
 All Products | Support | Search | microsoft.com Home

 Home | Contact Us | Archive | Support | About Our Site | Shopping |

Find a Product

more search

options
How to Buy
Hot Off the Press
Monthly Feature
News & Events
IT Professional
Developer
Home User
Business Solutions
Self-Paced Training

Success Stories
Getting Started
Staying Ahead
Ask the Experts
MCP Exam Info
MCP Scholarship
MCP Connection

Win Big
Worldwide Sites

Inside Windows NT(R), Second Edition

David A. Solomon,
based on the original edition by Helen Custer

ISBN: 1-57231-677-2

Chapter 2: System Architecture

System Architecture
Requirements and Design Goals
Operating System Models
Architecture Overview

Portability
Symmetric Multiprocessing
Windows NT Workstation vs. Windows NT Server

Key System Components
Environment Subsystems and Subsystem DLLs
NTDLL.DLL
Executive
Kernel
Hardware Abstraction Layer (HAL)
Device Drivers
Peering into Undocumented Interfaces
System Processes

Conclusion

System Architecture

Now that we’ve covered the terms, concepts, and tools you need to be familiar with, we’re ready to start our
exploration of the internal design goals and structure of Microsoft Windows NT. This chapter explains the
overall architecture of the system--the key components, how they interact with each other, and the context
in which they run. To provide a framework for understanding the internals of Windows NT, let’s first
review the requirements and goals that shaped the original design and specification of the system.

Requirements and Design Goals

Microsoft ., •i p ress1. ;. jlf':
on me - --..

Sample Chapter_

• • • •
0
0
0

•
0
0
0
0
0
0
0
0

•

Petitioners Microsoft Corporation and HP Inc. - Ex. 1021, p. 1 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

The following requirements drove the specification of Windows NT back in 1989:

Provide a true 32-bit, preemptive, reentrant, virtual memory operating system
Run on multiple hardware architectures and platforms
Run and scale well on symmetric multiprocessing systems
Be a great distributed computing platform, both as a network client and a server
Run most existing 16-bit MS-DOS and Microsoft Windows 3.1 applications
Meet government requirements for POSIX 1003.1 compliance
Meet government and industry requirements for operating system security
Be easily adaptable to the global market by supporting Unicode

To guide the thousands of decisions that had to be made to create a system that met these requirements, the
Windows NT design team adopted the following design goals at the beginning of the project:

Extensibility The code must be written to comfortably grow and change as market requirements
change.

Portability The system must be able to run on multiple hardware architectures and must be able to
move with relative ease to new ones as market demands dictate.

Reliability and robustness The system should protect itself from both internal malfunction and
external tampering. Applications should not be able to harm the operating system or other running
applications.

Compatibility Although Windows NT should extend existing technology, its user interface and
application programming interfaces (APIs) should be compatible with older versions of Windows as
well as older operating systems such as MS-DOS. It should also interoperate well with other systems
such as UNIX, OS/2, and NetWare.

Performance Within the constraints of the other design goals, the system should be as fast and
responsive as possible on each hardware platform.

As we explore the details of the internal structure and operation of Windows NT, you’ll see how these
design goals and market requirements were woven successfully into the construction of the system. But
before we start that exploration, let’s examine the overall design model for Windows NT and compare it to
other modern operating systems.

Operating System Models

In most operating systems, applications are separated from the operating system itself--the operating system
code runs in a privileged processor mode (referred to as kernel mode in this book), with access to system
data and to the hardware; applications run in a nonprivileged processor mode (called user mode), with a
limited set of interfaces available and with limited access to system data. When a user-mode program calls a
system service, the processor traps the call and then switches the calling thread to kernel mode. When the
system service completes, the operating system switches the thread context back to user mode and allows
the caller to continue.

The design of the internal structure of the kernel-mode portion of such systems varies widely. For example,
traditional operating systems were monolithic in nature, as illustrated in Figure 2-1. The system was
constructed as a single, large software system with many dependencies among internal components. This
interdependency meant that extensions to the system might require many changes across the entire code
base. Also, in a monolithic operating system, the bulk of the operating system code runs in the same
memory space, which means that any operating system component could corrupt data being used by other
components.

• • • • • • • •

•

•

•

•

•

Petitioners Microsoft Corporation and HP Inc. - Ex. 1021, p. 2 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Click to view graphic (12 KB)

Figure 2-1
Monolithic operating system

A different structuring approach divides the operating system into modules and layers them one on top of
the other. Each module provides a set of functions that other modules can call. Code in any particular layer
calls code only in lower layers. On some systems, such as the Digital Equipment Corporation (DEC)
OpenVMS or the old Multics operating system, hardware even enforces the layering (using multiple,
hierarchical processor modes). One advantage of a layered operating system structure is that because each
layer of code is given access to only the lower-level interfaces (and data structures) it requires, the amount
of code that wields unlimited power is limited. This structure also allows the operating system to be
debugged starting at the lowest layer, adding one layer at a time until the whole system works correctly.
Layering also makes it easier to enhance the operating system because individual layers can be modified or
replaced without affecting other parts of the system.

Another approach to structuring an operating system is the client/server microkernel model. The
architecture in this approach divides the operating system into several server processes, each of which
implements a single set of services--for example, memory management services, process creation services,
or processor scheduling services. Each server runs in user mode, waiting for a client request for one of its
services. The client, which can be either another operating system component or an application program,
requests a service by sending a message to the server. An operating system microkernel running in kernel
mode delivers the message to the server; the server performs the operation; and the kernel returns the results
to the client in another message, as illustrated in Figure 2-2.

NOTE:
The client/server model of networking is distinctly different from the client/server model of
processing. In client/server networking, a server provides resources (such as files, printer, and
storage space) to the clients. Client/server processing is a method of distributing the
processing load required by an application to best suit the capabilities of network, server, and
client so that one part of an application is processed on a server machine while another is
processed on the client.

In reality, client/server systems fall within a spectrum, some doing very little work in kernel mode and
others doing more. For example, the Carnegie Mellon University Mach operating system, a contemporary
example of the client/server microkernel architecture, implements a minimal kernel that comprises thread
scheduling, message passing, virtual memory, and device drivers. Everything else, including various APIs,
file systems, and networking, runs in user mode. However, commercial implementations of the Mach
microkernel operating system typically run at least all file system, networking, and memory management
code in kernel mode. The reason is simple: the pure microkernel design is commercially impractical
because it is too computationally expensive--that is, it’s too slow.

Click to view graphic (8 KB)

Figure 2-2
Client/server operating system

So what model does Windows NT embody? It merges the attributes of a layered operating system with
those of a client/server or microkernel operating system. Performance-sensitive operating system
components run in kernel mode, where they can interact with the hardware and with each other without
incurring the overhead of context switches and mode transitions. For example, the memory manager, cache
manager, object and security managers, network protocols, file systems (including network servers and

-00
~

Petitioners Microsoft Corporation and HP Inc. - Ex. 1021, p. 3 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

redirectors), and all thread and process management run in kernel mode.

Of course, all of these components are fully protected from errant applications, because applications don’t
have direct access to the code and data of the privileged part of the operating system (though they can
quickly call other kernel services). This protection is one of the reasons that Windows NT has the reputation
for being both robust and stable as an application server and a workstation platform yet fast and nimble
from the perspective of core operating system services, such as virtual memory management, file I/O,
networking, and file and print sharing.

Does the fact that so much of Windows NT runs in kernel mode mean it is more susceptible to crashes than
a true microkernel operating system? Not really. Consider the following scenario: suppose the file system
code of an operating system has a bug that causes it to crash from time to time. In a traditional operating
system or a modified microkernel operating system, a bug in kernel-mode code such as the memory
manager or the file system would likely crash the entire operating system. In a pure microkernel operating
system, such components run in user mode, so theoretically a bug would simply mean that the component’s
process exits. But in practical terms, the failure of such a critical process would result in a system crash,
since recovery from the failure of such a component would likely be impossible.

The kernel-mode components of Windows NT also embody basic object-oriented design principles. For
example, they don’t reach into one another’s data structures to access information maintained by individual
components. Instead, they use formal interfaces to pass parameters and access and/or modify data
structures.

Despite its pervasive use of objects to represent shared system resources, however, Windows NT is not an
object-oriented system in the strict sense. Most of the operating system code is written in C for portability
and because development tools are widely available. C does not directly support object-oriented constructs,
such as dynamic binding of data types, polymorphic functions, or class inheritance. Therefore, the C-based
implementation of objects in Windows NT borrows from, but does not depend on, esoteric features of
particular object-oriented languages.

Architecture Overview

Now that you understand the basic model of Windows NT, let’s take a look at the key system components
that comprise its architecture. A simplified version of this architecture is shown in Figure 2-3. Keep in mind
that this diagram is basic--it doesn’t show everything. The various components of Windows NT are covered
in detail later in the chapter.

In Figure 2-3, first notice the line dividing the user-mode and kernel-mode parts of the Windows NT
operating system. The boxes above the line represent user-mode processes, and the components below the
line are kernel-mode operating system services. As mentioned in Chapter 1, user-mode threads execute in a
protected process address space (although while they are executing in kernel mode, they have access to
system space). Thus, system processes, server processes (services), the environment subsystems, and user
applications each have their own private process address space.

Click to view graphic (8 KB)

Figure 2-3
Simplified Windows NT architecture

The four basic types of user processes are described in the following list:

Special system support processes, such as the logon process and the session manager, that are not
Windows NT services (that is, not started by the service controller).

Server processes that are Windows NT services, such as the Event Log and Schedule services. Many

-~
~

•

•

Petitioners Microsoft Corporation and HP Inc. - Ex. 1021, p. 4 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

add-on server applications, such as Microsoft SQL Server and Microsoft Exchange Server, also
include components that run as Windows NT services.

Environment subsystems, which expose the native operating system services to user applications,
thus providing an operating system environment, or personality. Windows NT ships with three
environment subsystems: Win32, POSIX, and OS/2 1.2.

User applications, which can be one of five types: Win32, Windows 3.1, MS-DOS, POSIX, or OS/2
1.2.

In Figure 2-3, notice the "Subsystem DLLs" box below the "User applications" one. Under Windows NT,
user applications do not call the native Windows NT operating system services directly; rather, they go
through one or more subsystem dynamic-link libraries (DLLs). The role of the subsystem DLLs is to
translate a documented function into the appropriate undocumented Windows NT system service calls. This
translation might or might not involve sending a message to the environment subsystem process that is
serving the user application.

The kernel mode of the operating system includes these components:

The Windows NT executive contains the base operating system services, such as memory
management, process and thread management, security, I/O, and interprocess communication.

The Windows NT kernel performs low-level operating system functions, such as thread scheduling,
interrupt and exception dispatching, and multiprocessor synchronization. It also provides a set of
routines and basic objects that the rest of the executive uses to implement higher-level constructs.

The hardware abstraction layer (HAL) is a layer of code that isolates the kernel, device drivers, and
the rest of the Windows NT executive from platform-specific hardware differences.

Device drivers include both file system and hardware device drivers that translate user I/O function
calls into specific hardware device I/O requests.

The windowing and graphics system implements the graphical user interface (GUI) functions (better
known as the Win32 USER and GDI functions), such as dealing with windows, controls, and
drawing.

Each of these components is covered in greater detail both later in this chapter and in the chapters that
follow.

Before we dig into the details of these system components, though, let’s review two key attributes of the
Windows NT architecture--portability and multiprocessing--and also examine the differences between
Windows NT Workstation and Windows NT Server.

Portability

Windows NT was designed to run on a variety of hardware architectures, including Intel-based CISC
systems as well as RISC systems. The initial release of Windows NT supported the x86 and MIPS
architecture. Support for the DEC Alpha AXP was added shortly thereafter. Support for a fourth processor
architecture, the Motorola PowerPC, was added in Windows NT 3.51. Because of changing market
demands, however, support for both the MIPS and PowerPC was dropped after the release of Windows NT
4.0. Windows NT 5.0 will run only on x86 and Alpha machines. Eventually, Windows NT will also run on
the Merced chip, the first implementation of the new 64-bit architecture family being jointly developed by
Intel and Hewlett-Packard, called IA64 (for Intel Architecture 64). As Microsoft has stated publicly,
Windows NT will be enhanced to support a true 64-bit programming interface on both IA64 and Alpha
systems.

Windows NT achieves portability across hardware architectures and platforms in two primary ways:

•

•

•

•

•

•

•

Petitioners Microsoft Corporation and HP Inc. - Ex. 1021, p. 5 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

