
CHI 2005  ׀  PAPERS: Small Devices 1 April 2–7 ׀  Portland, Oregon, USA 

 

 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

AppLens and LaunchTile: Two Designs for One-Handed 
Thumb Use on Small Devices 

Amy K. Karlson, Benjamin B. Bederson 
Human-Computer Interaction Lab 

Computer Science Department 
Univ. of Maryland, College Park, MD, 20742 

{akk, bederson}@cs.umd.edu 

John SanGiovanni 
Microsoft Research 

One Microsoft Way, Redmond, WA 98052 
johnsang@microsoft.com 

 
ABSTRACT 
We present two interfaces to support one-handed thumb use 
for PDAs and cell phones. Both use Scalable User Interface 
(ScUI) techniques to support multiple devices with different 
resolutions and aspect ratios. The designs use variations of 
zooming interface techniques to provide multiple views of 
application data: AppLens uses tabular fisheye to access 
nine applications, while LaunchTile uses pure zoom to 
access thirty-six applications. We introduce two sets of 
thumb gestures, each representing different philosophies for 
one-handed interaction. We conducted two studies to 
evaluate our designs. In the first study, we explored whether 
users could learn and execute the AppLens gesture set with 
minimal training. Participants performed more accurately 
and efficiently using gestures for directional navigation 
than using gestures for object interaction. In the second 
study, we gathered user reactions to each interface, as well 
as comparative preferences. With minimal exposure to each 
design, most users favored AppLens’s tabular fisheye 
interface. 

Author Keywords 
One-handed, mobile devices, gestures, notification, Piccolo, 
thumb navigation, Zoomable User Interfaces (ZUIs). 

ACM Classification Keywords 
H.5.2. User Interfaces: Input Devices and Strategies, 
Interaction Styles, Screen Design; D.2.2 User Interfaces; 
I.3.6 Interaction Techniques 

INTRODUCTION 
The current generation of mobile computing hardware 
features a variety of devices for interaction with the system 
software. One such class of devices, typically referred to as 
“smartphones”, features a numeric keypad or miniature 
thumb keyboard for input together with a screen for display 

output. These devices allow for single-handed interaction, 
which provides users with the ability to place calls and 
access information when one hand is otherwise occupied.  
However, because smartphones lack a touch-sensitive 
display, user interaction is constrained to a discrete set of 
keys, and thus the options for interaction design are limited 
to keypad-mapped functions and directional navigation. 
Another design approach, typically classified as a “Personal 
Digital Assistant” (PDA) features a touch-sensitive display 
surface designed primarily to be used with an included 
stylus. This design offers greater software design flexibility, 
but many of the small targets designed for a stylus are too 
small for fingertip actuation, making one-handed use 
difficult or impossible.  

Our goal is to create a new single-handed interaction 
system for both smartphone and PDA devices. In this work, 
we have focused on the problem navigating device 
applications, and have adopted two design strategies. The 
first leverages Scalable User Interface (ScUI) techniques 
[2,3] to allow the system to adapt to different screen 
resolutions as well as support both portrait and landscape 
device rotation. This architecture allows developers to 
create a single application that can target a wide variety of 
screen resolutions, and provides users with a consistent 
interface and interaction model across devices. We 
accomplish this using the University of Maryland’s 
Piccolo.NET development toolkit for zoomable and 
scalable user interfaces [5,18]. 

Our second design strategy provides access to rich 
notification information from multiple applications. Most 
current PDA interfaces are designed for focused interaction 
with a single task or application, with limited consideration 
or display real estate allocated for notifications (e.g., email, 
appointment reminders) or monitoring of ambient 
information streams (e.g., stocks, sport scores). In our 
proposed designs, each application has a dynamic launch 
tile in the place of a static launch icon. This feature offers 
high-value at-a-glace information for several applications at 
once, as well as on-demand application launch when users 
desire more detailed information. 

In the work presented here, however, we limit our 
discussion of scalability and notification in favor of 
emphasizing the design features relevant to one-handed 

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. 
CHI 2005, April 2–7, 2005, Portland, Oregon, USA. 
Copyright 2005 ACM 1-58113-998-5/05/0004…$5.00. 

201

Neonode Smartphone LLC, Exhibit 2006 
Page 2006 - 1 

IPR2021-00144, Samsung Elecs. Co. Ltd. et al. v. Neonode Smartphone LLC

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


CHI 2005  ׀  PAPERS: Small Devices 1 April 2–7 ׀  Portland, Oregon, USA 

 

 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

interaction. We proceed by describing two designs: 
AppLens (characterized by zoom+fisheye) and LaunchTile 
(characterized by zoom+pan). The two approaches employ 
variations of zooming interface techniques [1] to overview 
several notification tiles, each roughly the size of a postage 
stamp. AppLens uses a tabular fisheye approach to provide 
integrated access to and notification for nine applications. 
LaunchTile uses pure zooming within a landscape of thirty-
six applications to accomplish the same goals.  

Fisheye and pure zoomable techniques both offer promise, 
but there are no clear guidelines as to when each approach 
should be used. Our approach in this work, therefore, has 
been to design and build the best interfaces we could with 
roughly the same functionality, and then compare and 
contrast the results. In this way, we hope to understand 
which design direction makes the most sense for this 
domain and to learn something about the trade-offs between 
the two approaches. 

For device interaction when using a touch-sensitive screen, 
both designs utilize a gestural system for navigation within 
the application’s zoomspace. While our designs do not 
directly address one-handed text entry, they are compatible 
with a variety of existing single-handed text input 
techniques, including single- and multi-tap alphanumeric 
keypad input, as well as miniature thumb keyboards and 
unistroke input systems executed with a thumb (e.g., 
Graffiti [6], Quikwriting [17]). 

RELATED WORK 
Gestures have proven a popular interaction alternative when 
hardware alone fails to effectively support user tasks, 
typical of many nontraditional devices, from mobile 
computers to wall-sized displays [9]. Gestures can be very 
efficient, combining both command and operand in a single 
motion, and are space-conserving, reducing the need for 
software buttons and menus. However, the invisible nature 
of gestures can make them hard to remember, and 
recognition errors can negatively impact user satisfaction 
[15]. Recent research efforts pairing gestures with PDA-
sized devices have emphasized gestures based on changes 
in device position or orientation [10,21,28]. However, our 
work more closely resembles the onscreen gestures that 
have played a prominent role in stylus-based mobile 
computing (e.g., Power Browser [7]).  

Our thumb-as-stylus designs support usage scenarios in 
which only one hand is available for device operation, such 
as talking on the phone or carrying a briefcase. Although 
existing stylus-based gesture systems do not preclude the 
use of the thumb, we are not aware of any systems that have 
been specifically designed for the limited precision and 
extent of the thumb. The EdgeWrite [32] gesture-based 
stylus text entry system is particularly suited to mobile 
usage scenarios due to its use of physical barriers. 
EdgeWrite adaptation to one-handed mobile computing is 
compelling, but would require expanding the dedicated 
input area to accommodate thumb-resolution gestures.  

One handed device interaction has typically focused on text 
entry techniques, but beyond a numeric keypad, most one-
handed text entry systems require specialized hardware, 
such as accelerometers [25,30] or customized keyboards 
[16]. We instead address the more general task of system 
navigation and interaction, and restrict our designs to 
existing hardware. 

Commercial products have also emerged with related 
design goals. The Jackito PDA [14] supports thumb-only 
interaction, but presumes two handed use and is not gesture 
oriented. Lastly, Apple’s iPod is an elegant one-handed 
interaction solution for audio play and storage [13], but is 
currently not designed for the type of generalized 
application interaction we propose. 

THE ZOOM+FISHEYE APPROACH: APPLENS 
AppLens provides one-handed access to nine applications, 
and is strongly motivated by DateLens, a tabular fisheye 
calendar [3]. We refer to AppLens as a “shell” application 
for its role in organizing and managing access to other 
applications. 

Generalized Data Access Using Tabular Fisheyes 
Spence and Apperley [27] introduced the “bifocal display” 
as one of the first examples of fisheye distortion applied to 
computer interfaces. Furnas extended the bifocal display to 
include cognitive perceptual strategies and introduced a set 
of analytical functions to automatically compute 
generalized fisheye effects [8]. Since then, fisheye 
distortion has been applied with mixed success across a 
variety of domains, including graphs [24], networks [26], 
spreadsheets [20], and documents [12,23].  

Bederson et al. [3] drew upon that work in developing 
DateLens, a space-conserving calendar for PDAs, which 
was shown to perform favorably for long-term scheduling 
and planning tasks when compared to a traditional calendar 
implementation. One of the strengths of DateLens was the 
pairing of distortion and scalability, which allowed the 
details of a single day to be viewed in the context of up to 
several months of appointment data. Also important was the 
design of effective representations for the variety of cell 
sizes and aspect ratios that resulted from tabular distortion. 
One drawback of DateLens, however, was that it required 
two-handed stylus interaction to actuate the small interface 
widgets. Our design extends the principles of DateLens to 
include one-handed thumb access and generalizes the 
approach for use across a variety of domains. 

We developed a scalable framework that provides a grid, 
tabular layout, and default views for cell contents at a 
variety of sizes and aspect ratios. We also developed a 
general API to make it simple for applications to be built 
within this framework; developers need only to replace a 
small number of cell views with representations that are 
meaningful within the target domain.  

202

Neonode Smartphone LLC, Exhibit 2006 
Page 2006 - 2 

IPR2021-00144, Samsung Elecs. Co. Ltd. et al. v. Neonode Smartphone LLC

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


CHI 2005  ׀  PAPERS: Small Devices 1 April 2–7 ׀  Portland, Oregon, USA 

 

 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

       
   (a)                                                   (b) 

 
        (c)                                                (d)  

Figure 1. AppLens Zoom Levels: (a) Notification, (b) Full, 
(c, d) Context. 

AppLens Zoom Levels 
The AppLens shell (Figure 1) has been implemented within 
our generalized tabular fisheye framework, using a 3x3 
grid, and assigning one of nine applications to each cell. 
The support for tabular layout includes representations at 3 
zoom levels: Notification, Context and Full. 

Notification zoom distributes the available screen real estate 
equally among the 9 application tiles (Figure 1a). One tile 
(shown centered) remains reserved for settings, which can 
be used to configure the selection of applications which 
occupy the other 8 notification tiles. Generally, tiles at 
Notification size display high level static and/or dynamic 
application-specific notification information.  

Context zoom (Figure 1c) allocates roughly half the available 
display area to a single focus tile, compressing the remaining 
tiles according to a tabular fisheye distortion technique 
[3,20]. A tile at Context size typically appears much like a 
fully functional application, but selectively displays features 
to accommodate display constraints, and is not interactive. 
Tiles on the periphery of a Context zoom, called peripheral 

tiles, may be rendered quite differently depending on their 
position relative to the focus tile, which dictates whether the 
peripheral tile is a square, a wide-flat rectangle, or a narrow-
tall rectangle. To reduce visual overload, peripheral tiles are 
displayed at 40% transparency. The contents of distorted 
peripheral tiles are not themselves distorted, but rather 
change representation to provide the most meaning in the 
space available.  

The third and final Full zoom level expands a tile to a fully 
interactive application that occupies 100% of the display 
(Figure 1b). 

Gesture-Based Cursor Navigation 
Existing application designs for PDAs are often inappropriate 
for one-handed use due to their reliance on screen regions 
that typically cannot be reached while maintaining control of 
the device (e.g., accessing the Start menu in the upper left-
hand corner of a display while holding the device in the right 
hand), and the use of standard widgets that are too small for 
reliable thumb use (e.g., radio buttons, checkboxes, and on-
screen keyboards). In support of traditional designs, AppLens 
uses an object cursor to identify the on-screen object that is 
the current interaction target.  The cursor is depicted as a 
dynamically-sized rectangular orange border that users move 
from one on-screen object to another via command gestures. 
Cursors are not new to PDA interface design: the WebThumb 
[31] web browser includes a similar notion of cursor, but 
which is controlled via directional hardware, and others [29] 
have explored device tilting to manipulate PDA cursors. 

Neither the cursor nor gestures interfere with the most 
common stylus interactions of tap and tap+hold. Although 
gestures do overlap stylus drag commands, dragging is rarely 
used in handheld applications and could be distinguished 
from gestures by explicitly setting a gesture input mode. 

We established a core set of commands that would allow 
users to navigate applications using only the input cursor. 
Our command language supports directional navigation (UP, 
DOWN, LEFT, RIGHT) as well as two widget interaction 
commands: one equivalent to a stylus tap (ACTIVATE), and 
the other which negates widget activation (CANCEL), 
equivalent to tapping the stylus outside the target widget. We 
also include the convenience commands FORWARD and 
BACKWARD, equivalent to TAB and SHIFT-TAB on Windows 
PCs. 

Command Gestures 
Our use of gestures is motivated by Hirotaka’s observation 
that the button positions on cell phones require interaction 
using a low, unstable grip [11]. PDA joysticks face a similar 
drawback in that they are typically located along the lower 
perimeter of the device. AppLens avoids this problem since 
its gestures can be issued anywhere on the screen. Each 
AppLens gesture is uniquely defined by a slope and 
direction, or vector, which allows gestures to be robust and 
highly personalizable; users can issue gestures of any length 
(beyond an activation threshold of 20 pixels) anywhere on 

203

Neonode Smartphone LLC, Exhibit 2006 
Page 2006 - 3 

IPR2021-00144, Samsung Elecs. Co. Ltd. et al. v. Neonode Smartphone LLC

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


CHI 2005  ׀  PAPERS: Small Devices 1 April 2–7 ׀  Portland, Oregon, USA 

 

 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

the touch-sensitive surface. This flexibility lets users interact 
with our designs using the grasp that provides maximum 
stability in a mobile scenario. 

             
Figure 2. Screen area            Figure 3. The gesture set. 
accessible with one hand. 

We based the gesture set on the limited motion range of 
thumbs (Figure 2), with the goal of creating a gesture 
language that could be learned with minimal training. After 
informally experimenting with a variety of gestures, we 
developed a simple set of gestures with the aim of 
maximizing memorability and robustness of execution 
(Figure 3). We assigned the directional commands UP, DOWN, 
LEFT and RIGHT to spatial gestures that map directly to their 
function. We assigned ACTIVATE and CANCEL to the two 
gestures defined by pivoting the thumb from bottom to top 
and top to bottom respectively. We made these assignments 
both to reinforce their opposing relationship as well as for 
ergonomic ease in issuing common commands. Finally, we 
assigned the upper-left to lower-right diagonal to FORWARD 
due to its relative forward nature, and by similar reasoning, 
the reverse gesture to BACKWARD.  

The eight gesture commands can also be activated with a 
numeric keypad by mapping each to the key corresponding to 
the gesture endpoint: 1-BACKWARD, 3-ACTIVATE, 7-CANCEL, 
and 9-FORWARD. Since smartphones have a joystick that can 
be used for directional navigation, the keypad-to-command 
mapping is not necessary, but can be assigned as follows: 2-
UP, 4-LEFT, 6-RIGHT and 8-DOWN. 

Using Command Gestures within AppLens 
Users navigate between AppLens zoom levels using 
ACTIVATE and CANCEL gestures. As a rule, the ACTIVATE 
gesture behaves as a stylus tap on the current cursor target, 
thus its effects are target-specific. Since application tiles are 
non-interactive at Notification and Context zoom levels, the 
ACTIVATE gesture simply zooms in, animating the layout first 
from Notification to Context zoom, and then to Full zoom. 
Once at Full zoom, the input cursor transitions to the objects 
within the application, at which point the command gestures 
affect the current target widget. The CANCEL command 
negates the effects of the ACTIVATE command. At Full zoom, 
the effects of the CANCEL command depend on the location 
of the cursor and the state of its target. The CANCEL 
command will first deactivate an active target. If the current 
target is not in an active state, CANCEL will cause the 

application tile to animate from Full zoom to Context zoom, 
and if issued again, to Notification zoom. 

 
      (a)                                               (b) 

       
(c)  (d) 

Figure 4. Three LaunchTile zoom levels: (a, b) Zone, (c) 
World, (d) Application 

THE ZOOM+PAN APPROACH: LAUNCHTILE 
Our second design, LaunchTile proposes another way to 
interact with a grid of notification tiles. The primary shell of 
the LaunchTile design is an interactive zoomspace consisting 
of 36 application tiles, divided into 9 zones of 4 tiles each 
(Figure 4c). The 36 tile configuration is an exploration of the 
maximum number of applications that can reasonably fit 
within the display space. Since the design is fundamentally 
scalable, however, it can display any number of tiles up to 
36, and fewer may even be preferable. As a central design 
element, LaunchTile uses a large blue onscreen button, called 
Blue (Figure 4a), to unify the shell and applications with a 
consistent visual metaphor. Blue provides a consistent point 
of reference for zooming and panning navigation, with 
onscreen tiles, menus, and functions maintaining a consistent 
relative position to Blue. The LaunchTile zoomspace consists 
of 3 zoom levels: World (36 tiles, Figure 4c), Zone (4 tiles, 
Figures 4a and b) and Application (1 tile, Figure 4d). 

204

Neonode Smartphone LLC, Exhibit 2006 
Page 2006 - 4 

IPR2021-00144, Samsung Elecs. Co. Ltd. et al. v. Neonode Smartphone LLC

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


CHI 2005  ׀  PAPERS: Small Devices 1 April 2–7 ׀  Portland, Oregon, USA 

 

 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Zone View 
The Zone view of LaunchTile divides the screen area into 4 
equally-sized application tiles (Figure 4a). To view other 
tiles, the user pans the zoomspace to neighboring 4-tile 
clusters, called zones. The zones are arranged as a 3x3 grid, 
each associated with a numerical designator from 1 to 9 as on 
a conventional telephone keypad. Zone 5 is the center zone, 
which defines the Home screen, and shows the 4 highest 
priority notification tiles, as configured by the user.  

Panning Techniques 
To support various input hardware and styles of interaction, 
there are several ways to pan the zoomspace within Zone 
view. If the device has a multidirectional control joystick, the 
user can push it in the direction of the targeted zone. From 
the Home screen, the 16 tiles in zones 2, 4, 6, and 8 are only 
a single tap away. As many directional pads do not support 
diagonal action, the 16 additional tiles in the corner zones 1, 
3, 7, and 9 are two taps away. Alternatively, if the device has 
a touch-sensitive display, the user can use his or her thumb 
directly to drag the zoomspace. Dragging is performed “on 
rails”, permitting the user to drag vertically and horizontally, 
but not diagonally. Although the zoomspace moves with the 
thumb during dragging, Blue remains centered and 
stationary. Because only one instance of Blue exists within 
Zone view, each zone is depicted with an empty center hub 
during dragging. Upon thumb release, the zoomspace 
animates to align Blue with the closest zone’s empty hub. 
The visual and automated guidance ensures the user is never 
caught between zones. 

Within each 4-tile zone, indicator widgets communicate the 
user’s relative location within the zoomspace. The indicator 
has two components. First, directional arrows show where 
other zones are. If users only see indicators pointing up and 
right, they know they are in zone 7. Small blue dots featured 
with the arrows represent the location of all zones not 
currently in view. The blue dots could also be used to 
indicate an alert or status change in a neighboring zone, 
though this feature was not implemented in our prototype. 
The final way to pan the zoomspace is to tap the directional 
indicator itself. An oversized hit target ensures that the user 
can easily hit the indicator without using a stylus. 

Zooming Out to the World View 
From any one of the nine 4-tile Zone view zones, the user 
may tap Blue (or press the 5 key) to zoom out to view the 
entire 36-tile zoomspace (Figure 4c). Since all 36 tiles are 
visible at once, this view reduces each tile to a small icon. 
From this World view, the user can easily see the absolute 
location of each tile, as well as monitor all applications at 
once. In the World view, the display is divided into a grid of 
9 hit targets, each mapping to a 4-tile zone. Single-tapping a 
zone animates to Zone view, displaying the zone’s 4 
notification tiles. 

Zooming In to an Application 
The user taps any of the 4 notification tiles within Zone view 
to launch the corresponding application. An animated zoom 
draws the zoomspace toward the user until the target 
application fills the entire display (Figure 4d). If the device 
has only a numeric keypad (no touchscreen), the user presses 
the numeric key in the corner that corresponds to the zone. 
Pressing 1 launches the upper left tile, 3 launches the upper 
right, 7 launches the lower left, and 9 launches the lower 
right. This technique provides quick, single-tap access to 
each visible tile, and was inspired by ZoneZoom of Robbins 
et al. [22]. 

As the system zooms, Blue stays in view and retains its 
function as a central point of reference (Figure 4d). 
Application menu commands are represented as on-screen 
buttons clustered around Blue, now positioned at the bottom 
of the display. Each menu button displays a numeric label, so 
that mobile phone users may activate each menu by pressing 
the corresponding number on the keypad. A visual indicator 
to the left of the zoomspace animates during interaction to 
reflect the user’s current absolute zoom level within the 
LaunchTile environment. 

Zoom Control 
Pressing Blue typically moves the user deeper into the object 
hierarchy, while a dedicated Back button moves the user up 
the hierarchy. In the Zone view however, Blue toggles 
between Zone view (4 tiles) and World view (36 tiles). Once 
an application is launched, three dedicated software buttons 
along the top edge of the screen support inter- and intra-
application navigation (Figure 4d). A green Home button 
immediately zooms the view out to the Home screen. There 
is also a Back button on the upper right edge of the screen, 
and another global command key. The placeholder for this 
function in our prototype is an icon for voice command and 
control. On a non-touchscreen device, Back and Home 
commands are executed with dedicated physical buttons, 
such as those provided on a smartphone. 

Application-Level Interaction 
Although the original focus of our designs was on the 
application “shell”, we extended the LaunchTile interaction 
philosophy to the application level, where we sought to make 
interaction consistent with navigation among the application 
tiles. Several gestures have been designed to specifically 
support one-handed navigation and item selection within 
applications. Previously, others have demonstrated that for 
direct-manipulation interfaces, a grounded tap-drag-select-
release technique is more accurate than a tap-to-select [19]. 
We therefore made all LaunchTile tap-to-select targets large 
enough for thumb activation. In cases when limited display 
real estate necessitates smaller targets, the central Blue 
widget serves as a moveable tool glass which can be 
positioned over the target object (e.g., email header, message 
text). The large thumb-friendly drag target is offset below the 
selection area to prevent the user’s thumb from occluding the 
target. Alternatively, the user can drag the application 

205

Neonode Smartphone LLC, Exhibit 2006 
Page 2006 - 5 

IPR2021-00144, Samsung Elecs. Co. Ltd. et al. v. Neonode Smartphone LLC

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Real-Time Litigation Alerts
  Keep your litigation team up-to-date with real-time  

alerts and advanced team management tools built for  
the enterprise, all while greatly reducing PACER spend.

  Our comprehensive service means we can handle Federal, 
State, and Administrative courts across the country.

Advanced Docket Research
  With over 230 million records, Docket Alarm’s cloud-native 

docket research platform finds what other services can’t. 
Coverage includes Federal, State, plus PTAB, TTAB, ITC  
and NLRB decisions, all in one place.

  Identify arguments that have been successful in the past 
with full text, pinpoint searching. Link to case law cited  
within any court document via Fastcase.

Analytics At Your Fingertips
  Learn what happened the last time a particular judge,  

opposing counsel or company faced cases similar to yours.

  Advanced out-of-the-box PTAB and TTAB analytics are  
always at your fingertips.

Docket Alarm provides insights to develop a more  

informed litigation strategy and the peace of mind of 

knowing you’re on top of things.

Explore Litigation 
Insights

®

WHAT WILL YOU BUILD?  |  sales@docketalarm.com  |  1-866-77-FASTCASE

API
Docket Alarm offers a powerful API 
(application programming inter-
face) to developers that want to 
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your 
attorneys and clients with live data 
direct from the court.

Automate many repetitive legal  
tasks like conflict checks, document 
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks 
for companies and debtors.

E-DISCOVERY AND  
LEGAL VENDORS
Sync your system to PACER to  
automate legal marketing.


