
KEYWORDS
Interactive user interfaces, multiscale interfaces, author-
ing, information navigation, hypertext, information visu-
alization, information physics.

ABSTRACT
We describe the current status of Pad++, an infinite reso-
lution sketchpad that we are exploring as an alternative to
traditional window and icon-based approaches to inter-
face design. We discuss the motivation for Pad++,
describe the implementation, and present prototype appli-
cations. In addition, we introduce an informational phys-
ics strategy for interface design and briefly compare it
with metaphor-based design strategies.

INTRODUCTION
If interface designers are to move beyond windows,
icons, menus, and pointers to explore a larger space of
interface possibilities, additional ways of thinking about
interfaces that go beyond the desktop metaphor are
required. The exploration of virtual 3D worlds is one
alternative. It follows quite naturally from more tradi-
tional direct manipulation approaches to interface design
and involves similar underlying metaphors, although they
are enriched by the greater representational possibilities
afforded by moving from the desktop to richer 3D worlds.

There are numerous benefits to metaphor-based
approaches, but they also lead designers to employ com-
putation primarily to mimic mechanisms of older media.
While there are important cognitive, cultural, and engi-
neering reasons to exploit earlier successful representa-
tions, this approach has the potential of underutilizing the
mechanisms of new media.

For the last few years we have been exploring a different
strategy for interface design to help focus on novel mech-
anisms enabled by computation rather than on mimicking
mechanisms of older media. Informally the strategy con-

sists of viewing interface design as the development of a
physics of appearance and behavior for collections of
informational objects.

For example, an effective informational physics might
arrange for useful representation to be a natural product of
normal activity. Consider how this is at times the case for
the physics of the world. Some materials record their use
and in doing so influence future use in positive ways.
Used books crack open at often referenced places. Fre-
quently consulted papers are at the top of piles on our
desks. Use dog-ears the corners and stains the surface of
index cards and catalogs. All these provide representa-
tional cues as a natural product of doing but the physics of
older media limit what can be recorded and the ways it
can influence future use.

Following an informational physics strategy has lead us to
explore history-enriched digital objects [12][13]. Record-
ing on objects (e.g. reports, forms, source-code, manual
pages, email, spreadsheets) the interaction events that
comprise their use makes it possible on future occasions,
when the objects are used again, to display graphical
abstractions of the accrued histories as parts of the objects
themselves. For example, we depict on source code its
copy history so that a developer can see that a particular
section of code has been copied and perhaps be led to cor-
rect a bug not only in the piece of code being viewed but
also in the code from which it was derived.

This informational physics strategy has also lead us to
explore new physics for interacting with graphical data. In
collaboration with Ken Perlin, we have designed a succes-
sor to Pad [18]. This system, Pad++, will be the basis for
exploration of novel interfaces for information visualiza-
tion and browsing in a number of complex information-
intensive domains. The system is being designed to oper-
ate on platforms ranging from high-end graphics worksta-
tions to PDAs and Set-top boxes. Here we describe the
motivation behind the Pad++ development, report the sta-
tus of the current implementation, and present some pro-
totype applications.

Pad++: A Zooming Graphical Interface
for Exploring Alternate Interface Physics

Benjamin B. Bederson
Bell Communications Research
445 South Street - MRE 2D-336

Morristown, NJ 07960
(bederson@bellcore.com)

James D. Hollan
Computer Science Department

University of New Mexico
Albuquerque, NM 87131

(hollan@cs.unm.edu)

Published in UIST ‘94

1 APPLE 1015f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

MOTIVATION
It is a truism of modern life that there is much more infor-
mation available than we can readily and effectively
access. The situation is further complicated by the fact
that we are on the threshold of a vast increase in the avail-
ability of information because of new network and com-
putational technologies. It is somewhat paradoxical that
while we continuously process massive amounts of per-
ceptual data as we experience the world, we have percep-
tual access to very little of the information that resides
within our computing systems or that is reachable via net-
work connections. In addition, this information, unlike
the world around is, is rarely presented in ways that
reflect either its rich structure or dynamic character.

We envision a much richer world of dynamic persistent
informational entities that operate according to multiple
physics specifically designed to provide cognitively facile
access. The physics need to be designed to exploit seman-
tic relationships explicit and implicit in information-
intensive tasks and in our interaction with these new
kinds of computationally-based work materials.

One physics central to Pad++ supports viewing informa-
tion at multiple scales and attempts to tap into our natural
spatial ways of thinking. The information presentation
problem addressed is how to provide effective access to a
large structure of information on a much smaller display.
Furnas [10] explored degree of interest functions to deter-
mine the information visible at various distances from a
central focal area. There is much to recommend the gen-
eral approach of providing a central focus area of detail
surrounded by a periphery that places the detail in a larger
context.

With Pad++ we have moved beyond the simple binary
choice of presenting or eliding particular information. We
can also determine the scale of the information and, per-
haps most importantly, the details of how it is rendered
can be based on various semantic and task considerations
that we describe below. This provides semantic task-
based filtering of information that is similar to the early
work at MCC on HITS[14] and the recent work of move-
able filters at Xerox [3][19].

The ability to make it easier and more intuitive to find
specific information in large dataspaces is one of the cen-
tral motivations for Pad++. The traditional approach is to
filter or recommend a subset of the data, hopefully pro-
ducing a small enough dataset for the user to effectively
navigate. Two examples of work of this nature are latent
semantic indexing [6] and a video recommender service
based on shared ratings with other viewers [11].

Pad++ is complementary to these filtering approaches in
that it is a useful substrate tostructure information. In
concert with recommending mechanisms, Pad++ could

be used to layout the rated information in a way to make
the most highly rated information largest and most obvi-
ous, while placing related but lower rated information
nearby and smaller.

DESCRIPTION
Pad++ is a general-purpose substrate for exploring visual-
izations of graphical data with a zooming interface. While
Pad++ is not an application itself, it directly supports cre-
ation and manipulation of multiscale graphical objects,
and navigation through the object space. It is imple-
mented as a widget for Tcl/Tk [17](described in a later
section) which provides a simple mechanism for creating
zooming-based applications with an interpreted language.
The standard objects that Pad++ supports are colored text,
text files, hypertext, graphics, and images.

We have written a simple drawing application using
Pad++ that supports interactive drawing and manipula-
tion of objects as well loading of predefined or program-
matically created objects. This application produced all
the figures depicted in this paper.

The basic user interface for Pad++ uses a three button
mouse. The left button is mode dependent. For the draw-
ing application shown in this paper, the left button might
select and move objects, draw graphical objects, specify
where to enter text, etc. The middle button zooms in and
the right button zooms out. For systems with two button
mice, we have experimented with various mechanisms
for mapping zooming in and out to a single button. Typi-
cally, this involves having the first motion of the mouse
after the button press determine the direction of the zoom-
ing.

Pad++ is a natural substrate for representing abstraction
of objects using what we termsemantic zooming. It is nat-
ural to see the details of an object when zoomed in and
viewing it up close. When zoomed out, however, instead
of simply seeing a scaled down version of the object, it is
potentially more effective to see a different representation
of it. Perlin [18] described a prototype zooming calendar
with this notion. There are two ways to describe this type
of object. The first is to have different objects, each of
which is visible at different, non-overlapping, zooms.
This method is supported with the-minsize and-maxsize
options described in the Tcl/Tk Section. The second, and
preferred method, is to describe a procedural object that
renders itself differently depending on its viewing size. It
is possible to prototype procedural objects with Tcl as
described below.

RECENT ADVANCES
Our focus in the current implementation has been to pro-
vide smooth zooming in a system that works with very

2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

large graphical datasets. The nature of the Pad++ inter-
face requires consistent high frame-rate interactions, even
as the dataspace becomes large and the scene gets compli-
cated. In many applications, speed is important, but not
critical to functionality. In Pad++, however, the interface
paradigm is inherently based on interaction. The search-
ing strategy is to visually explore the dataspace, so it is
essential that interactive frame rates be maintained.

IMPLEMENTATION
We implemented Pad++ in C++. There are two versions:
one uses Silicon Graphics computers graphics language
facilities (GL), and the other uses standard X. The X ver-
sion runs on SGI’s, Suns, PC’s running Linux, and should
be trivially portable to other standard Unix system. Pad++
is implemented as a widget for Tcl/Tk which allows
applications to be written in the interpreted Tcl language.

All Pad++ features are accessible through Tcl making it
unnecessary to write any new C code.

EFFICIENCY
In order to keep the animation frame-rate up as the
dataspace size and complexity increases, we implemented
several standard efficiency methods, which taken together
create a powerful system. We have successfully loaded
over 600,000 objects and maintained interactive rates.

Briefly, the implemented efficiency methods include:

 • Spatial Indexing: Create a hierarchy of objects based
on bounding boxes to quickly index to visible objects.

 • Restructuring: Automatically restructure the hierar-
chy of objects to maintain a balanced tree which is
necessary for the fastest indexing.

Figure 1: Sequence of snapshots (from left to
right and top to bottom) as the view is zoomed
in to a hand-drawn picture.

3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 • Spatial Level-Of-Detail: Render only the detail
needed, do not spend time rendering what can not be
seen.

 • Clipping: Only render the portions of objects that are
actually visible.

 • Refinement: Render fast with low resolution while
navigating and refine the image when still.

 • Adaptive Render Scheduling: Keep the zooming
rate constant even as the frame rate changes.

One challenge in navigating through any large dataspace
is maintaining a sense of relationship between what you
are looking at and where it is with respect to the rest of
the data. The rough animation or jumpy zooming as
implemented in the original Pad [18] can be disorienting
and thus not provide the most effective support for the
cognitive and perceptual processing required for interac-
tive information visualization and navigation.

An important interactive interface issue when accessing
external information sources is how to give the user
access to them without incurring substantial start-up costs
while the database is parsed and loaded. In Pad++ this is
accomplished withparallel lazy loading: only load the
portion of the database that is visible in the current view.
As the user navigates through the database and looks at
new areas, those portions of the database are loaded. This
lazy loading is accomplished in the background so the
user can continue to interact with Pad++. When the load-
ing is complete, items appear in the appropriate place.

An associated concept is that of ephemeral objects.
Objects in Pad++ which are representations of data on
disk can be labeledephemeral. These objects are auto-
matically deleted if they have not been viewed in several
minutes, thus freeing system resources. When they are
viewed again, they are loaded again in parallel as
described above.

HYPERTEXT
In traditional window-based systems, there is no graphi-
cal depiction of the relationship among windows even
when there is a strong semantic relationship. This prob-
lem typically comes up with hypertext. In many hypertext
systems, clicking on a hyperlink brings up a new window
with the linked text (or alternatively replaces the contents
of the existing window). While there is an important rela-
tionship between these windows (parent and child), this
relationship is not represented.

We have begun experimenting with multiscale layouts of
hypertext traversals where we graphically represent the
parent-child relationships between links. When a hyper-
link is selected, the linked data is loaded to the side and
made smaller, and the view is animated to center the new

data object.

The user interface for accessing hypertext in Pad++ is
quite simple. The normal navigation techniques are avail-
able, and in addition, clicking on a hyperlink loads in the
associated data as described above, and shift-clicking
anywhere on a hypertext object animates the view back to
that object’s parent.

Pad++ can read in hypertext files written in the Hypertext
Markup Language (HTML), the language used to
describe the well-known hypertext system, MOSAIC
(from the NCSA at the University of Illinois). While we
do not yet follow links across the network, we can effec-
tively use Pad++ as an alternative viewer to MOSAIC
within our file system. Figure 2 shows a snapshot with the
MOSAIC home-page loaded and several links followed.

INTERFACE TO TCL/TK
Pad++ is built as a new widget for Tk which provides for
simple access to all of its features through Tcl, an inter-
preted scripting language. Tcl and Tk [17] are an increas-
ingly popular combination of scripting language and
Motif-like library for creating graphical user interfaces
and applications without writing any C code. The Tcl
interface to Pad++ is designed to be very similar to the
interface to the Tk Canvas widget - which provides a sur-
face for drawing structured graphics.

While Pad++ does not implement everything in the Tk
Canvas yet, it adds many extra features - notably those
supporting multiscale objects and zooming. In addition, it
supports images, text files, and hypertext, as well as sev-
eral navigation tools including content-based search. As
with the Canvas, Pad++ supports many different types of
structured graphics, and new graphical widgets can be
added by writing C code. Significantly, all interactions
with Pad++ are available through Tcl.

Since Tcl is interpreted and thus slower than compiled
code, it is important to understand what its role is in a
real-time animation system such as Pad++. There are
three classes of things that one can do with Pad++, and
the importance of speed varies:

 • Create objects:Slow - Tcl is fine

 • Handle events:Medium - Small amount of Tcl is ok

 • Render scene:Fast - C++ only

Because all rendering is done in C++, and typically only a
few lines of Tcl are written to handle each event, Pad++
maintains interactive rates despite its link to Tcl. Tcl is
quite good, however, for reading and parsing input files,
and creating and laying out graphical multiscale objects.

The Tcl interface to Pad++ is, as previously mentioned,
quite similar to that of the Tk canvas, and is summarized

4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Figure 2: Hypertext. Links are followed and
placed on the surface to the side, and made
smaller.

5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

