
A Wearable Reflectance Pulse Oximeter for Remote Physiological 
Monitoring

Y. Mendelson*, Member, IEEE, R. J. Duckworth, Member, IEEE, and G. Comtois, Student Member, IEEE

Abstract—To save life, casualty care requires that trauma 
injuries are accurately and expeditiously assessed in the field. 
This paper describes the initial bench testing of a wireless 
wearable pulse oximeter developed based on a small forehead 
mounted sensor. The battery operated device employs a 
lightweight optical reflectance sensor and incorporates an 
annular photodetector to reduce power consumption. The 
system also has short range wireless communication 
capabilities to transfer arterial oxygen saturation (SpO2), heart 
rate (HR), body acceleration, and posture information to a 
PDA. It has the potential for use in combat casualty care, such 
as for remote triage, and by first responders, such as 
firefighters. 

I. INTRODUCTION

TEADY advances in noninvasive physiological sensing, 
hardware miniaturization, and wireless communication 

are leading to the development of new wearable 
technologies that have broad and important implications for 
civilian and military applications [1]-[2]. For example, the 
emerging development of compact, low-power, small-size, 
light- weight, and unobtrusive wearable devices may 
facilitate remote noninvasive monitoring of vital signs from 
soldiers during training exercises and combat. Telemetry of 
physiological information via a short-range wirelessly-linked 
personal area network can also be useful for firefighters, 
hazardous material workers, mountain climbers, or 
emergency first-responders operating in harsh and hazardous 
environments. The primary goals of such a wireless mobile 
platform would be to keep track of an injured person’s vital 
signs, thus readily allowing the telemetry of physiological 
information to medical providers, and support emergency 
responders in making critical and often life saving decisions 
in order to expedite rescue operations. Having wearable 
physiological monitoring could offer far-forward medics 
numerous advantages, including the ability to determine a  
casualty’s condition remotely without exposing the first 
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responders to increased risks, quickly identifying the 
severity of injuries especially when the injured are greatly 
dispersed over large geographical terrains and often out-of- 
site, and continuously tracking the injured condition until 
they arrive safely at a medical care facility. 

Several technical challenges must be overcome to address 
the unmet demand for long-term continuous physiological 
monitoring in the field. In order to design more compact 
sensors and improved wearable instrumentation, perhaps the 
most critical challenges are to develop more power efficient 
and low-weight devices. To become effective, these 
technologies must also be robust, comfortable to wear, and 
cost-effective. Additionally, before wearable devices can be 
used effectively in the field, they must become unobtrusive 
and should not hinder a person’s mobility. Employing 
commercial off-the-shelf (COTS) solutions, for example 
finger pulse oximeters to monitor blood oxygenation and 
heart rate, or standard adhesive-type disposable electrodes 
for ECG monitoring, is not practical for many field 
applications because they limit mobility and can interfere 
with normal tasks. 

A potentially attractive approach to aid emergency 
medical teams in remote triage operations is the use of a 
wearable pulse oximeter to wirelessly transmit heart rate 
(HR) and arterial oxygen saturation (SpO2) to a remote 
location. Pulse oximetry is a widely accepted method that is 
used for noninvasive monitoring of SpO2 and HR. The 
method is based on spectrophotometric measurements of 
changes in the optical absorption of deoxyhemoglobin (Hb) 
and oxyhemoglobin (HbO2). Noninvasive 
spectrophotometric measurements of SpO2 are performed in 
the visible (600-700nm) and near-infrared (700-1000nm) 
spectral regions. Pulse oximetry also relies on the detection 
of photoplethysmographic (PPG) signals produced by 
variations in the quantity of arterial blood that is associated 
with periodic contractions and relaxations of the heart. 
Measurements can be performed in either transmission or 
reflection modes. In transmission pulse oximetry, the sensor 
can be attached across a fingertip, foot, or earlobe. In this 
configuration, the light emitting diodes (LEDs) and 
photodetector (PD) in the sensor are placed on opposite sides 
of a peripheral pulsating vascular bed. Alternatively, in 
reflection pulse oximetry, the LEDs and PD are both 
mounted side-by-side on the same planar substrate to enable 
readings from multiple body locations where trans-
illumination measurements are not feasible. Clinically, 
forehead reflection pulse oximetry has been used as an 
alternative approach to conventional transmission-based 
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oximetry when peripheral circulation to the extremities is 
compromised. 

Pulse oximetry was initially intended for in-hospital use 
on patients undergoing or recovering from surgery. During 
the past few years, several companies have developed 
smaller pulse oximeters, some including data transmission 
via telemetry, to further expand the applications of pulse 
oximetry. For example, battery-operated pulse oximeters are 
now attached to patients during emergency transport as they 
are being moved from a remote location to a hospital, or 
between hospital wards. Some companies are also offering 
smaller units with improved electronic filtering of noisy 
PPG signals. 

Several reports described the development of a wireless 
pulse oximeter that may be suitable for remote physiological 
monitoring [3]-[4]. Despite the steady progress in 
miniaturization of pulse oximeters over the years, to date, 
the most significant limitation is battery longevity and lack 
of telemetric communication. In this paper, we describe a 
prototype forehead-based reflectance pulse oximeter suitable 
for remote triage applications. 

II. SYSTEM ARCHITECTURE

The prototype system, depicted in Fig. 1, consists of a 
body-worn pulse oximeter that receives and processes the 
PPG signals measured by a small (φ = 22mm) and 
lightweight (4.5g) optical reflectance transducer. The system  

Fig. 1.  (Top) Attachment of Sensor Module to the skin; (Bottom) 
photograph of the Receiver Module (left) and Sensor Module (right). 

consists of three units: A Sensor Module, consisting of the 
optical transducer, a stack of round PCBs, and a coin-cell 
battery. The information acquired by the Sensor Module is 
transmitted wirelessly via an RF link over a short range to a 
body-worn Receiver Module. The data processed by the 
Receiver Module can be transmitted wirelessly to a PDA. 
The PDA can monitor multiple wearable pulse oximeters 
simultaneously and allows medics to collect vital 
physiological information to enhance their ability to extend 
more effective care to those with the most urgent needs. The 

system can be programmed to alert on alarm conditions, 
such as sudden trauma, or physiological values out of their 
normal range.  It also has the potential for use in combat 
casualty care, such as for remote triage, and for use by first 
responders, such as firefighters. 

Key features of this system are small-size, robustness, and 
low-power consumption, which are essential attributes of 
wearable physiological devices, especially for military 
applications. The system block diagram (Fig. 2), is described 
in more detail below. 

Fig. 2. System block diagram of the wearable, wireless, pulse oximeter. 
Sensor Module (top), Receiver Module (bottom). 

Sensor Module: The Sensor Module contains analog signal 
processing circuitry, ADC, an embedded microcontroller, 
and a RF transceiver. The unit is small enough so the entire 
module can be integrated into a headband or a helmet. The 
unit is powered by a CR2032 type coin cell battery with 
220mAh capacity, providing at least 5 days of operation. 

Receiver Module: The Receiver Module contains an 
embedded microcontroller, RF transceiver for 
communicating with the Sensor Module, and a Universal 
Asynchronous Receive Transmit (UART) for connection to 
a PC. Signals acquired by the Sensor Module are received by 
the embedded microcontroller which synchronously converts 
the corresponding PD output to R and IR PPG signals. 
Dedicated software is used to filter the signals and compute 
SpO2 and HR based on the relative amplitude and frequency 
content of the reflected PPG signals. A tri-axis MEMS 
accelerometer detects changes in body activity, and the 
information obtained through the tilt sensing property of the 
accelerometer is used to determine the orientation of the 
person wearing the device.  

To facilitate bi-directional wireless communications 
between the Receiver Module and a PDA, we used the 
DPAC Airborne™ LAN node module (DPAC Technologies, 
Garden Grove, CA). The DPAC module operates at a 
frequency of 2.4GHz, is 802.11b wireless compliant, and has 
a relatively small (1.6 × 1.17 × 0.46 inches) footprint. The 
wireless module runs off a 3.7VDC and includes a built-in
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TCP/IP stack, a radio, a base-band processor, an application 
processor, and software for a “drop-in” WiFi application. It 
has the advantage of being a plug-and-play device that does 
not require any programming and can connect with other 
devices through a standard UART.  

PDA: The PDA was selected based on size, weight, and 
power consumption. Furthermore, the ability to carry the 
user interface with the medic also allows for greater 
flexibility during deployment. We chose the HP iPAQ h4150 
PDA because it can support both 802.11b and Bluetooth™ 
wireless communication. It contains a modest amount of 
storage and has sufficient computational resources for the 
intended application. The use of a PDA as a local terminal 
also provides a low-cost touch screen interface. The user-
friendly touch screen of the PDA offers additional 
flexibility. It enables multiple controls to occupy the same 
physical space and the controls appear only when needed. 
Additionally, a touch screen reduces development cost and 
time, because no external hardware is required. The data 
from the wireless-enabled PDA can also be downloaded or 
streamed to a remote base station via Bluetooth or other 
wireless communication protocols. The PDA can also serve 
to temporarily store vital medical information received from 
the wearable unit. 

A dedicated National Instruments LabVIEW program was 
developed to control all interactions between the PDA and 
the wearable unit via a graphical user interface (GUI). One 
part of the LabVIEW software is used to control the flow of 
information through the 802.11b radio system on the PDA.  
A number of LabVIEW VIs programs are used to establish a 
connection, exchange data, and close the connection 
between the wearable pulse oximeter and the PDA. The 
LabVIEW program interacts with the Windows CE™ 
drivers of the PDA’s wireless system. The PDA has special 
drivers provided by the manufacturer that are used by 
Windows CE™ to interface with the 802.11b radio 
hardware. The LabVIEW program interacts with Windows 
CE™ on a higher level and allows Windows CE™ to handle 
the drivers and the direct control of the radio hardware. 

The user interacts with the wearable system using a 
simple GUI, as depicted in Fig. 3.  

Fig. 3.  Sample PDA Graphical User Interface (GUI).

The GUI was configured to present the input and output 
information to the user and allows easy activation of various 

functions. In cases of multiple wearable devices, it also 
allows the user to select which individual to monitor prior to 
initiating the wireless connection. Once a specific wearable 
unit is selected, the user connects to the remote device via 
the System Control panel that manages the connection and 
sensor control buttons. The GUI also displays the subject’s 
vital signs, activity level, body orientation, and a scrollable 
PPG waveform that is transmitted by the wearable device. 

The stream of data received from the wearable unit is 
distributed to various locations on the PDA’s graphical 
display. The most prominent portion of the GUI display is 
the scrolling PPG waveform, shown in Fig. 3. Numerical 
SpO2 and HR values are displayed is separate indicator 
windows. A separate tri-color indicator is used to annotate 
the subject’s activity level measured by the wearable 
accelerometer. This activity level was color coded using 
green, yellow, or red to indicate low or no activity, moderate 
activity, or high activity, respectively. In addition, the 
subject’s orientation is represented by a blue indicator that 
changes orientation according to body posture. Alarm limits 
could be set to give off a warning sign if the physiological 
information exceeds preset safety limits. 

One of the unique features of this PDA-based wireless 
system architecture is the flexibility to operate in a free 
roaming mode. In this ad-hoc configuration, the system’s 
integrity depends only on the distance between each node. 
This allows the PDA to communicate with a remote unit that 
is beyond the PDA’s wireless range. The ad-hoc network 
would therefore allow medical personnel to quickly 
distribute sensors to multiple causalities and begin 
immediate triage, thereby substantially simplifying and 
reducing deployment time. 

Power Management: Several features were incorporated 
into the design in order to minimize the power consumption 
of the wearable system. The most stringent consideration 
was the total operating power required by the Sensor 
Module, which has to drive the R and IR LEDs, process the 
data, and transmit this information wirelessly to the Receive 
Module. To keep the overall size of the Sensor Module as 
small as, it was designed to run on a watch style coin-cell 
battery.  
    It should be noted that low power management without 
compromising signal quality is an essential requirement in 
optimizing the design of wearable pulse oximeter. 
Commercially available transducers used with transmission 
and reflection pulse oximeters employ high brightness LEDs 
and a small PD element, typically with an active area 
ranging between 12 to 15mm2. One approach to lowering the 
power consumption of a wireless pulse oximeter, which is 
dominated by the current required to drive the LEDs, is to 
reduce the LED duty cycle. Alternatively, minimizing the 
drive currents supplied to the R and IR LEDs can also 
achieve a significant reduction in power consumption.
However, with reduced current drive, there can be a direct 
impact on the quality of the detected PPGs. Furthermore, 
since most of the light emitted from the LEDs is diffused by 
the skin and subcutaneous tissues, in a predominantly 
forward-scattering direction, only a small fraction of the 
incident light is normally backscattered from the skin. In 
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addition, the backscattered light intensity is distributed over 
a region that is concentric with respect to the LEDs. 
Consequently, the performance of reflectance pulse oximetry 
using a small PD area is significantly degraded. To 
overcome this limitation, we showed that a concentric array 
of either discrete PDs, or an annularly-shaped PD ring, could 
be used to increase the amount of backscattered light 
detected by a reflectance type pulse oximeter sensor [5]-[7]. 

Besides a low-power consuming sensor, afforded by 
lowering the driving currents of the LEDs, a low duty cycle 
was employed to achieve a balance between low power 
consumption and adequate performance. In the event that 
continuous monitoring is not required, more power can be 
conserved by placing the device in an ultra low-power 
standby mode. In this mode, the radio is normally turned off 
and is only enabled for a periodic beacon to maintain 
network association. Moreover, a decision to activate the 
wearable pulse oximeter can be made automatically in the 
event of a patient alarm, or based on the activity level and 
posture information derived from the on-board 
accelerometer. The wireless pulse oximeter can also be 
activated or deactivated remotely by a medic as needed, 
thereby further minimizing power consumption. 

III. IN VIVO EVALUATIONS

Initial laboratory evaluations of the wearable pulse 
oximeter included simultaneous HR and SpO2
measurements. The Sensor Module was positioned on the 
forehead using an elastic headband. Baseline recordings 
were made while the subject was resting comfortably and 
breathing at a normal tidal rate. Two intermittent recordings 
were also acquired while the subject held his breath for 
about 30 seconds. Fig. 4 displays about 4 minutes of SpO2
and HR recordings acquired simultaneously by the sensor. 

Fig. 4.  Typical HR (solid line) and SpO2 (dashed line) recording of two 
voluntary hypoxic episodes. 

The pronounced drops in SpO2 and corresponding increases 
in HR values coincide with the hypoxic events associated 
with the two breath holding episodes. 

IV. DISCUSSION

The emerging development of compact, low power, small 
size, light weight, and unobtrusive wearable devices can 
facilitate remote noninvasive monitoring of vital 

physiological signs. Wireless physiological information can 
be useful to monitor soldiers during training exercises and 
combat missions, and help emergency first-responders 
operating in harsh and hazardous environments. Similarly, 
wearable physiological devices could become critical in 
helping to save lives following a civilian mass casualty. The 
primary goal of such a wireless mobile platform would be to 
keep track of an injured person’s vital signs via a short-range 
wirelessly-linked personal area network, thus readily 
allowing RF telemetry of vital physiological information to 
command units and remote off-site base stations for 
continuous real-time monitoring by medical experts. 

The preliminary bench testing plotted in Fig. 4 showed 
that the SpO2 and HR readings are within an acceptable 
clinical range. Similarly, the transient changes measured 
during the two breath holding maneuvers confirmed that the 
response time of the custom pulse oximeter is adequate for 
detecting hypoxic episodes. 

V. CONCLUSION

A wireless, wearable, reflectance pulse oximeter has been 
developed based on a small forehead-mounted sensor. The 
battery-operated device employs a lightweight optical 
reflectance sensor and incorporates an annular photodetector 
to reduce power consumption. The system has short range 
wireless communication capabilities to transfer SpO2, HR, 
body acceleration, and posture information to a PDA carried 
by medics or first responders. The information could 
enhance the ability of first responders to extend more 
effective medical care, thereby saving the lives of critically 
injured persons. 
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