

US007415298B2

(12) United States Patent

Casciani et al.

(54) PULSE OXIMETER AND SENSOR OPTIMIZED FOR LOW SATURATION

- (75) Inventors: James R. Casciani, Cupertino, CA (US);
 Paul D. Mannheimer, Belmont, CA (US); Steve L. Nierlich, Oakland, CA (US); Stephen J. Ruskewicz, Kensington, CA (US)
- (73) Assignee: Nellcor Puritan Bennett Inc., Pleasanton, CA (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

This patent is subject to a terminal disclaimer.

- (21) Appl. No.: 11/710,084
- (22) Filed: Feb. 23, 2007

(65) **Prior Publication Data**

US 2007/0156039 A1 Jul. 5, 2007

Related U.S. Application Data

- (60) Division of application No. 10/698,962, filed on Oct. 30, 2003, which is a continuation of application No. 09/882,371, filed on Jun. 14, 2001, now Pat. No. 6,662, 033, which is a continuation of application No. 09/033, 413, filed on Jan. 6, 1998, now Pat. No. 6,272,363, which is a continuation of application No. 08/413,578, filed on Mar. 30, 1995, now Pat. No. 5,782,237, which is a continuation-in-part of application No. 08/221, 911, filed on Apr. 1, 1994, now Pat. No. 5,421,329.
- (51) Int. Cl. *A61B 5/1464* (2006.01) *A61B 5/1455* (2006.01)

(10) Patent No.: US 7,415,298 B2

(45) **Date of Patent:** *Aug. 19, 2008

- (56) **References Cited**

U.S. PATENT DOCUMENTS

3,638,640 A * 2/1972 Shaw 600/323

(Continued)

FOREIGN PATENT DOCUMENTS

EP 0522 674 A1 1/1993

(Continued)

OTHER PUBLICATIONS

Reynolds et al., "Diffuse reflectance from a finite blood medium: applications to the modeling of fiber optic catheters," Applied Optics, vol. 15, No. 9, Sep. 1976.

(Continued)

Primary Examiner-Eric F Winakur

(57) **ABSTRACT**

A pulse oximeter sensor with a light source optimized for low oxygen saturation ranges and for maximizing the immunity to perturbation induced artifact. Preferably, a red and an infrared light source are used, with the red light source having a mean wavelength between 700-790 nm. The infrared light source can have a mean wavelength as in prior art devices used on patients with high saturation. The sensor of the present invention is further optimized by arranging the spacing between the light emitter and light detectors to minimize the sensitivity to perturbation induced artifact. The present invention optimizes the chosen wavelengths to achieve a closer matching of the absorption and scattering coefficient products for the red and IR light sources. This optimization gives robust readings in the presence of perturbation artifacts including force variations, tissue variations and variations in the oxygen saturation itself.

16 Claims, 14 Drawing Sheets

U.S. PATENT DOCUMENTS

3,847,483	Α	11/1974	Shaw et al.
4,114,604	Α	9/1978	Shaw et al.
4,223,680	Α	9/1980	Jöbsis
4,281,645	Α	8/1981	Jobsis
4,407,290	А	10/1983	Wilber
4.446.871	Α	5/1984	Imura
4.623.248	А	11/1986	Sperinde
4,700,708	Ā	10/1987	New, Jr. et al.
4.714.341	A	12/1987	Hamaguri et al.
4.859.057	A	8/1989	Taylor et al.
4.908.762	A	3/1990	Suzuki et al.
4.938.218	Ā	7/1990	Goodman et al.
4.975.581	A	12/1990	Robinson et al.
5 0 58 588	A	10/1991	Kaestle
5 109 849	A	5/1992	Goodman et al
5 188 108	A	2/1993	Secker
5 247 932	A	9/1993	Chung et al
5 2 5 3 6 4 6	A	10/1993	Delpy et al
5 299 570	Δ	4/1004	Hatschek
5 3 5 3 7 9 1	Δ	10/1004	Tamura et al
5 3 5 5 8 8 0	Δ	10/1994	Thomas et al
5 385 1/3	л л	1/1005	Aoyagi
5 402 778	Δ	4/1005	Chance
5,413,100	л л	5/1005	Barthalamy at al
5,410,221	A	5/1005	Evong
5 421 220	A	6/1005	Cossieni et el
5,421,529	A A *	7/1005	Casciani et al. $600/320$
5 404 022	A	2/1006	Baker et al 000/330
5,494,052	A	2/1990	Crotton et al.
5,497,709	A	5/1990	Dialo et al.
5,242,345	A	0/1990	Talaan aabi at al
5,5/5,285	A	6/1008	Demonstra
5,112,589	A A *	0/1998	Gaggieri et al 600/222
5,782,257	A	7/1998	Casciani et al 000/323
5,782,756	A	7/1998	Mannheimer
5,782,757	A	7/1998	Diab et al.
5,823,950	A	10/1998	Diab et al.
5,902,235	A *	5/1999	Lewis et al $600/323$
6,011,986	A	1/2000	Diab et al.
6,256,523	BI	7/2001	Diab et al.
6,272,363	BI*	8/2001	Casciani et al 600/323
6,285,896	BI	9/2001	Tobler et al.
6,298,253	BI	10/2001	Buschmann
6,334,065	BI	12/2001	Al Ali et al.
6,397,091	B2	5/2002	Diab et al.
6,584,336	B1	6/2003	Ali et al.
6,606,511	B1	8/2003	Ali et al.
6,662,033	B2	12/2003	Casciani et al.
6,678,543	B2	1/2004	Diab et al.
6,684,090	B2	1/2004	Alı et al.
6,714,804	B2	3/2004	Al Ali et al.
6,770,028	B1	8/2004	Ali et al.
6,792,300	B1	9/2004	Diab et al.
6,813,511	B2	11/2004	Diab et al.

FOREIGN PATENT DOCUMENTS

GB	1595206	8/1981
GB	1595207	8/1981
лР	03-068336	3/1991
WO	WO 91/18549	12/1991
WO	WO 92/21283	12/1992

OTHER PUBLICATIONS

Merrick et al., "Continuous, Non-Invasive Measurements of Arterial Blood Oxygen Levels," Hewlett-Packard Journal, Oct. 1976. Jobsis, "Noninvasive, Infrared monitoring of cerebral and Myocardial Oxygen Sufficiency and Circulatory Parameters," Science, vol. 23, Dec. 1977.

Sheperd et al., "Evaluation of Light-Emitting Diodes for Whole

Ertefai et al., "Spectral transmittance and contrast in breast diaphanography," Med Phys. 12(4), Jul./Aug. 1985, 1985 Am. Assoc. Phys. Med.

Bonner et al., "Model for photon migration in turbid biological media," J. Opt. Soc. Am., 4:423-432 (1987).

Severinghaus et al., "Accuracy of response of Six Pulse Oximeters to profound Hypoxia," Anesthesiology, vol. 67, No. 4, Oct. 1987, pp. 551-558.

Wukitsch, "Pulse Oximetry: Historical review and Ohmeda functional analysis," International Journal of Clinical monitoring and Computer, 4:1616-166, 1987.

Mendelson et al., "Design & Evaluation of a New Reflectance Pulse Oximeter Sensor," Medical Instrumentation, vol. 22, No. 4., Aug. 1988, pp. 167-173.

Patterson et al., "Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties," Appl. Opt. 28(12):2331-2336 (1989).

Severinghaus et al., "Errors in 14 Pulse Oximeters During Profound Hypoxia," Journal of Clinical Monitoring, vol. 5, No. 2, Apr. 1989, pp. 72-81.

Shimada et al., "A Non-Invasive Reflectance Oximeter as a Useful Monitor in ICU," Anesthesiology, vol. 71, No. 3A, Sep. 1989.

Various excepts from chapter entitled, "Equipment, Monitoring, and Engineering Technology IV", Anesthesiology, vol. 71, No. 3A, Sep. 1989, A366-A373.

Weiss et al., "Statistics of Penetration depth of Photons Re-emitted from Irradiated Tissue," Journal of Modern Optics, 1989, vol. 36, No. 3, pp. 349-359.

Cui et al., "In Vivo Reflectance of Blood and Tissue as a Function of Light Wavelength," IEEE Transactions on Biomedical Engineering, vol. 37, No. 6, Jun. 1990, pp. 632-639.

Severinghaus et al., "Effect of Anemia on Pulse Oximeter Accuracy at Low Saturation," Journal of Clinical Monitoring, vol. 6, No. 2, Apr. 1990, pp. 85-88.

Zijlstra et al., "Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin and methemoglobin," Clinical Chemistry, vol. 37, No. 9, pp. 1633-1638 (1991).

Schmitt, "Simple photon diffusion analysis of the effects of multiple scattering on pulse oximetry," IEEE Transaction on Biomedical Engineering, vol. 38, No. 12, Dec. 1991.

McCormick et al., "Noninvasive measurement of regional cerebrovascular oxygen saturation in humans using optical spectroscopy," Time-Resolved Spectroscopy and Imaging of Tissues (1991), SPIE vol. 1431, pp. 294-302.

A.C. Dassel et al., "Reflectance Pulse Oximetry in Fetal Lambs," Pediatric Research, vol. 31, No. 3, 1992.

Richardson et al., "electrocortical activity, electroocular activity and breathing movements in fetal sheep with prolonged and graded hypoxemia," Am J. Obstet. Gynecol. 167(2):553-558 (1992).

Oeseburg et al., "Fetal oxygenation in chronic maternal hypoxia; what's critical?", in Oxygen Transport to Tissues XIV, ed. R. Erdmann and D. Bruley, Plenum Press, New York, 1992, pp. 499-502. Benaron et al., "Noninvasive Methods for Estimating in Vivo Oxygenation," Clinical Pediatrics, May 1992, pp. 258-273.

Takatani et al., "Experimental and clinical Evaluation of a Noninvasive Reflectance Pulse Oximeter Sensor," Journal of Clinical Monitoring, vol. 8, No. 4, Oct. 1992, pp. 257-266.

Vegfors et al., "The influence of changes in blood flow on the accuracy of pulse oximetry in humans," Acta Anaesthesial Scand, vol. 36, (1992) pp. 346-349.

Graaff et al., "Optical propeorties of human dermis in vitro and in vivo," Applied Optics, vol. 32, No. 4, Feb. 1, 1993.

Graaf, "Tissue optics applied to reflectance pulse oximetry," thesis, Rujksuniversiteit Groningen, 1993.

Dildy et al., "Intrapartum fetal pulse oximetry: Fetal oxygen saturation trends during labor and relation to delivery outcome," Am. J. Obstet. Gynecol., 171:679-684 (1994).

McNamera et al., "Fetal monitoring by pulse oximetry and DTG," J. Perinat. Med. 22:475-480 (1994).

Flewelling, "Noninvasive Optical Monitoring," The Biomedical engineering Handbook, CRC Press 1995.

Nijland et al., "Reflectance pulse oximetry (RPOX): Two sensors compared in piglets," Am. J. Gynecol., 172 (1 (part 2)):38X6 (1995). Mannheimer et al., "Physio-optical considerations in the design of fetal pulse oximetry sensors," European Journal of obstetrics & Gynecology and Reproductive Biology, vol. 72, Suppl. 1 (1997) pp. S9-S19. Kaestle et al., "A New Family of Sensors for Pulse Oximetry," Hewlett Packard Journal, pp. 1-17 (Feb. 1997).

Mannheimer et al., "Wavelength Selection for Low-Saturation Pulse Oximetry," IEEE Transaction on Biomedical Engineering, vol. 44, No. 3, Mar. 1997.

* cited by examiner

Α

R

М

Find authenticated court documents without watermarks at docketalarm.com.

Α

EXTINCTION-SCATTERING COEFFICIENT PRODUCT	660 nm	732 nm	892 nm
(L/mmole-cm ²)			
ш's ^{. в} ньог	1.23	1.31	2.82
μ's · ^β 85%	2.67	1.63	2.64
μ's · ^β 40%	7.00	2.58	1.84
и's ^{. в} нь	10.85	3.41	1.59

FIG. 4B.

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

