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OLED Displays on Plastic

Mark L. Hildner

 

 
DuPont Displays

15. I Introduction

Organic light-emitting diode (OLED) technology has captured tremendous interest and has

rapidly developed since the discovery of organic electroluminescence roughly 15 years ago.

Commercial OLED displays on glass are now available and the industry is poised for
substantial growth in the next few years. Much of the attention given to OLEDs is due to the

performance advantages that it has over other types of flat panel display (FPD) technologies,

t including the industry dominant liquid crystal displays (LCDs). Recognized advantages
include nearly Lambertian emission, which provides wider viewing angles than LCD; fast

l response times, which facilitate grayscale and video capabilities in active matrix applica—

tiOns; and low—voltage operation, which leads to low-cost components and low-profile
Packaging. Furthermore, the high efficiency of OLED materials makes OLED the lowest-

Power emiSSive FPD technology and offers the potential for lower power consumption than
backlit LCDs.

An additional factor giving OLED technology impetus, perhaps to an extent equal to
the Performance advantages. is the perception that OLEDs are a natural choice for flexible
dismay; The very thin structure (the active layers are less than 1 pm), solid—state construc-
tion (there is no cell gap as in an LCD), and active material composition of an OLED are
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f , have many thinking that OLED is the technology path to high—performance
u”-coler flexible displays.
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286 OLED DISPLAYS ON PLASTIC 

The two main types of OLED are based on small molecules and conjugated polymers.
Small-molecule OLEDs (SMOLEDs) were first reported by Tang and VanSlyke (1987) and
are typically thermally evaporated. Light cmission from polymer OLEDs (PLEDs) was first
reported by Burroughes et a1. (1990), where a solution—processable precursor polymer was
deposited by spin coating and then thermally converted at high temperature (2 250°C).
Then Braun and Heeger (1991) were able to make a light-emitting device with a polymer
that was soluble in its conjugated form, thus eliminating the need for high-temperature
processing. Solution processing at low temperatures may revolutionize how displays are
manufactured because it permits a number of process options (spin coating, inkjet printing,
dipping, spraying, etc.) that are lower cost than vacuum deposition; it would replace much of
the vacuum processing used in today’s FPD fab; it can cover large areas; and it is well suited
for roll—to-roll manufacturing, which may lead to further cost reduction from the current
batch process. That is why this chapter will focus on conjugated polymer OLEDs.

A number of flexible materials are being explored as OLED substrates. The first flexible
OLED display demonstralion was on a lransparenl plastic substrate (Gustafsson et a1. 1992).
Plastic is a logical choice because ils transparency allows much of the architecture of an

OLED on glass to be used. Plastic is rugged, more so than regular glass: able to be accurately
cut with a laser, allowing for irregular shapes with the only downside being some
discoloration at the cutting site; and is already incorporated into roll—to-roll process
technology, both in its own manufacture and current applications.

While flexibility may be the ultimate goal for OLED displays on plastic, there are
significant opportunities that are less technologically demanding than a display that can be
flexed or rolled up multiple times. A flat plastic OLED display is thin, lightweight, and
rugged. These are significant attributes that may be taken advantage of in mobile applica—
tions. Plastic displays can be easily cut into a wide variety of nonrectangular shapes, and can
be bent into a curved, but rigid, format. These characteristics allow greater freedom in
product design. Even for these nonflexible display manifestations, there are significant
development challenges to bringing a plastic OLED display to the marketplace.

After a brief introduction describing how a PLED display works, this chapter will present
the challenges associated with two key technology developments that must take place. The
first is to obtain a plastic substrate that can withstand processing and lead to a reliable and
long-lived device. The second is to obtain an understanding of the manufacturing issues
associated with a plastic substrate, and then to incorporate this understanding into device
processing. The issues associated with making a passive matrix (PM) OLED will then
be discussed, and finally, there will be a review of thin film transistor technologies that are
appropriate for plastic active matrix (AM) backplanes.

15.2.1 Conjugated Polymers

Conjugated polymers are characterized by alternating single and double or single and triPle
bonds (Heeger 20m ). Overlapping of the pZ orbitals from the double or triple bonds along
the polymer backbone loads to the formation c-fa dolocalized rr‘honding system. This gives
rise to energy bands similar to those in an inorganic semiconductor. The occupied rr—liand-
analogous to the valence band, is comprised of hole-transport states. and the highe’“
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PLED BASICS 287

occupied molecular orbital (HOMO) is analogous to the valence band edge. The unoccupied
T[.band. analogous to the conduction band, is comprised of electron-transport states, and the
how!“ unoccupied molecular orbital (LUMO) is analogous to the conduction band edge.
Despite this analogy. charge transport in conjugated polymers differs in a number of ways
from that in inorganic semiconductors (Patel et al. 2002): intrinsic and extrinsic carriers are
generally negligible and conduction is dominated by injected carriers; the polymer chains
distort around the charge carrier so that the charged excitation is best described as a polaron
tthe charge plus the distortion): and the energy bands are inhomogeneously broadened due to
the amorphous polymer structure and. therefore, transport is through hopping along or
between polymer chains.

15.2.2 Light-Emitting Diodes

A conjugated polymer can emit light because it has an energy gap. Figure 15.1 shows three
common light-emitting polymers: polyQJ-phenylenevinylene) or PPV; poly[2—methoxy,

He . .
to). --t-th tint

OCHa

PPV MEH-PPV Polyfluorene

Figure 15.] Example light—emitting conjugated polymers

5-(2’-ethyl-hexyloxy)—p—phenylenevinylene] or MEH—PPV; and polyfluorine. The basic
polymer light—emitting device (a diode) consists of a light-emitting polymer (LEP) film of
~100 nm sandwiched between an optically transparent anode, which sits on an optical

quality glass or plastic substrate, and a metallic cathode. The anode is usually indium tin
oxide (ITO), which has a high work function, whereas the cathode is typically a low work
function metal such as Ca or Mg. When a bias greater than the difference between the anode
and cathode work functions (the built—in potential) is applied as illustrated in the band

diagram of Figure 15.2(a), electrons are injected from the cathode into the ail-band, and
holes are injected from the anode into the 7r—band. The injected charges (electron and hole
type polarons) form bound polaron-excitons, i.e. neutral bipolarons bound by their Coulomb
attraction and their shared distortion (Heeger 2001). Electroluminescence (EL) results from

the radiative decay (electron—hole recombination) of these excitons. The device is a diode
because application of a reverse bias prevents charge flow (there is no light emission). The
energy gap and thus the emission color of the diode can be tuned by changing the length of
the polymer molecule, by changing the structure of the polymer repeat unit, by making
copolymers, and/or by making polymer blends (Braun er al. 1992; Berggren et al. 1994;
Akcelrud 2003).

A number of factors influence the efficiency of this EL process (Patel et al. 2002). Barriers

to injection result from the mismatches of the anode and cathode work functions with the
HOMO and LUMO, respectively; this defines the need for a high work function anode and a
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