Fast Implementations of AES Candidates

KazumaroAoki! and Helger Lipmah

L NTT Laboratories
1-1 Hikarinooka, Yokosuka-shi, Kanagawa-ken, 239-0847 Japan
maro@isl.ntt.co.jp
2 Kiberneetika AS
Akadeemia tee 21, 12618 Tallinn, Estonia
helger@cyber.ee

Abstract. Of the five AES finalists four—MARS, RC6, Rijndael, Twofish—
have not only (expected) good security but also exceptional performance on the
PC platforms, especially on those featuring the Pentium Pro, the NIST AES
analysis platform. In the current paper we present new performance numbers
of the mentioned four ciphers resulting from our carefully optimized assembly-
language implementations on the Pentium Il, the successor of the Pentium Pro.
All our implementations follow well-defined API and timing conventions and
sensible guidelines, like no using of self-modifying code and key-specific static
data — i.e., tricks that speed up the implementation but at the same time restrict
the field of application. Our implementations are uR2686 percent faster than
previous implementations. Our work also shows how a simple change (inclu-
sion of the MMX technology) in the analysis platform can influence the relative
encryption speed of different ciphers. To enable everyone to compare their imple-
mentations to ours, we also fully specify our procedures used to obtain the speed
numbers.

1 Introduction

For more thar20 years, DES [FIP77] has been a widely employed cryptographic stan-
dard. While the best cryptanalytic attacks against DES (differential and linear cryptanal-
ysis) are still highly impractical, during the last years DES has became obsolete for its
too short key and block sizes, not withstanding the current advances in computing tech-
nology. Motivated by this, NIST initiated a new effort to replace DES as a staneiard.
algorithms were submitted and algorithms were accepted as AES (Advanced Encryp-
tion Standard candidates, of which candidates—MARS [BCD98], RC6 [RRSY98],
Rijndael [DR98], Serpent [ABK98], Twofish [SKW99b]—were chosen to the second
round.

However, the AES process was started not only due to the theoretical reasons: there
are a few well-known constructions, including 3DES, that seem to have very good secu-
rity margins. Unfortunately, 3DES, based on the hardware-oriented DES, is unsatisfy-
ingly slow on the moderf2- and64-bit computer architectures: modern block ciphers
are up tol0 times faster than 3DES. Regardless of these ciphers having unproven (even
by time) security properties, they are widely used in the industry by pragmatic reasons:
hardware applications like GBits/s Ethernet or on-the-fly encryption td0 MByte/s

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

SCSI hard disks are requesting for faster ciphers. Clearly, the situation of having a
(moderately)secure and (moderately) fad¢ jure standard DES, a (probably) secure
and (clearly) slonde factostandard 3DES and some fast but with unknown security
marginde factostandards is not acceptable: there should be a single standard that is
both secure and fast. This is one of the reasons why, when inviting the public to pro-
pose candidates for the AES, NIST explicitly stated that the new standard should be
both “more secure and faster” than 3DES.

While security of the candidates cannot be exactly quantified by the currently known
methods, it seems to be easier to measure their speed. However, there is still a lot of
ambiguity in answering the question what AES candidate is the fastest. Several pa-
pers (including [Lip99,SKW 99a]) have compared AES candidates speed, but since
the implementations quoted in them are often incomparable (or based on pure estima-
tions), one cannot make direct conclusions about the efficiency of the ciphers based
on the published papers. Incomparability stems from the different implementation as-
sumptions, API’s, hardware (e.g., processors) and software (e.g., compilers) used by
implementers. Even more, some of the timings presented in previous papers correspond
o “show-case” (as opposed to practically applicable) implementations, some exam-
ples of those being the fastest implementation of Twofish [SK@b] that uses self-
modifying code and Brian Gladman’s implementations of AES candidates [Gla99] that
use a number of key-specific static variables instead of allocating a register to address
them, therefore effectively freeing some registers for other uses. Especially in the case
of the Pentium family, where the number of available registers is very restricted, such
implementations may result in a huge speed up. However, both types of implementation
tricks restrict the application area of the implementation.

In the current paper we try to give a satisfactory answer to the question “what cipher
is the fastest on the Pentium 11" by carefully optimizing thfastest AES candidates—
MARS, RCB6, Rijndael and Twofish—in Pentium Il assembly, using for all implementa-
tions exactly the same, reasonable in practice, APl and speed measurement conditions
for all the ciphers. Due to this, our results are much fairer than most of the previously
known ones: our implementations can be seen as black boxes applicable in almost any
possible application of block ciphers on an environment featuring Pentium Il. Addi-
tionally, careful optimization process resulted in implementations that are clearly faster
than the previously known implementations. (Except for Twofish, which has still a faster
“show-case” implementation.)

We start the paper by describing our platform of choice (Section 2), implementation
philosophy and API (Section 3). Section 4 briefly surveys our results, and Section 5
gives more details on the problems encountered when implementing the ciphers. More
information about the Pentium Il is given in the Appendices.

2 Choice of the Platform

Ouir first principal choice was the decision what processor to use. By purely pragmatic
reasons we decided that the implementation environment equips an Intel Pentium family
CPU: while this family is not the most modern processor family available, it is the most

widespread one at the moment of writing this paper and most probably also during the

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

next few years. Therefore, since in the foreseeable future most of the software-based
commercialsecurity applications run on the Pentium family (as recognized also by the
AES finalists designers), this family has the most direct impact on the choice of a cipher
by security consumers.

At second, from the Pentium family we decided to choose the Pentium Il processor.
At first, it is a more advanced processor than Pentium Pro, the NIST AES analysis
platform: the Pentium Il provides (twice) larger register space due to the added MMX
technology, and many new MMX-specific commands. Compared to the Pentium Pro,
the Pentium Il is also easier to obtain at the current stage, since Pentium Pro has been
out of the manufacturing for a while. On the other hand, the Pentium Il was preferred
by the authors to the Pentium Il since the latter is somewhat too new and controversial
due to the privacy issues.

Another reason to choose Pentium Il was that as the successor of the NIST AES
analysis platform, implementing the AES candidates on the Pentium Il could provide
some insights on how generally suitable are the candidates, some of which were specif-
ically optimized for the Pentium Pro, on future processors having features unpredicted
by algorithm designers. While this is not as crucial as withstanding the “future attacks”,
it still gives some ideas about the possible longevity of the cipher. (We clearly would
not want the AES ir20 years to have the role the 3DES has today!)

As shown in [Lip98], the MMX technology can seriously speed up IDEA ([LM90],
[LMM94]), one of the believably most secure block ciphers with 64-bit block size. As
stated in [Lip98], this can be done since IDEA has its key attributes similar to those
of multimedia applications, for which the MMX technology was originally created. An
open question posed in [Lip98] was how much would the MMX technology help imple-
menting other ciphers, including the AES candidates. In the following we will partially
answer to that question, showing that also some ciphers using only “simple” operations
can greatly benefit from the added MMX technology. A short overview of Pentium Il
that is necessary for implementers and for cryptographers who design ciphers optimized
for this platform is given in Appendix A. We refer for Intel manuals for a more complete
overview.

3 Implementation Considerations

Several papers (including, in particular, [Lip99,SK\@0a]) have compared AES can-
didates speed, but since the implementations quoted in them are often incomparable (or
based on pure estimations), one cannot make direct conclusions about the efficiency of
these algorithms based on the published papers. Incomparability stems from the differ-
ent implementation assumptions, API's, hardware (processors) and software (compil-
ers) platforms used by implementers. Even more, some of the numbers there correspond
to the “show-case” (as opposed to practically applicable) implementations; including
the bizarre case that one candidate was claimed to be the fastest on its inventors laptop
under some suitable conditions.

As another example of the unsuitability of some “show-case” implementations, the
fastest implementation of Twofish [SKV@9b] uses self-modifying code and therefore
cannot be used in a number of applications, while Brian Gladman’s implementations of

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

AES candidates [Gla99] use a number of key-specific static variables instead of allo-
catinga register to address them, therefore effectively freeing some registers for other
uses. Especially in the case of the Pentium family, where the number of available reg-
isters is very restricted, such implementations may result in a huge speed up. On the
other hand, Gladman'’s implementations cannot be used several applications, including
multithreaded programs and SMP (symmetric multi-processing) systems.

Most of the security customers need however speed numbers applicable in whatever
product they use in whatever environment in runs (for example, in a Linux kernel-
supported IPSEC implementation, secure login or multithreaded access to encrypted
storage arrays). For users it is necessary to know in what environment the measured
speed numbers were obtained, to be able to calculate the possible efficiency of the
ciphers in their own environments. Additionally, full specification is important for other
implementers to be able to compare their implementations with ours. Hence, apart from
providing “clean” implementations under some reasonable public assumptions, we shall
also next fully specify these assumptions:

— We do not use self-modifying code (“code compilation” [SK¥®Bb]) since it
makes the implementation inapplicable in a number of situations, e.g., in operation-
system kernel and ROM-based applications.

— We additionally decided not to use key-specific static areas since then the imple-
mentation could not be used, e.g., in SMP-capable systems and multithreaded pro-
grams.

— We decided to maximally use the MMX technology since it should not be forbidden
in any reasonable modern environment. (While using self-modifying code and key-
specific static areas is generally considered to be a bad programming practice.)

— We decided to use exactly the same API (specified later in Section 3.1) in all our
implementations.

— A number of well-understood assumptions that 1) improve the speed and can be
easily followed by implementers or 2) are essential to even be able to measure the
speed:

e All codes and data are correctly aligned.

e Input and output texts and codes are preloaded to L1 cache in the possible
extent to reduce the number of cache misses.

e Simplicity of code: we tried to reduce time spent during writing and optimiz-
ing the code. In particular, all our implementations use highly optimized but
round-number independent round macros. (Hence, our results could be slightly
bettered if every round would optimized separately to avoid, e.g., delays in
fetching stage.)

3.1 API

Since a different API can be influence the speed of an implementation severely, we also
decided to fully specify the API used by us to make for the other implementers easier
to compare their implementations to the ours. We felt that this is necessary, since AES
candidate implementations reported in [Lip99] vary greatly in their API's.

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

void xxKS(char *master, uint32 bitLen, char *eKey);

void xxEnc(char *inBlk, uint32 lenBIk, char *eKey,
char *outBIK);

void xxDec(char *inBlk, uint32 lenBlk, char *eKey,
char *outBIK);

where

xx is algorithm name (e.gRijndael).

xxKS is key scheduling subroutine.

XXEnc is encryption subroutine that encrygenBlk blocks of plaintext starting from the
addressnBlk to the ciphertext locatiooutBIk, by using extended key eKey, in ECB
block cipher mode.

xxDec is decryption subroutine with the same input conventions&snc.

uint32 is the type of32-bit unsigned integers (in the case of Pentium Il, equairtsigned
long in the case of most compilers).

master is pointer to the master key bits.

bitLen s the bit length of a master key.

eKey is pointer to subkeys and other initialization data, used later by encryption and decryption.

inBIk is pointer to input texts to be encrypted in the casgxiinc and to be decrypted in the
case ofkxxDec.

outBlk is pointer to the corresponding output texts.

lenBlk is number of blocks to be encrypted or decrypted.

Fig. 1. Specification of our API.

Note that our API, depicted in Figure 1, is essentially equivalent to the API's used
in most of the commercial applications, specifying only those inputs and outputs to the
algorithms that are really needed by the algorithms. (Names of the subroutines and their
parameters of course do not affect the speed, of course.) Our API was fixed for the key
length of 128-bits due to the feeling that at the time when greater key sizes become
necessary, our implementation platform would already be a history.

Here, the key schedule and decryption subroutines are specified only for complete-
ness. Since in the current paper we are not interested in the optimization of these sub-
routines, we almost do not mention decryption and key schedules hereafter.

3.2 How to Measure a Number of Cycles

Different time measurement methods may change the speed numbers quite dramati-
cally. As in the case of the API's, we decided to use one, sensible publishedignd
specifiedconvention (specified in Figure 2) for all the implementations. (Note that this
wrapping corresponds almost exactly to the method specified in [Fog00], to which the
reader is referred for a throughout explanation of the method.) The inputs and key of
the cipher are generated randomly before the measurement begins, to prevent “opti-
mization” for specific class of keys. The input varialdaBlk was chosen to be equal

to 8000 so that the input and output texts would not fit in the L1 cache. Als® is

a work area of typ@int32, used in later calculations.

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

