
8/27/2020 Universal asynchronous receiver-transmitter - Wikipedia

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter 1/10

Block diagram for a UART

Universal asynchronous receiver-transmitter
A universal asynchronous receiver-transmitter (UART /ˈjuːɑːrt/) is a
computer hardware device for asynchronous serial communication in which
the data format and transmission speeds are configurable. The electric
signaling levels and methods are handled by a driver circuit external to the
UART. A UART is usually an individual (or part of an) integrated circuit (IC)
used for serial communications over a computer or peripheral device serial
port. One or more UART peripherals are commonly integrated in
microcontroller chips. A related device, the universal synchronous and
asynchronous receiver-transmitter (USART) also supports synchronous
operation.

Transmitting and receiving serial data
Data framing
Receiver
Transmitter
Application

History
Structure
Special transceiver conditions

Overrun error
Underrun error
Framing error
Parity error
Break condition

UART models
UART in modems
See also
References
Further reading
External links

The universal asynchronous receiver-transmitter (UART) takes bytes of data and transmits the individual bits in
a sequential fashion.[1] At the destination, a second UART re-assembles the bits into complete bytes. Each UART
contains a shift register, which is the fundamental method of conversion between serial and parallel forms. Serial
transmission of digital information (bits) through a single wire or other medium is less costly than parallel
transmission through multiple wires.

Contents

Transmitting and receiving serial data

1 APPLE 1029f

Find authenticated court documents without watermarks at docketalarm.com.

https://en.wikipedia.org/wiki/File:UART_block_diagram.svg
https://en.wikipedia.org/wiki/File:UART_block_diagram.svg
https://en.wikipedia.org/wiki/Help:IPA/English
https://en.wikipedia.org/wiki/Help:IPA/English
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Asynchronous_serial_communication
https://en.wikipedia.org/wiki/Asynchronous_serial_communication
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Serial_communications
https://en.wikipedia.org/wiki/Serial_communications
https://en.wikipedia.org/wiki/Serial_port
https://en.wikipedia.org/wiki/Serial_port
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Universal_synchronous_and_asynchronous_receiver-transmitter
https://en.wikipedia.org/wiki/Universal_synchronous_and_asynchronous_receiver-transmitter
https://en.wikipedia.org/wiki/Shift_register
https://en.wikipedia.org/wiki/Shift_register
https://www.docketalarm.com/

8/27/2020 Universal asynchronous receiver-transmitter - Wikipedia

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter 2/10

The UART usually does not directly generate or receive the external signals used between different items of
equipment. Separate interface devices are used to convert the logic level signals of the UART to and from the
external signalling levels, which may be standardized voltage levels, current levels, or other signals.

Communication may be simplex (in one direction only, with no provision for the receiving device to send
information back to the transmitting device), full duplex (both devices send and receive at the same time) or half
duplex (devices take turns transmitting and receiving).

The idle, no data state is high-voltage, or powered. This is a historic legacy from telegraphy, in which the line is
held high to show that the line and transmitter are not damaged. Each character is framed as a logic low start bit,
data bits, possibly a parity bit and one or more stop bits. In most applications the least significant data bit (the
one on the left in this diagram) is transmitted first, but there are exceptions (such as the IBM 2741 printing
terminal).

The start bit signals the receiver that a new character is coming. The next five to nine bits, depending on the code
set employed, represent the character. If a parity bit is used, it would be placed after all of the data bits. The next
one or two bits are always in the mark (logic high, i.e., '1') condition and called the stop bit(s). They signal to the
receiver that the character is complete. Since the start bit is logic low (0) and the stop bit is logic high (1) there
are always at least two guaranteed signal changes between characters.

If the line is held in the logic low condition for longer than a character time, this is a break condition that can be
detected by the UART.

All operations of the UART hardware are controlled by an internal clock signal which runs at a multiple of the
data rate, typically 8 or 16 times the bit rate. The receiver tests the state of the incoming signal on each clock
pulse, looking for the beginning of the start bit. If the apparent start bit lasts at least one-half of the bit time, it is
valid and signals the start of a new character. If not, it is considered a spurious pulse and is ignored. After waiting
a further bit time, the state of the line is again sampled and the resulting level clocked into a shift register. After
the required number of bit periods for the character length (5 to 8 bits, typically) have elapsed, the contents of
the shift register are made available (in parallel fashion) to the receiving system. The UART will set a flag
indicating new data is available, and may also generate a processor interrupt to request that the host processor
transfers the received data.

Communicating UARTs have no shared timing system apart from the communication signal. Typically, UARTs
resynchronize their internal clocks on each change of the data line that is not considered a spurious pulse.
Obtaining timing information in this manner, they reliably receive when the transmitter is sending at a slightly
different speed than it should. Simplistic UARTs do not do this, instead they resynchronize on the falling edge of
the start bit only, and then read the center of each expected data bit, and this system works if the broadcast data
rate is accurate enough to allow the stop bits to be sampled reliably.

It is a standard feature for a UART to store the most recent character while receiving the next. This "double
buffering" gives a receiving computer an entire character transmission time to fetch a received character. Many
UARTs have a small first-in, first-out (FIFO) buffer memory between the receiver shift register and the host
system interface. This allows the host processor even more time to handle an interrupt from the UART and
prevents loss of received data at high rates.

Data framing

Receiver

2f

Find authenticated court documents without watermarks at docketalarm.com.

https://en.wikipedia.org/wiki/Logic_level
https://en.wikipedia.org/wiki/Logic_level
https://en.wikipedia.org/wiki/File:UART_timing_diagram.svg
https://en.wikipedia.org/wiki/File:UART_timing_diagram.svg
https://en.wikipedia.org/wiki/Parity_bit
https://en.wikipedia.org/wiki/Parity_bit
https://en.wikipedia.org/wiki/IBM_2741
https://en.wikipedia.org/wiki/IBM_2741
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
https://www.docketalarm.com/

8/27/2020 Universal asynchronous receiver-transmitter - Wikipedia

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter 3/10

Transmission operation is simpler as the timing does not have to be determined from the line state, nor is it
bound to any fixed timing intervals. As soon as the sending system deposits a character in the shift register (after
completion of the previous character), the UART generates a start bit, shifts the required number of data bits out
to the line, generates and sends the parity bit (if used), and sends the stop bits. Since full-duplex operation
requires characters to be sent and received at the same time, UARTs use two different shift registers for
transmitted and received characters. High performance UARTs could contain a transmit FIFO (first in first out)
buffer to allow a CPU or DMA controller to deposit multiple characters in a burst into the FIFO rather than have
to deposit one character at a time into the FIFO. Since transmission of a single or multiple characters may take a
long time relative to CPU speeds, a UART maintains a flag showing busy status so that the host system knows if
there is at least one character in the transmit buffer or shift register; "ready for next character(s)" may also be
signaled with an interrupt.

Transmitting and receiving UARTs must be set for the same bit speed, character length, parity, and stop bits for
proper operation. The receiving UART may detect some mismatched settings and set a "framing error" flag bit for
the host system; in exceptional cases the receiving UART will produce an erratic stream of mutilated characters
and transfer them to the host system.

Typical serial ports used with personal computers connected to modems use eight data bits, no parity, and one
stop bit; for this configuration the number of ASCII characters per second equals the bit rate divided by 10.

Some very low-cost home computers or embedded systems dispense with a UART and use the CPU to sample the
state of an input port or directly manipulate an output port for data transmission. While very CPU-intensive
(since the CPU timing is critical), the UART chip can thus be omitted, saving money and space. The technique is
known as bit-banging.

Some early telegraph schemes used variable-length pulses (as in Morse code) and rotating clockwork
mechanisms (http://www.railroad-signaling.com/tty/m19/M19_8w.jpg) to transmit alphabetic characters. The
first serial communication devices (with fixed-length pulses) were rotating mechanical switches (commutators).
Various character codes using 5, 6, 7, or 8 data bits became common in teleprinters and later as computer
peripherals. The teletypewriter made an excellent general-purpose I/O device for a small computer.

Gordon Bell of DEC designed the first UART, occupying an entire circuit board called a line unit, for the PDP
series of computers beginning with the PDP-1.[2][3] According to Bell, the main innovation of the UART was its
use of sampling to convert the signal into the digital domain, allowing more reliable timing than previous circuits
that used analog timing devices with manually adjusted potentiometers.[4] To reduce the cost of wiring,
backplane and other components, these computers also pioneered flow control using XON and XOFF characters
rather than hardware wires.

DEC condensed the line unit design into an early single-chip UART for their own use.[2] Western Digital
developed this into the first widely available single-chip UART, the WD1402A, around 1971. This was an early
example of a medium-scale integrated circuit. Another popular chip was the SCN2651 from the Signetics 2650
family.

An example of an early 1980s UART was the National Semiconductor 8250 used in the original IBM PC's
Asynchronous Communications Adapter card.[5] In the 1990s, newer UARTs were developed with on-chip
buffers. This allowed higher transmission speed without data loss and without requiring such frequent attention
from the computer. For example, the popular National Semiconductor 16550 has a 16-byte FIFO, and spawned
many variants, including the 16C550, 16C650, 16C750, and 16C850.

Transmitter

Application

History

3f

Find authenticated court documents without watermarks at docketalarm.com.

https://en.wikipedia.org/wiki/Home_computers
https://en.wikipedia.org/wiki/Home_computers
https://en.wikipedia.org/wiki/Embedded_systems
https://en.wikipedia.org/wiki/Embedded_systems
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Bit-banging
https://en.wikipedia.org/wiki/Bit-banging
https://en.wikipedia.org/wiki/Electric_telegraph
https://en.wikipedia.org/wiki/Electric_telegraph
https://en.wikipedia.org/wiki/Morse_code
https://en.wikipedia.org/wiki/Morse_code
http://www.railroad-signaling.com/tty/m19/M19_8w.jpg
http://www.railroad-signaling.com/tty/m19/M19_8w.jpg
https://en.wikipedia.org/wiki/Character_encoding
https://en.wikipedia.org/wiki/Character_encoding
https://en.wikipedia.org/wiki/Gordon_Bell
https://en.wikipedia.org/wiki/Gordon_Bell
https://en.wikipedia.org/wiki/Digital_Equipment_Corporation
https://en.wikipedia.org/wiki/Digital_Equipment_Corporation
https://en.wikipedia.org/wiki/Programmed_Data_Processor
https://en.wikipedia.org/wiki/Programmed_Data_Processor
https://en.wikipedia.org/wiki/PDP-1
https://en.wikipedia.org/wiki/PDP-1
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://en.wikipedia.org/wiki/Potentiometer
https://en.wikipedia.org/wiki/Potentiometer
https://en.wikipedia.org/wiki/Software_flow_control
https://en.wikipedia.org/wiki/Software_flow_control
https://en.wikipedia.org/wiki/Western_Digital
https://en.wikipedia.org/wiki/Western_Digital
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Signetics_2650
https://en.wikipedia.org/wiki/Signetics_2650
https://en.wikipedia.org/wiki/National_Semiconductor
https://en.wikipedia.org/wiki/National_Semiconductor
https://en.wikipedia.org/wiki/8250_UART
https://en.wikipedia.org/wiki/8250_UART
https://en.wikipedia.org/wiki/IBM_Personal_Computer
https://en.wikipedia.org/wiki/IBM_Personal_Computer
https://en.wikipedia.org/wiki/16550_UART
https://en.wikipedia.org/wiki/16550_UART
https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
https://www.docketalarm.com/

8/27/2020 Universal asynchronous receiver-transmitter - Wikipedia

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter 4/10

Depending on the manufacturer, different terms are used to identify devices that perform the UART functions.
Intel called their 8251 device a "Programmable Communication Interface". MOS Technology 6551 was known
under the name "Asynchronous Communications Interface Adapter" (ACIA). The term "Serial Communications
Interface" (SCI) was first used at Motorola around 1975 to refer to their start-stop asynchronous serial interface
device, which others were calling a UART. Zilog manufactured a number of Serial Communication Controllers or
SCCs.

Starting in the 2000s, most IBM PC compatible computers removed their external RS-232 COM ports and used
USB ports that provided superior bandwidth performance. For users who still need RS-232 serial ports, external
USB-to-UART bridges are now commonly used. They combine the hardware cables and a chip to do the USB and
UART conversion. FTDI is one supplier of these chips.[6] Note that an operating system might not have the
drivers for the chip installed by default (E.g. Windows and MacOS do not have drivers for CH340 and Silicon
Labs 210x) thus preventing identification of the USB device. Although RS-232 ports are no longer available to
users on the outside of most computers, many internal processors and microprocessors have UARTs built into
their chips to give hardware designers the ability to interface with other chips/devices that use RS-232 for their
default interface.

A UART usually contains the following components:

a clock generator, usually a multiple of the bit rate to allow sampling in the middle of a bit period
input and output shift registers
transmit/receive control
read/write control logic
transmit/receive buffers (optional)
system data bus buffer (optional)
First-in, first-out (FIFO) buffer memory (optional)
Signals needed by a third party DMA controller (optional)
Integrated bus mastering DMA controller (optional)

An "overrun error" occurs when the receiver cannot process the character that just came in before the next one
arrives. Various devices have different amounts of buffer space to hold received characters. The CPU or DMA
controller must service the UART in order to remove characters from the input buffer. If the CPU or DMA
controller does not service the UART quickly enough and the buffer becomes full, an Overrun Error will occur,
and incoming characters will be lost.

An "underrun error" occurs when the UART transmitter has completed sending a character and the transmit
buffer is empty. In asynchronous modes this is treated as an indication that no data remains to be transmitted,
rather than an error, since additional stop bits can be appended. This error indication is commonly found in
USARTs, since an underrun is more serious in synchronous systems.

Structure

Special transceiver conditions

Overrun error

Underrun error

Framing error

4f

Find authenticated court documents without watermarks at docketalarm.com.

https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/Intel_8251
https://en.wikipedia.org/wiki/Intel_8251
https://en.wikipedia.org/wiki/MOS_Technology_6551
https://en.wikipedia.org/wiki/MOS_Technology_6551
https://en.wikipedia.org/wiki/Motorola
https://en.wikipedia.org/wiki/Motorola
https://en.wikipedia.org/wiki/Zilog_SCC
https://en.wikipedia.org/wiki/Zilog_SCC
https://en.wikipedia.org/wiki/IBM_PC_compatible
https://en.wikipedia.org/wiki/IBM_PC_compatible
https://en.wikipedia.org/wiki/RS-232
https://en.wikipedia.org/wiki/RS-232
https://en.wikipedia.org/wiki/COM_(hardware_interface)
https://en.wikipedia.org/wiki/COM_(hardware_interface)
https://en.wikipedia.org/wiki/USB
https://en.wikipedia.org/wiki/USB
https://en.wikipedia.org/wiki/USB_adapter
https://en.wikipedia.org/wiki/USB_adapter
https://en.wikipedia.org/wiki/FTDI
https://en.wikipedia.org/wiki/FTDI
https://en.wikipedia.org/wiki/Processors
https://en.wikipedia.org/wiki/Processors
https://en.wikipedia.org/wiki/Microprocessors
https://en.wikipedia.org/wiki/Microprocessors
https://en.wikipedia.org/wiki/Shift_register
https://en.wikipedia.org/wiki/Shift_register
https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
https://www.docketalarm.com/

8/27/2020 Universal asynchronous receiver-transmitter - Wikipedia

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter 5/10

A UART will detect a framing error when it does not see a "stop" bit at the expected "stop" bit time. As the "start"
bit is used to identify the beginning of an incoming character, its timing is a reference for the remaining bits. If
the data line is not in the expected state (high) when the "stop" bit is expected (according to the number of data
and parity bits for which the UART is set), the UART will signal a framing error. A "break" condition on the line is
also signaled as a framing error.

A parity error occurs when the parity of the number of one-bits disagrees with that specified by the parity bit.
Use of a parity bit is optional, so this error will only occur if parity-checking has been enabled.

A break condition occurs when the receiver input is at the "space" (logic low, i.e., '0') level for longer than some
duration of time, typically, for more than a character time. This is not necessarily an error, but appears to the
receiver as a character of all zero-bits with a framing error. The term "break" derives from current loop signaling,
which was the traditional signaling used for teletypewriters. The "spacing" condition of a current loop line is
indicated by no current flowing, and a very long period of no current flowing is often caused by a break or other
fault in the line.

Some equipment will deliberately transmit the "space" level for longer than a character as an attention signal.
When signaling rates are mismatched, no meaningful characters can be sent, but a long "break" signal can be a
useful way to get the attention of a mismatched receiver to do something (such as resetting itself). Computer
systems can use the long "break" level as a request to change the signaling rate, to support dial-in access at
multiple signaling rates. The DMX512 protocol uses the break condition to signal the start of a new packet.

A dual UART, or DUART, combines two UARTs into a single chip. Similarly, a quadruple UART or QUART,
combines four UARTs into one package, such as the NXP 28L194. An octal UART or OCTART combines eight
UARTs into one package, such as the Exar XR16L788 or the NXP SCC2698.

Parity error

Break condition

UART models

5f

Find authenticated court documents without watermarks at docketalarm.com.

https://en.wikipedia.org/wiki/Parity_bit
https://en.wikipedia.org/wiki/Parity_bit
https://en.wikipedia.org/wiki/Parity_(mathematics)
https://en.wikipedia.org/wiki/Parity_(mathematics)
https://en.wikipedia.org/wiki/Current_loop
https://en.wikipedia.org/wiki/Current_loop
https://en.wikipedia.org/wiki/Teletypewriter
https://en.wikipedia.org/wiki/Teletypewriter
https://en.wikipedia.org/wiki/DMX512
https://en.wikipedia.org/wiki/DMX512
https://en.wikipedia.org/wiki/DMX512#Protocol
https://en.wikipedia.org/wiki/DMX512#Protocol
https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

