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1. My name is Jacob Robert Munford. I am over the age of 18, have personal 

knowledge of the facts set forth herein, and am competent to testify to the 

same. 

 

2. I earned a Master of Library and Information Science (MLIS) from the 

University of Wisconsin-Milwaukee in 2009. I have over ten years of 

experience in the library/information science field. Beginning in 2004, I 

have served in various positions in the public library sector including 

Assistant Librarian, Youth Services Librarian and Library Director. I have 

attached my Curriculum Vitae as Appendix A. 

 

3. During my career in the library profession, I have been responsible for 

materials acquisition for multiple libraries. In that position, I have cataloged, 

purchased and processed incoming library works. That includes purchasing 

materials directly from vendors, recording publishing data from the material 

in question, creating detailed material records for library catalogs and 

physically preparing that material for circulation. In addition to my 

experience in acquisitions, I was also responsible for analyzing large 

collections of library materials, tailoring library records for optimal catalog 
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search performance and creating lending agreements between libraries 

during my time as a Library Director.  

 

4. I am fully familiar with the catalog record creation process in the library 

sector. In preparing a material for public availability, a library catalog record 

describing that material would be created. These records are typically 

written in Machine Readable Catalog (herein referred to as “MARC”) code 

and contain information such as a physical description of the material, 

metadata from the material’s publisher, and date of library acquisition. In 

particular, the 008 field of the MARC record is reserved for denoting the 

date of creation of the library record itself. As this typically occurs during 

the process of preparing materials for public access, it is my experience that 

an item’s MARC record indicates the date of an item’s public availability. 

 

5. Typically, in creating a MARC record, a librarian would gather various bits 

of metadata such as book title, publisher and subject headings among others 

and assign each value to a relevant numerical field. For example, a book’s 

physical description is tracked in field 300 while title/attribution is tracked in 

field 245. The 008 field of the MARC record is reserved for denoting the 

creation of the library record itself. As this is the only date reflecting the 
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inclusion of said materials within the library’s collection, it is my experience 

that an item’s 008 field accurately indicates the date of an item’s public 

availability. 

 

6. This declaration is being drafted as of March 2021. Public and university 

libraries in my area have been closed for months due to the COVID-19 

pandemic. My state, Pennsylvania, has a travel advisory, which has affected 

my ability to travel. In my experience, library catalog records are accurate 

descriptions of a library’s collection and my lack of physical access to 

libraries at this time creates no doubt in my determinations of authenticity or 

availability of the exhibits noted below. 

 

7. I have reviewed Exhibit 1010, a copy of an article entitled “A Wearable 

Reflectance Pulse Oximeter for Remote Physiological Monitoring” by Y. 

Mendelson, R. J. Duckworth, and G. Comtois, as published in the 

Proceedings of the 28th Annual International Conference of the IEEE 

Engineering in Medicine and Biology Society, August 30 – September 3, 

2006 (hereinafter referred to as “2006 IEEE conference publication”). 
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8. Attached hereto as Appendix MENDELSON02 is a true and correct copy of 

the MARC record for the 2006 IEEE conference publication, as held by 

Cornell University’s library. I secured this record myself from the library’s 

public catalog.  

 

9. The MARC record contained within Appendix MENDELSON02 accurately 

describes the title, author, publisher, and ISBN number of the 2006 IEEE 

conference publication. In comparing the listed fields in Appendix 

MENDELSON02 to Exhibit 1010, it is my determination that Exhibit 1010 

is a true and correct copy of the “A Wearable Reflectance Pulse Oximeter 

for Remote Physiological Monitoring” article, and that the copy of the 2006 

IEEE conference publication in Cornell University’s library includes the 

article in Exhibit 1010. 

 

10. The 008 field of the MARC record noted on page 1 of Appendix 

MENDELSON02 indicates that the 2006 IEEE conference publication was 

first cataloged by Cornell University’s library as of December 26, 2007. 

Based on this information and considering the dates of the conference, it is 

my determination that the 2006 IEEE conference publication, which 
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included the article published as Exhibit 1010, was made available to the 

public by Cornell University at least as of December 26, 2007. 

 

11. Additionally, I accessed a copy of the 2006 IEEE conference publication 

through the Pennsylvania State University’s online library catalog portal. 

 

12. Attached hereto as Appendix MENDELSON06 is a true and correct copy of 

the catalog entry for the 2006 IEEE conference publication as maintained by 

the Pennsylvania State University. I secured this record myself from the 

library’s public catalog. 

 

13. Attached hereto as Appendix MENDELSON07 is a true and correct copy of 

the table of contents for the 2006 IEEE conference publication. I secured this 

record, as provided by the Pennsylvania State University’s library through 

the catalog entry for the 2006 IEEE conference publication as shown in 

Appendix MENDELSON06, myself. 

 

14. I have reviewed Appendix MENDELSON10, a copy of an article entitled “A 

Wearable Reflectance Pulse Oximeter for Remote Physiological 

Monitoring” by Y. Mendelson, R. J. Duckworth, and G. Comtois, as 

6



6 
 

published in the 2006 IEEE conference publication. I obtained this document 

using the table of contents for the 2006 IEEE conference publication as 

shown in Appendix MENDELSON07. 

 

15. Attached hereto as Appendix MENDELSON05 is a true and correct copy of 

the MARC record for the 2006 IEEE conference publication, as held by the 

Pennsylvania State University’s library in its online catalog indicated by the 

catalog entry as shown in Appendix MENDELSON06. The Pennsylvania 

State University’s online library catalog entry as shown in Appendix 

MENDELSON06 directs the user to the IEEE’s online repository, IEEE 

Xplore. I secured this record myself from the library’s public catalog 

through the table of contents listing as captured in Appendix 

MENDELSON07. 

 

16. The MARC record contained within Appendix MENDELSON05 accurately 

describes the title, author, publisher, and ISBN number of the 2006 IEEE 

conference publication. In comparing the listed fields in Appendix 

MENDELSON05 to Appendix MENDELSON10, it is my determination 

that (1) Appendix MENDELSON10 is a true and correct copy of the “A 

Wearable Reflectance Pulse Oximeter for Remote Physiological 
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Monitoring” article by Y. Mendelson, R. J. Duckworth, and G. Comtois, as 

published in the 2006 IEEE conference publication, and (2) that the digital 

copy of the 2006 IEEE conference publication in the Pennsylvania State 

University’s library catalog includes the article in Appendix 

MENDELSON10 and is the same as the “A Wearable Reflectance Pulse 

Oximeter for Remote Physiological Monitoring” article by Y. Mendelson, R. 

J. Duckworth, and G. Comtois, as published in the 2006 IEEE conference 

publication that is made publicly available by the Pennsylvania State 

University through the IEEE’s online repository IEEE Xplore. 

 

17. The 008 field of the MARC record noted on page 1 of Appendix 

MENDELSON05 indicates that the 2006 IEEE conference publication was 

first cataloged by the Pennsylvania State University’s library as of 

December 26, 2007. Based on this information and considering the dates of 

the conference, it is my determination that the 2006 IEEE conference 

publication, which included the article published as Appendix 

MENDELSON10, was made available to the public by the Pennsylvania 

State University through its online catalog at least as of December 26, 2007. 
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18. In comparing the listed fields in Appendix MENDELSON02 to Appendix 

MENDELSON05 and comparing Exhibit 1010 to Appendix 

MENDELSON10, it is my determination that both of Exhibit 1010 and 

Appendix MENDELSON10 are true and correct copies of the article entitled 

“A Wearable Reflectance Pulse Oximeter for Remote Physiological 

Monitoring” by Y. Mendelson, R. J. Duckworth, and G. Comtois, as 

published in the 2006 IEEE conference publication. 

 

19. Based on this information, it is my determination that both of Exhibit 1010 

and Appendix MENDELSON10 are true and correct copies of the article 

entitled “A Wearable Reflectance Pulse Oximeter for Remote Physiological 

Monitoring” by Y. Mendelson, R. J. Duckworth, and G. Comtois, as 

published in the 2006 IEEE conference publication, and that the 2006 IEEE 

conference publication containing Exhibit 1010 was cataloged and made 

available to the public by Cornell University at least as of December 26, 

2007. 

 

20. Based on this information, it is my determination that both of Exhibit 1010 

and MENDELSON10 are true and correct copies of the article entitled “A 

Wearable Reflectance Pulse Oximeter for Remote Physiological 
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Monitoring” by Y. Mendelson, R. J. Duckworth, and G. Comtois, as 

published in the 2006 IEEE conference publication, and that the 2006 IEEE 

conference publication containing Exhibit 1010 was cataloged and made 

available to the public by the Pennsylvania State University through its 

online catalog at least as of December 26, 2007. 

 

21. I have reviewed Appendix MENDELSON12, a copy of an article entitled “A 

Wearable Reflectance Pulse Oximeter for Remote Physiological 

Monitoring” by Y. Mendelson, R. J. Duckworth, and G. Comtois, as 

published in the 2006 IEEE conference publication. I secured this record 

myself from the IEEE’s online repository, IEEE Xplore. 

 

22. In comparing Appendix MENDELSON12 with Exhibit 1010, it is my 

determination that both of Appendix MENDELSON12 and Exhibit 1010 are 

true and correct copies of the “A Wearable Reflectance Pulse Oximeter for 

Remote Physiological Monitoring” article by Y. Mendelson, R. J. 

Duckworth, and G. Comtois, as published in the 2006 IEEE conference 

publication by the IEEE. 
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23. I have reviewed Appendix COMTOIS04, a copy of an article entitled “A 

noise reference input to an adaptive filter algorithm for signal processing in 

a wearable pulse oximeter” by G. Comtois and Y. Mendelson, as published 

in the Proceedings of the 2007 IEEE 33rd Annual Northeast Bioengineering 

Conference, March 10 – 11, 2007 (hereinafter referred to as “2007 IEEE 

conference publication”). I secured this copy of the 2007 IEEE conference 

publication through the Pennsylvania State University’s online library 

catalog portal. 

 

24. Attached hereto as Appendix COMTOIS02 is a true and correct copy of the 

catalog entry for the 2007 IEEE conference publication as maintained by the 

Pennsylvania State University. I secured this record myself from the 

library’s public catalog. 

 

25. Attached hereto as Appendix COMTOIS03 is a true and correct copy of the 

table of contents for the 2007 IEEE conference publication. I secured this 

record, as provided by the Pennsylvania State University’s library through 

the catalog entry for the 2007 IEEE conference publication as shown in 

Appendix COMTOIS02, myself. 
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26. Attached hereto as Appendix COMTOIS01 is a true and correct copy of the 

MARC record for the 2007 IEEE conference publication, as held by the 

Pennsylvania State University’s library in its online catalog. I secured this 

record myself from the library's public catalog through the table of contents 

listing as captured in COMTOIS03. 

 

27. The MARC record contained within Appendix COMTOIS01 accurately 

describes the title, author, publisher, and ISBN number of the 2007 IEEE 

conference publication. In comparing the listed fields in Appendix 

COMTOIS01 to COMTOIS04, it is my determination that COMTOIS04 is a 

true and correct copy of the “A noise reference input to an adaptive filter 

algorithm for signal processing in a wearable pulse oximeter” article, and 

that the copy of the 2007 IEEE conference publication in the Pennsylvania 

State University’s library includes the article in COMTOIS04. 

 

28. The 008 field of the MARC record noted on page 1 of Appendix 

COMTOIS01 indicates that the 2007 IEEE conference publication was first 

cataloged by the Pennsylvania State University’s library as of January 24, 

2007. Based on this information and considering the dates of the conference, 

it is my determination that the 2007 IEEE conference publication, which 
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included the article published as Appendix COMTOIS04, was made 

available to the public by the Pennsylvania State University at least as of 

January 24, 2007. 

 

29. Attached hereto as Appendix COMTOIS05 is a true and correct copy of the 

MARC record for the 2007 IEEE conference publication, as held by 

University of Wyoming’s library in its online catalog. I secured this record 

myself from the library's public catalog. 

 

30. The MARC record contained within Appendix COMTOIS05 accurately 

describes the title, author, publisher, and ISBN number of the 2007 IEEE 

conference publication. In comparing the listed fields in Appendix 

COMTOIS05 to COMTOIS04, it is my determination that the copy of the 

2007 IEEE conference publication in University of Wyoming’s library 

includes the article in COMTOIS04. 

 

31. The 008 field of the MARC record noted on page 1 of Appendix 

COMTOIS05 indicates that the 2007 IEEE conference publication was first 

cataloged by University of Wyoming’s library as of January 24, 2007. Based 

on this information and considering the dates of the conference, it is my 
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determination that the 2007 IEEE conference publication, which included 

the article published as COMTOIS04, was made available to the public by 

University of Wyoming at least as of January 24, 2007. 

 

32. In reviewing the listed citations at page 2 of COMTOIS04, it is my 

determination that the “A noise reference input to an adaptive filter 

algorithm for signal processing in a wearable pulse oximeter” article cites 

the article entitled “A Wearable Reflectance Pulse Oximeter for Remote 

Physiological Monitoring” by Y. Mendelson, R. J. Duckworth, and G. 

Comtois, as published in the 2006 IEEE conference publication. As noted 

above in paragraphs 18 – 20, I have also determined that Exhibit 1010 and 

MENDELSON10 are true and correct copies of the article entitled “A 

Wearable Reflectance Pulse Oximeter for Remote Physiological 

Monitoring” by Y. Mendelson, R. J. Duckworth, and G. Comtois, as 

published in the 2006 IEEE conference publication. Accordingly, it is my 

determination that the 2006 IEEE conference publication containing Exhibit 

1010 would have been publicly available at least as early as the publication 

date of the 2007 IEEE conference publication: January 24, 2007. 
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33. I have reviewed COMTOIS10, a copy of an article entitled “A Comparative 

Evaluation of Adaptive Noise Cancellation Algorithms for Minimizing 

Motion Artifacts in a Forehead-Mounted Wearable Pulse Oximeter” by G. 

Comtois, Y. Mendelson, and P. Ramuka, as published in the Proceedings of 

the 29th Annual International Conference of the IEEE EMBS Cité 

Internationale, Lyon, France, August 23 – 26, 2007 (hereinafter referred to 

as “2007 IEEE EMBS conference publication”). 

 

34. I obtained a copy of the 2007 IEEE EMBS conference publication through 

the Pennsylvania State University’s online library catalog portal. 

 

35. Attached hereto as Appendix COMTOIS06 is a true and correct copy of the 

catalog entry for the 2007 IEEE EMBS conference publication as 

maintained by the Pennsylvania State University. I secured this record 

myself from the library’s public catalog. 

 

36. Attached hereto as Appendix COMTOIS07 is a true and correct copy of the 

table of contents for the 2007 IEEE EMBS conference publication. I secured 

this record, as provided by the Pennsylvania State University’s library 
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through the catalog entry for the 2007 IEEE EMBS conference publication 

as shown in Appendix COMTOIS06, myself. 

 

37. Attached hereto as Appendix COMTOIS08 is a true and correct copy of the 

MARC record for the 2007 IEEE EMBS conference publication, as held by 

the Pennsylvania State University’s library in its online catalog. I secured 

this record myself from the library's public catalog through the table of 

contents listing as captured in COMTOIS07. 

 

38. The MARC record contained within Appendix COMTOIS08 accurately 

describes the title, author, publisher, and ISBN number of the 2007 IEEE 

EMBS conference publication. In comparing the listed fields in Appendix 

COMTOIS08 to COMTOIS10, it is my determination that COMTOIS10 is a 

true and correct copy of the “A Comparative Evaluation of Adaptive Noise 

Cancellation Algorithms for Minimizing Motion Artifacts in a Forehead-

Mounted Wearable Pulse Oximeter” article, and that the copy of the 2007 

IEEE EMBS conference publication in the Pennsylvania State University’s 

library includes the article in COMTOIS10. 
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39. The 008 field of the MARC record noted on page 1 of Appendix 

COMTOIS08 indicates that the 2007 IEEE EMBS conference publication 

was first cataloged by the Pennsylvania State University’s library as of June 

5, 2008. Based on this information and considering the dates of the 

conference, it is my determination that the 2007 IEEE EMBS conference 

publication, which included the article published as COMTOIS10, was made 

available to the public by the Pennsylvania State University at least as of 

June 5, 2008. 

 

40. Attached hereto as Appendix COMTOIS09 is a true and correct copy of the 

MARC record for the 2007 IEEE EMBS conference publication, as held by 

Library of Congress in its online catalog. I secured this record myself from 

the Library’s public catalog. 

 

41. The MARC record contained within Appendix COMTOIS09 accurately 

describes the title, author, publisher, and ISBN number of the 2007 IEEE 

EMBS conference publication. In comparing the listed fields in Appendix 

COMTOIS09 to COMTOIS10, it is my determination that the copy of the 

2007 IEEE EMBS conference publication in the Library of Congress 

includes the article in COMTOIS10. 
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42. The 008 field of the MARC record noted on page 1 of Appendix 

COMTOIS09 indicates that the 2007 IEEE EMBS conference publication 

was first cataloged by the Library of Congress as of June 5, 2008. Based on 

this information and considering the dates of the conference, it is my 

determination that the 2007 IEEE EMBS conference publication, which 

included the article published as COMTOIS10, was made available to the 

public by the Library of Congress at least as of June 5, 2008. 

 

43. In reviewing the listed citations at page 4 of COMTOIS10, it is my 

determination that the “A Comparative Evaluation of Adaptive Noise 

Cancellation Algorithms for Minimizing Motion Artifacts in a Forehead-

Mounted Wearable Pulse Oximeter” article cites the article entitled “A 

Wearable Reflectance Pulse Oximeter for Remote Physiological 

Monitoring” by Y. Mendelson, R. J. Duckworth, and G. Comtois, as 

published in the 2006 IEEE conference publication. As noted above in 

paragraphs 18 – 20, I have also determined that Exhibit 1010 and Appendix 

MENDELSON10 are true and correct copies of the article entitled “A 

Wearable Reflectance Pulse Oximeter for Remote Physiological 

Monitoring” by Y. Mendelson, R. J. Duckworth, and G. Comtois, as 
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published in the 2006 IEEE conference publication. Accordingly, it is my 

determination that the 2006 IEEE conference publication containing Exhibit 

1010 would have been publicly available at least as early as the publication 

date of the 2007 IEEE EMBS conference publication, June 5, 2008. 

 

44. I have reviewed Exhibit 1017, a copy of an article entitled “Design and 

Evaluation of a New Reflectance Pulse Oximeter Sensor” by Y. Mendelson, 

et al., as published in the Journal of the Association for the Advancement of 

Medical Instrumentation, Vol. 22, No. 4, 1988 (hereinafter referred to as 

“1988 publication”). 

 

45. Attached hereto as Appendix MENDELSON03 is a true and correct copy of 

the MARC record for the 1988 publication held by the Pennsylvania State 

University’s library. I secured this record myself from the library’s public 

catalog.  

 

46. The MARC record contained within Appendix MENDELSON03 accurately 

describes the title, author, publisher, and ISSN number of the Journal of the 

Association for the Advancement of Medical Instrumentation. The 949 field 

of a MARC record is used for institution-specific notations and the 949 
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fields of this MARC record indicate the Pennsylvania State University’s 

issue level holdings for the Journal of the Association for the Advancement 

of Medical Instrumentation, demonstrating that the Pennsylvania State 

University’s collection contains volumes 17 – 22. These journal holdings 

clearly include Volume 22, No. 4, which corresponds to the 1988 

publication. In comparing the listed fields in Appendix MENDELSON03 to 

Exhibit 1017, it is my determination that Exhibit 1017 is a true and correct 

copy of the “Design and Evaluation of a New Reflectance Pulse Oximeter 

Sensor” article, and that the copy of the 1988 publication in the 

Pennsylvania State University’s library includes the article in Exhibit 1017. 

 

47. The 008 field of the MARC record noted on page 1 of Appendix 

MENDELSON03 indicates that the Journal of the Association for the 

Advancement of Medical Instrumentation was first cataloged by the 

Pennsylvania State University’s library as of August 8, 1983. The 362 field 

of the MARC record indicates the Pennsylvania State University’s 

acquisition of this material ceased as of Vol. 22, No. 6. Based on this 

information, it is my determination that the 1988 publication, which 

included the article published as Exhibit 1017, was made available to the 
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public by the Pennsylvania State University shortly after initial publication 

in August 1988. 

 

48. I have reviewed Exhibit 1018, a copy of an article entitled “Skin Reflectance 

Pulse Oximetry: In Vivo Measurements From the Forearm and Calf” by Y. 

Mendelson and M.J. McGinn as published in Journal of Clinical 

Monitoring, January 1991 (hereinafter referred to as the “1991 

publication”). 

 

49. Attached hereto as Appendix MENDELSON04 is a true and correct copy of 

the MARC record for the 1991 publication held by the Ohio State University 

library. I secured this record myself from the library’s public catalog.  

 

50. The MARC record contained within Appendix MENDELSON04 accurately 

describes the title, author, publisher, and ISSN number of the Journal of 

Clinical Monitoring. The ‘Lib Has.’ field of this MARC record indicates 

Ohio State University’s issue level holdings for the Journal of Clinical 

Monitoring, demonstrating that Ohio State University’s collection contains 

volumes 1 (1985) – volume 13 (1997). Accordingly, Ohio State’s journal 

holdings range clearly includes the January 1991 edition. In comparing the 
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information listed in Appendix MENDELSON04 to Exhibit 1018, it is my 

determination that Exhibit 1018 is a true and correct copy of the “Skin 

Reflectance Pulse Oximetry: In Vivo Measurements From the Forearm and 

Calf” article, and that the copy of the 1991 publication in Ohio State 

University’s library includes the article in Exhibit 1018. 

 

51. The 008 field of the MARC record noted on page 1 of Appendix 

MENDELSON04 indicates that the Journal of Clinical Monitoring was first 

cataloged by Ohio State University’s library as of August 23, 1999. The ‘Lib 

has’ field of this record indicates Ohio State University’s acquisition of this 

material ceased as of Vol. 13. Based on this information, it is my 

determination that the 1991 publication, which included the article published 

as Exhibit 1018, was made available to the public by Ohio State University 

at least as of August 23, 1999. 

 

52. Additionally, I obtained a copy of the 1991 publication through the 

Pennsylvania State University’s online library catalog portal. 

 

53. Attached hereto as Appendix MENDELSON14 is a true and correct copy of 

the catalog entry for the 1991 publication as maintained by the Pennsylvania 
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State University. I secured this record myself from the library’s public 

catalog. 

 

54. Attached hereto as Appendix MENDELSON15 is a true and correct copy of 

the online page for the 1991 publication. I secured this record, as provided 

by the Pennsylvania State University’s library through the catalog entry for 

the 1991 publication as shown in Appendix MENDELSON14, myself. 

 

55. I have reviewed MENDELSON16, a copy of an article entitled “Skin 

Reflectance Pulse Oximetry: In Vivo Measurements From the Forearm and 

Calf” by Y. Mendelson and M.J. McGinn as published in 1991 publication. I 

obtained this document using the online page for the 1991 publication as 

shown in Appendix MENDELSON15. 

 

56. Attached hereto as Appendix MENDELSON13 is a true and correct copy of 

the MARC record for the 1991 publication, as held by the Pennsylvania 

State University’s library in its online catalog indicated by the catalog entry 

as shown in Appendix MENDELSON14. The Pennsylvania State 

University’s online library catalog entry as shown in Appendix 

MENDELSON14 directs the user to Springer’s online repository, 
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SpringerLink. I secured this record myself from the library’s public catalog 

through the online page as captured in Appendix MENDELSON15. 

 

57. The MARC record contained within Appendix MENDELSON13 accurately 

describes the title, author, publisher, and ISBN number of the 1991 

publication. In comparing the listed fields in Appendix MENDELSON13 to 

MENDELSON16, it is my determination that (1) MENDELSON16 is a true 

and correct copy of the “Skin Reflectance Pulse Oximetry: In Vivo 

Measurements From the Forearm and Calf” article by Y. Mendelson and 

M.J. McGinn and (2) that the digital copy of the 1991 publication in the 

Pennsylvania State University’s library catalog includes the article in 

MENDELSON16 and is the same as the copy of the “Skin Reflectance Pulse 

Oximetry: In Vivo Measurements From the Forearm and Calf” article by Y. 

Mendelson and M.J. McGinn that is made publicly available by the 

Pennsylvania State University through Springer’s online repository 

SpringerLink. 

 

58. The 008 field of the MARC record noted on page 2 of Appendix 

MENDELSON13 indicates that the 1991 publication was first cataloged by 

the Pennsylvania State University’s library as of August 23, 1999. Based on 
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this information and considering the dates of publication of the journal, it is 

my determination that the 1991 publication, which included the article 

published as Appendix MENDELSON16, was made available to the public 

by the Pennsylvania State University through its online catalog at least as of 

August 23, 1999. 

 

59. In comparing the listed fields in Appendix MENDELSON13 to Appendix 

MENDELSON04 and comparing Exhibit 1018 to Appendix 

MENDELSON16, it is my determination that both of Exhibit 1018 and 

Appendix MENDELSON16 are true and correct copies of the article entitled 

“Skin Reflectance Pulse Oximetry: In Vivo Measurements From the 

Forearm and Calf” article by Y. Mendelson and M.J. McGinn, as published 

in the 1991 publication. 

 

60. Based on this information, it is my determination that Exhibit 1018 and 

Appendix MENDELSON16 are true and correct copies of the article entitled 

“Skin Reflectance Pulse Oximetry: In Vivo Measurements From the 

Forearm and Calf” article by Y. Mendelson and M.J. McGinn, as published 

in the 1991 publication, and that the 1991 publication containing Exhibit 

25



25 
 

1018 was cataloged and made available to the public by the Ohio State 

University at least as of August 23, 1999. 

 

61. Based on this information, it is my determination that Exhibit 1018 and 

Appendix MENDELSON16 are true and correct copies of the article entitled 

“Skin Reflectance Pulse Oximetry: In Vivo Measurements From the 

Forearm and Calf” article by Y. Mendelson and M.J. McGinn, as published 

in the 1991 publication, and that the 1991 publication containing Exhibit 

1018 was cataloged and made available to the public by the Pennsylvania 

State University through its online catalog at least as of August 23, 1999. 

 

62. I have reviewed Exhibit 1022, a copy of the book entitled Master Visually 

Windows Mobile by Bill Landon and Matthew Miller (hereinafter referred to 

as “Landon”). 

 

63. Attached hereto as Appendix LANDON01 is a true and correct copy of the 

MARC record for Landon as held by Rowan University’s library. I secured 

this record myself from the library’s public catalog.  
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64. The MARC record contained within Appendix LANDON01 accurately 

describes the title, author, publisher, and ISBN number of Landon. In 

comparing the listed fields in Appendix LANDON01 to Exhibit 1022, it is 

my determination that Exhibit 1022 is a true and correct copy of Landon and 

is the same as the copy of Landon in Rowan University. 

 

65. The 008 field of the MARC record contained within Appendix LANDON01 

indicates that Landon was first cataloged by Rowan University’s library as 

of September 17, 2004. Based on this information, it is my determination 

that Landon was made available to the public by Rowan University at least 

as of September 17, 2004.  

 

66. I have reviewed Exhibit 1021, a copy of the book entitled How to Do 

Everything with Windows Mobile by Frank McPherson (hereinafter referred 

to as “McPherson”). 

 

67. Attached hereto as Appendix MCPHERSON01 is a true and correct copy of 

the MARC record for McPherson as held by the Carnegie Library of 

Pittsburgh. I secured this record myself from the library’s public catalog.  
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68. The MARC record contained within Appendix MCPHERSON01 accurately 

describes the title, author, publisher, and ISBN number of McPherson. In 

comparing the listed fields in Appendix MCPHERSON01 to Exhibit 1021, it 

is my determination that Exhibit 1021 is a true and correct copy of 

McPherson, and is the same as the copy of McPherson in the Carnegie 

Library. 

 

69. The 008 field of the MARC record contained within Appendix 

MCPHERSON01 indicates that McPherson was first cataloged by the 

Carnegie Library of Pittsburgh as of June 5, 2006. Based on this 

information, it is my determination that McPherson was first made available 

to the public by the Carnegie Library of Pittsburgh at least as of June 5, 

2006. 

 

70. I have reviewed Exhibit 1019, a copy of the book entitled Design of Pulse 

Oximeters by John G. Webster (hereinafter referred to as “Webster”). 

 

71. Attached hereto as Appendix WEBSTER01 is a true and correct copy of the 

MARC record for Webster as held by the Pennsylvania State University’s 

library. I secured this record myself from the library’s public catalog.  
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72. The MARC record contained within Appendix WEBSTER01 accurately 

describes the title, author, publisher, and ISBN number of Webster. In 

comparing the listed fields in Appendix WEBSTER01 to Exhibit 1019, it is 

my determination that Exhibit 1019 is a true and correct copy of Webster, 

and is the same as the copy of Webster in the Pennsylvania State 

University’s library. 

 

73. The 008 field of the MARC record noted in page 1 of Appendix 

WEBSTER01 indicates that Webster was first cataloged by the Pennsylvania 

State University’s library as of November 26, 1997. Based on this 

information, it is my determination that Webster was made available to the 

public by the Pennsylvania State University at least as of November 26, 

1997.  

 

74. Attached hereto as Appendix WEBSTER02 is a true and correct copy of the 

MARC record for Webster as held by Georgia Institute of Technology’s 

library. I secured this record myself from the library's public catalog.  
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75. The MARC record contained within Appendix WEBSTER02 accurately 

describes the title, author, publisher, and ISBN number of Webster. In 

comparing the listed fields in Appendix WEBSTER02 to Exhibit 1019, it is 

my determination that Exhibit 1019 is a true and correct copy of Webster, 

and is the same as the copy of Webster in Georgia Institute of Technology’s 

library. 

 

76. The 008 field of the MARC record noted in page 1 of Appendix 

WEBSTER02 indicates that Webster was first cataloged by Georgia Institute 

of Technology’s library as of August 26, 1997. Based on this information, it 

is my determination that Webster was made available to the public by 

Georgia Institute of Technology at least as of August 26, 1997. 

 

77. Attached hereto as Appendix WEBSTER03 is a true and correct copy of the 

MARC record for Webster as held by the Library of Congress. I secured this 

record myself from the Library’s public catalog.  

 

78. The MARC record contained within Appendix WEBSTER03 accurately 

describes the title, author, publisher, and ISBN number of Webster. In 

comparing the listed fields in Appendix WEBSTER03 to Exhibit 1019, it is 
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my determination that Exhibit 1019 is a true and correct copy of Webster, 

and is the same as the copy of Webster held by the Library of Congress. 

 

79. The 008 field of the MARC record noted in page 1 of Appendix 

WEBSTER03 indicates that Webster was first cataloged by the Library of 

Congress as of August 26, 1997. Based on this information, it is my 

determination that Webster was made available to the public by the Library 

of Congress at least as of August 26, 1997. 

 

80. I have reviewed Exhibit 1023, a copy of an article entitled “Stimulating 

Student Learning with a Novel ‘In-House’ Pulse Oximeter Design” by 

Jianchu Yao and Steve Warren as published in the Proceedings of the 2005 

American Society for Engineering Education Annual Conference & 

Exposition (hereinafter referred to as “2005 Conference Proceedings”). 

 

81. Attached hereto as Appendix YAO03 is a true and correct copy of the article 

entitled “Stimulating Student Learning with a Novel ‘In-House’ Pulse 

Oximeter Design” by Jianchu Yao and Steve Warren as published in 2005 

Conference Proceedings as published in the 2005 Conference Proceedings 

through the American Society for Engineering Education (ASEE)’s own 
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online repository. I secured this document myself from the ASEE’s public 

website. 

 

82. Attached hereto as Appendix YAO02 is a true and correct copy of the online 

entry for the article entitled “Stimulating Student Learning with a Novel ‘In-

House’ Pulse Oximeter Design” by Jianchu Yao and Steve Warren as 

published in the 2005 Conference Proceedings as maintained by the ASEE. I 

secured this record myself from the ASEE’s public website. 

 

83. The information in Appendix YAO02 and Appendix YAO03 accurately 

describes the title, author, publisher, and ISSN number of the article entitled 

“Stimulating Student Learning with a Novel ‘In-House’ Pulse Oximeter 

Design” by Jianchu Yao and Steve Warren as published in the 2005 

Conference Proceedings. In comparing the listed fields in Appendix YAO02 

and Appendix YAO03 to Exhibit 1023, it is my determination that Exhibit 

1023 is a true and correct copy of the article entitled “Stimulating Student 

Learning with a Novel ‘In-House’ Pulse Oximeter Design” by Jianchu Yao 

and Steve Warren as published in the 2005 Conference Proceedings, and is 

the same as the copy of the article maintained by the ASEE. 
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84. Based on this information, it is my determination that the article published as 

Exhibit 1023, was made available to the public by the ASEE at least as of 

June 12, 2005. 

 

85. I have reviewed Exhibit 1020, a copy of a technical document entitled 

QuickSpecs: HP iPAQ Pocket PC hd150 Series, Version 3, November 20, 

2003 (hereinafter referred to as “2003 iPAQ Spec.”) 

 

86. Attached hereto as Appendix QUICKSPECS01 is a true and correct copy of 

the 2003 iPAQ Spec. as a PDF file entitled ‘iPaq_4150_quick-specs.pdf’. I 

secured this copy myself from 

ftp://ftp.abcdata.com.pl/HP/Ipaq/Retired%20Products/h4150/iPaq_4150_qui

ck_specs.pdf. In comparing Appendix QUICKSPECS01 to Exhibit 1020, it 

is my determination that Exhibit 1020 is a true and correct copy of the 2003 

iPAQ Spec. 

 

87. Attached hereto as Appendix QUICKSPECS02 is a true and correct copy of 

the FTP file tree for the website hosting the 2003 iPAQ Spec. I secured this 

record myself from 

ftp://ftp.abcdata.com.pl/HP/Ipaq/Retired%20Products/h4150/. FTP is a web 
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technology that allows the transfer of files without the need for a formal 

webpage. FTP software autogenerates a file tree for each file offered and 

logs the date of creation within that file tree. The entry for 

‘iPaq_4150_quick-specs.pdf’ indicates this file was uploaded to this FTP 

server as of November 20, 2003. As such, it is my determination that the 

2003 iPAQ Spec. in Exhibit 1020 was available to the public on the Internet 

via this FTP server at least as of November 20, 2003.  

 

88. I have been retained on behalf of the Petitioner to provide assistance in the 

above-illustrated matter in establishing the authenticity and public 

availability of the documents discussed in this declaration. I am being 

compensated for my services in this matter at the rate of $100.00 per hour 

plus reasonable expenses. My statements are objective, and my 

compensation does not depend on the outcome of this matter. 

 

89. I declare under penalty of perjury that the foregoing is true and correct. I 

hereby declare that all statements made herein of my own knowledge are 

true and that all statements made on information and belief are believed to 

be true; and further that these statements were made the knowledge that 

willful false statements and the like so made are punishable by fine or 
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imprisonment, or both, under Section 1001 of Title 18 of the United States 

Code. 

 
 
Dated: 3/30/21 
 
     
 
Jacob Robert Munford 
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Appendix A - Curriculum Vitae 
 
Education 
 
University of Wisconsin-Milwaukee - MS, Library & Information Science, 2009 
Milwaukee, WI 

● Coursework included cataloging, metadata, data analysis, library systems, 
management strategies and collection development. 

● Specialized in library advocacy and management. 
 
Grand Valley State University - BA, English Language & Literature, 2008 
Allendale, MI 

● Coursework included linguistics, documentation and literary analysis. 
● Minor in political science with a focus in local-level economics and 

government. 
 
Professional Experience 
 
Researcher / Expert Witness, October 2017 – present 
Freelance 
Pittsburgh, Pennsylvania 

● Material authentication and public accessibility determination. Declarations 
of authenticity and/or public accessibility provided upon research 
completion. Depositions provided on request. 

● Research provided on topics of public library operations, material 
publication history, digital database services and legacy web resources. 

● Past clients include Apple, Fish & Richardson, Erise IP, Baker Botts and 
other firms working in patent law. 

 
 
Library Director, February 2013 - March 2015 
Dowagiac District Library 
Dowagiac, Michigan 

● Executive administrator of the Dowagiac District Library. Located in 
Southwest Michigan, this library has a service area of 13,000, an annual 
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operating budget of over $400,000 and total assets of approximately 
$1,300,000. 

● Developed careful budgeting guidelines to produce a 15% surplus during the 
2013-2014 & 2014-2015 fiscal years. 

● Using this budget surplus, oversaw significant library investments including 
the purchase of property for a future building site, demolition of existing 
buildings and building renovation projects on the current facility. 

● Led the organization and digitization of the library's archival records. 
● Served as the public representative for the library, developing business 

relationships with local school, museum and tribal government entities. 
● Developed an objective-based analysis system for measuring library services 

- including a full collection analysis of the library's 50,000+ circulating 
items and their records. 

  
November 2010 - January 2013 
Librarian & Branch Manager, Anchorage Public Library 
Anchorage, Alaska 

● Headed the 2013 Anchorage Reads community reading campaign including 
event planning, staging public performances and creating marketing 
materials for mass distribution. 

● Co-led the social media department of the library's marketing team, drafting 
social media guidelines, creating original content and instituting long-term 
planning via content calendars. 

● Developed business relationships with The Boys & Girls Club, Anchorage 
School District and the US Army to establish summer reading programs for 
children. 

 
June 2004 - September 2005, September 2006 - October 2013 
Library Assistant, Hart Area Public Library 
Hart, MI 

● Responsible for verifying imported MARC records and original MARC 
cataloging for the local-level collection as well as the Michigan Electronic 
Library. 

● Handled OCLC Worldcat interlibrary loan requests & fulfillment via 
ongoing communication with lending libraries.  
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Professional Involvement 
 
Alaska Library Association - Anchorage Chapter 

● Treasurer, 2012 
 
Library Of Michigan 

● Level VII Certification, 2008 
● Level II Certification, 2013 

 
Michigan Library Association Annual Conference 2014  

● New Directors Conference Panel Member 
 
Southwest Michigan Library Cooperative 

● Represented the Dowagiac District Library, 2013-2015 
 
 
Professional Development 
 
Library Of Michigan Beginning Workshop, May 2008 
Petoskey, MI 

● Received training in cataloging, local history, collection management, 
children’s literacy and reference service. 

 
Public Library Association Intensive Library Management Training, October 2011 
Nashville, TN 

● Attended a five-day workshop focused on strategic planning, staff 
management, statistical analysis, collections and cataloging theory. 

 
Alaska Library Association Annual Conference 2012 - Fairbanks, February 2012 
Fairbanks, AK 

● Attended seminars on EBSCO advanced search methods, budgeting, 
cataloging, database usage and marketing. 
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A Noise Reference Input to an Adaptive Filter Algorithm
for Signal Processing in a Wearable Pulse Oximeter

G. Comtois, Y. Mendelson

Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609

Abstract—A wearable battery-operated pulse oximeter
has been developed for rapid field triage
applications. The wearable system comprises three

units: a small (6 = 22mm) and lightweight (4.5g)
reflectance-mode optical sensor module (SM), a
receiver module (RM), and Personal Digital
Assistant (PDA). The information acquired by the
forehead-mounted SM is transmitted wirelessly via a
RF link to the waist-worn RM which processes the
data and transmits it wirelessly to the PDA. Since
photoplethysmographic (PPG)-based measurements,
which are used bythe pulse oximeter to determine
arterial oxygen saturation (SpO,) and heart rate
(HR), can be degraded significantly during motion,
the implementation of a reliable pulse oximeter for
field applications requires sophisticated noise
rejection algorithms. To minimize the effects of
motion artifacts, which can lead to measurement

dropouts, inaccurate readings and false alarms, a
16"-order, least-mean squares (LMS), adaptive noise
canceling (ANC) algorithm was implemented off-line
in Matlabto process the PPG signals. This algorithm
was selected because its computational requirement
is comparable to a finite impulse response filter.
Filter parameters were optimized for computational
speed and measurementaccuracy.A tri-axial MEMS
accelerometer (ACC) served as a noise reference
input to the ANC algorithm.

I. INTRODUCTION

A primary factor limiting the accuracy of pulse
oximetry is poor signal-to-noise ratio caused by motion
artifacts [1]. Since PPG measurements to determine
SpO, and HR are degraded during movements, the
implementation of a robust pulse oximeter for field
applications requires sophisticated noise rejection
algorithms. To minimize the effects of motion artifacts,
several groups proposed to employ ANC algorithms
utilizing a noise reference from a MEMSaccelerometer

14244-1033-9/07/$25.00 © 2007 IEEE.

(ACC) [2-6]. Despite promising results, utilizing this
approach to recover corrupted PPG signals was limited
to HR derived from sensors attached to the fingers.
However, these studies did not report if SpO, accuracy
is improved. Since the fingers are generally more
vulnerable to motion artifacts, the aim of this study was
to investigate if ANC is effective in minimizing both
SpO, and HR errors induced during jogging in a custom,
forehead-mounted, pulse oximeter and also quantify the
individual contributions of each ACCaxis.

Il. MATERIALS

Measurements were acquired from a custom wireless
pulse oximeter [7]. A tri-axial MEMS accelerometer
embedded within the SM provides reference noise
inputs to the ANC algorithm. Key features of this
wearable system are its small-size, robustness, and low-
power consumption, which are essential attributes for
wearable devices usedin field applications.

Ill. METHODS

Body accelerations and PPG data were collected
simultaneously from a healthy male volunteer during
five outdoor and treadmill jogging trials. Each study
comprised a 1-minute free jogging (rates: 3.75—6.5mph),
framed by 2-minute resting intervals. The X, Y, and Z
axis of the ACC were oriented according to the
anatomical planes illustrated in Fig. 1. For validation,
reference SpO, and HR were acquired concurrently
from the Masimo SET®transmission pulse oximeter by
a sensor attached to the subject’s hand which remained
stationary during the study. A Polar™ ECG monitor,
attached across the chest, provided reference HR data.

sy gt
Fig. 1: ACC axis orientations.
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IV. RESULTS AND DISCUSSION

FFT analysis of the infrared (IR) PPG and ACC
signals during jogging are shown in Fig. 2. The power
spectra between 1.8—2.2Hz correspondto variations in
subject’s HR. Similarly, the higher dominant frequency
around 2.45Hz coincides with the subject’s up-down
movement rate and is clearly registered by the X-axis
signal of the ACC (Fig. 2B).

Table 1 shows averaged differences between SpO,
and HR values measured by the Masimo pulse oximeter
and Polar HR monitor compared to the custom pulse
oximeter acquired PPG signals that were processed
either without or by the ANC algorithm. Results
revealed that in all cases, utilizing an ANC algorithm
can produce more accurate SpO, measurements.
Furthermore, using the vertically-oriented X-axis of the
ACC as the primary noise reference produced more
significant improvements. It was disappointing to note,
however, that the Masimo pulse oximeter, which is
considered immune to a wide range of motion-induced
artifacts, was unable to track changes in HR during
jogging compared to the Polar monitor and our custom
pulse oximeter.

The ability to measure HR reliably is important in a
pulse oximeter since HR values are commonly used as
an indicator to assess the reliability of SpO, readings.
The data also showed that although a uniaxial ACC is
sufficient, practically, a triaxial ACC is more
advantageous since measurements would be less
sensitive to sensor misalignment or inadvertent changes
in sensor positioning during movements.5
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Fig. 2: (Top): Typical frequency spectra ofpre-adapted
(dashed), and post adapted (solid) PPG signals. (Bottom):
Reference ACCsignals during treadmill running.
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Table 1: Percent SpO, and HR differences (Bias + SD)
measured during jogging (N = 300).

Masimo SET®

|spo,|HR|HR|
Not Corrected 597+227|66+3.6

s44zi94|18414

3

ANC @) 5684209

V. CONCLUSIONS

This study demonstrated that an embedded MEMS
ACC can provide a reference noise input for
implementing an ANC algorithm, thereby improving
both SpO, and HR measurements by a wearable
forehead-mounted pulse oximeter during jogging.
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Abstract— Wearable physiological monitoring using a pulse 
oximeter would enable field medics to monitor multiple injuries 
simultaneously, thereby prioritizing medical intervention when 
resources are limited. However, a primary factor limiting the 
accuracy of pulse oximetry is poor signal-to-noise ratio since 
photoplethysmographic (PPG) signals, from which arterial 
oxygen saturation (SpO2) and heart rate (HR) measurements 
are derived, are compromised by movement artifacts. This 
study was undertaken to quantify SpO2 and HR errors induced 
by certain motion artifacts utilizing accelerometry-based 
adaptive noise cancellation (ANC). Since the fingers are 
generally more vulnerable to motion artifacts, measurements 
were performed using a custom forehead-mounted wearable 
pulse oximeter developed for real-time remote physiological 
monitoring and triage applications. This study revealed that 
processing motion-corrupted PPG signals by least mean 
squares (LMS) and recursive least squares (RLS) algorithms 
can be effective to reduce SpO2 and HR errors during jogging, 
but the degree of improvement depends on filter order. 
Although both algorithms produced similar improvements, 
implementing the adaptive LMS algorithm is advantageous 
since it requires significantly less operations. 

I. INTRODUCTION 
HE implementation of wearable diagnostic devices 
would enable real-time remote physiological assessment 
and triage of military combatants, firefighters, miners, 

mountaineers, and other individuals operating in dangerous 
and high-risk environments. This, in turn, would allow first 
responders and front-line medics working under stressful 
conditions to better prioritize medical intervention when 
resources are limited, thereby extending more effective care 
to casualties with the most urgent needs. 

Employing commercial off-the-shelf (COTS) solutions, 
for example finger pulse oximeters to monitor arterial blood 
oxygen saturation (SpO2) and heart rate (HR), or adhesive-
type disposable electrodes for ECG monitoring, are 
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impractical for field applications because they limit mobility 
and can interfere with regular activity. Equally important, 
since these devices are designed for clinical settings where 
patient movements are relatively constrained, motion 
artifacts during field applications can drastically affect 
measurement accuracy while subjects remain active. 

Practically, the primary factor limiting the reliability of 
pulse oximetry is attributed to poor signal-to-noise ratio 
(SNR) due to motion artifacts. Since photoplethysmographic 
(PPG) signals, which are used to determine SpO2 and HR, 
are obscured during movements, the implementation of a 
robust pulse oximeter for field applications requires 
sophisticated noise rejection algorithms to eliminate 
erroneous readings and prevent false alarms. 

To minimize the effects of motion artifacts in wearable 
pulse oximeters, several groups proposed various algorithms 
to accomplish adaptive noise cancellation (ANC) utilizing a 
noise reference signal obtained from an accelerometer 
(ACC) that is incorporated into the sensor to represent body 
movements [1]-[3]. These groups demonstrated promising 
feasibility for movement artifact rejection in PPG signals 
acquired from the finger. However, they did not present 
quantifiable data showing whether accelerometry-based 
ANC resulted in more accurate determination of SpO2 and 
HR derived from PPG signals acquired from more motion-
tolerant body locations that are more suitable for mobile 
applications. 

II. BACKGROUND 
Generally, linear filtering with a fixed cut-off frequency is 

not effective in removing in-band noise with spectral overlap 
and temporal similarity that is common between the signal 
and artifact. Thus, we utilized ANC techniques to filter noisy 
PPG waveforms acquired during field experiments. The 
performance of this signal processing approach was 
evaluated based on its potential to lower SpO2 and HR 
measurement errors. 

Among the most popular ANC algorithms are the least 
mean squares (LMS) and recursive least squares (RLS) 
algorithms. Briefly, to attenuate the in-band noise 
component in the desired signal, these algorithms assume 
that the reference noise received from the ACC is 
statistically correlated with the additive noise component in 
the corrupted PPG signal, whereas the additive noise is 
uncorrelated with the noise-free PPG signal. An error signal 
is used to adjust continuously the filter’s tap-weights in 
order to minimize the SNR of the noise-corrected PPG 
signal. 

A Comparative Evaluation of Adaptive Noise Cancellation 
Algorithms for Minimizing Motion Artifacts in a Forehead-Mounted 

Wearable Pulse Oximeter 
Gary Comtois, Member IEEE, Yitzhak Mendelson, Member IEEE, Piyush Ramuka 
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The performance of ANC algorithms is highly dependent
on various filter parameters, including filter order (M).
Accordingly, careful consideration must be given to the
selection of these parameters and the trade-off between
algorithm complexity and its computation time.

Although the basic principles of the LMS and RLS
techniques share certain similarities, the LMS algorithm
attempts to minimize only the current error value, whereas in
the RLS algorithm, the error considered is the total error
from the beginning to the current data point. Furthermore,
the performance of each algorithm depends on different
parameters. For example, the step size (u) has a profound
effect on the convergence behavior of the LMSalgorithm.
Similarly, the forgetting factor (A) determines how the RLS
algorithm treats past data inputs.

Compared to the LMSalgorithm, the RLS algorithm has
generally a faster convergence rate and smaller error.
However, this advantage comes at the expense of increasing
complexity and longer computational time which increases
rapidly and non-linearly with filter order.

III. METHODS

To simulate movementartifacts, we performed a series of
outdoor and indoor experiments that were intended to
determinethe effectiveness ofusing the accelerometer-based
ANC algorithms in processing motion-corrupted PPG
signals acquired by a forehead pulse oximeter. The focus of
this study was to compare the performanceofeach algorithm
by quantifying the improvement in SpO, and HR accuracy
generated during typical activities that are expected to
induce considerable motion artifacts in thefield.

Data were collected by a custom forehead-mounted pulse
oximeter developed in our laboratory as a platform for real-
time remote physiological monitoring andtriage applications
[4]-[6]. The prototype wearable system is comprised of three
units: A battery-operated optical Sensor Module (SM)
mounted on the forehead, a belt-mounted Receiver Module

(RM) mounted on the subject’s waist, and a Personal Digital
Assistant (PDA) carried by a remote observer. The red (R)
and infrared (IR) PPG signals acquired by the small (0 =
22mm) andlightweight (4.5g) SM are transmitted wirelessly
via an RF link to the RM.Thedata processed by the RM can
be transmitted wirelessly over a short range to the PDA or a
PC, giving the observer the capability to periodically or
continuously monitor the medical condition of multiple
subjects. The system can be programmed to alert on alarm
conditions, such as sudden trauma, or when physiological
values are out of their normal range. Dedicated software was
used to filter the reflected PPG signals and compute SpO,
and HR based on therelative amplitude and frequency
content of the PPG signals. A triaxial MEMS-type ACC
embedded within the SM was used to get a quantitative
measure of physical activity. The information obtained
through the tilt sensing property of the ACC is also used to
determine body posture. Posture and acceleration, combined
with physiological measurements, are valuable indicators to
assess the status of an injured person in thefield.

Body accelerations and PPG data were collected
concurrently from 7 healthy volunteers during 32 jogging
experiments. These jogging experiments comprised 16
treadmill, 12 indoor, and 4 outdoor exercises. Each

experiment comprised a 1l-minute free jogging at speeds
corresponding to 3.75—6.5 mph, framed by 2-minute resting
intervals. For validation, reference SpO2 and HR were
acquired concurrently from the Masimotransmission pulse
oximeter sensor attached to the subject’s fingertip which was
kept in a relatively stationary position throughoutthe study.
Wechose the Masimo pulse oximeter because it employs
unique signal extraction technology (SET®) designed to
greatly extend its utility into high motion environments. A
Polar™ ECG monitor, attached across the subject’s chest,
provided reference HR data.

The ACC provided reference noise inputs to the ANC
algorithms. The X, Y, and Z axes ofthe triaxial ACC were
oriented according to the anatomical planes asillustrated in
Fig. 1. Accelerations generated during movement depend
upon the types of activity performed. Generally, during
jogging, acceleration is greatest in the vertical direction,
although the accelerations in the other two orthogonal
directions are not negligible. Therefore, the noise reference
input applied to the ANC algorithms was obtained by
summing all three orthogonal axes of the ACC. By
combining signals from all three axes, measurements
become insensitive to sensor positioning and inadvertent
sensor misalignment that may occur during movements. To
compensate for differences in response times, the SpO, and
HR measurements acquired from each device were
processed using an 8-second weighted moving average.

ACC axial
orientations

 
 

 
SM + ACC

Polar HR Monitor  
Fig. 1: Expenmental setup for data collection.

Theoutputs of the MEMS ACCand raw PPG signals were
acquired in real-time at a rate of 80 s/s using a custom
written LabVIEW® program. Data were processed off-line
using Matlab programming. The ANC algorithms were
implemented in Matlab with parameters optimized for
computational speed and measurement accuracy. The LMS
algorithm was implemented using a constant pt of0.016. The
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selected filter parameters for the RLS algorithm were
2=0.99 and an inverse correlation matrix P = 0.1. These

filter parameters were found to be optimal in preliminary
experiments. For comparison, data were processed by each
algorithm using variable order filters.

IV. RESULTS

SpO, and HR data were derived from the R and IR PPG
signals utilizmg custom extraction algorithms. SpO, root
mean squared errors (RMSE) were quantified based on the
differences between the readings measured by the custom
and Masimo pulse oximeters, whereas HR errors were
defined with respect to the Polar HR monitor. For
comparison, RMSE were determined by processing the PPG
signals off-line either with or without the ANC algorithms.

Fig. 2 shows a representative tracing of SpO) and HR
measurements obtained from the custom pulse oximeter with
and without ANC. Reference measurements obtained

simultaneously from the Masimo pulse oximeter and Polar
HR monitor during resting and outdoor jogging were also
included for comparison.
 

   
Fig. 2. Representative SpO> (top) andHR(bottom) measurements obtained
during outdoor jogging.Filter order M=16.

Spectral analysis of the data using FFT revealed that
during jogging frequency components associated with body
acceleration and the subject’s HR shared a relatively small

frequency band ranging between 1.5-3.0 Hz. Further
analysis of the data showed that in 8 out of the 32 jogging
experiments (25%), the cardiac-synchronized frequencies
and movement-induced acceleration frequencies shared a
common band.

The averaged errors observed from the series of 32
experiments are summarized in Figures 3 and 4. Analysis of
the data clearly revealed that utilizing either the LMS or
RLSalgorithm to process the noise-corrupted PPG signals
can improve both SpO, and HR accuracy during jogging.
Although the degree of improvement varied, because
different methods are employed to compute SpO, and HR
from the PPG signal, these figures show that the
performanceofboth algorithms depends on filter order used
to implementeach algorithm. 
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Fig. 3. Averaged SpO) errors for varying filter orders. Error bars indicate
+1SD. For comparison, M = 0 represents the error obtained without ANC.
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Fig. 4. Averaged HR errors for varying filter orders. Error bars indicate
+1SD. For comparison, M = 0 represents the error obtained without ANC.

V. DISCUSSION

Pulse oximeters are used routinely in many clinical
settings where patients are at rest. Their usage in other areas
is limited because of motion artifacts which is the primary
contributor to errors and high rates of false alarms. In order
to design wearable cost-effective devices that are suitable for
field deployment, it is important to ensure that the deviceis
robust against motion induced disturbances. PPG signals
recorded from the forehead are generally less prone to
movementartifacts compared to PPG signals recorded from
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a finger. Nonetheless, morphological distortions of the 
underlying PPG waveforms, from which SpO2 and HR 
measurements are derived, could lead to measurement 
errors, false alarms, and frequent dropouts when subjects 
remain active. For example, as shown in Fig. 2, it is evident 
that the Masimo pulse oximeter, which employs advanced 
signal extraction technology designed to greatly extend its 
utility into high motion environments, was clearly unable to 
accurately track SpO2 and HR while the subject was jogging. 
Although to a lesser extent, we also noticed more 
pronounced fluctuations in SpO2 recorded by the wearable 
forehead pulse oximeter during jogging. These fluctuations 
are likely caused by PPG waveforms obscured by motion 
artifacts associated with heavier breathing. 

To address the need to improve the performance of a 
prototype reflectance pulse oximeter during jogging, we 
investigated the effectiveness of a MEMS ACC as a noise 
reference input to two popular ANC algorithms. We chose 
the LMS and RLS adaptive routines since other investigators 
showed the promising utility of these algorithms to reduce 
errors attributed to motion artifacts in pulse oximeters [1]-
[3]. 

Analysis of the data acquired during jogging experiments 
showed that ANC implemented using the LMS and RLS 
algorithms can help to improve considerably the accuracy of 
a pulse oximeter, as shown in Fig. 2. However, although the 
differences are not considered clinically significant, we 
found that processing the corrupted PPG signals by each 
algorithm produced slightly different improvements. These 
differences are anticipated since different computational 
principles are employed by a pulse oximeter. 

Since ANC-based filtering implements an adaptive notch 
filter with a notch frequency corresponding to the dominant 
frequency of the measured ACC signal, we expected that an 
overlap of the HR and movement-induced ACC frequencies 
would attenuate the fundamental cardiac-synchronized 
frequency of the PPG signals and, therefore significantly 
affecting SpO2 and HR measurements. However, separate 
analysis of the data from experiments where body 
accelerations and cardiac rhythms were found to be 
synchronized confirmed that applying either the LMS or 
RLS algorithm did not adversely impact the ability to obtain 
accurate SpO2 and HR readings while subjects remain 
active. 

As shown in Fig. 3 and Fig. 4, we found that the degree of 
improvement depends on the filter order (M) used to 
implement each adaptive algorithm, however filters order 
greater than 24 produced diminished improvements. 
Furthermore, we also found that the LMS algorithm was 
slightly more effective in reducing HR errors compared to 
the RLS implementation. 

Given similar performances, it is important to take into 
consideration the complexity of the LMS and RLS 
algorithms and the trade-off between algorithmic complexity 
and computation time. These principal tradeoffs are 
important since our goal is to implement ANC to improve 
the performance of a wearable pulse oximeter during 
motion. For example, compared to the LMS algorithm, the 
RLS algorithm has a faster convergence rate which is 

essential in real-time applications. However, this comes at 
the expense of a longer computational time since the RLS 
algorithm requires M2 operations per iteration. Considering 
for example that an implementation based on a 24th-order 
filter would provide an acceptable error reduction, this 
implies that the LMS algorithm would require only 24 
operations compared to 576 operations that will be required 
to implement an adaptive RLS algorithm. Table 1 
summarizes the relative execution times of the LMS and 
RLS adaptive algorithms for processing one data point. 

 
Table 1.  Execution times for LMS and RLS algorithms 

Filter Order LMS (ms) RLS (ms) 
2 1.0 6.5 
4 1.8 18.5 
8 3.2 63.0 

16 6.2 235.0 

VI. CONCLUSIONS 
This study was designed to investigate the performance of 

accelerometry-based ANC implemented using the LMS and 
RLS algorithms as an effective method to minimizing both 
SpO2 and HR errors induced during movement. 
Measurements were performed using a custom, forehead-
mounted wearable pulse oximeter that was developed in our 
laboratory to serve as a platform for real-time remote 
physiological monitoring and triage applications. The results 
obtained in this study revealed that processing motion-
corrupted PPG signals by the LMS and RLS algorithm can 
reduce HR and SpO2 errors during jogging. Although both 
algorithms produced similar improvements, the 
implementation of the adaptive LMS algorithm is preferred 
since it requires significantly less operations. 
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A Wearable Reflectance Pulse Oximeter for Remote Physiological 
Monitoring

Y. Mendelson*, Member, IEEE, R. J. Duckworth, Member, IEEE, and G. Comtois, Student Member, IEEE

Abstract—To save life, casualty care requires that trauma 
injuries are accurately and expeditiously assessed in the field. 
This paper describes the initial bench testing of a wireless 
wearable pulse oximeter developed based on a small forehead 
mounted sensor. The battery operated device employs a 
lightweight optical reflectance sensor and incorporates an 
annular photodetector to reduce power consumption. The 
system also has short range wireless communication 
capabilities to transfer arterial oxygen saturation (SpO2), heart 
rate (HR), body acceleration, and posture information to a 
PDA. It has the potential for use in combat casualty care, such 
as for remote triage, and by first responders, such as 
firefighters. 

I.   INTRODUCTION

TEADY advances in noninvasive physiological sensing, 
hardware miniaturization, and wireless communication 

are leading to the development of new wearable 
technologies that have broad and important implications for 
civilian and military applications [1]-[2]. For example, the 
emerging development of compact, low-power, small-size, 
light- weight, and unobtrusive wearable devices may 
facilitate remote noninvasive monitoring of vital signs from 
soldiers during training exercises and combat. Telemetry of 
physiological information via a short-range wirelessly-linked 
personal area network can also be useful for firefighters, 
hazardous material workers, mountain climbers, or 
emergency first-responders operating in harsh and hazardous 
environments. The primary goals of such a wireless mobile 
platform would be to keep track of an injured person’s vital 
signs, thus readily allowing the telemetry of physiological 
information to medical providers, and support emergency 
responders in making critical and often life saving decisions 
in order to expedite rescue operations. Having wearable 
physiological monitoring could offer far-forward medics 
numerous advantages, including the ability to determine a  
casualty’s condition remotely without exposing the first 
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responders to increased risks, quickly identifying the 
severity of injuries especially when the injured are greatly 
dispersed over large geographical terrains and often out-of- 
site, and continuously tracking the injured condition until 
they arrive safely at a medical care facility. 

Several technical challenges must be overcome to address 
the unmet demand for long-term continuous physiological 
monitoring in the field. In order to design more compact 
sensors and improved wearable instrumentation, perhaps the 
most critical challenges are to develop more power efficient 
and low-weight devices. To become effective, these 
technologies must also be robust, comfortable to wear, and 
cost-effective. Additionally, before wearable devices can be 
used effectively in the field, they must become unobtrusive 
and should not hinder a person’s mobility. Employing 
commercial off-the-shelf (COTS) solutions, for example 
finger pulse oximeters to monitor blood oxygenation and 
heart rate, or standard adhesive-type disposable electrodes 
for ECG monitoring, is not practical for many field 
applications because they limit mobility and can interfere 
with normal tasks. 

A potentially attractive approach to aid emergency 
medical teams in remote triage operations is the use of a 
wearable pulse oximeter to wirelessly transmit heart rate 
(HR) and arterial oxygen saturation (SpO2) to a remote 
location. Pulse oximetry is a widely accepted method that is 
used for noninvasive monitoring of SpO2 and HR. The 
method is based on spectrophotometric measurements of 
changes in the optical absorption of deoxyhemoglobin (Hb) 
and oxyhemoglobin (HbO2). Noninvasive 
spectrophotometric measurements of SpO2 are performed in 
the visible (600-700nm) and near-infrared (700-1000nm) 
spectral regions. Pulse oximetry also relies on the detection 
of photoplethysmographic (PPG) signals produced by 
variations in the quantity of arterial blood that is associated 
with periodic contractions and relaxations of the heart. 
Measurements can be performed in either transmission or 
reflection modes. In transmission pulse oximetry, the sensor 
can be attached across a fingertip, foot, or earlobe. In this 
configuration, the light emitting diodes (LEDs) and 
photodetector (PD) in the sensor are placed on opposite sides 
of a peripheral pulsating vascular bed. Alternatively, in 
reflection pulse oximetry, the LEDs and PD are both 
mounted side-by-side on the same planar substrate to enable 
readings from multiple body locations where trans-
illumination measurements are not feasible. Clinically, 
forehead reflection pulse oximetry has been used as an 
alternative approach to conventional transmission-based 
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oximetry when peripheral circulation to the extremities is
compromised.

Pulse oximetry was initially intended for in-hospital use
on patients undergoing or recovering from surgery. During
the past few years, several companies have developed
smaller pulse oximeters, some including data transmission
via telemetry, to further expand the applications of pulse
oximetry. For example, battery-operated pulse oximeters are
now attached to patients during emergency transport as they
are being moved from a remote location to a hospital, or
between hospital wards. Some companies are also offering
smaller units with improved electronic filtering of noisy
PPG signals.

Several reports described the development of a wireless
pulse oximeter that may be suitable for remote physiological
monitoring [3]-[4]. Despite the steady progress in
miniaturization of pulse oximeters over the years, to date,
the most significant limitation is battery longevity and lack
of telemetric communication. In this paper, we describe a
prototype forehead-based reflectance pulse oximeter suitable
for remote triage applications.

II. SYSTEM ARCHITECTURE

The prototype system, depicted in Fig. 1, consists of a
body-worn pulse oximeter that receives and processes the
PPG signals measured by a small (9 = 22mm) and
lightweight (4.5g) optical reflectance transducer. The system

 
Stamey

Fig. 1. (Top) Attachment ofSensor Module to the skin; (Bottom)
photograph ofthe Receiver Module(left) and Sensor Module (right).

consists of three units: A Sensor Module, consisting of the
optical transducer, a stack of round PCBs, anda coin-cell
battery. The information acquired by the Sensor Module is
transmitted wirelessly via an RF link over a short range to a
body-worn Receiver Module. The data processed by the
Receiver Module can be transmitted wirelessly to a PDA.
The PDA can monitor multiple wearable pulse oximeters
simultaneously and allows medics to collect vital
physiological information to enhance their ability to extend
moreeffective care to those with the most urgent needs. The

system can be programmed to alert on alarm conditions,
such as sudden trauma, or physiological values out of their
normal range. It also has the potential for use in combat
casualty care, such as for remote triage, and for use by first
responders, such asfirefighters.

Keyfeatures of this system are small-size, robustness, and
low-power consumption, which are essential attributes of
wearable physiological devices, especially for military
applications. The system block diagram (Fig. 2), is described
in more detail below.

Trans-impedance
amplifier

v v
Red IR
LED LED 

LDO 
Fig. 2. System block diagram ofthe wearable, wireless, pulse oximeter.

Sensor Module (top), Receiver Module (bottom).

SensorModule: The Sensor Module contains analog signal
processing circuitry, ADC, an embedded microcontroller,
and a RF transceiver. The unit is small enough so the entire
module can be integrated into a headbandor a helmet. The
unit is powered by a CR2032 type coin cell battery with
220mAh capacity, providingat least 5 days ofoperation.

Receiver Module: The Receiver Module contains an

embedded microcontroller, RF transceiver for

communicating with the Sensor Module, and a Universal
Asynchronous Receive Transmit (UART) for connection to
a PC. Signals acquired by the Sensor Module are received by
the embedded microcontroller which synchronously converts
the corresponding PD output to R and IR PPG signals.
Dedicated softwareis used to filter the signals and compute
SpO, and HR based on therelative amplitude and frequency
content of the reflected PPG signals. A tri-axis MEMS
accelerometer detects changes in body activity, and the
information obtained through the tilt sensing property of the
accelerometer is used to determine the orientation of the

person wearing the device.
To facilitate bi-directional wireless communications

between the Receiver Module and a PDA, we used the
DPAC Airborne™ LAN node module (DPAC Technologies,
Garden Grove, CA). The DPAC module operates at a
frequency of 2.4GHz, is 802.11b wireless compliant, and has
a relatively small (1.6 x 1.17 Xx 0.46 inches) footprint. The
wireless module runs off a 3.7VDC and includes a built-in
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TCP/IP stack, a radio, a base-band processor, an application 
processor, and software for a “drop-in” WiFi application. It 
has the advantage of being a plug-and-play device that does 
not require any programming and can connect with other 
devices through a standard UART.  

PDA: The PDA was selected based on size, weight, and 
power consumption. Furthermore, the ability to carry the 
user interface with the medic also allows for greater 
flexibility during deployment. We chose the HP iPAQ h4150 
PDA because it can support both 802.11b and Bluetooth™ 
wireless communication. It contains a modest amount of 
storage and has sufficient computational resources for the 
intended application. The use of a PDA as a local terminal 
also provides a low-cost touch screen interface. The user-
friendly touch screen of the PDA offers additional 
flexibility. It enables multiple controls to occupy the same 
physical space and the controls appear only when needed. 
Additionally, a touch screen reduces development cost and 
time, because no external hardware is required. The data 
from the wireless-enabled PDA can also be downloaded or 
streamed to a remote base station via Bluetooth or other 
wireless communication protocols. The PDA can also serve 
to temporarily store vital medical information received from 
the wearable unit. 

A dedicated National Instruments LabVIEW program was 
developed to control all interactions between the PDA and 
the wearable unit via a graphical user interface (GUI). One 
part of the LabVIEW software is used to control the flow of 
information through the 802.11b radio system on the PDA.  
A number of LabVIEW VIs programs are used to establish a 
connection, exchange data, and close the connection 
between the wearable pulse oximeter and the PDA. The 
LabVIEW program interacts with the Windows CE™ 
drivers of the PDA’s wireless system. The PDA has special 
drivers provided by the manufacturer that are used by 
Windows CE™ to interface with the 802.11b radio 
hardware. The LabVIEW program interacts with Windows 
CE™ on a higher level and allows Windows CE™ to handle 
the drivers and the direct control of the radio hardware. 

The user interacts with the wearable system using a 
simple GUI, as depicted in Fig. 3.  

Fig. 3.  Sample PDA Graphical User Interface (GUI).

The GUI was configured to present the input and output 
information to the user and allows easy activation of various 

functions. In cases of multiple wearable devices, it also 
allows the user to select which individual to monitor prior to 
initiating the wireless connection. Once a specific wearable 
unit is selected, the user connects to the remote device via 
the System Control panel that manages the connection and 
sensor control buttons. The GUI also displays the subject’s 
vital signs, activity level, body orientation, and a scrollable 
PPG waveform that is transmitted by the wearable device. 

The stream of data received from the wearable unit is 
distributed to various locations on the PDA’s graphical 
display. The most prominent portion of the GUI display is 
the scrolling PPG waveform, shown in Fig. 3. Numerical 
SpO2 and HR values are displayed is separate indicator 
windows. A separate tri-color indicator is used to annotate 
the subject’s activity level measured by the wearable 
accelerometer. This activity level was color coded using 
green, yellow, or red to indicate low or no activity, moderate 
activity, or high activity, respectively. In addition, the 
subject’s orientation is represented by a blue indicator that 
changes orientation according to body posture. Alarm limits 
could be set to give off a warning sign if the physiological 
information exceeds preset safety limits. 

One of the unique features of this PDA-based wireless 
system architecture is the flexibility to operate in a free 
roaming mode. In this ad-hoc configuration, the system’s 
integrity depends only on the distance between each node. 
This allows the PDA to communicate with a remote unit that 
is beyond the PDA’s wireless range. The ad-hoc network 
would therefore allow medical personnel to quickly 
distribute sensors to multiple causalities and begin 
immediate triage, thereby substantially simplifying and 
reducing deployment time. 

Power Management: Several features were incorporated 
into the design in order to minimize the power consumption 
of the wearable system. The most stringent consideration 
was the total operating power required by the Sensor 
Module, which has to drive the R and IR LEDs, process the 
data, and transmit this information wirelessly to the Receive 
Module. To keep the overall size of the Sensor Module as 
small as, it was designed to run on a watch style coin-cell 
battery.  
    It should be noted that low power management without 
compromising signal quality is an essential requirement in 
optimizing the design of wearable pulse oximeter. 
Commercially available transducers used with transmission 
and reflection pulse oximeters employ high brightness LEDs 
and a small PD element, typically with an active area 
ranging between 12 to 15mm2. One approach to lowering the 
power consumption of a wireless pulse oximeter, which is 
dominated by the current required to drive the LEDs, is to 
reduce the LED duty cycle. Alternatively, minimizing the 
drive currents supplied to the R and IR LEDs can also 
achieve a significant reduction in power consumption.
However, with reduced current drive, there can be a direct 
impact on the quality of the detected PPGs. Furthermore, 
since most of the light emitted from the LEDs is diffused by 
the skin and subcutaneous tissues, in a predominantly 
forward-scattering direction, only a small fraction of the 
incident light is normally backscattered from the skin. In 
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addition, the backscattered light intensity is distributed over 
a region that is concentric with respect to the LEDs. 
Consequently, the performance of reflectance pulse oximetry 
using a small PD area is significantly degraded. To 
overcome this limitation, we showed that a concentric array 
of either discrete PDs, or an annularly-shaped PD ring, could 
be used to increase the amount of backscattered light 
detected by a reflectance type pulse oximeter sensor [5]-[7]. 

Besides a low-power consuming sensor, afforded by 
lowering the driving currents of the LEDs, a low duty cycle 
was employed to achieve a balance between low power 
consumption and adequate performance. In the event that 
continuous monitoring is not required, more power can be 
conserved by placing the device in an ultra low-power 
standby mode. In this mode, the radio is normally turned off 
and is only enabled for a periodic beacon to maintain 
network association. Moreover, a decision to activate the 
wearable pulse oximeter can be made automatically in the 
event of a patient alarm, or based on the activity level and 
posture information derived from the on-board 
accelerometer. The wireless pulse oximeter can also be 
activated or deactivated remotely by a medic as needed, 
thereby further minimizing power consumption. 

III. IN VIVO EVALUATIONS

Initial laboratory evaluations of the wearable pulse 
oximeter included simultaneous HR and SpO2
measurements. The Sensor Module was positioned on the 
forehead using an elastic headband. Baseline recordings 
were made while the subject was resting comfortably and 
breathing at a normal tidal rate. Two intermittent recordings 
were also acquired while the subject held his breath for 
about 30 seconds. Fig. 4 displays about 4 minutes of SpO2
and HR recordings acquired simultaneously by the sensor. 

Fig. 4.  Typical HR (solid line) and SpO2 (dashed line) recording of two 
voluntary hypoxic episodes. 

The pronounced drops in SpO2 and corresponding increases 
in HR values coincide with the hypoxic events associated 
with the two breath holding episodes. 

IV. DISCUSSION

The emerging development of compact, low power, small 
size, light weight, and unobtrusive wearable devices can 
facilitate remote noninvasive monitoring of vital 

physiological signs. Wireless physiological information can 
be useful to monitor soldiers during training exercises and 
combat missions, and help emergency first-responders 
operating in harsh and hazardous environments. Similarly, 
wearable physiological devices could become critical in 
helping to save lives following a civilian mass casualty. The 
primary goal of such a wireless mobile platform would be to 
keep track of an injured person’s vital signs via a short-range 
wirelessly-linked personal area network, thus readily 
allowing RF telemetry of vital physiological information to 
command units and remote off-site base stations for 
continuous real-time monitoring by medical experts. 

The preliminary bench testing plotted in Fig. 4 showed 
that the SpO2 and HR readings are within an acceptable 
clinical range. Similarly, the transient changes measured 
during the two breath holding maneuvers confirmed that the 
response time of the custom pulse oximeter is adequate for 
detecting hypoxic episodes. 

V. CONCLUSION

A wireless, wearable, reflectance pulse oximeter has been 
developed based on a small forehead-mounted sensor. The 
battery-operated device employs a lightweight optical 
reflectance sensor and incorporates an annular photodetector 
to reduce power consumption. The system has short range 
wireless communication capabilities to transfer SpO2, HR, 
body acceleration, and posture information to a PDA carried 
by medics or first responders. The information could 
enhance the ability of first responders to extend more 
effective medical care, thereby saving the lives of critically 
injured persons. 
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A Wearable Reflectance Pulse Oximeter for Remote Physiological 
Monitoring

Y. Mendelson*, Member, IEEE, R. J. Duckworth, Member, IEEE, and G. Comtois, Student Member, IEEE

Abstract—To save life, casualty care requires that trauma 
injuries are accurately and expeditiously assessed in the field. 
This paper describes the initial bench testing of a wireless 
wearable pulse oximeter developed based on a small forehead 
mounted sensor. The battery operated device employs a 
lightweight optical reflectance sensor and incorporates an 
annular photodetector to reduce power consumption. The 
system also has short range wireless communication 
capabilities to transfer arterial oxygen saturation (SpO2), heart 
rate (HR), body acceleration, and posture information to a 
PDA. It has the potential for use in combat casualty care, such 
as for remote triage, and by first responders, such as 
firefighters. 

I.   INTRODUCTION

TEADY advances in noninvasive physiological sensing, 
hardware miniaturization, and wireless communication 

are leading to the development of new wearable 
technologies that have broad and important implications for 
civilian and military applications [1]-[2]. For example, the 
emerging development of compact, low-power, small-size, 
light- weight, and unobtrusive wearable devices may 
facilitate remote noninvasive monitoring of vital signs from 
soldiers during training exercises and combat. Telemetry of 
physiological information via a short-range wirelessly-linked 
personal area network can also be useful for firefighters, 
hazardous material workers, mountain climbers, or 
emergency first-responders operating in harsh and hazardous 
environments. The primary goals of such a wireless mobile 
platform would be to keep track of an injured person’s vital 
signs, thus readily allowing the telemetry of physiological 
information to medical providers, and support emergency 
responders in making critical and often life saving decisions 
in order to expedite rescue operations. Having wearable 
physiological monitoring could offer far-forward medics 
numerous advantages, including the ability to determine a  
casualty’s condition remotely without exposing the first 
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responders to increased risks, quickly identifying the 
severity of injuries especially when the injured are greatly 
dispersed over large geographical terrains and often out-of- 
site, and continuously tracking the injured condition until 
they arrive safely at a medical care facility. 

Several technical challenges must be overcome to address 
the unmet demand for long-term continuous physiological 
monitoring in the field. In order to design more compact 
sensors and improved wearable instrumentation, perhaps the 
most critical challenges are to develop more power efficient 
and low-weight devices. To become effective, these 
technologies must also be robust, comfortable to wear, and 
cost-effective. Additionally, before wearable devices can be 
used effectively in the field, they must become unobtrusive 
and should not hinder a person’s mobility. Employing 
commercial off-the-shelf (COTS) solutions, for example 
finger pulse oximeters to monitor blood oxygenation and 
heart rate, or standard adhesive-type disposable electrodes 
for ECG monitoring, is not practical for many field 
applications because they limit mobility and can interfere 
with normal tasks. 

A potentially attractive approach to aid emergency 
medical teams in remote triage operations is the use of a 
wearable pulse oximeter to wirelessly transmit heart rate 
(HR) and arterial oxygen saturation (SpO2) to a remote 
location. Pulse oximetry is a widely accepted method that is 
used for noninvasive monitoring of SpO2 and HR. The 
method is based on spectrophotometric measurements of 
changes in the optical absorption of deoxyhemoglobin (Hb) 
and oxyhemoglobin (HbO2). Noninvasive 
spectrophotometric measurements of SpO2 are performed in 
the visible (600-700nm) and near-infrared (700-1000nm) 
spectral regions. Pulse oximetry also relies on the detection 
of photoplethysmographic (PPG) signals produced by 
variations in the quantity of arterial blood that is associated 
with periodic contractions and relaxations of the heart. 
Measurements can be performed in either transmission or 
reflection modes. In transmission pulse oximetry, the sensor 
can be attached across a fingertip, foot, or earlobe. In this 
configuration, the light emitting diodes (LEDs) and 
photodetector (PD) in the sensor are placed on opposite sides 
of a peripheral pulsating vascular bed. Alternatively, in 
reflection pulse oximetry, the LEDs and PD are both 
mounted side-by-side on the same planar substrate to enable 
readings from multiple body locations where trans-
illumination measurements are not feasible. Clinically, 
forehead reflection pulse oximetry has been used as an 
alternative approach to conventional transmission-based 
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oximetry when peripheral circulation to the extremities is
compromised.

Pulse oximetry wasinitially intended for in-hospital use
on patients undergoing or recovering from surgery. During
the past few years, several companies have developed
smaller pulse oximeters, some including data transmission
via telemetry, to further expand the applications of pulse
oximetry. For example, battery-operated pulse oximeters are
now attached to patients during emergencytransport as they
are being moved from a remote location to a hospital, or
between hospital wards. Some companies are also offering
smaller units with improved electronic filtering of noisy
PPG signals.

Several reports described the development of a wireless
pulse oximeter that may be suitable for remote physiological
monitoring [3]-[4]. Despite the steady progress in
miniaturization of pulse oximeters over the years, to date,
the most significant limitation is battery longevity and lack
of telemetric communication. In this paper, we describe a
prototype forehead-based reflectance pulse oximeter suitable
for remote triage applications.

Il. SYSTEM ARCHITECTURE

The prototype system, depicted in Fig. 1, consists of a
body-worn pulse oximeter that receives and processes the
PPG signals measured by a small (® = 22mm) and
lightweight (4.5g) optical reflectance transducer. The system

ee

 
Fig. 1. (Top) Attachment of Sensor Moduleto the skin; (Bottom)

photograph of the Receiver Module (left) and Sensor Module (right).

consists of three units: A Sensor Module, consisting of the
optical transducer, a stack of round PCBs, and a coin-cell
battery. The information acquired by the Sensor Module is
transmitted wirelessly via an RF link over a short range to a
body-worn Receiver Module. The data processed by the
Receiver Module can be transmitted wirelessly to a PDA.
The PDA can monitor multiple wearable pulse oximeters
simultaneously and allows medics to collect vital
physiological information to enhance their ability to extend
moreeffective care to those with the most urgent needs. The

system can be programmed to alert on alarm conditions,
such as sudden trauma, or physiological values out of their
normal range. It also has the potential for use in combat
casualty care, such as for remote triage, and for use byfirst
responders, suchasfirefighters.

Keyfeatures of this system are small-size, robustness, and
low-power consumption, which are essential attributes of
wearable physiological devices, especially for military
applications. The system block diagram (Fig. 2), is described
in more detail below.

Trans-impedance
amplifie:plifier

v v
Red IR
LED LED 
 
 

LDO 
Fig. 2. System block diagram of the wearable, wireless, pulse oximeter.

Sensor Module(top), Receiver Module (bottom).

Sensor Module: The Sensor Module contains analog signal
processing circuitry, ADC, an embedded microcontroller,
and a RFtransceiver. The unit is small enough so the entire
module can be integrated into a headband or a helmet. The
unit is powered by a CR2032 type coin cell battery with
220mAh capacity, providing at least 5 days of operation.

Receiver Module. The Receiver Module contains an

embedded microcontroller, RF transceiver for

communicating with the Sensor Module, and a Universal
Asynchronous Receive Transmit (UART) for connection to
a PC.Signals acquired by the Sensor Module are received by
the embedded microcontroller which synchronously converts
the corresponding PD output to R and IR PPG signals.
Dedicated softwareis used to filter the signals and compute
SpO,and HRbased on the relative amplitude and frequency
content of the reflected PPG signals. A tri-axis MEMS
accelerometer detects changes in body activity, and the
information obtained through the tilt sensing property of the
accelerometer is used to determine the orientation of the

person wearingthe device.
To facilitate bi-directional wireless communications

between the Receiver Module and a PDA, we used the

DPACAirborne™ LAN node module (DPAC Technologies,
Garden Grove, CA). The DPAC module operates at a
frequency of 2.4GHz,is 802.11b wireless compliant, and has
a relatively small (1.6 x 1.17 x 0.46 inches) footprint. The
wireless module runs off a 3.7VDC and includes a built-in
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TCP/IP stack, a radio, a base-band processor, an application 
processor, and software for a “drop-in” WiFi application. It 
has the advantage of being a plug-and-play device that does 
not require any programming and can connect with other 
devices through a standard UART.  

PDA: The PDA was selected based on size, weight, and 
power consumption. Furthermore, the ability to carry the 
user interface with the medic also allows for greater 
flexibility during deployment. We chose the HP iPAQ h4150 
PDA because it can support both 802.11b and Bluetooth™ 
wireless communication. It contains a modest amount of 
storage and has sufficient computational resources for the 
intended application. The use of a PDA as a local terminal 
also provides a low-cost touch screen interface. The user-
friendly touch screen of the PDA offers additional 
flexibility. It enables multiple controls to occupy the same 
physical space and the controls appear only when needed. 
Additionally, a touch screen reduces development cost and 
time, because no external hardware is required. The data 
from the wireless-enabled PDA can also be downloaded or 
streamed to a remote base station via Bluetooth or other 
wireless communication protocols. The PDA can also serve 
to temporarily store vital medical information received from 
the wearable unit. 

A dedicated National Instruments LabVIEW program was 
developed to control all interactions between the PDA and 
the wearable unit via a graphical user interface (GUI). One 
part of the LabVIEW software is used to control the flow of 
information through the 802.11b radio system on the PDA.  
A number of LabVIEW VIs programs are used to establish a 
connection, exchange data, and close the connection 
between the wearable pulse oximeter and the PDA. The 
LabVIEW program interacts with the Windows CE™ 
drivers of the PDA’s wireless system. The PDA has special 
drivers provided by the manufacturer that are used by 
Windows CE™ to interface with the 802.11b radio 
hardware. The LabVIEW program interacts with Windows 
CE™ on a higher level and allows Windows CE™ to handle 
the drivers and the direct control of the radio hardware. 

The user interacts with the wearable system using a 
simple GUI, as depicted in Fig. 3.  

Fig. 3.  Sample PDA Graphical User Interface (GUI).

The GUI was configured to present the input and output 
information to the user and allows easy activation of various 

functions. In cases of multiple wearable devices, it also 
allows the user to select which individual to monitor prior to 
initiating the wireless connection. Once a specific wearable 
unit is selected, the user connects to the remote device via 
the System Control panel that manages the connection and 
sensor control buttons. The GUI also displays the subject’s 
vital signs, activity level, body orientation, and a scrollable 
PPG waveform that is transmitted by the wearable device. 

The stream of data received from the wearable unit is 
distributed to various locations on the PDA’s graphical 
display. The most prominent portion of the GUI display is 
the scrolling PPG waveform, shown in Fig. 3. Numerical 
SpO2 and HR values are displayed is separate indicator 
windows. A separate tri-color indicator is used to annotate 
the subject’s activity level measured by the wearable 
accelerometer. This activity level was color coded using 
green, yellow, or red to indicate low or no activity, moderate 
activity, or high activity, respectively. In addition, the 
subject’s orientation is represented by a blue indicator that 
changes orientation according to body posture. Alarm limits 
could be set to give off a warning sign if the physiological 
information exceeds preset safety limits. 

One of the unique features of this PDA-based wireless 
system architecture is the flexibility to operate in a free 
roaming mode. In this ad-hoc configuration, the system’s 
integrity depends only on the distance between each node. 
This allows the PDA to communicate with a remote unit that 
is beyond the PDA’s wireless range. The ad-hoc network 
would therefore allow medical personnel to quickly 
distribute sensors to multiple causalities and begin 
immediate triage, thereby substantially simplifying and 
reducing deployment time. 

Power Management: Several features were incorporated 
into the design in order to minimize the power consumption 
of the wearable system. The most stringent consideration 
was the total operating power required by the Sensor 
Module, which has to drive the R and IR LEDs, process the 
data, and transmit this information wirelessly to the Receive 
Module. To keep the overall size of the Sensor Module as 
small as, it was designed to run on a watch style coin-cell 
battery.  
    It should be noted that low power management without 
compromising signal quality is an essential requirement in 
optimizing the design of wearable pulse oximeter. 
Commercially available transducers used with transmission 
and reflection pulse oximeters employ high brightness LEDs 
and a small PD element, typically with an active area 
ranging between 12 to 15mm2. One approach to lowering the 
power consumption of a wireless pulse oximeter, which is 
dominated by the current required to drive the LEDs, is to 
reduce the LED duty cycle. Alternatively, minimizing the 
drive currents supplied to the R and IR LEDs can also 
achieve a significant reduction in power consumption.
However, with reduced current drive, there can be a direct 
impact on the quality of the detected PPGs. Furthermore, 
since most of the light emitted from the LEDs is diffused by 
the skin and subcutaneous tissues, in a predominantly 
forward-scattering direction, only a small fraction of the 
incident light is normally backscattered from the skin. In 
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addition, the backscattered light intensity is distributed over 
a region that is concentric with respect to the LEDs. 
Consequently, the performance of reflectance pulse oximetry 
using a small PD area is significantly degraded. To 
overcome this limitation, we showed that a concentric array 
of either discrete PDs, or an annularly-shaped PD ring, could 
be used to increase the amount of backscattered light 
detected by a reflectance type pulse oximeter sensor [5]-[7]. 

Besides a low-power consuming sensor, afforded by 
lowering the driving currents of the LEDs, a low duty cycle 
was employed to achieve a balance between low power 
consumption and adequate performance. In the event that 
continuous monitoring is not required, more power can be 
conserved by placing the device in an ultra low-power 
standby mode. In this mode, the radio is normally turned off 
and is only enabled for a periodic beacon to maintain 
network association. Moreover, a decision to activate the 
wearable pulse oximeter can be made automatically in the 
event of a patient alarm, or based on the activity level and 
posture information derived from the on-board 
accelerometer. The wireless pulse oximeter can also be 
activated or deactivated remotely by a medic as needed, 
thereby further minimizing power consumption. 

III. IN VIVO EVALUATIONS

Initial laboratory evaluations of the wearable pulse 
oximeter included simultaneous HR and SpO2
measurements. The Sensor Module was positioned on the 
forehead using an elastic headband. Baseline recordings 
were made while the subject was resting comfortably and 
breathing at a normal tidal rate. Two intermittent recordings 
were also acquired while the subject held his breath for 
about 30 seconds. Fig. 4 displays about 4 minutes of SpO2
and HR recordings acquired simultaneously by the sensor. 

Fig. 4.  Typical HR (solid line) and SpO2 (dashed line) recording of two 
voluntary hypoxic episodes. 

The pronounced drops in SpO2 and corresponding increases 
in HR values coincide with the hypoxic events associated 
with the two breath holding episodes. 

IV. DISCUSSION

The emerging development of compact, low power, small 
size, light weight, and unobtrusive wearable devices can 
facilitate remote noninvasive monitoring of vital 

physiological signs. Wireless physiological information can 
be useful to monitor soldiers during training exercises and 
combat missions, and help emergency first-responders 
operating in harsh and hazardous environments. Similarly, 
wearable physiological devices could become critical in 
helping to save lives following a civilian mass casualty. The 
primary goal of such a wireless mobile platform would be to 
keep track of an injured person’s vital signs via a short-range 
wirelessly-linked personal area network, thus readily 
allowing RF telemetry of vital physiological information to 
command units and remote off-site base stations for 
continuous real-time monitoring by medical experts. 

The preliminary bench testing plotted in Fig. 4 showed 
that the SpO2 and HR readings are within an acceptable 
clinical range. Similarly, the transient changes measured 
during the two breath holding maneuvers confirmed that the 
response time of the custom pulse oximeter is adequate for 
detecting hypoxic episodes. 

V. CONCLUSION

A wireless, wearable, reflectance pulse oximeter has been 
developed based on a small forehead-mounted sensor. The 
battery-operated device employs a lightweight optical 
reflectance sensor and incorporates an annular photodetector 
to reduce power consumption. The system has short range 
wireless communication capabilities to transfer SpO2, HR, 
body acceleration, and posture information to a PDA carried 
by medics or first responders. The information could 
enhance the ability of first responders to extend more 
effective medical care, thereby saving the lives of critically 
injured persons. 
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Abstract

This study describes the results from a series of human experiments demonstrating the ability

to measure arterial hemoglobin oxygen saturation (SaO,) from the forearm andcalf using a

reflectance pulse oximeter sensor. A special optical reflectance sensorthat includes a heating

elementwas interfaced to a temperature controller and a commercial Data-scope ACCUSAT

pulse oximeterthat was adapted for this studyto perform as a reflectance pulse oximeter. The

reflectance pulse oximeter sensor was evaluated in a group of 10 healthy adult volunteers

during steady-state hypoxia. Hypoxia was induced by gradually lowering the inspired fraction

of oxygen in the breathing gas mixture from 100 to 12%. Simultaneous SaO., measurements

obtained from the forearmand calf with twoidentical reflectance pulse oximeters were

compared with SaO, values measured bya finger sensor that was interfaced to a standard

Datascope ACCUSATtransmittance pulse oximeter. The equationsfor the best-fitted linear

regression lines betweenthe percent reflectance, SpO,(r), and transmittance, SpO.(t), values

in the range between 73 and 100% were SpO.(r)=—7.06+1.09 SpO.(t) for the forearm

(n=91,r'=0.95) and SpO.(r)=7.78+0.93 SpO.(t) for the calf (n=93,r=0.88). The regression

analysis of the forearm data revealed a mean + SD errorof 2.47+1.66% (SaO0,=9g0-100%),

2.35+2.45% (SaO,=8o0-89%), and 2.424+1.20% (SaO,.=70-—79%). The corresponding

regression analysis ofthe calf data revealed a mean + SD errorof 3.3643.06% (SaO,=90-—

100%), 3.45+4.12% (SaO,=80—89%), and 2.97+2.75% (SaO,=70—79%). This preliminary

study demonstrated the feasibility of measuring SaO. from the forearm andcalf in healthy

subjects with a heated skin reflectance sensor and a pulse oximeter.
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measurements from the forearm andcalf.
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ABSTRACT. This study describes the results from a series of
human experiments demonstrating the ability to measurearte-
rial hemoglobin oxygen saturation (SaO.) from the forearm
and calf using a reflectance pulse oximeter sensor. A special
optical reflectance sensor that includes a heating element was
interfaced to a temperature controller and a commercial Data-
scope ACCUSAT pulse oximeter that was adapted for this
study to perform as a reflectance pulse oximeter. Thereflec-
tance pulse oximeter sensor was evaluated in a group of 10
healthy adult volunteers during steady-state hypoxia. Hy-
poxia was induced by gradually lowering the inspired fraction
of oxygen in the breathing gas mixture from 100 to 12%.
Simultaneous SaO, measurements obtained from the forearm
and calf with two identical reflectance pulse oximeters were
compared with SaOQ, values measured by a finger sensor that
was interfaced to a standard Datascope ACCUSATtransmit-
tance pulse oximeter. The equations for the best~fitted linear
regression lines between the percent reflectance, SpOa(r), and
transmittance, SpOo(t), values in the range between 73 and
100% were SpOa(r)=— 7.06 + 1.09 SpOna(t) for the forearm
(n = 91, r = 0.95) and SpO2(r) = 7.78 + 0.93 SpOx(t) for the
calf (n = 93, r = 0.88). The regression analysis of the forearm
data revealed a mean + SD error of 2.47 + 1.66% (SaOz
90-100%), 2.35 + 2.45% (SaQO2=80-89%), and 2.42 +
1.20% (SaOz = 70-79%). The correspondingregression anal-
ysis of the calf data revealed a mean + SD error of 3.36 +
3.06% (SaO2. = 90-100%), 3.45 + 4.12% (SaOz = 80-89%),
and 2.97 + 2.75% (SaO2z = 70-79%). This preliminary study
demonstrated the feasibility of measuring SaO, from the
forearm andcalf in healthy subjects with a heated skin reflec-
tance sensor and a pulse oximeter.

 

 

KEY WORDS. Blood gas analyses. Monitoring: oxygen. Mea-
surement techniques: pulse oximetry; optical plethysmog-
raphy; reflectance oximetry. Equipment: pulse oximeters. 

Transmittance pulse oximetry has become a widely
used technique for noninvasively monitoring changesin
arterial hemoglobin oxygen saturation (SaOQ2). The
techniqueis based on the spectrophotometric analysis of
the optical absorption properties of blood combined
with the principle of photoplethysmography.

In transmittance pulse oximetry, which is based on
tissue transillumination, sensor application in adults is
limited to several specific locations on the body, such as
the finger tips, ear lobes, and toes. In infants, additional
monitoring sites such as the palms and the feet have
been used.

Recently, a new reflectance pulse oximeter has been
introduced into the market. The oximeter, which is
manufactured by Ciba-Corning (Ciba Corning Diag-
nostics, Medfield, MA), uses a special optical reflectance
sensor for specific application to the forehead. Among
the advantages of this technique, as advertised by the
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company, are better reliability in critical care situations
such as peripheral circulatory shutdown,less interfer-
ence from ambient light, and better accuracy because
measurement from the forehead is relatively unsuscep-
tible to motion artifacts.

Currently, there are no commercially available re-
flectance pulse oximeters for monitoring SaO2 from lo-
cations other than the forehead. Therefore, the objective
of this work wasto investigate the feasibility of moni-
toring SaO, with a skin reflectance pulse oximeter from
two alternative and convenient locations on the body:
the ventral side of the forearm and the dorsal side of the

calf. Besides extending the clinical application of pulse
oximetry, it appears also thatreflectance pulse oximetry
from peripheral tissues may have potential advantage in
the assessment of local blood oxygenation after skin
transplantation and regeneration following microvascu-
lar surgery.

In this article, we describe preliminary in vivo evalua-
tion of a new optical reflectance sensor for noninvasive
monitoring of SaO. with a modified commercial trans-
mittance pulse oximeter. We present the experimental
evaluation of this sensor in a group of 10 healthy adult
volunteers and compare SaO, measured with the reflec-
tance pulse oximeter sensor, SpOo(r), with SaQz mea-
sured noninvasively from the finger by a standard trans-
mittance pulse oximeter sensor, SpO2(t).

REFLECTANCE PULSE OXIMETRY

The principle of reflectance, or backscatter, pulse ox-
imetry is generally similar to that of transmittance pulse
oximetry. Both techniques are based on the change in
light absorption of tissue caused by the pulsatingarterial
blood during the cardiac cycle. The pulsating arterioles
in the vascular bed, by expanding and relaxing, mod-
ulate the amount oflight absorbed bythetissue. This
rhythmic change produces characteristic photoplethys-
mographic waveforms, two of which are used to mea-
sure SaQ, noninvasively.

Recently, we showed that accurate noninvasive mea-
surements of SaQ, from the forehead can be made with

an unheated reflectance pulse oximeter sensor [1]. The
major practical limitation of reflectance pulse oximetry
is the comparatively low-level photoplethysmograms
recorded from low-density vascular areas of the skin.
Therefore, the feasibility of reflectance pulse oximetry
depends on the ability to design an optical reflectance
sensor that can reliably detect sufficiently strong reflec-
tance photoplethysmograms from various locations on
the skin.

In order to partially overcome this limitation, we
have developed an optical reflectance sensor that in-
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Fig 1, (A) Frontal and (B) side views of the heated skin reflec-
tance pulse oximeter sensor. See text for explanation. R & IR
LEDs=red and infrared light-emitting diodes.

cludes an array ofsix identical photodetectors arranged
symmetrically in a hexagonal configuration surround-
ing two pairs of red (peak emission wavelength, 660
nm) and infrared (peak emission wavelength, 930 nm)
light-emitting diodes (LEDs) [1]. In another related
study, we showedthat by locally heating the skin under
the sensor to a temperature above 40°C,it is possible to
achieve a four- to fivefold increase in the magnitude of
the pulsatile component detected from the forearm, and
thus significantly improvethe detectionreliability of the
reflectance photoplethysmograms [2]. The new optical
reflectance sensor designed for this study combines the
two features described above.

The temperature-controlled optical reflectance sensor
used in this study is shown in Figure 1. The major fea-
ture of the optical layout design is the multiple photo-
diode array, which is arranged concentric with the
LEDs. This arrangement maximizes the amount of
backscattered light that is detected by the sensor. The
technical details related to the design and geometric
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configuration of the optical components were described
recently by Mendelsonet al [1].

The heater consists of a ring-shaped (dimensions:
30-mm outside diameter; 15-mm inside diameter)
thermofoil resistive heating element (Ocean State Ther-
motics, Smithfield, RI). The thermofoil heater was
mounted between the surface of the optically clear
epoxy, which wasused to seal the optical components
of the reflectance sensor, and a thin (0.005 mm) match-
ing brass ring, which facilitates better thermal conduc-
tion to the skin. A miniature (dimensions: 2 x 5
xX 1 mm) solid-state temperature transducer (AD 590,
Analog Devices, Wilmington, MA) was mounted on
the outer surface of the brass ring with the thermally
sensitive surface facing the skin. The entire sensor as-
sembly was potted in room-temperature vulcanizing
silicone rubber to minimize heat losses to the surround-

ing environment. The assembled sensor weighs approx-
imately 65 g. The sensor measures approximately 38
mm in diameter and is 15 mm thick. The heater assem-

bly was separately interfaced to a temperature controller
that was used to vary the temperature of the skin be-
tween 35 and 45°C in 1 + 0.1°C steps.

SUBJECTS AND METHODS

Data Acquisition

Each of the two heated optical reflectance sensors were
separately interfaced to a temperature controller and a
commercially available ACCUSAT (Datascope Corp,
Paramus, NJ) pulse oximeter [3].

Two of the three ACCUSAT pulse oximeters were
modified to function asreflectance pulse oximeters. The
modification, which was described in a separate study
[1], included the adjustmentofthe red and infrared LED
intensities in the reflectance sensors so that the reflec-

tance photoplethysmograms were approximately equal
to transmittance photoplethysmograms measured by a
standard transmittance sensor from an averagesize adult
fingertip.

The third ACCUSATtransmittance pulse oximeter
was used as a reference to measure SpO.(t) from the
finger tip. The specified accuracy of this transmittance
pulse oximeter is +2.0% and +4.0% for SaQz values
ranging between 70 and 100%and 60 and 70%, respec-
tively [3]. The three pulse oximeters were adapted to
provide continuousdigital readouts of the AC and DC
components of the red and infrared photoplethysmo-
grams.

Readings from each of the three pulse oximeters were
acquired every 2 seconds through a standard RS-232C
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serial port interface using an AT&T 6300 personal com-
puter. The conversions of the reflectance red/infrared
{R/IR) ratios measured by the tworeflectance pulse ox-
imeters to SpO2(r) were performed by using the cali-
bration algorithm obtained in a previous calibration
study in which measurements were made with a similar
nonheated sensor from the forehead [1].

In Vivo Study

The ability to measure SpO.(r) from the forearm and
calf was investigated in vivo during progressive steady-
state hypoxia in humans.

Measurements were acquired from 10 healthy non-
smoking male adult volunteers of different ages and skin
pigmentations. The study was performed in compliance
with the University of Massachusetts Medical Center’s
review guidelines on human experimentation. Each
volunteer was informed of the complete procedure as
well as the possible risks associated with breathing hy-
poxic gas levels. Each volunteer received monetary
compensation for participation in this study. The sub-
ject distribution included 1 East Indian, 3 Asians, and 2
darkly tanned and 4 lightly tanned Caucasians. Their
ages ranged from 22 to 37 years old (mean + SD, 27.5
+ 4.9 years). Measured blood hematocrits were in the
range of 40 to 50.5% (mean + SD, 45.7 + 3.2%).

All instruments were allowed to warm upforat least
30 minutes before the study. The transmittance sensor
of the pulse oximeter was attached to the index finger.
Thereflectance sensors were attached to the ventral side

of the forearm andthe dorsalside of the calf by using a
double-sided transparent adhesive ring. In cases where
an abundance of hair prevented intimate contact be-
tween the sensors and the skin, the contact was im-

proved by loosely wrapping the sensor and the limb
with an elastic strap. The temperature of each reflec-
tance sensor wasset to 40°C and remained unchanged
throughoutthe entire study.

A standard lead-I electrocardiogram and end-tidal
carbon dioxide levels were continuously monitored by
a Hewlett-Packard 78345A patient monitor (Hewlett-
Packard, Andover, MA). Each subject was placed in a
supine position. A face mask wastightly fitted over the
subject’s nose and mouth, and the subject wasinstructed
to breathe spontaneously while we administered differ-
ent gas mixtures of nitrogen and oxygen. Theinspired
gas mixture was supplied by a modified Heidbrink anes-
thesia machine (Ohio Medical Products, Madison, WI).
The breathing circuit of the anesthesia machine was
equipped with a carbon dioxide scrubber (soda lime).
The inspired oxygen concentration was adjusted be-
tween 12 and 100% and was monitored continuously
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throughout the study with an IL 408 (Instrumentation
Laboratories, Lexington, MA) oxygen monitor, which
was inserted in the inspiratory limb of the breathing
circuit.

Steady-state hypoxia was gradually induced by low-
ering the inspired fraction of oxygen in the breathing
gas mixture. Initially, the inspired oxygen concentra-
tion was changed in step decrements, each step pro-
ducing approximately a 5% decrease in SpOz(t) as
determined from the display of the ACCUSAT
transmittance pulse oximeter. The inspired oxygen was
maintained at each level for at least 3 minutes until the

pulse oximeter readings reached a steady level (i.e.,
SaO,zfluctuations of less than +3%). When the inspired
oxygen level reached 12%, the process was reversed.
Thereafter, the inspired oxygen level was increased in a
similar stepwise manner to 100%. Data were recorded
during both desaturation and reoxygenation.

All subjects tolerated the procedure well without ad-
verse reactions. Noneofthe subjects showed electrocar-
diographic abnormalities before or after the study. Each
subject was studied for approximately 1 hour.

Data Analysis

To avoid operator biases, the data from each pulse ox-
imeter were acquired automatically by the computer
and later subjected to the samestatistical tests.

For each step change in inspired oxygen, readings
from the three pulse oximeters were averaged consecu-
tively over a period of 20 seconds. Averaged readings
from the 10 subjects were pooled and a least-squares
linear regression analysis was performed. Student’st test
determined the significance of each correlation; p <
0.001 was considered significant.

Althoughthe correlation coefficient of the linear re-
gression (r) provides a measure of association between
the SpO.(r) and SpO.(t) measurements,it does notpro-
vide an accurate measure of agreement between the two
variables. Therefore, the measurement accuracy wases-
timated on the basis of the mean and standard deviations

of the difference between the readings from the trans-
mittance and reflectance pulse oximeters. The mean of
the difference between the pulse oximeter measure-
ments, which is often referred to as the bias, was used to
assess whether there was a systematic over- or underes-
timation of one method compared with the other. The
standard deviation of the bias, which is often referred to
as the precision, represents the variability or random
error. Finally, we computed the meanerrors and stan-
dard deviations of each measurement. The mean error

is defined as the absolute bias divided by the corre-
sponding SpO.(t) values.

RRARM

R/TRREFLECTANCERATIO
8 FO¥ = 1.02x ~- 0.05

-+- CALFY = 0.87x + 0.04

 
0 0. 4 0.8 le 1.6

R/IR TRANSMITTANCE RATIO 

Fig 2. Comparison of red/infrared (R/IR) ratios measured by the
modified reflectance pulse oximeter (y axis) and the standard trans-
mittance pulse oximeter (x axis) during progressive steady-state
hypoxia in 10 healthy subjects. The solid line represents the best-
Jitted linear regression line for the forearm measurements. The bro-
ken line represents the best-fitted linear regression line for the calf
measurements.

  

RESULTS  

Normalized R/IR ratios and SpO.(r) values measured
by the reflectance pulse oximeters from the forearm and
calf of the 10 subjects were compared with the nor-
malized R/IR ratios and SpO.(t) values measured simul-
taneously by the transmittance pulse oximeter from the
finger. A total of91 and 93pairs of data points measured
simultaneously from the forearm andcalf, respectively,
wereused in the regression analysis, which provided the
estimated slopes and intercepts of the linear regression
lines. Each pair of data points represents a different hy-
poxic level.

Regression analysis of the normalized R/IR ratios
measured from thereflectance pulse oximeters from the
forearm and calf (y axis) versus the normalized R/IR
ratios measured simultaneously by the transmittance
pulse oximeter from the finger tip (x axis) is shown in
Figure 2. The equationsfor the best-fitted linear regres-
sion lines were y = ~ 0.05 + 1.02x (r = 0.94, SEE =
0.08, p < 0.001) for the forearm and y = 0.04 + 0.87x
(r = 0.88, SEE = 0.11, p < 0.001) for thecalf.

A comparison of SpO.(r) readings from the reflec-
tance pulse oximeter(y axis) and SpO.(t) readings mea-
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100

g0

REFLECTANCESpO9(%)
FOREARM
y = 1.09% - 7.06
CALF
¥ = 0.93x + 7.78

 
80 90

TRANSMITTANCE SpO2 (%)

100

Fig 3. Comparison ofpercent arterial hemoglobin oxygen satura-
tion (SpO2) measurements obtained from the modified reflectance
pulse oximeter (y axis) and SpOz values measured by a standard
transmittance pulse oximeter (x axis) during progressive steady-
state hypoxia in 10 healthy subjects. The solid line represents the
best-fitted linear regression line for the forearm measurements. The
broken line represents the best-fitted linear regression line for the
calf measurements.

DIFFERENCES 
80

TRANSMITTANCE SpOo (%)

g0 100

Fig 4. Mean differences between arterial hemoglobin oxygen sat-
uration (SpOQ2) measured from the forearm by the modified reflec-
tance pulse oximeter and the standard transmittance pulse oximeter
measurements from the fingertip.
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DIFFERENCES
80

TRANSMITTANCE SpO2 (%)

g0 100

Fig 5. Mean differences between arterial hemoglobin oxygen sat-
uration (SpOQz) measured from the calf by the modified reflectance
pulse oximeter and the standard transmittance pulse oximeter mea-
surements from the finger tip.

Statistical Analysis of Arterial Oxygen Saturation (SaOQz) Levels
Measured from the Forearm and Calf by the Modified Reflectance
Pulse Oximeters

Mean Value (SD)
Location/ No. of

% SaQz Data Points Difference % Error

Forearm

90-100 42 1.25 (2.55) 2.47 (1.66)
80-89 37 0.52 (2.85) 2.35 (2.45)
70-79 12 —0.82 (1.96) 2.42 (1.20)

Calf

90-100 43 1.57 (4.00) 3.36 (3.06)
80-89 33 2.22 (4.00) 3.45 (4.12)
70-79 17 1.95 (2.42) 2.97 (2.75)

sured simultaneously from the transmittance pulse ox-
imeter (x axis) is shown in Figure 3. The equations for
the best-fitted linear regression lines were y = — 7.06
+ 1.09x (ry=0.95, SEE = 2.62, p < 0.001) for the
forearm and y = 7.78 + 0.93x (r = 0.88, SEE = 3.73,
p < 0.001) for the calf.

Figures 4 and 5 showthepercent differences between
SpO.(r) and SpOa.(t), that is, SpO2(r) — SpO2(t), ob-
tained from the forearm and calf data plotted in Figure
3, respectively. The corresponding means and standard
deviations of the differences and errors for the forearm

and calf measurements are summarized in the Table.
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Data were summarized for three different ranges of
SpO2(t) values between 70 and 100%.

DISCUSSION 

Commercially available transmittance sensors can be
used on only a limited numberofperipherallocations of
the body. Brinkman and Zijlstra [4] and Cohen and
Wadsworth [5] showed that instead oftissue transil-
lumination, noninvasive monitoring of SaOQ2 can be
performed based on skin reflectance spectropho-
tometry. More recently, we described an improved
optical reflectance sensor that was used for measuring
SaQ, from the forehead with a modified commercial

transmittance pulse oximeter[1].
Measuring large reflectance photoplethysmograms

from sparsely vascularized areas of the skin is challeng-
ing. Differences in capillary densities between various
locations on the body are knownto affect the magnitude
and quality of the reflected photoplethysmograms. For
example, estimated average capillary density of the hu-
manforehead is approximately 127 to 149 loops/mm7,
whereas the capillary densities of the forearm and calf
are approximately 35 to 51 and 41 loops/mm?,respec-
tively [6,7]. Furthermore, the frontal bone ofthe fore-
head provides a highly reflective surface that signifi-
cantly increases the amount of light detected by the
reflectance sensor. Therefore, reflected photoplethys-
mograms recorded from the forehead are normally
larger than those recorded from the forearm and calf.
Local skin heating could be used as a practical method
for improving the signal-to-noise ratio of the reflected
photoplethysmograms from the forearm or calf areas
and thus reduce the measurementerrors in reflectance

pulse oximetry.
The approach presented in this article demonstrated

that SaOz can be estimated by using a heated skin
reflectance sensor from the forearm andcalf overa rela-

tively wide range of SaO2 values. This technique may
provide a clinically acceptable alternative to currently
available transmittance pulse oximeters. In a previous
study [2], we found that the ability to measure accurate
SaO> values with a reflectance skin oximeteris indepen-
dent of the exact skin temperature. We noticed, how-
ever, that a minimum skin temperature of approxi-
mately 40°C is generally sufficient to detect adequately
stable photoplethysmograms. Furthermore, our experi-
ence in healthy adults also has shown that at this skin
temperature, the heated sensor can remain in the same
location without any apparent skin damage.

Note that despite the proven advantage of local skin
heating to increase skin blood flow, reflected photo-
plethysmogramsrecorded from the forearm andthe calf
are considerably weaker than those recorded from the
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forehead. Therefore, the mean errors for the SpOod(r)
measurements from the forearm andcalf are higher than
the corresponding errors for similar SpO.(r) measure-
ments made with an unheated reflectance sensor from

the forehead. For comparison, relative to SaOQ2 mea-
sured with a noninvasive transmittance pulse oximeter,
the SEE for SpOz(r) measurements obtained from the
forehead using a similar unheated optical reflectance
sensor were 1.82%[1]. The SEE obtainedin this study
using the heated reflectance sensor were 2.62%for the
forearm and 3.73% for the calf measurements. Despite
those differences, it is apparent that the degree of corre-
lation obtained in this preliminary study is encouraging
and in selected clinical applications may be acceptable.
We conclude that reflectance pulse oximetry from the
forearm and calf may provide a possible alternative to
conventional transmittance pulse oximetry and reflec-
tance pulse oximetry from the forehead. Further stud-
ies, however, are needed in order to compare our
reflectance pulse oximeter against SaQ2 measurements
obtained directly from arterial blood samples. Addi-
tional work to investigate the source of variability in
reflectance pulse oximetry is in progress.
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1. Active Bluetooth/WLAN Indicator 6. Inbox Button

2. Power Button 7. 5-Way Navigation Button

3. LED Power/Notification Indicator 8. Contacts Button

4. Color Display 9. Calendar Button

5. iTask Button  

       

At A GlanceAt A GlanceAt A GlanceAt A Glance

Integrated WLAN 802.11b1

Integrated Bluetooth™1

Integrated SD expansion slot
Microsoft® Windows® Mobile™ 2003 software for Pocket PC
Dazzling Transflective TFT color with LED backlight display
Removable/rechargeable battery

Stay productive with Pocket versions of familiar applications like Microsoft Outlook , Word and Excel

NOTENOTENOTENOTE 1: A standard WLAN infrastructure, other devices enabled with Bluetooth, and a service contract with a wireless airtime provider may be
required for applicable wireless communication. Wireless Internet use requires a separately purchased service contract. Check with a service provider

for availability and coverage in your area. Not all web content available.

QuickSpecs HP iPAQ Pocket PC h4150 SeriesHP iPAQ Pocket PC h4150 SeriesHP iPAQ Pocket PC h4150 SeriesHP iPAQ Pocket PC h4150 Series
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ModelsModelsModelsModels
iPAQ Pocket PC h4150 – 64-MB SDRAMiPAQ Pocket PC h4150 – 64-MB SDRAMiPAQ Pocket PC h4150 – 64-MB SDRAMiPAQ Pocket PC h4150 – 64-MB SDRAM
FA174A#ABA –––– US Commercial, English
FA174A#ABC –––– French Canadian
FA174A#ABG –––– Australia, New Zealand
FA174A#ABU –––– UK, English
FA174A#ABB –––– Euro English
FA174A#ABD –––– German
FA174A#ABF –––– French
FA174A#ABZ –––– Italian
FA174A#ABE –––– Spanish
FA174A#B16 –––– Latin America, Spanish
FA174A#AC4 –––– Brazilian Portuguese
FA174A#ABJ –––– Japanese
FA174A#UUF –––– APD, English
FA174A#AB2 –––– S-Chinese
FA174A#AB0 –––– Taiwan, T-Chinese
FA174A#AB5 –––– Hong Kong, T-Chinese
FA174A#AB1 –––– Korean
FA174A#ARE –––– Malaysia
iPAQ Pocket PC h4155 – 64-MB SDRAMiPAQ Pocket PC h4155 – 64-MB SDRAMiPAQ Pocket PC h4155 – 64-MB SDRAMiPAQ Pocket PC h4155 – 64-MB SDRAM
FA175A#ABA –––– US Retail, English

ProcessorProcessorProcessorProcessor 400 MHz Intel® Xscale™ technology-based processor

MemoryMemoryMemoryMemory SDRAMSDRAMSDRAMSDRAM 64-MB (55-MB user accessible)

  Up to 2.8-MB iPAQ File Store (varies by SKU)

ROMROMROMROM 32-MB

DisplayDisplayDisplayDisplay TypeTypeTypeType Transflective type TFT color with LED backlight

  Number of ColorsNumber of ColorsNumber of ColorsNumber of Colors 64K color (65,536 colors) 16-bit

  Touch ScreenTouch ScreenTouch ScreenTouch Screen Yes

  ResolutionResolutionResolutionResolution (W x H) 240 x 320

  Viewable Image SizeViewable Image SizeViewable Image SizeViewable Image Size 3.5 in (89 mm)

Hardware Buttons/Hardware Buttons/Hardware Buttons/Hardware Buttons/
Reset ButtonsReset ButtonsReset ButtonsReset Buttons

One power button, one recording button, one soft reset switch, four software programmable application buttons, one 5-way
navigation button

StylusStylusStylusStylus One (extra stylus included in the box)

AudioAudioAudioAudio Integrated microphone, speaker and one 3.5 mm headphone jack, MP3 stereo (through audio jack)

Notification SystemsNotification SystemsNotification SystemsNotification Systems AlarmsAlarmsAlarmsAlarms Solid amber LED (right) - battery in unit fully charged
Flashing amber LED (right) - battery in unit is charging
Flashing green LED (right) - event alarm/notification
Flashing green LED (left) - WLAN active
Flashing blue LED (left) - Bluetooth active

NotificationNotificationNotificationNotification Sound and message on the display
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Cradle InterfacesCradle InterfacesCradle InterfacesCradle Interfaces ConnectorConnectorConnectorConnector 1

CableCableCableCable 1 USB cable connects to PC

DC Jack connector for ACDC Jack connector for ACDC Jack connector for ACDC Jack connector for AC
AdapterAdapterAdapterAdapter

1

Additional battery chargerAdditional battery chargerAdditional battery chargerAdditional battery charger Charge additional slim or extended batter

SD SlotSD SlotSD SlotSD Slot Support SDIO and SD/MMC type standard

Power SupplyPower SupplyPower SupplyPower Supply BatteryBatteryBatteryBattery Removable/Rechargeable 1000 mAh Lithium-lon user swappable battery. Estimated usage
time of fully charged battery up to12 hours (no wireless, no backlight).
Optional extended 1800 mAh Lithium-lon battery available for purchase.

AC PowerAC PowerAC PowerAC Power AC Input: 100~240 Vac, 50/60 Hz, AC Input current: 0.2 Aac max
Output Voltage: 5Vdc (typical), Output Current: 2A (typical)

NOTE: NOTE: NOTE: NOTE: Battery run time varies based on the usage pattern of an individual user and the configuration of the handheld.
Use of internal wireless capabilities and backlight will significantly decrease battery run time.

Ergonomic DesignErgonomic DesignErgonomic DesignErgonomic Design
FeaturesFeaturesFeaturesFeatures

Instant-on/off and Backlight
5-way Navigation button
Touch-sensitive display for stylus
4 programmable application launch buttons - defaults configured for Calendar, Contacts, Inbox, and iTask buttons
Record button
2 alarm settings
Built-in speaker

HP Exclusive ApplicationsHP Exclusive ApplicationsHP Exclusive ApplicationsHP Exclusive Applications Bluetooth Manager
iPAQ File Store: non-volatile storage in flash ROM (not available in Japanese, Simplified Chinese, Traditional Chinese
and Korean versions)
iPAQ Backup: utility for Backup/Restore to Main Memory, Memory Card or iPAQ File Store
iPAQ iTask Manager: access and launch programs easily
iPAQ Image Zone: view images and create slide shows
Utilities: Self Test, iPAQ Audio, Power Status
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Companion CD from HPCompanion CD from HPCompanion CD from HPCompanion CD from HP APPLICATIONSAPPLICATIONSAPPLICATIONSAPPLICATIONS  

Full VersionsFull VersionsFull VersionsFull Versions Trial VersionsTrial VersionsTrial VersionsTrial Versions

HP Web registration
HP Mobile Print Center
Westtek ClearVue Suite
F-Secure FileCrypto Data
Encryption
Colligo Personal Edition
Adobe PDF Viewer
RealOne Player for Pocket PC
iPresenter PowerPoint converter
MobiMate WorldMate
Resco File Explorer 2003 - U.S.
Retail only

Xcellenet Afaria Device Management Agent
Margi Presenter-to-Go (requires purchase of additional hardware)
Illium ListPro
CommonTime Cadenza mNotes
Resco Picture Viewer - U.S. Retail only

CD LINKSCD LINKSCD LINKSCD LINKS  

NetMotion
Avaya IP Softphone
IP Blue VTGO!
Cisco CallManager
Pocket Presence Running Voice
IP
Vindigo
Audible Manager and Audible
Player (Service plan
required to download and play
Audible content - link)
SingleTap
Handango
Pocket Backup Plus

 

Additional DocumentationAdditional DocumentationAdditional DocumentationAdditional Documentation
Safety and Comfort Guide on PDF, and User Guide on PDF

NOTE: NOTE: NOTE: NOTE: Programs may vary based on SKU. Some programs are accessed through CD links to download web sites.

Operating SystemOperating SystemOperating SystemOperating System Microsoft Windows Mobile 2003 software for Pocket PC - Premium edition
Pocket versions of Microsoft software are included (Outlook, Word, Excel and Internet Explorer for Pocket PC)

Operating SystemOperating SystemOperating SystemOperating System
ApplicationsApplicationsApplicationsApplications

Powered by Microsoft Windows Mobile 2003 for Pocket PC
Calendar, Contacts, Tasks, Voice Recorder, Notes, Pocket Word (with Spellchecker), Pocket Excel, Pocket Internet Explorer,
Windows Media Player 9 (MP3, audio and video streaming), Calculator, Solitaire, Jawbreaker, Inbox (with Spell Checker for
email), Microsoft Reader (eBooks), File Explorer, Pictures, Terminal Services Client, VPN Client, Infrared Beaming, Clock,
Align Screen, Memory, Volume control, ClearType Tuner (except for Asian languages)

Additional Software andAdditional Software andAdditional Software andAdditional Software and
linkslinkslinkslinks

Outlook 2002, Microsoft ActiveSync 3.7 (Desktop device synchronization), Microsoft Reader eBooks, Links to Microsoft
websites for additional downloadable applications (some programs may require purchase of additional desktop software to
utilize Pocket PC versions)

Service and SupportService and SupportService and SupportService and Support One-year parts and labor in most regions; two-year warranty in Europe (one-year warranty for rechargeable battery pack) 90
days technical support for software in all regions. Optional HP Care Pack available in North America for Next Business Day
replacement (at additional charge)
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WLAN SpecificationsWLAN SpecificationsWLAN SpecificationsWLAN Specifications1111

Radio SpecificationsRadio SpecificationsRadio SpecificationsRadio Specifications
RF Network StandardRF Network StandardRF Network StandardRF Network Standard IEEE 802 Part 11b (802.11b)

Frequency BandFrequency BandFrequency BandFrequency Band 2.4000 to 2.4835 GHz
2.4465 to 2.4835 GHz (France)
2.4000 to 2.497 GHz (Japan)

  Antenna typeAntenna typeAntenna typeAntenna type Embedded Inverted F Antenna

  WEP SecurityWEP SecurityWEP SecurityWEP Security 64/128-bit compliant to IEEE 802.11
Compliant to 802.1X

  Network ArchitectureNetwork ArchitectureNetwork ArchitectureNetwork Architecture
ModelsModelsModelsModels

Ad-hoc (Peer to Peer)
Infrastructure (Access Points Required)

  Modulation TechniqueModulation TechniqueModulation TechniqueModulation Technique Direct Sequence Spread Spectrum

  Modulation SchemesModulation SchemesModulation SchemesModulation Schemes DBPSK, DQPSK, CCK

  Receiver Sensitivity -Receiver Sensitivity -Receiver Sensitivity -Receiver Sensitivity -
Packet Error RatePacket Error RatePacket Error RatePacket Error Rate (8E-2)

11 Mbps: <-80 dBm
5.5 Mbps: <-82 dBm
2 Mbps: <-86 dBm
1 Mbps: <-89 dBm

  Maximum Receive LevelMaximum Receive LevelMaximum Receive LevelMaximum Receive Level -10dBm (1/2/5.5/11 Mbps)

  Output Power Output Power Output Power Output Power (maximum) 15 dBm
(limited due to FCC SARS requirements)

  Power ManagementPower ManagementPower ManagementPower Management Radio On/Off control through Microsoft Connection icon, Power Save mode available in
Power Settings

  Power ConsumptionPower ConsumptionPower ConsumptionPower Consumption Transfer mode: < 380 mA, average
Receive mode: < 280 mA, average

  Power Saving OptionPower Saving OptionPower Saving OptionPower Saving Option 802.11 Compliant Power Saving, idle mode 25 mA

  Media Access ProtocolMedia Access ProtocolMedia Access ProtocolMedia Access Protocol CSMA/CA (Collision Avoidance) with ACK

  Protocols SupportedProtocols SupportedProtocols SupportedProtocols Supported TCP/IP
IPX/SPX
UDP

  SARSARSARSAR 1.0 mW/g

  ThroughputThroughputThroughputThroughput >4.5 Mbps

  Operating DistanceOperating DistanceOperating DistanceOperating Distance Up to 1000 feet - open sight

  CertificationsCertificationsCertificationsCertifications All necessary regulatory approvals for countries we support including:
WECA Wi-Fi approval
FCC (47 CFR) Part 15C, Section 15.247&15.249
ETS 300 328, ETS 301 489-1
Low Voltage Directive IEC950
UL, CSA, and CE Mark

  NOTE: NOTE: NOTE: NOTE: 1 A standard WLAN infrastructure, other devices enabled with Bluetooth, and a service contract with a wireless
airtime provider may be required for applicable wireless communication. Wireless Internet use requires a separately
purchased service contract. Check with a service provider for availability and coverage in your area. Not all web content
available.
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Bluetooth SpecificationsBluetooth SpecificationsBluetooth SpecificationsBluetooth Specifications1111 TechnologyTechnologyTechnologyTechnology High-speed, low-power, short-range

Bluetooth specificationBluetooth specificationBluetooth specificationBluetooth specification 1.1 compliant (2.4-GHz Industrial Scientific Medical Band)

System interfaceSystem interfaceSystem interfaceSystem interface High-speed UART processor interface

User InterfaceUser InterfaceUser InterfaceUser Interface Bluetooth Manager

Device typeDevice typeDevice typeDevice type Class II device; up to 4 dBm transmit, typical 10 meter range

PowerPowerPowerPower 3.3V 5% Peak current - typical TX current at approximately 30mA
- typical RX current at approximately 50 mA

Receiver sensitivityReceiver sensitivityReceiver sensitivityReceiver sensitivity -78 dBm

Regulatory standardsRegulatory standardsRegulatory standardsRegulatory standards R&TT#-EN 300 328 and EN 300 826, UL 1950, CB Safety Scheme inclusive of EN 60950
and IEC 950, FCC Part 15 subpart C, Canadian, CE

Profile SupportProfile SupportProfile SupportProfile Support General Access Profile
Service Discovery Application Profile
Serial Port Profile
Generic Object Exchange Profile
File Transfer Profile
Dial-Up Networking Profile
LAN Access Profile
Object Push Profile
Personal Area Networking Profile
Basic Printing Profile
Hard Copy Replacement Profile (printing)

Usage Models Usage Models Usage Models Usage Models 1111 Service DiscoveryService DiscoveryService DiscoveryService Discovery
Determine what Bluetooth devices are within range and support authorization

File TransferFile TransferFile TransferFile Transfer
File and directory browsing and navigation on another Bluetooth device.
File copying
Object manipulation - including add, delete, create new folders etc.

Serial PortSerial PortSerial PortSerial Port
Synchronization between PDAs and PCs

Dial Up NetworkingDial Up NetworkingDial Up NetworkingDial Up Networking
Wireless link to WAN thru Bluetooth enabled cell phone1
Agnostic to WAN technology
Send/receive SMS messages

LAN AccessLAN AccessLAN AccessLAN Access
Wireless link to Corporate LAN using Bluetooth and appropriate Bluetooth access point1

Corporate email, network neighborhood, access to LAN applications, file transfer, ftp,
Internet browsing, etc, using TCP/IP1

Access the Internet by connecting to your desktop or notebook over Bluetooth and using its
network connection1

Generic Object Exchange and Object PushGeneric Object Exchange and Object PushGeneric Object Exchange and Object PushGeneric Object Exchange and Object Push
Exchange business cards, tasks, documents, appointments and more1

Personal Area NetworkingPersonal Area NetworkingPersonal Area NetworkingPersonal Area Networking
Collaborate, chat, play games, exchange data1

Adhoc peer to peer networking1

Basic Printing and Hard Copy Replacement ProfilesBasic Printing and Hard Copy Replacement ProfilesBasic Printing and Hard Copy Replacement ProfilesBasic Printing and Hard Copy Replacement Profiles
Print to any HP Bluetooth enabled printer without the need for cables or specific print
drivers

CertificationsCertificationsCertificationsCertifications All necessary regulatory approvals for countries we support including:
Bluetooth logo, FCC (47 CFR) Part 15C, Section 15.247&15.249 ETS 300 328, ETS 301
489-1/17 Low Voltage Directive IEC950 UL and CE Mark

NOTE: NOTE: NOTE: NOTE: 1 A standard WLAN infrastructure, other devices enabled with Bluetooth, and a service contract with a wireless
airtime provider may be required for applicable wireless communication. Wireless Internet use requires a separately
purchased service contract. Check with a service provider for availability and coverage in your area. Not all web content
available.
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System UnitSystem UnitSystem UnitSystem Unit DimensionsDimensionsDimensionsDimensions (H x W x D) 4.47 in x 2.78 in x 0.5 in (113.6 mm x 70.6 mm x 13.5 mm)

WeightWeightWeightWeight 4.67oz (132 g)

Operating TemperatureOperating TemperatureOperating TemperatureOperating Temperature 32° to 104° F (0° to 40° C)

Storage TemperatureStorage TemperatureStorage TemperatureStorage Temperature –4° to 140° F (–20° to 60° C)

Operating HumidityOperating HumidityOperating HumidityOperating Humidity 90% RH

Regulatory MarksRegulatory MarksRegulatory MarksRegulatory Marks Electrical FCC Class B, UL or CSA NRTL

Safety C-UL, NOM

TFT Color DisplayTFT Color DisplayTFT Color DisplayTFT Color Display Number of ColorsNumber of ColorsNumber of ColorsNumber of Colors 65,536 (64K 16-bit)

ResolutionResolutionResolutionResolution (W x H) 240 x 320

Dot PitchDot PitchDot PitchDot Pitch 0.24 mm

Viewable ImageViewable ImageViewable ImageViewable Image (W x H) 3.5 in (89 mm)

Display TypeDisplay TypeDisplay TypeDisplay Type 64K color (16-bit) transflective type TFT color with LED

AC AdapterAC AdapterAC AdapterAC Adapter DimensionsDimensionsDimensionsDimensions (H x W x D) 3 x 1.9 x 1.8 in (76 x 48 x 44 mm) (including prongs)

Cord Length Cord Length Cord Length Cord Length (approximate) 6 ft (1.83 m)

Power Supply RatingsPower Supply RatingsPower Supply RatingsPower Supply Ratings Voltage Range 100 to 240 V Switching

Input Current 0.3 A

Input Frequency 50 to 60 Hz

  Output Voltage 5 VDC

  Output Current 2 Amp
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  NOTE: NOTE: NOTE: NOTE: Optional accessories are available at additional cost.

Memory/StorageMemory/StorageMemory/StorageMemory/Storage 64-MB SD Memory Card 253478-B21 FA134A#AC3

  128 MB SD Memory Card 253479-B21 FA135A#AC3

  256 MB SD Memory Card 287464-B21 FA136A#AC3

  512-MB SD Memory Card 344310-B21 FA184A#AC3

PowerPowerPowerPower 1800 mAH Lithium Ion Extended Battery 343110-001 FA192A#AC3

1000 mAh Lithium Ion Slim Battery 343111-001 FA191A#AC3

Auto Adapter 253508-B21 FA125A#AC3

Charger Adapter 274707-B21 FA133A#AC3

AC Adapter

U.S., Canada, Latin America, Japan, Taiwan 253629-001 FA130A#ABA

Australia 253629-011 FA130A#ABG

Europe, Brazil 253629-021 FA130A#ABB

United Kingdom, Asia Pacific, Hong Kong 253629-031 FA130A#ABU

SynchronizationSynchronizationSynchronizationSynchronization Desktop Cradle 343116-001 FA188A#AC3

  USB Charge/Sync Cable FA122A#AC3

OtherOtherOtherOther Stylus Three-pack 331311-B21 FA113#AC3

  Foldable Keyboard 249693-xxx FA118A#xxx

  Micro keyboard FA162A#AC3

PerformancePerformancePerformancePerformance Photosmart Mobile Camera (SDIO Camera) FA185A#AC3

  iPAQ Navigation System (U.S. only)   FA196A#AC3

CasesCasesCasesCases Nylon Case 339657-B21 FA161A#AC3

  Leather Belt Case 339656-B21 FA160A#AC3

  Custom Cases: to view and order go to: http://www.casesonline.com/    

 
 
HP iPAQ Pocket PC h4150 is a Microsoft® Windows® Powered Pocket PCHP iPAQ Pocket PC h4150 is a Microsoft® Windows® Powered Pocket PCHP iPAQ Pocket PC h4150 is a Microsoft® Windows® Powered Pocket PCHP iPAQ Pocket PC h4150 is a Microsoft® Windows® Powered Pocket PC

For more information on HP iPAQ Pocket PC, visit our website at http://www.hp.com/go/iPAQ

©2003 Hewlett-Packard Development Company, L.P.

The information in this document is subject to change without notice.

The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein
should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein. Microsoft,
Windows and the Windows Logo are registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Intel is a
registered trademark of Intel Corporation in the U.S. and/or other countries.
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Stimulating Student Learning with a Novel “In-House” Pulse Oximeter Design Jianchu Yao,
M.S, and Steve Warren, Ph.D. Departmentof Electrical & Computer Engineering, Kansas
State University Manhattan, KS 66506, USA

Abstract This paper addresses the design of a plug-and-play pulse oximeter andits

application to a biomedical instrumentation laboratory and other core Electrical
Engineering courses, The low- cost, microcontroller-based unit utilizes two light-emitting
diodes as excitation sources, acquires reflectance data with a photodiode, and sends
these raw photo-plethysmographic data to a personal computer via an RS-232 seriallink. A

LabVIEW interface running on the personal computer processes these raw data and stores
the results to a file. The design of this pulse oximeteris unique in two ways: the excitation
sources are driven just hard enough to always keep the photodiode active (meaning the

sensor can be used in ambient light), and the hardware separates out the derivatives of the
red and infrared photo-plethysmogramsso that it can amplify the pulsatile componentof
each signalto fill the range of the analog-to-digital converter. Unlike commercial pulse
oximeters whose packaging hides the hardware configuration from the students, the open,

unpackaged design stimulates student interest and encourages dialogue with the
developer; the in-house nature of the design appeals to students. Moreover, most pulse

oximeters on the market are expensive and provide users with a front panel that displays
only percent oxygen saturation and heart rate. This low-cost unit provides unfiltered

pulsatile data, allowing students to investigate tradeoffs between different oxygen
saturation calculation methods, test different filtering approaches (e.g., for motion artifact

reduction), and extract other biomedical parameters(e.g., respiration rate and biometric
indicators), Time-domain data from these units have been used in linear systems and
scientific computing coursesto teachfiltering techniques, illustrate discrete Fourier
transform applications, introduce time-frequencyprinciples, and test data fitting algorithms.

|, Introduction An optical pulse oximeter measures the intensity of light passing through

heterogeneoustissue and usesvariations in this light intensity (primarily resulting from the
fractional volumevariation of arterial blood) to calculate blood oxygen saturation. Due toits
non-invasive nature, high precision in its operational range, and reasonable cost, optical

pulse oximetry is widely adopted as a standard patient monitoring technique. Although its
foundations date back morethan fifty years,1 many facets of this technologystill attract
researchers. Current interest areas include motion artifact reduction,2, 3 power
consumption optimization,4 low-perfusion measurements.5, 6 and issues germane to
various application environments (e.g., wearability for battlefield and home care

monitors). 7-9 It is important for biomedical engineering students to understand the
principles of pulse oximetry. hardware/software design issues, and signal processing

approaches.

Proceedings of the 2005 American Society for Engineering Education Annual Conference
& Exposition Copyright © 2005, American Society for Engineering Education

Citation Formal =

Warren, 3.,& Yao, J. (2005, June), Stimulating Student Learning With A Novel “in House” Pulse Oximeter Design Paper
presented at 2005 Annual Conference, Portland, Oregon, 10.18260/1-2--14974

129



130

ASEE \roide the capyenhit on (Vit Goaunient Mt nay tee yumet Ly Aye gaiattelie: Mymree Ot cliumreger Auilthconsh yuan aaeervnlre FI Veril: yerA Gury Roeehernent yeuimey ony (Vy (Hee CILeehicor pan enguerse Leanvn yyyULT Wey
Mollawing craton; G.2005 Amancan Saciery far Engineanng Equeaver. Omer senciars may excerpt of quote Tron Inese matanais Win Iné.came otalion, When aXcenplng oT qiiaung
fen) Conference Proceediyes, auiliers Should, in addition fe noting Ihe ASEEmapyricihi, list all Ime ortdinal authors and their insiitdhons end name (ve fosb iy of (he ecnlirence - Last
updater! Api 1, 2015

 

130



 

 

 

 

 

APPENDIX YAO03 

131

APPENDIX YAO03

131



Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition 
Copyright © 2005, American Society for Engineering Education 

 

Stimulating Student Learning with a Novel “In-House”  
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Abstract 

This paper addresses the design of a plug-and-play pulse oximeter and its application to a 
biomedical instrumentation laboratory and other core Electrical Engineering courses. The low-
cost, microcontroller-based unit utilizes two light-emitting diodes as excitation sources, acquires 
reflectance data with a photodiode, and sends these raw photo-plethysmographic data to a 
personal computer via an RS-232 serial link. A LabVIEW interface running on the personal 
computer processes these raw data and stores the results to a file. The design of this pulse 
oximeter is unique in two ways: the excitation sources are driven just hard enough to always 
keep the photodiode active (meaning the sensor can be used in ambient light), and the hardware 
separates out the derivatives of the red and infrared photo-plethysmograms so that it can amplify 
the pulsatile component of each signal to fill the range of the analog-to-digital converter. Unlike 
commercial pulse oximeters whose packaging hides the hardware configuration from the 
students, the open, unpackaged design stimulates student interest and encourages dialogue with 
the developer; the in-house nature of the design appeals to students. Moreover, most pulse 
oximeters on the market are expensive and provide users with a front panel that displays only 
percent oxygen saturation and heart rate. This low-cost unit provides unfiltered pulsatile data, 
allowing students to investigate tradeoffs between different oxygen saturation calculation 
methods, test different filtering approaches (e.g., for motion artifact reduction), and extract other 
biomedical parameters (e.g., respiration rate and biometric indicators). Time-domain data from 
these units have been used in linear systems and scientific computing courses to teach filtering 
techniques, illustrate discrete Fourier transform applications, introduce time-frequency 
principles, and test data fitting algorithms. 
 

I.  Introduction 

An optical pulse oximeter measures the intensity of light passing through heterogeneous tissue 
and uses variations in this light intensity (primarily resulting from the fractional volume variation 
of arterial blood) to calculate blood oxygen saturation. Due to its non-invasive nature, high 
precision in its operational range, and reasonable cost, optical pulse oximetry is widely adopted 
as a standard patient monitoring technique. Although its foundations date back more than fifty 
years,1 many facets of this technology still attract researchers. Current interest areas include 
motion artifact reduction,2, 3 power consumption optimization,4 low-perfusion measurements,5, 6 
and issues germane to various application environments (e.g., wearability for battlefield and 
home care monitors).7-9  It is important for biomedical engineering students to understand the 
principles of pulse oximetry, hardware/software design issues, and signal processing approaches.  
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Pulse oximeter design addresses engineering areas such as optical component selection, 
mechanical layout, circuit design, microprocessor control, digital communication, and signal 
processing. Therefore, a pulse oximeter not only serves as an excellent study vehicle that allows 
students to learn techniques such as photoplethysmographic signal processing; it also provides a 
platform where students can acquire hands-on experience in practical device design. In addition, 
the real-time data that a pulse oximeter offers gives instructors flexibility when assigning 
projects and homework to students of various educational levels (graduate and undergraduate) 
and backgrounds (e.g., electrical engineering or biology).  
 
Many commercial pulse oximeters display calculated parameters (i.e., percent oxygen saturation 
and heart rate) on their front panels, hiding the original unfiltered data from which these 
calculations were made. In this paper, we present an “in-house” pulse oximeter that provides raw 
sensor data for use in the classroom.  The device is utilized in bioinstrumentation laboratory 
sessions, and its data provide real-world signals to other core Electrical Engineering courses.  
 
This paper first briefly describes the theory behind photoplethysmographic (PPG) pulse oximetry. 
It then presents the development of a pulse oximeter, emphasizing design features that enable its 
application to education. These features include (a) a stand-alone pulse oximeter module with a 
novel circuit design, an open form-factor, and multiple signal outputs, (b) a personal computer 
station with a flexible, user friendly LabVIEW interface and a variety of signal processing 
options, and (c) the production of raw data that can be used for parameter extraction exercises. 
The paper describes how this device and it features have been applied in classroom environments 
to stimulate student learning. Several examples are introduced in detail, including (a) a pulse 
oximetry laboratory/lecture pair for a bioinstrumentation course sequence, (b) data sources for 
course projects in Linear Systems (EECE 512) and Scientific Computing (EECE 840), and (c) a 
platform upon which undergraduate honors research students can build. This approach can be 
extended to other devices and classes. 
 

II. Theory – Principles of Pulse Oximetry 

PPG pulse oximetry relies on the fractional change in light absorption due to arterial pulsations. 
In a typical configuration, light at two different wavelengths illuminating one side of tissue (e.g., 
a finger) will be detected on the same side (reflectance mode) or the opposing side (transmission 
mode) after traversing the vascular tissues between the source and the detector.10 When a 
fingertip is simplified as a hemispherical volume that is a homogenous mixture of blood (arterial 
and venous) and tissue, the detected light intensity is described by the Beer-Lambert law: 11 

 ( )( )( )AVT
t

aaavat eeeII µµµ −−−= 0  (1) 

where I0 is the incident light intensity, It is the light intensity detected by the photodetector, and 
µat,  µav, and µaa are the absorption coefficients of the bloodless tissue layer, the venous blood 
layer, and the arterial blood layer, respectively, in units of cm-1. 
 
The heart’s pumping action generates arterial pulsations that result in relative changes in arterial 
blood volume, represented by dA, which adds an “ac” component to the detected intensity: 

 ( )( )( )dAeeeIdI AVT
aat

aaavat µµµµ −−−−= 0  (2) 

 

P
age 10.1138.2

133



134

Multiple elements contribute to the attenuation of light traveling through tissue, andarterial
pulsation has only a small relative effect on the amountof light detected (on the order ofone
percentor less; see Figure 1).

Absorption due to
pulsatile arterial blood

Absorption due to non-
pulsatile arterial blood

Absorption due to
venous blood

Absorption due to
100 skin, boneandtissue
 

Figure 1. Breakdown of the componentsin the detected photo-plethysmographic signal.’”

Dividing this change by the de value normalizesthis variation:

Loc = a, = Hag14
Idc It (3)

Theratio of the above ratio for two wavelengths (‘r’ for red, ‘IR’ for infrared) is given by

_ ,/T,), _ Mar
(Ul, /T)me Has (4)

where //,,; can be expressedas a function of S,O, .°arterial oxygensaturation:

Lai = a [s,0,01%" + (l ~ S,0, Jo|
" (5)

Here, i=7r,JR , while o}°% ando°” are the wavelength-dependent optical absorption cross
sections of the red blood cells containing totally oxygenated and totally deoxygenated
hemoglobin, respectively. One can therefore calculate arterial oxygen saturation using

Ron 0%:
100% 0% 0% 100%SO, =

‘ Ou, + R Oar —OarCO,
ar (6)

Equation (6) provides the desired relationship between the experimentally-determined ratio R
and the arterial oxygen saturation S,O>. Researchers assumethis relationship applies to
monochromatic light sources. In reality, commonly available LEDsare usedas light sources and
typically have spectral widths of 20 to 50 nm. Therefore, the standard molar absorption
coefficient for hemoglobin cannotbe used directly in (6). Furthermore, the simplified
mathematical description above only approximatesa real system that incorporates
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inhomogeneities and mechanical movement. Consequently, (6)is often represented empirically
byfitting clinical data to the following generalized function:

S,0, =kR+k, (7)
where, e.g., ky= -25.6, k= 118.8" or k= -25, k= 110.”

Ill. Methods

A. Pulse Oximeter Development

As shown in the functional block diagram in Figure 2, a pulse oximeter consists of three main
units: (1) an optical probe, (2) a circuit module that hosts an analog amplifier, signal
conditioning element, and microcontroller, and (c) a personal computerthat receives data from
the circuit module and processes, displays, and stores these data.

rSeSeeSESE S SESSRSEESEE REETee"s Probesever
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Figure 2. Functional block diagram of the pulse oximeter.

The analog portion of the pulse oximeter consists of a light-feedback amplifier and an analog
differentiator with a specialized sample and hold circuit. The current feedback design adjusts the
light level at the excitation LEDssuchthat the detected light intensity is constant, keeping the
photodiodecenteredin its active region. To improvethe stability of this feedback loop, a
photodiode with smaller gain, rather than a phototransistor, is used as a photodetector. Two
LEDswith wavelengths of 660 nm and 940 nm wereselected as excitation sources.

As discussedearlier, the “ac” componentresulting from arterial blood volumevariation is very
small. IfA/D conversion is performed on the overall signal, this tiny “ac” component will be
buried in the “huge” “dc” componentafter conversion. A differentiator addressesthis issue. It
removesthe “dc” component by subtracting the previous signal voltage-level from the present
signal voltage-level and amplifies this difference, yielding the “ac” component. A hold circuitis
added to store voltage-levels from the previous sample cycle. The differentiator improves signal
resolution by allowing oneto take advantage ofthe full range of the A/D converter.

This circuitry is coordinated by a PIC microcontroller. Three output lines control the operation of
the circuitry, and two A/D inputs sample the desired signal. Two outputs modulate the two light
sources and switch the charging and discharging of their corresponding hold capacitors. The
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other output operates the differentiator. The two A/D inputs acquire and digitize two signals: the 
“dc” signal when the differentiator is turned off (it is actually the original signal that includes 
both “dc” and “ac” components) and the amplified difference of the present and previous voltage 
level when the differentiator is turned on. 
 
The PIC microcontroller also operates an RS-232 port to a personal computer running a 
LabVIEW interface. Digitized data are sent to the PC over this RS-232 interface. Because the 
sensor module and personal computer communicate asynchronously, and 8 bytes (two bytes for 
each signal) are sent in each RS-232 packet, a handshaking protocol is used to synchronize the 
two devices. The PC generates an acknowledgement after successfully receiving each data 
packet so that the pulse oximeter module can transmit the next data packet. 
 
On the PC, LabVIEW virtual instruments (a) reconstruct the differentiated data, (b) filter the 
pulsatile signal with motion artifact reduction algorithms, (c) display the differentiated and 
reconstructed waveforms, (d) compute and display values for heart rate and blood oxygen 
saturation (see Figure 4), and (e) store the original and processed data to a text file for follow-up 
analysis. The data in the file are in columnar format: 

Column 1 – Time in milliseconds, 
Column 2 – d(Iac)ir/dt (derivative of the near-infrared signal) 
Column 3 – (Idc)ir  
Column 4 – d(Iac)red/dt (derivative of the red signal) 
Column 5 – (Idc)red   
Column 6 – (Iac)ir/dt (reconstructed near-infrared signal) 
Column 7 – (Idc)red (reconstructed red signal)  
 

 

Reflectance 
Sensor 

Pulse Oximeter 
Module 

RS-232 
to PC

 

Figure 3.  Pulse oximeter module and reflectance probe. 
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Figure 4.  LabVIEW virtual instrument for the pulse oximeter.   In addition to heart rate 
and blood oxygen saturation (%), the interface displays the red and infrared derivative 
data (top two waveforms) and the red and infrared reconstructed data (bottom two 
waveforms). 

 
B.  A Pulse Oximetry Lecture/Laboratory Pair 

At Kansas State University, the 4-credit-hour Bioinstrumentation course sequence (URL: 
http://www.eece.ksu.edu/~eece772/) consists of three courses instructed by faculty from the 
Department of Electrical & Computer Engineering (EECE) and the Department of Anatomy and 
Physiology (AP). These courses are EECE 772 (Theory and Techniques of Bioinstrumentation, 2 
hours), EECE 773 (Bioinstrumentation Design Laboratory, 1 hour), and AP 773 
(Bioinstrumentation Laboratory, 1 hour).  These courses can be taken for either undergraduate or 
graduate credit.  The two laboratory hours provide hands-on experience and are intended to help 
students obtain a deeper understanding of concepts learned in lectures.   
 
The pulse oximeter discussed earlier serves as a basis for a lecture/laboratory pair in the 
Bioinstrumentation course sequence. In order to improve the quality of the laboratory, the second 
author designed a laboratory session for AP 773 that uses the pulse oximeter developed by the 
first author. Four sets of devices were constructed and have been used as teaching tools in these 
laboratory sessions. The learning objectives of this laboratory (i.e., what a student should be 
able to do upon completion of the laboratory) are the following:  

• Explain the physiological origin of a photoplethysmogram 
• Describe the hardware and software components required to determine blood oxygen 

saturation using light-based sensors 
• Calculate blood oxygen saturation given a set of red/infrared plethysmograms 
• Assess the character and spectral content of the time-varying signals 
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• Extract physiological data from a photoplethysmogram 
• Describe person-to-person variations in plethysmographic signal data 
• Calculate calibration coefficients using different approaches 
• Counteract the effects of mild motion artifact 

During the laboratory, the class is divided into groups of 2~3 students. Each group is equipped 
with a collection of components:  a reflectance probe, a circuit module, a serial cable, and a 
personal computer with the LabVIEW interface installed. The students are first taught how to use 
the modules properly. They then gather PPG data from their team members at different body 
locations and save these data to files for later signal processing.  
 

 

Figure 5.  Two students acquire photoplethysmographic data in the AP 773 pulse oximetry 
laboratory (Fall 2002). 

 
These data are processed using Microsoft Excel or MATLAB. In addition to observing and 
analyzing time domain data, the students are also required to interpret and understand the 
spectral components of the signal by performing Fast Fourier Transforms (FFTs) on the data sets. 
They implement different methods for calculating the “ac/dc” ratios required to obtain arterial 
oxygen saturation. Two calculation methods are used to compute these ratios.  The methods 
correspond to Equations 3 and 4, which supply a parameter for Equation 7. The ‘peak/valley’ 
method considers the peak-to-valley amplitude of the reconstructed signal as Iac when calculating 
the “ac/dc” ratio. This method is evaluated with two different filtering techniques:  a sliding 
average filter and a sliding median filter.  The FFT method uses the spectral peaks of the red and 
near-infrared signals to represent Iac in the calculations. The students are then asked to compare 
the calculation methods and choose the best one.  
 
Students are also encouraged to experiment with other noise reduction filters. Additionally, by 
observing and analyzing waveforms acquired from different team members, students can realize 
that factors such as skin color and perfusion affect the quality of acquired PPG data. They are 
also asked to evaluate the differences between PPG signals acquired at different body locations 
(e.g., wrist, forehead, or ear lobe) that have noticeably different vascular profiles. 
 P
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C.  Pulse Oximeter Applied to Other Educational Venues 

In addition to the lecture/laboratory pair noted in the previous section, the pulse oximeter design 
and the signal data gathered from various implementations of this design have been applied in 
multiple undergraduate (EECE 499 – Honors Research; EECE 512 – Linear Systems) and 
graduate (EECE 840 – Scientific Computing) educational venues.  The signals acquired from this 
platform have been used in the following ways: 

• data for time-domain smoothing algorithms (see Figure 6), 
• signals for time- and frequency-domain filtering projects (see Figure 7 and Figure 8), 
• waveforms for Fourier series reconstruction projects (see Figure 9), and 
• signals for time-frequency spectrogram projects (see Figure 10). 

The modules have also been used as starting points for various undergraduate honors research 
projects, as depicted in Figure 11. 
 
Course Projects.  In the smoothing exercises (see Figure 6), students are asked to perform signal 
processing exercises to ‘smooth out’ variations in signals corrupted with noise.  Two of the 
common techniques are illustrated here.  Polynomials, by their nature, are smooth curves whose 
numbers of peaks and valleys correspond to the order of the polynomial.  In this figure, a 
polynomial of order 12 provides a reasonable representation of the original data set.  Note that 
the behavior of the fitting polynomial is unpredictable outside of the original bounds.  Sliding 
average and median filters are also a smoothing approach that can be implemented by a young 
student without much programming experience (the graph on the right in Figure 6 was produced 
with an Excel spreadsheet).  For this photoplethysmograph (sampled at 160 Hz), a 7-wide sliding 
window appears to provide a reasonable job of smoothing out the noise while retaining the 
fundamental shape of the waveform. 
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Figure 6.  Data smoothing algorithms (polynomial fits and sliding average filters) applied to 
photoplethysmographic data.  These exercises were assigned in EECE 772 
(Bioinstrumentation) and EECE 840 (Scientific Computing). 

In the EECE 512 project depicted in Figure 7, a student’s code (1) loads a signal from an input 
ASCII text file, (2) performs a convolution (i.e., filtering operation) between the input signal and 
a cascade of 2nd-order Butterworth lowpass and highpass filters (which can be combined to 
create lowpass, highpass, or bandpass filters), (3) saves the output signal to disk, and (4) plots the 
original and filtered signals to the screen.  Input signals for these simulations include both ideal 
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signals (e.g., pulses, square waves, and sinusoids) and real-world signals (e.g., biomedical
signals such as electrocardiograms andlight reflectance signals from the pulse oximeter modules
presented here).

 ea

 
  

LowpassFilter
i Unit Impulse -

CcpuSign Response =>orrupted by i

 
Artifacts

Figure 7. Multi-stage filtering of photoplethysmographic data via time-domain convolution
in EECE 512 (Linear Systems). Stages: 2™"_order lowpass andhighpassfilters.

Frequency-domain filters are also an important part of a signals and systems course. In these
projects, a student’s program typically (1) loads an input signal from a file and calculatesits
Fourier transform,(2) calculates the frequency responseofa filter chosen by the user, and (3)
performs a frequency-domain filtering operation on the input signal: it multiplies the input
signal spectrum by the spectrum ofthe filter and then takes the inverse Fourier transform of the
result. The program then saves the input/output signals, their spectra, and the filter spectra to a
set of ASCII text files and creates a plotting script that can be called by MATLAB or GNUPLOT.
In the exampleillustrated in Figure 8, an ideal bandpassfilter with a low cutoff of 0.3 Hz anda
high cutoff or 15 Hz was used to removethe drift and 60 Hz noise presentin the original
plethysmographicsignal.

  Signal    

 Output Phase
Spectrum
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 60 a0 70 60

Frequency (H2]

Figure 8. Frequency-domainfiltering of pulsatile light reflectance data to removesignal
drift and 60 Hz noise. Course: EECE 512 (Linear Systems).
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Figure9 illustrates the use of light reflectance signals in a Fourierseries project. In the left part
ofFigure 9, the top set of axes displays a PPG signal and its Fourier series reconstruction. The
middle and bottom axes plot the magnitude and phasecoefficients, respectively, that were
calculated for the reconstruction. Note that 45 harmonics(or cosines with different magnitudes
and phases) were required to replicate the shape ofthe initial signal. In the canine
electrocardiogram depicted on the right hand side of the figure, 125 harmonics produced a good
reconstruction. This is due to the higher frequency components present in each QRS complex.

Human Pulse Plethysmogram Canine Electrocardiogram
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Figure 9. Reconstruction of biomedical signal data (human finger photoplethysmogram
and canine electrocardiogram) using Fourier series. Class: EECE 512 (Linear Systems).

It can be helpful to understand howasignal’s spectral character changesas a function oftime.
Figure 10 presents an example of a MATLAB interface that would be written by a student in a
graduate scientific computing course. In this figure, the upperleft set of axes plots the time-
domain plethysmogram, while the lowerleft set of axes displays the spectrum of the signal
versus time. The plots on the right depict the magnitude and phase spectrum of the input signal
at the time denoted bythe vertical line that occurs at ~55 seconds (see the upperleft trace). The
fields on the right side of the interface depict parameters that can be chosen bythe user.
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Figure 10.  Time-frequency analysis of reflectance data in EECE 840 (Scientific 
Computing). 

 
Honors Research Projects.  The undergraduate Electrical & Computer Engineering curriculum 
at KSU allows high achieving students to perform research for course credit.  The pulse oximeter 
modules presented in this paper have contributed to five EECE 499 (Honors Research) projects 
to date (see Figure 11).  For the project shown at the top of the figure, Ben Young developed a 
system based upon the pulse oximeter module that acquired light reflectance data from the 
forehead using sensors mounted on a firefighter helmet.  The goal of this project was to establish 
whether meaningful blood oxygen saturation measurements could be acquired continuously on 
an individual that needed to use their hands freely and could be exposed to dangerous levels of 
carbon monoxide.  The second project from the top, managed by Shelly Allison and Craig 
Nelson, involved gathering light reflectance data from normal and hypertensive elderly subjects.  
These data will be analyzed for correlations between spectral behavior and the measured blood 
pressure of the subjects.  The goal is to find a comfortable, noninvasive way to replicate the 
information normally provided by often painful blood pressure cuffs. 
 
As noted in Figure 11, Jonathan Hicks investigated a method to use a patient’s light reflectance 
data as a biometric indicator.  This capability would allow a home monitoring system to 
authenticate the identity of a patient prior to uploading the patient’s physiological data to a 
remote electronic patient record.  The benefits of this approach are two-fold:  (1) no interaction is 
required on the part of the patient and (2) the data are independently verified prior to submission.  
The plots in Figure 11 show a representative light reflectance signal for a patient and the single-
period template used to represent that time-varying signal.  Two other representative templates 
are also depicted in the figure to show how these wave shapes vary from person to person.  This 
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methodusesa statistical test to determine whethera patient’s current data are similar to the
single-period template stored for the patient. Finally, Austin Wareing was supported by an NSF
Research Experience for Undergraduates grant to optimizethe light reflectance sensor design
and improvethe interaction between the pulse oximeter and the host LabVIEW program. His
radial sensor design and a resulting set ofwaveforms are depicted at the bottom ofFigure 11.
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Figure 11. Honorsresearch projects that have benefited from the pulse oximeter design.
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IV. Discussion and Conclusion 

This paper presented initial efforts to apply an in-house pulse oximeter design to multiple 
secondary education venues.  These efforts have indicated that students enjoy instructional 
experiences that utilize real-world devices, especially when they can manipulate elements of the 
design such as the signal processing algorithms that would normally be hidden from the user.  
The pulse oximeter modules have been used in four Fall offerings of the AP 773 laboratory 
(2001~2004). Because these home-grown pulse oximeters offer improved data access as 
compared to commercial products, instructors can experience far greater flexibility when 
assigning homework, which is especially appreciated when the background and educational 
experiences of the students vary significantly.  
 
Each laboratory session that utilized these modules has been supported by device developers. 
Interactions between the device developers and the students (users) lead to experiences that are 
hard to replicate with packaged, off-the-shelf units. These interactions help the students 
appreciate the concepts discussed in lecture and allow them to become more familiar with the 
device development process. 
 
As noted in the body of the paper, several other undergraduate and graduate courses have 
benefited from the data availability offered by these pulse oximeters.  When asked, “What part of 
the project did you like the most” (on the survey for the Spring 2003 Linear Systems project 
depicted in Figure 7) one student responded, “Being able to see the ECG and pulse oximeter 
signals with the noise filtered out.”  Many other individuals in this class of 65 students had 
similar opinions about working with data provided by a device in a nearby laboratory. Processing 
real-world signals stimulated the students’ interest the most, followed by the excitement of 
simply getting their code to work.  The same Linear Systems student, when asked the question, 
“How could a project of this nature be improved?,” responded with, “More realistic signals to 
filter ���������������	�
��	�����
�
������������������
���������������� 
 
The inexpensive hardware, plug-and-play features, and information-rich signals offered by these 
pulse oximeters have also provided starter platforms for honors students that wish to perform 
innovative research. These experiences not only help them to apply knowledge learned from 
their courses and understand recent developments;  more importantly, they may also motivate 
these capable students to pursue careers in an expanding biomedical industry. 
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