lawrence and J. W. Beams, “The Element of Time in thePhotoelectric Effect,” Pays, Reo. $2, 478 (2928).
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words on the subject are quite enlightening:
I spentten years of mylife testing the 1905 equation
of Einstein's and contrary to all my expectations, 1 was
compelled in 1915 to assert its unambiguous experi-mentalverification in spite of its unreasonablenesssince
it seemedto violate everything that we knew about the
interferenceoflight.

A representation of Millikan’s results is shown in Fig.
13.5. Note that since vp = Bo/h, we can write

MUmax
qh Y)s 23.9)

which means that a plot of maximum kinetic energy
(q.Vo) versus v for any given material should be a
straight line having a slope & and an intercept of —®g.
These predictions were completely confirmed by
Millikan.* The amazing fact that the slope actually
turned out to be equalto A isa tribute to the insight of
Planck and the geniusof Einstein. Different metals have
characteristic values of @, and v9, but in all cases the
slope of the line remained constant at h, as predicted.

The quantization of the electromagnetic field had
been established; all of physics, and particularly optics,
would never quite be the same again.t
es
13.4 PARTICLES AND WAVES

According to Maxwell's electromagnetic theory (see
Chapter 3), the energy and momentum p of an
electromagnetic wave are related by the expression

€= cp. 3.19)
Alternatively, the energy and momentumofa particle 
*In 1923, two years after Einstein received the Nobel prize for hiswork on the photoelectric effect, Millikan was awarded the same
honor,in part for his experimental efforts on that subject.
1 Notwithstandingthe greatinfluence the photoelectric effect had on
thephotonhistorically,it is nonetheless possible to explain thateffect
without resorting to a quantization of the electromagnetic field.
Indeed one cantreat the field classically, imparting the quantum
nature to the matter alone. See the article by W. E. Larnb,Jr., and
M.O.Scully in Polarization, Matter and Radiation, Jubilee Volume inHonorof Alfred Kastler.

   
 
    
  
  
  
   
  

  
 
 
 
 
    
 
 
  

 
  

  
 
   
 
  
 
 
 
  
 

  

pigu2 that the photon possessesinertial mass leads
ather interesting results, for example, the

Dol red shift (Problem 13.13) and the deflection
jight by the Sun (Problem 13.16). The red shiftally observed underlaboratory conditions in

by R- ‘y. Pound and G. A. Rebka,Jr., at Harvardfersity. In brief, if a particle of mass m moves
da height 4 in the Earth’s gravitational field, it
work in overcomingthefield and thus decrease

gy by an arnount mgd. Therefore, if the photon’s‘energy is Av;, its inal energy after traveling a
fical distance d will be given by

aVo Av, = hy, — mgd, (13.43)

dso ¥% < ¥% ergo the name red shift. Pound and
using gamma-ray photons,were able to confirmganta of the electromagnetic field behave as if
ad a mass m = 8/c*.

m Eq. (13.10) the momentum ofa photon can benas

ev)

(13.14)
 

pm AIA.
oo) lfwe had a perfectly monochromatic beam oflight of

favelength A, each constituent photon would possess a
fomentum of h/A, or equivalently

3.15)weww
Figure 13.5 Someof Millikan's results.

of rest mass mo are related by way of the formnlg
BS (mic? + 92%, "

whose origins are in the special theory of relativig
Inasmuch as the photon is a creature of bothi th
disciplines, we can expecteither equation to be
applicable; indeed they mustbe identical. It £9
the rest mass of a photonis equal to zero. The phi
energy, as with any particle, is given by the §
expression % = mc”, where

p= tk, [8.53}
pen arrive at this same end by way of a somewhat
erent route. Momentum quite generally is the

focluct of mass and speed, thus4
_@

pame=",
We're back to Eq. (13.14). The momentum relation-

$= h/A, for photons was confirmed in 1923 by
Holly Compton (1892-1962). Ina classic experi-

he irradiated electrons with x-ray quanta and
sled the frequency of the scattered photons. ByWig the laws of conservation of momentum and

telativistically, as if the collisions were between
fas: Compton wasable to accountfor an otherwise

 
Thus,since it hasa finite relativistic #9" ™ anfp aeMo = 0,it follows that a photon can eeul AY,
the energy@is purely kinetic.
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inexplicable decrease in the frequencyofthe scattered
radiant energy.

A few years later in France, Louis Victor, Prince de
Broglie (b. 1891), in his doctoral thesis drew a marvelous
analogy between photons and matterparticles. He pro-
posed that every particle, and not just the photon,
should have an associated wave nature. Thussince p =
AfA, the wavelength of a particle having a momentum mvwould then be

A= hims. (18.16)
Because h = 6.6 X 10-*is small and because of the
relative enormity of the momenta of macroscopic
entities, such bodies have miniscule wavelengths. For
example, a I-g pebble movingat | cm/s hasa wavelength
of 6.6 x 10-** m, roughly 10” times shorter than that
of red light. In contrast, let’s compute the voltageneeded to impart a wavelength of I A to an electron;
this is of the order of the spacing between atoms. Start-
ing from rest,the electron has a kinetic energy of mu/2
after traversing a potential difference of V, thatis,2muye

qe 2
Using Eq. (13.14), we can write

nzye——
Qmgad*

{6.6 x 10-*Js)®
*9(0.1 x 10kgy(1.6 x 10G10ma)or

V= 150 V.

Anelectron so accelerated has an energy of 150eV
(LeV = 1.602 x 1071? J) and a wavelength of 1 A, which
js just about that of a typical x-ray photon.

Experimental verification of de Broglie’s hypothesis
came in the years 1927-1928 as a result of the efforts
of Clinton Joseph Davissbn (1881-1958) and Lester
Germer(b. 1896) in the United States and Sir George
Paget Thomson (1892-1975) in Great Britain. Davisson
and Germerused a nickel crystal (face-centered cubic
structure) as a three-dimensionaldiffraction grating for
electrons. When a 54-eV beam was incident, perpen-
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Numberofelectrons Numberofelectronse30° 60°90" 30°|60° 90°

Polycrystalline Single erystal
Figure 13.6 The Davisson—Germerexperiment.

dicular to the cut face of the crystal, as shown in Fig.
13.6, a strong reflection appeared at 50° to the normal.
Making use of the grating equation,

asin 0, = mA, {10.32}
we find that the first-order (m = 1) maximum corre-
sponds to

asin dé, =A.
In this instance thelattice spacing a is 2.15 A, and so
A = 2.15 sin 50° or 1.65 A,in fine agreementwith the
value of 1.67A computed from the de Broglie equation
(13.16). Amazingly enough, a beam of electrons had
thus been diffracted in a manner completely analogous
to a lightwave bouncing off a reflection grating. Thefirst observation of electron diffraction that was made
by Davisson and Germerwas quite accidental; they were
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not looking for it, nor did they at first rm
happened. In contrast, Thomson hadset o
ately to verify diffraction. Taking a coment
approach, he passed a beam of high-speed
through a thin polycrystalline foil (100 nm

(b)

wi
13.8 Matter-wave diffraction. (a) Fresnel electron diffraction

BPPHof 2 Zum diameter metallized quartz filament. [Photo frompilKlemperer, Electron Physics, Butterworths and Co. (Publishers)
miLondon (1972).] (b) Fresnelelectron diffraction at a half plane
MVicrystal). (c) Interference fringes observed with an electron

rangement by G. Méllenstedt. (d) Fresnel diffraction of
Bis by zinc oxide crystals (After H. Boersch). (The last three

MEE arc from Handbuch der Physik, edited by S. Fligge, Springer-
FH eidelberg.) (c) Electron diffraction by a UO, crystal. (Photo

of University of California’s Los Alamos Scientific Labora-Double-beam interference of electrons. [Photoby C. Jonsson,
Hed from J, Orear, FundamentalPhysics, John Wiley, New York
i The faint cross hatching in this photo arises purely in theProcess; it's a moiré effect from rescreening.

Figure 19.7 (a) Diffraction pattern arising fro!
through a thin polycrystalline aluminum foil. (6) Barising from electrons passingthrough the samethe PSSC film Matter Waves.)
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40)

Figure 13.9 Diffraction patterns generatedby (a) neutrons, (b) x-ray
Photons incident on a single crystal of NaCl. A polycrymalline speci-
men would produce # great many randomly oriented det patterns of
this sort which would blendinto the ring systemsofFig. 13.7. [Photo
@) by E. O. Wollan, which along with (b) is from Lapp and Andrews,
Nuclear Radiation Physics Srd ed., Prentice-Hall, Inc., EnglewoodGiiffs, N.J. (1963).]

  
  
 

  
 
  
 
  
 
 
 
 
  
 
  
 
 

 
 
   
 
 
 
  
 
 
  
   

 
 
 

  

rings (Fig. 13.7). In 1928 E. Rupp diffracted
slow electrons {70 eV) at grazing incidence ¢
optical grating (1300 lines per cm) and

alte work of Young, Fresnel, and many others
tay yudied the processes of interference, diffraction,

3 , observed, < polarization. During the intervening century, oursecond-, and third-order images. Two year: = tion of light has metamorphosed from that of a
1930, I. Estermann and Otto Stern demon: S : atary mechanical aether wave to the contem-
occurrence of diffraction effects using beag photon description. Yet the concept thatlight
helium atoms and molecular hydrogen, S somehow inherently oscillatory has persisted

In recenttimesit has becomepossible 4 ghout this transition period. And so we might
remarkable range of interference and press the point and ask, what is it that oscillatesterns using electrons, as witness the phote we envisage light as a stream of photons; or for that
13.8. 1 , what aspectof anelectron vibrates? The answer

Outof the long list of material particles Siiis will obviously give us someclue as to how quanta
been observed to display wave properties, ne Byilay interference effects.
amongst the most useful. Because they carry neon e ¢ Danish physicist Niels Henrik David Bohr (1885-slow or thermal neutrons can have long wavelens H}) provided an essentiallink between classical and
yet be immuneiothe electrical forces that st Mum physics in what has become known as the
disturb low-momentum electrons. The diffrag dence principle. Briefly stated, any new theory must
thermal neutrons (generally originating from Dice with the results of the classical theory if supersedes in
reactors) is now a routinely used procedure inj Pqomain where the latter is known to be effective.* Thus
of atomic structure (Fig. 13.9). Ble quantum theory can explain blackbodyradiation,Not very long ago (1969), a beam ofneutral pige Mephotoclectric effect, Compton scattering, electron
atoms was used to observe diffraction a Riaction, and a myriad of other observations, it must
macroscopicslit (23 x 107° m wide). Thereat ecount for what mightbe called classical behavior.
tern wasin accord with de Broglie’s hypothesii rangeof familiar effects, such as Snell’s law,
scalar Fresnel diffraction theory." lection Jaw, and the Doppler formula,t which are

Weare limited by our languagetoalist of word treated in terms of electromagnetic theory, must
much as our worldly experiences limit {hi understandable within the context of the photon
those words bring to mind. Oursenses ription. The quantum theory is not just an esoteric
environmentandin so doing providedthe' Bendum; it must encompass all confirmed observa-
understandingofit. In what seemed a logical Rbat have gone beforeit, no matter how mundane.
wehavetried,a bit naively, to use macrostopit , if you will, a monochromatic light source
to describe submicroscopic entities. But electy iting an optical element of some kind followed
not behavelike miniscule billiard balls any my observation screen. Presumably, in many cases
light can be pictured in terms of scaled-dow Bould calculate, using classical wave optics, the flux-
ocean waves. Particles and waves are macroscoft distribution appearing on the screen. Suppose
which gradually lose their relevance as we approach 4m that we have such a case, for example, a plane
microscopic domain. cident on a double-slit arrangement. Theirradi-

"T) represents the average energy density per
it treat the plane of observation, in this instance,

=

13.5 PROBABILITY AND WAVEOPTICS. I
  

 
The fundamental wave nature of optical
was established well over a hundred years us ig the corre-© process. Foo oe classical pi  of quantnm pi hiss to approach
* J. Leavitt and F.Bills, “Single-Slit Diffraction Patera ing eenimed phenomena continuous.
Atomic Potassium Beam,” Am. J. Phys, 37, 905 (1969) slop Ah, Eoorcee rel, Optics p. 82.
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the familiar fringe pattern of Young’s experiment. Thus
the average number of photons impinging on a small
area elementdA,inatimeintervaldé, willbe (J dA dt)/hv,
where I, of course, varies from one point to the next
over the surface of the screen. Keep in mind that we
can only detect the ernission or absorption of a photon,
thatis, its interaction with matter. There is no way to
predict where a particular photon will arrive on the
plane of observation, although someregions are more
likely sites than others. Accordingly, if a total of N
photons strike the screen in each intervaldi, we can say
that each photon has a probability equal to (I dA dt)/hyN
of arriving at the given area element dA, The irradiance,
as computed classically, is therefore related to the probability
offinding a photon somewhere onthe screen. It is convenient
at this point to introduce,at least conceptually, a com-
plex quantity known as the probability amplitude, that
is,a quantity whose absolute value squared(the so-called
wave-intensityy yields the probability distribution. It is
this probability amplitude propagating as a wave that
describes the whole range of interference effects. For
example,in Young’s experiment the photon’s probabil-
ity amplitude for reaching its final state is the sum of
two amplitudes, each of these being associated with the
photon’s passage through oneoftheslits. The various
contributing amplitudesin a given situation overlap and
thereby effectively interfere, yielding the resultant
probability amplitude and from thatthe irradiance. In
answerto our initial question, we can say thatit is the
probability amplitude associated with the photon that
is oscillating. Bear in mind that the same kind of discom-
forting reinterpretation of familiar ideas that we are
encountering now had to be made when Maxwell’s
electromagnetic theory first emerged on the scene.

Let's nowbriefly examinethe implications of a rather
famousstatement made by the renowned British physi-cist and Nobel laureate Paul Adrien Maurice Dirac
(1902-1984):

... each photoninterferes only withitself. Interference
between different photons never occuts.*

This is in accord with the conclusion that each photon
possesses a distinct wave nature. Evidently the wave 
*P. A.M. Dirac, Quontum Mechanics, 4th ed., p. 9.
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properties of light are not attributable to the beam
acting as a whole. In Young’s experiment each photon
somehow simultaneously interacts with bothslits; close
either one and the fringes will disappear. Presumably,
since each photon interferes with itself, the same fringe
pattern would gradually occur, one flash at a time, even
if we shone a single photon a day at theslits. This
remarkable conclusion was actually confirmed experi-
mentally hy Geoffrey I. Taylor, a student at the Univer-
sity of Cambridge in 1909. Using a light-proof box, a
gas flameilluminating an entrance slit, and a number
of attenuating smoked glass screens, he set about photo-
graphing the diffraction pattern in the shadow of a
needle, By drastically reducing the incoming flux
density, he was able to obtain exposure times of up to
about 3 months. In such cases the energy density in the
box was so low that there was usually only one photon
at a time in the région beyond the entranceslit. None-
theless, the customary array of diffraction fringes
appeared, and moreover,

In no case was there any diminution in the sharpness
of the pattern...*
Muchof the foregoing discussion can be applied to

material particles as well. In fact, the same dynamical
equations determine the interrelationsbip of », A, and
v with p and ® forall particles, material or otherwise.
Consequently from Eq,(13.14) we find that

p= (8 ~mactyfc, 3.17)
while A = h/p leads to

A= hcl S? — moc*V?, (13.18)
Since p™ mu, v = pe?(me?) = pers and

v= c{h — (nge/ Sy”, (18.19)
Evidently one of the main distinguishing characteristics
of the photonis just its zero rest mass, In that case, the
above equations simply become p = @/c, A = he/¥ = c/vandv=«

In away analogousto that of the photon, the probabil-
ity amplitude or de Brnglie wave for a matter field is 
*G.I, Taylor,"Interference Fringes with Feeble Light,” Proc. Camb.Phil, Soc. 15, 114 (1909).

   

      
represented by the function yx, 9, z, 2) {also.re
to as the wave function). The probabilj LY of a
particle of finite rest mass is then Propottio
wave-intensity |y]”. One determines the yay, nad
for a particular circumstance involving naecles from the Sckrédinger equation. Once ay
probability amplitude of the particte that is
propagates through space as a wave, andinterference. a

4g further postulated] that the magnitudes of these
tel prohability ampiltede gre all equal, that is,}@,| = |Be] = [al = +

as their phases are not equal and indeed depend
the particular paths. Note that a value of P = 1 means
‘ihe particle will arrive at A with complete certainty,

p= 0 means thatit will most definitely not reach
Quite ly then, P will range in value between
sd 1. Equation (13.21) evidently introduces the
nomenon ofinterference into the scheme, whether
for photons or electrons. In contrast, if we were
g with classical particles, such as 2 stream of BBHuy, P would equal[®,]°+ |? +|@,7 +->-, and
would be nointerference;in other words, P would

gudependentof the individual phases. As with inco-
t light, one then adds irradiances rather than

nplitudes. .Jet's now turn to the idealized Young’s experiment
19.10, consisting of two extremely smallslits. In

 
 
  
  
 
 
 
 
    
  
 
  
 
 
  

  
  
 
     

  
   
 
    
 
  
 
 
  
  
   

   

   

(23.22)

13.6 FERMAT, FEYNMAN, AND PHOTONS,
In classically treating interference and di
lems with coherent waves, one generally sung
electric field contributionsat a given point-
frequently being written in complex form,
of the absolute value of this sum is proportigg
irradiance and is consequently proportional
ability of finding a photon at the pointin gt
will now qualitatively generalize these re
the lines of Richard Feynman’s elegant yan
mulation of quantum mechanics.* Supposed
particle (photon,electron, etc.} is emitted ££
point S andis later detected at point A. The}
of arrival, P, is equal to the squareof the a
of a complex quantity , which,as before,i
the probability amplitude, thatis, P = |®/?
classical treatment, where the field was expres
complex form as a convenience, & must be com]
the quantum-mechanical formulation. Cot
has an amplitude anda phase, thelatter being
of both the spatial position of A and timeg
can occur by several alternative routes 1, 23
it was postulated by Feynman that in suck
path contributes to the total probability amplitudg, tnewords,

P=|0,+9%,/*, (13.23)
 
 
 

here are effectively two paths, one through each
ie. If the phases of the probability amplitudes at
r by an odd multiple of a. they will interfere

ctively, thatis,
P=(,|—[O4))* = 0. 03.24)

S=O, FO ¢ deter’
and so

PH=(b,+0,4+0,4-°° 7
ee

* RP, Feynman “Space-Time Approach to Non-R
tum Mechanics," Reo. Mad, Phys. 20, 967 (1948). Double-beam experiment.
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On the other hand, if they are in phase, constructive
interference results at A, whereupon

P= (by +|@Q))" = (hy, (13.25)
which is equivalent to

6
I =4Iycos?= {9.6}2

for 6=0, , 2m,.... The phases of the probability
amplitudes at A dependon the path lengths traversed
along each route, so P can clearly have any valuebetween these extremes as well. In the same way, if we
were shooting BB pellets through two small holes, the
probability of their arriving at A would be the sum
{,\? + (@el*, Here |)? and [®s? are simply the
individual probabilities of arrival with either hole i or
hole 2 open, respectively, as indicated in Figs. 13.11
and 13.12. The resulting distribution of BB pellets is
just the superposition of the two separate patterns for
each aperture; there are no fringes andno interference.

If the screen had N such apertures, rather than just
two, the probability of a photon reaching A would beN 2

Le,1

Foralarge aperture, for example,a lens or mirror, the
summation beoomes an integral over the area of the
aperture. Incidentally, Feynman has shown that, for
material particles, the total value of the probability

P= (13.26)
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y
\ \

! _ et

; | ae
Figure 18.11 Lower hole covered in double-beam setup.

amplitude for all paths is the wave function satisfying
Schrddinger’s equation.*

‘We now go back to thepicture ofa single ray oflight
leaving @ source andreflecting off a mirror, ultimatelyto arrive at a sensor. The probability of a photon
encountering the sensor is determined by ©, which in
turn is composed of contributions from each of the
possible paths. All of this talk aboutpaths should bring
to mind Fermat’s principle (Section 4.2.4), which main-
tains that the actual path taken by a ray is stationary.
Everything fits together rather nicely when we realizethat the relative differences in path length and phase
of the corresponding probability amplitudes at the
sensor are small only for paths near the stationary one
(8; = 6,). These probability amplitudes interfere con-
structively, thereby providing the predominantcontri-
bution to P. This is then the quantum-mechanical basis
for Fermat’s ptinciple. Probability amplitudes associ-
ated with paths remote from the stationary onewill
have large phase-angle differences resulting in relativelylittle cumulative effect on P. This discussionis reminis-
cent of the Cornuspiral (Section 10.3.7), which in quite
an analogousfashion can be thoughtof as the diagran-
matic sum of a great number of phasors, each of
different amplitude but the same phase angle. Suppose
that we wish to determine I or equivalently P at 2 point
on the central axis of, say, a long slit. In that case
contributions from remote areas of the aperture corre-
a
* To see how these ideas are related to Hamilton’s principle Function,
the principle ofleast action, and the WKB approximation,refer, for
example, to D, B. Beard and G. B. Beard, Quantum Mechanics with
Applications, p. 44, and §. Borowitz, Fundamentals of QuantumMechanics, p. 165.

spond to the tightly woundregions of the gyi
therefore contribute little to the compia
(phasor) Byz. Recall (Eqs. (10.106) or (10.108)]
proportional to |By2\* just asit is Proportional’
Equation (13.20) can similarly be envisioned Pi
in termsofthe addition of a numberof equal-
phasors, in which case P is proportional to the) qu,of the magnitudeof the resultant. Phasors co,
ing to probability amplitudes for paths in th,
of a stationary one differ in phase by very [i
therefore add almost alonga straightline,
a major contribution. Where therelative ph
cessive phasors is large, the curvespirals argon
little effect on |®{. The analogy can even be extepgif we now viaualize the Cornu spiral as if it4fere
posed of a great number of equal-ampliti
whose phase angles are ever increasing ;
farther from the centerofthe spiral [from Eq. {f
8 = ww*/2]. In any event the phasorreprese: i
the contributing probability amplitudes is a han
device to keep in mind.

4). In dense gases, Hiquids, and solids, absorption
fers over a range or band of frequencies, and theis generally dissipated by way of intermolecular

ag, In contrast, the excited atoms of a low-
re gas can retadiate a photon of the same

ency (4) in a random direction, a process first
rved by R. W. Wood in 1904 and known as reso-radiation. Accordingly, there is preponderant
ying at frequencies coincident with the excitation
jes of the atoms. Theeffect is easily demonstrated
Wood’s technique, which incorporates an evacu-

glass bulb containinga bit of pure metallic sodium.dually heating the bulb increases the sodium vapor
re within it. If a region of the vapor is then

jmated with a strong beam oflight from a sodium
hat portion will glow with the characteristic yellowce radiation of Na.

ring can also occur at frequencies other than
corresponding to the atom’s stable energylevels.
ch cases a photon will be reradiated without any
ciable time delay and most often with the same

as that of the absorbed quantum. The process
5 as elastic or coherent scattering, because there

Seeohase relationship between the incident and scat-
d fields. This is the Rayleigh scattering we talked

Mout in Section 8.5.1.also possible that an excited atom will not returninitial state after the emission of a photon. ‘This
WBiid of behavior had been observed and studied exten-

ly by George Stokes prior to the advent of quantum
ry. Since the atom drops down to an interim state,

mits a photon of lower energy than the incident
photon, in whatis usually referred to as a Stokes

Msition. 1f the process takes place rapidly (roughly
8), it is called fluorescence, whereasif there is an

breciable delay (in some cases seconds, minutes, or
many hours), it is known-as pbosphorescence.

ultraviolet quanta to generate a fluorescent
n of visible light has become an accepted occur-

in our everyday lives. Any number of common-
aterials (e.g., detergents, organic dyes, and tooth
), will emit characteristic visible photonsso thatwhore He

wel a= of the phenomenon # &
uses and for “whitening” cloths.

  
 
  
   
 
   
  
 
   
 

  
 
 
 
   
 

 

13.7 ABSORPTION,EMISSION, AND SCATTERING
Let's now take a brief look at the quantum-
aspects of a few important interactions occur
between light and matter, Suppose that a photon @
frequency % collides with andis absorbed by a
Energy is transmitted to a boundelectron, resv ith n fthe excitation of the atom. The absorption pro!
is greatest when the frequency of the incident:
is equal to an excitation energy of the atom (seé
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13.7.1 The Spontaneous RamanEffect

Lf quasimonochromatic light is scattered from a sub-
stance,it will thereafter consist mainly of light of the
same frequency. Yet it is possible to observe very weak
additional components having higher and lower
frequencies (side bands). Moreover, the difference
between the side bands and the incident frequency »;
ig foundto be characteristic of the material and there-
fore suggests an application to spectroscopy. The span-
taneous Raman effect, aa it is now called, was predicted
in 1923 by Adoif Smekal and observed experimentally
in 1928 by Sir Chandrasekhara Vankata Raman (1888-
1970), then professor of physics at the University of
Calcutta. The effect was difficult to put to actual use,
because one needed strong sources (usually Hg dis-
charges were used) andlarge samples. Often the ultra-violet from the source would further complicate matters
hy decomposing rhe specimen. Andso it is not surpris-
ing that little sustained interest was aroused by the
promising practical aspects of the Raman effect. The
situation was changed dramatically when the laser

intermediate
state

 
— @)

——— Intermediatestate
hy,hy, fw,

y——Ie>
(6>

Mla) (e)
 

Figure 19.13 Spontaneous Raman scattering.
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——~ Intermediatestate

 
Figure 13.14 Rayleigh scattering.

becamea reality. Reman spectroscopy is now a uniqueand powerfulanalytical tool.
To appreciate how the phenomenon operates,let’s

review the germane features of molecular spectra. A
molecule can absorb radiant energy in the far-infrared
and microwave regions, converting it to rotationalkinetic energy. Furthermore, it can absorb infrared
photons {i.e., ones within a wavelength range from
roughly 10 mm* downto about 700 nm), transforming

 

   
Double scanningmonochromator

Figure 13.{5 A laser-Ramansystem.

that energy into vibrational motion of th
Finally a molecule can absorb energy in th 3
ultraviolet regions through the mechanisms,
transitions, much like those of an atom, 8uy)
that we have a molecule in some vibrational I
using quantum-mechanicalnotation, we ait
cated diagrammatically in Fig. 13.13(a). Thi. ;
necessarily be an excited state. An inde
energy Av,is absorbed, raising the system toso}
mediate or virtual state, whereupon it ix a
makes a Stokestransition,emitting 2 {scat
of energy 4x,< hy. In conserving eridifference hy; — hy, = hv, goes into ex
molecule to a higher vibrational energy level |a34

a
possible that electronic or rotational excitation
as well. Alternatively, if the initial state is
one{just heat the sample), the molecule,after]
and emitting a photon, may drop back to an evel
state {Fig. 13.13(b)], thereby making an an
transition. In this instance hy, > hy,, which me:
some vibrational energy of the molecule ag:
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Sample cellLens

{Scatteredbeam)f
%Stokes AntiStokes

lines fines

ep been converted into radiant energy. In eitherthe resulting differences between v, and ¥; corre-
ind to specific energy-level differences for the sub-
ce under study and as suchyield insights into its

Holecular structure. Figure 13.14, for comparison's
depicts Rayleigh scattering where »; = ¥.

laser is an idea! source for spontaneous Raman
ing.It is bright, quasimonochromatic, and ayail-

in a wide range of frequencies. Figure 13.15 illus-
a typical laser-Raman system. Complete research

PEruments of this sort are commercially available,
Meluding the laser (usually helium-neon, argon, ux

pton), focusing lens systems, and photon-counting
tronics. The double scanning monochromator pro-

MBes the needed discrimination between »; and »,, since
Shifted laser light {v;} is scattered along with the

lan spectra (v,). Although Raman scattering associ-
with molecular rotation was observed prior to the
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Laser frequency

Figure 13.16 Stimulated Raman scattering. {See R.W.Minck, R. W. Terhune, and C. C. Wang, Proc. IEEE
54, 1357 (1966).1

use of the laser, the increased sensitivity now available
makes the process easier and allows even the effects ofelectron motion to be examined.

13.7.2 The Stimulated RamanEffect

In 1962 Eric J. Woodbury and Won K. Ng rather
fortuitously discovered a remarkable related effect
known as stimulated Raman scattering. They had beer
working with a million-watt pulsed ruby laser incor-
porating a nitrobenzene Kerr cell shutter (see Section
8.11.8). They found that about 10% of the incident
energy at 694.8nm was shifted in wavelength and
appeared as a coherent scattered beam at 766.0 nm. It
was subsequently determined that the corresponding
frequency shift of about 40 THz was characteristic ofone of the vibrational modes of the nitrobenzene
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Figure 13.17 Energy-level diagram of stimulated Raman scattering.

molecule, as were other new frequencies also present
in the scattered beam. Stimulated Ramanscattering can
occur in solids, liquids, or dense gases under the
influence of focused high-energy laser pulses (Fig.
13.16). The effect is schematically depicted in Fig. 13.17.
Here two photon beamsare simultaneously incident on
a molecule, one correspondingto the laser frequency
v;, the other having the scattered frequency »,. In the
original setup the scattered beam was reflected back
and forth through the specimen, butthe effect can occur
without a resonator. Thelaser beam loses a photon hy;,
while the scattered beam gains a photon Av, and is
subsequently amplified. The remaining energy (hy,
hv, = hy.) is transmitted to the sample. The chain reac-
tion in which a large portion of the incident beam is
converted into stimulated Ramanlight can only occur
above a certain high-threshold flux density of the excit-
ing laser beam,

Stimulated Raman scattering provides a whole new
range of high—flux-density coherentsources extending
from the infrared to the ultraviolet. It should be men-
tioned that in principle each spontaneousscattering
mechanism (e.g., Rayleigh and Brillouin scattering) has
its stimulated counterpart.* 
* For further reading on these subjects you might try the review
tutorial paper by Nicolaas Bloembergen, “The Stimulated Raman
Effect.” Am. J. Phys. 85, 989.(1967), It contains a fairly good bibliogra-
phy as well as a historical appendix. Manyof the papersin Latert andLight also deal with this material and are highly recommended
reading.

PROBLEMS
13.1 Suppose that we measure the emitted
from a small hole in a furnace to be 22.8 W;
an optical pyrometerof somesort. Compute igtemperature of the furnace.
 
 
 
  
 
 
 

 
   
  
 

 

 
 
   
 
  
  
 
 
  
 

   
 
  
 
 

 

13.2* When the Sun’s spectrum is phot | &
using tockets to range above the Earth’s aum: = meit is found to have a peak in its spectral exi¢s ' s,
roughly 465nm. Compute the Sun’s surface wer —
perature, assuming it to be a blackbody. This api Bat | a,mation yields a value that is about 400 K too =it —

| Ho od 06 08 10°12 14 16 18 20 22 24Atm)
1h58 I micron

13.3 Beginning with Eq.(13.4), show that thefeme
per unit frequency interval for a blackbodyis gi

Qahv? 1
Tey = oe gnkr 1 .

13.4 Compute the wavelength of a 0.15-kg
moving at 25 m/s. Comparethis with the wavelenig
a hydrogen atom (mp=1.673 x 10-7 kg) hay
speed of 10° m/s.

iwm= 1x 107S m
 

als that of the Earth’s meanorbital radius; it has
| 0.133-0.14 W/cm”.If we assume an average

eng TM} nm, how pracy pte at
dare on each square meter per second of a solar

Rell jane’ just above the atmosphere?

 

13.1% With respect to the photoelectric effect, imaginewe have an incident beam with an irradiance of
W/m? at a wavelength of 500 nm. Whatis the

per quantum? Supposing the target atoms to
radii of 107!° m, how long would it take for any
them to accumulate the energy of a single photon,
mathe classical wave picture? In 1916 Rayleigh

classically that an atomic oscillator absorbs
int energy with an effective area of the orderof A?ice. How does this help?

13.5* Determine the energy of a 500-nm
photonin both joules and electron volts. Makethecalculation for a 1-MHzradio wave.

43.6 Write an expression for the wavel of
photon in angstroms (1 A =107'?m) in t ft itenergy in eV.

13.7 Figure 13.18 showsthespectralirradiat
ing on a horizontal surface, for a clear day,
with the Sun at the zenith. Whatis the most en© The work function for outgassed polycrystalline

Her is 2.28 eV, What is the minimum frequency a
ust have in orderto liberate an electron? What
he maximum kinetic energy of an electron
* a 400-nm photon?13.8" Suppose we have a 100-W yellow B

(550 nm) 100 m away from a 3-cm-diamete i
aperture. Assumingthe bulb to have a 2.5% &
to radiant power, how many photonswill p
the aperture if the shutter is opened for

Suppose that we have a beam oflight of a given
density incident on a photoelectric tube. Draw a% % versus V showing what we might expect to
to the stopping potential as the frequency is
ed from v, to ve to v5.13.9 ‘The solar constant is the radiant Suxder te

spherical surface centered on the Sun having
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13.13 To examine the gravitational red shift consider
a photon of frequency v, which is emitted from a star
having a mass M anda radius R. Show that at the star's
surface the energy of the photon is given by

GMhy} l1—-zG}-
#~n{1- $4)

Whenit arrivesat the Earth, having essentially escaped
the gravitational pull of the star, the photon will have
a lower frequency. Show thatthe frequency shiftis then.

GMAv= za».
v— aR”

Theeffectis quite noticeable for theclass of stars known
as white dwarfs. (This problem should have been
analyzed using generalrelativity, but the answer wouldhave been the same.)

13.14 Compute the fractional gravitational red shift,
that is, Av/y, for the Sun (M = 1.991 x 10°°kg and
R = 6.960 X 10 m). How muchof a change would occur
in the frequency and wavelength of a photon of Ag =
650 nm emitted from the Sun? (See previous problem.)

18.15 Show that a photon moving upwarda distance
d in the Earth’s gravitational field (Section 13.4) will
undergo a frequency decrease equalto

Av —gdvic’.
Compute the value of Av/y if d— 20m, Pound and
Reba actually measured that shift in a vertical tower
at Harvard University, using the extremesensitivity ofthe Méssbauereffect.

13.16 This problem concernsitself with the bending
of a beam oflight as it passes a massive body,such as
the Sun. It should actually be solved using general
rather than specialrelativity because of the presence of
gravity. As a result, our simple approach yields half the
correct answer. Bethat as it may, let us plunge on. Show
that the force componentacting on the photon trans-
verse to its initial direction of motion (Fig. 13.19) is
given by

GMm
> Re 008 8.
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Since cdi ~ ds = d(R tan 8), show that the total trans-
verse component of momentumreceived by the photonis

_26Mm
Pa cR

Inasmuch as p= me, compute ¢ for the Sun (R=
6.960 X 10° m and M = 1.993 x 10°? kg).
  

 
Figure 13.19

13.17* Imaginethat weaccelerate a beam of electrons
through a potential difference of 100 V and then cause
it to pass throughaslit 0.1 mm wide. Determine the
angular widthofthe central diffraction maximum (7p ™
9.108 x 107°! kg). How dothings changeif we decrease
the beam’s energy?

43.18 A thermal neutron is one that is in thermal
equilibrium with matter at a given temperature. Com-
pute the wavelength of such a neutron at 25°C (~room
temperature). Recall from kinetic theory that | theaverage kinetic energy would be equal to 3kT-
(Boltzmann’s constant k * 1.380 x 10° J/K and mp =1.675 x 10°*” kg.)

 13.19 In Young’s experimentcan w
incident photon splits and passes|
Discuss your conclusion.

Tea ge ere
 

18.20* Suppose we have a laserbeam ofradingf
wavelength A. Using the uncertainty prind fia
hk), make an approximatecalculation ofthe
the smallest spot the beam will make ont
distance R away.

13.21 Whatisthe photon fiux IT of a 1000-W cont
COgylaser emitting at 10,600 nm in the IR?

13.22 Derive the dispersionrelation, thatis, of
for the de Broglie wave of a particle of mass m@M
tivistically in a region where it has constant potent
energy U.

13.23* Derive an expression for the dispersiog
tion of a free (U©0), relativistically moving payTest Mass Mig.

13.24 Assuming that the de Broglie wave foray
in a region whereits potential energyis constangis@y
by

UG 2)=CeOge
use the results of Problem (13.22) to show that

ay f? ayfee Ub.
: ot 2m ax? z

“This is a form of the famous SchrédingereqOfquantum mechanics.

<i
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OPTICS

IMAGERY — THE SPATIAL DISTRIBUTION
OF OPTICAL INFORMATION

vit of all sorts of data via optical tech-
fhes has already becomea technological fait accompli,

BHliterature since the 1960s reflects, in a diversity of
s, this far-reaching interest in the methodology of

Gita!data processing. Practical applications have been
He in the fields of television and photographic image

cement, radarand sonarsignalprocessing (phased
synthetic array antenna analysis), as well as in pat-

@ recognition (e.g., aerial photointerpretation and
mérprint studies), to list only a very few,

concernhereis to develop the nomenclature and
Bie of the ideas necessary for an appreciation of this
eismporary thrustin optics.

  
  
   
 

 Il! Spatial Frequencies 

 
 

 
 
 

 

sal processes oneis most frequently concerned
al variations in time, that is, the moment-by-
alteration in voltage that might appear across

£ terminals at somefixed location in space. By
ison, in optics we are mostoften concerned with

H10n spread across a region of space at a fixedin time. For example, we can thinkof the scene

Ee! in 14.1(@) as a two-dimensional flux-+ /-4nbutinn. It might be an illuminated trans-
* television picture, or an image projected on

  
oy.
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SUNDRY TOPICS
FROM CONTEMPORARY

ascreen; in any eventthere is presumably somefunction
I(9,z), which assigns a value of J to each point in the
picture. To simplify mattersa bit, suppose we scan across
the screen on a horizontalline {2 = 0)andplot point-by-
point variations in irradiance with distance, as in Fig.
14.1(b). The function I{y, 0) can be synthesized out of
harmonic functions, using the techniques of Fourier
analysis treated in Chapters 7 and 11. In this instance,
the function is rather complicated, and it would take
many terms to representit adequately. Yet if the func-
tional form ofI(y, 0} is known, the procedureis straight-
forward enough. Scanning across another line, for
example, z = a, we get I{y, a), which is drawn in Fig.
14.1(c) and which just happensto turn outto be a series
of equally spaced square pulses. This function is one
that was considered at length in Section 7.7, and a
few ofits constituent Fourier components are roughly
sketched in Fig. 14.1(d). If the peaks in (c) are separated,
centerto center,by say, 1-crn intervals,the spatial period
equals I cm percycle, and its reciprocal, which is the
spatial frequency, equals | cycle per cm.

Quite generally we can transform the information
assaciated with any scan line into a series of sinusoidal
functions of appropriate amplitude and spatial
frequency. In the case ofeither of the simple sine- or
square-wave targets of Fig. 14.2, each such horizontal
scan line is identical, and the patternsare effectively
one-dimensional. The spatial frequency spectrum of
Fourier components needed to synthesize the square
wave is shownin Fig. 7.15. On the other hand,I{3, z)
for the wine bottle candelabrasceneis two-dimensional,
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Figure 14.1 A two-dimensional irradiance distribution.

 
 
 
  
 

  
 
 
 

and we haveto think in terms of two-dimengig;
ier transforms (Section 11.2.2). We might
well that, at least in principle, we could have
the amplitude of the electric field at each Point’scene and then performed a similar decomp .that signal into its Fourier components,

Recall (Section 11.3.3)that the far-field or Rtadiffraction pattern is, in fact, identical to the
transform of the aperture function (9,2).
ture function is proportional to €4(y,2), THe
strength perunit area (10.37) over the input,plane. In other words, if the field distribut;
object plane is given by .f(y,2), its two-dime:
Fourier transform will appear as the feld dist / : Grating
E(¥, 2) on a very distant screen. As in Fig, 16,19}

+—Petiog——

Transform
lens

  

Irradiance or
feld amplitude

nfintroduce a lens (L,) after the object in order to
gen the distance to the image plane, That objective

commonly referred to as the transform lens, since
fan imagineit asif it were an optical computer capable

rating instant Fourier transforms. Now, suppose
liminate a somewhatidealized transmission grating

fal a spatially coherent, quasimonochromatic wave,“as the plane wave emanating from a laser or a
mated, filtered Hg arc source (Fig, 14.3). In either

amplitude of the field is assumed to be fairly
lover the incident wavefront. The aperture

& in then a periodic step function (Fig. 14.4); in
‘werd, as we move from point to point on the

Irradiance oF
field amplitude Period

>
Figure 14.2 (a) Sine-wave target and (fi) S487
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Figure 14.3 Diffraction pattern of a grating. (Source unknown.)

object plane, the amplitude of thefield is either zero
or a constant. If a is the grating spacing,it is also the
spatial period of the step function, andits reciprocal is
the fundamental spatial frequency of the grating. The
central spot (m = 0) in the diffraction pattern is the de
term corresponding to a zero spatial frequency—it’s the
bias Jevel that arises from the fact that the input 4(y)
is everywhere positive. This biaslevel can be shifted by
constructing the step-function pattern on a uniform
gray background. Asthespots in the image(orin this
case the transform)planeget farther from the central
axis, their associated spatial frequencies (m/a) increase
in accord with the grating equation sin 6,, = A(mia). A
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sty)

 

   Angular spatialfrequency
m (2aia}

Diffraction pattern

Figure 14.4. Square wave andits transtorm.

coarser grating would have a larger value of a, so that
a given order (m) would be concomitant with a lower
frequency, (m/a), and the spots would all be closer to
the central or optical axis.

Had we used as an object a transparency resembling
the sine target [Fig. 14.2(a)], such that the aperture
function varied sinusoidally, there would ideally have
only been three spots on the transform plane, these
being the zero-frequency central peak and the first
order or fundamental (m©+1) oneither side of the
center. Extending things into two dimensions,a crossed
grating (or mesh)yields the diffraction pattern shown
in Fig. 14.5. Note that in addition to the obvious peri-
odicity horizontally and vertically across the mesh, it is
also repetitive, for example, along diagonals, A more
involved object, such as a transparency of the surface
of the moon, would generate an extremely complex

  
 
 
 
 
 
 
 
 
 
  
 
 
 
 
   

 
  
 
 
 
 
 
 
 
  
 
 
 
 
 
  
 
  
 
  

 

diffraction pattern. Because of the sim
natureofthe grating, we could think of its Fi
components, but now wewill certainly have fm
terms of Fourier transforms. In any case
light in thediffraction pattern denotes the presencAll
spatial frequency, which is proportional to its dM
the optical axis (zero-frequency location). Freque)
ponents of positive and negative sign appear
cally opposite each other about the central ax
could measure theelectric field at each point intransform plane, we would indeed observe thform of the aperturefunction,butthis is no!
Instead, whatwill be detected is the flux-de
bution, where at each point the irradiance ig Pro)
tional to the time averageofthe electric field squor equivalently to the square of the amplitude,
particular spatial frequency contribution «

imine (48 Image formation.Hi
14.2 Abbe's Theory of Image Formation}

4 +2, ...or spatial frequency and eachtravel-
a specific direction [Fig. 14.6(b)]. The objective

(L,) serves as a transform lens, forming the Fraun-
iffraction pattern of the grating on the transform
. (which is also the back focal plane of L,). The

4, of course, propagate beyond 2,andarriveat the
image plane 2;. There they overlap and interfere to
form an inverted image of the grating. Accordingly,

fits G, and Gz are imaged at P; and Pe, respectively.
objective lens forms two distinct patternsof inter-
One is the Fourier transform on the focal plane

¢ to the plane ofthe source, and the other is
Emage of the object, formed on the plane conjugate

object plane. Figure 14.7 shows the same setup
along, narrow, horizontal slit coherently illumi-

Consider the system depicted in Fig. 14.6(a)@fhich ig
just an elaborated version of Fig. 14.30)§ Plan
monochromatic wavefronts emanating from {== ¢gh.
limating lens (L,) are diffracted by a grating. The refi
is a distorted wavefront, which we resolve intgj
set of plane waves, each corresponding to a given

‘an envision the points Sp, S;, 52, and so forth
&. 14.6(a) as if they were point emitters of Huygens

= vlets, and the resulting diffraction pattern on &,is
ithe grating’s image. In other words,the imagearises

Me double diffraction process. Alternatively, we can
¢ that the incoming waveis diffracted by the

G, and the resulting diffracted waveis then diffrac-Figure 14.5 Diffraction pattern of a crossed Jee yonce again by the objective lens. If that lens werephoto unknown.)
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(b)

not there, a diffraction pattern of the object would
appear on ¥, in place of the image.

These ideas werefirst propoundedby Professor Ernst
Abbe (1840-1905) in 1873.* His interest at the time
concerned thetheory of microscopy, whoserelationship
to the above discussion is clear if we consider I, as a
microscope objective. Moreover, if the grating is
replaced by a piece of some thin translucent material
{ie., the specimen being examined), which is illumi-
nated by light from a smal! source and condenser, the
system certainly resembles a microscope.

Carl Zeiss (1816-1888), who in the mid-1800s was
running a small microscope factory in Jena, realized
the shortcomings of the trial-and-error development
techniques ofthat era. In 1866 heenlisted the services
of Ernst Abbe, then lecturer at the University of Jena,
to establish a morescientific approach to microscope
* An alternative andyet ultimately equivalent approach was put forth
in 1896 by Lord Rayleigh. He envisaged each pointon the objectasa coherent source whose emitted wave was diffracted by the lens into
an Airy pattern. Each ofthese in turn was centered on the ideal image
point (on ¥,) of the correspondingpoint source. Thus 2, was covered
with a distribution of somewhat overlapping and interfering Airypatterns.
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z 1 z, xFraunhofer pattern

Field
amplitudeField Field

amplitude amplitude

7 rw
nial Sel ied Jas2 2 2 2

Transform
Object plane or focal plane Image plane

Figure 14.7 Theimage of a slit.

design. Abbe soon found by experimentation that a
larger aperture resulted in higher resolution, even
though the apparent cone ofincident light Alled only
asmall portion of the objective. Somehow the surround-
ing “dark space” contributed to the image. Con-
sequently, he took the approach that the then well-
known diffraction process that occurs at the edge of a
lens (leading to the Airy pattern for a point source} was
not operative in the samesenseas it was for an incoher-
ently illuminated telescope objective. Specimens, whose
size was of the order of A, were apparently scattering
light into the ‘dark space”of the microscopeobjective.
Observe that if, as in Fig. 14.6(b), the aperture of the
objective is not large enoughtocollectall of the diffrac-
ted light, the image does not correspond exactly to that
object. Rather it relates to a fictitious object whose
complete diffraction pattern matches the one collected
by L,. We know from the previous section that these
lost portions of the outer region of the Fraunhofer
pattern are associated with the higher spatial! frequen-
cies. And, as we shall see presently, their remoyalwill 

 
 
 
 
 
   
 
  
 
 
  

 

result in a loss in image sharpness and resalutig
Practically speaking, unless the rating

earlier has an infinite width, it cannot Actually be ‘
periodic. This means that it has a continuonsmspectrum dominatedbythe usualdiscrete Fo
terms, the other being much smaller in ampli
plicated, irregular objects clearly display the F
nature of their Fourier transforms. In anylshouid be emphasized that unless the objective tg
infinite aperture, i functions as a low-pass filter’
spatial frequencies above a given vatue and passing!
below {the former being those that extend beyond
physicat boundary ofthe lens). Consequently,
tical lens systemswill be limited in theirabilityduce the high spatial frequency content of agi
object under coherentillurnination.* It mighf
tionedas wellthatthereisa basic nonlinearity.
with optical imagiog systems operating at highfrequencies.t

cs I
mS 1, , 4, x,

14.8 Object, transform, and imageplanes.

fnuersa”’ transform lens) projects the diffraction pattern
Fihe light distributed over X, onto the image plane.
other words, it diffracts the diffracted beam, which
rectively means that it generates an (inverted) inverse

sform. Thusessentially an inverse transform of the
aon 2, appearsas the final image. Quite frequently

jnpractice L, and L, are identical(f, ) well-correctedmultielement lenses [for quality work these might have
Jutions of about 150 line pairs/mm—oneline pair

ing a period in Fig. 14.2(b)}. For less demanding
applications two projector objectives of large aperture

fabout 100 mm) having convenient focal lengths of
ighly 30 or 40cm serve quite nicely. One of these

Tenseg is then merely turned around so that both their
focal planes coincide with %,. Incidentally, the

 
  
 
  
 
  
  
 
 
  
 
 
 
 
 
 
 
 
 
 

 

14.1.3 Spatial Filtering

Suppose we actually set up the system shownin Figy14,6{a}, using a laser as a plane-wave sources If
points So, S,, Se, and so on are to bethe sources &] M
Fraunhofer pattern, the image screen must p: or object plane need notbelocated a focal length
be located at x +00 (although 30 or 40ft will off from L,; the transform still appears on 2, Moving
Atthe risk of being repetitious, recall that the reason aifects only the phase of the amplitude distribution,
for using L, originally was to bring the diffraction] phat is generallyoflittle interest. The device shown
tern of the object in from infinity. We now i 14.8 and 14.9 is often referred to as a coherent
an imaging lens L; (Figs. 14.8 and 14.9) ino computer, It allows us to insert obstructions(t.e.,
in from infinity the diffraction pattern of orfilters} into the tranform plane andin so doing
source points So, $;, Sg,and so forth, thereb’ ly or completely block out certain spatial frequen-
; at a convenientdistance, The transform] ‘opping them from reaching the imageplane. This
the light from the object to convergein the form pocess of altering the frequency spectrum of the image is
diffraction pattern on the plane %,; that is,4lj Btwn as spatial filtering. And herein lie some of the
on 2, atwo-dimensional Fouriertransform 9: beautiful, exciting, and promising aspects of con-
To wit, the spatial frequency spectrum of TY Optics,
spread across the transform plane. ‘Therea ‘ourearlier discussion of Fraunhofer diffraction

that a long narrow slit at 2p, regardless ofits
fon and location, generates a transform at 3,

Sting of a series of dashes of light lying along a
ight line r to the slit (Fig, 10.11) and

eae th riry origin, Consequently,if the straight-
PE Ssier) is described by y= mz + 4, the diffraction

 

  
  

* Refer to H. Volkmann,“Ernst Abbe and His Worl
1720 (1966), for a more detailed accountof Abbe’ments in optics.
+R. J. Becherer and G. B, Parrent, Jr,, “Nonli
Imaging Systems," J. Opt. Soc. Am. 57, 1479 (1967).
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pattern lies along the line Y =—Z/m or equivalently,
from Eqs. (11.64) and (11,65), ky =—z/m. With this
and the Airy pattern in mind we should be able to
anticipate some of the gross structure of the transforms
of various objects. Be aware as well that these transforms
are centered about the zero-frequency optical axis of
the system. For example, a transparent plus sign whosehorizontal line is thicker than its vertical one has 2
two-dimensional transform again shaped moreorless
like a plus sign. The thick horizontal line generates aseries of short vertical dashes, while the thin vertical
element produces a line of long horizontal dashes.
Rememberthat object elements with small dimensions
diffract through relatively large angles. Along with
Abbe, one could think of this entire subject in these
terms rather than using the concepts of spatial
frequency filtering andtransforms, which representthe
more modern influence of communication theory.

The vertical portions of the symbol E in Fig. 14.9
generate the broad frequency spectrum appearing as
the horizontal pattern. Notethatall parallel line sources
on a given object correspond to a single linear array on
the transform plane. This, in turn, passes through the
origin on %,(the interceptis zero), just. as in the case
of the grating. A transparent figure 5 will generate a
pattern consisting of both a horizontal andvertical dis-
tribution of spots extending overarelatively large
frequency range. There will also be a comparatively
low-frequency, concentric ring-like structure. The
transformsof disks and rings andthelike will obviously
be circularly symmetric. Similarly a horizontal elliptical
aperture will generate vertially oriented concentric
elliptical bands. Mostoften, far-field patterns possess a
center of symmetry (see Problems 10.14 and 11.29).

Weare now in a hetter position to appreciate the
process of spatial filtermg andto that end will consider
an experimentvery similar to one published in 1906
hy A. B. Porter. Figure 14.10(a) shows a fine wire mesh
whose periodic pattern is disrupted by a few particles
of dust. With the mesh at Zo, Fig. 14.10(b) shows the
transform asitwould appearon Z,. Now the fun starts—
since the transfarm information relating to the dustis
located in an irregular cloud-like distribution about the
center point, we can easily eliminate it by inserting an
opaque mask at %,. If the mask has holes at each of the
principal maxima, thus passing on only those frequen-
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Plane wave
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y | gigure 14.9 (continued)

dies, the image appearsdustless [Fig. 14.11{a)]. At the as if the mesh were no longerin position. Observe that
es if we just pass the cloud-like pattern as more and moreofthe higher frequencies are elimi-

renter,very little of the periodic structure appears, nated, the detail of the image deteriorates markedly
% an image consisting of essentially just the dust [(d}, (e), and (f) in Fig. 14.11]. This can be understood
les {1 4.11(b)]. Passing only the zero-order central quite simply by remembering how a function, with what
enerates a uniformly illuminated (dc) field, just. we mightcall “sharp edges,” was synthesized out of

 
Figure 14.9 The Fourier transform ofthe letter E via an optical computer,
through (g) show more and more of the detail of thetransform asthe exposureincreased. (Photas by E. H.)

 
~ «by

rt 1410 4 fine, slightly dusty mesh andits transform. (Photos from D. Dutton, M. P, Givens, and R. E. Hopkins, Spectra-Physics LaserMical Bultetin Number 3.)
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harmonic components. The square wave of Fig. 7.13
servestoillustrate the point.It is evidentthat the addi-
tion of higher harmonics serves predominantly to
square up the corners and flatten out the peaks and
troughs of the profile. In this way, the high spatial
frequencies contribute to the sharp edge detail between
light and dark regions of the image. The removal of
the high-frequency terms causes a rounding out of the
step function and a consequentJoss of resolution in thetwo-dimensional case.

‘What would happenif we took out the de component
[Fig. 14.11(c)] by passing everything but the central
spot? A point onthe original image that appears black
in the photo denotes a near-zero irradiance and per-
force a near-zero field amplitude. Presumably, all of
the various optical field components completely cancel
each other at that point—ergo, no light. Yet with the
removal of the de term the point in question must
certainiy then have a nonzero field amplitude. When
squared ([ o £3/2) this will generate a nonzero irradi-
ance.It follows that regions that were originally black
in the photo wili now appear whitish, while regions that
were white will become grayish, as in Fig. 14.12.

Let’s now examine someof the possible applications
of this technique. Figure 14.18(a) shows a composite
photographof the Moonconsisting offilm strips pieced
together to form a single mosaic. The video data were
telemetered to Earth hy Lunar Orbiter I. Clearly the
grating-like regular discontinuities between adjacent
strips in the object photograph generate the broad-
bandwidth, vertical-frequency distribution evident in
Fig. 14.18(c). When these frequency components are
blocked, the enhanced image shows nosign of having
been a mosaic. In very much the same way, one can
suppress extrancous data in bubble chamber photo-
graphs of subatomic particle tracks.* These photo-
graphs are made difficult to analyze because of the
presence of the unscattered beam tracks (Fig. 14.14,
a
*D. G, Falconer, “Optical Processing of Bubbie Chamber Photo
graphs,” Appl. Opt, 5, 1365 (1966), indudes some additional uses forthe coherentoptical computer,
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wae Fipered transform

which, since they are ail parallel, are easily speieyspatial filtering. z
Consider the familiar half-tone or facsimile

by which a printer can create the illusion of
tones of gray while using only black ink and g
(tke a close iook at a newspaper photo
transparency* of such a facsimile is inserts
Fig. 14.8, its frequency spectrum will appear on,
Once again the relatively high-frequency com
arising from the half-tone meshcaneasily be elf
This yields an image in shades of gray Figsshowing mone of the discontinuous nature.
original. One could construct a precise filter to
only the square mesh frequencies by actuallynegative transparency of the transform of th
checkerboard array. Alternatively, it usually
use a low-pass circular aperture Alter, and i
inadvertently discard someofthe high-freques
of the original scene, at least as long as
frequency is comparatively high. The samé
can be used to removethegraininess of highly’
photographs, which is of value, for example,
photo reconnaissance. in contrast, we could
the details ina slightly bkzrred photographby e
ing its high-frequency components. This coul
with a filer that preferentially absorbed: the low
frequency portion of the spectrum. A greai deal!
effort, beginning in the 1950s has gonei est
of photographic image enhancement, ansuccesses have been notable indeed. Prom
these contributors is A, Maréchal of
d@Optique, Université de Paris, who has;
absorbing and phase-shifting filters to reco)
detail in badly blurred photographs. ‘Th
transparent coatings deposited on optical
retard the phase of various portions of the}(Section 14.1.4).

As this workin optical data pt

Altered image Filtered transform
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* Polaroid 55 P/N fim ty sauisfactary for medio
while Kodak 649 plates are good where higher Pesos Be 1431 :Be 411 Umages resulting wher various porti i i
of the transparency. at fi ious portions of the diffraction pattern of Fig. 14.10(b i:Kets, (Photos from D. Dutton, M. P. Givens, and R. E, Hopkins, SpectraPhysicsLaser TecheleatBuea Nobo 3)|
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the coming decades, we will surely see the replacement
of the photographic stages, in increasingly many appli-
cations, by real-time electro-optical devices(¢.g., arrays
of ultrasonic light modulators forming a multichannel
input are already in use).* The coherent optical com-
puter will reach a certain maturity, becoming an even
more powerful tool when the input, filtering, and out-
put functions are performed electro-optically. A con-tinuousstream of real-time data could flow into and
out of such a device.

1414 Phase Contrast

It was mentioned rather briefly in the last section that
the reconstructed image could be altered by introducing
aphase-shifting filter. Probably the best-known example
of this technique dates back to 1934 and the work of
the Dutch physicist Fritz Zernike, who invented the
method of phase contrast and applied it in the phass-
contrast microscope

An object can be “seen” because it stands out from
its surroundings—it bas a color, tone, or lack of color,
which provides contrastwith the background. This kind
of structure is known as an amplitude object, because it
is observabije by dint of variations that it causes in the
amplitude of the lightwave. The wave that is either
reflected or transmitted by such an object becomes
arnfplitude modulated in the process. In contradistinction,
it is often desirable to “see” phase objects, that is, ones
that are transparent, thereby providing practially no
contrast with their environs andaltering only the phase
of the detected wave. The optical thickness of such
objects gerierally varies from point to point as either
the refractive index or the actual thickness orboth vary.

 
* We have anly touched or the subject of optical data processing: a
more extensive discussion of these mattersis given, for example. by
Govdsnanin Introduction to Fourier Optics, Chapter 7. That text also
includes a good reference list for further réading in the journal
literature. Also see P. F. Mueller, “Linear Multiple Image Storage,”
Appl. Opt. 8, 267 (1969), Here, as in much of modern opttes, the
frontiers are fast moving, and obsolescence {s a hard rider,
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Figure 14.12 Part (b) is a filtered version of(a) =
order was removed, (Photos from D. Dutton, M.
E, Hopkins, Spectra-Physics Laser Technical Bulletin

 
Obviously, since the eye cannot detect phase
such objects are invisible. This is the problem,
biologists to develop techniquesforstaining i
microscope specimens and in so doing to &
objects into amplitude objects. But this :
unsatisfactory in many respects, if) S@ateTll wl
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(6)

57x

Figure 14.13 Spatial filtering. (a) A
Lunar Orbiter composite photo of the
Moon.(b) Filtered version of the photo
sans horizontal lines. {c} A eppical
unfiltered transform (pawer spectrum)of
@ moonscape. (4) Diffraction pattern withthe vertical dot parte filtered ont.
(Phowos courtesy D. A. Ansley, W. A. Blik-ken, The Conductron Corporation, andNASA)
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Figure 14.14Unfiltered and fiktered
bubble-chamber tracks.

 
stain kills the specimen whose life processes are under
study, as is all too often the case.

Recall that diffraction occurs when a portion of the
surface of constant phase is obstructed in some way,
thatis, when a region of the wavefrontis altered (either
in amplitude or phase, ie., shape). Suppose then that
a plane wave passes through a transparent particle,
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which retards the phase of a region of the
emerging wave is no longer perfectly plan
tains a small indentation corresponding 4M
retarded by the specimen; the wave is phasa m

Taking a rather simplistic view of things
imagine the phase-modulated wave Epag(t,14,16) to consist of the original incident
E,(x, #) plusa localized disturbance E,(r, ). (Theg
yr means that Ep, and E, depend on x, »} and)they vary over the yz-plane, whereas E, is unifpy
does not.) Indeed, if the phase retardationis ye
the localized disturbanceis a wave of very mally
tude, Eouy lagging by just about Ao/4, as in Fj
‘There the difference between Ep, (r,t) and
shownto be E,(r,). The disturbance E;{x, £)
the direct or zeroth-order wave, while E,(r, !) is
ted wave. The former producesa uniformlyil}
field at ;, which is unaffected by the object,latter carries all of the information about th
structure of the particle. After broadly dive
the object, these higher-orderspatial freq
(see Section 14.1.2)are caused to converge a:
piane. The direct and diffracted waves 7
of phase by 7/2, again forming the phase-moduiag
wave, Since the amplitude of the reconstructed’
Epy(t, t) is everywhere the same on %;, even
the phase varies from pointto point, the Aux dé
is uniform, and no imageis perceptible. ie

r

Figure 14.15 A self-portrait of K. E. 2aof only black and white regions as in 2h
the high frequencies are filtered outs shit
appear and the sharp boundaries vanish.Phillips, Am. J. Phys. 97, 536 (19694

Sead could then interfere either constructively or

Ind

aia Phase-contrast setup.

 
  
  

 
  

wavefront

Fey) _ObjectiveEy
Phase planecross sections.

Positive

order spectrum of a phase grating will be 7/2
phase with the higher-order spectra.
could somehow shift the relative phase between

diffracted and direct beams by an additional #/2
g to their recombination, they wouldstill be coher-

tively (Fig. 14.18). In eithercase, the reconstruc.
vefront over the region of the image would thenitude modulated—the image would be visible.

h see this in a very simple analytical way where
E,%, )le-g = Ep sin wt U42 ae co .

Ecoming monochromatic lightwave at 2, without
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Substage
condenser yOfF-axis object

 
/Phase-modulated

 F—,

the specimen in place. The particle will induce a posi-
tion-dependent phase variation ${y,z) such that the
wave just leaving it is

Epu(t,t)lx-0 = Eo sin [wt + b(y, 2)}.
‘Yhis is a constant-amplitude wave, which is essentially
the same on the conjugate image plane. Thatis, there
are somelosses, but if the lens is large and aberration-
free and we neglect the orientation and size of the
image, Eq, (14.2) will suffice to represent the PM wave
on either E, or Z,. Reformulating that disturbance as

4.2}

Epa, 2, 2) = Eo sin wt cos ¢ + Eq cos wt sin & (14.9)
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andlimiting ourselvesto very small vatues of @, we obtain
Epa ly, 2, 0) = Eg sin of + Eg bly, z) cos wt.

‘The first term is independent of the object, while the
second term obviouslyisn’t. Thus, asabove,ifwe change
their relative phase by 1/2, that is, either change the
cosine to sine or vice versa, we get

Ean(}, 2 0) + Eoll + O(9, 2)] sin at, 4g
which is an amplitude-modulated wave. Observe that
(y, 2) can be expressed in terms of a Fourier expansion,
thereby introducing the spatial frequencies associated
with the object. Incidentally, this discussion is precisely
analogous to the one proposed in 1986 by E. H. Arm-
strong for converting AM radio waves to FM [6(8) could
be thought of as a frequency modulation wherein the

Phase object

htt
Ei) Endl) Bu

Phase-modulated wave Snapshotat

 
Phase modulated EgLocutized wave

Plane wave
E, Phasors,

Note = 90°difference in phase 
Figure {4.17  Wavefrontsin the phase-contrast process.

 

 
 
 
  
 
 
 
 
 

 
 
 

 
 
  

 
  
 

 
  

  

  
 
 

 

Ext} retarded byxf" ~

fa}

E40) advanced by 1/2 
Figure 14.18 Effect of phase shifts.

zeroth-order term is the carrier], An electricalt
filter was used to separate the carrier from thi
ing information spectrum so that the 7/2 pi
could be accomplished. Zernike’s method
essentially the samething is as follows. He inserted
spatial filter in the transform plane %,of the obje:
(Fig. 14.16), which was capable of inducing tS
phase shift. Observe that the direct light actually,
a small image of the source on the optical axis:
location of Z,. The fitter could then be a sinall
indentation of depth ¢ etched in a transpar!
plate of index n,. Ideally, only the direct beam! ‘
pass through the indentation, and in so doing it¥
take on a phase advance with respect to the
waveof(ng — 1)4, which is made to equal Aol: aof this sort is known as a phase plate, and sinceIts *
correaponds to Fig. 14.18(b), that is, destructive 2
ference, phase objects that are thicker or have B
indices appear dark against a bright backgroum
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ead, the phase plate had a small raised disk at its
yer, the opposite would be true. The formercaseis
ed positive-phase contrast; the latter, negative-phase
frosh

{n actual practice a brighter image is obtained by
fing bread, rather than a point, source along with a
Epsiage condenser. The emerging plane wavesillumi-nannular diaphragm (Fig. 14.19), which, since it

source plane,is conjugate to the transform plane
e objective. The zeroth-order waves, shownin the

re, pass through the object according to the tenets
geometrical optics. They then traverse the thin

qular region of the phase plate located at 2, That
ion of the plate is quite small, and so the cone of
acted rays, for the most part, misses it. By making
annular region absorbing as well {a thin metal film

il do), the very Jarge uniform zeroth-order term (Fig.

 
 

 
   
  
  

Annular diaphragmin back focal plane Condenser
of substage £,condenserAgt shown

Phase contrast (only zeroth order shown).

14.20)is reduced with respect to the higher orders, and
the contrast improves. Or,if-you like, Ep is reduced to
a value comparable with that of the diffracted wave Bog.
Generally a microscope will come with an assortment
of these phase plates having different absorptions,

In the parlance of modern optics (the still-blushing
bride of communications theory), phase contrast is
simply the process whereby we introduce a 7/2 phase
shift in the zeroth-order spectrum of the Fourier trans~
form of a phase object (andperhaps attenuateits ampli-
tude as well) through the use of an appropriate spatialfilter. .

‘The phase-contrast microscope, woich earned Zer-
nike the Nobelprize in 1953, has found extensive appli-
cations (Fig. 14,21), perhaps the most fascinating of
which is the study of the life functions of otherwise
invisible organisms.

Conjugate planes
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Electric field
aeylceds,  

Figure 14.20 Field amplitude overa circular region on the image
plane. In one case there is no absorption in the phase plate and the
irradiance would be a small ripple on a great plateau. With the zerothorderattenuated the contrast increases.

141.5 The Dark-Ground and
Schlieren Methods

Suppose we go back to Fig. 14.16, where we were
examining a phase object, and this time rather than
retard and attenuate the central zeroth order, we
removeit completely with an opaque disk at $,. Without
the object in place the image plane will be completely
dark—ergo the name dark ground, With the object in
position only the localized diffracted wave will appear
at 2, to form the image. {This can also be accomplished
in microscopy byilluminating the object obliquely so

 
 
 
 

 
 
 

 
 
  
 
 
 
  
 
 
  
 
 
 
 
 
   

 
  

pmplitude squared,this will result in somewhat of a
2 atrast reversal from that which would have been seen
jniphase contrast (see Section 4.1.3). In general this
, chnique has not been as satisfactory as the phase-

trast method, which generates a flux-density distri-
‘pufion across the image thatis directly proportionalto
he phase variations inducedacross the object.
“jn 1864 A. Toepler introduced a procedure for~xamining defects in lenses, which has come to be

\ nown as the schlieren method,.* Wewill discuss it herepecause of the widespread currentusage of the method
ia broad range of fluid dynamics studies and further-
more because it is another beautiful example of the
‘application of spatial filtering. Schlieren systems areticularly useful in ballistics, aerodynamics, and ultra-

hic wave analysis (Fig. 14.22), indeed whereverit is
desirable to examine pressurevariationsas revealed by

fractive-index mapping.Suppose that we set up any one of the possible
ngements for viewing Fraunhoferdiffraction(e.g.,

Fig. 10.5 or 10.84). But now,instead of using an aper-ture of somesortas the diffracting amplitude object,
Weinsert a phase object, for example,a gas-filled cham-
ber (Fig. 14.23), Again a Fraunhoferpattern is formed
in 3,, andif thatplaneis followed by the objective lens
‘of a camera, an imageof the chamberis formed on the
filth plane. We could then photograph any amplitude
objects within thetest area, but, of course, phase objects
Would still be invisible. Imagine that we now introduce
aknife edge at 2, raising it from below until it obstructs
SGinetimes only partially) the zeroth-orderlight and

Mherefore all the higher orders on the bottom side as

J i as in the dark-ground method, phase objects4réthen perceptible. Inhomogeneities in the test cham-windows and flawsin thelenses arealso noticeable.
this reason and because of the large field of view

lly required, mirrorsystems(Fig. 14.24) have now
tome commonplace.
asimonochromatic illumination is generally made
of when resulting data are to be analyzed electroni-

for example, with a photodetector. Sources with

a

 

{b)
Figure 14.21 (a) A conventional photomicrograph alandbacteria. (b) A phase photomicrograph of the same Scena
by T.J. Lowery and R. Hawley.)  

 
  
 

that no direct light enters the abjective lens.) Ob%
thatby eliminating the dc contribution,the amp
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Figure 14.22 A schlieren photoof a spoonin a candle flame. (Photo
by EH)

a broad spectrum,on theotherhand,allow us to exploit
the considerable color sensitivity of photographic emul-
sions, and a numberofcolor schlieren systems havebeen devised.

14.2 LASERS AND LASERLIGHT

During the early 1950s a remarkable device known as
the maser came into being through the efforts of a
number ofscentists. Principal amongst these peoplewere Charles Hard Townesofthe U.S.A. and Alexandr
Mikhailovich Prokhorov and Nikolai Gennadievich
Basov of the U.S.S.R., all of whom shared the 1964
NobelPrize in Physics tor their work. ‘lhe maser, which
is an acronym for Microwave Amplification by Stimu-
lated Emission of Radiation, is, as the name implies, an
extremely low-noise, microwave amplifier.* It func- 

   
 

distribution (as in Fig. 14.20),will be lowereg
tionsthat were nearzero priortofiltering ¥
negative. Inasmuch as irradiance is proport

‘ord Schlieren in German meansstreaksorstrize. It's frequentlyd because all nouns are in German and not because there
Er. Schlieren.
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*See James P. Gorden, “The Maser."Sci, Am. 199, 42 (December1958).
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Tesichamber(wind tuned)

Figure 14.23 A schlieren setup.

tioned in what was then a rather unconventional way,
making direct use of the quantum-mechanica! interac-
tion of matter and radiant energy. Almost immediately
after its inception speculation arose as to whether or
not the same technique could be extended into the
optical region of the spectrum. In 1958 Townes and
Arthur L. Schawlow prophetically set forth the general
physical conditions that would have to be met in order
to achieve Light Amplification by Stimulated Emission
of Radiation. And then in July of 1960 Theodore H.

 
 

Condenser
  14.2 Lasers and Laserlight 579 
 
  

High-pressureHg are

  
Zeroth order

 
Parabolic 

Parabolic
mirror
  irror  

  
 "A diffracted wave

     

anucleus and electron cloud) possesses a certain amount
Of internal energy, and each tends to maintainits lowest

configuration. This is the ground state for that
Pulicilar kind of atom. Furthermore, each atom can
all in specific, well-defined configurations corre-

REto higher energies than the groundstate. Anyese are termed excited states.
Un a conventional light source, such as a tungsten
ue) energy is jumped into the reacting atoms,in this
yalocated within the flament. These are consequently

ed” into excited states. Each can then drop back
taneously (i.e., without external inducement) to the

Hind state, emitting the absorbed energy in the form
y'andomly directed photon. Atomsin this kind of

radiate essentially independently. The photons
i¢ emitted stream bear noparticular phase relation-

P with each other, and the light is incoherent. It
Speakingfirst in generalities, suppose we have EF : “sin phase from point to point and momentto
tion of atoms, as for example,in a solid, gas, or 7 aRecall that each atom (taken as a system compos ’

 

 

 

 Maiman announcedthefirst successful operation @
optical maser or laser—certainly one of the great, :
stones in the history of optics, and indeedin the hispof science, had been achieved.
 

 14.2.1 The Laser
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Figure 14.24 A schlieren setupusing mirrors.

 

 
  Test chamber

objective
 
 
 

Focal plane
{photographic plate)   

  of somesort. If an incident photonis energetic enough,
it may be absorbed by an atom,raising the latter to an
excited state. It was pointed out by Einstein in 1917
that an excited atom can revert to a lowerstate (which
need not necessarily be the ground state) through
photon emission via two distinctive mechanisms. In one
instancethe atom emits energy spontaneously, while in
the otherit is triggered into emission by the presence
of electromagnetic radiation of the proper frequency.
‘The latter process is known as stimulated emission,
andit is a key to the operation of the laser. In either
situation the emerging photonwill carry off the energy
difference (hv,,) between the initial higher state {#) and
the final lowerstate |f), thatis,

 
   
   

     
  

 

  
  

 

    

  8 -— Ee hyy, (14.5)

 where ; and @; are the energies of the twostates.
If an incident electromagnetic wave is to trigger an

excited atom into stimulated emission, it must have the
frequency #,. A remarkable feature of this process is  
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that the emitted photon is in phase with, has ihe polarization
of, and propagates in the same direction as, the stimulating
radiation. Thus the photon is said to be in the same
radiation mode as the incident wave and tendsto add to
it, increasing its flux density. However, since most of

\ the atoms are ordinarily in the groundstate, absorption
is usually far morelikely than stimulated emission. But
this raises an intriguing point: What would happen if
a substantial percentage of the atoms could somehow
be excited into an upperstate, leaving the lower state
all but empty? For obvious reasons this is known as
population inversion. An incident photon of the proper
frequencycould then trigger an avalancheofstimulated
photons—all in phase. Theinitial wave would continue
to build, so long as there were no dominant competitive
processes (suchas scattering) and provided the popula-
tion inversion could be maintained. In effect, energy
(electrical, chemical, optical, etc.) would be pumpedin
to sustain the inversion, and a bearn of light would
be extracted after sweeping across the active medium.

i) TheFirst (Pulsed Ruby) Laser
To see how all of this is accomplished in practice, let’s
take a look at Maiman’s original device (Fig. 14.25).
The first operative laser had as its active medium a
small, cylindrical, synthetic, pale pink ruby,that is, an
Al,Osgcrystal containing about 0.05 percent (by weight)
of CrsQ,. Ruby, whichisstill one of the most common
of the crystalline laser media, had been used earlier in

       
   

  

 
 
  

LeSSESSSSS
Figure i4.25 Thefirst ruby-laser configuration, just aboutlife-sized.
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    maser applications and was suggested for use ing

laser by Schawlow, The rod’s end faces were poli
flat, parallel and normalto the axis. Then both werasilvered (one only partially) to form a resonant
It was surroundedby a helical gaseous sontcll
tube, which provided broadband optical pumpiRuby appears red because the chromium atoms hag
absorption bandsin the blue and green regions o;
spectrum [Fig. 14.26(a)]. Firing the flashtube genera
an intense burstoflight lasting for a few millise
Muchof this energy is lost in heat, but many of the
Cr** ions are excited into the absorption bands. A sj
plified energy-level diagram appears in Fig. 14
The excited ions rapidly relax (in about 100 ns)f
up energy to thecrystal lattice and making no
transitions, they preferentially drop “down” to
of closely spaced, especially long-lived, interim
They remainin these so-called metastablestates
to several milliseconds (~3 ms at room temp
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broad spectral range centered about 694.3 nm; it ee Tisgesin all directions and is incoherent. However, |
the pumpingrate is increased somewhat, a popul i es
inversion occurs, and the first few spontaneous), 1 ©) ted photonsstimulate a chain reaction. One q
triggers the rapid, in-phase emission of anotherg
ing energy from the metastable atoms into the
lightwave. The wave continuesto grow asit
and forth across the active medium (provided
energyis available to overcomelosses at the’
ends). Since oneofthosereflecting surfaces wag}
silvered, an intense pulse of red laserlight
0.5 ms and having a linewidth of about 0.01.ay
ges from that end of the ruby rod. Notice how: neeverything works out. The broad absorptcl
maketheinitial excitation rather easy, whilegghe lo
lifetime of the metastablestate facilitates theyinversion. The atomic system in effect consist
absorption bands, (2) the metastable state,,
groundstate. Accordinglyit is spoken of 4laser,

 
1426 Ruby-laser energy levels. 

 
Today’s ruby laser is generally a high-power source
pulsed coherent radiation used extensively in work

EXinterferometry, plasma diagnostics, holography, and
Biferth. Such devices operate with coherence lengths

from 0.1 m to 10 m. Modernconfigurations usually
r- flat external mirrors, one totally and the other

jally reflecting. As an oscillator, the ruby laser gen-
ates millisecond pulses in the energy range from

| und 50 J to upwardsof 100 J, butby using a tandumrf

  

  

tor-amplifier setup, energies well in excess of
w0J can be produced. The commercial ruby laser

MPleally operates at a modest overall efficiency ofless
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than 1%, producing a beam that has a diameter ranging
from 1 mm to about 25 mm, with a divergence of from
0.25 mrad to about 7 mrad.

i) Optical Resonant Cavities ,
The resonant cavity, which in this case is of course a |
Fabry-Perot etalon, plays a most significant role in the
operation of the laser. In the early stages of the laser
process, spontaneous photons are emitted in every
direction, as are the concommitantstimulated photons.
Butall of these, with the singular exception of those
propagating very nearly along the cavity axis, quickly |
pass out of the sides of the ruby. In contrast, the axial |beam continues to build as it bounces back and forth
across the active medium.This accountsfor the amazing
degree ofcollimation of the issuing laserbeam, which
is then effectively a coherent plane wave. Though the
medium acts to amplify the wave, the optical feedback
providedby thecavity converts the system into an oscil-jator and henceinto a light generator—the acronymis
thus somewhat of a misnomer.

In addition, the disturbance propagating within the
cavity takes on a standing-wave configuration deter-
mined bythe separation (L) of the mirrors. Thecavity
resonates(i.e., standing waves exist within it) when there
is an integer number(m) of half wavelengths spanning
the region between the mirrors. Theideais simply thatthere must be a nodeat each mirror, and this can only
happen whenL equals a whole numbermultiple of 4/2
(where A Ao/n). Thus

a
mR

and
mv~—, (46)

*m OL
There are therefore an infinite number of possible
oscillatory longitudinal cavity modes, each with a dis-
tinctive frequency v,,. Consecutive modes are separated
by a constant difference,

Vari — Pm = Av = (4.7)
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whichis the free spectral rangeofthe etalon [Eq. (9.79)]
and, incidentally, the inverse of the round-trip time.
For a gas laser 1 m long, Av ~ 150 MHz. The resonant
modes of the cavity are considerably narrower in
frequency than the bandwidth of the normal spon-
taneous atomic transition. These modes, whether the
device is constructed so that there is one or more,will
be the ones that are sustained in the cavity, and hence
the emerging beam is restricted to a region close to
those frequencies (Fig. 14.27). In other words, the radia-
tive transition makesavailable a relatively broad range
of frequencies out of which the cavity will select and
amplify only certain narrow bandsand,if desired, even
only one such band. This is the origin of the laser's
extreme quasimonochromaticity. Thus while the band-
width of the ruby transition to the groundstate is
roughly a rather broad 0.58 nm (330 GHz)—because ofinteractions of the chromiumionswith the lattice—the
corresponding laser cavity bandwidth, the frequency
spreadof the radiation ofa single resonant mode,is a
much narrower 0.00005 nm (30 MHz). Thissituation is
depicted in Fig. 14.27(b), which shows a typical tran-
sition lineshape and a series of corresponding cavity
spikes—in this case each is separated by v/2L, and eachis 30 MHzwide.

A possible way to generate only a single modein the
cavity would be to have the modeseparation,as given
by Eq. (14.7), exceed the transition bandwidth. Then
only one mode would fit within the range of available
frequencies providedby the transition. For a ruby laser
(with an index of refraction of 1.76) a cavity length of
a few centimeters will easily insure single longitudinal
mode operation. The drawback of this particular
approachis thatit limits the length of the active region
contributing energyto the beam andsolimits the output
powerofthelaser.

In addition to the longitudinal or axial modes of
oscillation, which correspond to standing waves set up
along the cavity or z-axis, transverse modes can be
sustained as well. Since the fields are very nearly normal
to z, these are known as TEMm, modes (transverse
electric and magnetic}. The m and n subscripts are the
integer numberof transverse nodallines in the x- and
y-directions across the emerging beam. Thatis to say,

  

  

 
 
 
 

 
 
 
 
 
 
 
 
 
  

 
  

,e beam is segmented in its cross section into one or
ye regions. Each such arrayis associated with a given

mode, as shown in Figs. 14.28 and 14.29. The
st order or TEMgp transverse modeis perhaps the
widely used, and this for several compelling rea-
 
 
 
 

Poweroutput  
  TEM,.. TEM, F Boas :
in lee TEMametty TEMess) aay 2 the flux density is ideally Gaussian over the beam’s

“ofZL z section (Fig. 14.80); there are no phase shifts in
; electric field across the beam, as there are in other

{a Phodes, andso it is completely spatially coherent; the
f

  
 
  
 

Atomictransition } aa sw
Cavity modes

TEMos HFA ks
©)

: (a) illustrates the nomenclatur
pares the broad atomic emission with the narrow cavitZNiS
depicts three operation configurationsfora c-w gas lasers
several longitudinal modes under a roughly Gaussian ey
several longitudinal and transverse modes, and finally,tudinal mode.

14.28 Mode patterus(withoutthe faint interference fringes
: 's what the beam lookslike In cross section). (Photos courtesy Bell“phone Laboratories.) 
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me. 2

TEMta

all

TEMg, TEM,, TEM:
Figure 14.29 Mode configurations (rectangular symmetry). Cir
culatly symmetric modes are also observable, but any slight asymmetry(such as Brewster windows) destroys them.

beam’s angular divergence is the smallest; and it can be
focused down to the smallest-sized spot. Note that the
amplitude in this modeis actually not constant over the
wavefront, and it is consequently an inhomogeneouswave.

A complete specification of each modehas the form
TEMyng, Where @ is the longitudinal mode number.
For each transverse mode (m,n) there can be many
longitudinal modes(i.e., values of g). Often, however,
it's unnecessary to work with a particular longitudinal
mode, and the ¢ subscriptis usually simply dropped.*

Thereare several additional cavity arrangements that
are of considerably more practical significance than is
the original plane-parallel setup (Fig. 14.31). For
example, if the planar mirrors are replacedby identical
concave spherical mirrors separated by a distance very
nearly equal to their radius of curvature, we have the
confocal resonator. Thus the focal points are almost
coincident on the axis midway between mirrors—ergo
 
* Takea lookat R. A. PhillipsandR. D. Gehrz, “Laser Mode Structure
Experiments for Undergraduate Laboratories,” Am. J. Phys. 38, 429(1970).
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the name confocal. If one of the spherical mirrors is
made planar, the cavity is termed a hemispherical or
hemiconcentric, resonator. Both these congfigurations
are considerably easier to align than is the plane-parallel
form. Lasercavities aresaid to beeither stable or unstable
to the degree that the beam tends to retraceitself and
so remain relatively close to the optical axis (Fig. 14.32).
A beam in an unstable cavity will “walk out,” going
farther from the axis on each reflection untilit quickly
leaves the cavity altogether. By contrast, in a stable
configuration (with mirrorsthatare, say, 100% and 98%
reflective) the beam might traverse the resonator 50
times or more. Unstable resonators are commonly used
in high-powerlasers, wherethefact that the beam traces
across a wide region of the active medium enhances the
amplification and allows for more energy to be extrac-
ted. This approachwill be especially useful for media
(like carbon dioxide or argon} wherein the beam gains
a good deal of energy on each sweep of the cavity. In
other words, the needed number of sweepsis deter-
mined by the so-called small-signal gain of the active

|(2) Nearly planar (convex)-R,, — Ry >>unstable

(a) Neatly confocalRi Rebstable

fy Re.
Figure 14.31 Laser cavity configur-
ations. (Adapted from O'Shea,Callen,
and Rhodes, An Introduction to Lasers and
Their Applications)

{@) ConcentricRy = Ry = Li2
marginally stable
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Figure 14.80 Gaussian irradiance distribution.

:(b) PlanarR=R=>
marginally stable
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| (b)
Tigaw | Stable and unstable Jaser resonators, (Adin from
cal!

merkum. The actualselection of a resonator configu-
| ration is ei by the specific requirements of the 

 
 
 

 
 

is no universally best arrangement,seen in Fig. 14.32(a), when curved mirrors
v - isa tendency to “focus”the beam,ross section or waist of diameter

such circumstances the external divergence
laserbeam is essentially a continuation of the

I divergence out from this waist. Thus while two plane= will produce a beam thatis aperture limited via
i this will not now be the case. Recall Eq.h describes the radius of the Airy disk, and

he both sides by f to get the half-angular width ofted circular beam of diameter D. Doubling
# yields “i, the full-angular width or divergence of

40 aperture-|imited laserbeam:

  

 
 

 

@ = 2.44A/D.
1, far from the pegiom of minimum cross

uiear with ol a waisted laserbeam is
D~127A/Do, (14.8)

iia Do can be calculated from the particular cavityDUEUreace
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The decay of energy in a cavity is expressed in terms
of the Q or quality factor of the resonator. The origin
of the expression dates back to the early days of radio
engineering, when it was used to describe the perfor-
mance ofan oscillating (tuning) cirenit. A high-Q, low-
loss circuit meant a narrow bandpass and a sharply
tunedradio. If an opticalcavity is somehow disrupted,
as for example by the displacement or removal of one
of the mirrors, the laser action generally ceases. When
this is done deliberately in order to delay the onset of
oscillation in the laser cavity, it’s known as Q-spoiing
or Q-switching. The power output of a laser is self-
limited in the sense that the population inversion is
continuously depleted through stimulated emission hy
the radiation field within the cavity. However,if oscilla-
tion is prevented, the number of atoms pumped into
the (long-lived) metastable state can be considerably
increased, thereby creating 2 very extensive population
inversion. When thecavity is switched on at the proper
moment, a tremendously powerful giant pulse (perhaps
up to several hundred megawatts) will emerge as the
atoms drop down to the lower state almost in unison.
A great many Q-switching arrangements utilizing
various control schemes,for example, bleachable absor-
bers that become transparent under illumination, rotat-
ing prisms and mirrors, mechanical choppers, ultrasonic
cells, or electro-optic shutters such as Kerr or Pockels
cells, have all been used.

iil) The Hetium—Neon Laser
Maiman’s announcementof the first operative laser
came at a New York news conference on July 7, 1960.*
By February of 1961 Ali Javan andhis associates W. R.
Bennett, Jr., and D. R. Herriott had reported the suc-
cessful operation of a continuous-wave (c-w) helium-
neen, gas laser at 1152.8nm. The He-Ne laser (Fig.
14.33) is currently the most popular device of its kind,
most often providing a few milliwatts of continuous
power in the visible (632.8nm). Its appeal arises
primarily because it’s easy to construct, relatively inex-

* His initial paper, which would have madehis findings known in a
moretraditional fashion, was rejected for publication bythe editors
of Physical Review Letters—this to their everlasting chagrin.
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Figure 14.83 A simple, early He-Nelaser configuration.

pensive, and fairly reliable and in most cases can be
aperated by a Bick ofa single switch, Pumpingis usually
accomplished by electrical discharge (via either dc, ac,
or electrodeless rf excitation). Free electrons and ions
are accelerated by an applied field and,as a result of
collisions, cause further ionization and excitation of the
gaseous medium (typically a mixture of about 0.8 torr
of He and about0.1 torr of Ne). Many helium atoms,
after dropping down from several upper levels,
accumulate in the long-lived 2°S- and 2°S-states. These

 

Helium | Neon

A> Stimulated transition
———+> Spontaneoustransition

“\E ILCollision
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Figure 14.34 He-Nelaser energy levels.

   
 
  
 
  
 
 
  
 

  
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

  
 
   
  
   
 
  

  

H—yAnode Discharge tube Fie polarization angle, the windows presumably have
as _———= 100% transmission for light whose electic field com-
i ponent is parallel to the planeofincidence (the planeCathode:
window ofthe drawing). This polarization state rapidly becomes

gominant, since the normal component is partially
jefledted off-axis at each transit of the windows. Linearlypolarized light in the plane of incidence soon becomes

Hihe preponderant stimulating mechanism in thecavity,
Ho the ultimate exclusion of the orthogonal polar-tion,*
ipaxying the windowsto the ends ofthe laser tubeod mounting the mirrors externally was a typical

gh dreadful approach used commercially until theW.1970s. Inevitably, the epoxy leaked, allowing water
in and helium out. Today, such lasers are hard

» the glass is bonded directly to metal (Kovar)
nts, which support the mirrors within the tube. The
ors {one of which is generally ~100% reflective)
modern resistive coatings so they can tolerate the

arge environmentwithin the tube. Operating life-
es of 20,000 hours and more are nowthe rule (up

n only a few hundredhoursin the 1960s). Brewster
dows are usually optional, and most commercial

fe-Ne lasers generate more or less “unpolarized”
ficams. The typical mass-produced He-Nelaser (with
(an output of from 0.5 mW to 5 mW)operates in the

loo mode, has a coherence Jength of around 25 cm,
@ beam diameter of approximately 1 mm, and a low

rall efficiency of only 0.01% to about 0.1%. Though
are infrared He-Nelasers, and even a new green

5 nm) He-Nelaser, the bright red 632.8-nm ver-
remains the most popular.

 

state Ne atoms, raising them in turn to the!
4s-states. These are the upper laser levels, and thers}then exists a population inversion with respectéto thelower 4p- and 8p-states. Transitions between iff
and 4s-states are forbidden. Spontaneous photonate stimulated emission, and the chain reaetion
The dominant laser transitions corresp
1152.3nm and 3391.2nm in the infrared a
course, the ever-popular 632.8 nmin the visible
red}. The p-states drain off into the 3s-state, thus
selves remaining uncrowdedandthereby continudily
sustaining the inversion. The 3s-level is metastable
that 3s-atoms return to the groundstate after [a
energy to the walls of the enclosure. Thisis wi
plasma tube’s diameter inversely affects the gain
accordingly, a significant design parameter.In
to the ruby, where thelaser transition is down to
groundstate, stimulated emission in the He-Nelai
occurs between two upper levels, The significance)
this, for example, is that since the $p-state is ordi
only sparsely occupied, a population inversiond vem
easily obtained, and this without having to half emigithe groundstate.

Return to Fig, 14.35, which pictures the relevant]

features of a basic early He-Nelaser. Thea

no allowed radiative transitions, The excited He

inelastically collide with and transfer energy—

Ee Survey of Laser Developments
er technolagy is so dynamic a field that what was a

ory breakthrough a year of two ago may be a
Eimonplace off-the-shelf item today. The whirlwind

Will certainly not pause to allow descriptive termslike
coated with a multilayered dielectric film hay Mthe smallest,” “the largcst,”' “the most powerful,” andreflectance of over 99%. The laser output is mai
linearly polarized by the inclusion of Brewster eng — - ; ;

indows | tilted at the polarization @gim Bce outa powerofthe Inser sna lost in reflections at thewindows (i.e., plates til al polar K ug Windows when the transverse P-state light is scattered,
terminating the discharge tube. If these end is i | Bee?Soy isn’t continuously channeled into that polarizationinstead normal to the axis, reflection losses (# ‘Ontbonent by the cavity. If it's refiected out of the plasma tube, it's
interface) would become unbearable. By tilting U BrPresent to stimulate further emission.
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so on to be applicable for very long. With this in mind,
we briefly survey the existing scene without trying to
anticipate the wonders that will surely comeafter this
type is set. Laserbeams have already been bounced off
the Moon; they have spot welded detached retinas,
generated fusion neutrons, stimulated seed growth,
served as communications links, guided milling
machines, missiles, ships, and grating engines, carried
colortelevision pictures, drilled holes in diamonds,levi-
tated tiny objects,* and intrigued countless amongst thecurious. .

Along with ruby there are a great many other golid-
state lasers whose outputs range in wavelength from
roughly 170 nm to 3900 nm. For example,the trivalent
rare earths Nd**, Ho, Gd**, Tm®*, Er, Pr°*, and
Eu** undergo laser action in a host of hosts, such as
CaWOy,, ¥203, SrMoOy,, LaFs, yttrium aluminum gar-
net (YAG forshort), andglass, to name only a few. Of
these, neodymium-dopedglass and neodymium-doped
YAGareofparticular importance. Both constitute high-
powered laser media operating at approximately
1060 nm. Nd: YAG lasers generating in excess of a
kilowatt of continuous power have been constructed.
Tremendous power outputs in pulsed systems have
been obtained by operating several lasers in tandem.
The first laser in the train serves as a Q-switched oscil-
Jator that fires into the next stage, which functions as
an amplifier; and there may be one or more such
amplifiers in the system. By reducing the feedback of
the cavity, a laser will no longer be self-oscillatory, but
it will amplify an incident wave that has triggered stimu-
lated emission. Thus the amplifier is, in effect, an active
medium, which is pumped, butfor which the end faces
are onlypartially reflecting or even nonreflecting. Ruby
systems of this kind, delivering a few GW (gigawatts,
ie, 10°W) in the form of pulses lasting several
nanoseconds,are available commercially. On December
19, 1984, the largest laser in existence, the Nova, fired
all 10 of its beams at once for the first time, producing
a warm-up shot of a mere 18k] of 350-1m:radiation in
 
* See M. Lubin and A. Fraas, “Fusion by Laser,” Sci, Am 224, 21(une 1971); R.S. Craxton, R. L. McCrory, and J. M. Soures, “Progress
in Laser Fusion," Sci, Am 255, 69 (August 1986); and A. Ashkin,
“The Pressure of Laser Light,” Sci. Am. 226, 63 (February 1972).
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Figure 14.35 Nova, the world’s most powerful laser. (Photo courtesyLawrence Livermore National Laboratory.)

a I-ns pulse (Fig. 14.35). When fully operational this
immense neodymium-dopedglasslaser will focus up to
100 TW of green (530 nm) or blue (850 nm)light onto
a fusion pellet—that’s roughly 500 times more power
thanall the electrical generating stations in the United
States—albeit only for about 10°s.

A large group of gas lasers operate across the spec-
trum from the far IR to the UV (1mm to 150 nm).

-Primary amongst these are helium-neon, argon, and
krypton, as well as several molecular gas systems, such
as carbon dioxide, hydrogen fluoride, and molecular
nitrogen (Nz). Argon lases mainly in the green, blue-
green, and violet (predominantly at 488.0 and
514.5 nm) in either pulsed or continuous operation.
Althoughits outputis usually several watts c-w, it has
goneas high as 150 W c-w. The argonionlaseris similar
in some respects to the He-Nelaser, although it
evidently differs in its usually greater power, shorter
wavelength, broaderlinewidth, and higherprice. All of
the noble gases (He, Ne, A, Kr, Xe) have been made to
lase individually, as have the gaseousions of many other

 
 
   
 
 
 
 
 
 
 
  
  
 

  
  

 
  
  
 
 
 
 
 
  

 
  
 
  
 
  
 
  
 

hold andresulted in the adventof the continuous-
(c-w), room temperature diode laser. Transitions

y between the conduction and valence bands, and
simulated emission results in the immediate vicinity of
the po junction (Fig. 14.36). Quite generally, as aseyrent flows in the forward direction through a semi-

Rsductor diode, electrons from the n-layer conduction
d will recombinewith p-layer holes, thereupon emit-

g energy in the form of photons. This radiative
, which-competes for energy with the existing

rption mechanisms (such as phonon production)
es to predominate when the recombinationlayeris

all and the currentis large. To make the system lase,
the light emitted from the diodeis retained within a
fesonant cavity, and that’s usually accomplished by
@imply polishing the end faces perpendicular to the
fiction channel,

Nowadays semiconductorlasers are created to meet
specific needs, and there are many designs producing
wavelengths ranging from around 700nm to about
80 pm. The early 1970s saw the introduction ofthe c-w
GaAs/GaAlAs laser. Operating at room temperature in

epic 750-nm to 900-nm region (dependingon therela-
‘tive amountsof aluminum andgallium), the tiny diode
chip is usually abouta sixteenth of a cubic centimeter
volume. Figure 14.36(b} showsa typical heterostruc-

ture (a device formed of different materials) diodelaser
ofthis kind. Here the beam emerges in two directions
from the 0,2-p.m-thick active layer of GaAs. Theselittle
lasers usually produce upward of 20 mW of continuous
Wave power. To take advantage of the low loss region
(X= 1.3m) in fiberoptic glass (p. 170) the Galn-ASP/InP laser was devised in the mid-1970s with an

Putput of 1.2 pmto 1.6 pm. The cleaved-coupled-cavity#aser is a still more recent (1983) development (Fig.
14.97), In it the numberofaxial modesis controlled in
Order to produce very-narrow-bandwidth tunable radi-
tion. Two cavities coupled together across a small gap

“estrict the radiation to the extremely narrow band-
ith that can be sustainedin both resonant chambers.*

elements, but the former grouping has been studiedlmost extensively. e
The CO, molecule, which lases between vibrat

modes, emits in the IR at 10.6 um, with typical cw.
powerlevels of from watts to several kilowati Iefficiency can be an unusually high 15% when aj
additions of Np and He. Whileit once took a d
tube nearly 200 m longto generate 10 kW c-w,coyet
ably smaller “table models”are now availableeg)
cially. For a while in the 1970s, the record
belonged to an experimental gas-dynamiclase:
thermal pumping on a mixture of CO,, No, and
to generate 60kW cw at 10.6pm in
operation.

The pulsed nitrogen laser operates at 33'7AlRaM
the UV,as does the c-w helium-cadmiumlaser.
berof metal vapors (e.g., Zn, Hg, Sn, Pb) have d
Jaser transitions in the visible, but problems;

maintaining uniformity of the vapor in the dhehanaregion have handicapped their exploitation. TheCd laser emits at 325.0nm and 441.6nm. These are
transitions of the cadmium ionarising after excitation)
resulting from collisions with metastable helium atom)The semiconductorlaser—alternatively know:
junction or diode laser—was invented in 1962
after the development of the light-emitting diode
(LED). Todayit serves a central role in electsgopi
primarily because ofits spectral purity, high effict
(~100%), ruggedness, ability to be modulat
extremely rapid rates, long lifetimes, and mod : i

power {as much as 200 mW) despiteits pinhead |Junction lasers have already been used in the milli #
in fiberoptic communications,laser disk audio |andso forth. s

The first such lasers were made of one mate
gallium arsenide, appropriately doped to for ny J
junction. ‘The associated high lasing threshold.so-called homostructureslimited them to pulse
operation and cryogenic temperatures; othet gag
heat developedin their small structures would,them. The first tunable lead-salt diode
developed in 1964, but it was not until almos
years later that it became commercially 2v4
operates at liquid nitrogen temperatures, wh
tainly inconvenient,butit can scan from 2 papLateradvances have since allowed a redus

+ Suematsu, “Advances in SemiconductorLasers,” Phys. Today,Bi.7Y 1985). For a discussion of heterostructure diodelasers refer
£B. Panish and 1. Hayashi, “A NewClass of Diode Lasers,” Sci.
425, 82 (July 1971).
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Figure 14.36 (a) An early GaAs pon junctionlaser. (b) A moderndiodelaser.

The first liquid laser was operated in January of
1968.* All of the early devices of this sort were exclus-
ively chelates (i.e., metallo-organic compounds formed
of ametalion with organic radicals). Thatoriginalliquid
laser contained an alcohol solution of europium
benzoylacetonate emitting at 613.t nm. The discovery
of laser action in nonchelate organic liquids was made 
* See Adam Heller,“Laser Action in Liquids.”Phys. Today (November
1967), p. 35, for a more detailed account.
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in 1966. It came with the fortuitouslasing {at 755.5 nm)
of a chloroaluminum phthalocyavine solution during a
search for stimulated Raman emission in that sub-
stance.* A great many fluorescent dye solutions of such
families as the fluoresceins, coumarins, and rhodamines
have since been madeto lase at frequencies from the
IR into the UV. These have usually been pulsed,
although c-w operation has been obtained. There are
so many organic dyes that it would seem possible to
build such a laser at any frequency in the visible.
Moreover, these devices are distinctive in that they
inherently can be tuned continuously over a range of
wavelengths (of perhaps 70 nm orso, although a pulsed
system tunable over 170 nm exists). Indeed, there are
other arrangements that will vary the frequency of a
primary laserbeam (i.e., the beam enters with one color
and emerges with another, Section 14.4), but in the case
of the dye laser, the primary beam itself is tuned inter-
nally. This is accomplished, for example, by changing
the concentration or the length of the dye cell or by
adjusting a diffraction grating reflector at the endofthe cavity. Several multicolor dye laser systems, which
can easily be switched from one dye to another and
thereby operate over a very broad frequencyrange,are
available commercially. .A chemical laser is one that is pumped with energy
released via a chemical reaction. The first of this kind
was operated in 1964, but it was not until 1969 tbat a
continuous-wave chemical laser was developed. One of
the most promising of these is the deuterium fluoride—
carbon dioxide (DF-CO,}laser.It is self-sustaining,in
that it requires no external power source. In brief, the
reaction Fp + D, > 2DF,which occurs on the mixing of
these two fairly common gases, generates enough
energy to pump a CO, laser.

There are solid-state, gaseous,liquid, and vapor(e.g.,
HO)lasers; there are setniconductorlasers,free elec-
tron (600 nm to 3mm) lasers, x-ray lasers, and Jasers
with very special properties, such as those that generateextremelyshort pulses, or those that have extraordinary
frequency stability. These latter devices are very useful
in the field of high-resolution spectroscopy, but there
is a growing need for them in other research areas as 
*P. Sorokin, “Organic Lasers,” Sci. Amer. 220, 30 (February 1969).

42.2 The Light Fantastic
beams differ somewhat in nature from one type

Jaser to another; yet there are several remarkable
tures that are displayed, to varying degrees, by all

radiation. Quite apparent is the fact that most
ams are exceedingly directional, or if you will,

mated. One need only blow some smoke into
therwise invisible, visible-laserbeam to see (via scat~

faring) a fantastic thread of light stretched across a
om, A He-Ne beam in the TEMoo mode generally

Thas a divergence of only about one minute of arc or
Jess. Recall that in that mode the emission closely

3 pproximates a Gaussian irradiance distribution; that
‘js, the flux density drops off from a maximum at the
cettral axis of the beam and hasnoside lobes. The
‘typical Jaserbeamis quite narrow, usually issuing at nomore than a few millimeters in diameter. Since the beam

esembles a truncated plane wave,it is of course spatially
Coherent, In fact, its directionality may be thought of as

manifestation of that coherence. Laserlight is
‘quasimonochromatic, generally having an exceedingly
asrow frequency bandwidth (see Section 7.10). In
other words,it is temporally coherent,

other attribute is the high flux or radiant power
that can be delivered in that narrow frequency band,
a we've seen, the laseris distinctive in thatit emits allMSfenergy in the form of a narrow beam. In contrast,

-W incandescentlight bulb may pourout consider-
y More radiant energyin toto than a low-powerc-w

but the emissionis incoherent, spread overa large
Pla angie, and it has a broad bandwidth as well. A
ood lens* can totally intercept a laserbeam and focus
Bpcotlally all of its energy into a minute spot (whose
geter varies directly with A and the focal Jength and

ersely with the beam diameter). Spot diameters of
Ha few thonsandthsof aninchcanreadily be attained

4: have a conveniently short focal length.diame a few hundred-millionths of an
Mth is possible in principle. Thus fux densities can

Achy be generated in a focused laserbeam of over

Figure 14.37 The cleaved-coupled-cavity laser- (Photo;Bell Laboratories.)

well (e.g., in the interferometers used to anempdetect gravity waves). In amy event, these hs
have precisely controlled cavity configural
the disturbing influences of temperature
vibrations, and even sound waves. To date
is held by a laser at the Joint Institute for Labo
Astrophysics in Boulder, Colorado, which mal
frequencystability (p. 265) of nearly one party)

 

the recor
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10°? W/cm’, in contrast to, say, an oxyacetylene fame
having roughly 10° W/cm?. To geta better feelfor these
powerlevels, note that a focused CQ. laserbeam of a
few kilowatts c-w can burn a hole through a quarter-inch
stainlesssteel plate in about 10 seconds. By comparison,
a pinhole andfilter positioned in front of an ordinary
source wil] certainly produce spatially and temporally
coherentlight, but only at a minutefraction of the total
poweroutput.

Femfosecond OpticalPulses
The advent of the mode-locked dyelaser in the early
part of the 1970s gaye a great boost to the efforts then
being made at generating extremely short pulses of
light.* Indeed, by 1974 subpicosecond {1 ps = 107}? sy
optical pulses were already being produced, although
the remainder of the decade saw little significant pro-
gress. In 1981 two separate advances resulted in the
creation of femtosecondlaser pulses (i.e., <0.1 ps or
<100 fs)—a group at Belt Labs developed a colliding-pulse ring dye laser, and a team at IBM devised a new
pulse-compression scheme. Above and beyond the
implications in the practical domain of electro-optical
communications, these accomplishments have firmly
established a new field of research known as ultrafast
phenomena, The most effective way to study the pro-
gression of a process that occurs exceedingly rapidly -
(e.g., carrier dynamics in semiconductors,fluorescence,
photochemical biological processes, and molecular
configuration changes) is to examineit on a timescale
that is comparatively short with respect to what’s hap-
pening. Pulses lasting ~10 fs allow an entirely new
access into previously obscure areas in the study ofmatter.

At the moment, the shortest pulses on record each
lasted a mere 8fs (107'*s), which corresponds to
wavetrains only about 4 wavelengths of red light in
length. One of the new techniques that makes these
femtosecond wavegroups possible is based on an idea
used in radar workin the 1950scalled pulse compression.
Here an initial laser pulse has its frequency spectrum 
* Take a look at “Ultrafast laser Pulses” by A. De Maria, W. Glenn
and M. Mack, Pays. Today (July 1971), p. 19.
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broadened, thereby allowing the inverse or temporal
pulse width to be shortened—rememberthat Av and
At are conjugate Fourier quantities (Eq. 7.63). The input
pulse (several picoseconds long) is passed into a non-
lineardispersive medium,namely,a single-mode optical
fiber. Whenthelightintensity is high enoughthe index
of refraction has an appreciable nonlinear term (Section
14.4), and the carrier frequency of the pulse experiences
a time-dependent shift. On traversing perhaps 30m
of fiber, the frequency of the pulse is drawn out or
“chirped.” That is, a spread occurs in the spectrum of
the pulse, with the low frequencies leading and the high
frequencies trailing. Next the spectrally broadened
pulse is passed through another dispersive system (a
delay line), such as a pair of diffraction gratings. By
traveling different paths, the blue-shifted trailing edge
of the pulse is made to catch up to the red-shifted
leading edge,creating a time-compressed outputpulse.

The Speckle Effect
A ratherstriking andeasily observable manifestation of
the spatial coherenceoflaserlightis its granular appear-
ance on reflection from a diffuse surface. Using a He-Ne
laser (632.8 nm), expand the beam a bit by passing it
through a simple lens and project it onto a wall or a
piece of paper. Theilluminated disk appears speckled
with bright and dark regions that sparkle and shimmer
in a dazzling psychedelic dance. Squint and the grains
grow in size; step toward the screen and they shrink;
take off your eyeglasses and the pattern stays in perfect
focus. In fact, if you are nearsighted, the diffraction
fringes caused by dust on thelens blur out and disap-
pear, butthe speckles do not. Hold a pencil at varying
distances from your eye so that the disk appears just
aboveit. At each position, focus on the pencil; wherever
you focus,the granulardisplayis crystal clear. Indeed,
look at the pattern throughatelescope; as you adjust
the scope from one extremeto the other,the ubiquitous
granules remain perfectly distinct, even thoughthe wall
is completely blurred.

The spatially coherentlight scattered from a diffuse
surface fills the surrounding region with a stationary
interference pattern (just as in the case of the wavefront-
splitting arrangements of Section 9.3). At the suface the

 

 
  
  
 
  
 
 
 
   

    
 

  
 

 

granules are exceedingly small, and they incre
size with distance, At any location in Space the te
field is the superposition of many contributing’wavelets. These must have a constant relati
determinedby the optical path length from
terer to the pointin question,if the interferen@
is to be sustained. Figure 14.38 illustrates ¢f
rather nicely. It shows a cementblock illuminat
one case by laserlight and in the other by colli
light from a Hg arc lamp, both ofaboutthe sama
coherence. Yet while the laser’s coherence Jenga.
much greater than the height of the surface featur:
the coherence length of the Hg light is not, JI
former case, the speckles in the photograph are!
and they obscure the surface structure; in th
despite its spatial coherence, the speckle pattern Is
observable in the photograph,and the surfacefea
predominate. Because of the roughtexture the:
path-length difference between two wavelets a

mercury light. This meansthat the relative
the overlapping wavetrains change rapidly am
domly in time, washingoutthe large-scale interpattern.

A real system of fringes is formed of the scattered)
waves that convergein frontof the screen. The frmgi]

  

@)
Figure 14.88 Speckle patterns. (2) A cement block!
mercury arc and (b) a He-Nelaser, [From B. J.Phot, Inst. Engr. 4, 7 (1965).]

 

 
  
 

 
  
    
 

   
 
  
 
    
  
  

cat be viewed byintersecting the interference pattern.
wali a sheet of paper at a convenientlocation. After

g the real image in space, the rays proceed to
, and anyregion of the imagecan therefore be

ed directly with the eye appropriately focused. In
wu_ rays thatinitially diverge appearto the eye as

ey had originated behindthescattering screen and
3 [orm a virtual image,

seems that as a result of chromatic aberration,
al and farsighted eyes tend to focus redlight

the screen. Contrarily, a nearsighted person
elie realfield in front of the screen (regardless‘ol wavelength). Thus if the viewer moves her head to

tharight, the pattern will moveto the right in the first
in (where the focusis beyond the screen) and to

7 in the second (focus in front). The patternwillNolaa ie mowonal pour 1 int
di Urtac The :
cat be seen by looking trouwgs a “lade outside
oliject® will seem to move with your head, inside ones
royale “it. Thebrilliant, narrow-bandwidth,spatially
-cobrrtsti laserbeam is ideally suited for observing the
gramular effect, although other means are certainly
‘piitte.* In unfiltered sunlight the grains are minute,
‘Ol the surface, and multicolored. Theeffectis easy to
solse1¥on a smooth, flat-black material (€.g-, poster-
‘Pélited paper), but you can see it on a fingernail or aWen coin as well.

it pr

  
 
 

  

  * a marvelous demonstration,
   
 

tm. For example, in holographic =agery the
eckle pattern corresponds ta troublesome
und noise. Incidentally, very much the same kind
thing is observable when listening to a mobile radioere the signal strength ffuctuates from one location

"the next, depending on the environment and the
ting interference pattern.

  
    
  

further reading on this effect, see L. I, Goldfischer, J. Opt. Soc.
i>, 247 (1965); D. C. Sinclair, J. Opt. Soc. Am. 55, 575 (196

Rigden and E. I. Gordon, Pros JRE 80, 2367 (1962), B.» Proc. IEEE 81, 220 (1968),  
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es
14.3 HOLOGRAPHY

Thetechnology of photography has been with us for a
long time, and we'veall grown accustomed to seeing
the three-dimensional world compressed into the flat-
ness of a scrapbookpage. The depthlesstelevision pitch-
man who smiles out of a myriad of phosphorescent
flashes, although inescapably there, seems no more pal-
pable than a postcard image of the Eiffel Tower. Both
share the severe limitation of being simply irradiance
mappings. In other words, when the image of a scene
is ordinarily reproduced, by whatever traditional
means, what weultimately see is not an accurate repro-
duction of the light field that once inundated the object,
but rather a point-by-point record ofjust the square of
the field’s amplitude. Thelight reflecting off a photo-graphcarries with it information about the irradiance
but nothing about the phase of the wave that once
emanated from the object. Indeed, if both the ampli-
tude and phaseoftheoriginal wave could be reconstruc-
ted somehow, the resulting light field {assuming the
frequencies are the same) would be indistinguishable
from the original. This means that you would then see
(and could photograph) the re-formed imagein perfect
three-dimensionality, exactly as if the object were there
before you, actually generating the wave.

14.3.1 Methods

Dennis Gaborhad been thinking along these lines for
a numberof years prior to 1947, when he began con-
ducting his now famous experiments in holography at
the Research Laboratory of the British Thomson—
Houston Company. His original setup, depicted in Fig.
14.39, was a two-step lensless imaging process in which
he first photographically recorded an interference pat-
tern, generated by the interaction of scattered quasi-
monochromatic light from an object and a coherent
reference wave. The resulting pattern was something
he called a hologram,after the Greek word holos, mean-
ing whole. The second step in the procedure was the
reconstruction of the optical field or image, and this was
done through the diffraction of a coherent beam by a
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which was the developed hologram. Ina

yar cu reminiscent of Zernike’s phase-contrast tech-
pee (Section 14.1.4), the hologram was formed when
he | background or reference wave interfered
 

coupe! S—which was, in those early days, often a piece
o| microfilm. The key point is that the interferenceor hologram contains, by “iy of the fringe

mm, information « = to both the 
 

  

 

RECORDING
 ach  

5 notat all obvious that by mn
 Fine-grais

photo plate
Suffice it to

7 for the momentthatif the object were very small,
he scattered wave would be nearly spherical, and the

  

 
  
  
 
 
 

  
 
  
   
 
  
  
  
      
 
   
 

  

"| image

s{ererer pattern a series of concentric rings (cen-
xed about an axis through the object and normalto

FE: plane wave). Except for the fact that the circular
{fringes would vary gradually in irradiance from one todhe next, the resulting flux-density distribution would

spond to a conventional Fresnel zone plate (Sec-
10.3.5). Recall that a zoneplate functions somewhat

a lens in thatit diffracts collimated light into a beam
mnverging to a real focal point, P,. In addition, it

a diverging wave, which appearsto come from
point P, and constitutes a virtual image. Thus we
imagine,albeit rather simplistically, that each point

00 an extended object generates its own zone plate
laced from the others and that the ensemble ofall

ich partially overlapping zone plates forms the
dlogram.* During the reconstruction step, each con-

@iuent zone plate formsbotha real and virtual image
asingle object point, and in this way, point by point,
hologram regeneratestheoriginallight field. When
reconstructing beam has the same wavelength as
initail recording beam (which need not necessarily

ke case, and quite often isn’t), the virtual imageisHidistorted and appears at the location formerly
cupied by the object. Thusit is the virtual image eld

actually correspondsto theoriginal objectfield. As
» the virtual image is sometimes spoken of as the

Ws. image, while the otheris the real or, perhaps moreBee
oM. B. Givens, “Introduction to Holography,” Am, J." Phys. 35,(1967),

 

Zone pte

  
RECONSTRUCTION

Hologram
True image

! Reconstructing wave

Hologram.

 
| Figure 14.39 Holographic (in-line) recording and reconstruction ofan Image,
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fittingly, the conjugate image. In any event, we envision
the hologram as a composite of interference patterns,
and atleast for this very simple configuration, those
patterns resemble zoneplates. As wewill see presently,
the sinusoidal grating is an equally fundamental fringe
system making up complex holograms.

Gabor’s research, which won him the 1971 Nobel
Prize in Physics, had asits motivation an improvement
in electron microscopy. His workinitially generated
some interest, but all in all it remained in a state of
quasi-unnoticed oblivion for about15 years. In the early
1960s there was a resurgence of interest in Gabor’s
wavefront reconstruction process and, in particular, in
its relation to certain radar problems. Soon, aided by an
abundanceof the new coherentlaserlight and extended
by a number of technological advances, holography
became a subject of widespread research and tremen-
dous promise. This rebirth hadits origin in the Radar
Laboratoryof the University of Michigan, with the work
of Emmett N. Leith and Juris Upatnieks. Among other
things, they introduced an improved arrangementfor
generating holograms, whichisillustrated in Fig. 14.40.
Unlike Gabor’s in line-configuration, where the conju-
gate image was inconveniently located in front of the
true image, the two were nowsatisfactorily separated
off-axis, as shown in the diagram. Once again, the
hologram is an interference pattern arising from acoherent reference wave and a wavescattered from the
object (this type is sometimes referredto as a side-band.
Fresnel hologram). Figure 14.41 shows the equivalent
arrangement for producing side-band Fresnel
holograms from transparent objects.

What's happening here can be appreciated in two
ways—an essentially pictorial, Fourier-optical way and,
alternatively, a direct mathematical way. We will look
from both perspectives, because they complement each
other. First, this is at heart an interference (or,if you
like, a diffraction) problem,and wecan again return to
the notion of the complicated object wavefront being
composed of Fourier-component plane waves (Fig.
10.10) traveling in directions associated with the
different spatial frequencies of the object’s light field,reflected or transmitted. Each one of these Fourier
plane wavesinterferes with the reference wave on the
photographic plate and thus preserves the information
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Figure 14.40 Holographic(side-band) recordingof an image.  odoe

 
Object Photo plate

14.41 A side-band Fresnel holographic setup for a trans-
abject.

    
 

‘Virtual image 
 

 associated with that particular spatial frequencyin the
form of a characteristic fringe pattern.

To see how this occurs examinethe simplified avo-
wave version depicted in Fig. 14.42. At the moment
shown the reference wave happens to have a crest along
the face of the film plane, and the scattered object
wavelet, coming in at an angle @, similarly bas crests at
points A, B, and ©. These correspond to points whereinterference maxima will occur at the moment shown.
But as both waves progress to the right, they will remain
in phase at these points, trough will overlap trough,
and the maxima will remain fixed at A, B, and
Similarly, between these points, trough overlaps crest,
and minima exist. The relative phase (¢) of these two
waves, which varies from point to pointalong the film,

T(x) = 2ceyE§ + QcegEZ cos o.

What we have is a cosinusoidal irradiance distributionactoss the film plane with a spatial period of AB anda
spatial frequency (1/AB) of sin 6/A.

Upon processing the film so that the arrplitude trans-
mmission profile corresponds to f(x), the result is a
cesituscidal grating. Whenthis simple hologram (which

Sentially correspondsto a structureless object with no
Biformation) is Iluminated by a plane waveidentical to
ihe original reference wave [Fig. 14.42(c)] three beams
pill emerge: one zeroth and twofirst order, One ofhese first-order beamswill travel in the direction of
Bit original object beam and corresponds to its recon-
Stucted wavefront.

Now suppose we go one step beyond this most basic
im and examine an object that has some optical

lure. Accordingly, let's use as the object a trans-
Patency with asimple periodic structure that hasa single

Bitial frequency—a cosine grating. A slightly idealized
Tesentation (which leaves out the weak higher-order

8 due to the finite size of the beam and grating)is
ed in Fig, 14.43, which shows the iuminated
, the three transmitted beams, and the reference

g* What results is three slightly different versions

(44.10)
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 can be written as a function of x. Since ¢ change
2m as x goes the length of AB, ¢/24 = x/AB. Nol
that sin @ =A/AB, and so getting rid of the spe
length AB, the phase in general becomes

 
  

    

   (x) = (ax sin BA. say  

   

 

 LE the two waves are assumedto have the same
Eo, the resultant field follows from Eq. (7.19

bx ~ 46),
and the irradiance distribution, which is propor
to the field amplitude squared, by way of Eq.has the form 2

I(x) = hee9(2Ey cosh) = 2ceoEG cos
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Figure 14.42 The interference of twoplane wavesto create a cosine
grating,
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of Fig. 14.42, where each of the three transmitted waves
makesa slightly different angle (8) with the reference
wave. Consequently, each of the three overlap areaswill
correspond ta a set of cosine fringes of a slightly
differentspatial frequency, from Eq.(14.9). Again when
we play back the resulting hologram,Fig. 14.43(b), we
have three pieces of business: the undiffracted wave,
the virtual image, and the real image. Observe thatit
is only where the three bearns come together to con-
tribute their spatial frequency content that images of
the original grating are formed.

Whenastill more complex object is used we can
anticipate thattherelative phase between the object and
reference waves (#) will vary from point to point in a
complicated way, thereby modulating the basic carrier
signal (Fig. 14.44) produced by two plane waves when
no object is present. In ther words, we can generalize
from Fig. 14.43 and conclude that the phase angle
difference @ (which varies with 8} is encoded in the
configuration of the fringes. Furthermore, had the
amplitudes of the reference and object waves been
different, the irradiance of those fringes would have
been altered accordingly. Thus we can guess that the
amplitude of the object wave at every point on the film
planewill be encoded in the visibility of the resultingfringes.

The process depicted in Fig. 14.40 can be treated
analytically as follows. Suppose that the xy-planeis the
plane of the hologram, 2s. Then

Eg(x, 9)~Eon cos [2aft + d(x,9}
describes the planar background orreference wave at
Zu, overlooking considerations of polarization. Its
amplitude, Eox, is constant, while the phase is a func-
tion of position, This just means that the referencewavefrontis tilted in some known manner with respect
to E,,. For example, if the wave were oriented such that
it could be broughtinto coincidence with 24; by a single
rotation through an angle of @ abouty, the phase at
any point on the hologram plane would depend onitsvalue of x. Thus ¢ would again have the form

441)

o =sin kx sin 8,
being, in that particular case, independentof » and
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Photo plate  

varying linearly with x. For the sake of simplicity, we'lljust write it, quite generally, as (x, y}and keep in mind
thatit's a simple known function, The wave scattered
from the object can, in turn, be expressed as

 
 
 
 

Eo(s, 9) = Eools, y) cos (2aft + dots, yy], 4.12)
Where both the amplitude and phase are now compli-
ted functions of position corresponding to an
Megular wavefront. Frorn the communications-leoretic point of view,this is an amplitudeand phase-
Modulated carrier wave bearing all of the available
Hnformation about the object. Note that this information
Becoded in spatial rather than temporal variations of
a e wave. The two disturbances Eg and Fo superimpose
' Einerfere to form an irradiancedistribution, which
: corded by the photographic emulsion. The result-
ii ‘radiance, except for a multiplicative constant, is

i, 59} = (Eg + Eo)*), which, from Section 9.1, is given

=
Virtual
image

{ls 9) = £82, Eto :sg 7) 2 2 + EpsEpo cOS(G Go} (4.19)
Figure 14.43 Notice that there are three regions with diffe!spatial frequencies. Each of these on the re-illuminate he © once again that the phase of the object wavethe location on Zy of the irradiance maximagenerates three waves.

307

 
(b)

Figure 14.44 Various degrees of modulation of hologram fringes. (Photo courtesy Emmett N. Leith and Scientific American.)

and minima. Moreover, the contrast or fringe visibility
V = (Lomax ~ Tenis)Lene + Imin) (2.37

across the hologram plane, which is
VY = 2EonEvol{Eon + Edo), (4.14)

contains the appropriate information about the object
wave's amplitude.

Once more, in the parlance of communications
theory, we might observe thatthe film plate serves as
both the storage device and detector or mixer. It pro-
duces, overits surface, a distribution of opaque regionscorresponding to a modulated spatial waveform.
Accordingly, the third or difference frequency termin Eq. (14.13) is both amplitude and phase modulated
by way of the position dependence of Epo({x, y) and
$o(% 9). ‘Figure 14,44(b) is an enlarged view of a portion of
the fringe patter that constitutes the hologram for a
simple, essentially two-dimensional, semitransparentobject. Were the two interfering waves perfectly planar
fas in Fig. 14.44(a)], the evident variations in fringe
Position and irradiance, which represent the informa-tion, would be absent, yielding the traditional Young’s
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pattern (Section 9.3). The sinusoidal transmission-
grating configuration [Fig. 14.44(a)] may be thought ofas the carrier ‘waveform, which is then modulated by
the signal. Furthermore, we can imagine thatthe coher-
ent superposition of countless zone-plate patterns, one
arising from each pointona large object, have metamor-
phosed into the modulated fringes of Fig. 14.44(b).When the amount of modulation is further greatly
increased,asit would be for a large, three-dimensional,
diffusely reflecting object, the fringes lose the kind of
symmetry still discernible in Fig. 14.44(b) and become
considerably more complicated. Incidentally, holo-
gramsare often covered with extraneous swirls and
concentric ring systems that arise from diffraction by
dust and the like on the optical elements.

The amplitude transmission profile of the processed
hologram can be made proportional to I(x, y). In that
case, the final emerging wave, E(x, ), is proportional to
the product I(x, y)Ex(x,9), where Ep(x, y) is the recon-
structing wave incident on the hologram. Thusif the
reconstructing wave, of frequency », is incident
obliquely on Zy, as was the background wave, we canwrite

Ee(x,9) = Eon cos [2mvt + (x,y) (14.25)
Thefinal wave (except for a multiplicative constant)is
the product of Eqs. (14.13) and (14.15):

Eg(x, 9) = $For(Ebn + Ego) cos [2avt + (x, 9}
+ dEorEoaEvo cos (2a+ 2 — go}
+ 4EorEosEao cos (27vt + Go). (24.16)

Three terms describe the light issuing from the
hologram; the first can be rewritten as

H(Ebn + Ebo)Ex(s, »)s
andis an ammplitude-modulated version of the recon-
structing wave.In effect, each portion of the hologramfunctions as a diffraction grating, andthis is again the
zeroth-order, undeflected, direct beam. Since it contains
no information aboutthe phase of the object wave, do,it is of little concern here.

The next two or side-band waves are the sum and
difference terms, respectively. These are the two first-
order waves diffracted by the grating-like hologram. The
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first of these(i.e., the sum term) represents a NS
except for a multiplicative constant, has the sarm
tude as the object wave Eoo{x, ). Moreover,iff
contains a 2¢(z, y) contribution, which, as you
arose from tilting the background and reeos
wavefronts with respect to 2j. It’s this phase fae
provides the angular separation between the
virtual images. Furthermore, rather than com
phase of the object wave, the sum term
negative. Thusit’s a wave carryingall of the appr
information about the object but in a way thagig
quite right. Indeed,this is the real image
converginglight in the space beyond the hologitis, between it and the viewer. The negative
manifest in an inside-out image something like
pseudoscopic effect occurring when the elements;
photographic stereo pair are interchanged.
appear as indentations, and object points that
front of and nearer to 2 are now imaged nearer to

but beyond Ey. Thus a point on theoriginaliclosest to the observer appears farthest awayin the
image. The scene is turned in onitself along one axis
in a way that perhaps must be seen to be appreciategl]
For example, imagine you are looking down the holeg
graphic conjugate imageof a bowlingalley. The “bac
row of pins, even though partially obscured by the
“front” rows, are nonetheless imaged closer to the
viewer thanis the one-pin. Despite this, bear in mind
that it’s not as if you were looking at the array from,
behind. Nolight from the very backs of the pins was
ever recorded—you’re seeing an inside-out frog
As a consequence, the conjugate image is 4 4
limitedutility, althoughit can be made to have alga
configuration by forming a second hologram@al
real image as the object.

Thedifference term in Eq, (14.16), except f
plicative constant, has precisely the form of
wave Eoo(x, 9). If you were to peer into (nore
illuminated hologram,as if it were a window sookt
out onto the scene beyond, you would “see” the objG:exactly as if it were truly sitting there. g
your head a bit and look around an item in U
ground in orderto see the view it had previous!
obstructing. In other words, in addition to ¢
three-dimensionality, parallax effects are appar

Figure 14.45 Parts (b) through (d)
are three different views photo-
graphed from the same holo-graphic image generated by the
hologram in (@). (Photos from
Smith, Principtes of Holography.) 

  (eh

 they are in no other reproducing technique (Fig. 14.45).
“!myine that you are viewing the holographic image of
@ttznifying glass focused on a page of print. As you
Minn your eye with respect to the hologram plane, the

it Leing magnified by the lens (whichisitself just
age) actually change,just as they would in “real”With a “real” lens and “real” print. In the case of

ma-Xtended scene having considerable depth, your eyes
guid have to refocus as you viewed different regions

*. variousdistances. In precisely the same way, a
era lens would have to be readjusted if you were

photographing different regions of the virtual image
(Fig. 14.46).

Thereare other extremely important and interesting
features that holograms display. For example, if you
were standing close to a window, you could obscure
all of it with, say, a piece of cardboard, except for a
tiny area through which you could then peer and
still see the objects beyond. The same is true of a
hologram, since each small fragment of it contains
information aboutthe entire object, at least as seen from
the same vantage point, and each fragment can repro-
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pattern (Section 9.3). The sinusoidal transmission-
grating configuration [Fig. 14.44(a)] may be thoughtof
as the carrier waveform, which is then modulated by
the signal. Furthermore,we can imagine that the coher-
ent superposition of countless zone-plate patterns, one
arising from each pointona large object, have metamor-
phosed into the modulated fringes of Fig. 14.44(b).
When the amount of modulation is further greatly
increased,as it would befora large, three-dimensional,
diffusely reflecting object, the fringes lose the kind of
symmetry still discernible in Fig. 14.44(b) and become
considerably more complicated. Incidentally, holo-
grams are often covered with extraneous swirls and
concentric ring systems that arise from diffraction by
dust and the like on the optical elements.

The amplitude transmission profile of the processed
hologram can be made proportional to I(x, y). In that
case, the final emerging wave, Ep(x, y), is proportionalto
the product I{x, y)Ep(x, y}, where Ex(x, y) is the recon-
structing wave incident on the hologram. Thusif the
Teconstructing wave, of frequency », is incident
obliquely on Z,, as was the background wave, we canwrite

E(x, 9) = Ex cos[2rvt + (x, y)]- (4.15)
The final wave (except for a multiplicative constant) is
the product of Eqs. (14.13) and (14.15):

Er(s, 9)~$Eon(EGn + EGo) cos [2mvt + (x, 9)]
+ $EorEosEno cos (2avt + 26 — bo)
+ iEoeEonEoo cos (2mvt+ bo). (44.18)

Three terms describe the light issuing from the
hologram; thefirst can be rewritten as

HEbn + Eto)En(® »)s
and is an amplitude-modulated version of the recon-
structing wave. In effect, each portion of the hologram
functions as a diffraction grating, and this is again the
zeroth-order, undeflected, direct beam. Since it contains
no information aboutthe phase of the object wave, do,it is of little concern here.

The next two or side-band waves are the sum and
difference terms, respectively. These are the two firsi-
order waves diffracted by the grating-like hologram. The
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except for a multiplicative constant,has the sq
tude as the object wave Eoo(x, 7). Moreover,
contains a 2¢(x,¥) contribution, which, as .arose from tilting the background and recy
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phase of the object wave, the sum term
negative. Thusit’s a wave carryingall of the appsinformation about the object but in a way
quite right. Indeed,this is the real image fo
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  appear as indentations, and object points that were
front of and nearer to 2 are now imaged nearertg
but beyond js. Thus a point on the original subjediclosest to the observer appears farthest awayin the r
image. The scene is turned in onitself along one
in a way that perhaps must be seen to be apprecia
For example, imagine you are looking down the hy
graphic conjugate image of a bowling alley. The “bag
row of pins, even though partially obscured by the
“front” rows, are nonetheless imaged closer to the
viewer than is the one-pin. Despite this, bear in mind
that it’s not as if you were looking at the array
behind. No light from the very backs of the pins
ever recorded—you’re seeing an inside-out frontigitg
As a consequence, the conjugate imageis usual
limited utility, although it can be made to havea H
configuration by forming a second hologram wit
real image as the object.

The difference term in Eq. (14.16), except foray
plicative constant, has precisely the form of thg
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obstructing. In other words, in addition to cox
three-dimensionality, parallax effects are appar
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Figure 14.45 Parts (b) through (d)are three different views photo-graphed from the same holo-
graphic image generated by thehologram in {a). (Photos from
Smith, Principles of Holography.)

photographing different regions of the virtual image(Fig. 14.46).
Thereare other extremely important and interesting

feacures that holograms display. For example, if youwere standing close to a window, you could obscure
all of it with, say, a piece of cardboard, except for a
tiny area through which you could then peer and
still see the objects beyond. The sameis true of a
hologram, since each small fragment ofit contains
information abouttheentire object, at least as seen from.
the same vantage point, and each fragment can repro-
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duce, albeit with diminishing resolution, the entire
image.

Figure 14.47 summarizes pictorially much of what's
been said so far while also providing a convenient setup
for actually making and viewing a hologram. Here the
photographic emulsion is shown having some depth, as
compared with Fig. 14.42, where it was created as
though it were purely two-dimensional, Of course, any
emulsion must certainly have a finite thickness. Typi-
cally it would be about 10 pm thick, as compared with
the spatial period of the fringes, which might average
around } p.m or so,Figure 14.48{a)iscloser to the point,
showing the kind of three-dimensional fringes that
actually exist throughoutthe emulsion. For plane waves
these straight parallel fringe-planes are oriented so as
to bisect the angle between the reference and ohject
waves. Realize that all the holograms considered up to
now have been viewed by looking through them;theyre
all transmission holograms,andin each case they were
madeby causing the reference wave and the ohject waveto traverse the film from the sameside.

Something similar happens when the reference and

Figure $446 A reconstructed holographic image of a model automobile, The camera position and plane =
and (b). (Photos from O'Shea, Callen, and Rhodes, An Jaimaduction to Lasers and Their Appiiastions.)

 
 
  

  
 

  
 

object wavestraverse the emulsion fram opposit,
as in Fig. 14.48(b). If for simplicity we again |
waves be planar, the resulting pattern can be vaby sliding two pencils along with the fronts:it
thenbe clear that the fringes are straight bands§
lying parallel to the face of the film plate. Wy
actual, highly contorted, object waveis made to
a planar, coherent, reference wave, these
become modulated with the information describin,object. The corresponding three-dimensional gi
tion grating is called a reflection hologram. Duy

playbackit scatters the reilluminating beam back zetoward the viewer, and onesees a virtual image
the hologram (asif looking into a mirror).

The zone-plate interpretation has been app!the various holographic schemes we've consider
far, and this regardless of whetherthe diffract
was of the near- or far-field variety (i.c., whether we
had Fresnel or Fraunhofer holograms, respectiy:
Indeed it applies generally where the interfere
results from the superpositioning of the scattered,spherical wavelets from each object point and
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plane or even spherical reference wave (provided thelatter’s curvature is different from that of the wavelets).
An inherent problem, which these schemes therefore
have in common,arises from thefact that the zone-plate
radii, R,, vary as m' from Eq. (10.91). Thus the zone
fringesare more densely packed farther from the center
of each zonelens (i.e., at larger values of m). This is
tantamountto anincreasingspatial frequency of bright
and dark rings, which must be recorded by the photo-
graphic plate, The same thing can be appreciated in
the cosine-grating representation, where the spatial
frequency increases with @. Since film, no matter how
fine-grained, is limited in its spatial frequency response,
there will be a cutoff beyond which it cannot record
data. All of this represents a built-in limitation on reso-
lution. In contrast, if the mean frequencyof thefringes
could be madeconstant, the limitations imposed by the
photographic medium would be considerably reduced,”
and the resolution correspondingly increased. So long
as it could record the average spatial fringe frequency,
even a coarse emulsion, such as Polaroid P/N, could be

 
toward the same side to create a transmission hologram. (6)imerference of two plane waves traveling toward opposite sidesFigure 14.48 (a) The interference of two plane waves omcreate a reflection hologram.

used without extensive loss of resalution. Figure 14,49)
shows an arrangement that accomplishes just this by
having the diffracted object wavelets interfere (with a
spherical reference wave of about the same curvatuRg])
The resulting interferogram is known as a
transform hologram(in this specific instance,
high-resolution lensless variety). This schemeis
to have the reference wave cancel the quadrati
lens type) dependence of the phase with po
Zy. But that will occur precisely only for a planar
two-dimensional object. In the case of a three
dimensionalobject (Fig. 14.50) this only happens Oys§
one plane, and the resulting hologram is therefore
composite of both types, thatis, a zone lens andtransform. Unlike the other arrangements, D0
generated by a Fourier-transform hologram @!
in the sameplane, and oriented asif reflectedié
the origin (Fig. 14.51).

The grating-like nature ofall previous holoy
evident here as well. In fact, if you look throu! H
Fourier-transform hologram at a small white-lig)
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xciDENT PLANE WavE

RECONSTRUCTION Hologram:

(b)

flource (a flashlight in a dark room works beautifully),
| #ou see the two mirrorimages, but they are extremelye and surrounded bybandsof spectral colors. The

E with white light that has passed through aing is unmistakable.*
DeVelis and Reynolds, Theory and Applications of Holography;
¢, An Introduction to Coherent Optics and Holography; Goodman,

ction to Fourier Optics; Smith, Principles of Holography; or per-The Engineering Uses of Holography, edited by E. R. Robertson
J.M. Harvey,
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Hologram

Image
On-axis
beam

Image
Figure 14.49 Lensless Fourier
transform holography (a trans-parentobject).

14.3.2. Developments and Applications
For years holography was an invention in search of
application, that notwithstanding certain obvious
possibilities, sach as theall too inevitable 3-D billboard.
Fortunately, several significant technological develop-
ments have in recent times begun what will surely be
an ongoing extension of the scope andutility of holo-
graphy. The early efforts in the field were typified by
countless imagesoftoy cars and trains, chess pieces and
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Figure 14.50 Lensless Fourier transform holography (an opaqueobject).

statuettes—small objects resting on giant blocks of
granite. They had to be small because of limited laser
power and coherence length, while the ever-present
massive granite platform servedtoisolate the slightest
vibrations that might blur the fringes and thereby
degrade or obliterate the stored data. A foud sound or
gust of air could result in deterioration of the recon-
structed image hy causing the photographic plate,
object, or mirrorsto shift several millionths of an inch
during the exposure, whichitself mightlast of the orderof a minute or so. That wasthestill-life era of hologra-
phy. But now, with the use of new, more sensitive films
andthe short duration (~40ns) high-powerlightflashes
from a single-mode pulsed ruby laser, even portraiture
and stop-action holography have becomea reality* (Fig.14.52).
aae the 1960s and much of the 1970s the

emphasis in thefield was on the obviousvisual wonders
of holography. This continues in the 1980s with the
mass production of overa hundred million inexpensive 
* LD.Siebert, Appl. Phys. Letters 11, $26 (1967), and R. G. Zech and
L. D.Siebert, Appl. Phys. Letters 13, 417 (1968).

plastic reflection holograms (bondedto credit cay
tucked in candy packages; decorating magazine ON
jewelry, and record albums). Indeed, the recent {L
development of a photopolymerthatis stable, eh,
and able to produce high-quality imageswill stimula
the manufacture of even more of these throwa
holograms.Still there is now a widespread Tecognitid
of the potential of holography as a nonpictog:
instrumentality, and that new direction is fing
increasingly important applications.

 
 

 
  

D Volume Holograms
Yuri Nikolayevitch Denisyuk of the Soviet Union, iy
1962, introduced a scheme for generating holog:
that was conceptually similar to the early (1891)
photographic process of Gabriel Lippmann. In bit
the object waveis reflected from the subject and p;
gates backward, overlapping the incoming co!

 
 

 
three-dimensionalpattern of standing waves, as in
14.48. Thespatial distribution of fringesis recorded]background wave. In so doing, the two wavesset ‘4
the photoemulsion throughoutits entire thickness to

 
Figure 14.51 A reconstruction af a Fourier transforma[From G. W. Stroke, D. Brumm, and A, Funkhauser, J. Opt 9%55, 1327 (1965).]

form what has become known as a volume hologram.
several variations have since heen introduced, but theic ideas are the same; rather than generating a two-
mensional grating-like scattering structure, the
yolume hologram is a three-dimensional grating. In
other words, it’s a three-dimensional, modulated,peri-
odic array of phase or amplitude objects, which rep-
resent the data. It can be recorded in several media,
for example, in thick photoemulsions wherein the
amplitude objects are grains of deposited silver; in
otochromicglass; with halogencrystals, such as KBr,

poe respondto irradiation via color-center variations;er with a ferroelectric crystal, such as lithium niobate,
which undergoeslocal alterationsin its index of refrac-
ftion, thus forming what mightbecalled a phase volumehologram. In any event,oneis left with a volume array
of data, however stored in the medium, which in the
reconstruction pracess behaves very muchlike a crystal
being irradiated by x-rays. It scatters the incident
(reconstructing) wave according to Bragg’s law (Section
0.2.7). This isn’t very surprising, since both the scatter-

ing centers and A have simply been scaled up propor-
sonately.

‘One important feature of volume hologramsis the
finterdependence [via Bragg’s law, 2dsin @ = mA

 
Figure 14,52 A reconstruction of a holographic portrait. (PhotoL. D. Siebert.)

14.3 Holography 607

{10.71)] of the wavelength andthescattering angle; that
is, only a given colorlightwill be diffracted ata particular
angle by the hologram. Another significant propertyis
that by successively altering the incident angle (or the
wavelength), a single volume medium can store a great
many coexisting holograms at one time. This latter
property makes such systems extremely appealing as
densely packed memory devices. For example, an 8-
mm-thick hologram has been used to store 550 pages
of information, each individually retrievable. In theory
a single lithium niobate crystalis capableofeasily storing
thousandsof holograms, and any one of them could be
replayed by addressing the crystal with a laserbeam at
the appropriate angle. Currentresearchis also focusing
on potassium tantalate niobate (KTN) as a potential
photorefractive crystal-storage medium. Imagine a 3-D
holographic motion picture; a library; or everyone's
vital statistics—beauty marks, credit cards, taxes, bad
habits, income,life history, and so on, all recorded on
a handfulof small transparentcrystals.

Multicolored reconstructions have been formed using
(black and white) volume holographic plates. Two,
three, or more different colored and mutually incoher-
ent overlapping laserbeamsare used to generate separ-
ate, cohabitating, component hologramsof the object,andthis can be done oneata timeorall at once. When
these are illuminated simultaneously by the various con-
stituent beams, a multicolored image results.

Another important and highly promising scheme,
devised by G. W. Stroke and A. E. Labeyrie, is known
as white-light reflection holography. Here, the recon-
structing wave is an ordinary white-light beam from,
say, a flashlight or projector, having a wavefrontsimilar
to the original quasimooochromatic background wave.
When illuminated on the sameside as the viewer, only
the specific wavelengththat enters the volume hologram
at the proper Bragg angle is reflected off to form a
reconstructed 3-D virtual image. Thusif the scene were
recordedin redlaserlight, only red light would presum-
ably be reflected as an image.It is of pedagogicalinterest
to point out, however, that the emulsion may shrink
during the fixing process, and ifit is not swollen back
to its original form chemically (with say triethyl-
nolamine), the spacing of the Braggplanes, d, decreases.
That means that at a given angle @, the reflected
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wavelength will decrease proportionately. Hence, a
scene recorded in He-Nered might play back in orange
or even green when reconstructed by a beam of white
light.

If several overlapping holograms corresponding to
different wavelengthsare stored, a mutlicolored image
will result. The advantagesof using an ordinary source
of white light to reconstruct full-color 3-D images are
obvious and far-reaching.

i) Holographic Interferometry
One of the most innovative and practical of recent
holographic advancesis in the area of interfernmetry.
Three distinctive approaches have proved to be quite
useful in a wealth of nondestructive testing situations
where, for example, one mightwish to study microinch
distortions in an object resulting from strain, vibration,
heat, etc. In the double exposure technique, one simply
makes a hologram of the undisturbed object and then,
before processing, exposes the hologram for a second
time ta the light coming from the now distorted object.
The ultimate result is two overlapping reconstructed
waves, which proceed to forma fringe pattern indicative
of the displacementssuffered by the object, thatis, the
changes in optical path length (Fig. 14.53). Variations
in index such as those arising in wind tunnels and the
like will generate the same sort ofpattern.

In the real-time method, the subject is left in its
original position throughout; a processed hologram is
formed, and the resulting virtual image is made to
overlap the object precisely (Fig. 14.54). Any distortions
that arise during subsequenttesting show up, on looking
through the hologram, as a system of fringes, which
can be studied as they evolvein real time. The method
applies to both opaque and transparentobjects. Motion
pictures can be taken to form a continuous record of
the response.

The third methodis the time-average approachandis
particularly applicable to. rapid, small-amplitude,
oscillatory systems. Here the film plate is exposed for
a relatively long duration, during which timethe vibrat-
ing object has executed a numbrof oscillations. The
resulting hologram can be thoughtof as a superposition
of a multiplicity of images, with the effect that a stand-
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Figure 14.54 Real-time holographic interferometry.
 

bacouste ot Holography
acoustical holography, an ultra-high-frequency

ave (ultrasound)is used to create the hologram
and a laserbeam then serves to form a recog-

reconstructed image. In one application, the
acy ripple pattern on thesurface of a water bodysubmerged coherent transducers corre-

a i fe 14.55).
~wrg |! creates a hologram thatcan| jllumi-

llp to form a visual image. Alternatively,ple can be irradiated from above with a laser-
to produce an instantaneous reconstruction in

ai light.
The advantagesof acoustical techniquesreside in the

H “act that sound waves can propagate considerable dis-
tances in dense liquids and solids where light cannot.
Thus acoustical holograms can record such diverse

ngs as underwater submarines and internal body
s.* In the case of Fig. 14.55, one would see some-

Figure 14.53 Double exposure holographic interferogra:8. M.Zivi and G. H. Humberstone, “Chest Motion Visuali
Holographic Interferometry.” Medical Research Eng. p.8 (June  

   
 ing-wave pattern emerges. Bright areas reveal une

deflected or stationary nodal regions, while conte
lines trace out areas of constant vibrational ampliet

Especially promising in the field of nondestrit
testing is the commercial availability (1983) of a B
graphic system that records on erasable thermopl!
film, The holograms are produced in less than
seconds after exposure, and the plate can be re ghundreds of times. Today holographic testi!
mechanicalsystemsis already a wellestablishedP!
in industry. It continues to serve in a broad r
applications, from noise reduction in automobile
missions to routine jet engine inspections.

 
 

 
 
  

  
 

 

ee ALF, Methercll, “Acoustical Holygraphy,” Sci. Am. 221, 36
“ober 1969). Refer to A. L. Dalisa et al., “Photoanodic Engraving
Holograms on Silicon,” Appl. Phys. Letters 17, 208 (1970), for# interesting use of surface relief patterns.
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thing that resembled an x-ray motion picture of the
fish. Figure 14.56 is the image of a penny formed via
acoustical halographyusing ultrasoundat a frequency
of 48 MHz. In water that correspondsto a wavelength
of roughly 30 wm, and so each fringe contour reveals
a changein elevation of $4 or 15 um.

iv) Holographic Cptical Elemenis
Evidently when two plane waves overlap, as in Fig.
14.42, they produce a cnsine grating. This suggests the
rather obvious notion that holographycan be used for
nonpictorial purposes,like making diffraction gratings.
Indeed the holographic optical element (HOE) is any
diffractive device consisting of a “fringe” system (i.c.,
a distribution of diffracting amplitude or phase objects)
created either directly by interferometry or by com-
puter simulation thereof, Holographic diffraction grat-ings, both blazed and sinusoidal, are available commer-
cially (with up to around 3600 lines/mm). Althoughstill
less efficient than ruled gratings, they do produce far
less stray light, which can be important in manyapplica-tions.

  
Figure 14.55 Acoustical holography,
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Figure 14.56 Interferometric image of a penny via acousticalholography. (Photo courtesy Holosonics, Inc.)

Suppose we record theinterference pattern of a con-
verging heam using a planar reference wave. Uponreilluminatingthe resulting transmission hologram with
a matching plane wave, outwill come a recreated con-
verging wave—the hologram will functionlike a lens
(see Fig. 14.39). Similarly, if the reference beam isa
diverging wave from a paint source and the objectis a
plane wave, the resulting hologram,reilluminated by
the point source, will play back a plane wave. In this
waya holographic optical elementcan perform the tasks
of a complex lens with the added benefit of allowing
for an inexpensive,lightweight, compact system design.
Holographic optical elements are already in ase in-
side supermarket check-outscanners that automatically
read the bar patterns of the Universal Product Code
(UPC) on merchandise. A laserbeam passes through a
rotating disk composed of a number of holographic
lens-prism facets. These rapidly refocus,shift, and scan
the beam across a volume of space, ensuring that the
code will be read on the first pass across the device.
HOEsareusedin so-called heads-up displaysin airplane
cockpits. These allow reflected data to appear on an
otherwise transparentscreen in frontofthe pilot’s face
andyet not obscure the view. They’re also in office copymachines and solar concentrators.

As matched spatial filters, HOEs are used in oj
correlators (p. 505) to spot defects in semicong;
and tanks in, reconnaissance pictures. In such cage
HOEisa hologram formed using the Fourier trang
of the target (e.g., a picture of a tank or perk
printed word)as the object. Suppose the problem
find a word on a printed page automatically, usj;
optical computer like that in Fig. 14.8, thatis, to
correlate the word and the page of words. The ta:
transform hologram is placed in the transform 1g
and illuminated with the transform ofanentire pa,
of print. The field amplitude emerging from this HO!
filter will then be proportional to the product of the
transforms of the page and the word. The transfor
of this product, generatedby the last lens and disp
on the image plane, is the desired cross-correl
(recall the Wiener-Khintchine theorem). If the word
on the page, there will be a high correlation, and 4
bright spot of light will appear superimposed in the
final image everywhere the target word occurs.*

It is possible to synthesize, pointby point, hoodiaofa fictitious object. In other words, in the most.
approach holograms can be produced by calculatin
with a digital computer,the irradiancedistributionf{
would arise were someobject appropriately illumi
in a hypothetical recording session. A com
controlled plotter drawing or cathode ray tube read

 
 

 
 

 
 

 
 

 
  serve as the actual hologram. Theresult upon illé

tion is a three-dimensional reconstructed image’o;
object that never had any real existence in the first
place. Morepractically, computer-generated HOEs are
now routinely being produced,often to serve as refeig)
ences for optical testing. Since this mating of
nologies can in principle generate wavefrontsof
essentially impossible to produce, the future Is YE}
promising.

 14.4 NONLINEAR OPTICS

Generally, the domain of nonlinear optics is unders ©
to encompass those phenomenafor which ee :magnetic field intensities of higher powers thangi   
  

 

* See A. Ghatak and K. Thyagarajan, Contemporary OPHC P-

Jay 2 dominantrole. The Kerr effect (Section 8.11.3),
which is 8 quadratic variation of refractive index with
applied voltage, and therebyelectric field, is typical of
several long-known nonlineareffects.

The usual classical treatment of the propagation of
ight—superposition, reflection, refraction, and so
forth—assumes a linear relationship between the elec-tromagnetic light field and the responding atomic sys-
tem constituting the medium.Butjust as an oscillatory
mechanicaldevice (e.g., a weighted spring) can be over-
driven into nonlinear response through the application
of large enough forces, so too we might anticipate that
an extremely intense beam of light could generate
appreciable nonlinearoptical effects. The electric elds
associated with light beams from ordinaryor, if youwill, traditional sources are far too small for such
behavior to be easily observable. It was for this reason,
coupled with an initial lack of technical prowess, that
the subject had to await the adventof the laser in order
that sufficient brute force could be broughtto bearin
the optical region of the spectrum. As an example of
the kindsof fields readily obtainable with the current
technology, consider that a good lens can focusalaser-
am down to a spot having a diameter of about

Ee inch or so, which correspondsto an area of roughly(0° m®. A 200-megawattpulse from, say, a Q-switched
ruby laser would then produce a flux density of 20 x
10'° W/m?. It follows (Problem 14.18) from Section
3.3.1 that the correspondingelectric field amplitudeis
given by

nie
Eo= 2.4(7) , (14.17)

In this particular case, for n ~ 1, the field amplitude is
about 1.2 x 10° V/m. This is more than enoughto cause
the breakdown of air (roughly 3X 10° V/m) and just
everal orders of magnitudeless than the typicalfields

Bing. crystal together,the latter being roughly aboutthe same as the cohesive field on the electron in a
drogen atom (5 x 10"? V/m). Theavailability of these

and even greater (10"* V/m) fields has made possible a
Wide range of important new nonlinear phenomenaand devices. We shall limit this discussion to the con-
ideration of several nonlinear phenomena associated

with passive media (i.e., media that act essentially as
ysts without making their own characteristic

14.4 Nonlinear Optics Grr

frequencies evident), Specifically, we'll consider optical
rectification, optical harmonic generation, frequency
mixing, and self-focusing of light. In contrast, stimu-
lated Raman, Rayleigh, and Brillouin scattering (Section
13.8) exemplify nonlinear optical phenomenaarising
in active media that do impose their characteristic fre-
quencies on the lightwave.*

As you mayrecall (Section 3.5.1), the electromagnetic
field of a lightwave propagating through a medium
exerts forces on the loosely bound outer or valence
electrons. Ordinarily these forces are quite small, and
in a linear isotropic medium the resulting electric
polarization is parallel with and directly proportional
to the applied field. In effect, the polarization follows
the field; if the latter is harmonic, the formerwill be
harmonicas well. Consequently, one can write

P= €oxE, (14.18)
where y isa dimensionless constant knownasthe electric
susceptibility, and a plot of P versus E is a straightline.
Quite obviously in the extreme case of very high fields,
we can expect that P will become saturated; in other
words, it simply cannot increase linearly indefinitely
with E (just as in the familiar case of ferromagnetic
materials, where the magnetic moment becomessatu-
rated at fairly low values of H). Thus we can anticipate
a gradualincrease of the ever-present, but usually insig-
nificant, nonlinearity as E increases. Since the directions
of P and E coincidein the simplest case of an isotropic
medium, we can express the polarization more
effectively as a series expansion:

P= 6((xE + x2E? + ysE°+---). 4.49)
Theusuallinear susceptibility, y, is much greater than
the coefficients of the nonlinear terms x2, xs, and so
on, and hencethe latter contribute noticeably only at
high-amplitude fields. Now supposethata lightwave ofthe form

E = Epsinat
is incident on the medium. The resulting electricSS
*For a more extensive treatment than is possible here, see N.Bloembergen, Nonlinear Optics, or G. C. Baldwin, An Introduction toNonlinear Optics.
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polarization
P= eyxEosin wt + €9¥9Esin’ wt

+ eoxsEgsin® wt +- °° (74.20)
can be rewritten as

. é

P= eyXFq sin wl +e E21 ~ cos 2vt)
+ £43 £33 sin ot —sin Bul) t+: E421)4

Agthe harmoniclightwave sweeps through the medium,
it creates what might be thought of as a polarization
wave, that is, an undulating redistribution of charge
within the material in response to the field, If only the
linear term wereeffective, the electric polarization wave
would correspond to an oscillatory current following
along with the incident light. The light thereafter
reradiated in such a process would be the usualrefracted
wave generally propagating with a reduced speed v and
having the same frequency as the incidentlight. In
contrast, the presence of higher-order terms in Eq.
(14.20) implies that the polarization wave certainly does
have the same harmonic profile as the incident field.
In fact, Eq. (14.21) can he likened to a Fourier series
representatiton of the distored profile of P(t).

14.41 Optical Rectification
The second term in Eq.(14.21) has two components of
great interest. First thereis a de or constant bias polariza-
tion varying as E3. Consequently,if an intense plane-
polarized beam traverses an appropriate (piezoelectric)
crystal, the presence of the quadratic nonlinearitywill,
in part, be manifest by a constant electric polarizationof the medium.A voltage difference, proportional to
the beam’s flux density, will accordingly appear across
the crystal. ‘This effect, in analogyto its radiofrequency
counterpart, is known as optical rectification.

14.4.2 Harmonic Generation

The cos 2wé term (14.23) corresponds to a variation in
electric polarization at twice the fundamental frequency
(i.e., at twice thatof the incident wave), The reradiated

light that arises from the driven oscillators also h
componentat this same frequency, 2w, and the pis spoken of as second-harmonic gezeration, oy
for short. In terms of the photonrepresentation 9
envision two identical photonsof energy fw coales
within the medium to formasingle photon of eeefi2w. Peter A. Franken and several coworkers at ths
University of Michigan in 1961 were the first to obs
SHGexperimentally. They focused a 3-kW pulse of f
(694.3 nm) ruby jaserlight onto a quartz crystal,
aboutonepartin 10° of this incident wave was com
to the 347.15-nm ukraviolet second harmonic,

Notice that, for a given material, if P(E) is an
function, thatis, if reversing the direction of the E-ff
simply reverses the direction of P, the even pow
E in Eq. 14.19 mustvanish. But thisis just whathapj
in an isotropic medium, such as glass or wate; Kise
are no special directionsin a liquid. Morover,in crystals
like calcite, which are so structured as to have Rieknown as a center of symmetry or an inversion center, a
reversal of all of the coordinate axes must leave the
interrelationships between physical quantities unal.
tered, Thus no even harmonics can be produced by
materials of this sort. Third-harmonic generation
(THG), however, can exist and has been observed,for
example, in calcite. The requirement for SHG that a
crystal not have inversion symmetry is also necess
forit to be piezoelectric. Under pressure a piezoelect,
crystal[sch as quartz, potassium dihydrogen phosp!
(KDP), or ammonium dihydrogen phosphate {A
undergoes an asymmetric distortion of its chargedi
bution, thus praducing a voltage. Of the 32
classes, 20 are of this kind and may therefore be
in SHG.The simplescalar expression (14.19)is acti
not an adequate description ofa typical dielectriccr
Things are a good deal more complicated, beca
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 field components in several different directions 117%

crystal can affect the electric polarization in any one
direction, A complete treatment requires that P and E
be related not by a single scalar but by a group. of
quantities arranged in the particular form of a tensor
namely, the susceptibility tensor.*
   

 
   

s nothing ¢xtraordina
pall the time. There are inertia tensors, dion coeflicient tensors, stress tensors, and so forth.

* Incidentally, the
  
 

A major difficulty in generating copious amounts of
nd-harmonic light arises from the frequency depen-

ence of the refractive index, that is, dispersion. At
meinitial point wherethe incident or w-wave, gener-
es the second-harmonic or 2w-wave, the two are

Foherent. As the w-wave propagates throughthecrystal,
continues to genetate additional contributions of

d-harmonic light, which all combine totally con-
ctively only ifthey maintain a properphase relation-

ip. Yet the w-wave travels at a phase velocity v,, which
.ordinarily different from the phase velocity, vp,,, of
1 2y-wave, Thus the newly emitted second harmonic
riodically falls out of phase with some of the pre-

ay Generated 2w-waves. When the irradiance ofjhe second harmonic, f2,, emerging from a plate of
jthickness ¢ is computed”it turns out to be

sin® [2m(n, — ne, )E/Ag]
(Ry, ~ Row)

(see Fig. 14.57). This yields the result that y,, has its
maximum value when ¢= ¢,, where

teil
4 In,—neal

his is quite commonly known as the coherence length
although a different name would perhaps be better),

andjt’s usually of the order of only about 209. Despite
this, efficient SHG can be accomplished by a procedure
known as index metching, which negates the undesirable
effects of dispersion; in short, one arranges things so
that 2,"my,,. A commonly used SHG material is KDP.
: is piezoelectric, transparent, and also negatively
niaxially birefringent. Furthermore, it has theinterest-

Gg property that if the fundamental lightis a linear
[Polarized ordinary wave, the resulting second harmonic
will be an extraordinary wave. As can be seen from Fig.
14.58, if light propagates within a KDP crystal at the

gPeciicangle 6 with respectto the optic axis, the index,
N., of the ordinary fundamental wave will precisely
‘qual the index of the extraordinary second harmonic
2... The second-harmonic wavelets will then interfere
fiesrructively, thereupon increasing the conversion

Fay & (14.22)Tole

(44.23)

Mee
| for example, B, Lengyel, Introduction to Laser Physics, Chapterhis is a fine elementary treatment.
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Figure 14.57 Second harmonic generation as a function of 6 for a
0.78-mm thick quartz plate. Peaks occur whenthe effective thickness
is an even multiple of ¢.. [From P. D. Maker, R. W. Terhune, M.
Nisenofl, and C. M. Savage, Phys. Rev. Letters 8, 21 (1962).]

efficiency by several orders of magnitude. Second-
harmonic genrators, which are simply appropriately cut
and oriented crystals, are available commercially, but
do keep in mind that 6, is a function of A, and each
such device performs at one frequency. Not long ago,a continuous I-W second-harmonic beam at 532.3 nm
was obtainedby placing a barium sodium niobatecrystal
within the cavity of a 1-W 1.06p laser. The fact that the
w-wave sweeps back and forth through the crystalincreases the net conversion efficiency.

Optical harmonic generation soon lost its initial
exotic quality and becamea routine commercial process
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Figure 14.58 Refractive index surface for KDP. (b) Ip, versuscrystalorlentation in KDP. (From Maker ct al.)

 
 
 

 
 
 
 
 
 

 
 

 
 
 
 
 

by the early 1980s, Still, there continue to be excit}
technical accomplishments,such as the 74-cm~-di:
barmonic conversion array (Fig. 14.59) built fo;
Nova laser-fusion program. Its function is to cony,
upwards of 80% of the infrared (1.05 um) emissi
from the neodymium-glass laser (Fig. 14.37) into
efficient high-frequency radiation. Becauseofits,
size the converter is an aligned mosaic of smaller
single-crystal panels forming twolayers, one behing}
other. To generate the second harmonic (green
at 0.53 ym), the array is positioned so that each lay
functions independently to produce two overlap;
frequency-shifted components. These arise one fps
each crystal layer and are orthogonally polarized. Fig
third harmonic (blue light at 0.35 um) is created by,
reorienting the assembly to the appropriate phase
matching angle so as to shift about two thirds of the
beam energy into the second harmonic asit traverses
the first crystal layer. The second layer mixes the
remaining IR and the second-harmonic greenlight to
produce third-harmonicblue.

  

 
 
 

14.4.3 Frequency Mixing

Another situation of considerable practical intereap
involves the mixing of two or more primary beams of
different frequencies within a nonlinear dielectric. The
process can most easily be appreciated by substitutigga wave of the form

ate
4

E = Egy sin att Lop sin wat
into the simplest expression for P given by Eq.The second-ordercontribution is then+ Qo ok

eoXe(E2; sin® wit + Efe sin” wet
+ QEo; Bog sin wit sin wet)

The first two terms can be expressed as functionsof
Qo, and 2ws, respectively, while the last quantity8
rise to sum and difference terms, 1 + wand

As for the quantum picture, the photon of io
3, + wy simply corresponds to a coalescingaim =
original photonsinto a new photon, just ass oecase of SHG, where both quanta hai

 

Higure 14.59 The KDP frequency converter for the Nova laser.
hoto counesy Lawrence Livermore National Laboratory.) requency, The energy and momentum of the annihi-

lated photonsare carried off by the created sum photon.
! generation of an @,— a, difference-photon is a

little more involved. Conservation of energy and

bono requires that on interacting with an wo-

 
 
  hoton, only the higher-frequency w,-photon vanishes,

creby creating two new quanta, one an ws-photon
and the other a difference-photon.

As an application of this phenomenon, suppose we
Beat, within a nonlinear crystal, a strong wave of
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frequency w,, called the pump light, with a weak signal
wave of lower frequency ©,, which is to be amplified.
Pump light is thereby converted into both signallight
and a difference wave, called idler light, of frequency
w;,©@, — &,, If the idler light is then made to beat with
the pump light, thelatter is converted into additional
amounts of idler and signallight. In this way both the
signal and idler waves are amplified. Thisis actually an
extension into the optical-frequency region of the well-
known conceptof parametric amplification, whose use in
the microwave spectrum dates back-to the late 1940s.
Thefirst optical-parametricoscillator, which was operated
in 1965, is depicted in Fig. 14.60. The flat parallel end
faces of a nonlinearcrystal(lithium niobate) were coated
to form an optical Fabry-Perot cavity. The signal and
idler frequencies (both about 1000 nm) corresponded
to two of the resonant frequencies of the cavity. When
the flux density of the pumpinglight was high enough,
energy was transferred from it into the signal and idler
oscillatory modes, with the consequent build-up of those
modes and emission of coherent radiant energy at those
frequencies. This transfer of energy from one wave to
another within a lossless medium typifies parametric
processes. By changingthe refractive index of the crys-
tal (via temperature,electric field, etc.), the oscillator
becomes tunable. Various oscillator configurations have
since evolved, with other nonlinear materials used as
well, such as barium sodium niobate. The optical para-
metric oscillator is a laser-like, broadly tunable source
of coherent radiant energy in the IR to the UV.

14.4.4 Self-Focusing of Light

Whena dielectric is subjected to anelectric field that
varies in space, in other words, when there isa gradient
of the field parallel to P, an internal force will result.
This has the effect of altering the density, changing the
permittivity, and thereby varying the refractive index,
and this in both linear and nonlinear isotropic media.
Suppose ther that we shine an intense laserbeam with
a transverse Gaussian flux-density distribution onto a
specimen. The induced refractive-index variationswill
cause the mediuminthe region of the beam to function
muchasif it were a positive lens. Accordingly, the beam
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14.5 Returningto Fig. 14.10, what kind ofspatialfilter
would produceeach ofthe patterns shownin Fig. 14.65? laser Laserbeam1058 am

LINbOscrysial 
IR absorbing t FN ©, @filter  

LiNbOcrystatwith coated end faces
forming a resonant‘t a

Figure 14.60 An optical parametric oscillator. [After J. A. Giord- aa =
¢

maineand R. C.Miller, Phys. Rev. Letters 4, 973 (1965).1 j4.4*

Figure 14.68 Photos courtesy R. A. Phillips.

Repeat the previous problem using Fig. 14.64
this time.

contracts, the flux density increases even more, and the
contraction continues in a process known as self-
focusing. The effect can be sustained until the beam
reaches a limiting filament diameter (of about 5 x
10°* m), being’ totally internally reflected as if it were
in a fiberoptic element imbedded within the medium.t  kOOK AT YOUR FUTURE.——

PROBLEMS Figure 14.61
(14.1 What would the pattern look like for a laserbeam
diffracted by the three crossed gratings of Fig. 14.61?

 
{o)

Figure 14,65 Photos courtesy D. Dutton, M. P. Givens, and R. E.Hopkins.
14.2 Make a rough sketch of the Fraunhoferdiffrac-
tion pattern that would arise if a transpatency ofFig.
14,62(a)} served as the object. How would youfilter it
to get Fig. 14.62(b)? -

14.6 With Fig. 14.9 in mind, show that the transverse
magnification ofthe system is given by —f/f, and draw
the appropriate ray diagram. Draw a ray up through
the center of the first lens at an angle @ with the axis.
From the point wherethatray intersects E,, draw a ray

a _ downward that passes throughthe center of the second
‘igure 14.64 Photos courtesy R. A. Phillips, lens at an angle ©. Prove that %/@ = fi/f,. Using the

14.3 Repeat the previous problem using Fig. 14.63instead.
 

 
+See J. A. Giordmaine, “Nonlinear Optics,” Phys. Today, 39 (January
1969). Figure 14,62 Photos courtesy R. A. Phillips.
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notion of spatial frequency, from Eq. (11.64), show that
k, at the object planeis related to k, at the image plane
by

ke = Kolff)
What does this mean with respect to the size of the
jmage when f, > f,? What can then be said aboutthe
spatial periods of the input data as compared with the
image output?

14.7 A diffraction grating having a mere 50 grooves
per cm is the object in the optical computer shown in
Fig. 14.9. Lf it is coherently illuminated by plane waves
of green light (543.5 nm) from a He-Nelaser and eaeh
Jens has a 100-cm focal length, what will be the spacing
of the diffraction spots on the transform plane?

14,8* Imagine that you have a cosine grating {i.¢., a
transparency whose amplitude transmission profile is
cosinusoidal) with a spatial period of 0.01 mm. The
grating is illuminated by quasimongchromatic plane
waves of A = 500 nm, and thesetup is the sameas that
of Fig. 14.9, where the focal lengths of the transform
and imaging lenses are 2.0m and 1.0 m, respectively,
a) Discuss the resulting pattern and designafilter that

will pass only the first-order terms. Describe it indetail.
b) Whatwill the image look like on 2, with that filter

in place?
c) How might you pass only the de term, and what

would the image look like then?

14.9 Suppose weinsert a mask in the transform plane
of the previous problem, which obscures everything hutthe m = +1diffraction contribution. What will the re-
formedimage leok like on Z,? Explain your reasoning.
Now suppose we remove only the m = +1 or the m = —1
term. What will the re-formed image look like?

14,10* Referring to the previous two problems with
the cosine grating oriented horizontally, make a sketch
of the electric field amplitude along y’ with nofiltering.
Plot the corresponding image irradiance distribution.
What will the electric field of the image looklike if the
dc term isfiltered out? Plotit. Now plot the new irradi-

ance distribution, What can you say about the Spat
frequency of the image with and without the annaplace? Relate your answersto Fig. 11.13,

14.11 Replace the cosine grating in the previous
lem with a “square”bar grating,thatis, a series of
fine alternating opaque and transparentbands of.width. We now filter out all terms in the tray
plane butthe zeroth and the two first-orderdiffract
spots. These we determineto haverelative irradian
of 1.00_0.36, and 0.36: compare them with Figs. 7.151
and 7,16. Derive an expression for the general ¢
of the irradiancedistribution on the image plane—s
a sketch ofit. Whatwill the resulting fringe system!like?

 
 
 

 
 
 

14.12 A fine square wire mesh with 50 wires per cm
is placed vertically in the object plane ofthe opticat’
computer of Fig. 14.8. If the lenses each have 1,0
focal lengths, what mustbetheilluminating wavek
if the diffraction spots on the transform plane aré
have a horizontal and vertical separation of 2.0 mm#¥*
Whatwill be the mesh spacingas it appears on the ing]plane?

14.13* Imagine that we have an opaque mask into
which are punched an orderedarray of circular holedall of the same size, located asif at the corners of the
boxes of a checkerboard. Now suppose our robot
puncher goes mad and makes an additional batch of
holes essentially randomly all across the mask. If this
screen is now madethe object in Problem. 14.11, what
will the diffraction pattern look like? Given that the
ordered holes are separated from their nearest neigh:
bors on the object by 0.1 mm, what will be the spatial
frequency of the corresponding dots in the iDescribeafilter that will remove the random holes}
the final image.

14.14" Imagine that we have a large photograp
transparency on which there is a picture of a stug
made upofa regular array of small circular dots, ai
the samesize, but each with its own density, 50 UHR
passes a spot of light with a particular field amplitiag

 
 
 

Considering the transparency to be illuminated by 4

Jane wave, discuss the idea of representing the electric
field amplitude just beyond it as the product (on
average) of a regular two-dimensionalarray of top-hat
functions (Fig. 11.4, p. 476) and the continuous two-
dimensional picture function: the formerlike a dull
ped of nails, the latter an ordinary photograph. Apply-
ing the frequency conyolution theorem, what does the
distribution oflight look like on the transform plane?
How mightit be filtered ro produce a continuous output
image?

44.15" Given that a ruby laser operating at 694.3nm
has a frequency bandwidth of 50 MHz, whatis the
correspondinglinewidth?

44.16* Determine the frequency difference between
adjacent axial resonant cavity modes for a typical gas
laser 25cm long (x ~ 1).

14.17" A He-Ne cw laser has a Doppler-broadenedtransition bandwidth of about 1.4GHz at 632.8 nm.
Assuming n= 1.0, determine the maximum cavity
Yength for single-axial-mode operation. Make a sketch
of the transition linewidth and the carresponding cavitymodes.

14,18 Show that the maximum electric field intensity,
Emax, that exists for a given irradiance I is

ne
Enox™= 274(~) in units of V/m,

where nis the refractive index of the medium.

14.19* The arrangement shownin Fig. 14.66 is used
to convert a collimated laserbeam into a spherical wave.
The pinhole cleans up the beam;thatis, it eliminates
diffraction effects due to dust and thelike on thelens.
How does it manage it?

14.20 What would happento the speckle pattern if a
8 theam were projected onto a suspension such asmilk rather than onto a smooth wall?

Problems 619

 
(b)

Microscopeobjective

Laserbeam [S>>

Pinhole ,
©

Figure 14.66 (a) and (b) A high-power laserbeam before andafter
spatial filtering. (Photo courtesy Lawrence Livermore NationalLaboratory.)
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Appendix 1
Electromagnetic Theory

MAXWELL'S EQUATIONSIN DIFFERENTIAL FORM

Theset of integral expressions that have come to be
known + Maxwell's equations are

$ E:dl= I Bas £3.5)c adt

§ Banff (seet)-a ousch A at

ff exes fff ow wn. .

a B-dS=0, (3.9)A
where the units, as usual, are SI.

Maxwell’s equations can be written in a differential
form, which is more usefulfor deriving the wave aspects
of the electromagnetic field. This transition can readily
be accomplished by making use of two theorems from
vector calculus, namely, Gauss’s divergence theorem,

fwas [ffvray
and Stokes’s theorem

$ F-dI (I VXF- ds,c A

Here the quantity F is not one fixed vector, but a
function that depends onthe position variables, Ir is a
rule that associates a single vector, for example, in

ALD

(ALQ)
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Cartesian coordinates, F(x, y, z), with each point(x, 5,
in space. Vector-valued functions of this kind, such qEand B,are knownas vector fields.

Applying Stokes’s theorem to the electric field
intensity, we have

fecat- f[veees
lf we compare this with Eq. (3.5), it follows that

J J vxe-as {[ 24s. Al
This result must be true forall surfaces bounded by
the path C. This can only bethe case if the integrands
are themselves equal, thatis, if

aBVxE°-—. £.5)
at ag

(AL3}h

A similar application of Stokes’s theorem to B, using
Eq.(3.13), results in E

vxXB= u(re), (Ald)
Gauss’s divergence theorem applied to the electricgyintensity yields

He-a-|[fv-nav
If we make use of Eq.(3.7), this becomes

[[[s-ee-2]([ ean amy

aie

een

and since this is to be true for any volume(i.e., for an
| rbitrary closed domain), the two integrands must bequal. Consequently, at any point(=, 9, z, ) in space-time

V-E=op/e (AL)
nthe same fashion Gauss’s divergence theorem applied
‘9 the B-field and combined with Eq. (3.9) yields

V-B=0. (A110)

iquations (A1.5), (A1.6) (A1.9), and (A1.10) are Max-ell’s equationsin differential form. Refer back to Eqs.
oe) through (3.21) for the simple case of Cartesian\coordinates and free space (p = J =0,€" €, = fro).

et
ELECTROMAGNETIC WAVES

‘o derive the electromagnetic wave equationin its most
eneral form, we must again consider the presence of

some medium. We saw in Section 3.5.1 that there isa
need to. introduce the polarization vector P, which is a‘measure ofthe overall behavior of the medium,in that
fit is the resultant electric dipole moment per unitjvolume. Since the field within the ‘material has been
laltered, we are led to define a new field quantity, the
displacement D:

D= @EtP. (ALID
% DP
Clearly then, E=—-—| fo €o
‘The internalelectric field E is the difference between
ihe field D/eo, which would exist in the absence of
Belzrization, and the field P/eo arising from polariza-tion,

Fora homogeneous,linear,isotropicdielectric, P andare in the same direction and are mutually propor-
Monal, It follows that D is therefore also proportionaltoE:

D=cE. (AL.12)

Uke E, D extends throughout space andis in no way
limited to the region occupied bythedielectric,as is P.
The lines of D begin and end ontree, movable charges.
+hose of E begin and end on either free charges or
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boundpolarization charges.If no free charge is present,
as mightbethe case in the vicinity of a polarized dielec-
tric or in free space, thelines of D close on themselves,

Since in genera! the response of optical media to
B-fields is onlyslightly different from that of a vacturn,
we need not describe the process in detail. Sufficeit to
say that the material will become polarized. We can
define a magnetic polarization or magnetization vector M
as the magnetic dipole moment per unit volume. In
order to deal with the influence of the magnetically
polarized medium, we introduce an auxiliary vector H,
traditionally known as the magnutic field intensity

H® »,'B-M. {AL.13)
For a homogeneous, linear (nonferromagnetic}, iso-tropic medium, B andHareparallel and proportional:

H=p'B. {AL 14)
Along with Eqs. (Al.12) and (A1.14), there is one more
constitutive equation,

J=oE. (ALIS)
Known as Ohm’s law, it is a statement of an experi-
mentally determined rule that holds for conductors at
constant temperatures. The electric field intensity, and
therefore the force acting on each electron in a conduc-
tor, determines the flow of charge. The constant of
proportionality relating E and J is the conductivity of
the particular medium,o.

Consider the rather general environmentofa linear
{nonferroelectric and nonferromagnetic), homo-
geneous, istropic medium, which is physically at rest.
By making use of the constitutive relations, we can
rewrite Maxwell’s equations as

V-E=p/e {ALG}
V-B=0 fAL10}

oBVYxE=-— ALS;
E a {AL 5]

oE
and VXB= yoE+ He (ALJ16)
If these expressions are somehow to yield a wave
equation (2.61), we had best farm some second deriva-
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tives with respect to the space variables. Taking the curl
of Eq. (A1.16), we obtain

Vx (TXB)©HaLY XE) + nes (V XE), (ALI?)

where, since Eis assumedto be a well-behaved function,
the space and time derivatives can be interchanged.
Equation (A1.5) can be substituted to obtain the neededsecond derivative with respect to me:

 3 
@B

VX (¥ x B)~ —po—- pe * (A118)at at

Thevectortriple product can be simplified by making
use of the operator identity

Vx(Vx = VV: v2 {AL 19)so that
Vv x(V xB)©V(V-B)—V°B,

where in Cartesian coordinates

#B 3B aBV-VBe VBe yt z
‘ ) Bs oy? an”

Since the divergence of B is zero, Eq. {A1.18) becomes
2 eB aBvB 7 — po=0. {AL.20)

Meee Ba

A similar equation is satisfied by the electric field
intensity. Following essentially the same procedure asabove, take the cur! of Eq. (A1.5):

a

VX (VE) -3 WV XB).
Eliminating B this becomes

aE aEXE) = —po—— weve,
Vx (V XE)=wos mess

and then by making use of Eq. (A1.19), we arrive at
PE oEBp pee ug

VE— pe ur,32 Viele),
having utilized the fact that

VV -E) ~ Viale).

For an uncharged medium (p~0) and
° FE aEWE -— pe—s — po

nese Ho 0.

Equations (A1.20) and (A1.21) are known asthe equagtions of telegraphy.*
In nonconducting media 0, and these equationgbecome

 
andsimilarly

and

(A125)

Inthe special nonconducting medium ofa vacuum (free
space) where

pe0, @=0, Kewl, Kanth
these equations becomesimply 22. E £9 (A 1.26)

¥ Hofo 52 6
and

vB
VB = Moto 43 (AlL27,

Both of these expressions describe coupled space- ant
time-dependentfields, and both have the form ofdifferential wave equation (see Section 3.2 for fudiscussion}.

 
  

 * For a pair of parallel wires that might serve as a telegraph Ydfinite wire resistance results in a power Toss and joule heatin
electromagnetic wave advancing alongthe line has lessand less ol
available toit. The first-order time derivatives in Eqs. (A1-2q
(A121) arise from the conduction current and lead to theor damping.

> Appendix 2

 

The Kirchhoff Diffraction Theory

salve the Helmholtz equation (10.113) suppose that
« have two scalar functions U, and Uy for which(iregn’s theorem is

[ff ceieeu, - UW?U,)dV
= Hfwis U,- UZVU,)+d8. (421)

is clear that if U, and Uy are solutions of the Helm-
holtz equation, thatis, if

Wu, thu, 0
and

V2 Uy + KUy = 0,
then

ffwu: UVU,)- d8~ 0. (A2.2)
KE U,= ©, the space portion of an unspecified scalarptical disturbance (10.112). And letkr

u=*r

where y is measured from a point P. Both of these
] hoices clearly satisfy the Helmholtz equation. Thereis
| geingularity at point P, where r = 0, so that we surround

j f by a small sphere in order to exclude P from the
| “siae enclosed by S (see Fig. A2.1). Equation (A2.2) 'ebecomesI ike’ ike

G ev( )-* ve]-asYr r
tiny ite

Bs)tees r r

On sphere, the unit normal n points
1 the origin at P, and

  

  
+dS=0. (Aga)

 

 et Lik
HE)- (Shesr ror

since the gradientis directed radially outward. In terms
of the solid angle (dS=r* dQ) measured at ,P, the
integral over S’ becomes

ff (« ihOr + re) oe dQ,s" ar
where V&- dS =-(e8/ar)r? dQ. As the sphere sur-
rounding P shrinks, r>0 on S’ and exp(ikr)> 1.
Because of the continuity of @ its value at any point on
S’ approachesits value at P, that is, &,. The last two
termsin Eq. (A2.4) go to zero, andthe integral becomes
4n€,- Finally then, Eq. (A2.3) becomes

g 4 ove.us ev(e) aEAS sy) -as|,{10.434}

{A2.4)

 

which is known as the Kirchhoff integral theorem.

 
Figure A2.1
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73 0.116498 0.117053 0.117594 0.118122 0.118637 G.119138 0.119627 0.120102=0.120563. 2tO1e74 0.121447 0.127869 0.122277=-W.122673 0.123055 0.123423 «0.123779 0.124121 0.124449=0.124765
V5 0.125067 0.125355 0.12563! 0.125893 0.126142 0.126378=0.226600=0.126809 0.227005=:0.127188
716 0.127858 «0.127514 0.127658=0.127788=0.127905 0.128009=0.128100 0.128178 0.128243 0.128295,
we 0.128334 0.128360=0.128373) 0.128373 4.128361 6.128335 0.128297=0.128247) 0.128183 0.128107
78 0.128018 6.127917 0.127803 0.127677 0.127539 0.127388==—0.127224 0.127049 0.126861=-0. 1 26661
79 0.126448 0.126224 0.125988=9.125789 0.125479=0.125207 0.124923 0.124627 0.124320 0.224000
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Table 1 (continued)

Table r

 
  

 

 

 

 

 

 
 

 

 

 
 

(Sin w/e
x 8.00) 0.01 0.02 0.03 0.04 8.05 0.08 0.07 0.08 9

8.0 0.123670 0.123328 0.129974 0.122609 0.122232 0.121845 0 121446 0.421036. 0.120615 0.1207;
8.1 0.119739 0.139286 0.118821 0.118345 0.117859 0.117363 0.116855 0.116338 0.115810 G1 159%
8.2 O.114723 0.214165 0.113596 0.113018 OF F2429 OTT IBST 0.111298 0.120605 8.109978 6, 109344,
8.5 0.108695 0.108040 0.107376 0.106702 0.106079 0.105327 0.104627 0.103918 0.103200 0.102473
8.4 0.101738 0.100994 0.100243 0.099483 0.098714 9.097938 0.097154 0.096362 6.095562 0.054755
85 0.093940 0.093117 0.092287 0.091450 0.090606 0.089755 0.088895 0.088031 0.087159 0.086289
8.6 0.085395 0.084503 0.083605 0.082701 0.081790 0.080874=0.079951 0.079025 0.078089 0.077149
8.7 0.076203 6.075253 0.074296 0.073335 0.072369 0.071397 8.070421. 069439 0.068453 U.067463.
8.8 0.066468 0.065468 0.064463 0.063457 0.062445 0.061429 0.060410 0.059386 0.058359 0.057323
8.9 0.056294 0.055257 0.084217 0.053178 0.052127 0.051077 0.050025 0.048970 0.047913 0.046853
9.0 0.045791 0.044727 0.043660 0.042592 0,047521 0.040449 0.059375 0.038300 0.037223 0.036145
91 0.035066 0.033985 0.032904 0.031821 0.030738 0.029654 0.028569 0.027484 0.026399 9.025313
92 0.024927 6.023141 0.022085 0.020970 0.019884 0.018799 0.017714 0.016630 0.015547 0.014464
a3 0.013382 9.012301 0.011222 0.010143 0.009066 9.007990 0.006916 0.005843 0.004772 4.003703
9.4 0.002636 0.001579 0.000507 -0.000554 -0.001612 —0.002669 —0.003722 —0.004774 -0.005822 —0.006868
9.5 0.007911 -0,008950 -0,009987 -0.011021 -0.012051 -0.018078 —G.014101 -0. 015121 —0.016138 —0.017150
9.6 0.018159 —0.019164 —0.020165 —0.027161 —0.022154 —0.023142 —0.024126 -0.025106 — 0.026081 0.027033
O.7 0.028017 —0.028977 0.029933 -0.030884 —0.031830 —0.032771 0.033707 —0.034637 -0.035562 —0.036482
9.8 0.037396 —0,038304 0.039207 —0.040104 —0.040995 —0.04188) —0.042760 ~0.048633 —0.044500 045361
99 0.046216 0.047064 —0.047906 ~0.048741 -0.049670 -0.050392 0.051208 —0.052017 —0,052819 —0.053614,

10.0 0.054402 0.055183 —0.055957 —0.056724 —0.057484 -0,058237 0.058982 0.059720 0.060450 —0.061173
10.1 0.061888 —0.062596 -0.065296 —0,063988 —0.064673 —0.065350 — 066019 —0.066680 —0.067333 —0.06797810.2 —0.0686t5 —0.069244 -0.069865 -0.070477 -0.071082 -0.071678 072266 —0.072845 —0.073416
10.3 0.074533 —0,075078 0.075615 —0.076143 -0,076663 —0.077174 -0.077677 -0.078170 —0.078655
10.4 0.079899 —0,080057 —0.080507 -0.080947 —0.081379 —0.081802 ~0.082216 0.082620 —0.083016
10.5 0.083781 -0.084149 -0.084509 —0.084859 -0.084200 —0.085332 085855 —0.086169 -0.086473 ui
10.6 087034 —0.087331 -0.087599 0.087857 —0.088106 —0.088346 — 088576 —0.088797 —0,089009 -0.089219)
10.7 0.089405 —0.089589 —0.089764 -90.089929 -0,090085 -0.090232 090370 —0.090498 -0.090617 -0.09072910.8 —0.090827 -0.090919 0.091001 —0.091073 0.091157 —0.09119] —0.091236 0.091272 —0,091299
10.9 0.091324 -0.091324 0.091314 —0.091295 -0.091267 —0.091229 —0.091183 —0,091128 0.091064 —0.090990

1L.0 —0.090908 -0,090817 -0.090717 —0.090608 -0.090480 -0.090364 —0.090228 0.090084 —0.089931 ~0.08smag
Ui 0.089599 —0.089420 —0.089233 089037 0.088832 —0.088619 -0.088397 -0.088167 0.087929 ee
12 087427 0.087163 —0.086891 0.086612 —0.086324 —0.086027 —0.085723 ~0.085414 —0.085091 ae
11.3 0.084426 —0.084083 —0.083731 —0.083371 0.083004 -0.082630 -0,082247 9.081887 —0.081460 ore
4 —0.080643 -0.080223 -0.079796 —0.079362 -0.078921 -0.078473 -0.078017 0.077555 —0.077086 ceria2B 076126 —0.075636 0.075140 -0.074637 —0.074127 —0.073611 —0.073088 0.072559 —0,072025 ae
116 0.070934 —0.070379 0.069829 —0.069253 -0,068681 —0.068103 —0.067519 0.066929 066334 — oor
17 —0.065127 —0.064515 —0,063898 —0.068275 -0.062647 -0.062014 ~0.061376 —0.060733 — 060084 ieee
He 0.058773 —0.058111 —0.057443 —0.056771 -0.036095 —0.0554i14 -0.054728 0.054039 -0.053345 vp05aee19 ~0.051944 -0.051238 —0.050528 (3.049814 0.049096 —0.048375 —0.047650 0.046921 —0.046189 —@

 

Table 1RS

322

 whe
8

32.0
52.1
12.2
12.3
124
125
12.6
12.712.8

13.9
14.0
14.)
14.2
14.3
144
14.6
14.6
147
14.9

 
 15.6
15.7
15.8
15.9

 

(continued)

 

 

  

 
 

 

 

 

0.00 0.0] 0.02 ous 0.04 0.05
0.044714 043972 0.043227 —0.42479 —0.041727 0.040973
—0.037161 -0.035618 —0.034844 1.834067 —0.033288
—0.029363, —6.027781 —0.026988 026193 —0.025398
—0.021401  —1 —0.019796 -—0.018992 —0.018188 -0.0}7384
0.013355 —0.012549 —0.011743 —0.010937 —0.010131 -0.009326
—0.005306 004504 —0.003702 —0.002902 —0.002103 -0.001304

0.002668 0.003459 0.004248 —-G.005035 0.005820 0.006603
0.020491 0.011262 0.012030 0.012797 0.013560 0.014321
0.018087 0.018831 0.019572 0.020311 0.021046 0.021778
0.025386 0.026097 0.026804=0.027507 6.028207 0.028903
0.032321 0.032992 0.033658 9.03432: 0.034978 0.035632
0.038829 0.039454 0.040075 0.040690 0.041300 0.041905
0.044854 0.045428 0.045996 0.046559 0.047117 0.047669
0.050344 0.050861 0.051373 0.051879 0.052879 (0.052873
9.055252 0.055709 0.056160 0.056605 0.057043 0.057476
0.059540 0.059933 0.060320 0.060700 0.061073 0.061440
0.063174 0.063500 9.063820 0.064132 0.064438 0.064737
0.066128=S.0BECS 0.066636 0.066879 0.067115 0.067344
0.068384 0.068570 0.068750 0.068922 0.069087 0.069245
0.069929 0.070044 0.070152 0.070253 0.070846 ~—-u.070433
0.070758 0.070801 0.070838 0.070867 0.070889 0.070904
9.070873 0.070846 0.07081)=0.070770 0.070721 0.070666
9.070284 0.070186 0.070082 0.069971 0.069854 0.069729
0.069005 0.068840 0.068668 0.068490 0.068303 0.068114
0.067060 0.066829 0.066593 0.066350 0.066101 0.063845
0.064476=0.064183 aif 0.063581 0.063271 0.062954
0.061287 0.060936 0.060580 0.060218 6.059852 0.059478
0.057534 0.057129 0.056719 0.056304 0.055884 0.055459
0.053260 0.052806=0.052347 0.051884 0.051416 0.050944
0.048516 0.048017 0.047515 0.047008+0.046497 0.045988
0.043353 0.042815 0.042275 0.041730 0.041183 0.040632
0.037828 0.037257 0.036684 0.036308+0.035529 ~—-0.034948.
0.032000 0.031403 0.030803 0.030202+=4.029598 0.028992
0.025931 0.025313 0.024693 0.024072 0.023450 0. 825
0.019683 9.019051 0.018418 0.017783 0.017148 0.016512
0.013320 0.012680 0.632040 0.011399 0.010758+=0.070116
0.006907 0.006266 0.005624 0.004983 0.004842 0.003702
0.000507 —0.000130 —0.000766 —0.001401 -0.002035 -0.002668

0.005817 -0.006443 —0.007067 -0.007690 -—0.008311 008931—0.012004 —0.012613 —0.018219 —0.0138R4 -0,024427 —0,015027

0.06
—0.040216,
—0.032506
— 0.024600
0.016578
—0.008521
—0.000507

0.007385
0.015080
0.022506
0.029594
0.036281
0.042506
0.048215
€.053361

057901
0.061800
0.065029
8.067566
0.070512
0.070912
0070603
0.069598
0.067916
0.065584
0.062633
0.059100

055029
0.050467
0.045464
0.040077
0.034363
0.028383
0.022199
0.015875
0.009475
0.003062

—@.003300
—0.009549
0.015625,

0.07
—0.039456
—0.031723

023802
0.015773,
0.007716

0.000289
0.008164
0.015836,
0.025231
0.030282

 

0.036925.
0.943101
9.048756
0.053843
0.058321
0.062154
0.065314
0.067781
0.069540
0.070584

0.070913,0.070534
0.069460
0.067712
0.065316
0.062305
0.058717
0.054594
0.049985,
0.044942

 

0.039520
0.033776
0.027773
0.021572
0.015237
0.008835
0.002422

—0,003931
—0.O10166
0.01622!

 
Table x 627

0.038694
—0.030938
—0.023003
0.014967
—0.006912

0.001083
0.008942
0.016589
0.023953
0.030966
0.037564
0,043690
6.049291
0.054319
0.058733
0.062500
0,065593.
0.067989
0.069677
0.070649
0.070907
0.070457
0.069315
0.067502
0.065042
0.061971
0.058328
0.054154
0.049500
9.044416
0.038959
0.033187
0.027161
0.020944
0.0145990.008291
0.001783
004561

—0.010780
—0.016814

 

—0.037929
—0.080152
-0.022202
-0.014161
—0.006109

0.001877
0.009717
0.017339
0.024671
0.031645,
0.038199
0.044275
9.049820
0.054788
0.059140
0.062840
0.065864
0.068190
0.069806

+ 0.070707
8.070893,
0.070374
0.069163
0.067283
0.064762
0.061632
0.057933.
0.053710
0.049010
0.043886
0.038395
0.052595,
0.026547
0.020314
0.613960
0.007549
0.001143

—0.005190
—0.011393
0.017405,
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628 Table x  
Table { (continued)

eee Solutions to  aae 

  
 

 
 
 
 
  
 
 

   
 
 
 
   
 
 
 
 

   
  

  
 
  

 

Adapted from L. Levi, Applied Optics.
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. 0.00 0.03 0.02 0.03 0.04 0.05 0.08 0.07 Selected Problems16.0 —0.017994 0.018580 0.019163 -0.019744 —0.020322 -0.020898 -0.621470 -0.022040 ono16.1 0.028731 0.024289 —0.024843 0.026488 -0.027030 -0.027568 -0.028103 ~o.o9g6a,
16.2 0.029162 —0.029686 -0.080207 0.081747 0.032252 0.032754 0.033252 9.038745
16.3 —0.034286 -0,034722 -0.035204 0.036626 0.087091 -0.087552 0.038009 —~o384g;
16.4 =0.088909 -0,039352 ~0.089792 -0.040226 -0.040656 —0.041081 —0.041502 ~0.041918 -0.042399 —0 94944
16.5 0.048139 0.043536 0.043928 0.044815 0.044698 -0.045076 -0.045448 —0.045816 -0.046179 ~o.04554516.6 —0,046889 ~0.047236 047915 0.048895 —0.049212 —0.049522 —0.uaggog
16.7 0.050128 0.050423 —0.050997 0.051548 ~0.051816 —0.982078 —0.052335 -o.059586
16.8 0.052831 -0.053071 0.058535 0.059758 -0.058975 0.064787 —0.054893 -0.054594 —0.954789
16.9 ~0.054978 -U.055161 0.055511 -0.055677 0.055837 —0.055992 0.056141 -0.056284 ~0.956491

17.0 0.056553 —0.056678 0.056912 -0.057021 -0.057128 0.057220 —0.057810 -0.957398 ~0.057475} 571 0.057548 -0.057615 —0.057677 ~0.057782 -0.057897 -0,057924 0.057944 CHAPTER 2172 0.057959 —0.057968 0.057981 —0.057947 —0.057927 -0.057902 —0.057870 ~0.057843
17.3 =0.057790 —0.087742 0.057562 -0.057491 -0.057414 0.087331 0.057243 -0.057149
WA 0.057049 0.056944 —0.056596 —0.056468 -0.056336 —0.056197 -0.056054 ~0.055905 2.1 (0.008) (2.54 x 1072580 x 107?=memberof
17.8 —0.055750 —0.055590 —| —0.055078 —0.054897 -0.054710 —0.054518 ~—0.054321 —o.n54119 waves ™ [8h¢=vAA=efu™ 3X LOF/1OM, dX=3m.
17.6 0.058912 —0,053699 -0,053481 0.053031 -0.052798 —0.052560 0.052327 -0.052069 ~0.051816 Waves extend 3.9 m.17.7 =0.051558 -0,052296 ~0.051028 —-0.050479" —0.050198 ~0.049620 -0.049324 —0.049094
178 -0.048719 -0.048410 0.048096 0.047455 0.047128 —0.046461 -0.046121 ~0.045976 | . .
179 0.045428 ~.045075 —0.044718 —0.043993 -0.043624 —0.048251 -0.042875 -0.042494 —0.049110 27 b= Asin Qa(ex— vt), gy©4sin 2r(0.2x—32)

m a v=3 bA=102 Qr818
18.0 0.041722 —0.041930 —0.040984 —0.040585 —0.040132 0.039726 -0.039316 -0.038902 -0.038485 —0.038085 d Ast eo) v= 15 f) positive x18.1 ~0.037642 —0.037215 —0.036785 0.035915 ~0.035475 0.095033 -0.034587 -0.034139 0.033687
18.2 —0.033233 9.032775 —0.032315 —0,031833 —0.031387 0.030919 -0.080449 0.029976 -0.029500 —0.029022 | w= Asin (kx + wt), de™(1/2.5) sin (Tx + 3.51)18.3 =0.028541 —0.028059 —0.027574 27086 —0.026597 0.025612 -0.025116 —0.024619 -0.024119
18.4 0.023618 —0.023114 —V.022620 0.022108 ~0.021594 0.020873 —0.020060 0.019030 abv = 35/20 by A=2Qa/7  c) r= QHU/3.5
18.5 —0.018512 -0.017994 -0.017474 —0.016953 —0.016431 —0.015384 —0.014859 -0.014333 ~0.013808 d) A™ 1/25 e) us f) negative x18.6 —0.015278 -0.912750 -0.012220 -0.0)1691 0.011169 0.010093 —0.009566 -0.009033 —0.008801

18.7 0.007968 -0.007435 —0,006901 ~0.006368 -0.008834 0.004767 0.004234 ~0.003761  —0.008168 | 29»,=WA cos (he~wt + €), a,©wy, Simple har-188 0.002685 0.002102 -0.001570 -0.001038 -0.000507 0.900554 0.001083 0.001612 0.002140 BSnic motion since #60 5 ;18.9 0.002668 0.003194 0.008720 9.004245 0.004769 0.008292 0.005813 4.006834 0.006853 «0.007377 s OY,

19.0 0.007888 0.008404 9.008918 0.009431 0.009942 0.010452 0.010960 0.011466 @.011971 0.912474 210 7% 22x107''s: therefore #™ l/r = 4.5 x 10"
19.1 0.012976 0.013475 0.013973 0.014468 0.014962 0.015454 0.015944 0.016431 0.016917 0.017400 Hz, u=vA, 3X 10% m/s™(4.5 10" Hz)A; A= 6.6 x
19.2 0.017881 0.018360 0.018836 0.019320 0.019782 4.020251 0.020717 0.021181 0.021643 0.022102 107m and &@2n/A=95x 10°m! wes,= 0
19.3 0.022558 0.02301) 0.023462 0.028910 0.024355 0.024797 0.025236 0.028572 0.026105 0.026535 Vim) cos (9.5% 10m Mx+3x 10" m/s). Ie :19.4 0.027386 0.027807 0.028224 0.028638 0.829049 0.029457 0.029861 9.040262 0.030659 ~ mows m/s]. It's cosine
19.5 0.031053 0.081444 0.031831 0.032274 0.032594 6.032970 0.083342 0.033711 0.034076 (0.084437 because cos 0©1.19.6 0.034794 0,085148 0.033497 0.035843 0.036185 9.036522 0.036856 0.037186 0.037512 0.037833
19.7 0.038151 0.038464 0.038774 0.039079 0.089979 0.039676 0.039968 0.040255 0.040540 0.040820 FLL yiC24 et utp.
19.8 0.041095 0.041365 0.441632 0.041893 0.042151 0.042404 0.048652 0.042896 0.043135 0,043370 |19.9 0.043600 0.043826 0.044047 ¥.044263 0.044475 0.044682 0.044885 0.045082 0.045275 0.045404 f
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2.13 No, not twice differentiable (in « nontrivial way)
andnota solutionofthe differential wave equation.

2.15 Yt, 0)=Asin (ke + 2);
&(-A/12, 0) = A sin (-2/6 + €) = 0.866;

¥(A/6, 0)=A sin (7/3 + €)=1/2;
&(A/4, 0) = A sin (7/24 €)= 0.

Asin (a/2+ €)= A (sin 1/2 cos e4cos 7/2 sin €)
Acose=0,€™ #2.

A sin (9/3 7/2)= A sin (50/6) = £/2;
therefore A™ 1, hence ¥(z,0)™ sin (kz + 77/2).

2418 vis, = 5.0 exp[—a(x + Vb/a t)*], the propaga-
tion direction is negative x; u=Vb/a=0.6 m/s.
Wz, 0)©5.0 exp (-25x*);  

x #
0.6 0.0006
04 0.09
0.2 1.8

u 0.0 5.018
0.09

{0.0006
 
 

=2.6 Od

 
=0.2
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630 Solutions to Selected Problems

219 p= Aexp i(kx + hy + hz)
A= ha ky = kB

Uk] = [Chery+ (&B)? + (yy?) ®
k, = ky

hla? +p? + yy,

2.20 30° corresponds to yA or (1/12)3 x 10°/6 x10? 42 nm.
t

2.21 w Asin (=2)Aor

= 60sin 2 ( * ao)w= 60sin 2\xia 133K 10
A= 400 nm

v= 400 x 1071.33 x 107?=3 x 10° m/s
y= (1/138)X 107 Hz, r= 133X107.

2.23 A©hime=6.6 x 10-°4Y6(1)©1b x 10m.

2.24 kcan be constructed by forming a unit vectorin
the proper direction and multiplying it by &. The unitvectoris

[4-OV + (2 OV} +.— OWA+BFF1?
= (404 23+ RyW21

and k = k(47 + 2) + &yv21.
reoxttypt zk

hence W(x, y. 2!) = A sin [(4kW21)x
+ (QRND1)y + (kW21)2~wt].

2.26 Bry > Wty 211), CE eles ty, t)
fk stg —k + (rp — 11), t}
Wk re, 1) ble, &

since k+ (fg—-r))=9.
_
CHAPTER 3

BE,©2cos [24 x 104 — x/c) + 7/2]
E, = Acos[2mv(t— x/v) + 7/2} from Eq, (2.26)

a) es 10'* Hz, v= anda = c/y 3X 108/10= 3
10-*m, moves in positive x-direction, A = 2Vimn,«~7/2 linearly polarized in y-direction. i2

b) 3, = 0, B,=0, B, = 7 cos (2m x 10 xfeyt 7/2),

3.2 E, 0 F = E, ~ Egsin (ke~wt) or cosine; B, =0, B,~ —B, Els, or if you like,

E Basssin (a — at), B 4 —i)sin (kz ~ wt),wr

3.4 (cos*(k+r~ wt) xi cos* (k =r — wi") de’.‘
Letk+r~ ol’©x; then

(cos? (ker — wt) = — i cos? xdx

 

 

ol,{Litgosaswe BE-oT

_ _1 [z+ sinnpF—atT)wT 12 cn

3.6 Ey=(—Eq/V2)it+ (Ey/VQp; ke = (2AMAVE+I
hence E=(1//2\-10f + 103) cos ((/2a/A)(x + 9) 4
and I = $c€yE3 = 0.13 W/m’.
3.7

0.600 m.
2.945 x

2.0 x
a) [= ¢ At = (8,00 % 10° m/s)(2,00 X 10 5) =
b) The volume of onepulse is (0.600 m)(aR’)

10" ms therefore (6.0 J)/2.945 x 10° m
10° Jim’.

 

 38 ya (PomeOw) ow"volume Car) (et) (10
vo" 87/34 =—— Jin? = 1.06 x 10 J/m?.Sor

6.63 x 10°, E=hy

i 19.88 x 10°?
hy (6.69 x 10} (100 x 10%)

310 4

3 x 10°* photons/tn? s.
All photons in volumeVcross unit area in one second

V = (et) (1 m2)=3X 10° m*
3X 10% = V(density)
density=10°* photons/m?.

3.12 P. = iV = (0.25) (3.0)=0.75 W. This is the elec-
| trical power dissipated. The power available aslightis

P.* (.01)P.975x 10-4 Ww.
a) Photon flux

Pijhv©75 X 1074, fhe
= 75 x 10°-*(550 x 107*)/(6.63 x 107*4)3 x 10%
= 2.08 x 10'® photons/s.

b) There are 2.08% 10'° in volume (3 x 10%)(1s) xao m?};
K x 16
ae photons/m® = 0,69 x 10!?,

° 75 x 1074 W/10 X 10°74 m? 7.5 W/m?.

3.14 Imagine two concentric cylindersof radius r, and
2 surrounding the wave. The energy flowing per
second through thefirst cylinder must pass through the
second cylinder; that is, (5,)2a7, = (S9)2mry, and so
{S)2ar=constant and(S$)varies inversely with r. There-
fore, since (S$) x EG, Eq varies as V1/r.

aN  lfaw
B16 (2) i dt ),

—-——
1/# 1 ww mtAmare. ‘P) +(#) z( dt c

3.18 = 300 W(100s) = 3 x 10°],
p= Cie =3 x 10/3 x 10°= 10-4kg- m/s.
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3.19
a) (P) = 2WS)/e~ 2(1.4 x 10° W/m*(3 x 10° m/s) =

9x 10°° N/m’.
b) 5, and therefore ¥, drops off with the inverse

square of the distance, and hence (5)
((0.7 x 10° m)7/(1.5 x 10!" my #7] (1.4 * 10° W/m?)
6.4 107 Wim”, and (@) = 0.21 N/m*.

3.20 (S)= 1400 W/m?,
(P) ~ 21400 W/m*/s x 108 m/s)=9.3 x 107° N/m?,

(F)©ACP)=2000 m? (9.3 x 10-°N/m?) = 1.9 x LO-EN,

B.21 (S)= (200 x 103 W)
(F)=A(P)=A(S)/e

(500 X 2X 10S sWA(15),
6.7 10°-7N,

Sees 83x 10°N
a© 33x 10°*/100 kg™ 3.3 x 107? mjs®
v= at=$x10-%U)=10 m/s

b 3x10%s, 3.2X 107s.

B22 (F)>A(P)=AtS\e~

1 year

3.23 B surrounds¥in circles, andEis radial, hence
ExBis tangent to the sphere, and no energy radiatesoutward from it.

3.25 Thermal agitation of the molecular dipolescauses a marked reduction in K,buthaslittle effect on
n. At optical frequencies n is predominantly due to
electronic polarization, rotations of the molecular
dipoles having ceased to be effective at much lower
frequencies.

3.26 From Eg.(3.70), for a single resonant frequencywe get
Ng(_1\p*+7 \oP oe ;€om, \ap— w

since for low-density materials x ~|,the second term
is « 1, and we need only retain the first two terms of
the binomial expansion of n, Thus V1 += =|+2/2and2

nar4) Ne ( i ).
2_ 2

wi-a@

" 1
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3.28 xo(-wr wh + tyw) = (q_Eo/m,)e™ = (q.Eo/m,) x
(cosa + isin a); squaring both sides yields x2[(w2 —
wo) + yw]©(g.Eoim,)*(cos? a +sin® a), xy follows
immediately. As for «, divide the imaginary parts of
both sides of the first equation above, namely, xpyo
(q-Eo/m,)sina, by the real parts, xo(w2—w%)=
(q,Eoim,) cos ato get a=tan? [yw/(w3 — w®)]. « ranges
continuously from (to 7/2 to 7.

3.34 The horizontal values of n{w) approache,
in each region between absorption bands increase ‘w decreases. 7

—_——CHAPTER 4

4.1 n, sin 8,

3.29 The normal order of the spectrum for a glass ayprism is R, O, Y, G, B, V, with red (R) deviated the 6
least and violet (V) deviated the most. For a fuchsin 8,prism, there is an absorption bandin the green, and so ‘
the indices for yellow and blue oneitherside (ny and
ng) of it are extremes, as in Fig. 3.26, that is, ny ts the
maximum, ng the minimum,and ny > ag > ng > ny >
ng. Thus the spectrum in order of increasing deviation
is B, V, black band, R, O, Y.

Moy,

n, sin &
1.52 sin 8,
sin” (1/3.04)
19° 13".

4.3
ou

 

 LROYGBY
3.30 The phase angle is retarded by an amount
(n Ay 2a/A) — Ay Qa/A or (x 1) Ayw/e. Thus

Ey™Eyexp iw[t ~(n —1)Ayle~ y/e]
 

or E,©Eoexp[—iw(n~1) Ay/c] exp iw(t — y/c)
mh
n clu vAy hy

4.3/4 > 9cm

ifn =|or Ay«1. Since e* = 1 +x for smallx,
L)Ayle

4.5
~iw(n — 1)Ay/e] i

exp [~iw(n—1)Ay/e] iw(n therefore A,and since exp (—im/2)

= B+ ATM pin

2, 7 :sin 6, = m, sin &
sin”! [3 (0.707)]=@, = 32°.

3.32 Withwin thevisible, (wg~w*)is smaller for lead
glass and largerfor fusedsilica. Hence n{w) is largerfor the former andsmaller for the latter.  3.33 C, isthe value that n approaches as A gets
larger. Spherical 

4.8 2, (Gegrees) @, (degrees)0 0
10 6.7
20 13.330 19.6
40 25.2
50 30.7
60 38.3
70 38.6
30 40.6
9 418

  
° 8 90"

49 The number of waves per unit length along AC
| onthe interface equals (BC/),)/BC sin 64) = (ADIA,) x

(ADjsin @,). Snell's law follows on multiplying both sidesby ¢/»,

4.12 Let 7 be the time for the wave to move along a
.ray from 6, to be, from a, to @, and from a; to a3.
Thusa02 = B,bg = vyr anid a)a5 = v,7.

sin 6,~Dibelayby ~ vsfayby
sin 6 = @)€3/a;b2=v,f@,by
sin 8,=Giap/@,by° v,/a,b
sin 8, ™%—s 5 nq and 8=6.sinym;

443 nj sin &,=2, sin 6,
nif x 4,)~n(x a,),

where k,, k, are unit propagation vectors. Thus
uth, X Ba)—nile, X H,,) = 0

(nd~nike) x fi, = 0.
Let ak, nik; =Peo?r,.
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 f:

Vis often, referred to as the astigmatic consiant; T= thedifference between the projections of nk, and nk, on
,; in other words, take dot product > &,:

T= n, cos 6,~n; cos 6.

414 Since 6, =9,, k= k,. and k, =f, and since(ky8, k,, ky — k= 20k, + 6,)4,,.
i, &a

NIPooe:
a,

Ni

4.15 Since SB’ > SB and B’P > BP,the shortest path
corresponds to B’ coincident with B in the plane ofincidence.
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4.18 m sin 8,™npsin® 8, ®
nz sin 6, = n, sin
nysin 6; = n,sin 6; and 6,~ 8.

cos 6, = dfAB
sin (6;~8.) = a/AB

sin (8, - 6) = qos 6
d sin (8; — 0)

cos 4,

4.20 Rather than propagating from point S to point
P inastraightline,the ray traverses a path that crosses
the plate at a sharper angle. Although in so doing the
path lengths in air areslightly increased, the decrease
in time spent within the plate more than compensates.
This being the case, we might expect the displacement@ to increase with ng). AS Mo, gets larger for a given 6,
8, decreases, (6; — 6,) increases, and from the results ofProblem 4.18, @ clearly increases.

4.21 From Eq. (4.40)
_ 1.52 cos 30° — cos 19°13"

71 Cos 19°13’ + 1.52 cos 30°
where from Problem 4.1 6, = 19°18". Similarly

= 2 cos 304" cos 19°18! + 1.52 cos 80°

_1.32- 0.944 _0.944 + 1.32

) =—1182V°"'0.944 + 1.32

$ p-at~—{{ aB us. {3.5}c aat
This reducesin the limitto E2,(BC) — E,,(AD)= 0,since
area > 0 and aB/atis finite. Thus Eo, = E.y-

no 0.165

= 0.766.

4.22

4.23 Starting with Eq. (4.34), divide top and bottom
by 7; and replace n,; with sin 6,/sin 6 to get

sin 6,.cos 6, ~ sin 8, cos 8
71 ‘gin 6, cos 6; + sin 6; cos 6”

which is equivalentto Eq. (4.42). Equation (4.44) fall,
in exactly the same way. To find rystart the same awith Eq. (4.40) and get

‘a sin 6; cos 6, — cos 6, sin 8,1 Cos 8, sin 8, + sin 8; cos 8,
There are several routes that can be taken now:oneis
to rewrite 7as

 in. &, cos 6;) {cos 6; cos 8,  = n{sin 6, cos 4, + sin 8, cos 4;) {cos 9; cos 8, + sin 6, §
sin (0; — 6) cos (6; + 4) _ tan (8; — 8)
sin (6; + 6) cos (6;— 4) tan (4, + 6y

 

and so ry =

Wecan find 4, which has the same denominator,in a
similar way.

4.24 [Eplat[Fods=(Fol.; tangential field in
incident medium equals that in transmitting medium,

[EofEoil~[Eor/ Foil = 1,
Alternatively, from Eqs. (4.42) and (4.44),

+ sin (9, — 8.) + 2 sin 8, cos 4; , l
sin (6, + 4) _

horn=l

sin 6; cos @, — cos 6; sin 8, + 2sin 4 608 & _ |sin 6; cos + cos 4, sin 9, :

4.27 From Eq. (4.73) we see that the exponential will
be in the form k(x — vt), provided that we factor out
h, sin 6,/n,, leaving the second term as wrat/k, sinwhich must be vf. Hence wn,/(2m/A,)n, sin 0; = u,, amt
so v, = c/n, sin 6; = v,/sin 4.

4.28 From the defining equation (p. 107) B=
hy [(sin? fn) ~1" = 3.702 x 10° m7', andsince 38 =
1, y= 2.7% 077m.

4.29 The beam scattersoff the wet paper and is mg
transmitted until the critical angleis attained,at 4
point the light is reflected back toward the sour
tan 6, =(R/2)d, and so ny = 1/n =sin (tan (R24;

4.30 1.00029 sin 88.7° = n sin 90°
(1.00029) {0.99974} = n; n = 1.00003.

432 6 + 8, = 90° when 6; = 6,
n; sin 8 = n, sin 8, = n cos 6,

tan 4©n/n;=1.52, 8,=56°40" 8.25}

4.34 tan & = n/n; = nefny,
tan 6, = mi/ne, tan @, = I/tan 64.

sin @, cos 9} . 7
wusGinter sin 4, sin 64 — cos 6, cos 6, = 0

cos (Bp + 65)= 0, a, + 6, = 90°.
4.35 From Eq. (4.94)

tan ¥ = 7.[Eos]i/tylEos]y = “ean %u
and from Eqs.(4.42) and (4.43)

eps (4; — 6)
tan ¥, _ops(r—G)y ons (4; + @) 2" a

4.37 1.0

gos€
2

Rif fRu

°88 33.7" 41.8" 30"
a,

mm cos 6,
438 T.= (Bete), From Eg. (4.44) and Snell’s

 
 

cos 6;
law,

7, - (#0 &o0s 8) (saint 0,.c08® a) __ Sin 26; sin 26,sin 0, cos 6,/\ sin® (8; + 6) sin? (6, + 8)"
Similarly for Ty.
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4.40 If , is the incident radiant flux or power and
T is the transmittance across the first air-glass boun-
dary, the transmitted flux is then T';, From Eq. (4.68)
at normal incidence the transmittance from glass to air
is also T. Thus a flux T6;T emerges from the first
slide, and ©,T°" from thelast one. Since T=1-R
T= (1 RYfrom Eq, (4.67). ,

R®(0.5/2.5)?=4%,
T, = (0.96)® = 78.3%.

T = 96%

Jy) ~
441 T r,t em, Fae Te(ny.

Tee RP(TY
>

442 At 6,=0,R=R)=R - (24)v= R= (a 4.67} As ng 1, m * n; and clearly R +0.
At @,=0,

Ang,T=T,=T,—s
ata?

and since m > nj, lim To 4n3/(2n,)* = 1.
From Problem 4.38, that is, Eqs. (4.100) and (4.101)
andthefact that as m > n; Snell’s law says that @ > 4,
we have .<2

. sin* 26;lim T= =
mot" gin? 26,

 
1 lim Ti=1.

From Eq. (4.43) and the fact that Ry= rj and 6,>
6;, lim Ry = 0.mot

Similarly from Eq. (4.42) lima R,=9.

444 For 6; > 6,, Eq. (4.70) can be written
_ cos  — i(sin? 6; — n2)'?7p, =CSsinTw)

cos 6+ i(gin® 6 — ni)
_ cos® 8+ sin? 6, — nk,ryt ==
~ cos? 6, + sin? @,— nz

Similarly tyr = 1.
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4.45 he

 
2 sin 82 cos A, 

1 Gin (8, + 8,) 608 (8, — 43)
2sin 0, cos Oy

siz (8, + 02) c08 (@2— 61)
sin 28, sin 26

sin? (0, + 63) cos™ (8; — &)
T; from Eq.(4.100).

 
qe

yt

Similarly Ati = Ts

Ls [enw - sal - [faa aay1” Lean (6; + 99), tan (8; + 2)2

os [see o = 12 Ry.W Ltan (8; + 83)
4.47 From Eq, (4.45)

ah 2sin &, cos 6 |Op48)©|oe (8, + 04) cos (8%, ~ 9)

7 f Qsin 64 cos 8, |sin (@, + 8) cos (8, — 94)cml
_ sin 20)sin 26, since= @, + 84,=90°

cos? (8) — 85) _
sin? 26 . . .= sé sin 26),=sin 20,

oa(0, — 0) sinc ”
_ sin” 2 =1cos” (28, — 90°)

4.48 Gan be used as mixerto get various proportionsof the two incident waves in the emitted beams. This
could be done by adjusting gaps. [For some further

remarks, see H. A. Dawand J. R.Izatt, f, Opt. Soc. Am,55, 201 (1965).]

x

SOR
OX

4.49 From Fig. 4.42 the obvious choice is silver. Note
that in the vicinity of 300 nm, n; ~ ng = 0.6, in which
case Eq. (4.83) yields R ~ 0.18. Just above 300nm n,
increases rapidly, while ng decreases quite strongly, with
the result that R ~ 1 across the visible and then some.

 
 

4.50 Light traverses the baseof the prism as an evanes-
cent wave, which propagates alongthe adjustable coup-
ling gap. Energy movesinto the dielectric film whenthe evanescent wave meets certain requirements. The
film acts like a waveguide, which will support charac-
teristic vibration configurations or modes. Each mode
has associated with it a given speed and polarization.
The evanescent wave will couple into the film when it
matches a mode configuration.
 
CHAPTER 5

5.1 From (5.2), & + €3/2 = constant, 5 + (6)3/2 = 14.
Therefore 2¢, + 3¢,= 28 when f, = 6, &=5.3, @,=7,
l, = 4.66. Note that the arcs centered on S and P have.
to intercept for physically meaningful values of ¢, and
Ge ier

ANY

——.

5.3 From Fig. 5.4(b) a plane wave impinging on a
concave elliptical surface becomes spherical. If the
second spherical surface has that same curvature, the
wave will have all rays normal to it and emerge unal-tered.

 

Ng Nem
  

5.5 First surface:=+
So 8} R

215051205 OF
5," 0.36 m (real image 0.36 m to the rightof first ver-
tex). Second surface s, = 0.20 — 0.36 = —0.16 m (virtual
object distance).

15 1-050.1"0.16 * 5, 0.1
Final image is real (s; > 0), inverted (Mz <0), and
6.9 cm to the right of the second vertex.

5; = 0.069.

5.6 5, +5, = s,s:/f to minimize s, + 5,

 
4 =ow) 4h
a, & TI =0 lige

4f505; Si Sy aS;SS) e242 so,
nS) f fds, 2

dys
poge= ie
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The separation would be maximum if either were ©,
but beth could not be. Hence, s, = 5, is the condition
for a minima. From Gaussian equation, s, = 5;=2f.

5.7 From (5.8), 1/8 + 1.5/5, = 0.5/-20. Atfirst surface,
8 = ~10 cm.Virtual image 10cm toleft of first vertex.
At second surface, object is real 15cm from secondvertex.

1.5/15 + 1/5;=—0.5/10, 8,=—20/3=—6.66 cm.
Virtual, to left of second vertex.

5.9 1/5+1/s," 1/10, ss" —10cm virtual, My

 

 
  

 

—S/s.=10/5=2 erect. Imageis 4.cm high. Or —5(x,) >
100, x,=-20, M, = —x,/f = 20/10 = 2. 7

5.10 Ls, + Hs: Lf
“f  ~Of fre

Bf F372 ff2_ f2lBo =

5.11 5, <0 because image is virtual. 1/100 + 1/-50 =
V/f, f = —100 cm, Image is 50cm to the right as well.
Mr =—s,/s, = 50/100 = 0.5, Ant’s image is half-sized
and erect (Af; > 0).

5.13 I/F = (my~1YE/R,) — (1/Ro)I,
= 0.5[(1/09)~(1/10)] = —0.5/10,

f=-20cn, Me life -1/0.25-5D. 
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5.16 ,
a) From the Gaussian lens equation

toy 1 I15.0m s, 300m

and s;=+3.75 m. ,
b) Computing the magnification, we obtain

5 3.75 m
Tes -:15.0m

Because the image distance is positive, the image isreal. Because the magnification is negative, the image
is inverted, and because the absolute value of the
magnification is less than one, the imageIs tminified.

©) From the definition of magnification,it follows that
3=M9=(0.25) (2.25 m) = —0.563 m,

where the minussign reflects the fact that the image
is inverted. ,

d) Again from the Gaussian equation
1 1 1

75m 5, 3.00m
and 5;©+3.62m. Theentire equine imageis only0.13 m long.

5.20 Thefirst thingto find is the focal length in water,
using the lensmaker's formula. Taking the ratio folfs =
fol(L0 can) = (thy — Liltty/thy) ~ 1] = 0.56/0.17 = 8.245
fo = 32 cm. The Gaussianlens formula gives the imagedistance: I/s, + 1/100 cm = 1/32.4cm: s, = 48cm.

5.21 The image will be invertedifit’s to be real, so
the set must be upside downor else something more
will be needed to fip the image; My=—3=—Si/s3
1/sp + 1/35) 7 1/060 m; s,=0.80m, hence 0.80m+
3(0.80 m) = 3.2m.

reFa inm D) RR
1 (man 1) 1 LS/L8B—1 10.126 1
R (m-Dh 1-1 fh
fu®She

5.22

 

Bad Lf Tift Ife. 1/50 =f~1/50, fy = 25 cngIf Ry, and Ryo, and Re, and Roy are the radii of thefirst and second lenses,

Uf =u YAIR Rie), 1/25 = 0.52/R,,),
Ry —Rig=> Roy = 25cm,
Ufo = (ri — 1)Ror = 1/Reo),

—1/50 = 0.55(1/~25 — 1/Rz2),
Roy=—275 em.

5.25 Ma, = ~Saltes = —filltea— fi)
Ma, = ~SalSx = ~Sel(4 — Su)
Mz = fisial(Sa — A) d — $1).

From (5.30), on substituting for s,, we have
7 15x,

(Sonfi)d — Sf

5.26 Firstlens 1/s, = 1/30 — 1/30 = 0, 8) = 0. Second
lens 1/s2 = 1/(-20)-1/(-), the object for the second
lens is to the right at ©, that is, S2 =O. $3 = 20 cm,
virtual, 10 cm to theleft of first lens. z

Mr = (20/30) (420-00) = 5

Mr

or from (5.34)
ao-20)

Mr= [9(80— 30) —30(80) 3

 
 

 

5.30 The angle subtended by L, at S is tan! 3/12 =
14°. To find the image of the diaphragm in L, we use
Eq. (5.23): xox, == f?, (-6)(a;) = 81, x =—-13.5cm, so
that the image is 4.5 cm behind L,. The magnification
is —x/f = 13.5/9 = 1.5, and thusthe image(of the edge)of the hole is (0.5) (1.5) = 0.75 cm in radius, Hence the
angle subtended at S$ is tan™'0.75/16.5=2.6°. The
image of Ly in L, is obtained from (—4) (x;) = 81, x
~20.2cm, in other words, the image is 11.2 cm to the
right of L;. My=20.2/9 = 2.2; hence the edge of Ly
js imaged 4.4m above the axis. Thusits subtended
angle at S is tan”! 4.4/(12 + 11.2) or 9.8°. Accordingly,
the diaphragm is the A.S., and the entrace pupil(itsimage in L,) has a diameter of 1.5 cm at 4.5m behind
L,. The imageof the diaphragm in Ly is the exit pupil.
Consequently, $+ 1/s; = 3 and 5; —6, that is, 6cm in
front of Lz. My©3 = 3, so thatthe exit pupii diameteris 3cm. oa

4s

5.31 Either the margin of L; or Ly will be the A.S.;
thus, since no lenses are to the left of L,, either its
periphery or P, corresponds to the entrance pupil.
Beyond(to the left of) point A, L, subtends the smallest
angle and is the entrance pupil; nearerin (to the right
of A), P, marks the edge of the entrance pupil. In the
formercase Pyis the exit pupil; in the latter (since there
are no lenses to the right of L,) the exit pupil is the
edge of Lyitself.P. (imageofedge ofé 42 formed by L

P,
x  
 

 (image of edgi
OF Ly Formeal by L3S 
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5.32 The A'S.is either the edge of L, or Lg. Thus the
entrance pupil is either marked by P, or Pe. Beyond
F,,, P, subtends the smaller angle; thus 2, locates the
A.S. The image of the AS.in the lensestoits right, Le,
locates Ps as the exit pupil. =

 
5.33

  
5.35 1/s, + 1/5, =
5. 3, and Mzerect.

—2/R. Let Ro: 1fs, + I/s, = 9,
+1. Imageis virtual, samesize, and

5.36 From Eq. (5.49), 1/100 + 1/s, = —2/80, and so
$= —28.5cm. Virtual (s,<0), erect (Af; > 0), and
minified. (Check with Table 5.5.)

5.38 Image on screen mustbe real .. 5; is

Ngee? Somme 225100 R To Rk’ =—40em,

5.39 The image is erect and minified. That implies(Table 5.5) a convex spherical mirror.

5.40 No—aithough she might be looking at you.
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5.41 The mirroris parallel to the plane ofthe painting,
andso the girl’s image should be directly behind her
and not off to the right. 5.54 ae.I 

 

 

5.43 To be magnified and erect the mirror must be
concave, and the image virtual, M,=2.0
s/(0.015 m), 5 ~—0.03m, and hence I/f=
1/0.015 m + 1/-0.03 m; f = 0.03 mand f= ~R/2; R=
—0.06 m.

5.44 My,=y/3, =—s/s,, using Eq. (5.50), %
fools. —f), and since f=—R/2, My=-fils,~ f=
{(-R/2)Ks, + R/2) = Ris,*R)-

 
5.47 Mz =—s,/25cm=—0.064; 5, = 1.6 cm.1/25cm+
I/1.6cm = -2/R, R=-3.0cm.

. Image rotated through 180°.
5.51 f=—-R/2= 30cm, 1/204 l/s, = 1/30, I/s;
1/30 — 1/20. 5.55 From Eq,(8.64)

s,=—60m, My=—s,/s, = 60/20=3. NA©(2.624 — 2.310)'?©0.550,
Imageis virtual (s; < 0}, erect (Mr > 0), located 60 cm max = sin’ | 0.550=33°22",
behind mirror, and 9 inches tall. Maximum acceptanceangle is 26,na, = 66°44’. A ray at45° would quickly leak outof the fiber; in other words,

very little energy fails to escape, even at the firstreflection.
5.53 Draw the chief ray from the tip to L, such that
when extended it passes through the center: of the
entrance pupil, From thereit goes through the center
of the A.S., and then it bends at Le so as to extend
through the center of the exit pupil A marginal ray
from S extendsto the edge of the entrance pupil, bends
at L, soit just misses the edge of A.S., and then bends
at Ly so as to pass by the edge of the exit pupil.

5.56 Considering Eq. (5.63) (p.174), log0.5=
—0.30 = —@L/10, and so L = 15km.

5.57 From Eq. (5.64) (p. 171) NA = 0.232 and N, =
9.2 x 10°.

 
Image

|
I

Exit pupt Enirarice pupil
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—— Fye relef=

  Eye lens

5.59 Mr™~fix," —1/x.@. For the human eye
Q ~ 58.6 diopters.

Xo = 230,000 X 1.61©371 x 10°km
My=—1/3.71 x 10°(58.6) = 4.6 x 10°"
3 2160 X 1.61 x 10° x 4.6 x 107! = 0.16 mm.

5.61 1/204 1/s,,= 1/4, 5, =5m.
1/0.3 + l/se™ 1/0.6, Sie=0.6m.

M,,=-5/10=-0.5
My,©—(—0.6)/0.5=+1.2

My,M,, = —0.6.

5.64 Ray | in the figure above misses the eye-lens, and
there is, therefore, a decrease in the energy arriving at
ahe corresponding imagepoint. This is vignetting.

5.65 Rays that would have missed the eye-lens in the
previous problem are made to pass through it by the
field-lens. Note how the field-lens bends thechief rays
a bit so that they cross the optical axis slightly closer to
the eye-lens, thereby movingthe exit pupil and shorten-
ing the eye relief. (For more onthe subject, see Modern
Optical Engineering, by Smith.)

Eye relie@—=

Exit pupit

a 3.2D
1494 1+ (3,2D)0.017 m)

or to two figures +3.0D. f= 0.330 m,and so the far
point is 0.330m~ 0.017 m™ 0.313 m behind the eye
lens. For the contact lens f, = 1/3.2©0.313 m. Hence
the far point at 0.31 m is the same for both, asit indeedmustbe.

5.69 GF, = = +3.03D

5.71
a) The intermediate image-distance is obtained from

the lens formula applied ta the objective;
1 t J+=

27mm 5, 25mm
  

and s, = 3.38 X t0?mm. This is the distance from
the objective to the intermediate image, to which
must be added the focal length of the eyepiece to
get the lens separation; 9.38 x 10? mm + 25mm =3.6 x 10? mm,

b) Mr. = —3,/s, = —3.38 x 0? mm/27 mm=—12.5x,
while the eyepiece has a magnification of d,@ =
(254 mm\(1/25 mm)=t0.2X. Thus the total mag-
nification is MP=(-12.5) (10.2) = —1.9 10%; the
minus sign just means the imageis inverted.

 

Objective Fietd lens Eyelens Esti pupil
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CHAPTER 6

6.2 From Eq. (6.8),
Vfa Uf t if diff =2if- 273y, f= BFA.

From Eq. (6.9), His= (8f'/4) 2f'/38)/f" = £12.
From Eq, (6.10), HoH = —(3/°/4) (QF /3)/f" = —f'1/2. 

RS.
| Sr1

 
6.3 From Eq. (6.2), l/f=0 when ~{1/Ri— 1/Ry)=
(mu — Id/mR Re. Thus d = n(R,~ Re)/(m— 1).

6.4 1/f = 0.5f1/6 — 1/10 + 0.5(3¥/!.5(6)10]
0.5[10/60~6/60 + 1/60]; f= +24;

hy = —24(0.5) (3)/10(1.5) = -2.4,
hy = —24(0.5) (3)/6(1.5) = —4.

6.5 f=gnRi(n—-1); hy = +R, ho™ -R.
6.9 f=29.6+04=30cm; s,=49.84+0.2 = 50cm;
1/50 + 1/s; = 1/30.em. s, = 75 cm from He and 74.6 cmfrom the back face.

6.11 From Eq.(6.2),
Lf = ${(1/4.0) — (/-15)+ $(4.0)/(8/2) (4.0) (-15)]

0.147 and f=68cm,
hy = —(6.8)4(4.0)/(-15) (3/2) = +0.60 cm, while hy”
—2.3, To find the image 1/(100.6) + 1/5; = 1/(6.8); 5; =
7.3.cm or 5cm from the backface of the lens.

6.16 Ay = n(l— @11)/—ay2  (Dodor/nadf
== (tg Wdor f/Rena,

from Eq. (5.64) where 71 = %;
he©Mo(d29— 1Ay9

= —(Dydo1/n)f from Eq. (5.70)
(ni — Vdaf/Rima-

6.17 sf = RFR), but for the planar surface
1 -9,"

ld [: 1
and Bg = (n, — 1)/— Re but Re = ©

10
a-[)

which is the unit matrix, hence s=%2)R.

6.18 = (15-105 =1
and = (1.5~ 1)/—(-0.28)=2

am fs -2(0.3)/1.5 aoaL 0.3/1.5 =1(0.3)/1.5 +1

_ [oe 38]“L102 0.8
[sf|=0.6(0.8) — (0.22.6) = 0.48 + 0.52 = 1.

6.22 See E. Slayter, Optical Methods in Biology.PC{CA = (ny/)R/R = 1/2, while CA/P'C = m/ng-
Therefore triangles ACP and ACP’are similar; usingthe sine law

 

sing PAC sinx APC
PC CA 

or
ng sin 4PAC = n, sin 4APC,

but 6,©PAC, thus 6," 4APC=4P’AC, and the
refracted ray appears to come from P’.

6.23 From Eq. (5.6), let cos p = I — 7/2; then
é, =[R? + (5, + R)?— 2R(s, + R)+ R6s, + Re*l',

C= Iss + R64 RCTS
& = [sf — Ris, — Rey,

wherethefirst two termsof the binomialseries are used,
fc! = s5'=(s, + R)h/2s9R where @ ~ h/R,
Op) sy) + (5, — RYA7/QSER.

Substituting into Eq. (5.5) leads to Eq. (6.40).
6.24

CEE
CHAPTER 7

71 Ej =36+644+2+6-8cos 7/2" 100, Ey =10;
tana =§ @=53.1°= 0.98 rad,

E = 10sin (120-7+ 0.93),
 1
—7 = 0,2 x 107 = 2,000,000 waves.500 nm

In the Fieoom0:95(1:5) 1.5 x 105Adan 500nm

in air 95 <919x 10%;Ay
total 2,050,000 waves,
OPD = [(1.5)(0.05) + (1)(0.95)) ~ (11)OPD = 1.025 — 1.000 = 0.025 m

A 0.025
Ay 500nm
 

= 5X 10* waves.

78 E© Ey t+ Ey= Eyfsin [wt ~ k(x + Ax)
+ sin {ast~Ax)}.

Since sin 6 +sin y = 2sin KB + y) coskB~y),

E = 2Ep, cos Asin [o« - u(x +2].

|
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1.9 E~ Ey Re [etted — etka
Ep Re [e*(e™—e)]

= Ep Re [e"*2i sin wt)
Eo Re [2i cos Ax sin wt ~ 2 sin Ax sin wl]

and E=—2Ep sin kx sin wt. Standing wave with node atx=0.

740 2ox at
Integrate to get

dE

Box, th=— J Pan —2Eok cos kx J cos wi dt
QEok ,—-—~ cos kx sin wl.w

But Eok/w™Epic = Bo; thus
B(x, 2)©~2Bocoske sin wt.

’

 
715 E© Epcos at + Egat COS tat COs wt

™ Eo COS wt
Ego

$F [C08 (we Oa )t F608 (Wy + wy|.
Audible range »,, = 20 Hz to 20 10° Hz. Maximum
modulation frequency v,, (tax) = 20 X 10° Hz.

¥, ~ ¥,{max) = v > y,=p,,{max)
Av©2v,,(max) = 40 x 10° Hz.
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7.16 v~ wik~ak, Uy©dw/dk~Qak = Qu.

oh tok
7.17 v on glk

+
7 a

te vtha 17.38}

deeayedk kVA Bk
vg=v/2.

dv_dvdy dva

719», rR and* dk dw dk “dw

Since » = c/n, Mote ft angyPe dnmee BE Gg dn da? dw
ve c

 “T¥ (chin) dn/dw) n+ o(daiday
.! 2 : Nae

722 a> wi, vay Ne Lhei- at .Ww Egm, @” Eym,
Using the binomial expansion, we have

1

(boxed ~5* forx «1,
n-1l- NqilaPeom.2,  dnidw=Ng2/egm,a*¢v=

* nt w(dn/dw)
c

Y= N@t/wegm.2 + Ng/epmo™
a

1+ Ng2/enmw*2
and uy, <¢,

c
Natfempo*2 

Binomial expansion
Qoxytsite  x«1

um cll + Nqz/eqme2]; vu,~0? 

A

7.24 [ sin akx sin dkx dx8

7 if cos [(a~b)kx]k dxA

I cos [(@ + b)kx] k ax |°

_ 1 sinfe —)k i
“2k a=6b

0 ifaxrd,
Whereasif a= 6,

 
A A

[ sir? akx dx ai (1 +.c0s 2akx) k dx 3
The other integrals are similar.
7.25 Even function, therefore B,,=0.

Ata x 4
ao=2 ix=F(244) =,A June A\e a

2 ‘AlaAy == (1) cos mix deAdan Ata

=——sin mas| 5rate
2 m2ra=—_ $in-—,Mm a

 
kLI2

~ fh| (KLI2 + ke)m2 Jo KLIZ
Eel[?sin (KL/2 ~ kes)a ak,
72 j mie 4

Let kL/2=w, (L/2) dk=dw, kx~wx’,

i7¢) — Eq [° sin (w + wx") Egfix) = Ee ("saetae)dw + a
where 6" aL/2. Let w+ wx’ = t, dw/u=di/,0sw
andQ Sis (x' + 1)6. Let w~ wx’~—t in otherinteg!
O- ws band0St™ (x 1)b

:  
f@)-

 
7.27 By analogy with Eq.(7.61),

At3
Al :

A(w) 2 Eg sinc (a,~w)
From Table 1 (p. 624) sinc (7/2) = 63.7%. Not quite
50% actually,

sine(2) 49.8%.
ail om 7 a

(eo) SG] <5 or ye ee a <Ts 
thus appreciable values of A(w) lie in a range Aw ~
2qrjAi and Av At~ 1. Irradiance is proportional to
Aw), and [sine (w/2)F—40.6%.

7,28 Ax,~c At, Ax, ~ c/dv, But Aw/Ahy>G/ky™ c:
thus [Av/Aagl=Flo,

che
Bho?”
 

Ax, ~ Ax, ~ RGA.

Or try using the uncertainty principle:
kh <

Ax~ Ap where #©h/A and AAg « Ag. 
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729 Ax.=cA=3X 10% m/s 108s) 8m.
AAg ~ AZ/Ax,=(500 X 107° m)°/3 m,
Ady ~ 8.3 107? m= 8.3 10? nm,

MAgfdo ™ Av/¥ ~ 8.3 X 1075/500~ 1.6 x 1077
~ 1 partin 10".

7.30 Av= 54x 10° Hz;

_ (4% 10%) (10,600 x 107? m)
(3 x 10? m/s)

1.91 « 107%,

Aviy

Ax,=cdl, ~ efAy,

8X10mh)= = 3
(64x 10° Hz) 5.55 * 10° m.

Ax,

7.32 Ax.= edt 3x 108x107) 3x10? m,
Av ~ 1/At,=10'° Hz,

Adg~ AGg/dx, (see Probie 7.28)
(632.8 nm}*/3 x 10°? m = 0.013 nm.

Av 10'8 Hz, Ax,©¢X 107"=300 nm,
AAg ~ AG/Ax,~ 1334.78 nm.

LEaEEEEEErEEnEReeeensiemmmnmnnieeneeessseeeeesses
CHAPTER 8

8.1
a) E™ iEcos (k2— wi) + f¥y cos(kz~ wt t+ 7). Equal

amplitudes, FE, lags E, by 7. Therefore ?-state at135° or —45°.
b) E=7Ecos (kz — wt — 17/2) + jEo cos (kz~ant" + 7/2).

Equal amplitudes, £, lags £, by . Therefore same
as (a).

c) £, leads E, by 7/4. They have equal amplitudes,
Therefore it is an ellipse tiltcd at +45° and is left-handed.

d) E, leads E, by w/2. They have equal amplitudes.Thereforeit is an #-state.
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8.2 E, ™icos wt, E, = Jsin wi.
Left-handed circular standing wave.

 
8.3 Ex = iE, cos (kz — wt) + ]Ep sin (kz — wt)

Ey ~ TE) cos (ka~wt) — JE4 sin (ka — wt)
E = Eg + By=(Eo + Ej) cos(kz~of)

+ (Ey — Eo) sin (kz — et).
Let Eyt E6= Bi, and Ey-E£Q=£%,; then E=
1E%, cos (kz~wt) + JEG, sin (Rt ~ ont), From Eqs. (8.11)
and (8.12) it is clear that we have an ellipse wheree©—#/2 and « =0.

8.4 Eyy©Eycos 25%; Eo,©Ey sin 25°
E(x, 1} = 0.91} + 0.42K)Ey cos (kx~wt + 37)

8.6 E= Eofjsin (kx~wt)—kcos (kx wt)]
8.7 In natural light each filter passes 32% of the
incident beam. Half of the incoming flux density is in
the form of a -state parallel to the extinction axis, and
effectively noneofthis emerges. Thus, 64% ofthelight
parallel to the transmission axis is transmitted. In the
present problem $2%J; enters the second filter, and64% (32%1;) = 21%F,leavesit.

8.11 From the figure (upperright), it follows that2

I=$E% sin? 6 cos* 4 zea — cos 20) (1 + cos 26)2 2

== cos” 26) fac — cos 46 + $)]

= Fo 4 — 60540) = 2 (1 ~ cos 48); @= wt,16 8 ,

 
8.12 No. The crystal performs as if it were two
oppositely oriented specimensin series. Two similarly
oriented crystals in series would behavelike one thick
specimen and thusseparate the o- and e-rays even more.

8.14 Light scattered from the paper passes through
the polaroids and becomes linearly polarized. Light
from the upperleft filter has its E-field parallel to the
principal section (which is diagonal across the second
and fourth quadrants) andis therefore an ¢-ray. Noticehow the jetters P and T are shifted downward in an
extraordinary fashion. The lower right filter passes an
o-ray so that the letter C is undeviated. Note that the
ordinary imageis closer to the blune corner.

8.15 (a) and(c) are two aspects of the previous prob-
Jem.(b) shows double refraction because the polaroid’s
axis is at roughly 45° to the principal section of the
crystal. Thus both an 9- and an ¢-ray will exist.

 

8.16 WhenEis perpendicular to the CO; plane the
polarization will be less than whenit is parallel. In the
former case, the field of each polarized oxygen atom
tends to reduce the polarization of its neighbors. In
other words, the induced field, as shownin thefigure,
is down while E is up. When Kis in the carbonate plane
two dipoles reinforce the third andvice versa. A reduced
polarizability leads to a lower dielectric constant, a lower
refractive index, and a higher speed. Thus vj > v,.

 
8.20 n,=1.6584, n, ~ 1.4864. Snell's law:

sin 6,=n, sin 6, = 0.766
sin 6,©n, sin @,,= 0.766
sin %. * 0.463, Ao = 27°35;
sin &, ~ 0.516, = 31°4';
AG = 3°29’.

8.22 Calcite n, > n,. Two spectra will be visible when
(b) or {c) is used in a spectrometer. The indices are
computed in the usual way, using

in a(a + 8)7?
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8.23 E, leads E, by 7/2. They wereinitially in phase
and &, > E,, Therefore the waveis left-handed,ellip-
tical, and horizontal.

8.24 sin 6, = “= =?_ogg,ng 1.658 9 ~ 69".
8.26

 
(bi Quartz

c) Undesired energy in the form ofoneof the #-states
can be disposed of without local heating problems.

d) The Rochon transmits an undeviated beam (the e-
ray), which is therefore achromaticas well.

8.31 Ag =-Z a AnXo
but Ag = (1/4) (29) because of the fringe shift.

Therefore Ag ™ 7/2 and
a _ 2rd (0.005)2 589.3 10%

__ 589.3 x 107
=~oqo3)784% 10° m.

8
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8.32 The @-state incident on the glass screen drives
the electronsin circular orbits, and they reradiate reflec-
ted circular light whose E-field rotates in the same
direction as that of the incoming beam.But the propaga-
tion direction has been reversed onreflection, so that
althoughthe incidentlightis in an ®-state,the reflected
light is left-handed. It will therefore be completely
absorbed by the right-tircular polarizer. This is illus-
trated in the figure below.

GQ

8.33 Yes, If the amplitudesof the ¥-states differ. The
transmitted beam, in a  pile-of-plates polarizer,
especially for a small pile.

8.35 Place the photoelastic material between circular
polarizers with both retardersfacingit (as in Fig. 8.52).Undercircularillumination noorientation of the stress
axes is preferred over any other, and theywill thusall
be indistinguishable. Only the birefringence will have
an effect, and so the isochromaticswill be visible. If the
two polarizers are different,thatis, one an %, the other
an &, regions where An leads to Ag©a will appear
bright. If they are the same, such regions appear dark.

8.37 Vij = Ao/2ndre0 18.44}
= 550 x 107°/2(1.58)°5.5 x 107'*
= 10°/2(3.94) = 12.7 kV.

8.38 E,-Ef=0, E,= [|x9.

$©(1) (ens)* +Bi) {e22)" = 0
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where a phase increment of ¢ is introduced into both
components as a result of traversing the plate.
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4 1 5

0 4 oO 230)0 o 0
0 a "

5-O+0+1)'?=1,.

CHAPTER 9

9.1 E,- Ey (Bye+ Ete) - 3(Eye+ Eke),
where Re (z)©H(z +2*).

E, + Ey =4[E, + Exe? + EX + Efe?" + E,+ EF
+ Ef - E,].

Thelast two terms are time independent, while
(Ey + Eye) 0 and (Ef - Ege") >0

because of the 1/Tw coefficient. Thus
Tig = ME, + Ep) = i(E, El + EY + E,).

9.2 Thelargest value of (r;~ 1) is equal to a. Thusif
£)"£9, 8 = k(r,~12) varies from 0 to ka. If a » A, cos 8
and therefore J,» will have a great many maxima and
minima and therefore average to zero over a large
region of space. In contrast, if a« A, 6 varies only
slightly from 0 to ke « 27. Hence [yg does not average
to zero, and from Eq. (9.17), J deviates little from 4Io.
The two sourceseffectively behave as a single source of
double the original strength.

9.3 A bulb at S$ would produce fringes. We can
imagineit as made up ofa very large numberofincoher-
ent point sources. Each of these would generate an
independentpattern, all of which would then overlap.
Bulbs at S, and Sg would be incoherent and could not
generate detectable fringes.
9.5
a) (7) — r) = +4, hence a sin 6, “= +5A and 6," +3A/a

= 44(632.8 X 10°? m)/(0.200 x 10°? m)=+1.58 x
10% rad, or since y= 56," (1.00m) (+1.58x
10-8 rad)©£1.58 mm.
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b) ys7s5A/a~(1.00 m)5(632.8 x 10°%/(0.200 x 1074
m)* 1,582 x 10°? m.

c) Since the fringes vary as cosine-squared and the
answerto {a)is half a fringe width, the answerto (b)
is 10 times larger.

9.18 13 = a? + 1} — 2ar, cos (90 — 8). The contributionto cos 6/2 from the third term in the Maclaurin
expansion will be negligible if2

(= cos? 0) « a/2;1

therefore r, » a2/A.

9.14 Ee dmv®; v= 0.42 10° m/s;
Aw A/my=1.739xX10°; Ay = sd/a©3.46 mm.

9.18 Ay=sdo/2da(n —n’).

9.19 Ay~(G/a)A, a=10%cm, a/2~5x10%cm
9.20 8~k(x, — ¥2) + @ (Lloyd’s mirror)

& = k{a/2 sin a~[sin (90 - 2a)Ja/2 sin a} + +
8=ka(1 — cos 2a@)/2 sina + a,

maximum occurs for

6 = 2m whensin a(A/a)=(1 — cos 2a)~2sin® a.
First maximum a=sin”! (A/2a).
9.22 Here 1.00 <1.34> 1.00, hence from Eq. (9.36)
with m=0, d= 0+(633 nmy/2(1.34) 118 nm.

9.25 Eq. (9.37) m = 2n;dfAg~10,000. A minimum,
therefore central dark region.

9,26 The fringes are generally a series of fine jagged
bands, which are fixed with respect to the glass.

 

9.27 x2 — d[(Ri— d))+ R= 2Rid, — a}.
Similarly x”=2Rody~d3.

d= d,~ dg 
As R, = &, x,, approaches Eq. (9.43).
9.29 Ax=Aj2a, a~Ag/2np Ax,

a= 5X 10% rad=10.2 seconds.

9.31 A motion of A/2 causes a single fringe pair to
shift past, hence 92 A/29 2.53X10°m and A=550nm.

9.35 Elm EER Eg(t’P— re®) (1 ret)
Le LayA — eo? = 6% + 4),

9.36
a) R» 0.80..F=4R/(1~ RY 80
b) y ~4sin IWF = 0.448
©) F = 2m/0.448
d) C=I4F

2 sal
1+ F(A8/4) 1+ F(A8/2)"

F?(A8)' — 15.5F(A8)" ~ 30 =0.

9.37 O81 1+

9.38 I~ Ina. cos? 8/2
T= Iiwxi2when 6 a/2 ay =a.

Separation between maximais 27.
Fm Quhy = 2.

9.40 At near normal incidence (8, ~ 0) Fig. 4.23{e)
indicates that the relative phase shift between an inter-
nally and externally reflected beam is 7 rad. That means
a total relative phase difference of

an [2(A,/4)] + 7 ae”Ay my > My

or 2m. The waves are in phase and interfere construc-
tively.

941 roel nang mov ny
Vi54~= 1.24

1, Lag|540d=—a oon
44a, 41.94™™

Norelative phase shift between two waves.

9.42 The refracted wave will traverse the film twice,
and therewill be no relative phase shift on reflection.Hence

d= Agf4n,=(550 nm)/4(1.38) = 99.6 nm.

EE
CHAPTER IO

10.1 (R+¢)?= R? +a; therefore R©(a?— £°/26 =
a*/2é, ER=a*/2, so for A»Z AR>a/2-R=
(1x 10°9"10/2a=10m.

Reid FE
S —R——|

10.2  Eo/2— RB sin (8/2)
E= 2R sin (N8/2)_ chord length
E=[Eysin (N8/2)Ysin (8/2)
Ime?

10.4 dsin @,©mA, @= N8/2= 9
7sin @ = (1) (0.21) S=Qa/N

ka sin 8
sin 8 0.03 sin 8=0.0009

g=1.7° 6=3min,
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10.5 Converging spherical wave in image space isdiffracted by the exit pupil.u
it

 
 

Bota
sin 0= £A/b = LNb

6 = tA/b f—
L@ = 4LA/b —LO = +foA/b.

10.9 A=(20 cm)sin 36.87° = 12cm.
ka hb10.10 #@ = >si ~ > si
2 sin 6, B 9 sin @

a=mb,a= mB, a = mar
N=numberoffringes = a/a = m2a/a~2m.

 10.12 a 3n/2N = 7/2 £10.34}
{0} sin B\?

1)= z ) from Eq.(10.35)
and I/T(0) = 3,

sind 
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10.15 If the aperture is symmetrical abouta line, the
pattern will be symmetrical abouta line parallel to it.
Moreover, the pattern will be symmetrical about yet
another line perpendicular to the aperture’s symmetry
axis. This follows from the fact that Fraunhofer patterns
have a center of symmetry.
10.16

 
 

10.17 Threeparallel shortslits.

10.18 Two parallelshortslits.

10.19 Anequilateral triangularhole.
10.20 A cross-shaped hole.
10.21 The E-field of a rectangular hole.

10.23
10.24

From Eq.(10.58), 41 L.22(f/D)A = AL
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10.27 I part in 1000. 3 yd = 100 inches.

  
10.32 From Eq. (10.32), where a = 1/{1000 lines per
cm) = 0.001 cm per line (center to center), sin 6,
1650 x 10° m)/(0.001 x 10? m) = 6.5 x 10°* and0, = 3.73°.

10.35 The largest value of m in Eq. (10.92) occurs
whenthe sine function is equal to one, making the left
side of the equation as large as possible, then m—a/A
(1/10 & 10°)/43,0 x 10° m/s + 4.0 X10!" Hz) = 1.8, and
only the first-order spectrum is visible.
10.37 sin 6,~nsin 6,

Optical path length difference = mA
asin 6,~nasin 0, = mA.
a(sin 8, —sin 8;)~ ma.

  

 

See Fig, 10.34¢b)

10.38 R= mN = 10°,N = 78 x 10°
«m= 10/78 x 10%
AAs,=A/m©500 nm/(10°/78 x 10°) 39 nm,
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R Fm = FHF = 10° [9.76]
Ag, = A2/Qnjpd=0.0125 nm. 19.78}

ALAA = 5892.9/5.9=999
N= Rim = $33.

10.39 &

10.41 y=La/d
d=12x 10/12 * 10-7 = 107% m.

°

10.43 A one?| sin g dp=2ap*(1 — cos g)°

cose = [p? +(p t+ 10) riV2e(p + 0)
m= to + A/2.

Area of first { zones

A©Qap? — mp(2p? + Qo— lty— PAApF T0)

Ap=A- Ap, e—— [+ 20).DET 4
10.45

Xi
10.46 I I {B- (oP? + B- Po)

tea)Le) +"
=2(— FMy Ber

i 2 Varo, sin" "5 cos" (9

4(2)2 \au) *

10.47 Fringes in both the clear and shadow region
[(see M. P. Givens and W. L. Goffe, Am. J. Phys. 34, 248
(1966).

10.48 uw y[2/Aro]'?;

10.49

Au=Ayx 10° =2.5,

ar
 
CHAPTER11

IL.1  Egsin kx = Eo(e*4

FH 3 (| eee

e2844b

dx | eres a|ok

Fik) iFosin (k++kL iEo sin (k — ky)(K+ ky) (k — ky)
F(k) = iEyL{sinc (k — ky)L — sinc(k + kL].

Fk

 

eett
tO
 

11.3 cos” yt = $+ 4. cos 2wyt = 5+
wo

roy-a fT oraes | eemmaey| dora-T
1

Flo)=<sin oT + sin (w + 2w,)T

I
2(w + Qw,)

I+——=— sin(w— 20,)T
Xo — a) (w—2a). T.

F(w)= T sinc wT + goinc (w + 2a)T
T.

+ sinc (wo —20p)T.

or 
=e, o cs

11.6 Ffaf{x) + bh(x)}=aF(k) + BH (k)
118 F(ky™ Lsinc? kL/2 at k= 0, FO)=L, and
F(42n/L)= 0.

11.15 IC * paynx x) dx

 
where x= X~ x, dx=—da"'.

f@h=hOfor

FY @ hy — Fhfh Fihy
11.17 A point on the edge of f(x, 9), for example, at
(«= d,y™ 0), is spread out into a square 2 on a sidecentered on X©d. Thusit extends no farther than
X= d+ andso the convolution mustbe zero at X
d+ @ and beyond.

Fh} F{ fl~F{h®@ fh.

Solutions to Selected Problems 655
+0

11.19 f(x x9) @ A(x) | F(x — xo)h(X~x) dx,
andsetting x~x= a, this becomes+00

| F(@)k(X — @~x9) dar=g(X — x9)
11.21 fel ®

3 (atu)

Axo)

TI x

 
—| fos

11.24 We see that f(x) is the convolution of a rect-
function with two §-functions, and from the convolution
theorem,

F(k)~ Fl(rect (x) @ [B(x~a) + 6(x + a)}}
Flrect (x)} - Fl[B(x — a) + S(x + ay}

=a sinc ska: (e™* + e™)
@ sinc (ka) - 2. cos ka.

11.25 f(x) ® A(x)
[8(e + 3) + Sx — 2) + 8x — 5)] @ h(x)

= Ale +3)-+ h(x — 2+ h(x —8)
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11.28 FRY

 

11.29 f(y, 2) = {~9, —2).

ECY, Z,the J J aly, 2)eR) dy de,
Change ¥ to -Y, Zto —Z, y to -9, x to —2z, then ky goes
to ~ky and kz to —ky.

ECY,-z)« [J 8(—9, —2)e**2) dy de
-.E(—Y,—Z) = E(Y, Z).

11,30 From Eq. (11.63),

E(¥, 2) = [] f(y, zeAYR dy de
ern | stonea

now let y= ay and z’ = Br:

E'(Y, Z) 7) [ | Ly, aMIOIBYay! dye
or EY, 2)= 7g Ble,, 218).
11.31

Ltr
Gy= inor [C Asin (wt + €)A sin (wt — wrt 2) dt

At
= in2cos (wr) — $ cos (2at — wrt 2e}] dt,

since cos a — ros 8 = —2sin i(a + B)sind(a—B). Thus2

Cya cos (wr).

Fie) FLED)

a = = = es kh. cell
[11.32 E(kz)> st cos (mz/bye"** dz

= shy5 cos i COS Kyz dz
+ isfy J COs 7 sin kzz dzXK,

Elkz) = so cos 
 
CHAPTER12

12.1 At low pressures, the intensity emitted from the
lampis low,the bandwidth is narrow, and the coherence
length is large. The fringes will initially display a high
contrast, althoughthey'llbe fairly faint. As the pressure
builds, the coherence length will decrease, the contrast
will drop off, and the fringes might even vanish entirely.

12.4 Each sine function in the signal produces a
cosinusoidal autocorrelation function with its own
wavelength and amplitude. All of these are in phase at
the zero delay point corresponding to 7 = 0. Beyond
that origin the cosines soon fall out of phase, produc-
ing a jumble where destructive interference is more
likely. (The same sort of thing happens when,say, @
square pulse is synthesized out of sinusoide—
everywhere beyond the pulse all the contributions
cancel.) As the number of components increases and
the signal becomes more complex—resembling random
noise—the autocorrelation narrows, ultimately becom-
ing a 8-spike at 7 = 0.

12.6 The irradianceat Zo arising from a point source
is 41q cos* (8/2) = 21,(1 + cos 8).

Fora differential source elementof width dy at point
S', y from theaxis, the OPD to P at Y via the twoslitsis

- SR +5P)- FS+ SP)
= S'S, — S'S.) + iP — SeP)
= ay/i+ a¥/s from Section 9.3.

The contribution to the irradiance from dy is then
dT & (1 + cos RA) dy

+b
le (1 + cos kA)dybm

4]. (a¥, ab . (aY ab
rb [sin (eB) — sin (2-2)
Ieot J tsin {ka ¥/s) cos (kab/21)

+ cos (ka¥/s) sin (kab/21)
— sin (ka ¥/s) cos (kab/20)
+ cos (ka ¥/s) sin (kab/21)]

Paubt 2 sin ({hab/21) cos (ka ¥/s).

12.7 ¥ =imax=LoinTonox + Eonin
Tina = Li + Ip + VTLal aal
Loin = Ly + Ip 2VTBs Faal

_ Witelfal201, + Is)
12.8 When

S8"S,O" — S'S, O' = A/2, 3A/2, BA/2,...,
the irradiance due to $' is given by

£' = Aly cos® (8'/2)™2Ig(1 + cos 6’),
while the irradiance due to S”is

Solutions to Selected Problems 657

I” = 415 cos® (8"/2)©41g cos” (8' + 7)/2
= QIo(1 — cos 6’).

Hence I! + I" =4lp.

12.10 6=3° = 0.0087 rad
h = 0.32ho/8 using Ay = 550 nm
A= 0.32 (550 nm)/0.0087

=2x 10? mm.

1211 I(t}=AN) +h);
hence

“ee + FO)
= (Ch) + AL(E+ 7)Ue) + AB),

since (J,) is independentof time.
(h(t + 7)Lo(t)) = (Xda) + (ANG + 7)Al()),

if we recall that (AJ,(8)) = 0. Eg. (12.34) follows by
comparison with Eq. (12.32).

12,13 From Eq. (12.22), Y= 2¥(OF)I/10F+ 1) =
av10/11 = 0.57.

12.15 Using the van Cittert-Zernike theorem, we can
find #;2(0) from the diffraction pattern over the aper-
tures, and that will yield the visibility on the observa-
tion plane: ¥=|F:2(0)} =|sinc Bl. From Table 1,
sin uju=0.85 when u=0.97, hence wby/iA = 0.97,
and if y= P,P,=0.50mm, then 6 = @.97{IA/my) =
0.97(1.5 m)(500 x 107% m)/7(0.50 x 107° m) = 0.46 mm.
12.18 From the van Cittert-Zernike theorem, the
degree of coherence can be obtained from the Fourier
transform of the source function, whichitself is a series
of 5-functions corresponding to a diffraction grating
with spacing a, where a sin 6, = mA. The coherencefunction is therefore also a series of 6-functions. Hence
the P,P2, the slit separation d, must correspond to the
location ofthe first-orderdiffraction fringe of the source
if ¥ isto be maximum.a, = A, and so d * 19, = Ad/a =
(600 x 107° m)(2.0 m)/(500 x 107° m) = 2.0 mm.
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a
CHAPTER13

13.1 1° oT* 3.1]
(22.8 W cm?) (10% em*/m*)=6.7 10° Wm? KY T*

22.8 x 104] 1
[Baxi] = 1.414 10° ~1414K.

18.38 v=c/A,  dv=—cdaja®.
Since I, and I,, are to be positive and since an

increase in A yields a decrease in v, we write
In dd —I,, dv

and

Tag Ty dAldy = Ed?Jo,
24

134 ~ SSBAISme (0.15 kg} {25 m/s)
6.63 x 10°*4Baseball: oe 84

asebal A 375 1.76 x 107%? m4

Hydrogen: A= 6.65201105 = 3.96 x 10°! m.© (1.67 x 1074 (10)

136 2= Be G89 x 10) (8 x 104“ vy hy (.6X10)hrfineV]
_ 12.89x1077m _ 12,390 A

hvfin eV] AvineVT
The usual mnemonicis

_ 12,345 A
hvfin eV}

13.7 A(min) = 300 nm
Ap=hefv

(6.63 x 107*4 Js) (3 x 10° m/s)300 x 10° m

8 =6.63x 107 J=4.14ev.

13.9 Nhv = (1.4 X 10° W/m?) (1 m’) (1s)
__1.4% 109(700 10) _ 980 x 10”P= 3

N=668x104) (8x 10) 19.89N=49.4 x 10”,

he _ (6.63 x 10*4) (3 x 10°)
13.100 hy = 500 x 10>

= 3.98 x 10°° J"
hy~2.5eV.

Energy per second~ar*I~ (3.14) (107°) 107")
3.14 x 107J/s

(T) (8.14 x 107*° J/s) = 8.98 x 10719 J
T~1.27x10''s (lyr 3.154 107s),

T ~ 4000 years
A?=25x10m® APT 25 x 107*4 J/s

3.98 x 1071?
=Zexi0= = 1.59X10%s (3.6 X 10° s/h)

T 4.4h (still impossible).
It would take twice as long if hy = 5eV, which means
(Problem 13.6)

12345 A
5 247 nm (ultraviolet).

2,28(1.6 x 107)
6.63 x 19°

5.5 x 10! Hz = 550 THz
vy =cfd = 8x 10°/400 x 10°? 750 x 10"? Hz.

13.11 vy = Pofh = {13.8}

2

a= A(v — vo) = 4200 x 1022 113.9}
13.26 x 107%? J,

13,13 The photon’s gravitational potential energy
U =-—GMm/R, where m is photon mass but m “= Av/e*;thus

U= -GMhy/Re.

Sy G.
Ergo €=hy GMhy/Re*— hy! 1— aR b
At the Earth @ Ay, and

Si 4 Av=—v,, Av= zp.
ince Av— y—v,, R

Av _ (6.67 X 107"! Nm?/kg?*) (1.99 x 10° kg)
13.14 (BX 10° m/o}"(6.96 x 10° m)

a 2.12 10°v

_ 2.12% 107%x 10%) | °ay ~ RBXIOBI)= 9.8 10° Hzor

Le o AA =AvAlyAe

AA©2.12 x 1078(650 x 107%)
AA > 13.8 x 107! = 0.0014 om.

13.15 Av,=hy; — med {13.13}

Av =—mgdjh aBL pate?oh

Ay _B.8m/)BOm) ogy 19-18,y (3 X 10° mys)"

13.16 F ~ GMm/r?=GMm/R? sec? 6
F, = F cos 0 GMmcos 6/R? sec? 6
dt= R sec® 6 d0/c.

C. ne
p= | Fi dt= Cute | cos 8d8=2GMm/cR.cR jana

tan y = pi/py ~2GM/CR = @
_ 2(6.67 * 107!’ Nm®/kg?)(1.99 * 10°? kg)

ee (3 * 10" m/s)*(6.96 x 10° m)
o ~ 24.5 x 10°° degrees = 0.88 secondsofarc.
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13.18 2kT =6.17x 10J 3.85x10%eV
b= [2mo(3k T/2)]'?=4.55 x 107%
A=hip= 145A,

13.19 No—splitting a photon would result in two
lower-frequency pieces, which we could presumably
separate and detect,

1000 W __1000(10600 x 10-*)
hy 6.63 x 10°*4(3 x 10%)

5.06 x 10°? photons/s.

13.21 T=

13.22
 

2” ae 2p2= + hy= +U;, fw = WR /2mo+ UL
eaftu, warp Ltr /2m¢
13.24 Wm Cero4 CyHeh

ay - ay= ienp, SiROM + ikeHOat ox
2

PY pcgtet BoyenNey
Using the dispersion relation of Problem 13.22, weobtain

fos 7k? ye/2my + Up
ay Atayih
at Qmy ax”

Ug.

CHAPTER 14

14,1
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; Ea
14.3

Diffraction pattern Filter

oreven
better

Filter

‘ — INFihers

14.6 From the geometry, f@= fiP: ko =k sin @ and
k,~ ksin ®, hence sin 6 = @* kyA/2a7 and sind =
& = k,A/27, therefore 0/® = ko/k; and k; = ko{®/6) =
ko( f/f). When f, > f, the imagewill be larger than the
object, the spatial periodsin the imagewillalso be larger,
and the spatial frequencies in the image will be smaller
than in the object.

14.7 a= (1/50)cm: a sin @— mA, sin 6 = 6, hence 6 =
{5000 m)A, and the distance between orders on the
transform planeis f@ = 5000Af = 2.7 mm.

14.9 Each pointon the diffraction pattern corresponds
to a single spatial frequency, and if we consider the
diffracted wave to be made up of plane waves,it also
corresponds to a single-plane wave direction. Such
waves, by themselves, carry no information about the
periodicity of the object and produce a moreorless
uniform image. The periodicity of the source arises in
the image when the componentplane wavesinterfere.

14,11 Therelative field amplitudesare 1.00, 0.60, and
0.60; hence E x 1 + 0.60 cos (+4y') + 0.60 cos (—ky'} =

+ 1.2 cos ky’. This is a cosine oscillating about a line
equal to 1.0. It varies from +2.2 to —0.2. The square
of this will correspondto the irradiance, andit will be
a series of tall peaks with a relative height of (2.2)°,
between each pair of which there will be a short peak
proportional to (0.2)°; notice the similarity with Fig.11.32.

14,12 asin@ A, here f@~ 50Af=0.20cm; hence
A 9.20/50(100) = 400 nm. The magnification is 1.0
when the focal lengths are equal, hence the spacing is
again 50 wires/cm.

ve

14.18 I jveK3 2(2) E3, where p © pg2\ po
ES = 2€uoleo)?Iin—(wof€o)'?~376.7300
Eq™ 27.4(/ny'?.

14.20 The inherent motion of the medium would
cause the speckle pattern to vanish.
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chromatic, 188, 220, 232
axial, 232
lateral, 232

monochromatic, 220, 222
astigmatism, 220
coma, 220, 223
distortion, 220
field curvature, 220
spherical, 197, 220, 221

Absorprance, 369
Absorption, 57, 61, 369, 552bands. 61

coefficient(a), 110
dissipative, 57
selective (preferential), 116
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Acther, 8, 4, 6, 7, 8, 382, 385, 588
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Airydisk, 419, 422, 485, 564
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Amplitude, 15
Amplitude coefficients, 95, 96, 119, 120,299

reflection (r), 95, 299
transmission (2), 95

Amplitude modulation, 252, 385, 570
Amplitude spectrum, 473
Amplitude splitting, 334, 346
Analyzer, 277
Anamorphiclenses, 184
Anastigmats, 230
Angstrom (1 A = 107? m), 15Angular deviation, 163
Angular dispersion, 427
Angular field ofview, 201
Angular frequency, 16, 258
Angular magnification (M, or MP), 186,190
Angular momentum, 275
Anharmonic waves, 17, 254
Anomalous dispersion, 62, 254
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Antireflection coatings, 375
Anti-Stokes transition, 554
Aperture;see Diffraction

numerical (NA). 171, 192
relative, 152
stop, 149

Aperture function, 477, 494
Apex angie (a), 163
Apochromatic objective, 192
Apodization, 496, 515Apollo, 169
Arago, Dominique Frangois Jean, 6, 7,

298, 309, 443
Area of coherence, 532
Argand diagram, 20

Argonlaser, &
Aristophanes, 1, 140
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Armstrong, E. H., 874
Array theorem, 497, 498
Aspherical surfaces, 129, 156
Astigmatic difference, 226
Astigmatism,184, 193, 226Attenuation, 174
Attenuation coefficient (@), 110Autccollimation, 428
Autocorrelation, 500
Automatic lens design, 220
Aviogon lens, 202
Azinuthal angle (7), 125
Babinet compensator, 304
Babinet’s principle, 458
Backfocal length, 148, 181, 214

plane, 140
Bacon, Roger, 2, 181
Bandwidth, 263, 306, 516

minimum resolvable, 372Barkla, Charles Glover, 296
Barrel distortion, 230
Barrier penetration, 180Bartholinus, Erasmus, 285
Basov, Nikolai Gennadievich, 577
Beam expander, 196
Beam-splitter cube, 108
Beam-splitters, 109, 354
Beams,Jesse Wakefield, 548
Beats, 250, 385
Bending of lenses, 212
Bennett, William Ralph, Jr., 585Besse} functions, 418
Beth, Richard A., 276
Biaxial crystals, 280, 289
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Binocular night glasses, 152Binoculars, 169, 195, 196
Biot, Jean Baptiste, 6, 309, 443Biotar lens, 230
Biprism (Fresnel’s double prism), 344
Bird, George R., 279
Birefringence, 282circular, 310

stress, 315
Birefringentcrystals, 288
Blackbodyradiation, 539
Blazed gratings, 426
Blind spot, 180
Blurspot, 128
Bohr,Niels Henrik David. 9, 10, 549
Boltzmann, Ludwig, 540
Boundaryconditions, 249
Boundary diffraction wave, 463
Boundary wave, 107
Bradley, James, 7, 8
Brage’s law, 484, 606
Bremsstrahlung, 74
Brewster, David, 281, 298, 315
Brewster windows, 587
Brewster's angle, 298, 586
Brewster's law, 296, 299
Brillouin scattering, 252, 556, 611
Broglie, Louis Victor, Prince de, 9, 545Bunsen, Robert Wilhelm, 10
Burningglass, 1, 129, 140
C-Wlaser, 585
Cadmium red line, 263, 357Calcite, 4, 6, 283, 302, 302
Calcium fluoride lenses. 192, 202
Camera, 182, 199

lenses, 201
pinhole, 199, 232
single lens reflex, 200Camera obscura, 2, 198

Canada balsam, 290, 291
“Carbon dioxide laser, 266, 588
Carbondisulfide, 319
Cardinalpoints, 211Carotene, 116
Carrier wave, 252
Cartesian oval, 129
Cauchy's equation, 78
Catoptrics, 1, 156
Cavities. optical, 580
Centered optical system. 135
Central-spot scanning, 372Cesium clock, 70
Characteristic radiation, 74 

Chelate lasers, 589
Chief ray, 150
Chlorophyl, 116
Cholesteric crystals, $13Christiansen, C., 77
Christiansen, W. N., 400
Chromatic aberrations, 232
Chromatic resolving power (2), 372Cinnabar, 312
Circle of least confusion, 227, 232
Circular birefringence, 310
Circular light, 271, 274
Circularpolarizers, 305Cittert, Pieter Hendrik van, 516
Gladding, 171Clansius, Rudolf Julius Emanuel, 226
Clear aperture, 152
Cleavage form, 283
Coddington magnifier, 188
Coefficient of finesse (F), 387
Coherence, complex degree of (Yio) 827Coherence, 516

area of, 582
functions, 523
length, 264, 266, 342
longitudinal, 817
partial, 516, 527
temporal, 516, 528
theary, 516
time (At), 264, 306, 339, 516

Coherentfiber bundle, 172
Coherent waves, 248, 337
Cold mirror, $73
Collimated light, 141
Colors, 115
Comatic circle, 224
Combfunction, 481
Compensatorplate, 854, 358Compensators, 304Babine, 304

Soleil, 304
Complementary colors, 115, 309
Complex amplitude, 247
Compiex representation, 19, 246
Compoundlens, 136, 214
Compound microscope, 190
Compton, Arthur Holly, 545
Conductivity (0), 108
Confocal resonator, 583
Conjugate points, 128, 130Connes,Pierre, 372
Constructive interference, 245, 336
Contrast (7'}, 506, 599
Contrast factor (C), 891

Convolution
integral, 486
theorem,491

Cooke (or Taylor)triplet, 201, 280, 238Copper, 110, 111
Cornercube, 169
Cornu, Marie Alfred, 449
Cornuspiral, 248, 449, 451
Corpusculartheory, 3-11
Correlation interferometry, 832
Correlogram, 503Cotton-Moutoneffect, 318
Cover glass slides, 173Crab Nebula, 50-52
Crimea Observatory, 196
Critical angle, 98, 104, 105, 166, 175
Cross-correlation, 501
Cross talk, 171
Cryolite, 375
Cube cornerreflector, 169
Cusa, Nicholas, 181
Cylinder lens, 185
Cylindrical waves, 27, 28, 452

D lines of sodium, 56, 234
Dark-ground method, 576Da Vinet, Leonardo, 2
Davisson, Clinton Joseph, 545
De Broglie wavelength, 545
Degree of coherence (F,2l), 265, 523Degree ofpolarization (V), 299, 322Delta function,478
Denisyuk, Yuri Nikolayevitch, 606
Descartes, René, 3, 4, 84, 180, £77Destructive interference, 245, 336
Deviation, angular, 163
Dextrorotatory, 309
Dichroic crystals, 279Dichroism,279
Dichromophore, 281
Dielectric constant(K,), 36, 56
Dielectric films, 10, 346, 373

double-beam interference, 346
multilayer systems, 373
multiple-beam interference, 363

Differential wave equation
one-dimensional, 14
three-dimensional, 28, 24, 40

Diffraction, 3, 6, 129, 392, 493
array theorem, 497
Babinet’s principle, 458
boundary waves, 463
coherent osciilators, 397

comparison of Fraunhofer and Fresnel,396
Fourier methods, 493
Fraunhoter, 396, 401, 493

circular aperture, 416
condition, 401
double slit, 406, 498
manyslics, 409
rectangular aperture, 421, 415, 497
single slit, 401, 495

Fresnel, 396, 434
circular apertures, 440circular obstacles, 443
narrow obstacle, 457
rectangular aperture, 447
semi-infinite screen, 456
single slit, 453zones, 435

gratings, 424, 561
line gratings, 429

“two- and three-dimensional, 430
Kirchhoft’s theory, 459limited, 129
‘of microwaves, 394
‘opaqueobstructions, 394Diffraction limited, 129

Dioptric power (@), 181, 186-189
Dioptrics, 156
Dipole moment(4), 52, 54, 58, 60
Dirac, Paul Adrien Maurice, 9, 478, 549
Dirac delta function,478
Dispersion, 56, 57, 163

angular (2), 427
anomalous, 61, 254
equation, 60, 111
of glass, 62normal, 61
relation, 60, 252 |rotatory, 312

Dispersiveindices, 284
power, 234

Displacement current density (J,,), 38Distortion, 230
Dollond, John, 5, 236
Donders, Franciscus Cornelius, 185
Doppier broadening, 500
Dopplereffect, 252, 500Double refraction, 285
Drude, Paul Kar! Ludwig, 110, 250Dupin, C., 86
Effective focal length, 149, 202, 212Einstein, Albert, 9, 538, 541, 579
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Electric dipole, 52
Electric feld (E), 34, 92, 119, 242
Electric permittivity (€), 36
Electromagnetic-photon spectrum, 68

gamma rays, 74infrared, 69, 70
light, 71
microwaves, 69
radiofrequency, 68
ultraviglet, 73x-rays, 74

Electromagnetic theory, 7, 33, 92electric polarization (P}, 58
Maxwell's equation, 39, 40
momentum (p), 45
nonconducting media, 56radiation, 47

Electramagnetic waves, 39, 92, 621
Electromotive force, 35
Electronic polarization, 58
Electron, 9

diffraction, 545
volt (eV}, 545

Electro-optic constant, 320
Electro-optics, 11
Elliptical light, 275
Elster, J., 542
Emission from an atom, 10, 552
Emission theory, 7
Emmetropic eye, 182
Enantiomorphs, 309
Energy density (u), 43Energy level, 54
Entoptic perception, 179
Entrance pupil, 150
Entrance window, 191
Epoch angie {e), 17
Erecting system, 195Estermann,I., 548
Etalon, Fabry-Perot. 368
Euclid, 1, 83, 156
Euler, Leonhard, 5, 92Evanescent wave, 107
Ewald—Oseenextinctiou theorem, 68Excited state, 54
Exit pupil, 150, 187-195
Exitance, spectral, 539
Extended objects, images of, 14], 161External reflection, 98
Extinction color,
Eyeglasses, 2, 181
Eye, 176

accommodation, 180
ciliary muscles, 180

 

aqueous humor, 178choroid, 179
compound, 177
cornea, 178, 181, 184
crystalline lens, 178, 179, 182
far point, 182, 184
human,177
iris, 116, 178
near point, 181, 186
powers, 182
pupil, 178
resolution, 422
retina, 179

blind spot, 180cones, 179
fovea centralis, 180
macula, 180
rods, 179

sclera, 178
vitreous bumor, 179

Eye-lens, 189
Eyepiece, 188-190

Erfle, 189, 196
Huygens, 189
Kellner, 189, 195
orthoscopic, 189
Ramsden, 189, 240
symmetric (Plissl), 189

Eye point, 189
Eyerelief, 189
Eyes, 176
forumber (f/#). 152, 171, 200, 420
Fabry, Charles, 368
Fabry-Perotetalon, 369, 377, 581, 615
Fabry-Perot filter, 377
Fabry-Perot interferometer, 368, 373,372, 499
Fabry-Perot spectroscopy, 371Far-field diffraction; see Fraunhoferdiffraction
Farpoint, 182, 184
Faraday, Michael, 7, 35. 316
Faraday, effect, 316
Farsightedness, 184Fast axis, 301
Fermat, Pierre de, 87
Fermat's principle, 87-92, 188, 550, 652
Feynman,Richard Phillips, 92, 550Fiberoptics, 10, 170cladding, 171, 172

coherent bundle, 172cross talk, 171
graded index, 176
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incoherent bundle, 172
intermodaldispersion, 174mosaics, 172
multimode, 174
numerical aperture (NA), 171
spectral dispersion. 176
stepped index, 174Field curvature, 228

Field Aattener, 173, 229
Field-lens, 189
Field stop, 149Films: see Dielectric films
Filters, 373
Finesse, 871, 391, 429
Finite conjugates, 197
Finite imagery, 140
First-order theory, 134
Ficeau, Armand Hippolyte Louis, 6, 8, 41,530
Fizeau fringes, 350, 387, 381Floaters, 179
Fluorescence, 553
Fluoride film, 348
Flux density, 44, 246
Focal length (f)

back (bf), 148, 181, 222, 214effective, 149, 202, 212
first, 134
front (E61), 148, 215
image, 134
ofa lens, 138, 141, 212of a mirror, 161
object,134second, 135
of a zone plate, 446

Focal plane, 139, 140, 161
Focal point, 134Fontana, Francisco, 2
Focauit, Jean Bernard Léon, 6
Fourier, Jean Baptiste Joseph, Baron de,254
Fourier

analysis, 10, 41, 255
difraction theory, 493
integrals, 259, 260
optics, 472, 559, 560Fouriertransforms, 254, 260, 472, 560
of cylinderfunction, 476fan, 474 of Gaus 
of Gaussian wave packet, 492two-dimensional, 475
via a lens, 477

Fox Talbot, 77
Franken, Peter A., 612

Fraunhofer, Joseph von, 10, 424
Fraunhofer diffraction, 396, 401, 560
Fraunhofer lines, 234
Free spectral range, 372, 429Frequency(+), 16

angular (w), 16, 258
bandwidth, 263
beat, 251
mixing, 11,614
natural(wo), 59
plasma (w,), 112resonance(Ww), 55, 59, 60
spectrum, 259

Frequencystability, 265CO,laser, 266
He-Nelaser, 266

Fresnel, Augustin Jean, 5, 296, 310, 394,434, 448, 464
Fresnel composite prism, 311Fresneldiffraction, 396
Fresnel double mirror, 343
Fresnel double prism, 844
Fresnel equations, 6, 94-104, 299derivation, 94

interpretation, 96
amplitude coefficients(7, 1}, 97
phaseshifts, 99reRectance (R), 99, 299
transmittance (T), 99

Fresnel integrals, 448 _
Fresnel multiple prism, 311Fresnel rhomb, 304
Fresnel zone plate, 445, 595
Fresnel zones, 435
Fresnej-Arago laws, 6, $89, 387Fresnel-Kirchho® diffraction, 462
Fringeorder, 337, 356

resolution, 37]
Fringes

equalinclination, $47, 387, 362
equal thickness, 349Fizeau, 350, 357
Haidinger, $49, 351, 387
Jocalization, 357, 361

Frontfocal length (f.£..}, 148, 214
Frontstop, 150Frustrated total internal reflecion (FTIR),

307, 108, 171Fuchsin, 77
Gabor, Deunis, 593
Gale, 387
Galileo Galilei, 2, 190, 192, 196

Galileo's telescope, 2, 192, 196
Gallium, 113Gallium arsenidelaser, 589
Gauss, Karl Friedrich, 36, 134Gauss’ aw

electric, 36
magnetic, 37Gaussian function, 13, 264, 474, 479, 497

Gaussian lens formula, 138
Gaussian light, 582
Gaussian optics, 134
Gaussian wave group, 492, 498
Gay-Lussac, Joseph Louis, 443Geitel, H., 542
Geometrical optics, $3, 128, 211
Geometrical wave, 454
Germanium, 153
Germer,Lester, 545
Glan-Foucault polarizer, 291
Glan-Thompson, 291
Glass, 62, 168, 285
Goizycell, 72Gold

boundelectrons, 116color, 114
reHectance, 11

Graded-index fibers, 176
Gradientindex (GRIN)lens, 136
Grating equation, 425Gravitationalred shift, 545, 557
Gregory, James, 196, 480
Grimaldi, Francesco Maria, 3, 164, 392
Grosseteste, Robert, 2
Groundstate, 54, 73
Group indexof refraction, 253
Group velocity (ug), 252
Gyroscope, 252, 386
Haidinger, Wilhelm Karl, 349
Haidinger fringes, 349, 351, 357
Half-angular breadth, 465
Half-linear width, 465
Half-wave plate, 301
Half-wave voltage, (V,,9), 319
Hall, Chester Moor, 5, 236
Hallwachs, Wilhelm, 541
Hamilton, William Rowan, 92
Hanbury-Brown, R., 534
Hanbury-Brown and Twiss experiment,534
Harmonic geueration, 11, 612Harmonic waves, 15
Harmonics, 258
Harrison, George R., 427

Heisenberg uncertainty principle, 263Hefiurn—cadmium laser, 588
Helium—neonlaser, 228, 266, 397, 415,443, 518, 585-587
Helmhokz, Hermann Ludwig Ferdinandvop, 226, 539
Helmholtz equation, 461
Hemispherical resonator, 564
Herapath, William Bird, 281Herapathite, 281
Heroof Alexandria,1, 86
Hertiott, Donald Richard, 585
Herschel, Sir John Frederick William, 309
Herschel, William, 70, HH!
Herwz,Heinrich Rudolf, 7, 68, 249, 250,541
Holographic interferometry, 607Holographic lens, 137
Holography, 17, 593

acoustical, 609
computer-generated, 610
Fourier transform, 604, 606indine, 594
reflection, 602
side-band Fresnel, 595transmission, 602
volume holograms, 606
white light reflection, 607
zone-plate interpretation, 595, 602

Hooke, Robert, 3, 4, 352
Hughes,David, 68
Hull, Gordon Ferrie, 46
Huygens, Christian, 80, 222, 286, 287Huygens's construction, 80
Huygens’s principle, 79-81, 286, 392
Huygens-Fresnelprinciple, 80, 393, 400,434, 462, 463,
Hyperopia, 184
Hypersthene, 280
Icelandspar (calcite), 4, 288, 284Image

distance (5,), 130erect, 144
focal length, 135
inverted, 144
real, 131, 145
space, 128
virtual, 182, 144

Imagery, 141, 161
Impulse response, 484
Index matching, 613
Indexof refraction (2)

absolute, 56, 84
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complex, 110
glass, 235, 236
Group, 253
oscillator model, 66relative, 84

Induction law, 35, 36
Iufinite conjugates,Infrared, 10, 68, 873

mirrors, 153
Inhomogencous waves, 107
Intensity, 44
Interference, 5, 244, 333, 523colors, 308

conditions for, 337
coustructive, 245, 333
destructive, 245, 333
double beam, $46filter, 377
fringes, 337, 347, 363law, 527
snultiple-beam, 363term, 244, §35
thin films, 3, 373

Interferogram, 358, 610
Interferometers, 339, 354

amplitude-splitting, 346Mach-Zehnder, 358, 363
Michelson, 354, 357, 361, 363Pohl, 360, 362
Sagnac, 359, 363

wavefront-splitting, 339
Fresnel’s double mirror, 344
Fresnel’s double prism, 345
Lloyd's mirror, 343, 345
Young’s experiment, 343

Intermodaldispersion, 175
internal reflection, 98, 104
Inverse-square law, 45
Inversion, 154, 155
Ion bombardmentpolishing, 10ionic polarization, 58
Irradiance (Z), 43, 217, 342

dipole radiation, 52
Jamin interferometer, 391
Janssen, Zacharias, 2, 190, 192Javan, Ali, 385, 585
Jeans, James, 540
Jodrell Bank, 422
Jones, Robert Clark, 323
Jones matrices, 324Jonesvectors, 323
KD*P, 320
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Kerr cell, 818, 330
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Kerr effect, 818, 611
Kirchhoff, Gustav Robert, 10, 80, 394, 539
Kirchhoft’s diffraction theory, 394, 459,528
Kirchhoff's integral theorem, 461. 623Klingenstjerna, Samuel, 5
Xohlrausch, Rudolph, 40
Kottler, Friedrich, 464
Krypton,72, 265
Labeprie, A. E., 607
Lagrange, Joseph Louis, 92
Land, Edwin Herbert, 282
Laplace, Pierre Simon, Marquis de, 6, 443Laplacianoperator, 24, 40Laser, 20, 578

cavities, 580
developments, 586
first (pulsed ruby), 580giant pulse, 585
helium-neon, 266, 585
modes, 474, 581-583
operation, 579
Q-spoiling, 585
Q-switching, 585

Laserlight, 577Lasers
chemical, 590
coupled-cavity, 590gas, 588
Fquid, 589
semiconductor, 588
solid state, 587
tunable, 589

Lateral color, 233
Laue, Max van, 433
Lawofreflection, 1, 83
Law of refraction,2, 84
Lawrence, Ernest Orlando, 543
Lebedev, Pyotr Nikolaievich, 46Le Craw, R.C., 317
Left-circular light, 272
Leith, Emmett Norman, 595
Lenard, Philipp Eduard Anton von, 54)Lens, 1,2

bending, 211
compound, 135
cylindrical, 185
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equation, 137field fattener, 173, 229
finite imagery, 140
first-order theory, 154
fluorite, 237
focal points and planes, 139magnification, 144
optical center, 140
simple, 135
telephoto, 207, 202, 231Tessar, 201, 202, 280
thick, 211
thin, 138, 137
thinens combinations, 145. 148
toric, 185

Lensmaker’s formula, 138
Le Roux. 77
Levorotatory, 309
Lewis, GN. 9
Light-emitting diodes, 176Light Beld, 250
Light pipe, 171
Light propagation, 63
Lightrays, 85-87beam, 85

pencil, 85Limit of resolution, 422
Line-spréad function, 488, 506
Linearsystems, 483
Linewidth, natural, 263, 500
Lippmanu, Gabriel, 606
Lippershey, Hans, 2, 192
Liquid crystals, 313
Lister objective, 192Lithium niobate, 607, 615
Littrow mount, 429
Lloyd’s mirror, 348, 345
Lorentz, Hendrik Antoon,8, 57, 110
Lorentz broadening, 500
Lorentzian profile, 499Luminiferous acther, 382
Lummer, Otto, 539
Lunar Orbiter, 587
Maey, Eugen, 464Mach-Zehnderinterferometer, 358, 363,
Maggi, Gian Antonio, 464Magnesium Auoride, 139, 975, 376
Magnedc induction (B), $4
Magneto-optic effect, 316Magnification

angular (M,), 186
lateral or transverse (M,), 144, 162, 213
longitudinal (M;), [44

Magnifyingglass, 1, 186
Magnifying power (MP), 186, 190, 294,195
Maiman, Theodore Harold, 578
Malus, Etienne Louis, 6, 86, 279, 296
Malus and Dupin, theorem ot, 86Malus’s law, 277, 279, 318
Maraldi, 444
Maréchal, A., 569
Marginal ray, 150, 192Mariner LV, 112
Maser, 577Mairix methods

lens design, 215
polarization, 324thie films, 873

Mater waves, 9, 33, 545, 547, 548
Maupertuis, Pierre de, 92
Maxwell, James Clerk, 7, 8, 38, 40, 68,382
Maxwell's equations, 7, 38, 108, 538, 620Maxwell's relation, 56
MeniscusJens, 136
Mercury, 265Meridionalfocus, 227
Mericfona!plane, 226, 227
Meridionat ray, 170, 215Metal, reflection from, 112
Metals, optical properties, 108-114Metastable states, 580
Mica, 302
Michelson, Albert Abraham,8, 253, 357,

383, 539, 530
Michelson and Gale, 387
Michelson-Morley experiment, 8, 252,382, 538
Michelson stellar interferometer, 530, 532,534
Micron (1 wm = 10-°m), 15, 170, 557
Microscope, compound,2, 190

angular field, 191
numerical aperture, 191, 192
resolving power, 192
tube length, 190Microwaveinterferometer, 367

Microwaves, 69, 108, 261, 276
Mie, Gustav, 294
Millikan, Robert Andrews, 543,
Mirage, 90
Mirror formula, 159
Mirrors, 153

aberrations, 228
aspherical, 156
coatings, 153

cold, 373
dichroic, 373
elliptical, 158
finite imagery, 161
half silvered, 346
history, 1
hyperbolic, 158
magnification, 162mitror formula, 159
parabolic, 156, $57, 159, 210
planar, 153
sign couvention, [62
spherical, 158

Missing order, 409
Miyamoto, Kenro, 464
Modes, waveguide, 170Modulation, 506
Modulation frequency, 250
Modulation transfer fuuction (MTF), 507
Modulators, optical, 314
Momentum ()), 45Monochromatic, 17
Mooney zhomb,304
Morley, Edward Williams, 8, 383
Mount Palomar, 153, 196, 198, 422
MountWilson Observatory, 531Mueller, Hans, 326
Mueller matrices, 324
Muttilayer Blms, 10, 373antirefection 375

periodic systems, 377
Muttiple-beam interference, 363, 381Muscovite,
Mutuai coherence function, 523
Myopia, 182
Nanometer {1 nm = 10-° m), 15, 69, 72
Natural frequency, 59
Natural fight, 274, 303Natural linewidth, 263
Near-field diffraction:see Fresneldiffraction
Nearsightedness, 183
Negative lens, 135, 183
Negative uniaxial crystal, 289
Neodymium, 587Nerust, Walther, 250
Neutrino, 10
Newton,Sir Isaac, 3-6, 56, 123, 164, 235,352, 378, 430
Newton's riugs, 352-354, 363, 446
Newtonian form of lens equation, 143,213
Ng, Won K., 554

Nichols, Ernese Fox, 46
Nicol, William, 290
Nicol prism, 290
Niépce, Joseph Nicéphore, 199.
Night glasses, 152
Nitrobenzene, $19
Nodalpoints, 22
Nodes, 249
Nonlinearoptics, 810
Nonresonantscattering. 87Notmal congruence, 86
Numerical aperture (NA). 171, 192
Object

distance, 129, 130
compound fens, 146

focal length, 134
compoundlens, 148

space, 128
Objective, 190, 198
Obliquity factor, 404, 434
Ocular; see Eyepieces
Oil immersion objective, 192, 223
Optic axis, 279, 283
Opticalactivity, 309
Optical axis, 130
Optical bandwidth, 263
Optical computer, coherent, 561, 568
Optical field, 44
Optical flat, 350
Optical glass, 62, 254, 235
Optical-parametric oscillator, 615
Optical pathdifference, 244, 847, 355
Optical path length, 85, 87, 89, 133
Optical pattern recognition, 505
Optical pumping. 580Optical rectification, 612
Optical sine theorem,225
Optical stereoisomers, 312Optical transfer function (OTF), 508
Ordinary rays, 285
Orientational polarization, 58Orthometer, 230
Orthoscopic system, 231, 232
Oscillating dipole radiation, 52Oscillator, 397
Oscillatorstrengths, 61
Palomar Observatory, 51, 153, 196Parabolic mirror, 157, 398
Parametric amplification, 615
Paraxial ray, 134, 159
Parrish, Maxfield, Jr., 279Parseval's formula, 498

Partially polarized light, 275Pasteur, Louis, 312
Pauli, Wolfgang, 9, 10Peaktransmission, 370Pellictes, 346
Penetration depth. 110Period

spatial (A), 15
temporal(1), 16

Permeability (1), 37
Permittivity («), 36Perot, Alfred, 368
Petzval, Josef Max, 202, 229
Petzval condition, 229
Perzval lens, 201
Petzval surface, 229
Phase, £7, 66

addition, 247
difference (5), 119, 244, 335
initial (e), 17
lags and leads, 66modulation, 572
rate of change with distance. 18
rate of changewith time, 18shifts, 99

Phase contrast, 570, 595
Phase grating, 432Phaseplate, 574
Phase spectrum, 473
Phasetransfer function (PTF), 508
Phase velocity (w), 17, 19, 253
Phasors, 247, 365, 450, 457
Phosphorescence, 553
Photochromicglass, 607
Photoelasticity, 315
Photoelectric effect, 841, 543
Photon, 9, 33, 540, 550

angular momentum (L}, £75flux, 44, 558
flux density, 44.73
harmonic generation, 612mass, 34, 544
probabifity, 550
reflection and refraaion, 120
spectrum, 68
spin, 276
virtual, 34

Physical optics, 33, 129
Pi electrons, 116
Pile of plates polarizer, 298Pin-cushion distortion, 230
Pinhole camera, 199
Planck, Max Kar! Ernst Ludwig, 9, 539Planck’s constant, 9, 540

Index

Planck's radiation law, 540
Plane of incidence, 86
Plane ofvibration, 29, 270
Plane waves, 21, 41

propagation vector (k), 21-23
Plasma frequency (w,), 112Plato, 1
Pockels, Friedrich Carl Alwin, 319
Pockels cell, 329
Pockels effect, 318, 319
Pohlinterferometer, 360, 362Pohl, Robert Wichard, 444
Poincaré, Jules Henri, 8
Point-spread function (3), 485
Poisson, Siméon Denis, 443
Poisson's spot, 444
Polar molecules, 58
Polarization, 270, 294, 338

angle (8), 97, 98, 298byreflection, 296
byscattering, 294
circular, 271
compensators, 304
degree of (V3, 299
elliptical, 273
half-wave plate, 301, 302
historical notes, 4, 6
linear, 28, 41, 270
photons, 275
plane, 270
quarter-waveplates, 303retarders, 300
rhombs, 804
unpolarized fight, 29, 274, 322
waveplates, 300

Polarization,electrical (P), 58, 611, 621
Polarized sky light. 295Polarizers, 277

birefringent, 290circular, 305
Glan-Air, 291
Gian-Foucault, 291
Glan-Thampson, 291linear, 277

extinction axis, 279
transmission axis, 279

pile-ofplates, 298
Rochon, 829, 647
wire-grid, 279
Wollaston, 292, 329Polaroid, 281

Polychromatic light, 306
Polyvinyl alcohol, 281, 282, 302, 306
Population inversion, 580
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Porta, GiovanniBattista Della, 2, 198
Porter, A. B., 565
Portrait Jens, Petzval’s 202Positive lens, 135
Positive uniaxial crystal, 289
Potassium dideuterium phosphate (KD*P),$20
Potassium dihydrogen phosphate (KDP),$20, 612
Pound, Robert Vivian, 545
Power spectrum, 262, 499
Poynting, John Henry, 43
Poynting vector, 44, 53, 100, 128
Pressure, radiation (#), 45
Primary aberrations, 221
Primary colors, 115
Principal angle of incidence, 113
Principal maxima, 420
Principal planes, 211, 285
Principal points, 211
Principal ray, 224
Principal section, 286
Principle of interference, 5
Principle of least time, 88
Principle of reversibility, 92, 399
Principle of superposition, 242, 333
Pringsheim,E., 539
Prism, Fresnel composite, 311Nicol, 290

Rochon, $29, 647
Wollaston, 292, 329

Prisms, 163
dispersing, 168; see also Reflecting

prisms
Abbe prism, 166
angular deviation 163constant deviation, 165
minimum deviation, 165
Pellin-Broca, 165

Probability amplitude (P). 34, 550Profife, 13
Progressive wave, 15
Prokhoroy, Alexander Mikhailovich, 577
Propagation number, 15, 23, 250
Pseudothermallight. 535
Ptolemy, Claudius, 1, 84
Pulses, 15, 26, 55, 261, 591

ferntosecond,591
Pumping, 579
Pupils, 149-151, 178
Purkinje figures, 180
Q (quality factor), 585
Q-switch, 819, 321, 585

Quantum fields, 34, 538
Quantum jump, 55
Quantum mechanics, 9
Quantum nature of light, 8. 34, 538
Quarter-wave plate, 303
Quarter-wave stack, 377
Quartz, 62, 289, 309, $17, 433

optical activity, 309
Quasimonochromatic, 56, 265, 516
Radiant flux, 44
Radiant fnx density, 44
Radiation, 47

characteristic, 74
electric-dipole, 68field, 49
linearly accelerating charge, 47
pressure (P), 45
synchrotron,49, 60, 71zone, 52

Radiointerferometer, 399
Radio waves, 52, 62, 68
Raman, Chandrasckhara Vankata, 553
Ramanscattering, 54, 611
Ramanspectroscopy, 553
Rayleigh [John William Strutt], 294, 426,

445, 540, 563
Rayleigh—Jeans formula, 540
Rayleigh microscope image theory, 563
Rayleigh scattering, 294, 553, 554, 611
Rayleigh’s criterion, 371, 422, 428
Rays, 85chief, 150

collimated, 141
converging, 128
direction in crystals, 288
diverging, 128
extraordinary, 296
marginal, 150, 192meridional, 170, 215
ordinary, 285
principal, 224skew, 215

Raytracing, 215
matrix methods, 216

Rebka, G. A., Jr., 545
Rectification,optical, 612Red shift, 545
Reflectance (R), 99, 299, 369of metals, 112
Reflecting prisms, 166achromatic, 167

Amici, 167
corner-cube, 169

Dove, 167
Leman-Springer, 169
Penta, 168, 200
Porro, 167, 169
rhomboid, 168
right-angle, 167Reflection, 79
diffuse, 87, §
external, 98
internal, 98
specular, 87, 88, 426, 427

Refracted wave, 65
Refraction, 79

at aspherical snrfaces, 129Cartesian oval, 130
equation, 216
matrix (@), 217
at spherical surfaces, 132

Refractive index (n), 5f, 60, 62of air, 56
Refractive indices ofbirefringentcrystals,table, 289
Relative aperture, 152
Resolution, 371, 422
Resolving power, 192, 422

chromatic (2), 372
Resonanceprofile, 499
Resonanceradiation, 292, 553
Resonantcavity, 580
Resonant frequency, 59, 60
Retardation, 301, 303
Retarders, 300
Reticle {or reticule), 189
Retina, 178, 179
Reversion, 154
Rhomb, 304
Right-circular light, 272
Ringlaser, 252, 387Rittenhouse, David, 424, 438
Ritter, Johann Wilhelm, 73Rods, 179
Rémer, Ole Christensen,5
Ronchiruling, 506
Réntgen, Wilhelm Conrad, 74
Roof-typeprism, 169
Rotating Sagnacinterferometer, 386
Rotatory dispersion, 312
Rotatory power, 310Rubinowicz, Adalbert, 464
Rupp,E., 548
Sagittal coma, 224
Sagittal focus, 227
Sagittal plane, 226

Sagittal rays, 226
Sagnacinterferometer, 959, 363, 386Salt, 58, 289
Saturated color, 116
Scatter plate, 379
Scattered-light interference, 378
Scattering, 57, 64, 292, 552coherent, 553

elastic, 553
Mie, 294
nonresonant, 87
andpolarization, 292
Rayleigh, 294, 653. 612
spontaneous Raman, 554
stimulated Raman, 664, 611

Schawlow, Arthur Leonard, 578
Scheiner, Christoph, 177
Schlieren method, 576
Schmidt, Bernhard Voldemar, 197
Schmidt camera, 197, 230
Schrédinger, Erwin C., 9, 33, 92
Schrddinger’s equation, 38, 550, 558Schwartz, Laurent, 478
Scylla 1V, 358
Secondary spectrum, 287
Seidel, Ludwig van, 221
Seidel aberrations, 221-232
Self-coherence function, 527
Self-focusing, 618Sellmeier, 78
Seneca. 1
Side-band waves, 600
Sidebands, 267
Sifting property, 479
Sign convention, 134, 144
Signalvelocity (v,), 254Silicon monoxide, 153
Sine function, 261, 401, 521

Table 1, 624Sine condition, 226
Sine theorem, optical, 225Sine waves, 15
Skew rays, 215
Skin depth, 110
Sky, bine colorof, 116, 293Slow axis, 301
Smekal, Adolf, 553
Smith, Robert, 142
Smith, T., 216
Snell, Willebrord,8, 84
Snell's law, 3, 84, 164

photons, 120
Sodium light, 56Solar constant, 556

Soleil compensator, 305
Sommerfeld, Arnold Johannes Wilhelm,394,464
Sonnarlens, 230Source

isotropic, 24
strength (a, Eo), 26, 400

Spaceinvariance, 483
Sparrow, C., 422
Sparrow's criterion, £22
Spatial coherence, 517, 528Spatial filter, 191matched, 609
Spatial filtering, 497, 564
Spatial frequency, 10, 258, 47%, 494, 559spectrum, 259
Spatialperiod (A), 15, 258
Special relativity, 9, 538
Speckle effect, 592
Spectacle lenses, 181
Spectral exitance, 539
Spectral Aux density, 539
Spectral irradiance, 556
Spearal lines, 10, 263
Speed, lens, 152
Speedoflight, measnred by Jupiter'smoon, 5

measuredbyrotating mirrors, 6
measured by rotating toothed wheel, 6,41
in vacuum, 43

Speedof profile, 13
Spherical waves, 24, 42
Spontaneous Ramaneffect, 553
Stained glass, 62, 117
Standard length, 72Standard lens,
Standing waves, 248
Stationarity, 483
Stationary wave, 249
Stefan, Josef, 539Stefan-Boitzmannlaw, 540
Stellar aberration, 8
Stellar interferometry, 580
Stern, Otto, 548
Stigmatic system, 128Stimulated emission, 879
Stops, apertnre and field, 149
Stokes, George Gabriel, 118, 321, 553Stokes parameters, 321Stokes transition, 553
Stokes treatment ofreflection and

refraction, 118
Stroke, George W., 427, 607

Index 675,

Subsidiary maximum,41]
Superposition, 242, 245, 383Surface waves, 106
Synchrotron radiation, 49
System matrix (sf), 217
T-number, 153
TEM mode, 582, 583
Tangential coma, 224
Tangential focus, 227
Tangential plane, 226
Taylor, H. Dennis, 202, 224
Taylor(or Cooke) triptet, 202, 230, 288
Taylor, Geoffrey I., 500
Telephotolens, 201, 202Telescope, 4, 192 .

catadioptric systems, 197Baker, 198
Bouwers-Maksutov, 198
Schmidt, 197

reflecting systems, 4, 196
Cassegrainian, 197
Gregorian, 197
Newtonian, 4, 197
primefocus, 197

refracting systems, 4, 192
angular magnification, 194
astronomical, 194
erecting system, 195
terrestrial, 195 *

Temporalcoherence, 387, 516, 528, 590
complex degree of, 528Tessar lens, 201, 219, 220, 280

Thermal light, 532Thermal radiation, 72
Thermograph, 71Thick lens, 211

cardinal points, 211
combinations, 213
nodalpoints, 211
principal planes, 211
principal points, 211
unit, planes, 214Thinfilms; see Dielectric filmsThin-film measurements, $81

Thin lenses, 135
Thin-lens, combinations, 145

equation, 137
Third-ordertheory. 184, 221
Thomson, George Paget, 545
Time average, 44, 75, 334, 388
Toepler, August (Tépler), 577Tolansky, Samuel, 382
Toric lens, 185
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Index
 676

Totalinternal reflection, 104, 167, 170
Tourmaline, 279, 289
Townes, Charles Hard, 577
Transfer, equation, 216functions, 505-512

matrix (F), 217
‘Transition probability, 61
‘Transmission axis, 27
Transmittance (T), 100, 369

unit (7), 226Transverse waves, 28
clectromagnetic, 41
historical note, 6

Tungsten lamp, 72
Twiss, R. Q., 532
Twyman-Green interferometer, 385
Ulexite, 173
Ultraviolet, 69, 78, HZ

mirrors, 153
Uniaxial crystal, 289
Unit planes, 213
Upatnicks, Juris, 595
V-numbers, 234
Van Cittert-Zernike Theorem,522, 529
Van Laue, Max, 433
Vectograph, polaroid, 282
Verdet, Emile, 516
Verdet constant, 326, 317
Vertex (V), 130
Vibration curve, 248, 438
Vignetting, 151
Virtual, image, 131, 185

object, 135
photons, 84

Visibility (1), 519, 599Vision
astigmatism, 184
eyeglasses, 181
far point, 182
farsightedness, 184
near point, 181, 184 

nearsightedness, 182
wavelength range of, 179Vitello, 2, 84

Vitreous humour, 178
Voigt effect, 318
Water, 58, 62, 114, 317, 319Wave

equation, 14, 24, 40
function, 13,
group, 262number(x), 16, 258
packet, 261, 262
plates, 30)
profile, 13surfaces, 22, 42
theory, 6
velocity, 12, 17, 19, 41

Wavefrontcontinuity, 122
Wavefront splitting, 334, 339Wavefronts, 23
Waveguide,127, 170
Wavelength (A), 15
Wavetrain, 55, 264Waves

circular, 19
cylindrical, 27
electromagnetic, 38, 39
evanescent (surface or boundary), 107
harmonic, 15
inhomogeneous, 28, 107, 583at an interface, 92
linearly polarized, 29, 270
longitudinal, 6, 28ina metal, 108
one-dimensional, 12
plane polarized, 28, 41, 270
propagation, 63
propagation vector, 22
spherical, 24transverse, 6, 28, 41

Wavicles, 10
Weber, Wilhelm, 40

 
Wheatstone, Charles, §
White light, 72, 338White substances, 114
Wide-angle lens, 202Wien, Wilhelm Carl Werner Otto Fritz

Franz, 540
Wien's displacement law, 339
Wiener, Otto, 249
Wiener’s experiment, 249Wiener-Khintchinetheorem, 501
Window, entrance, 191

exit, 191
Wire-grid polarizer, 279
Wolf, Emil, 464
Wollaston prism, 292
Wollaston, William Hyde, 10,225 +
Wood, Robert Williams, 426, 446, 553
Woodbury,Eric ]., 554
Work function (,), 543, 557
X-rays, 62, 74, 179

Brage’s law. 434
frequency range, 74transverse nature, 296
white radiation, 433

YAG(yttrium aluminum garnet), 587
Yerkes Observatory, 152, 196
YIG (yttrium iron garnet), 317
Young, Thomas, 5, 6, 296, 464
Young's diffraction theory, 464
Young’s experiment, 389, 464, 481, 496,

518, 528, 529, 549, 550
Zeeman effect, 251
Zeiss, Carl, 192, 563
Zeiss Orthometerlens, 201, 230
Zeiss Sonnar lens, 230
Zernike, Fritz, $16, 570, 575
Zinc sullide, 376
Zirconium dioxide, 376Zone construction, 435
Zoneplate, 445, 595, 602
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