a2 United States Patent

Swander

US006904529B1

(10) Patent No.:
@5) Date of Patent:

US 6,904,529 B1
Jun. 7, 2005

(549) METHOD AND SYSTEM FOR PROTECTING
A SECURITY PARAMETER NEGOTIATION
SERVER AGAINST DENIAL-OF-SERVICE

ATTACKS

(75) Inventor: Brian D. Swander, Kirkland, WA (US)

(73) Assignee: Microsoft Corporation, Redmond, WA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/561,046

(22) Filed: Apr. 28, 2000

(51) Int. CL7 oo GO6F 11/30

(52) US.CL 713/201; 713/151; 713/200

(58) Field of Searchc.ccceovcviininne. 713/200, 201,

713/151
(56) References Cited

U.S. PATENT DOCUMENTS

5023849 A * 7/1999 Venkatraman 709/224
5958,053 A * 9/1999 Denker 713/201
6,330,562 B1 * 12/2001 Boden et al. 707/10

OTHER PUBLICATIONS

“Analysis of a Denial of Service Attack on TCP”, Proceed-
ings of the 1997 IEEE Symposium on Security and Privacy,
1997, pp. 208-223.*

Computer Communications 22(10): “TCP/IP Security
Threats and Attack Methods”, Jun. 25, 1999, 885-97.
“Client Puzzles: A Cryptographic Countermeasure Against
Connection Depletion Attacks”, Proceedings of the 1999
Network and Distributed System Security Symposium, pp.
151-65.

“Analysis of a Denial of Service Attack on TCP”, Proceed-
ings of the 1997 IEEE Symposium on Security and Privacy,
1997, pp. 208-223.

* cited by examiner

Primary Examiner—Justin T. Darrow
(74) Attorney, Agent, or Firm—L eydig, Voit & Mayer, Ltd.

7) ABSTRACT

A method and system protects a security parameter nego-
tiation server that stores states for connection requests
pending negotiations from malicious denial-of-service
attacks that attempt to flood the server with false requests.
The degradation of performance of the server is dynamically
detected, such as by monitoring the running intervals of a
reaper that removes unneeded states. When performance
degradation of the system is detected, relevant performance
variables such as negotiation delay, extra retransmission
delay and packet drop percentage are dynamically adjusted
to reduce the workload on the negotiation server. Limiting
the number of states with incomplete negotiation status for
each client and the total number of such states further
enhances the effectiveness of the protection against denial-
of-service attacks.

16 Claims, 3 Drawing Sheets

Adjust perf.
variables to reduce
system workload

152

Deny further
request from client
5

156

Deny further new
requests

(Start) Reaper thread

Server thread

Determine reaper
run interval

Yes
interval > 6087
No 148

g

Adjust perf.
variables to return
to original values

Yes 150
Neg.-pending
SAs > = 6?
No

154

Yes Total
pending SAs > =
2
No

New request
drop rate = 0?

decrease new
request drop rate
End

160

140
142
Run reaper
144

EX1027
Palo Alto Networks v. Sable Networks
IPR2020-01712

U.S. Patent Jun. 7, 2005 Sheet 1 of 3 US 6,904,529 Bl

20

i1
ERSONAL COMPUTER L—I
SYSTEM MEMORY L 2 & @
@ Monitor
ROM
(ROM) | 5 21
I a7
BIOS
- ! 26
PROCESSING VIDEO
(RAM) — 25 UNIT ADAPTER
OPERATING 53
SYSTEM 35 f 23 f
APPLICATION l NETWORK <b
iglhe - - INTERFACE
33 34
32 46
OTHER i | | o
PROGRAM
RIGOIIES 47| HARDDISK [MAGDISK [OPTICALOISK| ooow porT
DRIVE DRIVE DRIVE \NTERFACE
INTERFACE | INTERFACE | INTERFACE
PROGRAM T |
DATA (—/—=F
38 | harddisk ==L .)
drive Magnetic disk Optical drive 1675
drive |
| | 30 |
2 28 54

OPERATING | APPLICATION ngggﬁM PROGRAM
SYSTEM PROGRAMS iy DATA v Y j,
35 3 37 38

REMOTE COMPUTER

Figure 1 ///l:j

50

APPLICATION
36 — | PROGRAMS

U.S. Patent Jun. 7, 2005 Sheet 2 of 3 US 6,904,529 Bl

86
70 e0 /
\ i Computer
Host Computer C;r;:ic;t;c;n
IKE
72

[Policy .
{ Agent 1 C? k88

|| [IPSec KE L J
Driver

122 Reaper State L
Incoming
92

84

External Network

82

internal Network

FIG. 2

U.S. Patent

Jun. 7, 2005

Sheet 3 of 3

US 6,904,529 Bl

(Start N\ Reaper thread

”1
n

Server thread
I 140
Determine reaper [— 14e /
1/46 run interval Run reaper
144
Adjust perf. Yes _ ——
variables to reduce «— Interval > 60S?
system workload
148

Adjust perf.
variables to return
to original values

]

162

\

Deny further
request from client

156

Yes 150

Neg.-pending
SAs > =67

154

Yes
Deny further new ‘Total =
: «— pending SAs > =
requests threshold?
158

New request

drop rate = 07

FIG. 3 160 decrease new

N

request drop rate

End

US 6,904,529 B1

1

METHOD AND SYSTEM FOR PROTECTING
A SECURITY PARAMETER NEGOTIATION
SERVER AGAINST DENIAL-OF-SERVICE
ATTACKS

TECHNICAL FIELD OF THE INVENTION

This invention relates generally to network
communications, and more particularly to security threats to
communication servers in a network environment.

BACKGROUND OF THE INVENTION

The Internet has entered the new millenium as the most
important computer network of the world. Everyday, mil-
lions of people use the Internet to communicate with each
other and to gather or share information. Moreover, elec-
tronic commerce (“E-commerce”) using the World-Wide
Web (WWW) of the Internet as its backbone is rapidly
replacing and changing the conventional brick-and-mortar
stores.

The security of communications through the Internet,
however, has always been a major concern. This problem is
related to the underlying network communication protocol
of the Internet, the Internet Protocol (“IP”), which is respon-
sible for delivering packets across the Internet to their
destinations. The Internet Protocol was not designed to
provide security features at its level of network communi-
cation operation. Moreover, the flexibility of IP allows for
some creative uses of the protocol that defeat traffic auditing,
access control, and many other security measures. [P-based
network data is therefore wide open to tampering and
cavesdropping. As a result, it substantial risks are involved
in sending sensitive information across the Internet.

To address the lack of security measures of the Internet
Protocol, a set of extensions called Internet Protocol Secu-
rity (“IPSec”) Suite has been developed to add security
services at the IP level. The IPSec Suite includes protocols
for an authentication header (AH), encapsulating security
protocol (ESP), and a key management and exchange pro-
tocol (IKE). A significant advantage of the IPSec Suite is
that it provides a universal way to secure all IP-based
network communications for all applications and users in a
transparent way. Moreover, as the IPSec Suite is designed to
work with existing and future IP standards, regular IP
networks can still be used to carry communication data
between the sender and recipient. The IPSec Suite is also
scalable and can therefore be used in networks ranging from
local-area networks (LANS) to global networks such as the
Internet.

Even though the IPSec standard provides a comprehen-
sive and robust way to secure network communications
against tampering and eavesdropping, the components
implementing the IPSec Suite themselves may be subjected
to various security threats in the network environment. For
instance, the IPSec layer includes a component called an
“Internet Key Exchange” (“IKE”) server, which is respon-
sible for negotiating with another IKE for security
parameters, collectively called a “Security Association”
(“SA”), of security operations for securing a given network
communication stream. For each secured communication
stream, a separate SA has to be negotiated and maintained.
Because of the system resources required for handling each
communication requests, it is possible for an attacker to
construct and send a large number of false communication
requests, forcing the IKE server to consume large amounts
of system resources. Such an attack potentially can burden

10

18

20

25

30

35

40

45

50

55

60

65

2

the server to the extent that it is no longer able to serve
legitimate users.

SUMMARY OF THE INVENTION

In view of the foregoing, the present invention provides a
method and system for protecting a network security server
for negotiating network security parameters, such as an
Internet Key Exchange (“IKE”) server of the IPSec suite,
from denial-of-service attacks that flood the server with false
connection requests. The vulnerability of the security server
to such attacks comes from the need for the server to
maintain state data for on-going negotiations in response to
requests from unknown clients. In accordance with the
invention, the resilience of the negotiation server to such
attacks is significantly enhanced by dynamically detecting
the degradation of the performance of the system, and
dynamically adjusting relevant performance variables, such
as negotiation delay, retransmission delay, and packet drop
percentage, etc., to reduce the states maintained by the
negotiation server when performance degradation is
detected. A useful indicator of the system health may be the
interval between consecutive runs of a reaper for removing
states that are no longer useful. To further enhance the
effectiveness of the protection against denial-of-service
attacks, the maximum number of states pending negotiation
responses for outstanding new negotiation requests from a
client may be limited, and the total number of stored states
pending negotiation responses may also be limited.

Additional features and advantages of the invention will
be made apparent from the following detailed description of
illustrative embodiments, which proceeds with reference to
the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

While the appended claims set forth the features of the
present invention with particularity, the invention, together
with its objects and advantages, may be best understood
from the following detailed description taken in conjunction
with the accompanying drawings of which:

FIG. 1 is a block diagram generally illustrating an exem-
plary computer system on which the present invention may
be reside;

FIG. 2 is a schematic diagram showing a networked
computer having a negotiation server for negotiation of
security parameters for securing network communications;
and

FIG. 3 is a flow diagram showing a process embodying a
method of the invention for protecting the negotiation server
against denial-of-service attacks.

DETAILED DESCRIPTION OF THE
INVENTION

Turning to the drawings, wherein like reference numerals
refer to like elements, the invention is illustrated as being
implemented in a suitable computing environment.
Although not required, the invention will be described in the
general context of computer-executable instructions, such as
program modules, being executed by a personal computer.
Generally, program modules include routines, programs,
objects, components, data structures, etc. that perform par-
ticular tasks or implement particular abstract data types.
Moreover, those skilled in the art will appreciate that the
invention may be practiced with other computer system
configurations, including hand-held devices, multi-
processor systems, microprocessor based or programmable

US 6,904,529 B1

3

consumer electronics, network PCs, minicomputers, main-
frame computers, and the like. The invention may also be
practiced in distributed computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
computing environment, program modules may be located
in both local and remote memory storage devices.

With reference to FIG. 1, an exemplary system for imple-
menting the invention includes a general purpose computing
device in the form of a conventional personal computer 20,
including a processing unit 21, a system memory 22, and a
system bus 23 that couples various system components
including the system memory to the processing unit 21. The
system bus 23 may be any of several types of bus structures
including a memory bus or memory controller, a peripheral
bus, and a local bus using any of a variety of bus architec-
tures. The system memory includes read only memory
(ROM) 24 and random access memory (RAM) 25. A basic
input/output system (BIOS) 26, containing the basic routines
that help to transfer information between elements within
the personal computer 20, such as during start-up, is stored
in ROM 24. The personal computer 20 further includes a
hard disk drive 27 for reading from and writing to a hard disk
60, a magnetic disk drive 28 for reading from or writing to
a removable magnetic disk 29, and an optical disk drive 30
for reading from or writing to a removable optical disk 31
such as a CD ROM or other optical media.

The bhard disk drive 27, magnetic disk drive 28, and
optical disk drive 30 are connected to the system bus 23 by
a hard disk drive interface 32, a magnetic disk drive inter-
face 33, and an optical disk drive interface 34, respectively.
The drives and their associated computer-readable media
provide nonvolatile storage of computer readable
instructions, data structures, program modules and other
data for the personal computer 20. Although the exemplary
environment described herein employs a hard disk 60, a
removable magnetic disk 29, and a removable optical disk
31, it will be appreciated by those skilled in the art that other
types of computer readable media which can store data that
is accessible by a computer, such as magnetic cassettes, flash
memory cards, digital video disks, Bernoulli cartridges,
random access memories, read only memories, and the like
may also be used in the exemplary operating environment.

A number of program modules may be stored on the hard
disk 60, magnetic disk 29, optical disk 31, ROM 24 or RAM
25, including an operating system 35, one or more applica-
tions programs 36, other program modules 37, and program
data 38. A user may enter commands and information into
the personal computer 20 through input devices such as a
keyboard 40 and a pointing device 42. Other input devices
(not shown) may include a microphone, joystick, game pad,
satellite dish, scanner, or the like. These and other input
devices are often connected to the processing unit 21
through a serial port interface 46 that is coupled to the
system bus, but may be connected by other interfaces, such
as a parallel port, game port or a universal serial bus (USB).
A monitor 47 or other type of display device is also
connected to the system bus 23 via an interface, such as a
video adapter 48. In addition to the monitor, personal
computers typically include other peripheral output devices,
not shown, such as speakers and printers.

The personal computer 20 may operate in a networked
environment using logical connections to one or more
remote computers, such as a remote computer 49. The
remote computer 49 may be another personal computer, a
server, a router, a network PC, a peer device or other
common network node, and typically includes many or all of

10

18

20

25

30

35

40

45

50

55

60

65

4

the elements described above relative to the personal com-
puter 20, although only a memory storage device 50 has
been illustrated in FIG. 1. The logical connections depicted
in FIG. 1 include a local area network (LAN) 51 and a wide
area network (WAN) 52. Such networking environments are
commonplace in offices, enterprise-wide computer
networks, intranets and the Internet.

When used in a LAN networking environment, the per-
sonal computer 20 is connected to the local network 51
through a network interface or adapter 53. When used in a
WAN networking environment, the person computer 20
typically includes a modem 54 or other means for establish-
ing communications over the WAN 52. The modem 54,
which may be internal or external, is connected to the system
bus 23 via the serial port interface 46. In a networked
environment, program modules depicted relative to the
personal computer 20, or portions thereof, may be stored in
the remote memory storage device. It will be appreciated
that the network connections shown are exemplary and other
means of establishing a communications link between the
computers may be used.

In the description that follows, the invention will be
described with reference to acts and symbolic representa-
tions of operations that are performed by one or more
computers, unless indicated otherwise. As such, it will be
understood that such acts and operations, which are at times
referred to as being computer-executed, include the manipu-
lation by the processing unit of the computer of electrical
signals representing data in a structured form. This manipu-
lation transforms the data or maintains it at locations in the
memory system of the computer, which reconfigures or
otherwise alters the operation of the computer in a manner
well understood by those skilled in the art. The data struc-
tures where data is maintained are physical locations of the
memory that have particular properties defined by the format
of the data. However, while the invention is being described
in the foregoing context, it is not meant to be limiting as
those of skill in the art will appreciate that various of the acts
and operation described hereinafter may also be imple-
mented in hardware.

Referring now to FIG. 2, the present invention is directed
to a way to protect a security parameter negotiation server,
such as an IKE server of the IPSec suite, from malicious
denial-of-service attacks that attempt to flood the server with
false connection requests. For illustration purposes, the
invention will be described below in connection with a
preferred embodiment that implements the IPSec Suite
protocols for secured delivery of network communications.
It will be appreciated, however, that the system and method
of the invention for providing protection against denial-of-
service attacks can also be effectively used with other
network security protocols that require negotiations of secu-
rity parameters for securing network communications.

In the embodiment shown in FIG. 2, a computer 70
implements the IPSec Suite protocols for secured delivery of
IP-based packets. The components supporting the IPSec
protocols include a policy agent 72, an IPSec driver 74, and
an Internet Key Exchange (“IKE”) server 76. The security
policies assigned to the host computer 70 by the adminis-
trator of the system determine the levels of security for
various types of communications. The security policies are
picked up by the policy agent 72 and passed the IKE server
76 and the IPSec driver 74. The IKE server 76 uses the
negotiation policies associated with the assigned security
policies to conduct negotiations with a peer (i.c., the IKE
component of another computer on the network) to establish
security parameters for communications with the host of the

US 6,904,529 B1

5

peer. The negotiated security parameters include, for
example, the parameters for authentication and encryption
methods and the keys, and are collectively referred to in the
IPSec Suite protocols as a Security Association (“SA”). The
results of the negotiation by the IKE server 76 is passed to
the IPSec driver 74, which performs security operations,
such as data encryption, on packets of a communication
stream using the negotiated SA for that stream.

In this illustrated embodiment, the host computer 70 on
which the IPSec components reside is part of an internal
network 80 such as a local-area network (“LAN”). The host
computer 70 is also connected to an external network 82,
such as the Internet, and communicates with other comput-
ers on the external network by sending and receiving packets
based on the Internet Protocol. The host computer 70 in this
arrangement functions as a firewall or gateway for comput-
ers on the internal network 80 to communicate with com-
puters on the external network 82. For example, a computer
84 on the internal network may communicate with a com-
puter 86 on the external network 82 by transmitting IP-based
communication packets 92 through the host computer 70,
whose IPSec components will handle the task of securing
the communication stream. When the host computer is used
in this capacity of a gateway for the internal network, the
IPSec components, such as the IKE server 76, especially
have to be resilient to attacks mounted by malicious attack-
ers on the external network while providing services to
legitimate users.

In accordance with an aspect of the invention, the IKE
server 76 may be vulnerable to denial-of-service attacks that
flood it with false connection requests if no special protec-
tion measure is taken. The vulnerability of the IKE server to
such flooding attacks comes from the need for the IKE
server to store states not only for successful negotiations but
also for on-going negotiations. As shown in FIG. 2, when an
initial communication request 90 comes from a computer 86
on the external network 82, the IKE server 76 initiates a
negotiation process with the peer IKE 88 of the requesting
computer 86 to establish the security parameters for the
communication. Under the IKE protocol of the IPSec suite,
this negotiation involves two phases. In the first phase, the
two IKE peers 76 and 88 establish a secure channel for
conducting the IKE negotiation (called the IKE SA). In the
second phase, the two IKE peers negotiate general purpose
SAs over the secure channel established in the first phase.
The first phase is typically accomplished in a “main mode”
that involves three two-way exchanges between the SA
initiator and the recipient. The second phase is accomplished
in a “quick mode” that is less complicated than the main
mode since the negotiation is already inside a secure chan-
nel. As these phases and modes of the IKE negotiation
process are defined in the IKE protocol and well known to
those skilled in the art, it is not necessary to describe them
in greater detail here.

It is important, however, for purposes of the invention to
understand that to support the negotiation process the IKE
server has to store a “state” associated with the negotiation.
Specifically, when a request 90 for a new negotiation with a
peer arrives, the IKE server allocates system resources to
create a state for the negotiation. In this context, the state is
a proposed SA to be established by negotiation. As shown in
FIG. 2, the IKE server 76 maintains a state table 120 that is
a list of all SAs pending negotiation as well as SAs that have
been successfully negotiated. The resources allocated for the
SA state include dynamically allocated memory and a criti-
cal section for synchronization. The SA state record starts
with data including the peer address, an indication of

10

18

20

25

30

35

40

45

50

55

60

65

6

whether the server is the initiator or responder of the
negotiation, the current state of the negotiation (e.g., an
OAK_MM__SETUP state as will be described below). As
the negotiation proceeds, more information is filled into the
SA state, such as the key generation data, the negotiation
attributes, the authentication material, etc. At the end of the
main mode phase of the negotiation, the SA is fully filled
out.

It is important to note that at the time the SA state is
created in response to a negotiation request, the IKE does
not know whether the request is really from the peer
computer identified in the request. After creating the state for
the new negotiation request, the IKE server processes the
request to see whether it is valid, and then responds if the
request is valid. The rest of negotiation then follows, with
four more round trip packet exchanges. Part of this exchange
authenticates the peer, and at that time the IKE can deter-
mine if it should allow access to that peer. This peer
authentication does not occur until the third round trip,
however. In short, the IKE server has to create a state
immediately in response to a request from any unknown
source, and the peer authentication takes place later. Thus, a
malicious user of the peer computer can send in a large
number of requests to force the IKE sever to create a large
number of states. This consumes system resources, making
the system to run slower. As the system runs slower, it
cannot reclaim resources quickly, causing the system to run
even slower and finally coming to a grinding halt.

In accordance with the invention, the resilience of the IKE
server to the denial-of-service attack is significantly
improved by dynamically detecting when the performance
of the system begins to degrade, and adjusting performance
variables to actively remove unneeded states and reduce the
workload of the IKE server. The effectiveness of the pro-
tection against denial-of-service attacks is further enhanced
and the ability of the server to serve legitimate requests is
improved by limiting the number of states for pending
negotiations for each client and the total number of such
states. These protective measures are described in greater
detail in the following description.

In accordance with a feature of the embodiment, the
activation periodicity of a reaper component 122 of the
system is used as a primary barometer for the system health.
The function of the reaper 122 is to remove unwanted states
from the state table 120 of the IKE server 76. The reaper is
scheduled to run at fixed intervals, although the actual
intervals between consecutive runs of the reaper would
depend on the system workload. For instance, in a multi-
threading system, the reaper thread may be scheduled to run
every 45 seconds. On a lightly loaded system, the reaper
thread will be activated at or close to the scheduled time.
When the system is under a heavy workload, however, the
operating system may fall behind its schedule and activate
the reaper later than the scheduled time. As a result, the
interval between two consecutive runs of the reaper becomes
longer than 45 seconds. As the workload of the system
becomes heavier, the intervals between consecutive runs of
the reaper are likely to increase. The delay in the activation
of the reaper thus serves as a reliable indicator of whether
the system is being overloaded.

When the reaper activation intervals become longer than
the scheduled interval, dynamic adjustments of relevant
performance variables are made to reduce the load on the
system. In a preferred embodiment, the performance vari-
ables that affect the operation of the IKE server include
negotiation delay, retransmission delay, and packet drop
percentage. The negotiation delay controls how long a

US 6,904,529 B1

7

negotiation process is allowed to last. By reducing the
negotiation delay, pending negotiations are timed out
sooner, and their associated SA s are removed from the state
table 120. The retransmission delay is the time the IKE
server 76 will wait for a response from the requesting
computer before retransmitting a packet in the negotiation
process. Increasing the retransmission delay makes retrans-
missions further apart. As a result, the system makes fewer
retransmissions per unit time, thereby reducing the workload
on the system. The packet drop percentage is the percentage
at which the incoming negotiation packets are randomly
dropped. Increasing the packet drop percentage means that
the system handles fewer requests and therefore does less
work. Adjusting these performance variables to reduce the
system workload allows the system to heal itself from a burst
of attack and to withstand short loads that far exceed its
normal capacity. It will be appreciated that other perfor-
mance variables that have direct or indirect impacts on the
workload of the system may also be adjusted to lessen the
overloading of the system.

The adjustments of the performance variables are prefer-
ably made in a progressive manner such that they are gradual
at first and become more drastic as the system overloading
becomes more severe. By way of example, referring to FIG.
3, each time the reaper thread is activated (step 140), the
interval between the present run and the previous run is
determined (step 142). In this example, the reaper 122 is
scheduled to run at an interval of 45 seconds. If the reaper
actually runs at an interval equal to or greater than 60
seconds (step 144), the performance variables are modified
to reduce the workload of the system (146). After the reaper
run interval returns to the range between 60 seconds and 45
seconds, the performance variables may be modified in the
opposite direction to allow them to move back toward their
initial values (step 148). For instance, in one
implementation, the negotiation delay has a minimum value
of 30 seconds and a maximum value of 60 seconds. Each
time the reaper run interval exceeds 60 seconds, the nego-
tiation delay is decreased by 5 seconds. After the reaper run
interval returns to below 60 seconds, the negotiation delay
is increased by one second for each reaper run. Similarly, the
transmission delay may have a minimum of 0 second and a
maximum of 15 seconds, with an increment step of 3
seconds and a decrement step of 1 second. The drop packet
percentage has a minimum of 0 and a maximum of 100, with
increment and decrement steps of 3 and 5, respectively.
Also, the packet drop percentage starts to be incremented
only if the negotiation delay is already at its minimum. In
this way, the IKE server avoids dropping packets until it
becomes necessary to do so.

Adjusting performance variables to reduce the system
workload as described above is effective in preventing the
IKE server from being paralyzed by a flooding attack.
Nevertheless, since those performance variables are global,
the workload reduction does not discern valid clients from
potentially malicious attackers. As a result, the server will
equally deny service to valid users and malicious attackers.
In this regard, the protection against denial-of-service
attacks in a preferred embodiment is made more focused on
potential attackers by limiting the number of states pending
negotiation for each client. By way of example, the number
of outstanding requests for each client may be limited to a
selected number, such as 6. When it is detected that a client
already has 6 or more states pending negotiation (step 150),
the thread that processes negotiation requests simply drops
any subsequent new request from the same client as iden-
tified by the IP address of the request (step 152). This

10

18

20

25

30

35

40

45

50

55

60

5

o

8

eliminates the possibility of being flooded by false requests
generated by an attacker on a single machine.

It is, however, possible for an attacker to put fake source
IP addresses in the false requests (which is commonly called
“spoofing”). To deal with that possible scenario, in a pre-
ferred embodiment a configurable threshold (e.g., 1000) is
also set for the total number of states pending negotiation.
Specifically, when the IKE server 76 sends a response to a
new request for negotiation, the state it allocates is marked
to indicate that the negotiation for this state is not completed,
such as by setting a flag named “OAK_MM__ SETUP”. This
setting is not changed unless the IKE server receives a valid
response from the client that sent the request. In the case of
spoofing, since source IP addresses of the false requests are
fake, it is unlikely that the attacker would receive the
negotiation packets from the IKE server and respond accord-
ingly. Thus, the total number of states with pending nego-
tiations is an indicator of the possibility that the IKE server
is under a flooding attack.

When the reaper runs, it checks the total number of states
with the negotiation-pending flag set. If the total number
exceeds the pre-configured threshold (step 154), the IKE
server is told not to accept any new connection request (step
156) and to more aggressively time out those negotiation-
pending states. In this way, valid connections are given the
opportunity to progress (i.e., to complete the negotiations),
and once the negotiations are successfully completed, they
are not affected by the attack. In a preferred embodiment,
when it is determined that the total number of states pending
negotiation has been reduced to below the threshold (step
154), the IKE server does not immediately accept all new
requests but rather gradually allows new requests in. In other
words, a portion of the new requests may still be dropped.
For example, the new request drop rate may be set to 100%,
25%, or 0%. If the total number of negotiation-pending
states is below the threshold but the new request drop rate is
not 0 (step 158), the IKE server may reduce the drop rate to
the next lower level, such as from 100% to 25 or from 25%
to 0 (step 160).

In view of the many possible embodiments to which the
principles of this invention may be applied, it should be
recognized that the embodiment described herein with
respect to the drawing figures is meant to be illustrative only
and should not be taken as limiting the scope of invention.
For example, those of skill in the art will recognize that the
elements of the illustrated embodiment shown in software
may be implemented in hardware and vice versa or that the
illustrated embodiment can be modified in arrangement and
detail without departing from the spirit of the invention.
Therefore, the invention as described herein contemplates
all such embodiments as may come within the scope of the
following claims and equivalents thereof.

What is claimed is:

1. A computer-readable medium having thereon
computer-executable instructions for providing protection
against denial-of-service attacks in a computer system com-
prising a negotiation server for negotiating security param-
eters for securing network communications, the negotiation
server maintaining a state table for storing states in response
to connection requests, the computer-executable instructions
comprising instructions for:

counting a total number of negotiation-pending states in

the state table of the negotiation server;

rejecting new connection requests when the total number

of negotiation-pending states reaches a threshold num-
ber; and

US 6,904,529 B1

9

reducing a new request drop rate toward zero when the
total number of negotiation-pending states is less than
the threshold number.

2. A computer-readable medium as in claim 1, further
comprising instructions for adjusting a negotiation delay
variable to reduce workload of the negotiation server.

3. A computer-readable medium as in claim 1, further
comprising instructions for adjusting a retransmission delay
variable to reduce workload of the negotiation server.

4. A computer-readable medium as in claim 1, further
comprising instructions for adjusting a packet drop percent-
age variable to reduce workload of the negotiation server.

5. A computer-readable medium as in claim 1, wherein the
negotiation server is an Internet Key Exchange (“IKE”)
server under the IPSec protocols, and wherein the states
maintained by the negotiation server are Security Associa-
tions (“SA”) under the IPSec protocols.

6. A computer-readable medium having thereon
computer-executable instructions for providing protection
against denial-of-service attacks on a computer system in
which a negotiation server for negotiating security param-
eters for securing network communications resides, the
negotiation server maintaining a state table for storing states
in response to connection requests, the instructions com-
prising instructions for:

monitoring a run interval of a reaper component for
removing unwanted states in the state table; and

when the run interval of the reaper exceeds a pre-
configured time period, adjusting first and second per-
formance variables relating to maintenance of the state
table to reduce workload of the negotiation server,
adjusting the first performance variable only after the
second performance variable has reached an adjust-
ment limit thereof.

7. A computer-readable medium as in claim 6, wherein the
first performance variable is a packet drop percentage rate
and the second performance variable is a negotiation delay
variable.

8. A computer-readable medium as in claim 6, having
further computer-executable instructions for performing the
step of reverting the performance variables toward their
respective original settings when the run interval of the
reaper shows alleviation of degradation of the performance
of the computer system.

9. A method for providing protection against denial-of-
service attacks in a computer system comprising a negotia-
tion server for negotiating security parameters for securing
network communications, the negotiation server maintain-
ing a state table for storing states in response to connection
requests, the method comprising:

10

18

20

25

30

35

40

45

10

counting a total number of negotiation-pending states in
the state table of the negotiation server;

rejecting new connection requests when the total number
of negotiation-pending states reaches a threshold num-
ber; and

reducing a new request drop rate toward zero when the
total number of negotiation-pending states is less than
the threshold number.

10. The method as in claim 9, further comprising adjust-
ing a negotiation delay variable to reduce workload of the
negotiation server.

11. The method as in claim 9, further comprising adjusting
a retransmission delay variable to reduce workload of the
negotiation server.

12. The method as in claim 9, further comprising adjust-
ing a packet drop percentage variable to reduce workload of
the negotiation server.

13. The method as in claim 9, wherein the negotiation
server is an Internet Key Exchange (“IKE”) server under the
IPSec protocols, and wherein the states maintained by the
negotiation server are Security Associations (“SA”) under
the IPSec protocols.

14. A method for providing protection against denial-of-
service attacks on a computer system in which a negotiation
server for negotiating security parameters for securing net-
work communications resides, the negotiation server main-
taining a state table for storing states in response to con-
nection requests, the method comprising:

monitoring a run interval of a reaper component for
removing unwanted states in the state table; and

when the run interval of the reaper exceeds a pre-
configured time period, adjusting first and second per-
formance variables relating to maintenance of the state
table to reduce workload of the negotiation server,
adjusting the first performance variable only after the
second performance variable has reached an adjust-
ment limit thereof.

15. The method as in claim 14, wherein the first perfor-
mance variable is a packet drop percentage rate and the
second performance variable is a negotiation delay variable.

16. The method as in claim 14, further comprising revert-
ing the performance variables toward their respective origi-
nal settings when the run interval of the reaper shows
alleviation of degradation of the performance of the com-
puter system.

