UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

SAMSUNG ELECTRONICS CO., LTD., SAMSUNG ELECTRONICS AMERICA, INC., Petitioners,

v.

NANOCO TECHNOLOGIES LTD., Patent Owner.

Case No. IPR2021-00186 U.S. Patent No. 8,524,365

PATENT OWNER'S SUR-REPLY

Case No. IPR2021-00186 U.S. Patent No. 8,524,365

TABLE OF CONTENTS

I.	Petitioner incorrectly assumes that a renewed motion to stay will be granted	1
II.	Petitioner's new and belated stipulation does not meaningfully alter	
	the <i>Fintiv</i> analysis	4

TABLE OF AUTHORITIES

	Page(s)
Cases	
Arbor Global Strategies LLC v. Samsung Electronics Co., C.A. No. 2:19-cv-00333, 2021 U.S. Dist. LEXIS 2434 (E.D. Tex. Jan. 7, 2021)	2, 3
Intellectual Ventures I LLC v. T Mobile USA, Inc., No. 2:17-CV-00577-JRG, 2018 U.S. Dist. LEXIS 239587 (E.D. Tex. Dec. 13, 2018)	3
Oyster Optics, LLC v. Infinera Corp., No. 2:19-CV-00257-JRG, Dkt. 87 (E.D. Tex. Jul. 17, 2020)	3
Sand Revolution II, LLC v. Cont'l Intermodal GrpTrucking LLC, IPR2019-01393, Paper 24 (PTAB June 16, 2020)	4
Seven Networks, LLC v. Apple Inc., No. 2:19-cv-00115-JRG, Dkt. 313 (Sept. 22, 2020)	3
Sotera Wireless, Inc. v. Masimo Corp., IPR2020-01019, Paper 12 (PTAB Dec. 1, 2020)	4. 5

TABLE OF EXHIBITS

Exhibit	Description
2001	Declaration of Michael C. Newman
2002	Declaration of Thomas H. Wintner
2003	Declaration of Matthew S. Galica
2004	Periodic table of the elements, Encyclopaedia Britannica, Inc.,
	available at https://www.britannica.com/science/periodic-table (last
	visited Feb. 18, 2021)
2005	Samsung Global Newsroom. Quantum Dot Artisan: Dr. Eunjoo Jang,
	Samsung Fellow, November 30, 2017
2006	ACS Energy Lett. 2020, 5, 1316-1327. "Environmentally Friendly
2005	InP-Based Quantum Dots for Efficient Wide Color Gamut Displays"
2007	Wang, F., Dong, A. and Buhro, W.E., Solution–liquid–solid
	synthesis, properties, and applications of one-dimensional colloidal
	semiconductor nanorods and nanowires. Chemical
2008	Reviews, 116(18):10888-10933 (2016).
2008	Wang, F., et al., Solution—liquid—solid growth of semiconductor nanowires. Inorganic chemistry, 45(19):7511-7521 (2006).
2009	Madkour, L.H., Synthesis Methods For 2D Nanostructured
2007	Materials, Nanoparticles (NPs), Nanotubes (NTs) and Nanowires
	(NWs). In Nanoelectronic Materials (pp. 393-456). Springer, Cham.
	(2019)
2010	Mushonga, P., et al., <i>Indium phosphide-based semiconductor</i>
	nanocrystals and their applications. Journal of Nanomaterials, 1-11
	(2012).
2011	Luo, H., Understanding and controlling defects in quantum confined
	semiconductor systems, Doctoral dissertation, Kansas State
	University (2016).
2012	Sinatra, L., et al. Methods of synthesizing monodisperse colloidal
2012	quantum dots. Material Matters, 12:3-7 (2017)
2013	Pu, Y., et al., Colloidal synthesis of semiconductor quantum dots
	toward large-scale production: a review. Industrial & Engineering
2014	Chemistry Research, 57(6):1790-1802 (2018).
2014	Rao, C. N. R.; Gopalakrishnan, J., Chapter 3: Preparative Strategies
	from New Directions in Solid State Chemistry; Cambridge University Pross: Cambridge LIK (1986)
	Press: Cambridge, UK (1986).

Exhibit	Description
2015	Glossary of Common Wafer Related Terms, BYU Electrical &
	Computer Engineering Integrated Microfabrication Lab, definition of
	degenerate semiconductor, available at
	https://cleanroom.byu.edu/ew_glossary (last visited Feb. 19, 2021)
2016	October 22, 2006 email between Eunjoo Jang and Nigel Pickett Re: Cd free quantum dots
2017	Weare, W.W., Reed, S.M., Warner, M.G. and Hutchison, J.E.,
	Improved synthesis of small (d core \approx 1.5 nm) phosphine-stabilized
	gold nanoparticles. Journal of the American Chemical
	Society, 122(51):12890-12891 (2000).
2018	Samsung's Motion to Stay Pending <i>Inter Partes</i> Review of the
	Asserted Patents in Case 2:20-cv-00038-JRG, filed on November 30, 2020
2019	Order denying Samsung's Motion to Stay Pending <i>Inter Partes</i>
	Review in Case 2:20-cv-00038-JRG, filed on January 8, 2021
2020	Standing Order Regarding the Novel Coronavirus (Covid-19) for the
	Eastern District of Texas Marshall Division, signed March 3, 2020
2021	Standing Order Regarding Pretrial Procedures In Civil Cases
	Assigned to Chief District Judge Rodney Gilstrap During the
	Present Covid-19 Pandemic, signed April 20, 2020
2022	Samsung's Preliminary Invalidity Contentions and Disclosures
	Pursuant To Patent Rules 3-3 and 3-4 (served November 9, 2020)
2023	Merriam-Webster Dictionary, online edition. Definition of
	"Halogen", available at https://www.merriam-
	webster.com/dictionary/halogen (last visited Feb. 23, 2021)
2024	Illustrated Glossary of Organic Chemistry, UCLA. Illustration of
	Halide, available at
	http://www.chem.ucla.edu/~harding/IGOC/H/halide.html (last
	visitied Feb. 23, 2021)
2025	Mortvinova, N.E., Vinokurov, A.A., Lebedev, O.I., Kuznetsova,
	T.A., and Dorofeev, S.G., Addition of Zn during the phosphine-based
	synthesis of indium phospide quantum dots:doping and surface
	passivation, Beilstein J Nanotechnol. 2015; 6: 1237-1246.
2026	Samsung's Proposed Claim Constructions (served December 11, 2020)

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

