
Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, Cover

A UNIX-COMPATIBLE OPERATING SYSTEM FOR THE PERSONAL COMPUTER

O'REILLY® ALESSANDRO RUBINI

A UNIX-COMPATIBLE OPERATING SYSTEM FOR THE PERSONAL COMPUTER

LINUX
DEVICE DRIVERS

O’REILLY” ALESSANDRO RUBINI

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, Cover

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, Cover-2Petitioners Microsoft Corporation and HPInc. - Ex. 1019, Cover-2

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. i

\

LINUX
DEVICE DRIVERS
LINUX
DEVICE DRIVERS

Petitioners Microsoft Corporation and HPInc. - Ex. 1019, p.i

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. iiPetitioners Microsoft Corporation and HPInc.- Ex. 1019, p. i

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. iii

\

LINUX
DEVICE DRIVERS

ALESSANDRO RUBINI

O'REILLY®
Beijing • Cambridge • Farnham • Koln • Paris • Sebastopol • Taipei • Tokyo

LINUX
DEVICE DRIVERS

ALESSANDRO RUBINI

O’REILLY*

Betjing + Cambridge + Farnham: K6éln + Paris + Sebastopol - Taipei + Tokyo

Petitioners Microsoft Corporation and HP Inc.- Ex. 1019,p.iti

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. iv

Linux Device Drivers
by Alessandro Rubini

Copyright© 1998 O'Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Editors: Andy Oram and Ellen Siever

Production Editor: David Futato

Printing History:

February 1998: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks and the Java™ Series is a trademark of O'Reilly & Associates, Inc. The association
between images of the American West and the topic of Linux is a trademark of O'Reilly &
Associates, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O'Reilly &
Associates, Inc. was aware of a trademark claim, the designations have been printed in caps
or initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes
no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 1-56592-292-1
[M]

[6/00]

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. v

TABLE OF CONTENTS

PREFACE _______________________ xi

CHAPTER ONE

AN INTRODUCTION TO THE LINUX KERNEL ______ l
The Role of the Driver Writer

Splitting the Kernel
Classes of Devices and Modules

Security Issues
Version Numbering
License Terms
Overview of the Book

CHAPTER1WO

1

3
5
7

8

10

11

BUILDING AND RUNNING MODULES _________ 13
Modules Versus Applications
Compiling and Loading
The Kernel Symbol Table
Initialization and Shutdown
Using Resources
Automatic and Manual Configuration

Doing It in User Space
Quick Reference

14

18

22

24

28

34
36
38

V

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. vi

Table of Contents

CHAPTER THREE

CHAR DRIVERS 41 ---------------------
The Design of scull

Major and Minor Numbers
File Operations
The file Structure
Open and Close

Scull's Memory Usage

Read and Write

Playing with the New Devices

Quick Reference

CHAPTER FOUR

41
42
49
52
54
58
61
66
67

DEBUGGING TECHNIQUES ____________ 69
Debugging by Printing 69
Debugging by Querying 73

Debugging by Watching 77

Debugging System Faults 79
Using a Debugger 88

CHAPTER FIVE

ENHANCED CHAR DRIVER OPERATIONS

ioctl

Blocking 1/0

Select

Asynchronous Notification

Seeking a Device
Access Control on a Device File

Quick Reference

CHAPTER SIX

_______ _..94

95
105
114

117
121

123
128

FLOW OF TIME ______________ l31

vi

Time Intervals in the Kernel
Knowing the Current Time
Delaying Execution
Task Queues

131
132
134
137

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. vii

Kernel Timers
Quick Reference

CHAPTER SEVEN

Table of Contents

147
150

GETTING HOLD OF MEMORY __________ 152

The Real Story of kmalloc
get_ free_ page and Friends
vmalloc and Friends
Playing Dirty

Quick Reference

CHAPTER EIGHT

152
154
157
160
161

HARDWARE MANAGEMENT ___________ l63
Using 1/0 Ports
Using the Parallel Port
Accessing Memory on Device Boards
Accessing the Text-Mode Video Buffer
Quick Reference

CHAPTER NINE

164
168
170
175
176

INTERRUPT HANDLING ____________ l 78

Preparing the Parallel Port
Installing an Interrupt Handler
Implementing a Handler
Bottom Halves
Interrupt Sharing
Interrupt-Driven 1/0
Race Conditions

Version Dependencies of IRQ Handling
Quick Reference

CHAPTER TEN

178
179
189
194
199
202
203
211

212

JUDICIOUS USE OF DATA TYPES __________ 214
Use of Standard C Types
Assigning an Explicit Size to Data Items
Interface-Specific Types

214
216
217

vii

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. viii

Table of Contents

Other Portability Issues
Quick Reference

CHAPTER ELEVEN

218
220

KERNELD AND ADVANCED MODULARIZATION _____ 222
Loading Modules on Demand
Version Control in Modules

Persistent Storage Across Unload/Load
Quick Reference

CHAPTER TWELVE

222
227
231
234

LOADING BLOCK DRIVERS ___________ 235
Registering the Driver
The Header File blk.h
Handling Requests
How Mounting Works
The ioctl Method
Removable Devices
Partitionable Devices

Interrupt-Driven Block Drivers
Quick Reference

CHAPTER THIRTEEN

235
240
242
248
249
252
255
263
265

MMAP AND DMA _____________ 267
Memory Management in Linux
The mmap Device Operation

Direct Memory Access
Quick Reference

CHAPTER FOURTEEN

267
275
289
298

NETWORK DRIVERS ______________ 301

vttt

How snull Is Designed
Connecting to the Kernel
The device Structure in Detail
Opening and Closing
Packet Transmission

302
305
310
318
320

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. ix

Packet Reception
Interrupt-Driven Operation

The Socket Buffers
Address Resolution
Load-Time Configuration
Run-Time Configuration
Custom ioctl Commands
Statistical Information
Multicasting
Quick Reference

CHAPTER FIFfEEN

Table of Contents

322
324
325
328
330
332
334
335
335
339

OVERVIEW OF PERIPHERAL BUSES _________ 341
The PCI Interface
A Look Back: ISA
Other PC Buses

Sbus
Quick Reference

CHAPTER SIXTEEN

341
356
358
359
360

PHYSICAL LAYOUT OF THE KERNEL SOURCE ______ 362
Booting the Kernel
Before Booting
The Init Process
The kernel Directory
The mm Directory
The fs Directory
Networking
IPC and lib Functions
Drivers

Architecture Dependencies

362
364
368
369
371
373
377
378
379
380

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. x

Table of Contents

CHAPTERSEVENI'EEN
RECENT DEVELOPMENTS 82

Modularization 383
File Operations 387
Accessing User Space 391
Task Queues 395
Interrupt Management 396
Bit Operations 396
Conversion Functions 397
vremap 398
Virtual Memory 398
Handling Kernel-Space Faults 398
Other Changes 400

INDEX 403

X

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. xi

PREFACE

As an electronic engineer and a do-it-yourself kind of person, I have always
enjoyed using the computer to contro l exte rnal hardware. Ever since the
clays of my father's Apple-2e, I have been looking for another platform

where I could connect my custom circuiuy and write my own driver software.
Unfortunately, the PC o f the eighties wasn't powerful enough, at e ither the soft
ware or the hardware level-the inte rnal design of the PC was much worse than
that of the Apple-2e, and rhe available documentation for a long time was unsatis
fying. But then Linux appeared, and I decided to give it a ny by buying an expen
sive 386 motherboard and no commercial software at all.

At the time, I was using Uni,x systems at the university, and was greatly excited by
the smart operating system, panicula rly when suppleme nted by the even smarte r
utilities that the GNU project donates to the user base. Running Linux o n my own
PC motherboard has always been an inte resting experience, and I could even
write my own device drivers and play with the soldering iron once again. I con
tinue to tell people "when I grow up, I wanna be a hacker," and Linux is the per
fect platform for such dreams. Thar said, I don't know if I will ever grow up.

As Linux matures, more and mo re people get interested in writing drivers for cus
tom circuiny and for commercial devices. As Linus Torvalcls noted, ·'We're back to
the times when men were men and wrote the ir own device d rivers. "

Not be ing able to write innovative code, I began writing technical articles for
Linux Journal as a contribution to the Linux community; later, Andy Oram at
O 'Reilly expressed an inte rest in having me write a whole book about device
drivers, and I accepted this task. Altho ugh real hackers can find all the necessa1y
information in the official kernel sources, a written text can be helpful in develop
ing programming skills. The text you are approaching is the result of hours of

.xi

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. xii

Preface

patient grepping through the kernel sources, and I hope the final result is worth
the effort it took. I hope this book will be useful as a starting point for people
who want to become kernel hackers but don't know where to start.

Audience of This Book
On the technical side, this text should offer a hands-on approach to understanding
the kernel internals and some of the design choices made by the Linux develop
ers. Although the main and official target of the book is teaching how to write
device drivers, the enclosed material should give an intriguing overview of kernel
implementation as well.

This book should be an interesting source of information both for people who
want to play with their computer and for technical programmers who need to deal
with the inner levels of a Linux box. Note that "a Linux box" is a wider concept
than "a PC running Linux" as many platforms are supported by our operating sys
tem, and kernel programming is by no means bound to a specific platform.

The Linux enthusiast should find in this book enough food for her mind to start
playing with the code base, and then be able to join the group of developers who
are continuously working on new capabilities and performance enhancements.
Linux is still a work-in-progress, and there's always a place for new programmers
to jump into the game.

If, on the other hand, you are just trying to write a device driver for your own
device and don't want to muck with the kernel internals, the text should be modu
larized enough to fit your needs as well. If you don't want to go deep into the
details, you can just skip the most technical sections and stick to the standard API
used by device drivers to seamlessly integrate with the rest of the kernel.

The main target of this book is writing kernel modules for version 2.0 of the Linux
kernel. A module is object code that can be loaded at run time to add new func
tionality to a running kernel. The discussion also covers version 1. 2 of the kernel,
and the last chapter describes the changes that the driver interface underwent from
version 2.0 to version 2.1.43 (the latest-and-greatest at the time the book went to
technical review).

Organization of the Material
The book introduces its topics in ascending order of complexity and can be
divided into two parts. The first part (Chapters 1 through 10) begins with the
proper setup of kernel modules, and goes on to describe the various aspects of
programming that you'll need in order to write a full-featured driver for a char
oriented device. Every chapter covers a distinct problem and includes a "symbol

xii

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. xiii

Preface

table" at the end, which can be used as a reference during actual development. As
I wrote my own drivers, I found myself referring back to my own chapters, and I
hope you too will exploit the symbol tables.

Throughout the first part of the book, the organization of the material moves
roughly from the software-oriented concepts to the hardware-related ones. This is
meant to allow you to test the software on your own computer as far as possible
without the need to plug external hardware into the machine. Every chapter
includes source code and points to sample drivers that you can run on any Linux
computer. In Chapters 8 and 9, however, I'll ask you to connect an inch of wire to
the parallel port in order to test out hardware handling, but this requirement
should be manageable by everyone.

The second half of the book describes block drivers and network interfaces and
goes deeper into more advanced topics. Most likely you won't need this informa
tion to write actual drivers, but I hope you appreciate the first part enough to be
induced to go on reading.

As a matter of fact, most of the material I present can be interesting independent
of the actual need to write device drivers. Several students were referred to me for
Linux information for their theses while I was writing this book; all of them
enjoyed reading the appropriate chapter to support their work, even if their task
didn't involve writing a driver.

Background Information
In order to be able to face this book, you need to be confident with C program
ming. A little Unix expertise is needed as well, as I often refer to Unix commands
and pipelines.

At the hardware level, no previous expertise is required, as long as the general
concepts are clear in advance. The text isn't based on specific PC hardware, and I
provide all the needed information when I do refer to specific hardware.

Being able to connect to the Internet would be beneficial for the reader because
many interesting documents and upgrades can be retrieved from the network.
Being wired is, however, not strictly necessary, and I myself have quite poor con
nectivity (mainly due to the high rates of the Italian telecommunication company).

As far as the software is concerned, you'll need to have Linux installed on your
computer to run the sample drivers, but any distribution will do (and almost any
hardware platform as well). A complete list of the needed software packages is
found in Chapter 1, as many readers just wouldn't receive the information if it was
in the Preface. (I expect many will skip Chapter 1 as well; most of the readers are
hackers, aren't you?)

xiii

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. xiv

Preface

Sources for Further Information
Most of the information I provide in this book is extracted directly from the kernel
sources. As long as you have them installed in your system, you'll rarely need
other documents to supplement the information. There are a few interesting books
out there that can help in writing device drivers, although the main sources of
information are the kernel sources and the technical documentation about your
devices. Needless to say, you'll appreciate the manuals that describe your own
computer platform.

As far as kernel hacking is concerned, the best information (after the source files)
is available on the Internet. Linux Journal also hosts some interesting technical
articles. Check the "Kernel Korner" column, but skip my own articles, as I tend to
repeat myself; non-Kernel Korner articles are interesting as well, but rarely as
technical as the average reader of this book will appreciate.

On the Internet, I'd suggest looking in the following places:

http://www.redhat.com:8080/
The "HyperNews" server at Red Hat carries the Kernel Hacker's Guide, an
interesting document about the kernel internals. Some of its chapters are quite
old, but some have been introduced or updated recently. The material is quite
interesting, in my opinion.

http://www.kernel.org/
ftp:! /ftp.kernel. orgl

This site is the home of Linux kernel development. You'll find the latest ker
nel release and related information. Note that the FTP site is mirrored through
out the world, so you'll most likely find a mirror near you.

ftp://sunsite.unc.edu/pub/Linuxldocsl
ftp:l/tsx-11. mit.edulpub/linux/docs/

The "Linux Documentation Project" carries a lot of interesting documents
called "HOWfOs"; some of them are pretty technical and cover kernel-related
topics. Sunsite and tsx-11 also carry most of the programs available for Linux;
they are interesting in general, not only for their docs/ directory. Well, I'm sure
you know about these archives already, but I think it's worth mentioning
them.

http://www.ssc.com/

xtv

SSC, Specialized System Consultants, are the publishers of Linux Journal, and
their site carries the HTML version of most of the articles they've published.
Any interesting article they print is converted to HTML shortly after publication
and is made available on the Web.

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. xv

Preface

http://www.conecta.it/linuxl
This Italian site is one of the places where a Linux enthusiast keeps updated
information about all the ongoing projects involving Linux. Maybe you already
know an interesting site with HTIP links about Linux development; if not, this
one is a good starting point.

Relevant Books
In addition to source code and Internet resources, a number of good books cover
some of the topics discussed in this book. The following list represents my per
sonal anthology in the field. The books I list here either document software fea
tures of Unix systems or describe interesting hardware topics. I won't name any
books about the PC architecture, as there are too many of them. Unfortunately, I
also can't suggest any book about the Spare architecture, as I found none. If you
need information, I'm pretty sure a quick search through the Web will fill the gap.

[O] Bach, Maurice. 1be Design of the Unix Operating System. Prentice Hall. 1986.

This book, though quite old, covers all the issues related to Unix implementations. It
has been the main source of inpiration for Linus to write the first Linux versions.

[1] Beck, Michael. Linux Kernel Internals. Addison-Wesley. 1997.

This book concentrates on the internal data structures and algorithms of Linux; you'll
like it if you appreciate detailed descriptions. The first edition treated version 1.2; I
don't know how far through later versions the new edition has moved. Version 2.0 and
later are quite different from 1.2 in their internal details.

[2] Stevens, Richard. Advanced Programming in 1be Unix Environment. Addison
Wesley. 1992.

Every detail of Unix system calls is described herein. The book is a good companion
when implementing advanced features in the device methods. Any conceivable doubt
about Unix semantics can be solved by referring to this book.

[31 Stevens, Richard. Unix Network Programming. Prentice Hall. 1990.

As you might imagine, this book is a high-quality reference about networking issues. It
matches "Advanced Programming" in both quality and coverage of the subject matter.
The books is full of source code to test every bit of user-space networking.

[4] Comer, Douglas, and Stevens, David. Internetworking with TCP/IP Vols I, II and
III. Prentice Hall. 1991.

This heavy collection of networking information is a complete tutorial about everything
in the Internet field. The books describe the suite of Internet Protocols and their imple
mentation.

xv

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. xvi

Preface

[51 Shanley, Tom, and Anderson, Don. PC/ Sytem Architecture. Addison-Wesley.
1995.

This book thoroughly describes the PCI bus and its interface standard. You'll find simi
lar "System Architecture" titles for most of the hardware topics, all by the same authors.
All these books are very interesting, although somehow PC-biased. This volume about
PCI is the one I liked best. I disliked at least one of the books, but a careful analysis
revealed that the book is good and just describes a bad architecture.

[6] Digital Semiconductor. Alpha AXP Architecture Handbook. Digital Semiconduc
tor. 1994.

This book and the "Alpha AXP Reference Manual" are available for free from Digital
Semiconductor. They describes the machine language of die Alpha processors and the
underlying design issues that have been dealt with. The order number for this book is
EC-QD2KA-TE.

Conventions Used in This Book
The following is a list of the typographical conventions used in this book.

Italic
is used for file and directory names, program and command names, com
mand-line options, email addresses and path names, URLs, and for emphasiz
ing new terms.

Boldface
is used to symbolize keystrokes (i.e., Ctrl-N).

Constant Width
is used in examples to show the contents of code files or the output from
commands, and to indicate environment variables and keywords that appear
in code.

Constant Italic
is used to indicate variable options, keywords, or text that the user is to
replace with an actual value.

Constant Bold
is used in examples to show commands or other text that should be typed lit
erally by the user.

We'd Like to Hear from You
We have tested and verified all of the information in this book to the best of our
ability, but you may find that features have changed (or even that we have made

xvi

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. xvii

Preface

mistakes!). Please let us know about any errors you find, as well as your sugges
tions for future editions, by writing:

O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
1-800-998-9938 (in the US or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (FAX)

You can also send us messages electronically. To be put on the mailing list or
request a catalog, send email to:

info@oreilly.com (via the Internet)

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com (via the Internet)

Finally, we can be found on the World Wide Web at http://www.oreilly.com/.

Acknowledgments
This book isn't completely mine: I've had external help both in hardware material
and human support. I want to thank Mr. Dreyer of Quant-X for loaning me an
Alpha computer so I could test portability of the sample code included in this
book. Sun-Italia has been kind as well, by loaning me a Spare machine; this
allowed me to upgrade the box from their OS to mine. ImageNation helped by
donating a PCI frame grabber, which I used to dissect PCI and OMA features.

Surely this book would never have been finished without the help of Andy Oram
and Michael Johnson, and the psychological support of Federica, my girlfriend
ehm, wife. Andy has been my mighty editor, and Michael is the one who asked
me to write for the Linux journal and then sent me to Andy-if someone is guilty
for this work, that's Michael. I'd like to thank Georg van Zezschwitz, who intro
duced me to the fascinating world of kernel modules and helped in writing for the
Linux Journal. I want to thank Silvana Ranzoli, my teacher of English at high
school, for her relentless (though sometimes perceived as cruel) commitment to
the benefit of her classroom. I am grateful to Ellen Siever, who fixed all the lin
guistic misfeatures I learned after high school; she patiently dealt with my ten
dency towards hackerisms and subtleties-I'm never satisfied with rewritings.

My text has been technically reviewed by Alan Cox, Greg Hankins, Hans Lermen,
Heiko Eissfeldt, and Miguel de Icaza (in alphabetic order by first name). Their
comments and suggestions have been very useful in pinpointing oversights and
deficiencies of mine. I wish to thank them for spending their qualified time over
my writing, which looks so irrelevant to their guru's activity.

xvii

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. xviii

Preface

I also want to acknowledge people who allowed me to take time from "real jobs"
to concentrate on the Linux kernel. This includes Virginia Cantoni, Alberto Bian
cardi, and other people in the Vision Lab at the University, as well as Davide
Yachaya and the staff at systemy.it, where I help as network administrator.

Thanks also to the O'Reilly staff: David Futato, the copyeditor and production edi
tor; Chris Reilley, the technical illustrator; Jane Ellin and Nicole Gipson Arigo for
quality assurance; Seth Maislin, who produced the index; Len Muellner and Chris
Maden for tools support; Edie Freedman for the cover design; Nancy Priest, who
did the interior design; and Sheryl Avruch, the production manager.

Last but not least, I thank the Linux developers for their relentless work. This
includes both the kernel programmers and the user-space people, who often get
forgotten. In this book I chose never to call them by name in order to avoid being
unfair to someone I might forget. I sometimes made an exception to this rule and
called Linus by name-hope he doesn't mind.

xviii

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 1

CHAPTER ONE

AN INTRODUCTION TO
THE LINUX KERNEL

People all around the world are delving into the Linux kernel, mostly to write
device drivers. While each driver is different, and you have to know your
specific device, many principles and basic techniques are the same from one

driver to another. In this book, you'll learn to write your own device drivers and to
hack around in re lated parts of the kernel. This book covers device-independent
programming techniques, without binding the examples LO any specific device.

This chapter doesn't actually get into writing code. However, I'm going to intro
duce some background concepts about the Linux kernel that you'll be glad you
know later, when we do launch into writing code.

As you learn to write drivers, you will find out a lot about the Linux kernel in gen
eral; this may help you understand how your machine works and why things
aren't always as fast as you expect or don't do quire what you want. We'll intro
duce new idea_s smoothly, sta11ing off with ve1y simple drivers and building upon
them; eve1y new concept will be accompanied by sample code that doesn't need
special hardware to be tested.

The Role of the Driver Writer
As a programmer, you will be able to make your own cho ices about your driver,
choosing an acceptable tradeoff between the programming time required and the
flexibility of the result. Though it may appear strange to say that a driver is
"flexible," I like this word because it emphasizes that the role of a device driver is
providing mechanisms, not policies.

1

CHAPTER ONE

AN INTRODUCTION TO |
THE LINUX KERNEL

eople all around the world are delving into the Linux kernel, mostly to write
device drivers. While each driver is different, and you have to know your
specific device, many principles and basic techniques are the same from one

driver to another. In this book, you'll learn to write your own device drivers and to
hack aroundin related parts of the kernel. This book covers device-independent
programming techniques, without binding the examples to any specific device.

This chapter doesn’t actually get into writing code. However, I’m going to intro-
duce some background concepts about the Linux kernel that you'll be glad you
knowlater, when we do launchinto writing code.

As you learn to write drivers, you will find out a lot about the Linux kernel in gen-
eral; this may help you understand how your machine works and whythings
aren't always as fast as you expect or don’t do quite what you want, We'll intro-
duce new ideas smoothly, starting off with very simple drivers and building upon
them; every new concept will be accompanied by sample code that doesn't need
special hardware to be tested.

The Role of the Driver Writer
As a programmer, you will be able to make your own choices about yourdriver,
choosing an acceptable tradeoff between the programming time required and the
flexibility of the result. Though it may appear strange to say that a driver is
“flexible,” I like this word because it emphasizes that the role of a device driveris
providing mechanisms, not policies.

Petitioners Microsoft Corporation and HPInc.- Ex. 1019, p. 1

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 2

Chapter 1: An Introduction to the Linux Kernel

The distinction between mechanism and policy is one of the best ideas behind the
Unix design. Most programming problems can indeed be split into two parts:
"what needs to be done" (the mechanism) and "how can the program be used"
(the policy). If the two issues are addressed by different parts of the program, or
even by different programs altogether, the software package is much easier to
develop and to adapt to particular needs.

For example, Unix management of the graphic display is split between the X
server, which knows the hardware and offers a unified interface to user programs,
and the window manager, which implements a particular policy without knowing
anything about the hardware. People can use the same window manager on dif
ferent hardware, and different users can run different configurations on the same
workstation. Another example is the layered structure of TCP /IP networking: the
operating system offers the socket abstraction, which is policy-free, while different
servers are in charge of the services. Moreover, a server like f tpd provides the file
transfer mechanism, while users can use whatever client they prefer; both com
mand-line and graphic clients exist, and anyone can write a new user interface to
transfer files.

Where drivers are concerned, the same role-splitting applies. The floppy driver is
policy-free-its role is only to show the diskette as a continuous byte array. How
to use the device is the role of the application: tar writes it sequentially, while
mkfs prepares the device to be mounted, and mcopy relies on the existence of a
specific data structure on the device.

When writing drivers, a programmer should pay particular attention to this funda
mental problem: we need to write kernel code to access the hardware, but we
shouldn't force particular policies on the user, since different users have different
needs. The driver should only deal with hardware handling, leaving all the issues
about how to use the hardware to the applications. A driver, then, is "flexible" if it
offers access to the hardware capabilities without adding constraints. Sometimes,
however, some policy decisions must be made.

You can also look at your driver from a different perspective: it is a software layer
that lies between the applications and the actual device. This privileged role of the
driver allows the driver programmer to choose exactly how the device should
appear: different drivers can offer different capabilities, even for the same device.
The actual driver design should be a balance between many different considera
tions. For instance, a single device may be used concurrently by different pro
grams, and the driver programmer has complete freedom to determine how to
handle concurrency. You could implement memory mapping on the device inde
pendently of its hardware capabilities, or you could provide a user library to help
application programmers implement new policies on top of the available primi
tives, and so forth. One major consideration is the tradeoff between the desire to
present the user with as many options as possible, balanced against the time you
have to do the writing and the need to keep things simple so that errors don't
creep in.

2

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 3

Splitting the Kernel

If a driver is designed for both synchronous and asynchronous operations, if it
allows itself to be opened multiple times, and if it is able to exploit all the hard
ware capabilities without adding a software layer "to simplify things"-like con
verting binary data to text or other policy-related operations-then it will tum out
to be easier to write and to maintain. Being "policy-free" is actually a common tar
get for software designers.

Most device drivers, indeed, are released together with user programs to help with
configuration and access to the target device. Those programs can range from sim
ple configuring utilities to complete graphical applications. Usually a client library
is provided as well.

The scope of this book is the kernel, so we'll try not to deal with policy issues,
nor with application programs or support libraries. Sometimes I'll talk about differ
ent policies and how to support them, but I won't go into much detail about pro
grams using the device or the policies they enforce. You should understand,
however, that user programs are an integral part of a software package and that
even policy-free packages are distributed with configuration files that apply a
default behavior to the underlying mechanisms.

Splitting the Kernel
In a Unix system, several concurrent processes attend to different tasks. Each pro
cess asks for system resources, be it computing power, memory, network connec
tivity, or some other resource. The kernel is the big chunk of executable code in
charge of handling all such requests. Though the distinction between the different
kernel tasks isn't always clearly marked, the kernel's role can be split, as shown in
Figure 1-1, into the following parts:

Process management
The kernel is in charge of creating and destroying processes, and handling
their connection to the outside world (input and output). Communication
among different processes (through signals, pipes, or interprocess communica
tion primitives) is basic to the overall system functionality, and is also handled
by the kernel. In addition, the scheduler, probably the most critical routine in
the whole operating system, is part of process managem~nt. More generally,
the kernel's process management activity implements the abstraction of several
processes on top of a single CPU.

Memory management
The computer's memory is a major resource, and the policy used to deal with
it is a critical one for system performance. The kernel builds up a virtual
addressing space for any and all processes on top of the limited available
resources. The different parts of the kernel interact with the memory
management subsystem through a set of function calls, ranging from simple
mallod free equivalents to much more exotic functionalities.

3

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 4

Chapter I : An In troduction to tin Linux Kernel

Process
Management

Concurrency
Multitasking

! Architecture- '
i dependent

! Code

0 ·modules

User Programs & Applications

Virtual
Memory

' '

Memory
Manager

Flies &
Directories

i FS types ·
L ODO

l Block Devices·

L ODO

ms &
Device Access

Application Level

Networking

Kernel Level

Kernel
Parts

C t. ·1y __ Features
onnec ivi Implemented

! Network ·
!.. Subsystem

' IF Drivers ·

! .. ODO

Software
Support

Hardware Level

..- Hardware

Fig111·e 1-1: A spli1 view of the kernel

Filesystems
Unix is heavily based on the filesystem concept; almo t everything in Unb:: can
be treated as a file . The kernel builds a structured filesystem on top of
unstructured hardware, and the resulting fi le abstraction is heavily used
throughout the whole system. In addition, Linux supports multiple filesystem
types, i. e ., different ways of orga nizing data on the physical medium.

Device control

4

Almost every system operation eventually maps to a physical device. With the
exception of the processor, memory, and a ve1y few other entities , any and all
device control operations are performed by code that is specific to the device
being addressed . That code is ca lled a device driver. The kernel must have
embedded in it a device driver for eve1y peripheral present on your system,
from the hard drive to the keyboard and the tape streamer. This aspect of the
kernel 's functions is our prima1y interest in thi book.

Chapter 1; An Introduction to the Linux Kernel

User Programs & Applications
 system calls Application Level

{ | { { Kernel Level
| Process §: Memory §: File- : Device i: Networking |
; Management;| Management}: systems : Control i Kernel

: ; ; Parts

Concurrency Virtual Files & TTYs & ae Features
Multitasking Memory Directories©Device Access S"nectivity implemented

“Architecture @ Memory f FStypes § Character Network Software
Abbenite : Manager §: BOG }. ‘Devices : Subsystem Supportode : hy ' i

IF Drivers

 _ aes Hardware
oO Control

Hardware Level

Hardware

Bo - modutes

Figure 1-1: A split viewofthe kernel

Filesystems
Unix is heavily based on the filesystem concept; almost everything in Unix can
be treated as a file. The kernel builds a structured filesystem on top of
unstructured hardware, and the resulting file abstraction is heavily used
throughout the whole system. In addition, Linux supports multiple filesystem
types, i.e., different ways of organizing data on the physical medium.

Device control

Almost every system operation eventually maps to a physical device. With the
exception of the processor, memory, and a very fewother entities, any andall
device control operations are performed by code that is specific to the device
being addressed. That code is called a device driver. The kernel must have
embeddedin it a device driver for every peripheral present on your system,
from the hard drive to the keyboard and the tape streamer. This aspect of the
kernel’s functions is our primary interest in this book.

Petitioners Microsoft Corporation and HPInc.- Ex. 1019, p. 4

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 5

Classes of Devices and Modules

Networking
Networking must be managed by the operating system because most network
operations are not specific to a process: incoming packets are asynchronous
events. The packets must be collected, identified, and dispatched before a
process takes care of them. The system is in charge of delivering data packets
across program and network interfaces, and it must correctly put to sleep and
wake programs waiting for data from the network. Additionally, all the routing
and address resolution issues are implemented within the kernel.

Towards the end of this book, in Chapter 16, Physical Layout of the Kernel Source,
you'll find a roadmap to the Linux kernel, but these few words should suffice for
now.

One of the good features of Linux is the ability to expand the kernel code at run
time. This means that you can add functionality to the kernel while the system is
up and running.

Each piece of code that can be added to the kernel is called a module. The Linux
kernel offers support for quite a few different types (or "classes") of modules,
including, but not limited to, device drivers. Each module is made up of object
code (not linked to be a complete executable) that can be dynamically linked to
the running kernel by the insmod program and can be unlinked by the rmmod
program.

In Figure 1-1, you can identify different classes of modules in charge of specific
tasks-a module is said to belong to a specific class according to the functionality
it offers.

Classes of Devices and Modules
The Unix way of looking at devices distinguishes between three device types,
each devoted to a different task. Linux can load each device type in the form of a
module, thus allowing users to experiment with new hardware while still being
able to run up-to-date kernel versions and to follow development.

As far as modules are concerned, each module usually implements only one
driver, and thus is classifiable, for example, as a char module, or a block module.
This division of modules into different types, or classes, is not a rigid one; the pro
grammer can choose to build huge modules implementing different drivers in a
single chunk of code. Good programmers, nonetheless, usually create a different
module for each new functionality they implement.

Going back to devices, the three flavors are the following:

Character devices
A character (char) device is one that can be accessed like a file, and a char
driver is in charge of implementing this behavior. Such a driver usually imple
ments the open, close, read, and write system calls. The console and the

5

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 6

Chapter 1: An Introduction to the Linux Kernel

parallel ports are examples of char devices, as they are well represented by
the stream abstraction. Char devices are accessed by means of filesystem
nodes, such as ldev/ttyl and ldev/lpl. The only relevant difference between a
char device and a regular file is that you can always step back and forth in the
regular file, while most char devices are just a data channel, which you can
only access sequentially. There exist, nonetheless, char devices that look like a
data area, and you can step back and forth in them.

Block devices
A block device is something that can host a filesystem, such as a disk. In most
Unix systems, a block device can only be accessed as multiples of a block,
where a block is usually one kilobyte of data. Linux allows you to read and
write a block device like a char device-it permits the transfer of any number
of bytes at a time. As a result, block and char devices differ only in the way
data is managed internally by the kernel, and thus in the kernel/driver soft
ware interface. Like a char device, each block device is accessed through a
filesystem node and the difference between them is transparent to the user. A
block driver interfaces with the kernel through the same interface as a char
driver, as well as through an additional block-oriented interface that is invisi
ble to the user or application.

Network interfaces
Any network transaction is made through an interface, i.e., a device that is
able to exchange data with other hosts. Usually, an interface is a hardware
device, but it might also be a software tool, like the loopback interface. A net
work interface is in charge of sending and receiving data packets, driven by
the network subsystem of the kernel, without knowing how individual trans
actions map to the actual packets being transmitted. Though both "telnet" and
"ftp" connections are stream-oriented, they transmit using the same device; the
device doesn't see the individual streams, but only the data packets.

Not being a stream-oriented device, a network interface isn't easily mapped to
a node in the filesystem, as ldevlttyl is. The Unix way to call interfaces is by
assigning a unique name to them (such as ethO). Such a name doesn't have
a corresponding entry in the filesystem. Communication between the kernel
and a network device driver is completely different from that used with char
and block drivers. Instead of read and write, the kernel calls functions related
to packet transmission.

As a matter of fact, there is another class of "driver modules" in Linux: the SCSI*
drivers. Although every peripheral connected to the SCSI bus appears in ldev as
either a char device or a block device, the internal organization of the software is
different.

* SCSI is an acronym for Small Computer Systems Interface; it is an established standard in
the workstation market and is becoming common also for PCs.

6

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 7

Security Issues

Just as network interfaces provide the network subsystem with hardware-related
functionality, a SCSI controller provides the SCSI subsystem with access to the
actual interface cable. SCSI is a communication protocol between the computer
and peripheral devices, and every SCSI device responds to the same protocol,
independently of what controller board is plugged into the computer. The Linux
kernel therefore embeds a SCSI "implementation" (i.e., the mapping of file opera
tions to the SCSI communication protocol). The driver writer has to implement the
mapping between the SCSI abstraction and the physical cable. This mapping
depends on the SCSI controller and is independent of the devices attached to the
SCSI cable.

In addition to device drivers, there are other drivers, both hardware and software,
that are modularized in the kernel. The most important class of modules not
specifically implementing a device driver is that of filesystems. A filesystem type is
concerned with the way information is organized on a block device in order to
represent a tree of directories and files. Such an entity is not a "device driver," in
that there's no explicit device associated with the way the information is laid
down; the filesystem type is instead a software driver, because it structures raw
data into higher level information.

If you think of how strongly a Unix system depends on the underlying filesystem,
you'll realize that such a software concept is vital to system operation. The ability
to decode filesystem information stays at the lowest level of the kernel hierarchy
and is of utmost importance; even if you write a block driver for your new CD
ROM, it is useless if you are not able to run Is or cp on the data it hosts. Linux
supports filesystem modules, whose software interface declares the different oper
ations that can be performed on a filesystem inode, directory, file, and superblock.
Such an interface is completely independent of the actual data transfer to and from
the disk, which is accomplished by a block device driver. It's quite unusual for a
programmer to actually need to write a filesystem module, because the official ker
nel already includes code for the most important filesystem types.

Security Issues
Talking about security issues is fashionable these days, and most programmers are
concerned about their systems' security, so I'll address the problem at the begin
ning to avoid later misunderstandings.

Security has two faces. One problem is what a user can achieve through the mis
use of existing programs, or by exploiting bugs; a different issue is what kind of
(mis)functionality a programmer can implement. The programmer has, obviously,
much more power than a plain user. In other words, it's more dangerous to run as
root a program you got from a friend than to give him or her a root shell once in a
while. Although having access to a compiler is not a security hole per se, the hole

7

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 8

Chapter 1: An Introduction to the Linux Kernel

can appear when compiled code is actually executed; be careful with modules,
because a kernel module can do anything. A module is much more powerful than
a superuser shell, in that its privileged status is acknowledged by the CPU.

Any security check in the system is enforced by kernel code. If the kernel has
security holes, then the system has holes. In the official kernel distribution, only
root can load modules; the system call create_module checks the user ID of the
invoking process. Thus with the official kernel, only the superuser, or an intruder
who has succeeded in becoming root, can exploit the power of privileged code.

Fortunately, when writing a device driver or other module, there's little need to be
concerned about security because processes accessing the device are already con
strained by more general blocking techniques. With block devices, for example,
security is handled by the permissions on the filesystem node and the mount com
mand, so usually nothing has to be checked in the actual block driver.

Be careful, however, when receiving software from third parties, especially when
the kernel is concerned: since everybody has access to the source code, every
body can break and recompile things. While you can trust precompiled kernels
found in your distribution, you should avoid running kernels compiled by an
untrusted friend-if you wouldn't run a precompiled binary as root, then you'd
better not run a precompiled kernel. For example, a maliciously modified kernel
could allow anyone to load a module, thus opening an unexpected back door via
create_module.

If you are really concerned about system security in relation to modules, I'd urge
you to look at how the securelevel kernel variable is used. As I write this,
there is ongoing discussion in the Linux community about the prevention of mod
ule loading and unloading under the control of securelevel. It's interesting to
note that with recent kernels, support for modules can be removed at kernel com
pile time, thus closing any related security hole.

Version Numbering
As the last point before digging in to programming, I'd like to comment on the
unusual version numbering scheme used in Linux and what version this book
refers to.

First of all, note that every software package used in a Linux system has its own
release number, and there are often interdependencies across them: you need a
particular version of one package to run a particular version of another package.
The creators of Linux distributions usually handle the messy problem of matching
packages, and the user who installs from a prepackaged distribution doesn't need
to deal with version numbers. Those who replace and upgrade system software,
on the other hand, are on their own. Fortunately, some modern distributions allow

8

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 9

Version Numbering

the upgrade of single packages by checking interpackage dependencies, and this
greatly simplifies things for the user who needs to keep system software up to
date.

In this book, I'll assume you have version 2.6.3 or newer of the gee compiler, ver
sion 1.3.57 or newer of the module utilities, and a recent-enough version of the
GNU tools (the most important being gmake) for program development. Those
requirements aren't particularly strict, as nearly every Linux installation is equipped
with GNU tools, and these versions are relatively old (besides, kernel versions 2.0
and later refuse to compile with a gee older than 2.6). Note that recent kernels
include a file called Documentation/Changes, which lists the software needed to
proficiently compile and run that kernel version. This file is missing from the 1.2
sources.

As far as the kernel is concerned, I'll concentrate on the 2.0.x and 1.2.13 versions,
trying to write code that can work with both of them.

The even-numbered kernel versions (i.e., 1.2.x and 2.0.x) are the stable ones and
are intended for general distribution. The odd versions, on the contrary, are devel
opment snapshots and are quite ephemeral; the latest of them represents the cur
rent status of development, but becomes obsolete in a few days.

There should be no general reason to ever run a 1.3 or 2.1 kernel, unless it is the
latest one. Sometimes, however, you will choose to run a development kernel,
either because it has some features you need that are missing in the stable distri
butions, or simply because you have made your personal changes to that version,
and you lack the time to upgrade your patch. Note, however, that there's no guar
antee on experimental kernels, and nobody will help you if you lose your data
because of a bug in a non-current odd-numbered kernel. Nonetheless, this book
supports development versions of the kernel up to 2.1.43, as the last chapter
describes how to write drivers that are aware of interface differences between 2.0
and 2.1.x.

As far as 1.2.13 is concerned, I feel it is an important kernel version, though quite
old. While 2.0.x is faster than 1.2.13 on most new hardware, 1.2.13 is considerably
smaller, and might be a good choice for someone who runs old hardware. Inex
pensive systems based on a 386 processor with a small RAM supply are good can
didates for embedded systems or automated controllers, and they might be faster
with 1.2.13 than with 2.0.x. Since 1.2.13 is a bugfix release over previous 1.2.x ver
sions, I won't consider earlier 1.2 kernels.

Whenever there is some incompatibility between 1.2.13 and 2.0, or in the latest 2.1
kernels, I'll report it.

My main target version is nonetheless Linux 2.0, and some features introduced in
this book are not available in older kernels. Most sample modules will compile
and run on a wide range of kernel versions; in particular, they have all been tested

9

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 10

Chapter 1: An Introduction to the Linux Kernel

with version 2.0.30, and most of them with 1.2.13. Sometimes I won't support ver
sion 1.2 in the sample modules, but this only happens in the second part of the
book, which is more advanced by design and can thus live without reference to
older kernels.

Another feature of Linux is that it is a platform-independent operating system, as it
isn't only "a Unix clone for PC clones" anymore: it is successfully being used with
Axp-Alpha, the Spare processors, Mips Rx000, and a few other platforms, in addi
tion to the x86. This book is platform-independent as far as possible, and all the
code samples have been tested on PCs, an Alpha platform, and a Spare machine.
Since the code has been tested on both 32-bit and 64-bit (the Alpha) processors, it
should compile and run on all the other platforms. As you might expect, the code
samples that rely on particular hardware don't work on all the supported plat
forms, but this is always stated in the source code.

License Terms
Linux is licensed with the GNU "General Public License" (GPL), a document
devised for the GNU project by the Free Software Foundation. The GPL allows
anybody to redistribute, and also sell, a GPL'd product, as long as the recipient is
allowed to rebuild an exact copy of the binary files from source. Additionally, any
software product derived from a GPL'd product must be released under the GPL.

The main goal of such a licence is to allow the growth of knowledge by permit
ting everybody to modify programs at will; at the same time, people selling soft
ware to the public can still do their job. Despite this simple objective, there's an
ongoing discussion about the GPL and its use. If you want to read the license, you
can find it in several places in your system, including the directory /usr/srdlinux,
as a file called COPYING.

As far as third-party and custom modules are concerned, they're not part of the
Linux kernel, and thus you're not forced to license them under the GPL. A module
uses the kernel through a well-defined interface, but is not part of it, similar to the
way user programs use the kernel through system calls.

In brief, if your code goes in the kernel, you must use the GPL as soon as you
release the code. Although personal use of your changes doesn't force the GPL on,
if you distribute your code you must include the source code in the distribution
people acquiring your package must be allowed to rebuild the binary at will. If
you write a module, on the other hand, you are allowed to distribute it in binary
form. However, this is not always practical, as modules should in general be
recompiled for each kernel version that they will be linked with (as explained in
Chapter 2, Building and Running Modules, in the section "Version Dependency,"
and Chapter 11, Kerneld and Advanced Modularization, in the section "Version
Control in Modules"). The common objection to binary distribution of modules is

JO

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 11

Overview of the Book

that a module embeds code defined or declared in the kernel headers; this objec
tion doesn't apply, however, because header files are part of the public interface
of the kernel, and thus are not subject to licensing.

As far as this book is concerned, most of the code is freely redistributable, either
in source or binary form, and neither O'Reilly & Associates nor I retain any license
on any derived works. All the programs are available through FTP from
ftp://ftp.ora.com/pub/examples/linux/driversl, and the exact licence terms are stated
in the file LICENSE in the same directory.

When sample programs include parts of the kernel code, the GPL applies: the text
accompanying source code is very clear about that. This only happens for a pair of
source files that are very minor to the topic of this book.

Overview of the Book
From here on, we enter the world of kernel programming. Chapter 2 introduces
modularization, explaining the secrets of the art and showing the code for running
modules. Chapter 3, Char Drivers, talks about char drivers and shows the com
plete code for a memory-based device driver that can be read and written for fun.
Using memory as the hardware base for the device allows anyone to run the sam
ple code without the need to acquire special hardware.

Debugging techniques are vital tools for the programmer and are introduced in
Chapter 4, Debugging Techniques. Then, with our new debugging skills, we'll
move to advanced features of char drivers, such as blocking operations, the use of
select and the ever-popular ioctl call; these topics are the subject of Chapter 5,
Enhanced Char Driver Operations.

Before dealing with hardware management, we'll dissect a few more of the ker
nel's software interfaces: Chapter 6, Flow of Time, shows how time is managed in
the kernel, and Chapter 7, Getting Hold of Memory, explains memory allocation.

Next we focus on hardware: Chapter 8, Hardware Management, describes the
management of 1/0 ports and memory buffers that live on the device; after that
comes interrupt handling, in Chapter 9, Interrnpt Handling. Unfortunately, not
everyone will be able to run the sample code for these chapters, because some
hardware support is actually needed to test the software interface to interrupts.
I've tried my best to keep required hardware support to a minimum, but you still
need to put your hands on the soldering iron to build your hardware "device."
The device is a single jumper wire that plugs into the parallel port, so I hope this
is not a problem.

Chapter 10, Judicious Use of Data Types, offers some additional suggestions about
writing kernel software and about portability issues.

11

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 12

Chapter I: An Introduction to the Linux Kernel

In the second part of this book, we get more ambitious; thus Chapter 11 starts
over with modularization issues, going deeper into the topic.

Chapter 12, Loading Block Drivers, then describes how block drivers are imple
mented, outlining the aspects that differentiate them from char drivers. Following
that, Chapter 13, Mmap and DMA, explains what we left out from the previous
treatment of memory management: mmap and DMA. At this point, everything
about char and block drivers has been introduced.

The third main class of drivers is introduced next: Chapter 14, Network Drivers,
talks in some detail about network interfaces and dissects the code of the sample
network driver.

A few features of device drivers depend directly on the interface bus where the
peripheral fits, so Chapter 15, Overoiew of Peripheral Buses, provides an overview
of the main features of the bus implementations most frequently found nowadays,
with a special focus on PCI support offered in the kernel.

Finally, Chapter 16 is a sort of tour of the kernel source: it is meant to be a starting
point for people who want to understand the overall design, but who may be
scared by the huge amount of source code that makes up Linux.

Soon after Linux 2.0 was released, the 2.1 development tree began introducing
incompatibilities; the most important ones were introduced in the first months.
Chapter 17, Recent Developments, which can be considered almost an appendix,
gathers all the known incompatibilities introduced before 2.1.43 and offers soft
ware fixes for them. By the end of the chapter, you'll be able to write device
drivers that compile and run on 1.2.13 and all kernels between 2.0 and 2.1.43.
Hopefully, 2.2 will turn out to be quite similar to 2.1.43, and your software will be
ready for the event.

12

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 13

CHAPTER TWO

BUILDING AND
RUNNING MODULES

It's high time now to begin programming. This chapter is going to introduce all
the essentia l concepts about modules and kernel programming. In these few
pages, we'll build and run a comple te module. Bui.lding uch expettise is an

essential foundation for any kind of modularized driver. To avoid throwing in too
many concepts, this chapter only talks about modules, witho ut referring to any
device class.

Al l the kernel items (fu nctions, variables, header files , and macros) that a re intro
duced here are described in a reference section at the encl of the chapter.

For the i.n1patient reader, the fo llowing code is a complete "Hello , World" module
(which does nothing in part icula r). Th is code will com pile and run under Linux
2.0 and late r versions, bu t not under 1.2, as explai ned late r in this chapte r.*

#define MODULE
#include <linux/rnodule . h>

int ini t_rnodule (void) (printk ("<l>Hello, world\n") ; return 0;)
void cleanup_rnodule (void) (printk ("<l>Goodbye cruel world\n"); }

The printk function is defined in the Linux kernel and behave imi.larly to print/,
the module can call printk, because after insmod has loaded it, the module is
linked to the kernel and can access its symbols. The string < l> is the priority of
the message. I've specified a high priority in this module because a me sage with
the default priority might not show on the con ole if you use version 2.0.x of the
kernel and an old klogd daemon (you can ignore this issue for now; we'll explain
it in the section "Printk," in Chapter 4, Debugging Techniques) .

* This example, and all the others presented in d1is book, are ava ilable on d1e O 'Reilly FTP
site, as explained in Chapter 1, An. fnlroduction to the Linux Kernel.

13

CHAPTER TWO

BUILDING AND

RUNNING MODULES
Us high time nowto begin programming. This chapter is going to introduceall
the essential concepts about modules and kernel programming. In these few
pages, we'll build and run a complete module. Building such expertise is an

essential foundation for any kind of modularized driver. To avoid throwing in too
many concepts, this chapter only talks about modules, without referring to any
device class.

All the kernel items (functions, variables, header files, and macros) that are intro-
duced here are described in a reference section at the end of the chapter,

For the impatient reader, the following code is a complete “Hello, World” module
(which does nothing in particular). This code will compile and run under Linux
2.0 andlater versions, but not under 1.2, as explainedlater in this chapter.”

#define MODULE
#include <linux/module.h>

int init_module (void) { printk("<1>Hello, world\n"); return 0; }
void cleanup_module(void) [printk("<1>Goodbye cruel world\n"); }

The printk function is defined in the Linux kernel and behavessimilarly to printf.
the module can call printk, because after insmod has loadedit, the module is
linked to the kernel and can access its symbols. The string <1> is the priority of
the message. I’ve specified a high priority in this module because a message with
the default priority might not show on the console if you use version 2.0... of the
kernel and an old klagd daemon(you can ignore this issue for now; we'll explain
it in the section “Printk,” in Chapter 4, Debugging Techniques).

* This example, and all the others presented in this book, are available on the O'Reilly FTP
site, as explained in Chapter 1, Am Introduction to the Linux Kernel.

13

Petitioners Microsoft Corporation and HP Inc.- Ex. 1019, p. 13

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 14

Chapter 2: Building and Running Modules

You can test the module by calling insmod and rmmod, as shown in the screen
dump below. Note that only the superuser can load and unload a module.

root# gee -e hello.e
root# insmod hello.o
Hello, world
root# %mtll0d hello
Goodbye cruel world
root#

As you see, writing a module is easy. We'll go deeper into the topic throughout
this chapter.

Modules Versus Applications
Before we go further, it's worth underlining the various differences between a ker
nel module and an application.

While an application performs a single task from beginning to end, a module reg
isters itself in order to serve future requests, and its "main" function terminates
immediately. In other words, the task of init_module() (the module's entry point)
is to prepare for later invocation of the module's functions; it's as though the mod
ule is saying, "Here I am, and this is what I can do." The second entry point of a
module, c/eanup_module, gets invoked just before the module is unloaded. It
should tell the kernel, "I'm not there any more, don't ask me to do anything else."
The ability to unload a module is one of the features of modularization that you'll
most appreciate, because it helps cut down development time; you can test suc
cessive versions of your new driver without going through the lengthy shut
down/reboot cycle each time.

As a programmer, you know that an application can call functions it doesn't
define: the linking stage resolves external references using the appropriate library
of functions. print/ is one of those callable functions and is defined in libc. A mod
ule, on the other hand, is linked only to the kernel, and the only functions it can
call are the ones exported by the kernel. The printk function used in bello.c
above, for example, is the version of print/ defined within the kernel and exported
to modules; it behaves exactly like the original function, except that it has no float
ing-point support.

Figure 2-1 shows how function calls and function pointers are used in a module to
add new functionality to a running kernel.

Since no library is linked to modules, source files should never include the usual
header files. Anything · related to the kernel is declared in headers found in
/usr/include/linux and /usr/inc/ude/asm. The header files that reside in these
directories are also used indirectly when compiling applications; kernel code is
thus protected by #ifdef __ KERNEL __ . The two directories of kernel headers
are usually symbolic links to the place where the kernel sources reside. If you

14

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 15

Modules Versus Applications

Module
···· ··················-··············· ··•········ _

(Core Kernel

insmod ------ i ni t_rnodu le () ·•·••· :, • : ·•••---,~ reg is ter_ca pa b i li ty ()

i
····- ·· i [H c a pabilities []

1•,···••1
,--....... --,-.,

c l e anup_rnodu le ()

~===~!=~ One Function ••••• Oat.1
Other Functions

Figure 2-1: Linking a module to the kernel

!

!
! ;
i
' ---~-------------

-----------------: :

; 1 :
~~'. ... " I

j~~• """•oisee,_oa, abi

: t ______ _ 1: !
I j

.· •·····························•··•················-· ·········

----• Function cat/ ----+ Data pointer

Function pointer Assignment to data

don't want the complete Linux source tree on your system, you still need at least
these two directories o f header fil e . In recent kernels, you also find the nel and
scsi header directories in the kernel sources, but it's very unusual for modules to
need them.

The role of the kernel headers will be introduced later, as each of them is needed .

Kernel modules a lso diffe r from applications in requiring that yo u watch out for
"namespace pollution." When writing small programs, programmer frequently
don't care about the program's namespace, but this causes problems when the
small programs are going to become part of a huge application. amespace pollu
tion is what happens when there are many functions and global variabl es, and
their name aren't meaningful enough to be easily distinguished. The programmer
who is forced to dea l with such an application expends much mental energy just
to remember the "reserved" names and to find unique names for new symbols.

15

Modules Versits Applications

init_module() seeeeennnnn ennen> register_capability()

eet capabilities[]

S224
a
--->!

wannennnenna|

tmmod ===--=%) cleanup_module()
1 L 1 ' procepconten

Ll One Function MIMI» Data ===> Function call ——B> Data pointer
k i Other Functions ~ Function pointer "~~& Assignmentto data

Figure 2-1; Linking a module to the kernel

don't want the complete Linux source tree on your system, youstill need at least
these twodirectories of header files, In recent kernels, you also find the nef and
scsi header directories in the kernel sources, but it's very unusual for modules to
need them.

The role of the kernel headers will be introduced later, as each of them is needed.

Kernel modules also differ from applications in requiring that you watch out for
“namespace pollution.” When writing small programs, programmers frequently
don’t care about the program’s namespace, but this causes problems when the
small programs are going to become part of a huge application. Namespace pollu-
tion is what happens when there are many functions and global variables, and
their names aren't meaningful enoughto be easily distinguished. The programmer
whois forced to deal with such an application expends much mental energy just
to rememberthe “reserved” names andto find unique names for new symbols.

15

Petitioners Microsoft Corporation and HPInc.- Ex. 1019, p. 15

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 16

Cbapter 2: Building and Running Modules

We can't afford to fall into such an error when writing kernel code, because even
the smallest module is going to be linked to the whole kernel. The best approach
to prevent namespace pollution is to declare all your symbols as static and to
use a well-defined prefix for the symbols you leave global. Alternatively, you can
avoid declaring static symbols by declaring a symbol table, as described in
"Registering Symbol Tables," later in this chapter. Using the chosen prefix even for
private symbols within the module can sometimes simplify debugging. Prefixes
used in the kernel are, by convention, all lowercase, and we'll stick to the same
convention.

The last difference between kernel programming and application programming is
in how faults are handled: while a segmentation fault is harmless during applica
tion development and a debugger can always be used to trace the error to the
problem in the source code, a kernel fault is fatal at least for the current process, if
not for the whole system. We'll see how to trace kernel errors in Chapter 4, in the
section "Debugging System Faults."

User Space and Kernel Space
We can summarize our discussion by saying that a module runs in the so-called
"kernel space," while applications run in "user space." This concept is at the basis
of operating systems theory.

The role of the operating system, in practice, is to provide programs with a consis
tent view of the computer's hardware. In addition, the operating system must
account for independent operation of programs and protection against unautho
rized access to resources. This non-trivial task is only possible if the CPU enforces
protection of system software from the applications.

Every modem processor is able to enforce this behavior. The chosen approach is
to implement different operating modalities (or levels) in the CPU itself. The levels
have different roles, and some operations are disallowed at the lowest levels; pro
gram code can switch from one level to another only through a limited number of
"gates." Unix systems are designed to take advantage of this hardware feature, but
they only use two such levels (while, for example, Intel processors have four lev
els). Under Unix, the kernel executes in the highest level (also called "supervisor
mode"), where everything is allowed, while applications execute in the lowest
level (the so-called "user mode"), where the processor inhibits direct access to
hardware and unauthorized access to memory.

As mentioned before, when dealing with software, we usually refer to the execu
tion modes as "kernel space" and "user space," with reference to the different
memory mappings, and thus the different "address spaces" used by program code.

Unix transfers execution from user space to kernel space through system calls and
hardware interrupts. Kernel code executing a system call is working in the context

16

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 17

Modules Versus Applications

of a process-it operates on behalf of the calling process and is able to access
data in the process's address space. Code that handles interrupts, on the other
hand, is asynchronous with respect to processes and is not related to any particu
lar process.

The role of a module is to extend kernel functionality; modularized code runs in
kernel space. Usually a driver performs both the tasks outlined above: some func
tions in the module are executed as part of system calls, and some are in charge of
interrupt handling.

Concurrency in the Kernel
One of the first questions new kernel programmers ask is how multitasking is
managed. Actually, there's nothing special about multitasking except in the sched
uler proper, and the scheduler is beyond the scope of the average programmer's
activity. You can face this task, but module writers don't need to know anything
about it, except to learn the following principles.

Unlike application programs, which run sequentially, the kernel works asyn
chronously, executing system calls on behalf of the applications. The kernel is in
charge of input/output and resource management for every process in the system.

Kernel (and module) functions are completely executed in a single thread, usually
in the context of a single process, unless they "go to sleep" -a driver should be
able to support concurrency by allowing the interwoven execution of different
tasks. For example, a device can be read by two processes at the same time. The
driver responds sequentially to several read calls, each belonging to either pro
cess. Since the code needs to keep each flow of data distinct, the kernel (and
driver) code must maintain internal data structures to be able to tell the different
operations apart. That's not unlike the way a student keeps track of the interweav
ing of lessons: a different notebook is devoted to each course. An alternative way
of dealing with the problem of multiple access would be to avoid it by prohibiting
concurrent access to a device, but this lazy technique isn't even worth discussing
here.

Context switches can't happen unexpectedly while kernel code is executing, so
driver functions don't need to be reentrant, unless they call schedule by them
selves. Functions that must wait for data call sleep_on, which in turn calls schedule.
However, you must be careful, as there are other functions that can unexpectedly
sleep, notably any access to user space. Making use of "natural non-preemption"
is generally a bad practice. I won't deal with reentrant functions until "Writing
Reentrant Code," in Chapter 5, Enhanced Char Driver Operations.

As far as multiple access to the driver is concerned, there are various approaches
to keeping things separate, all relying on task-specific data. This data can be either
global kernel variables or process-specific arguments to driver functions.

17

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 18

Chapter 2: Building and Running Modules

The most important global variable that can be used for tracking processes is
current: a pointer to struct task_struct, which is declared in
<linux/sched.h>. The current pointer refers to the user process currently
executing. During the execution of a system call, such as open or read, the current
process is the one that invoked the call.• Kernel code can use process-specific
information by using current, if it needs to do so. An example of this technique
is presented in "Access Control on a Device File," in Chapter 5.

The compiler handles current just like the external reference printk. A module
can refer to current wherever it wants and all the references are resolved by
insmod at load time. For example, the following statement prints the process ID
and the command name of the current process, by accessing certain fields in
struct task_struct:

printk("The process is \"Is\" (pid li)\n",
current->comm, current->pid);

The command name stored in current->comm is the basename of the exe
cutable file that was last executed by the current process.

Compiling and Loading
The rest of this chapter is devoted to writing a complete, though typeless, module.
That is, the module will not belong to any of the classes listed in "Classes of
Devices and Modules," in Chapter 1. The sample driver shown in this chapter is
called skull, short for "Simple Kernel Utility for Loading Localities." You can reuse
the skull source to load your own local code to the kernel, after removing the
sample functionality it offers.t

Before we deal with the roles of init_module and cleanup_module, however, we'll
write a Makefile that builds object code that the kernel can load.

First, we need to define the _ _KERNEL __ symbol in the preprocessor before we
include any headers. This symbol is used to select which parts of the headers are
actually used. Applications end up including kernel headers because libc includes
them,* but the applications don't need all the kernel prototypes. Therefore,
__ KERNEL __ is used to mask the extra ones out via #ifdef. Exporting kernel
symbols and macros to user-space programs would greatly contribute to program
namespace pollution. If you are compiling for an SMP (Symmetric Multi-Processor)

* In version 2.0, current is a macro that expands to current_set [this_cpu), to be
SMP-compliant. 2.1.37 optimized access to current by storing the value in the stack, thus
removing any global symbol.
t I use the word "local" here to denote personal changes to the system, in the good old
Unix tradition of /usr/locaL
:(: This is true for version 5 and previous versions of the library. With version 6 (glibc) this
may change, but discussion is not over as I write this.

18

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 19

Complltng and Loading

machine, you also need to define __ SMP __ before including the kernel headers.
This requirement may seem unfriendly, but is going to disappear as soon as the
developers find the right way to be SMP-transparent.

Another important symbol is MODULE, which must be defined before including
<linux/module. h>. This symbol is always defined, except when compiling
drivers that are directly linked to the kernel image. Since none of the drivers cov
ered in this book are directly linked to the kernel, they all define the symbol.

A module writer must also specify the -0 flag to the compiler, because many func
tions are declared as inline in the header files. gee doesn't expand inlines unless
optimization is enabled, but it can accept both the -g and -0 options, allowing
you to debug code that uses inline functions.•

Finally, in order to prevent unpleasant errors, I suggest that you use the -Wall (all
warnings) compiler flag, and also that you fix all errors in the code to eliminate all
compiler warnings, even if this requires changing your usual programming style.

All the definitions and flags I've introduced so far are best located within the
CFLAGS variable used by make.

In addition to a suitable CFLAGS, the Makefile being built needs a rule for joining
different object files. The rule is needed only if the module is split into different
source files, but that is not uncommon with modules. The modules are joined
through the ld -r command, which is not really a linking operation, even
though it uses the linker. This is because the output is another object file, which
incorporates all the code from the input files. The -r option means "relocatable";
the output file is relocatable because it doesn't yet embed absolute addresses.

The following Make.file implements all the features described above, and it builds a
module made up of two source files. If your module is made up of a single source
file, just skip the entry containing ld -r.

Change it here or specify it on the •make" commandline
INCLUDEDIR = /usr/include

CFLAGS = -D __ KERNEL __ -DMODULE -0 -Wall -I$ (INCLUDEDIR)

Extract version number from headers.
VER= $(shell awk -F\" '/REL/ {print $$2)'

$(INCLUDEDIR)/linux/version.h)

OBJS = skull.a

all: $ (OBJS)

* Note, however, that using any optimization more than -02 is risky, as the compiler might
inline functions that are not declared as inline in the source. This may be a problem with
kernel code, as some functions expect to find a standard stack layout when they are called.

19

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 20

Chapter 2: Building and Running Modules

skull.o: skull_init.o skull_clean.o
$(LD) -r $A -o $@

install:

clean:

install -d /lib/modules/$(VER)/misc /lib/modules/misc
install -c skull.o /lib/modules/$(VER)/misc
install -c skull.o /lib/modules/misc

rm -f *.o *- core

The tricky install rule in the file above is meant to install the module in a ver
sion-dependent directory, as explained below. The VER variable in Makefile is set
to the correct version number, extracted from <linu.x/version.h>.

Next, after the module is built, it must be loaded into the kernel. As I've already
suggested, insmod does the job for you. The program is like Id, as it links any
unresolved symbol in the module to the symbol table of the running kernel.
Unlike the linker, however, it doesn't modify the disk file, but rather the in-mem
ory image. insmod accepts a number of command-line options (for details, see the
man page), and it can change the value of integer and string variables in your
module before linking the module to the current kernel. Thus, if a module is cor
rectly designed, it can be configured at load time; load-time configuration gives
the user more flexibility than compile-time configuration, which unfortunately is
still used sometimes. Load-time configuration is explained in "Automatic and Man
ual Configuration," later in this chapter.

Interested readers may want to look at how the kernel supports insmod: it relies
on a few system calls defined in kerneVmodule.c. sys_create_module allocates ker
nel memory to hold a module (this memory is allocated with vmalloc; see "vmal
loc and Friends" in Chapter 7, Getting Hold of Memory), the system call
get_kernel_syms returns the kernel symbol table in order to link the module, and
sys_init_module copies the relocated object code to kernel space and calls the
module's initialization function.

If you actually look in the kernel source, you'll find that the name of the system
calls is prefixed with sys_. This is true for all system calls and no other functions;
it's useful to keep this in mind when grepping for the system calls in the sources.

Version Dependency
Bear in mind that your module's code has to be recompiled for each version of
the kernel that it will be linked to. Each module defines a symbol called ker
nel_ version, which insmod matches against the version number of the current
kernel. Recent kernels define the symbol for you in <linu.x/module. h> (that's
why hello.c above didn't declare it). That also means that if your module is made

20

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 21

Compiling and Loading

up of multiple source files, you only have to include <linux/module. h> from
one of your sources. When compiling against Linux 1.2, on the other hand, ker
nel_version must be defined in your sources.

In case of version mismatch, you can still try to load a module against a different
kernel version, by specifying the -/ ("force") switch to insmod, but this operation
isn't safe and can fail. It's also difficult to tell in advance what will happen. Load
ing can fail because of mismatching symbols, in which case you'll get an error
message, or it can fail because of an internal change in the kernel. If that happe_ns,
you'll get serious errors at run time and possibly a system panic-a good reason
to be wary of version mismatches. Actually, version mismatches can be handled
more gracefully by using "versioning" in the kernel (a topic that is more advanced
and is introduced later in "Version Control in Modules" in Chapter 11, Kerne/d and
Advanced Modularization).

If you want to compile your module for a particular kernel version, you have to
include the specific header files for that kernel (for example, by declaring a differ
ent INCLUDEPATH) in the Makefile above.

In order to deal with version dependency at load time, insmod follows a particular
search path; if it doesn't find the module in the current directory, it looks for it in a
version-dependent directory, and then in l/ib/moduleslmisc if that fails. The
install rule in the Makefile above follows this convention.

The tricky task is writing code that can be compiled and run on any kernel version
from 1.2.13 to 2.0.x and on. The interface to modularization has changed to make
setup easier. You can see in he//o.c above that there's no need to declare anything,
as long as you deal only with recent kernels. A portable interface, on the other
hand, looks like the following:

#define __ NO_VERSION __ /* don't define kernel_version in module.h */
#include <linwc/module.h>
#include <linux/version.h>

char kernel_version [] = UTS_RELEASE;

In 2.0 and newer kernels, the file version.h is included by module.h, which also
defines kernel_version unless __ NO_VERSION __ is defined.

The __ NO_VERSION __ symbol can also be used if you need to include
<linux/module. h> in several source files that will be linked together to form a
single module-if you need preprocessor macros declared in modu/e.h, for exam
ple. Declaring __ NO_ VERSION __ before including modu/e.h prevents automatic
declaration of the string kernel_version in source files where you don't want
it (Id -rwould complain about the multiple definition of the symbol). Sample mod
ules in this book use __ NO_VERSION __ to this aim.

21

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 22

Chapter 2: Building and Running Modules

Other dependencies based on the kernel version can be solved with preprocessor
conditionals-version.h defines the integer macro LINUX_VERSION_CODE. The
macro expands to the binary representation of the kernel version, one byte for
each part of the version release number. For example, the code for 1.3.5 is 66309
(i.e., 0x10305).* With this information, you can easily determine what version of
the kernel you are dealing with.

Writing the number in decimal isn't too practical when you have to check against a
particular version. In order to support multiple kernel versions from the same
source file, I'll use the following macro to build a version code from the three
component parts of the version number:

#define VERSION_CODE(vers,rel,seq) (((vers)<<l6) I ((re1)<<8) I (seq))

The Kernel Symbol Table
We've seen how insmod resolves undefined symbols against the table of public
kernel symbols. The table contains global kernel items-functions and variables
that are needed to implement modularized drivers. The public symbol table can be
read in text form from the file /prodksyms.

When your module is loaded, any global symbol you declare becomes part of the
kernel symbol table, and you can see it appear in /proclksyms or in the output of
the ksyms command.

New modules can use symbols exported by your module, and you can stack new
modules on top of other modules. Module stacking is implemented in the main
stream kernel sources as well: the msdos filesystem relies on symbols exported by
the fat module, and the PPP driver stacks on the header compression module.

Module stacking is useful in complex projects. If a new abstraction is implemented
in the form of a device driver, it might offer a plug for hardware-specific imple
mentations. For example, a frame buffer video driver can export symbols to be
used by a lower-level VGA driver. Each user loads the frame buffer module and
the specific VGA module for his or her installed hardware.

Layered modularization can help reduce development time by simplifying each
layer. This is similar to the separation between mechanism and policy that we dis
cussed in Chapter 1.

Registering Symbol Tables
An alternative to exporting all the global symbols of your module is to use the
function register_symtab, which is the official kernel interface to symbol-table
management. The programming interface described here applies to the 1.2.13 and

* This allows up to 256 development versions between stable versions.

22

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 23

The Kernel Symbol Table

2.0 kernels. See the section "Modularization" in Chapter 17, Recent Developments,
for details about changes introduced in the 2.1 development kernels.

The function register_~ymtab, as its name suggests, is used to register a whole
symbol table in the kernel's main table. This technique is somewhat cleaner than
relying on static and global symbols, in that the programmer centralizes the infor
mation about what is made available to other modules and what isn't. This is a
better approach than scattering static declarations all over the source file.

If a module calls register_symtab from its initialization function, global symbols are
no longer exported; only symbols that are listed in the explicit symbol table are
exported to the kernel.

The advantage of declaring a centralized symbol table is most relevant when writ
ing modules that span multiple source files. Many functions and variables can be
left global so the source files can share the relevant information; the symbol table
later selects what really needs to be exported for use by other modules.

Filling a symbol table structure is a tricky task, but kernel developers have written
header files to simplify the task. The following lines of code show how a symbol
table is declared and exported:

static struct symbol_table skull_syms = {

#include <linux/symtab_begin.h>
X (skull_f nl) ,
X (skull_fn2) ,
X(skull_variable),

#include <linux/symtab_end.h>
} ;

register_symtab(&skull_syms);

Interested readers can examine <linux/symtab_begin.h>, but it's one of the
most difficult headers in the kernel. It's not actually necessary to understand the X
macro to benefit from its use.

register_symtab is able to override the static or global declaration of symbols
because it is called after the module has been loaded into the running kernel. reg
ister_symtab replaces the public symbols exported by default for the current mod
ule with the explicit symbol table.

The override is possible because insmod hands the table of global symbols to the
system call sys_init_module, which in turn registers the table before calling
init_module. Any explicit call to register_symtab thus replaces the symbol table
associated with the module.

23

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 24

Chapter 2: Building and Running Modules

If your module doesn't need to export any symbols, and you don't want to declare
everything as static, just hide global symbols by adding the following line to
init_module. This call to register_symtab simply overwrites the module's default
symbol table with an empty one:

register_symtab(NULL);

If the source file does not offer hooks for additional modules to be stacked on it,
it's always a good idea to hide all the symbols by using the one-liner above.

When the module is unloaded from the kernel, any public symbol it declared is
automatically discarded from the main symbol table. This applies to both global
symbols and explicit symbol tables.

Initialization and Shutdown
As already suggested, init_module registers any facility offered by the module. By
"facility," I mean a new functionality, be it a whole driver or a new software
abstraction, that can be accessed by an application.

Registration of a new facility is performed by calling a kernel function. The argu
ments passed are usually a pointer to a data structure describing the new facility
and the name of the facility being registered. The data structure usually embeds
pointers to module functions, which is how functions in the module body get
called.

In addition to the "main" facilities that are used to identify the class of each mod
ule (such as char and block drivers), a module can register the following items:

Miscellaneous devices
These were once called mice because this kind of facility was only used by
bus-mice. They are spare devices, generally simpler than full-featured ones.

Serial ports
A serial driver can be added to the system at run time; this is how PCMCIA
modems are supported.

Line disciplines
The line discipline is a software layer that handles the tty data streams. A mod
ule can register a new line discipline to handle tty transactions in a non
standard way. The kmouse module, for example, .uses a discipline to steal
incoming data from serial mice.

tty drivers

24

A tty driver is the set of functions that implement low-level data handling over
a tty. Both the console and the serial driver register their drivers in order to
create terminal devices. Multiport serial ports have their own driver as well.

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 25

Initialization and Shutdown

/procfiles
/proc contains files that are used to access information in the kernel. Because
they can be used in debugging, /proc files are covered in "Using the /proc
Filesystem,'' in Chapter 4.

Binary formats
For every file marked as executable, the kernel scans a list of "binary formats"
to actually execute it. Modules can implement new formats, as the Java mod
ule does.

11:xec domains
In order to offer binary compatibility with other flavors of Unix, a few of the
kernel internal tables must be modified. An "execution domain" is a set of
mappings from the conventions of another operating system to Linux. For
example, the iBCS2 module defines the execution domain to execute SCO
binary files.

Symbol tables
These have already been covered in "Registering Symbol Tables," earlier in
this chapter.

The items above are device types not considered in the previous chapter and sup
port facilities that usually integrate the driver's functionality, such as lproc files and
line disciplines. The reason why mice and other miscellaneous drivers are not
managed like "complete" char drivers is mainly for convenience. The reason will
be apparent in a while, when you read the section "Major and Minor Numbers," in
Chapter 3, Char Drivers.

There are indeed other facilities that can be registered as add-ons for certain
drivers, but their use is so specific that it's not worth talking about them; they use
the stacking technique, as described above in "Registering Symbol Tables." If you
want to probe further, you can grep for register_symtab in the kernel sources and
find the entry points offered by different drivers. Most registration functions are
prefixed with register_, so another possible way to find them is to grep for
"register_" in /proclksyms.

Error Handling in init_module

If any errors occur when you register facilities, you must undo any registration
performed before the failure. An error can happen, for example, if there isn't
enough memory in the system to allocate a new data structure. Though unlikely, it
might happen, and good program code must be prepared to handle this event.

Linux doesn't keep a per-module registry of facilities that have been registered to
the module, so the module must back out everything if init_module fails at some
point. If you ever fail to unregister what you got, the kernel is left in an unstable

25

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 26

Chapter 2: Building and Running Modules

state: you can't register your facilities again by reloading the module because they
will appear to be "busy," and you can't unregister them because you'd need the
same pointer you used to register and you're not likely to be able to figure out the
address. Recovery from such situations is tricky, and rebooting the system is often
the best solution.

I suggest that you deal with error recovery by using the goto statement. I hate to
use goto, but in my opinion this is one situation (well, the only situation) where
it is useful. In the kernel, goto is often used as shown here to deal with errors.

The following sample code behaves correctly both in the case of success and in
the case of failure:

int init_module(void)

int err;

/* registration takes a pointer and a name*/
err= register_this(ptrl, "skull");
if (err) goto fail_this;
err= register_that(ptr2, "skull");
if (err) goto fail_that;
err= register_those(ptr3, "skull");
if (err) goto fail_those;

return 0; /*success*/

fail_those: unregister_that(ptr2, "skull");
fail_that: unregister_this(ptrl, "skull");
fail_this: return err; /* propagate the error*/

The return value (err) is an error code. In the Linux kernel, error codes are nega
tive numbers, belonging to the set defined in < 1 inux/ errno . h>. If you want to
generate your own error codes instead of returning what you get from other func
tions, you should include <linux/ errno. h> in order to use symbolic values
like -ENODEV, -ENOMEM, and so on. It is always good practice to return appropri
ate error codes, because user programs can turn them to meaningful strings using
pen-or or similar means.

Obviously, cleanup_modu/e must undo any registration performed by
init_module.

26

void cleanup_module(void)
{

unregister_those(ptr3, "skull");
unregister_that(ptr2, "skull");
unregister_this(ptrl, "skull");
return;

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 27

Initialization and Shutdown

The Usage Count
The system keeps a usage count for every module, in order to determine whether
the module can be safely removed. The system needs this information because a
module can't be unloaded if it is busy: you can't remove a filesystem type while
the filesystem is mounted, and you can't drop a char device while a process is
using it.

The usage count is maintained by three macros:

MOD_INC_USE_COUNT
Increments the count for the current module.

MOD_DEC_USE_COUNT
Decrements the count.

MOD_IN_USE
Evaluates to true if the count is not zero.

The macros are defined in <linux/module. h>, and they act on internal data
structures that shouldn't be accessed directly by the programmer. As a matter of
fact, the internals of module management changed a lot during 2.1 development
and have been completely rewritten in 2.1.18 (see "Modularization" in Chapter 17
to probe further).

Note that there's no need to check for MOD_IN_USE from within cleanup_module,
because the check is performed by the system call sys_delete_module (defined in
kerneVmodule.c) before calling the cleanup function.

You won't be able to unload a module if you lose track of the usage count. This
situation may very well happen during development, so you should keep it in
mind. For example, if a process gets destroyed because your driver dereferenced a
NULL pointer, the driver won't be able to close the device, and the usage count
won't fall back to 0. One possible solution is to completely disable the usage
count during the debugging cycle by redefining both MOD_INC_USE_COUNT and
MOD_DEC_USE_COUNT to no-ops. Another solution is to use some other method
to force the counter to zero (you'll see this done in the section "Using the ioctl
Argument," in Chapter 5). Sanity checks should never be circumvented in a pro
duction module. For debugging, however, sometimes a brute-force attitude helps
save time and is therefore acceptable.

The current value of the usage count is found in the third field of each entry in
/proc/modules. This file shows the modules currently loaded in the system, with

27

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 28

Chapter 2: Building and Running Modules

one entry for each module. The fields are the name of the module, the number of
pages of memory it uses, and the current usage count. This is a typical
/prod modules.

plip
isofs
nfs
kmouse

3
5

12
3

0
1 (autoclean)
4
4 (autoclean)

The (autoclean) marker identifies modules managed by kerneld (see Chapter
11). New parenthesized flags have been introduced in recent kernels, but the basic
structure of /prodmodules is the same except for one thing: in kernel 2.1.18 and
newer the length is expressed in bytes instead of pages.

Unloading
To unload a module, use the rmmod command. Its task is much simpler than
loading, as no linking has to be performed. The command invokes the
delete_module system call, which calls cleanup_module in the module itself if the
usage count is zero.

The cleanup_module implementation is in charge of unregistering every item that
was registered by the module. Only the symbol table is removed automatically.

Using Resources
A module can't accomplish its task without using system resources, such as mem
ory, VO ports, and interrupt lines, as well as DMA channels if you use the main
board's DMA controller.

As a programmer, you are already accustomed to managing memory allocation,
and writing kernel code is no different in this regard. Your program obtains a
memory area using kmalloc and releases it using kfree. These functions behave
like malloc and free, except that kmalloc takes an additional argument, the prior
ity. Most of the time, a priority of GFP _KERNEL will do. The GFP acronym stands
for "Get Free Page."

Requesting 1/0 ports and interrupt lines, on the other hand, looks strange at first,
because normally a programmer accesses them with explicit instructions in the
code, without telling the operating system about it. "Allocating" ports and inter
rupts is different from memory allocation in that memory is allocated from a pool,
and every address behaves the same; 1/0 ports have individual roles, and a driver
needs to work with specific ports, not just some ports.

28

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 29

Using Resources

Ports
The job of a typical driver is, for the most part, writing and reading ports. This is
true both at initialization time and during normal work. A device driver must be
guaranteed exclusive access to its ports in order to prevent interference from other
drivers-if a module probing for its hardware should happen to write to ports
owned by another device, weird things would undoubtedly happen.

The developers of Linux chose to implement a request/free mechanism for ports,
mainly as a way to prevent collisions between different devices. However, unau
thorized port access doesn't produce any error condition equivalent to "segmenta
tion fault" -the hardware can't enforce port registration.

Information about registered ports is available in text form in the file /proclioports,
which looks like the following:

0040-00Sf timer
0060-006£ kbd
0070-007£ rte
0OfO-O0ff npu
0170-0177 idel
0lf0-0lf7 ideO
02f8-02ff serial(auto)
0300-031£ NE2000
0376-0376 idel
03c0-03df vga+
03f6-03f6 ideO

Each entry in the file specifies (in hex) a range of ports locked by a driver. No
other driver should try to access those ports before they are released by the driver
holding them.

Collision is avoided in two ways. First, a user adding a new device to the system
can check /proclioports in order to configure the new device to use free ports
this assumes the device is configured by moving jumpers around. Later, when the
software driver initializes itself, it can autodetect the new device without risking
harm to other devices: the driver won't probe 1/0 ports already in use by other
drivers.

In practice, collision avoidance based on the 1/0 registry works best for modular
ized drivers, while it may fail for drivers directly linked into the kernel. Although
we're not concerned with such drivers, it's worth noting that a driver initializing
itself at boot time might misconfigure other devices by using ports that will be reg
istered at a later time. Nonetheless, there's no way for a compliant driver to inter
act with hardware that has already been configured in the system, unless the
previously loaded driver didn't register its ports. As a matter of fact, ISA probing is
a risky task, and several drivers distributed with the official Linux kernel refuse to
perform probing when loaded as modules, to avoid corrupting system operation
by interacting with hardware whose module has yet to be loaded.

29

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 30

Chapter 2: Building and Running Modules

The problem with device probing is that the only way to identify the hardware is
by trying to write and read the candidate ports-the processor (and thus any pro
gram) can only look at electric signals on its data lines. Driver writers know that if
a device is connected to a particular port, it will reply to queries with particular
codes. But if another device is connected to the port, it will nonetheless be written
to, and nobody can foresee how it will react to the unexpected probing. Some
times port probing can be avoided by reading the peripheral's BIOS looking for a
known string; this technique is exploited by several SCSI drivers, but not every
device carries its own BIOS.

A compliant driver should call cbeck_region to find out if a range of ports is
already locked by other drivers, request_region to lock ports for later use, and
release_region when it's done. The prototypes for these functions reside in
<linux/ioport.h>.

The typical sequence for registering ports is the following (the function
skull_probe_hw embeds device-specific code and is not shown here):

#include <linux/ioport.h>
#include <linux/errno.h>
static int skull_detect(unsigned int port, unsigned int range)
{

int err;

if ((err=check_region(port,range)) < 0) return err; /*busy*/
if (skull_probe_hw(port,range) != 0) return -ENODEV; /* not found*/

request_region(port,range,"skull"); /* always succeeds*/
return 0;

Ports are released by cleanup_module.

static void skull_release(unsigned int port, unsigned int range)
{

release_region(port,range);

A similar request/free policy is used for interrupt lines, but managing interrupts is
trickier than handling ports, and a detailed explanation of the whole story is
deferred to Chapter 9, /nterrnpt Handling.

The request/free approach to resources is similar to the register/unregister task
described earlier for facilities and fits well into the goto-based implementation
scheme already outlined.

The problems related to probing are not encountered by programmers writing
drivers for PCI devices. I'll introduce PCI in Chapter 15, Overoiew of Peripheral
Buses.

30

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 31

Using Resources

ISA Memory
This section is quite technical, and can easily be skipped if you are not (yet) confi
dent dealing with hardware issues.

On Intel platforms, target devices fitting into an ISA slot may offer on-board mem
ory in the range 640KB-1MB (OxAOOOO to OxFFFFF); this is another kind of system
resource used by a device driver.

This memory layout dates back to the old days of the 8086 processor, which could
address only one megabyte of memory. The designers of the PC decided that the
low 640KB would host the RAM, while the other 384KB would be reserved for
ROM and memory-mapped devices. Nowadays even the most powerful personal
computers still have this memory hole in the first meg. The PC version of Linux
marks the region as reserved and simply doesn't consider it. The code presented
in this section of the book can be used to access the memory in this range, though
its use is limited to the x86 platforms and to Linux kernels up to and including
version 2.0.x, for any "x." Version 2.1 changed the way physical memory is
accessed, such that 1/0 memory in the 640KB-1MB range can't be accessed in this
way any more. The correct way to access 1/0 memory is the topic of the section
"ISA Memory Below lM," in Chapter 8, Hardware Management, and is outside the
scope of this chapter.

Although the kernel supports a request/free mechanism for ports and interrupts, it
doesn't currently support anything similar for 1/0 memory ranges, so you're on
your own. This won't ever change, if I understand Linus' attitude towards the PC
architecture.

Sometimes it happens that a driver needs to detect ISA memory during initializa
tion; for example, I needed to locate a free memory area to tell a frame grabber
where to map the grabbed image. The problem is that, without probing, you can't
tell how address areas in that range are used. The probe needs to be able to iden
tify three different cases: RAM is mapped to the address, ROM is there (the VGA
BIOS, for example), or the area is free.

The skull sample source shows a way to deal with such memory, but since skull is
not related to any physical device, it just prints information about the 640KB-1MB
memory region and then exits. However, the code used to analyze memory is
worth describing, because it must deal with race conditions. A race condition is a
situation where two tasks might contend for the same resource, and where unsyn
chronized access can cause system damage.

While driver writers don't need to handle multitasking, we must always remember
that interrupts can happen in the middle of our code, and an interrupt handler can
modify global items without telling us about it. Although the kernel offers several
utilities to deal with race conditions, the following simple rules state the general
way to deal with the problem; a complete treatment of the issue appears in the
section "Race Conditions," in Chapter 9.

31

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 32

Chapter 2: Building and Running Modules

• If the shared item is read and not written, declare it as volatile, asking the
compiler to skip optimization. Thus, the compiled code actually reads the item
every time the source code reads it.

• If the code needs to check and change the value, interrupts must be disabled
during the operation to prevent other processes from changing the item after
we have checked it, but before our change takes effect.

The suggested sequence for temporarily disabling interrupts is the following:

unsigned long flags;
save_flags(flags);
cli();

/* critical code*/

restore_flags(flags);

where cli means "clear interrupt flag." The functions shown above are defined in
<asm/system.h>. ·

The classic sequence cli and sti should be avoided, as there are times when you
can't tell if interrupts are enabled before you disable them. Calling sti in such situ
ations can lead to sporadic errors that are very difficult to track down.

The code to check for RAM segments makes use of both volatile declarations
and cli, because these regions can be identified only by physically writing and
rereading data, and real RAM might be changed by other drivers in the middle of
our tests during an interrupt. The following code is not completely foolproof,
because it might mistake RAM memory on acquisition boards for empty regions if
a device is actively writing to its own memory while this code is scanning the area.
However, this situation is quite unlikely to happen.

In the source code below, each printk is prefixed with the KERN_INFO symbol.
This symbol is a priority string that gets concatenated to the format string and is
defined in <linux/kernel. h>. Its expansion is similar to the <l> strings used
in bello.c at the beginning of this chapter.

32

volatile unsigned char *ptr; /* pointed data is volatile */
unsigned char oldval, newval; /* values read from memory */
unsigned long flags; /* used to hold system flags*/
unsigned long add, i;

/* probe all the memory hole in 2KB steps*/
for (add= OxAOOOO; add< OxlOOOOO; add+= 2048)

ptr = (unsigned char *)add;

save_flags(flags);
cli ();
oldval = *ptr; /* read a byte*/
ptr= oldvalAOxff; / change it */

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 33

Using Resources

newval=*ptr; /* re-read */
ptr=oldval; / restore */
restore_flags(flags);

/* FIXME--user getmem_fromio or such*/
if ((oldvalftnewval) == 0xff) (/*were-read our change: it's ram*/

printk(KERN_INFO "%lx: RAM\n", (long)ptr);
continue;

}

if ((oldvalftnewval) != 0) { /* random bits changed: it's empty*/
printk(KERN_INFO "%lx: empty\n", (long)ptr);
continue;

I*
* Expansion rom (executed at boot time by the bios)
* has a signature of 0xSS, 0xaa, and the third byte tells
* the size of such rom
*I

if ((*ptr == 0xSS) && (*(ptr+l) == 0xaa)) (
int size= 512 * *(ptr+2);

I*

printk(KERN_INFO "%lx: Expansion ROM, %i bytes\n•,
(long)ptr, size);

add+= ((size+2047) & -2047) -2048; /* skip it*/
continue;

* If the tests above failed, we still don't know if it is ROM or
*empty.Since empty memory can appear as 0x00, 0xff, or the low
* address byte, we must probe multiple bytes: if at least one of
* them is· different from these three values, then this is rom
* (though not boot rom).
*I

printk(KERN_INFO "%lx: •, (long)ptr);
for (i=0; i<S; i++l {

ptr+=57; /* a •random• value*/
if (*ptr && *ptr!=0xFF && *ptr!=((long)ptr&0xFF)l

break;

printk("%s\n", i==S? •empty• : "ROM");

Detecting memory doesn't cause collisions with other devices, as long as you take
care to restore any byte you modified while you were probing.•

"' Note that in some cases writing to memory can have side effects, as some devices can
map I/O registers to memory addresses. This and other considerations lead to the conclu
sion that the code just shown should definitely be avoided in production drivers. It is
nonetheless a simple introductory module and is shown here as such.

33

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 34

Chapter 2: Building and Running Modules

An attentive reader might ask now about ISA memory in the 15MB-16M address
range. Unfortunately, that's a more difficult issue, which we'll discuss in the sec
tion "ISA Memory Above lM," in Chapter 8.

Automatic and Manual Configuration
Several parameters that a driver needs to know can change from system to system.
For instance, the driver must know the hardware's actual VO addresses, or mem
ory range.

Note that most of the problems discussed in this section don't apply to PCI devices
(described in Chapter 15.

Depending on the device, there may be other parameters in addition to the 1/0
address that affect the driver's behavior, such as device brand and release number.
It's essential for the driver to know the value of these parameters in order to work
correctly. Setting up the driver with the correct values (i.e., configuring it) is one
of the tricky tasks that need to be performed during driver initialization.

Basically, there are two ways to obtain the correct values: either the user specifies
them explicitly or the driver autodetects them. While autodetection is undoubtedly
the best approach to driver configuration, user configuration is much easier to
implement; a suitable tradeoff for a driver writer is to implement automatic config
uration whenever possible, while allowing user configuration as an option to over
ride autodetection. An additional advantage of this approach to configuration is
that the initial development can be done without autodetection, by specifying the
parameters at load time, and autodetection can be implemented later.

Parameter values can be assigned at load time by insmod, which accepts specifica
tion of integer and string values on the command line. The command can modify
all the global variables defined in the module. For example, if your source con
tains the variables:

int skull_ival=O;
char *skull_sval;

then the following command can be used to load the module:

insmod skull skull_ival=666 skull_sval=nthe beastn

A sample run using printk will show that the assignments are already in effect
when init_module gets invoked. Note that insmod can assign a value to any inte
ger or char-pointer variable in the module. It does this for both static and global
variables, whether they are part of the public symbol table or not. Strings declared
as arrays, on the other hand, can't be assigned at load time because the pointer is
resolved at compile time and can't be changed after that.

34

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 35

Automatic and Manual Configuration

Automatic configuration, then, can be designed to work this way: "If the configu
ration variables have the default value, perform autodetection; otherwise, keep the
current value." In order for this technique to work, the "default" value should be
one that the user would never actually want to specify at load time.

The following code shows how skull autodetects the port address of a device. In
this example, autodetection is used to look for multiple devices, while manual
configuration is restricted to a single device. Note that the function skull_detect
was shown above, while skull_init_board is in charge of device-specific initializa
tion, and thus is not shown.

/*
* port ranges: the device can reside between
* 0x280 and 0x300, in step of 0xl0. It uses 0xl0 ports.
*/

#define SKULL_PORT_FLOOR 0x280
#define SKULL_PORT_CEIL 0x300
#define SKULL_PORT_RANGE 0x0l0

/*
* the following function performs autodetection, unless a specific
* value was assigned by insmod to "skull_port_base"
*/

static int skull_port_base=0; /* 0 forces autodetection */

static int skull_find_hw(void) /* returns the# of devices*/

/* base is either the load-time value or the first trial*/
int base= skull_port_base? skull_port_base

: SKULL_PORT_FLOOR;
int result= 0;

/* loop one time if value assigned, try them all if autodetecting */
do {

if (skull_detect(base, SKULL_PORT_RANGE) == 0) {
skull_init_board(base);
result++;

base+= SKULL_PORT_RANGE; /* prepare for next trial*/

while (skull_port_base == 0 && base< SKULL_PORT_CEIL);

return result;

A real driver can avoid using the prefix (in this case, skull_) for the configura
tion variables in order to make things easier for the user who specifies them on
the insmod command line, provided that those symbols are not going to be

35

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 36

Chapter 2: Building and Running Modules

published in the main symbol table. If they are, a good choice can be to declare
two symbols: one without the prefix, which is assigned at load time and one with
the prefix, which is published by register_symtab.

Doing It in User Space
At this point, a Unix programmer who's addressing kernel issues for the first time
might well be nervous about writing a module. Writing a user program that reads
and writes directly to the device ports is much easier.

Indeed, there are some arguments in favor of user-space programming, and some
times writing a so-called "user-space device driver" is a wise alternative to kernel
hacking.

The advantages of user-space drivers can be summarized as follows:

• The full C library can be linked in. The driver can perform many exotic tasks
without resorting to external programs (the utility programs implementing
usage policies that are usually distributed along with the driver itselO.

• A conventional debugger can be run on the driver code, without having to go
through contortions to debug a running kernel.

• If a user-space driver hangs, you can simply kill it. Problems with the driver
are unlikely to hang the entire system, unless the hardware being controlled is
really misbehaving.

• User memory is swappable, unlike kernel memory. An infrequently used
device with a huge driver won't occupy RAM that other programs could be
using, except when it is actually in use.

• A well-designed driver program can still allow concurrent access to a device.

An example· of a user-space driver is the X server: it knows exactly what the hard
ware can do and what it can't, and it offers the graphic resources to all X clients.
The library libsvga is another similar beastie.

Usually, the writer of a user-space driver implements a "server" process, taking
over from the kernel the task of being "the single agent in charge of hardware
control." Client applications can then connect to the server to perform actual .com
munication with the device; a smart driver process can thus allow concurrent
access to the device. This is exactly how the X server works.

Another example of a user-space driver is the gpm mouse server: it performs arbi
tration of the mouse device between clients, so that several mouse-sensitive appli
cations can run on different virtual consoles.

36

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 37

Doing It in User Space

Sometimes, though, the user-space driver grants device access to a single program.
This is how libsvga works. It gets linked to the application, thus supplementing
the application's capabilities without resorting to a central authority (e.g., a server).
This approach usually gives you better performance because it skips the communi
cation overhead, but it requires the application to run as a privileged user.

But the user-space approach to device driving has a number of drawbacks. The
most important are:

• Interrupts are not available in user space. There is no way around this, unless
you learn to use the new vm86 system call and can deal with a little perfor
mance penalty.

• Direct access to memory is possible only by mmapping /dev/mem, and only a
privileged user can do that.

• Access to I/0 ports is available only after calling ioperm or iopl, and only a
privileged user can do that.

• Response time is slower, because a context switch is required to transfer infor
mation or actions between the client and the hardware.

• Worse yet, if the driver has been swapped to disk, response time is unaccept
ably long. Using the mlock system call might help, but usually you'll need to
lock several memory pages, as a user-space program depends on a lot of
library code.

• The most important devices can't be handled in user space, including, but not
limited to, network interfaces and block devices.

As you see, user-space drivers can't do that much, after all. Interesting applications
nonetheless exist: for example, support for SCSI scanner devices. Scanner applica
tions exploit the "SCSI generic" kernel driver, which exports low-level SCSI func
tionality to user-space programs so they can drive their own hardware.

In order to write a user-space driver, some hardware knowledge is sufficient, and
there's no need to understand the subtleties of kernel software. I won't discuss
user-level drivers any further in this book, but will concentrate on kernel code
instead.

When dealing with unusual hardware, on the other hand, you might want to start
by writing software in user space. This way you can learn to manage your hard
ware without the risk of hanging the whole system. Once you've done that, encap
sulating the software in a kernel module should be a painless operation.

37

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 38

Chapter 2: Building and Running Modules

Quick Reference
This section summarizes the kernel functions, variables, macros, and /proc files
that we've touched on in this chapter. It is meant to act as a reference. Each item
is listed after the relevant header file, if any. A similar section appears at the end
of every chapter from here on, summarizing the new symbols introduced in the
chapter.

__ KERNEL __

MODULE
Preprocessor symbols, which must both be defined to compile modularized
kernel code.

int init_module(void);
void cleanup_module(void);

Module entry points, which must be defined in the module object file.

#include <linux/module.h>
Required header. It must be included by a module source.

MOD_INC_USE_COUNT;
MOD_DEC_USE_COUNT;
MOD_IN_USE

Macros that act on the usage count.

/prod modules
The list of currently loaded modules. Entries contain the module name, the
amount of memory they occupy, and the usage count. Extra strings are
appended to each line to specify flags that are currently active for the module.

int register_symtab(struct symbol_tabl'e *);
Function used to specify the set of public symbols in the module. This func
tion doesn't exist any more in Linux 2.1.18 and newer kernels. See "Modular
ization" in Chapter 17 for details.

int register_symtab_from(struct symbol_table *, long*);
Version 2.0 exports this function instead of register_symtab, which is a prepro
cessor macro instead. You'll see register_symtabJrom in /prodksyms, but the
source code doesn't need to cope with it.

#include <linux/symtab_begin.h>
X(symbol),
#include <linux/symtab_end.h>

38

Headers and preprocessor macro used to declare a symbol table with 1.2 and
2.0 kernels. The interface to symbol tables changed in 2.1.1.

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 39

Quick Reference

#include <linux/version.h>
Required header. It is included by <linux/module. h>, unless
__ NO_VERSION __ is defined (see below).

LINUX_VERSION_CODE
Integer macro, useful to #ifdef version dependencies.

char kernel_version[] = UTS_RELEASE;
Required variable in every module. <linux/module. h> defines it, unless
__ NO_VERSION __ is defined (see below).

__ NO_VERSION __
Preprocessor symbol. Prevents declaration of kernel_version in
<linux/module. h>.

#include <linux/sched.h>
One of the most important header files. It's unlikely you could do without it.

struct task_struct *current;
The current process.

struct task_struct *current_set[];
Linux 2.0 supports symmetric multiprocessor boards and defines current as
a macro that expands to current_set [this_cpu]. You'll see cur
rent_set in /proclksyms, but code in the module still uses current. 2.1
development kernels introduced faster ways to access current without
exporting a kernel symbol. See "Other Changes" in Chapter 17.

current->pid
current->comm

The process ID and command name for the current process.

#include <linux/kernel.h>
int printk(const char* fmt, .);

The analogue of printjfor kernel code.

#include <linux/malloc.h>
void *kmalloc{unsigned int size, int priority);
void kfree(void *obj);

Analogue of malloc and free for kernel code. Use the value of GFP _KERNEL
as the priority.

#include <linux/ioport.h>
int check_region(unsigned int from, unsigned int extent);
void request_region(unsigned int from, unsigned int extent,

canst char *name);

39

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 40

Chapter 2: Building and Running Modules

void release_region(unsigned int from, unsigned int extent);
Functions used to register and release VO ports. Version 2. 1.30 changed the
unsigned int arguments to unsigned long, but this change doesn't
affect driver code.

#include <asm/system.h>
This header defines macros like save_jlags and restore_jlags that access spe
cific machine registers.

save_flags(long flags);
restore_flags(long flags);

Preprocessor macros meant to allow temporary modification of one processor
flag.

cli ();
sti ();

Disable and enable interrupts. sti shouldn't be used; use save_jlags and
restore_flags instead.

/proclksyms
The public kernel symbol table.

/proc/ioports
The list of ports used by installed devices.

40

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 41

CHAPTER THREE

CHAR DRIVERS

The goal of this chapter is to w rite a complete char device driver. We'll
develop a characte r driver because this class is suitable for most simple
hardware devices. Char drivers are also easier to understand than, fo r exam

ple , block drivers. Our ultimate aim is to write a modularized char driver, but 1
won 't talk about modulariza tion issues in this chapte r.

Throughout the chapter, I'll p resent code fragments extracted from a real device
driver: scull, short for "Simple Charac ter Utility fo r Loading Localities." scull is a
char driver that acts on a memory area as though it we re a device . A side effect of
this behavio r is that as far as scull is concerned , the word "device" ca n be used
interchangeably with "the memo1y area used by scull."

The advantage of scull is that it isn 't hardware dependen t, since eve1y computer
has memory. scull just acts on some memory, which is allocated using krnalloc.
Anyone ca n compile and run scull, and scull is pona ble across the computer archi
tectures on which Linux runs. On the other hand, the device doesn 't do anything
"useful " other than demonstrating the interface be tween the kernel and char
drivers and allowing the user co run some tests .

The Design of scull
The first step of driver writing is defining the capabilities (the "mechani m ") the
drive r will o ffer to user programs. Since our "device" is pa rt of the computer's
memory, we 're free to do what we want with it. It can be a sequential or random
access device, one device o r many, and so on.

In order fo r scull to be useful as a template for writing real drivers for rea l devices ,
I'll show you how to implement several device abstractions o n top of the com
pute r memory, each w ith a d iffe rent personality.

The scull source in1plements the fo llowing devices. Each kind of device imple
mented by the module i referred to a a "type":

41

CHAPTER THREE

CHAR DRIVERS
he goal of this chapter is to write a complete char device driver. We'll
develop a character driver because this class is suitable for most simple
hardware devices. Char drivers are also easier to understand than, for exam-

ple, block drivers, Our ultimate aim is to write a modiarized char driver, but I
won't talk about modularization issues in this chapter.

Throughout the chapter, [ll present code fragments extracted from a real device
driver: scull, short for “Simple Character Utility for Loading Localities." scul/ is a
chardriver that acts on a memory area as though it were a device. A side effect of
this behavior is that as far as scu/l is concerned, the word “device” can be used
interchangeably with “the memory area used by scuvi/l.”

The advantage of sez/l is that it isn’t hardware dependent, since every computer
has memory. sez// just acts on some memory, which is allocated using kmalloc.
Anyone can compile and run sev//, and scuflis portable across the computerarchi-
tectures on which Linux runs. On the other hand, the device doesn’t do anything
“useful” other than demonstrating the interface between the kernel and char
drivers and allowing the user to run sometests.

The Design of scull
The first step of driver writing is defining the capabilities (the “mechanism") the
driver will offer to user programs, Since our “device” is part of the computer's
memory, we're free to do what we want with it. It can be a sequential or random-
access device, one device or many, and so on.

In order for scu// to be useful as a template for writing real drivers for real devices,
I'll show you how to implement several device abstractions on top of the com-
puter memory, each with a different personality.

The scu/l source implements the following devices, Each kind of device imple-
mented by the module is referred to as a “type”:

4]

Petitioners Microsoft Corporation and HPInc.- Ex. 1019, p. 41

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 42

Chapter 3: Char Drivers

scull0-3
Four devices consisting of four memory areas that are both global and persis
tent. "Global" means that if the device is opened multiple times, the data is
shared by all the file descriptors that opened it. "Persistent" means that if the
device is closed and reopened, data isn't lost. This device can be fun to work
with, because it can be accessed and tested using conventional commands,
like cp, cat, and the shell I/0 redirection; we'll examine its internals in this
chapter.

scullpipe0-3
Four "fifo" devices, which act like pipes. One process reads what another pro
cess is writing. If more processes read the same device, they contend for data.
The internals of scullpipe will show how blocking and nonblocking read
and write can be implemented; this happens without having to resort to inter
rupts. Although real drivers synchronize with their devices using hardware
interrupts, the topic of blocking and nonblocking operations is an important
one and is conceptually detached from interrupt handling (covered in Chapter
9, Interrupt Handling).

scullsingle
scullpriv
sculluid
scullwuid

These devices are similar to scullO, but with some limitations on when an
open is permitted. The first (scullsingle) allows only one process at a time
to use the driver, while scullpri v is private to each virtual console (the
device is private to the console). sculluid and scullwuid can be opened
multiple times, but only by one user at a time; the former returns -EBUSY if
another user is locking the device, while the latter implements blocking open.
These devices will be used to show how different access policies can be
implemented.

Each of the scull devices demonstrates different features of a driver, and presents
different difficulties. This chapter covers the internals of scull0-3; the more
advanced devices will be covered in Chapter 5, Enhanced Char Driver Operations.
scullpipe is described in "A Sample Implementation: scullpipe" and the others
in "Access Control on a Device File."

Major and Minor Numbers
Char devices are accessed through names (or "nodes") in the filesystem, usually
located in the ldev directory. Device files are special files and are identified by a
"c" in the first column of the output of ls -I, indicating that they are char nodes.
Block devices appear in /dev as well, but they are identified by a "b"; even if some
of the following information applies also to block devices, I am now focusing on
char drivers.

42

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 43

Major and Minor Numbers

If you issue the ls command, you1ll see two numbers (separated by a comma) on
the device file entries before the date of last modification, where the file length
normally appears. These numbers are the "major" and "minor" numbers for the
particular device. The following listing shows a few devices as they appear on my
system. Their major numbers are 10, 1, and 4, while the minors are 0, 3, 5, 64-65,
and 128--129.

crw-rw-rw- 1 root root 10, 3 Nov 30 1993 bmouseatixl
crw-rw-rw- 1 root sys 1, 3 Nov 30 1993 null
crw-rw-rw- 1 root root 4, 128 Apr 30 13:02 ptyp0
crw-rw-rw- 1 root root 4, 129 Apr 30 13:02 ptypl
crw-rw-rw- 1 rubini staff 4, 0 Jan 30 1995 tty0
crw-rw-rw- 1 root tty 4, 64 Jan 25 1995 ttyS0
crw-rw-rw- 1 root root 4, 65 May 1 00:04 ttySl
crw-rw-rw- 1 root sys 1, 5 Nov 30 1993 zero

The major number identifies the driver associated with the device. For example,
/dev/null and /dev/zero are both managed by driver 1, while all the tty's and pty's
are managed by driver 4. The kernel uses the major number to associate the
appropriate driver with its device.

The minor number is only used by the device driver; other parts of the kernel
don't use it, and merely pass it it along to the driver. It isn't unusual for a driver to
control several devices (as in the example above)-the minor number provides a
way to differentiate among them.

Adding a new driver to the system means assigning a major number to it. The
assignment should be made at driver (module) initialization by calling the follow
ing function, defined in <linux/ f s. h>:

int register_chrdev(unsigned int major, const char *name,
struct file_operations *fops);

The return value is the error code. A negative return code indicates an error; a
zero or positive return code means successful completion. The major argument is
the major number being requested, name is the name of your device, which will
appear in /proc/devices, and fops is the pointer to a jump table used to invoke
the driver functions, as explained in "File Operations," later in this chapter.

The major number is a small integer that serves as the index into a static array of
char drivers. In 1.2.13 and early 2.x kernels, the array holds 64 elements, while
2.0.26 and 2.1.11 raised the number to 128. Minor numbers aren't passed to regis
ter_cbrdev, because only the driver cares about them.

Once the driver has been registered in the kernel table, whenever an operation is
performed on a character file whose major number matches your driver's major
number, the kernel invokes the correct function in the driver's code by indexing
into the fops jump table.

43

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 44

Chapter 3: Char Drivers

The next question is how to give programs a name by which they can request
your driver. A name must be inserted into the /dev directory and associated with
your driver's major and minor numbers.

The command to create a device node on a filesystem is mknod, and you must be
the superuser to create devices. The command takes three arguments in addition
to the name of the node being created. For example, the command:

mknod /dev/scullO c 127 O

creates a char device (c) whose major number is 127 and whose minor number is
0. Minor numbers should be in the range 0-255, because, for historical reasons,
they are sometimes stored in a single byte. There are sound reasons to extend the
range of available minor numbers, but for the time being, the 8-bit limit is still in
force.

Dynamic Allocation of Major Numbers
Some major device numbers are statically assigned to the most common devices. A
list of those devices can be found in Documerztation/devices.txt within the kernel
source tree. Because many numbers are already assigned, choosing a unique num
ber for a new driver can be difficult-there are more custom drivers than available
major numbers.

Fortunately (or rather, thanks to someone's ingenuity), you can request dynamic
assignment of a major number. If the argument major is set to zero when you call
register_cbrdev, the function selects· a free number and returns it. The major num
ber is always positive and thus can't be mistaken for an error code.

I strongly suggest that you use dynamic allocation to obtain your major device
number, rather than choosing a number randomly from the ones that are currently
free. ·

The disadvantage of dynamic assignment is that you can't create the device nodes
in advance, because the major number assigned to your module can't be guaran
teed to always be the same. This is hardly a problem, however, because once the
number has been assigned, you can read it from /procldevices. To load a driver,
the invocation of insmod can be replaced by a simple script that reads
/procldevices to get the newly assigned major number in order to create the
node(s).

A typical /procldevices looks like the following:

44

Character devices:
1 mem
2 pty
4 ttyp
7 vcs

10 misc
63 scull

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 45

Major and Minor Numbers

Block devices:
3 ideO

22 idel

The script to load a module that has been assigned a dynamic number can thus be
written using a tool such as awk to retrieve information from /proddevices in order
to create the files in / dev.

The following script, scull_load, is part of the scull distribution. The user of a
driver that is distributed in the form of a module can invoke such a script from
/etdrc.dlrc.local or call it manually whenever the module is needed. There is also
a third option: using kerneld. This and other advanced features of modularization
are covered in Chapter 11, Kerne/d and Advanced Modularization.

#!/bin/sh
module="scull"
device="scull"
group="wheel"
mode="664"

invoke insmod with all arguments we got
/sbin/insmod -£$module$* I I exit 1

remove stale nodes
rm -f /dev/${device}[0-3]

rnajor='cat /proc/devices I awk "\\$2==\"$module\" {print \\$1}"'

rnknod /dev/${device}O c $major 0
rnknod /dev/${device}l c $major 1
rnknod /dev/${device}2 c $major 2
rnknod /dev/${device}3 c $major 3

give appropriate group/permissions
chgrp $group /dev/${device}[0-3]
chmod $mode /dev/${device}[0-3]

The script can be adapted for another driver by redefining the variables and
adjusting the mknod lines. The script shown above creates four devices because
four is the default in the scull sources. ·

The last two lines of the script may seem obscure: why change the group and
mode of a device? The reason is that the node is created by root and is thus
owned by root. The permission bits default so that only root has write access,
while anyone can get read access. Normally, a device node requires a different
policy, and some change is needed. Access to a device is usually granted to a
group of users, but the details depend on the device and on the system adminis
trator. Security is a huge problem, beyond the scope of this book. The chmod and
chgrp lines in scull_load are there only as a hint about handling permissions.

45

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 46

Chapter 3: Char Drivers

Later, in the section "Access Control on a Device File" in Chapter 5, the code for
sculluid will demonstrate how the driver can enforce its own kind of authoriza
tion for device access.

If repeatedly creating and destroying /dev nodes sounds like overkill, there is a
useful workaround. If you iook at the kernel source, in fs/devices.c, you can see
that dynamic numbers are assigned starting from 127 (or 63) and moving down, so
you can create long-living nodes with 127 as the major number and avoid calling
the script every time the associated device is loaded. This trick won't work if you
use several dynamic drivers, or if a new kernel release changes the behavior of
dynamic allocation. (Code that you've written based on having peeked at the inter
nals of the kernel isn't guaranteed to keep working if the kernel changes.)
Nonetheless, you might find this technique useful during development, when the
module is constantly being loaded and unloaded.

The best way to assign major numbers, in my opinion, is by defaulting to dynamic
allocation while leaving yourself the option of specifying the major number at load
time, or even at compile time. The code I suggest using is similar to the code
introduced for autodetection of port numbers. The scull implementation uses a
global variable, scul l_maj or, to hold the chosen number. The variable is initial
ized to SCULL_MAJOR, defined in scull.h. The default value of SCULL_MAJOR in
the distributed source is zero, which means "select dynamic assignment." The user
can accept· the default or choose a particular major number, either by modifying
the macro before compiling, or by specifying a value for scull_maj or on the
insmod command line. Finally, by using the scull_load script, the user can pass
arguments to insmod on scull_/oad's command line.

Here's the code I use in scu/Vmain.c to get a major number:

result= register_chrdev(scull_major, "scull", &scull_fops);
if (result< 0) {

printk(KERN_WARNING "scull: can't get major %d\n",scull_major);
return result;

if (scull_major == 0) scull_major = result; /*dynamic*/

Removing a Driver from the System
When a module is unloaded from the system, the major number should be
released. This is accomplished with the following function, which is called from
cleanup_module.

int unregister_chrdev(unsigned int major, const char *name);

The arguments are the major number being released and the name of the associ
ated device. The kernel compares the name to the registered name for that num
ber: if they differ, -EINVAL is returned. The kernel also returns -EINVAL if the
major number is out of the allowed range for majors or is not assigned to a driver.

46

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 47

Major and Minor Numbers

Failing to unregister the resource from cleanup_module has unpleasant effects.
/procldevices will generate a fault the next time you try to read it, because one of
the name strings still points to the module's memory, which is no longer mapped.
This kind of fault is called an Oops because that's the message the kernel prints
when it tries to access invalid addresses.•

When you unload the driver without unregistering the major number, the situation
is unrecoverable, even from a "rescue" module written for that purpose, because
the strcmp call in unregister_cbrdev will use the unmapped name string and will
oops when trying to release the number. Needless to say, any attempt to open a
device node associated with the phantom major number will oops as well.

In addition to unloading the module, you'll often need to remove the device
nodes for the driver being unloaded. If the device nodes were created at load
time, a simple script can be written to remove them at unload time. The script
scull_unload does the job for our sample device. If dynamic nodes are not
removed from /dev, there's a possibility of unexpected errors: a spare
/dev/jramegrabber on a developer's computer might refer to a fire-alarm device
one month later if both used dynamic assignment to get a major number. "No such
file or directory" is a friendlier response to opening ldevlframegrabber than the
new device would produce.

dev_t and kdev _t
So far we've talked about the major number. Now it's time to discuss the minor
number and how the driver uses the minor number to differentiate among devices.

Every time the kernel calls a device driver, it tells the driver what device is being
acted upon. The major and minor numbers are paired in a single data type that is
then used to identify a particular device. The combined device number (the major
and minor numbers concatenated together) resides in the field i_rdev of the
"inode" structure, which is introduced later. Every driver function receives a
pointer to struct inode as the first argument. The pointer is usually called
inode as well, and the function can extract the device number by looking at
inode->i_rdev.

Historically, Unix declared dev_t (device-type) to hold the device numbers. It
used to be a 16-bit integer value defined in <sys/types.h>. Nowadays, more
than 256 minor numbers are needed at times, but changing dev_t is difficult,
because there are applications (and the C library itselO that know the internals of
dev_t and would break if the structure were to change. The dev_t type, there
fore, hasn't been changed; it is still a 16-bit integer, and the minor numbers are
restricted to the range 0-255.

* The word "Oops" is used as both a noun and a verb by Linux freaks.

47

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 48

Chapter 3: Char Drivers

Within the Linux kernel, however, a new type, kdev_t, is used. This new type is
designed· to be a black box for every kernel function. The idea is that user pro
grams won't even know about kdev_t. If kdev_t remains hidden, it can change
from one kernel version to the next as needed, without requiring changes to
everyone's device drivers.

The information about kdev_t is confined in <linux/kdev_t .h>, which is
mostly comments. The header makes instructive reading if you're interested in the
philosophy behind the code. There's no need to include the header explicitly in
the drivers, however, because <linux/ f s. h> does it for you.

The kdev_t type, unfortunately, is a "modern" idea and was missing from kernel
version 1.2. In recent kernels, all the kernel variables and structure fields referring
to devices are kdev_t items, but in 1.2.13 the same variables are in dev_t. This
is not a problem if your driver uses only structure fields it receives, without declar
ing its own variables. If you need to declare your own device-type variable, you
should add the following lines to your headers in order to ensure portability:

#if LINUX_VERSION_CODE < VERSION_CODE(l,3,28)
define kdev_t dev_t

/* two conversion functions are defined in newer kernels*/
define kdev_t_to_nr{dev) {dev)
define to_kdev_t{dev) {dev)
#endif

This code is part of the sysdep.h header in the sample source files. I won't refer to
dev_t any more in the code, but will assume the previous conditional statement
has been executed.

The following macros and functions are the operations you can perform on
kdev_t:

MAJOR(kdev_t dev);
Extract the major number from a kdev_t structure.

MINOR(kdev_t dev);
Extract the minor number.

MKDEV(int ma, int mi);
Return a kdev_t built from major and minor numbers.

kdev_t_to_nr(kdev_t dev);
Convert a kdev_t type to a number (a dev_t).

to_kdev_t(int dev);
Convert a number to kdev_t. Note that dev_t is not defined in kernel mode
and therefore int is used.

The headers associated to Linux 1.2 defined the same functions to act on dev_t
quantities, with the exception of the two conversion functions. That's why the con
ditional code shown earlier defines them simply to return their argument.

48

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 49

File Operations

File Operations
In the next few sections, we'll look at the various operations a driver can perform
on the devices it manages. The device is identified internally by a file structure,
and the kernel uses the file_operations structure to access the driver's func
tions. This design is the first evidence we've seen of the object-oriented design of
the Linux kernel. We'll see more evidence of object-oriented design later. The
structure file_operations is a table of function pointers, defined in
<linux/fs .h>. The structure struct file is going to be described next.

The fops pointer, which we've already seen as an argument to the regis
ter_chrdev call, points to a table of operations (open, read, and so on). Each entry
in the table points to the function defined by the driver to handle the requested
operation. The table can contain NULL pointers for the operations you don't sup
port. The exact behavior of the kernel when a NULL pointer is specified is differ
ent for each function, as the list in the next section shows.

The file_operations structure has been slowly getting bigger as new func
tionality is added to the kernel (although no new fields were added between 1.2.0
and 2.0.x). There should be no side effects from this increase, because the C com
piler takes care of any size mismatch by zero-filling uninitialized fields in global or
static struct variables. New items are added at the end of the structure,* so a
NULL value inserted at compile time will select the default behavior (remember
that the module needs to be recompiled in any case for each new kernel version it
will be loaded into).

A few of the function prototypes associated to fops fields, actually changed
slightly during 2.1 development. These differences are covered in "File Opera
tions," in Chapter 17, Recent Developments.

Overview of the Different Operations
The following list introduces all the operations that an application can invoke on a
device. These operations are often called "methods," using object-oriented pro
gramming terminology to denote actions declared by an object to act on itself.

I've tried to keep the list brief so it can be used as a reference, merely summariz
ing each operation and the default kernel behavior when a NULL pointer is used.
You can skip over this list on your first reading and return to it later.

The rest of the chapter, after describing another important data structure (the
file), explains the role of the most important operations and offers hints,
caveats, and real code examples. We'll defer discussion of the more complex oper
ations to a later chapter, because we aren't yet ready to dig into memory manage
ment and asynchronous notification.

* For example, version 2.1.31 added a new field called lock.

49

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 50

Chapter 3: Char Drivers

The operations appear in struct file_operations in this order, and their
return value is 0 for success or a negative error code to signal an error, unless oth
erwise noted:

int (*lseek) (struct inode *, struct file*, off_t, int);
The /seek method is used to change the current read/write position in a file,
and the new position is returned as a (positive) return value. Errors are sig
nalled by a negative return value. If the function is not specified for the driver,
a seek relative to end-of-file fails, while other seeks succeed by modifying the
position counter in the file structure (described in "The file Structure"). The
prototype of this function changed in 2.1.0, as explained in "Prototype Differ
ences" in Chapter 17.

int (*read) (struct inode *, struct file*, char*, int);
Used to retrieve data from the device. A null pointer in this position causes the
read system call to fail with -EINVAL ("Invalid argument"). A non-negative
return value represents the number of bytes successfully read.

int (*write) (struct inode *, struct file*, canst char*,
int);

Sends data to the device. If missing, -EINVAL is returned to the program call
ing the write system call. Note that the cons t specifier was missing in 1.2
headers. If you include cons t in your own write method, a warning is gener
ated when compiling against older Linux headers. If you don't include cons t,
a warning is generated for newer versions; you can safely ignore the warning
in either case. The return value, if non-negative, represents the number of
bytes successfully written.

int (*readdir) (struct inode *, struct file*, void*,
filldir_t) ;

This field should be NULL for device nodes; it is used only for directories.

int (*select) (struct inode *, struct file*, int,
select_table *);

select is used by programs to ask if the device is readable or writable, or if an
"exception" condition has happened. If the pointer is NULL, the device is
assumed to be both readable and writable, with no exceptions pending. The
meaning of "exception" is device-dependent. The implementation of select is
completely different in the current 2.1 development kernels. (See "The poll
Method," in Chapter 17.) The return value tells whether condition is met (1)
or not (0).

int (*ioctl) (struct inode *, struct file*, unsigned int,
unsigned long) ;

50

The ioctl system call offers a way to issue device-specific commands (like for
matting a track of a floppy disk, which is neither reading nor writing).

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 51

File Operations

Additionally, a few ioctl commands are recognized by the kernel without
referring to the fops table. If the device doesn't offer an ioctl entry point, the
system call returns -EINVAL for any request that isn't predefined. A non
negative return value is passed back to the calling program to indicate a suc
cessful completion.

int (*mmap) (struct inode *, struct file*,
struct vm_area_struct *);

mmap is used to request a mapping of device memory to a process's memory.
If the device doesn't provide this method, the mmap system call returns
-ENODEV.

int (*open) (struct inode *, struct file*);
Though this is always the first operation performed on the device node, the
driver is not required to declare a corresponding method. If this entry is NULL,
opening the device always succeeds, but your driver isn't notified.

void (*release) (struct inode *, struct file*);
This operation is invoked when the node is closed. Like open, release can be
missing. In 2.0 and earlier kernel versions, the close system call never fails;
this changed in 2.1.31 (see Chapter 17).

int (*fsync) (struct inode *, struct file*);
Flush the device. If not supported, the fsync system call returns -EINVAL.

int (*fasync) (struct inode *, struct file*, int);
This operation is used to notify the device of a change in its FASYNC flag.
Asynchronous notification is an advanced topic and will be described in
"Asynchronous Notification" in Chapter 5. The field can be NULL if the driver
won't support asynchronous notification.

int (*check_media_change) (kdev_t dev);
check_media_change is only used with block devices, especially removable
media like floppies. The method is called by the kernel to determine if the
physical medium (e.g., the floppy disk) in the device has changed since the
last operation (return value is 1) or not (0). This function doesn't need t9 be
declared for char devices.

int (*revalidate) (kdev_t dev);
This is the last entry, which is meaningful only for block drivers. revalidate is
related to buffer cache management, as is the previous method. We'll discuss
revalidate in "Removable Devices" in Chapter 12, Loading Block Drivers.

The f ile_operations structure used in the scull driver is the following:

struct file_operations scull_fops = {
scull_lseek,
scull_read,
scull_write,
NULL, /* scull_readdir */

51

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 52

Chapter 3: Cbar Drivers

} ;

NULL,

scull_ioctl,
NULL,

scull_open,
scull_release,

/* scull_select */

/* scull_mmap */

/* nothing more, fill with NULLS*/

A few of the prototypes above have changed slightly in the latest kernel develop
ment. The list was extracted from a 2.0.x header, and the prototypes as shown are
correct for a wide range of kernels. The differences introduced in the 2.1 kernel
(and the fix needed to make our modules portable) are detailed in the section per
taining to each specific operation and in "File Operations" in Chapter 17.

The file Structure
struct file, defined in <linux/fs. h>, is the second most important data
structure used in device drivers. Note that a file has nothing to do with the
FILEs of user-space programs. A FILE is defined in the C library and never
appears in kernel code. A struct file, on the other hand, is a kernel structure
that never appears in user programs.

The file structure represents an "open file." It is created by the kernel on open
and is passed to any function that operates on the file, until close. After the file is
closed, the kernel releases the data structure. An "open file" is different from a
"disk file," which is represented by struct inode.

In the kernel sources, a pointer to struct file is usually called either file or
filp ("file pointer"). I'll consistently call the pointer filp to prevent ambiguities
with the structure itself-filp is a pointer (as such, it is one of the arguments to
device methods), while file is the structure itself.

The most important fields of struct file are shown below. As in the previous
section, the list can be skipped on a first reading. In the next section though,
when we face some real C code, I'll discuss some of the fields, so they are here
for you to refer back to.

mode_t f_mode;

52

The file mode is identified by the bits FM0DE_READ and FM0DE_WRITE. You
might want to check this field for read/write permission in your ioctl function,
but you don't need to check permissions for read and write because the ker
nel checks before invoking your driver. An attempt to write without permis
sion, for example, is rejected without the driver even knowing about it.

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 53

The file Structure

loff_t f_pos;
The current reading or writing position. loff_t is a 64-bit value (long
long in gee terminology). The driver can read this value if it needs to know
the current position. The /seek method, if defined, should update the value of
f_pos. The read and write methods should update it when transferring data.

unsigned short f_flags;
These are the file flags, such as O_RDONLY, O_NONBLOCK, and O_SYNC. A
driver needs to check the flag for nonblocking operation, while the other flags
are seldom used. In particular, read/write permission should be checked using
f_mode instead of f_flags. All the flags are defined in the header
<linux/fcntl .h>.

struct inode *f_inode;
The inode associated with the open file. The inode pointer is the first argu
ment passed by the kernel to all file operations, so you don't usually need to
access the field in file. In those cases when you have access only to a
struct file, you can find the corresponding inode here.

struct file_operations *f_op;
The operations associated with the file. The kernel assigns the pointer at open
time and then reads it when it needs to dispatch any operations. The value in
filp->f_op is never saved for later reference; this means that you can
change the file operations associated with your file whenever you want, and
the new methods will be effective the next time a method is invoked for that
open file. For example, the code for open associated with major number 1
(ldev/null, /dev/zero, and so on) substitutes the operations in filp->f_op
depending on which minor number is being opened. This practice makes it
possible to distinguish between devices with the same major number without
introducing overhead at each system call. The ability to replace the file opera
tions is called "method overriding" in object-oriented programming.

void *private_data;
The open system call sets this pointer to NULL before calling the open method
for the driver. The driver is free to make its own use of the field or to ignore
it. The driver can use the field to point to allocated data, but then must clear it
again in the release method before the file structure is destroyed by the ker
nel. private_data is a great resource for preserving state information
across system calls and is used by most of our sample modules.

The real structure has a few more fields, but they aren't useful to device drivers.
We can safely ignore those fields because drivers never fill file structures; they
only access structures created elsewhere.

53

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 54

Chapter 3: Char Drivers

Open and Release
Now that we've taken a quick look at the fields, we'll start using them in real scull
functions.

The open Method
The open method is provided for a driver to do any initialization in preparation for
later operations. In addition, open usually increments the usage count for the
device, so the module won't be unloaded before the file is closed.

In most drivers, open does the following:

• Checks for device-specific errors (like device-not-ready or similar hardware
problems).

• Initializes the device, if it is being opened for the first time.

• Identifies the minor number and updates the f_op pointer, if necessary.

• Allocates and fills any data structure to be put in filp->private_data.

• Increments the usage count.

In scull, most of the preceding tasks depend on the minor number of the device
being opened. Therefore, the first thing to do is identify which device is involved.
We can do that by looking at inode->i_rdev.

We've already talked about how the kernel doesn't use the minor number of the
device, so the driver is free to use it at will. In practice, different minor numbers
are used to access different devices, or to open the same device in a different way.
For example, /dev/ttySO and /dev/ttySJ refer to different serial ports, whereas
ldev/cuaO is the same physical device as /dev/ttySO, but it acts differently. cuas are
"callout" devices; they aren't ttys, and they don't get all the software support that
is needed for terminals (i.e., they don't have a line discipline* attached). All the
serial devices feature different device numbers, so the driver can tell them apart: a
ttyS is different from a cua.

A driver never actually knows the name of the device being opened, just the
device number-and users can play on this indifference to names by aliasing new
names to a single device for their own convenience. If you look in your /dev
directory, you'll find different names associated with the same major/minor pair;
the devices are one and the same, and there's no way to differentiate between
them. For example, on many systems, both /devlpsaux and /devlbmouseps2 exist,
and they have the same device number; they can be used interchangeably. The
latter is an historical relic, and may be missing from your own system.

* The "line discipline" is a software module dealing with tty 1/0 policies.

54

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 55

Open and Close

The scull driver uses the minor number like this: the most significant nibble (4
bits) identifies the type (personality) of the device, and the least significant nibble
lets you distinguish between devices if the type supports more than one instance
(scull0-3 and scullpipe0-3). Thus, scullO is different from scullpipeO
in the top nibble, while scullO and sculll differ in the bottom nibble.* Two
macros (TYPE and NUM) are defined in the source to extract the bits from a
device number, as we'll see shortly.

For each device type, scull defines a specific file_operations structure, which
is substituted in filp->f_op at open time. The following code shows how bit
splitting and multiple fops are implemented:

#define TYPE(dev)
#define NUM(dev)

(MINOR(dev) >> 4)
(MINOR(dev) & 0xf)

/* high nibble*/
/* low nibble*/

struct file_operations *scull_fop_array[)={
&scull_fops, /* type 0 */
&scull_priv_fops, /* type 1 */
&scull_pipe_fops, /* type 2 */
&scull_sngl_fops, /* type 3 */
&scull_user_fops, /* type 4 */
&scull_wusr_fops /* type 5 */

) ;

#define SCULL_MAX_TYPE 5

The kernel invokes open according to the major number; scull uses the minor
number in the macros shown above. TYPE is used to index into
scull_fop_array, in order to extract the right set of methods for the device
type being opened.

What I did in scull is assign the correct filp->f_op according to the type of the
minor number. The open method declared in the new fops is then invoked. Usu
ally, a driver doesn't invoke its own fops, which are used by the kernel to dis
patch the right driver method. But when your open method has to deal with
different device types, you might want to call fops->open after modifying the
fops pointer according to the minor number being opened.

The actual code for scull_open follows. It uses the TYPE and NUM macros defined
in the previous code snapshot to split the minor number:

int scull_open (struct inode *inode, struct file *filp)

int type= TYPE(inode->i_rdev);
int num = NUM(inode->i_rdev);
Scull_Dev *dev; /* device information*/

/* manage peculiar types first*/

* Bit-splitting is a typical way 10 use minor numbers. The IDE driver, for example, uses the
lop two bilS for the disk number, and the bottom six bits for the partition number.

55

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 56

Chapter 3: Cbar Drivers

if (type) {
if (type> SCULL_MAX_TYPE) return -ENODEV;
filp->f_op = scull_fop_array[type];
/* dispatch to specific open*/
return filp->f_op->open(inode, filp);/* dispatch to specific open*/

/* type 0, check the device nwnber */
if (num >= scull_nr_devs) return -ENODEV;
dev = &scull_devices[num);

/* now trim to O the length of the device if open was write-only*/
if ((filp->f_flags & O_ACCMODE) == O_WRONLY)

scull_trirn(dev); /* ignore errors*/

/* and use filp->private_data to point to the device data*/
filp->private_data = dev;

MOD_INC_USE_COUNT;
return O; /*success*/

A few explanations are due here. The data structure used to hold the region of
memory is Scull_Dev, which will be introduced shortly. The internals of
Scull_Dev and scull_trim (discussed in "Scull's Memory Usage") aren't used
here. The global variables scull_nr_devs and scull_devices [] (all lower
case) are the number of available devices and the actual array of pointers to
Scull_Dev.

The code looks pretty sparse because it doesn't do any particular device handling
when open is called. It doesn't need to, because the scull0-3 device is global
and persistent by design. Specifically, there's no action like "initializing the device
on first open," because we don't keep an open count for sculls, just the module
usage count.

The only real operation performed on the device is truncating it to a length of
zero when the device is opened for writing. This truncation is part of the scull
design: overwriting the device with a shorter file results in a shorter device data
area, similar to the way opening a regular file for writing truncates it to zero.

This "truncation on open", however, has a serious drawback: if for some reason
the device memory is being used, releasing it results in a system fault. Though
unlikely, this kind of situation can happen: if either the read or write method
sleeps during data transfer, another process may be able to open the device for
writing, thus asking for trouble. Facing a race condition is quite an advanced topic,
and I'll deal with it in "Race Conditions," in Chapter 9. The scull device solves the
problem simply by not releasing memory when it is in use, as shown later in
"Scull's Memory Usage."

56

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 57

Open and Release

We'll see later how a real initialization works when we look at the code for the
other scull personalities.

The release Method
The role of the release method is the reverse of open. The device method is some
times called close. It should:

• Decrement the usage count.

• Deallocate anything that open allocated in filp->private_data.

• Shut down the device on last close.

The basic form of scull does not need to do a shutdown, so the code required is
minimal:*

void scull_release (struct inode *inode, struct file *filp)
{

MOD_DEC_USE_COUNT;

Decrementing the usage count is important, because the kernel will never be able
to unload the module if the counter doesn't drop to zero.

How can the counter remain consistent if sometimes a file is closed without hav
ing been opened? We all know that dup and fork make two open files from one
without calling open, but each of the files is then closed at program termination.
For example, most programs don't open their stdin file (or device), but all of
them end up closing it.

The answer is simple. If open was not called, then release isn't called either. The
kernel keeps a counter of how many times a file structure is being used. Neither
fork nor dup create a new data structure; they just increment the counter in the
existing structure.

A new struct file is created only by open. The close system call executes the
release method only when the counter for the structure drops to zero, which hap
pens when the structure is destroyed. This relationship between the release
method and the close system call guarantees that the usage count for modules is
always consistent.

* The other flavors of the device are closed by different functions, because scull_open sub
stituted filp->f_op for them, and we'll see those later.

57

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 58

Chapter 3: Char Drivers

Scull's Memory Usage
Before introducing the read and write operations, we'd better look at how and
why scull performs memory allocation. "How" is needed to thoroughly understand
the code, and "why" demonstrates the kind of choices a driver writer needs to
make, although scull is definitely not typical as a device.

This section deals only with the memory allocation policy in scull and doesn't
show the hardware management skills you'll need to write real drivers. Those
skills are introduced in Chapter 8, Hardware Management, and in Chapter 9.
Therefore, you can skip this section if you're not interested in understanding the
inner workings of the memory-oriented scull driver.

The region of memory used by scull, which is also called a "device" here, is vari
able in length. The more you write, the more it grows; trimming is performed by
overwriting the device with a shorter file.

The implementation chosen for scull is not a smart one. The source code for a
smart implementation would be more difficult to read, and the aim of this section
is to show read and write, not memory management. That's why the code only
uses kmalloc and kfree, without resorting to allocation of whole pages, although
that would be more efficient.

On the flip side, I didn't want to limit the size of the "device" area, for both a
philosophical reason and a practical one. Philosophically, it's always a bad idea to
put arbitrary limits on data items being managed. Practically, scull can be used to
temporarily eat up your system's memory in order to run tests under low-memory
conditions. Running such tests might help you understand the system's internals.
You can use the command cp /dev/zero /dev/scullO to eat all the real RAM with
scull, and you can use the dd utility to choose how much data is copied to the
scull device.

In scull, each device is a linked list of pointers, each of which points to
Scull_Dev. Each such structure can refer to at most four million bytes, through
an array of intermediate pointers. The released source uses an array of 1000 point
ers to areas of 4000 bytes. I call each memory area a "quantum" and the array (or
its length) a ''quantum set." A scull device and its memory areas are shown in
Figure 3-1.

The chosen numbers are such that writing a single byte in scull consumes eight
thousand bytes of memory: four for the quantum and four for the quantum set (a
pointer is four bytes on most platforms; the set uses eight thousand bytes when
compiled for the Alpha, which has eight-byte pointers). On the other hand, if you
write a huge amount of data, the overhead of stepping through the linked list is
not too bad, because there is only one list element for every four megabytes of
data, and the maximum size of the device is limited to a few megs, as it cannot be
bigger than the computer's memory.

' 58

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 59

Scull_:Qev

~ --..~~~!!-

~ •
Quantum set • • •

Individual
Quanta

Figure 3-1: 171e /ayo11t of a scull deuice

Scull's Memo1y Usage

Scull_ Dev

Choosing the appropriate values for the quantum and the quantum set is a ques
tion o f policy, rather than mechanism, and the optimal sizes depend on how the
device is used. The source addresses this issue by allowing the user to change the
values:

• At compile time, the macros SCULL_QUANTUM and SCULL_QSET can be
changed in sc11 /l.h .

• At load time, the integer va lues scull_quantum and scull_qset can be
changed by insmod.

• At run time, the ioctl method allows you to change the default and curre nt val-
ues. ioctl is explained in the section "ioctl" in Chapter 5.

Using a macro and an integer value to allow both compile-time and load-time con
figuration is reminiscent of how the major number is selected . I use thi tech nique
for whatever value in the driver is arbitrary, or related to policy.

The only question left is how the default numbers have been chosen. Driver writ
e rs don't face exactly the same issue when writing their modules, though a similar
pre-tuning of configurable para meters is sometimes needed. In this pa rticular case,
the problem is finding the best balance between the waste of me mory deriving
from half-filled quanta and quantum sets and the overhead of a llocation, dealloca
tion, and pointer-chai ning that occurs if quanta and sets are sma ll.

59

Scull’s Memory Usage

cinemas

ScullDev

 ; Scull_Dey :

; Se) 2S) j

; eaeel‘ Ses al
Quantum set ‘ : =") : —————)

° 7. ——
Individual ® 2Quanta

Figure 3-1: The layout ofa sciull device

Choosing the appropriate values for the quantum and the quantum set is a ques-
tion of policy, rather than mechanism, and the optimal sizes depend on how the
device is used. The source addresses this issue by allowing the user to change the
values:

° At compile time, the macros SCULL_QUANTUM and SCULL_QSET can be
changedin scill.b,

e At load time, the integer values scull_quantum and scull_gset can be
changed by trsmod.

e Atruntime, the focé/ method allows you to change the default and current val-
ues. ioctl is explained in the section “ioctl” in Chapter5.

Using a macro and an integer value to allow both compile-time and load-time con-
figuration is reminiscent of howthe major numberis selected. I use this technique
for whatever value in the driveris arbitrary, or related to policy.

The only question left is how the default numbers have been chosen. Driver writ-
ers don’t face exactly the same issue when writing their modules, though a similar
pre-tuning of configurable parameters is sometimes needed. In this particular case,
the problem is finding the best balance between the waste of memory deriving
from half-filled quanta and quantum sets and the overheadof allocation, dealloca-
tion, and pointer-chaining that occurs if quanta andsets are small.

59

Petitioners Microsoft Corporation and HP Inc.- Ex. 1019, p. 59

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 60

Chapter 3: Char Drivers

Additionally, the internal design of kmalloc must be taken into account. I won't go
into the details now and the rule that "slightly less than a power of two is the best
allocation size" will suffice. The innards of kmalloc are explored in "The Real
Story of kmalloc" in Chapter 7, Getting Hold of Memory.

The choice of default numbers derives from the assumption that most program
mers aren't limited to four megs of physical RAM, and that massive amounts of
data are likely to be written to scull. Several tens of megabytes will be written to
the device by owners of big computers for testing. The default values are thus
optimized for a medium-sized system and massive usage.

The data structure used to hold device information is as follows:

typedef struct Scull_Dev {
void **data;
struct Scull_Dev *next;
int quantum;
int qset;
unsigned long size;
unsigned int access_key;
unsigned int usage;

Scull_Dev;

/* next listitem */
/* the current quantum size*/
/* the current array size*/

/* used by sculluid and scullpriv */
/* lock the device while using it*/

The next code shows in practice how Scull_Dev is used to hold data. The func
tion shown is in charge of freeing the whole data area and is invoked by
scull_open when the file is opened for writing. If device memory is currently being
used, the function does not release it (as suggested above in "The open Method");
otherwise, it simply walks through the list and frees any quantum and quantum set
it finds.

60

int scull_trim(Scull_Dev *dev)

Scull_Dev *next, *dptr;
int qset = dev->qset; /* "dev" is not-null*/
inti;

if (dev->usage)
return -EBUSY; /* scull_open ignores this error and goes on*/

for (dptr = dev; dptr; dptr = next) {/*all the list items*/
if (dptr->data) {

for (i = O; i < qset; i++)
if (dptr->data[i])

kfree(dptr->data[i]);
kfree(dptr->data);
dptr->data=NULL;

next=dptr->next;
if (dptr != dev) kfree(dptr); /* all of them but the first*/

dev->size = 0;

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 61

Read and Write

dev->quantum = scull_quantum;
dev->qset = scull_qset;
dev->next = NULL;
return O;

Read and Write
Reading and writing a scull device means transferring data between the kernel
address space and the user address space. The operation cannot be carried out
through pointers in the usual way, or through memcpy, because pointers operate
in the current address space, and the driver's code is executing in kernel space,
while the data buffers are in user space.

If the target device is an expansion board instead of RAM, the same problem
arises, because the driver must nonetheless copy data between user buffers and
kernel space. In fact, the role of a device driver is mainly managing data transfers
between devices (kernel space) and applications (user space).

Cross-space copy is performed in Linux by special functions, which are defined in
<asm/segment .h>. The functions devoted to performing such a copy are opti
mized for different data sizes (char, short, int, long); most of them will be
introduced in "Using the ioctl Argument" in Chapter 5.

Driver code for read and write in scull needs to copy a whole segment of data to
or from the user address space. This capability is offered by the following func
tions, which copy an arbitrary array of bytes:

void memcpy_fromfs(void *to, const void *from, unsigned long count);
void memcpy_tofs(void *to, const void *from, unsigned long count);

The names of the functions date back to the first Linux versions, when the only
supported architecture was the i386 and there was a lot of assembler code peeking
through the C. On Intel platforms, Linux addresses user space through the FS seg
ment register, and the two functions have kept the old name through Linux 2.0.
Things did change with Linux 2.1, but 2.0 is the main target of this book. See
"Accessing User Space" in Chapter 17 for details.

Although the functions introduced above look like normal memcpy functions, a lit
tle extra care ·must be used when accessing user space from kernel code; the user
pages being addressed might not be currently present in memory, and the page
fault handler can put the process to sleep while the page is being transferred into
place. This happens, for example, when the page must be retrieved from swap
space. The net result for the driver writer is that any function that accesses user
space must be reentrant and must be able to execute concurrently with other
driver functions. That's why the scull implementation refuses to release device
memory when dev->usage is not 0: the read and write methods increment the
usage counter before using either memcpy function.

61

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 62

Chapter 3: Cbar Drivers

As fa r as the actual device methods are concerned, the task of the read method is
to copy data from the device to user space (using memcpy_tofs) , while the write
method must copy data from user space to the device Cu ing memcpy_Ji·omfs).
Each read or write system call requests transfer of a specific number of bytes, but
the driver is free to transfer less data-the exact rules are slightiy different for
reading and writing.

Both read and write return a negative value if an error occurs. A number greater
than or equal to zero tells the calling program how many bytes have been success
fully transferred. If some data is transferred correctly and then an error happens,
the return va lue must be the count of bytes successfully transferred, while tl1e
error does not get reported until the next time tl1e fun ction is ca lled.

The role of the different arguments to read is depicted in Figure 3-2.

struct inode

struct file

buffer

(in the driver)

Kernel Space
(non-swappable)

Figur-e 3-2: Tbe mgu.m.en.ts to read

-~"•'"' "\')'

. \ \

memcpy_to_fs ()

buffer

(in the
application
or libc)

User Space
(swappable)

~-··

While kernel functions return a negative number to signal an error, and the value
of tl1e number indicates the kind of error that occurred (as introduced in Chapter
2, Building and Running Modules, in "Error Handling in init_module"), programs
that run in user space always see -1 as tl1e error return value. These application
programs need to access tl1e errno variable to find out what happened. The dif
ference in behavior is dictated by the library conventions on one hand and the
advantage of not dea ling with errno in the kernel on the other hand.

62

Chapter 3: Char Drivers

As far as the actual device methods are concerned, the task of the read method is

to copy data from the device to user space (using memecpy_tofs), while the write
method must copy data from user space to the device (using memepy_from/s).
Each read or wrile system call requests transfer of a specific number of bytes, but
the driver is free to transfer less data—the exact rules are slightly different for
reading and writing.

Both read and write return a negative value if an error occurs. A numbergreater
than or equalto zerotells the calling program how many bytes have been success-
fully transferred. If some data is transferred correctly and then an error happens,
the return value must be the count of bytes successfully transferred, while the
error does not get reported until the next time the function is called.

The role of the different arguments to read is depicted in Figure 3-2.

int read(struct *inode , struct file *file,, char *buffer,, .int count ,);

struct inode
buffer buffer

(in the driver) (in the
application
or libe)struct file

memcpyto_fs()

Kernel Space User Space
(non-swappable) (swappable)

Figure 3-2: The arguments to read

While kernel functions return a negative numberto signal an error, and the value
of the numberindicates the kind of error that occurred (as introduced in Chapter
2, Building and Running Modules, in “Error Handling in init_module”), programs
that run in user space always see -1 as the error return value. These application
programs need to access the errno variable to find out what happened. The dif-
ference in behavior is dictated by the library conventions on one hand and the
advantage of not dealing with errno in the kernel on the other hand.

Petitioners Microsoft Corporation and HPInc.- Ex. 1019, p. 62

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 63

Read and Write

As far as portability is concerned, it's interesting to note that the count argument
to both the read and write methods has always been int, but changed to
unsigned long with release 2.1.0 of the kernel. Also, the return value for the
methods has been changed from int to long, because it represents either a
count or a negative error code.

This type change is beneficial: unsigned long is a better choice than int for a
count item because of its wider range. The choice is so good that the Alpha team
changed the typing before 2.1 was released (mainly because the GNU C library
uses unsigned long in its definition of system calls).

Although beneficial, this change introduces some platform dependency in driver
code. To circumvent the problem, all the sample modules available on the O'Reilly
FTP site use the following definitions (from sysdep.h):

#if defined(__ alpha __) I I (LINUX_VERSION_CODE >= VERSION_CODE(2,1,0))
define count_t unsigned long
define read_write_t long
#else
define count_t int
define read_write_t int
#endif

After the macros have been evaluated, the count argument to read and write is
always declared as count_t, and the return value as read_wri te_t. I chose to
use a preprocessor definition instead of typedef because the typedef intro
duces more compiler warnings than it removes (see "Interface-Specific Types" in
Chapter 10, Judicious Use of Data Types). On the other hand, an uppercase type
name in function prototypes is really bad-looking, so I named the new "type"
using the standard typedef convention.

Portability to version 2.1 is more thoroughly described in Chapter 17.

The read Method
The return value for read is interpreted by the calling program as follows:

• If the value equals the count argument passed to the read system call, the
requested number of bytes has been transferred. This is the optimal case.

• If the value is positive, but smaller than count, only part of the data has been
transferred. This may happen for a number of reasons, depending on the
device. Most often, the program will retry the read. For instance, if you read
using the / read function, the library function reissues the system call till com
pletion of the requested data transfer.

63

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 64

Chapter 3: Char Drivers

• If the value is zero, it is interpreted to mean that end-of-file was reached.

• A negative value means there was an error. The value specifies what the error
was, according to < 1 inu.x/ errno . h>.

What is missing from the preceding table is the case of "there is no data, but it
may arrive later." In this case, the read system call should block. We won't deal
with blocking input until "Blocking 1/0" in Chapter 5.

The scull code takes advantage of these rules. In particular, it takes advantage of
the partial-read rule. Each invocation of scull_read deals o_nly with a single data
quantum, without implementing a loop to gather all the data; this makes the code
shorter and easier to read. If the reading program really wants more data, it reiter
ates the call. If the standard library is used to read the device, the application
won't even notice the quantization of the data transfer.

If the current read position is greater than the device size, the read method of
scull returns 0 to signal that there's no data available (in other words, we're at
end-of-file). This situation can happen if process A is reading the device while
process B opens it for writing, thus truncating the device to a length of 0. Process
A suddenly finds itself past end-of-file, and the next read call returns 0.

Here is the code for read:

64

read_write_t scull_read (struct inode *inode, struct file *filp,
char *buf, count_t count)

Scull_Dev *dev = filp->private_data; /* the first listitem */
int quantum= dev->quantum;
int qset = dev->qset;
int itemsize =quantum* qset; /* how many bytes in the listitem */
unsigned long f_pos = (unsigned long) (filp->f_pos);
int item, s_pos, q_pos, rest;

if (f_pos > dev->size)
return O;

if (f_:pos +count> dev->size)
count= dev->size - f_pos;

/* find listitem, qset index, and offset in the quantum*/
item= f_pos / itemsize;
rest= f_pos % itemsize;
s_pos =rest/ quantum; q_pos =rest% quantum;

/* follow the list up to the right position (defined elsewhere) */
dev = scull_follow(dev, item);

if (! dev->data)
return O; /* don't fill holes*/

if (!dev->data(s_pos])
return O;

if (count> quantum - q_pos)

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 65

Read and Write

count quantum - q_pos; /* read only up to*/
/* the end of this quantum*/

dev->usage++; /* the following call may sleep*/
memcpy_tofs(buf, dev->data[s_pos]+q_pos, count);
dev->usage--;

filp->f_pos += count;
return count;

The write Method
write, like read, can transfer less data than was requested, according to the follow
ing rules for the return value:

• If the value equals count, the requested number of bytes has been trans
ferred.

• If the value is positive, but smaller than count, only part of the data has been
transferred. Again, the program will most likely retry writing the rest of the
data.

• If the value is zero, nothing was written. This result is not an error, and there
is no reason to return an error code. Once again, the standard library retries
the call to write. We'll examine the significance of this case in a later chapter,
when blocking write is introduced.

• A negative value means an error occurred; the semantics are the same as for
read.

Unfortunately, there are a few misbehaving programs that issue an error message
and abort when a partial transfer is performed. Most notably, a not-so-old version
of the GNU file utilities has such a bug. If your installation dates back to 1995 (for
example, Slackware 2.3), your cp will fail to handle scull. You'll know you have
this version if you see the message /dev/scullO: no such file or
directory when cp writes a data chunk bigger than the scull quantum. The
GNU dd implementation refuses to read or write partial blocks by design, and cat
refuses to write partial blocks. Therefore, cat shouldn't be used with the scull
module and dd should be passed a block size equal to scull's quantum. Note that
this limitation in the scull implementation could be fixed, but I didn't want to com
plicate the code more than necessary.

The scull code for write deals with a single quantum at a time, as the read method
does:

read_write_t scull_write (struct inode *inode, struct file *filp,
const char *buf, count_t count)

Scull_Dev *dev = filp->private_data;

65

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 66

Chapter 3: Char Drivers

Scull_Dev *dptr;
int quantum= dev->quantum;
int qset = dev->qset;
int itemsize =quantum* qset;
unsigned long f_pos = (unsigned long) (filp->f_pos);
int item, s_pos, q_pos, rest;

/* find listitem, qset index and offset in the quantum*/
item= f_pos / itemsize;
rest= f_pos % itemsize;
s_pos =rest/ quantum; q_pos =rest% quantum;

/* follow the list up to the right position*/
dptr = scull_follow(dev, item);
if (!dptr->data) {

dptr->data = kmalloc(qset * sizeof(char *), GFP_KERNEL);
if (! dptr->data)

return -ENOMEM;
memset(dptr->data, 0, qset * sizeof(char *));

if (!dptr->data[s_pos]) {
dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL);
if (!dptr->data[s_pos])

return -ENOMEM;

if (count> quantum - q_pos)
count quantum - q_pos; /* write only up to*/

/*the end of this quantum*/

dev->usage++; /* the following call may sleep*/
memcpy_fromfs(dptr->data[s_pos)+q_pos, buf, count);
dev->usage--;

/* update the size*/
if (dev->size < f_pos + count)

dev-> size= f_pos + count;
filp->f_pos += count;
return count;

Playing with the New Devices
Once you are equipped with the four methods just described, the driver can be
compiled and tested; it retains any data you write to it until you oveiwrite it with
new data. The· device acts like a data buffer whose length is limited only by the
amount of real RAM available. You can try using cp, dd, and input/output redirec
tion to test out the driver.

The free command can be used to see how the amount of free memory shrinks
and expands according to how much data is written into scull.

66

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 67

Quick Reference

To get more confident with reading and writing one quantum at a time, you can
add a printk at an appropriate point in the driver and watch what happens while
an application reads or writes large chunks of data. Alternatively, use the strace
utility to monitor the system calls issued by a program, together with their return
values. Tracing a cp or an ls-I > /dev/scul/0 will show quantized reads and writes.
Monitoring (and debugging) techniques are presented to some detail in the next
chapter.

Quick Reference
This chapter introduced the following symbols and header files. The list of the
fields in struct f ile_operations and struct file is not repeated here.

#include <linux/fs.h>
The "File System" header is the header required for writing device drivers. All
the important functions are declared in here.

int register_chrdev(unsigned int major, canst char *name,
struct file_operations *fops);

Registers a character device driver. If the major number is not zero, it is used
unchanged; if the number is zero, then a dynamic number is assigned for this
device.

int unregister_chrdev(unsigned int major, canst char *name);
Deregisters the driver at unload time. Both maj or and the name string must
contain the same values that were used to register the driver.

kdev_t inode->i_rdev;
The device "number" for the current device is accessible from the inode
argument passed to every device method.

int MAJOR(kdev_t dev);
int MINOR(kdev_t dev);

These macros extract the major and minor numbers from a device item.

kdev_t MKDEV(int major, int minor);
This macro builds a kdev_t data item from the major and minor numbers.

#include <asm/segment.h>
This header defines functions related to cross-space copying in all kernels up
to and including 2.0. The functions are the ones used to copy data from the
user segment to the kernel segment and vice versa. Version 2.1 changed the
header's name as well as the functions (see "Accessing User Space" in Chapter
17 for more information).

67

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 68

Chapter 3: Char Drivers

void memcpy_fromfs(void *to, const void *from,
unsigned long count);

void memcpy_tofs(void *to, canst void *from,

68

unsigned long count);
These functions are used to copy an array of bytes from user space to kernel
space and vice versa. "FS" is the i386 segment register used to address user
space from kernel code. These functions changed in 2.1.

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 69

CHAPTER FOUR

DEBUGGING
TECHNIQUES

0 ne of the most compelling problems for anyone writing kernel code is
how to approach debugging. Kernel code cannot be easily executed
under a debugger, nor can it be traced, because it is a set of functionali

ties not related to a specific process.

This chapter introduces techniques you can use to monitor kernel code and trace
errors.

Debugging by Printing
The most common debugging technique is monitoring, which in applications pro
gramming is done by calling prilltj at suitable points . \Y/hen you are debugging
kernel code, you can accomplish the same goal with printk.

Printk
\Y/e used the printk fu nction in earlier chapters with the simplifying assumption
that it works like print/ Now it's time to introduce some of the differences.

One of the differences is that prinlk lets you classify messages according to their
severity by associating different "loglevels,' ' or priorities with the messages. You
indicate the loglevel with a macro. For example, KERN_INFO, which we saw
prepended to some of the earlier print statements, is one of the possible loglevels
of the message. The Joglevel macro expands to a string, which is concatenated to
the message text at compile Lime; that's why there is no comma between the prior
ity and the format string in the examples below. Here are rwo examples of printk
commands, a debug message and a critical message:

printk (KERN_DEBUG "Here I am: line %i \n", __ LINE _ _) ;
printk (KERN_CRIT "I'm trashed; giving up on %p\n " , ptr);

69

CHAPTER FOUR |

DEBUGGING

TECHNIQUES
ne of the most compelling problems for anyone writing kernel code is
how to approach debugging. Kernel code cannot be easily executed
under a debugger, nor canit be traced, because it is a set of functionali-

ties not related to a specific process.

This chapter introduces techniques you can use to monitor kernel code andtrace
errors.

Debugging by Printing
The most common debugging technique is monitoring, which in applications pro-
gramming is done by calling printf at suitable points. When you are debugging
kernel code, you can accomplish the same goal with printk.

Printk

We used the printk function in earlier chapters with the simplifying assumption
that it works like printf? Nowit’s time to introduce some ofthe differences.

One of the differences is that prinék lets you classify messages according to their
severity by associating different “loglevels,” or priorities with the messages. You
indicate the loglevel with a macro. For example, KERN_INFO, which we saw
prependedto some ofthe earlier print statements, is one of the possible loglevels
of the message. The loglevel macro expands toa string, which is concatenatedto
the message text at compile time; that’s why there is no comma between the prior-
ity and the format string in the examples below, Here are two examples of prinsk
commands, a debug message andacritical message:

printk(KERN_DEBUG "Here I am: line $%i\n", __LINE__);
printk(KERN_CRIT "I'm trashed; giving up on %p\n", ptr);

69

Petitioners Microsoft Corporation and HP Inc.- Ex. 1019, p. 69

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 70

Chapter 4: Debugging Techniques

There are eight possible loglevel strings, which are defined in the header
<linux/kernel. h>. A printk statement with no specified priority defaults to
DEFAULT_MESSAGE_LOGLEVEL, an integer value specified in kerneVprintk.c.
The default loglevel value has changed several times during Linux development,
so I suggest that you always specify a suitable loglevel.

Based on the loglevel, the kernel prints the message to the current text console: if
the priority is less than the integer variable console_loglevel, the message is
displayed. If. both k/ogd and sys/ogd are running on the system, kernel messages
are appended to /var/loglmessages, independent of console_loglevel.

The variable console_loglevel is initialized to DEFAULT_CONSOLE_
LOGLEVEL and can be modified through the sys_syslog system call. One way to
change it is by specifying the -c switch when invoking klogd, as specified in the
klogd man page. Note that to change the current value, you must first kill the log
ger and then restart it with the -c option. Alternatively, you can write a program to
change the console loglevel. You'll find my version of such a program in misc
progslset/eve/.c in the source files provided on the O'Reilly FTP site. The new level
is specified as an integer value between 1 and 8, inclusive.

You'll probably want to lower the loglevel after a kernel fault (see "Debugging
System Faults"), because the fault-handling code raises the console_loglevel
to 15, causing every subsequent message to appear on the console. You'll want to
raise the loglevel if you are running a 2.0.x kernel and want to see your debug
ging messages. The 2.0 kernel release lowered the MINIMUM_CON
SOLE_LOGLEVEL, while old versions of k/ogd tried by default to shut up console
messages. If you happen to run an old daemon, the 2.0 kernel will be much qui
eter than you expect unless you raise the loglevel. That's why hello.c had the <1>
markers; they are there to make sure that messages appear on the console.

Versions of Linux from 1.3.43 on allow for some flexibility in logging policies by
letting you send messages to a specific virtual console. By default, the "console" is
the current virtual terminal. To select a different virtual terminal to receive mes
sages, you can issue ioctl (TIOCLINUX) on any console device. The following
program, setconsole, can be used to choose which console receives kernel mes
sages; it must be run by the superuser. If you don't feel confident using ioctl, you
might prefer to skip to the next section and come back to this code after reading
the section "ioctl" in Chapter 5, Enhanced Char Driver Operations.

70

int main(int argc, char **argv)
{

char bytes[2] = {11,0}; /* 11 is the TIOCLINUX cmd number*/

if (argc==2) bytes[l] = atoi(argv[l]); /* the chosen console*/
else {

fprintf(stderr, "%s: need a single arg\n",argv[0]); exit(l);

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 71

Debugging by Printing

if (ioctl(STDIN_FILENO, TIOCLINUX, bytes)<0) { /* use stdin */
fprintf(stderr,"%s: ioctl(stdin, TIOCLINUX): %s\n",

argv[0], strerror(errno));
exit(l);

exit(0);

setconsole uses the special ioctl command TIOCLINUX, which implements Linux
specific functions. To use TIOCLINUX, you pass it an argument that is a pointer to
a byte array. The first byte of the array is a number that specifies the requested
subcommand, and the following bytes are subcommand-specific. In setconsole,
subcommand 11 is used, and the next byte (stored in bytes [1]) identifies the
virtual console. The complete description of TIOCLINUX can be found in
driverslchar/tty_io.c, in the kernel sources.

How Messages Get Logged
The printk function writes messages into a circular buffer that is LOG_BUF _LEN
bytes long. It then wakes any process that is waiting for messages, i.e., any pro
cess that is sleeping in the syslog system call or that is reading /proc/kmesg. These
two interfaces to the logging engine are equivalent. Nonetheless, reading the /proc
file is easier because the file looks like a fifo, from which kernel messages can be
read. A simple cat can read the messages.

If the circular buffer fills up, printk wraps around and starts adding new data to
the beginning of the buffer, overwriting the oldest data. The logging process thus
loses the oldest data. This problem is negligible compared to the advantages of
using such a circular buffer. For example, a circular buffer allows the system to
run even without a logging process, while minimizing memory waste. Another fea
ture of the Linux approach to messaging is that printk can be invoked from any
where, even from an interrupt handler, with no limit on how much data can be
printed. The only disadvantage is the possibility of losing some data.

If the klogd process is running, it retrieves kernel messages and dispatches them to
syslogd, which in turn checks /etc/syslog.conf to find out how to deal with them.
syslogd differentiates between messages according to a "facility" and a "priority";
allowable values for both the facility and the priority are defined in
<sys/syslog .h>. Kernel messages are logged by the LOG_KERN facility, at a
priority corresponding to the one used in printk. If klogd isn't running, data
remains in the circular buffer until someone reads it or the buffer overflows.

If you want to avoid ~lobbering your system log with the monitoring messages
from your driver, you can either specify the -f (file) option to klogd to write the
messages to a different file, or modify letclsyslog.conf. Another possibility is to take

71

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 72

Chapter 4: Debugging Techniques

the brute-force approach: kill klogd and verbosely print messages on an unused
virtual terminal,* or issue the command cat /proc/kmesg from an unused xterm.

Using the Preprocessor to Ease Monitoring
During the early stages of driver development, printk can help considerably in
debugging and testing new code. When you officially release the driver, on the
other hand, you should remove, or at least disable, such print statements. Unfortu
nately, you're likely to find that as soon as you think you no longer need the mes
sages and remove them, you'll implement a new feature in the driver and want to
tum at least one of the messages back on. There are several ways to solve both
issues-how to globally enable and disable the messages and how to turn individ
ual messages off and on.

The code I use for most of my messaging is shown below and has the following
features:

• Each print statement can be enabled or disabled by removing or adding a sin
gle letter to the macro's name.

• All the messages can be disabled at once, by changing the value of the
CFLAGS variable before compiling.

• The same print statement can be used in kernel code (the driver) and user
level code (demonstration and test programs).

The code fragment below implements these features and comes directly from the
header scull.h.

#undef PDEBUG
#ifdef SCULL_DEBUG
ifdef __ KERNEL __

/* undef it, just in case*/

/* This one if debugging is on, and kernel space*/
define PDEBUG{fmt, args ...) printk{KERN_DEBUG "scull: " fmt, ## args)
else

/* This one for user space*/
define PDEBUG{fmt, args ...) fprintf{stderr, fmt, ## args)
endif
#else
define PDEBUG{fmt, args ...) /* not debugging: nothing*/
#endif

#undef PDEBUGG
#define PDEBUGG{fmt, args ...) /* nothing: it's a placeholder*/

The symbols PDEBUG and PDEBUGG depend on whether or not SCULL_DEBUG is
defined, and they behave like a print/ call.

* For example, use setlevel 8; setconsole 10 to set up tty 10 to display messages.

72

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 73

Debugging by Querying

To simplify the process further, add the following lines to your Makefile.

Comment/uncomment the following line to disable/enable debugging
· DEBUG= y

ifeq ($(DEBUG),y)
DEBFLAGS = -0 -g -DSCULL_DEBUG # "-0" is needed to expand inlines

else
DEBFLAGS -02

endif

CFLAGS = -D __ KERNEL __ -DM0DULE -Wall $(DEBFLAGS)

The macros shown in this section depend on a gee extension to the ANSI C pre
processor that supports macros with a variable number of arguments. This gee
dependency shouldn't be a problem because the kernel proper depends heavily
on gee features anyway. In addition, the Makefile depends on GNU's gmake; the
same considerations apply to make it not a problem.

If you're familiar with the C preprocessor, you can expand on the definitions
above to implement the concept of a "debug level," defining different levels and
assigning an integer (or bitmask) value to each level to determine how verbose it
should be.

But every driver has its own features and monitoring needs. The art of good pro
gramming is in choosing the best tradeoff between flexibility and efficiency, and I
can't tell what is the best for you. Remember that preprocessor conditionals (as
well as constant expressions in the code) are executed at compile time, so you
must recompile to turn messages on or off. A possible alternative is to use C con
ditionals, which are executed at run time and therefore permit you to turn messag
ing on and off during program execution. This ability is a nice feature, but it
requires additional processing every time the code is executed, which can affect
performance even when the messages are disabled. Sometimes this performance
hit is unacceptable.

Personally, I've been satisfied with the macros shown above, although they force
me to recompile and reload the module every time I want to add or remove a
message.

Debugging by Querying
The previous section described how printk works and how it can be used. What it
didn't talk about are its disadvantages.

A massive use of printk can slow down the system noticeably, because syslogd
keeps syncing its output files, so every line that is printed causes a disk operation.
This is correct from syslogd's perspective. It tries to write everything to disk in

73

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 74

Chapter 4: Debugging Techniques

case the system crashes right after printing the message; however, you don't want
to slow down your system just for the sake of debugging messages. This problem
can be solved by prefixing with a dash the name of your logfile as it appears in
/etdsyslogd.conf, but sometimes you don't want to change your config files. Other
wise, you can run a program other than klogd (like cat /proc/kmesg, as suggested
above) but this may not provide a suitable environment for normal system opera
tion.

More often than not, the best way to get relevant information is to query the sys
tem when you need the information, instead of continually producing data. In fact,
every Unix system provides many tools for obtaining system information: ps, net
stat, vmstat, and so on.

There are two techniques available to driver developers for querying the system,
namely, creating a file in the /proc filesystem and using the ioctl driver method.

Using the /proc Filesystem
The /proc filesystem in Linux is not associated with any device-the files living in
/proc are generated by the kernel when they are read. These files are usually text
files, so they can be (almost) understood by humans as well as by utility programs.
For example, the most common Linux implementation of ps gets its information
from the /proc filesystem. The idea of a /proc virtual filesystem is used by several
modem operating systems and works quite successfully.

The current implementation of lproc provides for the dynamic creation of nodes,
allowing user modules to create entry points for easy information retrieval.

To create a full-featured file node within /proc (one that permits reads, writes,
seeks, and so on), you need to define both a file_operations structure and
an inode_operations structure, which are similar in role and shape. Creating
such a node is not too different from the creation of a whole char device. I won't
deal with this issue here, but if you're interested, you can look in the fs/proc
source tree for further details.

If the file node is only going to be read, as most of the /proc files are, there is an
easier way to create it, which I'll show here. Unfortunately, this technique is only
available in Linux 2.0 or later.

Here is the scull code for creating a file called /prodscullmem, used to retrieve
information about the memory used by scull.

74

#include <linux/proc_fs.h>

int scull_read_procmem{char *buf, char **start, off_t offset,
int len, int unused)

inti, j, quantwn, qset;
Scull_Dev *d;

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 75

Debugging by Querying

#define LIMIT (PAGE_SIZE-80) /* don't print anymore*/
/* after this size*/

len=O;
for(i=O; i<scull_nr_devs; i++) {

d=&scull_devices[i];
quantum=d->quantum; /* retrieve the features of each device*/
qset=d->qset;
len += sprintf(buf+len,"\nDevice %i: qset %i, q %i, sz %li\n",

i, qset, quantum, d->size);
for(; d; d=d->next) {/*scan the list*/

if (len > LIMIT) return len;
len += sprintf(buf+len, " item at %p, qset at %p\n",

d, d->data);
if (d->data && !d->next) /* dump only the last item*/

/* to save space*/
for (j=O; j<qset; j++) {

if (len > LIMIT) return len;
if (d->data(j])

len += sprintf(buf+len," % 4i:%8p\n",
j,d->data[j]);

return len;

struct proc_dir_entry scull_proc_entry = {

} ;

0, /* low_ino: the inode--dynamic */
8, "scullmem", /* len of name and name*/
S_IFREG I S_IRUGO, /*mode*/
1, 0, 0, /* nlinks, owner, group*/
0, /* size--unused */
NULL, /* operations--use default*/
&scull_read_procmem, /* function used to read data*/
/* nothing more*/

/* this is the last line in init_module */
proc_register_dynamic(&proc_root, &scull_proc_entry);

Filling a /proc file is easy. Your function receives a free page to be filled with data;
it writes into the buffer and returns the length it wrote. Everything else is handled
by the /proc filesystem. The only limitation is that the data being written must be
less than PAGE_SIZE bytes (the PAGE_SIZE macro is defined in the header file
<asm/page. h>; it is architecture-dependent, but you can count on at least 4KB).

If you need to write more than one page of data, you must fall back on the full
featured file implementation.

75

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 76

Chapter 4: Debugging Techniques

Note that if a process reading your /proc file issues several read calls, each retriev
ing a few bytes, your driver rewrites the entire buffer each time even though only
a small amount of actual data is being read. The extra work can cause perfor
mance to suffer and the data to become misaligned because if the data generated
by the file is different from one time to the next, subsequent read calls will
reassemble unrelated parts. In fact, performance is rarely a problem, because
every application using the C library reads data in one big chunk. Misalignments,
however, are worth worrying about because they sometimes show themselves.
After retrieving data, the library calls read at least once more-end-of-file is only
reported when one read call returns 0. If the driver happens to produce more data
than before, the extra bytes are returned to user space and do not align with the
previous data chunk. We'll encounter the misalignment problem again when we
look at /proc/jiq~ in the section "Task Queues" in Chapter 6, Flow of Time.

Unregistration of the /proc node should be performed in cleanup_module, by the
following statement:

proc_unregister(&proc_root, scull_proc_entry.low_ino);

The arguments passed to the function are the name of the directory containing the
file being destroyed and the file's inode number. Since the inode number is allo
cated dynamically, it is unknown at compile time and must be read back from the
data structure.

The ioctl Method
ioctl, which is discussed in more detail in the next chapter, is a system call that
acts on a file descriptor; it receives a "command" number and (optionally) another
argument, usually a pointer.

As an alternative to using the /proc filesystem, you can implement a few ioctl com
mands tailored for debugging. These commands copy relevant data structures from
the driver to user space, where you can examine them.

Using ioctl this way to get information is somewhat more difficult than using /proc,
because you need another program to issue the ioctl and display the results. This
program must be written, compiled, and kept in sync with the module you're
testing.

There are nonetheless times when this is the best way to get information, because
it runs faster than reading /proc. If some work must be performed on the data
before it's written to the screen, retrieving the data in binary form can be more
efficient than reading a text file. In addition, ioctl doesn't limit the amount of data
returned to a single page.

76

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 77

Debugging by Watching

An interesting advantage of the ioctl approach is that the debugging commands
can be left in the driver even when debugging is disabled. Unlike a lproc file,
which is visible to anyone who looks in the directory (and too many people are
likely to wonder "what that strange file is"), undocumented ioctl commands are
likely to remain unnoticed. In addition, they will still be there should something
weird happen to the driver. The only drawback is that the module will be slightly
bigger.

Debugging by Watching
Sometimes the problems you're encountering are not that bad and running an
application program in user space to examine the way the driver reacts to system
calls can help track down minor problems or confirm that the driver is working
correctly. For example, I was able to feel confident about scull after looking at
how its read implementation reacted to read requests for different amounts of
data.

There are various ways to watch a user-space program working. You can run a
debugger on it to step through its functions, add print statements, or run the pro
gram under strace. The last technique is most interesting when the real goal is
examining kernel code.

The strace command is a powerful tool that shows all the system calls issued by a
user-space program. Not only does it show the calls, but it can also show the argu
ments to the calls, as well as return values in symbolic form. When a system call
fails, both the symbolic value of the error (e.g., ENOMEM) and the corresponding
string (Out of memory) are displayed. strace has many command-line options;
the most useful are -t to display the time when each call is executed, -T to display
the time spent in the call, and -o to redirect the output to a file. By default, strace
prints tracing information on s tderr.

strace receives information from the kernel itself. This means that a program can
be traced regardless of whether it was compiled with debugging support (the -g
option to gee) or whether it is stripped. You can also attach tracing to a running
process, similar to the way a debugger can connect to a running process and con
trol it.

The trace information is often used to support bug reports sent to application
developers, but it's also invaluable to kernel programmers. We've seen how driver
code executes by making system calls; strace allows us to check the consistency of
each call's input and output data.

For example, the following screen dump shows the last lines of tracing the com-
mand ls/dev >/dev/scul/0: ·

% strace ls /dev > /dev/scullO
[...]
readdir(3, {d_ino=894, d_name="scullO"}) 1

77

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 78

Chapter 4: Debugging Techniques

readdir(3, {d_ino=895, d_name="sculll"}) 1
readdir(3, {d_ino=896, d_name="scull2"}) 1
readdir (3, { d_ino=897, d_name=" scull3"}) 1
readdir(3, 0x8013000) 0
close(3) 0
brk(0x8035000) 0x8035000
brk(Ox8035000) 0x8035000
brk(0x8025000) 0x8025000
fstat(l, {st_rnode=S_IFCHRI0664, st_rdev=rnakedev(63, 0), ... }) = 0
ioctl(l, TCGETS, 0xbffffac4) = -1 EINVAL (Invalid argument)
write(l, "MAKEDEV\nXOR\narp\natibrn\naudio\n" ... , 4096) = 4000
write(l, "3\nttyr4\nttyr5\nttyr6\nttyr7\nt" ... , 96) = 96
write(l, "3\nttys4\nttys5\nttys6\nttys7\nt" ... , 535) = 535
_exit(0) =?

It's apparent in the first write call that after ls finished looking in the target direc
tory, it tried to write 4KB. Strangely (for ls), only four thousand bytes were written,
and the operation was retried. However, we know that the write implementation
in scull writes a single quantum at a time, so we could have expected the partial
write. After a few steps, everything sweeps through, and the program exits suc
cessfully.

As another example, let's read the scull device:

% strace we -c /dev/scullO
[...]
open("/dev/scull0", o_RDONLY) = 3
fstat(3, {st_rnode=S_IFCHRI0664, st_rdev=makedev(63, 0), ... }) 0
read(3, "MAKEDEV\nXOR\narp\natibrn\naudio\n" ... , 16384) = 4000
read(3, "3\nttyr4\nttyr5\nttyr6\nttyr7\nt" ... , 16384) = 631
read(3, "", 16384) = 0
fstat(l, {st_rnode=S_IFCHRI0620, st_rdev=rnakedev(4, 13), ... }) 0
brk(0x800b000) = 0x800b000
ioctl(l, TCGETS, {B38400 opost isig icanon echo ... }) = 0
write(l, w 4631 /dev/scull0\n", 20 4631 /dev/scullO
) = 20
close(3)
_exit(0)

= 0
= ?

As expected, read is able to retrieve only four thousand bytes at a time, but the
total amount of data is the. same. It's interes~ing to note how retries are organized
in this example, as opposed to the previous trace. wc is optimized for fast reading
and thus bypasses the standard library, trying to read more data with a single sys
tem call. You can see from the read lines in the trace how we tried to read 16KB
at a time.

Unix experts can find much useful information in the output of strace. If you're
put off by all the symbols, you can limit yourself to watching how the file methods
(open, read, and so on) work.

78

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 79

Debugging System Faults

Personally, I find the tracing utility most useful for pinpointing run-time errors
from system calls. Often the perror call in the application or demo program isn't
verbose enough to be useful for debugging, and being able to tell exactly which
arguments to which system call triggered the error can be a great help.

Debugging System Faults
Even if you've used all the monitoring and debugging techniques, sometimes bugs
remain in the driver and the system faults when the driver is executed. When this
happens it's important to be able to collect as much information as possible to
solve the problem.

Note that "fault" doesn't mean "panic." The Linux code is robust enough to
respond gracefully to most errors: a fault usually results in the destruction of the
current process, but the system goes on working. The system can panic, and it
may if a fault happens outside of a process's context, or if some vital part of the
system is compromised. But when the problem is due to a driver error, it usually
results only in the sudden destruction of the faulty process-the one using the
driver. The only unrecoverable damage when a process is destroyed is that some
memory allocated to the process's context can be lost; for instance, dynamic lists
allocated by the driver through kmal/oc might be lost. However, since the kernel
calls the close operation for any open device anyway, your driver can release what
was allocated by the open method.

We've already said that when kernel code misbehaves, an informative message is
printed on the console. The next section explains how to decode and use such
messages. Even though they appear rather obscure to the novice, processor dumps
are full of interesting information, often sufficient to pinpoint a program bug with
out the need for additional testing.

Oops Messages
Most bugs show themselves in NULL pointer dereferences or by the use of other
incorrect pointer values. The usual outcome of such bugs is an oops message.

Any address used by the processor is a "virtual" address and is mapped to physi
cal addresses through a complex structure of so-called page tables (see "Page
Tables" in Chapter 13, Mmap and DMA). When an invalid pointer is dereferenced,
the paging mechanism fails to map the pointer to a physical address and the pro
cessor signals a "page fault" to the operating system. If the address is not valid,
the kernel is not able to "page-in" the missing address; it generates an "oops" if
this happens while the processor is in supervisor mode. It's interesting to note that
the way the kernel deals with faults changed in version 2.1, so that it can handle
references to invalid addresses while in supervisor mode. The new implementation
is described in the section "Handling Kernel-Space Faults," in Chapter 17, Recent
Developments.

79

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 80

Chapter 4: Debugging Techniques

An oops displays the processor status at the time of the fault, including the con
tents of the CPU registers, the location of page descriptor tables, and other seem
ingly incomprehensible information. The message is generated by printk
statements in the fault handler (arch/3/kerneVtraps.c) and is dispatched as
described earlier in the section "Printk."

Let's look at one such message. Here's how an oops appears on a conventional
personal computer (an x86 platform), running Linux 2.0 or newer-version 1.2
has a slightly different layout.

Unable to handle kernel paging request at virtual address c202e000
current->tss.cr3 = 012c0000, $r3 = 012c0000
*pde = 00001067
*pte = 00000000
Oops: 0000
CPU: 0
EIP: 0010:[<0202d079>)
EFLAGS: 00010216
eax: 00000041 ebx: 00001000 ecx: 0000004b edx: 0156b018
esi: 0202e000 edi: 0800aed4 ebp: 01106£90 esp: 01106f6c
ds: 0018 es: 002b fs: 002b gs: 002b ss: 0018
Process cat (pid: 597, process nr: 31, stackpage=01106000)
Stack: 02020018 0202d004 00f992e8 01257440 0800a000 00001000 01257440

00001000 00f992e8 00120e7a 00f992e8 01257440 0800a000 00001000
0800a000 00001000 bffffbd8 0010a602 00000003 0800a000 00001000

Call Trace: [<02020018>] [<0202d004>) [<00120e7a>] [<0010a602>)
Code: f3 aS 83 e3 03 89 d9 £3 a4 07 Sb 45 14 8d 65 f4 Sb Se Sf 89

The message above was generated by running cat on a faulty module, built delib
erately to demonstrate the erro~. faulty.c includes the following code:

char faulty_buf[1024);

read_write_t faulty_read (struct inode *inode, struct file *filp,
char *buf, count_t count)

printk(KERN_DEBUG "read: inode %p, file %p, buf %p, count %li\n",
inode, filp, buf, (long)count);

memcpy_tofs(buf,faulty_buf,count);
return count;

Since read copies data to user space from its small buffer (faulty _buf), we can
expect reading the file in small pieces to work. Reading more than one kilobyte at
a time, on the other hand, might cross a page boundary, and the read will fail if it
accesses an invalid page. Indeed, the oops shown earlier happened during a read

80

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 81

Debugging System Faults

call asking for 4 kilobytes, as shown by the line appearing before the oops mes
sage in /var/log/messages (the default file where syslogd stores kernel messages):

read: inode 00f992e8, file 01257440, buf OB00aO00, count 4096

The same cat command doesn't generate an oops on an Alpha because reading 4
kilobytes from faulty _buf doesn't cross the page boundary (pages are 8KB on
the Alpha and the buffer sits near the beginning of the page). If reading faulty
doesn't generate an oops message on your system, try using wc (word count)
instead, or specify an explicit block size to dd.

Using ksymoops

The main problem with oops messages is that the hex values are not meaningful
for the programmer; they need to be resolved to symbols.

The kernel sources help the developer by including the ksymoops utility-but note
that the program was missing from version 1.2 of the sources. The tool resolves
numeric addresses found in the oops message to kernel symbols, but only for
oops messages generated by PCs. Each architecture has its own message format,
because the available information is processor-dependent.

ksymoops gets the oops message on standard input and the name of the kernel
symbol table on the command line. The symbol table is usually /usr/src/
linux/System.map. The program prints the call trace and program code in a more
readable format than the original oops message. The following snapshot was pro
duced by feeding ksymoops the oops message shown in the previous section:

Trace: 2020018
Trace: 202d004
Trace: 120e7a <sys_read+Ba/b0>
Trace: 10a602 <system_call+S2/B0>

Code: repz movsl %ds: (%esi),%es: (%edi)
Code: andl $0x3,%ebx
Code: movl %ebx,%ecx
Code: repz movsb %ds: (%esi),%es: (%edi)
Code: popl %es
Code: movl 0x14 (%ebp), %eax
Code: leal 0xfffffff4(%ebp),%esp
Code: popl %ebx
Code: popl %esi
Code: popl %edi
Code: movl %eax, (%eax)

The code disassembly produced by ksymoops shows the instruction that failed and
the following ones. It's apparent here-for those who know a little assembler
that the repz movsl instruction (REPeat till ex is Zero, MOVe a String of Longs)

81

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 82

Chapter 4: Debugging Techniques

hit an unmapped page with the source index (esi, shown as Ox202e000). The
command ksyms -m, used to retrieve module information, shows that the module
is mapped to a single page at Ox0202dxxx, thus confirming that esi is out of
range.

The decoded call trace still includes two numeric addresses, because the memory
area occupied by the faulty module isn't described in the system map. The values
can be supplemented manually, either by inspecting the output of the ksyms com
mand or by grepping for the module name in /proc/ksyms.

For this particular fault, however, the two addresses don't correspond to code
addresses. If you look in archli386/kerneVtraps.c, you'll find that the call trace is
extracted from the whole stack dump by using some heuristics to look at the
memory layout and distinguish between data values (local variables and function
arguments) and return addresses. Only addresses that refer to kernel code and the
ones that might refer to modules are shown in the call trace. Since module pages
contain both code and data, extraneous stack frames can slip through the heuris
tics, and this is exactly what happened for the two Ox202xxxx addresses above.

If you'd rather not look for module addresses by hand, the following pipeline can
be used to create a new symbol table that encompasses both kernel and module
symbols. Whenever you reload the module, you must recreate this symbol table.

cat /proc/ksyms /usr/src/linux/System.rnap I sed 's/ . / /' I\
awk '{print $1,"T",$2}' I sort -u > /trnp/System.rnap

The pipeline combines the complete system map and the public kernel symbols
from /prodksyms, the latter file lists module symbols in the current kernel, in addi
tion to kernel symbols. Such addresses are shown as they appear after insmod has
relocated the code. Since the two files have different formats, sed and awk are
used to convert all the lines into a suitable format. The map is then sorted, remov
ing duplicates, so that ksymoops can use it.

If we rerun ksymoops, it extracts the following information from the new symbol
table:

82

>>EIP: 202d079 <faulty_read+45/60>
Trace: 2020018 <M_wacom_proto+lfb8/d8e4>
Trace: 202d004 <lanouse_wait+lSdB/1608>
Trace: 120e7a <sys_read+Ba/b0>
Trace: 10a602 <system_call+52/80>

Code: 202d079 <faulty_read+45/60> repz movsl %ds: (%esi),%es: (%edi)
Code: 202d07b <faulty_read+47/60> andl $0x3,%ebx
Code: 202d07e <faulty_read+4a/60> movl %ebx,%ecx
Code: 202d080 <faulty_read+4c/60> repz movsb %ds: (%esi),%es: (%edi)
Code: 202d082 <faulty_read+4e/60> popl %es
Code: 202d083 <faulty_read+4f/60> movl 0x14(%ebp),%eax
Code: 202d086 <faulty_read+52/60> leal 0xfffffff4(%ebp),%esp
Code: 202d089 <faulty_read+SS/60> popl %ebx

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 83

Code: 202d08a <faulty_read+S6/60> popl %esi
Code: 202d08b <faulty_read+57/60> popl %edi

Debugging System Faults

Code: 202d08c <faulty_read+SS/60> movl %eax, (%eax)

As you can see, creating a modified system map is quite helpful when tracing
oops messages related to modules: ksymoops can now decode the instruction
pointer and the complete call trace. Note also that the format used to show disas
sembled code is the same as that used by the objdump program. objdump is a
powerful utility; if you want to look at instructions before the one that failed, you
can invoke the command objdump-d faulty.a.

In the resulting assembly listing of the file, the string faulty_read+45/60
marks the faulty line. For more information on objdump and its command-line
options, see the man page for the command.

Even if you build your own modified symbol table, the concern mentioned above
regarding the call trace applies: the 0x202xxxx pointers have been decoded, but
are still spurious.

Learning to decode an oops message requires some practice, but it's worth doing.
The time spent learning will be quickly repaid. The only issue is where to get the
relevant documentation about assembly language, because the Unix syntax for
machine instructions is different from the Intel syntax; even if you know PC
assembly language, your experience has probably been with Intel-syntax pro
grams. In the bibliography, I give pointers to a pair of documents that can help.

Using oops

Using ksymoops is somewhat burdensome. You need the C++ compiler to build it,
you must build your own symbol table to fully exploit the capabilities of the pro
gram, and you have to merge the original message and the ksymoops output to
have all the information handy.

If you don't want to go to all that trouble, you can use the oops program. oops is
provided in the source files for this book on the O'Reilly FTP site. It is derived
from the original ksymoops tool, which is no longer maintained by its author. oops
is written in C and looks in /proclksyms without requiring the user to build a new
symbol table every time a module is loaded.

The program tries to decode all the processor registers and the stack trace to sym
bolic values. Its disadvantage is that it is more verbose than ksymoops, but usually
the more information you have available, the sooner you find the bug. Like the
original ksyms, the program is able to decode oops messages generated on Intel
platforms only. Porting to other platforms shouldn't be difficult. The program is
released under the GPL like the kernel sources.

83

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 84

Chapter 4: Debugging Techniques

Output generated by oops is similar to the ksymoops output, but more complete.
Here is the beginning of its output for the oops shown above-I don't think it's
worth showing the entire stack trace because the stack holds nothing interesting in
this particular oops message:

EIP: 0010:0202d079 <faulty_read+45/60>
EFLAGS: 00010216
eax: 00000041
ebx: 00001000
ecx: 0000004b
edx: 0156b018
esi: 0202e000
edi: 0800aed4
ebp: 01106£90 <%esp+24>
esp: 01106f6c <%esp+O>
ds: 0018 es: 002b fs: 002b gs: 002b ss: 0018
Process cat (pid: 597, process nr: 31, stackpage=01106000)
esp+OO: 02020018 <M_wacorn_proto+lfb8/d8e4>
esp+04: 0202d004
esp+08: 00f992e8

Having the registers and the stack decoded is helpful when you are debugging
"real" modules (faulty is too short for the difference to be meaningful), and is par
ticularly useful if all the symbols of the module being debugged are exported. It's
not unusual for processor registers to point to symbols in the module at the time
of the fault, and you can identify them from the output only if the symbol table is
exported to /proc/ksyms.

We can make a complete symbol table available by taking the following steps.
First, we won't declare static symbols in the module, since they wouldn't be
exported by insmod. And second, we can mask the call to register_symtab with
#ifdef SCULL_DEBUG or a similar macro, as shown in the code below,
extracted from scull's init_module function.

#ifndef SCULL_DEBUG
register_syrntab(NULL); /* otherwise, leave global symbols visible*/

#endif

We saw in "Registering Symbol Tables" in Chapter 2, Building and Running Mod
ules, that if the module doesn't register a symbol table, all the global symbols are
exported. Although this feature is exploited only if SCULL_DEBUG is active, all
global symbols should be correctly prefixed to avoid namespace pollution in the
kernel (see "Modules Versus Applications" in Chapter 2).

Usingklogd

Recent versions of the klogd daemon can decode oops messages before they reach
the log files. Decoding is performed only by version 1.3 or newer of the daemon
and only if -k /usr/src/linux/System. map is passed as a command-line option to
the daemon. (You can replace System.map with another map file.)

84

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 85

Debugging System Faults

A dump of the oops for faulty, produced by the new klogd and written to the sys
tem log, looks like this (note the decoded symbols in the stack trace):

EIP: 0010: [<0202d079>]
EFLAGS: 00010216
eax: 00000041 ebx: 00001000 ecx: 0000004b edx: 00ee2414
esi: 0202e000 edi: 0800aed4 ebp: 0032ff90 esp: 0032ff6c
ds: 0018 es: 002b fs: 002b gs: 002b ss: 0018
Process cat (pid: 861, process nr: 10, stackpage=0032f000)
Stack: 02020018 0202d004 00f992e8 01257c40 0B00a000 00001000 01257c40

00001000 00f992e8 00120e7a 00f992e8 01257c40 0800a000 00001000
OBOOaOOO 00001000 bffffbdB 0010a602 00000003 0800a000 00001000

Call Trace: [<02020018>] [<0202d004>] [sys_read+l38/176]
[system_call+82/128]

Code: f3 aS 83 e3 03 89 d9 £3 a4 07 Bb 45 14 8d 65 f4 Sb Se Sf 89

I consider the decoding klogd a great utility for the average Linux installation to
help in debugging the kernel, but we'll see how it is of less use for debugging
modules. The message decoded by klogd includes most ksymoops features and
doesn't force the user to compile additional tools or merge two outputs in order to
submit a complete bug report should something go wrong with the system. The
daemon also correctly decodes the instruction pointer when the oops happens in
the kernel proper. It doesn't disassemble the program code, but this is not a prob
lem when the message accompanies a bug report because the binary data is still
there, and disassembled code can be generated offline.

Another great feature of the daemon is that it refuses to decode symbols if the
symbol table doesn't match the current kernel. If a symbol is decoded on the sys
tem log, you can be reasonably sure it is decoded correctly.

However, the tool, despite its usefulness for Linux users, is not that helpful when
debugging modules. I personally don't use the decoding options on the computers
where I develop my software. The problem with klogd is that it doesn't decode
symbols in modules; even reading /prodksyms doesn't help, because the daemon
is run before the programmer loads the module. The presence of decoded sym
bols in the log file, then, confuses both oops and ksymoops, and it's hard to per
form additional decoding.

If you want to use klogd for debugging your modules, specific support is being
added to the newest versions of the daemon, but as I'm writing this, it needs a
small kernel patch to be effective.

System Hangs
Although most bugs in kernel code end up as oops messages, sometimes they can
completely hang the system. If the system hangs, no message is printed. For exam
ple, if the code enters an endless loop, the kernel stops scheduling, and the sys
tem doesn't respond to any action, including the magic Ctrl-Alt-Del combination.

85

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 86

Chapter 4: Debugging Techniques

You have two choices to deal with system hangs-either you need to prevent
them beforehand, or you need to be able to debug them after the fact.

You can prevent an endless loop by inserting schedule invocations at strategic
points. The schedule call (as you might guess) invokes the scheduler and thus
allows other processes to steal CPU time from the current process. If a process is
looping in kernel space due to a bug in your driver, you will be able to kill the
process, after tracing what is happening.

Inserting schedule calls in a driver function creates a new "problem" for the pro
grammer: the function, and all the functions in its call trace, must be reentrant.
Under normal circumstances, the driver as a whole is reentrant because different
processes can access the device concurrently, but it's not necessary for each func
tion to be reentrant, because the Linux kernel is not preemptible. But if a driver
function allows the scheduler to interrupt the current process, a different process
might enter the same function. The reentrancy issue is not really important if the
schedule calls are enabled only during debugging, because you can avoid access
ing the driver from two concurrent processes if you know you aren't allowed to.
When blocking operations are introduced (in "Writing Reentrant Code" in Chapter
5), the reentrancy problem will be dealt with in more detail.

To debug infinite loops, we can make use of the special functions of the Linux
keyboard. By default, the PrScr key (keycode 70), if pressed with a modifier key,
prints to the current console useful information about the machine's status. This
works on both x86 and Alpha systems. The Spare port of Linux features the same
capability, but uses the key marked "Break/Scroll Lock" (keycode 30).

Each of the special functions has a name and is associated with a keypress event,
as shown in the following list. The function name appears in parentheses after the
key combination.

Shift-PrScr (Show_Memory)
Prints several lines of information about memory usage, particularly the use of
the buffer cache.

Control-PrScr (Show_State)
Prints one line for each process in the system, with information about the
internal process tree. The current process is marked as such.

RightAlt-PrScr (Show_Registers)
This is the most important key when the system hangs, because it dumps the
contents of the processor registers at the time the key is hit. Looking at the
instruction pointer and how it changes over time can be extremely useful in
understanding where the code is looping, provided there exists a system map
for the current kernel.

The name of each function can be passed to loadkeys in order to remap the bind
ing to a different key. The keyboard map can be modified at will (it is "policy
free").

86

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 87

Debugging System Faults

The messages printed by these functions appear on the console if con
sole_loglevel is high enough. The default level should be high enough,
unless you run an old klogd and a new kernel. If the messages don't appear, you
can raise the loglevel as explained earlier. The definition of "high enough"
depends on the kernel version you use. It's 5 for Linux 2.0 and later.

It's important to be sure the loglevel is high enough, because the messages will
display on the console even when the computer is hung. The messages are gener
ated at the time of the interrupt and therefore can slip through even if a faulty pro
cess is executing a tight loop without releasing the CPU-that is, unless interrupts
are disabled, which is both unlikely and unlucky.

Sometimes the system may appear to be hung, but it isn't. This can happen, for
example, if the keyboard remains locked in some strange way. These false hangs
can be detected by looking at the output of a program you keep running for just
this purpose. I have a program that updates the clock on an LED display, and I
discovered that the program is also useful as evidence that the scheduler is still
working. You can check the scheduler without using external hardware, by imple
menting a program that flashes the keyboard LEDs, turns on the floppy motor
every now and then, or ticks the speaker-conventional beeps are quite annoying
and should be avoided, in my opinion. Look for the KDMKTONE ioctl command
instead. A sample program (misc-progslheartbeat.c) that flashes a keyboard LED in
a heartbeat fashion is available in the sources on the O'Reilly FTP site.

If the keyboard isn't accepting input, the best thing to do is log into the system
through your network in order to kill any offending processes, or reset the key
board (with kbd_mode-a). However, discovering that the hang is only a keyboard
lockup is of little use if you don't have a network available to help you recover. If
this is the case, you should set up alternative input devices to be able at least to
reboot the system cleanly. A shutdown and reboot cycle is easier on your com
puter than hitting the so-called "big red button," and it saves you from the lengthy
fsck scanning of your filesystems.

Such alternative input devices can be a joystick or the mouse. There is a joystick
reboot daemon on sunsite.unc.edu, and the gpm-1.10 or newer mouse server
features a command-line option to enable a similar capability. If the keyboard is
erroneously in "raw" mode instead of being locked, you can resort to the tricks
described in the documentation of the kbd package. I suggest that you read the
documentation before the problem arises and it's too late. Another possibility is to
configure the gpm-root menus to have a "reboot" or "reset keyboard" entry; gpm
root is a daemon that responds to control-mouse events in order to draw menus
on the screen and perform configurable actions.

Finally, you can hit the "Secure Attention Key" (SAK), a special key meant to
recover the system to a usable state. The current Linux versions don't have an
entry for the key in the default keyboard map because the implementation is not

87

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 88

Chapter 4: Debugging Techniques

guaranteed always to succeed. You can nonetheless map SAK to your keyboard by
using loadkeys. You should also look at the implementation of SAK in the
drivers/char directory. The comments in the code explain why the key doesn't
always work with Linux 2.0, so I won't say any more about it.

If you run 2.1.9 or newer, on the other hand, you'll enjoy having a reliable Secure
Attention Key. Moreover, 2.1.43 and newer kernels have a compile-time option to
enable a "Magic System Request Key"; I urge you to look in driverslchar/sysrq.c
and enjoy the new technology.

If your driver really hangs the system, and you don't know where to insert sched
ule calls, the best way to go is to add some print messages and write them to the
console (by changing the console_loglevel value). It's also wise to mount all
your disks read-only (or unmount them) before reproducing the hang. If the disks
are read-only or unmounted, there's no risk of damaging the filesystem or leaving
it in an inconsistent state. At least you'll avoid the fsck pass after resetting the com
puter. Another possibility is using an NFS-root computer to test new modules. In
this case you'll avoid any filesystem corruption, as filesystem coherence is man
aged by the NFS server, which is not brought down by your device driver.

Using a Debugger
The last resort in debugging modules is using a debugger to step through the
code, watching the value of variables and machine registers. This approach is
time-consuming and should be avoided whenever possible. Nonetheless, the fine
grained perspective on the code that is achieved through a debugger is sometimes
invaluable. In our context, the code being debugged runs in the kernel address
space-this makes things harder, because it's impossible to step through the ker
nel unless you remote-control it. I'll describe remote control last because it's rarely
needed when writing modules. Fortunately, it is possible to look at variables in the
current kernel and to modify them, even without remote control.

Proficient use of the debugger at this level requires some confidence with gdb
commands, a minimal understanding of assembly code, and the ability to match
source code and optimized assembly.

Unfortunately, gdb is more useful for dealing with the kernel proper than for
debugging modules, and something more is needed to apply the same capabilities
to modularized code. This something is the kdebug package, which uses the
"remote debugging" interface of gdb to control the local kernel. I'll introduce kde
bug after talking about what you can do with the plain debugger.

Usinggdb
gdb can be quite useful for looking at the system internals. The debugger must be
invoked as though the kernel were an application. In addition to specifying the

88

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 89

Using a Debugger

kernel's filename, you should provide the name of a core file on the command
line. A typical invocation of gdb looks like the following:

gdb /usr/src/linux/vmlinux /proc/kcore

The first argument is the name of the uncompressed kernel executable (after you
compiled it in /usr/srcllinux). The zlmage file (sometimes called vmlinuz) only
exists for the x86 architecture, and is a trick to work around the 640KB limit of
real-mode Intel processors; vmlinux on the contrary is the uncompressed kernel,
on whichever platform you compile your kernel.

The second argument on the gdb command line is the name of the core file. Like
any file in /proc, /proc/kcore is generated when it is read. When the read system
call executes in the /proc filesystem, it maps to a data-generation function rather
than a data-retrieval one; we've already exploited this feature in "Using the /proc
Filesystem." kcore is used to represent the kernel "executable" in the format of a
core file; it is a huge file, because it represents the whole kernel address space,
which corresponds to all physical memory. From within gdb, you can look at ker
nel variables by issuing the standard gdb commands. For example, p jiffies
prints the number of clock ticks from system boot to the current time.

When you print data from gdb, the kernel is still running, and the various data
items have different values at different times; gdb, however, optimizes access to
the core file by caching data that has already been read. If you try to look at the
jiffies variable once again, you'll get the same answer as before. Caching val
ues to avoid extra disk access is a correct behavior for conventional core files, but
is inconvenient when a "dynamic" core image is used. The solution is to issue the
command core-£ ile /proc/kcore whenever you want to flush the gdb
cache; the debugger prepares to use a new core file and discards any old informa
tion. You won't, however, always need to issue core-file when reading a new
datum; gdb reads the core in chunks· of one kilobyte and caches only chunks it
has already referenced.

What you cannot do with plain gdb is modify kernel data; the debugger won't try
to modify the core file, because it wants to run the program being debugged
before accessing its memory image. When debugging a kernel image, issuing the
run command results in a segmentation fault after a few instructions have exe
cuted. For this reason, /proclkcore doesn't even implement a write method.

If you compile the kernel with debugging support (-g), the resulting vmlinux file
turns out to be a better candidate for use with gdb than the same file compiled
without -g. Note, however, that a huge amount of disk space is needed to compile
the kernel with the -g option-a version 2.0 kernel image with networking and a
minimum set of devices and filesystems occupies more than 11 megs on the PC.
Anyway, you can still make the zlmage file and use it for booting: the debugging
information added by -g is stripped out when the bootable image is built. If I had
enough disk space, I'd always compile with -g turned on.

89

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 90

Chapter 4: Debugging Techniques

On non-PC computers, the game is different. On the Alpha, make boot strips the
kernel before creating the bootable image, so you end up with both the vmlinux
and the vmlinux.gz files. The former is useable by gdb, and you can boot from the
latter. On the Spare, the kernel (at least the 2.0 kernel) is not stripped by default,
so you need to strip it yourself before passing it to silo (the Spare loader) for boot
ing. Neither milo (the Alpha loader) nor silo can boot an unstripped kernel, due to
its size.

When you compile the kernel with -g, and you run the debugger using vmlinux
together with /proc/kcore, gdb can return a lot of information about the kernel
internals. You can, for example, use commands like p *module_list, p *mod
ule_list->next, and p *chrdevs [4] ->fops to dump structures. This sniff
ing operation is most interesting if you keep a kernel map and the source code
handy.

Another useful task that gdb performs on the current kernel is disassembling func
tions, via the disassemble command (which can be abbreviated) or the "exam
ine instructions" (x/ i) command. The disassemble command can take as its
argument either a function name or a memory range, while x/ i takes a single
memory address, also in the form of a symbol name. You can invoke, for example,
x/ 2 0 i to disassemble 20 instructions. Note that you can't disassemble a module
function, because the debugger is acting on vmlinux, which doesn't know about
your module. If you try to disassemble a module by address, gdb is most likely to
reply "Cannot access memory at xxxx." For the same reason, you can't look at
data items belonging to a module. They can be read from /devlmem if you know
the address of your variables, but it's hard to make sense out of raw data extracted
from system RAM.

If you want to disassemble a module function, you're better off running the obj
dump utility on the module object file. Unfortunately, the tool runs on the disk
copy of the file, not the running one; therefore, the addresses as shown by obj
dump will be the addresses before relocation, unrelated to the module's execution
environment.

As you see, gdb is a useful tool when your aim is to peek into the running kernel,
but it lacks some features, the most important being the ability to modify kernel
items and to access modules. This hole is filled by the kdebug package.

Using kdebug
kdebug can be retrieved from the usual FTP sites under pcmcialextras, but if you
want to be sure to retrieve the latest version, you should look at
ftp://hyper.stanford.edu/pub/pcmcialextrasl. The tool is not actually related to pcm-
cia, but the two packages are written by the same author.

90

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 91

Using a Debugger

kdebug is a small tool that uses the "remote debugging" interface of gdb to talk to
the running kernel. A module is loaded into the system, and the debugger is fired
up using /dev/kdebug to access kernel data. gdb thinks the device is a serial port
that communicates with the "application" being debugged, but it is really only a
communication channel for accessing kernel space. Because the module itself is
running in kernel space, you can look at kernel-space addresses that you can't
access with the plain debugger. As you may have guessed, the module is a char
driver, and it uses dynamic assignment of the major number.

The benefit of kdebug is that it doesn't force you to patch and recompile anything:
neither the kernel nor the debugger. All you need to do is compile and install the
package, and then invoke kgdb, a script that performs some set-up and calls gdb
using the new interface to the kernel internals.

Even kdebug, however, doesn't provide the ability to step through kernel code or
to set breakpoints. This is almost unavoidable, because the kernel must run to
keep the system· alive, and the only way to step through kernel code is to control
the system via a serial line from another computer, as described later. The imple
mentation of kgdb nonetheless allows the user to modify data items in the applica
tion being debugged (i.e., the current kernel), to call functions by passing them
arbitrary parameters, and to access, in a read-write fashion, the address ranges
occupied by modules.

That last feature is achieved by adding the module's symbol table to the debug
ger's internal table using gdb commands. This task is performed by the kgdb script.
gdb then knows what address to ask for whenever the user requests access to a
particular symbol. The actual access is performed by kernel code in the module.
Note, however, that the current version of kdebug (l .6) has some problems in
mapping symbols to addresses for modularized code. You are better off making
some checks with the version you are using by printing the address of a few sym
bols and comparing them to /proc/ksyms. If the addresses are mismatched, you
can still use numeric values and cast them to the correct type. The following is an
example of such a cast:

(gdb) p (struct file_operations) (*0x0201Scf0)
$16 = {lseek = 0x20152d0 <kmouse_seek>,
read= 0x20154fc <kmouse_read_data>,
write= 0x2015738 <kmouse_write_data>,
readdir = 0, select= 0x20158Sc <kmouse_select>,
ioctl= 0x20158ec <kmouse_ioctl>,
mmap = 0, open= 0x20152dc <kmouse_open>,
release= 0x2015448 <kmouse_release>, £sync= 0,
fasync = 0x201Sa8c <kmouse_fasync>, check_media_change = 0,
revalidate= 0}

Another advantage of kdebug over plain gdb is that it permits you to read the data
structures as they change, without the need to flush the debugger's cache; the gdb
command set remotecache O can be used to disable data caching.

91

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 92

Chapter 4: Debugging Techniques

I won't show any more examples of interaction with the tool, because it works
like plain gdb. Such examples would be trivial for those who know how to use the
debugger and obscure for those who don't. Becoming skilled in using a debugger
takes time and experience, and I won't undertake the role of teacher.

All in all, kdebug is a really good program to have available. Being able to easily
modify data structures on the fly is a real win for a developer (and a good way to
hang your computer with a single typo). There are times when the tool makes
your life easier-for example, during the development of scull, I used kdebug to
reset the usage count for the module to 0, after it got screwed up.• This saved me
from the annoyance of having to reboot, log in, and start all my applications run
ning again.

Remote Debugging
The final option for debugging a kernel image is to use the remote-debugging
capabilities of gdb.

When performing remote debugging, you need two computers: one runs gdb, and
the other runs the kernel you want to debug. The two computers are linked by a
conventional serial line. As you might expect, the controlling gdb must be able to
understand the binary format of the kernel it controls. If the computers have dif
ferent architectures, the debugger must be compiled to support its target platform.

As of 2.0, the Intel port of the Linux kernel doesn't support remote debugging, but
the Alpha and the Spare versions do. On the Alpha, you must include support for
remote debugging at compile time and enable it at boot time by passing the kernel
the command-line argument kgdb=l, or just kgdb. On the Spare, support for
remote debugging is always included. The boot option kgdb=ttyx selects which
serial line is used to control the kernel, where x is a or b. If no kgdb= option is
used, the kernel boots in the normal way.

If remote debugging is enabled on the kernel, a special initialization function is
called at boot time that sets up the controlled kernel to handle its own breakpoints
and then jumps to a breakpoint purposely compiled into the program. This stops
normal execution of the kernel and transfers control to the breakpoint-service rou
tine. Such a handler waits to receive commands from gdb via the serial line and,
when it gets one, executes it. With this setup, the programmer can single-step
through the code, set breakpoints, and do all the other nifty things gdb usually
allows.

On the controlling side, a copy of the target image is needed (let's assume it's
called /inux.img) as well as a copy of any module you want to debug. The follow
ing commands must be passed to gdb:

* The usage count is the very first word of a module's address space, though this fact is
undocumented and could change in the future.

92

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 93

Using a Debugger

file linux. img
The file command tells gdb which binary file is being debugged. Alterna
tively, the image filename can be passed on the command line. The file itself
must be identical to the kernel running on the other side of the link.

target remote /dev/ttySl
This command instructs gdb to use the remote computer as the target of the
debugging session. /dev/ttySl is the local serial port used to communicate, and
you can specify any device. The kgdb script part of the kdebug package intro
duced above, for example, uses target remote /dev/kdebug.

add-symbol-file module. o address
If you want to debug a module that has been loaded on the controlled kernel,
you need a copy of the module object on the controlling system. add
symbo 1-file prepares gdb to deal with the module, assuming its code has
been relocated to address address.

Even though remote debugging can be used with modules, it's quite tricky to do
so, since you have to load the module and hit another breakpoint before you can
insert a new breakpoint in the module itself. I personally wouldn't use remote
debugging to trace a module unless there are major problems with parts of the
code that run asynchronously, like interrupt handlers.

93

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 94

CHAPTER FIVE

ENHANCED CHAR
DRIVER OPERATIONS

I
n the chapter about char drivers, we built a complete device driver, which the
user can write to and read from. But a real device usually offers more
functionaliry than synchronous read and write. Now that we're equipped with

debugging tools should something go aw1y, we can safely go ahead and imple
ment new operations.

One of the functionalities that usually complements the need for reading and writ
ing the device is controlling the hardware, and the most common way to perform
control operations via a device driver is implementing the ioctl method. The alter
native is to look at the data flow being written to the device and use special
sequences as control commands. Though this latter technique is sometimes used ,
il sho uld be avoided whenever possible. Nonetheless, I'll describe it later in this
chapter in "Device Control Without ioctl."

As I suggested in the previous chapter, the ioctl system call offers a device-specific
e ntty po int for the driver to issue "commands." ioctl is device-specific in that,
unlike 1·ead and other methods, it allows applications to access specific features of
the hardware being driven-configuring the device and entering or exiting operat
ing modes. These "control operations" are usually not available through the
read/ write file abstraction. For example, eve,ything you write to a serial po11 is
transmitted through the port, and you cannot change the baud rate by writing to
the device. That is what ioctl is for: control ling the J/ 0 channe l.

Another important feature of real devices (unlike scull) is that data being read o r
written is exchanged with other hardware, and some synchronization is needed.
The concepts of blocking 1/0 and asynchronous notification fill the gap and are
introduced in this chapter by means of a modified scull device. The driver uses
interactio n between different processes to create asynchronous events. As w iLh the
original scull, you do n't need special hardware to test the driver's workings. We
will definitely deal with real hardware, but not until Chapter 8, Hardware
Management.

94

CHAPTER FIVE

nthe chapter about char drivers, we built a complete device driver, which the
user can write to and read from. But a real device usually offers more
functionality than synchronous read and write. Now that we're equipped with

debugging tools should something go awry, we can safely go ahead and imple-
ment newoperations.

One ofthe functionalities that usually complements the need for reading and writ-
ing the device is controlling the hardware, and the most common way to perform
control operations via a device driver is implementing the oct! method. The alter-
native is to look at the data flow being written to the device and use special
sequences as control commands. Thoughthis latter technique is sometimes used,
it should be avoided whenever possible. Nonetheless, I'll describe it later in this
chapter in “Device Control Withoutioctl.”

As I suggested in the previous chapter, the focé/ systemcall offers a device-specific
entry point for the driver to issue “commands.” foctl is device-specific in that,
unlike read and other methods,it allows applications to access specific features of
the hardware being driven—configuring the device and entering or exiting operat-
ing modes, These “control operations” are usually not available through the
read/write file abstraction. For example, everything you write to a serial port is
transmitted through the port, and you cannot change the baud rate by writing to
the device. That is what ioc?! is for: controlling the I/O channel.

Another important feature of real devices (unlike scw/) is that data being read or
written is exchanged with other hardware, and some synchronization is needed.
The concepts of blocking I/O and asynchronous notification fill the gap andare
introduced in this chapter by means of a modified scu/l device. The driver uses
interaction between different processes to create asynchronous events. As with the
original scul/, you don’t need special hardware to test the driver's workings. We
will definitely deal with real hardware, but not until Chapter 8, Hardware
Management.

94

Petitioners Microsoft Corporation and HP Inc.- Ex. 1019, p. 94

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 95

ioctl

ioctl
The ioctl function call in the user space corresponds to the following prototype:

int ioctl(int fd, int cmd, ...);

The prototype stands out in the list of Unix system calls because of the dots,
which usually represent a variable number of arguments. In a real system, how
ever, a system call can't actually have a variable number of arguments. System calls
must have a well-defined number of arguments because user programs can access
them only through hardware "gates," as outlined in "User Space and Kernel
Space" in Chapter 2, Building and Running Modules. Therefore, the third argu
ment of ioctl is actually a single optional argument, and the dots are simply there
to prevent type checking during compilation. The actual nature of the third argu
ment depends on the specific control command being issued (the second argu
ment). Some commands take no arguments, some take an integer value, and some
take a pointer to other data. Using a pointer is the way to pass arbitrary data to the
ioctl call; the device will be able to retrieve any amount of data from user space. ,
Arguments to the system call are passed to the driver method according to the
method declaration:

int (*ioctl) (struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg);

The inode and filp pointers are the values corresponding to the file descriptor
f d passed on by the application and are used in the same way as read and write
use them. The cmd argument is passed unchanged, and the optional arg argu
ment is passed in the form of an unsigned long, regardless of whether it was
passed as an integer or a pointer. If the invoking program doesn't pass a third
argument, the arg value received by the driver operation won't be meaningful.

Since type checking is disabled on the extra argument, the compiler can't warn
you if an invalid argument is passed to ioctl, and the programmer won't notice the
error until run time. This is the only problem I see with the ioctl semantics.

As you might imagine, most ioctl implementations consist of a switch statement
that selects the correct behavior according to the cmd argument. Different com
mands have different numeric values, which are usually given symbolic names to
simplify coding. The symbolic name is assigned by a preprocessor definition. Cus
tom drivers usually declare such symbols in their header files; scu/1.b declares
them for scull.

Choosing the ioctl Commands
Before writing the code for ioctl, you need to choose the numbers that correspond
to commands. Unfortunately, the simple choice of using small numbers starting
from 1 and going up doesn't work well.

95

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 96

Chapter 5: Enhanced Char Driver Operations

The command numbers should be unique across the system, in order to prevent
errors caused by issuing the right command to the wrong device. Such a mismatch
is not unlikely to happen, and a program might find itself trying to change the
baud rate of a non-serial-port input stream, like a FIFO or the kmouse device. If
each ioctl number is unique, then the application will get an EINVAL error, rather
than succeeding in doing something unintended.

To the aim of uniqueness, every command number can be thought of as consisting
of multiple bitfields. The first versions of Linux used 16-bit numbers: the top eight
were the "magic" number associated with the device, and the bottom eight were a
sequential number, unique within the device. This happened because Linus was
"clueless" (his own word) and a better division of bitfields was conceived only
later. Unfortunately, few drivers use the new convention, which discourages pro
grammers from sticking to the convention. In my sources, I'll use the new way of
defining commands in order to exploit what it offers and to avoid being banned as
a heretic by other developers.

To choose ioctl numbers for your driver, you should first check includelasmlioctl.h
and Documentation/ioctl-number.txt. The header defines the bitfields: type (magic
number), ordinal number, direction of transfer, and size of argument. The ioctl
number.txt file lists the magic numbers used throughout the kernel. The new ver
sion of this file (2.0 and later kernels) also lists the reasons why the convention
should be used.

Unfortunately, the complete set of macros to split the ioctl bit fields was missing
from the header files released with Linux 1.2.x. If you want to use the new way, as
I do in scull, and remain backward-compatible, you should use the lines of code
from sculVsysdep.h, where I document and fix the problems.

The old, and now deprecated, way of choosing an ioctl number was easy: choose
a magic 8-bit number, such as "k" (hex 0x6b), and add an ordinal number, like
this:

#define SCULL_IOCTLl Ox6b01
#define SCULL_IOCTL2 Ox6b02
/* */

If both the application and the driver agree on the numbers, you only need to
implement the switch statement in your driver. However, this way of defining
ioctl numbers, which has its foundations in Unix tradition, shouldn't be used any
more in favor of a new convention. I've only shown the old way to give you a
taste of what ioctl numbers look like.

The new way to define numbers uses four bitfields, which have the following
meanings. Any new symbols I introduce in the list below are defined in
<linux/ioctl .h>.

96

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 97

ioctl

type
The magic number. Just choose one number and use it throughout the driver.
This field is 8 bits wide LIOC_TYPEBITS).

number
The ordinal (sequential) number. It's 8 bits LIOC_NRBITS) wide.

direction

size

The direction of data transfer, if the particular command involves a data trans
fer. The possible values are _IOC_NONE (no data transfer), _IOC_READ,
_IOC_WRITE, and _IOC_READ I _IOC_WRITE (data is transferred both
ways). Data transfer is seen from the application's point of view; _IOC_READ
means reading from the device, so the driver must write to user space. Nbte
that the field is a bitmask, so _IOC_READ and _IOC_WRITE can be extracted
using a logical AND operation.

The size of data transfer involved. The width of this field is architecture
dependent and currently ranges from 8 to 14 bits. You can find its value for
your specific architecture in the macro _IOC_SIZEBITS. If you intend your
driver to be portable, however, you can only count on a size up to 255. It's
not mandatory ·that you use the size field. If you need larger data transfers,
you can just ignore it. We'll see soon how this field is used.

The header file <asm/ioctl.h>, which is included by <linux/ioctl.h>,
defines macros that help set up the command numbers: _IO (type, nr) ,
_IOR(type,nr, size), _IOW(type,nr, size), and _IOWR(type,nr,
size). Each macro corresponds to one of the possible values for the direction of
the transfer, while the other bitfields are passed as arguments. The header also
defines macros to decode the numbers: _IOC_DIR (nr), _IOC_TYPE (nr),
_IOC_NR (nr), and _IOC_SIZE (nr). I won't go into any more detail about
these macros, as the header file is clear, and sample code is shown later in this
section.

Here is how some ioctl commands are defined in scull. In particular, these com
mands set and get the driver's configurable parameters. In the standard macros,
the size of the data item that is to be transferred is represented by an instance of
the item itself, not sizeof (item), because sizeof is part of the macro expan
sion.

/* Use 'k' as magic nwnber */

#define SCULL_IOC_MAGIC 'k'

#define SCULL_IOCRESET _IO(SCULL_IOC_MAGIC, 0)

/*
* S means "Set" through a ptr,
* T means "Tell" directly with the argument value
* G means "Get": reply by setting through a pointer

97

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 98

Chapter 5: Enhanced Char Driver Operations

* Q means "Query": response is on the return value
* X means "exchange": G and S atomically
• H means "sHift": T and Q atomically
*/

#define SCULL_IOCSQUANTUM _IOW(SCULL_IOC_MAGIC, 1, scull_quanturn)
#define SCULL_IOCSQSET _IOW(SCULL_IOC_MAGIC, 2, scull_qset)
#define SCULL_IOCTQUANTUM _IO(SCULL_IOC_MAGIC, 3)
#define SCULL_IOCTQSET _IO(SCULL_IOC_MAGIC, 4)
#define SCULL_IOCGQUANTUM _IOR(SCULL_IOC_MAGIC, 5, scull_quanturn)
#define SCULL_IOCGQSET _IOR(SCULL_IOC_MAGIC, 6, scull_qset)
#define SCULL_IOCQQUANTUM _IO(SCULL_IOC_MAGIC, 7)
#define SCULL_IOCQQSET _IO(SCULL_IOC_MAGIC, 8)
#define SCULL_IOCXQUANTUM _IOWR(SCULL_IOC_MAGIC, 9, scull_quanturn)
#define SCULL_IOCXQSET _IOWR(SCULL_IOC_MAGIC,10, scull_qset)
#define SCULL_IOCHQUANTUM _IO(SCULL_IOC_MAGIC, 11)
#define SCULL_IOCHQSET _IO(SCULL_IOC_MAGIC, 12)

#define SCULL_IOCHARDRESET _IO(SCULL_IOC_MAGIC, 15) /* debugging tool */

#define SCULL_IOC_MAXNR 15

The last command, HARDRESET, is used to reset the module's usage count to 0, so
the module can be unloaded should something go wrong with the counter. The
actual source file also defines all the commands between IOCHQSET and
HARDRESET, although they're not shown here.

I chose to implement both ways of passing integer arguments-by pointer and by
explicit value, although by an established convention ioctl should exchange values
by pointer. Similarly, both ways are used to return an integer number: by pointer
or by setting the return value. This works as long as the return value is a positive
integer; on return from any system call, a positive value is preserved (as we saw
for read and write), while a negative value is considered an error and is used to
set errno in user space.

The "exchange" and "shift" operations are not particularly useful for scull. I imple
mented "exchange" to show all the possibilities for the "direction" bitfield, and
"shift" to pair "tell" and "query." There are times when atomic* test-and-set opera
tions like these are needed-in particular, when applications need to set or
release locks.

The explicit ordinal number of the command has no specific meaning. It is used
only to tell the commands apart. Actually, you could even use the same ordinal
number for a read command and a write command, since the actual ioctl number
is different in the "direction" bits. I chose not to use the ordinal number of the
command anywhere but in the declaration, so I didn't assign a symbolic value to

* A fragment of program code is said to be "atomic" when it will always be executed as
though it were a single instruction, without the possibility for anything to happen in
between.

98

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 99

ioctl

it. That's why explicit numbers appear in the definition above. I'm showing you
one way to use the command numbers, but you are free to do it differently.

The value of the cmd argument is not currently used by the kernel, and it's quite
unlikely it will be in the future. Therefore, you could, if you were feeling lazy,
avoid the complex declarations above and explicitly declare a set of 16-bit num
bers. On the other hand, if you did, you wouldn't benefit from using the bitfields.
The header <linux/kd. h> is an example of this old-fashioned approach,
although it was done that way because it used the technology then available, not
out of laziness. Changing it now would require recompiling too many applications.

The Return Value
The implementation of ioctl is usually a switch statement based on the command
number. But what should the default selection be when the command number
doesn't match a valid operation? The question is controversial. Most kernel func
tions return -EINVAL ("Invalid argument"), which makes sense, because the com
mand argument is indeed not a valid one. The POSIX standard, however, states
that if an inappropriate ioctl command has been issued, then - ENOTTY should be
returned. The corresponding message string is "Not a typewriter" -not what the
user expects to see. You have to decide whether you want to stick to the standard
or to common sense. We'll see later in this chapter why compliance to POSIX
requires ENOTTY.

The Predefined Commands
Though the ioctl system call is most often used to act on devices, a few commands
are recognized by the kernel. Note that these commands are decoded before your
own file operations are called, so if you choose the same number for one of your
ioctl commands, you won't ever see any request for that command, and the appli
cation will ask for something unexpected, due to the collision caused by the non
uniqueness of the ioctl number.

The predefined commands are divided into three groups: those issued on any file
(regular, device, FIFO, or socket), those that are issued only on regular files, and
those specific to the filesystem type; commands in the last group are executed by
the implementation of the hosting filesystem (see the chattr command). Device
driver writers are only interested in the first group of commands, whose magic
number is "T." Looking at the workings of the other groups is left as an exercise to
the reader; ext2_ioctl is a most interesting function (though easier than you may
expect), as it implements the append-only flag and the immutable flag.

The following ioctl commands are predefined for any file:

FIOCLEX
Set the close-on-exec flag (File IOctl CLose on EXec).

99

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 100

Chapter 5: Enhanced Char Driver Operations

FIONCLEX
Clear the close-on-exec flag.

FIOASYNC
Set or reset synchronous write for the file. Synchronous write is not yet imple
mented in Linux; the call exists so that applications asking for synchronous
writes can be compiled and run without complaining. If you don't know what
synchronous write is, you don't need to worry about it: you won't need it.

FIONBIO
"File IOctl Nonblocking 1/0" (described later in "Blocking and Nonblocking
Operations"). This call modifies the O_NONBLOCK flag in filp->f_flags.
The third argument to the system call is used to indicate whether the flag is to
be set or cleared. We'll look at the role of the flag later in this chapter. Note
that the flag can also be changed by the Jent/ system call, using the F _SETFL
command.

The last item in the list introduced a new system call, Jent!, which looks like ioctl.
In fact, the Jent/ call is very similar to ioctl in that it gets a command argument and
an extra (optional) argument. It is kept separate from ioctl mainly for historical
reasons: when Unix developers faced the problem of "controlling" 1/0 operations,
they decided that files and devices were different. At the time, the only devices
were ttys, which explains why -ENOTTY is the standard reply for an incorrect ioctl
command. The issue is the old one of whether or not to be backwards compatible.

Using the ioctl Argument
The last point we need to cover before looking at the ioctl code for the scull
driver is how to use the extra argument. If it is an integer, it's easy: it can be used
directly. If it is a pointer, however, some care must be taken.

When a pointer is used to refer to user space, we must ensure that the user
address is valid and that the corresponding page is currently mapped. If kernel
code tries to access an address out of range, the processor issues an exception.
Exceptions in kernel code are turned to oops messages by every Linux kernel up
through 2.0.x. A device driver should prevent these faults by verifying that the
user-space addresses it is going to access are valid, and it should return an error if
they aren't.

One of the new features introduced in Linux 2.1 is exception handling for kernel
code. Unfortunately, the correct implementation required non-trivial changes to
the driver-kernel interface. This chapter presents a method that is suitable only for
older kernels, 1.2.13 to 2.0.x, inclusive. The new interface is discussed in "Han
dling Kernel-Space Faults," in Chapter 17, Recent Developments, and the sample
code shown there allows your driver to extend the range of supported kernels to
2.1.43 by using some hairy preprocessor macros.

100

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 101

ioctl

Address verification for kernels 1.x.y and 2.0.x is implemented in the function ver
ify_area, whose prototype resides in <linux/mm.h>:

int verify_area(int mode, const void *ptr, unsigned long extent);

The first argument should be either VERIFY_READ or VERIFY_WRITE, depend
ing on whether the action to be performed is reading the memory area or writing
it. The ptr argument holds a user-space address, and extent is a byte count. If
ioctl, for instance, needs to read an integer value from user space, extent is
sizeof (int). If you need to both read and write at the given address, use VER
IFY_WRITE, as it is a superset of VERIFY_READ.

Verifying for reading checks that the address is valid; in addition to this, verifying
for writing takes care of read-only and copy-on-write pages. A copy-on-write page
is a shared writable page that has never been written by any of the sharing pro
cesses; when you verify for writing, verify_area performs the "copy-and-make
writable" operation. It's interesting to note that there's no need to check that the
page is actually "present" in memory, as valid page faults are correctly managed
by the fault handler even when called from kernel code. We've already seen that
kernel code can successfully page-fault in "Scull's Memory Usage" in Chapter 3,
Char Drivers.

Like most functions, verify_area returns an integer value: 0 means success, and a
negative value signals an error, which should be returned to the caller.

The scull source exploits the bitfields in the ioctl number to check the arguments
before the switch:

int err= 0, tmp, size= _IOC_SIZE(cmd); /* the size bitfield in cmd */

/*

* extract the type and number bitfields, and don't decode
* wrong cmds: return EINVAL before verify_area()
*/

if (_IOC_TYPE(crnd) != SCULL_IOC_MAGIC) return -EINVAL;
if (_IOC_NR(cmd) > SCULL_IOC_MAXNR) return -EINVAL;

/*

* the direction is a bitmask, and VERIFY_WRITE catches R/W
* transfers. 'Type' is user-oriented, while
* verify_area is kernel-oriented, so the concept of "read" and
* "write" is reversed
*/

if (_IOC_DIR(cmd) & _IOC_READ)
err= verify_area(VERIFY_WRITE, (void *)arg, size);

else if (_IOC_DIR(cmd) & _IOC_WRITE)
err= verify_area(VERIFY_READ, (void *)arg, size);

if (err) return err;

After calling verify_area, the driver can perform the actual transfer. In addition to
the memcpy_tofs and memcpyJromfs functions, the programmer can exploit two

101

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 102

Chapter 5: Enhanced Char Driver Operations

functions that are optimized for the most-used data sizes (1, 2, and 4 bytes, as well
as 8 bytes on 64-bit platforms). The functions are defined in <asm/ segment. h>.

put_user(datum, ptr)
This is actually a macro that calls the inline function __ put_user; it expands to
a single machine instruction at compile time. Drivers should use put_user
whenever possible instead of memcpy_tofs. Since type checking is not per
formed on macro expansion, you can pass any type of pointer to put_user,
and it should be a user-space address. The size of the data transfer depends
on the type of the ptr argument and is determined at compile time using a
special gee pseudo-function that isn't worth showing here. As a result, if ptr
is a char pointer, 1 byte is transferred, and so on for 2, 4, and possibly 8 bytes.
If the data that is pointed to is not one of the supported sizes, the compiled
code calls the function bad_user_access_lengtb. If such compiled code is a
module, it isn't loadable, as the symbol is not exported.

get_user(ptr)
This macro is used to retrieve a single datum from user space. It behaves
exactly like put_user, but it transfers data in the opposite direction.

The awkwardly long name of bad_user_access_lengtb is meant to build a mean
ingful error message when insmod doesn't resolve the symbol. Hopefully, the
developer will load and test the module before distributing it to the general public,
and will find and fix the error. Conversely, if a driver with an incorrectly sized
put_user or get_user is directly linked into the kernel, bad_user_access_lengtb
causes a system panic. Although an oops would be a friendlier response than a
system panic to a missized data transfer, the aggressive approach has been chosen
to strongly discourage such errors.

The scull implementation of ioctl only transfers the configurable parameters of the
device and turns out to be as easy as the following:

102

switch(crnd) {

#ifdef SCULL_DEBUG
case SCULL_IOCHARDRESET:
/*

* reset the counter to 1, to allow unloading in case
* of problems. Use 1, not 0, because the invoking file
* is still to be closed.
*/

rnod_use_count_ = 1;
/* don't break: fall through*/

#endif

case SCULL_IOCRESET:
scull_quanturn = SCULL_QUANTUM;
scull_qset = SCULL_QSET;
break;

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 103

case SCULL_IOCSQUANTUM: /* Set: arg points to the value*/
scull_quantum = get_user{{int *)arg);
break;

case SCULL_IOCTQUANTUM: /* Tell: arg is the value*/
scull_quantum = arg;
break;

case SCULL_IOCGQUANTUM: /* Get: arg is pointer to result*/
put_user{scull_quantum, {int *)arg);
break;

case SCULL_IOCQQUANTUM: /* Query: return it {it's positive) */
return scull_quantum;

case SCULL_IOCXQUANTUM: /* exchange: use arg as pointer*/
tmp = scull_quantum;
scull_quantum = get_user{{int *)arg);
put_user{tmp, {int *)arg);
break;

case SCULL_IOCHQUANTUM: /* sHift: like Tell+ Query*/
tmp = scull_quantum;
scull_quantum = arg;
return tmp;

default: /* redundant, as cmd was checked against MAXNR */
return -EINVAL;

return 0;

ioctl

There are also six entries that act on scull_qset. These entries are identical to
the ones for scull_quantum and are not shown in the example above, to save
space.

The six ways to pass and receive arguments look like the following from the
caller's point of view (i.e., from user space):

int quantum;

ioctl{fd,SCULL_IOCSQUANTUM, &quantum);
ioctl{fd,SCULL_IOCTQUANTUM, quantum);
ioctl(fd,SCULL_IOCGQUANTUM, &quantum);
quantum= ioctl{fd,SCULL_IOCQQUANTUM);
ioctl{fd,SCULL_IOCXQUANTUM, &quantum);
quantum= ioctl{fd,SCULL_IOCHQUANTUM, quantum);

If you want to write a module that runs with Linux-1.2, get_user and put_user can
cause you some headaches, because they weren't introduced until the first 1.3

103

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 104

Chapter 5: Enhanced Char Driver Operations

kernels. Before switching to type-independent macros, programmers used func
tions called get_user_byte, etc. The old macros are defined in the 1.3 and 2.0 ker
nels only if you issue the #define WE_REALLY_WANT_TO_USE_A_
BROKEN_INTERFACE preprocessor command in advance. However, defining
put_user for older kernels is a better approach to portability, so sculVsysdep.h con
tains the definition of the good macros in order to run the driver with older ker
nels without problems.

Device Control Without ioctl
Sometimes controlling the device is better accomplished by writing control
sequences to the device itself. This technique is used, for example, in the console
driver, where so-called "escape sequences" are used to move the cursor, change
the default color, or perform other configuration tasks. The benefit of implement
ing device control this way is that the user can control the device just by writing
data, without needing to use (or sometimes write) programs built just for configur
ing the device.

For example, the setterm program acts on the console (or another terminal) con
figuration by printing escape sequences. This behavior has the advantage of per
mitting the remote control of devices. The controlling program can live on a
different computer than the controlled device, because a simple redirection of the
data stream does the configuration job. You're already used to this with ttys, but
the technique is more general.

The drawback of "controlling by printing" is that it adds policy contraints to the
device; for example, it is viable only if you are sure that the control sequence can't
appear in the data being written to the device during normal operation. This is
only partly true for ttys. While a text display is meant to display only ASCII charac
ters, sometimes control characters can slip through in the data being written and
can thus affect the console setup. This can happen, for example, when you issue
grep on a binary file; the extracted lines can contain anything, and you often end
up with the wrong font on your console.*

Controlling-by-write is definitely the way to go for those devices that don't transfer
data, but just respond to commands, like robotic devices.

For instance, one of the drivers I wrote for fun moves a camera on two axes. In
this driver, the "device" is simply a pair of old stepper motors, which can't really
be read from or written to. The concept of "sending a data stream" to a stepper
motor makes little or no sense. In this case, the driver interprets what is being
written as ASCII commands and converts the requests to sequences of impulses
that manipulate the stepper motors. The commands can be anything like "move

* Ctrl-N sets the alternate font, which is made up of graphic symbols and thus isn't a
friendly font for typing input to your shell; if you encounter this problem, echo a Ctrl-0
character to restore the primary font.

104

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 105

Blocking l/0

left by 14 steps," "reach position 100,43," or "lower the default speed." This driver
uses the device node in /dev only as a command channel for the applications. The
advantage of direct control for this device is that you can use cat to move the
camera without writing and compiling special code to issue the ioctl calls.

When writing "command-oriented" drivers, there's no reason to implement the
ioctl method. An additional command in the interpreter is much easier both to
implement and to use.

The curious reader can look at the source code for my stepper driver in the direc
tory stepper in the source files provided on the O'Reilly FTP site; it's not included
here, as I don't consider the code particularly interesting (nor is it particularly high
quality).

Blocking 1/0
One problem that might arise with read is what to do when there's no data yet,
but we're not at end-of-file.

The default answer is "we must go to sleep waiting for data." This section shows
how a process is put to sleep, how it is awakened, and how an application can
ask if there is data, without blocking within the read call. We'll then apply the
same concepts to write.

As usual, before I show you the real code, I'll explain a few concepts.

Going to Sleep and Awakening
When a process is waiting for an event (be it input data, the termination of a child
process, or whatever else) it should be put to sleep so another process can use the
computational resources. You can put a process to sleep by calling one of the fol
lowing functions:

void interruptible_sleep_on(struct wait_queue **q);
void sleep_on(struct wait_queue **q);

Processes are then awakened by one of:

void wake_up_interruptible(struct wait_queue **q);
void wake_up(struct wait_queue **q);

In the preceding functions, the wai t_queue pointer-pointer is used to refer to an
event; we'll discuss it in detail later in "Wait Queues." For now, it will suffice to
say that processes are awakened using the same queue that put them to sleep.
Thus, you'll need one wait queue for each event that can block processes. If you
manage four devices, you'll need four wait queues for blocking-read and four for
blocking-write. The preferred place to put such queues is the hardware data
structure associated with each device (Scull_Dev in our example).

105

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 106

Chapter 5: Enhanced Char Driver Operations

But what's the difference between "interruptible" and plain calls?

sleep_on can't be aborted by a signal, while interruptible_sleep_on can. In practice,
sleep_on is called only by critical sections of the kernel; for example, while waiting
for a swap page to be read from disk. The process can't proceed without the page,
and interrupting the operation with a signal doesn't make sense. interrupt
ible_sleep_on, on the other hand, is used during so-called "long system calls," like
read. It does make sense to kill a process with a signal while it's waiting for key
board input.

Similarly, wake_up wakes any process sleeping on the queue, while
wake_up_interruptible wakes only interruptible processes.

As a driver writer, you'll call interruptible_sleep_on and wake_up_interruptible,
because a process sleeps in the driver's code only during read or write. Actually,
you could call wake_up as well, since no "uninterruptible" processes will sleep on
your queue. However, that's not usually done, for the sake of consistency in the
source code. (In addition, wake_up is also slightly slower than its counterpart.)

Writing Reentrant Code
When a process is put to sleep, the driver is still alive and can be called by
another process. Let's consider the console driver as an example. While an appli
cation is waiting for keyboard input on ttyl, the user switches to tty2 and spawns
a new shell. Now both shells are waiting for keyboard input within the console
driver, although they sleep on different wait queues: one on the queue associated
with ttyl and the other on the queue associated with tty2. Each process is locked
within the interruptible_sleep_on function, but the driver can still receive and
answer requests from other ttys.

Such situations can be handled painlessly by writing "reentrant code." Reentrant
code is code that doesn't keep status information in global variables and thus is
able to manage interwoven invocation without mixing anything up. If all the status
information is process-specific, no interference will ever happen.

If status information is needed, it can either be kept in local variables within the
driver function (each process has a different stack page where local variables are
stored), or it can reside in pri vate_data within the filp accessing the file.
Using local variables is preferred, because sometimes the same filp can be
shared between two processes (usually parent and child).

If you need to save large amounts of status data, you can keep the pointer in a
local variable and use kmalloc to retrieve the actual storage space. In this case you
must remember to kfree the data, because there's no equivalent to "everything is
released at process termination" when you're working in kernel space.

106

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 107

Blocking 1/0

You need to make reentrant any function that calls a flavor of sleep_on (or just
schedule) and any function that can be in its call-trace. If sample_read calls
sample_getdata, which in turn can block, then sample_read must be reentrant as
well as sample_getdata, because nothing prevents another process from calling it
while it is already executing on behalf of a process that went to sleep. Moreover,
any function that copies data to or from user space must be reentrant, as access to
user space might page-fault, and the process will be put to sleep while the kernel
deals with the missing page.

Wait Queues
The next question I hear you ask is, "How exactly can I use a wait queue?"

A wait queue is easy to use, although its design is quite subtle and you are not
expected to peek at its internals. The best way to deal with wait queues is to stick
to the following operations:

• Declare a struct wait_queue * variable. You need one such pointer vari
able for each event that can put processes to sleep. This is the item that I sug
gested you put in the structure describing hardware features.

• Pass a pointer to this variable as argument to the various sleep_on and
wake_up functions.

It's that easy. For example, let's imagine you want to put a process to sleep when
it reads your device and awaken it when someone else writes to the device. The
following code does just that:

struct wait_queue *wq = NULL; /* must be zeroed at the beginning*/

read_write_t sleepy_read (struct inode *inode, struct file *filp,
char *bu£, count_t count)

printk(KERN_DEBUG "process %i (%s) going to sleep\n",
current->pid, current->comm);

interruptible_sleep_on(&wq);
printk(KERN_DEBUG "awoken %i (%s)\n", current->pid, current->comm);
return O; /* EOF */

read_write_t sleepy_write (struct inode *inode, struct file *filp,
const char *bu£, count_t count)

printk(KERN_DEBUG "process %i (%s) awakening the readers ... \n",
current->pid, current->comm);

wake_up_interruptible(&wq);
return count; /* succeed, to avoid retrial*/

107

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 108

Chapter 5: Enhanced Char Driver Operations

The code for this device is available as sleepy in the example programs and can be
tested using cat and input/ output redirection, as usual.

The two operations listed above are the only ones you are allowed to use with a
wait queue. However, I know that some readers might be interested in the inter
nals and grasping them from the sources can be difficult. If you're not interested in
more detail, you can skip to the next subsection without missing anything. Note
that I talk about the "current" implementation (version 2.0.x), but there's nothing
forcing kernel developers to stick to that implementation. If a better one comes
along, the kernel can easily switch to the new one without bad effects as long as
driver writers use the wait queue only through the two legal operations.

The current implementation of s truct wai t_queue uses two fields: a pointer
to s_truct task_struct (the waiting process), and a pointer to struct
wai t_queue (the next item in the list). A wait queue is always circular, with the
last structure pointing to the first.

The compelling feature of the design is that driver writers never declare or use
such a structure; they only pass along pointers and pointer-pointers. Actual struc
tures do exist, but only in one place: as a local variable within the function
__ sleep_on, which is called by both the sleep_on functions introduced above.

Strange as it appears, this is really a smart choice, because there's no need to deal
with allocation and deallocation of such structures. A process sleeps on a single
queue at a time, and the data structure describing its sleeping exists in the non
swappable stack page associated with the process.

The actual operations performed when a process is added or removed from a wait
queue are schematically represented in Figure 5-1.

Blocking and Nonblocking Operations
There is another point we need to touch on before we look at the implementation
of full-featured read and write methods, and that is the O_NONBLOCK flag in
filp->f_flags. The flag is defined in <linux/fcntl.h>, which is automati
cally included by <linux/ fs. h> in recent kernels. You should include Jcntl.h
manually if you want your module to compile with 1.2.

The flag gets its name from "open-nonblock," because it can be specified at open
time (and originally could only be specified there). The flag is reset by default,
because the normal behavior of a process waiting for data is just sleeping. In the
case of a blocking operation, the following behavior should be implemented:

• If a process calls read, but no data is (yet) available, the process must block.

108

The process is awakened as soon as some data arrives, and that data is
returned to the caller, even if there is less than the amount requested in the
count argument to the method.

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 109

wait_queue

struct task_struct * t ask ;

struct wait_queue * next

No process is sleeping on the queue

The current process is sleeping on !he device 's queue

Several processes are sleeping on the same queue

Figure 5-1: 77Je workings of wait queues

Blocking 1/0

The device structure
with its pointer to
struct wait_que ue .

The
s truct wai t _ queue
itself.

The current
process and
its associated
stack page.

Another
process and
its associated
stack page.

• If a process calls write and there is no space in the buffer, the process must
block, and it must be on a different wait queue from the one used for reading.

109

Blocking 1/0

wait_queue

The device structure
withits pointer to
struct wait_queue.

No processis sleeping on the queue

im The
hi struct wait_queueitself.

The eurrent
process and
its associated
Stack page.

Another
process and
its associated
stack page.

Several processes are sleeping on the same queue
Figure 5-1: The workings of wail queues

e If a process calls wrife and there is no space in the buffer, the process must
block, and it must be on a different wait queue from the one usedfor reading.

109

Petitioners Microsoft Corporation and HP Inc.- Ex. 1019, p. 109

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 110

Chapter 5: Enhanced Char Driver Operations

When some data has been written to the device, and space becomes free in
the output buffer, the process is awakened, and the write call succeeds,
although the data may be only partially written if there isn't room in the buffer
for the count bytes that were requested.

Both statements in the previous list assume that there is an input and an output
buffer, but every device driver has them. The input buffer is required to avoid los
ing data that arrives when nobody is reading, and the output buffer is useful for
squeezing more performance out of the computer, though it's not strictly compul
sory. Data can't be lost on write, because if the system call doesn't accept data
bytes, they remain in the user-space buffer.

The performance gain of implementing an output buffer in the driver results from
the diminished number of context switches and user-level/kernel-level transitions.
Without an output buffer (assuming a slow device), only one or a few characters
are accepted by each system call, and while one process sleeps in write, another
process runs (that's one context switch). When the first process is awakened, it
resumes (another context switch), write returns (kernel/user transition), and the
process reiterates the system call to write more data (user/kernel transition); the
call blocks, and the loop continues. If the output buffer is big enough, write suc
ceeds on the first attempt; data is pushed out to the device at interrupt time, with
out control ever going back to user space. The choice of a suitable dimension for
the output buffer is clearly device-specific.

We didn't use an input buffer in scull, because data is already available when read
is issued. Similarly, no output buffer was used, as data is simply copied to the
memory area associated with the device. We'll see the use of buffers in Chapter 9,
Interrupt Handling, in the section titled "Interrupt-Driven 1/0."

The behavior of read and write is different if O_NONBLOCK is specified. In this
case, the calls simply return -EAGAIN if a process calls read when no data is
available, or if it calls write when there's no space in the buffer.

As you might expect, nonblocking operations return immediately, allowing the
application to poll for data. Applications must be careful when using the stdio
functions when dealing with nonblocking files, because you can easily mistake a
nonblocking return for EOF. You always have to check errno.

As you may imagine from its name, O_NONBLOCK is meaningful also in the open
method. This happens when the call can actually block for a long time; for exam
ple, when opening a FIFO that has no writers (yet), or accessing a disk file with a
pending lock. Usually, opening a device either succeeds or fails, without the need
to wait for external events. Sometimes, however, opening the device requires a
long initialization, and you may choose to check O_NONBLOCK, returning immedi
ately with -EAGAIN (try it again) if the flag is set, after spawning device initializa
tion. You might also decide to implement a blocking open to support access
policies in a way similar to file locks. We'll see one such implementation later in
the section "Blocking Open as an Alternative to EBUSY."

110

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 111

Blocking 1/0

Only the read, write, and open file operations are affected by the nonblocking
flag.

A Sample Implementation: scullpipe
The /dev/scullpipe devices (there are four of them by default) are part of the scull
module and are used to show how blocking 1/0 is implemented.

Within a driver, a process blocked in a read call is awakened when data arrives;
usually the hardware issues an interrupt to signal such an event, and the driver
awakens processes while handling the interrupt. The goal of scull is different,
since you should be able to run scull on any computer without requiring any par
ticular hardware-and without any interrupt handler. I chose to use another pro
cess to generate the data and wake the reading process; similarly, reading
processes are used to wake sleeping writer processes. The resulting implementa
tion is similar to that of a FIFO (or "named pipe") filesystem node, whence the
name.

The device driver uses a device structure that embeds two wait queues and a
buffer. The size of the buffer is configurable in the usual ways (at compile time,
load time, or run time).

typedef struct Scull_Pipe
struct wait_queue *inq, *outq;
char *buffer, *end;
int buffersize;

/* read and write queues*/
/* begin of buf, end of buf */
/* used in pointer arithmetic*/

char *rp, *wp; /*whereto read, where to write*/
int nreaders, nwriters; /* number of openings for r/w */
struct fasync_struct *async_queue; /* asynchronous readers*/

Scull_Pipe;

The read implementation manages both blocking and nonblocking input and
looks like this:

read_write_t scull_p_read (struct inode *inode, struct file *filp,
char *buf, count_t count)

Scull_Pipe *dev = filp->private_data;

while (dev->rp == dev->wp) {/*nothing to read*/
if (filp->f_flags & O_NONBLOCK)

return -EAGAIN;
PDEBUG("\"%s\" reading: going to sleep\n",current->comm).;
interruptible_sleep_on(&dev->inq);
if (current->signal & ~current->blocked) /* a signal arrived*/

return -ERESTARTSYS; /* tell the fs layer to handle it*/
/* otherwise loop*/

/* ok, data is there, return something*/
if (dev->wp > dev->rp)

111

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 112

Chapter 5: Enhanced Char Driver Operations

count= min(count, dev->wp - dev->rp);
else/* the write pointer has wrapped, return data up to dev->end */

count= min(count, dev->end - dev->rp);
memcpy_tofs(buf, dev->rp, count);
dev->rp += count;
if (dev->rp == dev->end)

dev->rp = dev->buffer; t* wrapped*/

/* finally, awake any writers and return*/
wake_up_interruptible(&dev->outq);
PDEBUG("\"%s\" did read %1i bytes\n",current->comm, (long)count);
return count;

As you can see, I left some PDEBUG statements in the code. When you compile
the driver, you can enable messaging to make it easier to follow the interaction of
different processes.

The if statement that follows interrnptible_sleep_on takes care of signal handling.
This statement ensures the proper and expected reaction to signals, which is to let
the kernel take care of restarting the system call or returning -EINTR (the kernel
handles -ERESTARTSYS internally, and what reaches user space is -EINTR
instead). We don't want the kernel to do this for blocked signals, though, because
we want to ignore them. That is why we check current->blocked and screen
out those signals. Otherwise, we pass a -ERESTARTSYS error value back to let
the kernel do its work. We'll use the same statement to deal with signal handling.
for every read and write implementation.

The implementation for write is quite similar to that for read. Its only "peculiar"
feature is that it never completely fills the buffer, always leaving a hole of at least
one byte. Thus when the buffer is empty, wp and rp are equal; when there is data
there, they are always different.

read_write_t scull_p_write (struct inode *inode, struct file *filp,
canst char *bu£, count_t count)

112

Scull_Pipe *dev = filp->private_data;
/* left is the free space in the buffer, but it must be positive*/
int left= (dev->rp + dev->buffersize - dev->wp) % dev->buffersize;

PDEBUG("write: left is %i\n",left);
while (left==l) {/*empty*/

if (filp->f_flags & O_NONBLOCK)
return -EAGAIN;

PDEBUG("\"%s\" writing: going to sleep\n",current->comm);
interruptible_sleep_on(&dev->outq);
if (current->signal & -current->blocked) /* a signal arrived*/

return -ERESTARTSYS; /* tell the fs layer to handle it*/
/* otherwise loop, but recalculate free space*/
left= (dev->rp + dev->buffersize - dev->wp) % dev->buffersize;

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 113

Blocking 1/0

/* ok, space is there, accept something*/
if (dev->wp >= dev->rp) {

count= min(count, dev->end - dev->wp); /* up to*/
/*end-of-buffer*/

if (count== left) /* leave a hole, even if at e-o-b */
count--;

else/* the write pointer has wrapped, fill up to rp-1 */
count= min(count, dev->rp - dev->wp - l);

PDEBUG("Going to accept %li bytes to %p from %p\n",
(long)count, dev->wp, buf);

memcpy_fromfs(dev->wp, buf, count);
dev->wp += count;
if (dev->wp == dev->end)

dev ->wp = dev->buffer; /*wrapped*/

/* finally, awake any reader*/
wake_up_interruptible(&dev->inq);

if (dev->async_queue)

/* blocked in read() */
/* and select() */

kill_fasync (dev->async_queue, SIGIO); /* asynchr. readers*/
PDEBUG("\"%s\" did write %li bytes\n",current->cornrn, (long)count);
return count;

The device, as I conceived it, doesn't implement blocking open and is simpler than
a real FIFO. If you want to look at the real thing, you can find it in fs/pipe.c, in the
kernel sources.

To test the blocking operation of the scu/lpipe device, you can run some programs
on it, using input/output redirection as usual. Testing nonblocking activity is trick
ier, as the conventional programs don't perform nonblocking operations. The
misc-progs source directory contains the following simple program, called nbtest,
for testing nonblocking operations. All it does is copy its input to its output, using
nonblocking 1/0 and delaying between retrials. The delay time is passed on the
command line and is one second by default.

int main(int argc, char **argv)
{

int delay=l, n, m=0;

if (argc>l) delay=atoi(argv[l]);
fcntl(0, F_SETFL, fcntl(0,F_GETFL)
fcntl(l, F_SETFL, fcntl(l,F_GETFL)

while (1) {
n=read(0, buffer, 4096);
if (n>=O)

m=write(l, buffer, n);

O_NONBLOCK); /* stdin */
O_NONBLOCK); /* stdout */

if ((n<O I I m<0) && (errno != EAGAIN))
break;

sleep (delay);

113

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 114

Chapter 5: Enhanced Char Driver Operations

perror(n<0? "stdin"
exit(l);

"stdout");

Select
When using nonblocking 1/0, applications often exploit the select system call,
which relies on a device method when it involves device files. This system call is
also used to multiplex input from different sources. In the following discussion,
I'm assuming that you understand the use of the select semantics in user space.
Note that version 2.1.23 of the kernel introduced the poll system call, thus chang
ing the way the driver method works in order to account for both the system calls.

The implementation of the select system call in Linux 2.0 uses a select_table
structure to keep information about all the files (or devices) being waited for.
Once again, you 're expected not to look inside the structure (but we'll do it any
way a little later) and are allowed only to call the functions that act on such a
structure.

When the select method discovers that there's no need to block, it returns l; when
the process should wait, it should "almost" go to sleep. In this case, the correct
wait queue is added to the select_table structure, and the function returns 0.

The process actually goes to sleep only if no file being selected can accept or
return data. This happens in sys_select, within fs/select.c.

The code for the select operation is far easier to write than to describe, and it's
high time to show the implementation used in scull:

int scull_p_select (struct inode *inode, struct file *filp,
int mode, select_table *table)

114

Scull_Pipe *dev = filp->private_data;

if (mode== SEL_IN) {
if (dev->rp != dev->wp) return 1; /*readable*/
PDEBUG("Waiting to read\n");
select_wait(&dev->inq, table); /* wait for data*/
return 0;

if (mode== SEL_OUT)
/*

* the buffer is full if "wp" is right behind "rp",
* and the buffer is circular. "left" can't drop
* to 0, as this would be taken as empty buffer
*/

int left= (dev->rp + dev->buffersize - dev->wp) %
dev->buffersize;

if (left>l) return 1; /*writable*/

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 115

PDEBUG("Waiting to write\n");
select_wait(&dev->outq, table); /* wait for free space*/
return O;

return O; /* never exception-able*/

Select

There's no code for the "third form of select," selecting for exceptions. This form
is identified by mode == SEL_EX, but most of the time you code it as the default
case, to be executed when the other checks fail. The meaning of exception events
is device-specific, so you can choose whether or not to use them in your own
driver. Such a feature will be used only by programs specifically designed to use
your driver, but that's exactly its intent. In that respect, it is similar to the device
dependency of the ioctl call. In the real world, the main use of exception condi
tions in select is to signal arrival of Out-Of-Band (urgent) data on a network con
nection, though it is also used in the tty layer and in the pipe/FIFO
implementation (you can look for SEL_EX in fs/pipe.c). Note, however, that other
Unix systems don't implement exception conditions for pipes and FIFOs.

The select code as shown is missing end-of-file support. When a read call is at
end-of-file, it should return 0, and select must support this behavior by reporting
that the device is readable, so the application will actually issue the read without
waiting forever. With real FIFOs, for example, the reader sees an end-of-file when
all the writers close the file, while in scullpipe the reader never sees end-of-file.
The behavior is different because a FIFO is intended to be a communication chan
nel between two processes, while scullpipe is a trashcan where everyone can put
data as long as there's at least one reader. Moreover, it makes no sense to reimple
ment what is already available in the kernel.

Implementing end-of-file as FIFOs do would mean checking dev->nwriters,
both in read and in select-for-reading, and acting accordingly. Unfortunately
though, if a reader opens the scullpipe device before the writer, it sees end-of-file,
without having a chance to wait for data. The best way to fix this problem is to
implement blocking within open, but this task is left as an exercise to the reader.

Interaction with read and write
The purpose of the select call is to determine in advance if an VO operation will
block. In that respect, it complements read and write . . select is also useful because
it lets the driver wait simultaneously for several data streams (but this is not rele
vant in the case at hand).

A correct implementation of the three calls is fundamental in order to make appli
cations work correctly. Though the following rules have more or less already been
stated, I'll summarize them here.

115

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 116

Chapter 5: Enhanced Char Driver Operations

Reading data from the device

If there is data in the input buffer, the read call should return immediately, with
no noticeable delay, even if less data than requested is available and the driver is
sure the remaining data will arrive soon. You can always return less data than
you're asked for if this is convenient (we did it in scull), provided you return at
least one byte. The implementation of bus mice in the current kernel is faulty in
this respect, and several programs (like dd) fail to correctly read the device.

If there is no data in the input buffer, read must block until at least one byte is
there, unless O_NONBLOCK is set. A nonblocking read returns immediately with a
return value of - EAGAIN (although some old versions of System V return 0 in this
case). select must report that the device is unreadable until at least one byte
arrives. As soon as there is some data, we fall back to the previous case.

If we are at end-of-file, read should return immediately with a return value of 0,
independent of O_NONBLOCK. select should report that the file is readable.

Writing to the device

If there is space in the output buffer, write should return without delay. It can
accept less data than the call requested, but it must accept at least one byte. In this
case, select reports that the device is writable.

If the output buffer is full, write blocks until some space is freed, unless
O_NONBLOCK is set. A nonblocking write returns immediately, with a return value
of -EAGAIN (or conditionally 0, as st~ted previously for older SystemV reads).
select should report that the file is not writable. If, on the other hand, the device is
not able to accept any more data, write returns -ENOSPC ("No space left on
device"), independently of O_NONBLOCK.

If the program using the device wants to ensure that the data it queues in the out
put buffer is actually transmitted, the driver must provide an fsync method. For
instance, a removable device should have an fsync entry point. Never make a
write call wait for data transmission before returning, even if O_NONBLOCK is
clear. This is because many applications use select to find out whether a write will
block. If the device is reported as writable, the call must consistently not block.

Flushing pending output.

We've seen how the write method doesn't account for all data output needs. The
fsync function, invoked by the system call of the same name, fills the gap.

If some application will ever need to be assured that data has been sent to the
device, the fsync method must be implemented. A call to /sync should return only
when the device has been completely flushed (i.e., the output buffer is empty),
even if that takes some time, regardless of whether O_NONBLOCK is set.

116

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 117

Asynchronous Notification

The fsync method has no unusual features. The call isn't time-critical, so every
device driver can implement it to the author's taste. Most of the time, char drivers
just have a NULL pointer in their fops. Block devices, on the other hand, always
implement the method by calling the general-purpose blockJsync, which in turn
flushes all the blocks of the device, waiting for 1/0 to complete.

The Underlying Data Structure
The particular implementation of select used in 2.0 kernels is quite efficient and
slightly complex. If you're not interested in understanding the secrets of the oper
ating system, you can jump directly to the next section.

First of all, I suggest that you look at Figure 5-2, which represents graphically the
steps involved in making a select call. Looking at the figure will make it easier to
follow the discussion.

The select work is performed by the functions select_wail, declared inline in
<linux/sched.h>, and Jree_wait, defined in Js/select.c. The underlying data
structure is an array of struct select_table_entry, where each entry is
made up of a struct wait_queue and a struct wait_queue **. The for
mer is the actual structure that gets inserted in the wait queue for the device (the
one that only exists as a local variable when calling sleep_on), while the latter is
the "handle" that's needed to remove the current process from the queue when at
least one of the selected conditions becomes true-for example, it contains
&dev-> inq when selecting scullpipe for reading (see the earlier example in
"Select").

In short, select_wait inserts the next free select_table_entry into the speci
fied wait queue. When the system call returns, free_wait removes every entry from
its own wait queue, using the associated pointer-pointer.

The select_table structure (made up of a pointer to the array of entries and
the number of active entries) is declared as a local variable in do_select, similar to
what happens for __ sleep_on. The array of entries, on the other hand, resides in a
different page, because it could overflow the stack page for the current process.

If you're having trouble understanding this description, try looking at the source
code. Once you understand the implementation, you'll see that it is compact and
efficient.

Asynchronous Notification
Though the combination of blocking and nonblocking operations and the select
method are sufficient for querying the device most of the time, some situations
aren't efficiently managed by the techniques we've seen so far. Let's imagine, for
example, a process that executes a long computational loop at low priority, but
needs to process incoming data as soon as possible. If the input channel is the

117

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 118

C/Jaj)ter 5: Enhanced CIJar Driver Operations

select_table_entry

struct wait_queue wai t ;

s truc t wait_queue **wait_address ;

The current process calls select for one device only

[~
'------.J

The current process is selecting on two devices

+
' ' '

The device structure
with its pointer to
etruct wait _ queue .

~ The
~ struct wait_ queue.

t=] The
struct.
sel ect_t abl e _entry.

process and
its associated
select table.

D[] The current

I -- - - - - - -- - - -- - - - - --- - --- -- - - - - -- - - - -- - - - - -- - - - - - -- - - - -- - - -- - -- - - --- - -- - _.,..

Each wail queue is the usual circular linked list, so wake_ up c > doesn't need to care about select. The
additional pointer-pointer is used by free_wai t c l to find out the queues where the process is registered.

Figw·e 5-2: The intemals ofselecl

keyboa rd, you are allowed to send a signal to the application (using the "l TR"
character, usua lly Ctrl-C), but this signalling ability is part of the tty layer, which
isn't attached to general char devices. What we need fo r asynchronous notification
is something different. Furthermore, any input data should generate an interrupt,
not just Ctrl-C.

JIB

Chapter 5: Enbanced Char Driver Operations

select_table_entry

struct wait_queue wait; The device structure
with its pointer to; ke i .

struct wait_queue wait_address; dEEUEE. weaceeie
The

The current process calls select for one device only struct wait_queue.

The
struct
select_table_entry.

The current
process and
its associated
select table.

The current process is selecting on two devices

os

Beetcoccussseuccespy
’ ' ' ' ' ' ' ' ' ' ' ' ' ' t ' ' ' t ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ‘ ' ' ' ' ' ' ' ' 1 ' ' t ' 1 ' ‘

Each wait queue is the usualcircularlinkedlist, So wake_up() doesn’t need to care aboutselect. The
additional pointer-pointer is used by £ree_wait() to find out the queues where the processis registered.

Figure 5-2: The internals ofselect

keyboard, you are allowedto send a signal to the application (using the “INTR”
character, usually Ctrl-C), but this signalling ability is part of the tty layer, which
isn't attached to general char devices. What we need for asynchronousnotification
is something different. Furthermore, amy input data should generate an interrupt,
not just Ctrl-C.

118

Petitioners Microsoft Corporation and HP Inc.- Ex. 1019, p. 118

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 119

Asynchronous Notification

User programs have to execute two steps to enable asynchronous notification from
an input file. First, they specify a process as the "owner" of the file. The user ID of
a file's owner is stored in filp->f_owner by the Jent/ system call when an
application invokes the F _SETOWN command. Additionally, the user programs
must set the FASYNC flag in the device by means of another Jent/ in order to actu
ally enable asynchronous notification.

After these two calls have been executed, the input file generates a SIGIO signal
whenever new data arrives. The signal is sent to the process (or process group, if
the value is negative) stored in filp->f_owner.

For example, the following lines enable asynchronous notification to the current
process for the s tdin input file:

signal{SIGIO, &input_handler); /* the dirty way; /*
/* sigaction() is better*/

fcntl(0, F_SETOWN, getpid());
oflags=fcntl(0, F_GETFL);
fcntl(0, F_SETFL, oflags I FASYNC);

The program named asynctest in the sources is a simple program that reads
stdin as shown. It can be used to test the asynchronous capabilities of scullpipe.
The program is similar to cat, but doesn't terminate on end-of-file; it responds only
to input, not to the absence of input.

Note, however, that not all the devices support asynchronous notification, and you
can choose not to offer it. Applications usually assume that the asynchronous
capability is available only for sockets and ttys. For example, pipes and FIFOs
don't support it, at least in the current kernels. Mice offer asynchronous notifica
tion (although not in 1.2), because some programs expect a mouse to be able to
send SIGIO like a tty does.

There is one remaining problem with input notification. When a process receives a
SIGIO, it doesn't know which input file has new input to offer. If more than one
file is enabled to asynchronously notify the process of pending input, the applica
tion must still resort to select to find out what happened.

The Driver's Point of View
A more relevant topic for us is how the device driver can implement asynchronous
signalling. The following list details the sequence of operations from the kernel's
point of view:

• When F _SETOWN is invoked, nothing happens, except that a value is assigned
to filp->f_owner.

119

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 120

Chapter 5: Enhanced Char Driver Operations

• When F _SETFL is executed to turn on FASYNC, the driver's f async method is
called. This method is called whenever the value of FASYNC is changed in
filp->f_flags, to notify the driver of the change so it can respond prop
erly. The flag is zeroed by default when the file is opened. We'll look at the
standard implementation of the driver method soon.

• When data arrives, all the processes registered for asynchronous notification
must be sent a SIGIO signal.

While implementing the first step is trivial-there's nothing to do on the driver's
part-the other steps involve maintaining a dynamic data structure to keep track
of the different asynchronous readers; there might be several of these readers. This
dynamic data structure, however, doesn't depend on the particular device
involved, and the kernel offers a suitable general-purpose implementation so you
don't have to rewrite the same code in every driver.

Unfortunately, such an implementation is not included in 1.2 kernels. It's not easy
to implement asynchronous nqtification in a module for older kernel versions, as
you have to create your own data structure. The scull module, for simplicity,
doesn't offer asynchronous notification for older kernels.

The general implementation offered by Linux is based on one data structure and
two functions (to be called in the steps described above). The header that declares
related material is <linux/ f s. h>-nothing new-and the data structure is
called struct fasync_struct. As we did with wait queues, we need to insert
a pointer to the structure in the device-specific data structure. Actually, we've
already seen such a field in the section "A Sample Implementation: scullpipe."

The two functions to call correspond to the following prototypes:

int fasync_helper(struct inode *inode, struct file *filp,
int mode, struct fasync_struct **fa);

void kill_fasync(struct fasync_struct *fa, int sig);

The former is invoked to add or remove files to the list of interested processes
when the FASYNC flag changes for an open file, while the latter should be called
when data arrives.

Here's how scullpipe implements the f async method:

int scull__p_fasync (struct inode *inode, struct file *filp, int mode)

Scull_Pipe *dev = filp->private_data;

return fasync_helper(inode, filp, mode, &dev->async_queue);

It's clear that all the work is performed by f async_helper. It wouldn't be possible,
however, to implement the functionality without a method in the driver, because

120

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 121

Seeking a Device

the helper function needs to access the correct pointer to s truct
fasync_struct * (here &dev->async_queue) and only the driver can pro
vide that information.

When data arrives, then, the following statement must be executed to signal asyn
chronous readers. Since new data for the scu/lpipe reader is generated by a pro
cess issuing a write, the statement appears in the write method of scu/lpipe.

if (dev->async_queue)
kill_fasync (dev->async_queue, SIGIO); /* asynchronous readers*/

It might appear that we're done, but there's still one thing missing. We must
invoke our Jasync method upon file close to remove the file being closed from the
list of active asynchronous readers. While this call is required only if
filp->f_flags has FASYNC set, calling the function anyway doesn't hurt and is
the usual implementation. The following lines, for example, are part of the close
method for scu/lpipe.

/* remove this filp from the asynchronously notified filp's */
scull_p_fasync(inode, filp, O);

The data structure underlying asynchronous notification is almost identical to the
structure struct wai t_queue, because both situations involve waiting on an
event. The difference is that struct file is used in place of struct
task_struct. The struct file in the queue is then used to retrieve
£_owner, in order to signal the process.

Seeking a Device
The difficult part of the chapter is over, and I'll quickly detail the !seek method,
which is useful and easy to implement. Note that the prototype of the method
changed slightly in 2.1.0, as detailed in "Prototype Differences," in Chapter 17.

The /seek Implementation
I've already stated that if the !seek method is missing from the device's operations,
the default implementation in the kernel acknowledges seeks from the beginning
of file and from the current position, by modifying filp->f_pos.

If seeking relative to the end-of-file makes sense for your device, you should offer
your own method, which will look like the following code:

int scull_lseek (struct inode *inode, struct file *filp,
off_t off, int whence)

Scull_Dev *dev = filp->private_data;
long newpos;

121

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 122

Chapter 5: Enhanced Char Driver Operations

switch(whence) {
case 0: /* SEEK_SET */

newpos = off;
break;

case 1: /* SEEK_CUR */
newpos filp->f_pos + off;
break;

case 2: /* SEEK_END */
newpos dev->size + off;
break;

default: /* can't happen*/
return -EINVAL;

if (newpos<O) return -EINVAL;
filp->f_pos = newpos;
return newpos;

The only device-specific operation here is retrieving the file length from the
device. For the /seek system call to work correctly, however, the read and write
calls must cooperate by updating filp->f_pos whenever data is transferred;
they should also use the f_pos field to locate the data they transfer. The imple
mentation of scull includes these features, as shown in "Read and Write" in Chap
ter 3.

While the implementation shown above makes sense for scull, which handles a
well-defined data area, most devices offer a data flow rather than a data area (just
think about the serial ports or the keyboard), and seeking doesn't make sense. If
this is the case, you can't just refrain from declaring the !seek operation, because
the default method allows seeking. Instead, you should use the following code:

int scull_p_lseek (struct inode *inode, struct file *filp,
off_t off, int whence)

return -ESPIPE; /* unseekable */

The function just shown comes from the scullpipe device, which isn't seekable; the
error code is translated to "Illegal seek," though the symbolic name means "is a
pipe." Since the position-indicator filp->f_pos is meaningless for non-seekable
devices, neither read nor write needs to update it during data transfer.

122

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 123

Access Control on a Device File

Access Control on a Device File
Offering access control is sometimes vital for the reliability of a device node. Not
only should unauthorized users not be permitted to use the device (which is
enforced by the filesystem permission bits), but sometimes only one authorized
user should be allowed to open the device at a time.

None of the code shown up to now implements any access control in addition to
the filesystem permission bits. If the open system call forwards the request to the
driver, open will succeed. I'm now going to introduce a few techniques for imple
menting some additional checks.

The problem is similar to that of using ttys. In that case, the login process changes
the ownership of the device node whenever a user logs into the system, in order
to prevent intrusion in the tty data flow. However, it's impractical to use a privi
leged program to change the ownership of a device every time it is opened, just to
grant unique access to it.

Every device shown in this section has the same behavior as the bare scull device
(that is, it implements a persistent memory area); it differs from scull only in
access control, which is implemented in the open and close operations.

Single-Open Devices
The brute-force way to provide access control is to permit a device to be opened
by only one process at a time (single-openness). I personally dislike this tech
nique, because it inhibits user ingenuity. A user might well want to run different
processes on the same device, one reading status information while the other is
writing data. Often a handful of simple programs and a shell script can accomplish
a lot. In other words, single-openness is more like policy than mechanism (at least
to my way of thinking).

Despite my aversion to single-openness, it's the easiest implementation for a
device driver, so it's shown here. The source code is extracted from a device
called scullsingle.

The open call refuses access based on a global integer flag:

int scull_s_open (struct inode *inode, struct file *filp)

Scull_Dev *dev = &scull_s_device; /* device information*/
int num = NUM(inode->i_rdev);

if (num > 0) return -ENODEV; /* 1 device only*/
if (scull_s_count) return -EBUSY; /* already open*/
scull_s_count++;

123

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 124

Chapter 5: Enhanced Char Driver Operations

/* then, everything else is copied from the bare scull device*/

if ((filp->f_flags & O_ACCMODE) == O_WRONLY)
scull_trim(dev);

filp->private_data = dev;
MOD_INC_USE_COUNT;
return O; /*success*/

The close call, on the other hand, marks the device as no longer busy.

void scull_s_release (struct inode *inode, struct file *filp)
{

scull_s_count--; /* release the device*/
MOD_DEC_USE_COUNT;
return;

The best place to put the open flag (scull_s_count) is within the device struc
ture (Scull_Dev here) because, conceptually, it belongs to the device.

The scull driver, however, uses a standalone variable to hold the open flag in
order to use the same device structure and methods as the bare scull device and
minimize code duplication.

Restricting Access to a Single User at a Time
A more sensible implementation of access control is granting access to a user only
if nobody else has control of the device. This kind of check is performed after the
normal permission checking and can only make access more restrictive than that
specified by the owner and group permission bits. This is the same access policy
as that used for ttys, but it doesn't resort to an external privileged program.

Sensible features are a little trickier to implement than single-open. In this case,
two items are needed, an open count and the uid of the "owner" of the device.
Once again, the best place for such items is within the device structure; the sam
ples use global variables instead, for the reason explained previously for scullsin
gle. The name of the device is sculluid.

The open call grants access on first open, but remembers the owner of the device.
This means that a user can open the device multiple times, thus allowing cooper
ating processes to work flawlessly. At the same time, no other user can open it,
thus avoiding external interference. Since this version of the function is almost
identical to the preceding one, only the relevant part is reproduced here:

124

if (scull_u_count &&
(scull_u_owner != current->uid) && /* allow user*/
(scull_u_owner != current->euid) && /* allow whoever did su */
!suser()) /* still allow root*/

return -EBUSY; /* -EPERM would confuse the user*/

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 125

Access Control on a Device File

if {scull_u_count == 0)
scull_u_owner = current->uid; /* grab it*/

scull_u_count++;

I made the decision to return - EBUSY and not - EPERM, even if the code performs
permission checks, in order to point a user who is denied access in the right direc
tion. The reaction to "Permission denied" is usually to check the mode and owner
of the /dev file, while "Device Busy" correctly suggests that the user should look
for a process already using the device.

The code for close is not shown, since all it does is decrement the usage count.

Blocking Open as an Alternative to EB USY
Returning an error when the device isn't accessible is usually the most sensible
approach, but there are situations when you'd prefer to wait for the device.

For example, if a data communication channel is used both to transmit reports on
a timely basis (using crontab) and for casual usage according to people's needs,
it's much better for the timely report to be slightly delayed rather than fail just
because the channel is currently busy.

This is one of the choices that the programmer must make when designing a
device driver, and the right answer depends on the particular · problem being
solved.

The alternative to EBUSY, as you may have guessed, is to implement blocking
open.

The scullwuid device is a version of sculluid that waits for the device on open
instead of returning -EBUSY. It differs from scu/luid only in the following part of
the open operation:

while {scull_w_count &&
{scull_w_owner != current->uid) && /* allow user*/
{scull_w_owner != current->euid) && /* allow whoever did su */
!suser {)) {

if {filp->f_flags & O_NONBLOCK) return -EAGAIN;
interruptible_sleep_on{&scull_w_wait);
if {current->signal & ~current->blocked) /* a signal arrived*/

return -ERESTARTSYS; /* tell the fs layer to handle it*/
/* else, loop*/

if {scull_w_count 0)
scull_w_owner = current->uid; /* grab it*/

scull_w_count++;

125

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 126

Chapter 5: Enhanced Char Drtver Operations

The release method, then, is in charge of awakening any pending process:

void scull_w_release (struct inode *inode, struct file *filp)
{

scull_w_count--;
if (scull_w_count == 0)

wake_up_interruptible(&scull_w_wait); /* awake other uid's */
MOD_DEC_USE_COUNT;
return;

The problem with a blocking-open implementation is that it is really unpleasant to
the interactive user, who has to keep guessing what is going wrong. The interac
tive user usually invokes precompiled commands like cp and tar and can't just add
O_NONBLOCK to the open call. Someone who's making a backup using the tape
drive in the next room would prefer to get a plain "device or resource busy" mes
sage, instead of being left to guess why the hard drive is so silent today while tar
is scanning it.

This kind of problem (different incompatible policies for the same device) is best
solved by implementing one device node for each access policy, similar to the
way /devlttySO and /devlcuaO act on the same serial port in different ways, or
/dev/scul/uid and /dev/scullwuid offer two different policies for accessing a mem
ory area.

Cloning the Device on Open
Another technique to manage access control is creating different private copies of
the device depending on the process opening it.

Clearly this is only possible if the device is not bound to a hardware object; scull is
an example of such a "software" device. The kmouse module also uses this tech
nique so that every virtual console appears to have a private pointing device.
When copies of the device are created by the software driver, I call them "virtual
devices" -just as "virtual consoles" use a single physical tty device.

While a requirement for this kind of access control is unusual, the implementation
can be enlightening in showing how easily kernel code can change the applica
tions' perspective of the surrounding world (i.e., the computer). The topic is quite
exotic, actually, so if you aren't interested, you can jump directly to the next chap
ter.

The /dev/scullpriv device node implements virtual devices within the scull pack
age. The scullpriv implementation uses the minor number of the process's control
ling tty as a key to access the virtual device. You can nonetheless easily modify the
sources to use any integer value for the key; each choice leads to a different pol
icy. For example, using the uid leads to a different virtual device for each user,
while using a pid key creates a new device for each process accessing it.

126

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 127

Access Control on a Device File

The decision to use the controlling terminal is meant to enable easy testing of the
device using input/output redirection.

The open method looks like the following code. It must look for the right virtual
device and possibly create one. The final part of the function is not shown
because it is copied from the bare scull, which we've already seen.

struct scull_listitem
Scull_Dev device;
int key;
struct scull_listitem *next;

} ;

struct scull_listitem *scull_c_head;

int scull_c_open (struct inode *inode, struct file *filp)

int key;
int num = NUM(inode->i_rdev);
struct scull_listitem *lptr, *prev;

if (num > 0) return -ENODEV; /* 1 device only*/

if (!current->tty) {
PDEBUG("Process \"%s\" has no ctl tty\n",current->comm);
return -EINVAL;

key= MINOR(current->tty->device);

/* look for a device in the linked list; if missing create it*/
prev = NULL;
for (lptr = scull_c_head; lptr && (lptr->key != key);

lptr = lptr->next)
prev=lptr;

if (!lptr) { /* not found*/
lptr = kmalloc(sizeof(struct scull_listitem), GFP_KERNEL);
if (!lptr)

return -ENOMEM;
memset(lptr, 0, sizeof(struct scull_listitem));
lptr->key = key;
scull_trim(&(lptr->device)); /* initialize it*/
if (prev)

prev->next = lptr;
else

scull_c_head = lptr; /* the first one*/

/* then, everything else is copied from the bare scull device*/

127

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 128

Chapter 5: Enhanced Char Driver Operations

The close method does nothing special. It could release the device on last close,
but I chose not to maintain an open count in order to simplify testing the driver. If
the device were released on last close, you wouldn't be able to read the same data
after writing to the device unless a background process were to keep it open at
least once. The sample driver takes the easier approach of keeping the data, so
that at the next open, you'll find it there. The devices are released when
cleanup_module is called.

Here's the close implementation for /dev/scullpriv, which closes the chapter as
well.

void scull_c_release (struct inode *inode, struct file *filp)
{

/*
* Nothing to do, because the device is persistent.
* A "real• cloned device should be freed on last close
*I

MOD_DEC_USE_COUNT;
return;

Quick Reference
This chapter introduced you to the following symbols and header files:

#include <linux/ioctl.h>
This header declares all the macros used to define ioctl commands. It is cur
rently included by <linux/ fs. h>. Linux 1.2 doesn't declare the fancy
macros introduced in this chapter; if backward compatibility is needed, I'd
suggest looking in scu/Vsysdep.h, which defines the correct symbols for old
kernel versions.

_IOC_NRBITS
_IOC_TYPEBITS
_IOC_SIZEBITS
_IOC_DIRBITS

The number of bits available for the different bit fields of ioctl commands.
There are also four macros that specify the MASKs and four that specify the
SHIFTS, but they're mainly for internal use. _IOC_SIZEBITS is an important
value to check, because it changes across architectures.

_IOC_NONE
_IOC~READ
_IOC_WRITE

128

The possible values for the "direction" bitfield. "Read" and "write" are differ
ent bits and can be ORed to specify read/write. The values are 0-based.

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 129

_IOC(dir,type,nr,size)
_IO(type,nr)
_IOR(type,nr,size)
_IOW(type,nr,size)
_IOWR(type,nr,size)

Macros used to create an ioctl command.

_IOC_DIR(nr)
_IOC_TYPE(nr)
_IQC_NR(nr)
_IOC_SIZE(nr)

Quick Reference

Macros used to decode a command. In particular, _IOC_TYPE (nr) is an OR
combination of _IOC_READ and _IOC_WRITE.

#include <linux/mm.h>
int verify_area(int mode, const void *ptr,

unsigned long extent);
This function checks that a pointer in the user space is actually usable. ver
ify_area deals with page faults and must be called before accessing user space
outside of read and write, whose buffer has already been verified. A non-zero
return value signals an error and should be returned to the caller. For the use
of verify_area and the following macros and functions with the 2.1 kernel see
"Accessing User Space" in Chapter 17.

VERIFY_READ
VERIFY_WRITE

The possible values for the mode argument in verify_area. VERIFY_WRITE is
a superset of VERIFY_READ.

#include <asm/segment.h>
void put_user(datum,ptr};
unsigned long get_user(ptr);

Macros used to store or retrieve a single datum to or from user space. The
number of bytes being transferred depends on sizeof (*ptr). These func
tions are missing from version 1.2 of the kernel. Look at scu/Vsysdep.h if you
want to compile a module under both version 1.2 and 2.0.

void put_user_byte(val,ptr);
unsigned char get_user_byte(ptr);

These functions and their _word and _long relatives are deprecated. 2.0 and
later kernels only declare the functions (which are inline) #ifdef
WE_REALLY_WANT_TO_USE_A_BROKEN_INTERFACE. Programmers are
strongly urged to invoke put_user and get_user instead.

129

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 130

Chapter 5: Enhanced Char Driver Operations

#include <linux/sched.h>
void interruptible_sleep_on(struct wait_queue **q);
void sleep_on(struct wait_queue **q);

Calling either of these functions puts the current process to sleep on a queue.
Usually, you'll choose the interruptible form to implement blocking read
and write.

void wake_up(struct wait_queue **q);
void wake_up_interruptible(struct wait_queue **q);

These functions wake processes that are sleeping on the queue q. The
_interruptible form wakes only interruptible processes.

void schedule(void);
This function selects a runnable process from the run queue. The chosen pro
cess can be current or a different one. You won't usually call schedule
directly, as the sleep_on functions do it internally.

void select_wait(struct wait_queue **wait_address,
select_table *p);

This function puts the current process into a wait queue without scheduling
immediately. It is designed to be used by the select method of device drivers.
The entire select implementation changed in 2.1.23; see "The poll Method" in
Chapter 17 for details.

#include <linux/fs.h>
SEL_IN
SEL_OUT
SEL_EX

One of these symbols is passed as the mode argument to the select method of
the device.

int fasync_helper(struct inode *inode, struct file *filp,
int mode, struct fasync_struct **fa);

This function is a "helper" for implementing the f async device method. The
mode argument is the same value that is passed to the method, while fa
points to a device-specific fasync_struct *.

void kill_fasync(struct fasync_struct *fa, int sig);

130

If the driver supports asynchronous notification, this function can be used to
send a signal to processes registered in fa.

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 131

CHAPTER SIX

FLOW OF TIME

this point, we know how to write a full-featured char module. We'll deal
with kernel resources available to the driver in the next few chapters. I'll
tart by showing how timing issues are addressed from kernel code. This

involves, in ascending order of complexity:

• Knowing the current time

• Delaying operation for a specified amount of time

• Scheduling asynchronous functions to happen after a specified time lapse

Time Intervals in the Kernel
The first po int we need to cover is the timer interrupt, which is the mechanism the
kernel uses to keep track of time intervals. The timer interrupt is set to a default
frequency of HZ, which is an architecture-dependent value defined in
<linux/ param.h>. Through at least version 2.0 and 2.1.43, Linux defines HZ to
be 1024 for the Alpha and 100 for all other platforms .

When the timer interrupt occurs, the jiffi es value is incremented. jiffies is
thus the number of clock ticks since the operating system was booted; it is
declared in <linux/sched .h> as unsigned long vol atile, and it will
overflow in one and a third years of continuous operation. If you're planning on
more than one and a third years of uptime, you 'd better buy yourself an Alpha,
which won't overflow for half a billion years-it has 64-bit longs. I can 't tell you
exactly what happens when jiffi es overflows, and I haven't got time to wait to
find out.

13 1

CHAPTER SIX

FLOW OF TIME

with kernel resources available to the driver in the next few chapters. I'll
start by showing howtiming issues are addressed from kernel code. This

involves, in ascending order of complexity:

\ t this point, we know how to write a full-featured char module, We'll deal
e Knowing the current time

* Delaying operation for a specified amount oftime

e Scheduling asynchronousfunctions to happenafter a specified time lapse

Time Intervals in the Kernel

Thefirst point we need to coveris the timerinterrupt, which is the mechanism the
kernel uses to keep track of time intervals, The timer interrupt is set to a default
frequency of HZ, which is an architecture-dependent value defined in
<linux/param.h>, Throughat least version 2.0 and 2.1.43, Linux defines HZ to
be 1024 for the Alpha and 100 for all other platforms.

When the timer interrupt occurs, the jiffies value is incremented. jiffies is
thus the number of clock ticks since the operating system was booted; it is
declared in <linux/sched.h> as unsigned long volatile, and it will
overflow in one and athird years of continuous operation. If you're planning on
more than one and athird years of uptime, you’d better buy yourself an Alpha,
which won't overflow for half a billion years—it has 64-bit longs. I can’t tell you
exactly what happens when jiffies overflows, and I haven't got time to wait to
find out.

131

Petitioners Microsoft Corporation and HP Inc.- Ex. 1019, p. 131

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 132

Chapter 6: Flow of Ttme

If you change the value of HZ and try to recompile the kernel, you won't notice
any difference when you are in user space. Everything works as usual, except that
the jiffies value increments at a different pace. The more interrupts you gener
ate, the greater the overhead, but the system will be snappier, because the proces
sor is scheduled more often.

I tried a few values on my PC: at 20Hz, the system reacts quite slowly; lOOHz is
the default; at lkHz, the computer is slightly slower, but reasonably responsive; at
lOkHz, it is noticeably slow; and at SOkHz, it is unbearable. Note that changing the
interrupt frequency also has other side effects, like a different time lag before
jiffies overflows (in as few as five days with a lOkHz clock frequency) and a
different precision in the BogoMips calculation.• Moreover, there are some hard
limits that are not written down anywhere. For example, 19 is the smallest possible
integer value for the clock frequency on ~e PC, and similar limits exist on the
other supported architectures.

Additionally, you must be really careful when using modules. If you change the
definition of HZ, you must recompile and reinstall all modules you are using.
Everything in the kernel depends on HZ, including modules. I realized this when I
couldn't double-dick my mouse after I incremented the value of HZ.

All in all, the best approach to the timer interrupt is to keep the default value for
HZ, by virtue of our complete trust in the kernel developers, who have certainly
chosen the best value. More information about this issue can be retrieved by read
ing the header <linux/timex.h>.

Knowing the Current Time
Kernel code can always retrieve the current time by looking at the value of
jiffies. Usually the fact that the value represents only the time since the last
boot is not relevant to the driver, because its life is limited to the system uptime.
Drivers can use the current value of jiffies to calculate time intervals across
events (I used it to tell double clicks from single clicks in the kmouse module). In
short, looking at jiffies is almost always sufficient when you need to measure
time intervals.

It's quite unlikely that a driver will ever need to know the wall-clock time, as this
knowledge is usually needed only by user programs like cron and at. If such a
capability is needed, it will be a particular case of device usage, and the driver can
be correctly instructed by a user program, which can easily do the conversion
from wall-clock time to the system clock.

If your driver really needs the current time, the do_gettimeofday function comes to
the rescue. The function doesn't tell the current day of the week or anything like

* The higher the clock frequency, the coarser the precision, because of interrupt overhead.

132

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 133

Knowing the Current Time

that; rather, it fills a struct timeval pointer with the usual seconds
microseconds values. It responds to the following prototype:

#include <linux/time.h>
void do_gettimeofday(struct timeval *tv);

The source states that do_gettimeofday has "near microsecond resolution" for all
architectures except the Alpha and the Spare, where it has the same resolution as
jiffies. The Spare port has been upgraded in 2.1.34 to support fine-grained
time measures. The current time is also available (though with less precision) from
the xtime variable (a struct timeval); however, direct use of this variable is
discouraged because you can't atomically access both the timeval fields tv _sec
and tv_usec, unless you disable interrupts. Using the timeval structure filled
by do_gettimeofday is much safer.

Unfortunately, do_gettimeofday was not exported by Linux 1.2. If you need to
know the current time and want to be backward compatible, you should resort to
the following version of the function:

#if LINUX_VERSION_CODE < VERSION_CODE(l,3,46)
/*

* kernel headers already declare the function as non-static.
* We reimplement it with another name, and #define it
*I

extern inline void redo_gettimeofday(struct timeval *tv)
{

unsigned long flags;

save_flags{flags);
cli ();
*tv :::: xtime;
restore_flags{flags);

#define do_gettimeofday(tv) redo_gettimeofday(tv)
#endif

This version is coarser than the real function because it uses only the current value
of the xtime structure, which is no more fine-grained than jiffies. However, it
is portable across Linux platforms. The "real" function attains better resolution by
querying the real-time clock through architecture-dependent code.

Code for reading the current time is available within the jit ("Just In Time") mod
ule, in the source files provided on the O'Reilly FTP site. jit creates a file called
/proc/currentime, which returns the current time in ASCII when it is read. I chose
to use a dynamic /proc file because it requires less module code-it's not worth
creating a whole device just to return two lines of text.

If you use cat to read the file multiple times in less than a timer tick, you'll appre
ciate the difference between xtime and do_gettimeofday:

133

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 134

Cbapter 6: Flow of Time

morgana% cat /proc/currentime /proc/curr&Dtime /proc/currentime
gettime: 846157215.937221
xtime: 846157215.931188
jiffies: 1308094
gettime: 846157215.939950
xtime: 846157215.931188
jiffies: 1308094
gettime: 846157215.942465
xtime: 846157215.941188
jiffies: 1308095

Delaying Execution
Using the timer interrupt and the value of jiffies, it's easy to generate time
intervals that are multiples of the timer tick, but for smaller delays, the program
mer must resort to software loops, which are introduced last in this section.

Although I'll show you all the fancy techniques, I think it's best to become familiar
with timing issues by first looking at simple code, though the first implementations
I'm going to show are not the best ones.

Long Delays
If you want to delay execution by a multiple of the clock tick or you don't require
strict precision (for example, if you want to delay an integer number of seconds),
the easiest implementation (and the most brain-dead) is the following, also known
as busy waiting:

unsigned long j =jiffies+ jit_delay * HZ;

while (jiffies< j)
/*nothing*/;

This kind of implementation should definitively be avoided.• I'm showing it here
because on occasion you might want to run this code to understand better the
internals of other code (I'll suggest how to test using busy waiting towards the end
of this chapter).

But let's look at how this code works. The loop is guaranteed to work because
jiffies is declared as volatile by the kernel headers and therefore is reread
any time some C code accesses it. Though "correct," this busy loop completely
locks the computer for the duration of the delay; the scheduler never interrupts a
process that is running in kernel space. Since the kernel is non-reentrant in the
current implementation, a busy loop in the kernel locks all the processors of an
SMP machine.

* It is particularly bad on SMP boxes, where it can potentially lock the whole machine.

134

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 135

Delaying Execution

Still worse, if interrupts happen to be disabled when you enter the loop, jiffies
won't be updated, and the while condition remains true forever. You'll be forced
to hit the big red button.

This implementation of delaying code is available, like the following ones, in the
}it module. The /proc/JW files created by the module delay a whole second every
time they are read. If you want to test the busy wait code, you can read
/proc/jitbusy, which busy-loops for one second whenever its read method is
called; a command like dd if=lproc/jitbusy bs= 1 delays one second each time it
reads a character.

As you may suspect, reading /proc/jitbusy is terrible for system performance, as the
computer can run other processes only once a second.

A better solution that allows other processes to run during the time interval is the
following, although this method can't be used in hard real-time tasks or other
time-critical situations:

while (jiffies< j)
schedule();

The variable j in this example and the following ones is the value of jiffies at
the expiration of the delay and is always calculated as shown for busy waiting.

This loop (which can be tested by reading lproc/jitscbed), still isn't optimal. The
system can schedule other tasks; the current process does nothing but release the
CPU, but it remains in the run queue. If it is the only runnable process, it will
actually run (it calls the scheduler, which selects the same process, which calls the
scheduler, which ...). In other words, the load of the machine (the average num
ber of running processes) will be at least 1, and the idle task (process number 0,
also called "swapper" for historical reasons) will never run. Though this issue may
seem irrelevant, running the idle task when the computer is idle relieves the pro
cessor's workload, decreasing its temperature and increasing its lifetime, as well as
the duration of the batteries if the computer happens to be your laptop. Moreover,
since the process is actually executing during the delay, it will be accounted for all
the time it consumes. You can see this by running time cat /proc/jitscbed.

Despite its drawbacks, the previous loop can provide a quick and dirty way to
monitor the workings of a driver. If a bug in your module locks the system solid,
adding a small delay after each debugging printk statement ensures that every
message you print before the processor hits your nasty bug reaches the system log
before the system locks. Without such delays, the messages are correctly printed to
the memory buffer, but the system locks before klogd can do its job.

Arguably, there is a better way to implement delays. The correct way to put a pro
cess to sleep in kernel mode is to set current->timeout and sleep on a wait
queue. The timeout value for the process is compared with jiffies every time

135

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 136

Chapter 6: Flow of Time

the scheduler runs. If timeout is smaller than or equal to the current time, the
process is awakened independent of what happens to its wait queue. If no system
event wakes the process and takes it off the queue, the timeout is reached and the
scheduler wakes the process.

Here's what such a delay looks like:

struct wait_queue *wait= NULL;

current->timeout = j;
interruptible_sleep_on(&wait);

It's important to call interruptible_sleep_on, not simply sleep_on, because the
timeout value is never checked for non-interruptible processes-sleeping can't
be interrupted, even by timing out. Therefore, if you called sleep_on, you would
have no way to interrupt a sleeping process. You can test the code shown above
by reading lproc/jitqueue.

The timeout field is an interesting system resource. It can be used to implement
a timeout for blocking system calls, in addition to calculating delays. If your hard
ware guarantees a response within some predefined time unless an error occurs,
the device driver should set the timeout value for the process before it goes to
sleep. For example, when you request a data transfer from or to mass storage, the
disk is expected to honor the request within, say, one second. If you've set the
timeout and it is reached, the process is awakened, and the driver can properly
handle the missing transfer. If you use this technique, the timeout value should
be reset to O if the process is awakened normally. If the timeout expires, the
scheduler resets the field and the driver doesn't need to.

You may have noticed that using a wait queue may be overkill when the aim is
just to insert a delay. Actually, you can use current->timeout without wait
queues, as follows:

current->timeout = j;
current->state = TASK_INTERRUPTIBLE;
schedule();
current->timeout = O; /* reset the timeout*/

These statements change the status of the process before calling the scheduler.
Making the process TASK_INTERRUPTIBLE (as opposed to TASK_RUNNING),
ensures that it won't be run again until its timeout expires (or some other event,
like a signal, wakes it). This way of delaying is implemented in /proc/jitself-its
name emphasizes the fact that the reading process is "sleeping by itself," without
calling sleep_on.

136

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 137

Task Queues

Short Delays
Sometimes a real driver needs to calculate very short delays in order to synchro
nize with the hardware. In this case, using the jiffies value is definitely not the
solution.

The kernel function udelay serves this purpose.• Its prototype is:

#include <linux/delay.h>
void udelay(unsigned long usecs);

The function is compiled inline on most supported architectures and uses a soft
ware loop to delay execution for the required number of microseconds. This is
where the BogoMips value is used: udelay uses the integer value
loops_per_second, which in tum is the result of the BogoMips calculation per
formed at boot time.

The udelay call should be called only for short time lapses, because the precision
of loops_per_second is only 8 bits and noticeable errors accumulate when cal
culating long delays. Even though the maximum allowable delay is nearly one sec
ond (since calculations overflow for longer delays), the suggested maximum value
for udelay is 1000 microseconds (one millisecond).

It's also important to remember that udelay is a busy-waiting function and that
other tasks can't be run during the time lapse. The source is in <asm/ delay. h>.

There's currently no support in the kernel for delays shorter than a timer tick but
longer than one millisecond. This is not an issue, because delays need to be just
long enough to be noticed by humans or by the hardware. One hundredth of a
second is a suitable precision for human-related time intervals, while one millisec
ond is a long enough delay for hardware activities. If you really need a delay in
between, you can easily build a loop around udelay(J00O).

Task Queues
One feature many drivers need is to schedule execution of some tasks at a later
time without resorting to interrupts. Linux offers two different interfaces for this
purpose: task queues and kernel timers. Task queues provide a flexible utility for
scheduling execution at a later time, with various meanings for later; they are most
useful when writing interrupt handlers, and we'll see them again in "Bottom
Halves," in Chapter 9, Interrupt Handling. Kernel timers are used to schedule a
task to run at a specific time in the future and are dealt with later in this chapter,
in "Kernel Timers."

A typical situation in which you might use task queues is for managing hardware
that cannot generate interrupts but still allows blocking read. You need to poll the

* The u represents the Greek letter "mu" and stands for "micro."

137

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 138

Chapter 6: Flow of Time

device, while taking care not to burden the CPU with unnecessary operations.
Waking the reading process at fixed time intervals (for example, using cur
rent->timeout) isn't a suitable approach, because each poll would require two
context switches and often a suitable polling mechanism can be implemented only
outside of a process's context.

A similar problem is giving timely input to a simple hardware device. For example,
you might need to feed steps to a stepper motor that is directly connected to the
parallel port-the motor needs to be moved by single steps on a timely basis. In
this case, the controlling process talks to your device driver to dispatch a move
ment, but the actual movement should be performed step by step after returning
from write.

The preferred way to perform such floating operations quickly is to register a task
for later execution. The kernel supports task "queues," where tasks accumulate to
be "consumed" when the queue is run. You can declare your own task queue and
trigger it at will, or you can register your tasks in predefined queues, which are
run (triggered) by the kernel itself.

The next section first describes task queues, then introduces predefined task
queues, which provide a good start for some interesting tests (and hang the com
puter if something goes wrong), and finally introduces how to run your own. task
queues.

The Nature of Task Queues
A task queue is a list of tasks, each task being represented by a function pointer
and an argument. When a task is run, it receives a single void * argument and
returns void. The pointer argument can be used to pass along a data structure to
the routine, or it can be ignored. The queue itself is a list of structures (the tasks)
that are owned by the kernel module declaring and queueing them. The module is
completely responsible for allocating and deallocating the structures; static struc
tures are commonly used for this purpose.

A queue element is described by the following structure, copied directly from
<linux/tqueue.h>:

struct tq_struct {

} ;

struct tq_struct *next;
int sync;
void (*routine) (void *);
void *data;

/* linked list of active bh's */
/* must be initialized to zero*/
/* function to call*/
/* argument to function*/

The "bh" in the first comment means bottom-half. A bottom-half is "half of an
interrupt handler"; we'll discuss this topic thoroughly when we deal with inter
rupts in "Bottom Halves" in Chapter 9.

138

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 139

Task Queues

Task queues are an important resource for dealing with asynchronous events, and
most interrupt handlers schedule part of their work to be executed when task
queues are run. On the other hand, some task queues are bottom halves, in that
their execution is triggered by the do_bottom_ha/ffunction. While I intend for this
chapter to make sense even if you don't understand bottom-halves, nonetheless, I
do refer to them when necessary.

The most important fields in the data structure shown above are routine and
data. To queue a task for later execution, you need to set both these fields before
queueing the structure, while next and sync should be cleared. The sync flag
in the structure is used to prevent queueing the same task more than once, as this
would corrupt the next pointer. Once the task has been queued, the structure is
considered "owned" by the kernel and shouldn't be modified.

The other data structure involved in task queues is task_queue, which is cur
rently just a pointer to struct tq_struct; the decision to typedef this
pointer to another symbol permits the extension of task_queue in the future,
should the need arise.

The following list summarizes the operations that can be performed on s truct
tq_structs; all the functions are inlines.

void queue_task(struct tq_struct *task, task_queue *list);
As its name suggests, this function queues a task. It disables interrupts to pre
vent race conditions and can be called from any function in your module.

void queue_task_irq(struct tq_struct *task,
task_queue *list);

This function is similar to the previous one, but it can be called only from a
non-reentrant function (such as an interrupt handler, whence the name). It is
slightly faster than queue_task because it doesn't disable interrupts while
queueing. If you call this routine from a reentrant function, you risk corruption
of the queue due to the unmasked race condition. However, this function
does mask against queueing-while-running (queueing a task at the exact place
where the queue is being consumed).

void queue_task_irq_off(struct tq_struct *task,
task_queue *list);

This function can be called only when interrupts are disabled. It is faster than
the previous two, but doesn't prevent either concurrent-queueing or queueing
while-running race conditions.

void run_task_queue(task_queue *list);
run_task_queue is used to consume a queue of accumulated tasks. You won't
need to call it yourself unless you declare and maintain your own queue.

Both queue_task_irq and queue_task_irq_offhave been removed in version 2.1.30
of the kernel, as the speed gain was not worth the effort. See "Task Queues" in
Chapter 17, Recent Developments, for details.

139

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 140

Chapter 6: Flow of Time

Before delving into the details of the queues, I'd better explain some of the sub
tleties that hide behind the scenes. Queued tasks execute asynchronously with
respect to system calls; this asynchronous execution requires additional care and is
worth explaining first.

Task queues are executed at a safe time. Safe here means that there aren't stringent
requirements about the execution times. The code doesn't need to be extremely
fast, because hardware interrupts are enabled during execution of task queues.
Queued functions should be reasonably fast anyway because only hardware inter
rupts can be dealt with by the system as long as a queue is being consumed.

Another concept related to task queues is that of interrupt time. In Linux, interrupt
time is a software concept, enforced by the global kernel variable intr_count.
This variable keeps a count of the number of nested interrupt handlers being exe
cuted at any time.*

During the normal computation flow, when the processor is executing on behalf
of a process, intr_count is 0. When intr_count is not 0, on the other hand,
the code is asynchronous with the rest of the system. Asynchronous code might be
handling a hardware interrupt or a "software interrupt" -a task that is executed
independent of any processes, which we'll refer to as running "at interrupt time."
Such code is not allowed to perform certain operations; in particular, it cannot put
the current process to sleep because the value of the current pointer is not
related to the software interrupt code being run.

A typical example is code executed on exit from a system call. If for some reason
there is a job scheduled for execution, the kernel can dispatch it as soon as a pro
cess returns from a system call. This is a "software interrupt," and intr_count is
incremented before dealing with the pending job. The function being dispatched
is at "interrupt time" because the main instruction stream has been interrupted.

When intr_count is non-zero, the scheduler can't be invoked. This also means
that kmalloc (GFP_KERNEL) is not allowed. Only atomic allocations (see "The
Priority Argument" in Chapter 7, Getting Hold of Memory) can be performed at
interrupt time, and atomic allocations are more prone to fail than "normal" alloca
tions.

If code being executed at interrupt time calls schedule, an error message like
"Aiee: scheduling in interrupt" is printed on the console, followed by the hexadec
imal address of the calling instruction. From version 2. 1.37 onwards, this message
is followed by an oops, to help debug the problem by analyzing the registers. Try
ing to allocate memory at interrupt time with non-atomic priority generates an
error message that includes the caller's address.

* Version 2.1.34 of the kernel got rid of intr_count. See "Interrupt Management" in
Chapter 17 for details on this.

140

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 141

Task Queues

Predefined Task Queues
The easiest way to perform deferred execution is to use the queues that are
already maintained by the kernel. There are four of these queues, described
below, but your driver can use only the first three. The queues are declared in
<linux/tqueue. h>, which you should include in your source.

tq_scheduler
This queue is consumed whenever the scheduler runs. Since the scheduler
runs in the context of the process being scheduled out, tasks that run in the
scheduler queue can do almost anything; they are not executed at interrupt
time.

tq_timer
This queue is run by the timer tick. Since the tick (the function do_timer)
runs at interrupt time, any task within this queue runs at interrupt time as well.

tq_immediate
The immediate queue is run as soon as possible, either on return from a sys
tem call or when the scheduler is run, whichever comes first. The queue is
consumed at interrupt time.

tq_disk
This queue, not present in version 1.2 of the kernel, is used internally in mem
ory management and can't be used by modules.

The timeline of a driver using a task queue is represented in Figure 6-1. The figure
shows a driver that queues a function in tq_scheduler from an interrupt
handler.

How the examples work

Examples of deferred computation are available in the jiq (Just In Queue) module,
from which the source in this section has been extracted. This module creates
/proc files that can be read using dd or other tools; this is similar to jit. The sample
module can't run on Linux 1.2 because it uses dynamic /proc files.

The process reading a jiq file is put to sleep until the buffer is full.• The buffer is
filled by successive runs of a task queue. Each pass through the queue appends a
text string to the buffer being filled; each string reports the current time (in jiffies),
the process that is current during this pass, and the value of intr_count.

For best results, the file should be read in one shot, with the command dd
count=l; if you use a command like cat, the read method is invoked several
times, and the results overlap, as explained in "Using the /proc Filesystem," in
Chapter 4, Debugging Techniques.

* The buffer of a /proc file is a page of memory: 4KB or 8KB.

141

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 142

Chapter 6: Flow of Time

Code Being Executed

do_sth I);

queue_task (task,tq_scheduler);

do_sth_else (J;
return;

Return

;·········[··'.~~~~;pt
blah();
blah();

schedule()

run_task_queue(tq_scheduler);

do_the_task (J;
return;

do_accual_scheduling/);

return;

Figure 6-1: Timeline of task-queue usage

142

Data

t \l_sche duler t ask

Process's code

The scheduler tq_scheduler
(and pointer to task)

Driver's code I "sync'· bit

struct task_struct
(and pointer to next)

Chapter 6: Flow of Time

Code Being Executed

i blah(); |
dah();

Te
do_sth();
queue_task (task, tq_scheduler) ;

do_sth_else();

| return;

Return
from

| Interrupt
lah(); }

i blah();

run_task_queue(tq_scheduler) ;

task()ay
do_the_task();
return;

do_actual_scheduling();
return;

i plah(); }
! blah();

Data

tq_scheduler task

Eu Process’s code

ey The scheduler tq_scheduler
_| Driver's code

(and pointer to task)

“syne”bit
oo

gi

Struct task_struct
(and pointer to next)

Figure 6-1: Timeline of task-queue usage

Petitioners Microsoft Corporation and HPInc.- Ex. 1019, p. 142

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 143

Task Queues

The code for filling the buffer is confined to the jiq_print function, which executes
at each run through the queue being used. The printing function is not interesting
and is not worth showing here; instead, let's look at the initialization of the task to
be inserted in a queue:

struct tq_struct jiq_task; /* global: initialized to zero*/

/* this lines are in init_module() */
jiq_task.routine = jiq_print;
jiq_task.data = (void *)&jiq_data;

There's no need to clear the sync and next fields of j iq_task because static
variables are initialized to O by the compiler.

The scheduler queue

The easiest queue to use is tq_scheduler because queued tasks are not con
strained by being executed at interrupt time.

/proc/jiqscbed is a sample file that uses tq_scheduler. The read function for the
file dispatches everything to the task queue, in the following way:

int jiq_read_sched(char *buf, char **start, off_t offset,
int len, int unused)

jiq_data.len = 0;
jiq_data.buf = buf;
jiq_data.jiffies = jiffies;

/* nothing printed, yet*/
/* print in this place*/
/* initial time*/

/* jiq_print will queue_task() again in jiq_data.queue */
jiq_data.queue = &tq_scheduler;

queue_task(&jiq_task, &tq_scheduler); /* ready to run*/
interruptible_sleep_on(&jiq_wait); /* sleep till completion*/

return jiq_data.le~;

Reading /proc/jiqscbed is interesting, because it shows when the scheduler is
run-the value of jiffies shown is the value when the scheduler gets invoked.
If CPU-bound processes are active on the system, there is a delay between succes
sive runs of the queue; the scheduler won't preempt the processes before several
clock ticks have elapsed. Reading the file can thus take several seconds, since the
file is roughly 100 lines long (or twice that on the Alpha).

The simplest way to test this situation is to run a process that executes an empty
loop. The load50 program is a load-raising program that executes 50 concurrent
busy loops in the user space; you'll find its source in the sample programs. When
load50 is running in the system, bead extracts the following from /proc/jiqscbed:

143

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 144

Chapter 6: Flow of Time

time delta intr_count pid command
1643733 0 0 701 head
1643747 14 0 658 load50
1643747 0 0 3 kswapd
1643755 8 0 655 load50
1643761 6 0 666 load50
1643764 3 0 650 load50
1643767 3 0 661 load50
1643769 2 0 659 load50
1643769 0 0 6 loadmonitor

Note that the scheduler queue is run immediately after entering schedule, and thus
the current process is the one that is being scheduled out. That's why the first
line in /proc/jiqsched always represents the process reading the file; it has just
gone to sleep and is being scheduled out. Note also that both kswapd and load
monitor (a program I run on my system) execute for less than 1 time tick, while
load50 is preempted when its time quantum expires, several clock ticks after it
acquires the processor.

When no process is actually running, the current process is always the idle task
(process 0, historically called "swapper'') and the queue is run either continuously
or once every timer tick. The scheduler, and thus the queue, runs continuously if
the processor can't be put into a "halted" state; it runs at every timer tick only if
the processor is halted by process 0. A halted processor can be awakened only by
an interrupt. When this happens, the idle task runs the scheduler (and the associ
ated queue). The following shows the results of head /proc/jitsched run on an
unloaded system:

time delta intr_count pid command
1704475 0 0 730 head
1704476 1 0 0 swapper
1704477 1 0 0 swapper
1704478 1 0 0 swapper
1704478 0 0 6 loadmonitor
1704479 1 0 0 swapper
1704480 1 0 0 swapper
1704481 1 0 0 swapper
1704482 1 0 0 swapper

The timer queue

Using the timer queue is not too different from using the scheduler queue. The
main difference is that, unlike the scheduler queue, the timer queue executes at
interrupt time. Additionally, you're guaranteed that the queue will run at the next
clock tick, thus overcoming any dependency on system load. The following is
what head /proc/jiqtimer returned while my system was compiling:

144

time
1760712
1760713

delta intr_count pid command
1 1 945 eel
1 1 945 eel

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 145

Task Queues

1760714 1 1 945 eel
1760715 1 1 946 as
1760716 1 1 946 as
1760717 1 1 946 as
1760718 1 1 946 as
1760719 1 1 946 as
1760720 1 1 946 as

One feature of the current implementation of task queues is that a task can
requeue itself in the same queue it is run from. For instance, a task being run from
the timer tick can reschedule itself to be run on the next tick. Rescheduling is pos
sible because the head of the queue is replaced with a NULL pointer before con
suming queued tasks. This implementation dates back to kernel version 1.3.70. In
earlier versions (such as 1.2.13), rescheduling was not possible because the kernel
didn't trim the queue before running it. Trying to reschedule a task with Linux 1.2
hangs the system in a tight loop. The ability to reschedule is the only relevant dif
ference in task-queue management from 1.2.13 to 2.0.x.

Although rescheduling the same task over and over might appear to be a pointless
operation, it is sometimes useful. For example, my own computer moves a pair of
stepper motors one step at a time by rescheduling itself on the timer queue until
the target has been fulfilled. Another example is the jiq module, where the print
ing function reschedules itself to show each pass through the queues.

The immediate queue

The last predefined queue that can be used by modularized code is the immediate
queue. It works like a bottom-half interrupt handler, and thus it must be "marked"
with mark_bh(IMMEDIATE_BH). For efficiency, bottom-halves are run only if
they are marked. Note that the handler must be marked after the call to
queue_task, otherwise a race condition is created. See "Bottom Halves" in Chapter
9 for more detail.

The immediate queue is the fastest queue in the system-it's executed soonest
and is consumed after incrementing intr_count. The queue is so "immediate"
that if you re-register your task, it is rerun as soon as it returns. The queue is run
over and over until it is empty. If you read /proc/Jiqimmed, you'll see that the rea
son it is so fast is that it keeps control of the CPU during the entire reading
process.

The queue is consumed either by the scheduler or as soon as one process returns
from its system call. It's interesting to note that the scheduler (at least with the 2.0
kernel) doesn't keep rerunning the immediate queue until it is empty; this hap
pens only when the queue is run on return from a system call. You can see this
behavior in the next sample output-the first line of jiqimmed shows head as the
current process, while the next lines don't.

145

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 146

Chapter 6: Flow of Time

time delta intr_count pid command
1975640 0 1 1060 head
1975641 1 1 0 swapper
1975641 0 1 0 swapper
1975641 0 1 0 swapper
1975641 0 1 0 swapper
1975641 0 1 0 swapper
1975641 0 1 0 swapper
1975641 0 1 0 swapper
1975641 0 1 0 swapper

It's clear that the queue can't be used to delay the execution of a task-it's an
"immediate" queue. Instead, its purpose is to execute a task as soon as possible,
but at a "safe time." This feature makes it a great resource for interrupt handlers,
because it offers them an entry point for executing program code outside of the
actual interrupt management routine.

Although /proc/jiqimmed re-registers its task in the queue, this technique is dis
couraged in real code; this uncooperative behavior ties up the processor as long
as a task is re-registering itself, whith no advantage over completing the work in
one pass.

Running Your Own Task Queues
Declaring a new task queue is not difficult. A driver is free to declare a new task
queue, or even several of them; tasks are queued just as we've seen with
tq_scheduler.

Unlike a predefined task queue, a custom queue is not automatically triggered by
the kernel. The programmer who maintains a queue must arrange for a way of
triggering it.

The following macro declares the queue and needs to be expanded where you
want your task queue to be declared:

DECLARE_TASK_QUEUE(tq_custom);

After declaring the queue, you can invoke the usual functions to queue tasks. The
call above pairs naturally with the following:

queue_task(&custom_task, &tq_custom);

And the following one will run tq_custom:

run_task_queue(&tq_custom);

If you want to experiment with custom queues now, you need to register a func
tion to trigger the queue in one of the predefined queues. Although this may look
like a roundabout way to do things, it isn't. A custom queue can be useful
whenever you need to accumulate jobs and execute them all at the same time,
even if you use another queue to select that "same time."

146

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 147

Kernel Timers

Kernel Timers
The ultimate resources for time-keeping in the kernel are the timers. Timers are
used to dispatch execution of a function (a timer handler) at a particular time in
the future. This is different from task queues, in that you can specify when in the
future your function must be called, whereas you can't tell exactly when a queued
task will be executed. On the other hand, kernel timers are similar to task queues
in that a function registered in a kernel timer is executed only once-timers aren't
cyclic.

There are times when you need to execute operations detached from any
process's context, like turning off the floppy motor or terminating another lengthy
shutdown operation. In that case, delaying the return from close wouldn't be fair
to the application program. Using a task queue is also overkill, because a queued
task must continually re-register itself while making its time calculations.

A timer is much easier to use. You register your function once and the kernel calls
it once when the timer expires. Such a functionality is used often within the kernel
proper, but it is sometimes needed by the drivers as well, as in the example of the
floppy motor.

Linux uses two kinds of timers, so-called "old timers" and new timers. I'll quickly
mention the old timers before showing you how to use the better new timers. The
new timers, indeed, are not that new; they were introduced before Linux 1.0.

The old timers consist of 32 static timers. They survive only for compatibility rea
sons (and because removing them would mean modifying and testing several
device drivers).

The data structure underlying the old timers is a bitmask of active timers and an
array of timer structures, each containing the pointer to a handling function and
the expiration time for the timer. The main problem with the old timers is that
each device needing a timer to run a deferred operation has to have a timer num
ber statically assigned to it.

This implementation was acceptable some years ago, when the number of sup
ported devices (and thus the need for timers) was limited, but it is inadequate for
current versions of Linux.

I won't show you how to use the old timers; I mentioned them here for the bene
fit of the curious reader.

The New Timer List
The new timers are organized in a doubly-linked list. This means that you can cre
ate as many timers as you want. A timer is characterized by its timeout value (in

147

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 148

Chapter 6: Flow of Time

jiffies) and the function to be called when the timer expires. The timer handler
receives an argument, which is stored in the data structure, together with a pointer
to the handler itself.

The data structure of a timer looks like the following, which is extracted from
<linux/timer. h>:

struct timer_list
struct timer_list *next;
struct timer_list *prev;
unsigned long expires;
unsigned long data;
void (*function) (unsigned long);

} ;

/* never touch this*/
/* never touch this*/
/* the timeout, in jiffies*/
/* argument to the handler*/
/* handler of the timeout*/

As you can see, the implementation of timers is slightly different from that of task
queues, though the nature of the list item is similar. The two data structures aren't
quite the same because they were created by two different programmers at almost
the same time; one was not copied from the other. Thus, the timer handler takes
an argument that is unsigned long instead of void *, and the handler itself is
called function instead of routine.

The timeout of a timer is a "jiffy" value in that timer->function is required to
run when jiffies is equal to or greater than timer->expires. The timeout is
an absolute value; it's not relative to the current time and doesn't need to be
updated.

Once a timer_list structure is initialized, add_timer inserts it into a sorted list,
which is then looked up more or less 100 times a second (even if the timer tick is
more frequent as it sometimes is, to save CPU time).

In short, these are the functions used to act on timers:

void init_timer(struct timer_list * timer);
This inline function is used to initialize the timer structure. Currently, it zeroes
only the prev and next pointers. Programmers are strongly urged to use this
function to initialize a timer and to never explicitly touch the pointers in the
structure, in order to be forward-compatible.

void add_timer(struct timer_list * timer);

148

This function inserts a timer into the global list of active timers. It's interesting
to note that the first implementations of the kernel timers behave differently
from the current ones; in Linux 1.2, the function add_timer expects
timer->expires to be relative to the current jiffy count, so it adds
jiffies to the value before inserting the structure in the global list. This
incompatibility is dealt with by sysdep.b in the source files.

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 149

Kernel Timers

int del_timer(struct timer_list * timer);
If a timer needs to be removed from the list before it expires, del_timer should
be called. When a timer expires, on the other hand, it is automatically
removed from the list.

An example of timer usage can be seen in the jiq module. The file /proc/jitimer
uses a timer to generate two data lines; the printing function is the same as above
for the task queues. The first data line is generated from the read call, while the
second line is printed by the timer function after 100 jiffies have elapsed.

The code for lproc/jitimer is the following:

struct timer_list jiq_timer;

void jiq_timedout(unsigned long ptr)
{

jiq_print((void *)ptr);
wake_up_interruptible(&jiq_wait);

/* print a line*/
/* awake the process*/

int jiq_read_run_timer(char *buf, char **start, off_t offset,
int len, int unused)

jiq_data.len = O; /* prepare the argument for jiq_print() */
jiq_data.buf = buf;
jiq_data.jiffies = jiffies;
jiq_data.queue = NULL; /* don't requeue */

init_timer(&jiq_timer); /* init the timer structure*/
jiq_timer.function = jiq_timedout;
jiq_timer.data = (unsigned long)&jiq_data;
jiq_timer.expires =jiffies+ HZ; /* one second*/

jiq_print(&jiq_data); /* print and go to sleep*/
add_timer(&jiq_timer);
interruptible_sleep_on(&jiq_wait);
return jiq_data.len;

Running head /proc / j i timer gives the following output:

time delta intr_count pid command
2121704 0 0 1092 head
2121804 100 1 O swapper

It's apparent from the value of intr_count in the second line that the timer
function runs "at interrupt time."

149

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 150

Chapter 6: Flow of Time

What can appear strange when using timers is that the timer expires at just the
right time, even if the processor is executing in a system call. I suggested earlier
that when a process is running in kernel space, it won't be scheduled away; the
clock tick, however, is special, and it does all of its tasks independent of the cur
rent process. You can try to look at what happens when you read /proc/jitbusy in
the background and /procljitimer in the foreground. Although the system appears
to be locked solid by the busy-waiting system call, both the timer queue and the
kernel timers continue running.

Quick Reference
This chapter introduced the following symbols:

#include <linux/param.h>
HZ

The HZ symbol specifies the number of clock ticks generated per second.

volatile unsigned long jiffies
The jiffies variable is incremented once for each clock tick; thus it's incre
mented HZ times per second.

#include <linux/time.h>
void do_gettimeofday(struct timeval *tv);

This function returns the current time. It is not available in version 1.2 of the
kernel.

#include <linux/delay.h>
void udelay(unsigned long usecs);

The udelay function delays an integer number of microseconds. It should be
used to wait for no longer than one millisecond.

#include <linux/tqueue.h>
void queue_task(struct tq_struct *task, task_queue *list);
void queue_task_irq(struct tq_struct *task,

task_queue *list);
void queue_task_irq_off(struct tq_struct *task,

150

task_queue *list);
These functions register a task for later execution. The first function,
queue_task, can always be called; the second can be called only from non
reentrant functions, and the last one can be called only when interrupts are
disabled. Only the first function is available in recent kernels (see "Task
Queues" in Chapter 17).

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 151

void run_task_queue(task_queue *list);
This function consumes a task queue.

task_queue tq_immediate, tq_timer, tq_scheduler;

Quick Reference

These predefined task queues are run as soon as possible, after each timer
tick, and before the kernel schedules a new process, respectively.

#include <linu.x/timer.h>
void init_timer(struct timer_list * timer);

This function initializes a newly allocated timer.

void add_timer(struct timer_list * timer);
This function inserts the timer into the global list of pending timers.

int del_timer(struct timer_list * timer);
del_timer removes a timer from the list of pending timers. If the timer was
actually queued, del_timer returns 1, otherwise it returns 0.

151

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 152

CHAPTER SEVEN

GETTING HOLD
OF MEMORY

U ntil now, we have always used kmalloc and kfree for memory allocation .
However, sticking to these functions would be a simplistic approach to
managing memory. This chapter describes other allocation techniques.

We're not interested yet in how the different architectures actually administer
memo,y. Modules are not involved in issues of segmentation, paging, and so on,
since the kernel offers a unified memory-management interface to the drivers. In
addition, I won't describe the internal detai ls o f memo1y management in this chap
ter, but will defer it to "Memo,y Management in Linux," in Chapter 13, Mmap and
DMA.

The Real Story of kmalloc
The kmalloc allocation engine is a powerful tool, and easily learned due to its sim
ilarity to malloc. The function is fast-unless it blocks-and it doesn't clear the
memory it obtains; the allocated region still holds its previous content. In the next
few sections, I'll talk in detail about kmalloc, so you can compare it to the mem
ory allocation techniques that I' ll d iscuss later.

The Priority Argument
The fi rst argument to kmalloc is the size, w hich I'll talk about in the next section.
The second argument, the p riority, is much more interesting, because it causes
kmalloc to modify its behavior w hen it has d ifficulty finding a page.

The most-used priority, GFP_KERNEL, means that the allocation (internally per
formed by calling gel_ jree_pages, which explains the name) is performed on
behalf of a process running in kernel space. In other words, this means that the

152

CHAPTER SEVEN

GETTING HOLD

OF MEMORY
ntil now, we have always used kmailoc and kfree for memoryallocation.
However, sticking to these functions would be a simplistic approach to
managing memory. This chapter describes other allocation techniques.

We're not interested yet in how the different architectures actually administer
memory. Modules are not involved in issues of segmentation, paging, and so on,
since the kernel offers a unified memory-managementinterface to the drivers. In
addition, I won't describe the internal details ofmemory managementin this chap-
ter, but will defer it to “Memory Managementin Linux,” in Chapter 13, Mmap and
DMA.

The Real Story ofkmalloc
The kmailloc allocation engine is a powerful tool, and easily learned due to its sim-
ilarity to malloc. The function is fast—unless it blocks—and it doesn't clear the
memory it obtains; the allocated regionstill holds its previous content. In the next
fewsections, I'll talk in detail about kmalloc, so you can compare it to the mem-
ory allocation techniquesthat I'll discuss later.

The Priority Argument
The first argument to kmallocis the size, which I'll talk about in the next section.

The second argument, the priority, is much more interesting, because it causes
kmalloc to modify its behavior whenit has difficulty finding a page.

The most-used priority, GFP_KERNEL, means that the allocation (internally per-
formed by calling get_free_pages, which explains the name) is performed on
behalf of a process running in kernel space. In other words, this means that the

Petitioners Microsoft Corporation and HPInc.- Ex. 1019, p. 152

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 153

The Real Story of kmalloc

calling function is executing a system call on behalf of a process. Using
GFP _KERNEL allows kmalloc to delay returning if free memory is under the low
water mark, min_free_pages. In low-memory situations, the function puts the
current process to sleep to wait for a page.

The new page can be retrieved in one of several ways. One way is by swapping
out another page; since swapping takes time, the process waits for it to complete,
while the kernel schedules other tasks. Therefore, every kernel function that calls
kmalloc (GFP_KERNEL) should be reentrant. See "Writing Reentrant Code" in
Chapter S, Enhanced Char Driver Operations, for more about reentrancy.

GFP _KERNEL isn't always the right priority to use; sometimes kmalloc is called
from outside a process's context-this happens, for instance, in interrupt handlers,
task queues, and kernel timers. In this case, the current process should not be
put asleep, and GFP _ATOMIC must be used as kmalloc priority. Atomic allocations
are allowed to use every free bit of memory, independent of min_free_pages.
In fact, the only reason the low-water mark exists is to be able to fulfill atomic
requests. The kernel isn't allowed to swap out data or shrink filesystem buffers to
fulfill the allocation request, so some real free memory has to be available.

Other priorities are defined for kmalloc, but they aren't used often and some of
them are used only in internal memory management algorithms. The only other
value of some interest is GFP _NFS, which allows the NFS filesystem to shrink the
free list slightly below min_f ree_pages before putting the process to sleep.
Needless to say, using GFP _NFS instead of GFP _KERNEL in order to get a "faster"
driver degrades overall system performance.

In addition to the conventional priorities, kmalloc also recognizes a bitfield:
GFP _DMA. The GFP _DMA flag should be used together with GFP _KERNEL or
GFP _ATOMIC to allocate pages suitable for Direct Memory Access (DMA). We'll
see how to use this flag in "Direct Memory Access" in Chapter 13.

The Size Argument
The kernel manages the system's physical memory, which is available only in
page-sized chunks. This fact leads to a page-oriented allocation technique to
obtain the maximum flexibility from the computer's RAM. A simple linear alloca
tion technique similar to that used by malloc wouldn't work; a linear allocation
pool is hard to maintain in a page-oriented environment like a Unix kernel. Hole
management would soon become a problem, resulting in memory waste and per
formance penalties.

Linux addresses the problem of managing kmallocs needs by administering a
page pool, so that pages can be added or removed from the pool easily. To be
able to fulfill requests for more than PAGE_SIZE bytes, fslkmalloc.c manages lists
of page clusters. Each cluster holds a set of consecutive pages and is thus suitable

153

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 154

Chapter 7: Getting Hold of Memory

for DMA allocations. I won't talk about the low-level details, as the internal struc
tures can change at any time without affecting the allocation semantics or the
driver code. As a matter of fact, version 2.1.38 replaced the implementation of
kmalloc with a completely new one. The 2.0 implementation of memory allocation
can be seen in mmlkmalloc.c, while the new one lives in mmlslab.c. See "Alloca
tion and Deallocation" in Chapter 16, Physical Layout of the Kernel Source, for a
more complete overview of the 2.0 implementation.

The net result of the allocation policies used by Linux is that the kernel can allo
cate only certain predefined fixed-sized byte arrays. If you ask for an arbitrary
amount of memory, you're likely to get slightly more than you asked for.

The data sizes available are generally "slightly less than a power of two" (while
the new implementation manages chunks of memory that are exactly a power of
two). If you keep this fact in mind, you'll use memory more efficiently. For exam
ple, if you need a buffer of about 2000 bytes and run Linux 2.0, you're better off
asking for 2000 bytes, rather than 2048. Requesting exactly a power of two is the
worst possible case with any kernel older than 2. 1.38-the kernel will allocate
twice as much as you requested. This is why scull used 4000 bytes per quantum
instead of 4096.

You can find the exact values used for the allocation blocks in mmlkmalloc.c (or
mmlslab.c), but remember that they can change again without notice. The trick of
allocating less than 4KB works with both the current 2.0 and 2.1 kernels, but it's
not guaranteed to be optimal in the future.

In any case, the maximum size that can be allocated by kmalloc in Linux 2.0 is
slightly less than 32 pages-256KB on the Alpha or 128KB on the Intel and other
architectures. The limit is 128KB for any platform with 2.1.38 and newer kernels. If
you need more than a few kilobytes, however, there are better ways to obtain
memory, as outlined below.

get_Jree_page and Friends
If a module needs to allocate big chunks of memory, it is better to use a page
oriented technique. Requesting whole pages also has other advantages, which will
be introduced later, in "The mmap Device Operation" in Chapter 13.

To allocate pages, the following functions are available:

• get_free_page returns a pointer to a new page and zeros the page.

• _ _get_free_page is like get_free_page, but doesn't clear the page.

154

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 155

get_free_page and Friends

• _ _get_free_pages returns a pointer to the first byte of a memory area that is
several pages long, but doesn't zero the area.

• _ _get_dma_pages returns the pointer to the first byte of a memory area sev
eral pages long; the pages are consecutive in physical memory and suitable
for OMA.

The prototypes for the functions, as defined in Linux 2.0, follow:

unsigned long get_free__page(int priority);
unsigned long __ get_free__page(int priority);
unsigned long __ get_dma__pages(int priority,

unsigned long order);
unsigned long __ get_free__pages(int priority,

unsigned long order, int dma);

As a matter of fact, all the functions except _ _get_free_pages are either macros or
inline functions that ultimately map to _ _get_free_pages.

When a program is done with the pages, it can call one of the following functions.
The first function is a macro that falls back on the second:

void free__page(unsigned long addr);
void free__pages(unsigned long addr, unsigned long order);

If you're writing code to work with both 1.2 and 2.0, it's better not to use
_ _get_free_pages directly because the way you call it changed twice between ver
sion 1.2 and 2.0 of the kernel. Using only get_Jree_page and _ _get_free_page (as
well as free_page) is safe and portable, and should meet most needs.

As far as OMA is concerned, it has always been a problem to correctly address it
with ISA boards, due to several design "peculiarities" of the PC platform. When I
introduce OMA in "Direct Memory Access," in Chapter 13, I'll limit the discussion
to 2.0 kernels to avoid introducing several portability problems.

The priority argument in the allocation functions has the same meaning as it
does in kma/loc. The dma argument to _ _get_free_pages is either zero or non
zero; if it's non-zero, then OMA can be used on the allocated page cluster. order
is the power of two of the number of pages you are requesting or freeing (i.e.,
log2N). For example, order is O if you want one page and 3 to get eight pages. If
order is too big, the page allocation will fail. If you try to free a different number
of pages than you allocated, the memory map will probably become corrupted. In
current Linux versions, the maximum value of order is 5 (corresponding to 32
pages). Anyway, the bigger the order, the more likely it is that the allocation will
fail.

It's worth stressing that get_free_pages and the other functions can be called at
any time, subject to the same rules of priority as we saw for kmalloc. The func
tions can fail to allocate memory in certain circumstances, most often when the
priority is GFP_ATOMIC. Therefore, the program calling these allocation functions
must be written to handle an allocation failure.

155

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 156

Chapter 7: Getting Hold of Memory

It has been said that if you want to live dangerously, you can assume that neither
kmalloc nor the underlying get_free_pages will ever fail when called with a prior
ity of GFP _KERNEL. This is almost true, but not completely: my faithful 386,
equipped with a spare 4MB of RAM, behaved quite wildly when I was running a
"play-it-dangerous" module. Unless you are just programming for fun and have
plenty of memory, I'd recommend always checking the allocation results.

Although kmalloc (GFP_KERNEL) sometimes fails when there is no available
memory, the kernel does its best to fulfill allocation requests. Therefore, it's easy
to degrade system responsiveness by allocating too much memory. For example,
you can bring the computer down by pushing too much data into a scull device;
the system will start crawling while it tries to swap out as much as possible in
order to fulfill the kmalloc request. Since every resource is being sucked up by the
growing device, the computer is soon rendered unusable; at that point you can no
longer spawn a new process on your shell. I don't address this issue in scull, as it
is just a sample module and not a real tool to put into a multiuser system. As a
programmer, you must nonetheless be careful, because a module is privileged
code, and it can open new security holes in the system (the most likely is a
"denial-of-service" hole like the one just outlined).

A scull Using Whole Pages: scullp
Now. we're through discussing theory, and I'll show you some code that uses page
allocation. scullp is a cut-down version of the scull module that implements only
the bare device-the persistent memory region. Unlike scull, scu/lp uses page allo
cation to retrieve memory; the scullp_order variable defaults to O and can be
specified at either compile time or load time. The device, when compiled against
Linux 1.2, refuses to load if the order is greater than 0, for the reasons outlined
above. Only the "safe" single-page allocation function is allowed by scullp when
run with Linux 1.2.

Although this is a real example, there are only two lines of code worth showing,
because the device is really a scull device with a single change in the allocation
and deallocation functions. The following code shows these lines used to allocate
and release pages with a little surrounding context:

/* Here's the allocation of a single quantum*/
if (!dptr->data[s_pos)) {

156

dptr->data[s_pos) = (void *) _ _get_free_pages(GFP_KERNEL,
dptr->order,O);

if (!dptr->data[s_pos])
return -ENOMEM;

memset(dptr->data[s_pos), 0, PAGE_SIZE << dptr->order);

/* This code frees a whole quantum-set*/
for (i = O; i < qset; i++)

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 157

vmalloc and Friends

if (dptr->data[i))
free_pages((unsigned long) (dptr->data[i]),

dptr->order);

At the user level, the perceived difference is primarily a speed improvement. I ran
some tests copying 4 megabytes from scullO to sculll and then from scullpO to
scullpl; the results showed a slight improvement in kernel-space processor usage.

The performance improvement is not dramatic, because kmalloc is designed to be
fast. The main advantage of page-level allocation isn't actually speed, but rather
the more efficient memory usage. Allocating by pages wastes no memory, while
using kmalloc wastes an unpredictable amount of memory. As a matter of fact,
you might remember from "The Underlying Data Structure" in Chapter 5 that
select_table is allocated with _ _get_free_page.

But the biggest advantage of _ _get_free_page is that the page is completely yours,
and you could, in theory, assemble the pages into a linear area by appropriate
tweaking of the page tables. As a result, you can allow a user process to mmap
memory areas obtained as single unrelated pages. I'll discuss th~ kind of opera
tion in "The mmap Device Operation," in Chapter 13, where the internals of page
tables are covered.

vmalloc and Friends
The next memory allocation function that I'll show you is vmalloc, which allocates
a contiguous memory region in the virtual address space. Although the pages are
not necessarily consecutive in physical memory (each page is retrieved with a sep
arate call to _ _get_free_page), the kernel sees them as a contiguous range of
addresses. The allocated space is mapped only to the kernel segments and is not
visible from user space-not unlike the other allocation techniques. vmalloc
returns O (the NULL address) if an error occurred, otherwise it returns a pointer to
a linear memory area of size size.

The prototypes of the function, and its relatives, are the following:

void* vmalloc(unsigned long size);
void vfree(void * addr);
void* vremap(unsigned long offset, unsigned long size);

Note that vremap was renamed ioremap in version 2.1. Moreover, Linux 2.1 intro
duced a new header, <linux/vmalloc. h>, that must be included if you use
vmalloc.

vmalloc is different from the other memory allocation functions because it returns
"high" addresses-addresses that are higher than the top of physical memory. The
processor is able to access the returned memory range because vmalloc arranged
the processor's page tables to access the allocated pages through consecutive

157

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 158

Chapter 7: Getting Hold of Memory

"high" addresses. Kernel code can use addresses returned by vmalloc just like any
other address, but the address used by the program is not the same as the one that
appears on the electrical data bus.

Addresses allocated by vmalloc can't be used outside of the microprocessor,
because they make sense only on top of the processor's paging unit. When a
driver needs a real physical address (such as a OMA address, used by peripheral
hardware to drive the system's bus), you can't use vmalloc. The right time to call
vmalloc is when you are allocating memory for a large sequential buffer that exists
only in software. It's important to note that vmalloc has more overhead than
_ _get_free_pages because it must both retrieve the memory and build the page
tables. Therefore, it doesn't make sense to call vmalloc to allocate just one page.

An example of a function that uses vmalloc is the create_module system call,
which uses vmalloc to get space for the module being created. The module itself
is later copied to the allocated space using memcpyJromfs, after insmod has relo
cated the code.

Memory allocated with vmalloc is released by vfree, in the same way that kfree
releases memory allocated by kmalloc.

Like vmalloc, vremap (or ioremap) builds new page tables, but unlike vmalloc, it
doesn't actually allocate any memory. The return value of vremap is a virtual
address that can be used to access the specified physical address range; the virtual
address obtained is eventually released by calling vfree.

vremap is most useful for mapping a high-memory PCI buffer to user space. For
example, if the frame buffer on the VGA device has been mapped to the address
OxfOOOOOOO (a typical value), vremap can be used to build the correct tables for
the processor to access it. System initialization builds page tables only to access
memory from address O up to the the top of physical memory. System initialization
does not probe for PCI buffers, but leaves each driver responsible for managing
buffers on its own device; PCI issues are explained in more detail in "The PCI
Interface," in Chapter 15, Overoiew of Peripheral Buses. On the other hand, you
don't need to remap the ISA hole below 1MB, because this memory is accessed by
other means, described in the section "Accessing Memory on Device Boards," in
Chapter 8, Hardware Management.

If your driver is meant to be portable across different platforms, however, you
must be careful when using vremap. Some platforms are unable to directly map
PCI memory regions to the processor address space. This happens, for example,
for the Alpha. In this case you can't access remapped regions like conventional
memory, and you need to use readb and the other 1/0 functions (see "ISA Mem
ory Below lM" in Chapter 8). This set of functions is portable across platforms.

There is almost no limit to how much memory vmalloc and vremap can allocate,
although vmalloc refuses to allocate more memory than the amount of physical

158

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 159

vmalloc and Friends

RAM, in order to detect common errors or typos made by programmers. You
should remember, however, that requesting too much memory with vmalloc leads
to the same problems as it does with kmalloc.

Both vremap and vmalloc are page-oriented (they work by modifying the page
tables); thus the relocated or allocated size is rounded up to the nearest page
boundary. In addition, vremap won't even consider remapping a physical address
that doesn't start at a page boundary.

One minor drawback of vmalloc is that it can't be used at interrupt time because
internally it uses kmalloc (GFP_KERNEL) to acquire storage for the page tables.
This shouldn't be a problem-if the use of _ _get_free_page isn't good enough for
an interrupt handler, then the software design needs some cleaning up.

A scull Using Virtual Addresses: scullv
Sample code using vmalloc is provided in the scullv module. Like scullp, this mod
ule is a stripped-down version of scull that uses a different allocation function to
obtain space for the device to store data.

The module allocates memory 16 pages at a time (128KB on the Alpha, 64KB on
the x86). The allocation is done in large chunks to achieve better performance
than scullp and to show something that takes too long with other allocation tech
niques to be feasible. Allocating more than one page with _ _get_free_pages is fail
ure-prone, and even when it succeeds, it can be slow. As we saw earlier, vmalloc
is faster than other functions in allocating several pages, but somewhat slower
when retrieving a single page, due to the overhead of page-table building. scullv is
designed exactly like scullp. order specifies the "order" of each allocation and
defaults to 4. The only difference between scullv and scullp is in the following
code:

/* Allocate a quantum using virtual addresses*/
if (!dptr->data[s_pos]) {

dptr->data[s_pos] = (void *)vmalloc(PAGE_SIZE << order);
if (!dptr->data[s_pos])

return -ENOMEM;

/* Release the quantum-set*/
for (i = O; i < qset; i++)

if (dptr->data[i])
vfree(dptr->data[i]);

If you compile both modules with debugging enabled, you can look at their data
allocation by reading the files they create in /proc. The following snapshot was
taken on my home computer, whose physical addresses go from Oto 0x1800000
(24MB):

159

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 160

Chapter 7: Getting Hold of Memory

rnorgana.root# cp /bin/cp /dev/scullp0
rnorgana.root# cat /proc/scullpmem
Device 0: qset 500, order 0, sz 19652

item at 0063e598, qset at 006eb018
0: lSOe00O
1: de6000
2: l0ca0O0
3: e19000
4: bdl0O0

rnorgana.root# cp /zimage.last /dev/scullv0
rnorgana.root# cat /proc/scullvmem

Device 0: qset 500, order 4, sz 289840
item at 0063ec98, qset at 00b3e810

0: 2034000
1: 2045000
2: 2056000
3: 2067000
4: 2078000

It's apparent from the values shown that scullp allocates physical addresses (within
0x1800000), while scullv uses virtual addresses (but note that the actual values are
different with Linux 2.1, as the organization of the virtual address space was
changed-see "Virtual Memory" in Chapter 17, Recent Developments).

Playing Dirty
If you really need a huge buffer of consecutive memory, the easiest (and least
flexible, but the least prone to fail) way to allocate it is at boot time. Needless to
say, a module can't allocate memory at boot time; only drivers directly linked to
the kernel can play dirty and allocate the memory.

Allocation at boot time looks like the only way to retrieve a big memory buffer,
although I'\l introduce an alternative technique (though somewhat worse) in "Allo
cating the OMA Buffer," in Chapter 13. Allocating the buffer at boot time is "dirty"
because it bypasses the kernel's memory management policies. Moreover, it isn't
feasible for the average user because it involves replacing the whole kernel. Most
Linux users are willing to load a module, but are reluctant to patch and recompile
the kernel. While I won't suggest that you use this "allocation technique," it's
worth mentioning because it used to be the only way to allocate a OMA-capable
buffer in the first Linux versions, before GFP _DMA was introduced.

But let's look at how boot-time allocation works. When the kernel is booted, it
gains access to all of the physical memory in the system. It then initializes each of
its subsystems by calling that subsystem's initialization function, passing it the cur-

160

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 161

Quick Reference

rent bounds of the free memory area as arguments. Each initialization function can
steal part of this area, returning the new lower bound. A driver allocating memory
at boot time, therefore, steals consecutive memory from the linear array of avail
able RAM.

This way of allocating memory has several disadvantages, not least the inability to
ever free the buffer. After a driver has taken some pages, it has no way of return
ing them to the pool of free pages; the pool is created after all the physical alloca
tion has taken place, and I don't recommend hacking the data structures internal
to memory management. On the other hand, the advantage of this technique is
that it makes available an area of consecutive physical memory that is suitable for
OMA or whatever else. This is currently the only "safe" way to allocate a buffer of
more than 32 consecutive pages, because the maximum value of order that is
accepted by get_free_pages is 5. If, however, you need many pages and they don't
have to be physically contiguous, vmalloc is by far the best function to use.

If you are going to resort to grabbing memory at boot time, you must modify
initlmain.c in the kernel sources. You'll find more about main.c in Chapter 16,
and in "ISA Memory Above lM" in Chapter 8.

Note that this "allocation" can be performed only in multiples of the page size,
though the number of pages doesn't have to be a power of two.

Quick Reference
The functions and symbols related to memory allocation are listed below:

#include <linux/malloc.h>
void *kmalloc(unsigned int size, int priority);
void kfree(void *obj);

The most frequently used interface to memory allocation.

#include <linux/mm.h>
GFP_KERNEL
GFP_ATOMIC
GFP_DMA

kmalloc priorities. GFP _OMA is a flag that can be ORed to either GFP _KERNEL
or GFP_ATOMIC.

unsigned long get_free__page(int priority);
unsigned long __ get_free__page(int priority);
unsigned long __ get_dma__pages(int priority,

unsigned long order);
unsigned long __ get_free__pages(int priority,

161

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 162

Chapter 7: Getting Hold of Memory

unsigned long order,
int dma);

The page-oriented allocation functions. The underscore-prefixed functions
don't clear the page(s). Only the former two functions are portable across
Linux 1.2 and 2.0, because the latter two behaved differently in 1.2.

void free_page(unsigned long addr);
void free_pages(unsigned long addr, unsigned long order);

These functions release page-oriented allocations.

void* vmalloc(unsigned long size);
void* vremap(unsigned long offset, unsigned long size);
void vfree(void * addr);

162

These functions allocate or free a contiguous virtual address space. vremap
accesses physical memory through virtual addresses (and is called ioremap in
Linux 2.1), while vmalloc allocates free pages. In either case, the pages are
released with vfree. Linux 2.1 introduced the header <linux/vmalloc. h>,
which you must include to use these functions.

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 163

CHAPTER EIGHT

HARDWARE
MANAGEMENT

W 1ile playing with scull and similar toys can be a pleasant way to become
familiar w ith the software interface of a Linux device driver, testing a
real device requires hardware. The driver is the abstraction layer

between software concepts and hardware circuitry; as such, it needs to talk with
both of them. Up to now, we have examined the internals of software concepts;
this chapter should complete the picture by showing you how a driver can access
I/ 0 ports and 1/0 memory, while being portable across Linux platforms.

As usual, I won't bind the sample code to a particular device. However, we can no
longer use a memory-based device like scull. Instead, the examples in this chapter
use the parallel port to show 1/0 instructions and the standard video buffer of
text-mode VGA boards to show memory-mapped 1/0.

I chose the parallel port because it offers direct input and output of several bits of
information .. Dara bits written to the device appear on the output pins, and voltage
levels on the input p ins are directly accessible by the processor. In practice, you
have to connect LEDs to the port to actually see the results of an 1/0 operation.
The paralle l port is easy to program, much easier than the serial port, and almost
eve1y computer (even the Alpha) has a parallel port that works like the one in the
PC.

As far as memo1y-mapped 1/0 is concerned, text-mode VGA is the most srandard
ized memo1y-mapped device, and a lmost eve1y computer has a VGA-compatible
text mode. Unfortunately, not eve,y Alpha has a VGA video adapter, and the Spare
definitely doesn't, so our VGA-related code won't be as portable as the parallel
port example. Also, you'll have to switch the computer to text mode in o rder to
run the sample code, which shouldn't be a serious constraint. The biggest problem
with experimenting using VGA memo1y is that the sample driver will unavoidably
trash the foreground virtual console.

163

CHAPTER EIGHT

HARDWARE

MANAGEMENT
iile playing with scu/l and similar toys can be a pleasant way to become
familiar with the software interface of a Linux device driver, testing a
real device requires hardware. The driver is the abstraction layer

between software concepts and hardware circuitry; as such, it needs to talk with
both of them. Up to now, we have examined the internals of software concepts;
this chapter should complete the picture by showing you how a driver can access
I/O ports and 1/O memory, while being portable across Linux platforms.

As usual, | won't bind the sample code to a particular device. However, we can no
longer use a memory-based device like sez. Instead, the examples in this chapter
use the parallel port to show I/O instructions and the standard video buffer of
text-mode VGA boards to show memory-mapped I/O.

I chose the parallel port becauseit offers direct input and output ofseveral bits of
information, Data bits written to the device appear on the output pins, and voltage
levels on the input pins are directly accessible by the processor. In practice, you
have to connect LEDs to the port to actually see the results of an I/O operation,
The parallel port is easy to program, much easier than the serial port, and almost
every computer (even the Alpha) has a parallel port that works like the one in the
PC;

As far as memory-mapped I/O is concerned, text-mode VGA is the most standard-
ized memory-mapped device, and almost every computer has a VGA-compatible
text mode. Unfortunately, not every Alpha has a VGA video adapter, and the Sparc
definitely doesn't, so our VGA-related code won't be as portable as the parallel
port example. Also, you'll have to switch the computer to text mode in order to
run the sample code, which shouldn't be a serious constraint. The biggest problem
with experimenting using VGA memory is that the sample driver will unavoidably
trash the foregroundvirtual console,

163

Petitioners Microsoft Corporation and HP Inc.- Ex. 1019, p. 163

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 164

Chapter 8: Hardware Management

Using l/0 Ports
In some sense, I/O ports are like memory locations: they can be read and written
by means of the same electrical signals that memory chips receive. But they are
not exactly the same; port operations talk directly to peripheral devices, which are
often less flexible than RAM. In particular, there are 8-bit ports, 16-bit ports, and
32-bit ports, and you can't mix them.*

A C program, therefore, must call different functions to access different size ports.
The Linux kernel headers (specifically, the architecture-dependent header
<asm/ io. h>) define the inline functions listed below.

NOTE From now on, when I use unsigned without further type specifica
tions, I am referring to an architecture-dependent definition whose
exact nature is not relevant. The functions are almost portable
because the compiler automatically casts the values during assign
ment-their being unsigned helps prevent compilation-time warn
ings. No information is lost with such casts as long as the
programmer assigns sensible values to avoid overflow. I'll stick to
this convention of "incomplete typing" for the rest of the chapter.

unsigned inb(unsigned port);
void outb(unsigned char byte, unsigned port);

Read or write byte ports (8 bits wide). The port argument is defined as
unsigned long for some platforms and unsigned short for others. The
return type of inb is also different across architectures.

unsigned inw(unsigned port);
void outw(unsigned short word, unsigned port);

These functions access 16-bit ports ("word-wide"); they are not available in
the M68k version of Linux because the processor supports byte I/O, but nei
ther word nor long operations.

unsigned inl(unsigned port);
void outl(unsigned doubleword, unsigned port);

These functions access 32-bit ports. doubleword is either declared as
unsigned long or unsigned int, according to the platform.

In addition to the single-shot in and out operations, most processors implement
special instructions to transfer a sequence of bytes, words, or longs to and from a

* As a maner of fact, sometimes 1/0 ports are arranged like memory, and you can (for
example) bind two 8-bit writes into a single 16-bit operation. This applies, for instance, to
PC video boards, but in general you can't count on this feature.

164

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 165

Using 1/0 Ports

single 1/0 port. These are the so-called "string instructions," which are introduced
in "String Operations," later in this chapter.

Note that no 64-bit 1/0 operations are defined. Even on 64-bit architectures, 1/0
ports only use a 32-bit data path.

The functions described above are primarily meant to be used by device drivers,
but they can also be used from user space (the preprocessor definitions or inline
declarations are not protected by #ifdef __ KERNEL _ _). The following condi
tions should, however, apply in order for inb and friends to be used in user-space
code:

• The program must be compiled with the -0 option to force expansion of
inline functions.

• ioperm or iopl must be used to get permission to perform 1/0 operations on
ports. ioperm gets permission for individual ports, while iopl gets permission
for the entire 1/0 space. Both these functions are Intel-specific.

• The program must run as root to invoke ioperm. Alternatively, one of its
ancestors must have gained port access running ·as root.

The sample sources misc-progslinp.c and misc-progsloutp.c are a minimal tool for
reading and writing 8-bit ports from the command line, in user space. I have run
them successfully on my PC. They don't run on other plaftorms due to the missing
ioperm capability. The programs can be made set-uid, if you want to live danger
ously and play with your hardware without acquiring explicit privileges.

Platform Dependencies
If you are looking for porting problems, you'll find that 1/0 instructions are the
most processor-dependent of all computer instructions. As a consequence, much
of the source code related to port 1/0 is platform-dependent.

The Linux system, though portable, isn't completely transparent to processor pecu
liarities. Most hardware devices are not portable across platforms, and driver writ
ers don't generally address more than two or three architectures in the same
module.

You can see one of the incompatibilities, data typing, by looking back at the list of
functions, where the arguments are typed differently based on the architectural dif
ferences between platforms. For example, a port is unsigned short on the x86
(where the processor supports a 64KB-byte 1/0 space), but unsigned long on
the Alpha, whose ports are just special locations in the same address space as
memory; the Alpha, by design, has no 1/0 address space, and its ports are folded
to non-cacheable memory addresses.

165

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 166

Chapter 8: Hardware Management

I/0 typing is one part of the kernel that still needs some cleaning up, although
things work correctly now. The best solution to ambiguous typing would be to
define an architecture-specific port_t type and use u8, u16, and u32 for the
data items (see "Assigning an Explicit Size to Data Items" in Chapter 10, Judicious
Use of Data Types). Nobody has taken care of the problem yet, however, as the
issue is mostly cosmetic.

Other platform dependencies arise from basic structural differences in the proces
sors and thus are unavoidable. I won't go into detail about the differences,
because I assume that you won't be writing a device driver for a particular system
without understanding the underlying hardware. Instead, the following is an
overview of the capabilities of the supported architectures:

x86
The architecture supports all the functions described in this chapter.

Alpha
All the functions are supported, but there are differences in the implementa
tion of port I/0 for different Alpha platforms. String functions are imple
mented in C and defined in arch/alpha/lib/io.c. Unfortunately, only word and
long string operations are exported in 2.0 kernels till 2.0.29; therefore, insb
and outsb are not available to modules. This problem has been fixed in ver
sion 2.0.30 and 2. 1.3.

Spare
The Spare doesn't have special I/0 instructions. I/0 space is memory-mapped
and is marked by flags in the page-table entry. The header defines empty
functions for inb and the other functions to prevent the compiler from com
plaining when first porting drivers to the Spare architecture.

M68k
Only inb, outb, and their pausing counterparts (see below) are supported. No
string functions are defined for the 68000, nor are readb, wrlteb, and friends
defined.

Mips
The Mips port supports all the functions. String operations are implemented
with tight assembly loops, as the processor lacks machine-level string I/0.

PowerPC
All the functions except string 1/0 are supported.

The curious reader can extract more information from the io.h files, which some
times define a few architecture-specific functions in addition to those I describe in
this chapter.

166

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 167

Using 1/0 Ports

It's interesting to note that the Alpha processors don't feature a different address
space for ports, even though AXP computers are often shipped with ISA and PCI
slots, and both buses feature signal lines to differentiate memory and 1/0 opera
tions. Alpha-based PCs implement the Intel-compatible 1/0 abstraction through
specific interface chips that translate references to particular memory addresses
into 1/0 port access.

1/0 operations on the Alpha are well described in the "Alpha Reference Manual,"
which is available free from Digital Equipment Corporation. The manual thor
oughly describes the 1/0 issue and tells how the AXP processors divide virtual
addresses into "memory-like" and "non-memory-like" regions; the latter are used
for memory-mapped 1/0.

Pausingl/0
Some platforms-most notably the i386-can have problems when the processor
tries to transfer data too quickly to or from the bus. The problems can arise
because the processor is over-clocked with respect to the ISA bus, and can show
up when the device board is too slow; the solution is to insert a small delay after
an 1/0 instruction if another such instruction follows. If your device misses some
data, or if you fear it might miss some, you can use pausing functions in place of
the normal ones. The pausing functions are exactly like those listed above, but
their names end in _p, they are called inb_p, outb_p, and so on. For all the sup
ported architectures, when the non-pausing function is defined, the pausing equiv
alent is defined as well, even in cases where they expand to the same code.

If you want to explicitly insert a small pause in your driver (smaller than you'd get
with udelay), you can use the explicit SLOW_DOWN_IO statement. This macro
expands to instructions that do nothing except delay execution. You might want to
insert the statement at critical points in your source. SLOW_DOWN_IO actually exe
cutes the same code as that added to outb when outb_p is expanded.

The definition of SLOW_DOWN_IO (and thus the _p pause) depends on whether
SLOW_IO_BY_JUMPING and/or REALLY_SLOW_IO are defined before
<asm/ io. h> is included. Fortunately, new hardware doesn't require the program
mer to deal with these questions, so I won't talk about pausing any more. The
interested reader is urged to browse <asm/ io. h>. As a driver writer, you should
nonetheless remember that SLOW_DOWN_IO is undefined for the Spare and M68k
architectures (though pausing calls like outb_p are defined, with the limitations
outlined in "Platform Dependencies," earlier in this chapter).

String Operations
The Linux headers define functions to perform string operations, which can be
used by some drivers to get better performance than a C-language loop. The Linux

167

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 168

Chapter 8: Hardware Management

implementation for string 1/0 maps either to a single machine instruction or to a
tight loop, or it is missing altogether, depending on the capabilities of the target
processor or platform.

The prototypes for string functions are the following:

void insb(unsigned port, void *addr, unsigned long count);
void outsb(unsigned port, void *addr, unsigned long count);

Read or write count bytes starting at the memory address addr. Data is read
from or written to the single port port.

void insw(unsigned port, void *addr, unsigned long count);
void outsw(unsigned port, void *addr, unsigned long count);

Read or write 16-bit values to a single 16-bit port.

void insl(unsigned port, void *addr, unsigned long count);
void outsl(unsigned port, void *addr, unsigned long count);

Read or write 32-bit values to a single 32-bit port.

Using the Parallel Port
The parallel port, which we'll use as the test case for our 1/0 code, is really basic;
in fact, I can hardly imagine a simpler interface adapter.

Although most readers probably have parallel port specifications available, I'll
summarize them here for your convenience while you're reading the code for the
module I'm going to introduce.

Basics of the Parallel Port
The parallel port, in its minimal configuration (I'm not going to deal with ECP and
EPP modes) is made up of a few 8-bit ports. Data written to the output ports
appears as signal levels on the output pins of the 25-pin connector, and what you
read from the input ports is the current logic level at input pins.

The signal levels used in parallel communications are standard TIL levels: 0 and 5
volts, with the logic threshold at about 1.2 volts; you can count on the ports at
least meeting the standard TIL LS current ratings, although most modem parallel
ports do better in both current and voltage ratings.

WARNING The parallel connector is not isolated from the computer's internal
circuitry, which is useful if you want to connect logic gates directly
to the port. But you have to be careful to do the wiring correctly; the
parallel port is easily burned when you play with your own custom
circuitry. You can choose to use plug-in parallel ports if you fear
you'll damage your motherboard.

168

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 169

Using tbe Parallel Port

The bit specifications are outlined in Figure 8-1. You can access 12 output bits and
5 input bits, some of which are logica lly inverted over the course of the ir signal
path. The only bit with no associa ted signal pin is bit 4 (0xl0) of port 2. We'll
make use of this bit in Chapter 9, Jnterrupl Handling.

Control port: base_addr + 2

Status port: base_addr + 1

1 6
Data port: base_addr + 0

Input line
Output line

3 2 Bit #
~ Pin #

\ \ .
non-inverted

inverted

Figure 8-1: The pinoul of the parallel port

A Sample Driver

7 6 5 4 3 2

25

The driver I'm going to introduce i called sborl (Simple Hardwa re Operations and
Raw Tests). All it does is read and write the va rious 8-bit ports of the paralle l inter
face (or other I/0 device) . Each device node (with a unique minor number)
accesse a different port. The sbort driver doesn 't do anything useful ; it just iso
lates for external use a single instruction acting on a port. Jf you are not used to
po11 I/0, you can use sborl to get fami liar with it; you can measure the time it
takes to transfer data through a port or play other games.

To watch what happens on d1e parallel connector, I suggest that you solder a few
LEDs to the output pins. Each LED should be connected in series to a 1KB resistor
leading to a ground pin. If you connect an output pin to an input pin, you 'll gen
erate your own input to be read from the input ports.

169

Using the Parallel Port

The bit specifications are outlined in Figure 8-1. You can access 12 outputbits and
5 input bits, some of which are logically inverted over the course oftheir signal
path. The only bit with no associated signal pin is bit 4 (0x10) of port 2. We'll
make use ofthis bit in Chapter 9, /nlerrupt Handling.

 Status port: base_addr + 1

f. BG) Be Fe. PD

Input line
— Outputline

3 2 Bit#

tenon-inverted
inverted

Figure 8-1: The pinout oftheparallelport

A Sample Driver

The driver I’m going to introduceis called short Simple Hardware Operations and
Raw Tests). All it does is read and write the various 8-bit ports of the parallel inter-
face (or other I/O device). Each device node (with a unique minor number)
accesses a different port. The short driver doesn’t do anything useful; it just iso-
lates for external use a single instruction acting on a port. If you are not used to
port I/O, you can use short to get familiar with it; you can measure the time it
takes to transfer data through a port or play other games.

To watch what happens onthe parallel connector, 1 suggest that you solder a few
LEDs to the output pins, Each LED should be connectedin series to a 1KB resistor
leading to a groundpin. If you connect an output pin to an input pin, you'll gen-
erate your own input to be read from the input ports.

169

Petitioners Microsoft Corporation and HP Inc.- Ex. 1019, p. 169

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 170

Chapter 8: Hardware Management

If you are going to visualize parallel data by soldering LEDs to a D-type connector,
I suggest that you not use pins 9 and 10, as we'll be connecting them together
later to run the sample code shown in Chapter 9.

As far as short is concerned, /dev/shortO writes data by means of a tight loop that
copies user data to the output port, one byte at a time:

while (count--)
outb(*(ptr++), port);

You can run the following command to light your LEDs:

echo -n any string> /dev/shortO

Each LED monitors a single bit of the output port. Remember that only the last
character written remains steady on the output pin long enough to be perceived
by your eyes. For that reason, I suggest that you prevent automatic insertion of a
trailing newline by passing the -n option to echo.

Reading is performed by a similar function, built around inb instead of outb. In
order to read "meaningful" values from the parallel port, you need to have some
hardware connected to the input pins of the connector to generate signals. If there
is no signal, you'll read an endless stream of identical bytes.

For complete 1/0 coverage, there are three variations of each short device:
/dev/shortO performs the loop just shown, /dev/shortop uses outb_p and inb_p in
place of the "fast" functions, and /dev/shortOs uses the string instructions. There
are four such devices, from shortO to short3, and each of them accesses one 1/0
port. The four ports are consecutive.

When compiled for the Alpha, which doesn't export insb or outsb, the device
shortOs behaves exactly like shortO.

Though short doesn't perform any "real" hardware control, it can be an interesting
test platform for timing the different instructions, and it can help you get started.
Everyone interested in writing device drivers surely owns more interesting devices
to play with, but the old and silly parallel port can still perform some useful
tasks-I personally use it to prepare my coffee after turning on my radio in the
morning.

Accessing Memory on Device Boards
The last chapter introduced every possible way to allocate memory from RAM;
we'll now deal with another kind of memory that can be present in the computer:
memory on expansion boards. Peripherals do have memory on them. Display
boards host a frame buffer, video grabbers hold grabbed data, and an Ethernet
interface might host received packets in a memory region; additionally, most

170

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 171

Accessing Memory on Device Boards

peripheral boards have some on-board ROM that must be executed by the proces
sor at system boot. All such entities are "memory," in that the processor accesses
them through memory instructions. I am limiting the discussion here to the ISA
and PCI devices, as they are the most used nowadays.

There are three common kinds of peripheral memory on standard x86 computers:
ISA memory in the 640KB-1MB range, ISA memory in the 14MB-16MB range, and
PCI memory above the end of physical memory. The addresses used above are
physical addresses, the numbers that travel in the computer's address bus, and
they have nothing to do with the virtual addresses used by program code (see
"vmalloc and Friends" in Chapter 7, Getting Hold of Memory). The physical loca
tion where I/O memory lives is mainly an historical heritage, as explained later
when the three memory ranges are introduced.

Unfortunately (or fortunately, if you prefer good architectural design to easy porta
bility), not every Linux platform supports ISA and PCI; this section is limited to the
discussion of those that do.

ISA Memory Below IM
I've already introduced an "easy" (and broken) way to deal with such memory in
"ISA Memory" in Chapter 2, Building and Running Modules, where I showed how
pointers holding the physical hardware address dereference correctly to the
requested 1/0 memory. Though this technique works on the x86 platforms, it is
not portable to all Linux platforms. Pointer dereferencing might be a good choice
for small and short-lived projects, but it's not recommended for a production
driver.

The recommended interface to I/O memory was introduced into the kernel during
the 1.3 development tree and is missing from older kernels. The sysdep.h header
released with the short sample code, however, implements the new semantics for
kernel versions back to 1.2.

The new interface consists of a set of macros and function calls that are used in
place of pointer dereferencing whenever you need to access I/O memory. Such
macros and functions are portable; this means that the same source code will com
pile and run on different architectures, as long as they host the same peripheral
bus.

Most of these macros currently expand to pointer dereferencing when you com
pile code on your Intel-based PC, but their internal behavior could well change in
the future. One such change happened, for example, in the initial switch from 2.0
to 2.1, when Linus decided to change the virtual memory layout. With the new
layout, ISA memory can't be accessed in the old-fashioned way described in Chap
ter 2.

171

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 172

Chapter 8: Hardware Management

The new interface to 1/0 memory consists of the following functions:

unsigned readb(address);
unsigned readw(address);
unsigned readl(address);

These macros are used to retrieve 8-bit, 16-bit, and 32-bit data values from 1/0
memory. They are missing from Linux 1.2. The advantage of using macros is
the typelessness of the argument: address is cast before being used, because
the value "is not clearly either an integer or a pointer, and we will accept
both" (from asm-alpha/io.h). Neither the reading nor the writing functions
check the validity of address, as they are meant to be as fast as pointer
dereferencing (we already know that sometimes they actually expand into
pointer dereferencing).

void writeb(unsigned value, address);
void writew(unsigned value, address);
void writel(unsigned value, address);

Like the previous functions, these functions (macros) are used to write 8-bit,
16-bit, and 32-bit data items.

memset_io(address, value, count);
When you need to call memset on 1/0 memory, this function does what you
need, while keeping the semantics of the original memset.

memcpy_fromio(dest, source, nbytes);
memcpy_toio(dest, source, nbytes);

These functions move blocks of data to and from 1/0 memory and behave
like memcpy_toft. They have been introduced together with the functions
above, and they are missing in Linux 1.2. The sysdep.h header distributed with
the sample drivers fixes the version dependency of the functions and defines
them for any kernel from 1.2 on.

The portability of these functions across the supported architectures is currently
limited, like that of the port 1/0 functions. The functions are completely missing
from some platforms; on some they are macros that expand to pointer operations,
and on others they are real functions.

People like me, accustomed to the flat memory model of our old PCs, might hesi
tate to bother with a new interface just to access "a region of physical addresses."
Actually, getting comfortable with the interface is simply a question of getting
some practice using the functions. There's nothing better for gaining confidence
than looking at a silly module that just accesses 1/0 memory. The module I'm
going to show you is actually called silly, short for "Simple Tool for Unloading and
Printing ISA Data."

172

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 173

Accessing Memory on Device Boards

The module features four device nodes that perform the same task using different
data transfer functions. The silly devices act as a window over 1/0 memory, in a
way similar to /dev/mem. You can read and write data, /seek to an arbitrary VO
memory address, and mmap the region to your process (see "The mmap Device
Operation" in Chapter 13, Mmap and DMA).

ldev/sillyb, featuring minor number 0, accesses VO memory with readb and
writeb. The following code shows the implementation for read, which remaps the
address range 0xA000O-OxFFFFF to file offset O-OxSFFFF. The read function is
structured as a switch statement over the different access modes; here is the
sillyb case:

case M_S:
while (count)

*ptr = readb(add);
add++; count--; ptr++;

break;

The next two devices are /dev/sillyw (minor number 1) and /dev/sillyl (minor num
ber 2). They act exactly like /dev/sillyb, except that they use 16-bit and 32-bit func
tions. Here's the write implementation of silly/, again part of a switch:

case M_32:
while (count>= 4) {

writel(*(u32 *)ptr, add);
add+=4; count-=4; ptr+=4;

break;

The last device is /dev/sillycp (minor number 3), which uses the memcpy_ -io func
tions to perform the same task. Here's the core of its read implementation:

case M_rnemcpy:
rnemcpy_frornio(ptr, add, count);
break;

ISA Memory Above JM
Some ISA device boards carry on-board memory that is mapped to the physical
addresses between 14MB and 16MB. These devices are slowly disappearing, but
it's worth introducing how their memory range can be accessed. This discussion,
however, only applies to the x86 architecture; I've no information on how the
Alpha or other architectures behave with such ISA boards.

In the old days of the 80286 processor, when the physical address space was 20
bits wide (16MB) and all the address lines were present on the ISA bus, almost no
computer carried more than 1 or 2 megs of RAM. Why couldn't the expansion

173

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 174

Chapter 8: Hardware Management

board steal some high memory addresses for its buffer? This idea is not new; it's
the same concept that led to ISA memory below lM, and it was later recycled to
implement high PCI buffers. The chosen address range for ISA device boards was
the top two megs, though most boards just use the top meg.

Nowadays, there are still a few motherboards that can host these old-fashioned
boards even when there are more than 14 megs of physical RAM. Correctly han
dling this memory requires you to play games with the address ranges to avoid
ending up with overlapping RAM and bus addresses.

If you have an ISA device with high memory, and you're unlucky enough to have
less than 16MB RAM, managing the memory is easy. Your software should behave
as though it had a high PCI buffer (see the next section), except that it will be
slower, because ISA memory is slow.

If you have an ISA device with high memory and you have 16MB or more, then
you're in deep trouble.

One possibility is that your motherboard doesn't correctly support the "ISA hole."
In that case, there's nothing you can do to access the on-board memory except
change the board or remove some RAM. If, on the other hand, the · motherboard
handles the ISA hole, you still need to tell the Linux kernel about such memory
and do some work to be able to access the rest of your RAM (the range over
16M).

The place where you need to do some hacking to correctly reserve the high ISA
memory, while not losing access to the remaining RAM, is in the map of the com
puter's physical memory. This map is built in arch/i386/mmlinit.c, within the
mem_init function. The array mem_map holds the relevant information about each
memory page; if the bit PG_reserved is set for a page, the kernel won't use that
page for normal paging activity (i.e., the page is "reserved" and can't be touched).
Reserved pages can nonetheless be used by drivers; the range between 640KB and
1MB is marked as "reserved," but it hosts usable device memory.

The following code, inserted in mem_init, correctly reserves the memory space
between 15MB and 16MB:

while (start_mem < high_memory) {
if (start_mem >= OxfOOOOO && start_mem < OxlOOOOOO) {

else

/* keep it reserved, and prevent counting as data*/
reservedpages++; datapages--;

clear_bit(PG_reserved, &mem_map[MAP_NR(start_mem)] .flags);
start_mem += PAGE_SIZE;

Initially all the memory is marked as "reserved," and the lines shown above take
care not to unreserve high 1/0 memory; the original code only has the else
branch within the loop shown. Since every reserved page after the end of the

174

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 175

Accessing the Text-Mode Video Buffer

kernel code is counted as kernel data, two counters are modified to prevent a mis
matching message at boot time. My box, with 32MB and the previous code to
access the ISA hole, reports:

Memory: 30120k/32768k available (512k kernel code, 1408k reserved,
728k data)

I tested this code with my own Intel box (ISA-hole aware) with kernel 2.0.29. If
you are running a different kernel version, you might need to tweak the code
the internal structures related to memory management changed slightly in 2.1 and
were different in version 1.2 of the kernel. Hacking with kernel code is unavoid
able when you're supporting old-fashioned (and sometimes badly designed)
hardware.

High PC/ Memory
Accessing high PCI memory is much easier than accessing high ISA memory. High
memory on PCI boards is really high-higher than any reasonable physical RAM
address (at least for the next few years).

As discussed in "vmalloc and Friends" in Chapter 7, a single call to vremap
(ioremap with kernel 2.1) is all it takes to access this memory. If you want to be
portable across platforms, however, you should access the remapped memory
range only through readb and similar functions. This restriction applies because
not all platforms are able to directly map PC! buffers in tl1e processor's address
space.

Accessing the Text-Mode Video Buffer
While the silly module showed you how to access video memory in the
640KB-1MB address range, a more "visible" demo program can help you get com
fortable with readb and wrlteb. The silly module features two more device nodes:
/devlsillytxt (minor number 4) and /dev/silliest (minor number 5).

WARNING Such devices can be used only with a VGA-compatible video board
running in text mode; using the devices on systems without a VGA
adapter is potentially destructive, like any uncontrolled access to
hardware resources.

The first device, sil/ytxt, is just a window on the VGA text buffer. Unlike the other
silly nodes, it can be the target of output redirection and can be used to overwrite
the contents of your console. This is reminiscent of /dev/vcs, but the silly imple
mentation is neither portable nor integrated into the kernel as vcs is.

175

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 176

Chapter 8: Hardware Management

The last device is kind of a joke: it drops the letters off your text screen. Each byte
written to the device causes a character on your screen to drop to the bottom of
the screen. This device is provided only to show a more complex action on the
1/0 memory-the same code can be used to operate on a VGA buffer or on other
memory, such as network packets or the video data of a frame grabber.

Remember that any modification to the text screen is volatile and interferes with
the kernel's own text management. If you really need to access the text buffer
from an application, there are better ways to accomplish the task: either through
the ncurses library or through /dev/vcs. The vcs device is the "Virtual Console
Screen," which can be used to retrieve the current snapshot of each virtual con
sole's text buffer or change it. The vcs device is documented in its own source:
driverslcbar/vc_screen.c in the kernel source tree. Alternatively, you can look for a
description of the device in the latest man-pages distribution.

Quick Reference
This chapter introduced the following symbols related to hardware management:

#include <asm/io.h>
unsigned inb(unsigned port);
void outb(unsigned char byte, unsigned port);
unsigned inw(unsigned port);
void outw(unsigned short word, unsigned port);
unsigned inl(unsigned port);
void outl(unsigned doubleword, unsigned port);

These functions are used to read and write 1/0 ports. They can also be called
by user-space programs, provided they have the right privileges to access
ports. Not all the platforms support all the functions, which depend on under
lying hardware design.

SLOW_DOWN_IO;
unsigned inb_p(unsigned port);

The statement SLOW_DOWN_IO is sometimes needed to deal with slow ISA
boards on the x86 platform. If a small delay is needed after an 1/0 operation,
you can use the six pausing counterparts of the functions introduced above,
whose names end in _p.

void insb(unsigned port, void *addr, unsigned long count);
void outsb(unsigned port, void *addr, unsigned long count);
void insw(unsigned port, void *addr, unsigned long count);
void outsw(unsigned port, void *addr, unsigned long count);

176

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 177

Quick Reference

void insl(unsigned port, void *addr, unsigned long count);
void outsl(unsigned port, void *addr, unsigned long count);

The "string functions" are optimized to transfer data from an input port to a
region of memory, or the other way round. Such transfers are performed by
reading or writing the same port count times.

unsigned readb(address);
unsigned readw(address);
unsigned readl(address);
void writeb(unsigned value, address);
void writew(unsigned value, address);
void writel(unsigned value, address);
memset_io(address, value, count);
memcpy_fromio(dest, source, nbytes);
memcpy_toio{dest, source, nbytes);

All of these functions are used to access 1/0 memory regions, either low ISA
memory or high PCI buffers (after calling vremap).

177

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 178

CHAPTER NINE

INTERRUPT HANDLING

I
nterrupts are the ultimate resource for hardware management. \Xie all know
that a device uses interrupts to let the software know it is ready to be acted
upon. Linux offers a good interface for inte rrupt handling. In fact, it's so good

that writing and insta lling an interrupt handle r is almost as easy as writing any
other kernel function. A few caveats nonetheless apply, because the inte rrupt han
d ler ru ns asynchronously from the rest of the system.

The sample code in this chapter uses the parallel po rt to generate real interrupts,
as this task can 't be accomplished with softwa re-only techniques. Therefore , if you
want to run the test programs, you need to plug in the soldering iron, even if you
refused ro do so for the examples in the last chapte r.

To demo nstrate interrupt management, we'll use the short module from the last
chapter. Its name, short, actually means short int Cit is C, isn't it?), to remind us that
it handles interrupts.

Preparing the Parallel Port
Altho ugh the paralle l inte rface is simple, as I've shown in "Using the Parallel Port"
in Chapte r 8, Ha rdware Management, it can u·igger inte rrupts. This capability is
used by the printer to notify the Ip driver that it is ready to accept the next charac
te r in the buffer.

The inte rface doesn't actually generate inte rrupts before it's instructed to do so; the
paralle l standard states that setting bit 4 of port 2 (0x37a, 0x27a, o r whatever)
enables interrupt reporting. The simple outb, which sets the bit, is pe rformed by
sbort at module initialization.

178

CHAPTER NINE

INTERRUPT HANDLING

nterrupts are the ultimate resource for hardware management. We all know
that a device uses interrupts to let the software know it is ready to be acted
upon. Linux offers a good interface for interrupt handling. In fact, it's so good

that writing and installing an interrupt handler is almost as easy as writing any
other kernel function. A few caveats nonetheless apply, because the interrupt han-
dler runs asynchronously fromthe rest of the system.

The sample code in this chapter uses the parallel port to generate real interrupts,
as this task can’t be accomplished with software-only techniques. Therefore, if you
want to run the test programs, you need to plug in the soldering iron, even if you
refused to do so for the examples in the last chapter.

To demonstrate interrupt management, we'll use the short module from the last
chapter, Its name, short, actually means short tnt Gt is C, isn’t it?), to remind us that
it handles inferrupts.

Preparing the Parallel Port
Althoughthe parallel interface is simple, as I've shown in “Using the Parallel Port"
in Chapter 8, Hardware Management, it can trigger interrupts. This capability is
used by the printer to notify the /p driver that it is ready to accept the next charac-
ter in the buffer.

The interface doesn’t actually generate interrupts before it’s instructed to do so; the
parallel standard states that setting bit 4 of port 2 (0x37a, Ox27a, or whatever)
enables interrupt reporting. The simple owtb, which sets the bit, is performed by
short at module initialization.

Petitioners Microsoft Corporation and HP Inc.- Ex. 1019, p. 178

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 179

Installing an Interrupt Handler

After enabling interrupt reporting, the parallel interface generates an interrupt
whenever the electrical signal at pin 10 (the so-called "ACK" bit) changes from
low to high. The simplest way to force the interface to generate interrupts (short of
hooking up a printer to the port) is to connect pins 9 and 10 of the parallel con
nector. You can use one male 25-pin type D connector and an inch of wire for this
purpose.

Pin 9 is the most significant bit of the parallel data byte. If you write binary data to
/dev/sbortO, you'll generate several interrupts. Writing ASCII text to the port won't
generate interrupts, though, because the most significant bit won't be set.

If you want to actually "see" interrupts being generated, writing to the hardware
device isn't enough; a software handler must be configured in the system. Cur
rently, Linux-x86 and Linux-Alpha simply acknowledge and ignore any unex
pected interrupts.

Installing an Interrupt Handler
Interrupt lines are a precious and often limited resource, particularly when there
are only 15 or 16 of them. The kernel keeps a registry of interrupt lines, similar to
the registry of 1/0 ports. A module is allowed to request an ·interrupt channel (or
IRQ, for Interrupt ReQuest) and release it when it's done. The following functions,
declared in <linux/ sched. h>, implement the interface:

int request_irq(unsigned int irq,
void (*handler) (int, void*, struct pt_regs *),
unsigned long flags,
const char *device,
void *dev_id);

void free_irq(unsigned int irq, void *dev_id);

Note that version 1.2 featured different prototypes. See "Version Dependencies of
IRQ Handling" later in this chapter for portability issues.

The value returned to the requesting function is O to indicate success or a negative
error code, as usual. It's not uncommon for the function to return -EBUSY to sig
nal that another driver is already using the requested interrupt line. The arguments
to the functions are as follows:

unsigned int irq
This is the interrupt number. Sometimes the mapping from the Linux number
to the hardware number isn't one-to-one. Look, for example, at arch/
alphalkerneVirq.c to see the Alpha mapping. The argument to the kernel func
tions is the Linux number rather than the hardware number.

179

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 180

Chapter 9: Interrupt Handling

void (*handler) (int, void*, struct pt_regs *)
The pointer to the handling function being installed.

unsigned long flags
As you might expect, a bitmask of options related to interrupt management.

const char *device
The string passed to request_irq is used in /proc/interrnpts to show the owner
of the interrupt (see· the next section).

void *dev_id
This pointer is used for shared interrupt lines. It is a unique identifier, much
like a ClientData (the this object of C++). The driver is free to use dev_id
at will. dev_id is frequently set to NULL, unless interrupt sharing is in force.
We'll see a practical use for dev_id later, in "Implementing a Handler."

The bits that can be set in flags are:

SA_INTERRUPT
When set, this indicates a "fast" interrupt handler. When clear, the handler is a
"slow" one. The concept of "fast" and "slow" handlers is described under
"Fast and Slow Handlers."

SA_SHIRQ
This bit signals that the interrupt can be shared between devices. The concept
of sharing is outlined later in "Interrupt Sharing."

SA_SAMPLE_RANDOM
This bit indicates that the generated interrupts can contribute to the entropy
pool used by /dev/random and /dev/urandom. These devices return truly ran
dom numbers when read and are designed to help application software
choose secure keys for encryption. Such random numbers are extracted from
an entropy pool that is contributed to by various random events. If your
device generates interrupts at truly random times, you should set this flag. If,
on the other hand, your interrupts will be predictable (for example, vertical
blanking of a frame grabber), the flag is not worth setting-it wouldn't con
tribute to system entropy anyway. See the comments in driverslchar/random.c
for more information.

The interrupt handler can be installed either at driver initialization or when the
·device is first opened. While installing the interrupt handler from within init_mod
u/e might sound like a good idea, it actually isn't. Because the number of interrupt
lines is limited, you don't want to waste them. You can easily end up with more
devices in your computer than there are interrupts. If a module requests an IRQ at
initialization, it prevents any other driver from using the interrupt, even if the
device holding it is never used. Requesting the interrupt at device open, on the
other hand, allows a limited sharing of resources.

180

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 181

Installing an Inten-upt Handler

It is possible, for example, to run the frame grabber on the same interrupt as the
modem, as long as you don't use the two devices at the same time. It is quite
common for users to load the module for a special device at system boot, even if
the device is rarely used. A data acquisition gadget might use the same interrupt as
the second serial port. While it's not too hard to avoid connecting to your ISP dur
ing data acquisition, being forced to unload a module in order to use the modem
is really unpleasant.

The correct place to call request_irq is when the device is first opened, before the
hardware is instructed to generate interrupts. The place to call free_irq is the last
time the device is closed, after the hardware is told not to interrupt the processor
any more. The disadvantage of this technique is that you need to keep a per
device open count. Using the module count isn't enough if you control two or
more devices from the same module.

Despite what I've just said, short requests its interrupt line at load time. I did this
so you can run the test programs without having to run an extra process to keep
the device open. short, therefore, requests the interrupt from within init_module
instead of doing it in short_open, as a real device would.

The interrupt requested by the code below is short_irq. The actual assignment
of the variable is shown later, as it is not relevant to the current discussion.
short_base is the base I/O address of the parallel interface being used; register
2 of the interface is written to enable interrupt reporting.

if (short_irq >= 0) {
result= request_irq(short_irq, short_interrupt,

SA_INTERRUPT, "short", NULL);
if (result) {

printk(KERN_INFO "short: can't get assigned irq %i\n",
short_irq) ;

short_irq = -1;

else { /* actually enable it--assl.lltle this *is* a parallel port*/
outb(0x10,short_base+2);

The code shows that the handler being installed is a fast handler
(SA_INTERRUPT), does not support interrupt sharing (SA_SHIRQ is missing), and
doesn't contribute to system entropy (SA_SAMPLE_RANDOM is missing too). The
outb call then enables interrupt reporting for the parallel port.

The /proc Interface
Whenever a hardware interrupt reaches the processor, an internal counter is incre
mented, providing a way to check whether the device is working as expected.
Reported interrupts are shown in /prodinterrupts. The following snapshot was
taken after an hour and a half uptime of my 486:

181

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 182

Chapter 9: Interrupt Handling

0: 537598 timer
1: 23070 keyboard
2: 0 cascade
3: 7930 + serial
5: 4568 NE2000
7: 15920 + short

13: 0 math error
14: 48163 + ideO
15: 1278 + idel

The first column is the IRQ number. You can see from the IRQs that are missing
that the file shows only interrupts corresponding to installed handlers. For exam
ple, the first serial port (which uses interrupt number 4) is not shown, indicating
that my modem isn't being used. In fact, even if I'd used the modem earlier, but
wasn't using it at the time of the snapshot, it wouldn't show up in the file; the
serial ports are well-behaved and release their interrupt handlers when the device
is closed. The plus sign that appears in half the records signals a fast interrupt
handler.

The /proc tree contains another interrupt-related file, /proc/stat; sometimes you'll
find one more useful and sometimes you'll prefer the other. /proc/stat records sev
eral low-level statistics about system activity, including (but not limited to) the
number of interrupts received since system boot. Each line of stat begins with a
text string that is the key to the line; the intr mark is what we are looking for.
The following snapshot was taken half a minute later than the previous one:

intr 947102 540971 23346 0 8795 4907 4568 0 15920 0 0 0 0 0 0 48317 1278

The first number is the total of all interrupts, while each of the others represents a
single IRQ line, starting with interrupt 0. This snapshot shows that interrupt num
ber 4 has been used 4907 times, even though no handler is currently installed. If
the driver you're testing acquires and releases the interrupt at each open and close
cycle, you may find /proc/stat more useful than /proc/interrupts.

Another difference between the two files is that interrupts is not architecture
dependent, while stat is: the number of fields depends on the hardware underly
ing the kernel. The number of available interrupts varies from as few as 15 on the
Spare to as many as 72 on the Atari (M68k processor).

The following snapshots show how the files appear inside my Alpha station
(which has a total of 16 interrupts, just like my x86 box):

1: 2 keyboard
5: 4641 NE2000

15: 22909 + 53c7,8xx

intr 27555 0 2 0 1 1 4642 O O O O O O O O O 22909

The most noticeable feature of this snapshot is that the timer interrupt is missing.
On the Alpha, the timer interrupt reaches the processor separately from other
interrupts and has no IRQ number assigned.

182

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 183

Installing an Interrupt Handler

Autodetecting the IRQ Number
One of the most compelling problems for a driver when it is initializing is how to
determine which IRQ line is going to be used by the device. The driver needs the
information in order to install the correct handler. Even though a programmer
could require the user to specify the interrupt number at load time, this is a bad
practice, as most of the time the user doesn't know the number, either because he
didn't configure the jumpers or because the device is jumperless. Autodetection of
the interrupt number is a basic requirement for driver usability.

Sometimes autodetection depends on the knowledge that some devices feature a
default behavior which rarely, if ever, changes. In this case, the driver might
assume that the default values apply. This is exactly how short behaves with the
parallel port. The implementation is straightforward, as shown by short itself:

if (short_irq < 0) /* not yet specified: force the default on*/
switch(short_base) {

case Ox378: short_irq = 7; break;
case Ox278: short_irq = 2; break;
case Ox3bc: short_irq = S; break;

The code assigns the interrupt number according to the chosen base 1/0 address,
while allowing the user to override the default at load time by calling insmod
short short_irq=x. short_base defaults to 0x378, so short~irq defaults
to 7.

Some devices are more advanced in design and simply "announce" which inter
rupt they're going to use. In this case, the driver retrieves the interrupt number by
reading a status byte from one of the device's 1/0 ports. When the target device is
one that has the ability to tell the driver which interrupt it is going to use, autode
tecting the IRQ number just means probing the device, with no additional work
required to probe the interrupt.

It's interesting to note here that modern devices supply their interrupt configura
tion. The PCI standard solves the problem by requiring peripheral devices to
declare what interrupt line(s) they are going to use. The PCI standard is discussed
in Chapter 15, Overview of Peripheral Buses.

Unfortunately, not every device is programmer-friendly, and autodetection might
require some probing. The technique is quite simple: the driver tells the device to
generate interrupts and watches what happens. If everything goes well, only one
interrupt line is activated.

Though probing is simple in theory, the actual implementation might be unclear.
We'll look at two ways to perform the task: calling kernel-defined helper functions
and implementing our own version.

183

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 184

Chapter 9: Interrupt Handling

Kernel-helped probing

The mainstream kernel offers a low-level facility for probing the interrupt number.
The facility consists of two functions, declared in <linux/interrupt.h>
(which also describes the probing machinery):

unsigned long probe_irq_on(void};
This function returns a bitmask of unassigned interrupts. The driver must pre
serve the returned bitmask and pass it to probe_irq_offlater. After this call, the
driver should arrange for its device to generate at least one interrupt.

int probe_irq_off(unsigned long);
After the device has requested an interrupt, the driver calls this function, pass
ing as argument the bitmask previously returned by probe_irq_on.
probe_irq_off returns the number of the interrupt that was issued after
"probe_on." If no interrupts occurred, 0 is returned (thus IRQ O can't be
probed for, but no custom device can use it on any of the supported architec
tures anyway). If more than one interrupt occurred (ambiguous detection),
probe_irq_off returns a negative value.

The programmer should be careful to enable the device after the call to
probe_irq_on and to disable it before calling probe_irq_off. Additionally, you must
remember to service the pending interrupt in your device, after probe_irq_off.

The short module demonstrates how to use such probing. If you load the module
with probe=l, the following code is executed to detect your interrupt line, pro
vided pins 9 and 10 of the parallel connector are bound together:

int count= 0;
do {

unsigned long mask;

mask= probe_irq_on();
outb_p(0x10,short_base+2); /* enable reporting*/
outb_p(0x00,short_base); /* clear the bit*/
outb_p(0xFF,short_base); /* set the bit: interrupt! */
outb_p(0x00,short_base+2); /* disable reporting*/
short_irq = probe_irq_off(mask);

if (short_irq == 0) {/*none of them?*/
printk(KERN_INFO "short: no irq reported by probe\n");
short_irq = -1;

I*
* if more than one line has been activated, the result is
*negative.We should service the interrupt (no need for lpt port)
* and loop over again. Loop at most five times, then give up
*/

while (short_irq < 0 && count++< 5);
if (short_irq < 0)
printk("short: probe failed %i times, giving up\n", count);

184

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 185

Installing an Interrupt Handler

Probing might be a lengthy task. While this is not true for short, probing a frame
grabber, for example, requires a delay of at least 20ms (which is ages for the pro
cessor), and other devices might take even longer. Therefore, it's best to probe for
the interrupt line only once, at module initialization, independently of whether
you install the handler at device open (as you should) or within init_module
(which you shouldn't do anyway).

It's interesting to note that on the Spare and M68k, probing is unnecessary and
therefore isn't implemented. Probing is a hack, and mature architectures are like
PCI, which provides all the needed information. As a matter of fact, M68k and
Spare kernels export to the modules stub probing functions that always return
0-every architecture must define the functions, because they are exported by an
architecture-independent source file. All the other supported architectures allow
probing using the technique just shown.

The problem with probe_irq_on and probe_irq_off is that they are not exported by
early kernel versions. Thus, if you want to write a module that ports back to 1.2,
you must implement probing yourself.

Do-it-yourself probing

Probing can be implemented in the driver itself without too much trouble. The
short module performs do-it-yourself detection of the IRQ line if it is loaded with
probe=2.

The mechanism is the same as the one described above: enable all unused inter
rupts, then wait and see what happens. We can, however, exploit our knowledge
of the device. Often a device can be configured to use one IRQ number from a set
of three or four; probing just those IRQs enables us to detect the right one, with
out having to test for all possible IRQs.

The short implementation assumes that 3, 5, 7, and 9 are the only possible IRQ
values. These numbers are actually the values that some parallel devices allow you
to select.

The code below probes by testing all "possible" interrupts and looking at what
happens. The trials array lists the IRQs to try and has O as the end marker; the
tried array is used to keep track of which handlers have actually been registered
by this driver.

int trials[] {3, 5, 7, 9, O};
int tried[] {0, 0, 0, 0, O};
int i, count O;

/*
* install the probing handler for all possible lines. Remember
* the result (0 for success, or -EBUSY) in order to only free
* what has been acquired
*I

185

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 186

Chapter 9: Interrupt Handling

for (i=0; trials[i]; i++)

do

tried[i] = request_irq(trials[i], short_probing,
SA_INTERRUPT, "short probe", NULL);

short_irq = 0; /* none got, yet*/
outb_p(0x10,short_base+2); /*enable*/
outb_p(0x00,short_base);
outb_p(0xFF,short_base); /* toggle the bit*/
outb_p(0x10,short_base+2); /*disable*/

/* the value has been set by the handler*/
if (short_irq == 0) {/*none of them?*/

printk(KERN_INFO "short: no irq reported by probe\n");

/*
* If more than one line has been activated, the result is
*negative.We should service the interrupt (but the lpt port
* doesn't need it) and loop over again. Do it at most 5 times
*/

while (short_irq <=0 && count++< 5);

/* end of loop, uninstall the handler*/
for (i=0; trials[i]; i++)

if (tried[i] == 0)
free_irq(trials[i], NULL);

if (short_irq < 0)
printk("short: probe failed %i times, giving up\n", count);

You might not know in advance what the "possible" IRQ values are. In that case,
you 'II need to probe all the free interrupts, instead of limiting yourself to a few
trials [] . To probe for all interrupts, you have to probe from IRQ O to IRQ
NR_IRQS-1, where NR_IRQS is defined in <asm/irq.h> and is platform
dependent.

Now we are m1ssmg only the probing handler itself. The handler's role is to
update short_irq according to which interrupts are actually received. A zero
value in short_irq means "nothing yet," while a negative value means "ambigu
ous." I chose these values to be consistent with probe_irq_off and to use the same
code to call either kind of probing within short.c.

void short_probing(int irq, void *dev_id, struct pt_regs *regs)
{

if (short_irq
if (short_irq

0) short_irq = irq; /*found*/
!= irq) short_irq = -irq; /*ambiguous*/

The arguments to the handler are described later. Knowing that irq is the inter
rupt being handled should be sufficient to understand the function just shown.

186

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 187

Installing an Interrupt Handler

Fast and Slow Handlers
As you've seen, I've specified the SA_INTERRUPT flag for the short interrupt
handler, thus asking for a "fast" handler. It's high time to explain what "fast" and
"slow" mean. Actually, not all the architectures support different implementations
for fast and slow handlers. The Alpha and Spare ports, for example, service fast
and slow handlers in the same way. Versions 2.1.37 and later of the Intel port
removed the difference as well, since with the available processing power of mod
ern computers there's no longer any need to differentiate between fast and slow
interrupts.

The main difference between the two kinds of interrupt handlers is that fast han
dlers guarantee atomic processing of interrupts and slow handlers don't (this dif
ference is preserved in the new implementation of interrupt handling). In other
words, the "interrupt enable" processor flag is turned off while a fast handler runs,
thus preventing any interrupts from being serviced. When a slow handler is
invoked, on the other hand, the kernel reenables interrupt reporting in the micro
processor, so other interrupts can be serviced while a slow handler runs.

Another task performed by the kernel before calling the actual interrupt handler,
whether slow or fast, is to disable the interrupt line just reported._ An IRQ. service
routine thus doesn't need to be reentrant, to the joy of programmers. On the flip
side, even a slow handler should be written to run as fast as possible, in order to
avoid losing the next interrupt.

If a new interrupt arrives for a device while a handler is still processing the last
interrupt, the new interrupt is lost forever. The interrupt controller doesn't buffer
disabled interrupts, whereas the processor does-as soon as sti is issued, pending
interrupts are serviced. The sti function is the "Set Interrupt Flag" processor
instruction (introduced in "ISA Memory" in Chapter 2, Building and Running
Modules).

To summarize the slow and fast executing environments:

• A fast handler runs with interrupt reporting disabled in the microprocessor,
and the interrupt being serviced is disabled in the interrupt controller. The
handler can nonetheless enable reporting in the processor by calling sti.

• A slow handler runs with interrupt reporting enabled in the processor, and the
interrupt being serviced is disabled in the interrupt controller.

But there is another difference between fast and slow handlers: the overhead
added by the kernel. Slow handlers are actually slower because of additional
housekeeping on the kernel's side. This implies that frequent interrupts are best
serviced by a fast handler. As far as short is concerned, several thousand interrupts
per second can be generated by copying a large file to /dev/shortO. Thus I chose to

187

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 188

Cbapter 9: Interrupt Handling

use a fast handler to control the amount of overhead being inserted into the sys
tem. This split behavior is what has been unified in the newer 2.1 kernels; the
overhead is now added to all interrupt handlers.

A good candidate for a slow handler might be a frame grabber. It interrupts the
processor 50 or 60 times per second, and a slow handler can choose to copy every
frame from the interface board to physical RAM without blocking other system
interrupts, such as those generated by serial ports or timer service.

This description should satisfy most readers, though I suspect someone with a
taste for hardware and some experience with his or her computer might be inter
ested in going deeper. If you don't care about the internal details, you can skip to
the next section.

Tbe Internals of interrupt handling on the x86

This description has been extrapolated from arch/t386/kerneVtrq.c and
tnclude/asm-t386/trq.h as they appear in the 2.0.x kernels; although the general
concepts remain the same, the hardware details differ on other platforms and have
been slightly modified during 2.1 development.

The lowest level of interrupt handling resides in assembly code declared as macros
in trq.h and expanded in trq.c. Three functions are declared for each interrupt: the
slow, the fast, and the bad handlers.

The "bad" handler, the smallest, is the assembler entry point when no C-language
handler has been installed for the interrupt. It acknowledges the interrupt to the
proper PIC (Programmable Interrupt Controller) device* and disables it, to avoid
losing any further processor time due to spurious interrupts. The bad handler is
reinstalled by Jree_trq when a driver is done with an interrupt line. The bad
handler doesn't increment the counter in /proc/stat.

It's interesting to note that IRQ probing in both the x86 and the Alpha is based on
the behavior of the bad handler. probe_irq_on enables all the bad interrupts, with
out installing a handler; probe_irq_o.ff simply checks which interrupts have been
disabled since probe_irq_on. You can verify this behavior by observing that load
ing short with probe=l (kernel-aided probing) doesn't increment the interrupt
counters, while loading it with probe=2 (home-made probing) increments them.

The assembler entry point for slow interrupts saves all the registers on the stack
and makes data segments (the DS and ES processor registers) point into the kernel
address space (CS has already been set by the processor). The code then acknowl
edges the interrupt to the PIC, disables notification of new interrupts on the same
IRQ line, and issues an stt (set interrupt flag). Bear in mind that the processor

"' Each PC used to be equipped with two interrupt-controller chips, called 8259 chips.
These devices don't exist any more, but the same behavior is implemented in modem
chipsets.

188

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 189

Implementing a Handler

automatically clears the flag when servicing an interrupt. The slow handler then
passes the interrupt number and a pointer to the processor registers to do_lRQ, a
C function that dispatches the right C-language handler. The struct pt_regs *
argument that is passed to the interrupt handler in the driver is just a pointer to
the position in the stack where the registers are stored.

When do_lRQ is finished, c/i is issued, the specific interrupt is enabled in the PIC,
and retJrom_sys_cal/ is invoked. This last entry point (archli386/kerneVentry.S)
restores all the registers from the stack, handles any pending bottom half (see
"Bottom Halves" later in the. chapter) and, if needed, reschedules the processor.

The fast entry point is different in that sti is not called prior to jumping to the C
code, and not every machine register is saved before calling doJast_lRQ. When
the driver's handler is called, the regs argument is NULL (because the registers
aren't stored on the stack) and interrupts are still disabled.

Finally, the fast handler reenables the interrupt in the 8259, restores the registers
that were saved earlier, and returns without passing through retJrom_sys_cal/.
Pending bottom halves are not run.

In all kernels up to 2.1.34, both handlers increment intr_count before passing
control to C code (see "The Nature of Task Queues" in Chapter 6, Flow of Time).

Implementing a Handler
So far, we've learned to register an interrupt handler, but not to write one. Actu
ally, there's nothing unusual about a handler-it's ordinary C code.

The only peculiarity is that a handler runs at interrupt time and therefore suffers
some restrictions on what it can do. These restrictions are the same as those we
saw with task queues. A handler can't transfer data to or from user space, because
it doesn't execute in the context of a process. A fast handler, however, can count
on being executed atomically and doesn't need to protect itself against race condi
tions when accessing shared data items. Slow handlers are not atomic in that other
interrupts can be serviced while the slow handler is running.

The role of an interrupt handler is to give feedback to its device about interrupt
reception and to read or write data according to the meaning of the interrupt
being serviced. The first step usually consists of clearing a bit on the interface
board; most hardware devices won't generate other interrupts until their "interrupt
pending" bit has been cleared. Some devices don't require this step because they
don't have an "interrupt-pending" bit; such devices are a minority, although the
parallel port is one of them. For that reason, short does not have to clear such a
bit.

189

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 190

Chapter 9: Interrupt Handling

A typical task for an interrupt handler is awakening processes sleeping on the
device if the interrupt signals the event they're waiting for, such as the arrival of
new data.

To stick with the frame grabber example, a process could acquire a sequence of
images by continuously reading the device; the read call blocks after reading each
frame, while the interrupt handler awakens the process as soon as a new frame
arrives. This assumes that the grabber interrupts the processor to signal successful
arrival of each new frame.

The programmer should be careful to write a routine that executes in a minimum
of time, independent of its being a fast or slow handler. If a long computation
needs to be performed, the best approach is to use a task queue to schedule com
putation at a safer time (see "Task Queues" in Chapter 6). This is why bottom
halves exist (see "Bottom Halves" later in this chapter).

Our sample code in short makes use of the interrupt to call do_gettimeofday and
print the current time to a page-sized circular buffer. It then awakens any reading
process (which is actually woken only at the next slow interrupt or the next clock
tick, because short uses a fast handler).

void short_interrupt{int irq, void *dev_id, struct pt_regs *regs)
{

struct timeval tv;
do_gettimeofday(&tv);

/* Write a 16 byte record. Assume PAGE_SIZE is a multiple of 16 */
short_head += sprintf((char *)short_head,"%08u.%06u\n",

(int) (tv.tv_sec % 100000000),
(int) (tv.tv_usec));

if (short_head == short_buffer + PAGE_SIZE)
short_head = short_buffer; /*wrap*/

wake_up_interruptible(&short_queue); /* wake any reading process*/

This code, though simple, represents the typical job of an interrupt handler.

The node used to read the buffer being filled at interrupt time is /dev/shortint. This
is the only short device node that wasn't introduced in Chapter 8. The internals of
/dev/shortint are specifically tailored for interrupt generation and reporting. Writing
to the device generates one interrupt every other byte; reading the device gives
the time when each interrupt was reported.

If you connect together pin~ 9 and 10 of the parallel connector, you can generate
interrupts by raising the high bit of the parallel data byte. This can be accom-

190

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 191

Implementing a Handler

plished by writing binary data to /dev/shortO or by writing anything to
I dev/shortint. *

The following code implements read and write for /devlshortint:

read_write_t short_i_read (struct inode *inode, struct file *filp,
char *buf, count_t count)

int count0;

while (short_head == short_tail) {
interruptible_sleep_on(&short_queue);
if (current->signal & -current->blocked) /* a signal arrived*/

return -ERESTARTSYS; /* tell the fs l~yer to handle it*/
/* else, loop*/

/* count0 is the number of readable data bytes*/
count0 = short_head - short_tail;
if (count0 < 0) /*wrapped*/

count0 short_buffer + PAGE_SIZE - short_tail;
if (count0 < count) count= count0;

memcpy_tofs(buf, (char *)short_tail, count);
short_tail += count;
if (short_tail == short_buffer + PAGE_SIZE)

short_tail = short_buffer;
return count;

read_write_t short_i_write (struct inode *inode, struct file *filp,
canst char *buf, count_t count)

int written 0, odd= filp->f_pos & 1;
unsigned port= short_base; /* output to the parallel data latch*/

while (written< count)
outb(0xff * ((++written + odd) & 1), port);

filp->f_pos += count;
return written;

Using Arguments
Though short ignores them, three arguments are passed to an interrupt handler:
irq, dev_id, and regs. Let's look at the role of each.

* The shortint device accomplishes its task by alternately writing 0x00 and 0xff to the paral
lel port.

191

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 192

Chapter 9: Interrupt Handling

The interrupt number (int irq) can be useful if a single handler manages more
than one device and the devices talk on different IRQ lines. For example, a stereo
scopic video system might support two frame grabbers using two interrupts. The
driver should be able to detect both devices and install a handler to manage both
IRQs. The driver can then use the irq argument to tell the handler which device
caused an interrupt.

For example, if the driver has declared an array of device structures called
hwinfo, each with an irq field, the following code selects the correct device
when an interrupt arrives. The driver prefix for this code is ex.

static void cx_interrupt(int irq, void *dev_id, struct pt_regs *regs)

/* "Cxg_Board" is the data-type of hardware information*/
Cxg_Board *board; inti;

for (i=0, board=hwinfo; i<cxg_boards; board++, i++)
if (board->irq==irq)

break;

/* now 'board' points to the right hardware description*/
/* */

The second argument, void *dev_id, is a sort of ClientData; a void * argu
ment is passed to request_irq, and this device ID is then passed back as an argu
ment to the handler when the interrupt happens. The dev_id argument was
introduced in Linux 1.3. 70 in order to handle shared interrupts, but it is useful
even if no sharing is performed.

Let's assume that the driver in our example has registered its interrupt as follows
(where board->irq is the interrupt being requested, and board is the Client
Data):

static void cx_open(struct inode *inode, struct file *filp)
{

Cxg_Board *board= hwinfo + MINOR(inode->i_rdev);
request_irq(board->irq,cx_interrupt,0, "cxl00" ,board /* dev_id */);
I* •..• * I
return 0;

Then the handler code can be reduced to the following:

192

static void cx_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{

Cxg_Board *board=dev_id;

/* now 'board' points to the right hardware item*/
/* */

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 193

ImplemenUng a Handler

The last argument, struct pt_regs *regs, is rarely used. It holds a snapshot
of the processor's context before the processor entered interrupt code. The regis
ters can be used for monitoring and debugging, and they actually are used for this
purpose by show_regs (the debugging function spawned by the keyboard interrupt
when RightAlt-PrScr is pressed-see "System Hangs," in Chapter 4, Debugging
Techniques).

Enabling and Disabling Interrupts
Sometimes it's useful for a driver to enable and disable interrupt reporting for its
own IRQ line. The kernel offers two functions for this purpose, both declared in
<asm/ irq. h>:

void disable_irq(int irq);
void enable_irq(int irq);

Calling either function updates the mask for the specified irq in the PIC.

In practice, when an interrupt is disabled, it isn't reported to the processor even if
the hardware is eager to be serviced. For example, "The internals of interrupt han
dling on the x86" states that the "bad" handler in the x86 implementation disables
any interrupt it receives.

But why disable the interrupt? Sticking to the parallel port, let's look at the plip
network interface. A plip device uses the bare-bones parallel port to transfer data.
Since only five bits can be read from the parallel connector, they are interpreted as
four data bits and a clock/handshake signal. When the first bits of a packet are
transmitted by the initiator (the interface sending the packet), the clock line is
raised, causing the receiving interface to interrupt the processor. The plip handler
is then invoked to deal with newly arrived data.

After the device has been alerted, the data transfer proceeds, using the handshake
line to clock new data to the receiving interface (this might not be the best imple
mentation, but it is necessary for compatibility with other packet drivers using the
parallel port). Performance would be unbearable if the receiving interface had to
handle two interrupts for every byte received. The driver therefore disables the
interrupt during the reception of the packet.

Similarly, since the handshake line from the receiver to the transmitter is used to
acknowledge data reception, the transmitting interface disables its IRQ line during
packet transmission.

You should be careful, however, because enabling and disabling the interrupt line
cannot be performed from within the handler. This limitation applies because the
kernel disables the interrupt before calling the handler and enables it again when
the handler is done, as described above. Disabling and enabling the interrupt is
nonetheless an interesting option, as long as you do it from within a bottom half
(see the next section).

193

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 194

Chapter 9: Interrupt Handling

Finally, it's interesting to note that the Spare implementation defines both the dis
able_irq and enable_irq symbols as pointers rather than functions. This trick
allows the kernel to assign the pointers at boot time after detecting what flavor of
Spare you're on (the Sun4c and the Sun4m have different IRQ hardware). The C
language semantics to use the function are the same on all Linux systems, inde
pendent of whether this trick is used or not, and it helps avoid some tedious cod
ing of conditionals.

Bottom Halves
One of the main problems with interrupt handling is how to perform longish tasks
within a handler. Linux resolves this problem by splitting the interrupt handler into
two halves: the so-called "top half' is the routine you register through request_irq,
and the "bottom half' ("bh" for short) is a routine that is scheduled by the top
half, to be executed later, at a safer time.

But what is a bottom half useful for?

The big difference between the top-half handler and the bottom half is that all
interrupts are enabled during execution of the bh-that's why it runs at a "safer"
time. In the typical scenario, the top half saves device data to a device-specific
buffer, marks its bottom half, and exits: this is very fast. The bh then dispatches
newly arrived data to the processes, awakening them if necessary. This setup per
mits the top half to service a new interrupt while the bottom half is still working.
New data arriving before the top half terminates, on the other hand, are lost
because the IRQ line is disabled in the interrupt controller.

Every serious interrupt handler is split this way. For instance, when a network
interface reports the arrival of a new packet, the handler just retrieves the data and
pushes it up to the protocol layer; actual processing of the packet is performed in
a bottom half.

This kind of job should be reminiscent of task queues; actually, task queues have
evolved from an older implementation of bottom halves. Even version 1.0 of the
kernel had bottom halves, while task queues didn't yet exist.

Unlike task queues, which are dynamic, bottom halves are limited in number and
predefined in the kernel; this is similar to the old kernel timers. The static nature
of bottom halves is not a problem because some of them evolve into a dynamic
object by running a task queue. In <linux/ interrupt. h>, you'll find the list of
available bottom halves; the most interesting of them are discussed below.

The Design of Bottom Halves
The bottom halves exist as an array of function pointers and a bitmask-that's
why there are no more than 32 of them. When the kernel is ready to deal with
asynchronous events, it calls do_bottom_half. We have seen how this happens on

194

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 195

Bottom Halves

return from a system call and on exiting a slow handler; both events occur fre
quently. The decision to use a bitmask is mainly dictated by performance: check
ing the bitmask takes only one machine instruction and minimizes overhead.

Whenever some code wants to schedule a bottom half for running, it calls
mark_bh, which sets a bit in the bitmask variable to queue the corresponding
function for execution. A bottom half can be.scheduled by an interrupt handler or
any other function. When the bottom-half handler is executed, it is automatically
unmarked.

Marking bottom halves is defined in <linux/interrupt .h> as:

void mark_bh(int nr);

Here, nr is the "number" of the bh to activate. The number is a symbolic constant
defined in <linux/ interrupt. h> that identifies which bit needs to be set in
the bitmask. The function that corresponds to each bh is provided by the driver
that owns the bottom half. For example, when mark_bh (KEYBOARD_BH) is
called, the function being scheduled for execution is kbd_bh, which is part of the
keyboard driver.

Since bottom halves are static objects, a modularized driver won't be able to regis
ter its own bottom half. There's currently no support for dynamic allocation of bot
tom halves, and it's unlikely there ever will be, as the immediate task queue can
be used instead.

The rest of this section lists some of the most interesting bottom halves. It then
describes how the kernel runs a bottom half, which you should understand in
order to use bottom halves properly.

Several bottom halves declared by the kernel are interesting to look at, and a few
can even be used by a driver, as introduced above. These are the most interesting
bottom halves:

IMMEDIATE_BH
This is the most important bh for driver writers. The function being scheduled
consumes a task queue, tq_immediate. A driver (like a custom module) that
doesn't own a bottom half can use the immediate queue as if it were its own
bh. After registering a task in the queue, the driver must mark the bh in order
to have its code actually executed; how to do this was introduced in "The
immediate queue," in Chapter 6.

TQUEUE_BH
This bh is activated at each timer tick if a task is registered in tq_timer. In
practice, a driver can implement its own bottom half using tq_timer; the
timer queue introduced in Chapter 6 (in the section "The timer queue") is a
bottom half, but there's no need to call mark_bh for it. TQUEUE_BH is always
executed later than IMMEDIATE_BH.

195

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 196

Chapter 9: Interrupt Handling

NET_BH
Network drivers should mark this queue to notify the upper network layers of
events. The bh itself is part of the network layer and not accessible to mod
ules. We'll see how to use it proficiently in "Interrupt-Driven Operation," in
Chapter 14, Network Drivers.

CONSOLE_BH
The console performs tty switching in a bottom half. This operation can
involve process control. For instance, switching between the X Window sys
tem and text mode is controlled by the X server. Moreover, if the keyboard
driver asks for a console change, the console switching can't be done during
the interrupt. It also can't be done while a process is writing to the console.
Using a bh fits the task because bottom halves can be disabled at the driver's
will; in this case, console_bh is disabled during a console write.*

TIMER_BH
This bh is marked by do_timer, the function in charge of the clock tick. The
function that this bh executes is the one that drives the kernel timers. There is
no way to use this facility for a driver short of using add_timer.

The remaining bottom halves are used by specific kernel drivers. There are no
entry points in them for a module, and it wouldn't make sense for there to be any.

Once a bh has been activated, it is executed when do_bottom_balf (ker
nellsoftirq.c) is invoked, which happens within return_from_sys_call. The latter
procedure is executed whenever a process exits from a system call or when a slow
interrupt handler exits. The bottom halves are not executed on exit from a fast
handler; whenever a driver needs fast execution of its bottom half, it should regis
ter a slow handler.

ret_from_sys_call is always executed by the clock tick; thus, if a fast handler
marks a bh, the actual function will be executed at most lOms later (less than lrris
later on the Alpha, whose clock tick runs at 1024 Hz).

After a bottom half has run, the scheduler is called if the need_resched variable
is set; the variable is set by the various wake_up functions. The top half can thus
leave to the bottom half any work related to awakening processes-they'll be
scheduled right away. This is what happens, for example, when a telnet packet
arrives from the network. net_bb awakens telnetd, and the scheduler gives it pro
cessor time with no additional delays.

* The function disable_bb can be used by drivers using their own bottom half, as explained
in a while.

196

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 197

Bottom Halves

Writing a Bottom Half
Bottom-half code runs at a safe time-safer than when the top-half handler runs.
Nonetheless, some care is necessary because a bh is stil_l at "interrupt time";
intr_count is not O because the bottom half executes outside the context of a
process. The limitations outlined in "The Nature of Task Queues," in Chapter 6,
thus apply to code executing in a bottom half.

The main problem with the bottom halves shown is that they often need to share
data structures with the top-half interrupt handler, and race conditions must be
prevented. This might mean temporarily disabling interrupt reporting or using
locking techniques.

It's quite apparent from the previous list of available bottom halves in "The Design
of Bottom Halves" that a new driver implementing a bottom half should attach its
code to IMMEDIATE_BH, by using the immediate queue. If your driver is impor
tant enough, however, you can even have your own bh number assigned in the
kernel itself. Important drivers are a minority, however, and I won't go into detail
about them. Three functions exist to deal with privately owned bottom halves:
init_bh, enable_bh, and disable_bb. If you're interested, you'll find them in the
kernel sources.

Actually, using the immediate queue is no different from managing your own bot
tom half-the immediate queue is a bottom half. When IMMEDIATE_BH is
marked, the function in charge of the immediate bottom half just consumes the
immediate queue. If your interrupt handler queues its bh handler to
tg_immedia te and marks the bottom half, the queued task will be called at just
the right time. Since in all recent kernels you can queue the same task multiple
times without trashing the task queue, you can queue your bottom half every time
the top-half handler runs. We'll see this behavior in a while.

Drivers with exotic configurations-multiple bottom halves or other setups that
can't easily be handled with a plain tg_immedia te-can be satisfied by using a
custom task queue. The interrupt handler queues the tasks in its own queue, and
when it's ready to run them, a simple queue-consuming function· is inserted into
the immediate queue. See "Running Your Own Task Queues" in Chapter 6 for
details.

Let's now look at the short implementation. When loaded with bh=l, the module
installs an interrupt handler that uses a bottom half.

short performs split interrupt management as follows: the top half (the handler)
saves the current time value in a circular buffer and schedules the bottom half.
The bh prints accumulated time values to the text buffer and then awakens any
reading process.

197

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 198

Chapter 9: Interrupt Handling

The top half turns out to be really simple:

void short_bh_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{

do_gettimeofday(tv_head);
tv_head++;

if (tv_head == (tv_data + NR_TIMEVAL)
tv_head = tv_data; /*wrap*/

/* Queue the bh. Don't care for multiple queueing*/
queue_task_irq_off(&short_task, &tq_irnrnediate);
mark_bh(IMMEDIATE_BH);

short_bh_count++; /* record that an interrupt arrived*/

As expected, this code calls queue_task without checking whether the task is
aready queued. This behavior doesn't work with Linux 1.2, and if you compile
short against 1.2 headers, it uses a different handler, which queues the task only
when short_bh_count is 0.

The bottom half, then, performs the rest of the work. It also records the number of
times the top half was invoked before the bottom half was scheduled. The number
is always 1 if the top half is a "slow" handler, because pending bottom halves are
always run whenever a slow handler exits, as described above.

void short_bottom_half(void *unused)
{

198

int savecount = short_bh_count;
short_bh_count = 0; /* we've already been removed from the queue*/
/*

* The bottom half reads the tv array, filled by the top half,
* and prints it to the circular text buffer, which is then consumed
* by reading processes
*/

/* First write the no. of interrupts that occurred before this bh */

short_head += sprintf((char *)short_head,
"bh after %6i\nn, savecount);

if (short_head == short_buffer + PAGE_SIZE)
short_head = short_buffer; /*wrap*/

/*
* Then, write the time values. Write exactly 16 bytes at a time,
* so it aligns with PAGE_SIZE
*/

do
short_head += sprintf((char *)short_head,"%08u.%06u\n",

(int) (tv_tail->tv_sec % 100000000),

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 199

Interrupt Sharing

(int) (tv_tail->tv_usec));
if (short_head == short_buffer + PAGE_SIZE)

short_head = short_buffer; /*wrap*/

tv_tail++;
if (tv_tail == (tv_data + NR_TIMEVAL)

tv_tail = tv_data; /*wrap*/

} while (tv_tail != tv_head);

wake_up_interruptible(&short_queue); /* awake any reading process*/

Timings taken on my oldish computer show that, using a bottom half, the interval
between two interrupts has shrunk from 53 microseconds to 27, since less work is
performed in the top-half handler. While the total work needed to handle the
interrupt is the same, a faster top half has the advantage that the interrupt remains
disabled for a shorter time. This is not an issue for short because the write function
generating interrupts is restarted only after the handler is done, but timing might
be relevant for real hardware interrupts.

Here's an example of what you see when loading short by specifying bh=l:

morgana% echo 1122334455 > /dev/shortint; cat /dev/shortint
bh after 5
50588804.876653
50588804.876693
50588804.876720
50588804.876747
50588804.876774

Interrupt Sharing
A well-known "feature" of the PC is its inability to attach different devices to the
same interrupt line. However, Linux 2.0 broke the spell. Even though my ISA hard
ware manual-a Linux-unaware book-says that "at most one ·device" can be
attached to an IRQ line, the electrical signals don't have these restrictions unless
the device hardware is unfriendly by design. The problem is with the software.

Linux software support for sharing was developed for PCI devices, but it works
with ISA boards as well. Needless to say, non-PC platforms and buses support
interrupt sharing too.

In order to develop a driver that can manage a shared interrupt line, there are
some details that need to be considered. As discussed below, some of the features
described in this chapter are not available for devices using interrupt sharing.
Whenever possible, it's better to support sharing because it presents fewer prob
lems for the final user.

199

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 200

Chapter 9: Interrupt Handling

Installing a Shared Handler
Shared interrupts are installed through request_irq just like owned ones, but there
are two differences:

• The SA_SHIRQ bit must be specified in the flags argument when requesting
the interrupt.

• The dev _id argument must be unique. Any pointer into the module's address
space will do, but dev _id definitely cannot be set to NULL.

The kernel keeps a list of shared handlers associated with the interrupt, and
dev_id differentiates between them, like a driver's signature. If two drivers were
to register NULL as their signature on the same interrupt, things might get mixed
up at unload time, causing the kernel to oops when an interrupt arrived. This hap
pened to me when I was first testing with shared handlers (when I just thought
"let's add SA_SHIRQ to those two drivers").

Under these conditions, request_irq succeeds if either the interrupt line is free or
both the following conditions are met:

• The previously registered handler specified SA_SHIRQ in its flags.

• Both the new handler and the old one are fast handlers, or both are slow.

The reasons behind these requirements should be quite apparent: fast and slow
handlers live in different environments, and you can't mix them. Similarly, you
can't force sharing with a handler that was installed standalone. This condition
about fast and slow handlers has been removed in recent 2.1 kernels because the
two types now behave in the same way.

Whenever two or more drivers are sharing an interrupt line and the hardware
interrupts the processor on that line, the kernel invokes every handler registered
for that interrupt, passing each its own dev_id. Therefore, a shared handler must
be able to recognize its own interrupts.

If you need to probe for your device before requesting the IRQ line, the kernel
can't help you. No probing function is available for shared handlers. The standard
probing mechanism works if the line being used is free; but if the line is already
held by another driver with sharing capabilities, the probe will fail, even if your
driver would have worked perfectly.

The only available technique for probing shared lines, then, is the do-it-yourself
way. The driver should request every possible IRQ line as a shared handler and
then see where interrupts are reported. The difference between that and "Do-it
yourself probing" is that the probing handler must check that the interrupt actually
occurred, as it could have been called in response to another device interrupting
on a shared line.

200

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 201

Interrupt Sharing

Releasing the handler is performed in the normal way using release_irq. Here the
dev _id argument is used to select the correct handler to release from the list of
shared handlers for the interrupt. That's why the dev _id pointer must be unique.

A driver using a shared handler needs to be careful about one mbre thing: it can't
play with enable_irq or disable_irq. If it does, things might go haywire for other
devices sharing the line. In general, the programmer must remember that his
driver doesn't own the IRQ, and its behavior should be more "social" than is nec
essary if you own the interrupt line.

Running the Handler
As suggested above, when the kernel receives an interrupt, all the registered han
dlers are invoked. A shared handler must be able to distinguish between interrupts
that it needs to handle and interrupts generated by other devices.

Loading short with the option shared= 1 installs the following handler instead of
the default:

void short_sh_interrupt{int irq, void *dev_id, struct pt_regs *regs)
{

int value;
struct timeval tv;

/* If it wasn't short, return immediately*/
value= inb(short_base);
if (! (value & 0xB0)) return;

/* clear the interrupting bit*/
outb(value & 0x7F, short_base)_;

/* the rest is unchanged*/

do_gettimeofday(&tv);
short_head += sprintf((char *)short_head, "%08u.%06u\n",

(int) (tv.tv_sec % 100000000),
(int) (tv.tv_usec));

if (short_head == short_buffer + PAGE_SIZE)
short_head = short_buffer; /*wrap*/

wake_up_interruptible(&short_queue); /* awake any reading process*/

An explanation is due here. Since the parallel port has no "interrupt-pending" bit
to check, the handler uses the ACK bit for this purpose. If the bit is high, the inter
rupt being reported is for short, and the handler clears the bit.

201

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 202

Chapter 9: Interrupt Handling

The handler resets the bit by zeroing the high bit of the parallel interface's data
port-short knows that pins 9 and 10 are connected together. If one of the other
devices sharing the IRQ with short generates an interrupt, short sees that its own
line is still inactive and does nothing.

Obviously, a real handler does more; in particular, it uses the dev_id argument
to refer to its own hardware structure.

A full-featured driver probably splits the work into top and bottom halves, but
that's easy to add and does not have any impact on the code that implements
sharing.

The /proc Interface
Installing shared handlers in the system doesn't affect /proc/stat (which doesn't
even know about handlers). However, /proc/interrupts changes slightly.

All the handlers installed for the same interrupt number appear on the same line
of /proc/interrupts. The following snapshot was taken on my computer, after I
loaded short and the driver for my frame grabber as shared handlers:

0: 1153617 timer
1: 13637 keyboard
2: 0 cascade
3: 14697 + serial
5: 190762 NE2000
7: 2094 + short, + cxl00

13: 0 math error
14: 47995 + ide0
15: 12207 + idel

The shared interrupt line here is IRQ 7; the active handlers are listed on one line,
separated by commas. It's apparent that the kernel is unable to distinguish short
interrupts from grabber (cx100) interrupts.

Interrupt-Driven 1/0
Whenever a data transfer to or from the managed hardware might be delayed for
any reason, the driver writer should implement buffering. Data buffers help to
detach data transmission and reception from the write and read system calls, and
improve overall system performance.

A good buffering mechanism leads to "interrupt-driven 1/0," in which an input
buffer is filled at interrupt time and is emptied by processes that read the device;
an output buffer is filled by processes that write to the device and is emptied at
interrupt time.

202

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 203

Race Conditions

For interrupt-driven data transfer to happen successfully, the hardware should be
able to generate interrupts with the following semantics:

• For input, the device interrupts the processor when new data has arrived and
is ready to be retrieved by the system processor. The actual actions to perform
depend on whether the device uses 1/0 ports, memory mapping, or DMA.

• For output, the device delivers an interrupt either when it is ready to accept
new data or to acknowledge a successful data transfer. Memory-mapped and
OMA-capable devices usually generate interrupts to tell the system they are
done with the buffer.

The timing relationships between a read or write and the actual arrival of data
were introduced in "Blocking and Nonblocking Operations," in Chapter 5,
Enhanced Char Driver Operations. Interrupt-driven 1/0 introduces the problem of
synchronizing concurrent access to shared data items, and therefore all the issues
related to race conditions.

Race Conditions
Whenever a variable or other data item is modified at interrupt time, there is the
possibility that the driver will operate inconsistently because of race conditions. A
race condition happens whenever an operation is not executed atomically, but it
still needs to count on data coherence throughout its execution. The "race" there
fore is between the non-atomic operation and other code that might be executed
in the meantime. Typically, race conditions appear in three situations: implicit calls
to schedule from within a function, blocking operations, and access to data shared
by interrupt code and system calls. The last situation is the most frequent, and
that's why race conditions are dealt with in this chapter.

Dealing with race conditions is one of the trickiest aspects of programming,
because the related bugs are subtle and very difficult to reproduce, and it's hard to
tell when there is a race condition between interrupt code and the driver methods.
The programmer must take great care to avoid corruption of data or metadata.

In general, the techniques used to prevent race conditions are implemented in the
driver methods, which must be sure to handle the data items correctly if they
unexpectedly change. The interrupt handler, on the other hand, doesn't usually
need special care, because it operates atomically with respect to the device
methods.

Different techniques can be employed to prevent data corruption, and I'm going to
introduce the most common ones. I won't show complete code because the best
code for each situation depends on the operating mode of the device being
driven, and on the programmer's taste.

203

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 204

Chapter 9: Inten-upt Handling

The most common ways of protecting data from concurrent access are:

• Using a circular buffer and avoiding shared variables.

• Temporarily disabling interrupts in the method whenever the shared variables
are accessed.

• Using lock variables, which are atomically incremented and decremented.

Whatever approach you choose, you still need to decide what to do when access
ing a variable that can be modified at interrupt time. Such variables can be
declared as volatile, to prevent the compiler from optimizing access to its
value (for example, it prevents the compiler from holding the value in a register
for the whole duration of a function). However, the compiler generates horrible
code whenever volatile variables are involved, so you might choose to resort
to cli and sti instead. The Linux implementation of these functions uses a gee
directive to ensure the processor is in a safe state before the interrupt flag is
modified.

Using Circular Buffers
Using a circular buffer is an effective way of handling concurrent-access problems:
the best way to deal with concurrent access is to perform no concurrent access
whatsoever.

The circular buffer uses an algorithm called "producer and consumer" -one
player pushes data in and the other pulls data out. Concurrent access is avoided if
there is exactly one producer and exactly one consumer. There are two examples
of producer and consumer in the short module. In one case, the reading process is
waiting to consume data that is produced at interrupt time; in the other, the bot
tom half consumes data produced by the top half.

Two pointers are used to address a circular buffer: head and tail. head is the
point at which data is being written and is updated only by the producer of the
data. Data is being read from tail, which is updated only by the consumer. As I
mentioned above, if data is written at interrupt time, you must be careful when
accessing head multiple times. You should either declare it as volatile or dis
able interrupts before entering race conditions.

The circular buffer runs smoothly, except when it fills up. If that happens, things
become hairy, and you can choose among different possible solutions. The short
implementation just loses data; there's no check for overflow, and if head goes
beyond tail, a whole buffer of data is lost. Some alternative implementations are
to drop the last item; overwrite the buffer tail, as prlntk does (see "How Messages
Get Logged" in Chapter 4); hold up the producer, as scullpipe does; or allocate a
temporary extra buffer to back up the main buffer. The best solution depends on
the importance of your data and other situation-specific questions, so I won't
cover it here.

204

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 205

Race Conditions

Although the circular buffer appears to solve the problem of concurrent access,
there is still the possibility of a race condition when the read function goes to
sleep. This code shows where the problem appears in short:

while (short_head == short_tail) {
interruptible_sleep_on(&short_queue);
I* ... *I

When executing this statement, it is possible that new data will arrive after the
while condition is evaluated as true and before the process goes to sleep. Infor
mation carried in by the interrupt won't be read by the process; the process goes
to sleep even though head ! = tail, and it isn't awakened until the next data
item arrives.

I didn't implement correct locking for short because the source of short_read is
included in "A Sample Driver" in Chapter 8, and at that point this discussion was
not worth introducing. Also, the data involved is not worth the effort.

While the data that short collects is not vital, and the likelihood of getting an inter
rupt in the time lapse between two successive instructions is often negligible,
sometimes you just can't take the risk of going to sleep when data is pending.

This problem is general enough to deserve special treatment and is delayed to
"Going to Sleep Without Races" later in this chapter, where I'll discuss it in detail.

It's interesting to note that only a producer and consumer situation can be
addressed with a circular buffer. A programmer must often deal with more com
plex data structures to solve the concurrent-access problem. The pro
ducer/consumer situation is actually the simplest class of these problems; other
structures, such as linked lists, simply don't lend themselves to a circular buffer
implementation.

Disabling Interrupts
A commonly used method of acquiring unique access to shared data is to call cli
to disable interrupt reporting in the processor. Whenever a data item (like a linked
list) is modified at interrupt time and by a function living in the normal computa
tional flow, interrupts must be disabled by the latter function before it touches
shared data.

The race condition in this case is between the instruction reading a shared item
and the instruction using the knowledge just acquired. For example, the following
loop may fail reading a linked list if the list is modified at interrupt time:

for (ptr = listHead; ptr; ptr = ptr->next)
/* do something*/ ;

205

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 206

Chapter 9: Interrupt Handling

An interrupt may change the value of ptr after it has been read but before it is
used. If this happens, you'll have problems as soon as you use ptr because the
current value of the pointer is no longer related to the list.

One possible solution is to disable interrupts for the duration of the critical loop.
Although the code for disabling interrupts was introduced in Chapter 2, in the sec
tion "ISA Memory," it is worth repeating it here:

unsigned long flags;
save_flags(flags);
cli();
/* critical co~e */

restore_flags(flags);

As a matter of fact, in the device methods, the simpler clil sti pair can be used
instead because you can count on interrupts being enabled when a process enters
a system call. However, you have to use the safer saveJlagsl restoreJlags solution
in a function that is called by other code, where you can't make any assumptions
about the current value of the interrupt flag.

Using Lock Variables
The third approach to shared data variables is to use locks that are accessed
through atomic instructions. Whenever one of two unrelated entities (such as an
interrupt handler and the read system call, or two processors in a Symmetric Multi
Processor computer) need to access a shared data item, it must first acquire the
lock. If the lock can't be acquired, it must be waited for.

The Linux kernel exports two sets of functions to deal with locks: bit operations
and access to the "atomic" data type.

Bit operations

It's quite common to have single-bit lock variables or to update device status flags
at interrupt time-while a process may be accessing them. The kernel offers a set
of functions that modify or test single bits atomically. Because the whole operation
happens in a single step, no interrupt can interfere.

Atomic bit operations are very fast, as they usually perform the operation using a
single machine instruction without disabling interrupts. The functions are architec
ture-dependent and are declared in <asm/bi tops. h>. They are guaranteed to
be atomic even on SMP computers and are therefore the suggested way to keep
coherence across processors.

Unfortunately, data typing in these functions is architecture-dependent as well.
Both the nr argument and the return value are unsigned long for the Alpha
and the Spare and int for the other architectures. The following list describes the
bit operations as they appear in versions 1.2 through 2.1.37. The list changed in
2.1.38, as detailed in "Bit Operations" in Chapter 17, Recent Developments.

206

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 207

Race Conditions

set_bit(nr, void *addr);
This function sets bit number nr in the data item pointed to by addr. The
function acts on an unsigned long, even though addr is a pointer to
void. ·The value returned is the previous value of the bit-0 or non-zero.

clear_bit(nr, void *addr);
The function clears the specified bit in the unsigned long datum that lives
at addr. Its semantics are the same as set_bit.

change_bit(nr, void *addr);
This function toggles the bit. Otherwise, it is identical to set_bit and clear_bit,
above.

test_bit(nr, void *addr);
This function is the only bit operation that doesn't need to be atomic; it simply
returns the current value of the bit.

When these functions are used to access and modify a shared flag, you don't have
to do anything except call them. Using bit operations to manage a lock variable
that controls access to a shared variable, on the other hand, is more complicated,
and deserves an example.

A code segment that needs to access a shared data item tries to atomically acquire
a lock using either set_bit or clear_bit. The usual implementation is shown below;
it assumes that the lock lives at bit nr of address addr. It also assumes that the bit
is O when the lock is free and non-zero when the lock is busy.

/* try to set lock*/
while (set_bit(nr, addr) != 0)

wait_for_a_while();

/* do your work*/

/* release lock, and check ... */
if (clear_bit(nr, addr) == 0)

something_went_wrong(); /* already released: error*/

The downside of accessing shared data this way is that both the contending par
ties must be able to wait. This is not easily achieved when one of the parties is an
interrupt handler.

Atomic integer operations

Kernel programmers often need to share an integer variable between an interrupt
handler and other functions. We have just seen how atomic access to bits is not
sufficient to guarantee that everything will work well (in the previous case, c/i
must be used anyway if one of the parties is an interrupt handler).

207

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 208

Chapter 9: Interrupt Handling

The need to prevent race conditions, actually, is so compelling that the kernel
developers devoted an entire header to the problem: <asm/atomic .h>. This
header is quite recent and is missing in Linux 1.2. It is therefore not available to
drivers meant to be backward compatible.

The facility offered by atomic.h is much stronger than the bit operations just
described. atomic.h defines a new data type, atomic_t, which can be accessed
only through atomic operations.

atomic_t is currently defined as int on all supported architectures. The follow
ing operations are defined for the type and are guaranteed to be atomic with
respect to all processors of an SMP computer. The operations are very fast because
they compile to a single machine instruction whenever possible.

void atomic_add(atomic_t i, atomic_t *v);
Add i to the atomic variable pointed to by v. The return value is void, as
most of the time there's no need to know the new value. This function is used
by the networking code to update statistics about memory usage in sockets.

void atomic_sub(atomic_t i, atomic_t *v);
Subtract i from *v. The i argument for both these functions is declared as
int in recent 2.1 kernels, but this change is mainly aesthetic and shouldn't
affect source code.

void atomic_inc(atomic_t *v);
void atomic_dec(atomic_t *v);

Increment or decrement an atomic variable.

int atomic_dec_and_test(atomic_t *v);
This function was added in version 1.3.84 and is useful for keeping track of
usage counts. The return value is 1 if the variable *v is O after being decre
mented, 0 otherwise.

As suggested above, atomic_t data items must be accessed only through these
functions. If you pass an atomic item to a function that expects an integer argu
ment, you'll get a compiler warning. Needless to say, you are allowed to read the
current value of an atomic item and to cast atomic variables to other types.

Going to Sleep Without Races
The one race condition that has been omitted so far in this discussion is the prob
lem of going to sleep. It is a problem far more general than interrupt-driven 1/0,
and an efficient solution requires a little knowledge of the internals of sleep_on.

This particular race condition occurs between the time the condition is checked
for going to sleep and the actual invocation of sleep_on. This test case is the same
statement used above, but I feel it is worth showing once again:

208

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 209

Race Conditions

while (short_head == short_tail) {
interruptible_sleep_on(&short_queue);
/* ... * I

If the comparison and the going to sleep must be performed safely, first disable
interrupt reporting and then test the condition and go to sleep. Thus, the variable
being tested in the comparison cannot be modified. The kernel allows the process
to go to sleep after issuing c/i. The kernel simply reenables interrupt reporting just
before calling schedule, after inserting the process into its wait queue.

The code examples introduced here use a while loop, which performs signal
handling. If a blocked signal is reported to the process, interruptible_sleep_on
returns, and the test in the while statement is performed again. The following is
one possible implementation:

while (short_head == short_tail) {
cli ();
if (short_head == short_tail)

interruptible_sleep_on(&short_queue);
sti ();
/* signal decoding */

If an interrupt happens after the cli, the interrupt remains pending while the cur
rent process is being put to sleep. By the time the interrupt is eventually reported
to the processor, the process is already asleep and can be awakened safely.

In this case, I used cli/sti because the sample code is designed to live within the
read method; the safer saveJlags, cli, and restoreJlags functions should be used
otherwise.

If you don't want to disable interrupt reporting while going to sleep, there is
another way to perform the same job (one that Linus likes a lot). Anyway, you can
skip the following discussion if you'd like, since it's slightly elaborate.

The idea is that the process can add itself to the wait queue, declare itself to be
sleeping, and then perform its tests. This is the typical implementation:

struct wait_queue wait= { current, NULL};

add_wait_queue(&short_queue, &wait);
do {

current->state = TASK_INTERRUPTIBLE;
schedule();

while ((short_head == short_tail)
&& ! (current->signal & ~current->blocked));

remove_wait_queue(&short_queue, &wait);

if (current->signal & ~current->blocked) /* a signal arrived*/
return -ERESTARTSYS;

209

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 210

Chapter 9: Interrupt Handling

This code is somewhat like an unrolling of the internals of sleep_on. The wait
variable is explicitly declared because it is needed to put a process to sleep; this
fact was explained in "Wait Queues," in Chapter 5. This example introduced sev
eral new symbols:

current->state
This field is a hint for the scheduler. Whenever the scheduler is invoked, it
looks at the state field of all processes to decide what to do. Each process is
free to modify its state, but the change won't take effect until the scheduler
runs.

#include <linux/sched.h>
TASK_RUNNING
TASK_INTERRUPTIBLE
TASK_UNINTERRUPTIBLE

These symbolic names represent the most common values of cur
rent->s ta te. TASK_RUNNING means that the process is running, and the
other two mean that it is sleeping.

void add_wait_queue(struct wait_queue ** p,
struct wait_queue * wait)

void remove_wait_queue(struct wait_queue ** p,
struct wait_queue * wait)

void __ add_wait_queue(struct wait_queue ** p,
struct wait_queue * wait)

void __ remove_wait_queue(struct wait_queue ** p,
struct wait_queue * wait)

Insert and remove a process from a wait queue. The wait argument must
point into the process's stack page. The functions with the leading under
scores are faster but can only be called when interrupts are disabled (for
example, from a fast interrupt handler).

With this background, let's look at what happens when an interrupt arrives. The
handler calls wake_up_interruptible (&short_queue); for Linux, this
means "set state to TASK_RUNNING." Therefore, if an interrupt is reported
between the while condition and the call to schedule, the task will already have
been marked as running, with no data loss.

If, on the other hand, the process is still "interruptible," schedule leaves it sleeping.

It's interesting to note that the wake_up call doesn't remove the process from the
wait queue. It's sleep_on that adds and removes.the process from the wait queue.
The code must call add_wait_queue and remove_wait_queue explicitly, because
sleep_on hasn't been used in this case.

210

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 211

Version Dependencies of IRQ Handling

Version Dependencies of IRQ Handling
Not all of the code introduced in this chapter is backward portable to Linux 1.2. I
outline here the main differences and suggest how to deal with them. short actu
ally compiles and runs equally well with 2.0.x and 1.2.13 kernels.

Different Prototypes for request_irq
The way of passing arguments to request_irq that I've used throughout this chap
ter was introduced only with version 1.3.70 of the kernel, when shared handlers
appeared.

Previous kernel versions didn't require a dev _id argument, and the prototype
was slightly simpler:

int request_irq(unsigned int irq,
void (*handler) (int, struct pt_regs *),
unsigned long flags, const char *device);

The new semantics can easily be forced onto the old prototype by using the fol
lowing macro definitions (note that free_irq also had no dev _id argument in
early versions):

#if LINUX_VERSION_CODE < VERSION_CODE(l,3,70)
/* the preprocessor is able to handle recursive definitions*/

define request_irq(irq,fun,fla,nam,dev) request_irq(irq,fun,fla,nam)
define free_irq(irq,dev) free_irq(irq)
#endif

The macros just discard the extra dev argument.

The difference in the handler prototypes is best taken care of with an explicit
#if/#else/#endif statement. If you use the dev_id pointer, the conditional
case for old kernels could declare a NULL variable, and the body of the handler
should be able to deal with a NULL device pointer.

One of the short examples exemplifies the idea:

#if LINUX_VERSION_CODE < VERSION_CODE(l,3,70)
void short_sh_interrupt(int irq, struct pt_regs *regs)
{

void *dev_id = NULL;
#else
void short_sh_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{

#endif

211

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 212

Chapter 9: Interrupt Handling

Probing the IRQ Line
The kernel started exporting the probing functions with version 1.3.30. If you want
to port your driver to older kernels, you have to implement do-it-yourself probing.
The functions themselves exist in all kernels back to 1.2, but they were not avail
able to modularized drivers.

There aren't any other problems porting interrupt handlers.

Quick Reference
These symbols, related to interrupt management, were introduced in this chapter:

#include <linux/sched.h>
int request_irq(unsigned int irq, void (*handler)(),
unsigned long flags, canst char *device, void *dev_id);
void free_irq(unsigned int irq, void *dev_id);

These calls are used to register and unregister an interrupt handler. Kernels
older than 2.0 lack the dev _id argument.

SA_INTERRUPT
SA_SHIRQ
SA_SAMPLE_RANDOM

Flags for request_irq. SA_INTERRUPT requests installation of a fast handler
(as opposed to a slow one). SA_SHIRQ installs a shared handler, and the third
flag asserts that interrupt timestamps can be used to generate system entropy.

/proc/interrupts
/proc/stat

These filesystem nodes are used to report information about hardware inter
rupts and installed handlers.

unsigned long probe_irq_on(void);
int probe_irq_off(unsigned long);

These functions are used by the driver when it has to probe to determine
what interrupt line is being used by a device. The result of probe_irq_on must
be passed back to probe_irq_off after the interrupt has been generated. The
return value of probe_irq_offis the detected interrupt number.

void disable_irq{int irq);
void enable_irq(int irq);

212

A driver can enable and disable interrupt reporting. If the hardware tries to
generate an interrupt while interrupts are disabled, the interrupt is lost forever.
Calling these functions from a top-half handler has no effect. A driver using a
shared handler must not use these functions.

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 213

#include <linux/interrupt.h>
void mark_bh(int nr);

This function marks a bottom half for execution.

#include <asm/bitops.h>
set_bit(nr, void *addr);
clear_bit(nr, void *addr);
change_bit(nr, void *addr);
test_bit(nr, void *addr);

Quick Reference

These functions atomically access bit values; they can be used for flags or lock
variables. Using these functions prevents any race condition related to concur
rent access to the bit.

#include <asm/atomic.h>
typedef int atomic_t;
void atomic_add(atomic_t i, atomic_t *v);
void atomic_sub(atomic_t i, atomic_t *v);
void atomic_inc(atomic_t *v);
void atomic_dec(atomic_t *v);
int atomic_dec_and_test(atomic_t *v);

These functions atomically access integer variables. To achieve a clean com
pile, the atomic_t variables must be accessed only through these functions.

#include <linux/sched.h>
TASK_RUNNING
TASK_INTERRUPTIBLE
TASK_UNINTERRUPTIBLE

The most commonly used values for current->state. They are used as
hints for schedule.

void add_wait_queue(struct wait_queue ** p,
struct wait_queue * wait)

void remove_wait_queue(struct wait_queue ** p,
struct wait_queue * wait)

void __ add_wait_queue(struct wait_queue ** p,
struct wait_queue * wait)

void __ remove_wait_queue(struct wait_queue ** p,
struct wait_queue * wait)

The lowest-level functions that use wait queues. The leading underscores indi
cate a lower-level functionality, in which case interrupt reporting must already
be disabled in the processor.

213

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 214

CHAPTER TEN

}UDICIOUS USE
OF DATA TYPES

Before we go on to more advanced topics, we need to stop for a quick note
on portabil ity issues. The difference between versions 1.2 and 2.0 of Linux
lies in the addition of rnultiplarform capabilities; as a result, most source

level portability problems have been eliminated. This means that a serious Linux
driver should be mulriplatform as well.

But a core issue with kernel code is being able to both access data items of
known length (for example, filesystem data structures or registers on device
boards) and to explo it the capabili ties of different processors (32-bit and 64-bit
architectures, and possibly 16-bit as well).

Several problems encountered by kernel developers while porting x86 code to
new architectures have been related to incorrect data typing. Adherence to strict
data typing and compiling with the - Wall - \Vstrict-prototypes flags can prevent
most bugs.

Data types used by kernel data are divided into three main classes: standard C
types like i n t, explicitly sized types like u32, and interface-specific types, like
pid_ t. We are going to see when and how each of the three typing classes
sho uld be used. The final sections of the chapter talk about some other typical
problems you might run into when poning driver code from the x86 to other plat
forms.

If you follow the guidelines I provide, your driver will compile and run even on
platforms \vhere you are unable to rest it.

Use of Standard C Types
While most programmers are accustomed to freely using standard types like int
and long, writing device drivers requires some care to avoid typing confl icts and
obscure bugs.

2 14

CHAPTER TEN

JUDICIOUS USE
OF DATA TYPES

on portability issues. The difference between versions 1.2 and 2.0 of Linux
lies in the addition of multiplatform capabilities; as a result, most source-

level portability problems have been eliminated. This means that a serious Linux
driver should be multiplatform as well.

Be we go on to more advanced topics, we need to stop for a quick note

But a core issue with kernel code is being able to both access data items of
known length (for example, filesystem data structures or registers on device
boards) and to exploit the capabilities of different processors (32-bit and 64-bit
architectures, and possibly 16-bit as well).

Several problems encountered by kernel developers while porting x86 code to
new architectures have been related to incorrect data typing. Adherencetostrict
data typing and compiling with the —Wall —Wstrict-prototypes flags can prevent
most bugs.

Data types used by kernel data are divided into three main classes: standard C
types like int, explicitly sized types like u32, and interface-specific types, like
pid_t. We are going to see when and howeach of the three typing classes
should be used. The final sections of the chapter tall about some other typical
problems you might run into when porting driver code from the x86 to otherplat-
forms.

If you followthe guidelines I provide, your driver will compile and run even on
platforms where you are unable to testit.

Use ofStandard C Types
While most programmers are accustomed to freely using standard types like int
and long, writing device drivers requires some care to avoid typing conflicts and
obscure bugs.

Petitioners Microsoft Corporation and HPInc.- Ex. 1019, p. 214

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 215

Use of Standard C Types

The problem is that you can't use the standard types when you need "a 2-byte
filler" or "something representing a 4-byte string" because the normal C data types
are not the same size on all architectures. For example, long integers and point
ers are a different size on the x86 than on the Alpha, as shown by the following
screen snapshots:

morgana% ./datasize
system/machine: Linux i486
sizeof(char) = 1
sizeof(short) = 2
sizeof(int) = 4
sizeof(long) = 4
sizeof(longlong) 8
sizeof(pointer) = 4

wolf% ./datasize
system/machine: Linux alpha
sizeof(char) = 1
sizeof(short) = 2
sizeof(int) = 4
sizeof(long) = 8
sizeof(longlong) 8
sizeof(pointer) = 8

sandra% ./datasize
system/machine: Linux spare
sizeof(char) = 1
sizeof(short) = 2
sizeof(int) = 4
sizeof(long) = 4
sizeof(longlong) 8
sizeof(pointer) = 4

The datasize program is a short program available in the files provided on the
O'Reilly FTP site, in the directory misc-progs.

While you must be careful when mixing int and long, sometimes there are good
reasons to do so. One such situation is for memory addresses, which are special as
far as the kernel is concerned. Although conceptually addresses are pointers,
memory administration is better accomplished by using an integer type; the kernel
treats physical memory like a huge array, and a memory address is just an index
into the array. Furthermore, a pointer is easily dereferenced, and using integers for
memory addresses prevents them from being dereferenced, which is what you
want. Therefore, addresses in the kernel are unsigned long, exploiting the fact
that pointers and long integers are always the same size, at least on all the plat
forms curently supported by Linux. We'll have to wait and see what happens
when Linux is ported to a platform breaking this rule.

215

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 216

Chapter 1 O: Judicious Use of Data Types

Assigning an Explicit Size to Data Items
Sometimes kernel code requires data items of a specific size, either to match
binary structures* or to align data within structures by inserting "filler" fields.

The kernel offers the following data types for this purpose, all declared in
<asm/ types. h>, which in turn is included by <linux/ types. h>:

us; I* unsigned byte (8 bits) *I
ul6; I* unsigned word (16 bits) *I
u32; I* unsigned 32-bit value*/
u64; I* unsigned 64-bit value*/

These data types are accessible only from kernel code (i.e., __ KERNEL __ must
be defined before including <linux/types.h>). The corresponding signed
types exist, but are rarely needed; just replace u with s in the name if you need
them.

If a user-space program needs to use these types, it can prefix the names with a
double underscore: __ us and the other types are defined independent of
__ KERNEL __ . If, for example, a driver needs to exchange binary structures with
a program running in user space by means of ioctl, the header files should declare
32-bit fields in the structures as __ u32.

It's important to remember that these types are Linux-specific, and using them hin
ders porting software to other Unix flavors. There are nonetheless situations where
explicit data sizing is needed, and the standard header files (the ones you find on
every Unix system) don't declare suitable data types.

You might also note that sometimes the kernel uses conventional types, like
unsigned int, for items whose dimension is architecture-independent. This is
usually done for backward compatibility. When u32 and friends were introduced
in version 1.1.67, the developers couldn't change existing data structures to the
new types, because the compiler issues a warning when there is a type mismatch
between the structure field and the value being assigned to it.t Linus didn't expect
the OS he wrote for his own use to become multi-platform; as a result, old struc
tures are sometimes loosely typed.

* This happens when reading partition tables, when executing a binary file, or when
decoding a network packet.
t As a matter of fact, the compiler signals type inconsistencies even if the two types are just
different names for the same object, like unsigned long and u32 on the PC.

216

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 217

Interface-Specific Types

Interface-Specific Types
Most commonly used data types in the kernel have their own typedef statement,
thus preventing any portability problems. For example, a process identifier (pid) is
usually pid_t instead of int. Using pid_t masks any possible difference in the
actual data typing. I use the expression "interface-specific" to refer to the program
ming interface to specific data items.

Other data items that belong to a specific "standard" type can be considered inter
face-specific as well. A jiffy count, for instance, is always unsigned long, inde
pendent of its actual size-would you like using j iffy_ t every so often? I'm
concentrating here on the first class of interface-specific types, the ones ending in
_t.

The complete list of _t types appears in <linux/types .h>, but the list is rarely
useful. When you need a specific type, you'll find it in the prototype of the func
tions you need to call or in the data structures you use.

Whenever your driver uses functions that require such "custom" types and you
don't follow the convention, the compiler issues a warning; if you use the - Wall
compiler flag and are careful to remove all the warnings, you can feel confident
that your code is portable.

The main problem with _t data items is that when you need to print them, it's not
always easy to choose the right printk or printf format, and warnings you resolve
on one architecture reappear on another. For example, how would you print a
size_t which is unsigned long on some platforms and unsigned int on
some other?

Whenever you need to print some interface-specific data, the best way to do it is
by casting the value to the biggest possible type (usually long or unsigned
long), and then printing it through the corresponding format. This kind of tweak
ing won't generate errors or warnings because the format matches the type, and
you won't lose data bits because the cast is either a null operation or an extension
of the item to a bigger data type.

In practice, the data items we're talking about aren't usually meant to be printed,
so the issue applies only to debugging messages. Most often, the code needs only
to store and compare the interface-specific types, in addition to passing them as
arguments to library or kernel functions.

Although _t types are the correct solution for most situations, sometimes the right
type doesn't exist. This happens for some old interfaces, which haven't yet been
cleaned up.

The one ambiguous point I've found in the kernel headers is data typing for 1/0
functions, which is loosely defined (see the section "Platform Dependencies" in

217

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 218

Chapter 10: Judicious Use of Data Types

Chapter 8, Hardware Management). The loose typing is mainly there for historical
reasons, but it can create problems when writing code. Personally, I often get into
trouble by swapping the arguments to out functions; if port_t were defined, the
compiler would pinpoint these errors.

Other Portability Issues
In addition to data typing, there are a few other software issues to keep in mind
when writing a driver if you want it to be portable across Linux platforms:

Time interoals
When dealing with time intervals, don't assume that there are 100 jiffies per
second. Although this is currently true for Linux-x86, not every Linux platform
runs at lO0Hz. The assumption can be false even for the x86 if you play with
the HZ value, and nobody knows what will happen in future kernels. When
ever you calculate time intervals using jiffies, scale your times using HZ. For
example, to check against a timeout of half a second, compare the elapsed
time against HZ/ 2. More generally, the number of jiffies corresponding to
msec milliseconds is always msec*HZ/1000. This detail had to be fixed in
many network drivers when porting them to the Alpha; some drivers originally
designed for the PC included an explicit jiffy value for the timeout, but the
Alpha has a different HZ value.

Page size

218

When playing games with memory, remember that a memory page is
PAGE_SIZE bytes, not 4KB. Assuming that the page size is 4KB and hard
coding the value is ·a common error among PC programmers-the Alpha has
pages twice as big. The relevant macros are PAGE_SIZE and PAGE_SHIFT.
The latter contains the number of bits to shift an address to get its page num
ber. The number currently is 12 or 13, for 4KB and 8KB pages. The macros are
defined in <asm/page. h>.

Let's look at a non-trivial situation. If a driver needs 16KB for temporary data,
it shouldn't specify an order of "2" to get_free_pages. You need a portable
solution. Using an #ifdef __ alpha __ conditional currently works, but it
only accounts for known platforms and would break when another architec
ture is supported. I'd suggest that you use this code instead:

buf = get_free__pages(GFP_KERNEL, 14 - PAGE_SHIFT, 0 /*dma*/);

Or, even better:

int order= (14 - PAGE_SHIFT > 0) ? 14 - PAGE_SHIFT: 0;
buf = get_free__pages(GFP_KERNEL, order, 0 /*dma*/);

Both solutions depend on the knowledge that 16KB is 1<<14. The quotient of
two numbers is the difference of their logarithms (orders), and both 14 and

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 219

Other Portabiltty Issues

PAGE_SHIFT are orders. The second implementation is better because it pre
vents passing a negative order to get_free_pages; the value of order is calcu
lated at compile time with no overhead, and the implementation shown is a
safe way to allocate memory for any power of two, independent of
PAGE_SIZE.

Byte order
Be careful not to make assumptions about byte ordering. Whereas the PC
stores multi-byte values low-byte first ("little endian"), most high-level plat
forms work the other way ("big endian"). While it's true that good programs
never depend on byte ordering, sometimes a driver needs to build an integer
number out of single bytes or the opposite. In that case, the code should
include <asm/byteorder. h> and should check whether __ BIG_ENDIAN
or __ LITTLE_ENDIAN is defined by the header. The leading underscores are
missing from the Linux-1.2 header file. You can fix this incompatibility by
including sysdep.h from the scull source after <asm/byteorder. h>.

When the byte-order dependency is related to network transmission, the con
version of 16-bit and 32-bit values should be performed using one of the fol
lowing functions, defined in the same <asm/byteorder. h> header:

unsigned long
unsigned short
unsigned long
unsigned short

ntohl(unsigned long);
ntohs(unsigned short);
htonl(unsigned long);
htons(unsigned short);

These functions, which should be well-known to network programmers, take
their name from the phrase "Network TO Host Long" and its equivalents.

Version 2.1.10 of the kernel added cpu-to-little-endian and cpu-to-big-endian
conversions, and 2.1.43 expanded on this topic. The new utility functions are
described in "Conversion Functions," in Chapter 17, Recent Developments.

Data alignment
The last problem worth considering when writing portable code is how to
access unaligned data-for example, how to read a 4-byte value stored at an
address that isn't a multiple of 4 bytes. PC users often access unaligned data
items, but not every architecture permits it. The Alpha, for instance, generates
an exception every time the program tries unaligned data transfers. If you
need to access unaligned data, use the following macros:

#include <asm/unaligned.h>
get_unaligned(ptr);
put_unaligned(val, ptr);

These macros are typeless and work for every data item, whether it's 1, 2, 4,
or 8 bytes long. The macros are missing from kernels prior to 2.0, but sysdep.h
defines them for kernel 1.2.

219

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 220

Chapter 10: Judicious Use of Data Types

A general rule is to be suspicious of explicit constant values. Usually the code has
been parameterized using preprocessor macros to generalize it. Although I can't
list every parameterized value here, you'll find the correct hints in the header files.

Unfortunately, however, there are some places where things don't work too well
yet; for example, the handling of data sectors on disk. Historically, Linux has been
able to deal only with .SKB disk sectors, but fortunately every existing device fits
this constraint. The code is currently moving towards the ability to support differ
ent sector sizes, but it's hard to find all the places where the half-kilobyte assump
tion is hardcoded in. The sector-size problem is described further in Chapter 12,
Loading Block Drivers.

Quick Reference
The following symbols were introduced in this chapter:

#include <linux/types.h>
typedef u8;
typedef u16;
typedef u32;
typedef u64;

These types are guaranteed to be 8-, 16-, 32-, and 64-bit unsigned integer val
ues. The equivalent signed types exist as well. In user space, you can refer to
the types as __ u8, __ ul6, etc.

#include <asm/page.h>
PAGE_SIZE
PAGE_SHIFT

These symbols define the number of bytes per page for the current architec
ture and the number of bits in the page offset (12 for 4KB pages and 13 for
8KB pages).

#include <asm/byteorder.h>
__ LITTLE_ENDIAN
__ BIG_ENDIAN

Only one of the two symbols is defined, depending on the architecture. Ver
sion 1.3.18 and older declared the symbols without the leading underscores
(thus conflicting with some of the network headers).

#include <asm/byteorder.h>
unsigned long ntohl(unsigned long);
unsigned short ntohs(unsigned short);
unsigned long htonl(unsigned long);

220

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 221

Quick Reference

unsigned short htons(unsigned short);
These functions convert long and short data between the network byte order
and the host byte order.

#include <asm/unaligned.h>
get_unaligned(ptr);
put_unaligned(val, ptr);

Some architectures need to protect unaligned data access using these macros.
The macros expand to normal pointer dereferencing for architectures that per
mit you to access unaligned data.

221

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 222

CHAPTER ELEVEN

KERNELDAND

ADVANCED
MODULARIZATION

I
n this second part of Lhe book, we'll be discussing more advanced topics than

we've seen up to now. Once again, we'll start w ith modularization. The
introduction to modularization in Chapter 2, Building and R111111i11g Modules, is

only part of the story; the modules package (whose latest versions are called
111od11iils instead) supports some advanced features that are more complex than

we needed earlier to get a basic driver up and running.

This chapter talks about the kerneld program, version support inside modules (a

facility meant to save you from recompiling your modules each time you upgrade
your kernel), and support for data persistence across unload and reload of a mod
ule. This last capability is available only with version 2.0.0 or later of the modules
package.

Loading Modules on Demand
To make it easier for users to load and unload modules, and to avoid \vasting ker

nel memo1y by keeping drivers in core when they are not in use, Linux offers sup
po1t for automatic loading and unloading of modules. (This support was missing

from versions 1.2 and earlier.) To exploit this feature, you need to enable kerneld
support when you configure the kernel before you compile it. The ability to
request additional modules when they are needed is particularly useful for drivers
using module stacking.

The idea behind ken1eld is simple, yet effective. Whenever the kernel tries to

access unavailable resources, it notifies the user p rogram instead of simply return
ing an error. If the daemon succeeds in retrieving the resource, the kernel contin

ues working; otherw ise, it returns the error. Virtually any resource can be
requested this way: char and block drivers, l ine disciplines, network protocols, etc.

The mechanism used to achieve demand loading is a modified message queue,
used to pass textual information from the kernel to user space and vice versa . For

222

CHAPTER ELEVEN

KERNELD AND

ADVANCED

MODULARIZATION
n this secondpart of the book, we'll be discussing more advanced topics than
we've seen up to now. Once again, we'll start with modularization. The
introduction to modularization in Chapter 2, Building and Running Modules, is

only part of the story; the modules package Gvhose latest versions are called
modutils instead) supports some advanced features that are more complex than
we neededearlier to get a basic driver up and running.

This chapter talks about the kerveld program, version support inside modules (a
facility meant to save you from recompiling your modules each time you upgrade
your kernel), and support for data persistence across unload and reload of a mod-
ule. This last capability is available only with version 2.0.0 orlater of the modules
package.

Loading Modules on Demand
To makeit easier for users to load and unload modules, and to avoid wasting ker-
nel memory by keeping drivers in core when they are not in use, Linux offers sup-
port for automatic loading and unloading of modules. (This support was missing
from versions 1.2 and earlier.) To exploit this feature, you need to enable kerneld
support when you configure the kernel before you compile it. The ability to
request additional modules when they are needed is particularly useful for drivers
using module stacking.

The idea behind kerneld is simple, yet effective. Whenever the kernel tries to
access unavailable resources, it notifies the user program instead of simply return-
ing an error. If the daemon succeeds in retrieving the resource, the kernel contin-
ues working; otherwise, it returns the error. Virtually any resource can be
requested this way: char and block drivers, line disciplines, network protocols, etc.

The mechanism used to achieve demand loading is a modified message queue,
used to pass textual information from the kernel to user space and vice versa. For

ty ho

Petitioners Microsoft Corporation and HP Inc.- Ex. 1019, p. 222

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 223

Loading Modules on Demand

demand loading to work correctly, the user-level daemon must be properly config
ured, and the kernel code must be prepared to wait for needed modules.

A typical example of a driver that would benefit from demand loading is a generic
frame-grabber driver. It can support several different peripherals, while presenting
the same external behavior. The distribution will include code for all the sup
ported boards, but only the code for the particular board being used is needed at
run time. The developers can thus choose to split the implementation into a gen
eral-purpose module defining the software interface and a set of hardware
dependent modules for the low-level operations. After the general-purpose
module has detected the type of grabber installed in the system, it can request the
correct module for that grabber.

The User-Level Side
The kerneld program lives in user space and is responsible for handling requests
for new modules from the kernel. It connects to the kernel by creating its own
message queue and then goes to sleep waiting for requests.

When a module is requested, the daemon receives a string from the kernel and
tries to resolve it. The string can be one of two kinds:

• The name of an object file, like the typical argument to insmod. floppy is an
example of such a name; in this case, the daemon looks for the file .floppy.a
and loads it.

• A more generic identifier, like block-major-2, which specifies the block
driver with major number 2-the floppy driver once again. This kind of string
is the most common, because the kernel usually knows only the numeric
identifier of a resource. When you try to use a block device, for example, the
kernel knows the device only by its major number; it would be a waste to
implement a different hook for each block driver just to be able to ask for
them by name.

Clearly, in the latter case, there must some way to map the module's "id" to its
actual name. This association is not performed by kerneld itself, but rather by
modprobe, which is called by kerneld. modprobe, helped by depmod, deals with
the details of module loading; kerneld itself is responsible only for communicating
with the kernel and spawning external tasks. All of these programs are distributed
within the modules package. depmod is a utility that creates Makefile-like depen
dencies for modules, while modprobe is an alternative to insmod that can correctly
load a stack of modules. For example, the PPP module stacks on (in other words,
uses symbols from) slhc, the "Serial Line Header Compression" module. insmod
PPP fails unless slhc is already loaded; modprobe PPP, on the other hand, succeeds,
provided that depmod -a was invoked to build the dependency rules after the
modules were installed.

223

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 224

Chapter 11: Kerneld and Advanced Modularization

Another difference between insmod and modprobe is that the latter doesn't look
for modules in the current directory, but only in the default directories under
/Uh/modules. This is because the program is meant to be a system utility rather
than an interactive tool; you can add your own directories to the default set by
specifying them in /etc/modules.con/.

/etc/modules.conj is a text file used to customize the modules package. It is the file
responsible for associating names like block-maj or-2 to floppy. Note that
versions of the modules package prior to 2.0 looked for /etc/conj.modules instead;
the name is still supported for compatibility reasons, but deprecated in favor of the
more standardized name modules.conj

The syntax of modules.con/is well described by the man page for the depmod and
modprobe commands; I feel, nonetheless, that it's worth mentioning the meaning
of a few important directives here. I'll use the following lines as an example:

sample lines for /etc/modules.conf
keep
path[misc]=-rubini/driverBook/src/*
options short irq=l
alias ethO ne

The first line shown is a comment; path [misc] states where to look for miscella
neous modules-and keep says to add custom paths to the default paths instead
of replacing them. The option directive says to always specify irq=l when
loading short, and the alias line says that when ethO needs to be loaded, the
relevant file is called ne.o (the driver for the ne2000 interface). Lines like alias
block-major-2 floppy are not actually needed, because modprobe already
knows all the official major numbers for devices and these "foreseeable" alias
commands are predefined in the program.

A correct setup of module demand loading, then, reduces to adding lines to
/etc/modules.conj, as kerneld relies on modprobe for the actual loading operation.

The Kernel-Level Side

In order to request loading and unloading of a module, kernel code can use the
functions defined in <linux/kerneld.h>, all of which are inline definitions that
do the actual work by passing arguments to kerneld_send. This function is a flexi
ble engine for communication with kerneld and lives in ipclmsg.c, where you can
browse it if you are interested.

I won't go into the details of kerneld_send here, because the following calls,
defined in <linux/kerneld.h>, are more than enough to enable you to exploit
demand loading:

224

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 225

Loading Modules on Demand

int request_module(const char *name)
This function can be called whenever a module is needed. The name argu
ment is either the filename of the module or an id-type string that will be
resolved in user space. The function returns after loading has completed suc
cessfully (or has failed). request_module can be invoked only from the context
of a process, because the current process will be put to sleep waiting for the
module to be loaded. Any module that is demand loaded is automatically
unloaded shortly after its usage count drops to zero.

int release_module(const char *name, int waitflag)
Ask for immediate unloading of a module. The wai tf lag, if not zero, says
that the function must wait for unload to terminate before returning. If wait
f lag is zero, the function can be called at interrupt time-for what it's worth.

int delayed_release_module(const char *name)
Ask for delayed module unloading. The function always returns immediately.
Its effect is . that the module name is unloaded shortly after its usage count
drops to zero, even if it was not being loaded by kerneld.

int cancel_release_module(const char *name)
This function cancels the effect of delayed_release_module, without preventing
automatic unloading of demand-loaded modules, at least in the current imple
mentation. It's unlikely you'll need this function, which is mentioned here
mainly for completeness.

The return value of kerneld_send, and thus of all the functions just listed, is nega
tive if errors are detected in kernel space. If everything goes well in the kernel, the
return value is set to the exit value of the user-space program performing the
required action. The exit value is zero for success and a number between 1 and
255 for an error.

The good news with kerneld_send is that the function exists (and is exported to
modules) even in kernels configured for no kerneld support; it just returns
-ENOSYS. A module writer can therefore always call the functions shown, unless
you run kernel 1.2, because all this machinery was introduced in 1.3.57.

Let's now try to use the demand-loading functions in practice. To this end, we'll
use two modules called master and slave, distributed in the directory misc
modu/es, in the source files provided on the O'Reilly FTP site. We'll also use
slaveD.o to test delayed unloading, and s/aveH.o to load the module by hand and
unload it automatically.

In order to run this test code without installing the modules, I added the following
lines to my own /etc/modules.conf.

keep
path[misc)=~rubini/driverBook/src/misc-modules

225

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 226

Chapter I 1: Kerneld and Advanced Modularization

The slave modules are just empty files, and the master module looks like the fol
lowing:

#include <linux/kerneld.h>

int init_module(void)

int r[3); /*results*/

r[0)=request_module("slave");
r[l)=request_module("slaveD"};
r[2J=request_module("unexists"};
printk("master: loading results are %i, %i, %i\n",

r[0) ,r[l) ,r[2)};
return 0; /*success*/

void cleanup_module(void}
{

int r[4); /*results*/

r[0)=release_module("slave", 1 /*wait*/};
r[l)=release_module("slaveH", 1 /*wait*/};
r[2)=delayed_release_module("slaveD"};
r[3J=release_module("unexists", 1 /*wait*/};
printk("master: unloading results are %i, %i, %i, %i\n",

r[0) ,r[l) ,r[2) ,r[3)};

At load time, master tries to load two modules and one that doesn't exist. The
printk messages appear on the console unless you've changed the console
loglevel. This is what happens in a system configured for kerneld support when
the daemon is active:

morgana.root# depmod -a
morgana.root# insmod master
master: loading results are 0, 0, 255
morgana.root# cat /proc/modules
slaveD 1 0 (autoclean}
slave 1 0 (autoclean}
master
isofs

1
5

0
1 (autoclean)

Both the return value from request_module and the /proc/modules file (described
in "Initialization and Shutdown" in Chapter 2) show that the slave modules have
been correctly loaded. The return value of 255 for unexists, on the other hand,
means that the user program failed with exit code 255 (or -1, since it's one byte
only).

226

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 227

Version Control in Modules

We'll see shortly what happens at unload time, but first let's load slaveH by hand:

morgana.root# insmod slaves
morgana.root# cat /proc/modules
slaveH 1 0
slaveD 1 0 (autoclean)
slave 1 0 (autoclean)
master 1 0
isofs 5 1 (autoclean)
morgana.root# :rmmod master
master: unloading results are 0, 0, 0, 255
morgana.root# cat /proc/modules
slaveD 1 0 (autoclean)
isofs 5 1 (autoclean)
morgana.root# sleep 60; cat /proc/modules
isofs 5 1 (autoclean)

The result shows that everything but the unloading of unexists went well, and
slaveD was unloaded after some time.

Despite the various facilities offered, you '11 find that most of the time
request_module will suffice for your needs, without requiring you to deal with
module unloading; in fact, unloading actually happens by default for unused mod
ules. Most of the time, you won't even need to check the function's return value,
because the module is needed for some functionality it offers. The following
implementation is more convenient than checking the return value of
request_module.

if ((ptr = look_for_feature()) == NULL) I* if feature is missing */
request_rnodule(rnodname); /* try lo load it*/

if ((ptr = look_for_feature()} == NULL) I* if still missing */
return -ENODEV; /* error*/

Version Control in Modules
One of the main problems with modules is their version dependency, which was
introduced in "Version Dependency," in Chapter 2. The need to recompile the
module against the headers of each version being used can become a real pain
when you run several custom modules, and recompiling is not even possible if
you run a commercial module distributed in binary form.

Fortunately, the kernel developers found a flexible way to deal with version prob
lems. The idea is that a module is incompatible with a different kernel version
only if the software interface offered by the kernel has changed. The software
interface, then, can be represented by a function prototype and the exact defini
tion of all the data structures involved in the function call. Finally, a CRC algorithm

227

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 228

Chapter 11: Kerneld and Advanced Modularization

can be used to map all the information about the software interface to a single
32-bit number.•

The issue of version dependence is thus handled by mangling the name of each
symbol exported by the kernel to include the checksum of all the information
related to that symbol. This information is obtained by parsing the header files and
extracting the information from them. This facility is optional and can be enabled
at compilation time.

For example, the symbol printk is exported to modules as something like
printk_R12345678 when version support is enabled, where 12345678 is the
hex representation of the checksum of the software interface used by the function.
When a module is loaded into the kernel, insmod (or modprobe) can accomplish
its task only if the checksum added to each symbol in the kernel matches the one
added to the same symbol in the module.

But let's see what happens in both the kernel and the module when version sup
port is enabled:

• In the kernel itself, the symbol is not modified. The linking process happens
in the usual way, and the symbol table of the vmlinux file looks the same as
before.

• The public symbol table is built using the versioned names, and this is what
appears in lproc/ksyms.

• The module must be compiled using the mangled names, which appear in the
object files as undefined symbols.

• The loading program matches the undefined symbols in the module with the
public symbols in the kernel, thus using version information.

The previous scenario is, however, valid only if both the kernel and the module
are built to support versioning; if either one uses the original symbol names, ins
mod drops the version information and tries to match the kernel version declared
by the module and the one exported by the kernel, in the way described in "Ver
sion Dependency" in Chapter 2.

Using Version Support in Modules
While kernel code is already prepared to (optionally) export versioned symbols,
the module source needs to be prepared to support the option. Version control
can be inserted in one of two places: in the Makefile or in the source itself. Since
the documentation of the modules package describes how to do it in the Makefile,

* Actually, the incompatibility between SMP and non-SMP modules isn't detected by the
CRC algorithm, because a lot of interface functions are inline and compile differently on
SMP and non-SMP machines, even if they feature the same checksum. You must be very
careful not to mix SMP modules with conventional modules.

228

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 229

Version Control in Modules

I'll show you how to do it in the C source. The master module used to demon
strate how kerneld works is able to support versioned symbols. The capability is
automatically enabled if the kernel used to compile the module exploits version
support.

The main facility used to mangle symbol names is the header
<linux/modversions. h>, which includes preprocessor definitions for all the
public kernel symbols. After the header is included, whenever the module uses a
kernel symbol, the compiler sees the mangled version. The definitions in madvers
ians.h are effective only if MODVERSIONS is defined in advance.

In order to enable versioning in the module if it has been enabled in the kernel,
we must make sure that CONFIG_MODVERSIONS has been defined in
<linux/autoconf .h>. That header controls what features are enabled (com
piled) in the current kernel. Each CONFIG_ macro defined states that the corre
sponding option is active.

The initial part of master.c, therefore, consists of the following lines:

#include <linwc/autoconf.h> /* retrieve the CONFIG_* macros*/
#if defined(CONFIG_MODVERSIONS) && !defined(MODVERSIONS)
define MODVERSIONS /* force it on*/
#endif

#ifdef MODVERSIONS
include <linwc/modversions.h>
#endif

When compiling the file against a versioned kernel, the symbol table in the object
file refers to versioned symbols, which match the ones exported by the kernel
itself. The following screenshot shows the symbol names stored in master.a. In the
output of nm, "T" means "text," "D" means "data," and "U" means "undefined."
The last tag denotes symbols that the object file references but doesn't declare.

morgana% nm master.o
000000b0 T cleanup_module
00000000 T init_module
00000000 D kernel_version

U kerneld_send_R7d428f45
U printk_Rad1148ba

morgana% egrep 'printklkerneld_send' /proc/ksyms
00131b40 kerneld_send_R7d428f45
0011234c printk_Rad1148ba

Since the checksum added to the symbol names in master.a includes the whole
interface related to printk and kerneld_send, the module is compatible with a wide
range of kernel versions. If, however, the data structures related to either function
get modified, insmad will refuse to load the module because of its incompatibility
with the kernel.

229

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 230

Chapter 11: Kerneld and Advanced Modularization

Exporting Versioned Symbols
The situation not covered by the previous discussion is what happens when a
module exports symbols to be used by other modules. If we rely on version infor
mation to achieve module portability, we'd like to be able to add a CRC code to
our own symbols. This subject is slightly trickier than just linking to the kernel,
because we need to export the mangled symbol name to other modules; we need
a way to build the checksums.

The task of parsing the header files and building the checksums is performed by
genksyms, a tool released with the modules package. This program receives the
output of the C preprocessor on its own standard input and prints a new header
file on standard output. The output file defines the checksummed version of each
symbol exported by the original source file. The output of genksyms is usually
saved with a .ver suffix; I'll follow the same practice.

To show you how symbols are exported, I've created two dummy modules called
export.c and import.c. export exports a simple function called export_function,
which is used by the second module, import.c. This function receives two integer
arguments and returns their sum-we are not interested in the function, but rather
in the linking process.

The Makefile in the misc-modules directory has a rule to build an export.ver file
from export.c, so that the checksummed symbol for exportJunction can be used
by the import module: ·

ifdef MODVERSIONS
export.o import.o: export.ver
endif

export.ver: export.c
${CC) -I${INCLUDEDIR) -E -D __ GENKSYMS __ $A I genksyms > $@

These lines demonstrate how to build export.ver and add it to the dependencies of
both object files, but only if MODVERSIONS is defined. A few lines added to Make
file take care of defining MODVERSIONS if version support is enabled in the ker
nel, but they are not worth showing here.

The source file, then, must declare the right preprocessor symbols for every con
ceivable preprocessor pass: the input to genksyms and the actual compilation, both
with version support enabled and with it disabled. Moreover, export.c should be
able to autodetect version support in the kernel, as master.c does. The following
lines show you how to do this successfully:

230

#ifndef EXPORT_SYMTAB
define EXPORT_SYMTAB /* need this one 'cause we export symbols*/
#endif

#include <linux/autoconf.h> /* retrieve the CONFIG_* macros*/
#if defined{CONFIG_MODVERSIONS) && !defined{MODVERSIONS)

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 231

Persistent Storage Across Unload/Load

define MODVERSIONS
#endif

/*

* Include the versioned definitions for both kernel symbols and our
* symbol, *unless* we are generating checksums (__ GENKSYMS __
* defined)
*/

#if defined(MODVERSIONS) && !defined(__ GENKSYMS __)
include <linux/modversions.h>
include "export.ver" /* redefine "export_function" */

/* to include CRC */
#endif

The code, though hairy, has the advantage of leaving the Makefile in a clean state.
Passing the correct flags from make, on the other hand, involves writing long com
mand lines for the various cases, which I won't do here.

The simple import module calls export_function by passing the numbers 2 and 2
as arguments; the expected result is therefore 4. The following example shows that
import actually links to the versioned symbol of export and calls the function. The
versioned symbol appears in /proclksyms.

morgana.root# insmod export
morgana.root# grep export /proc/ksyms
0202d024 export_function_R2eb14cle
morgana.root# insmod import
import: my mate tells that 2+2 = 4
morgana.root# cat /proc/modules
import 1 0
export 3 [import]

[export)

0

Persistent Storage Across Unload/Load
Once we've equipped ourselves with kerneld and version support, using modules
turns out to be more flexible than using linked-in drivers. There's only one argu
ment against modularization: if a driver is loaded by kerneld and then configured
(via ioctl or other means), it must be reconfigured the next time it is loaded into
the kernel. While load-time configuration can be specified once and for all in
/etc/modules.eon/, run-time configuration becomes volatile when demand loading
is heavily used. The user can be disappointed by finding that device configuration
has been lost after a coffee break. What we need is a technique for persistently
storing relevant information while the module is unloaded.

In fact, the modules package offers this kind of capability starting with version
2.0.0 (modules-2.0.0).

231

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 232

Chapter 11: Kerneld and Advanced Modularization

The actual code has not yet been integrated into the official kernels, but it is likely
it will be accepted in Linus' sources. Currently, to enable support for persistent
storage, you need to apply a patch that is distributed in the modules package; the
patch adds a few lines to <linux/kerneld.h>.

In practice, the idea behind persistent storage of module information is straightfor
ward: kernel code can use the same kerneld engine that loads and unloads mod
ules to transfer information to and from user space. The daemon then uses a
general-purpose database to manage information storage.

The reason for implementing persistent storage in user space instead of in the ker
nel is to simplify the code. While a kernel-only implementation can be designed,
accessing a database file from kernel space requires replication in non-swappable
kernel memory of library code that is already available at no cost in user space.

The proposed implementation in kerneld uses the gdbm library for the database.
Using an on-disk database is optional. If you use the database, you'll get persis
tence across system boot; if the database is not used, you'll get persistence only
for the lifetime of your kerneld process.

The following functions are defined in <linux/kerneld. h> to access the per
sistent-storage facility: ·

int set_persist(char *key, void *value, size_t length);
int get_persist(char *key, void *value, size_t length);

The arguments to the functions are a unique textual key to identify the data item
in the database and the item itself, in the familiar form of a pointer and a length.
The key argument must be unique within the whole system. This allows each
module to keep its keys apart by prepending the module's name to the keys, but it
also allows different modules to share configuration variables if that is needed for
any reason.

The possible return values are the same as for other functions calling ker
neld_send: 0 for success, negative to signal a kernel-space error, and positive to
signal a user-space error. The return value can usually be ignored because
get_persist doesn't modify value if there is an error, and nothing can be done if
set_persist can't save the value.

Since a recent kerneld daemon supports the new feature, a module can choose to
include definitions for set_persist and get_persist without patching kerneld.h in the
kernel. But be careful about forward compatibility. The patch distributed in mod
ules is a proposal; the internals of persistent storage may change before being
included in the official kernel source.

We have seen that the main reason for using persistent storage is to avoid recon
figuring a module each time it is loaded into a running kernel. While this is partic
ularly important for run-time configuration of demand-loaded modules, it is an
interesting option for load-time configuration as well, because updating
/etdmodules.conf can be tricky for the average user.

232

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 233

Persistent Storage Across Unload/Load

Another possible use for persistent storage is to keep track of the system's hard
ware configuration to avoid unneeded probing. Probing for hardware is a risky
operation. It can misconfigure other hardware, particularly ISA devices, because
ISA doesn't offer a generalized way to scan the system bus as PCI does. (This issue
is thoroughly described in Chapter 15, Overoiew of Peripheral Buses.)

The following sample code shows how a hypothetical module called psm (Persis
tent Storage Module) can avoid unnecessary probing. To simplify the discussion,
this example supports at most one device.

int psm_base = 0; /* base I/0 port, settable at load time*/

int init_module(void)
{

if (psm_base == 0) {/*not set at load time*/
get_persist("psm_base", &psm_base, sizeof(int));
if (psm_check_hw(psm_base) != 0)

psm_base == 0; /* old value no longer valid: probe*/

else
if (psm_check_hw(psm_base) != 0)

return -ENODEV; /* not where specified*/

if (psm_base == 0)
psm_base = psm_probe(); /* return base port or O if not found*/

if (psm_base == 0)
return -ENODEV; /* no device found*/

set_persist("psm_base", &psm_base, sizeof(int)); /* found: save it*/

The code probes for hardware only if no base port has been specified at load time
and if the previous port is no longer valid. If a device is found, the base port is
saved for later use.

When the driver can support multiple devices, one possible solution to the prob
lem of detecting newly added hardware is to define a psm_newhw variable that
the user can set at load time if new devices have been added to the system. If this
is implemented, the user is instructed to use insmod psm_newhw=l when new
hardware is there. If psm_newhw is not zero, init_module tries to probe for new
devices, while using the saved information in the normal case. A change in the
base address of a device is already handled in the code shown above and doesn't
need user intervention at load time.

233

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 234

Chapter 11: Kerneld and Advanced Modularization

Quick Reference
This chapter introduced the following kernel symbols:

/etdmodules.conf
The configuration file for modprobe and depmod. It is used to configure
demand loading and is described in the man pages for the two programs.

#include <linux/kerneld.h>
int request_module(const char *name);
int release_module(const char *name, int waitflag);
int delayed_release_module(const char *name);
int cancel_release_module(const char *name);

These functions perform demand loading of modules by means of the kerneld
daemon.

#include <linux/autoconf.h>
CONFIG_MODVERSIONS

This macro is defined only if the current kernel has been compiled to support
versioned symbols.

#ifdef MODVERSIONS
#include <linux/modversions.h>

This header, which exists only if CONFIG_MODVERSIONS is valid, contains
the versioned names for all the symbols exported by the kernel.

EXPORT_SYMTAB
If version support is used, this macro must be defined if your module uses
register_symtab to export symbols of its own.

__ GENKSYMS __
This macro is defined by make when preprocessing files to be read by
genksyms to build new version codes. It is used to conditionally prevent
inclusion of <linux/modversions .h> when building new checksums.

int set_persist(char *key, void *value, size_t length);
int get_persist(char *key, void *value, size_t length);

Support for persistent storage of module data relies on these two functions,
which are defined in <linux/kerneld.h>.

234

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 235

CHAPTER TWELVE

LOADING BLOCK

DRIVERS

As outlined in "Classes of Devices and Modules," in Chapter 1, An lntroduc
tion lo the Linux Kernel, Unix device drivers are not lim ited to char drivers.
This chapter introduces the second main class of device drivers-block

drivers. A block-oriented device is one that transfers data only in blocks (for exam
ple, the floppy disk or the hard drive), where the hardware b lock is usually called
a "sector. " The word "block," on the other hand, will be used to denote a sofrware
concept: the driver often uses 1KB blocks even if the sector size is 512 bytes.

In this chapter, we'll build a full-featured block driver called sbull, short for "Sim
ple Block Util ity for Loading Localities." This driver is similar to scull in that it uses
the computer's memory as tl1e hardware device. In other words, it's a RANI-disk
driver. sbull can be executed on any Linux computer (although I have been able
to test it only on a limited set of platforms).

If you need to write a driver for a real block device, the information in Chapter 8 ,
Hardware Managemenl, and Chapter 9, interrupt Handling, should be used to
supplement this chapter.

Registering the Driver
Like a char driver, a block driver in the kernel is identified by a major number.
The functions used to register and unregister the driver are:

int register_blkdev(unsigned int major, const char *name,
struct file_operations *fops);

int unregister_blkdev(unsigned int major, c onst char *name);

235

CHAPTER TWELVE

LOADING BLOCK

DRIVERS
)

s outlined in “Classes of Devices and Modules,’ in Chapter 1, An Introduc-
tion to the Linux Kernel, Unix device drivers are not limited to char drivers.

This chapter introduces the second main class of device drivers—block
drivers. A block-oriented device is one that transfers data only in blocks (for exam-
ple, the floppy disk or the hard drive), where the hardware block is usually called
a “sector.” The word “block,” on the other hand, will be used to denote a software

concept: the driver often uses 1KB blocks evenif the sector size is 512 bytes.

In this chapter, we'll build a full-featured block driver called sbuil, short for “Sim-
ple Block Utility for Loading Localities.” This driver is similar to scu// in that it uses
the computer's memory as the hardware device. In other words, it's a RAM-disk
driver. shill can be executed on any Linux computer (although I have been able
to test it only on a limited set of platforms).

If you need to write a driver for a real block device, the information in Chapter8,
Hardware Management, and Chapter 9, Interrupt Handling, should be used to
supplementthis chapter.

Registering the Driver
Like a char driver, a block driver in the kernel is identified by a major number.
The functions usedto register and unregister the driver are:

int register_blkdev(unsigned int major, const char *name,
struct file_operations *fops);

int unregister_blkdev(unsigned int major, const char *name);

Petitioners Microsoft Corporation and HP Inc.- Ex. 1019, p. 235

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 236

Chapter 12: Loading Block Drivers

The meaning of the arguments is the same as for char drivers, and dynamic assign
ment of the major number can be performed in the same way. Therefore, the sbu/1
device registers itself just like scull:

result= register_blkdev(sbull_major, "sbull", &sbull_fops);
if (result< 0) {

printk(KERN_WARNING "sbull: can't get major %d\n",sbull_major);
return result;

if (sbull_major == 0) sbull_major = result; /*dynamic*/
major= sbull_major; /* Use 'major' later on to save typing*/

The fops argument to register_blkdev is similar to the one we used for char
drivers. The operations for read, write, and fsyn,c, however, need not be driver
specific. The general functions block_read, block_write, and blockJsync are
always used in place of the driver-specific functions. In addition,
cbeck_media_change and revalidate make sense for a block driver, and both are
defined in sbull_fops.

The fops structure used in sbull is:

struct file_operations sbull_fops = {

} ;

NULL, /* lseek: default*/
block_read,
block_write,
NULL,
NULL,
sbull_ioctl,
NULL,
sbull_open,
sbull_release,
block_fsync,

/* sbull_readdir */
/* sbull_select */

/* sbull_mmap */

NULL, /* sbull_fasync */
sbull_check_change,
sbull_revalidate

General read and write operations are used to achieve better performance. The
speed-up is achieved through buffering, which is not available to char drivers.
Block drivers can be buffered because their data serves the computer's file hierar
chy, and is never accessed directly by the applications, while data belonging to
char drivers is.

However, when the buffer cache cannot satisfy a read request or pending writes
must be flushed to the physical disk, the driver must be called to perform the
actual data transfer. The fops structure doesn't carry an entry point other than
read and write, so an additional structure, blk_dev_struct, is used to deliver
requests for actual data transfer.

236

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 237

Registering the Driver

This structure is defined in <linux/blkdev. h> and has several fields, but only
the first field needs to be set by the driver.

This is the definition of the structure as found in 2.0 kernels:

struct blk_dev_struct {

} ;

void (*request_fn) (void) ;
struct request* current_request;
struct request plug;
struct tq_struct plug_tq;

extern struct blk_dev_struct blk_dev[MAX_BLKDEV];

When the kernel needs to spawn an I/O operation for the sbu/l device, it calls the
function blk_dev [sbul l_maj or] • reques t_fn. The initialization function for
this module should therefore set this field to point to its own request function. The
remaining fields of the structure are used internally by the kernel functions and
macros; you don't need to explicitly refer to them in your code.

The relationship between a block-driver module and the kernel is shown in Figure
12-1.

In addition to blk_dev, several other arrays hold information about block drivers.
These arrays are indexed by major, and sometimes also minor, number. They are
declared and described in driverslblocklll_rw_block.c.

int blk_size[] [];
This array is indexed by the major and minor numbers. It describes the size of
each device, in kilobytes. If blk_size [major] is NULL, no checking is per
formed on the size of the device (i.e., the kernel might request data transfers
past end-of-device).

int blksize_size[] [];
The size of the block used by each device, in bytes. Like the previous one,
this two-dimensional array is indexed by both major and minor numbers. If
blksize_size [major] is a null pointer, a block size of BLOCK_SIZE (cur
rently 1KB) is assumed. The block size for the device must be a power of two,
because the kernel uses bit-shift operators to convert offsets to block numbers.

int hardsect_size[] [];
Like the others, this data structure is indexed by the major and minor num
bers. The default value for the hardware sector size is 512 bytes. Up to and
including version 2.0.x, variable sector sizes aren't really supported, because
some kernel code still assumes that the sector size is half a kilobyte; it's
nonetheless very likely that variable sector size will be truly implemented in
version 2.2.

237

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 238

Chapte1· 12: Loading Block Drivers

Module

ini t_module (I

request()

········
i Core Kernel

······~···~······• register_b lkdev()

l I
··············1········f········-··

I l
- ·-····· 'j H blkdev[J

•••••••
block_read () j

i
,. l ! tt blkdevs [J

1••······ !)

------·------
; = l :

- r•7•; .. I
m _J

ol=ovp_ modv,e II j:l-[i,==• vo,eo<sce,_b>kdev II

...... /

'.:"~~~~~~ One Function ••••• Oata ····• Function call -+- Oata pointer

-+- Function pointer ·········• Assignment to data Other Functions

Figure 12-1: Registeri11g a block device driver

int read_ahead[];

238

This array is indexed by the major number and defines the number of sectors
to be read in advance by the kernel when a file is being read sequentially.
Reading data before a process asks for it helps system performance and over
all thro ughput. A slower device hould specify a bigger read-ahead value,
while fast devices wi.ll be happy even with a smaller va lue . The bigger the
read-ahead value, the more memo1y the buffer cache uses. There is one read
ahead value for each major number, and it applies to all its minor numbers.
The value can be changed via the driver's ioctl method ; hard-disk drivers usu
ally set it to 8 sectors, which corresponds t 4KB.

Chapter 12: Loading Block Drivers

Module«| {CGoreKenel#68

nancelemnmadnmera,~~) register_blkdev()a

{cose
i ; , blkdev[]
| SESSEEe,

| block_read()

¥

insmod ===} init_module()

request()
blkdevs[]

hi

rmmod -=-=-=- om : unregister_blkdev ()

iOne Function By Data ----- Function call ——>datapointer
eee J Other Functions Function pointer =~> Assignment to data

Figure 12-1; Registering a block device driver

int read_ahead[];

This array is indexed by the major number and defines the numberof sectors
to be read in advance by the kernel whenafile is being read sequentially.
Reading data before a process asks for it helps system performance and over-
all throughput. A slower device should specify a bigger read-ahead value,
while fast devices will be happy even with a smaller value. The bigger the
read-ahead value, the more memory the buffer cache uses. There is one read-
ahead value for each major number, and it applies to all its minor numbers.
The value can be changed via the driver's ioct/ method; hard-disk drivers usu-
ally set it to 8 sectors, which corresponds to 4KB.

238

Petitioners Microsoft Corporation and HP Inc.- Ex. 1019, p. 238

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 239

Registering the Driver

The sbull device allows you to set' these values at load time, and they apply to all
the minor numbers of the sample driver. The variable names and their default val
ues in sbull are as follows:

size=2048 (kilobytes)
Each ramdisk created by sbul/ takes two megabytes of RAM.

blksize=1024 (bytes)
The software "block" used by the module is one kilobyte, like the system
default.

hardsect=512 (bytes)
The sbull sector size is the usual half-kilobyte value. Changing hardsect is
disabled because, as mentioned above, other sector sizes aren't supported. If
you try to change it anyway, by removing the security check in sbu/Vsbull.c,
be prepared to experience severe memory corruption unless variable sector
size support has been added by the time you try it.

rahead=2 (sectors)
Since the RAM disk is a fast device, the default read-ahead value is small.

The sbull device also allows you to choose the number of devices to install. devs,
the number of devices, defaults to 2, resulting in a default memory usage of 4
megs-2 disks at 2 megs each.

The implementation of init_module for the sbull device is as follows (excluding
registration of the major number and error recovery):

blk_dev[major].request_fn = sbull_request;
read_ahead[major] = sbull_rahead;
result= -ENOMEM; /* for the possible errors*/

sbull_sizes = kmalloc(sbull_devs * sizeof(int), GFP_KERNEL);
if (!sbull_sizes)

goto fail_malloc;
for (i=0; i < sbull_devs; i++) /* all the same size*/

sbull_sizes[i] = sbull_size;
blk_size[major)=sbull_sizes;

sbull_blksizes = kmalloc(sbull_devs * sizeof(int), GFP_KERNEL);
if (!sbull_blksizes)

goto fail_malloc;
for (i=0; i < sbull_devs; i++) /* all the same blocksize */

sbull_blksizes[i) = sbull_blksize;
blksize_size[major)=sbull_blksizes;

sbull_hardsects = kmalloc(sbull_devs * sizeof(int), GFP_KERNEL);
if (!sbull_hardsects)

goto fail_malloc;
for (i=0; i < sbull_devs; i++) /* all the same hardsect */

sbull_hardsects[i] = sbull_hardsect;
hardsect_size[major]=sbull_hardsects;

239

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 240

Chapter 12: Loading Block Drivers

The corresponding cleanup function looks like this:

for (i=O; i<sbull_devs; i++)
fsync_dev(MKDEV(sbull_major, i)); /* flush the devices*/

blk_dev[rnajor] .request_fn = NULL;
read_ahead[major] = O;
kfree(blk_size[rnajor]);
blk_size[major] = NULL;
kfree(blksize_size[rnajor]);
blksize_size[major] = NULL;
kfree(hardsect_size[rnajor]);
hardsect_size[rnajor] = NULL;

Here, the call to fsync_dev is needed to free all references to the device that the
kernel keeps in various caches. Actually, fsync_dev is the engine that operates
behind blockJsync, which is the fsync "method" for block devices.

The Header File blk.h
Since (for the most part) block drivers are device-independent, the kernel develop
ers tried to simplify driver code by concentrating most of the common code in one
header, <linux/blk. h>. Therefore, every block driver should include that
header. The most important function defined in <linux/blk. h> is end_request,
which is declared as static. Having it be static allows different drivers to
have a correctly defined end_request, without each needing to write its own
implementation.

In Linux 1.2, the header should be included as <linux/ .. / .. /
drivers/block/blk.h>. The reason for this is that custom block drivers were
not supported until later, and the header was originally local to the drivers/block
source dir~ctory.

Actually, the blk.h header is quite unusual, as it defines several symbols based on
the symbol MAJOR_NR, which must be declared by the driver before it includes
the header. Once again, this shows that blk.h was not designed with custom
drivers in mind.

If you look at blk.h, you'll see that several device-dependent symbols are declared
according to the value of MAJOR_NR, which is expected to be known in advance.
However, if the major number is dynamically assigned, the driver has no way to
know its assigned number in advance and cannot correctly define MAJOR_NR. If
MAJOR_NR is undefined, blk.h can't set up some of the macros used in
end_request. Therefore, in order for a custom driver to benefit from the general
purpose end_request function and to avoid reimplementing it, the driver should
define MAJOR_NR and a few other symbols before including blk.h.

240

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 241

The Header File blk.b

The following list describes the symbols in <linux/blk. h> that must be defined
in advance; at the end of the list, the code used in sbull is shown.

MAJOR_NR
This symbol is used to access a few arrays, in particular blk_dev and blk
size_s i ze. A custom driver like sbull, which is unable to assign a constant
value to the symbol, should #define it to the variable holding the major
number. For sbull, this is sbull_maj or.

DEVICE_NAME
The name of the device being created. This string is used in printing error
messages from within end_request.

DEVICE_NR(kdev_t device)
This symbol is used to extract the ordinal number of the physical device from
the kdev_t device number. The value of this macro can be MINOR(device)
or another expression, according to the convention used to assign minor num
bers to devices and partitions. The macro should return the same device
number for all partitions on the same physical device-that is, DEVICE_NR
represents the disk number, not the partition number. This symbol is used to
declare CURRENT_DEV, which can be used within request_fn to determine
which hardware device owns the minor number accessed by a transfer
request. Partitionable devices are introduced later in the section "Partitionable
Devices."

DEVICE_INTR
This symbol is used to declare a pointer variable that refers to the current bot
tom-half handler. The macros SET_INTR (intr) and CLEAR_INTR are used
to assign the variable. Using multiple handlers is convenient when the device
can issue interrupts with different meanings. This topic is discussed later in
"Interrupt-Driven Block Drivers."

TIMEOUT_VALUE
DEVICE_TIMEOUT

TIMEOUT_ VALUE expresses a timeout as a jiffy count. This timeout value is
associated with one of the old timers, specifically, timer number
DEVICE_TIMEOUT. A driver can use a timer to detect error conditions by
invoking a callback when a data transfer takes too long. However, since· the
old timers consist of a static array of preassigned timers (see "Kernel Timers"
in Chapter 6, Flow of Time), a custom driver can't use them. I've left both sym
bols undefined in sbull and implemented the timeout using the new timers.

DEVICE_NO_RANDOM
By default, the function end_request contributes to system entropy (the
amount of collected "randomness"), which is used by /dev/random. If the
device isn't able to contribute significant entropy to the random device,

241

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 242

Chapter 12: Loading Block Drivers

DEVICE_NO_RANDOM should be defined. /dev/random was introduced in
"Installing an Interrupt Handler," in Chapter 9, where SA_SAMPLE_RANDOM
was explained.

DEVICE_OFF(kdev_t device)
The end_request function calls this macro when it's done. In the floppy driver,
for example, it calls a function that is in charge of updating the timer used for
motor spin-down. The string DEVICE_OFF can be defined to nothing if the
device is not turned off. sbull doesn't use DEVICE_OFF.

DEVICE_ON(kdev_t device)
DEVICE_REQUEST

These functions are not actually used in the Linux headers, and a driver
doesn't have to define them. Most official Linux drivers declare these symbols
and use them internally, but I don't use them in sbull.

The sbull driver declares the symbols in the following way:

#define MAJOR_NR sbull_major /* force definitions on in blk.h */
int sbull_major; /* must be declared before including blk.h */

#define DEVICE_NR(device) MINOR(device) /* has no partition bits*/
#define DEVICE_NAME "sbull" /* name for messaging*/
#define DEVICE_INTR sbull_intrptr /* pointer to the bottom half*/
#define DEVICE_NO_RANDOM /* no entropy to contribute*/

#define DEVICE_OFF(d) /*do-nothing*/

#if LINUX_VERSION_CODE < 0x10324 /* 1.3.36 */
include <linux/ .. / .. /drivers/block/blk.h>
#else
include <linux/blk.h>
#endif

#include "sbull.h" /* local definitions*/

The blk.b header uses the macros listed above to define some additional macros
usable by the driver. I'll describe those macros in the following sections.

Handling Requests
The most important function in a block driver is the request function, which per
forms the low-level operations related to reading and writing data. This section
introduces the design of such a procedure.

When the kernel schedules a data transfer, it queues the "request" in a list,
ordered so that it maximizes system performance. The linked list of requests is
then passed to the driver's request function, which should perform the following
tasks for each request in the linked list:

242

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 243

Handling Requests

• Check the validity of the current request. This task is performed by the macro
INIT_REQUEST, defined in blk.h.

• Perform the actual data transfer. The CURRENT variable (macro, actually) can
be used to retrieve the details of the. outstanding request. CURRENT is a
pointer to struct request, whose fields are described in the next section.

• Clean up the current request. This operation is performed by end_request, a
static function whose code resides in b/k.h. The driver passes the function a
single argument, which is 1 in case of success and 0 in case of failure. When
end_request is called with an argument of zero, an "I/O error" message is
delivered to the system logs (via printk).

• Loop back to the beginning, to consume the next request. A goto, a sur
rounding for (;;), or a surrounding while (1) can be used, at the pro
grammer's will.

In practice, the code for the request function is structured like this:

void sbull_request(void)
{

while (1) {
INIT_REQUEST;
printk("request %p: cmd %i sec %1i (nr. %1i), next %p\n",

CURRENT,
CURRENT->cmd,
CURRENT->sector,
CURRENT->current_nr_sectors,
CURRENT->next);

end_request(l); /*success*/

Although this code does nothing but print messages, running this function pro
vides good insight into the basic design of data transfer. The only unclear part of
the code at this point should be the exact meaning of CURRENT and its fields,
which I'll describe in the next section.

My first sbull implementation contained exactly the empty code just shown. I man
aged to make a filesystem on the "nonexistent" device and use it for a while, as
long as data remained in the buffer cache. Looking at the system logs while run
ning a verbose request function like this one can help you understand how the
buffer cache works.

This empty-and-verbose function can still be run in sbull by defining the symbol
SBULL_EMPTY_REQUEST at compile time. If you want to understand how the
kernel handles different block sizes, you can experiment with blksize= on the
insmod command line. The empty request function uncovers the internal kernel
workings by printing the details of each request. You might also play with
hardsect=, but currently this is disabled because it's dangerous (see "Registering
the Driver" at the beginning of this chapter).

243

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 244

Chapter 12: Loading Block Drivers

The code in a request function doesn't explicitly issue return () , because
INIT_REQUEST does it for you when the list of pending requests is exhausted.

Performing the Actual Data Transfer
In order to build a working data transfer for sbull, let's look at how the kernel
describes a request within a struct request. The structure is defined in
<linu.x/blkdev. h>. By accessing the fields in CURRENT, the driver can retrieve
all the information needed to transfer data between the buffer cache and the phys
ical block device.

CURRENT is a macro that is used to access the current request (the one to be ser
viced first). As you might guess, CURRENT is a short form of
blk_dev [MAJOR_NR] . current_request.

The following fields of the current request carry useful information for the request
function:

kdev_t rq_dev;
The device accessed by the request. The same request function is used for
every device managed by the driver. A single request function deals with all
the minor numbers; rq_dev can be used to extract the minor device being
acted upon. Although Linux 1.2 called this field dev, you can access this field
through the macro CURRENT_DEV, which is portable to any kernel version in
the range we are addressing.

int cmd;
This field is either READ or WRITE.

unsigned long sector;
The first sector the request refers to.

unsigned long current_nr_sectors;
unsigned long nr_sectors;

The number of sectors (the size) of the current request. The driver should
refer to current_nr_sectors and ignore nr_sectors (which is listed
here just for completeness). See the next section, "Clustered Requests," for
more detail.

char *buffer;
The area in the buffer cache to which data should be written (cmd==READ) or
from which data should be read (cmd==WRITE).

struct buffer_head *bh;
The structure describing the first buffer in the list for this request. We'll use
this field in "Clustered Requests."

There are other fields in the structure, but they are primarily meant for internal use
in the kernel; the driver is not expected to use them.

244

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 245

Handling Requests

The implementation for the working request function in the sbull device is shown
below. In the following code, sbull_devices is like scull_devices, intro
duced in "The open Method" in Chapter 3, Char Drivers.

void sbull_request(void)
{

Sbull_Dev *device;
u8 *ptr;
int size;

while (1) {
INIT_REQUEST;

/* Check if the minor nwnber is in range*/
if (DEVICE_NR(CURRENT_DEV) > sbull_devs) {

static int count= O;
if (count++< 5) /* print the message at most 5 times*/

printk(KERN_WARNING
"sbull: request for unknown device\n");

end_request(O);
continue;

/* pointer to device structure, from the global array*/
device= sbull_devices + DEVICE_NR(CURRENT_DEV);
ptr = device->data + CURRENT->sector * sbull_hardsect;
size= CURRENT->current_nr_sectors * sbull_hardsect;
if (ptr +size> device->data + sbull_blksize*sbull_size)

static int count= 0;
if (count++< 5)

printk(KERN_WARNING
"sbull: request past end of device\n");

end_request(O);
continue;

switch(CURRENT->cmd)
case READ:

/* from sbull to buffer*/
memcpy(CURRENT->buffer, ptr, size);
break;

case WRITE:
/* from buffer to sbull */
memcpy(ptr, CURRENT->buffer, size);
break;

default:
/* can't happen*/
end_request(O);
continue;

245

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 246

Chapter 12: Loading Block Drivers

end_request(l); /*success*/

Since sbull is just a RAM disk, its "data transfer'' reduces to a memcpy call. The
only "strange" feature of the function is the conditional statement that limits it to
reporting five errors. This is intended to avoid clobbering the system logs with too
many messages, since end_request (0) already prints an "I/0 error" message
when the request fails. The static counter is a standard way to limit message
reporting and is used several times in the kernel.

Clustered Requests
Each iteration of the loop in the request function above transfers a number of sec
tors-usually the number of sectors that equals a "block" of data, according to the
use of such data. For instance, swapping is performed PAGE_SIZE bytes at a
time, while an extended-2 filesystem transfers 1KB blocks.

Although a block is the most convenient data size for 1/0, you can get a signifi
cant performance boost by clustering the reading or writing of adjacent blocks. In
this context, "adjacent" refers to the location of blocks on the disk, while "consec
utive" refers to consecutive memory areas.

There are two advantages to clustering adjacent blocks. First, clustering speeds up
the transfer (for example, the floppy driver assembles adjacent blocks and transfers
a whole track at a time). It can also save memory in the kernel by avoiding alloca
tion of redundant request structures.

You can, if you want, completely ignore clustering. The skeletal request function
shown above works flawlessly, independent of clustering. If you want to exploit
clustering, on the other hand, you need to deal in greater detail with the internals
of struct_request.

Unfortunately, all kernels I know of (up to at least 2.1.51) don't perform clustering
for custom drivers, just for internal drivers like SCSI and IDE. If you aren't inter
ested in the internals of the kernel, you can skip the rest of this section. On the
other hand, clustering might be available to modules in the future, and it is an
interesting way to increase data-transfer performance by reducing inter-request
delays for adjacent sectors.

Before I describe how a driver can exploit clustered requests, let's look at what
happens when a request is queued.

When the kernel requests the transfer of a data block, it scans the linked list of
active requests for the target device. If the new block is adjacent on the disk to a
block that has already been requested, the new block is clustered to the first
block; the existing request is enlarged without creating a new one.

246

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 247

Handling Requests

Unfortunately, the fact that the contents of two data buffers are adjacent on disk
doesn't necessarily mean that they are consecutive in memory. This observation,
plus the need to efficiently manage the buffer cache, led to the creation of a
buffer_head structure. One buffer_head is associated with each data buffer.

A "clustered" request, then, is a single request_struct that refers to a linked
list of buffer_head structures. The end_request function takes care of this prob
lem, and that's why the request function shown earlier works independent of clus
tering. In other words, end_request either cleans up the current request and
prepares to service the next one, or prepares to deal with the next buffer in the
same request. Clustering is therefore transparent to the device driver that doesn't
care about it; the sbull function above is such an example.

A driver may want to benefit from clustering by dealing with the whole linked list
of buffer heads at each pass through the loop in its request_fn function. To do
this, the driver should refer to both CURRENT->current_nr_sectors (the field
I already used above in sbull_request) and CURRENT->nr_sectors, which con
tains the number of adjacent sectors that are clustered in the "current" list of
buffer_heads.

The current buffer head is CURRENT->bh, while the data block is CUR
RENT->bh->b_data. The latter pointer is cached in CURRENT->buffer for
drivers like sbull that ignore clustering.

Request clustering is implemented in driverslblocklll_rw_block.c, in the function
make_request; however, as suggested above, clustering is performed only for a
few drivers (floppy, IDE, and SCSI), according to their major number. I've been
able to see how clustering works by loading sbull with major=34 because 34 is
IDE3_MAJ0R, and I don't have the third IDE controller on my system.*

The following list summarizes what needs to be done when scanning a clustered
request. bh is the buffer head being processed-the first in the list. For every
buffer head in the list, the driver should carry out the following sequence of oper
ations:

• Transfer the data block at address bh->b_data, of size bh->b_size bytes.
The direction of the data transfer is CURRENT->cmd, as usual.

• Retrieve the next buffer head in the list: bh->b_reqnext. Then detach the
buffer just transferred from the list, by zeroing its b_reqnext-the pointer to
the new buffer you just retrieved.

• Tell the kernel you're done with the previous buffer, by calling
mark_buffer_uptodate (bh, 1) ; unlock_buffer (bh) ; . These calls
guarantee that the buffer cache is kept sane, without wild pointers lying

* While this is a handy trick to play dirty games on one's home computer, I strongly dis
courage doing it in a production driver.

247

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 248

Chapter 12: Loading Block Drivers

around. The "l" argument to mark_buffer_uptodate indicates success; if
the transfer failed, substitute "O".

• Loop back to the beginning to transfer the next adjacent block.

When you are done with the clustered request, CURRENT->bh must be updated
to point to the first buffer that was "processed but not unlocked." If all the buffers
in the list were processed and unlocked, CURRENT->bh can be set to NULL.

At this point, the driver can call end_request. If CURRENT->bh is valid, the func
tion unlocks it before moving to the next buffer-this is what happens for non
clustered operation, where end_request takes care of everything. If the pointer is
NULL, the function just moves to the next request.

A full-featured implementation of clustering appears in driverslblockljloppy.c, while
a summary of the operations required appears in end_request, in blk.h. Neither
jloppy.c nor blk.h are easy to understand, but the latter is a better place to start.

How Mounting Works
Block devices differ from char devices and normal files in that they can be
mounted on the computer's filesystem. This is different from the normal access
through a struct file, where the structure is bound to a specific process and
exists only from open to close. When a filesystem is mounted, there's no process
holding a f ilp.

When the kernel mounts a device in the filesystem, it invokes the normal open
method to access the driver. However, in this case the filp argument to open is a
dummy variable, almost a placeholder, whose only meaningful field is £_mode.
The remaining fields hold random values and should not be used. The value of
£_mode tells the driver whether the device is to be mounted read-only (f _mode
== FMODE_READ) or read/write (f_mode == (FMODE_READ I FMODE_WRITE)).
A dummy variable is used instead of a file structure because a real struct
file would be released at process termination, while a mounted filesystem sur
vives after the mount command has done its job.

At mount time, the only thing that is invoked in the driver is the open method.
While the disk is mounted, the kernel invokes the read and write methods in the
device (which map to request_fn) to manage files in the filesystem. The driver
can't tell if reques t_fn is servicing a process (like ftck) or the filesystem layer of
the kernel.

As far as umount is concerned, it just flushes the buffer cache and calls the release
(close) driver method. Since there is no meaningful filp to pass to
fops->release, the kernel uses NULL.

248

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 249

The ioctl Method

Thus, when you implement release, you should set up the driver to handle a NULL
filp pointer. On the other hand, if you were to use filp, you would be able to
run mkfs and fsck, which use filp to access the device, and you would also be
able to mount the device, but umount would oops because of the NULL pointer.

Since the release implementation of a block driver can't use filp-> pri
vate_data to access device information, it uses inode->i_rdev to differenti
ate between devices instead. This is how sbull implements release:

void sbull_release (struct inode *inode, struct file *filp)
{

Sbull_Dev *dev = sbull_devices + MINOR(inode->i_rdev);

dev->usage--;
MOD_DEC_USE_COUNT;

Other driver functions don't care about the filp problem because they aren't
involved with mounted filesystems. For example, ioctl is issued only by processes
that explicitly open the device.

· The ioctl Method
Like char devices, block devices can be acted on by using the ioctl system call.
The only relevant difference between the two implementations is that block
drivers share a number of common ioctl commands that most drivers are expected
to support.

The commands that block drivers usually handle are the following, declared in
<linux/fs .h>:

BLKGETSIZE
Retrieve the size of the current device, expressed as the number of sectors.
The value of arg passed by the system call is a pointer to a long value and
should be used to copy the size to a user-space variable. This ioctl command
is used, for instance, by mkfs to know the size of the filesystem being created.

BLKFLSBUF
Literally, "flush buffers." The implementation of this command is the same for
every device and is shown later with the sample code for the whole ioctl
method.

BLKRAGET
Used to get the current read-ahead value for the device. The current value
should be written to user space as a 1 ong item using the pointer passed to
ioctl in arg.

249

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 250

Chapter 12: Loading Block Drivers

BLKRASET
Set the read-ahead value. The user process passes the new value in arg.

BLKRRPART
Reread the partition table. This command is meaningful only for partitionable
devices, introduced later in "Partitionable Devices."

BLKROSET
BLKROGET

These commands are used to change and check the read-only flag for the
device. They are implemented by the macro RO_IOCTLS (kdev_t dev,
unsigned long where) because the code is device-independent. The
macro is defined in blk.h.

HDIO_GETGEO
Defined in <linux/hdreg. h> and used to retrieve the disk geometry. The
geometry should be written to user space in a struct hd_geometry,
which is declared in hdreg .h as well. sbull shows the general implementation
for this command.

The HDIO_GETGEO command is the most commonly used of a series of HDIO_
commands, all defined in <linux/hdreg. h>. The interested reader can look in
ide.c and hd.c for more information about these commands.

The major drawback to the commands just listed is that they are defined in the
"old" way (see "Choosing the ioctl Commands" in Chapter S, Enhanced Char
Driver Operations), and thus the macros for the bitfields can't be used to simplify
coding-each command should implement its own verify_area. However, if a
driver needs to define its own commands to exploit particular features of the
device, you are free to use the "new" way of defining commands.

The sbull device supports only the general commands above, because implement
ing device-specific commands is no different from the implementation of com
mands for char drivers. The ioctl implementation -for sbull is shown below; it
should help you understand the commands listed above.

250

int sbull_ioctl (struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg)

int err, size;
struct hd_geometry *geo = (struct hd_geometry *)arg;

PDEBUG("ioctl Ox%x Ox%lx\n", cmd, arg);
switch(cmd) {

case BLKGETSIZE:
/* Return the device size, expressed in sectors*/
if (!arg) return -EINVAL; /* NULL pointer: not valid*/
err=verify_area(VERIFY_WRITE, (long*) arg, sizeof(long));

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 251

The ioctl Method

if (err) return err;
put_user 1024 * sbull_sizes[MINOR(inode->i_rdev))

_/ sbull_hardsects[MINOR(inode->i_rdev)),
(long *) arg);

return 0;

case BLKFLSBUF: /*flush*/
if (!suser()) return -EACCES; /* only root*/
fsync_dev(inode->i_rdev);
invalidate_buffers(inode->i_rdev);
return 0;

case BLKRAGET: /* return the readahead value*/
if (!arg) return -EINVAL;
err= verify_area(VERIFY_WRITE, (long*) arg, sizeof(long));
if (err) return err;
put_user(read_ahead[MAJOR(inode->i_rdev)), (long*) arg);
return 0;

case BLKRASET: /* set the readahead value*/
if (!suser()) return -EACCES;
if (arg > 0xff) return -EINVAL; /* limit it*/
read_ahead[MAJOR(inode->i_rdev)) arg;
return 0;

case BLKRRPART: /* re-read partition table: can't do it*/
return -EINVAL;

RO_IOCTLS(inode->i_rdev, arg); /* the default RO operations*/

case HDIO_GETGEO:
/*
* get geometry: we have to fake one ... trim the size to a
* multiple of 64 (32KB): tell we have 16 sectors, 4 heads,
* whatever cylinders. Tell also that data starts at sector 4.
*I

size= sbull_size * 1024 / sbull_hardsect;
size&= ~ox3f; /* multiple of 64 */
if (geo==NULL) return -EINVAL;
err= verify_area(VERIFY_WRITE, geo, sizeof(*geo));
if (err) return err;
put_user(size >> 6, &geo->cylinders);
put_user(4, &geo->heads);
put_user(16, &geo->sectors);
put_user(
return 0;

4, &geo->start);

return -EINVAL; /* unknown command*/

251

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 252

Chapter 12: Loading Block Drivers

The PDEBUG statement at the beginning of the function has been left in so that
when you compile the module, you can turn on debugging to see which ioctl
commands are invoked on the device.

For example, with the ioctl commands shown, you can use f disk on sbull. This is a
sample short session I had on my own system:

morgana.root# fdisk /dev/sbullO

Command (m for help): p

Disk /dev/sbullO: 4 heads, 16 sectors, 64 cylinders
Units= cylinders of 64 * 512 bytes

Device Boot Begin Start End Blocks Id System

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.

The following messages appeared on my system log during the session:

Oct 29 10:22:08 morgana kernel: sbull: ioctl 0x301 0xbffffc74
Oct 29 10:22:15 morgana kernel: sbull: ioctl 0x125f Ox2
Oct 29 10:22:15 morgana kernel: sbull: revalidate for dev 0

The first ioctl is HDIO_GETGEO, invoked at/disk startup, and the second is BLKR
RPART. The sbull implementation for the latter command just calls the revalidate
function, which in turn prints the last message in the printout just shown (see
"revalidate" later in this chapter).

Removable Devices
When we discussed char drivers, we ignored the final two file operations in the
fops structure, because they exist only for the sake of removable block devices.
It's now time to look at them; sbull isn't actually removable, but it pretends to be,
and therefore it implements the methods.

The operations I'm talking about are check_media_change and revalidate. The for
mer is used to find out if the device has changed since the last access, and the lat
ter re-initializes the driver's status after a disk change.

As far as sbull is concerned, the data area associated with a device is released half
a minute after its usage count drops to zero. Leaving the device unmounted (or
closed) long enough simulates a disk change, and the next access to the device
allocates a new memory area.

This kind of "timely expiration" is implemented using a kernel timer.

252

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 253

Removable Devices

cbeck_media_change
The checking function receives kdev_t as a single argument that identifies the
device. The return value is 1 if the medium has been changed and O otherwise. A
block driver that doesn't support removable devices can avoid declaring the func
tion by setting fops->check_media_change to NULL.

It's interesting to note that when the device is removable, but there is no way to
know if it changed, returning 1 is a safe choice. This is the behavior of the IDE
driver when dealing with removable disks.

The implementation in sbull returns 1 if the device has already been removed
from memory due to the timer expiration, and O if the data is still valid. If debug
ging is enabled, it also prints a message to the system logger; the user can thus
check when the method is called by the kernel.

int sbull_check_change(kdev_t i_rdev)
{

int minor= MINOR(i_rdev);
Sbull_Dev *dev = sbull_devices + minor;

if (minor>= sbull_devs) /*paranoid*/
return O;

PDEBUG { "check_change for dev %i \n" , minor) ;

if (dev->data)
return O; /* still valid*/

return l; /*expired*/

revalidate
The validation function is called when a disk change is detected. It is also called
by the various stat system calls implemented in version 2.1 of the kernel. The
return value is currently unused; to be safe, return Oto indicate success and a neg
ative error code in case of error.

The action performed by revalidate is device-specific, but revalidate usually
updates the internal status information to reflect the new device.

In sbull, the revalidate method tries to allocate a new data area if there is not
already a valid area.

int sbull_revalidate(kdev_t i_rdev)

Sbull_Dev *dev = sbull_devices + MINOR(i_rdev);

PDEBUG("revalidate for dev %i\n",MINOR(i_rdev));
if (dev->data)

253

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 254

Chapter 12: Loading Block Drivers

return 0;
dev->data = vmalloc(dev->size);
if (! dev->data)

return -ENOMEM;
return O;

Extra Care
Drivers for removable devices should also check for a disk change when the
device is opened; the kernel automatically calls its cbeck_disk_change function at
mount time, but not at open time.

Some programs, however, directly access disk data without mounting the device:
fsck, mcopy, and / disk are examples of such programs. If the driver keeps status
information about removable devices in memory, it should call the
check_disk_change function when the device is first opened. The kernel function
falls back on the driver methods (check_media_change and revalidate), so nothing
special has to be implemented in open itself.

Here is the sbull implementation of open, which takes care of the case where
there's been a disk change:

int sbull_open (struct inode *inode, struct file *filp)

Sbull_Dev *dev; /* device information*/
int num = MINOR(inode->i_rdev);

if (num >= sbull_devs) return -ENODEV;
dev = sbull_devices + num;

/* revalidate on first open and fail if no data is there*/
if (!dev->usage) {

check_disk_change(inode->i_rdev);
if (!dev->data)

return -ENOMEM;

dev->usage++;
MOD_INC_USE_COUNT;
return 0; /*success*/

Nothing else needs to be done in the driver for a disk change. Data is corrupted
anyway if a disk is changed while its open count is greater than zero. The only
way the driver can prevent this from happening is for the usage count to control
the door lock, in those cases where the physical device supports it. Then open and
close can disable and enable the lock appropriately.

254

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 255

Partitionable Devices

Partitionable Devices
If you try to create partitions with /disk, you'll find out that there's something
wrong with them. The /disk program calls the partitions /dev/sbul/01, /dev/sbu/102,
and so on, but those names don't exist on the filesystem. Indeed, the base sbull
device is a byte array with no entry points to provide access to subregions of the
data area, so partitioning sbull doesn't work.

In order to be able to partition a device, we must assign several minor numbers to
each physical device. One number is used to access the whole device (for exam
ple, /dev/hda), and the others are used to access the various partitions (such as
/dev/hdal). Since /disk creates partition names by adding a numerical suffix to the
whole-disk device name, we'll follow the same naming convention in our next
block driver.

The device I'm going to introduce in this section is called spull, because it is a
"Simple Partitionable Utility." The device resides in the spull directory and is com
pletely detached from sbull, even though they share a lot of code.

In the char driver scull, different minor numbers were able to implement different
behaviors, so that a single driver could show several different implementations ..
Differentiating according to the minor number is not possible with block devices,
and that's why sbull and spull are kept separate. The inability to differentiate
devices according to the minor number is a basic feature of block drivers, as sev
eral of the data structures and macros are defined only as a function of the major
number.

As far as porting is concerned, it's worth noting that partitionable modules can't be
loaded into the 1.2 kernel versions, because the symbol resetup_one_dev (intro
duced later in this section) wasn't exported to modules. Before SCSI disk support
was modularized, nobody ever considered partitionable modules.

The device nodes I'm going to introduce are called pd, for "partitionable disk."
The four whole devices (also called "units") are thus called dev/pda through
/dev/pdd; each device supports at most 15 partitions. Minor numbers have the fol
lowing meaning: the least significant four bits represent the partition number
(where O is the whole device), and the most significant four bits represent the unit
number. This convention is expressed in the source file by the following macros:

#define SPULL_SHIFT 4 /* max 16 partitions */
#define SPULL_MAXNRDEV 4 /* max 4 device units*/
#define DEVICE_NR(device) (MINOR(device)>>SPULL_SHIFT)
#define DEVICE_NAME "pd" /* name for messaging*/

255

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 256

Chapter 12: Loading Block Drivers

The Generic Hard Disk
Every partitionable device needs to know how it is partitioned. The information is
available in the partition table, and part of the initialization process consists of
decoding the partition table and updating the internal data structures to reflect the
partition information.

This decoding isn't easy, but fortunately, the kernel offers "Generic Hard Disk"
support usable by all block drivers, which considerably reduces the amount of
code needed in the driver for handling partitions. Another advantage of the
generic support is that the driver writer doesn't need to understand how the parti
tioning is done, and new partitioning schemes can be supported in the kernel
without requiring changes to driver code.

A block driver that wants to support partitions should include
<linux/genhd.h> and should declare a struct gendisk structure. All such
structures are arranged in a linked list, whose head is the global pointer
gendisk_head.

Before we go further, let's look at the fields in struct gendisk. You'll need to
understand them in order to exploit generic device support.

int major
The major number identifies the device driver that the structure refers to.

canst char *major_name
The base name for devices belonging to this major number. Each device name
is derived from this name by adding a letter for each unit and a number for
each partition. For example, "hd" is the base name that is used to build
/dev/bdal and /devlbdb3. The base name should be at most five characters
long, because add_partition builds the full name of the partition in an eight
byte buffer, and the letter that identifies the unit, the partition number, and the
' \ 0 ' terminator have to be appended. The name for spull is pd ("Partition
able Disk").

int minor_shift
The number of bit-shifts needed to extract the drive number from the device
minor number. In spull the number is 4. The value in this field should be con
sistent with the definition of the macro DEVICE_NR (device) (see "The
Header File blk.h" earlier in this chapter). The macro in spull expands to
device>>4.

int max_p

256

The maximum number of partitions. In our example, max_p is 16, or more
generally, 1 << minor_shift.

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 257

Parttttonable Devices

int max_nr
The maximum number of units. In spull, this number is 4. The result of the
maximum number of units shifted by minor_shift should fit in the avail
able range of minor numbers, which is currently 0-255. The IDE driver can
support both many drives and many partitions per drive because it registers
several major numbers to work around the small range of minor numbers.

void (*init) (struct gendisk *)
The initialization function for the driver, which is called after initializing the
device and before the partition check is performed. I'll describe this function
in more detail below.

struct hd_struct *part
The decoded partition table for the device. The driver uses this item to deter
mine what range of the disk's sectors are accessible through each minor
number. The driver is responsible for allocation and deallocation of this array,
which most drivers implement as a static array of max_nr << minor_shift
structures. The driver should initialize the array to zero before the kernel
decodes the partition table.

int *sizes
This field points to an array of integers. The array holds the same information
as blk_size. The driver is responsible for allocating and deallocating the
data area. Note that the partition check for the device copies this pointer to
blk_size, so a driver handling partitionable devices doesn't need to allocate
the latter array.

int nr_real
The number of real devices (units) that exist. This number must be less than
or equal to max_nr.

void *real_devices
This pointer is used internally by each driver that needs to keep additional pri
vate information (this is similar to filp->private_data).

void struct gendisk *next
A link in the list of generic hard disks.

The design of partition checking is best suited to drivers directly linked to the ker
nel image, so I'll start by introducing the basic structure of the kernel code. Later
I'll introduce the way the spull module handles its partitions.

Partition Detection in the Kernel
At boot time, init/main.c calls the various initialization functions. One of those
functions, start_kernel, initializes all drivers by calling device_setup. This function

257

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 258

Chapter 12: Loading Block Drivers

in turn calls blk_dev_init and then checks the partition information of all registered
generic hard disks. Any block driver that finds at least one of its devices registers
the driver's genhd structure in the kernel list so its partitions will be correctly
detected.

A partitionable driver, therefore, should declare its own s truct genhd. The
structure looks like the following:

struct gendisk my_gendisk =

} ;

MAJOR_NR, /* Major number*/
"my", /* Major name * /
6, /* Bits to shift to get real from partition*/
1 << 6, /* Number of partitions per real*/
MY_MAXNRDEV, /* Maximum number of devices*/
my_geninit, /* Init function*/
my_partitions, /* hd_struct array, filled at partition check*/
my_sizes, /* Block sizes*/
0,
NULL,
NULL

/* Number of units: updated by init code*/
/* "real_devices" pointer: use at will*/
/* next: updated by the lines shown below*/

In the initialization function for the driver, then, the structure is queued on the
main list of partitionable devices.

The initialization function of a driver that is linked to the kernel is the equivalent
of init_module, even though it is called in a different way. The function must
enclose the following two lines, to take care of queueing the structure:

my_gendisk.next = gendisk_head;
gendisk_head = &my_gendisk;

By inserting the structure into the linked list, these simple lines are all that's
needed in the driver's entry point for all its partitions to be properly recognized
and configured.

Additional setup can be performed by my_geninit. In the example shown above,
the function fills the "number of units" field to reflect the actual hardware setup of
the computer system. After my_geninit terminates, gendisk.c performs the actual
partition detection for all the disks (the units). You can see the partitions being
detected at system boot because gendisk.c prints Partition check: on the
system console, followed by all the partitions it finds on the available generic hard
disks.

You can modify the previous code by delaying allocation of both my_sizes and
my _partitions until the my_geninit function. This saves a small amount of ker
nel memory because the arrays can be as small as nr_real << minor_shift,
whereas static arrays must be max_nr << minor_shift bytes long. The typical
savings, however, are a few hundred bytes per physical unit.

258

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 259

Parttttonable Devices

Partition Detection in Modules

A modularized driver differs from a driver linked to the kernel in that it can't bene
fit from the centralized initialization. Instead, it should handle its own setup.
There's no two-step initialization for a module, so the gendisk structure for spull
has a NULL pointer in its ini t function pointer:

struct gendisk spull_gendisk = {
0, /* Major no., assigned after dynamic retreival */
"pd", /* Major name */
SPULL_SHIFT, /* Bits to shift to get real from partition*/
1 << SPULL_SHIFT, /* Nwnber of partitions per real*/
SPULL_MAXNRDEV, /* Maximum no. of devices*/
NULL, /* No init function (isn't called, anyways) */
NULL, /* Partition array, allocated by init_module */
NULL, /* Block sizes, allocated by init_module */
0, /* Nwnber of units: set by init_module */
NULL, /* "real_devices" pointer: not used*/
NULL /*Next*/

} ;

It is also unnecessary to register the gendisk structure in the global linked list of
generic disks.

The file gendisk.c is prepared to handle a "late" initialization like the one needed
by modules by exporting the function resetup_one_dev, which scans the partitions
for a single physical device. The prototype for resetup_one_dev is:

void resetup_one_dev(struct gendisk *dev, int drive);

You can see from the name of the function that it is meant to change the setup
information for a device. The function was designed to be called by the BLKR
RPART implementation within ioctl, but it can also be used for the initial setup of
a module.

When a module is initialized, it should call resetup_one_dev for each physical
device it is going to access so that the partition information can be stored in
my_gendisk->part. The partition information is then used in the request_fn
function of the device.

In spu/1, the init_modu/e function includes the following code in addition to the
usual instructions. It allocates the arrays needed for partition check and initializes
the whole-disk entries in the arrays.

/* Prepare the 'size' array and zero it. */
spull_sizes = kmalloc((spull_devs << SPULL_SHIFT) * sizeof(int),

GFP_KERNEL);
if (!spull_sizes)

goto fail_malloc;

259

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 260

Chapter 12: Loading Block Drivers

/* Start with zero-sized partitions, and correctly sized units*/
rnemset(spull_sizes, 0, (spull_devs << SPULL_SHIFT) * sizeof(int));
for (i=0; i< spull_devs; i++)

spull_sizes[i<<SPULL_SHIFT] = spull_size;
blk_size[MAJOR_NR] = spull_gendisk.sizes = spull_sizes;

/* Allocate the partitions, and refer the array in spull_gendisk. */
spull_partitions = krnalloc((spull_devs << SPULL_SHIFT) *

sizeof(struct hd_struct), GFP_KERNEL);
if (!spull_partitions)

goto fail_rnalloc;

rnernset(spull_partitions, 0, (spull_devs << SPULL_SHIFT) *
sizeof(struct hd_struct));

/* fill whole-disk entries*/
for (i=0; i < spull_devs; i++) {

/* start_sect is already 0, and sects are 512 bytes long*/
spull_partitions[i << SPULL_SHIFT] .nr_sects 2 * spull_size;

spull_gendisk.part = spull_partitions;

#if 0
/*

* Well, now a *real* driver should call resetup_one_dev().
* Avoid it here, as there's no allocated data in spull yet.
*/

for (i=0; i< spull_devs; i++) {

#endif

printk(KERN INFO "Spull partition check: ");
resetup_one_dev(&spull_gendisk, i);

It's interesting to note that resetup_one_dev prints partition information by repeat
edly calling:

printk(" %s:", disk_name(hd, minor, buf));

That's why spull would print a leading string. It's meant to add some context to
the information that gets stuffed into the system log.

When a partitionable module is unloaded, the driver should arrange for all the
partitions to be flushed, by calling fsync_dev for every supported major/minor pair.
Moreover, if the gendisk structure was inserted in the global list, it should be
removed-note that spull didn't insert itself, for the reasons outlined above.

The cleanup function for spull is:

for (i = 0; i < (spull_devs << SPULL_SHIFT); i++)
fsync_dev(MKDEV(spull_rnajor, i)); /* flush the devices*/

blk_dev[rnajor] .request_fn = NULL;
read_ahead[rnajor] = 0;
kfree(blk_size[rnajor]); /* which is gendisk->sizes as well*/

260

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 261

blk_size[rnajor] = NULL;
kfree(spull_gendisk.part);

Partition Detection Using Initrd

Partitionable Devices

If you want to mount your root filesystem from a device whose driver is available
only in modularized form, you must use the /nitrd facility offered by modern
Linux kernels. I won't introduce lnitrd here; this subsection is aimed at readers
who know about Initrd and wonder how it affects block drivers.

When you boot a kernel with Initrd, it establishes a temporary running environ
ment before it mounts the real root filesystem. Modules are usually loaded from
within the ramdisk being used as the temporary root file system.

Since the Initrd process is run after all boot-time initialization is complete (but
before the real root filesystem has been mounted), there's no difference between
loading a normal module and one living in the Initrd ramdisk. If a driver can be
correctly loaded and used as a module, all Linux distributions that have Initrd
available can include the driver on their installation disks without requiring you to
hack in the kernel source.

The Device Methods for spull
In addition to initialization and cleanup, there are other differences between parti
tionable devices and non-partitionable devices. Basically, the differences are due
to the fact that if the disk is partitionable, the same physical device can be
accessed using different minor numbers. The mappings from the minor number to
the physical position on the disk is stored by resetup_one_dev in the
gendisk->part array. The code below includes only those parts of spull that
differ from sbull, because most of the code is exactly the same.

First of all, open and close must keep track of the usage count for each device.
Since the usage count refers to the physical device (unit), the following assignment
is used for the dev variable:

Spull_Dev *dev = spull_devices + DEVICE_NR(inode->i_rdev);

The DEVICE_NR macro used here is the one that must be declared before
<linux/blk. h> is included.

While almost every device method works with the physical device, ioctl should
access specific information for each partition. For example, mkft should be told
the size of each partition, not the size of the whole device. Here is how the
BLKGETSIZE ioctl command is affected by the change from one minor number
per device to multiple minor numbers per device. As you might expect,
spull_gendisk->part is used as the source of the partition size.

261

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 262

Chapter 12: Loading Block Drivers

case BLKGETSIZE:
/* Return the device size, expressed in sectors*/
if (!arg) return -EINVAL; /* NULL pointer: not valid*/
err=verify_area(VERIFY_WRITE, (long*) arg, sizeof(long));
if (err) return err;
size= spull_gendisk.part[MINOR(inode->i_rdev)].nr_sects;
put_user (size, (long*) arg);
return O;

The other ioctl command that is different for partitionable devices is BLKRRPART.
Re-reading the partition table makes sense for partitionable devices and is equiva
lent to revalidating a disk after a disk change:

case BLKRRPART: /* re-read partition table: fake a disk change*/
return spull_revalidate(inode->i_rdev);

The function spull_revalidate in turn calls resetup_one_dev to rebuild the partition
table. First, however, it must clear any previous information-otheiwise, trailing
partitions would still appear at the end of the partition table in case the new one
contains fewer partitions than before.

int spull_revalidate(kdev_t i_rdev)

/* first partition, # of partitions*/
int partl (DEVICE_NR(i_rdev) << SPULL_SHIFT) + 1;
int npart = (1 << SPULL_SHIFT) -1;

/* first clear old partition information*/
memset(spull_gendisk.sizes+partl, 0, npart*sizeof(int));
memset(spull_gendisk.part +partl, 0, npart*sizeof(struct hd_struct));

/* then fill new info*/
printk(KERN_INFO "Spull partition check: ");
resetup_one_dev(&spull_gendisk, DEVICE_NR(i_rdev));
return O;

But the major difference between sbull and spull is in the request function. In
spull, the request function needs to use the partition information in order to cor
rectly transfer data for the different minor numbers.

Information in spull_gendisk->part is used to locate each partition on the
physical device. part [minor] ->nr_sects is the partition size, and
part [minor] ->start_sect is its offset from the beginning of the disk. The
request function eventually falls back to the whole-disk implementation.

Here are the relevant lines in spull_request:

/* the sector size is 512 bytes*/
ptr = device->data +

262

512 * (spull_partitions[minor].start_sect + CURRENT->sector);
size= CURRENT->current_nr_sectors * 512;

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 263

Interrupt-Driven Block Drivers

if (CURRENT->sector + CURRENT->current_nr_sectors >
spull_gendisk.part[minor] .nr_sects) {

printk(KERN_WARNING •spull: request past end of device\n");
end_request(O);
continue;

The number of sectors is multiplied by 512, the sector size (which is hardwired in
spull), to get the size of the partition in bytes.

Interrupt-Driven Block Drivers
When a driver controls a real hardware device, operation is usually interrupt
driven. Using interrupts helps system performance by releasing the processor dur
ing VO operations. In order for interrupt-driven 1/0 to work, the device being
controlled must be able to transfer data asynchronously and to generate interrupts.

When the driver is interrupt-driven, the request function spawns a data transfer
and returns immediately without calling end_request. However, the kernel doesn't
consider a request fulfilled unless end_request has been called. Therefore, the top
half or the bottom-half interrupt handler calls end_request when the device signals
that the data transfer is complete.

Neither sbull nor spull can transfer data without using the system microprocessor;
however, spull is equipped with the capability of faking interrupt-driven operation
by specifying the irq=l option at load time. When irq is not zero, the driver
uses a kernel timer to delay fulfillment of the current request. The length of the
delay is the value of irq: the greater the value, the longer the delay.

The request function for an interrupt-driven device instructs the hardware to per
form the transfer and then return. The spull function performs the usual error
checks and then calls memcpy to transfer the data (this is the task that a real driver
performs asynchronously). It then delays acknowledgment until interrupt time:

void spull_irqdriven_request(void)
{

Spull_Dev *device;
us *ptr;
int size, minor, devnr;
/*

* Check for errors and start data transfer for the current request.
* The spull rarndisk performs the transfer right ahead,
* but delays acknolegrnent using a kernel timer.
*/

while(l) {
INIT_REQUEST;

devnr = DEVICE_NR(CURRENT_DEV);
minor= MINOR(CURRENT_DEV);

263

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 264

Chapter 12: Loading Block Drivers

/* then the core of the function is unchanged */

/* ... and this is how the function completes: xfer now ... */
switch(CURRENT->cmd) {

case READ:
memcpy(CURRENT->buffer, ptr, size);
break;

case WRITE:
memcpy(ptr, CURRENT->buffer, size);
break;

default: /* should't happen*/
end_request(O);
continue;

/* ... and wait for the timer to expire--no end_request(l) */
spull_timer.expires =jiffies+ spull_irq;
add_timer(&spull_timer);
return;

New requests can accumulate while the device is dealing with the current one, but
the kernel doesn't call the request function for the driver if it is already dealing
with a request. That's why the function just shown doesn't check for double invo
cation.

It's the responsibility of the interrupt handler to set up for the next data transfer
after the last one is complete. To avoid code duplication, the handler usually calls
the request function, which should therefore be able to run at interrupt time (see
"The Nature of Task Queues,, in Chapter 6).

In our sample module, the role of the interrupt handler is performed by the func
tion invoked when the timer expires. That function calls end_request and sched
ules the next data transfer by calling the request function.

/* this is invoked when the timer expires*/
void spull_interrupt(unsigned long unused)
{

264

I*
* arg to end_request(), default to success, a real device might
* signal a failure, if it detects one
*/

int fulfilled= 1;

end_request(fulfilled); /* done one*/

if (CURRENT) /* more of them?*/
spull_irqdriven_request(); /* schedule the next*/

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 265

Quick Reference

Note that this interrupt handler calls the request function to schedule the next
operation. This means that in this case the request function must be able to run at
interrupt time.

If you try to run the interrupt-driven flavor of the spull module, you'll barely notice
the added delay. The device is almost as fast as it was before because the buffer
cache avoids most data transfers between memory and the physical device. If you
want to perceive how a slow device behaves, you can specify a bigger value for
irq= when loading spull.

Quick Reference
The most important functions and macros used in writing block drivers are sum
marized below. To save space, however, I'm not listing the fields of struct
request or struct genhd, and I'm omitting the predefined ioctl commands.

int register_blkdev(unsigned int major, canst char *name,
struct file_operations *fops);

int unregister_blkdev(unsigned int major, canst char *name);
These functions are in charge of device registration in init_module and device
removal in cleanup_module.

struct blk_dev_struct blk_dev[MAX_BLKDEV];
This array is used for request passing between the kernel and the driver.
blk_dev [major] . reques t_fn should be assigned at load time to point to
the "request function for the current request."

int read_ahead[];
Read-ahead values for every major number. A value of 8 is reasonable for
devices like hard disks; the value should be greater for slower media.

int blksize_size[] [];
int blk_size[] [];
int hardsect_size[] [];

These two-dimensional arrays are indexed by major and minor number. The
driver is responsible for allocating and deallocating the row in the matrix asso
ciated with its major number. The arrays represent the size of device blocks
in bytes (it usually is 1KB), the size of each minor device in kilobytes (not
blocks), and the size of the hardware sector in bytes. Currently, sector sizes
other than 512 are not supported, despite the fact that there's a hook in the
code.

265

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 266

Chapter 12: Loading Block Drivers

MAJOR_NR
DEVICE_NAME
DEVICE_NR(kdev_t device)
DEVICE_INTR
#include <linux/blk.h>

These macros must be defined by the driver before it includes the header, as
most of the header uses them.

struct request *CURRENT
This macro points to the current request. The request structure describes a
data chunk to be transferred and is used by the requestJn for the current
driver.

#include<linux/gendisk.h>
struct genhd;

The generic hard disk allows Linux to support partitionable devices easily.

void resetup_one_dev(struct gendisk *genhd, int drive);

266

This function scans the partition table of the disk and rewrites genhd->part
to reflect the new partitioning.

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 267

CHAPTER THIRTEEN

MMAPANDDMA

This chapter introduces the internals of Linux memory management and
m emory mapping. I t also describes how "Direct Memo1y Access" (OMA) is
used by device drivers. Although you might object that OMA belongs more

to hardware handling than to the software interface, I feel it more related to m em
ory management than to hardware control.

This chapter is quite advanced; most driver writers w on't need to go so deep into
the system internals. Nonetheless, understanding how memo1y works w ill help
you design a driver that makes effective use of the system's capabilities.

Memory Management in Linux
Rather than describing the theory of memory management in operating systems,
this section tries to pinpoint the main features of the Linux implementation of the
theory . This section is mainly informative and skipping over it shouldn't prevent
you from understanding the later top ics that are more implementation-oriented.

Page Tables
When a program looks up a virtual address, the p rocessor splits the address into
bitfields. Each bitfield is used as an index into an array, called a page !able, LO
retrieve either the address of the next table or the address of the physical page
that ho lds the virtual address.

The Linux kernel manages three levels o f page tables in order to map virtual
addresses to physical addresses. This might appear strange at first. As most PC

267

CHAPTER THIRTEEN

MMAP AND DMA

his chapter introduces the internals of Linux memory management and
memory mapping. It also describes how “Direct Memory Access” (DMA) is
used by device drivers, Although you might object that DMA belongs more

to hardware handling than to the software interface, I feel it more related to mem-
ory managementthan to hardware control.

This chapter is quite advanced; most driver writers won't need to go so deep into
the system internals. Nonetheless, understanding how memory works will help
you designa driver that makes effective use of the system’s capabilities,

Memory Managementin Linux
Rather than describing the theory of memory management in operating systems,
this section tries to pinpoint the main features of the Linux implementation of the
theory. This section is mainly informative and skipping over it shouldn't prevent
you from understanding the later topics that are more implementation-oriented.

Page Tables

When a program looks up a virtual address, the processor splits the address into
bitfields. Each bitfield is used as an index into an array, called a petge table, to
retrieve either the address of the next table or the address of the physical page
that holds the virtual address.

The Linux kernel manages three levels of page tables in order to map virtual
addresses to physical addresses. This might appear strange at first. As most PC

Petitioners Microsoft Corporation and HPInc.- Ex. 1019, p. 267

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 268

Chapter 13: Mmap and DMA

programmers are aware, the x86 hardware implements only two levels of page
table. In fact, most 32-bit processors supported by Linux implement two levels, but
the kernel implements three anyway.

The use of three levels in a processor-independent implementation allows Linux to
support both two-level and three-level processors (such as the Alpha) without
clobbering the code with a lot of #ifdef statements. This kind of "conservative
coding" doesn't lead to additional overhead when the kernel runs on two-level
processors, because the compiler actually optimizes out the unused level.

But let's look for a moment at the data structures used to implement paging. To
follow the discussion, you should remember that most data items used for memory
management are kept internally as unsigned long, because they represent
addresses that are not meant to be dereferenced.

The list below summarizes the implementation of the three levels in Linux, and
Figure 13-1 depicts them:

• A "PaGe Directory" (PGD) is the top-level page table. The PGD is an array of
pgd_t items, each of which points to a second-level page table. Each process
has its ·own page directory. You can think of the page directory as a page
aligned array of pgd_ts.

• The second-level table is called a "Page Mid-level Directory," or PMD. The
PMD is a page-aligned array of pmd_t items. A pmd_t is a pointer to the
third-level page table. Two-level processors, such as the x86 and the Sparc-4c,
have no physical PMD; they declare their PMD as an array with a single ele
ment, whose value is the PMD itself-we'll see in a while how this is handled
in C and how the compiler optimizes this level away.

• What comes next is called simply a "Page Table." Once again, it is a page
aligned array of items, each of which is called a "Page Table Entry." The ker
nel uses the pte_t type for the items. A pte_t contains the physical address
of the data page.

The types introduced in this list are defined in <asm/page. h>, which must be
included by every source file that plays with paging.

The kernel doesn't need to worry about doing page-table lookups during normal
program execution, because they are done in hardware. Nonetheless, the kernel
must arrange things so the hardware can do its work. It must build the page tables
and look them up whenever the processor reports a page fault; that is, whenever a
virtual address needed by the processor is not present in memory.

The following symbols are used to access the page tables. Both <asm/page. h>
and <asm/pgtable. h>: must be included for all of them to be accessible.

268

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 269

Memo,y Management in Linu.,c

struct mm_struct Virtual Address (addr)

001110101101100110011011101101011111

pgd part pmd part

PMD
pmd_ t
pmd_ t
pmd_t
pmd_ t
pmd_ t
pmd_ t
pmd_ t
pmd_ t
pmd_ t

• • •
······················• pgd_offset (mm_struct, addr);
-----------• pmd_offset(pgd_ t, addr);
- - - - - - • pte_offset(pgd_t, addr) ;

pte_page(pte_t);

Figure 13-1: 771e tb,-ee levels of Linux page tables

PTRS_ PER_PGD
PTRS_PER_ PMD
PTRS_PER_PTE

pie part

pte_t
pte_ t
pte_t
pte_ t
pte_t
pte_t
pte_t

• • •

offset

data page

The size of each table. Two-level processors set PTRS PER_PMD to 1, to
avoid dealing with the middle level.

unsigned long pgd_val(pgd_t pgd)
unsigned long prnd_val(prnd_ t prnd)
unsigned long pte_v al(pte_t pte)

These three macros are used to retrieve the unsigned long value from the
typed data item. The macros help in using strict data typing in source code
without introducing computationa l overhead.

269

Memory Management in Linux

struct mm_struct Virtual Address (addr)

f 00242040110120041/001101110101011122/
pgd part pmdpart pte part offset

 data page

Satandestieaecidas » pgd_offset(mm_struct, addr);
ashen At tag » pmd_offset(pgd_t, addr);
atcha men» pte_offset(pgd_t, addr);
—————+ pte_page(pte_t);

Figure 13-1: The three levels ofLinuxpage tables

PTRS_PER_PGD

PTRS_PER_PMD
PTRS_PER_PTE

The size of each table. Two-level processors set PTRS_PER_PMD to 1, to
avoid dealing with the middle level.

unsigned long pgd_val(pgd_t pgd)
unsigned long pmd_val(pmd_t pmd)

unsigned long pte_val(pte_t pte)
These three macros are used to retrieve the unsigned long value from the
typed data item. The macros help in using strict data typing in source code
without introducing computational overhead.

Petitioners Microsoft Corporation and HPInc.- Ex. 1019, p. 269

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 270

Chapter 13: Mmap and DMA

pgd_t * pgd_offset(struct mm_struct * mm,
unsigned long address)

prod_t * prod_offset(pgd_t * dir, unsigned long address)
pte_t * pte_offset(prod_t * dir, unsigned long address)

These inline functions* are used to retrieve the pgd, prod, and pte entries
associated with address. Page-table lookup begins with a pointer to struct
mm_struct. The pointer associated with the memory map of the current pro
cess is current->mm. The pointer to kernel space is described by
&ini t_mm, which isn't exported to modules because they don't need it. Two
level processors define prod_offset (dir, add) as (prod_t *) dir, thus
folding the prod over the pgd. Functions that scan page tables are always
declared as inline, and the compiler optimizes out any prod lookup.

unsigned long pte_page(pte_t pte)
This function extracts the address of a physical page from its page-table entry.
Using pte_val (pte) wouldn't work, because microprocessors use the low
bits of the pte to store additional information about the page. The bits are not
part of the actual address, and pte_page is needed to extract the real address
from the page table.

pte_present(pte_t pte)
This macro returns a boolean value that indicates whether the data page is
currently in memory. This is the most used of several functions that access the
low bits in the pte-the bits that are discarded by pte_page. It's interesting
to note that while physical pages can be present or not, page tables are
always present (in the current Linux implementation). This simplifies the ker
nel code because pgd_offset and friends never fail; on the other hand, even a
process with a "resident storage size" of zero keeps its page tables in real
RAM.

Just seeing the list of these functions is not enough for you to be proficient in the
Linux memory management algorithms; real memory management is much more
complex and must deal with other complications, like cache coherence. The list
above should nonetheless be sufficient to give you a feel for how page manage
ment is implemented; you can get more information from the include/asm and
mm subtrees of the kernel source.

Virtual Memory Areas
While paging sits at the lowest level of memory management, something more is
necessary before you can use the computer's resources efficiently. The kernel
needs a higher-level mechanism to handle the way a process sees its memory.

* As a matter of fact, on the Spare the functions are not inline, but rather real extern
functions, which are not exported to modularized code. Therefore you won't be able to use
these functions in a module running on the Spare, but you won't usually need to.

270

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 271

Memory Management tn Linux

This mechanism is implemented in Linux by means of "Virtual Memory Areas,"
which I'll refer to as "areas" or "VMAs."

An area is a homogeneous region in the virtual memory of a process, a contiguous
range of addresses featuring the same permission flags. It corresponds loosely to
the concept of a "segment," although it is better described as "a memory object
with its own properties." The memory map of a process is made up of: an area for
program code (text); one each for data, BSS (uninitialized data),* and the stack;
and one for each active memory mapping. The memory areas of a process can be
seen by looking in /proc/pid/maps. /proc/self is a special case of /proclpid, as it
always refers to the current process. As an example, here are three different mem
ory maps, to which I added short comments after a sharp sign:

morgana.root# head /proc/1/maps
==> /proc/1/maps <==
00000000-00003000 r-xp 00000400
00003000-00004000 rwxp 00003400
00004000-0000cOOO rwxp 00000000
Sffff000-6009a000 rwxp 00000000
6009a000-600c9000 rwxp 00000000
bfffdOOO-cOOOOOOO rwxp ffffeOOO

==> /proc/self/maps <==
08000000-08002000 r-xp 00000000
08002000-08003000 :cw-p 00001000

/proc/self/maps
•init• is a.out on my x86

03:01 30818 # hdal:/bin/init--text
03:01 30818 # hdal:/bin/init--data
00:00 0 # zero-mapped bss
03:01 26621 # hdal:/lib/libc.so.4.7.2
00:00 0
00:00 0

03:01 16778
03:01 16778

zero-mapped stack

HH •head• is ELF on my x86
hdal:/bin/head--text
hdal:/bin/head--data

08003000-0800a000 rwxp 00000000 00:00 0 # zero-mapped bss
40000000-40005000 r-xp 00000000 03:01 26863 # /lib/ld-linux.so.1.7.3--text
40005000-40006000 :cw-p 00004000 03:01 26863 ll /lib/ld-linux.so.1.7.3--data
40006000-40007000 :cw-p 00000000 00:00 0
40008000-40080000 r-xp 00000000 03:01 27025 # /lib/libc.so.5.0.9--text
40080000-40085000 :cw-p 00077000 03:01 27025 # /lib/libc.so.5.0.9--data
40085000-400b8000 :cw-p 00000000 00:00 0
bfffeOOO-cOOOOOOO rwxp fffffOOO 00:00 0 # zero-mapped stack

morgana.root# rah wolf head /proc/self/maps ll### alpha-axp: static ecoff
OOOOOOOllfffe000-0000000120000000 rwxp 0000000000000000 00:00 0 # stack
0000000120000000-0000000120014000 r-xp 0000000000000000 08:03 2844 # text
0000000140000000-0000000140002000 rwxp 0000000000014000 08:03 2844 # data
0000000140002000-0000000140008000 rwxp 0000000000000000 00:00 0 # bss

The fields in each line are:

start-end perm offset major:minor inode.

penn represents a bit mask including the read, write, and execute permissions; it
represents what the process is allowed to do with pages belonging to the area.
The last character in the field is either p for "private" ors for "shared."

* The name BSS is an historical relic, from an old assembly operator meaning "Block
Started by Symbol." The BSS segment of executable files isn't stored on disk, and the kernel
maps the zero-page to the BSS address range.

271

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 272

Chapter 13: Mmap and DMA

Each field in /prod3/maps corresponds to a field in struct vm_area_struct,
and is described in the list below.

A driver that implements the mmap method needs to fill a VMA structure in the
address space of the process mapping the device. The driver writer should there
fore have at least a minimal understanding of VMAs in order to use them.

Let's look at the most important fields instruct vm_area_struct (defined in
<linux/mm.h>). These fields may be used by device drivers in their mmap
implementation. Note that the kernel maintains lists and trees of VMAs to optimize
area lookup, and several fields of vm_area_s truct are used to maintain this
organization. VMAs can't be created at will by a driver, or the structures will break.
The main fields of VMAs are the following:

unsigned long vm_start;
unsigned long vm_end;

A VMA describes virtual addresses between vma->vm_start and
vma->vm_end. These fields are the first two fields shown in /prod3/maps.

struct inode * vm_inode;
If the area is associated with an inode (such as a disk file or a device node),
this field is a pointer to the inode. Otherwise, it is NULL.

unsigned long vm_offset;
The offset of the area in the inode. When a file or device is mapped, this is
the file position (filp->f_pos) of the first byte mapped in this area.

struct vm_operations_struct *vm_ops;
vma->vm_ops indicates that the memory area is a kernel "object" like the
struct file we have been using throughout the book. The area declares
the "methods" to act on its contents, and this field is used to list the methods.

Like struct vm_area_struct, the vm_operations_struct is defined in
<linux/mm.h>; it includes the operations listed below. These operations are the
only ones needed to handle the process's memory needs, and they are listed in
the order they are declared. The prototypes shown are for 2.0; the minor changes
from 1.2.13 are described in each entry. Later in this chapter, some of these func
tions will be implemented, and they will be described more completely at that
point.

void (*open) (struct vm_area_struct *vma);

272

After the kernel creates a VMA, it opens it. When an area is copied, the child
inherits its operations from the father and the new area is opened via
vm_ops->open. When fork copies the areas of the existing process to the
new one, for example, vm_ops->open is called to open all the maps. When
ever mmap executes, on the other hand, the area is created before
file->f_ops->mmap is called, and no vm_ops->open gets invoked.

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 273

Memory Management in Linux

void (*close) (struct vm_area_struct *vma);
When an area is destroyed, the kernel calls its close operation. Note that
there's no usage count associated with VMAs; the area is opened and closed
only once.

void (*unmap) (struct vm_area_struct *vma,
unsigned long addr, size_t len);

The kernel calls this method to "unmap" part or all of an area. If the entire
area is unmapped, then the kernel calls vm_ops->close as soon as
vm_ops->unmap returns.

void (*protect) (struct vm_area_struct *vma, unsigned long,
size_t, unsigned int newprot);

Currently not used. The handling of permission (protection) bits doesn't
depend on the area itself.

int (*sync) (struct vm_area_struct *vma, unsigned long,
size_t, unsigned int flags);

This method is called by the msync system call to save a dirty memory region
to the storage medium. The return value is expected to be O to indicate suc
cess and negative if there was an error. Kernel version 1.2 used void as the
return value for this method because the function was not expected to fail.

void (*advise) (struct vm_area_struct *vma, unsigned long,
size_t, unsigned int advise);

Currently not used.

unsigned long (*nopage) (struct vm_area_struct *vma,
unsigned long address,
int write_access);

When a process tries to access a page that belongs to a valid VMA, but that is
currently not in memory, the nopage method is called if it is defined for the
related area. The method returns the (physical) address of the page. If the
method isn't defined for the area, an empty page is allocated by the kernel.
It's unusual for drivers to implement nopage, because regions mapped by a
driver are usually completely mapped in the system's physical addresses. Ver
sion 1.2 of the kernel features a different prototype for nopage and a different
semantic as well. The third argument, wri te_access, counts as "no
share" -a non-zero value means the page must be owned by the current pro
cess, while zero means that sharing is possible.

unsigned long (*wppage) (struct vm_area_struct *vma,
unsigned long address,
unsigned long page);

This method handles "write-protected" page faults but is currently unused.
The kernel handles any attempts to write over a protected page without

273

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 274

Chapter 13: Mmap and DMA

invoking the area-specific callback. Write-protect faults are used to implement
copy-on-write. A private page can be shared across processes until one pro
cess writes to it. When that happens, the page is cloned, and the process
writes on its own copy of the page. If the whole area is marked as read-only,
a SIGSEGV is sent to the process, and the copy-on-write is not performed.

int (*swapout) (struct vm_area_struct *vma,
unsigned long offset, pte_t *page_table);

This method is called when a page is selected for swap-out. The offset
argument is the file offset: virt_address - vma->vm_start +
vma->vm_offset. A return value of 0 signals success; any other value sig
nals an error. In case of error, the process owning the page is sent a SIGBUS.
In version 1.2, the function returned void because it was never expected to
fail. The method usually writes useful information to *page_table, so it can
be retrieved at swap-in. Such information can be, for example, the offset in
the swap device.

pte_t (*swapin) (struct vm_area_struct *,
unsigned long offset, unsigned long entry);

This method is used to retrieve a page from swap space. The offset argu
ment is relative to the area (as above for swapout), while entry is the cur
rent pte for the page-if swapout saved some information in the entry, that
information can now be used to retrieve the page.

It's unlikely a driver will ever need to implement swapout or swapin, because
drivers usually m.ap pages of 1/0 memory, not regular memory. 1/0 pages are
physical addresses that are accessed like memory but map to the device hardware
instead of to RAM. 1/0 memory regions are either marked as "reserved" or live
above the top of physical memory, so they never get swapped out-swapping 1/0
memory wouldn't make much sense anyway.

The Memory Map
There is a third data structure related to memory management in Linux. While
VMAs and page tables organize the virtual address space, the physical address
space is summarized in the memory map.

The kernel needs a description of the current usage of physical memory. Since
memory can be considered as an array of pages, the information is organized in
an array. If you need information about a page, you just use its physical address to
access the memory map. Here are the symbols used by the kernel code to access
the memory map:

typedef struct { /* . . . * / } mem_map_t;
extern mem_map_t mem_map[];

274

The map itself is an array of mem_map_ts. Each physical page in the system,
including kernel code and kernel data, has an entry in mem_map.

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 275

The mmap Device Operation

PAGE_OFFSET
This macro represents the virtual address in the kernel address space to which
physical addresses are mapped. PAGE_OFFSET must be considered when
ever "physical" addresses are used. What the kernel considers to be a physical
address is actually a virtual address, offset by PAGE_OFFSET from the real
physical address-the one that is used in the electrical address lines outside
the CPU. Through Linux 2.0.x, PAGE_OFFSET was zero for the PC and non
zero for most other platforms. Version 2.1.0 changed the PC implementation
so it now uses offset-mapping as well. Mapping physical space to high virtual
addresses has sound advantages as far as kernel code is concerned, but the
topic is beyond the scope of this book.

int MAP_NR(addr);
Whenever a program needs to access the memory map, MAP _NR returns the
index in the mem_map array associated with addr. The addr argument can
either be an unsigned long or a pointer. Since the macro is used several
times by critical memory management functions, it performs no validity check
ing on addr; the calling code must make its own checks when needed.

((nr << PAGE_SHIFT) + PAGE_OFFSET)
No standardized function or macro exists to translate a map number into a
physical address. If you ever need the inverse function of MAP _NR, this clause
will work.

The memory map is used to maintain some low-level information about each
memory page. The exact definition of the memory map structure changed several
times during kernel development; you don't need to understand the details
because drivers aren't expected to look inside the map.

If, however, you are interested in looking at the internals of page management,
the header <linux/mm. h> includes a long comment that explains the meaning of
the fields in mem_map_t.

The mmap Device Operation
Memory mapping is one of the most interesting features of modern Unix systems.
As far as drivers are concerned, memory mapping can be used to provide user
programs with direct access to device memory.

For example, a simple ISA frame grabber holds image data in its own memory,
either in the 640KB-1MB address range or in the "ISA hole," the range between
14MB and 16MB (see "Accessing Memory on Device Boards" in Chapter 8, Hard
ware Management). While copying image data to conventional (and faster) RAM is
a suitable approach for casual grabbing, if the user program needs to access the
current image frame every now and then, an mmap approach is better suited to
the task.

275

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 276

Chapter 13: Mmap and DMA

Mapping a device means associating a range of user-space addresses to device
memory. Whenever the program reads or writes in the assigned address range, it
is actually accessing the device.

As you might suspect, not every device lends itself to the mmap abstraction; it
makes no sense, for instance, for serial ports and other stream-oriented devices.
Another limitation of mmap is that mapping is PAGE_SIZE-grained. The kernel
can dispose of virtual addresses only at the level of page tables; therefore, the
mapped ·area must be a multiple of PAGE_SIZE and must live in physical memory
starting at an address that is a multiple of PAGE_SIZE. The kernel accomodates
for size-granularity by making a region slightly bigger if its size isn't a multiple of
the page size. Alignment issues are usually handled by mucking with
vma->vm_offset, but this can't be done for drivers-mapping a device reduces
to accessing physical pages, which must be page-aligned.

These limits are not a big constraint for drivers, because the program accessing the
device is device-dependent anyway. It needs to know how to make sense of the
memory region being mapped, so the PAGE_SIZE alignment is not a problem. A
bigger constraint exists when you plug ISA boards into an Alpha computer,
because ISA memory is accessed only as a scattered set of 8-bit, 16-bit, or 32-bit
items, and there's no direct mapping from ISA addresses to Alpha addresses. In
this case, you can't use mmap at all. The inability to perform direct mapping of
ISA addresses to Alpha addresses is due to the incompatible data transfer specifica
tions of the two systems. While the Alpha can issue only 32-bit and 64-bit memory
accesses, ISA can do only 8-bit and 16-bit transfers, and there's no way to transpar
ently map one protocol onto the other. As a consequence, you can't use mmap at
all with ISA boards plugged into an Alpha computer.

There are sound advantages to using mmap when it's feasible to do so. For
instance, a program like the X server transfers a lot of data from video memory;
mapping the graphic display to user space dramatically improves the throughput,
as opposed to an /seek/ write implementation. Another typical example is a pro
gram controlling a PCI device. Most PCI peripherals map their control registers to
a memory address, and a demanding application might prefer to have direct
access to the registers, instead of repeatedly having to call ioctl to get its work
done.

The mmap method is part of the file_operations structure and is invoked
when the mmap system call is issued. With mmap, the kernel performs a good
deal of work before the actual method is invoked, and therefore the prototype of
the method is quite different from that of the system call. This is unlike calls such
as ioctl and select, where the kernel does not do a lot of work before calling the
method.

276

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 277

The mmap Device Operation

The system call is declared as follows (as described in the mmap(2) manual page):

mmap (caddr_t addr, size_t len, int prot, int flags, int fd,
off_t offset)

On the other hand, the file operation is declared as:

int (*mmap) (struct inode *inode, struct file *filp,
struct vm_area_struct *vma);

The inode and filp arguments in the method are the same as those introduced
in Chapter 3, Char Drivers, while vma contains the information about the virtual
address range that is used to access the device. Therefore, the driver only has to
build suitable page tables for the address range and, if necessary, replace
vma->vm_ops with a new set of operations.

A Simple Implementation
Most implementations of mmap for device drivers perform a linear mapping of
some 1/0 memory living on the peripheral device. Both /dev/mem and /dev/audio
are examples of this kind of remapping. The following code comes from
drivers/char/mem.c and shows how this task is performed in a typical module
called simple (Simple Implementation Mapping Pages with Little Enthusiasm):

#include <linux/mm.h>

int simple_mmap(struct inode *inode, struct file *filp,
struct vm_area_struct *vma)

/* int remap_page_range(virt_add, phys_add, size, protection); */
if (remap_page_range(vma->vm_start, vma->vm_offset,

vma->vm_end-vma->vm_start, vma->vm_page_prot))
return -EAGAIN;

vma->vm_inode = inode;
inode->i_count++;
return O;

It's clear that the core of the operation is performed by remap_page_range, which
is exported to modularized drivers because it does just the right job for most map
ping needs.

Maintaining the Usage Count
The main problem with the implementation shown above is that the driver doesn't
maintain a connection with the mapped area. While this is not a problem with
/devlmem, which is an integral part of the kernel, a module has to have a way to
keep its usage count up-to-date. A program can call close on the file descriptor

277

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 278

Chapter 13: Mmap and DMA

and still access the memory-mapped region. However, if closing the file descriptor
leads to the module's usage count dropping to zero, the module might be
unloaded, even though it is still being used via mmap.

Trying to warn the module's user about the problem is an insufficient workaround,
because it's not unlikely that kerneld will be used to load and unload your mod
ule. The daemon automatically removes modules when their usage count drops to
zero, and you just can't warn kerneld to be careful about mmap.

The solution to this problem is to override the default vma->vm_ops with opera
tions that keep track of the usage count. The code is quite simple-a complete
mmap implementation for a modularized /dev/mem looks like the following:

static struct vm_operations_struct simple_vm_ops = {
simple_vma_open,
simple_vma_close, /* no more fields*/
} ;

void simple_vma_open(struct vm_area_struct * area)
{ MOD_INC_USE_COUNT; }

void simple_vma_close(struct vm_area_struct * area)
{ MOD_DEC_USE_COUNT; }

int simple_J.TIITlap(struct inode *inode, struct file *filp,
struct vm_area_struct *vma)

/* int remap_page_range(virt_add, phys_add, size, protection); */
if (remap_page_range(vma->vm_start, vma->vm_offset,

vma->vm_end-vma->vm_start, vma->vm_page_prot))
return -EAGAIN;

if (vma->vm_ops)
return -EINVAL; /* Hmm ... shouldn't happen*/

vma->vm_ops = &simple_vm_ops;
MOD_INC_USE_COUNT; /* open(vma) wasn't called this time*/
vma->vm_inode = inode;
inode->i_count++;
return 0;

This code relies on the fact that the kernel initializes the vm_ops field in the
newly created area to NULL before calling f_op->mmap. The code just shown
checks the current value of the pointer as a safety measure, should something
change in future kernels.

The implementation shown exploits the notion that both open(vma) and
close(vma) are used as a complement to the default implementation. The driver
methods don't need to replicate the standard code that opens and closes memory
areas; the driver is just implementing additional management.

278

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 279

The mmap Device Operation

It's interesting to note that the swapin and swapout methods for VMAs work the
other way-the vm_ops->swap* operations defined by the driver replace the
default implementation with something completely different instead of adding to
it.

Supporting the mremap System Call
The mremap system call is used by applications to change the bounding addresses
of a mapped region. If the driver wants to be able to deal with mremap, the previ
ous implementation won't work correctly, because there's no way for the driver to
know that the mapped region has changed.

The Linux implementation of mremap doesn't notify the driver of changes in the
mapped area. Actually, it does notify the driver if the size of the area is reduced
via the unmap method, but no callback is issued if the area increases in size.

The basic idea behind notifying the driver of a reduction is that the driver (or the
filesystem mapping a regular file to memory) needs to know when a region is
unmapped in order to take the proper action, like flushing pages to disk. Growth
of the mapped region, on the other hand, isn't really meaningful for the driver,
unless the program invoking mremap accesses the new virtual addresses. In real
life, it's quite common to map regions that are never used (unused sections of pro
gram code, for example). The Linux kernel, therefore, doesn't notify the driver if
the mapped region grows, because the nopage method will take care of pages one
at a time as they are actually accessed.

In other words, the driver isn't notified when a mapping grows because nopage
will do it later, without having to use memory before it is actually needed. This
optimization is mostly aimed at regular files, whose mapping uses real RAM.

The nopage method, therefore, must be implemented if you want to support the
mremap system call. But once you have nopage, you can choose to use it exten
sively to avoid calling remap_page_range from fops->mmap; this is shown in the
next code fragment. In this implementation of mmap, the device method only
replaces vma->vm_fops. The nopage method takes care of "remapping" one
page at a time and returning its address.

An implementation of /dev/mem supporting mremap (and not supporting the
usage count, to save space) looks like the following:

static struct vm_operations_struct simple_vm_ops = {
NULL, NULL, NULL, NULL, NULL, NULL, simple_nopage,
} ;

unsigned long simple_nopage(struct vm_area_struct *vma,
unsigned long address, int write)

pgd_t *pgd; pmd_t *pmd; pte_t *pte;

279

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 280

Chapter 13: Mmap and DMA

/* int remap_page_range(virt_add, phys_add, size, protection}; */
remap_page_range(address & PAGE_MASK,

address - vma->vm_stArt + vma->vm_offset,
PAGE_SIZE, vma->vm_page_prot};

/* now return its address to the caller*/
pgd = pgd_offset(current->mm, address};
prod= prnd_offset(pgd, page);
pte = pte_offset(prnd, page);
return pte_page(*pte); /* this is the physical address*/
}

int sirnple_rnrnap(struct inode *inode, struct file *filp,
struct vrn_area_struct *vrna)

vma->vrn_ops = &sirnple_vrn_ops;
vrna->vrn_inode = inode;
inode->i_count++;
return 0;

If the nopage method is left NULL, kernel code that handles page faults maps the
zero-page to the faulty virtual address. The zero-page is a copy-on-write page that
reads as zero and that is used, for example, to map the BSS segment. Therefore, if
a process extends a mapped region by calling mremap, and the driver hasn't
implemented nopage, you'll end up with zero pages instead of a segmentation
fault.

Note that the implementation shown is highly suboptimal; it would be better if the
memory method directly returned the physical address, bypassing
remap_page_range. Unfortunately, a correct implementation of such a technique
involves several details that will be clarified only later in this chapter. Moreover,
the implementation shown above doesn't work with kernel 1.2 because the proto
type of nopage changed between version 1.2 and 2.0. I won't deal with 1.2 kernels
throughout this section.

Remapping Specific 1/0 Regions
All the examples we've seen so far are reimplementations of /devlmem; they
remap physical addresses to user space-or at least, that's what they think they
do. The typical driver, however, wants to map only the small address range that
applies to its peripheral device, not all of memory.

To be able to customize the /devlmem implementation for a specific driver, we
need to look further into the internals of remap_page_range. The full prototype of
the function is:

280

int rernap_page_range(unsigned long virt_add, unsigned long phys_add,
unsigned long size, pgprot_t prot};

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 281

The mmap Device Operation

The value returned by the function is the usual zero or a negative error code. Let's
look at the exact meaning of the function's arguments:

unsigned long virt_add
The virtual address where remapping should begin. The function builds page
tables for the virtual address range between virt_add and
virt_add+size.

unsigned long phys_add
The physical address to which the virtual address should be mapped. The
address is "physical" in the sense outlined above. The function affects physical
addresses from phys_add to phys_add+size.

unsigned long size
The dimension, in bytes, of the area being remapped.

pgprot_t prot
The "protection" requested for the new page. The driver doesn't need to mod
ify the protection, and the argument found in vma->vm_page_prot can be
used unchanged. If you're curious, you can find additional information in
<linux/mm.h>.

In order to map to user space only a subset of the whole memory range, the
driver needs to play with the offsets. The following lines will do the trick for a
driver mapping a region of simple_region_size bytes, beginning at physical
address simple_region_start: ·

unsigned long off= vma->vm_offset;
unsigned long physical= sirnple_region_start +off+ PAGE_OFFSET;
unsigned long vsize = vma->vm_end - vma->vrn_start;
unsigned long psize = sirnple_region_size - off;

if (off & (PAGE_SIZE-1))
return -ENXIO; /* need aligned offsets*/

if (vsize > psize)
return -EINVAL; /* spans too high*/

rernap_page_range(vma_>vrn_start, physical, vsize, vma->vrn_page_prot);

In addition to calculating the offsets, the code above introduces two checks for
error conditions. The first check refuses to map to user space a location that is
unaligned in physical space. Since only whole pages can be remapped, the
mapped region can only be offset by multiples of the page size. ENXIO is the
usual error code returned in this case; it expands to "no such device or address."

The second check reports an error when the program tries to map more memory
than is available in the 1/0 region of the target device. In this code, psize is the
physical I/0 size that is left after the offset has been specified, and vsize is the
requested size of virtual memory; the function refuses to map addresses that
extend beyond the allowed memory range.

281

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 282

Chapter 13: Mmap and DMA

Note that if the process calls mremap, it can extend its mapping. A "very pedantic"
driver might want to prevent this from happening; the only way to do that is to
implement the vma->nopage method. The following implementation of that
method is the simplest:

unsigned long simple_pedantic_nopage(struct vm_area_struct *vma,
unsigned long address,
int write_access);

{ return O; /* send a SIGBUS */}

If a nopage method returns O instead of a valid physical address, a SIGBUS (bus
error) is sent to the current process (the one that experienced the page fault). If
the driver doesn't have nopage implemented, the process gets the zero-page at the
requested virtual address; this is often acceptable, as mremap is a rarely-used sys
tem call and mapping the zero-page to user space has no security implications.

Remapping RAM
In Linux, a page of physical addresses is marked as "reserved" in the memory map
to indicate that it is not available for memory management. On the PC, for exam
ple, the range between 640KB and 1MB is marked as "reserved," as are the pages
that host the kernel code itself.

An interesting limitation of remap_page_range is that it gives access only to
reserved pages and physical addresses above the top of physical memory.
Reserved pages are locked in memory and are the only ones that can be safely
mapped to user space; this limitation is a basic requrement for system stability.'

Therefore, remap_page_range won't allow you to remap conventional
addresses-which includes the ones you obtain by calling get_free_page.
Nonetheless, the function does everything that a hardware driver needs it to,
because it can remap high PCI buffers and ISA memory-both the first megabyte
of memory and, if the change outlined in "ISA Memory Above lM" in Chapter 8 is
applied, the ISA hole at 15MB. When using remap_page_range with non-reserved
pages, on the other hand, the default nopage handler maps the zero-page at the
virtual address being accessed.

This behavior can be seen by running mapper, one of the sample programs in
misc-programs in the files provided on the O'Reilly FfP site. mapper is a simple
tool that can be used to quickly test the mmap system call; it maps read-only parts
of a file based on the command-line options and dumps the mapped region to
standard output. The session below, for instance, shows that ldevlmem doesn't

* When a page becomes part of a process's memory map, its usage count must be incre
mented, because at munmap time, it will be decremented. This kind of locking can't be
performed on live RAM pages, as it would prevent normal system operation (like swapping
and allocation/deallocation).

282

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 283

The mmap Device Operation

map the physical page located at address 64KB (the host computer in this exam
ples is a PC, but the result would be the same on other platforms):

rnorgana.root# ./mapper /dev/mem OxlOOOO OxlOOO I od -Ax -t xl
mapped "/dev/rnern" from 65536 to 69632
000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

001000

The inability of remap_page_range to deal with RAM suggests that a device like
scullp can't easily implement mmap, because its device memory is conventional
RAM, not 1/0 memory.

Two workarounds exist to get around the unavailability of remap_page_range for
RAM. One is a "bad" workaround and the other is a clean one.

Playing with the reserved bit

The bad approach involves setting the PG_reserved bit in mem_
map [MAP _NR (page)] • flags for the pages you want to map to user space. This
reserves the pages, and once they have been reserved, remap_page_range works
as desired. The code to set the flag is short and easy, but I won't show it here,
because the other solution is more interesting. Needless to say, the reserved bit
must definitely be cleared before releasing the page.

There are two reasons why this isn't a good approach. First, pages marked as
reserved are never touched by memory management. The kernel identifies them at
system boot, before data structures are initialized, so that they are completely
unavailable for any other use. On the other hand, any page allocated through
get_free_page, vmalloc, or some other means is handled by the memory subsys
tem. Even though the 2.0 kernel won't panic if you reserve extra pages at run
time, doing so might cause problems in the future and is discouraged. You might,
nonetheless, want to try this quick-and-dirty technique to see how it works.

The second reason that reserving pages isn't a good approach is that reserved
pages don't count as part of the total system memory, and a user is likely to be
concerned if the amount of system RAM varies from one session to the next
users often monitor the amount of free memory, and total memory is displayed
along with free memory.

Implementing the nopage method

A better way to map real RAM to user space is to use vm_ops->nopage to deal
with page faults one at a time. A sample implementation is part of the scullp mod
ule, introduced in Chapter 7, Getting Hold of Memory.

283

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 284

Chapter 13: Mmap and DMA

scullp is the page-oriented char device. Because it is page-oriented, it can imple
ment mmap on its memory. The code implementing memory mapping uses some
of the concepts introduced earlier in "Memory Management in Linux."

Before examining the code, let's look at the design choices that affect the mmap
implementation in scullp.

1be device updates the usage count for the module.
To avoid problems with module unloading, the open and close methods for
memory areas are implemented to keep track of module usage.

1be device updates the usage count for the pages.
This is a strict requirement to keep the system stable; failure to update the
count will lead to a system crash. Each page has its own usage count; when it
drops to zero, the page is inserted in the list of free pages. Whenever an active
map is destroyed, the kernel decrements the usage count of associated RAM
pages. Therefore, the driver must increment the usage count of each page it
maps (note that the count won't be zero before nopage increments it, because
the page has already been allocated by fops->write).

scullp doesn't release device memory as long as the device is mapped.
This is a matter of policy rather than a requirement, and it is different from the
behavior of scull and similar devices, which are truncated to a length of zero
when opened for writing. Refusing to free a mapped scullp device allows a
process to oveiwrite regions actively mapped by another process, so you can
test and see how processes and device memory interact. To avoid releasing a
mapped device, the driver must keep a count of active mappings; the vmas
field in the device structure is used for this purpose.

Memory mapping is only performed when the scullp order parameter is zero.
The parameter controls how get_free_pages is invoked (see the section
"get_ free_ page and Friends" in Chapter 7). This choice is dictated by the
internals of get_free_pages-the allocation engine exploited by scullp. In
order to maximize allocation performance, the Linux kernel maintains a list of
free pages for each allocation order, and only the page count of the first page
in a cluster is incremented by get_free_pages and decremented by free_pages.
The mmap method is disabled for a scullp device if the allocation order is
greater than zero, because nopage deals with single pages rather than clusters
of pages.

The last choice is mostly intended to keep the code simple. It is possible to cor
rectly implement mmap for multipage allocations by playing with the usage count
of the pages, but it would only add to the complexity of the example without
introducing any interesting information.

284

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 285

The mmap Device Operation

If code is intended to map RAM according to the rules outlined above, it needs to
implement open, close, and nopage, and also needs to access mem_map.

This implementation of scullp_mmap is very short, because it relies on the nopage
function to do all the interesting work:

int scullp_mmap(struct inode *inode, struct file *filp,
struct vm_area_struct *vma)

/* refuse to map if order is not O */
if (scullp_devices[MINOR(inode->i_rdev)].order)

return -ENODEV;
if (vma->vm_offset & (PAGE_SIZE-1))

return -ENXIO; /* need aligned offsets*/

/* don't do anything here: "nopage" will fill the holes*/
vma->vm_ops = &scullp_vm_ops;
vma->vm_inode = inode;
inode->i_count++;
scullp_vma_open(vma);
return O;

The purpose of the leading conditionals is to avoid mapping unaligned offsets and
devices whose allocation order is not 0. At the end, vm_ops->open is called to
update the usage count for the module and the count of active mappings for the
device.

open and close just keep track of these counts and are defined as:

void scullp_vma_open(struct vm_area_struct *vma)
{

ScullP_Dev *dev = scullp_devices + MINOR(vma->vm_inode->i_rdev);

dev->vmas++;
MOD_INC_USE_COUNT;

void scullp_vma_release(struct vm_area_struct *vma)

ScullP_Dev *dev = scullp_devices + MINOR(vma->vm_inode->i_rdev);

dev->vmas--;
MOD_DEC_USE_COUNT;

Since the module creates four different scullp devices and there's no pri
vate_data pointer available for memory areas, open and close retrieve the scullp
device associated with the vma by extracting the minor number from the inode
structure. The minor number is used to offset the scullp_devices array of
device structures to obtain a pointer to the right structure.

285

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 286

Chapter 13: Mmap and DMA

Most of the work is then performed by nopage. Whenever the process page faults,
the function must retrieve the physical address of the page being referenced and
return it to the caller. The method can count on page alignment of the address
argument, if that is needed. In the scullp implementation, address is used to cal
culate an offset into the device; the offset is then used to look up the correct page
in the scullp memory tree.

unsigned long scullp_vma_nopage(struct vm_area_struct *vma,
unsigned long address, int write)

unsigned long offset= address - vma->vm_start + vma->vm_offset;
ScullP_Dev *ptr, *dev = scullp_devices +

MINOR(vma->vm_inode->i_rdev);
void *pageptr = NULL; /* default to "missing" */

if (offset>= dev->size) return 0; /* out of range: send SIGBUS */

/*
* Now retrieve the scullp device from the list, then the page.
* Don't want to allocate: I'm too lazy. If the device has holes,
* the process receives a SIGBUS when accessing the hole.
*I

offset>>= PAGE_SHIFT; /* offset is a number of pages*/
for (ptr = dev; ptr && offset>= dev->qset;) {

ptr = ptr->next;
offset-= dev->qset;

if (ptr && ptr->data) pageptr = ptr->data[offset];
if (!pageptr) return 0; /* hole or end-of-file: SIGBUS */

/* got it, now increment the count*/
atomic_inc(&mem_map[MAP_NR(pageptr)].count);
return (unsigned long)pageptr;

The last line increments the usage count for the page; the count is declared as
atomic_t and therefore lends itself to being updated with an atomic operation.
As a matter of fact, in this specific situation, an atomic update isn't strictly
required, because the page is already in use, and there's no race condition with
interrupt handlers or other asynchronous code.

The scullp device now works as expected, as you can see in this sample output
from the mapper utility:

morgana% ls -1 /dev > /dev/scullp
morgana% ./mapper /dev/scullp O 140
mapped "/dev/scullp" from Oto 140
total 13
-rwxr-xr-- 1 root
lrwxrwxrwx 1 root

286

root
root

11969 Jul 18 1994 MAKEDEV*
4 Oct 23 20:28 XOR-> null

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 287

The mmap Device Operation

morgana% ./mapper /dev/scullp 8192 100
mapped "/dev/scullp" from 8192 to 8292
disk 22, 75 Jul 18 1994 hdlbll

brw-rw---- 1 root disk 22, 76 Jul 18 1994 hdlb12

Remapping Virtual Addresses
Although it's rarely necessary to remap virtual addresses, it's interesting to see how
a driver can map a virtual address to user space using mmap. By virtual address, I
mean an address returned by vmalloc; that is, a virtual address mapped in the ker
nel page tables. The code in this section is taken from scullv, which is the module
that works like scullp but allocates its storage through vmalloc.

Most of the scullv implementation is exactly like the one we've just seen for scullp,
except that there is no need to check the order of allocation. The reason for this
is that vmalloc allocates its pages one at a time, because single-page allocations
are far more likely to succeed than multi-page allocations. Therefore, the usage
count problem doesn't apply to vmalloced space.

Most of the work of vmalloc is building page tables to access allocated pages as a
continuous address range. The nopage method, on the other hand, must return a
physical address to the caller. Therefore, the nopage implementation for scullv
must scan the page tables to retrieve the physical address associated with the
page.

The function is identical to the one we saw for scullp, except at the end. This code
excerpt only includes the part of nopage that differs from scullp:

unsigned long scullv_vrna_nopage(struct vm_area_struct *vrna,
unsigned long address, int write)

void *pageptr = NULL;
unsigned long page;
pgd_t *pgd; prnd_t *prnd; pte_t *pte;

/*
* After scullv lookup, "page" is now the address of the page
* needed by the current process. Since it's a vmalloc address,
* first retrieve the unsigned long value to be looked up
* in page tables.
*/

page= VMALLOC_VMADDR(pageptr);

pgd = pgd_offset(init_rnrn__ptr, page);
prnd = prnd_offset(pgd, page);
pte = pte_offset(prnd, page);
page= pte__page(*pte); /* this is the physical address*/

/* now increment the count and return*/

287

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 288

Chapter 13: Mmap and DMA

atomic_inc(&mem_map[MAP_NR(page)].count);
return page;

The page tables are looked up using the functions introduced at the beginning of
this chapter. The page directory used for this purpose is stored in the memory
structure for kernel space, ini t_mm.

The macro VMALLOC_VMADDR(pageptr) returns the correct unsigned long
value to be used in a page table lookup from a vmalloc address. Note that a sim
ple cast of the value wouldn't work on the x86 with kernels older than 2.1, due to
a glitch in memory management. Memory management for the x86 changed in
version 2.1.1 and VMALLOC_ VMADDR is now defined as the identity function, as it
has always been for the other platforms.

The last point to cover is how ini t_mm is accessed, since, as I stated earlier, it is
not exported to modules. Actually, scullv has to do some extra work to retrieve
the pointer to ini t_mm, as explained below.

In practice, ini t_mm is not needed by conventional modules, because they are
not expected to interact with memory management; they simply call the allocation
and deallocation functions. Implementations like mmap for scullv are very
unusual. The code shown in this subsection is not actually needed to drive hard
ware; I introduced it only to support with real code the discussion about page
tables.

While we are at it, however, I want to show you how scullv obtains the address of
ini t_mm. The code relies on the fact that process O (the so-called idle task) lives
in the kernel, and its page directory describes the kernel address space. To reach
the idle task's data structures, scu/lv scans the linked list of processes until it finds
process 0.

static struct mm_struct *init_mm_ptr;

static void retrieve_init_mm_ptr(void)
{

struct task_struct *p;

for (p =current; (p = p->next_task) != current
if (p->pid == 0)

break;

init_mm_ptr = p->mm;

This function is invoked by fops->mmap, because nopage only runs after a call to
mmap.

288

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 289

Direct Memory Access

Based on the discussion above, you might also want to map addresses returned by
vremap (or ioremap if you are using Linux 2.1) to user space. This mapping is eas
ily accomplished because you can use remap_page_range directly, without imple
menting methods for virtual memory areas. In other words, remap_page_range is
already usable for building new page tables that map I/0 memory to user space;
there's no need to look in the kernel page-tables built by vremap as we did in
scullv.

Direct Memory Access
Direct Memory Access, or DMA, is the advanced topic that completes our
overview of memory issues. OMA is the hardware mechanism that allows periph
eral components to transfer their I/0 data directly to and from main memory,
without the need for the system processor to be involved in the transfer.

To exploit the OMA capabilities of its hardware, the device driver needs to be able
to correctly set up the OMA transfer and synchronize with the hardware. Unfortu
nately, because of its hardware nature, OMA is very system-dependent. Each archi
tecture has its own techniques to manage OMA transfers, and the programming
interface is different for each. The kernel can't offer a unified interface, either,
because a driver can't abstract too much from the underlaying hardware mecha
nisms. In this chapter, I describe how OMA works with ISA devices and PCI
peripherals, as these are currently the most common peripheral interface architec
tures.

However, I won't go into much detail about ISA. The ISA implementation of OMA
is unnecessarily complicated and not often used in modem peripherals. Nowa
days, the ISA bus is used mainly for dumb peripheral interfaces, as hardware man
ufacturers who need OMA capability tend to use the PCI bus.

Overview of a DMA Data Transfer
Before introducing the programming details, let's review how a OMA transfer takes
place, considering only input transfers to simplify the discussion.

Data transfer can be triggered in two ways: either the software asks for data (via a
function such as read) or the hardware asynchronously pushes data to the system.

In the first case, the steps involved can be summarized as follows:

• When a process calls read, the driver method allocates a DMA buffer and
instructs the hardware to transfer its data. The process is put to sleep.

289

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 290

Chapter 13: Mmap and DMA

• The hardware writes data to the DMA buffer and raises an interrupt when it's
done.

• The interrupt handler gets the input data, acknowledges the interrupt, and
awakens the process, which is now able to read data.

Sometimes DMA is used asynchronously. This happens, for example, with those
data acquisition devices that go on pushing data even if nobody is reading it. In
this case, the driver should maintain a buffer so that a subsequent read call will
return all the accumulated data to user space. The steps involved in this kind of
transfer are slightly different:

• The hardware raises an interrupt to announce that new data has arrived.

• The interrupt handler allocates a buffer and tells the hardware where to trans
fer its data.

• The peripheral device writes the data to the buffer and raises another interrupt
when it's done.

• The handler dispatches the new data, wakes any relevant process, and takes
care of housekeeping.

The processing steps in both cases above emphasize that efficient DMA handling
relies on interrupt reporting. While it is possible to implement DMA with a polling
driver, it wouldn't make sense, as a polling driver would waste the performance
benefits that DMA offers over the easier processor-driven 1/0.

Another relevant item introduced . here is the DMA buffer. To exploit Direct Mem
ory Access, the device driver must be able to allocate a special buffer, suited to
DMA. Note that most drivers allocate their buffer at initialization time and use it
until shutdown-the word "allocate" in the lists above therefore means "get hold
of the previously allocated buffer."

Allocating the DMA Buffer
The main problem with the DMA buffer is that when it is bigger than one page, it
must occupy contiguous pages in physical memory, because the device transfers
data using the ISA or PCI system bus, both of which carry physical addresses. It's
interesting to note that this constraint doesn't apply to the Sbus (see "Sbus" in
Chapter 15, Overview of Peripheral Buses), which uses virtual addresses on the
peripheral bus.

Although DMA buffers can be allocated either at system boot or at run time, mod
ules can only allocate their buffers at run time. Chapter 7 introduced these tech
niques: "Playing Dirty" talks about allocation at system boot while "The Real Story
of kmalloc" and "get_free_page and Friends" describe allocation at run time. If
you use kmalloc you must specify GFP_DMA priority, bitwise-ORed with either
GFP_KERNEL or GFP_ATOMIC.

290

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 291

Direct Memory, Access

It is GFP_DMA that requires the memory space to be suitable for OMA transfers.
The kernel guarantees that OMA-capable buffers have two features. First, the phys
ical addresses must be consecutive when get_free_page returns more than one
page (but this is always true, independent of GFP_DMA, because the kernel
arranges free memory in clusters of consecutive pages). And second, when
GFP _DMA is set, the kernel guarantees that only addresses lower than
MAX_DMA_ADDRESS are returned. The macro MAX_DMA_ADDRESS is set to 16MB
on the PC, to deal with the ISA constraints described later.

As far as PCI is concerned, there's no MAX_DMA_ADDRESS limit, and a PC! device
driver should avoid setting GFP _DMA when allocating its buffers.

Do-it-yourself allocation

We have seen how get_free_pages (and therefore kmalloc) can't return more than
128KB (or, more generally, 32 pages) of consecutive memory space. But the
request is prone to fail even when the allocated buffer is less than 128KB bytes,
because system memory becomes fragmented over time.'

When the kernel cannot return the requested amount of memory, or when you
need more than 128KB (a common requirement for PCI frame grabbers, for exam
ple), an alternative to returning -ENOMEM is to allocate memory at boot time or
reserve the top of physical RAM for your buffer. I described allocation at boot time
in "Playing Dirty" in Chapter 7, but it is not available to modules. Reserving the
top of RAM is accomplished by passing a mem= argument to the kernel. For exam
ple, if you have 32 megs, the argument mem=31M keeps the kernel from using the
top megabyte. Your module could later use the following code to gain access to
such memory:

drnabuf = vremap(OxlFOOOOO /* 31MB */, OxlOOOOO /* 1MB */);

My own implementation of allocating OMA buffers is available as an allocator.c
module (with an accompanying header). You can find a version in the sample files
within srdmisc-modules; and the latest version is always available from my own
ftp site, ftp://ftp.systemy.it/pub/develop. You could also look for the bigphysarea
kernel patch, which is meant to accomplish the same goal as my allocator.

* The word fragmentation is usually applied to disks, to express the idea that files are not
stored consecutively on the magnetic medium. The same concept applies to memory,
where each virtual address space gets scauered throughout physical RAM, and it becomes
difficult to retrieve consecutive free pages when a OMA buffer is requested.

291

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 292

Chapter 13: Mmap and DMA

Bus Addresses
When dealing with DMA, the device driver has to talk to hardware connected to
the interface bus, which uses physical addresses, whereas program code uses vir
tual addresses.

As a matter of fact, the situation is slightly more complicated than that. OMA-based
hardware uses bus, rather than physical, addresses. While ISA and PCI addresses
are the same as physical addresses on the PC, this is not true for every platform.
Sometimes the interface bus is connected through bridge circuitry that maps 1/0
addresses to different physical addresses.

The Linux kernel provides a portable solution by exporting the following func
tions, defined in <asm/ io. h>:

unsigned long virt_to_bus(volatile void* address);
void* bus_to_virt(unsigned long address);

The virt_to_bus conversion must be used when the driver needs to send address
information to an 1/0 device (such as an expansion board or the DMA controller),
while bus_to_virt must be used when address information is received from hard
ware connected to the bus.

If you look at code that relies on the allocator engine described earlier, you'll find
a sample use of these functions. The code relies also on vremap because of the
context:

/* the allocator returns a physical address*/
dev->dmabuffer = allocator_allocate_dma(kilobytes, GFP_KERNEL);
/* map it in the virtual address space*/
dev->dmavbuffer = vremap(dev->dmabuffer, kilobytes*1024);

/* ... * I

/* pass the address to the device*/
writel(virt_to_bus(dev->dmavbuffer,

dev->registers + DEV_DMA_ADDRESS);

Although they are not related to DMA, the kernel exports two additional functions
that perform address conversion and are worth knowing about:

unsigned long virt_to_phys(volatile void* address);
void* phys_to_virt(unsigned long address);

These functions convert virtual addresses to physical addresses; they are needed
when the program code needs to talk to a Memory Management Unit (MMU) or
other hardware connected to the address lines of the processor. On the PC plat
form the two pairs of functions accomplish the same task; keeping them as sepa
rate functions is nonetheless important, both for code clarity and portability.

292

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 293

Direct Memory Access

DMA for ISA devices
The ISA bus allows for two kinds of DMA transfers: "native" DMA uses standard
OMA-controller circuitry on the mainboard to drive the signal lines on the ISA bus;
ISA-busmaster DMA, on the other hand, is completely controlled by the peripheral
device. The latter type of DMA is rarely used and doesn't deserve discussion here
because it is similar to DMA for PCI devices, at least from the driver's point of
view. An example of an ISA busmaster is the 1542 SCSI controller, whose driver is
drivers/scsi/aha1542.c in the kernel sources. ·

As far as "native" DMA is concerned, there are three entities involved in a DMA ·
data transfer on the ISA bus:

1be 823 7 DMA controller (DMAC)
The controller holds information about the DMA transfer, such as the direc
tion, the memory address, and the size of the transfer. It also contains a
counter that tracks the status of ongoing transfers. When the controller
receives a DMA request signal, it gains control of the bus and drives the signal
lines so the device can read or write its data.

1be peripheral device
The device must activate the DMA request signal when it's ready to transfer
data. The actual transfer is managed by the DMAC; the hardware device
sequentially reads or writes data onto the bus when the controller strobes the
device. The device usually raises an interrupt when the transfer is over.

1be device driver
The driver has little to do: it provides the DMA controller with the direction,
RAM address, and size of the transfer. It also talks to its peripheral to prepare
it for transferring the data and responds to the interrupt when the DMA is
over.

The original DMA controller used in the PC could manage four "channels." Each
channel is associated with one set of DMA registers, so that four devices can store
their DMA information in the controller at the same time. Newer PCs contain the
equivalent of two DMAC devices:* the second controller (the master) is connected
to the system processor, and the first (the slave) is connected to channel O of the
second controller.t

The channels are numbered from O to 7; channel 4 is not available to ISA periph
erals because it is used internally to "cascade" the slave controller onto the master.
The available channels are thus 0-3 on the slave (the 8-bit channels) and 5-7 on

* These circuits are now part of the motherboard's chipset, but a few years ago they were
two separate 8237 chips.
t The original PCs had only one controller; the second was added in 286-based platforms.
However, the second controller is connected as the master because it handles 16-bit trans
fers, while the first transfers only 8 bits at a time and is there for backward-compatibility.

293

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 294

Chapter 13: Mmap and DMA

the master (the 16-bit channels*). The size of any DMA transfer, as stored in the
controller, is a 16-bit number representing the number of bus cycles. The maxi
mum transfer size is therefore 64KB for the slave controller and 128KB for the
master.

Since the DMA controller is a system-wide resource, the kernel helps deal with it.
It uses a DMA registry to provide a request and free mechanism for the DMA
channels and a set of functions to configure channel information in the DMA con
troller.

Registering DMA usage

You should be used to kernel registries-we've already seen them for I/0 ports
and interrupt lines. The OMA channel registry is similar to the others. After
<asm/ dma. h> has been included, the following functions can be used to obtain
and release ownership of a OMA channel:

int request_drna(unsigned int channel, const char *name);
void free_drna(unsigned int channel);

The channel argument is a number between O and 7 or, more precisely, a posi
tive number less than MAX__DMA_CHANNELS. On the PC, MAX_DMA_CHANNELS is
defined as 8, to match the hardware. The name argument is a string identifying the
device. The specified name appears in the file /proddma, which can be read by
user programs.

The return value from request_dma is O for success and -EINVAL or -EBUSY if
there was an error. The former means that the requested channel is out of range,
and the latter means that another device is holding the channel.

I recommend that you take the same care with OMA channels as with I/0 ports
and interrupt lines; requesting the channel at open time is much better than
requesting it from init_module. Delaying the request allows some sharing between
drivers; for example, your sound card and your analog I/0 interface can share the
DMA channel, as long as they are not used at the same time.

I also suggest that you request the OMA channel after you've requested the inter
rupt line and that you release it before the interrupt. This is the conventional order
for requesting the two resources; following the convention avoids possible dead
locks. Note that every device using DMA needs an IRQ line as well, otherwise it
couldn't signal the completion of data transfer.

In a typical case, the code for open looks like the following, which refers to a
hypothetical dad module (OMA Acquisition Device). The dad device as shown
uses a fast interrupt handler without support for shared IRQ lines.

* Two bytes are transferred at each bus 1/0 cycle.

294

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 295

Direct Memory Access

int dad_open (struct inode *inode, struct file *filp)

struct dad_device *my_device;

/* */
if ((error= request_irq(my_device.irq, dad_interrupt,

SA_INTERRUPT, "dad" , NULL)))
return error; /* or implement blocking open*/

if ((error = request_drna(my_device.drna, "dad")))
free_irq(my_device.irq, NULL);
return error; /* or implement blocking open*/

I* * I
return O;

The close implementation that matches the open just shown looks like this:

void dad_close (struct inode *inode, struct file *filp)
{

struct dad_device *my_device;

I* ... * I
free_dma(my_device.dma);
free_irq(my_device.irq, NULL);
I* ... *I

As far as /proddma is concerned, here's how the file looks on a system with the
sound card installed:

merlino% cat /proc/dma
1: Sound Blasters
4: cascade

It's interesting to note that the default sound driver gets the OMA channel at sys
tem boot and never releases it. The cascade entry shown is a placeholder, indicat
ing that channel 4 is not available to drivers, as explained previously.

Talking to the DMA controller

After registration, the main part of the driver's job consists of configuring the OMA
controller for proper operation. This task is not trivial, but fortunately the kernel
exports all the functions needed by the typical driver.

The driver needs to configure the OMA controller either when read or write is
called, or when preparing for asynchronous transfers. This latter task is performed
either at open time or in response to an ioctl command, depending on the driver
and the policy it implements. The code shown here is the code that is typically
called by the read or write device methods.

295

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 296

Chapter 13: Mmap and DMA

This subsection provides a quick overview of the internals of the DMA controller
so you will understand the code introduced here. If you want to learn more, I'd
urge you to read <asm/ dma. h>
and some hardware manuals describing the PC architecture. In particular, I don't

deal with the issue of 8-bit vs. 16-bit data transfers. If you are writing device
drivers for ISA device boards, you should find the relevant information in the
hardware manuals for the devices.

The information that must be loaded into the controller is made up of three items:
the RAM address, the number of atomic items that must be transferred (in bytes or
words), and the direction of the transfer. To this end, the following functions are
exported by <asm/ dma. h>:

void set_dma_mode(unsigned int channel, char mode);
Indicates whether the channel must read from the device (DMA_MODE_READ)
or write to it (DMA_MODE_WRITE). A third mode exists, DMA_
MODE_CASCADE, which is used to release control of the bus. Cascading is the
way the first controller is connected to the top of the second, but it can also
be used by true ISA bus-master devices. I won't discuss bus-mastering here.

void set_dma_addr(unsigned int channel, unsigned int addr);
Assigns the address of the DMA buffer. The function stores the 24 least
significant bits of addr in the controller. The addr argument must be a bus
address (see "Bus Addresses").

void set_dma_count(unsigned int channel,
unsigned int count);

Assigns the number of bytes to transfer. The count argument represents bytes
for 16-bit channels as well; in this case, the number must be even.

In addition to these functions, there are a number of housekeeping facilities that
must be used when dealing with DMA devices:

void disable_dma(unsigned int channel);
A DMA channel can be disabled within the controller. The channel should be
disabled before the DMAC is configured, to prevent improper operation (the
controller is programmed via 8-bit data transfers, and thus none of the previ
ous functions is executed atomically).

void enable_dma(unsigned int channel);
This function tells the controller that the DMA channel contains valid data.

int get_dma_residue(unsigned int channel);

296

The driver sometimes needs to know if a DMA transfer has been completed.
This function returns the number of bytes that are still to be transferred. The
return value is O after a successful transfer and is unpredictable (but not 0)
while the controller is working. The unpredictability reflects the fact that the
residue is a 16-bit value, which is obtained by two 8-bit input operations.

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 297

Direct Memory Access

void clear_dma_ff(unsigned int channel)
The function clears the DMA flip-flop. The flip-flop is used to control access to
16-bit registers. The registers are accessed by two consecutive 8-bit operations,
and the flip-flop is used to select the least-significant byte (when it is clear)
or the most-significant byte (when it is set). The flip-flop automatically toggles
when 8 bits have been transferred; the programmer must clear the flip-flop
once before accessing the DMA registers.

Using these functions, a driver can implement a function like the following to pre
pare for a DMA transfer:

int dad_drna_prepare(int channel, int mode, unsigned int buf,
unsigned int count)

unsigned long flags;

save_flags(flags);
cli();
disable_dma(channel);
clear_drna_ff(channel);
set_drna_mode(channel, mode);
set_dma_addr(channel, virt_to_bus(buf));
set_drna_count(channel, count);
enable_dma(channel);
restore_flags(flags);

return O;

A function like the next one, then, is used to check for successful completion of
DMA:

int dad_drna_isdone(int channel)
{

return (get_drna_residue(channel) 0);

The only thing that remains to be done is to configure the device board. This
device-specific task usually consists of reading or writing a few 1/0 ports. Devices
differ in significant ways. For example, some devices expect the programmer to
tell the hardware how big the DMA buffer is, and sometimes the driver has to read
a value that is hardwired into the device. For configuring the board, the hardware
manual is your only friend.

DMA and PC/ Devices
The PCI implementation of DMA is much easier to handle than the ISA version.

297

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 298

Chapter 13: Mmap and DMA

PCI supports multiple bus-masters, and DMA reduces to bus-mastering. The device
that needs to read or write main memory simply requests control of the bus and
then directly controls the electrical signals. The PCI implementation is more elabo
rate at the hardware level and easier to manage in the device driver.

Programming a DMA transfer with PCI consists of the following steps:

Allocating a buffer
The DMA buffer must be physically contiguous in memory, but there's no
16MB addressability limit. A call to get_free_pages is sufficient; there's no need
to specify GFP_DMA in the priority. If you really need it, you can resort to the
(deprecated) aggressive allocation technique described ealier in "Allocating
the DMA Buffer."

Talking to the device
The expansion device must be told about the DMA buffer. This usually means
writing the address and size of the buffer to a few device registers. Sometimes
the DMA size is dictated by the hardware device, but the issue is device
dependent. The address passed to PCI devices must be a bus address.

As you can see, there's no general code used to program DMA for a PCI device. A
typical implementation looks like the following one, but every device is different,
and the amount of configurable information varies greatly between devices.

int dad_dma_prepare_pci(int mode, unsigned long buf,
unsigned int count)

unsigned long addr = virt_to_bus(buf);

writeb(DAD_CMD_DISABLEDMA, DAD_COMMAND);
writeb(mode, DAD_COMMAND); /* either DAD_CMD_RD or DAD_CMD_WR */
writel(addr, DAD_DMA_BUFFER);
writel(count>>2, DAD_DMA_COUNT); /* each transfer is 32 bits*/
writeb(DAD_CMD_ENABLEDMA, DAD_COMMAND);

return O;

Quick Reference
This chapter introduced the following symbols related to memory handling. The
list doesn't include the symbols introduced in the first section, as that section is a
huge list in itself and those symbols are rarely useful to device drivers.

#include <linux/mm.h>

298

All the functions and structures related to memory management are
prototyped and defined in this header.

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 299

Quick Reference

int remap_page_range(unsigned long virt_add,
unsigned long phys_add,
unsigned long size,
pgprot_t prot);

This function sits at the heart of mmap. It maps size bytes of physical
addresses, starting at phys_addr, to the virtual address virt_add. The pro
tection bits associated with the virtual space are specified in prot.

#include <asm/io.h>
unsigned long virt_to_bus(volatile void* address);
void* bus_to_virt(unsigned long address);
unsigned long virt_to_phys(volatile void* address);
void* phys_to_virt(unsigned long address);

These functions convert between virtual and physical addresses. Bus addresses
must be used to talk to peripheral devices, phys addresses to talk to MMU cir
cuits.

/proddma
This file contains a textual snapshot of the allocated channels in the OMA con
trollers. PCI-based OMA is not shown, as each board works independently,
without the need to allocate a channel in the OMA controller.

#include <asm/dma.h>
This header defines or prototypes all the functions and macros related to
OMA. It must be included to use any of the following symbols.

int request_dma(unsigned int channel, canst char *name);
void free_dma(unsigned int channel);

These functions access the OMA registry. Registration must be performed
before using ISA OMA channels.

void set_dma_mode(unsigned int channel, char mode);
void set_dma_addr(unsigned int channel, unsigned int addr);
void set_dma_count(unsigned int channel,

unsigned int count);
These functions are used to program OMA information in the OMA controller.
addr is a bus address.

void disable_dma(unsigned int channel);
void enable_dma(unsigned int channel);

A OMA channel must be disabled during configuration. These functions
change the status of the OMA channel.

299

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 300

Chapter 13: Mmap and DMA

int get_dma_residue{unsigned int channel);
If the driver needs to know how a OMA transfer is proceeding, it can call this
function, which returns the number of data transfers that are yet to be com
pleted. After successful completion of OMA, the function returns O; the value
is unpredictable while data is being transferred.

void clear_dma_ff(unsigned int channel)

300

The OMA flip-flop is used by the controller to transfer 16-bit values by means
of two 8-bit operations. It must be cleared before sending any data to the con
troller.

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 301

CHAPTER FOURTEEN

NETWORK DRIVERS

We are now through discussing char and block drivers and are ready to
move on to the fascinating world of networking. Network interfaces are
the third standard class of Linux devices, and this chapter describes how

they interact with the rest of the kernel.

A network interface doesn't exist in the fil esystem the way char and block devices
do. Instead, it deals with packet transmission and reception at the kernel level,
without being bound to an open fi le in a process.

The role of a network interface within the system is similar to that of a mounted
block device. A block device registers its features in the blk_dev array and other
kernel structures, and it then "transmits" and ·•receives" blocks on request, by
means of its requesl_f n function. Similarly, a network interface must register itself
in specific data structures in order to be invoked when packets are exchanged
with the outside world.

There are a few important differences be tween mounted disks and packet-delivery
interfaces. To begin with, a d isk exists as a node in the / dev directo1y, while a net
work interface doesn't appear in the fi lesystem. But the most important difference
between the two is that while the disk is asked to send a buffer towards the ker
nel, the net device asks to push incoming packets towards the kernel.

The network subsystem of the Linux kernel is designed to be completely protocol
independent. This applies 10 both networking protocols (JP vs. !PX or other proto
cols) and hardware protocols (Ethernet vs. Token-Ring, etc.). Interaction between
a network driver and the kernel proper deals with one network packet at a time;
this allows protocol issues to be hidden neatly from the driver and the physical
transmission to be hidden from the protocol.

301

CHAPTER FOURTEEN

NETWORK DRIVERS

e are now throughdiscussing char and block drivers and are ready to
move onto the fascinating world of networking. Network interfaces are
the third standard class of Linux devices, and this chapter describes how

they interact with the rest of the kernel,

A network interface doesn’t exist in the filesystem the way char and block devices
do, Instead, it deals with packet transmission and reception at the kernel level,
without being bound to an openfile in a process.

The role of a network interface within the system is similar to that of a mounted
block device. A block device registers its features in the blk_dev array and other
kernel structures, and it then “transmits” and “receives” blocks on request, by
means of its request_fm function. Similarly, a network interface must registeritself
in specific data structures in order to be invoked when packets are exchanged
with the outside world.

There are a few important differences between mounted disks and packet-delivery
interfaces. To begin with, a disk exists as a node in the /devdirectory, while a net-
work interface doesn’t appear in the filesystem. But the most important difference
between the two is that while the disk is asked to send a buffer towards the ker-

nel, the net device asks to push incoming packets towards the kernel.

The network subsystem of the Linux kernel is designed to be completely protocol-
independent. This applies to both networking protocols (IP vs. IPX or other proto-
cols) and hardware protocols (Ethernet vs. Token-Ring, etc.). Interaction between
a network driver and the kernel proper deals with one network packet at a time;
this allows protocol issues to be hidden neatly from the driver and the physical
transmission to be hidden from the protocol.

301

Petitioners Microsoft Corporation and HP Inc.- Ex. 1019, p. 301

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 302

Chapter 14: Network Drivers

This chapter describes how the network interfaces fit in with the rest of the Linux
kernel and shows a memory-based modularized network interface, which is called
(you guessed it) snu/1. To simplify the discussion, the interface uses the Ethernet
hardware protocol and transmits IP packets. The knowledge you acquire from
examining snull can be readily applied to protocols other than IP, and switching
from Ethernet to another hardware protocol requires only that you have some
knowledge of the physical protocol being used.

Another limitation of the snu/1 interface is that it won't compile with Linux 1.2.
Once again, this choice is meant to keep code simple and to avoid adding boring
conditionals to snull's source. Nonetheless, this chapter outlines portability prob
lems related to network drivers.

This chapter doesn't talk about IP numbering schemes, network protocols, or
other general networking concepts. Such topics are not of concern to the driver
writer, and it's impossible to offer a satisfactory overview of networking technol
ogy in less than a few hundred pages. The interested reader is urged to refer to
other books describing networking issues.

Before discussing network devices, I'd like to remind you that the atomic data
item of a network transaction is called an octet and is made up of eight data bits.
I'll refer to it that way throughout the chapter. Network documentation doesn't
ever use the term "byte."

How snull ls Designed
This section discusses the design concepts that led to the snu/1 network interface.
Although this information might appear to be of marginal use, failing to under
stand this driver might lead to problems while playing with the sample code.

The first, and most important, design decision is that the sample interfaces should
remain independent of real hardware, just like most of the sample code used in
this book. This constraint led to something that resembles the loopback interface.

Another feature of snu/1 is that it is an IP interface. This is a consequence of the
internal workings of the interface. Real interfaces don't depend on the protocol
being transmitted, and this limitation of snu/1 doesn't affect the sample code
shown in this chapter, which is protocol-independent. The only effect of the IP
constraint is on address assignment-we'll assign IP addresses to the sample inter
faces.

Assigning IP Numbers
The snu/1 module creates two interfaces. These interfaces are different from a sim
ple loopback in that whatever you transmit through one of the interfaces loops
back to the other one, not to itself. It looks like you have two external links, but
actually your computer is replying to itself.

302

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 303

How snull Is Designed

Unfortunately, this effect can't be accomplished through IP-number assignment
alone, as the kernel wouldn't send out a packet through interface A that was
directed to its own interface B. Instead, it would use the loopback channel without
passing through snull. To be able to establish a communication through the snull
interfaces, the source and destination addresses need to be modified during data
transmission. In other words, packets sent through one of the interfaces should be
received by the other, but the receiver of the outgoing packet shouldn't be recog
nized as the local host. The same applies to the source address of received
packets.

To achieve this kind of "hidden loopback," the snull interface toggles the least sig
nificant bit of the third octet of both the source and destination addresses. The net
effect is that packets sent to network A (connected to snO, the first interface)
appear on the snl interface as packets belonging to network B.

To avoid dealing with too many numbers, let's assign symbolic names to the IP
numbers involved:

• snullnetO is the class C network that is connected to the snO interface.
Similarly, snullnetl is the network connected to snl. The addresses of
these networks should differ only in the least significant bit of the third octet.

• localO is the IP address assigned to the snO interface; it belongs to snull
netO. The address associated with snl is locall. localO and locall
must differ in both their third and fourth octets.

• remoteO is a host in snullnetO, and its fourth octet is the same as that of
locall. Any packet sent to remoteO will reach locall after its class C
address has been modified by the interface code. The host remotel belongs
to snullnetl and its fourth octet is·the same as that of local 0.

The operation of the snull interfaces is depicted in Figure 14-1, where the host
name associated to each interface is printed near the interface name.

Here are possible values for the network numbers. Once you put these lines in
/etdnetworks, you can call your networks by name. The values were chosen from
the range of numbers reserved for private use.

snullnetO
snullnetl

192.168.0.0
192.168.1.0

The following are possible host numbers to put into /etdhosts:

192.168.0.88 localO
192.168.0.99 remoteO
192.168.1.99 locall
192.168.1.88 remotel

303

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 304

Cbapter 14: Network Drivers

D- 10
localnet i localhost

snO
toca/0

sn1
loca/1 !. morgana J -iethO

__ =......,_

Figure .14-1: How a bosl sees its inte1faces

remoteO

.
.

:
:

snullnet1

Be careful , however, if your computer is already connected to a network. The
numbers you choose might be real Internet or intranet numbers and assigning
them to your interfaces will prevent communication with the real hosts. Also,
although the numbers I showed above are not real Internet numbers, they could
already be used by your private network if it lives behind a fi rewall.

Whatever numbers you choose, you can correctl y set up the interfaces for opera
rion by issuing the foll owing commands:

morgan a% ifconfig sn0 loca l •
morgana% route add -ne t s nullne t0 sn0
morgana% ifconfig snl l ocall
morgana% route add - net s nullnetl snl

At this point, the "remote" end of the interfa ce can be reached. This screenshot
shows how my host reaches remoteO and remotel through snull.

304

morgana% ping -c 2 remote •
64 bytes from 192 . 168.0 . 99: icmp_seq=0 t tl= 64 time=l .6 ms
64 bytes from 192 .168 . 0 . 9 9: icmp_ s eq=l t t l =64 time= 0 . 9 ms
2 packets transmitted, 2 packets received , 0% packet loss

morgan a% ping -c 2 remotel
64 bytes from 192.168.1 . 88 : icmp_ seq=0 ttl =64 time =l.8 ms
64 bytes from 192 . 168 . 1 . 88 : i cmp_seq =l t tl= 64 t i me= 0 .9 ms
2 packets transmitted , 2 packets received , 0% packet los s

Chapter 14; Network Drivers

ceaeronomaecarnech remoted

i mi

snullnetO 7**

! :
i lo sn0 :

facalnet } 2 locaihost —_tlacal0 : :
m= eth sni <

imorgana local? snulineti o

a

Figure 14-1: Howahostsees ils interfaces

Be careful, however, if your computer is already connected to a network. The
numbers you choose might be real Internet or intranet numbers and assigning
them to your interfaces will prevent communication with the real hosts. Also,
although the numbers | showed above are not real Internet numbers, they could
already be used by your private networkif it lives behind a firewall.

Whatever numbers you choose, you can correctly set up the interfaces for opera-
tion by issuing the following commands:

morgana% ifconfig sn0 localo
morgana% route add -net snullnetO sno
morgana% ifconfig sn1 locall
morganat route add -net snullnet1 snl

At this point, the “remote” end of the interface can be reached, This screenshot
shows howmy host reaches remote0 and remotel throughsvuell.

morgana% ping -c 2 remoted
64 bytes from 192.168.0.99: icmp_seq=0 ttl=64 time=1.6 ms
64 bytes from 192.168.0.99: icmp_segq=1 ttl=64 time=0.9 ms
2 packets transmitted, 2 packets received, 0% packet loss

morganat ping -c 2 remotel
64 bytes from 192.168.1.88: icmp_seq=0 ttl=64 time=1.8 ms
64 bytes from 192.168.1.88: icmp_seq=1 ttl=64 time=0.9 ms
2 packets transmitted, 2 packets received, 0% packet loss

304

Petitioners Microsoft Corporation and HP Inc.- Ex. 1019, p. 304

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 305

Connecting to the Kernel

Note that you won't be able to reach any other host belonging to the two net
works because the packet is discarded by your computer after the address has
been modified and the packet has been received.

The Physical Transport of Packets
As far as data transport is concerned, the snull interfaces belong to the Ethernet
class. The sample code uses the Ethernet support provided by the kernel. This
saves us from having to implement some boring details related to network devices.

I'm using Ethernet because the vast majority of existing networks-at least the
segments that a workstation connects to-are based on Ethernet technology, be it
10base2, lObaseT, or lOObaseT. Additionally, the kernel offers some generalized
support for Ethernet devices, and there's no reason to refuse to use it. The advan
tage of being an Ethernet device is so evident that even the plip interface (the
interface that uses the printer ports) declares itself as an Ethernet device.

The last advantage of using the Ethernet setup for snull is that you can run tcp
dump on the interface. However, if you want to do that, you need to arrange for
the interfaces to be called ethx instead of snx. The snull module is already pre
pared to declare itself as ethx. If eth=l is specified on the insmod command
line, this behavior is selected. If you forget to request eth naming for snull, tcp
dump refuses to dump the interface, returning an unknown physical layer
type error.

Another design decision for the snull interface is to deliver only the IP protocol
and to limit the discussion in this chapter to IP. Note, however, that the interface
driver per se doesn't depend on the low-level protocol being delivered; a network
driver doesn't peek at the packets it transfers. The issue of multi-protocol transmis
sion is detailed later in "Non-Ethernet Headers."

As a matter of fact, the snull code does snoop in the packets, and even modifies
them, because it is required for the code to work. The code modifies the source,
destination, and checksum in the IP header of each packet without checking
whether it actually conveys IP information. This quick-and-dirty data modification
destroys non-IP packets. If you want to deliver other protocols through snull, you
must modify the module's source code. However, it's unlikely that this need will
arise, because everyone who owns a Linux box runs IP, while other protocols are
optional.

,connecting to the Kernel
We'll start looking at the structure of network drivers by dissecting the snull
source. Keeping the source code for several drivers handy might help you follow
the discussion. Personally, I suggest loopback.c, plip.c, and 3c509.c, in order of

305

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 306

Chapter 14: Network Drivers

increasing complexity. Keeping skeleton.c handy might help as well,· although this
sample driver doesn't actually run. All these files live in drivers/net, within the ker
nel source tree.

Module Loading
When a driver module is loaded into a running kernel, it requests resources and
offers facilities; there's nothing new in that. And there's also nothing new in the
way resources are requested. The driver should probe for its device and its hard
ware location (1/0 ports and IRQ line)-but without registering them-as
described in "Installing an Interrupt Handler" in Chapter 9, Interrupt Handling.
The way a network driver is registered by its init_module function is different
from char and block drivers. Instead of asking for a major number, the driver
inserts a data structure for each newly detected interface into a global list of net
work devices.

Each interface is described by a struct device item. The structures for snO
and snl, the two snull interfaces, are declared like this:

char snull_names[16]; /* two eight-byte buffers*/
struct device snull_devs[2] = {

},

{

} ;

snull_names, I* name--set at load time */
0, 0, 0, 0, /* shrnern addresses */
0x000, /* ioport */
0, /* irq line*/
0, 0, 0, I* various flags: init to 0 */
NULL, /* next ptr */
snull_ini t, I* init function, fill other fields with NULLS

snull_narnes+B,/* name--set at load time*/
0, 0, 0, 0, /* shrnern addresses*/
0x000,
0,
0, 0, 0,
NULL,
snull_init,

/*
/*
/*
/*
/*

ioport */
irq line */
various flags:
next ptr */
init function,

init to 0 */

fill other fields with NULLS

*/

*/

Note that the first field, the name, points to a static buffer, which will be filled at
load time. In this way, the interface name can be chosen later, as explained below.
In case you are tempted to use an explicit buffer in the structure, like
"01234567 ", I warn you that the code won't work reliably. This is because the
compiler collapses duplicate strings; you end up with a single buffer and two
pointers to it. Moreover, the compiler could even choose to store constant strings
in read-only memory: not what you want.

306

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 307

Connecting to the Kernel

I won't completely describe struct device until the next section, because it is
a huge structure, and it won't help to have it dissected so early. I prefer to use the
structure in the driver and explain each field as it is used.

The previous code fragment makes explicit use of the name and ini t fields of
struct device. name, the first struct device field, holds the interface
name (the string identifying the interface). The driver can hardwire a name for the
interface or it can allow dynamic assignment, which works like this: if the first
character of the name is either the null character or a blank, device registration
uses the first available ethn name. Thus, the first Ethernet interface is called
ethO, and the others follow in numeric order. The snull interfaces are called snO
and snl by default. However, if eth=l is specified at load time, init_module uses
dynamic assignment. The default names are assigned by init_module.

if (!snull_eth) { /* call them "snO" and "snin */
memcpy(snull_devs[O] .name, "snO", 4);
memcpy(snull_devs[l] .name, "snl", 4);

else { /* use automatic assignment*/
snull_devs[O] .name[O] = snull_devs[l].name[O] ' ';

The ini t field is a function pointer. Whenever you register a device, the kernel
asks the driver to initialize itself. Initialization means probing for the physical inter
face and filling the device structure with the proper values, as described in the
following section. If initialization fails, the structure is not linked to the global list
of network devices. This peculiar way of setting things up is most useful during
system boot; every driver tries to register its own devices, but only devices that
exist are linked to the list. This is different from char and block drivers, which are
organized as a two-level tree, indexed by major and minor numbers.

Since the real initialization is performed elsewhere, init_module has little to do,
and a single statement does it:

for (i=O; i<2; i++)
if ((result= register_netdev(snull_devs + i)))

printk("snull: error %i registering device \"%s\"\n",
result, snull_devs[i] .name);

else device_present++;

Initializing Each Device
Probing for the device should be performed in the ini t function for the interface,
which is often called the "probe" function. The single argument received by ini t
is a pointer to the device being initialized, while its return value is either O or a
negative error code, usually -ENODEV.

307

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 308

Chapter 14: Network Drivers

No real probing is performed for the snull interface, because it is not bound to
any hardware. When you write a real driver for a real interface, the rules for prob
ing char devices apply: check the 1/0 ports before using them and don't write to
them during the probe. Also, you should avoid registering 1/0 ports and interrupt
lines at this point. Real registration should be delayed until device open time; this
is particularly important if interrupt lines are shared with other devices. You don't
want your interface to be called every time another device triggers an IRQ line just
to reply "no, it's not mine."

Actually, device probing at load time is discouraged for ISA devices because it is
potentially dangerous-the ISA architecture is notoriously fault-intolerant. For this
reason, most network drivers refuse to probe for their hardware when loaded as
modules, and the kernel proper probes only for the first network interface, with
out performing any hardware tests after one network device has been detected.
Usually dev->base_addr, the base 1/0 address for the current device, deter
mines what to do:

• If dev->base_addr is a valid 1/0 address for the device, that value should
be used without probing any other 1/0 locations. This happens, for example,
when the value is assigned at load time.

• If dev->base_addr is zero, probing for the device is acceptable. A user can
thus request a probe by setting the 1/0 address to zero at load time.

• Otherwise, no probing should be performed. The kernel uses a value of
0xffe0 to prevent probing, but any invalid address will do. It's up to the
driver to silently reject invalid addresses in base_addr. A module should, by
default, set the address to an impossible value in order to prevent undesired
probing. Note that looking for PCI devices is always safe because it does not
involve probing (see Chapter 15, Overview of Peripheral Buses).

As you may have noticed, this way of controlling probing using a load-time setting
is the same technique that we used in skull.

On exit from dev->init, the dev structure should be filled with correct values.
Filling the structure is the main role of the initialization routine. Fortunately, the
kernel takes care of some Ethernet-wide defaults, through the function ether_setup,
which fills struct device.

The core of snull_init is:

ether_setup(dev); /* assign some of the fields*/

dev->open snull_open;
dev->stop snull_release;
dev->set_config snull_config;
dev->hard_start_xmit snull_tx;
dev->do_ioctl snull_ioctl;
dev->get_stats snull_stats;
dev->rebuild_header = snull_rebuild_header;

308

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 309

Connecting to the Kernel

/* keep the default flags, just add NOARP */
dev->flags I= IFF_NOARP;

The single unusual feature of the code is setting IFF _NOARP in the flags. This
specifies that the interface cannot use ARP, the "Address Resolution Protocol." ARP
is a low-level Ethernet protocol; every real Ethernet interface is ARP-aware and
therefore won't set this flag. It's interesting to note that an interface can work with
out ARP. For example, the plip interface is an Ethernet-like interface without ARP
support, like snull. This topic is discussed in detail later in "Address Resolution,"
while the device structure is dissected in the next section.

I'd like to introduce now another s truct device field, pri v. Its role is similar
to that of the private_data pointer that we used for char drivers. Unlike
fops->private_data, this priv pointer is allocated at initialization time,
instead of open time, because the data item pointed to by priv includes the
statistics for the interface. It's important that statistical information is always avail
able, even when the interface is down, because users may want to display the
statistics at any time by calling if con.fig. The memory wasted by allocating pri v
during initialization instead of on open is irrelevant because most probed inter
faces are constantly up and running in the system. The snull module declares a
snull_priv data structure to be used for priv. The structure includes struct
enet_statistics, which is the standard place to hold interface statistics.

The following lines in snull_init allocate dev->pri v:

dev->priv = Janalloc(sizeof(struct snull_priv), GFP_KERNEL);
if (dev->priv == NULL)

return -ENOMEM;
memset(dev->priv, 0, sizeof(struct snull_priv));

Module Unloading
Nothing special happens when the module is unloaded. The cleanup_module
function simply unregisters the interfaces from the list, after releasing memory
associated with the private structure:

void cleanup_module(void)
{

inti;

for (i=0; i<2; i++) {
kfree(snull_devs[i].priv);
unregister_netdev(snull_devs + i);

return;

309

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 310

Chapter 14: Network Drivers

Modularized and Non-Modularized Drivers
While there is no notable difference between modularized and non-modularized
char and block drivers, that's not the case for network drivers.

When a driver is distributed as part of the mainstream Linux kernel, it doesn't
declare its own device structures; the structures declared in drivers/net/Space.c
are used instead. Space.c declares a linked list of all the network devices, both
driver-specific structures like pl ipl and general-purpose eth devices. Ethernet
drivers don't care about their device structures at all, because they use the gen
eral-purpose structures. Such general eth device structures declare ethif_probe as
their ini t function. A programmer inserting a new Ethernet interface in the main
stream kernel only needs to add a call to the driver's initialization function to
ethif_probe. Authors of non-eth drivers, on the other hand, insert their device
structures in Space.c. In both cases only the source file Space.c has to be modified
if the driver must be linked to the kernel proper.

At system boot, the network initialization code loops through all the device
structures and calls their probing (dev->init) functions by passing them a
pointer to the device itself. If the probe function succeeds, Space.c initializes the
device structure. This way of setting up drivers permits incremental assignment
of devices to the names ethO, ethl, and so on, without changing the name field
of each device.

When a modularized driver is loaded, on the other hand, it declares its own
device structures (as we have seen in this chapter), even if the interface it con
trols is an Ethernet interface.

The curious reader can learn more about interface initialization by looking at
Space.c and net_init.c. This introduction to driver setup is meant only to stress the
importance of the ini t device method. If a driver module were to contain a pre
filled device structure, it wouldn't fit the initialization technique of the mainstream
kernel and wouldn't be forward-compatible if some new field were introduced in
struct device.

The device Structure in Detail
The device structure is at the very core of network drivers and deserves a com
plete description. At a first reading, however, you can skip this section, because
you don't need a thorough understanding of the structure to get started. This list
describes all the fields, but more to provide a reference rather than to be memo
rized. The rest of this chapter briefly describes each field as soon as it is used in
the sample code, so you don't need to keep referring back to this section.

310

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 311

Tbe device Structure in Detail

struct device can be conceptually divided into two parts: "visible" and "invis
ible." The visible part of the structure is made up of the fields that are explicitly
assigned in static device structures, like the two items appearing in snull and
shown above. The remaining fields are used internally. Some are accessed by
drivers (for example, the ones that are assigned at initialization time), while some
shouldn't be touched. This section is complete up to kernel version 2.0.30.

The Visible Head
The first part of struct device is composed of the following fields, in this
order:

char *na,me;
The name of the device. If the first character of the name is zero (the NUL
character) or a blank, register_netdev assigns it the name ethn, with a suitable
numeric n.

unsigned long rmem_end;
unsigned long rmem_start;
unsigned long mem_end;
unsigned long mem_start;

These fields hold the beginning and ending addresses of the shared memory
used by the device. If the device has different receive and transmit memory,
the mem fields are used for transmit memory and the rmem fields for receive
memory. mem_s tart and mem_end can be specified on the kernel command
line at system boot, and their value is retrieved by ifconfig. The rmem fields
are never referenced outside of the driver itself. By convention, the end fields
are set so that end - start is the amount of available on-board memory.

unsigned long base_addr;
The 1/0 base address. This field, like the previous ones, is assigned during
device probe. The ifconfig command can be used to display or modify the
current value. The base_addr can be explicitly assigned on the kernel com
mand line at system boot or at load time.

unsigned char irq;
The assigned interrupt number. The value of dev->irq is printed by ifconfig
when interfaces are listed. This value can usually be set at boot or load time
and modified later using ifconfig.

unsigned char start;
unsigned char interrupt;

These fields are binary flags. start is usually set at device open and cleared
at close, and it is non-zero when the interface is ready to operate. inter
rupt is used to tell higher levels of code that an interrupt has arrived for the
interface and is being serviced.

311

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 312

Chapter 14: Network Drivers

unsigned long tbusy;
This field indicates "Transmission Busy." It should be non-zero whenever the
driver can't accept a new packet for transmission (i.e., all of the output buffers
are full). A long type is used instead of char because atomic bit operations
are sometimes used to avoid race conditions. Note that in version 1.2 of the
kernel, tbusy was indeed an 8-bit field, so a backward-portable driver should
take care of this issue. Atomic bit operations were introduced in "Using Lock
Variables," in Chapter 9.

struct device *next;
Used to maintain the linked Hst; this field shouldn't be touched by the driver.

int (*init) (struct device *dev);
The initialization function. This field is usually the last one explicitly listed in a
device structure.

The Hidden Fields
The device structure includes several additional fields, which are usually
assigned at device initialization. Some of these fields convey information about the
interface, while some exist only for the benefit of the driver (i.e., they are not used
by the kernel); there are also other fields, most notably the device methods, that
are part of the kernel-driver interface.

I'm going to list the three groups separately, independent of the actual order of
the fields, which is not significant.

Interface information

Most of the information about the interface is correctly set up by the function
ether_setup. Ethernet cards can rely on this general-purpose function for most of
these fields, but the flags and dev_addr fields are device-specific and must be
explicitly assign~d at initialization time.

Some non-Ethernet interfaces can use helper functions similar to ether_setup.
driver/netlnet_init.c exports tr_setup (token ring) and fddi_setup. If your device
doesn't fall into one of these classes, you'll need to assign all of these fields by
hand.

unsigned short hard_header_len;

312

The "hardware header length" is the number of octets that lead the transmit
ted packet before the IP header, or other protocol information. The value of
hard_header_len is 14 for Ethernet interfaces.

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 313

The device Structure in Detail

unsigned short mtu;
The "maximum transfer unit." This field is used by the network layer during
packet transmission. Ethernet has an MTU of 1500 octets.

__ u32 tx_queue_len;
The maximum number of frames that can be queued on the device's transmis
sion queue. This value is set to 100 by ether_setup, but you can change it. For
example, plip uses 10 to avoid wasting system memory (plip has a lower
throughput than a real Ethernet interface).

unsigned short type;
The hardware type of the interface. The typefield is used by ARP to deter
mine what kind of hardware address the interface supports. Ethernet interfaces
set this to ARPHRD_ETHER-ether_setup does this for you.

unsigned char addr_len;
unsigned char broadcast[MAX_ADDR_LEN];
unsigned char dev_addr[MAX_ADDR_LEN];

The Ethernet address length is six octets (we are referring to the hardware id
of the interface board), and the broadcast address is made up of six 0xff
octets; ether_setup arranges for these values to be correct. The device address,
on the other hand, must be read from the interface board in a device-specific
way, and the driver should copy it to dev_addr. The hardware address is
used to generate correct Ethernet ~eaders before the packet is handed over to
the driver for transmission. The snull device doesn't use a physical interface,
and it invents its own hardware address.

unsigned short family;
The address family for the interface, most often AF _INET. The interface
doesn't usually need to look at this field or assign a value to it.

unsigned short pa_alen;
Protocol Address Length; set to four octets for AF _INET. The interface doesn't
need to modify this number.

unsigned long pa_addr;
unsigned long pa_brdaddr;
unsigned long pa_mask;

The three addresses that characterize the interface: the interface address, the
broadcast address, and the net mask. These values are protocol-specific (i.e.,
they are "protocol addresses"); they are IP addresses if dev->family is
AF _INET. These fields are assigned by ifconfig and are read-only for the
driver.

313

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 314

Chapter 14: Network Drivers

unsigned long pa_dstaddr;
Point-to-point interfaces like plip and PPP use this field to record the IP num
ber of the other side of the link. Like the previous fields, this field is read-only.

unsigned short flags;

314

Interface flags. The flags field includes the following bit values. The IFF _
prefix stands for "Interface Flags." Some flags are managed by the kernel, and
some are set by the interface at initialization time to assert various capabilities
(or inabilities) of the interface. The valid flags are:

IFF_UP
The kernel turns this flag on when the interface is active. The flag is read
only for the driver.

IFF_BROADCAST
This flag states that the broadcast address of the interface is valid. Ethernet
boards support broadcast.

IFF_DEBUG
Debug mode. This flag can be used to control the verbosity of your printk
calls or for other debugging purposes. Although no official driver cur
rently uses this flag, it can be set and reset by user programs via ioctl, and
your driver can use it. The misc-progslnetif debug program can be used to
turn the flag on and off.

IFF_LOOPBACK
This flag should be set only in the loopback interface. The kernel checks
for IFF _LOOPBACK instead of hardwiring the lo name as a special inter
face.

IFF_POINTOPOINT
The initialization function for point-to-point interfaces should set this flag.
For example, plip sets it. The ifconfig utility can also set or clear the flag.
When IFF _POINTOPOINT is set, dev->pa_dstaddr should refer to the
other end of the link.

IFF_NOARP
Conventional network interfaces can convey ARP packets. If the interface
can't perform ARP, it must set this flag. For example, point-to-point inter
faces don't need to run ARP, which would only convey additional traffic
without retrieving useful information. snull runs without ARP capabilities,
so it sets the flag.

IFF_PROMISC
This flag is set to get promiscuous operation. By default, Ethernet inter
faces use a hardware filter to ensure that they receive only broadcast
packets and packets directed to that interface's hardware address. Packet
sniffers like tcpdump set promiscuous mode on the interface in order to
retrieve all packets that travel on the interface's transmission medium.

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 315

The device Structure in Detail

IFF_MULTICAST
This flag is set by interfaces that are capable of multicast transmission.
ether_setup sets IFF _MULTICAST by default, so if your driver does not
support multicasting, it must clear the flag at initialization time.

IFF_ALLMULTI
This flag tells the interface to receive all multicast packets. The kernel sets
it when the host performs multicast routing, only if IFF _MULTICAST is
set. IFF _ALLMULTI is read-only for the interface. Both IFF _MULTICAST
and IFF _ALLMULTI were defined as far back as 1.2, but were unused at
the time. We'll see them used later in the section "Multicasting."

IFF_MASTER
IFF_SLAVE

These flags are used by the load equalization code. The interface driver
doesn't need to know about them.

IFF_NOTRAILERS
IFF_RUNNING

These flags are unused in Linux, but exist for BSD compatibility.

When a program changes IFF _UP, the open or close device method is called.
When IFF _UP or any other flag is modified, the set_multicast_list method is
invoked. If the driver needs to perform some action because of a modification
in the flags, it must take that action in set_multicast_list. For example, when
IFF _PROMIS is set or reset, the on-board hardware filter must be notified.
The responsibilities of this device method are outlined later in the section
"Multicasting.''

The device methods

As happens with the char and block drivers, each network device declares the
functions that act on it. Operations that can be performed on network interfaces
are listed below. Some of the operations can be left NULL and some are usually
untouched because ether_setup assigns suitable methods to them.

Device methods for a network interface can be divided into two groups: funda
mental and optional. Fundamental methods include those that are needed to be
able to use the interface; optional methods implement more advanced functionali
ties that are not strictly required. The following are the fundamental methods:

int (*open) (struct device *dev);
Open the interface. The interface is opened whenever ifconfig activates it. The
open method should register any system resource it needs (VO ports, IRQ,
DMA, etc.), turn on the hardware, and increment the module usage count.

315

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 316

Chapter 14: Network Drivers

int (*stop) (struct device *dev);
Stop the interface. The interface is stopped when it is brought down; opera
tions performed at open time should be reversed.

int (*hard_start_xmit) (struct sk_buff *skb,
struct device *dev);

Hardware Start Transmission. This method requests the transmission of a
packet. The packet is contained in a socket buffer (sk_buff) structure.
Socket buffers are introduced below.

int (*rebuild_header) (void *buf, struct device *dev,
unsigned long raddr,
struct sk_buff *skb);

This function is used to rebuild the hardware header before a packet is trans
mitted. The default function used by Ethernet devices uses ARP to fill the
packet with missing information. The snull driver implements its own method
because ARP doesn't run on sn interfaces. (ARP is explained later in this
chapter.) The arguments to rebuild_header are the pointer to the hardware
header, the device, the "router address" (the packet's initial destination), and
the buffer being transmitted.

int (*hard_header) (struct sk_buff *skb, struct device *dev,
unsigned short type, void *daddr,
void *saddr, unsigned len);

Hardware Header. This function builds the hardware header from the source
and destination hardware addresses that were previously retrieved; its job is to
organize the information passed to it as arguments. eth_beader is the default
function for Ethernet-like interfaces, and etber_setup assigns this field accord
ingly. The order of the arguments shown applies to kernel 2.0 and later, while
it was different in 1.2. This change is transparent to an Ethernet driver because
it inherits the eth_beader implementation; other drivers might want to deal
with the difference to stay backward-compatible with 1.2.

struct enet_statistics* (*get_stats) (struct device *dev);
Whenever an application needs to get statistics for the interface, this method is
called. This happens, for example, when ifconfig or netstat -i is run. A sample
implementation for snull is introduced later, in "Statistical Information."

int (*set_config) (struct device *dev, struct ifmap *map);
Change the interface configuration. This method is the entry point for config
uring the driver. The 1/0 address for the device and its interrupt number can
be changed at run time using set_config. This capability can be used by the
system administrator if the interface cannot be probed for. This method is
described later in "Run-Time Configuration."

The remaining device operations are those that I consider optional. The arguments
passed to some of them changed several times during the transition from Linux 1.2
to Linux 2.0. If you are writing a driver that you want to work with both versions

316

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 317

The device Structure in Detail

of the kernel, you might want to implement these operations only for versions
starting with 2.0.

int (*do_ioctl) (struct device *dev, struct ifreq *ifr,
int cmd);

Perform interface-specific ioctl commands. Implementation of those com
mands is described later in "Custom ioctl Commands." The prototype shown
works with all the kernels from 1.2 onward. The corresponding field in
struct device can be left as NULL if the interface doesn't need any inter
face-specific commands.

• void (*set_multicast_list) (struct device *dev);
This method is called when the multicast list for the device changes and when
the flags change. The argument passing was different in version 1.2. See
"Multicasting" for further details and a sample implementation.

int (*set_mac_address) (struct device *dev, void *addr);
This function can be implemented if the interface supports the ability to
change its hardware address. Most interfaces either don't support this ability
or use the default eth_mac_addr implementation. This prototype was different
in version 1.2 as well.

#define HAVE_HEADER_CACHE
void (*header_cache_bind) (struct hh_cache **hhp,

struct device *dev,
unsigned short htype,
__ u32 daddr);

void (*header_cache_update) (struct hh_cache *hh,
struct device *dev,
unsigned char* haddr);

These functions and the macro were missing in Linux 1.2. Ethernet drivers
don't need to concern themselves with header_cache issues because
etb_setup arranges for default methods to be used.

#define HAVE_CHANGE_MTU
int (*change_mtu) (struct device *dev, int new_mtu);

This function is in charge of taking action if there is a change in the MTU
(Maximum Transfer Unit) for the interface. Both the function and the macro
were missing in Linux 1.2. If the driver needs to do anything particular when
the MTU is changed, it should declare its own function, otherwise the default
will do the right thing. snull has a template for the function if you are inter
ested.

317

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 318

Chapter 14: Network Drivers

Utility fields

The remaining struct device data fields are used by the interface to hold use
ful status information. Some of the fields are used by ifconfig and netstat to pro
vide the user with information about the· current configuration. An interface should
thus assign values to these fields.

unsigned long trans_start;
unsigned long last_rx;

Both of these fields are meant to hold a value in jiffies. They are currently
unused, but the kernel might use these timing hints in the future. The driver is
responsible for updating these values when transmission begins and when a .
packet is received. The trans_start field can also be used by the driver to
detect a lockup. The driver can check for timeouts against trans_start
while waiting a "transmission done" interrupt.

void *priv;
The equivalent of filp->private_data. The driver owns this pointer and
can use it at will. Usually the private data structure includes a struct
enet_statistics item. The field was used earlier in "Initializing Each
Device."

unsigned char if_port;
This field is used to record which hardware port is being used by the interface
(e.g., BNC, AUi, TP). The if_port field is for the use of the driver, and any
numerical value can be assigned at will.

unsigned char dma;
The OMA channel being used by the device. This field is used by the
SIOCGIFMAP ioctl command.

struct dev_mc_list *mc_list;
int mc_count;

These two fields are used in handling multicast transmission. mc_count is the
count of items in mc_list. See "Multicasting" for further details.

There are other fields instruct device, but they are not used by the driver.

Opening and Closing
Our driver can probe for the interface at module load time or at kernel boot. The
next step is to assign an address to the interface so the driver can exchange data
through it. Opening and closing an interface is performed by the ifconfig
command.

318

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 319

Opening and Closing

When ifcon.fig is used to assign an address to the interface, it performs two tasks.
First, it assigns the address by means of ioctl (SIOCSIFADDR) (Socket 1/0 Con
trol Set Interface ADD Ress). Then it sets the IFF _UP bit in dev->flag by means
of ioctl (SIOCSIFFLAGS) (Socket 1/0 Control Set Interface FLAGS) to turn the
interface on.

As far as the device is concerned, ioctl (SIOCSIFADDR) sets dev->pa_addr,
dev->family, dev->pa_mask, and dev->pa_brdaddr, but no driver function
is invoked-the task is device-independent, and the kernel performs it. The latter
command (ioctl (SIOCSIFFLAGS)), though, calls the open method for the
device.

Similarly, when the interface is shut down, if con.fig uses ioctl (SIOCSIFFLAGS)
to clear IFF _UP, and the stop method is called.

Both device methods return O in case of success and the usual negative value in
case of error.

As far as the actual code is concerned, the driver has to perform the same tasks as
the char and block drivers do. open requests any system resources it needs and
tells the interface to come up; stop shuts down the interface and releases system
resources.

One last step is needed if the driver isn't going to use shared interrupts (for exam
ple, if it is to be compatible with older kernels). The kernel exports an
irq2dev_map array, which is addressed by the IRQ number and holds void
pointers; the driver might want to use that array to map the interrupt number to a
pointer to struct device. This is the only way to support more than one inter
face from within a single driver without using the dev _id argument of the inter
rupt handler.

Additionally, the hardware address needs to be copied from the board to
dev->dev _addr before the interface can communicate with the outside world.
The hardware address can be assigned at probe time or at open time at the
driver's will. The snull software interface assigns it from within open; it just fakes a
hardware number using two ASCII strings. The first byte of the address is the null
character (as explained later in "Address Resolution").

The resulting open code looks like the following:

int snull_open(struct device *dev)
{

inti;

/* request_region(), request_irq(), (like fops->open) */

#if 0
/*

* We have no irq line, otherwise this assignment can be used to
* grab a non-shared interrupt. To share interrupt lines use

319

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 320

Chapter 14: Network Drivers

* the dev_id argument of request_irq. Seel snull_interrupt below.
*/

irq2dev_rnap[dev->irq] = dev;
#endif

/*
* Assign the hardware address of the board: use "\0SNULx", where
*xis 0 or 1. The first byte is '\0': a safe choice with regard
* to multicast.
*/

for (i=O; i < ETH_ALEN; i++)
dev->dev_addr[i] = 11 \0SNUL0"[i];

dev->dev_addr[ETH_ALEN-1] += (dev - snull_devs); /* the number*/

dev->start = 1;
dev->tbusy = 0;
MOD_INC_USE_COUNT;
return 0;

As you can see, a few fields are modµ1ed in the device structure. start states
that the interface is ready, and tbusy asserts that the transmitter is not busy (i.e.,
the kernel can send out a packet).

The stop method just reverses the operations of open, and for this reason, the func
tion implementing stop is usually called close.

int snull_release(struct device *dev)

/* release ports, irq and such--like fops->close */

dev->start = 0;
dev->tbusy = l; /* can't transmit any more*/
MOD_DEC_USE_COUNT;
/* if irq2dev_rnap was used, zero the entry here*/
return 0;

Packet Transmission
The most important tasks performed by network interfaces are data transmission
and reception. I'll start with transmission because it is slightly easier to understand.

Whenever the kernel needs to transmit a data packet, it calls the
hard_start_transmit method to put the data on an outgoing queue. Each packet
handled by the kernel is contained in a socket buffer structure (struct
sk_buf f), whose definition is found in <linux/ skbuf f. h>. The structure gets
its name from the Unix abstraction used to represent a network connection, the
socket. Even if the interface has nothing to do with sockets, each network packet

320

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 321

Packet Transmtsston

the higher network layers, and the input/output buffers of any socket are lists of
struct sk_buff structures. The same sk_buf f structure is used to host net
work data throughout all the Linux network subsystems, but a socket buffer is just
a packet as far as the interface is concerned.

A pointer to sk_buff is usuaIIy called skb, and I'm going to foIIow this practice
both in the sample code and in the text.

The socket buffer is a complex structure, and the kernel offers a number of func
tions to act on it. The functions are described later in "The Socket Buffers"-for
now a few basic facts about sk_buf f are enough for us to write a working driver.
Also, I prefer to show how things work before delving into boring details.

The socket buffer passed to hard_start_xmit contains the physical packet, com
plete with the transmission-level headers. The interface doesn't need to modify the
data being transmitted. skb->data points to the packet being transmitted, and
skb->len is its length, in octets.

The snull packet transmission code is listed below; the physical transmission
machinery has been isolated in another function because every interface driver
must implement it according to the specific hardware being driven.

int snull_tx(struct sk_buff *skb, struct device *dev)

int len, retval=O;
char *data;

if (dev->tbusy)
return -EBUSY;

if (skb == NULL) {

/* shouldn't happen*/

PDEBUG("tint for %p\n" ,dev);
dev_tint(dev); /* we are ready to transmit*/
return O;

dev->tbusy = 1; /* transmission is busy*/

len = ETH_ZLEN < skb->len? skb->len: ETH_ZLEN; /* minimwn len */
data= skb->data;
dev->trans_start = jiffies; /* save the timestamp */

/* actual deliver of data is device-specific, and not shown here*/
snull_hw_tx(data, len, dev);

tx_done:
skb->free=l;
dev_kfree_skb(skb, FREE_WRITE); /* release it*/

return retval; /*zero== done; nonzero fail */

321

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 322

Chapter 14: Network Drivers

The transmission function thus performs only some sanity checks on the packet
and transmits the data through the hardware-related function. dev->tbusy is
cleared when an interrupt signals a "transmission done" condition.

Packet Reception
Receiving data from the network is trickier than transmitting it because an
sk_buf f must be allocated and handed off to the upper layers from within an
interrupt handler-the best way to receive a packet is through an interrupt, unless
the interface is a purely software one like snull or the loopback interface. While it
is possible to write polling drivers, and a few exist in the official kernel as well,
interrupt-driven operation is much better, both in data throughput and in computa
tional demands. Since the vast majority of network interfaces is interrupt-driven, I
won't talk about the polling implementation, which just exploits kernel timers.

The implementation of snull separates the hardware details from the device
independent housekeeping. The function snull_rx is thus called after the hardware
has received the packet and it is already in the computer's memory. snull_rx
therefore receives a pointer to the data and the length of the packet. The func
tion's sole responsiblity is to send the packet and some additional information to
the upper layers of networking code. This code is independent of the way the
data pointer and length are obtained.

void snull_rx(struct device *dev, int len, unsigned char *buf)
{

322

struct sk_buff *skb;
struct snull_priv *privp = (struct snull_priv *)dev->priv;
/*

* The packet has been retrieved from the transmission
*medium.Build an skb around it, so upper layers can handle it
*/

skb = dev_alloc_skb(len+2);
if (! skb) {

printk("snull rx: low on mern\n");
return;

merncpy(skb_put(skb, len), buf, len);

/* Write metadata, and then pass to the receive level*/
skb->dev = dev;
skb->protocol = eth_type_trans(skb, dev);
skb->ip_sumrned = CHECKSUM_UNNECESSARY; /* don't check it*/
privp->stats.rx_packets++;
netif_rx(skb);
return;

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 323

Packet Reception

The function is sufficiently general to act as a template for any network driver, but
some explanation is necessary before you can reuse this code fragment with confi
dence.

Note that the buffer allocation function wants to know the data length. This avoids
wasting memory when calling kmalloc. The allocation function is called with
atomic priority by dev_alloc_skb, which can therefore be used safely at interrupt
time. The kernel offers other interfaces to socket-buffer allocation, but they are not
worth introducing here; socket buffers are explained in detail in "The Socket
Buffers," later in this chapter.

Once there is a valid skb pointer, the packet data is copied into the buffer by call
ing memcpy, the skb_put function updates the end-of-data pointer in the buffer
and returns a pointer to the newly created space.

Unfortunately, there isn't enough information in the packet's headers to correctly
handle the network layer-the dev and protocol fields must be assigned before
the buffer is passed upstairs. Then we need to specify how checksumming is to be
performed on the packet (snu/1 does not perform any checksums). The possible
policies for skb->ip_summed are:

CHECKSUM_HW
The board performs checksums in hardware. An example of a hardware
checksum is the Spare HME interface.

CHECKSUM_NONE
Checksums are done completely in software. This is the default in newly allo
cated buffers.

CHECKSUM_UNNECESSARY
Don't do any checksums. This is the policy in snu/1 and in the loopback
interface.

The checksumming options and ip_summed are missing from the 1.2 kernel
versions.

Finally, the driver updates its statistics counter to record that a packet has been
received. The statistics structure is made up of several fields; the most important
are rx_packets and tx_packets, which contain the number of packets
received and transmitted. All the fields are thoroughly described later in "Statistical
Information."

The last step in packet reception is performed by netif_rx, which hands off the
socket buffer to the upper layers.

323

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 324

Chapter 14: Network Drivers

Interrupt-Driven Operation
Most hardware interfaces are controlled by means of an interrupt handler. The
interface interrupts the processor to signal one of two possible events: a new
packet has arrived or transmission of an outgoing packet is complete. This gener
alization doesn't always apply, but it does account for all the problems related to
asynchronous packet transmission. PLIP and PPP are examples of interfaces that
don't fit this generalization. They deal with the same events, but the low-level
interrupt handling is slightly different.

The usual interrupt routine can tell the difference between a new-packet-arrived
interrupt and a done-transmitting notification by checking a status register found
on the physical device. The snull interface works similarly, but its status word lives
in dev->pri v. The interrupt handler for a network interface looks like this:

324

void snull_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{

int statusword;
struct snull_priv *privptr;
/*

#if 0

* As usual, check the "device" pointer for shared handlers.
* Then assign "struct device *dev"
*I

/* This is the way to do things for non-shared handlers*/
struct device *dev = (struct device*) (irq2dev_rnap[irq]);

#else
/* Otherwise use this SA_SHIRQ-safe approach*/
struct device *dev = (struct device *)dev_id;
/* ... and check with hw if it's really ours*/

#endif

if (!dev /*paranoid*/) return;
dev->interrupt = 1; /*lock*/
/* retrieve statusword: real netdevices use inb() or inw() */
privptr = (struct snull_priv *) (dev->priv);
statusword = privptr->status;
if (statusword & SNULL_RX_INTR) {

/* send it to snull_rx for handling*/
snull_rx(dev, privptr->packetlen, privptr->packetdata);

if (statusword & SNULL_TX_INTR) {
/* a transmission is over: tell we are no longer busy*/
privptr->stats.tx_packets++;
dev->tbusy = 0;
mark_bh (NET_BH) ;

dev->interrupt = O; /* release lock*/
return;

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 325

The Socket Buffers

The handler's first task is to retrieve a pointer to the correct struct device.
You can either use irq2dev_map [] (assuming you assigned a value to it at open
time) or the dev _id pointer received as an argument. If you want the driver to
run with kernels older than 1.3.70, you must use irq2dev_map [] because
dev _id is not available in earlier versions.

The interesting part of this handler deals with the "transmission done" situation.
The interface acknowledges that transmission is over by clearing dev->tbusy
and marks the network bottom-half routine. When net_bh is actually run, it tries to
send any pending packet.

Packet reception, on the other hand, doesn't need any special interrupt handling.
Calling snull_rx is all that's required.

In practice, when netif_rx is called by the receiving function, the only real opera
tion it performs is marking net_bh. In other words, the kernel does all the net
work-related work in a bottom-half handler. Therefore, a network driver should
always declare its interrupt handler as slow because the bottom half will be exe
cuted sooner (see "The Design of Bottom Halves" in Chapter 9).

The Socket Buffers
We've now discussed most of the issues related to network interfaces. The next
few sections explain in more detail how the sk_buf f structure is designed. They
introduce both the main fields of the structure and the functions used to act on the
socket buffers.

Although there is no strict need to understand the internals of sk_buf f, the abil
ity to look at its contents can be helpful when you are tracking down problems
and when you are trying to optimize the code. For example, if you look in loop
back.c, you'll find an optimization based on knowledge of the sk_buff internals.

I'm not going to describe the whole structure here, just the fields that might be
used from within a driver. If you want to see more, you can look at
<linux/skbuff .h>, where the structure is defined and the functions are proto
typed. Additional details about how the fields and functions are used can be easily
retrieved by grepping in the kernel sources.

The Important Fields
For our purposes, the important fields in the structure are those a driver writer
might need. They are listed here in no particular order.

struct device *dev;
The device receiving or sending this buff er.

325

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 326

Chapter 14: Network Drivers

__ u32 saddr;
__ u32 daddr;
__ u3 2 raddr;

Source addresst destination addresst and router address, used by the IP proto
col. raddr is the first hop the packet must take to reach its destination.
These fields are set before the packet is transmitted and need not be assigned
when it is received. An outgoing packet reaching the hard_start_xmit method
already has a suitable hardware header reflecting "first hop" information.

unsigned char *head;
.unsigned char *data;
unsigned char *tail;
unsigned char *end;

These pointers address the data in the packet. head points to the beginning
of the allocated spacet data is the beginning of the valid octets (and is usu
ally slightly greater than head), tail is the end of the valid octets, and end
points to the maximum address tail can reach. Another way to look at it is
that the available buffer space is skb->end - skb->head, and the cur
rently used data space is skb->tail - skb->data. This clever way to deal
with memory areas was implemented only during 1.3 development. This is the
main reason why snu/1 hasn't been ported to compile with Linux 1.2.

volatile char free;
The flag must be set before the skb structure is freed.

unsigned long len;
The length of the data itself (skb->tail - skb->head).

unsigned char ip_summed;
This field is set by the driver on incoming packets and is used in TCP/UDP
checksumming. It was described earlier in "Packet Reception."

unsigned char pkt_type;
This field is used internally for the delivery of incoming packets. The driver is
responsible for setting it to PACKET_HOST (this packet is for me),
PACKET_BROADCASTt PACKET_MULTICAST, or PACKET_OTHERHOST (no,
this packet is not for me). Ethernet drivers don't modify pkt_type explicitly
because eth_type_trans does it for them.

union { unsigned char *raw; [...] } mac;
Like pkt_type, the field is used to deal with incoming packets and_ must be
set at packet reception. The function eth_type_trans takes care of it for Ether
net drivers. Non-Ethernet drivers should set the skb->mac. raw pointer as
shown later in "Non-Ethernet Headers."

The remaining fields are not particularly interesting. Their uses include maintaining
lists of buffers and accounting for memory belonging to the socket that owns the
buffer.

326

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 327

The Socket Buffers

Functions Acting on Socket Buffers
Network devices that use a sock_buff act on the structure by means of the offi
cial interface functions. There are many functions that operate on socket buffers;
here are the most interesting ones:

struct sk_buff *alloc_skb(unsigned int len, int priority);
struct sk_buff *dev_alloc_skb(unsigned int len);

Allocate a buffer. The alloc_skb function allocates a buffer and initializes both
skb->data and skb->tail to skb->head. The dev_alloc_skb function
(which is missing from Linux 1.2) is a shortcut that calls alloc_skb with
GFP_ATOMIC priority and reserves 16 bytes between skb->head and
skb->data. This data space can be used to "push" hardware headers.

void kfree_skb(struct sk_buff *skb, int rw);
void dev_kfree_skb(struct sk_buff *skb, int rw);

Free a buffer. The kfree_skb call is used internally by the kernel. A driver
should use dev_kfree_skb, which correctly handles buffer locking, in case the
socket owning the buffer needs to use it again. In both functions, the rw argu
ment is either FREE_READ or FREE_WRITE. The value is used to keep track
of memory for the socket. Outgoing buffers should be released with
FREE_WRITE and incoming buffers with FREE_READ.

unsigned char *skb__put(struct sk_buff *skb, int len);
This inline function updates the tail and len fields of the sk_buff struc
ture; it is used to add data to the end of the buffer. The function's return value
is the previous value of skb->tail (in other words, it points to the data
space just created). Some drivers use the return value by invoking
ins (ioaddr, skb__put (...)) or memcpy (skb__put (...) , data,
len). This function and the following ones are not available when building
modules for Linux 1.2.

unsigned char *skb__push(struct sk_buff *skb, int len);
This function decrements skb->data and' increments skb->len. It is similar
to skb__put, except that data is added to the beginning of the packet instead
of the end. The return value points to the data space just created.

int skb_tailroom(struct sk_buff *skb);
This function returns the amount of space available for putting data in the
buffer. If a driver puts more data into the buffer than it can hold, the system
panics. Although you might object that a printk would be sufficient to tag the
error, memory corruption is so harmful to the system that the developers
decided to take definitive action. In practice, you shouldn't need to check the
available space if the buffer has been correctly allocated. Since drivers usually
get the packet size before allocating a buffer, only a severely broken driver
will put too much data in the buffer, and a panic might be seen as due
punishment.

327

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 328

Chapter 14: Network Drivers

int skb_headroom(struct sk_buff *skb);
Returns the amount of space available in front of data, i.e., how many octets
one can "push" to the buffer.

void skb_reserve(struct sk_buff *skb, int len);
This function increments both data and tai 1. The function can be used to
reserve headroom before filling the buffer. Most Ethernet interfaces reserve
two bytes in front of the packet; thus the IP header is aligned on a 16-byte
boundary, after a 14-byte Ethernet header. snull does it as well, although the
instruction was not shown in "Packet Reception" to avoid introducing extra
concepts at that point.

unsigned char* skb_pull(struct sk_buff *skb, int len);
Remove data from the head of the packet. The driver won't need to use this
function, but it is included here for completeness. It decrements skb->len
and increments skb->data; this is how the Ethernet header is stripped from
the beginning of incoming packets.

The kernel defines several other functions that act on socket buffers, but they are
meant to be used in higher layers of networking code, and the driver won't need
them.

Address. Resolution
One of the most compelling issues of Ethernet communication is the association
between hardware addresses (the interface's unique id) and IP numbers. Most pro
tocols have a similar problem, but I'm going to pinpoint only the Ethernet-like
case here. I'll try to offer a complete description of the issue, so I'm going to show
three situations: ARP, Ethernet headers without ARP (like plip), and non-Ethernet
headers.

Using ARP with Ethernet
The usual way to deal with address resolution is by using ARP, the Address Reso
lution Protocol. Fortunately, ARP is managed by the kernel, and an Ethernet
interface doesn't need to do anything special to support ARP. As long as
dev->addr and dev->addr_len are correctly assigned at open time, the driver
doesn't need to worry about resolving IP numbers to physical addresses;
ether_setup assigns the correct device methods to dev-> hard_header and
dev->rebuild_header.

When a packet is built, the Ethernet header is laid out by dev-> hard_header,
and it is filled later by dev->rebuild_header, which uses the ARP protocol to
map unknown IP numbers to addresses. The driver writer doesn't need to know
the details of this process to build a working driver.

328

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 329

Address Resolution

Overriding ARP
Simple point-to-point network interfaces like plip might benefit from using Ether
net headers, while avoiding the overhead of sending ARP packets back and forth.
The sample code in snull falls into this class of network devices. snull cannot use
ARP because the driver changes IP addresses in packets being transmitted, and
ARP packets exchange IP addresses as well.

If your device wants to use the usual hardware header without running ARP, you
need to override the default dev->rebuild_header method. This is how snull
implements it, as a simple function made up of three statements:

int snull_rebuild_header(void *buff, struct device *dev,
unsigned long dst, struct sk_buff *skb)

struct ethhdr *eth = (struct ethhdr *)buff;

rnemcpy(eth->h_source, dev->dev_addr, dev->addr_len);
rnemcpy(eth->h_dest, dev->dev_addr, dev->addr_len);
eth->h_dest[ETH_ALEN-1) ~= OxOl; /* dest is us xor 1 */
return 0;

As a matter of fact, there's no actual need to specify the contents of
eth->h_source and eth->h_dest, because the values are used only for the
physical delivery of the packet, and a point-to-point link is guaranteed to deliver
the packet to its destination independent of the hardware addresses. The reason
snull rebuilds the headers is to show you how a rebuild function should be imple
mented for a real network interface when eth_rebuild_header can't be used.

When a packet is received by the interface, the hardware header is used only by
eth_type_trans. We have already seen this call in snull_rx.

skb->protocol = eth_type_trans(skb, dev);

The function extracts the protocol identifier (ETH_P _IP in this case) from the Eth
ernet header; it also assigns skb->mac. raw, removes the hardware header from
packet data, and sets skb->pkt_type. This last item defaults to PACKET_HOST
at skb allocation (which indicates that the packet is directed to this host), but it
can be changed to one of the other values according to the Ethernet destination
address.

If your interface is a point-to-point link, you won't enjoy receiving unexpected
multicast packets. To avoid this, you must remember that a destination address
whose first octet has O as the least significant bit (LSB) is directed to a single host
(i.e., it is either PACKET_HOST or PACKET_OTHERHOST). The plip driver uses
Oxfc as the first octet of its hardware address, while snull uses OxOO. Both
addresses result in a working Ethernet-like point-to-point link.

329

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 330

Chapter 14: Network Drivers

Non-Ethernet Headers
This section briefly describes how hardware headers can be used to encapsulate
relevant information. If you need to know the details, you can extract them from
the kernel sources or the technical documentation for the particular transinission
medium. We have just seen that the hardware header contains some information in
addition to the destination address, the most important being the communication
protocol.

However, not all information has to be provided by every protocol. A point-to
point link like plip or snull could avoid transferring the whole Ethernet header
without losing generality. The hard_header device method receives the delivery
information-both protocol-level and hardware addresses-from the kernel. It
also receives the 16-bit protocol number. IP, for example, is identified by
ETH_P_IP. The driver is expected to correctly deliver both the packet data and
the protocol number to the receiving host. A point-to-point link could omit
addresses from its hardware header, transferring only the protocol number,
because delivery is guaranteed independent of the source and destination
addresses. An IP-only link could even avoid transmitting any hardware header
whatsoever. In both cases, all the work can be performed by hard_header, leaving
rebuild_header nothing to do except return O.

When the packet is picked up at the other end of the link, the receiving function
is expec;ted to correctly set skb->protocol, skb->pkt_type, and
skb->mac. raw.

skb->mac. raw is a char pointer used by the address-resolution mechanism
implemented in higher layers of the networking code (for instance, netlipv4/arp.c).
It must point to a machine address that matches dev->type. The possible values
for the device type are defined in <linux/ if_arp. h>; Ethernet interfaces use
ARPHRD_ETHER. For example, here is how eth_type_trans deals with the Ethernet
header for received packets:

skb->mac.raw=skb->data;
skb_pull(skb,dev->hard_header_len);

In the simplest case (a point-to-point link with no headers), skb->mac. raw can
point to a static buffer containing the hardware address of this interface, proto
col can be set to ETH_P_IP, and packet_type can be left with its default
value of PACKET_HOST.

Load-Time Configuration
There are a couple of standard keywords that users expect to have available for
configuring the interface. Any new network module is expected to follow the
standard:

330

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 331

Load-Ttme Configuration

io=
Sets the 1/0 port's base address for the interface. If more than one interface is
installed in the system, a comma-separated list can be specified.

irq=
Sets the interrupt number. More than one value can be specified, as above.

In other words, a Linux user who has two own_eth interfaces installed will
expect to load the module with a command line like:

insmod own_eth.o io=0x300,0x320 irq=S,7

Both the io= and the irq= options probe for the interface if O is specified as a
value. A user can thus force probing by specifying io=O. Most drivers usually
probe for one interface if the user doesn't specify any option, but sometimes prob
ing is disallowed for modules (see the comments in ne.c about probing for
NE2000 devices).

The device driver should arrange for the behavior just described. The typical
implementation for ISA devices looks like the following, assuming the driver sup
ports up to four interfaces:

static unsigned int io[] = {0, ~o, ~o, ~o}; /* probe the first*/
static unsigned int irq[) = {0, 0, 0, 0}; /* probe if unknown*/

int init_module(void)

i, found= 0;

/* too high I/0 addresses are not valid ones*/
for (i=0; io[i]<0xl000 /* 4KB */ && i<4; i++) {

/* the device-specific function below is boolean*/
found+= own_eth_register(io[i], irq[i]);

return found? 0 : -ENODEV;

/* device-specific registration function*/
int own_eth_register(unsigned int iobase, unsigned int irq)

if (!iobase) /* if iobase is 0, then probe for a device*/
iobase = own_eth_probe_iobase();

if (! iobase)
return 0; /* not found*/

if (!irq) /* if irq is 0, probe for it*/
irq = own_eth_probe_irq(iobase)

return own_eth_init(iobase, irq);

This code probes for one board by default and always tries to autodetect the
interrupt, but the user can change this behavior. For example, io=O, 0, 0 probes
for three boards.

331

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 332

Chapter 14: Network Drivers

In addition to using io and irq, the driver writer is free to add other load-time
configuration variables. There is no established naming standard.

Run-Time Configuration
A user might occasionally want to change the interface configuration at run time.
If, for example, the IRQ number can't be probed for, the only way to have it prop
erly configured is through a trial-and-error technique. A user-space program can
retrieve the device's current configuration or set a new configuration by invoking
ioctl on an open socket. The ifcon.fig application, for instance, uses ioctl to set the
1/0 port for an interface.

We saw earlier how one of the methods defined for network interface is
set_con.fig. The method is used to set or change some interface features at run
time.

When a program asks for the current configuration, the kernel extracts the infor
mation from struct device without notifying the driver; on the other hand,
when a new configuration is passed to the interface, the set_con.fig method is
called so the driver can check the values being passed and take appropriate
action. The driver method responds to the following prototype:

int (*set_config) (struct device *dev, struct ifmap *map);

The map argument points to a copy of the structure passed by the user program;
the copy is already in kernel space, so the driver doesn't need to call
memcpyJrom_Js.

The fields of struct ifmap are:

unsigned long mem_start;
unsigned long mem_end;
unsigned short base_addr;
unsigned char irq;
unsigned char dma;

These fields correspond to the fields instruct device.

unsigned char port;
This field corresponds to i £_port, as found in dev. The meaning of
map->port is device-specific.

The set_con.fig device method is called when a process issues
ioctl (SIOCSIFMAP) (Socket 1/0 Control Set InterFace MAP) for the device.
The process should issue ioctl (SIOCGIFMAP) (Socket 1/0 Control Get
InterFace MAP) before trying to force new values on, so the driver will just look
for mismatches between struct dev and struct ifmap. Any fields in map
that are not used by the driver can be skipped. For instance, a network device not
using DMA ignores map->dma.

332

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 333

Run-Time Configuration

The snull implementation is designed to show how the driver can behave with
respect to configuration changes. None of the fields has any physical sense for the
snull driver. But for the sake of illustration, the code prohibits changes to the 1/0
address, allows changes to the IRQ number, and ignores other options in order to
show how the changes are acknowledged, refused, or ignored.

int snull_config(struct device *dev, struct ifmap *map)

if (dev->flags & IFF_UP) /* can't act on a running interface*/
return -EBUSY;

/* Don't allow changing the I/O address*/
if (map->base_addr != dev->base_addr) {

printk(KERN_WARNING "snull: Can't change I/O address\n");
return -EOPNOTSUPP;

/* Allow changing the IRQ */
if (map->irq != dev->irq) {

dev->irq = map->irq;
/* request_irq() is delayed to open-time*/

/* ignore other fields*/
return 0;

The return value of the method is used as the return value for the outstanding ioctl
system call, and -EOPNOTSUPP is returned for drivers that don't implement
set_config.

If you are curious about how the interface configuration is accessed from user
space, look in misc-progs/netifconf ig. c, which can be used to play with
set_config. Here is the output from a sample run:

morgana.root# ./netifconfig snO
sn0: mem=0x0-0x0, io=0x0, irq=0, dma=0, port=0
morgana.root# ./netifconfig snO irq=4
./netifconfig: ioctl(SIOCSIFMAP): Device or resource busy
morgana.root# ifconfig snO down
morgana.root# ./netifconfig snO irq=4 tell
sn0: mem=0x0-0x0, io=0x0, irq=4, dma=0, port=0
morgana.root# ./netifconfig ethO
eth0: mem=0x0-0x0, io=0x300, irq=S, dma=0, port=0
morgana.root# ./netifconfig ethO io~Ox400
./netifconfig: ioctl(SIOCSIFMAP): Operation not supported on transport
endpoint

333

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 334

Chapter 14: Network Drivers

Custom ioctl Commands
We have seen that the ioctl system call is implemented for sockets; SIOCSIFADDR
and SIOCSIFMAP are examples of "socket ioctls." Now let's see how the third
argument of the system call is used by networking code.

When the ioctl system call is invoked on a socket, the command number is one of
the symbols defined in <linux/sockios .h>, and the function sock_ioctl
directly invokes a protocol-specific function (where "protocol" refers to the main
network protocol being used; for example, IP or AppleTalk).

Any ioctl command that is not recognized by the protocol layer is passed to the
device layer. These device-related ioctl commands accept a third argument from
user space, a struct ifreq *; this structure is defined in <linux/if. h>. The
SIOCSIFADDR and SIOCSIFMAP commands actually work on the ifreq struc
ture. The extra argument to SIOCSIFMAP, although defined as ifmap, is just a
field of if req.

In addition to using the standardized calls, each interface can define its own ioctl
commands. The plip interface, for example, allows the interface to modify its inter
nal timeout values via ioctl. The ioctl implementation for sockets recognizes 16
commands as private to the interface: SIOCDEVPRIVATE through SIOCDEVPRI
VATE+lS.

When one of these commands is recognized, dev->do_ioctl is called in the rel
evant interface driver. The function receives the same struct ifreq * pointer
that the general-purpose ioctl function uses:

int (*do_ioctl) (struct device *dev, struct ifreq *ifr, int crnd);

The ifr pointer points to a kernel-space address that holds a copy of the struc
ture passed by the user. After do_ioctl returns, the structure is copied back to user
space; the driver can thus use the private commands to both receive and return
data.

The device-specific commands can choose to use the fields in struct ifreq,
but they already convey a standardized meaning, and it's unlikely that the driver
can adapt the structure to its needs. The field ifr_data is a caddr_t item (a
pointer) that is meant to be used for device-specific needs. The driver and the pro
gram used to invoke its ioctl commands should agree about the use of ifr_data.
For example, pppstats uses device-specific commands to retrieve information from
the PPP interface driver.

It's not worth showing an implementation of do_ioctl here, but with the informa
tion in this chapter and the kernel examples, you should be able to write one
when you need it. Note, however, that the plip implementation uses ifr_data
incorrectly and should not be used as an example for an ioctl implementation.

334

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 335

Multicasting

Statistical Information
The last method a driver needs is get_stats. This method returns a pointer to the
statistics for the device. Its implementation is pretty easy:

struct enet_statistics *snull_stats(struct device *dev)
{

struct snull_priv *priv = (struct snull_priv *)dev->priv;
return &priv->stats;

The real work needed to return meaningful statistics is distributed throughout the
driver, where the various fields are updated. The following list shows the most
interesting fields in struct enet_statistics.

int rx_packets;
int tx_packets;

These fields hold the total number of incoming and outgoing packets success
fully transferred by the interface.

int rx_errors;
int tx_errors;

The number of erroneous receptions and transmissions. Receive errors can be
the result of bad checksums, wrong packet sizes, or other problems. Transmit
errors are less common and are due mainly to cable problems.

int rx_dropped;
int tx_dropped;

The number of packets dropped during reception and transmission. Packets
are dropped when there's no memory available for packet data. tx_dropped
is rarely used.

The structure has several more fields, which can be used to detail the kind of
errors that happened during transmission or reception. The interested reader is
urged to look at the structure's definition in <linux/ if_ether. h>.

Multicasting
A "multicast" packet is a network packet meant to be received by more than one
host, but not by all hosts.

This functionality is obtained by assigning special hardware addresses to groups of
hosts. Packets directed to one of the special addresses should be received by all
the hosts in that group. In the case of Ethernet, a multicast address has the least
significant bit of the first address octet set in the destination address, while every
device board has the bit clear in its own hardware address.

335

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 336

Chapter 14: Network Drivers

The tricky part of dealing with host-groups and hardware addresses is performed
by applications and the kernel, and the interface driver doesn't need to deal with
these problems.

Transmission of multicast packets is a simple problem because they look exactly
like any other packet. The interface transmits them over the communication
medium without looking at the destination address. It's the kernel that has to
assign a correct hardware destination address; the rebuild_beader device method,
if defined, doesn't need to look in the data it arranges.

Receiving multicast packets, on the other hand, needs some. cooperation from the
device. The hardware should notify the operating system whenever an "interest
ing" multicast packet is received, i.e., a packet whose destination address identifies
a group of hosts that includes this interface. This means that the hardware filter
should be programmed to tell some multicast destination addresses from the oth
ers. The filter is the unit that matches the destination address of the network
packets against its own hardware address during normal operation of the interface.

Typically, hardware belongs to one of three classes, as far as multicasting is con
cerned:

• Interfaces that cannot deal with multicasting. These interfaces either receive
packets directed specifically to their hardware address (plus broadcast
packets), or they receive every packet. They can receive multicast packets
only by receiving every packet, thus overwhelming the operating system with
a huge number of "uninteresting" packets. You don't usually count these inter
faces as multicast-capable, and the driver won't set IFF _MULTICAST in
dev->f lags.

Point-to-point interfaces are a special case, as they always receive every
packet without performing any hardware filtering.

• Interfaces that can tell multicast packets from other packets (host-to-host or
broadcast). These interfaces can be instructed to receive every multicast
packet and let the software determine if this host is a valid recipient. The over
head introduced in this case is acceptable, as the number of multicast packets
on a typical network is low.

• Interfaces that can perform hardware detection of multicast addresses. These
interfaces can be passed a list of multicast addresses for which packets are to
be received, and they will ignore other multicast packets. This is the optimum
case for the kernel, because it doesn't waste processor time dropping "uninter
esting" packets received by the interface.

The kernel tries to exploit the capabilities of high-level interfaces and to support at
its best the third device class, which is the most versatile. Therefore, the kernel
notifies the driver whenever the list of valid multicast addresses is changed, and it
passes the new list to the driver so it can -µpdate the hardware filter according to
the new information.

336

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 337

Multtcasttng

Kernel Support for Multicasting
Here is a summary of the data structures and functions related to driver multicast
capabilities:

void (*dev->set_multicast_list) (struct device *dev);
This device method is called whenever the list of machine addresses associ
ated with the device changes. It is also called when dev->flags is modified,
because some flags also require you to reprogram the hardware filter. The
method receives a pointer to struct device as an argument and returns
void. A driver not interested in implementing this method can leave the field
set to NULL.

struct dev_mc_list *dev->mc_list;
This is a linked list of all the multicast addresses associated with the device.
The actual definition of the structure is introduced at the end of this section.

int dev->mc_count;
The number of items in the linked list. This information is somewhat redun
dant, but checking mc_count against O is a useful shortcut over checking the
list.

IFF_MULTICAST
Unless the driver sets this flag in dev->flags, the interface won't be asked
to handle multicast packets. The set_multicast_list method will nonetheless be
called when dev->flags changes.

IFF_ALLMULTI
This flag is set in dev->flags by the networking software to tell the driver
to retrieve all multicast packets from the network. This happens when multi
cast-routing is enabled. If the flag is set, dev->mc_list shouldn't be used to
filter multicast packets.

IFF_PROMISC
This flag is set in dev->flags when the interface is put into promiscuous
mode. Every packet should be received by the interface, independent of
dev->mc_list.

The last bit of information needed by the driver developer is the definition of
struct dev_mc_list, which lives in <linux/netdevice.h>.

struct dev_mc_list {

} ;

struct dev_mc_list *next;
char dmi_addr[MAX_ADDR_LEN];
unsigned short dmi_addrlen;
unsigned short dmi_users;

/* next address in the list*/
/* hardware address*/
/* len in octets of the address*/
/* usage count of the structure*/

Since multicasting and hardware addresses are independent of the actual transmis
sion of packets, this structure is portable across network implementations, and

337

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 338

Chapter 14: Network Drivers

each address is identified by a string of octets and a length, just like
dev->dev _addr.

A Typical Implementation
The best way to describe the design of set_multicast_list is to show you some
pseudocode.

The following function is a typical implementation of the function in a full
featured (ff) driver. The driver is full-featured in that the interface it controls has a
complex hardware packet filter, which can hold a table of multicast addresses to
be received by this host. The maximum size of the table is FF _TABLE_SIZE.

All the functions prefixed with ff_ are placeholders for hardware-specific opera
tions.

void ff_set_rnulticast_list(struct device *dev)

struct dev_mc_list *mcptr;

if (dev->flags & IFF_PROMISC)
ff_get_all__packets();
return;

if (dev->flags & IFF_ALLMULTI I I dev->mc_count > FF_TABLE_SIZE) {
ff_get_all_rnulticast__packets();
return;

if (dev->mc_count == 0) {
ff_get_only_own__packets();
return;

ff_clear_mc_list();
for (mc__ptr = dev->mc_list; mc__ptr; mc__ptr = mc__ptr->next)

ff_store_mc_address(mc__ptr->dmi_addr);
ff_get__packets_in_multicast_list();

This implementation can be simplified if the interface cannot store a multicast
table in the hardware filter for incoming packets. In that case, FF _TABLE_SIZE
reduces to O and the last four lines of code are not needed.

Nowadays, interface boards often can't store a multicast list. This is not a big prob
lem, though, because the upper layers of networking code will take care of drop
ping unwanted packets.

As I suggested earlier, even interfaces that can't deal with multicast packets need
to implement the set_multicast_list method to be notified about changes in
dev->flags. I call this a "non-featured" (nf) implementation. The
implementation is very simple, as shown by the following code:

338

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 339

void nf_set_multicast_list(struct device *dev)
{

if (dev->flags & IFF_PROMISC)
nf_get_all_packets();

else
nf_get_only_own_packets();

Quick Reference

Dealing with IFF _PROMISC is important, because otheiwise the user won't be
able to run tcpdump or any other network analyzers. If the interface runs a point
to-point link, on the other hand, there's no need to implement set_multicast_list at
all, because they receive every packet anyway.

Quick Reference
This section provides a reference for the concepts introduced in this chapter. It
also explains the role of each header file that a driver needs to include. The list of
fields in the device and sk_buff structures, however, are not repeated here.

#include <linux/netdevice.h>
This header hosts the definition of struct device and includes a few other
headers that are needed by network drivers.

void netif_rx(struct sk_buff *skb);
This function can be called at interrupt time to notify the kernel that a packet
has been received and encapsulated into a socket buffer.

#include <linux/if.h>
Included by netdevice.h, this file declares the interface flags (IFF _ macros)
and struct ifrnap, which has a major role in the ioctl implementation for
network drivers.

#include <linux/if_ether.h>
ETH_ALEN
ETH_P_IP
struct ethhdr;
struct enet_statistics;

Included by netdevice.h, if_ether.h defines all the ETH_ macros used to repre
sent octet lengths (like the address length) and network protocols (like IP). It
also defines the structures ethhdr and enet_statistics. Note that
enet_statistics, despite its name and the header in which it is defined, is
used by all interfaces, not just Ethernet ones.

339

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 340

Chapter 14: Network Drivers

#include <linux/skbuff.h>
The definition of struct sk_buff and related structures, as well as several
inline functions to act on the buffers. This header is included by netdevice.b.

#include <linux/etherdevice.h>
void ether_setup(struct device *dev);

This function sets most device methods to the general-purpose implementa
tion for Ethernet drivers. It also sets dev->flags and assigns the next avail
able ethx name to dev->name if the first character in the name is a blank
space or the null character.

unsigned short eth_type_trans(struct sk_buff *skb,
struct device *dev);

When an Ethernet interface receives a packet, this function can be called to
set skb->pkt_type. The return value is a protocol number that is usually
stored in skb->protocol.

#include <linux/sockios.h>
SIOCDEVPRIVATE

340

This is the first of 16 ioctl commands that can be implemented by each driver
for its own private use. All the network ioctl commands are defined in
sockios.b.

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 341

CHAPTER FIFTEEN

OVERVIEW OF
PER1PHERAL BUSES

W:
1ile Chapte r 8, Hardware Management, introduced the lowest levels o f
iardware control, this chapter provides an ove1v iew of the higher-level
bus architectures. A bus is made up of both an electrical interface and a

programming interface. In d1is chapter, I'm going to deal wim the programming
interface.

This chapter covers a number of bus architectures. However, the primary focus is
on the kernel functions that access PC! peripherals, because these days the PC!
bus is d1e most commonly used peripheral bus, and the one that is best supported
by d1e kernel.

The PCI Interface
Although many computer users think of PC! (Peripheral Component Interconnect)
as a way of laying out electrical wires, it is actually a complete set of specifications
defining how different pans of a computer should interact.

The PC! specification cove rs most issues related to computer interfaces. I'm not
going to cover it a ll here; in this section I'm mainly concerned with how a PC!
driver can find its hardware and gain access to it. The probing techniques dis
cussed in "Automatic and Manual Configuration" in Chapter 2, Building and Run
ning Modules, and "Autodetecting the IRQ Number" in Chapter 9, In /en-up !
Handling, can be used with PC! devices, but the specification offers an alternative
to probing.

The PC! architecture was designed as a replacement for the ISA standard, with
dl ree main goals: to get better performance when transferring data between the
computer and its peripherals, to be as platform-independent as possible, and to
simplify adding and removing peripherals to the system.

341

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 342

Chapter 15: Overview of Peripheral Buses

The PCI bus achieves better performance by using a higher clock rate than ISA; its
clock runs at 25 or 33 MHz (its actual rate being a sub-multiple of the system
clock), and a 66 MHz extension is upcoming. Moreover, it is equipped with a
32-bit data bus, and a 64-bit extension has been included in the specification. Plat
form independence is often a goal in the design of a computer bus, and it's an
especially important feature of PCI, because the PC world has always been domi
nated by processor-specific interface standards.

What is most relevant to the driver writer, however, is the support for autodetec
tion of interface boards. PCI devices are jumperless (unlike most ISA peripherals)
and are automatically configured at boot time. The device driver, then, must be
able to access configuration information in the device in order to complete initial
ization. This happens without the need to perform any probing.

PC/ Addressing

Each peripheral is identified by a bus number, a device number, and a function
number. While the PCI specification permits a system to host up to 256 buses, PCs
have only one. Each bus hosts up to 32 devices, and each device can be a multi
function board (such as an audio device with an accompanying CD-ROM drive)
with a maximum of 8 functions. Each function can be identified by one 16-bit key
or two 8-bit keys. The Linux kernel uses the latter approach.

The hardware circuitry of each peripheral board answers queries pertaining to
three address spaces: memory locations, 1/0 ports, and configuration registers. The
first two address spaces are shared by all the devices on a PCI bus (i.e., when you
access a memory location, all the devices see the bus cycle at the same time). The
configuration space, on the other hand, exploits "geographical addressing;" each
slot has a private enable wire for configuration transactions, and the PCI controller
accesses one board at a time with no address collision. As far as the driver is con
cerned, memory and 1/0 are accessed in the usual ways via inb, memcpy, etc.
·Configuration transactions, on the other hand, are performed by calling specific
kernel functions to access configuration registers. As far as interrupts are con
cerned, every PCI device has 4 interrupt pins, whose routing to the processor IRQ
lines is the responsibility of the motherboard; PCI interrupts can be shared by
design, so that even a processor with a limited number of IRQ lines can host many
PCI interface boards.

The 1/0 space in a PCI bus uses a 32-bit address bus (leading to 4GB of 1/0
ports), while the memory space can be accessed with either 32-bit or 64-bit
addresses. Addresses are supposed to be unique to one device, but it's possible
for two devices to map erroneously to the same address, making it impossible to
access either one. The good news is that every memory and 1/0 address region
offered by the interface board can be remapped by means of configuration trans
actions. This is the mechanism by which the devices can be initialized at boot time

342

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 343

Tbe Pa Interface

to avoid address collisions. The addresses to which these regions are currently
mapped can be read from the configuration space, so the Linux driver can access
its devices without probing. Once the configuration registers have been read, the
driver can safely access its hardware.

The PCI configuration space consists of 256 bytes for each device function, and
the layout of the configuration registers is standardized. Four bytes of the configu
ration space hold a unique function ID, so the driver can identify its device by
looking for the specific ID for that peripheral.* In summary, each device board is
geographically addressed to retrieve its configuration registers; this information can
be used to identify the board and take further action.

It should be dear from this description that the main innovation of the PCI inter
face standard over ISA is the configuration address space. Therefore, in addition to
the usual driver code, a PCI driver needs the ability to access configuration space.

For the remainder of this chapter, I'll use the word "device" to refer to a device
function, because each function in a multi-function board acts as an independent
entity. When I refer to a device I mean the tuple "bus number, device number,
function number." As I mentioned earlier, each tuple is represented in Linux by
two 8-bit numbers.

Boot Time
Let's look at how PCI works, starting from system boot, since that's when the
devices are configured.

When power is applied to a PCI device, the hardware shuts down. In other words,
the device will only respond to configuration transactions. At power on, the device
has no memory and no I/O ports mapped in the computer's address space; every
other device-specific feature, like the interrupt lines, is disabled as well.

Fortunately, every PCI motherboard is equipped with PCI-aware firmware, called
the BIOS, NVRAM, or PROM depending on the platform. The firmware offers
access to the device configuration address space, even if the processor's instruc
tion set doesn't offer such a capability.

At system boot, the firmware performs configuration transactions with every PCI
peripheral in order to allocate a safe place for any address region it offers. By the
time a device driver accesses the device, its memory and I/O regions have already
been mapped into the processor's address space. The driver can change this
default assignment, but it usually doesn't unless there are device-dependent rea
sons to do so.

* You'll find the ID of any device in its own hardware manual.

343

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 344

Chapter 15: Overview of Peripheral Buses

In Linux, the user can look at the PCI device list by reading /proclpci, which is a
text file that has an entry for each PCI board in the system. Here is an example of
a /proclpci entry:

Bus 0, device 13, function 0:
Multimedia video controller: Intel SAA7116 (rev 0).

Medium devsel. IRQ 10. Master Capable. Latency=32.
Non-prefetchable 32 bit memory at 0xfl000O00.

Each entry in /proclpci is a summary of the device-independent features of one
device as described by its configuration registers. The entry above, for example,
tells us that the device has on-board memory that has been mapped to address
OxflOOOOOO. The meaning of some of the more exotic details will become clear
later, after I introduce the configuration registers.

Detecting the Device
As mentioned earlier, the layout of the configuration space is device-independent.
In this section, we'll look at the configuration registers that are used to identify the
peripherals.

PCI devices feature a 256-byte address space. The first 64 bytes are standardized,
while the rest is device-dependent. Figure 15-1 shows the layout of the device
independent configuration space.

As the figure shows, some of the PCI configuration registers are required and
some are optional. Every PCI device must contain meaningful values in the com
pulsory registers, while the contents of the optional registers depend on the actual
capabilities of the peripheral. The optional fields are not used unless the contents
of the compulsory fields indicate that they are valid. Thus, the compulsory fields
assert the board's capabilities, including whether the other fields are usable or not.

It's interesting to note that the PCI registers are always little-endian. Although the
standard is designed to be architecture-independent, the PCI designers sometimes
show a slight bias toward the PC environment. The driver writer should be careful
about byte ordering when accessing multi-byte configuration registers; code that
works on the PC might not work on other platforms. The Linux developers have
taken care of the byte-ordering problem (see the next section, "Accessing the Con
figuration Space"), but the issue must be kept in mind. Unfortunately, the standard
functions ntohs and ntohl can't be used because the network byte order is the
opposite of the PCI order; no standardized functions exist in Linux 2.0 to convert
from PCI byte-order to host byte-order, and every driver that builds up multi-byte
values from single bytes needs to be careful to deal correctly with endianness. Ver
sion 2.1.10 of the kernel introduced a few functions to deal with these byte-order
issues; they are introduced in "Conversion Functions," in Chapter 17, Recent Devel
opments.

344

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 345

Tbe PCT lnt.e1fcice

OxO Ox 1 Ox2 Ox3 Ox4 Ox5 Ox6 Ox7 OxB Ox9 Oxa Oxb Oxc Oxd Oxe Oxl

OxOO

0,10

0,20

Ox30

Vendor ID Device ID Command
Reg

Status
Reg.

Base Address O Base Address 1

Base Address 4 Base Address 5

Expansion ROM
Base Add

- Required Register

- Optional Register

Rewlslon
ID Class Code

Base Address 2

j CardBus CIS pointer I

Figure 15-1: The stcindardized PC! configuration registers

Base Address 3

Subsytem j Subsytem
Vendor ID Device ID

l Mln_Gnl I Ma._tat IRO j IRO
lin B Pin

Describing all the con.figuration items is beyond the scope of this book. Usually,
the technical documentation re leased with each device describes the supported
registers. What we're inte rested in is how a driver can look fo r its device and how
it can access the device's configuration space.

Three PC! register iden1ify a device: vendor, device!D, and class. Every PCI
peripheral puts its own va lue in these read-only registers, and the driver can use
them to look fo r the device. Let's look at these registers in more detail:

vendor
This 16-bit regi ter identifi es a hardware manufacture r. For instance, eve1y
Intel device is marked with the same ve11dor number, 8086 hex (just a random
value7). There is a global registry of such numbers, and manufacturer mu t
apply to have a unique number assigned.

device!D
This is another 16-bit register, selected by the manufacturer; no official regis
tration is required for the device!D. This ID is usually paired with the vendor
ID to make a unique 32-bit identifier fo r a hardware device. I'll us the word
signature to refer to the vendor! device!D pair. A device driver usuall y relies on
the signature to identify its device; the driver writer knows fro m the hardware
docs what value to look for.

345

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 346

Chapter 15: Overview of Peripheral Buses

class
Every peripheral device belongs to a class. The class register is a 16-bit value
whose top eight bits identify the "base class" (or group). For example, "ether
net" and "token ring" are two classes belonging to the "network" group, while
the "serial" and "parallel" classes belong to the "communication" group. Some
drivers can support several similar devices, each of them featuring a different
signature but all belonging to the same class; these drivers can rely on the
class register to identify their peripherals, as shown later.

The following headers, macros, and functions should be used by a PCI driver to
look for its hardware device:

#include <linux/config.h>
The driver needs to know if the PCI functions are available in the kernel. By
including this header, the driver gains access to the CONFIG_ macros, includ
ing CONFIG_PCI, which is described below. From 1.3.73 on, this header is
included by <linux/fs. h>; you need to include it explicitly if you want to
be backward compatible.

CONFIG_PCI
This macro is defined if the kernel includes support for PCI BIOS calls. Not
every computer includes a PCI bus, so the kernel developers chose to make
PCI support a compile-time option to save memory when running Linux on
non-PCI computers. If CONFIG_PCI is not defined, the rest of the functions
in this list are not available, and the driver should use a preprocessor condi
tional to mask out PCI support and avoid "undefined symbol" errors at load
time.

#include <linux/bios32.h>
This header declares all the prototypes introduced in this section and should
always be included. This header also defines symbolic values for the error
codes returned by the functions. The header didn't change between 1.2 and
2.0, so there are no portability issues.

int pcibios_present(void);
Since the PCI-related functions don't make sense on non-PCI computers, the
pcibios_present function tells the driver if the computer supports PCI; it returns
a boolean value of true (non-zero) if the BIOS is PCI-aware. Even if CON
FIG_PCI is defined, the PCI functionality is a run-time option. Therefore, you
need to check pcibios_present to make sure the computer supports PCI before
calling the functions introduced below.

#include <linux/pci.h>

346

This header defines symbolic names for all the numeric values used by the
remaining functions. Not every device/D is listed in this file, but you might
want to look here before defining your own macros for id, vendor, and
class. Note that this header is constantly getting bigger as new symbolic def
initions are added for new devices.

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 347

The PC/ Inteiface

int pcibios_find_device (unsigned short vendor,
unsigned short id,
unsigned short index,
unsigned char *bus,
unsigned char *function);

If CONFIG_PCI is defined and pcibios_present is true, this function is used to
request information about the device from the BIOS. The vendor/id pair
identifies the device. index is used to support multiple devices with the same
vendor/id identifier and is explained below. The call to pcibios_.find_device
returns the position of the device in the bus and function pointers. The return
codes are Oto indicate success and non-zero for failure.

int pcibios_find_class (unsigned int class_code,
unsigned short index,
unsigned char *bus,
unsigned char *function);

This function is similar to the previous one, but it looks for devices belonging
to a specific class. The class_code argument should be passed as the 16-bit
class register shifted left by 8 bits, because of the way the BIOS interface uses
the class register. Once again, a return value of 0 means success, while non
zero means there was an error.

char *pcibios_strerror(int error);
This function can be used to translate a PCI error code, such as the one
returned by pcibios_.find_device, into a string. You might want to print an
error message if one of the find calls returns neither PCIBIOS_SUCCESSFUL
(0) nor PCIBIOS_DEVICE_NOT_FOUND, which is the expected error code
after all the devices have been found.

The code below is typical of the code used by a driver at load time to detect its
devices. As outlined above, the lookup can be based on either the signature or the
device class. In either case, the driver must store the bus and function values,
which are used later to identify the device. The first five bits if the function
value identify the device and the next three bits identify the function.

In the code below, every device-specific symbol is prefixed with jail_ (just
another instruction list), lowercase or uppercase depending on the kind of symbol.

If the driver can rely on a unique vendor/id pair, the following loop can be used
to initialize the driver:

#ifdef CONFIG_PCI
if (pcibios_present())

unsigned char bus, function;
int index, result;

for (index=0; index< JAIL_MAX_DEV; index++) {
result= pcibios_find_device(JAIL_VENDOR, JAIL_ID, index,

347

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 348

Chapter 15: Overview of Peripheral Buses

&bus, &function);
if (result != PCIBIOS_SUCCESSFUL)

break;
jail_init_dev(bus, function);

if (result != PCI_BIOS_DEVICE_NOT_FOUND)
printk(KERN_WARNING "jail: pci error: %s\n",

pcibios_strerror(result));

if (index == 0)
return -ENODEV;

#else
return -ENODEV; /* no PCI bios: no devices*/

#endif

This code excerpt is correct if the driver deals only with one kind of PCI device,
identified by JAIL_ VENDOR and JAIL_ID.

However, many drivers are more flexible and can handle both PCI and ISA boards.
In that case, the driver probes for the ISA device only if no PCI board is detected
or if CONFIG_PCIBIOS is undefined.

It is also common for different vendors to build compatible hardware. The driver
should work with all compatible devices even if their signatures are different. To
do that, init_module should invoke pcibios_find_class instead of
pcibios_find_device.

Using pcibios_find_class requires that jail_init_dev perform a little more work
than in the example. The function returns successfully any time it finds a device
belonging to the right class, but the driver still has to verify that the signature is
one of the supported ones. This task is performed by a series of conditionals that
end up discarding any unexpected device.

Some PCI peripherals contain a general-purpose PCI interface chip and device
specific circuitry. Every peripheral board that uses the same interface chip has the
same signature and the driver must perform additional probing to be sure it is
dealing with the correct peripheral device. Therefore, sometimes a function like
jail_init_dev has to be ready to do the device-specific extra checking and to dis
card a device even though it might have the correct signature.

Accessing the Configuration Space
After the driver has detected the device, it usually needs to read from or write to
the three address spaces: memory, port, and configuration. In particular, accessing
the configuration space is vital to the driver because it is the only way it can find
out where the device is mapped in memory and in the 1/0 space.

348

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 349

The PC/ Interface

Since the microprocessor has no way to access the configuration space directly,
the computer vendor has to provide a way to do it. The exact implementation is
therefore vendor-dependent and not relevant to this discussion. Fortunately, the
software interface to the transactions described below is standardized, and neither
the driver nor the Linux kernel need to be aware of the details.

As far as the driver is concerned, the configuration space can be accessed through
8-bit, 16-bit, or 32-bit data transfers. The relevant functions are prototyped in
<linux/bios32.h>:

int pcibios_read_config_byte

int pcibios_read_config_word

(unsigned char bus,
unsigned char function,
unsigned char where,
unsigned char *ptr);

(unsigned char bus,
unsigned char function,
unsigned char where,
unsigned short *ptr);

int pcibios_read_config_dword (unsigned char bus,
unsigned char function,
unsigned char where,
unsigned int *ptr);

Read 1, 2, or 4 bytes from the configuration space of the, device identified by
bus and function. The where argument is the byte offset from the begin
ning of the configuration space. The value fetched from the configuration
space is returned through ptr, and the return value of the functions is an
error code. The word and dword functions convert the value just read from
little-endian to the native byte order of the processor, so you shouldn't need to
deal with byte ordering.

int pcibios_write_config_byte (unsigned char bus,
unsigned char function,
unsigned char where,
unsigned char val);

int pcibios_write_config_word (unsigned char bus,
unsigned char function,
unsigned char where,
unsigned short val);

int pcibios_write_config_dword (unsigned char bus,
unsigned char function,
unsigned char where,
unsigned int val);

Write 1, 2, or 4 bytes to the configuration space. The device is identified by
bus and function as usual, and the value being written is passed as val.

349

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 350

Chapter 15: Overview of Peripheral Buses

The word and dword functions convert the value to little-endian before writ
ing to the peripheral device.

The best way to access the configuration variables is to use the symbolic names
defined in <linux/pci. h>. For example, the following two-liner retrieves the
revision ID of a device by passing the symbolic name for where to
pcibios_read_con.fig_ byte.

unsigned char jail_get_revision(unsigned char bus, unsigned char fn)
{

unsigned char *revision;

pcibios_read_config_byte(bus, fn, PCI_REVISION_ID, &revision);
return revision;

When accessing multi-byte values, the programmer must remember to watch out
for byte-order problems.

Looking at a configuration snapshot

If you want to browse the configuration space of the PCI devices on your system,
you can compile and load the module pci/pcidata.c, in the source files provided
on the O'Reilly FTP site.

This module creates' a dynamic /proc/pcidata file containing a binary snapshot of
the configuration space for your PCI devices. The snapshot is updated every time
the file is read. The size of /proc/pcidata is limited to PAGE_SIZE bytes (this is a
limitation on dynamic /proc files introduced in "Using the /proc Filesystem" in
Chapter 4, Debugging Techniques). Thus, it lists only the configuration memory for
the first PAGE_SIZE/256 devices, which means 16 or 32 devices (probably
plenty for your system). I chose to make /proc/pcidata a binary file because of this
size constraint, instead of making it a text file like other /proc files.

Another limitation of pcidata is that it scans only the first PCI bus on the system. If
your computer includes bridges to other PCI buses, pcidata ignores them.

Devices appear in /proc/pcidata in the opposite order than they appear in
/proc/pci. This happens because /proc/pci reads a linked list that grows from the
head, while /proc/pcidata is a simple look-up loop that dumps everything in the
order it is retrieved.

For example, my frame grabber appears second in /proc/pcidata and (currently)
has the following configuration registers:

morgana% dd bsa256 skipal countal ifa/proc/pcidata I od -Ax -t xl
1+0 records in

350

l+O records out
000000 86 80 23 12 06 00 00 02 00 00 00 04 00 20 00 00
000010 00 00 00 fl 00 00 00 00 00 00 00 00 00 00 00 00
000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 351

The PC/ Interface

000030 00 00 00 00 00 00 00 00 00 00 00 00 0a 01 00 00
000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000100

If you juxtapose the dump above and Figure 15-1, you'll be able to make some
sense out of the numbers. Alternatively, you can use the pcidump program, also
found on the FTP site, which formats and labels the output listing.

The pcidump code is not worth including here, because the program is simply a
long table, plus 10 lines of code that scan the table. Instead, let's look at some
selected output lines:

morgana% dd bs=256 skip=l count=l if=/proc/pcidata I ./pcidump
l+0 records in
l+O records out

Compulsory registers:
Vendor id: 8086
Device id: 1223
I/O space enabled: n
Memory enabled: y
Master enabled: y
Revision id (decimal): 0
Programmer Interface: 00
Class of device: 0400
Header type: 00
Multi function device: n

Optional registers:
Base Address 0: fl0000O0
Base Address 0 Is I/O: n
Base Address 0 is 64-bits: n
Base Address 0 is below-lM: n
Base Address 0 is prefetchable: n
Does generate interrupts: y
Interrupt line (decimal): 10
Interrupt pin (decimal}: 1

pcidata and pcidump, used with grep, can be useful tools for debugging a driver's
initialization code. Note, however, that the pcidata.c module is subject to the GPL,
because I took the PCI scanning loop from the kernel sources. This shouldn't mat
ter to you as a driver writer, because I've included the module in the source files
only as a support utility, not as a template to be reused in new drivers.

Accessing the 1/0 and Memory Spaces
A PCI peripheral implements six address regions. Each region consists of either
memory or 1/0 locations, or it doesn't exist. Most devices substitute a memory
region for their 1/0 ports because some processors (like the Alpha) have no native
1/0 space and because the 1/0 space on the PC is quite congested. The structural

351

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 352

Chapter 15: Overview of Peripheral Buses

difference between memory and 1/0 space has been addressed by implementing a
"memory-is-prefetchable" bit;* peripherals that map their control registers to a
memory address range declare that range as non-prefetchable, whereas something
like video memory on PC! boards is prefetchable. In this section, I'm using the
word "region" to refer to a PC! address range whenever the discussion applies to
either memory or 1/0.

An interface board reports the size and current location of its regions using config
uration registers-the six 32-bit registers shown in Figure 15-1 whose symbolic
names are PCI_BASE_ADDRESS_O through PCI_BASE_ADDRESS_5. Since the
1/0 space defined by PC! is a 32-bit address space, it does make sense to use the
same configuration interface for memory and 1/0. If the device uses a 64-bit
address bus, it can declare regions in the 64-bit memory space by using two con
secutive PCI_BASE_ADDRESS registers for each region. It is possible for one
device to offer both 32-bit regions and 64-bit regions.

I won't go into detail here, because if you're going to write a PC! driver, you will
need the hardware manual for the device anyway. In particular, I am not going to
use either the prefetchable bit here or the two "type" bits of the registers, and I'll
limit the discussion to 32-bit peripherals. It's nonetheless interesting to see how
things are implemented in the general case and how Linux drivers deal with PC!
memory.

The PC! specs state that each implemented region must be mapped to a config
urable address. This means that the device must be equipped with a pro
grammable 32-bit address decoder for each region it implements, and a 64-bit
programmable decoder must be present in any board that exploits the 64-bit PC!
extension. While 64-bit PC! buses don't exist on PCs yet, some Alpha workstations
have them.

The actual implementation and use of a programmable decoder is simplified by
the fact that usually the number of bytes in a region is a power of two; for exam
ple 32, 64, 4KB, or 2MB. Moreover, it wouldn't make much sense to map a region
to an unaligned address; 1MB regions naturally align at an address that is a multi
ple of lM, and 32-byte regions at a multiple of 32. The PCI specification exploits
this alignment; it states that the address decoder must look only at the high bits of
the address bus and that only the high bits are programmable. This convention
also means that the size of any region must be a power of two.

Remapping a PC! region is thus performed by setting a suitable value in the high
bits of a configuration register. For example, a lM region, which has 20 bits of
address space, is remapped by setting the high 12 bits of the register; writing
0x008xxxxx to the register tells the board to respond to the 8MB-9MB address
range. In practice, only very high addresses are used to map PC! regions.

* The information lives in one of the low:order bits of the base-address PC! registers.

352

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 353

The PC/ Interface

This "partial decoding" technique has the additional advantage that the software
can determine the size of a PCI region by checking the number of non-pro
grammable bits in the configuration register. To this ~nd, the PCI standard states
that unused bits must always read as 0. By imposing a minimum size of 8 bytes for
1/0 regions and 16 bytes for memory regions, the standard can fit some extra
information into the same PCI register: the "space" bit, which says whether the
region is memory or 1/0; the two "type" bits; and the prefetchable bit, which is
defined only for memory. The type bits select between a 32-bit region, a 64-bit
region, and a "32-bit region that must be mapped below one meg." That last value
is used for obsolete software that still runs on some PCs.

Detecting the size of a PCI region is simplified by using several bitmasks defined
in <linux/pci . h>: PCI_BASE_ADDRESS_SPACE is set if this is a memory
region, PCI_BASE_ADDRESS_MEM_MASK masks out the configuration bits for
memory regions, and PCI_BASE_ADDRESS_IO_MASK masks out the bits for 1/0
regions.

Typical code for reporting the current location and size of the PCI regions looks
like this:

static u32 addresses[) =
PCI_BASE_ADDRESS_O,
PCI_BASE_ADDRESS_l,
PCI_BASE_ADDRESS_2,
PCI_BASE_ADDRESS_3,
PCI_BASE_ADDRESS_4,
PCI_BASE_ADDRESS_S,
0

} ;

int pciregions_read_proc(char *buf, char **start, off_t offset,
int len, int unused)

#define PRINTF(fmt, args ...) sprintf(buf+len, fmt, ## args)
len=O;

/* Loop through the devices (code not printed in the book) */

/* A device was found: print its regions*/
for (i=O; addresses[i]; i++)

u32 curr, mask;
char *type;

pcibios_read_config_dword(bus,fun,addresses(i],&curr);
cli ();
pcibios_write_config_dword(bus,fun,addresses[i],~o);
pcibios_read_config_dword(bus,fun,addresses[i],&mask);

353

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 354

Chapter 15: Overview of Peripheral Buses

pcibios_write_config_dword{bus,fun,addresses[i],curr);
sti {);

len += PRINTF{"\tregion %i: mask 0x%08lx, now at 0x%08lx\n",
i, {unsigned long)mask, {unsigned long)curr);

if { !mask)
len += PRINTF{"\tregion %i not existent\n", i);
break;

/* extract the type, and the programmable bits*/
if (mask & PCI_BASE_ADDRESS_SPACE) {

type "I/O"; mask&= PCI_BASE_ADDRESS_IO_MASK;
else {

type "mem"; mask&= PCI_BASE_ADDRESS_MEM_MASK;

len += PRINTF("\tregion %i: type %s,· size %i\n", i,
type, ~mask+ 1) ;

return len;

This code is part of the pciregions module, distributed in the same directory as
pcidata; the module creates a /prodpciregions file, using the code shown above to
generat~ data. Interrupt reporting is disabled while the configuration register is
being modified, to prevent a driver from accessing the region while it is mapped
to the wrong place. cli is used instead of save_jlags because the function is exe
cuted only during the read system calls, and interrupts are known to be enabled
during system calls.

Here, for example, is what /prodpciregions reports for my frame grabber:

Bus 0, device 13, fun 0 {id 8086-1223)
region 0: mask 0xfffff0O0, now at 0xfl0000O0
region 0: type mem, size 4096
region 1: mask 0xO0000O00, now at 0x0O00O00O
region 1 not existent

The computer's firmware uses a loop like the one shown earlier to correctly map
the regions at boot time. Since the firmware prevents any collision in address
assignment, Linux drivers don't usually change the mappings of the PCI ranges.

It's interesting to note that the memory size reported by the program above can be
overstated. For instance, /prodpciregions reports that my video board is a 16MB
device. This isn't currently true (although I could expand my video RAM). How
ever, since the size information is used only by the firmware to allocate address

354

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 355

The PC/ Interface

ranges, region oversizing is not a problem for the driver writer who knows the
internals of the device and can correctly deal with the address range assigned by
the firmware.

PC/ Interrupts
As far as interrupts are concerned, PCI is easy to handle. The computer's firmware
has already assigned a unique interrupt number to the device, and the driver just
needs to use it. The interrupt number is stored in configuration register 60
(PCI_INTERRUPT_LINE), which is one byte wide. This allows for as many as
256 interrupt lines, but the actual limit depends on the CPU being used. The driver
doesn't need to bother checking the interrupt number, as the value found in
PCI_INTERRUPT_LINE is guaranteed to be the right one.

If the device doesn't support interrupts, register 61 (PCI_INTERRUPT_PIN) is O;
otherwise, it's non-zero. However, since the driver knows if its device is interrupt
driven or not, it doesn't usually need to read PCI_INTERRUPT_PIN.

Thus, PCl-specific code for dealing with interrupts just needs to read the configu
ration byte to obtain the interrupt number, as shown in the code below. Other
wise, the information in Chapter 9 applies.

result= pcibios_read_config_byte(bus, £net, PCI_INTERRUPT_LINE,
&my_irq);

if (result) { /* deal with error*/ }

The rest of this section provides additional information for the curious reader, but
isn't needed for writing drivers.

A PCI connector has four interrupt pins, and peripheral boards can use any or all
of them. Each pin is individually routed to the motherboard's interrupt controller,
so interrupts can be shared without any electrical problem. The interrupt controller
i~ then responsible for mapping the interrupt wires (pins) to the processor's hard
ware; this platform-dependent operation is left to the controller in order to achieve
platform independence in the bus itself.

The read-only configuration register located at PCI_INTERRUPT_PIN is used to
tell the computer which single pin is actually used. It's worth remembering that
each device board can host up to 8 devices; each device uses a single interrupt
pin and reports it in its own configuration register. Different devices on the same
device board can use different interrupt pins or share the same one.

The PCI_INTERRUPT_LINE register, on the other hand, is read/write. When the
computer is booted, the firmware scans its PCI devices and sets the register for
each device according to how the interrupt pin is routed for its PCI slot. The value
is assigned by the firmware because only the firmware knows how the mother
board routes the different interrupt pins to the processor. For the device driver,
however, the PCI_INTERRUPT_LINE register is read-only.

355

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 356

Chapter 15: Overview of Peripheral Buses

A Look Back: ISA
The ISA bus is quite old in design and is a notoriously poor performer, but it still
holds a good part of the market for extension devices. If speed is not important,
and you want to support old motherboards, an ISA implementation is preferable to
PCI. An additional advantage of this old standard is that if you are an electronic
hobbyist, you can easily build your own devices.

On the other hand, a great disadvantage of ISA is that it's tightly bound to the PC
architecture; the interface bus has all the limitations of the 80286 processor and is
causing endless pain to system programmers. The other great problem with the
ISA design (inherited from the original IBM PC) is the lack of geographical
addressing, which has led to endless problems and lengthy unplug-rejumper-plug
test cycles to add new devices. It's interesting to note that even the oldest Apple II
computers were already exploiting geographical addressing, and they featured
jumperless expansion boards.

Hardware Resources
An ISA device can be equipped with 1/0 ports, memory areas, and interrupt lines.

Even though the x86 processors support 64 kilobytes of 1/0 port memory (i.e., the
processor asserts 16 address lines), some old PC hardware decodes only the low
est ten address lines. This limits the usable address space to 1024 ports, because
any address in the range 1KB-64KB will be mistaken for a low address by any
device that decodes only the low address lines. Some peripherals circumvent this
limitation by mapping only one port into the low kilobyte and using the high
address lines to select between different device registers. For example, a device
mapped at 0x3 4 0 can safely use port 0x7 4 0, 0xB4 0, and so on.

If the availability of 1/0 ports is limited, memory access is still worse. An ISA
device can use only the memory range between 640KB and lM and between
15MB and 16MB. The 640KB--1MB range is used by the PC BIOS, by VGA
compatible video boards, and by various other devices, leaving little space avail
able for new devices. Memory at 15M, on the other hand, is not directly supported
by Linux; this issue is addressed in "Accessing Memory on Device Boards," in
Chapter 8.

The third resource available to ISA device boards is interrupt lines. A limited num
ber of interrupt lines are routed to the ISA bus, and they are shared by all the
interface boards. As a result, if devices aren't properly configured, they can find
themselves using the same interrupt lines.

356

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 357

A Look Back: ISA

Although the original ISA specification doesn't allow interrupt sharing across
devices, most device boards allow it.• Interrupt sharing at the software level is
described in "Interrupt Sharing," in Chapter 9.

ISA Programming
As far as programming is concerned, there's nothing in the kernel or in the BIOS
to make using ISA devices easier, except that the Linux kernel offers limited help
by maintaining the VO port and IRQ registries, described in "Using Resources"
(Chapter 2) and "Installing an Interrupt Handler" (Chapter 9).

The programming techniques shown throughout the first part of this book apply to
ISA devices; the driver can probe for 1/0 ports, and the interrupt line must be
autodetected with one of the techniques shown in "Autodetecting the IRQ Num
ber," in Chapter 9.

The "Plug and Play" Specification
Some new ISA device boards follow peculiar design rules and require a special ini
tialization sequence intended to simplify_ installation and configuration of add-on
interface boards. The specification for the design of these boards is called "Plug
and Play'' (PnP) and consists of a cumbersome rule-set for building and configur
ing jumperless ISA devices. PnP devices implement relocatable I/0 regions; the
PC's BIOS is responsible for the relocation-reminiscent of PCI.

In short, the goal of PnP is to obtain the same flexibility found in PCI devices
without changing the underlying electrical interface (the ISA bus). To this end, the
specs define a set of device-independent configuration registers and a way to geo
graphically address the interface boards, even though the physical bus doesn't
carry per-board (geographical) wiring-every ISA signal line connects to every
available slot.

Geographical addressing works by assigning a small integer, called the "Card
Select Number" (CSN), to each PnP peripheral in the computer. Each PnP device
features a unique serial identifier, 64 bits wide, which is hardwired into the periph
eral board. CSN assignment uses the unique serial number to identify the PnP
devices. But the CSNs can be assigned safely only at boot time, which requires the
BIOS to be PnP-aware. For this reason, old computers can't support PnP without a
configuration diskette.

Interface boards following the PnP specs are complicated at the hardware level.
They are much more elaborate than PCI boards and require complex software. It's

* The problem with interrupt sharing is a maner of electrical engineering; if a device drives
the signal line inactive-by applying a low-impedance voltage level-the interrupt can't be
shared. If, on the other hand, the device uses a pull-up resistor to the inactive logic level,
then sharing is possible. Most ISA interface boards use the pull-up approach.

357

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 358

Chapter 15: Overview of Peripheral Buses

not unusual to have difficulty installing these devices, and even if the installation
goes well, you still face the performance constraints and the limited 1/0 space of
the ISA bus. It's much better in my opinion to install PCI devices whenever possi
ble and enjoy the new technology instead.

If you are interested in the PnP configuration software, you can browse
drivers/net/3c509.c, whose probing function deals with PnP devices. Linux 2.1.33
added some initial support for PnP as well, in the directory drivers/pnp.

Other PC Buses
PCI and ISA are the most commonly used peripheral interfaces in the PC world,
but they aren't the only ones. Here's a summary of the features of other buses
found in the PC market.

MCA
"Micro Channel Architecture" (MCA) is an IBM standard used in PS/2 computers
and some laptops. The main problem with Micro Channel is the lack of documen
tation, which has resulted in a lack of Linux support for MCA. As of 2.1.15, how
ever, MCA patches that had been floating around have been included in the
official kernel; newer kernels can therefore run on PS/2 computers.

At the hardware level, Micro Channel has more features than ISA. It supports mul
timaster OMA, 32-bit address and data lines, shared interrupt lines, and geographi
cal addressing to access per-board configuration registers. Such registers are called
"Programmable Option Select," or POS, but they don't have all the features of the
PCI registers. Linux support for Micro Channel includes functions that are exported
to modules.

A device driver can read the integer value MCA_bus to see if it is running on a
Micro Channel computer. MCA_bus is non-zero only if the kernel is running in an
MCA unit. If the symbol is a preprocessor macro, the macro
MCA_bus __ is_a_macro is defined as well. If MCA_bus __ is_a_macro is
undefined, then MCA_bus is an integer variable exported to modularized code. As
a matter of fact, MCA_bus is still a macro hardwired to O for every platform except
the PC-the Linux x86 port changed the macro to a variable in 2.1.15. Both
MCA_BUS and MCA_bus __ is_a_macro are defined in <asm/processor. h>.

EISA
The Extended ISA (EISA) bus is a 32-bit extension to ISA, with a compatible inter
face connector; ISA device boards can be plugged into an EISA connector. The
additional wires are routed under the ISA contacts.

358

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 359

Sbus

Like PCI and MCA, the EISA bus is designed to host jumperless devices, and it has
the same features as MCA: 32-bit address and data lines, multimaster DMA, and
shared interrupt lines. EISA devices are configured by software, but they don't
need any particular operating system support. EISA drivers already exist in the
Linux kernel for Ethernet devices and SCSI controllers.

An EISA driver checks the value EISA_bus to determine if the host computer car
ries an EISA bus. Like MCA_bus, EISA_bus is either a macro or a variable,
depending on whether EISA_bus __ is_a_macro is defined. Both symbols are
defined in <asm/processor .h>.

As far as the driver is concerned, there is no special support for EISA in the kernel,
and the programmer must deal with ISA extensions by himself. The driver uses
standard EISA 1/0 operations to access the EISA registers. The drivers that are
already in the kernel can be used as sample code.

VLB
Another extension to ISA is the "VESA Local Bus" interface bus, which extends the
ISA connectors by adding a third lengthwise slot. This extra slot can be used "stan
dalone" by VLB devices; since it duplicates all important signals from the ISA con
nectors, devices can be built that plug only into the VLB socket without using the
ISA sockets. Standalone VLB peripherals are rare, because most devices need to
reach the back panel so their external connectors are available.

The VESA bus is much more limited in its capabilities than the EISA, MCA, and PCI
buses and is disappearing from the market. No special kernel support exists for
VLB. Both the "Lance" Ethernet driver and the IDE disk driver in Linux 2.0 can
deal with VLB versions of their devices.

Sbus
While most Alpha computers are equipped with a PCI or ISA interface bus, most
Spare-based workstations use Sbus to connect their peripherals.

Sbus is quite an advanced design, although it has been around for a long time. It
is meant to be processor-independent and is optimized for 1/0 peripheral boards.
In other words, you can't plug additional RAM into Sbus slots. This optimization is
meant to simplify the design of both hardware devices and system software, at the
expense of some additional complexity in the motherboard.

This 1/0 bias of the bus results in peripherals using virtual addresses to transfer
data, thus bypassing the need to allocate a contiguous buffer. The motherboard is
responsible for decoding the virtual addresses and mapping them to physical
addresses. This requires the attachment of some MMU (Memory Management Unit)

359

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 360

Chapter 15: Overview of Peripheral Buses

capability to the Sbus, and the responsible circuitry is called "IOMMU." Another
feature of this bus is that device boards are geographically addressed, so there's no
need to implement an address decoder in every peripheral or to deal with address
conflicts.

Sbus peripherals use the Forth language in their PROMs to initialize themselves.
Forth was chosen because the interpreter is lightweight and therefore can be easily
implemented in the firmware of any computer system. In addition, the Sbus speci
fication outlines the boot process, so that compliant 1/0 devices fit easily into the
system and are recognized at system boot.

As far as Linux is concerned, there's no special support for Sbus devices exported
to modules in kernels up to 2.0. Version 2.1.8 added specific support for Sbus, and
the interested reader is encouraged to look in recent kernels.

Quick Reference
This section, as usual, summarizes the symbols introduced in the chapter.

#include <linux/config.h>
CONFIG_PCI

This macro should be used to conditionally compile PCI-related code. When a
PCI module is loaded to a non-PCI kernel, insmod complains about several
symbols being unresolved.

#include <linux/pci.h>
This header includes symbolic names for the PCI registers and several vendor
and device/D values.

#include <linux/bios32.h>
All the pcibios_ functions listed below are prototyped in this header.

int pcibios_present(void);
This function returns a boolean value that tell whether the computer we're
running on has PCI capabilities or not.

int pcibios_find_device (unsigned short vendor,
unsigned short id,
unsigned short index,
unsigned char *bus,
unsigned char *function);

int pcibios_find_class (unsigned int class_code,
unsigned short index,
unsigned char *bus,
unsigned char *function);

360

These functions are used to query the PCI firmware about the availability of
devices featuring a particular signature or belonging to a particular class. The
return value is an error indication, and in case of success, bus and function

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 361

Quick Reference

are used to store the position of the device. index must be passed as O the
first time and incremented each time a new device is looked for.

PCIBIOS_SUCCESSFUL
PCIBIOS_DEVICE_NOT_FOUND
char *pcibios_strerror(int error);

These macros and a few more represent the integer return value of pcibios
functions. DEVICE_NOT_FOUND is usually considered a success value, as the
query succeeded by finding no device. The pcibios_strerror function can be
used to convert every integer return value into a string.

int pcibios_read_config_byte (unsigned
unsigned
unsigned
unsigned

char
char
char
char

bus,
function,
where,
*ptr);

int pcibios_read_config_word bus, (unsigned char
unsigned char function,
unsigned char where,
unsigned short *ptr);

int pcibios_read_config_dword (unsigned char bus,
unsigned char function,
unsigned char where,
unsigned int *ptr);

int pcibios_write_config_byte (unsigned char bus,
unsigned char function,
unsigned char where,
unsigned char val);

int pcibios_write_config_word (unsigned char bus,
unsigned char function,
unsigned char where,
unsigned short val);

int pcibios_write_config_dword (unsigned char bus,
unsigned char function,
unsigned char where,
unsigned int val);

These functions are used to read or write a PCI configuration register. While
the Linux kernel takes care of byte ordering, the programmer must be careful
about byte ordering when assembling multi-byte values from individual bytes.
The PCI bus is little-endian.

361

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 362

CHAPTER SIXTEEN

PHYSICAL LAYOUT
OF THE KERNEL
SOURCE

So far, we've talked about the Linux kernel from the perspective of writing
device drivers. Once you begin playing with the kernel, however, you may
find that you want to "understand it all." In fact, you may find yourself pass

ing whole clays navigating through the source code and grepping your way
through the source tree to uncover the relationships among the different parts of
the kernel.

This kind of "heavy grepping" is one of the tasks my home computer has been set
up to specialize in, and it is an efficient way to retrieve information from the
source code. However, acquiring a little knowledge-base before sitting down in
front of your preferred shell prompt can be helpful. This chapter presents a quick
overview of the Linux kernel source files, based on version 2.0.x. The file layout
hasn't changed much from version to version, although I can't guarantee tl1at it
won't change in the futu re. So the following information should be usefu l, even if
not authoritative, for browsing other versions of the kernel.

In this chapter, eve1y pathname is given relative to the source root (usually
/ usr/src/linux), while filenames with no directory component are assumed to
reside in the "current" d irectory-the one being discussed. Header files (when
named with angle brackets- < and >) are given relative to the i11cl11de directory
o f the source tree. I won't intro duce the Documentation directory, as its role

should be clear.

Booting the Kernel
The usual way to look at a program is to start where execution begins. As far as
Linux is concerned, it's hard to te ll where execution begins - it depends on how
you define "beginning."

362

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 363

Booting the Kernel

The architecture-independent starting point is start_kernel, in initlmain.c. This
function is invoked from architecture-specific code, to which it never returns. It is
in charge of spinning the wheel and can thus be considered the "mother of all
functions," the first breath in the computer's life. Before start_kernel, there was the
chaos.

By the time start_kernel is invoked, the processor has been initialized, protected
mode (if any) has been activated, the processor is executing at the highest priority
(what is sometimes called "supervisor mode"), and interrupts are disabled. The
start_kernel function is in charge of initializing all the kernel data structures. It
does this by calling external functions to perform subtasks, since each setup func
tion is defined in the appropriate kernel subsystem. start_kernel also calls
parse_options (defined in the same init/main.c file) to decode the command line
passed by the user or program that booted the system.

The command line (along with memory _start and memory _end) is retrieved
from the computer memory by setup_arch, which, as the name suggests, is archi
tecture-specific code.

The code in init/main.c consists mostly of #ifdefs. This happens because initial
ization takes place in steps, and many of the steps can be run or skipped, depend
ing on the compile-time configuration of the kernel. Command-line parsing also
depends heavily on conditionals, as many arguments are meaningful only if a par
ticular driver is present in the kernel being compiled.

Initialization functions called by start_kernel come in two flavors. Some of the
functions take no arguments and return void, while the others take two
unsigned long arguments and return another unsigned long value. The
arguments are the current values of memory _start and memory _end, the
bounds of the not-yet-allocated physical memory; the return value is the new
memory_start (as you already know, the kernel refers to memory addresses as
unsigned longs). This technique allows subsystems to allocate a persistent (and
contiguous) memory area at the beginning of physical memory, as outlined in
"Playing Dirty" in Chapter 7, Getting Hold of Memory. The big disadvantage of this
allocation technique is that it can only happen at boot time and is thus not avail
able to modules that need a huge memory region suitable for DMA.

After initialization is complete, start_kernel prints the banner string, which includes
the Linux version number and compile time, and then forks an ini t process by
calling kernel_thread.

The start_kernel function then continues as task O (the so-called "idle" task) and
calls cpu_idle, which in turn is an endless loop that calls idle. Things work slightly
differently at this point for Symmetric Multi-Processor machines, but I won't
describe the differences. The exact behavior of the idle function is architecture
dependent, and a few greps in the sources will take you to the location where you
can study its functionality.

363

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 364

Chapter 16: Physical Layout of tbe Kernel Source

Before Booting
In the previous section, I treated start_kernel as the first kernel function. However,
you might be interested in what happens be/ ore that point.

The code that runs before start_kernel is low-level and includes assembly code, so
you might not be interested in the details. I'll try nonetheless to introduce what
happens in the computer after the firmware (called BIOS in the PC world) gives
control to Linux.

If you aren't interested in digging into this low-level code, you can skip to "The
Init Process." The following section provides some hints about the Intel, Alpha,
and Spare booting code, as these are the only systems I have access to. (If some
one would like to donate the hardware, I'll cover more platforms in the next
edition.)

Setting Up the X86 Processors
The personal computer is based on an old design and backward compatibility has
always been a high priority. Thus, the PC firmware boots the operating system in
an old-fashioned way. Once the boot device has been selected, its first sector is
loaded into memory at address 0x7C00 and given control.

The freshly powered-up processor lives in real mode (i.e., it's like an 8086) and
can only address the first 640KB of physical RAM, some of which is already occu
pied by data tables managed by the firmware. Since the kernel is larger than this,
the Linux developers had to find a non-trivial way to load the kernel image into
memory. The result was the zlmage file, which is a compressed kernel image that
fits (hopefully) into low memory and can unzip itself to high memory after enter
ing protected mode.

So the boot sector finds itself facing five hundred bytes of code and half a
megabyte or so of free memory. What exactly the boot code does depends on
how the system is being booted. The boot sector can be either the first kernel sec
tor (if you boot the zlmage file directly from a floppy) or lilo. If Linux is booted
via load/in, the boot sector is out of the game, because the system has already
been booted when load/in runs.

Booting a bare-bones zlmage kernel

If the system being booted is the kernel image dumped on floppy, the code that
executes as the boot sector is archli386/bootlbootsect.S (a real-mode assembly
source). It moves itself to address 0x90000 and loads a few more sectors from the
bootable device, placing them just after its own code (i.e., at 0x90200). The rest of
the kernel image is then loaded at address 0xlO000 (64KB: after the firmware's
data space).

364

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 365

Before Booting

The code at 0x90200 is the so-called "setup" code (archli386/boot/setup.S and
archli386/bootlvideo.S), which takes care of various hardware initializations, as
well as a preliminary detection of the video board, in order to be able to switch to
a different text-mode resolution. These tasks are performed in real mode (or in
VM86 mode when using load/in) and therefore can use the BIOS calls and avoid
dealing with hardware-specific details.

setup.S then moves the entire kernel from 0xlO000 (64KB) to 0xl000 (4KB); this
way only one page is wasted before the kernel code-but not even this is really
wasted; it has its own role to play in the system. This back-and-forth copying of
code is necessary to get rid of the memory layout enforced by the BIOS, while not
overwriting important data. Finally, setup.S goes into protected mode and jumps to
0xlO00.

archli386/boot/compressedlhead.S (which is written in gas, since we are already in
protected mode) sets up the stack. It then calls decompress_kernel, which places
the uncompressed code at address 0xlO0000 (lmeg) and jumps to it.

archli386/kerneVhead.S is the head of the uncompressed kernel; it establishes the
final processor setup (all the register mangling related to hardware paging) and
calls start_kernel. And that's all that's needed-it's done.

Booting a bare-bones bzlmage kernel

As more and more drivers have been developed for the Linux kernel, a full
featured compressed image no longer fits into low memory. This happens, for
example, with the installation kernels, which are usually stuffed with drivers in
order to be able to work with different configurations. Therefore, an alternative
loading mechanism has been devised. The bzlmage file is a "big" zlmage, which
can be loaded even if it doesn't fit into low memory.

There are several ways to load the bzlmage depending on the boot loader used.
The kernel takes care of each one, and now I'm going to describe how booting
works from the raw floppy disk.

The boot sector of a bzlmage kernel can't simply load all of the compressed data
into low memory, so it has to cheat (as most real-mode x86 programs do). If the
image being loaded is big, the boot sector loads the "setup" sectors as usual, but a
small "helper" routine is called at each iteration of the main loading loop. The
helper routine is defined in setup.S since the boot sector is too small to host it.
Such a routine uses a BIOS call to move data from low to high memory, moving
64KB at a time, and it resets the destination address used by the boot sector for
the next data transfer from disk. Thus, the normal loading routine in bootsect.S
doesn't run! out of low memory.

I

365

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 366

Chapter 16: Physical Layout of the Kernel Source

After the kernel has been loaded, setup.S is invoked as usual. It does nothing spe
cial except change the destination address of the last jump instruction. Since we
are loading a big image, the processor jumps to 0xl00000 instead of 0xlO00, by
using a special machine instruction that allows the 386 to use 32-bit offsets in real
mode segments.

Decompression of the kernel works as usual, but the output can't be placed at
0xlO0000 (lmeg), because the compressed image is already there. Uncompressed
data is written into low memory until that is exhausted; it's then written past the
compressed image. The two uncompressed pieces are then reassembled at
0xlO0000 by performing other memory moves. But the copying routine also lives
in high memory, so it first copies itself to low memory to avoid being overwritten;
then it moves the whole image to 0xlO0000.

At this point, the game is over. kerneVbead.S doesn't notice the extra work that
took place, and everything proceeds as before.

Using lilo

lilo, the Linux Loader, lives in the boot sector-either the master boot sector or
the first sector of a disk partition. It uses BIOS calls to load the kernel from a
filesystem.

This program faces the same problem as the kernel image: only half a kilobyte of
code is loaded into memory when the machine boots, and it's impossible to
decode a filesystem structure in a few dozen instructions. lilo addresses the prob
lem by building a map of disk blocks at installation time. It uses that map to
instruct the BIOS to retrieve each kernel block from the proper place. This tech
nique is efficient, but you have to reinstall lilo after you replace or overwrite a ker
nel image-you have to invoke the lilo command in order to reinstall the boot
loader with a new table of kernel blocks.

Actually, lilo extends the loading mechanism, in that it allows the user to choose at
boot time which image to load. The choice is made from an installation-defined
list of images. lilo can also boot another operating system. It does this by replacing
its own boot sector with the boot sector it loads from a different partition.

The biggest benefit of lilo over a barebones boot (in addition to being able to boot
directly from the hard drive) is that it allows the user to pass a command line to
the kernel. The command line can be specified in the lilo configuration file or
interactively at boot time. lilo puts this command line into the second half of the
zero-page (the one we kept free before bootlhead.S). This page is retrieved later
by setup_arch, which is defined in arch/i386/kerneVsetup.c.

Recent versions of lilo (version 18 and newer) can load a bzlmage, while older
distributions couldn't. The newer versions can load data into high memory using
the BIOS call, as bootsect.S does.

366

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 367

Before Booting

When lilo is done loading, it jumps to setup.S, and things proceed as we've seen
before.

Using loadlin

load/in is used to boot Linux off a real-mode operating system. It is similar to /i/o
in that it loads data, passes a command line, and jumps to setup.S. But it has the
advantage that it can load a kernel from a specific filename in a FAT partition,
without needing a block map. This makes it less volatile. If you want to load a
bzlmage, you'll need version 1.6 or newer of load/in: It's interesting to note that
load/in may need to play dirty games to be able to load all of the kernel without
trashing the host operating system. Only after all the kernel has been loaded can
load/in reassemble it at the proper address and invoke its entry point.

Other boaters

There are other programs that can boot a Linux kernel. Two of them are Ether
boot and syslinu.x, but there are many more. I won't describe them, though,
because they are all similar to what I have already described, as far as the kernel is
concerned.

Note however that booting a Linux kernel isn't as easy as I've made it seem. Many
checks are performed, and version numbers appear in particular places in order to
catch any user error and reply in a friendly way. This means that if there is a prob
lem, the system can print a message before it hangs. It's hard to completely avoid
hanging on errors within an execution environment as limited as the x86 real
mode, and printing a message is better than nothing.

Setting Up Alpha Processors
It's easier to bring an Alpha to the point of being able to run start_kernel than it is
to boot an Intel processor, because the Alpha has no real-mode or memory limita
tions to fight. Also, Alpha workstations are usually equipped with better firmware
than the PC and can load a whole file from a filesystem. l won't discuss the actual
steps involved in loading a file, because the code isn't distributed with Linux and
thus you can't examine it-nor can I, to be able to talk about it.

The milo (Mini Loader) program is the usual choice for booting. milo is smarter
than the firmware in that it knows about Linux and its filesystem, but dumber than
the kernel because it can't run processes. milo is executed by the firmware off a
FAT partition and can load the kernel off an ext2 or ISO 9660 block device. Like
lilo and load/in, milo can also pass a command line to the kernel. After Linux has
been loaded into memory at the right virtual address, milo jumps to the kernel and
vanishes.

* You'll need 1.6a or newer co load 2.1.22 or newer kernels.

367

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 368

Chapter 16: Physical Layout of the Kernel Source

mi/o relies on the kernel sources for some of its features, because it needs to
access the devices and understand the filesystem layout. Being equipped with
drivers and filesystem types, it can retrieve the kernel image by pathname from a
hard disk or from CD-ROM. The idea behind its design is similar to that of load/in,
but mi/o uses code from the Linux kernel instead of being rooted in another oper
ating environment.

mi/o is not always available for booting Linux on the Alpha. If your system has
SRM firmware, you can't install milo. Instead, you can use the raw loader from
arch/alpha/boot. This loader is a simple program that can read a sequential area
off the hard disk or floppy drive, the same task performed by the boot sector that
heads zlmage on the PC. Use of the raw loader forces the kernel image to be
copied to a contiguous area of the disk, outside of any filesystem.

Regardless of how the system is loaded, control is passed to arch/alpha/ ker
neVhead.S, but "there isn't much left for us to do," Linus says. The source just sets
up a few pointers and jumps to start_kernel.

Setting Up Spare Processors
Spare computers boot Linux using a program called silo. It's named after /i/o and
milo, but with an "s" for Spare. Booting a Spare is easier than booting an Alpha;
the firmware can access the devices, and silo just needs to access the Linux filesys
tem and interact with the user. To this end, silo is linked to /ibext2, a library that
supports file handling over an unmounted partition.

An alternative to using silo is to boot the computer from a floppy or from the net
work. The firmware can load a kernel from an Ethernet using RARP (Reverse ARP)
and the tftp protocol. In fact, I have never used the floppy to boot my own
workstation because the Spare distribution of Linux allows the system to be
installed by booting over the network.

There is really nothing special required for the Spare. There's no real mode and no
memory to be copied. Once the kernel has been loaded into RAM, it begins exe
cuting.

The /nit Process
The thread created by start_kerne/ forks out bdflush (whose code appears in
fs/buffer.c) and kswapd (defined in mm/vmscan.c), which are therefore assigned
process ids 2 and 3. The init thread (pid 1) then performs some further initializa
tion that couldn't be accomplished before; that is, it runs functions related to SMP
and, if needed, the ini trd booting technique, in the form of another kernel
thread. After ini trd is over, the ini t thread activates the "pseudo-root" of the
UMSDOS filesystem.

368

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 369

The kernel Directory

The real role of init, after it's done with initialization, is going to user space and
executing a program (thus becoming a process). The three stdio channels are
thus connected to the first virtual console, and the kernel tries to execute init from
/etc. If that fails, it looks in /bin and then /shin (where init lives in any recent dis
tribution). If init fails to run from any of the three directories, the process tries to
execute /etc/re, and if that also fails, it loops, executing /bin/sh. In most cases, the
function succeeds in running init; the other options are there to allow system
recovery in case init can't be executed.

If the kernel command line specifies a command to execute, using the
init=some_program directive, process 1 executes the specified command
instead of calling ini t.

Whatever the system setup, the init process ends up executing in user space, and
any further kernel operation is in response to system calls coming from user
programs.

The kernel Directory
Most of the critical kernel functions are implemented in this directory. The most
important of the source files here is sched.c, which deserves special treatment.

sched.c
As the source itself states, this is "the main kernel file." It consists of the scheduler
and related operations, such as putting processes to sleep and waking them up, as
well as management of the kernel timers (see "Kernel Timers" in Chapter 6, Flow
of Time), the interval timers (which are related to accounting and profiling), and
the predefined task queues (see "Predefined Task Queues" in Chapter 6).

If you are interested in the real-time policies of the Linux scheduler, you'll find the
low-level information in the schedule function and its relatives. One such relative
is goodness, which assigns preference values to processes, to help the scheduler
choose the next process to run.

The functions (and system calls) related to scheduler control are also defined in
this file. This includes the code for setting and retrieving scheduling policies and
priorities. The nice system call is also found in this source file for every architec
ture except the Alpha.

In addition, the short system calls to get and set user and group ids are defined in
sched.c (except on the Alpha), as well as the alarm call.*

* This call is no longer used by current versions of libc, which implement the function by
means of timers.

369

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 370

Chapter 16: Physical Layout of the Kernel Source

Additional goodies found in sched.c include the show_tasks and show_state func
tions, which implement two of the "magic" keys described in "System Hangs," in
Chapter 4, Debugging Techniques.

Process Control
Most of the rest of the directory is in charge of processes. The fork and exit system
calls are implemented in two source files named after the calls, and signal control
is implemented in signal.c. Most of the signal-handling calls are implemented in a
different way for the Alpha, to keep the Alpha port binary-compatible with Digital
Unix.

The implementation of fork includes the code for the clone system call, and fork.c
shows how the clone flags are used. It should be noted that sys_/ ork is not
defined in fork.c, as the Spare implementation is slightly different from other ver
sions; most sysJork implementations, however, just call doJork, which is defined
in fork.c. Providing a default implementation (usually called do_fnct), while
declaring the actual system call (sys_fnct) within each port, is a technique often
used in Linux, and it will probably be extended to other system calls as new ports
are made available.

exit.c implements sys_exit and the various wait functions, as well as the actual
sending of signals. (signal.c is devoted to signal handling, not to sending.)

Modularization
The files module.c and ksyms.c contain the code that implements the mechanisms
described in Chapter 2, Building and Running Modules. module.c holds the sys
tem calls used by insmod and related programs, while ksyms.c declares the public
symbols of the kernel that do not belong to a specific subsystem. Other public
symbols are declared by the initialization function of specific kernel subsystems,
using register_symtab. For example, fslprodprocfs_syms.c declares the /proc inter
face for registering new files.

Other Operations
The remaining source files in the directory provide the software interface for some
low-level operations. time.c reads and writes kernel time values from user
programs, resource.c implements the request and free mechanisms for 1/0 ports,
and dma.c does the same for DMA channels. softirq.c deals with bottom halves
(see "Bottom Halves" in Chapter 9, Interrupt Handling) and itimer.c defines the
system calls to set and get interval timer values.

To see how kernel messaging works, you can look at pn·ntk.c, which shows the
details of several concepts that were introduced in Chapter 4 (i.e., it contains the
code for both printk and sys_~yslog).

370

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 371

The mm Directory

exec_domain.c includes code needed to achieve binary compatibility with other
flavors of Unix and info.c defines sys_info. panic.c does what its name implies; it
also supports automatic reboot of the system when a panic occurs. The reboot
takes place after a delay that can be set in /prodsyslkerneVpanic. The delay is
implemented with repeated calls to udelay (10 0 0) , because after a panic, the
scheduler no longer runs, and udelay can be used for delays no longer than one
millisecond (see the section "Long Delays" in Chapter 6).

sys.c implements several system-configuration and permission-handling functions,
such as uname, setsid, and similar calls. sysctl.c contains the implementation of the
sysctl call and the entry points for registering and deregistering sysctl tables
(lists of entry points for system control). This file also provides the ability to access
/prodsys files, according to the registered tables.

The mm Directory
The files in the mm directory implement the architecture-independent portion of
memory management for the Linux kernel. This directory contains the functions
for paging, allocation and deallocation of memory, and the various techniques that
allow user processes to map memory ranges to their address space.

Paging and Swapping
Surprisingly, swap.c doesn't actually implement the swapping algorithm. Instead, it
deals with the kernel command-line options swap= and buff=. These options
can also be tuned via the sysctl system call or by writing to the /prodsys/vm files.

swap_state.c is in charge of maintaining the swap cache and is the most difficult
file in this directory; I won't go into detail about it, as it's hard to understand its
design, unless a good knowledge of the relevant data structures and policies has
been developed in advance.

swapfile.c implements the management of swap files and devices. The swapon and
swapoff system calls are defined here, the latter being very difficult code. For a
comparison, several Unix systems don't implement swapoff, and can't stop swap
ping to a device or file without rebooting. swapfile.c also declares get_swap_page,
which retrieves a free page from the swap pool.

vmscan.c is the code that implements paging policies. The kswapd daemon is
defined in this file, as well as all the functions that scan memory and the running
processes looking for pages to swap out.

Finally, page_io.c implements the low-level data transfer to and from swap space.
The file manages the locking needed to assure system coherence and provides
both synchronous and asynchronous 1/0. It also deals with problems related to

371

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 372

Chapter 16: Physical Layout of the Kernel Source

the different block sizes used by different devices. (In the early versions of Linux,
it was impossible to swap to a FAT partition, because 512-byte blocks were not
supported.)

Allocation and Deallocation
The memory allocation techniques described in Chapter 7 are all implemented in
the mm directory. Let's start once again with the most frequently used function:
kmalloc.

kmalloc.c implements the allocation and freeing of memory areas. The memory
pool for kmalloc is made up of "buckets," where each bucket is a list of memory
areas of the same size. The primary function of kmalloc.c is to manage the linked
lists for each bucket.

When new pages are needed or pages are freed, the file makes use of functions
defined in page_alloc.c. Pages are retrieved from free memory by
_ _get_free_pages, which is a short function that extracts pages from the free-page
lists. If there's no memory available on the free lists, try_to_free_pages (vmscan.c)
is called.

vmalloc.c implements the vmalloc, vremap, and vfree functions. vmalloc returns
contiguous memory in the kernel virtual address space, while vremap gives a new
virtual address to a specific physical address; it is used mainly to access PCI
buffers in high memory. As its name implies, vfree frees memory.

Other Interfaces
The most important functions of Linux memory management are part of the mem
ory.c file. These functions are generally not accessible through system calls,
because they deal with the hardware paging mechanisms.

Module writers, on the other hand, do use some of these functions. verify_area
and remap_page_range are defined in memory.c. Other interesting functions are
do_wp_page and do_no_page, which implement the kernel's response to minor
and major page faults. The remaining functions in the file deal with page tables
and are extremely low-level.

Memory mapping is the other big task performed by files in the mm directory.
filemap.c is a complex piece of code. It implements memory mapping of regular
files, providing the ability to support shared mappings. Mapped files are supported
by means of special struct vm_operations structures for the mapped pages,
as described in "Virtual Memory Areas" in Chapter 13, Mmap and DMA. This
source also deals with asynchronous read-ahead; comments explain the meaning
of the four read-ahead fields in struct file. The only system call that appears
in this file is sys_msync. The top-level mmap interface to memory mapping (i.e.,

372

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 373

The fs Directory

do_mmap) appears in mmap.c. This file begins by defining the brk system call,
which is used by a process to request that its highest-allowed virtual address be
increased or decreased. The sys_brk code is informative, even if you're not a mas
ter of memory management. The rest of mmap.c is centered on do_mmap and
do_munmap. Memory mapping works, as you might expect, through
f ilp->f_op, though filp can be NULL for do_mmap. This is how brk allocates
new virtual space. It falls back on memory-mapping the zero-page without need
ing special code.

mremap.c includes sys_mremap. It is an easy file to read if you've figured out
mmap.c.

The four system calls related to memory locking and unlocking are defined in
mlock.c, which is a rather simple source. Similarly, mprotect.c is in charge of per
forming sys_mprotect. The files are similar in design, because they both modify the
system flags associated with the process's pages.

The fs Directory
This directory is, in my opinion, the most interesting in the whole source tree. File
handling is a basic activity of any Unix system, and all file-related operations are
implemented in this directory. I won't describe the fs subdirectories here, as each
filesystem type merely maps the VFS layer to a particular information layout. It's
important nonetheless to describe the role of most of the files in the fs directory
because they carry a lot of information.

Exec and Binary Formats
The most important system call in Unix is exec. User programs can call one of six
different incantations of exec, but only one is implemented in the kernel-the rest
are library functions that map to the full-featured implementation, execve.

The exec function uses a table of registered binary formats, to look for the correct
loader in order to load and execute a disk file. The first part of the source defines
the register_binfmt interface. It's interesting to note that the # ! magic key for
script files is handled like a binary format, such as ELF and other formats
(although it was a special case of exec.c in version 1.2). kerneld freaks will also
learn how a new binary format is loaded on demand from reading the source.

Each binary format is described by a data structure that defines three operations:
loading a binary file, loading a library, and dumping core. The structure is defined
in <linux/binfmts. h>. Most of the available formats only support the first
operation (loading a file), but the interface is nonetheless general enough to be
able to support all foreseeable needs for new formats.

373

\

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 374

Chapter 16: Physical Layout of the Kernel Source

devices.c and block_dev.c
We've already used code from devices.c, since it is in charge of device registration
and unregistration. It is also responsible for the default device open method, as
well as release for block devices. The calls retrieve the correct file operations for
the device being opened or closed and dispatch execution to the correct method.
Support for the autoloading of modules is implemented in this file. Everything but
opening and closing devices appears in the drivers/• directories, as indicated by
each filp->f_op.

block_dev.c contains the default methods for reading and writing block devices. As
you may remember, a block driver doesn't declare its own 1/0 methods, but only
its request routine. The default read and write implementation in block_dev.c is
buffer-cache-aware, and does everything for you except the actual data transfer.

The Y.FS: Superblocks
Execution of programs and devices make up only part of the fs directory. Most of
the files in fs, and all the files in its subdirectories, are concerned with file-related
system calls. More specifically, they implement the so-called VFS mechanism: the
Virtual File System (or Virtual Filesystem Switch-the interpretation is somewhat
controversial).

Conceptually, the VFS is a layer in the Linux file-handling software. This layer
offers a unified interface to files by exploiting the features offered by the various
filesystem formats. The various techniques for laying out information on a disk are
accessed in a uniform way through the VFS interface. In practice, the VFS reduces
to a few structures that define "operations." Each filesystem type declares the
operations that deal with superblocks, inodes, and files. The file_operations
structure we have been using throughout the book is part of the VFS interface.

The kernel accesses each filesystem by mounting it. One of mount's tasks is
retrieving a so-called "superblock" structure from the disk. The superblock is the
main data structure in a filesystem. It gets its name from the fact that, historically, it
has been the first physical block of a disk. The file super.c includes source code
for the interesting operations related to superblocks: reading and syncing them,
mounting and unmounting filesystems, and mounting the root filesystem at boot
time.

In addition to these interesting (and somewhat complex) operations, super.c also
returns information about filesystems, including the information provided by
/prodmounts and by /prod.filesystems.

register_.filesystem and unregister_.filesystem are the functions used by modular
ized filesystem types; they are also defined in super.c. The file .filesystems.c, then, is
a short table of fl:ifdef statements. Depending on what options were compiled

374

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 375

The fs Directory

into the kernel, the various init functions for the different filesystems are called.
The init function for each filesystem type calls register_filesystem, so no other con
ditional compilation statements are needed.

/nodes and Caching Techniques
The next piece of the VFS interface is the inode. Each inode is identified by a
unique key consisting of the device number and inode number. User programs use
filenames to access nodes in the filesystem, and the kernel is responsible for map
ping the filenames to the unique keys. To achieve better performance, Linux main
tains two caches related to inode lookup, the inode cache and the name cache
(also known as the directory cache). In addition, the kernel takes care of the more
familiar buffer cache.

The inode cache is a hash table used to look up inode structures using the
device/inode number keys. The implementation of the cache, as well as the rou
tines to read and write inodes, lives in inode.c. This file also implements locking
techniques for inode structures to prevent possible deadlocks.

The name cache is a table that associates inode numbers to filenames. The cache
is used to avoid repeated directory lookups when a name is used several times in
a row. The source file dcache.c includes the software mechanisms that manage the
cache. Most system calls and functions that use the name cache are part of
namei.c (for name-inode), including sys_mkdir, sys_symlink, sys_rename, and sim
ilar calls.

The buffer cache is the biggest data cache in the system, and its implementation is
laid down in the huge file called buffer.c.

As far as files are concerned, file_table.c is in charge of allocation and deallocation
of file structures. This includes get_empty_filp, which is called by open, pipe,
and socket.

open.c
Most of the other source files in Js are responsible for file operations-the same
functions that need to be implemented in drivers. The first such file is open.c,
which includes the code for many system calls. It also includes sys_open; its lower
level counterpart, do_open; and sys_close. These system calls are quite straightfor
ward, mapping onto filp->f_op.

open.c includes the system calls that modify the inode: chown and chmod, as well
as their fchown and fchmod counterparts. If you are interested in looking for secu
rity checks and use of the immutable flag, you can browse the source, which can
be understood by almost any Unix programmer. Changing the times in the inode is
supported as well-utime and utimes are defined here.

375

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 376

Chapter 16: Physical Layout of the Kernel Source

chroot, chdir, and fchdir are also found in open.c, together with the other
"change" functions.

The first functions defined in the source are statfs and fstatfs, which are dispatched
to filesystem-specific code using inode->i_sb->s_op->statfs.

The truncate and access calls appear in this file as well. The latter is used to check
the permissions on the file using the real uid and gid of the process, temporarily
disregarding the fsuid and fsgid.

read_write.c and readdir.c
As its name implies, read_write.c contains read and write, but it also includes both
/seek and //seek (one might guess that the number of leading l's grows by one 1
every 10 years). /seek is the standard call that uses off_t (long), while //seek
uses loff_t (long long). The //seek system call maps to the /seek file opera
tion, which is implemented as a superset of /seek proper. It's interesting to note
that version 2.1 of the kernel renamed the method to //seek, to be consistent with
its implementation.

read and write are really simple functions, because the actual data transfer is dis
patched through filp->f_op; read_write.c also contains the code for readv and
writev, which are slightly more elaborate in that multiple chunks of data must be
transferred across the kernel/user boundary.

Linux doesn't allow you to directly read a directory file and returns -EISDIR if
you try. A directory can be read only with the readdir system call, which is filesys
tem-independent, or the newer getdents, which "gets directory entries." Reading a
directory with getdents is faster because one call can return many directory entries,
while readdir returns only one entry at a time. However, getdents is only sup
ported by libc-5.2 and newer libraries.

select.c
The full implementation of select lives in se/ect.c, with the exception of the
select_wait inline function. The select.c code, though interesting, may be difficult
to follow because of the complicated data structures (which were discussed in
"The Underlying Data Structure" in Chapter 5, Enhanced Char Driver Operations).
Nonetheless, select.c is a good starting point for looking at kernel code because it
is quite self-contained; it doesn't rely on other source files except for some minor
details.

Pipes and fifos
The implementation of the pipe and fifo communication channels is quite similar
to that of a char driver. Duplication of code is avoided by using the same file oper
ations for the two channels; only the open method differs. All the functions except

376

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 377

Networktng

fiJo_open and fiJo_init are defined in pipe.c. Since fifos appear as filesystem nodes,
they need to have a set of inode_operations associated with them, in addition
to the file_operations structure. The right structure is defined infiJo.c.

The next interesting thing to note in the implementation of pipes and fifos is that
pipe.c defines two file_operation structures: one for the readable side of the
channel and one for the writable side. This permits skipping of the permission
check in read and write.

Control Functions
The "controlling" system calls for files are implemented in two files named after
the calls: Jcntl.c and ioctl.c. The former file is almost self-contained, because all
the commands defined for Jent/ are predefined. Since some of them are just wrap
pers for dup, the implementation of dup appears in Jcntl.c. In addition, since the
Jent/ call is responsible for asynchronous notification, kill_Jasync is also found
there.

ioctl.c includes the external interface of the ioctl system call. It is a short file that
falls back on the file operations for any unrecognized command it receives.

File Locks
Two kinds of locking interfaces are implemented in Linux, the flock system call
and the Jent/ commands. The latter is POSIX-compliant.

The file locks.c includes code to handle both calls. It also includes optional sup
port for mandatory locks, which is a compile-time option introduced just before
2.0.0 and turned into a mount-time option in 2.1.4.

Minor Files
The ft files also support disk quotas. dquot.c implements the quota mechanism,
while noquot.c contains empty functions; it is compiled in place of dquot.c if quo
tas are not included in the kernel configuration.

Finally, stat.c implements the stat, /stat, and read/ink system calls. Two different
implementations of stat and /stat are defined in 2.0.x for backward compatibility
with old x86 libraries.

Networking
The net directory in the Linux file hierarchy is the repository of the socket abstrac
tion and the network protocols; these features account for a lot of code, as Linux
supports several different network protocols. Each protocol (IP, IPX, and so on)

377

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 378

Chapter 16: Physical Layout of the Kernel Source

lives in its own subdirectory. Unix-domain sockets are treated like another net
work protocol and their implementation can be found in the unix subdirectory.
It's interesting to note that version 2.0 of the kernel includes only version 4 of IP,
while version 2.1 includes fairly complete support for version 6, the upcoming
standard to solve the numbering problems of version 4.

The network implementation in Linux is based on the same file operations that are
used to act on device files. This is natural, as network connections (sockets) are
described by normal file descriptors. A socket is described in the kernel by a
struct socket (<linux/net. h>). The file socket.c is the repository of the
socket file operations. It dispatches the system calls to one of the network proto
cols via the struct proto_ops structure. This structure is defined by each net
work protocol to map system calls to the low-level data handling.

Each of the directories under net (except bridge, core, and ethernet) is devoted to
implementing a network protocol. The bridge directory includes an optimized
implementation of Ethernet bridging according to the IEEE specifications. Files in
core implement generic network features like device handling, firewalls, multicast
ing, and aliases; this includes handling of socket-buffers (core/skbuff.c) and socket
operations independent of the underlying protocol (corelsock.c). Finally, etbernet
contains generic Ethernet functions.

Almost every directory under net hosts a file dealing with system control; informa
tion thus exported can be accessed either by means of the /proc/sys file tree or by
using the sysctl system call. The kernel interface to sysct/ allows dynamic addition
and removal of system-control entry points and is defined in
<linux/sysctl.h>.

/PC and lib Functions
Inter-Process Communication and library functions have two small directories ded
icated to them.

The ipc directory includes a generic file called uti/.c and one source file for each
communication facility: sem.c, shm.c, and msg.c. msg.c is in charge of message
queues and the kerne/d engine, kerneld_send. If IPC is not enabled at compile
time, uti/.c exports empty functions that implement !PC-related system calls by
returning ..:.ENOSYS.

The library functions are like the utilities and variables that you usually use in C
programs: sprint/, vsprintf, the errno integer variable, and the _ctype array
used by the various <linux/ctype .h> macros. The file stn·ng.c contains
portable implementations of the string functions, but they are compiled only if the
architecture-specific code does not include optimized inline functions. If the inline
functions are defined in the header, the implementations in string.care left out of
the game by #ifdef statements.

378

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 379

Drivers

The most "interesting" file in lib is injlate.c, which is the "gunzip" part of gzip,
extracted from gzip itself to allow using a compressed RAM disk at boot time. This
technique is used whenever the needed data wouldn't fit on a floppy unless com-
pressed. ·

Drivers
There is little to say at this point about the Linux drivers directory. The source files
in this directory have been referenced throughout the book; that's why I left them
until last in this walk through the source tree.

Char, Block, and Network Drivers
Although most of the drivers in these directories are specific to a particular hard
ware device, a few of the files play a more general role in the system's setup.

As far as drivers/char is concerned, code that implements the N_TTY line disci
pline is implemented there. N_TTY is the default line discipline for system ttys,
and it is defined in n_tty.c. Another device-independent file in drivers/char is
misc.c, which provides support for "misc" devices. A "misc" device is a simplified
char driver that has a single minor number.

This directory also includes console support for PCs and some other architecture
dependent drivers; it actually contains a miscellaneous assortment of files that
didn't fit elsewhere.

drivers/block is much cleaner. It includes single-file drivers for most block devices
and the full-featured IDE driver, which is split into multiple files. Several files in
this directory provide general-purpose support; genhd.c handles partition tables
and ll_rw_block.c is in charge of the low-level mechanism for data transfer to and
from the physical device. The request structure is the main player in
ll_rw_block.c.

drivers/net contains a long list of drivers for PC network cards, plus a few for other
architectures (e.g., sunlance.c for the interface found on most Spare computers).
Some drivers may be more complicated than it appeared when they were intro
duced in Chapter 14, Network Drivers. The driver ppp.c, for example, declares its
own line discipline.

The general-purpose source files in drivers/net are Space.c and net_init.c. Space.c
consists primarily of a table of available network devices. This table contains a
long list of #ifdef entries that are checked at system boot to detect and initialize
the network devices. net_init.c contains ether_setup, tr_setup, and similar general
purpose functions.

379

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 380

Chapter 16: Physical Layout of tbe Kernel Source

SCSI Drivers
As suggested in Chapter 1, An Introduction to the Linux Kernel, the SCSI drivers in
Linux are not included in the common char and block classes. This happens
because the SCSI interface bus has its own standard. Therefore, by distinguishing
SCSI devices from other drivers, the developers isolated and shared common code.

Most of the files in drlvers/scsi are low-level drivers for specific SCSI controllers.
The general-purpose SCSI implementation is defined in the scsi_ -.c files, with the

· addition of sd.c for disk support, sr.c for CD-ROM support, st.c to support SCSI
tapes, and sg.c for generic SCSI support. This last source file defines general
purpose support for devices that talk the SCSI protocol. Scanners and other
generic devices can be controlled by user-space programs using the /dev/sg
device nodes. ·

Other Subdirectories
Other hardware drivers have their own subdirectories. drivers/cdrom contains
drivers for CD-ROM drives that are neither IDE nor SCSI. These are conventional
block drivers, which have their own major numbers.

drlvers/isdn is (as the name indicates) an ISDN implementation for Linux;
drivers/sound is a collection of sound drivers for the most common PC sound
boards. driverslpci contains a single file, which in turn contains the list of all
known PCI devices (vendor/ID pairs). The actual PCI functions are not defined
here, but rather within architecture-specific directories.

Finally, sbus includes a char subdirectory and has the console code for the Spare
architecture. This directory is quickly growing, as 2.1 development continues.

Architecture Dependencies
Versions 2.0 and later of the Linux kernel are fairly portable across platforms,
which means that most of the code runs on all the supported architectures without
the need to differentiate among them. Everything we have seen in this tour up to
now is completely independent of the hardware platform.

The arch directory tree is a minor part of the Linux kernel that contains the plat
form-specific code. Every system-dependent function is replicated in each arch
subdirectory, so that the structure of all the subdirectories is similar. The most
important of these subdirectories is kernel, which hosts every system-specific func
tion related to the main kernel source directory.

There are two assembly sources that are always found under kernel. bead.S is the
startup code executed at system boot; it sometimes includes some of the

380

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 381

Architecture Dependencies

exception-handling code. The other file is entry.S, which includes the entry points
to kernel space. In particular, every such file contains the sys_call_table for
its own architecture; every architecture has a different table to associate system call
numbers to functions.

Other commonly found subdirectories are lib, which hosts the optimized check
sum routines for network packets and sometimes includes other low-level opera
tions such as string operations; mm, which deals with low-level handling of page
faults (Jau/t.c) and the initialization code called at system boot (init.c); and boot,
which contains the code needed to bring up the system. As you might imagine,
i386/boot is the most complex of the boot subdirectories.

I'm not going to describe the architecture-specific code because it is not very inter
esting to read and is full of assembly language statements. In order to understand
the code, you need to know some of the details of the target architecture. I don't
think that there's much fun in reading architecture-specific functions, in any case,
because they are the dirty part of the system, dealing with a lot of hardware
glitches. It's the rest of the kernel that is interesting.

381

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 382

CHAPTER SEVENTEEN

RECENT
DEVELOPMENTS

The Linux kernel is subject to relentless development, and the developers
feel an urge to improve kernel internals w ithout wonying 100 much about
backward compatibility. This kind o f free development shows up in a m11n

ber of incompatibilities between the device driver interface offered by d ifferent
versions of the kernel. Nonetheless, no incompatibility is introduced at the appli
cation level, with the exception of those few applications whose task requires low
level interaction with kernel features (l ike ps).

The device driver, on the other hand, is d irectly l inked to the kernel image and
must therefore comply w ith any change in the data structures, global variables,
and functions exported by the core system. During development, the internals are
modified as new features arc added or new implementations replace the old ones
because they prove faster o r cleaner. Although the incompatibilities require pro
granm1ers to put in some extra work when writing a module, I see continuous
development as a winning point of the Linux community: strict backward
compatibility eventually proves harmful.

This chapter describes the differences between 2.0.x and 2.1.43, which you can
expect to be similar to the upcoming 2.2 release. Linus introduced the most rele
vant changes in the first few 2.1 versions, so that the kernel could go through sev
eral more 2.1 versions, giving driver writers time to stabilize things before the
development is frozen to release a stable 2.2 version . The following sections
describe how drivers can deal w ith d ifferences between 2.0 and 2.1.43. I've modi
fied all the sample code introduced throughout the book so thal it compiles and
runs with both 2.0 and 2.1.43, as well as most versions in berween.

The new versions of the drivers are available in the v2.1 directo1y in the online
examples at the O'Reilly FTP site. Compatibility between 2.0 and 2.1 is achieved
by means of the header fi le sysdep-2. 1 .b, w hich can be incorporated in your own
modules. I chose not to span compatibility back to 1 .2 to avoid loading down the

382

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 383

Modularization

C code with too many conditionals, as 1.2-2.0 differences are already dealt with in
the previous chapters. As I'm closing this book, I am aware that other small
incompatibilities have been introduced since 2.1.43; I won't comment on them,
though, because I can't guarantee complete support for these recent versions.

Note that in this chapter I won't describe all the novelties introduced by the 2.1
development series. What I'm doing here is porting 2.0 modules to work with both
2.0 and 2.1 kernels. Exploiting 2.1 features would require dropping support for
release 2.0, which doesn't have such features. Version 2.0 remains the main focus
of this book.

In writing sysdep-2.1.h, I've tried to accustom you to the new API, and the macros
I'm introducing are used to make 2.1 code work with 2.0 i~tead of the reverse.

This chapter shows incompatibilies in decreasing order of importance; the most
relevant differences are described first, while minor details are introduced later.

Modularization
Modularization is becoming more and more important in the Linux community,
and the developers decided that a cleaner implementation had to replace the old
one. The header file <linux/module.h> was completely rewritten in 2.1.18,
and a new API was introduced. As you might expect, the new implementation is
easier to exploit than the old one.

In order to load your modules, you'll need the package modutils-2.1.34 or newer
(see Documentation/Changes for details). The package falls back on a compatibil
ity mode when used with older kernels, so you can replace modules-2.0.0 with
the new package even if you often switch between 2.0 and 2.1.

Exporting Symbols
The new interface to symbol tables is far easier than the previous one and relies
on the following macros:

EXPORT_NO_SYMBOLS;
This macro is the equivalent of register_symtab (NULL);. It can appear
either inside or outside a function, because it instructs the assembler without
generating real code. If you want to compile the module under Linux 2.0, the
macro should be used from within init_module.

EXPORT_SYMTAB;
If you intend to export some symbols, the module must define this macro
before including <linux/module. h>.

383

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 384

Chapter 17: Recent Developments

EXPORT_SYMBOL(name);
This macro states that you want to export the symbol name. It must be used
outside of any function.

EXPORT_SYMBOL_NOVERS(name);
Using this macro instead of EXPORT_SYMBOL () forces version information to
be dropped, even when compiling code with version support. This is useful
for avoiding some unnecessary recompilation. For example, the memset func
tion will always work the same way; exporting the symbol without version
information allows the developers to change the implementation (and even
the data types being used) without insmod tagging the incompatibility. It's
very unlikely you'll need this macro in modularized code.

If neither of these macros is used in your source, all non-static symbols are
exported; this is the same behavior that you get in 2.0. If the module is made up
from multiple source files, you can export symbols from any of the sources while
still being able to share any symbol within the module's realm.

As you see, the new way to export symbol tables gets rid of a lot of trouble, but
the novelty introduces a major incompatibility: a module that exports some sym
bols and wants to compile and run with both 2.1 and 2.0 must use conditional
compilation to include both implementations. This is how the export module
(v2.1/misc-modules/export.c) deals with the problem:

i fdef __ USE_OLD_SYMTAB __
static struct symbol_table export_syms = {

#include <linux/symtab_begin.h>
X(export_function),
#include <linux/symtab_end.h>

} ;

#else
EXPORT_SYMBOL(export_function);

#endif

int init_module(void)
{

REGISTER_SYMTAB(&export_syms);
return O;

The code above relies on the following lines of sysdep-2.1.h:

#if LINUX_VERSION_CODE < VERSION_CODE(2,l,18)

384

define __ USE_OLD_SYMTAB __
define EXPORT_NO_SYMBOLS register_symtab(NULL);
define REGISTER_SYMTAB(tab) register_symtab(tab)
#else
define REGISTER_SYMTAB(tab) /*nothing*/
#endif

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 385

Modularization

When using 2.1.18 or newer, REGISTER_SYMTAB expands to nothing, as there's
nothing to do in init_module; using EXPORT_SYMBOL outside of any function is
all that's needed to export the module's symbols.

Declaring Parameters
The new implementation of kernel modules exploits features of the ELF binary for
mats to achieve better flexibility. More specifically, when building ELF object files,
you can declare sections other than "text," "data," and "bss." A "section" is a con
tiguous data area, something similar to the concept of "segment."

As of 2.1, kernel modules must be compiled using the the ELF binary formats. As a
matter of fact, the 2.1 kernel exploits ELF sections (see "Handling Kernel-Space
Faults") and can only be compiled in ELF. So the constraint for modules isn't really
a constraint. Using ELF allows informational fields to be stored in the object file.
The curious reader can use objdump -section-headers to look at section headers
and objdump-section~.modinfo -full-contents to look at module-specific infor
mation. The .modinfo section, actually, is the one used to store information
about the modules, including which values are considered "parameters" and can
be modified at load time.

When compiling with 2.1, a parameter is declared as such by the macro:

MODULE_PARM(variable, type-description);

When you use the macro in your source file, the compiler is intructed to insert a
description string in the object file; such a description states that variable is a
parameter and that its type corresponds to type-description. insmod and
modprobe look in the object file to ensure you are allowed to modify variable
and to check the actual type of the parameter. Type checking is an important fea
ture for preventing unpleasant errors, such as overwriting an integer value with a
string or mistaking long integers for short ones.

In my opinion, the best way to describe the macro is by showing a few lines of
sample code. The code below belongs to an imaginary network card:

int io[4] = {O, };

int irq[4] = {0,};
short verbose;
char *options=NULL;

/* io address and irq: at most 4 cards*/

/* allow extra messaging to debug problems*/
/* textual options*/

MODULE_PARM(io, "1-4i"); /* accept 1 to 4 integers*/
MODULE_PARM(irq,"1-4i"); /* and the same for irq's */
MODULE_PARM(verbose, "h"); /* a short value*/
MODULE_PARM(options, "s"); /*string*/

The type-description string is documented in full detail by the header file
<linux/module. h> and can be found throughout the kernel sources for your
convenience.

385 .

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 386

Chapter 17: Recent Developments

One technique worth showing here is how to parameterize the length of an array
like io above. For instance, suppose the number of peripheral boards supported
by the network driver is represented by a MAX_DEVICES macro instead of the
hard-coded number 4. To this aim, the header <linux/module. h> defines a
macro (__MODULE_STRING) that performs "stringification" of macros using the C
preprocessor. The macro can be used in the following way:

int io[MAX_DEVICES+l]=(0,};
MODULE_PARM(io, "1-" _ _MODULE_STRING(MAX_DEVICES) "i");

In the previous line, the "stringified" value gets concatenated to the other strings
to build the informational string in the object file.

The scull sample module declares its parameters (scull_major and other inte
ger variables) as such using MODULE_PARM. This might be a problem when com
piling with Linux 2.0, where the macro is undefined. The simple fix I chose is to
define MODULE_PARM within sysdep-2.1.h so that it expands to an empty state
ment when compiling against 2.0 headers.

Other informational values can be stored in the . mod info section of the module,
like MODULE_AUTHOR () , but they are currently unused. Refer to
<linux/module. h> for more information.

/proc/modules
The format of /proc/modules changed slightly in 2.1.18, when all the modulariza
tion code was rewritten. While this change doesn't affect source code, you might
be interested in the details, as /proc/modules is often checked during module
development.

The new format is line-oriented like the old one, and each line includes the fol
lowing fields:

Tbe module's name
This field is the same as in Linux 2.0.

Tbe module's size
This is a decimal number reporting the length in bytes (instead of memory
pages).

Tbe usage count for this module

386

The count is reported as -1 if the module doesn't have a usage count. This is
a new feature introduced with the new modularization code; you can write a
module whose removal is controlled by a function instead of a usage count.
The function asserts whether the module can be unloaded or not. The ipv6
module, for example, uses this feature.

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 387

File Operations

Optional flags
The flags are text strings, each of which is enclosed in parentheses, and they
are separated by spaces.

A list of modules that reference this module
The list as a whole is enclosed in brackets, and the individual names in the list
are separated by spaces.

Here is how /prodmodules might appear in a 2.1.43 system:

morgana% cat /proc/modules
ipv6 75164 -1
netlink 3180 0 [ipv6)
floppy 45960 1 (autoclean)
monitor 516 0 (unused)

In this screenshot, ipv6 has no usage count and relies on netlink; the floppy
has been loaded by kerneld, as shown by the "autoclean" flag, and monitor is a
tiny tool of mine that controls some status lights and turns off my computer at sys
tem halt. As you can see by its being "unused," I don't care about its usage count.

File Operations
A few of the file operations have different prototypes in 2.1 than they had in 2.0.
This is mainly due to the upcoming need to handle files whose size can't fit in 32
bits. The differences are handled by the header sysdep-2.1.h, which defines a few
pseudo-types according to the kernel version being used. The only serious innova
tion introduced in the file operations is the poll method, which replaces select with
a completely different implementation.

Protorype Differences
Four file operations feature a new prototype; they are:

long long (*llseek) (struct inode *, struct file* long long, int);
long (*read) (struct inode *, struct file*, char*, unsigned long);
long (*write) (struct inode *, struct file*, canst char*,

unsigned long);
int (*release) (struct inode *, struct file*);

The 2.0 counterparts were:

int (*lseek) (struct inode * struct file*, off_t, int);
int (*read) (struct inode *, struct file*, char*, int);
int (*write) (struct inode *, struct file*, const char* int);
void (*release) (struct inode *, struct file*);

387

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 388

Chapter 17: Recent Developments

The difference, as you see, lies in their return values (which allow for a greater
range), and the count and offset arguments. The header sysdep-2.1.h handles
the differences by defining the following macros:

read_write_t
This macro expands to the type of the count argument and the return value
of read and write.

lseek_t _
This macro expands to the return value's type in I/seek. The change in the
method's name (from /seek to I/seek) is not a problem, as you won't usually
assign the field by name in your file_operations, but will rather declare a
static structure.

lseek_off_t
The offset argument to /seek.

release_t
The return value of the release method; either void or int.

release_return(int return_value);
This macro can be used to return from the release method. Its argument is
used to return an error code: 0 for success and a negative value for failure.
With kernels older than 2.1.31, the macro just expands to return, as the
method returns void.

Using the previous macros, the prototypes of a portable driver are:

lseek_t my_lseek(struct inode *, struct file*, lseek_off_t, int);
read_write_t my_read(struct inode *, struct file*, char*, count_t);
read_write_t my_write(struct inode *, struct file*, canst char*,

count_t);
release_t my_release(struct inode *, struct file*);

The poll Method
Version 2.1.23 introduced the poll system call, which is the System V counterpart
of select (which was introduced in BSD Unix). Unfortunately, it is not possible to
implement poll functionality on top of a select device method, so the whole imple
mentation was replaced with a different one, which serves as a back-end to both
select and poll.

With current versions of the kernel, the device method in file_operations is
called poll like the system call, because its internals resemble the system call. The
prototype of the method is:

unsigned int (*poll) (struct file*, poll_table *);

388

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 389

File Operations

The device-specific implementation in the driver should perform two tasks:

• Queue the current process in any wait queue that may awaken it in the future.
Usually, this means queueing the process in both the input and the output
queues. The function poll_wait is used for this purpose and works exactly like
select_wait (see "Select" in Chapter 5, Enhanced Char Driver Operations, for
details).

• Build a bitmask describing the status of the device and return it to the caller.
The values of the bits are platform-specific and are defined in
<linux/poll. h>, which must be included by the driver.

Before describing the individual bits of the bitmask, I'd better show what a typical
implementation looks like. The following function is part of v2.1/scu/Vpipe.c and is
the implementation of the poll method for /dev/scullpipe, whose internals were
described in Chapter 5:

unsigned int scull_p_poll (struct file *filp, poll_table *wait)
{

Scull_Pipe *dev = filp->private_data;
unsigned int mask= O;

/* how many bytes left there to be read?*/
int left= (dev->rp + dev->buffersize - dev->wp) % dev->buffersize;

poll_wait(&dev->inq, wait);
poll_wait(&dev->outq, wait);
if (dev->rp != dev->wp) mask I= POLLIN I POLLRDNORM; /*readable*/
if (left) mask I= POLLOUT I POLLWRNORM; /*writable*/

return mask;

As you see, the code is pretty easy. It's easier than the corresponding select
method. As far as select is concerned, the status bits count as either "readable,"
"writable," or "exception occurred" (the third condition of select).

The full list of poll bits is shown below. "Input" bits are listed first, "output" bits
follow, and the single "exception" bit comes at the end.

POLLIN
This bit must be set if the device can be read without blocking.

POLLRDNORM
This bit must be set if "normal" data is available for reading. A readable device
returns (POLLIN I POLLRDNORM).

389

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 390

Chapter 17: Recent Developments

POLLRDBAND
This bit is currently unused in the kernel sources. Unix System V uses the bit
to report that data of non-zero priority is available for reading. The concept of
data priority is related to the "Streams" package.

POLLHUP
When a process reading this device sees end-of-file, the driver must set POLL
HUP (hang-up). A process calling select will be told that the device is readable,
as dictated by the select functionality.

POLLERR
An error condition has occurred on the device. When poll is invoked by the
select system call, the device is reported as both readable and writable, as
either read or write will return an error code without blocking.

POLLOUT
This bit is set in the return value if the device can be written to without
blocking.

POLLWRNORM
This bit has the same meaning as POLLOUT, and sometimes it actually is the
same number. A writable device returns (POLLOUT I POLLWRNORM) .

POLLWRBAND
Like POLLRDBAND, this bit means that data with non-zero priority can be writ
ten to the device. Only the "datagram" implementation of poll uses this bit, as
a datagram can transmit "out of band data." select reports that the device is
writable.

POLLPRI
High priority data ("out of band") can be read without blocking. This bit
causes select to report that an exception condition occurred on the file
because select reports out-of-band data as an exception condition.

The main problem with poll is that it has nothing to do with the select method
used by 2.0 kernels. The best way to deal with the difference, therefore, is to use
conditional compilation to compile the proper function, while including both of
them in the source file.

The header sysdep-2.1.b defines the symbol __ USE_OLD_SELECT __ if the cur
rent version supports select instead of poll. This relieves you of the need to refer to
LINUX_VERSION_CODE in the source file. The sample drivers in the v2.1 direc
tory use code similar to the following:

390

#include "sysdep-2.1.h"

#ifdef __ USE_OLD_SELECT __
int sample_poll(struct inode *inode, struct file *filp,

int mode, select_table *table)

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 391

Accessing User Space

/* ... 2.0 (select) implementation ... */
}

#else
unsigned int sample_poll (struct file *filp, poll_table *wait)
{

/* ... 2.1 (poll) implementation ... */
}

#endif

The two functions are called with the same name because sample_poll is refer
enced in the sample_fops structure, where the poll file operation replaced the
select method in place.

Accessing User Space
The first 2.1 versions of the kernel introduced a new (and better) way to access
user space from kernel code. The change is meant to fix a long-standing misbe
havior and to enhance system performance.

When you compile code for version 2.1 of the kernel and need to access user
space, you need to include <asm/uaccess. h> instead of <asm/ segment. h>.
You must also use a different set of functions from those in 2.0. Needless to say,
the header sysdep-2.1.h takes care of these differences as much as possible and
allows you to use the 2.1 semantics when compiling with 2.0.

The most noticeable difference in user access is that verify_area is gone, as most
of the verification is performed by the CPU instead. See "Handling Kernel-Space
Faults" later in this chapter for more details on this subject.

The new set of functions that can be used to access user space is:

int access_ok (int type, unsigned long addr,
unsigned long size);

This function returns true (1) if the current process is allowed to access mem
ory at address addr, false (0) otherwise. This function is a replacement for
verify_area, although it does less checking. It receives the same arguments as
the old verify_area, but is much faster. The function should be called to check
a user-space address before you dereference it; if you fail to check, the user
might be able to access and modify kernel memory. The section "Virtual Mem
ory," later in the chapter, explains the issue in more detail. Fortunately, most
of the functions described below take care of such checking for you, so you
won't need to actually call access_ok, unless you choose to.

int get_user (lvalue, address);
The get_user macro used by 2.1 kernels is different from the one we used in
2.0. The return value is O in case of success or a negative error code (always
-EFAULT). The net effect of the function is to assign to lvalue data retrieved

391

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 392

Chapter 17: Recent Developments

using the address pointer. The first argument of the macro must be an /value
in the usual C-language meaning.• Similar to the 2.0 version of the function,
the actual size of the data item depends on the type of the address argu
ment. The function calls access_ok internally.

int __ get_user (lvalue, address);
This function is exactly like get_user, but it doesn't call access_ok internally.
You should call _ _get_user when you access a user address that has already
been checked from within the same kernel function.

get_user_ret (lvalue, address, retval);
This macro is a shortcut that calls get_user and returns retval if the function
fails.

int put_user (expression, address);
int _ _put_user (expression, address);
put_user_ret (expression, address, retval);

These functions behave exactly like the get_ equivalents, but they write to user
space instead of reading from it. In case of success, the value expression is
written to address address.

unsigned long copy_from_user (unsigned long to,
unsigned long from,
unsigned long len);

This function copies data bytes from user space to kernel space. It replaces
the old memcpyJromfs call. The function calls access_ok internally. The return
value is always the number of bytes not transferred. Thus, if an error occurs,
the return value is greater than O; in that case, the driver usually returns
-EFAULT, because the error is caused by a faulty memory access.

unsigned long __ copy_from_user (unsigned long to,
unsigned long from,
unsigned long len);

This function is identical to copy_from_user, but it doesn't call access_ok inter
nally.

• copy_from_user_ret (to, from, len, retval);
This macro is a shortcut that calls copy_from_user and returns from the cur
rent function if it fails.

unsigned long copy_to_user (unsigned long to,
unsigned long from,
unsigned long len);

* An /value is an expression that can be the left operand of an assignment. For exarnp\e,
count, v[34+check()], and * ((ptr+offset)->fieldl are Jvalues; i++, 32, and
cli () are not.

392

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 393

Accessing User Space

unsigned long __ copy_to_user (unsigned long to,
unsigned long from,
unsigned long len);

copy_to_user_ret (to, from, len, retval);
These functions are used to copy data to user space, and they behave exactly
like their copy_from counterparts.

Version 2.1 of the kernel defines other functions for accessing user space:
clear_user, strncpy_from_user, and strlen_user. I won't comment on them because
they are not available in Linux 2.0, and because they are rarely needed by driver
code. The interested reader is urged to browse <asm/uaccess. h>.

Using the New Interface
The new set of functions to access user space may look disappointing at first, but
they are meant to ultimately make life easier for the programmer. With Linux 2.1,
there's no longer a need to explicitly check user space; access_ok won't usually
need to be called. The code using the new interface can just go ahead and transfer
its data. The _ret functions, then, turn out to be very useful when implementing
system calls, because a failure in user-space access usually results in a failure in
the system call with - EFAULT.

The typical read implementation, therefore, will look like this:

long new_read(struct inode *inode, struct file *filp,
char *buf, unsigned long count);

/* identify your data (device-specific code) */

if (__ copy_to_user(buf, new_data, count))
return -EFAULT;

return count;

Note that the non-checking __ copy_to_user function is used because the caller
already checked the user address before dispatching data transfer to the file opera
tions. This is just like 2.0, where read and write didn't need to call verify_area.

Similarly, the typical ioctl implementation will look like the following:

int new_ioctl(struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg);

/* device-specific checks, if needed*/

switch(cmd) {
case NEW_GETVALUE:

put_user_ret(new_value, (int *)arg,-EFAULT);
break;

393

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 394

Chapter 17: Recent Developments

case NEW_SETVALUE:
get_user_ret(new_value, (int *)arg,-EFAULT);
break;

default
return -EINVAL;

return O;

Unlike the version 2.0 equivalent, this function doesn't need to check its argu
ments before the switch statement, because each get_user or put_user does the
checking. An alternative implementation is the following one:

int another_ioctl(struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg);

int retval = -EINVAL, size= _IOC_SIZE(cmd);

if (_IOC_DIR(cmd) & _IOC_READ) {
if (!access_ok(VERIFY_WRITE, (void *)arg, size))

retturn -EFAULT;

else if (_IOC_DIR(cmd) & _IOC_WRITE)
if (!access_ok(VERIFY_READ, (void *)arg, size))

return -EFAULT

switch(cmd) {
case NEW_GETVALUE:

retval = __put_user(another_value,arg);
break;

case NEW_SETVALUE:
retval = _get_user(another_value,arg);
break;

return retval;
}

When you want to write code that compiles with both 2.0 and 2.1, on the other
hand, things become slightly more complicated, as you can't use the C preproces
sor to fake the new behavior with older kernels. You can't just #define a
get_user macro that receives two arguments, because the actual get_user imple
mentation in version 2.0 is already a macro.

My own choice for writing code that is both portable and efficient is to set up ~s
dep-2.1.h to provide source code with the following functions. Only the functions
that read data are listed; functions that write data behave in exactly the same way.

int access_ok(type, address, size);

394

This function is implemented in terms of verify_area when compiling against
2.0.

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 395

Task Queues

int verify_area_20(type, address, size);
Usually, when writing code for Linux 2.1, you won't call access_ok. On the
other hand, verify_area is compulsory when compiling for Linux 2.0. This
function tries to bridge the gap: it expands to nothing when compiling for
Linux 2.1 and is the original verify_area when compiling against 2.0. The func
tion can't just be called verify_area, because 2.1 still has a macro with the
same name as the 2.0 function. The verify_area macro as defined in 2.1 imple
ments the old semantics in terms of access_ ok and exists to ease transition of
source code from 2.0 to 2.1. (You could, in theory, leave any verify_area in
your modules and just rename your functions; the downside of this simple
porting technique is that the new version wouldn't compile with 2.0.)

int GET_USER{var, add);
int __ GET_USER(var, add);
GET_USER_RET{var, add, ret);

When compiling with 2.1, these macros expand to the real get_user functions,
the ones explained above. When they are compiled with 2.0, the 2.0 imple
mentation of get_user is used to implement the same functionality as 2.1.

int copy_from_user(to, from, size);
int __ copy_from_user(to, from, size);
copy_from_user_ret(to, from, size);

When compiled with 2.0, these expand to memcpy_Jromfs; with 2.1, the
native functions are used instead. The _ret flavor won't ever return with 2.0,
because the copying functions can't fail.

This way of implementing compatibility is my personal preference, but it's not the
only way to do it. In my sample code, verify_area_20 must be called before any
user-space access (excluding the buffer for read and write, which is already
checked in advance). An alternative would be to be more faithful to 2.1 semantics
and automatically generate a verify_area at each get_user or copyJrom_user when
2.0 is used. This choice would be cleaner at the source level, but rather inefficient
when compiled with version 2.0, both in code size and execution time.

Sample code that compiles with both 2.0 and 2.1 is, for example, the scull module,
as found in the directory v2.1/scull. I don't feel the code is interesting enough to
show it here.

Task Queues
Versions of Linux beginning with 2.1.30 don't define the functions queue_task_irq
and queue_task_irq_off, as the actual speed-up over queue_task was not worth the
effort of maintaining two separate functions. This became evident while new
mechanisms were being added to the kernel.

395

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 396

Chapter 17: Recent Developments

At the source level, this is the only difference between 2.1 and 2.0; the header sys
dep-2.1.h defines the missing functions to ease porting drivers from 2.0. The curi
ous reader is urged to look in <asm/ spinlock. h> for more details.

Interrupt Management
During 2.1 development, some of the Linux internals were changed. New kernels
offer good management of internal locks; race conditions are avoided using sev
eral fine-grained locks instead of global ones, thus obtaining better performance
especially with SMP configurations.

One of the outcomes of finer locking is that intr_count no longer exists. Ver
sion 2.1.34 got rid of the global variable, and the boolean function in_interrupt
can be used instead (this function has existed since 2.1.30). Currently, in_interrupt
is a macro declared in the header <asm/hardirq.h>, which in tum is included
by <linux/ interrupt. h>. The header sysdep-2.1.h conditionally defines
in_interrupt in terms of intr_count to achieve backward portability to 2.0.

Note that while in_interrupt is an integer, intr_count was unsigned long, so
if you want to print the value and be portable across 2.0 and 2.1, you should cast
the value to an explicit type and specify the suitable format in calling prlntk.

Another difference in interrupt management was introduced in 2.1.37: fast and
slow interrupt handlers don't exist any more. The flag SA_INTERRUPT isn't used
by the new version of request_irq, but it still controls whether interrupts are
enabled before the handler is executed. If several handlers share the interrupt line,
each can be of a different "type." Interrupts are enabled or not according to the
type of the first handler being called. Bottom halves are always executed when the
interrupt handler exists.

Bit Operations
Version 2. 1.37 slightly modified the role of the bit operations defined in
<asm/bi tops . h>. The function set_bit and its relatives now return void, while
new functions like test_and_set_bit have been introduced. The new set of func
tions have the following prototypes:

void set_bit(int nr, volatile void* addr);
void clear_bit(int nr, volatile void* addr);
void change_bit(int nr, volatile void* addr);
int test_and_set_bit(int nr, volatile void* addr);
int test_and_clear_bit(int nr, volatile void* addr);
int test_and_change_bit(int nr, volatile void* addr);
int test_bit(nr,addr);

If you want to be backward-compatible to 2.0, you can include sysdep-2.1.b in
your module and stick to the new prototypes.

396

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 397

Conversion Functions

Conversion Functions
Version 2.1.10 introduced the availability of a few new conversion functions,
declared in <asm/byteorder. h>. The functions can be used to access multi
byte values when the value is known to be stored as either little-endian or big
endian. Since the functions sometimes make a good shortcut in writing driver
code, the header sysdep-2.1.h takes care of defining them for earlier kernel
versions.

The native implementation offered by 2.1 kernel sources is faster than the portable
one offered by sysdep-2.1.h, because it can exploit architecture-dependent func
tionalities.

The new functions respond to the following prototypes, where le stands for little
endian, and be stands for big-endian. Note that strict data typing is not enforced
by the compiler, as most of the functions are preprocessor macros anyway; the
types shown below are there for your reference.

__ ul6 cpu_to_le16(__ u16 cpu_val);
__ u32 cpu_to_le32(__ u32 cpu_val);
__ ul6 cpu_to_be16(__ u16 cpu_val);
__ u32 cpu_to_be16(__ u32 cpu_val);
__ ul6 lel6_to_cpu(__ u16 le_val);
__ u32 le32_to_cpu(__ u32 le_val);
__ ul6 bel6_to_cpu(__ ul6 be_val);
__ u32 be32_to_cpu(__ u32 be_val);

Given the usefulness of such functions when dealing with binary data streams
(such as filesystem data or information stored on an interface board), version
2.1.43 added two new sets of conversion functions. These sets allow you to
retrieve a value by pointer, or to convert in place the value pointed to by the argu
ment. The functions for 16-bit little-endian respond to the following prototypes;
similar functions exist for the other types of integers, leading to a total of 16 new
functions.

__ ul6 cpu_to_le16p(__ ul6 *addr)
__ ul6 lel6_to_cpup(__ ul6 *addr)

void cpu_to_le16s(__ ul6 *addr)
void lel6_to_cpus(__ l6 *addr)

The "p" functions work like pointer dereferencing, but convert the value if
needed; the "s" functions (from the "in situ" clause) can be used to convert the
endianness of a value in place (for example, cpu_to_le16s (addr) does the
same as *addr = cpu_to_le16 (*addr)).

These functions are defined in sysdep-2.1.h as well. The header uses inline func
tions instead of preprocessor macros as necessary to avoid the side effects of
double interpretations.

397

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 398

Chapter 17: Recent Developments

vremap
The vremap function, described in "vmalloc and Friends" in Chapter 7, Getting
Hold of Memory, got a new name with the advent of version 2.1. Only the name
has changed, and the function called ioremap takes the same arguments as the old
vremap. The corresponding free function is iounmap, which replaces vfree to

release remapped addresses.

The change is meant to underline the real role of the function: remapping 1/0
space to a virtual address in kernel space. The header sysdep-2.1.b enforces the
new convention, and it #defines ioremap and iounmap to the 2.0 equivalents
when compiled against version 2.0.

Virtual Memory
The Intel port of Linux reached a mature view of virtual memory with version 2.1
of the kernel. Earlier versions stuck to a "segmented" approach to memory man
agement, derived from the beginning of the kernel's lifetime. The change doesn't
affect driver code, but is worth outlining anyway.

The new convention matches the behavior of other Linux ports. The virtual
address space is built up so that the kernel lives at very high addresses (from 3GB
upwards), while user addresses are in the range 0-3GB. When a process is run
ning in "supervisor mode," it can access both spaces. When it runs in user mode,
on the other hand, it can't access kernel space because memory pages belonging
to the kernel are marked as "supervisor" pages, and the processor inhibits access
to them.

This kind of memory layout helped to remove the old memcpy_to_fs kind of func
tions, as there's no longer an FS segment. Kernel space and user space now use
the same "segments" and differ only in the priority level the CPU is in.

Handling Kernel-Space Faults
Version 2.1 of the Linux kernel introduced a great enhancement in the handling of
segmentation faults from kernel space. In this section, I'm going to give a quick
overview of the principle. The way source code is affected by the new mechanism
has already been described in "Accessing User Space."

As suggested earlier, recent versions of the kernel fully exploit the ELF binary for
mat, in particular with regard to its capability to define user-defined sections in the
compiled files. The compiler and linker guarantee that every code fragment
belonging to the same section will be consecutive in the executable file and there
fore in memory when the file is loaded.

398

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 399

Handling Kernel-Space Faults

Exception handling is implemented by defining two new sections in the kernel
executable image (vmlinux). Each time any source code accesses user space via
copy_to_user, put_user, or their reading counterparts, some code is added to both
of these sections. Although this might look like a non-negligible amount of over
head, one of the outcomes of the new implementation is that there's no longer
any need to use an expensive verify_area mechanism. Moreover, if the user
address being used is a correct one, the computational flow will see no jumps at
all.

When the user address being accessed is invalid, the hardware issues a page fault.
The fault handler (do_page_f a ult, in the architecture-specific source tree) identifies
the fault as an "incorrect address" fault (as opposed to "page not present") and
takes proper action using the following ELF sections:

__ ex_table
This section is a table of pointer pairs. The first pointer of each pair refers to
an instruction that can fail due to a wrong user-space address, and the second
value points to an address where the processor will find a few instructions
that deal with this error.

Jixup
This section contains the instructions that deal with each possible error
described by the __ ex_table section. The second pointer of each pair in
the table refers to code that lives in ..fixup.

The header file <asm/uaccess. h> takes care of building the needed ELF sec
tions. Each function that accesses user space (such as put_user) expands to assem
bly instructions that add pointers to __ ex_table and handle the error in ..fixup.

When the code runs, the actual execution path consists of the following steps: the
processor register used for the "return value" of the function is initialized to O (i.e.,
no error), data is transferred, and the return value is passed back to the caller.
Normal operation is very fast indeed. If an exception occurs, do_page_fault prints
a message, looks in __ ex_table, and jumps to ..fixup, where fixing consists in
setting the return value to - EFAULT and jumping back just after the instruction
that accessed user space.

The new behavior can be checked by using the faulty module as it appears in the
v2.1/misc-modules directory. faulty was described in "Debugging System Faults" in
Chapter 4, Debugging Techniques. faulty's device node transfers data to user
space by reading beyond the bounds of a short buffer, thus causing a page fault
when reading to an address above the module's page. It's interesting to note that
this fault depends on using an incorrect address in kernel space, while in most
cases the exception is caused by a faulty user-space address.

399

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 400

Chapter 17: Recent Developments

When using the cat command to read faulty on a PC, the following messages are
printed on the console:

read: inode cl188348, file c16decf0, buf 0804cbd0, count 4096
cat: Exception at [<c28070b7>] (c2807115)

The former line is printed by faulty's read method, and the latter is printed by the
fault handler. The first number is the address of the faulty instruction, while the
second is the address of the fixup code (in the ..fixup section).

Other Changes
There are a few other differences between 2.0 and 2.1.43. They don't deserve spe
cial treatment in my opinion, so I'll summarize them quickly.

The proc_register_dynamic function disappeared in 2.1.29. Recent kernels use the
proc_register interface for every lproc file; if the low_ino field in struct
proc_dir_entry is 0, then a dynamic inode number is assigned. The header
sysdep-2.1.h defines proc_register_dynamic as proc_register when compiling for
2.1.29 or newer; this works as long as the proc_dir_entry structure being reg
istered features O as the inode number.

In the field of network interface drivers, the rebuild_header device method has a
new prototype from 2.1.15 onwards. You won't be concerned with this difference
as long as you develop Ethernet drivers, as Ethernet drivers don't implement their
own method; they fall back on the general-purpose Ethernet implementation. The
sysdep-2.1 header defines the macro __ USE_OLD_REBUILD_HEADER __ when
the old implementation is needed. The sample module snull shows how to use the
macro, but it's not worth showing here.

Another change in network code affects struct enet_statistics, which
doesn't exist any more since 2.1.25. There is a new structure, struct
net_device_stats, in its place, which is declared in <linux/netdevice.h>
instead of <linux/if_ether. h>. The new structure is just like the old one,
with the addition of two fields to store byte counters: unsigned long
rx_bytes, tx_bytes; . A full-featured network interface driver should incre
ment these counters along with rx_packets and tx_packets, athough a quick
project might disregard the counters. The kernel headers define
enet_statistics (the name of the old structure) to net_device_stats (the
name of the new structure) to ease portability of existing drivers.

As a final note, I'd like to point out that the current pointer is no longer a global
variable; the x86, Alpha, and Spare kernel ports use smart tricks to store current
in the processor itself. The kernel developers thus managed to squeeze out a few
CPU cycles more. This trick avoids a lot of memory references, and sometimes
frees a general-purpose register; the compiler often allocates processor registers to

400

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 401

Other Changes

cache a few frequently used memory locations, and current is frequently used.
Different tricks are used in the different ports to optimize access. The Alpha and
Spare versions use a processor register (one not used by the compiler's optimiza
tion) to store current. The Intel processor, on the other hand, has a limited
number of registers, and the compiler uses all of them; the trick in this case con
sists in storing struct task_struct and the kernel stack page in consecutive
virtual-memory pages. This allows the current pointer to be "encoded" in the
stack pointer. For every platform supported by Linux the header,
<asm/ current. h> shows the actual implementation chosen.

Like any vital piece of software, Linux continues to change. If you want to write
drivers for the latest and greatest kernel, you'll need to keep up to date with ker
nel development. Although dealing with incompatibilities might look like hard
work, two observations are due. First, the major programming techniques are in
place and are unlikely to change (at least not often). Second, each change makes
things better, and usually leaves you less work to do on future development.

401

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 402

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 403

A
access

blocking open requests, 125-126
cloning devices on open, 126--128
concurrent (see race conditions)
to device files, 123-128
to expansion board memory, 170-175
ISA memory, 171-175
PCI memory, 175, 348-351
restricting to simultaneous users,

124-125
text-mode video buffer, 175
to user space in Linux 2.1, 391-395

·access_ok(), 391
access to drivers, 45
add_timer(), 148
add_wait_queue(), 210
__ add_wait_queue(), 210
Address Resolution Protocol (ARP), 309,

328-329
addresses

for peripheral boards, 342
Plug and Play, 357
resolving (Ethernet), 328-330
verifying in user space, 100

add-symbol-file (gdb command), 93
advise method, 273
aliases for device names, 54
alloc_skb(), 327
allocating

major device numbers, 44-46
memory, 28, 58-61

at boot time, 160-161
determining how much, 154
function definitions for, 372
on ISA boards, 31-34, 171-175
kmalloc for, 152-154

INDEX

by page, 154-157
page clusters for, 153
vmalloc for, 157-160

ports, 29-30
Alpha architecture

memory mapping, 276
porting and, 166
setting up processors, 367

Alt-PrScr key, 86
applications versus modules, 14-18
arch directory, 380
architecture dependency (see platform

dependency)
ARP (Address Resolution Protocol), 309,

328-329
asm directory, 14
<asm/atomic.h> header, 207
<asm/bitops.h> header, 396
<asm/byteorder.h> header, 397
<asm/dma.h> header, 296
<asm/io.h> header, 164, 219
<asm/ioctl.h> header, 96
<asm/irq.h> header, 193
<asm/page.h> header, 218, 268
<asm/segment.h> header, 67
<asm/system.h> header, 40
<asm/uaccess.h> header, 391
asynchronous OMA, 290
asynchronous events, timer queues and,

138
asynchronous notification, 117-121
asynctest program, 119
atomic_add(), 208
atomic bit operations, 206--207
atomic_dec(), 208
atomic_dec_and_test(), 208
atomic_inc(), 208

403

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 404

Index

atomic integer operations, 207
atomic_sub(), 208
atomic_! data type, 208
atomic.h header, 207
automatic

device parameters detection, 34
driver configuration, 34
IRQ number detection, 183-186, 200,

212
module loading/unloading, 222-227

awakening processes, 105

B
bad_user_access_length(), 102
base name, device, 256
be16_to_cpu(), be32_to_cpu(), 397
big-endian byte order, 219
binaiy formats, 25, 373
binfmts.h header, 373
bios32.h header, 346
bit operations, 206-207, 396
bitops.h header, 396
bit-splitting, 55
blk_dev _struct structure, 236
blk_size array, 237
blkdev.h header, 236
BLKFLSBUF command, 249
BLKGETSIZE command, 249, 261
blk.h header, 240-242
BLKRAGET command, 249
BLKRASET command, 250
BLKROGET command, 250
BLKROSET command, 250
BLKRRPART command, 250, 262
blksize_size array, 237
block_dev file, 374
block drivers, 6

arrays for information about, 237
function definitions for, 374, 379
generic hard disk support, 256-257
handling requests, 242-248
interrupt-driven, 263-265
ioctl method and, 249-252
<linux/blk.h> header, 240-242
loading/unloading, 235-254
mounting device, 248-249
partionable devices and, 255-263

404

registering/unregistering, 235-240
removable block devices, 252-254

block_fsync(), 236
block_read(), 236
block_writeO, 236
blocking 1/0 operations, 105-114

blocking open requests, 125-126
testing, 113

BogoMips value, 137
booting

allocating memoiy while, 160-161
bzlmage kernel, 365
kernels, 362-363
Linux, 364-367
(non)modularized drivers and, 310
Alpha processors, 367
PC! and, 343
Spare computers, 368
zlmage kernel, 364

bottom halves
of interrupt handlers, 194-199
tasks queues, 138, 145

bridge directoiy, 378
BSS segments, 271
buffer cache, 375
buffer, OMA, 290-292
buffer_head structure, 244, 247
buffer for printk(), 71
bugs (see debugging; troubleshooting)
bus addresses, 292
bus architecture, 341-361
bus_to_virt(), 292
byte order and portability, 219
byteorder.h header, 219, 397
bzlmage kernel, booting, 365

C
caching techniques, 375
cancel_release_module(), 225
Card Select Number (CSN), 357
cdrom directoiy, 380
centralized symbol table, 22-24
CFLAGS variable (make), 19
change_bitO, 207, 396
change_mtu method, 317
channels, OMA, 293-295

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 405

char drivers, 5, 41---08
defining mechanism of, 41-42
function definitions for, 379
version numbers, 42-48

check_media_charge method, 51, 253
check_region(), 30
CHECKSUM_ symbols, 323
circular buffers, 204-205
class PCI register, 346
classes, module, 5-7
cleanup_module(), 14, 26

network drivers and, 309
releasing ports, 30

clear_bit(), 207, 396
clear_dma_ff(), 297
di(), 32
clock ticks (see jiffies value)
clone system call, 370
cloning devices on open requests, 126--128
close method, 57, 273

after cloning devices on open, 128
partitionable devices and, 261
for single-open devices, 124
(see also release method)

closing network interface, 318-320
clustered requests, 246--248
code, delaying, 134-137
collisions, device, 29
command-oriented drivers, 104-105
compiling, ELF binary formats for, 385
concurrency, 17, 203-210
concurrent access (see race conditions)
C0NFIG_M0DVERSI0NS(), 229
C0NFIG_PCI(), 346
config.h header, 346
configuration space, PCI, 343, 348-351
configuring, 34-35

Alpha processors, 367
OMA controller, 295-297
network devices, 316, 330-333
PCI registers, 344-348
persistent data storage vs., 231-233
Spare computers, 368
X86 processors, 364-367

conf.modules file, 224
C0NS0LE_BH bottom half, 196
console_loglevel variable, 70

consoles
selecting for messages, 70
wrong font on, 104

control functions, 377
controlling access (see access)
controlling-by-write, 104-105
Control-PrScr key, 86
converting

Linux 2.1 functions for, 397
virtual addresses, 292

copy_from_user(), 392
__ copy_from_user(), 392
copy_from_user_ret(), 392
copy_to_user(), 393
__ copy_to_userO, 393
copy _to_user_ret(), 393
copying, cross-space, 61
copy-on-write pages, 101
core directory, 378
core-file (gdb command), 89
cp command, 65
cpu_idle(), 363
CPU modalities (levels), 16
cpu_to_ convenion functions, 397
create_module system call, 8
cross-space copying, 61
CSN (Card Select Number), 357
cua's (callout devices), 54
current pointer, 18, 135, 400
current_set array, 18
current time, 132-134
currenttime file (jit module), 133
CURRENT(), 243-244
custom

data types, 217
ioctl methods for networking, 334
modules package, 224
task queues, 146

cx_interruptO (example), 192
cx_open() (example), 192

D
data

misaligned, 75

Index

physical packet transport, 305, 320-323
protecting from race conditions, 203

405

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 406

Index

data (cont'd)
reading (see reading)
sizing explicitly, 216
transfering for block driver requests,

244-246
transfering with OMA, 289-298
unaligned, portability and, 219
writing (see writing)

data types
for explicitly sizing data, 216
interface-specific, 217
portability and, 214-217
standard C types, 214-215

datasize program, 215
dd command, 65
deallocating (see allocating)
debugging, 69-93

implementing debug levels, 73
interrupt handling, 193
with ioctl method, 76
locked keyboard, 87
module loading, 21
modules, 85, 93
by printing, 69-73
by querying, 73-76
race conditions, 203-210
remote debugging, 92-93
system faults, 79-88
system hangs, 85-88
using a debugger, 88-93
by watching in user space, 77-78
(see also troubleshooting)

OECLARE_TASK_QUEUE(), 146
declaring device parameters, 385
decoding oops messages, 81-85
OEFAULT_CONSOLE_LOGLEVEL priority,

70
OEFAULT_MESSAGE_LOGLEVEL priority,

70
del_timer(), 149
delayed_release_module(), 225
delaying execution, 134-137
delete_module(), 28
deleting device nodes, 47
demand-loading modules, 222-227
depmod utility, 223
dereferencing invalid pointers, 79-85
dev_alloc_skb(), 327

406

dev_id pointer, 180, 192, 200
dev_kfree_skb(), 327
dev _mc_list structure, 337
/dev nodes

assigning, 43
/dev/random device, 180
/dev/urandom device, 180
dynamic major number allocation and,

44
removing, 47

dev_t type (Unix), 47
development kernels, 9
device files, 42, 123-128
OEVICE_INTR symbol, 241
OEVICE_NAME symbol, 241
OEVICE_NO_RANDOM symbol, 241
OEVICE_NR symbol, 241
OEVICE_OFF symbol, 242
OEVICE_ON symbol, 242
OEVICE_REQUEST symbol, 242
device structure, 306, 310-318
OEVICE_TIMEOUT symbol, 241
deviceID PCI register, 345
devices

autodetecting parameters of, 34
base name of, 256
block (see block drivers)
character (see char drivers)
classes of, 5-7
cloning on open requests, 126-128
collisions between, 29
control operations, 4
controlling with ioctl, 95-105
declaring parameters for, 385
detecting newly added, 233
OMA and, 289-298
file operations on, 49-52
hardware management, 163-177
identifying type with ls command, 42
interrupts (see interrupt handlers)
miscellaneous, 24
names of, 43-44, 47, 54
network (see network drivers)
partitionable, 255-263
PCI (see PCI)
probing (see probing)
reading and wriring, 61-66
removable, 252-254

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 407

devices (cont'd)
seeking, 121-122
single-open, 123--124
single-user access to, 124-125
truncating on open, 56
version (see version numbering)
writing control sequences to, 104-105

devices file, 374
direct memory access (OMA), 289-298
directories of kernel headers, 14
directory cache, 375
disable_drna(), 296
disable_irq(), 193
disabling interrupts, 193--194, 205
disassemble command (gdb), 90
disk changes (see removable block

devices)
disk geometry, retrieving, 250
OMA (direct memory access), 289-298

allocating buffer for, 290-292
configuring controller, 295-297
for ISA memory, 293--297
PCI devices and, 297-298
registering usage, 294

drna file, 370
DMAC (OMA controller), 293
drna.h header, 296
do_bottom_half(), 194,196
do_gettimeofday(), 132
do_ioctl method, 317
do_lRQ(), 189
do_no__page(),372
do_timer(), 141,196
do_wp__page(),372
documentation for futher information, xiv
dquot file, 377
drivers

adding new, 43-47
asynchronous notification and, 119-121
callout (cua's), 54
character (see char drivers)
choosing ioctl numbers for, 96
command-oriented, 104-105
configuring, 34-35
device names (see devices, names oO
file operations, 49-52
input and output buffers, 110
interrupt-driven, 263--265

Index

mechanism of (see mechanism, driver)
monitoring with preprocessor, 72-73
network, bottom half for, 196
network drivers, 301-340
probing for IRQ numbers, 185-186
recent developments, 382--401
removing (see unloading modules)
SCSI, 6
serial, 24
tty, 24, 54
user-space, 36-37
version (see version numbering)

drivers directory, 379-380

E
EBUSY error, 125-126
EISA buses, 358
ELF binary formats, 385
enable_drna(), 296
enable_irq(), 193
enabling interrupts, 193--194
end_request(), 243, 247-248, 263
endless loops, preventing, 86
end-of-file, 115, 121
enet_statistics structure, 316, 335, 400
errno.h file, 26
error codes, 26
errors

handling in init_module(), 25-26
with partial data transfers, 65
PCI device, 347
read/write, 62
strace command to debug, 78

/etc/conf.modules file, 224
/etc/modules.conf file, 223
eth_header method, 316
ether_setup(), 312
Ethernet, 305

address resolution, 328-330
function definitions, 378
non-Ethernet headers, 330

__ ex_table section, 399
exceptions, 115, 398-400
exec(), 373
exec_domain file, 371
execution (exec) domains, 25
execution modes, 16

407

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 408

Index

exit system call, 370
expansion board memory, 170-175
experimental kernels, 9
expires field (timer_list structure), 148
EXPORT_ macros, 383

EXPORT_SYMTABO, 230, 383
exporting symbols, 230-231, 383-385
Extended ISA buses, 358

F
f_flags field (file structure), 53

O_NONBLOCK flag, 100, 108-111
f_op pointer, 53
f_pos pointer, 122
F _SETFL command, 100, 120
F_SETOWN command, 119
facilities, (un)registering in init_module(),

24-25
fast interrupt handlers, 187-189, 200
fasync method, 51
fasync_helperO, 120, 130
fasync_struct structure, 120
faults (see system faults)
fcntl file, 377
fcntl system call, 100
fddi_setpO, 312
fdisk program, 255-263
file flags, 53
file handling, function definitions for,

373-377
file locks, 377
file modes, 52
file operations, 49-52, 387-391
file_operations structure, 49-50, 53, 377
file structure, 49, 52-53
File System header (fs.h), 67
filemap file, 372
filesystem nodes, 4, 7, 74

names, device (see devices, names of)
filesystems file, 374
filp pointer, 52, 95, 248
FIOASYNC command, 100
FIOCLEX command, 99
FIONBIO command, 100
FIONCLEX command, 100
firmware, PCI-aware, 343
.fixup section, 399

408

flags, file, 53
flock system call, 377
flushing pending output, 116
font, incorrect on console, 104
fops pointer, 43, 49, 55, 236
forcing module load, 21
fork system call, 370
fragmentation, 291
free command, 66
free_dma(), 294
free_irqO, 179, 181
free_page(), 155
free_pages(), 155
free_waitO, 117
fs directory, 373-377
fs.h header, 67, 249
fsync method, 51, 116
functions, 23

G

calling from modules/applications, 14
disassembling with gdb, 90
inserting schedule() calls in, 86
multitasking and, 17
(see also symbols)

gee compiler
-g flag, 89
-0 flag, 19
-Wall flag, 19

gdb debugger, 88-93
gendisk_struct structure, 256
General Public License (GPL), 10
generic hard disk support, 256-257
genhd_struct structure, 258
genhd.h header, 256
__ GENKSYMS __ (), 234
genksyms program, 230
geometry, disk, 250
_ _get_ dma_pages(), 154
get_dma_residue(), 296
get_free_page(), 152, 154
_ _get_free_page(), 154
_ _get_free_pages(), 154
get_persist(), 232
get_stats method, 335
get_user(), 102, 129, 391
_ _get_user(), 392

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 409

get_user_byte(), 129
get_user_ret(), 392
GFP _ATOMIC priority, 153, 155
GFP _OMA priority, 153, 290
GFP _KERNEL priority, 28, 152
GFP _NFS priority, 153
global

memory areas, 42
message enabling/disabling, 72
symbols, 22-24

goodness(), 369
goto statement, 26
GPL (General Public License), 10
gpm-root daemon, 87
group, device, 45

H
hard_header method, 316, 330
hard_start_transmit method, 320
hard_start_xmit method, 316, 321
HARDRESET command, 98
hardsect_size array, 237
hardware (see devices)
HAVE_CHANGE_MTU(), 317
HAVE_HEADER_CACHEO, 317
HDIO_GETGEO command, 250
head pointer, 204
header_cache_bind method, 317
header_cache_update method, 317
header files, 14
headers, Ethernet (see Ethernet)
headers, non-Ethernet, 330
hiding global symbols, 24
htonl(), 219
htons(), 219
hung system, 85-88
HZ (time frequency) symbol, 131, 218

I
i_rdev field (inode structure), 47
ifconfig command, 318
!FF_ symbols, 314-315, 337

!FF _NO ARP symbol, 309
if.h header, 334
ifreq structure, 334
IMMEDlATE_BH bottom half, 195
immediate queue, 141, 145, 195, 197

in_interruptO, 396
inb(), 164

Index

include/asm directory (see entries under
<asm/>)

infinite loops, preventing, 86
inflate file, 379
info file, 371
init_mm, accessing, 288
init_module(), 14, 24-26, 307

error handling in, 25-26
installing interrupt handler within, 180
unregistering facilties from, 25

init process, 368
INIT_REQUEST(), 243
init_timer(), 148
initializing

kernel data structures, 363
modules, 24-26
network devices, 307-309
PC! drivers, 347

initrd utility, 261, 368
in!(), 164
inline functions, 164
inode pointer (file structure), 53, 95
inodes, 375
insb(), 168
ins!(), 168
insmod program, 5, 20

assigning parameter values, 34
-f flag, 21
modprobe program vs., 223

installing interrupt handlers, 179-189
insw(), 168
int data type, 215
interface-specific data types, 217
interrupt-driven operation, 202-203

block drivers, 263-265
network drivers, 324-325

interrupt handlers, 178-213
autodetecting IRQ numbers, 183-186,

200, 212
bottom halves of handlers, 194-199
enabling parallel ports for, 178
enabling/disabling interrupts, 193-194,

205
implementing, 189-194
installing, 179-189
Linux 2.1 and, 396

409

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 410

Index

interrupt handlers (cont'd)
/proc files for, 181-182
race conditions, 203-210
sharing interrupts, 199-202
slow vs. fast, 187-189, 200
version dependency, 211-212
on x86 architecture, 188-189

interrupt numbers, 179, 192
interrupt reporting, 187
interrupt time, 140
interrupt.h header, 184
interruptible_sleep_on(), 105, 136, 208
interrupts file, 181, 202
interrupts, PCI, 355
intervals of time, 131-132, 218
intr_count variable, 140, 145, 396
inw(), 164
I/O, 116

accessing, PCI and, 351-354
asynchronous notification, 117-121
blocking, 105-114
blocking/nonblocking, 108-111
buffers for, 110
flushing pending, 116
interrupt-driven, 202-203
I/O ports, 164-168

parallel ports, 168-170, 178
I/O typing, 165
ISA devices and, 356
pausing, 167
remapping specific regions of, 280-282
space for, in PCI buses, 342
string operations, 167-168
transfering data with DMA, 289-298
(see also reading; writing)

_IOC symbols/macros, 128
ioctl file, 377
ioctl method, 50, 95-105

block devices and, 249-252
command numbers, 95-99
controlling devices without, 104-105
customizing for networking, 334
debugging with, 76
extra argument of, 100-103
Linux 2.1 implementation, 393
network devices and, 317
partitionable devices and, 261

410

predefined commands of, 99-100
TIOCUNUX command, 70

ioctl.h header, 96, 128
ioctl-number.txt file, 96
io.h header, 164
ioperm(), 165
iop!O, 165
ioports file, 29
ioremap(), 157
IP numbers, assigning, 302-305
ip_summed field (sk_buft), 323, 326
ipc directory, 378
IPC (Inter-Process Communication), 378
irq argument (interrupt number), 179, 192
IRQs (interrupt request lines)

autodetecting (probing) numbers for,
183-186, 200, 212

statistics on, 182
irq.h header, 193
ISA devices, 356-358

allocating memory, 31-34
DMA for, 293-297
Extended ISA (EISA) buses, 358
interface to memory, 171-175
probing, 31, 308

ISA-busmaster DMA, 293
isdn directory, 380

J
jiffies value, 131

for current time, 132
timeout field and, 135
at timer interrupt, 131

jiq module, 141
jiq_print(), 143
jit module, 133
jitbusy program, 135
jitimer module, 149
joysticks, 87

K
kbd_mode -a command, 87
kcore file, 89
kdebug utility, 90-92
kdev_t_no_nr(), 48
kdev_ttype,48, 241
kdev_t.h header, 48

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 411

kernel direc1ory, 369-371
kernel headers, 14
kernel_sendO, 224-227
kernel space, 16

handling faults in, 398-400
kerlend program and, 224-227
1ransfering to/from user space, 61-66

__ KERNEL __ symbol, 18
kernel timers, 147-149
kernel_version symbol, 20
kerneld program, 222-227

mmap method and, 278
kerneld.h header, 224, 231
kernels

allocating memory at boot time, 160-161
booting, 362-363
booting with initrd, 261
bzlmage, booting, 365
connecting network drivers to, 305-310
developmental (experimental), 9
handling system faults (see system

faults)
loading modules into (see loading mod-

ules)
messages (see messages)
module version control, 227-231
multicasting support, 337
multitasking in, 17
partition detection in, 257-258
probing interrupt numbers with,

184-185
remote debugging enabled on, 92-93
security (see security)
splitting role of, 3-5
symbol table, 16, 22-24
time intervals in, 131-132
version 2.1, 382-401
version numbering, 8-10
zlmage, booting, 364

keyboard, debugging when locked, 87
kfree_skb(), 327
kfree(), 28
kgdb script, 91
kill_fasync(), 120,130
klogd daemon

-c flag, 70
debugging modules with, 85
decoding oops messages, 84-85

-f flag, 71
-k flag, 84

kmalloc command, 28, 152-154
kmalloc file, 372
kmouse module, 126
ksymoops utility, 81--83
ksyms -m command, 81
ksyms file, 22, 370

L

Index

layered modularization (stacking modules),
22

Id -r command, 19
lel6_to_cpup(), lel6_to_cpus(), 397
lel6_to_cpu(), le32_to_cpu(), 397
levels

CPU modalities, 16
debugging, 73
message priority (see Joglevels)

libraries, 14
library functions, 378
license, Linux, 10
lilo program (Linux Loader), 366
line disciplines, 24
lines, interrupt (see IRQs)
Linux

license terms, 10
loading, 364-367
version numbering, 8-10

linux directory, 14
LINUX_ VERSION_CODE(), 21
<linux/binfmts.h> header, 373
<linux/bios32.h> header, 346
<linux/blk.h> header, 240-242
<linux/blkdev.h> header, 236
<linux/config.h> header, 346
<linux/fs.h> header, 67, 249
<linux/genhd.h> header, 256
<linux/if.h> header, 334
<linux/interrupt.h> header, 184
<linux/ioctl.h> header, 128
<linux/kdev_t.h> header, 48
<linux/kerneld.h> header, 224, 231
<linux/mm.h> header, 275
<linux/module.h> header, 38
<linux/modversions.h> header, 229
<linux/net.h> header, 378

411

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 412

Index

<linux/pci.h> header, 346
<linux/sched.h> header, 39
<linux/skbuff.h> header, 325
<linux/symtab_begin.h> header, 23, 38
<linux/symtab_end.h> header, 38
<linux/timer.h> header, 148
<linux/tqueue.h> header, 141
<linux/types.h> header, 217
<linux/version.h> header, 21, 39
<linux/vmalloc.h> header, 157
little-endian byte order, 219
llseek method, 387
load50 program, 143
loading block drivers, 235-254
loading Linux, 364-367
loading modules, 20

on demand, 222-227
dynamically assigned device numbers,

45
for network drivers, 306
persistent storage across, 231-233
version dependency and, 21

loadlin program, 367
load-time network interface configuration,

330-332
lock variables, 206-208
locked keyboard, debugging, 87
locks file, 377
loff_t field (file structure), 53
logging messages, 71
loglevels (message priorities), 69-70, 87
long data type, 215
long delays, 134-136
loops, endless, 86'
ls command, identifying device type with,

42
!seek method, 50, 121-122, 387
lseek_off_t(), 388
lseek_t(), 388

M
M68k architecture, porting and, 166
Magic System Request Key, 88
MAJOR(), 48
major device numbers, 43-47
major_name value (gendisk_struct), 256
MAJOR_NR symbol, 240

412

make_request(), 247
Makefile, 18-20, 228
MAP _NR(), 275
mapper program, 282
mapping memory (see memory manage-

ment)
mark_bh(), 195
marking bottom halves, 195
master module, 228
MAX_DMA_ADDRESS(), 291
MCA buses, 358
mechanism, driver, 2, 41--42
mem_map_t type, 274
memcpy_fromfs(), 61
memcpy_fromio(), 172
memcpy_tofs(), 61, 102
memcpy_toio(), 172
memory

accessing from expansion boards,
170-175

allocating, 58-61
at boot time, 160-161
function definitions for, 372
kmalloc for, 152-154
by page, 154-157
vmalloc for, 157-160

circular buffers, 204-205
free, information on, 66
global areas, 42
how much to allocate, 154
ISA boards, 31-34, 171-175
managing allocation, 28
page clusters, 153
page size and portability, 218
PCI boards, 175
persistence, 42
on text-mode VGA boards, 175
verifying user-space addresses, 101
virtual, Llnux 2.1 and, 398

memory file, 372
memory management, 3

OMA (direct memory access), 289-298
fragmentation, 291
handling map region changes, 279-280
memory mapping/remapping, 274

Alpha architecture, 276
function definitions for, 372
handling region changes, 279-280

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 413

memory management, memory map
ping/remapping (cont'd)

PCI regions, 352
RAM, 282-287
specific 1/0 regions, 280-282
virtual addresses, 287-288

mmap method, 51, 275-288
PCI and, 348-354
theory of, 267-275
VMAs (virtual memory areas), 270-274

memory-is-prefetchable bit, 351
memset_io(), 172
messages

globally enabling/disabling, 72
logging, 71
oops messages, 79-85
priorities Ooglevels) of, 69-70
priority of, 13
from PrScr key, 87

methods (see file operations)
mice, 87

asynchronous notification, 119
cloning devices (kmouse module), 126

Micro Channel Architecture (MCA), 358
milo program, 367
MINIMUM_CONSOLE_LOGLEVEL, 70
minor device numbers, 43, 47-48
minor_shift value (gendisk_struct), 256
MINOR(), 48
Mips architecture, porting and, 166
misaligned data, 75
misc devices, 379
miscellaneous devices, 24
MKDEV(), 48
mknod command, 44
mlock file, 373
mm directory, 371-373
mmap file, 372
mmap method, 51, 275-288

remapping virtual addresses with,
287-288

usage count and, 277-278
mm.h header, 275
MOD_DEC_USE_COUNT macro, 27
MOD_IN_USE macro, 27
MODJNC_USE_COUNT macro, 27
modalities Oevels), CPU, 16
mode_t field (file structure), 52

modes
device modes, 45
file modes, 52

modprobe program, 223
modularization, 383-387

layered (see stacking modules)
network drivers, 310

module file, 370
MODULE_PARM(), 385
__ MODULE_STRING symmbol, 386
MODULE symbol, 19
module.h header, 38
modules, xii, 5

Index

addresses for, adding to system map, 82
applications versus, 14-18
classes of, 5-7
debugging, 85, 93
exporting symbols, 230-231, 383-385
filesystem (see filesystem nodes)
header files of, 14
HZ (time frequency) and, 132
initializing, 24-26
interrupts (see interrupt handlers)
license terms, 10
loading/unloading, 14, 20, 28, 46--47,

222-227
with dynamically assigned device

numbers, 45
for network drivers, 3o6, 309
usage count and, 27-28
version dependency and, 21
(see also cleanup_module())

partition detection in, 259-261
partitionable, portability and, 255
persistent storage, 231-233
probing for hardware (see probing)
security (see security)
stacking, 22
usage count (see usage count)
version dependency, 20-22
version support, 227-231

modules file, 27, 386
modules package

customizing, 224
persistent storage capability, 231

modules.conf file, 223
monitoring, preprocessor for, 72-73
mounting block devices, 248-249

413

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 414

Index

mouse (see mice)
mremap file, 373
mremap system call, 279-280
msg file, 378
MTU, network devices and, 317
multicasting, 335-339
multitasking, 17

N
name cache, 375
names, device (see devices, names oO
namespace pollution, 15
native DMA, 293-297
nbtest program, 113
NET_BH bottom half, 196
net directory, 15, 377
net_init file, 379
net.h header, 378
network drivers, 6, 301-340

configuring,330-333
connecting to kernel, 305-310
function definitions for, 379
initializing device, 307-309
interrupt-driven operation, 324-325
loading/unloading modules for, 306, 309
methods of, 315-317
modularized vs. non-modularized, 310
opening/closing network interface,

318-320
socket buffers, 320, 325-328
statistics on, 335

networking, 5
new timers, 147-149
nice system call, 369
__ NO_ VERSION __ symbol, 21
nodes

creating within /proc, 74
names, device (see devices, names oO
read-only, 74

nonblocking operations, 108-111
select method, 114-117
testing, 113

non-modularized network drivers, 310
nopage method, 273

mapping RAM to user space, 283-287
mremap method with, 279-280
remapping virtual addresses with, 287

414

noquot file, 377
NR_IRQS symbol, 186
ntohl(), 219
ntohs(), 219
numbering versions (see version number

ing)

0
O_NONBLOCK flag (f_flags field), 100,

108-111
objdump utility, 90
obtaining sample programs, 11
old timers, 147
oops messages, 79-85
oops program, 83-84
open file, 375
open method, 51, 54-57, 272

blocking, 125-126
checking for disk changes, 254
cloning devices in response to, 12~128
for network devices, 315, 319
partitionable devices and, 261
private_data and, 53
restricting simultaneous users and, 124
for single-open devices, 123

opening network interface, 318-320
outb(), 164
out!(), 164
output buffer, driver, 110
outsb(), 168
outs!(), 168
outsw(), 168
outw(), 164
overriding ARP, 329

p

packets
multicasting, 335-339
transmission/reception of, 305, 320-323

page_alloc file, 372
page_io file, 371
PAGE_OFFSET(), 274
PAGE_SI-llFT symbol, 218
page size and portability, 218
PAGE_SIZE symbol, 218, 275
page tables, 267-270
page.h header, 218, 268

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 415

page-oriented allocation functions, 154-157
paging, 371
panic file, 371
parallel ports, 168-170, 178
parameters, device, 34, 385
partial data transfers, 63, 65
partitionable devices, 255-263

detecting partitions in kernel, 257-258
detecting partitions in modules, 259-261
detecting partitions with initrd, 261
generic hard disk support for, 256-257
non-partitionable devices vs., 261

pausing 1/0, 167
PCLBASE_ADDRESS_ symbols, 352-354
pci directory, 380
pci file, 344
PCUNTERRUPT_ symbols, 355
PCI (Peripheral Component Interconnect)

addressing, 342
configuration registers, 344-348
configuration space, 343, 348-351
device configuration snapshot, 350
OMA and, 297-298
interface of, 341-355
interrupts, 355
memory, 175

pcibios_find_class(), 347-348
pcibios_find_device(), 347-348
pcibios_present(), 346
pcibios_read_config_ functions, 349
pcibios_strerror(), 347
pcibios_write_config_ functions, 349
pcidata module, 350
pcldump program, 351
pci.h header, 346
pciregions module, 354
pending output, flushing, 116
performance

avoiding device collisions, 29
clustering requests and, 246
debugger use, 88
managing system resources, 28-34
mmap method, 276
namespace pollution, 15
output buffer and, 110
printk to debug, 73
probing for IRQ numbers, 185

Index

reading from /proc files, 75
string operations and, 167-168

peripheral bus architecture, 341-361
Peripheral Component Interconnect (see

PCI)
peripheral memory, 170-175
perror() vs. strace command, 78
persistent storage/memory, 42, 231-233
PG_reserved bit, setting to remap RAM, 283
pgd_offsetO, 270
PGD (Page Directory), 268
pgd_val(), 269
phys_to_virt(), 292
pipe.c file, 376
platform dependency, 10,380

porting and, 165-167
read/write methods and, 63

Plug and Play specification, 357
pmd_offset(), 270
PMD (Page Mid-level Directory), 268
pmd_val(), 269
PnP specification, 357
pointers

invalid dereferencing, 79-85
to user space, verifying, 100

policy, driver, 1-3, 104
POLL . . . bits, 389
poll method, 388-391
portability, 218-220

data types and, 214-217
interrupt handlers, 211-212
obtaining current lime and, 133
partitionable modules and, 255
porting and, 165-167
read/write methods and, 62

ports, 29-30, 164-168
parallel, 168-170, 178
platform dependency and, 165-167

PowerPC architecture, porting and, 166
precision, temporal, 132-133
predefined task queues, 141-146
prefetchable bit, 351
prefixes, 16, 35
preprocessor, using to monitor driver,

72-73
printing

controlling devices by, 104
10 debug code, 69-73

415

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 416

Index

printing (cont'd)
from gdb debugger, 89
interface-specific data, 217

printk(), 13
circular buffer for, 71
debugging with, 69-71, 73
logging messages from, 71

priority
asynchronous notification and, 117-121
immediate queue, 141, 145
memory allocation, 28, 152
message (see loglevels)

private_data field (file structure), 53, 106
probe_irq_off(), 184
probe_irq_on(), 184
probing, 29-33

for IRQ numbers, 183-186, 200, 212
for ISA devices/memory, 31, 308
for network devices, 307
persistent storage to avoid, 233

/proc files, 25, 74-76
/proc/interrupts, 181, 202
/proc/modules (see modules file)
/proc/pci file 344
/proc/stat, 182

proc_register_dynamic(), 400
processes

access to multiple, 124-125
kernel timers for, 147-149
managing, 3, 370
opening devices for each process,

123-124
putting to sleep and awakening,

105-106
race conditions and, 208-210
requeuing, 145
sleeping during wait queues, 135, 209
task queues for, 137-146

program, obtaining, 11
programming drivers (see writing drivers)
protect method, 273
PrScr key, 86
pte_offset(), 270
pte_page(), 270
pte_present(), 270
pte_val(), 269
PTRSYEll. symbols, 268
put_user(), 102,129,392

416

__ puLuser(), 392
puLuser_byte(), 129
put_user_ret(), 392
putting processes to sleep, 105-106

Q
querying to debug, 73-76
queue_task(), 139,146
queue_task_irq(), 139,395
queue_task_irq_off(), 139,395
queues

R

scheduler queue, 141, 143-144
task queues (see task queues)
wait queues (see wait queues)

race conditions, 203-210
RAM

probing ISA memory for, 32
remapping, 282-287

random numbers, 180
read_ahead array, 238
read method, 50, 61-65

Llnux 2.1 and, 387,393
select system call with, 116

read_ write file, 376
readb(), 172
readdir file, 376
readdir method, 50
reading

blocking VO, 105-114
blocking/nonblocking operations,

108-111, 114-117
from a device, 61-65
from /proc files, 75
verifying memory address for, 101

read!(), 172
read-only /proc nodes, 74
read/write position, 50, 53
readw(), 172
REALLY_SHOW_IO symbol, 167
rebuild_header method, 316, 329, 400
reception of packets, 305, 322-323,

335-339
reductions in memory map region, 279-280
reentrancy,86, 106-107
register_blkdev(), 235

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 417

register_chrdev(), 43-44
register_symtab(), 22-24
register_symtab_from(), 38
registering

block drivers, 235-240
DMA usage, 294
facilities in init_module(), 24-25
function definitions for, 374
network drivers, 306
ports, 30
symbol tables, 22-24

registers, PC! configuration, 344-348
release method, 51, 57

block devices and, 248
blocking open and, 126
Linux 2.1 and, 387
(see also close method)

release_module(), 225
release_region(), 30
release_return(), 388
release_t(), 388
remap_page_rangeO, 277-283
remapping

1/0 regions, 280-282
PC! regions, 352
RAM, 282-287
virtual addresses, 287-288

remote debugging, 92-93
removable block devices, 252-254
remove_wait_queue(), 210
_remove_wait_queue(), 210
request_dma(), 294
request_ fn(), 247
request_irq(), 179

for shared interrupts, 200
version dependency of, 211
when to call, 181

request_module(), 225, 227
request_region(), 30
request_struct structure, 244, 247
requesting interrupts (see interrupt han-

dlers)
requests, block driver, 242-248

blocking, 125-126
clustered, 246--248
handling data transfer, 244-246
interrupt-driven devices and, 263
partitionable devices and, 262

Index

requeuing/rescheduling tasks, 145
reserved bit, setting to remap RAM, 283
reserved pages, remapping, 282-287
resetup_one_dev(), 255, 259
resolution, time, 132-133
resolving Ethernet addresses, 328-330
resource file, 370
resources for further reading, xiv
resources, managing, 28-34
restore_flags(:) , 32
restricting access (see access)
ret_from_sys_call(), 189, 196
return_from_sys_call(), 196
revalidate method, 51, 253
RightAlt-PrScr key, 86
rmmod command, 5, 28
ROM, probing ISA memory for, 31
run_task_queue(), 139, 146
run-time errors, strace for, 78
run-time network interface configuration,

332-333

s
SA_INTERRUPT symbol, 180
SA_SAMPLE_RANDOM symbol, 180
SA_SH!RQ symbol, 180, 200
safe time, 140
SAK (Secure Attention Key), 87
save_flags(), 32
saving across loading/unloading, 231-233
sbull driver (example), 235-263
Sbus peripherals, 359
sched file, 369
sched.h header, 39
scheduler queue, 141, 143-144
schedule(), 130, 369

called during interrupt time, 140
preventing endless loops with, 86

scheduling functions, 17
scsi directory, 15, 380
SCSI drivers, 6, 380
scull driver (example), 41--67, 72--84, 97,

101-103
scullp driver (example), 156--160, 283-287
scullpipe devices (examples), 111-114
scullv driver (example), 159-160, 287
Secure Attention Key (SAK), 87

417

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 418

Index

securelevel variable, 8
security, 7-8
seeking a device, 121-122
segmentation faults, handling, 398--400
segment.h header, 67
SEL_ symbols, 114, 130
select file, 376
select method, 50, 114-117, 388-391
select_table structure, 114, 117
select_table_entry structure, 117
select_waitO, 117, 130
serial ports, 24
set_bitO, 207, 396
set_config method, 316, 332
set_dma_addr(), 296
set_dma_countO, 296
set_dma_mode(), 296
set_mac_address method, 317
set_multicast_list method, 317, 337-339
set_persistO, 232
setconsole program (example), 70
setterm program, 104
sharing interrupts, 199-202
Shift-PrScr key, 86
short delays, 137
short driver (example), 169-170, 178--205
shutting down modules (see unloading

modules)
SIGIO signal, 119
signal handling, 112
silo program, 368
single-open devices, 123-124
SIOCDEVPRIVATE commands, 334
size of block devices, 237
sizing data explicitly, 216
sk_buff structure, 320, 325-328
skb_headroom(), 328
skb_pull(), 328
skb_push(), 327
skb_put(), 327
skb_reserve(), 328
skb_tailroom(), 327
skbuff.h header, 325
skull driver (example), 18--35
sleep_on(), 105, 136, 208
sleeping processes, 105-106, 208--210
SLOW_DOWN_IO(), 167
slow interrupt handlers, 187-189, 200

418

SLOW_IO_BYJUMPING symbol, 167
SMP machines, kernel headers and, 18
__ SMP __ symbol, 18
snapshot of PC! configuration, 350
snull driver (example), 301-329
socket buffers, 320, 325-328
socket structure, 378
softirq file, 370
software versions (see version numbering)
sound directory, 380
Space file, 379
Spare architecture, 166, 368
spul1 driver (example), 255-265
stacking modules, 22
standard C data types, 214-215
start_kernel(), 363
stat file, 182, 377
state field (current), 210
static symbols, 16
statistics

on interrupts, 182
on network interfaces, 316, 335

stiO, 32, 187
stop method, 316, 319
strace command, 77
string file, 378
string operations, 167-168
super file, 374
superblocks, 374
supervisor mode, 16
swap file, 371
swap_state file, 371
swapfile file, 371
swapin method, 274
swapon/swapoff methods, 371
swapout method, 274
swapping, 371
switch statement, with ioctl, 95, 99
symbols, 23

adding to modifying system map, 82
declaring as static, 16
exporting,230-231, 383-385
global, 22
registering symbol table, 22-24
symbol table, 16, 22-24
(see also functions; variables)

symtab_begin.h header, 23, 38
symtab_end.h header, 38

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 419

sync method, 273
synchronous writes, 100
sys file, 371
sys_syslogO, 70
system faults

changing message loglevels after, 70
debugging, 79-88
handling, kernels versus applications, 16
kernel-space, 398-400

system hangs, 85-88
system map, modifying, 82
system resources, managing, 28-34
system.h header, 40

T
_t data types, 217
tail pointer, 204
TASK_ symbols, 210
task_queue pointer, 139
task queues, 137-146

declaring custom, 146
Linux 2.1 and, 395
predefined, 141-146

tcpdump program, 305
terminals, selecting for messages, 70
test_ ... _bit functions, 396

test_bitO, 207, 396
testing (non)blocking operations, 113
text-mode VGA boards, 163, 175
time, 131-151

current time, 132-134
delaying execution, 134-137
HZ (time frequency), 131, 218
interrupt time, 140
kernel timers, 147-149
queues (see scheduler queue; task

queues; wait queues)
safe time, 140
sleeping processes, 105-106, 208-210
time intervals, 131-132, 218

time file, 370
timeout field (current), 135
TIMEOUT_VALUE symbol, 241
timeouts, 135, 241
TIMER_BH bottom half, 196
timer interrupt, 131
timer_list structure, 148

timer queue (tq_timer), 141, 144, 195
timer queue element structure, 138
timer.h header, 148
timers, 147-149
TIOCLINUX command, 70
to_kdev_t(), 48
tq_disk queue, 141
tq_immediate queue, 141, 145
tq_scheduler queue, 141, 143-144
tq_struct structure, 138
tq_timer(), 141, 144, 195
TQUEUE_BH bottom half, 195
tqueue.h header, 141
tr_setp(), 312
tracing programs, 77
transmission of packets, 305, 320-322,

335-339
troubleshooting, 69

faults (see system faults)

Index

handling kernel-space faults, 398-400
misaligned data, 75
porting problems, 165-167
race conditions, 203-210
system hangs, 85-88
wrong font on console, 104
(see also debugging)

truncating devices on open, 56
tty

cua versus, 54
drivers for, 24
line disciplines, 24
switching, 196

types.h header, 217

u
u8, u16, u32, u64 data types, 216, 397
uaccess.h header, 391
udelay(), 137
unaligned data, 219
uniqueness of ioctl command numbers, 95
unloading modules, 14, 28, 46-47

on demand, 222-227
for network drivers, 309
usage count and, 27-28
(see also cleanup_module())

unmap method, 273
unregister_blkdev(), 235

419

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 420

Index

unregister_chrdev(), 46
unregistering

block drivers, 235-240
facilities, 25
/proc nodes, 76

urandom device, 180
usage count, 27-28

mmap method and, 277-278
open method and, 54
partitionable devices and, 261
release method and, 57
resetting to zero, 98

user mode, 16
user space, 16

accessing in Linux 2.1, 391-395
explicitly sizing data in, 216
HZ (time frequency) and, 131
kerneld program and, 223-224
mapping RAM to, 282-287
retrieving datum from, 102
transfering to/from kernel space, 61-66
verifying addresses, 100
watching programs run in, 77-78
writing drivers in, 36--37

users, restricting access to simultaneous,
124-125

/usr/include/asm directory (see entries
under <asrn/>)

/usr/include/linux directory (see entries
under <linux/>)

/usr/include/net directory, 15
/usr/include/scsi directory, 15
util file, 378

V
validating

block driver requests, 243
disk changes, 253

variables, 23
(see also symbols)

vendor PC! register, 345
verify_areaO, 101, 129, 391, 398
VERIFY_ symbols, 101, 129
verifying user-space addresses, 100
version dependency, 20--22, 380

interrupt handlers, 211-212
module version support, 227-231

420

version numbering, 8--10
char drivers, 42-48
major device numbers, 43-47
minor device numbers, 43, 47-48

version.h header, 21, 39
VESA Local Bus devices, 359
vfree(), 157-158
VFS (Virtual File System), 374
VGA boards, 163, 175
virt_to_bus(), 292
virt_to_phys(), 292
virtual addresses, 287-288,
virtual memory, Linux 2.1 and, 398
virtual memory areas (VMAs), 270--274
VLB (VESA Local Bus) devices, 359
vm_area_struct structure, 272
vm_operations_struct structure, 272
vmalloc(), 157-160, 287
vmalloc file, 372
VMALLOC_VMADDR(), 288
vmalloc.h header, 157
VMAs (virtual memory areas), 270--274
vmlinux and vmlinuz files, 89-90
vrnscan file, 371
void(), 257
vremap(), 157-159, 398

w
wait queues, 105, 107-108

performing jobs from within, 209
processes sleeping during, 135

wake_up(), 105, 210
wake_up_interruptible(), 105, 210
waking up processes, 105
-Wall flag (gee), 19
watching programs in user space, 77-78
wppage method, 273
write method, 50, 61-63

Linux 2.1 and, 387
select system call with, 116

writeb(), 172
write!(), 172
writew(), 172
writing, 69

blocking 1/0, 105-111
control sequences to devices, 104-105
to a device, 61-63, 65-66

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 421

writing (cont'd)
drivers

reentrant code, 106-107
in user space, 36-37
version numbering, 8-10
watching user-space programs run,

77-78
writer's role in, 1-3

implement handlers, 189-194
interrupt handler bottom halves,

197-199
Makefile, 18-20
to /proc file, 75
synchronously, 100
verifying memory address for, 101
(see also debugging)

X
x86 architecture

interrupt handling on, 188-189
porting and, 166
setting up, 364-367

xtime variable, 133

z
zlmage kernel, booting, 364

Index

42[

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 422

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 423

About the Author
Alessandro Rubini installed Linux 0.99.14 soon after getting his degree as Elec
tronic Engineer. He then received a PhD in Computer Science at the University of
Pavia despite his aversion towards modern technology. Alas, he still enjoys
digging in technology and discovering the intelligence of people who created it:
that's why he now works in his apartment with three PCs, an Alpha, a SPARC,
and an Apple-the last without Linux. But you might find him roaming around in
the north of Italy on his bike, which doesn't carry an electronic cyclometer.

Colophon
Our look is the result of reader comments, our own experimentation, and feed
back from distribution channels. Distinctive covers complement our distinctive
approach to technical topics, breathing personality and life into potentially dry
subjects.

The image on the cover of Linux Device Drivers is of a bucking horse. A vivid
description of this phenomenon is given in Marvels of the New West: A Vivid
Portrayal of the Stupendous Marvels in the Vast Wonderland West of the Missouri
River, by William Thayer (The Henry Bill Publishing Co., Noiwich, CT, 1888).
Thayer quotes a stockman who gives this description of a bucking horse: "When
a horse bucks he puts his head down between his legs, arches his back like an
angry cat, and springs into the air with all his legs at once, coming down again
with a frightful jar, and he sometimes keeps on repeating the performance until
he is completely worn out with the excursion. The rider is apt to feel rather worn
out too by that time, if he has kept his seat, which is not a very easy matter, espe
cially if the horse is a real scientific bucker, and puts a kind of side action into
every jump. The double girth commonly attached to these Mexican saddles is
useful for keeping the saddle in its place during one of those bouts, but there is
no doubt that they frequently make a horse buck who would not do so with a
single girth. With some animals you can never draw up the flank girth without
setting them bucking."

The cover layout was produced with Quark XPress 3.32 and Adobe Photoshop
4.0 software, using the ITC Garamond Condensed font.

The interior layouts were designed by Edie Freedman and Jennifer Niederst, with
modifications by Nancy Priest and Mary Jane Walsh. Chapter opening graphics are
from the Dover Pictorial Archive and Marvels of the New West. Interior fonts are
Adobe ITC Garamond and Adobe Courier. Text was prepared in SGML using the

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 424

DocBook 2.1 DID. The print version of this book was created by translating the
SGML source into a set of gtroff macros using a filter developed at ORA by
Norman Walsh. Steve Talbott designed and wrote the underlying macro set on the
basis of the GNU gtroff -gs macros; Lenny Muellner, with assistance from Chris
Maden, adapted them to SGML and implemented the book design. The GNU groff
text formatter version 1.09 was used to generate PostScript output.

The illustrations that appear in the book were created in Macromedia Freehand
7. 0 by Chris Reilley.

Whenever possible, our books use RepKover™, a durable and flexible lay-flat
binding. If the page count exceeds RepKover's limit, perfect binding is used.

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 425

~ More Titles from O'Reilly :,./ I
Linux

Linux in a Nutshell, 2nd Edition

:ii_
LINUX
•~!!2QIII

By Ellen Siever &
the Slaff of O'Rei/61 & Associates
2nd &l,1io11 February 1999
6281x1ges, ISBN 1-56592-585-8

This complete reference covers the core
commands available on common Linllx
distributions. II contains all user, programming,
administration, and networking comn11nds with

~'-"'" -- -- options, and also doa1ments a wide range of
GNU tools. New material in tl1e second edition includes popular UlO
and Loadlin programs used for dl11l-booting, a Perl quick-reference,
and RCi/CVS source control commands.

Linux Multimedia Guide
B;• Jef!Trrmter
Isl &Ii/ion September 1996
J86J1ages, ISBN J-56592-2/9-0

Linllx is increasingly popuJar an10ng
complller entl1usiasts or all types, and one
of tl1e applications ,,i1ere it is 0ouri !ting
is muJ.tin1edia. Titis book 1ells you how to
program such popular devices as sound

cards, CD-ROMs, and joysticks. II also describes tlte best free
software paclmges tliat support m:mipuJation of graphics, amUo,
and video and offers guidance on fi tting tl1e pieces togetl1er.

The Cathedral & the Bazaar
By Eric S. Rapno11d
Isl Edition Oclober 1999
288 Jx1ges, ISBN l-56592-724-9

After Red Hat's stunning !PO, even people
outside the computer industry have now
heard of Linux and open-source software.
This book contains the essays, originally

ERIC S. RAYIIOKD published online, that led to Netscape's
a•-··•-••··•· decision to release tl1eir browser as open

sou rce, put Linus Torvalds on tl1e cover
of Forbes Magazine and Microsoft on the defensive, and helped
Llnm to rock tl1e world or commercial software. These essays
have been expanded and revised fo r tl1is edi tion, and are in print
fo r tlte firs t time.

Linux Network Administrator's Guide
By Olaf Kirch
/st Editirm }a111,mJ1 1995
370/)ages, l'DN l -56592-087-2

One of tl1e most successful books 10 come
from tlte Llnm Documentation Project,
limi1· Network Ad111111istrator's G11ide touches
on all tl1e essential networking software
included \11 tl1 Llnm, plus some hardware

considerations. Topics include serial connections, UUCP, routing
and DNS, mail and News, SLIP mid PPP, NFS, and NIS.

Running Linux, 3rd Edition
By J/a/1 Welsh. ,I/al/bias Kalle Dal/Jeimer &
u,r Kl11,jinr111
3rd Edition August 1999
752 pages, ISBN l -56592-469-X

This book explains everytlting you need to
undersL'lltd, install , and start using the Li.J11Lx
operating system. It includes an installation
ru1orial, system maintenance tips, document

development and programnting tools, and guidelines for network,
Ille, primer, and Web site administration. New topics in the thi rd
edition include KDE, Samba, PPP, :md revised instructions fo r
installation :md configumtion (especially [or the Red Hat, SuSE
and Debi an distributions).

learning the bash Shell, 2nd Edition
By Cameron Ne,1•/x1p1 & 8,1/ Rosenblall
2nd Edllio11Jm11111ry1 1998
336 pages, ISBN 1-56592-347-2

This second edition covers all of tl1e features
of bash Version 2.0, while still applying to
bash Version l.x. It includes one-dimensional
arrays, parmneter expansion, more pattern
matching operations, new commands, securi1y

improven1ents, additions to Readiine, improved configuration and
ins~1lfation, and an additional programnting aid, tl1e bash shell
debugger.

O'REILLY®
TO ORDER: 800-998-9938 • order@oreilly.com • htlp://www. ore illy. com/

OUR PRODUCTS ARE AVAILABLE AT A BOOKSTORE OR somvARE STORE NEAR YOU.

FOR INFORMATION.' 800-998-9938 • 707-829-0515 • info@oreilly.com

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 426

Linux
Using Samba

BJ• Peter Kelly, Peny Donbfim &
Oatid Collier-Bro11111
Isl Edilio11 No1'1!111ber 1999
416pages, /11c/11desCO-RO,I/
ISBN 1-56592-449-5

Samba lllrns a UNIX or Llnux system into a
Ille and print server for Microsoft Windows
network clients. This complete guide 10

Samba administration covers basic 2.0 configuration, security,
logging, and troubleshooting. Whetl1er you're playing on one note
or a fu ll three-oc~ll'e range, this book will help you mainL1in an
efficient and secure server. lncludcs a CD-ROM o(sources and
ready-to-inst:tll binaries.

Learning Red Hat Linux
By Bill McCarty
Isl &b1io11 Sip/ember 1999
394 pages, /11c/udes CO-ROM
ISBN 1-56592-627-7

learning Red Hal LilllL\° will guide any new
Llnux user through the insL1.llation and use
of the free operating system that is shaking

~ -----~ up the world of commercial software. II
demy~ tifies l.inux in terms familiar 10 Windows users and gives
readers only what they need 10 start being successful users of this
operating system.

MySaL & mSaL
By Randy Jay li1rge1; George Reese & 7!111 Ki11g
Isl Edition Ju!y 1999
506 pages, ISBN 1-56592-434-7

111i5 book teaches you how to use MySQL
and mSQL, two popular and robust daL1base
products tliat support key subsets of SQL on
both Llnm and UNIX systems. Anyone who
knows basic C, Java, Perl, or Python a m

write a progran1 10 interact witl1 a th1L1base, eitl1er as a stand
alone application or d1rough a Web page. 'l11is book ~ es you
through the whole process, from ins~illation and configuration to
programming interfaces and basic administ.r:1tion. Includes an1ple
tutori,tl materi:tl.

Programming with at
By Mallhir1s lft1lle Dalbeimer
Isl Hd1/io11 .April 1999
384 /x1ges, ISBN 1-56592-588-2

This indi pensable guide 1eacl1es you how
10 take fuU advantage of Qt, a powerful,
easy-to-use, cross-platform GUI toolkit, and
guides you through tl1e steps of writing your
first Qt application. It describes all of the

GUI elements in Qt, along wid1 ad,ice about when and how to
use them. It also contains material on ad1<anced topics like 2D
transformations, dmg-and-drop, and custom image file filters.

Open Sources:
Voices from the Open Source Revolution

&liter/ b)' Chris 0/Bona,
Sam Ock111n11 & Mark Stone
Isl Edition Jr11111nry 1999
280 pages, ISBN 1-56592-582-3

IJ1 Open Sources, leaders of Open Source
come togetl1er in print fo r the first lime
to discuss the new ,1sion of the software

- =----- industry they have created, through essays
tliat explain how tl1e movement works, why ii succeeds, and
where ii is going. A powerful vision from tl1e movement's spiritual
leaders, this book reveals the mysteries of how open development
builds belier software and how businesses c:m levemge freely
available software for a competitive business ad,<antage.

Programming with GNU Software
By Mike Louk/des & Andy 0mm
Isl &lilio11 December 1996
260 pa •es, Includes CD-ROM
ISBN 1-56592-/12-7

Tltis book and CD combination is a complete
package for programmers who are new 10
UNIX or who would like to make better use
of the system. The tools come from Cygnus

Support, Inc., and Cyclic Software , companies tliat provide support
fo r free software. Contents include GNU Emacs, gee, C and C++
libraries, gdb, RCS, and make. l11e book provides an introduction
to :tll tl1ese tools for a C programmer.

O'REILLY®
TO ORDER: 800-998-9938 • order@oreil/y.com • htlp://www. ore illy. com/

OUR PRODUCTS ARE AVAILABLE AT A BOOKSTORE OR S0ffi¥ARE STORE NEAR YOU.

FDR INFORMATION: 800-998-9938 • 707-829-0515 • info@oreil/y.com

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 427

UNIX Tools

The UNIX CD Bookshelf
By O'Reil()' & Associales, /11c.
Isl Et/ilion No1Y?mber 1998
444 /Xlg/J/,; Includes CD-R0,1/
ISBN l -56592-406-I

71JIJ UNIX CD Bookshelf contains sLx books
from O'Reilly plus the software from UNIX
Power Tools - all on a convenient CD-ROM.

,._ - A bonus hard-copy book, UNIX in a Nu!shell:
~---· -··-- ·-~ Sys/em V Edi/ion, is also included. 111e
CD-ROM conL'lins UNIX iu t1 N11/s/J1Jil: S;~lem V Edition; UNIX
Power 7bols, 2nd Edition (\lilh software); Leaming !IJIJ UNIX
Operating Sys/em, 4th Etlition; Leaming IIJIJ vi Editor, 5th Edition;
sed & t11/lk, 2nd Edi/ion; and Let1r11ing 1/JIJ Korn SIJ1JII.

sed & awk, 2nd Edition
By Dt1fe Dougberly & Arnold Robbins
2nd Etlilion March 1997
432 pages, ISBN I -56592-225·5

sed & a111k describes two text manipulation
programs 1ha1 are mainstays of !he UNIX
programmer's toolbox. This edition covers
the sed and awk programs as !hey are
mandated by the POSIX sL'lfldard and

includes discussion of tl1e GNU versions of tl1ese programs.

lex & yacc, 2nd Edition
By John Levine, Tony Mnson & Doug Brown
2nd Etlilion Oclober 1992
366pages, 1.58N l-56592-000-7

Shows programmers how 10 use two
UNlX utilities, lex and)"JCC, in program
development You'll find tutorial sections
for 1101ice users, reference sections for
advanced users, and a detailed index. Major
MS-DOS and UNIX versions of lex and yacc

are explored in depth. Also covers Bison and Flex.

Managing Projects with make, 2nd Edition
By Andrew Oram & ~Y,1,e Tr1/boll
2nd Edition Oclober 1991
152 pages, ISBN 0-937175-90-0

make is one of UNIX's greatest contributions
10 software development, and !his book is the

m~ 1 ~e clearest description of make ever written. 11
a...t\l describes all !he basic features and provides

guidelines on meeting tl1c needs of large,
a-8,, modern projects. Also contains a description

of free products tl1at contain major enhancements to make.

Writing GNU Emacs Extensions
By Bob Glickslei11
Isl Etlilion April 1997
236pages. ISBN I -56592-261-/

This book introduces Emacs Lisp and tells
you how 10 make tl1e editor do whatever
you want, whetl1er H's al tering the way text
scrolls or inventing a whole new "major
mode." Topics progress from simple 10

complex, from lists, symbols, and keyboard commands 10 syntax
tables, macro templates, and error recovery.

UNIX Power Tools, 2nd Edition
By jeny Peek, Tim O'lleilly & Mike loukides
2nd Edilio11 August 1997
1120 {Xtges, /11c/11des CD-I/OM
ISBN l -56592-260-3

Loaded 11itl1 practical advice about almost
every aspect of U 'IX, this second edition of
UNIX Power Tools addresses !he technology
tliat NIX users face today. You 'U fi nd

thorough coverage of POSIX utilities, inclucLing GNU versions,
detailed bash and lcsh shell coverage, a strong emphasis on
Perl , and a CD-ROM !hat contains tl1e best frecware available.

O'REILLY®
TO onorn: 800·998-9938 • order@oreilly.com • http://www. ore illy. com/

Oun PROOUCTS ARE AVAILABLE AT A BOOKSTORE OR SOFTWARE STORE NEAR YOU.

FOR INFORMAT/011: 800-998·9938 • 707-829-0515 • info@oreil/y.com

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 428

UNIX Tools

Applying RCS and SCCS
By Don Bolinger & Ta II Bronson
Isl Etfilion Sep/ember 1995
528/xiges, ISBN 1-56592- //1-8

Appljifng RCS and SCCS is a thorough
introduction lo tl1ese two systems, \iewcd
as tools for project management. This book
L'lkes tl1e reader from basic source control
of a single Ille, tl1rough working \\itl1 multiple

releases of a software project, lo coordinating multiple developers.
It also presents TCCS, a representative "front-end" that addresses
problems RCS and SCCS can't handle alone, such as managing
groups of Illes, developing for multiple platforms, and linking
public and private development areas.

Practical Internet Groupware
Byjo11 Udell
Isl Edilio11 Oeiober 1999
524 pages, ISBN 1-56592-537-8

This revolutionary book tells users,
programmers, IS managers, and system
administrators how to build Internet
groupware applications that organize the
casual and chaotic transmission of online

information into useful, disciplined, and documented data.

Software Portability with imake, 2nd Edition
By Paul DuBois

•~ 2nd &filion September 1996
4 /0 pages, ISBN l -56592-226-3

This handbook is ideal for X and UNIX
• programmers who want tl1eir software 10

1 n1aKe be portable. The second edition corers
version XI !R6. J of the X Wmdow System,
using imake for non-UNIX systems such as

Windows NT, and some of tl1e quirks about using irnake under
OpcnWindows/Solaris.

O'REILLY®
TO ORDER: 800-998-9938 • order@oreilly.com • http://www. ore illy. com/

OUR PRODUCTS ARE AVAILABLE AT A BOOKSTORE OR SOFTWARE STORE NEAR YOU.

FOR INFORMATION: 800-998-9938 • 707-829-0515 • info@oreilly.com

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 429

How to stay in touch with O'Reilly

1. Visit Our Award-Winning Web Site
http://WWW.orsllly.com/

*''Top 100 Sites on the Web" -PC Magazine
*''Top 5% Web slles" -Point Communications
*"3-Star site" -The McKinley Group

Our web site contains a library of comprehensive product
information (including book excerplS and tables of
contents), downloadable software, background articles,
interviews with technology leaders, links to relevant sites,
book cover art, and more. Fde us in your Bookmarks or
Hotlistl

2. Join Our Email Mailing Lists
Nsw Product Rs/sasss
To receive automatic email with brief descriptions of all
new O'Reilly produclS as they are released, send email to:
listproc@onllne.oreilly.com
Put the following information in the first line of your
message (not in the Subject field):
subscribe oreIUy-news

O'Rsllly Evsnts
If you'd also like us to send information about trade show
evenlS, special promotions, and other O'Reilly evenlS,
send email to:
llstproc@online.oreilly.com
Put the following information in the first line of your
message (not in the Subject field):
subscribe oreIUy-events

3. Get Examples from Our Books
via FTP
There are two ways to access an archive of example files
from our books:

Regular FTP
• ftp to:

ftp.oreilly.com
(login: anonymous
password: your email address)

• Point_your web browser to:
ftp:/11tp.oreilly.com/

FTPMAIL
• Send an email message to:

ftpmail@online.oreilly.com
(Write "help" in the message body)

4. Contact Us via Email
order@oreilly.com

To place a book or software order onllne. Good for
North American and International customers.

subscriptions@oreilly.com
To place an order for any of our newsletters or
periodicals.

books@oreilly.com
General questions about any of our books.

software@oreilly.com
For general questions and product information about
our software. Check out O'Reilly Software Online at
http://software.oreilly.com/ for software and technical
support information. Registered O'Reilly software users
send your questions to: website-support@oreilly.com

cs@oreilly.com
For answers to problems regarding your order or our
produclS.

booktech@oreilly.com
For book content technical questions or corrections.

proposals@oreilly.com
To submit new book or software proposals to our
editors and product managers.

intemational@oreilly.com
For information about our International distributors
or translation queries. For a list of our distributors
oulSide of North America check out:
http://www.oreilly.com/www/order/country.h1ml

O'Reilly & Associates, Inc.
101 Morris Street, Sebastopol, CA 95472 USA
TEL 707-829-0515 or 800-998-9938

(6am to 5pm PST)
FAX 707-829-0104

O'REILLY®
TO ORDER: 800-998-9938 • order@orellly.com • http://WWW.orellly.com/

OUR PRODUCTS ARE AVAILABLE AT A BOOKSTORE OR SOF1WARE STORE NEAR YOU.

FOR INFORMATION: 800-998-9938 • 707-829-0515 • lnfo@orellly.com

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 430

International Distributors
UK, EUROPE, MIDDLE EAST AND CANADA (FRENCH LANGUAGE BOOKS) IND/A
AFRICA {EXCEPT FRANCE, GERMANY, Les Editions Flammarion ltee Computer Bookshop (India) Pvt Ltd.
AUSTRIA, SWITZERLAND, LUXEMBOURG, 375, Avenue Laurier Ouest 190 Dr. D.N. Road, Fort
LIECHTENSTEIN, AND EASTERN EUROPE) Montreal (Qut!bec) H2V 2K3 Bombay 400 001 India

INQUIRIES Tel: 00-1-514-277-8807 Tel: 91-22-207-0989

O'Reilly UK limited Fax: 00-1-514-278-2085 Fax: 91-22-262-3551

4 Castle Street Email: info@Oammarion.qc.ca Email: cbsbom@giasbmOl .vsnl.net.in .

Farnham
HONG KONG JAPAN Surrey, GU9 7HS

United Kingdom City Discount Subscription Service, Ltd. O'Reilly Japan, Inc.
Telephone: 44-1252-711776 Unit D, 3rd Floor, Yan's Tower Kiyoshige Building 2F
Fax: 44-1252-734211 27 Wong Chuk Hang Road 12-Bancho, Sanei-cho
Email: josette@oreilly.com Aberdeen, Hong Kong Shinjuku-ku
ORDERS Tel: 852-2580-3539 Tokyo 160-0008 Japan
Wdey Distribution Services Ltd. Fax: 852-2580-6463 Tel: 81-3-3356-5227
1 Oldlands Way Email: citydis@ppn.com.hk Fax: 81-3-3356-5261
Bognor Regis

KOREA
Email: japan@oreilly.com .

West Sussex P022 9SA
United Kingdom Hanbit Media, Inc. ALL OTHER ASIAN COUNTRIES
Telephone: 44-1243-779777 Sonyoung Bldg. 202 O'Reilly & Associates, Inc.
Fax: 44-1243-820250 Yeksam-dong 736-36 101 Morris Street
Email: cs-books@wiley.co.uk Kangnam-ku Sebastopol, CA 95472 USA

Seoul, Korea Tel: 707-829-0515
FRANCE Tel: 822-554-9610 Fax: 707-829-0104

ORDERS
Fax: 822-556-0363 Email: order@oreilly.com
Email: hant93@chollian.dacom.co.kr

GEODIF
AUSTRALIA 61, Bd Saint-Gennain PHILIPPINES

75240 Paris Cedex 05, France Mutual Books, Inc. WoodsLane Pty., Ltd.
Tel: 33-1-44-41-46-16 (French books) 429-D Shaw Boulevard 7 /5 Vuko Place
Tel: 33-1-44-41-11-87 (English books) Mandaluyong City, Metro Warriewood NSW 2102
Fax: 33· 1-44-41-11-44 Manila, Philippines Australia
Email: distribution@eyrolles.com Tel: 632-725-7538 Tel: 61-2-9970-5111
INQUIRIES Fax: 632-721-3056 Fax: 61-2-9970-5002
Editions O'Reilly Email: mbikikog@mnl.sequel.net Email: info@woodslane.com.au
18 rue St!guier
75006 Paris, France TAIWAN NEW ZEALAND
Tel: 33-1-40-51-52-30 O'Reilly Taiwan Woodslane New Zealand, Ltd.
Fax: 33-1-40-51-52-31 No. 3, Lane 131 21 Cooks Street (P.O. Box 575)
Email: france@editions-oreilly.fr Hang-Chow South Road Waganui, New Zealand

Section 1, Taipei, Taiwan Tel: 64-6-347-6543
GERMANY, SWITZERLAND, Tel: 886-2-23968990 Fax: 64-6-345-4840
AUSTRIA, EASTERN EUROPE, Fax: 886-2-23968916 Email: info@woodslane.com.au

LUXEMBOURG, AND LIECHTENSTEIN Email: taiwan@oreilly.com
LATIN AMERICA

INQUIRIES & ORDERS
CHINA McGraw-Hill Interamericana O'Reilly Verlag

Balthasarstr. 81 O'Reilly Beijing Editores, S.A. de C.V.

D-50670 Koln Room 2410 Cedro No. 512

Gennany 160, FuXingMenNeiDaJie Col. Atlampa

Telephone: 49-221-973160-91 XiCheng District 06450, Mexico, D.F.

Fax: 49-221-973160-8 Beijing, China PR 100031 Tel: 52-5-547-6777

Email: anfragen@oreilly.de (inquiries) Tel: 86-10-66412305 Fax: 52-5-547-3336

Email: order@oreilly.de (orders) Fax: 86-10-86631007 Email: mcgraw-hill@infosel.netmx
Email: beijing@oreilly.com

O'REILLY®
ro ORDER: 800-998-9938 • order@orellly.com • http://Www.orellly.com/

OUR PRODUCTS ARE AVAllABlE AT A BOOKSTORE OR SOFTWARE STORE NEAR YOU.

FOR INFORMATION: 800-998-9938 • 707-829-0515 • /nfo@orellly.com

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 431

O'REILLY WOULD LIKE TO HEAR FROM YOU
Which book did this card come from'

Where did vou huv th is book?
0 Bookstore· Computer Store

Direct from O"Reillv O Clas.'v'seminar
• Bundled 11ith harch~~irc/software

Other _____________ _

What operating S) tcm do you use?
O umx O Macimosh
0 Windows NT O PC(Windows/DOS)
0 Other _____ ___ _____ _

Name

Address

Cily St3.lC

Telephone

M1at is your job description?
Svstcm Admiuist1~11or
Network Adminismuor

0 Web Developer
Other

0 Progr;tmmcr
0 Educator/fcachcr

0 Please send me 0 'Reilly's catalog, containing
a complete listing of O'Reilly books and
software.

Company/Organiz~1tion

Zip/1'0s1:tl Code Country

ln1c111e1 or 01her em:ul addre5.$ (spcciry network)

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 432

Nineteenth century wood engl'1lving
of a bear from the O'Reilly &
Associates Nutshell Handbook®
Using & Managing UUCP.

11 11

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 80 SEBASTOPOL, CA

Postage will be paid by addressee

O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472-9902

11, I, 11l1111 I 11 II, 11l11l1ll11111,111111111111111ll,I

PLACE

STAMP

HERE

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 433

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 434MilliiDIIJKiliilJUliiSI• !.l!U I

Petitioners Microsoft Corporation and HP Inc. - Ex. 1019, p. 435

Linux/U CX

A UNIX-COMPATIBLE OPERATING SYSTEM FOR THE PERSONAL COMPUTER

LINUX DEVICE DRIVERS

•
This book is for anyon w ho wants to support computer periphera ls under

the Linux operating system or who wants to develop new hardware and run

it under Linux . Linux is the fastest-growing segment of the U IX market and

is w inning over enthu iastic adherents in many application areas. This book

reveals information that heretofore has been pas eel by word-of-mouth or in

c,y ptic source code comments, showing how to write a driver for a w ide ra nge of device

You don't have to be a kernel hacker to understand and enjoy this book; all you need is

an under tanding of C and some I ackground in UNIX system calls. Drivers for character

device , block devices, and network interfac s are all described in step-by- tep form and

ar illustrated with full-featured examples that show driver design is u s, wh ich can be

executed without special hardware.

For those w ho are curious abou t how an operating system do s its job, thi · book provides

insights into address spaces, asynchronous events, and 1/0.

Portabili ty is a major concern in the text. Kernel versions from 1.2.13 to 2.0 are included,

as well as experimental ver. ion up to 2. 1.43. You are also told how lo maximize

portabi lity among hardware platforms.

Contents include:

• Bu ilding a driver and loading modu les

• Complete character, block, and network drivers

• Debugging a driver

• Timing

• Memory management and OMA

• Interrupts

• Portability issues

• Peripheral Component Interconnect (PCI)

• A tour of kernel interna ls

ISBN 1- 56592-292-1
us $29.95

CAN $42.95

90000
O'REILLY®

6

Visit O'Reilly on the Web
at www. ore illy. com

