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OF LIGHT

4) INTRODUCTION

We now consider a number of phenomena related to
hepropagation of light andits interaction with material
media, In particular, we shall study the characteristics
of lightwaves as they progress through various sub-
stances, crossing interfaces, and being reflected and
refracted in the process. For the most part, we shall
envision light as a classical electromagnetic wave whose
velocity through any medium is dependent upon that
material's electric and magnetic properties. It is an
intriguing fact that many of the basic principles of optics
are predicated on the wave aspects of light but are
completely independentof the exact nature of the wave.
As we shall see, this accounts for the longevity of
Huygens’ s principle, which has served in turn to describe
mechanical aether waves, electromagnetic waves, and
now, after three hundred years, applies to quantum
Optics,

Suppose, for the moment, that a wave impinges on
the interface separating two different media(e.g., a
Pléce of glass in air). As we know from oureveryday
®xperienices, a portion of the incident flux density will
be diverted back in the form of a reflected wave, while

ibe remainder will be transmitted across the boundary
m4 refracted wave. On a submicroscopic scale we can
-an assemblage of atoms that scatter the incident
Faleic The manner in which these emitted
veil tend. superimpose and combine with each other

on the spatial distribution of the scattering

THE PROPAGATION

atoms. As we know from the previous “chapter, the
scattering process is responsible for the index of refrac-
tion, as well as the resultant reflected and refracted waves.
This atomistic description is quite satisfying concep-
tually, even though it is not a simple matter to treat
analytically. It should, however, be kept in mind even
when applying macroscopic techniques, as indeed we
shall later on.

We now seek to determine the general principles
governingor at least describing the propagation, reflec-
tion, and refraction of light. In principle it should be
possible to trace the progress of radiant energy through
any system by applying Maxwell's equations and the
associated boundary conditions. In practice, however,
this is often an impractical if not an impossible task (see
Section 10.1). So we shall take a somewhat different

route, stopping, when appropriate, to verify that our
results are in accord with electromagnetic theory.

4.2 THE LAWS OF REFLECTION AND REFRACTION

4.2.1 Huygens’s Principle

Recall that a wavefrontis a surface over which an optical
disturbance has a constant phase, Asanillustration,Fig.
4.1 shows a small portion of a spherical wavefront =
emanating from a monochromatic point source S$ in a
homogeneous medium. Clearly, if the radius of the
wavefront as shownis 7, at somelater time it will simply
be (r+ vé}, where v is the phase velocity of the wave.

79
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But suppose instead that the light passes through a
nonuniform sheet of glass, as in Fig. 4.2, so that the
wavefrontitself is distorted. How can we determineits
new form ©’? Or for that matter, whatwill Z' look like
at somelater time, if it is allowed to continue unob-
structed?

A preliminary step toward the solution of this prob-
lem appeared in print in 1690 in the work entitled
Traité de la Lumiére, which had been written 12 years
earlier by the Dutch physicist Christiaan Huygens. It
was there that he enunciated what has since become

known as Huygens’s principle, that every point on @
primary wavefront serves as the source of spherical secondary
wavelets, such that the primary wavefront at some later lime
is the envelope of these wavelets, Moreover, the wavelets
advance with a speed and frequency equal to those of the
primary wave at each point in space. If the medium is
homogeneous, the wavelets may be constructed with
finite radii, whereasif it is inhomogeneous, the wavelets
must have infinitesimal radii. Figure 4.3 should make
this fairly clear; it shows a view of a wavefront %, as
well as a numberof spherical secondary wavelets, which,
after a time ¢, have propagated out to a radius of vt.
The envelope of all these wavelets is then asserted to
correspond to the advanced primary wave 2’. It is easy
to visualize the process in termsof mechanicalvibrations
of an elastic medium. Indeed this is the way that

Huygens envisioned it within the context of anall-
pervading aether, as is evident from this comment by
him:

We havestill to consider, in studying the spreading out
of these waves, that each particle of matter in which a
wave proceeds not only communicates its motion to the
next particle to it, which is on the straight line drawn
from the luminous point, but that it also necessarily
gives a motiontoall the others which touchit and which
oppose its motion. The resultis that around each particle
there arises a wave of whichthis particle is a center.

Wecan make use of these ideas in two different ways.
On one level, a mathematical representation of the
wavelets will serve as the basis for a valuable analytical
technique in treating diffraction theory. One can trace
the progress of a primary wave pastall sorts of apertures
and obstacles by summing up the wavelet contributions

 

——

‘%

\ i

Figure 4.1 A segment of a spherical wave.

mathematically. On anotherlevel, Fig. 4.3 represents a
graphical application of the essential ideas and as such
is known as Huygens’s consiruction.

Thusfar we have merely stated Huygens’s principle,
without any justification or proof of its validity. As we
shall see (Chapter 10), Fresnel successfully modified
Huygens’s principle somewhat in the 1800s. A little
later on, Kirchhoff showed that the Huygens—Fresnel
principle was a direct consequence of the differential
wave equation (2.59), thereby puttingit ona firm mathe-
matical base. That there was a need for a reformulation

\E , ae
Giass ,™~, A
™~

a
nN

S ~
s

Figure 4.2. Distortion of a portion of a wavefront on passing through
a material of nonumiform thickness.
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Figure 4.3 The propagation
of a wavefront via Huygens’s
principle.

 
of the principle is evident from Fig. 4.3, where we
deceptively only drew hemispherical wavelets.* Had we
drawn them as spheres, there would have been a dack-
wave moving toward the source—somethingthat is nat
observed. Since this difficulty was taken careof theoreti-
cally by Fresnel and Kirchhoff, we neednot be disturbed
by it. In fact, we shall overlook it completely when
applying Huygens’s construction, which, in the end, is
best thought of as a highly useful fiction.

Sull, Huygens’s principle fits in rather nicely with our
earlier discussion of the atomic scattering of radiant
energy. Each atom of a material substance that interacts
with an incident primary wavefront can be regarded as
a point source of scattered secondary wavelets. Things
are not quite as clear when we apply the principle to
the propagation of light through a vacuum,Iris helpful,
however, to keep in mindthat at any point in empty
space on the primary wavefront there exists both a
time-varying E-field and a time-varying B-field. These 

* See E. Hecht, Phys. Teach. 18, 149 (1980).

4.2 The Laws of Reflection and Refraction Sr

in turn create newfields that moveout from the point.
In this sense each point on the wavefront is analogous
to a physical scattering center.

4.2.2 Snell’s Law and the Law of Reflection

The fundamental laws of reflection and refraction can

be derivedin several different ways; the first approach
to be used here is based on Huygens’s principle. It
should be said, however, that our intention at the
momentis as much to elaborate on the use of the method

as to arrive at the end results. Huygens’s principlewill
provide a highly useful andfairly simple means of
analyzing and visualizing some complex’ propagation
problems, for example, those involving anisotropic
media (p. 287) or diffraction (p. 392). Consequently,it
is to our advantage to gain some practice in using the
technique, even if it is not the most elegant procedure
for deriving the desired laws.

Figure 4.4 shows a monochromatic plane wave
impinging normally down onto the smooth interface
separating two homogeneous transparent media. When
an incident wave comes into contact with the interface,
it can be imagined as split into two: we observe one
wave reflected upward and another transmitted down-
ward. If we consider an incident wavefront Z; coin-
cident with the interface splitting into Z, and =,, both
also congruent with the interface, we can utilize
Huygens’s construction (neglecting the back-waves).
Every point on 2, serves as a source of secondary wave-
lets, which travel more or less upward into the incident
medium at a speed v;, At a time ! later, the front will
advance a distance v,t and appear as &1. Similarly, every
point on the downward-moving front =, will serve as a
source for wavelets essentially heading down with a
speed v,. After a time ¢ the transmitted front will appear
a distance v,t below as Zt.

The process is ongoing, repeating itself with the
frequency of the incident wave.* The media are

* This assumes the use of light whose flux density is not 50 extraor-
dinarily high that the fields are gigantic. With this assumption the
mediumwil! behave linearly, as is most often the case. In contrast,
observable harmonics can be generated if the fields are made large
enough (Section 14.4}.
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(b)

Figure 4.4 A monochromatic plane wave impinging down onto a
homogeneous, isotropic medium of index m. Z;, Z,, and 2, should
actually overlap.

assumed to respondlinearly, so the reflected and trans-
mitted waves have that same frequency (and period),
as do all the secondary wavelets. Taking n, > 7;, it
follows that e¢/u,> cfu, thus »,< 4, and the
wavelengths (the distances between wavefronts drawn
in consecutive intervals of 7} will be such that A; > A,
and A, = A,,as shown in Fig. 4.4(b)}. The incomingplane
wave is perpendicular to the interface, and symmetry
produces both reflected and transmitted plane waves
that also travel out fromthe interface perpendicularly.

 

Now suppose the incident wave comes in at some
other angle, as indicated in Fig. 4.5. Clearly, it sweeps
across the interface again, essentially splitting into two
waves: one reflected and one refracted. Let's follow the

progress of a typical front in Fig. 4.6, envisioning the
diagram as if it were a series of snapshots taken in
successive intervals of time 7. Start when 2, makes

contact with the interface at point a. At that point, both
the reflected and transmitted wavefronts begin, so a,
which lies on both fronts, can be taken as a source of
both an upwardly emitted wavelet traveling at a speed
v; and a downwardly emitted wavelet traveling at a
speed «,. Nowfocus on another point, say, 6 on 2,.

After atime £, the plane 2, will have moved a distance
in the incident medium of vt), 'so that 6 then corre-
spondsto 8’, Presumably, two wavelets will then propa-
gate out from $' into the incident and transmitting
media, contributing to the reflected, }, and transmit-
ted, 2}, wavefronts. These wavelets are shown here after
a time 4, where 7=1, + ig. The rest of the diagram

\ aIncident '

7 Reflected »
JO fo

4

 
 
 
 

 
Refracted

Figure 4.5 Reflection and transmission of plane waves.
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should be self-explanatory. Figure 4.7 is a somewhat
simplified version in which 0;, @,, and @,, as before, are
the angles of incidence, reflection, and transmission (or
refraction), respectively. Notice that

sin@ sin ég, sin 8, 1
=SS (4.4)

 

By comparison with Fig. 4.6, it should be evident that

BD = uh AC = ut, AE = ut,

so substituting into Eq. (4.1) and canceling #, we have

sin @; sin @, sin 6,t=te, 42)
Uy ui U

It follows from the first two terms that the angle of
incidence equals the angle of reflection, thatts,

o; = 0,. (4.3)

Knownas the law of reflection,it first appeared in the
book entitled Catoptrics, which was purported to have
been written by Euclid.
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Figure 4.6 Reflection and transmission at an interface
via Huygens’s principle.

 
  

21
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Figure 4.7 Reflected and transmitted wavefronts at a given instant.
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The first and last terms of Eq. (4.2) yield

sin @; vu,ae (4.4)
sin@, wu

or since v,/u, = n,/7;,

n; sin @, = n, sin @,. (4.5)

‘This is the very importantlaw of refraction, the physica!
consequences of which have been studied, at least on
record, for over eighteen hundred years. On the basis
of some fine observations, Claudius Ptolemy of Alexan-
dria attempted unsuccessfully to divine the expression.
Kepler nearly succeeded in deriving the law of refrac-
tion in his book Supplementsto Vitello in 1604, Unfortu-
nately he was misled by some erroneous data compiled
earlier by Vitello (ca. 1270). The correct relationship
seems to have been arrived at first by Snell* at the
University of Leyden and then by the French
mathematician Descartes.7 In English-speaking coun-
tries Eq. (4.5) is generally referred to as Snell’s law.
Notice that it can be rewritten in the form

sin a;
 

; = thi, (4.6)
sin 6, ‘

where nm, = n,/m; is the ratio of the absolute indices of
refraction. In other words,it is the relative index of refrac-
tion of the two media, It is evident in Fig. 4.6, where
ny > 1 (ie., n, > nj and v; > vj, that Aj > A,, whereas
the opposite would be true if n,; < 1.

One feature of the above treatment merits some fur-

ther discussion. It was reasonably assumed that each
point on the interface, such as ¢ in Fig. 4.6, coincides
with a particular point on each of the incident, reflected,
and transmitted waves. In other words, there is a hxed

phase relationship between each of the waves at points
a, 6, c, and so forth. As theincident front sweeps across
the interface, every point on it im contact with the
interface is also a point on both a correspondingreflec-
ted front and a corresponding transmitted front. This
situation is known as wavefront continuity, ancl it will be 

“This is the common spelling, although Snel is probably moreaccurate.

+ For a more detailed history, see Max Herzberger, “Optics from
Euclid to Huygens,” Appi. Opt. 5, 1383 (1966).
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justified in a more mathematically rigorous treatment
in Section 4.3.1. Interestingly, Sommerfeld* has shown
that the laws of reflection and refraction (independent
of the kind of wave involved) can be derived directly
from the requirement of wavefront continuity without
any recourse to Huygens'’s principle, and the solution
to Problem 4.9 demonstrates as much.

A far more physically appealing view of the whole
process is depictedin Fig. 4,8. An electromagnetic dis-
turbance whose wavelength (A) is several thousandtimes

larger than the spacing betweenthe atoms (d = 0.1 nm)
sweeps across an interface. Each atom is driven succes-
sively and scatters a wavelet. The tilt of the incident
wave determines the phase delay between the scattering
of each atom in turn (see Section 10.1.3 for the details).
The front running from C to D is composed of wavelets
that arrive in phase, superimpose, and interfere con-
structively. Since every point on the incident front
(ranging from A to B in Fig. 4.7) has the same phase,
if AC = BD,the distances traveled and therefore the
phases of the wavelets arriving at C and D will be equal,
as indeed they will he all across the front. From the
geometry, this can happen only for a reflected wave-
front propagating in the one direction such that @, = 8,.
This picture of scattered interfering wavelets is
essentially an atomic version of the Huygens—Fresnel
Principle.

Although theoretically all the dipoles throughout the 

*A. Sommerield, Optics, p. 151, See also J. J. Sein, Am. J. Phys. 50,
180 (1989).
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medium contribute to the reflected wave, the dominant

effect is due to a surface layer only about 3a thick, which
is nonetheless typically several thousand atoms deep.
Furthermore, the condition that only one beam is reflec-
ted is true provided that A » d; it would not be the case
with x-rays where A = d, and there several scattered
beamsactually result; noris it the case with a diffraction
grating, where the separation betweenscatterersis again
comparable to A, and several reflected and transmitted
beams are produced. A similar argument can be made
for the scattering process giving rise to the transmitted
wave and Snell’s law, as Problem 4.11 establishes.

4.2.3 Light Rays

The concept of a light ray is one thatwill be of interest
to us throughout our study of optics. A ray is a line
drawn in space corresponding to the direction of flow of
radiant energy. As such, it is a mathematical device rather
than a physical entity. In practice one can produce very
narrow beams or pencils of light (e.g., a laserbeam), and
we might imagine a ray to be the unattainable limit on
the narrowness of such a beam. Bear in mind that in

an isotropic medium (i.¢., one whose properties are the
samein all directions) rays are orthagonal trajectories af
the wavefronis. That is to say, they are fines normal to the
wavefronts at every point of intersection. Evidently, in suck
a medium a ray is parallel to the propagation vector k. As
you might suspect, this is not true in anisotropic sub-
stances, which we will considerlater (see Section 8.4.1).
Within homogeneous isotropic materials, rays will be straight
lines, since by symmetry they cannot bend in any pre-
ferred direction, there being none, Moreover, because
the speed of propagation is identical in all directions
within a given medium, the spatial separation between
two wavefronts, measured along rays, must be the same
everywhere.* Points where a single ray intersects a set
of wavefronts are called corresponding points, for
example, A, A’,and A" in Fig. 4.9. Evidently the separation
in time between any two carresponding points on any two

“When the material is inhomogencous or when there is more than
one medium involved, it will be the optical path length (sce Section
4.2.4) between the two wavefronts that is the same.
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sequential wavefronis is identical, In other words, if wave-
front = is transformed into 2” after atime ¢”, che distance

between corresponding points on any andall rays will
be traversed in that same time ¢”. This will be true even

if the wavefronts pass from one homogeneousisotropic
medium into another, This just means that each point
on 3 can be imagined as following the path of a ray to
arrive at Z" in the time ¢t”,

[f a group of rays is such that we can find a surface
that is orthogonal to each and every one of them, they
are said to form a normal congruence. For example, the
rays emanating from a point source are perpendicular
to a sphere centered at the source and consequenily
form a normal congruence.

We can now briefly consider an alternative to
Huygens’s principle thatwill also allow us to follow the
progress of light through various isotropic media. The
basis for this approachis the theorem of Malus and Dupin
{introduced in 1808 by E. Malus and modified in 1816
by CG. Bupin), according to which a group of rays will
preserve its normal congruence after any numberof reflections
and refractions (as in Fig. 4.9). Fromour present vantage
point of the wavetheory, this is equivalent to the state-
ment that rays remain orthogonal to wavefronts
throughout all propagation processes in isotropic
media. As shown in Problem 4.12, the theorem can be
used to derive the law of reflection as well as Snell's

law. It is often most convenient to carry out a ray trace
through an optical system using the laws of reflection
and refraction and then reconstruct the wayefronts.

The latter can be accomplished in accord with the above
considerations of equal transit times between corre-
sponding points and the orthogonality of the rays and
wavefronts,

Figure 4.10 depicts the parallel ray formation con-
comitant with a plane wave, where 6,, 6,., and @,, which
have the exact same meanings as before, are now
measured from the normal to the interface. The

incident ray and the normal determine a plane known
as the plane of incidence. Because of the symmetryof
the situation, we must anticipate that both the reflected
and transmitted rays will be undeflected from that
plane. In other words, the respective unit propagation
vectors k,, k,, and k, are coplanar.

In summary, then, the three basic laws of reflection

and refraction are:

1. The incident, reflected, and refracted raysall lic in
the plane of incidence,

2) 0; = Ao: {4.3}
4. n; sin 6; = 7, sin 6,. [4.5]

These are illustrated rather nicely with a narrowlight
beamin the photographsof Fig. 4.11. Here, the incident
medium is air (7; = 1.0), and the transmitting medium
is glass (rn, ~ 1.5), Consequently, n; < 7,, and it follows

 
 

Ray representation

Figure 4.10 The wave and ray representations of an incident, reflec-
ted, and transmitted beam.
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from Snell’s law that sin 6; > sin 6,. Since both angles,
@, and @, vary between 0° and 90°, a region over which
the sine function is smoothlyrising, it cam be concluded
that 0, > 0,. Rays entering a higher-index mediumfrom a
lower one refract loward the normal and vice versa. This
much is evident in the figure. Notice that the bottom
surface is cut circular so that the transmitted beam

within the glass always lies along a radius andis there-
fore normal to the lower surface in every case. If a ray
is normal to an interface, 8; = 0 = @,, andit sails right
through with no bending.

The incident beam in each portion of Fig. 4.11 is
narrow and sharp, and the reflected beam is equally
well defined. Accordingly, the process is known as
specular reflection (from the word for a common mir-
ror alloy in ancient times, speculum). In this case, as in
Fig. 4.12(a), the reflecting surface is smooth, or more
precisely, any irregularities in it are small compared
with a wavelength.” In contrast, the diffuse reflection 

"If the surface ridges and valleys are small compared with A, the
Scattered wavelets will still interfere constructively in only one direc-
tion (6, = @,),
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in Fig. 4.12(b) occurs when the surface is relatively
rough. For example, ‘‘nonreflecting”glass used to cover
pictures is actually glass whose surface is roughened so
that it reflects diffusely. The law of reflection holds
exactly over any region that is small enough to be
considered smooth. These two formsof reflection are

extremes; a whole range of intermediate behavior is
possible. Thus, although the paper of this page was
manufactured deliberately to be a fairly diffuse scat-
terer, the cover of the book reflects in a mannerthat is

somewhere hetween diffuse and specular.
Let ii,, be a unit vector normal to the interface point-

ing in the direction from the incidentto the transmitting
medium (Fig. 4.13). As you will have the opportunity
to prove in Problem 4.13, the first and third basic laws
can be combined in the form of a vector refraction
equation:

nk; XG.) = m(k, x a,) (4.7)

or, alternatively,

nik, — n;k,; = (n, cos 6, — 7; cos 6,)4,. (4.8)

4.2.4 Fermat's Principle

The laws of reflection and refraction, and indeed the

manner in which light propagates in general, can be
viewed from an entirely different and intriguing per-
spective afforded us by Fermat’s principle. The ideas
that will unfold presently have had a tremendous
influence on the development of physical thought in
and beyond the studyofclassical optics. Apart from its
implications in quantum optics (Section 13.6, p. 552),
Fermat's principle provides us with an insightful and
highly useful way of appreciating and anticipating the
behaviorof light. ~

Hero of Alexandria, who lived some time between
150 B.c. and 250 a.p., was the first to set forth what has

since become known as a variational principle. In his
formulation of the law of reflection, he asserted that the

path actually taken by light in going from some point S to a
point P via a reflecting surface was the shortest possible one.
This can be seen rathereasily in Fig. 4.14, which depicts
a point source S emitting a number of rays that are
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Specular

 
Diffuse

Figure 4.12 {2) Specular reflection. (b) Diffuse reflection. (Photos courtesy Donald Dunitz.)

then “reflected” toward P. Of course, only one of these
paths will have any physical reality. li we simply draw
the rays as if they emanated from 5’ (the image of 5),
noneof the distances to P will have been altered (i.e.,

SAP =S'AP, SBP =S'BP, etc.}. But obviously the
straight-line path S’BP, which corresponds to 6; = @,,
is the shortest possible one. The same kind of reasoning
(Problem 4.15) makes it evident that points S, B, and
P must lie in what has previously been defined as the
plane of incidence. For over fifteen hundred years
Hero's curious observation stood alone, until in 1657

Fermat propoundedhis celebrated principle of feast time,
which encompassed both reflection and refraction.
Obviously, a beam of light traversing an interface does

 

not take a straightline or minimum spatial path between
a point in the incident medium andonein the transmit-
ting medium, Fermat consequently reformulated
Hero’s statement to read: the actual path between iwo
points taken by a beamof light is ihe one that is traversed in
the least time. As we shall see, even this form of the

staternent is somewhat incomplete and a bit erroneous
at that. For the momentthen,let us embrace it but not
passionately.

As an example of the application of the principle to
the case of refraction, refer to Fig. 4.15, where we
minimize #, the transit time from § to P, with respect
to the variable x, In other words, changing x shifts point
O, thereby changing the ray from S to P. The smallest
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Figure 4.13 The ray geometry.

transit time will then presumably coincide with the
actual path. Hence

SO OP$=—+—
U, yy

or

es (h? ate x tye Z [a + (a—- x)?
vj UY ,

To minimize {{x) with respect to variations in x, we set
di/dx = 0, thatis,

Using the diagram, we can rewrite the expression as

sin6;= sin 6,
v, un

which is of course no less than Snell’s law (Eq. 4.4).
Thus if a beam of light is to advance from S$ to P in
the least possible time, it must comply with the empirical
law of refraction.

Suppose that we have a stratified material composed
of m layers, each having a different index of refraction,

 
16

4-2 The Laws of Reflection and Refraction 49

as in Fig. 4.16. The transit time from S to P will then be

3, Sy 5,
{=—~—4+—4+---4—

vy, tg Un

or
int

f= 2 sil,i=l

where 5; and v; are the path length and speed, respec-
tively, associated with the ith contribution, Thus

i =} a MS, (4.9)
in which the summation is known as the optical path
length (OPL) traversed by the ray, in contrast to
the spatial path length }/L,s,. Clearly, for an in-
homogeneous medium where n isa functionofposition,
the summation must be changed to anintegral:

P

(QPL) = { n(s) ds. (4.19)s

  
Figure 4.14. Minimum path from the source § to the observer's eye
at P.
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Figure 4.15 Fermat's principle applied to refraction.

Inasmuch as ¢ = (OPL}/c, we can restate Fermat’s prin-
ciple: light, in going from points S to P, traverses the route
having the smallest optical path length. Accordingly, when
light rays from the Sun pass through the in-

 
Figure 4.16 A ray propagating through a layered material.

homogeneous atmosphere of the Earth, as shown in
Fig. 4.17(a), they bend so as to traverse the lower, denser
regions as abruptly as possible, thus minimizing the
OPL. Ergo, one can still see the Sunafter it has actually
passed below the horizon. In the same way, a road
viewed at a glancing angle,as in Fig. 4.17{b), will appear
to reflect the environs asif it were covered with a sheet

of water. The air near the roadway will be warmer and
less dense than that farther above it. Rays will bend

upward, taking the shortest optical path, and in so doing
they will appearto be reflected from a mirrored surface.
Theeffect is particularly easy to see on long modern
highways. The only requirementis that you look at the
road at near glancing incidence, because the rays bend
very gradually, 2

Theoriginal statement of Fermat's principle of least
lime has some serious failings and is, as we shall see, in
need of alteration. To that end, recall that if we have

a function, say f(x}, we can determine the specific value
of the variable x that causes f(x) to have a stationary
value by setting df/dc = 0 and solving for x. Byastation-
ary value we mean one for whichthe slope of f(x) versus
x is zero or equivalently where the function has a
maximum 7S, minimum \/ , or a point of inflection
with a horizontal tangent —<.

Fermat’s principle in its modern form reads: a light
ray in going from point S to point P must traverse an optical
path length that is stationary with respect to variationsofthat
path. In other words, the OPL for the true trajectory
will equal, co a first approximation, the OPL of paths
immediately adjacent to it.* Thus there will be many
curves neighboring the actual one, which would take
nearly the same time for the light to traverse. This latter
point makesit possible to begin to understand how light
manages to be so clever in its meanderings. Suppose
that we have a beam of light advancing through a
homogeneous isotropic medium so that a ray passes
from points 5 to P. Atoms within the material are driven
by the incident disturbance, and they reradiate inall
directions. Generally, wavelets originating in the
immediate vicinity of a stationary path will arrive at P
by routes that differ only slightly and will therefore

*The first derivative of the OPL vanishes in its Taylor series
expansion, since the path is stationary.
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Figure 4.17 The bending of rays through mhomogeneous media.

arrive nearly in phase and reinforce each other (see
Section 7.1). Wavelets taking other paths will arrive at
P out of phase and will therefore tend to cancel each
other. That being the case, energywill effectively propa-
gate along that ray from S to P that satishes Fermat’s
principle.

To show that the OPLfor a ray need not always be
aminimum, examine Fig. 4.18, which depicts a segment
of a hollow three-dimensional ellipsoidal mirror. If the
source S$ and the observer P are at the foci of the

ellipsoid, then by definition the length SQP will be
constant, regardless of where on the perimeter Q hap-
pens to be. It is also a geometrical property oftheellipse
that 8, = 6, for any location of Q. All optical paths from
Sto P via a reflection are therefore precisely equal—
none is a minimum, and the OPLis clearly stationary
with respect to variations, Rays leaving S$ andstriking
the mirror will arrive at the focus P. From another

viewpoint we can say that radiant energy emitted by $
will be scattered by electrons in the mirrored surface
such that the wavelets will substantially reinforce each
other only at P, where they have traveled the same
distance and have the samephase. In anycase, ifa plane
Thirror was tangent to the ellipse at Q, the exact same

4-2 The Laws of Reflection and Refraction gi

 

 
Figure 4.18 Reflection off an ellipsoidal surface. Observethe reflec-
tion of waves using a frying pan filled with water. Even though these
are usually circularit is well worth playing with. {Photo courtesy PSSC
College Physics, D. C. Heath & Co., 1968.)
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path SQPtraversed by a ray would then be a relative
minimum. At the other extreme,if the mirrored surface

conformed to a curve lying within the ellipse, like the
dashed one shown, that same ray along SQP would now
negotiate a relative maximum OPL. This is true even
though other unused paths (where @; € 6.) would
actually beshorter(i.e., apart from inadmissible curved
paths). Thusinall cases the rays travel a stationary OPL
in accord with the reformulated Fermat’s principle.
Note that since the principle speaks only about the path
and not the direction along it, a ray going from P to §
will trace the same route as one from 5 to P. This is

the very useful principle af reversibility.
Fermat's achievementstimulated a great deal of eort

to supersede Newton’s laws of mechanics with a similar

variational formulation. The work of many men, not-
ably Pierre de Maupertuis (1698-1759) and Leonhard
Euler, finally led to the mechanics of Joseph Louis
Lagrange (1736-1813) and henceto the principle of least
action, formulated by William Rowan Hamilton (1805-
1865). The striking similarity between the principles of
Fermat and Hamilton played an important part in
Schrodinger’s development of quantum mechanics. In
1942 Richard Phillips Feynman (b. 1918) showed that
quantum mechanics can be fashioned in an alternative
way using a variational approach. The continuing evo-
lution of variational principles brings us back to optics
via the modern formalism of quantum optics (see Chap-
ter 15).

Fermat’s principle is not so much a computational
device asit is a concise way of thinking about the propa-
gation oflight. It is a statement about the grand scheme
of things without any concern for the contributing
mechanisms, and as such it will yield insights under a
myriad of circumstances.

 

4.3 THE ELECTROMAGNETIC APPROACH

Thus far we have been able to deduce the laws of

reflection and refraction using three different
approaches: Huygens’ s principle, the theorem of Malus and
Dupin, and Fermat's principle. Each yields a distinctive
and valuable point of view. Yet another and even more
powerful approach is provided by the electromagnetic

theory of light. Unlike the previous techniques, which
say nothing about the incident, reflected, and trans-
mitted radiant flux densities (Le., I, 5, J, respectively),
the electromagnetic theory treats these within the
framework of a far more complete description.

The body of information that forms the subject of
optics has accrued over many centuries. As our knowl-
edge of the physical universe becomes more extensive,
the concomitant theoretical descriptions must become
ever more encompassing. This, quite generally, brings
with it an increased complexity, And so, rather than
using the formidable mathematical machinery of the
quantumtheoryof light, we will often avail ourselves
of the simpler insights of simpler times (e.g., Huygens's
and Fermat's principles). Thus even though we are now
going to develop another and more extensive descrip-
tion of reflection and refraction, we will not put aside
those earlier methods. In fact, throughout this study
we shall use the simplest technique that can yield
sufficiently accurate results for our particular purposes.

4.3.1 Waves at an Interface

Suppose that the incident monochromatic lightwave is
planar, so that it has the form

E; = Ep; exp [i(k, * rt — wf}] (4.21)

or, more simply, ,

E, = Eq; cos kh; - r — at). (4.12)

Assume that Eg; is constant in time, that is, the wave 1s
linearly or plane polarized. We'll find in Chapter 8 that
any form of light can be represented by two orthogonal
linearly polarized waves, so that this doesn’t actually
represent a restriction. Note that just as the origin in
time, t = 0, is arbitrary, so too is the origin O in space,
where r = 0. Thus, making no assumptions about their
directions, frequencies, wavelengths, phases, or ampli-
tudes, we can write the reflected and transmitted waves
as

E, = Eg, cos (k,* r — @,t + €,} (4.13)

and

E, = Ey; cos (kh, * r — wf + &,). (4.44)
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Here ¢, and ¢, are phase constants relative to E; and are
introduced because the position of the origin is not
unique. Figure 4.19 depicts the waves in the vicinity of
the planar interface between two homogeneouslossless
dielectric media of indices n; and 7.

The lawsof electromagnetic theory (Section 3,1) lead
to certain requirements that must be met by the fields,
and these are referred to as the boundary conditions.
Specifically, ore of these is that the component of the
electric field intensity E that is tangent to the interface
must be continuous across it (the same is true for H).
In other words, the total tangential component of E on
one side of the surface must equal that on the other
(Problem 4.22). Thus since ii, is the unit vector normal
tothe interface, regardless of the direction ofthe electric
field within the wavefront, the cross-product of it with
a, will be perpendicular to i, and therefore tangent
to the interface. Hence

i, XE;+a, xE, =a, XE, (4.15)
or

ii, * Ep; cos (k,-r— wf)

+i, X Ep, cos (k, +r — w,t + ¢,)

=, XE, cos(k,;r—a@tte).8)

This relationship must obtainat any instant in time and
at any point on the interface (y = b). Consequently, E,,
E,, and E, must have precisely the same functional
dependence on the variables / and 7, which meansthat

(ky + re |, ie (k, r-w,tt+ £y=5

= (kr wt eflyes (4.17)

With this as the case, the cosines in Eq. (4.16) cancel,
leaving an expression independentof ¢ and 1, as indeed
it must be. Inasmuchasthis has to be trueforall values

of time, the coefficients of ¢ must be equal, to wit

a; = w, = w,. (4.18)

Recall that the electrons within the media are under-

going (linear) forced vibrations at the frequency of the
incident wave. Clearly, whatever light is scattered has
that same frequency. Furthermore,

(k; . Pl,<s = ik, ‘rt &yao

= (k, r+ ¢,)l,-c, (4.19)
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Figure 4.19 Plane waves incident on the boundary between two
hemogencous, isotropic, lossless dielectric media.

wherein r terminates on the interface. The values of e¢,

and «, correspond to a given position of O, and thus
they allow the relation to be valid regardless of that
location. (For example, the origin might be chosen such
that r was perpendicular to k; but not to k, or k,.) From
the first two terms we obtain

[ck; i~ k,} a Thy=e = &y (4.20)

Recalling Eq. (2.42), this expression simply says that the
endpoint of r sweeps out a plane (which is of course
the interface) perpendicular to the vector (k; —k,). To
phrase it slightly differently, (k; —k,) is parallel to a,.
Notice, however, that since the incident and reflected
waves are in the same medium, &, = #,. From the fact
that (k; —k,) has no component in the plane of the
interface, that is, a, * (k; —k,) = 0, we conelude that

& sin 6; = k, sin 0:

hence we have the lawof reflection, thatis,

6; = 6..

Furthermore, since (k; — k,) is parallel to ui, all three
vectors, k;, k,, and u,, are in the same plane, the plane
of incidence. Again, from Eq. (4.19) we obtain

[(k; —Kp)+r]-. = &, (421)

and therefore (k; —k,) is also normal to the interface.
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Thus k;, k,, k,, and i, are all coplanar. As before, the
tangential components of k; and k, must be equal, and
consequently

&; sin @; = &, sin @,. (4.22)

But because a; = «,, we can multiply both sides by ¢/w,
to get

n; sin 6, = n, sin 8,

whichis Snell’s law. Finally, if we had chosen the origin
O to be in the interface, it is evident from Eqs. (4.20)
and (4.25) that ¢, and e, would both have been zero.
That arrangement, although not as instructive, is cer-
tainly simpler, and we’ll use it from here on.

4.3.2 Derivation of the Fresnel Equations

We have just found the relationship chat exists among
the phases of E,(r, ¢}, E,(r, £), and E,(r, ¢) at the boun-
dary. There is still an interdependence shared by the
amplitudes Ep;, Ey,, and E,,, which can nowbe evalu-
ated. To that end, suppose that a plane monochromatic
wave is incident on the planar surface separating two
isotropic media. Whatever the polarization of che wave,
we shall resolve its E- and B-felds into components
parallel and perpendicular to the plane of incidence
and treat these constituents separately,

Case 1:E perpendicular to the plane ofincidence. We

now assume that E is perpendicular to the plane of
incidence and that B is parallel to it (Fig. 4.20). Recall
that FE = vB, so that

kx E= vB (4.23)

and, of course,

k-E=0 (4.24)

{i.e., E, B, and the unit propagation vector k form a
right-handed system). Again making use of the con-
tinuity of the tangential components of the E-field, we
have at the boundary at any time and any point

Ey; + Eo, = Eo, (4.25)

where the cosines cancel, Realize that the field vectors

as shownreally ought to be envisioned at y = 0 (ie., at
the surface), from which they have been displaced for
the sake of clarity. Note too that although E, and E,
must be normalto the plane of incidence by symmetry,
we are guessing that they point outward at the interface
when E, does. ‘The directions of the B-fields then follow

from Fq. (4.23).
We will need to invoke another of the boundary

conditions in order to get one more equation. The
presence of material substances that becomeelectrically
polarized by the wave has a definite effect on the field
configuration. Thus, although the tangential com-
ponentof E is continuous across the boundary, its nor-
mal componentis not. Instead the normal component
of the product €E is the same on either side of the

 
Figure 4.20 An incoming wave whose E-feld is normal to the planeof incidence.
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interface. Similarly, che normal component of E& is con-
tinuous, as is the tangential component of ph 'B. Here
the effect of the two media appears via their per-
meabilities 4, and yw. This boundary condition will be
ihe simplest to use, particularly as applied to reflection
from the surface of a conductor.* Thus the continuity
of the tangential component of B/# requires that

Bi ag Geade 6, = — hy, é,, (4.26)
by Bi Bi

where the left and right sides are the total magnitudes
of B/z parallel to the interface in the incident and
transmitting media, respectively. The positive direction
is that of increasing x, so that the components of B; and
B, appear with minus signs. From Eq. (4.23) we have

B, = E,/v;, f4.27}

B, = E,/v,, (4.28)

and

B, = E,/v,. (4.29)

Thus since v; = v, and 0, = 0,, Eq. (4.26) can be written
as

1 I
— (EF, — E,} cos §; =—— E, cos 6,. (4.80)Lit: yt

Makinguse of Eqs.(4.12), (4.13), and (4.14) andremem-
bering that the cosines therein equal one another¥ = 0,
we obtain

ri
= (Eg; — Egy) cos 0, =~! Ey, cos 0. (4.31)
Bj Hy

Combined with Eq. (4.25), this yields

ni n,
— cos 4, -— cos 4,

For j=)a eastL
Fy n my,

, — cos 6, +— cos @,t t

*In keeping with our intent to use only the E- and B-fields,at least
in the carly part of this exposition, we have avoided the usualstate-
Ments in terms of H, where

H=y'B. fAhi4}.
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and

Th:
2— cos 6;

For -. i
ra = ayI.teea“ , (4.53)

0 + cos 8, +— cos 8,Bi My

The 1 subscript serves as a reminderthat we are dealing
with the case in which E is perpendicular to the plane
of incidence. These two expressions, which are completely
general statements applying to any linear, isotropic,
homogeneous media, are two of the Fresnel equations.
Quite often one deals with dielectrics for which p, ~
#4; * {£93 Consequently the most commonform of these
equations is simply

(=) n; cos 8; — n, cos @, err, =i —_— = ;
- Eo:/. 7 cos 8 + 2, cos 8, oe

and

; - (=) _ 2n, cos 0; Zt~ NEyifi 2; 008 @; + 7, cos 8, ae
Here r, denotes the amplitude reflection coefficient,
and ¢, is the amplitude transmission coefficient.

Case 2:£ parallel to the plane ofincidence. A similar
pair of equations can be derived when the incoming
E-field lies in the plane of incidence, as shown in Fig.
4.21. Continuity of the tangential components of E on
either side of the boundary leads to

Ey, cos 8, — Fy, cos #, = Eq, cos 0. (4.36)

In much the same way as before, continuity of the
tangential components of B/ yields

1 1 1
—— Eo + — For = — Eon (4.57)Bits HU, fet,

Using the fact that «; = #, and @, = @,, we can combine
these formulas to obtain two more of the Fresnel

equations:
n ni;

E — cos 6, —— cos 6,

YI cos 6, +— cos
Bi My
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and

r

2— cos @,
_{Fo: a byw= (2),> Tt. 1,

— cos 6, +— cos 8;BM He;

 
(4.39)

When both media forming the interface are dielectrics,
the amplitude coeMcients become

R, COS O, — n; Cos 8,
rl (4.40)

n; cos 6, + 2, cos

 
Interface 

Figure 4.21 An incoming wave whose E-field is in the plane of
incidence.
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and

2n, cos 6;= , (4.41
n, cos 4, + 1, cos 0; }4

One further notational simplification can be made by
availing ourselves of Snell's law, whereupon the Fresnel
equations for dielectric media become (Problem 4.23)

sin (8;—@,}So 4.42
7 sin (6; + 8,) oa

tan (@; — &) 4.43
tan (8, + 6) os)

Dd 2 sin 4, cos @, eat
* sin (6; + 6,) ‘

Sy 2 sin @, cos 0; 35
‘1 Sin (@, + 6) cos (8; — 8)" co

A note of caution must be introduced before we move
on to examine the considerable significance of the pre-
ceding calculation. Bear in mind that the directions (or
more precisely, the phases} of the fields in Figs. 4.20
and 4.21 were selected rather arbitrarily. For example,
in Fig. 4.20 we could have assumed that E, pointed
inward, whereupon B, would have had to be reversed
as well. Had we donethat, the sign of r, would have
turned out to be positive, leaving the other amplitude
coefficients unchanged. The signs appearing in Eqs.
(4.42) through (4.45), in this case positive, except for
the first, correspond to the particular set of feld direc-
tions selected. The minus sign,as we will see, just means
that we didn’t guess correctly concerningE,in Fig. 4.20.
Nonctheless, be awarethat the literature is not standard-

ized, and all possible sign variations have been labeled
Fresnel equations—to avoid confusionthey must be related
to the specific field directions from which they were derived.

4.3.3 Interpretation of the Fresnel Equations

This section is devoted to an examination of the physical
implications of the Fresnel equations, In particular we
are interested in determining the fractional amplitudes
and flux densities that are reflected and refracted. In
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addition we shall be conce med with any possible phase
shifts that might be incurred in the process.

) Amplitude Coefficients
Let’s briefly examine the form of the amplitude
coefficients over the entire range of 4, values. At nearly
normal incidence (@; = 0) the tangents in Eq. (4.43) are
essentially equal to sines, in which case

sin (8, — 8,)[ry Je,=0 a (-Frulo,=0 5 E (8,4 O)]6. i
We will come back to the physical significance of the
minus sign presently. After we have expandedthe sines
and used Snell's law, this expression becomes

n, cos 0 — mn; cos a] $96)n, cos @, +n, cos & Jo-0 i(tyle=0 al {rile a |
whichfollows as well from Egs, (4.34) and (4.40). In the
limit, as 6; goes to 0, cos @, and cos @ both approach
one, and consequently

nT Ai 

(TiJe,<0 = [—taJe,-0 = (4.47)wh, + n;

Thus, for example, at an air (nm; = 1) glass (n, = 1.5)
interface at nearly normal incidence, the reflection
coefficients equal +6.2.

When 2, > 7; it follows from Snell's law chat @ > @,.
and r, is negative for all values of @; (Fig. 4.22). In
contrast, f) starts out positive at 6; = 0 and decreases
gradually until it equals zero when (@, + @,) = 90°, since
tan 7/2 is infinite. The particular value of the incident
angle for which this occurs is denoted by @, and is
referred to as the polarization angle (see Section 8.6.1).
As 6; increases beyond 6, 7 becomes progressively
more negative, reaching —1.0 at 90°. If you place a
single sheet of glass, a microscope slide, on this page
and look straight down into it (6 = 0), the region
beneath the glass will seem decidedly grayer than the
rest of the paper, because theslide will reflect at both
its interfaces, and the light reaching and returning from
the paperwill be diminished appreciably. Nowholdthe
slide near your eye and again view the page throughit
as youtilt it, increasing @;. The amountoflightreflected
will increase, and it will become more difficult to see
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Amplitudecoefficients  
 

 
0, (degrees)

Figure 4.22. The amplitude coefficients of reflection and trans-
mission asa function of incident angle. These correspond to external
reflection », > n, at an air-glass interface (n,, = 1.5).

the page through the glass. When@; = 90° theslide will
look like a perfect mirror as the reflection coefficients
(Fig. 4.22) go to —1.0. Even a rather poor surface, such
as the cover of this book, will be mirrorlike at glancing
incidence. Hold the book horizontally at the ievel of
the middle of your eye and face a brightlight; you will
see the source reflected rather nicely in the cover. This
suggests that even x-rays could be mirror-reflected at
glancing incidence (p. 210), and modern x-ray tele-
scopes are based on that very fact.

Atnormal incidence Eqs. (4.35) and (4.41) lead rather
straightforwardly to

2n,; 

[ijle-0 = [tJe,-0 = (4.48)nbn,

It will be shown in Problem 4.24 that the expression

hitern)y=l (4.49}

 



25

98 Chapter 4 The Propagation of Light

holds for all 6;, whereas

tyt+7,=1 (4.50)

is true only at normal incidence.
The foregoing discussion, for the most part, was

restricted to the case of external reflection(i.c., 7, > 1;)}.

The opposite situation of internal reflection, in which
theincident mediumis the more dense (n,; > 7,), is of
interest as well. In that instance @,> @;,, and r_, as

described by Eq. (4.42), will always be positive. Figure
4.93 shows that r, increases from its initial value (4.47)
at 6, = 0, reaching +1 at whatis called the critical angle,
4. Specifically, @, is the special value of the incident
angle for which 6, = 7/2. Likewise, 7, starts off nega-
tively (4.47) at 6; = 0 andthereafter increases, reaching
+1 at 6; = @,,"as is evident from the Fresnel equation
(4.40). Again, r; passes through zero at the polarization
angle 64. It is left for Problem 4.34 to show that the-
polarization angles 6), and 9, for internal and external
reflection at the interface between the same media are

simply the complements of each other. We will return
to internal reflection in Section 4.3.4, where it will be

shownthat +, and 7 are complex quantities for 4, > 4,.

ii) Phase Shifts

It should be evident from Eq. (4.42) that r, is negative
regardless of @, when n, > n;. Yet we sawearlier that
had we chosen [E,], in Fig. 4.20 to be in the opposite
direction, the first Fresnel equation (4.42) would have
changedsigns, causing r, to become a positive quantity.
Thusthe signof r, is associated with the relative direc-
tions of [E,;], and [Eo,],. Bear in mind that a reversal
of [E,,], is tantamount to introducing a phase shift,
Ag,, of 7 radians into [E,],. Hence at the boundary
[E,], and [E,], wil! be antiparallel and therefore 7 out
of phase with each other, as indicated by the negative
value of 7,. When we consider components normal to
the plane of incidence, there is no confusion as to
whether two fields are in phase or 7 radians out of
phase: if parallel, they’re in phase; if antiparallel,
they're 7 out of phase. In summary, then, the component
of the electric field normalto the plane of incidence undergoes
a phase shift of 7 radians upon reflection when the incident
medium has a lower index than the transmitting medium.

 Amplitudecoefficients   0.5}- |

L 33.7" 41.8" J

oftateeTapety
Hn 30 60 oO

4, (degrees)

Figure 4.23 The amplitude coefficients of reflection as a function
of incident angle. These correspond to internal reflection a, <n; at
an air—glass interface (m,; = 1/1.5).

Similarly, i, and t) are always positive and Ag = 9.
Furthermore, when n; > 1, no phase shift in the normal
component results on reflection, that is, A@, = 0 so long as

“A < 8.

Things are a bit less obvious when we deal with [E;]),
(E,],;, and [E,]). It now becomes necessary to define
more explicitly what is meant by in phase, since the field
vectors are coplanar hut generally not colinéar. The
held directions were chosen in Figs. 4.20 and 4.21 such
that if you looked down any one of the propagation
vectors toward the direction from which the light was
coming, E, B, and k would appear to have the same
relative orientation whether the ray was incident, reflec-
ted, or transmitted. We can use this as the required
condition for two E-fields to be in phase. Equivalently,
but more simply, two fields in the incident plane are in
phase if ihetr y-components are paratlel nnd are out of phase
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if the components are antiparallel. Notice that when two
E-fields are out of phase so too are their associated
p-fields and vice versa. With this definition we need
only look at the vectors normal to the planeof incidence,
whether they be E or B, to determinetherelative phase
of the accompanying fields in the incident plane. Thus
in Fig. 4.24(a) Ej and E, are in phase, as are B, and B,,
whereas E, and E, are out of phase, along with B, and
B,. Similarly, in Fig. 4.24(b) E,, E,, and E, are in phase,
as are B,, B,, and B,.

Now, the amplitude reflection coefficient for the

parallel componentis given by
__ A, cos 8, — n; cos 0,

o> n, cos 6; +n; cos 9,”

which is positive (Ag, = 0) as long as

n, cos 8; — n, cos @, > 0,

that is, if

sin 6; cos #, — cos 6, sin 6, = 0

or equivalently

sin (8; — @,) cos (8; + 8,) > 0. (4.54)

This will be the case for n, <n, if

(8 + 6) < a/2 (4.52)

 
(a) (b}

Figure 4.24 Field orientations and phase shifts.
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and for n; > 7, when

(8; + 6.) > a2. (4.53)

Thus when 2, < ,, [Ep,]; and [Eo;J) will be m phase
(Ag, = 0) until 6 = 6, and out of phase by m radians
thereafter. The transition is not actually discontinucus,
since [Ep,], goes to zero at @,. In contrast, for internal
reflection r, is negative until 6), which means that Ag, =
a. From 6} to 6,, 7 is positive and Ag, = 0. Beyond @,,
y; becomes complex, and Ag, gradually increases to +
at a, = 90°,

Figure 4.25, which summanizes these conclusions, will
be of continued use to us. The actual functional form

of Ag, and Ag, for internal reflection in the region
where 6, > 6, can be foundin the literature,* but the
curves depicted here will suffice for our purposes.
Figure 4.25(e) isa plot ofthe relative phaseshift between
the parallel and perpendicular components, that is,
Ag, — Ag,. It is mcluded here because it will be useful
later on (e.g., when we consider polarization effects).
Finally, many of the essential features of this discussion
are illustrated in Figs. 4.26 and 4.27, The amplitudes
of the reflected vectors are in accord with those of Figs.
4.22 and 4.23 (for an air—glass interface), and the phase
shifts agree with those of Fig. 4.25.

Many of these conclusions can be verified with the
simplest experimental equipment, namely, two linear
polarizers, a piece of glass, and a small source, such as
a flashhght or high-intensity lamp. By placing one
polarizer in front of the source {at 45° to the plane of
incidence}, you can easily duplicate the conditions of
Fig. 4.26. For example, when 6; = 6, [Fig. 4.26(b}] no
light will pass through the second polarizer if its trans-
mission axis is parallel to the plane of incidence. In
comparison, at near-glancing incidence the reflected
beamwill vanish when the axes of the two polarizers
are almost normal to each other.

iii) Reflectance and Transmittance

Consider a circular beam of light incident on a surface,
as shown in Fig, 4.28, such that there is an illuminated
spot of area A, Recall that the power per nnit area

* Born and Woll, Principles of Optics, p. 49.
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Figure 4.25 Phase shifts for the parallel and perpendicular com-
ponents of the E-field corresponding to internal and external
reflection.

crossing a surface in vacuum whose normalis parallel]
to §, the Poynting vector, is given by

§ = ¢*e,E x B. £3.48)

Furthermore, the radiant flux density (W/m) or irradi-
ance 18

fo
2

This is the average energy per unit time crossing a unit
area normalto § (in isotropic media § is parallel to k).
In the case at hand (Fig. 4.28}, let J;, J,, and J, be the
incident, reflected, and transmitted flux densities,
respectively. The cross-sectional areas of the incident,
reflected, and transmitted beams are, respectively,
Acosé,, Acos®, and Acos@. Accordingly, the
incident power is J,A cos 6,; this is the energy per unit
time Howing in the incident beam andit’s therefore the
power arriving on the surface over A. Similarly,
FAcos@, is the power in the reflected beam, and
IA cos 6, is the power being transmitted through A. We
define the reflectance R to be the ratio of the reflected

power (or flux) to the incident power:

f,cos 0, ,= = ae. 4.54,
J; cos 8, £; : y

r=(5)=— £3. £3.52}

In the same way, the transmittance T is defined as the
ratio of the transmitted to the incident flux andis given
by

_ i, cos @,
= f, cos o,

The quotient f/f; equals (v,¢,£5,/2)/(v,¢,£3,/2), and
since the incident and reflected waves are in the same

medium, v, = %, €, = €,, and

En \*R= (=) =,, (4.56)oi

(4.55)

In like fashion (assuming p; = jt, = 45),

n, cos §,fEo,\7 n, cos 6T =———(24) ~ (24‘Ye, (4.57)a; cos 6; \E5; n, cos 8,

where use was made of the fact that woe, = 1/v? and
Mot.€, = n/c. Notice that at normal incidence, which is

a situation of great practical interest, 0, = 0, = 0, and
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ta} 4, = 0,

Figure 4.26 The reflected E-field at various angles concomitant with external reflection.

 
Figure 4.27 The reflected E-field at various angles concomitant with internal reflection.
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 ¥ “A cos ff,é

Figure 4.28 Reflection and transmission of an incident beam.

the transmittance [Eq, (4.55)], like the reflectance [Eq.
(4.54)], is then simply the ratio of the appropriate irradi-
ances. Since R =r’, we need not worry aboutthe sign
of r in any particular formulation, and that makes
reflectance a convenient notion, Observe that in Eq.
(4.57) T is not simply equalto t*, for two reasons.First,
the ratio of the indices of refraction must be there, since

the speeds at which energyis transported into and out
of the interface are different, in other words, I & v,
from Eq. (3.47). Second,the cross-sectional areas of the
incident and reflected beams are different, and so the

energy flow per unit area is affected accordingly, and
that manifestsitself in the presence of the ratio of the
cosine terms.

Let’s nowwrite an expression representing the con-
servation of energy for the configuration depicted in
Fig, 4.26. In other words, the total energy Howing into
area A per unit time must equal the energy flowing
outward from it per unit time:

I,A cos 6, = I,A cos @, + IA cos 6,, (4.58)

When both sides are multiplied by ¢ this expression

becomes

nz, cos 6; = n.E3, cos 6; + n,EG, cos 4,

BANE (2 cos *)( fut)=(—] +(— ]|—*] . ‘4.59: (2) n; cos 0;/\Eg, a
Butthis is simply

oT

R+T=I1, (4.60}

where there was no absorption.It is convenient to use
the componentforms,that is,

R,=r 46)

R,=77 (4.62)

n, cos %\ 5T, = |—m— Ie 4.63* (2 cos 3) ¢ !
and

. n, cos éT | = (eet) tis (4.64)R; COS e;

which are illustrated in Fig. 4.29. Furthermore, it can
be shown (Problem 4.39) that

Ry, + T= 1 (4.65)
and

R,+T_=1. (4.66)

When 9; = 0 the incident plane becomes undefined,
and any distinction between the parallel and perpen-
dicular components of R and T vanishes. In this case
Eqs. (4.61) through (4.64), along with (4.47) and (4.48),
lead to

nm, — Tt, -R=R, = Rk, =|—\— 4.67)cemena(258) um
and

daniT= T= T, = —. 4.68,
: (n, + n° ( ;

Thus 4% of the light incident normally on an air—glass
interface will be reflected back, whether internally, n, >
n,, or externally, a, <n, (Problem 4.40), This will
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Figure 4.29 Reflectance and transmittance versus incident angle.

obviously be of great concern to anyone who is working
with a complicated lens system, which might have 10
or 20 such air—glass boundaries, Indeed, if you look
perpendicularly into a stack of about 50 microscope
slides (cover-glass slides are much thinner and easier to
handle in large quantities), most of the light will be
reflected. The stack will look very much like a mirror

 
Figure 4,30 Near normal reflection off a stack of microscope slides.
You can see the image of the camera that took the picture, (Photo
by EH.)

 
30

(Fig. 4.30). Figure 4.31 is a plot of the reflectance at a
single interface, assuming normalincidence for various
transmitting media in air. Figure 4.32 depicts the corre-
sponding dependence of the transmittance at normal
incidence on the number of interfaces and the index

of the medium, Of course, this is why you can't see
through a roll of ‘‘clear’’ smooth-surfaced plastic tape,

 
30-—

anReflectance(%}  
o A

q a }

 
Refractive index (2,)

Figure 4.31 Reflectance at normal incidence in air (n; = 1.0) at a
single interface.
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100

40)Transmittance(9%)
20)}— 
0 1 Il | 1 =:2 4 6 & 10

Number of reflecting surfaces

Figure 4.32 Transmittance through a number of surfaces in air
(»; = 1,0) at normal incidence.

andit’s also why the many elements in a periscope must
be coated with antireflection films (Section 9.9.2).

43.4 Total Internal Reflection

In the previous section it was evident that something
rather interesting was happening in the case of internal
reflection (n; > 1,) when 8; was equal to or greater than
@,, the so-called critical angle. Let’s now return to that
situation for a somewhatcloser look. Suppose that we
have a source imbedded inan optically dense medium,
and we allow @,; to increase gradually, as indicated in
Fig. 4.33. We know from the preceding section (Fig.
4.23) that ry and r, increase with increasing @;, and
therefore t and ¢, both decrease. Moreover 4, > @,,
since

sin 0; = © sin a,

and n; > n,, in which case n, <1. Thus as 6; becomes
larger, the transmitted ray gradually approaches
tangency with the boundary, and as it does so more and
more of the available energy appears in the reflected
beam.Finally, when 6, = 90°, sin 8, = 1 and

sin @, = my. (4.69)

 
fy > H,
unpolarized light   
 

 
Figure 4.33) [nternal reflection and the critical angle. (Photo courtesy
of Educational Service, Inc.)
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5 noted earlier, the critical angle is that special value of
a, for whick @,= 90°. For incident angles greater than
or equal to 4, all the incoming energy is reflected back
into the incident medium in the process known astotal
jnternalreflection. It shouldbe stressed that the transi-
tion from the conditions depictedin Fig. 4.33(a)to those
of 4.33(d) takes piace without any discontinuities. That
js to say, aS 6; becomeslarger,the reflected beam grows
stronger and stronger while the transmitted beam grows
weaker, until the latter vanishes and the former carries
off allthe energy at @, = @,, It’san easy matter to observe
the diminution of the transmitted beamas 6; is made
larger. Just place a glass microscope slide on a printed
page, this time blocking out any specularly reflected
light. Ac 6; = 0, 4, is roughly zero, and the page as seen
through theglass is fairly bright and clear. But if you
move your head, allowing @, (the angle at which you
view the interface) to increase, the region of the printed

page covered bytheglass willappear darker anddarker,
indicating that T has indeed been markedly reduced.

Thecritical angle forourair—glass interface is roughly
42° fsee Table 4.1). Consequently, a ray incident nor-
mally on the left face of either of the prisms in Fig. 4.34

Table 4.1 Critical angles. 

 

 
fis 4, 6, ny $, a.

(degrees) (radians) (degrees) (radians)_
1.30 50.2849 0.8776 | 1.50 41.8103 0.7297
131 49,7612 0.8685 1.51 41.4718 0.7238
132 49,2509 0.8596 1.52 41,1395 0.7180
1.33 48.7535 0.8509 1.53 40.8132 O.7123
1.34 48,2682 0.8424 1.54 40.4927 0.7067
1.35 47.7946 0.8342 165 40.1778 a.7012
1.36 47.3324 0.8261 1.56 $9. 8683 0.6958
1.37=46.8803 0.8182 1.57 39.5642 0.6905
1,38 46.4387 0.8105 1.58 39.2652 0.68535
L.3g 46.0070 0.8030 1.59 38.9715 0.6802
1.40 45.5847 0.7956 1.60) 33.6822 0.6751
1.4} 45.1715 0.7884 1.61 38.3978 0.6702
142 44.7670 0.7813 1.62 38.1181 0.6653
143 44,3709 0.7744 1.63 37.8428 0.6605
L.44 43.9830 0.7676 1.64 37.5719 0.6558
L.45 43.6028 0.7610 1.65 57.3052 0.6511
1.46 43.2302 7545 1.66 37.0427 0.6465
1.47 42.8649 0.7481 1.67 36.7842 0.6420
14g 42.5066 0.7499 1.68 36.5296 0.6376
1.49 42,1552 0.7357 1.69 36.2789 0.6332
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48°

 
Figure 4.34 Total internal reflection,

willhavea 6, > 42° and therefore be internally reflected.
This is a convenient way to reflect nearly 100% of the
incident light without having to worry about the
deterioration that can occur with metallic surfaces.

Another useful way to view the situation is shown in
Fig. 4.35, which can be thoughtofas either a Huygens
construction or a simplified representation of scattering
off atomic oscillators. We know that the net effect of

the presence of the homogeneousisotropic mediais to
alter the speed of the light from c to v, and v,, respec-
tively (p. 63). This is equivalent mathematically (via
Huygens’s principle) to saying that the resultant wave
is the superposition of these wavelets propagating at
the appropriate speeds. In Fig. 4.35(a) an incident wave
results in the emission of wavelets successively from
scattering centers A and B. These overlap to form the
transmitted wave. The reflected wave, which comes back

down into the incident medium as usual (6; = @,), is not
shown. In a time é the incident front travels a distance

ud = CB, while the transmitted front moves a distance
u<é = AD > CB. Since one wave moves from A to £ in
the same time that the other moves from Cto B, and

since they have the same frequency and period, they
must change phase by the same amount in the process.
Thusthe disturbance at point £ must be in phase with
that at point B; both of these points must be on the
same transmitted wavefront.

It can be seen that the greater »v, is in comparison to
v;, the more tilted the transmitted front will be (i.e., the
larger @, will be). That much is depicted in Fig. 4.35(b),
where n, has been taken to be smaller by assuming 1,
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Figure 4.35 An examination of the transmitted wave inthe process
of total internal reflection from a scattering perspective. Here we
keep 6, and 2, constant and in successive parts of the diagram decrease
a,, thereby increasing o,. The reflected wave (@, = 8) is not drawn.

tobe smmaller. The result is a higher speed v,. increasing
AD andcausing a greater transmission angle. In Fig,
4.35(c) a special case is reached: AD = AB = v,t, ang

the wavelets will overlap in phase only along the line of
the interface, 6,= 90°. From triangle ABC, sin 6, =
ui/oft = n,/n,, which is Eq. (4.69). For the two given
media (i.e., for the particular value of 7,;), the direction
in which the scattered wavelets will add constructively
in the transmitting medium is along the interface. The
resulting disturbance (@, = 90°) is known as a surface
wave.

If we assume that there is no transmitted wave, it
becomes impossible to satisfy the boundary conditions
using only the incident and reflected waves—thingsare
not at all as simple as they might seem. Furthermore,
we can reformulate Eqs. (4.34) and (4.40) (Problem
4.43) such that

_ cos 6; — (nz — sin? 6)?, 3-2Upel7
+ cos 6 + (n2 — sin® 6,)\? a

and
2 a sf 12

ny cos 6; — (ny; — sin” 6;ry = = .
Vn? cos 6; + (12 — sin? 6,)'”

Clearly then, since sin 8, = n, when 9; > @,, sin 0; > ny,
and both r, and rt become complex quantities. Despite
this (Problem 4.44), 7.7% = rjrf' = t and R = 1, which
means that J, = J, and I, = 0. Thus, although there must
be a transmitted wave, it cannot, on the average, carry
energy across the boundary. We shall not performthe
complete and rather lengthy computation needed to
derive expressions for all the reflected and transmitted
fields, but we can get an appreciation of what’s happen-
ing in the following way. The wave function for the
transmitted electric field is

E, = Ep, exp i(k, + r— of),

where

kyo r = kyx + kyy,

there being no z-component of k. But

ki, = k, sin 8,

and

k, = &, cos @,,
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gs seen in Fig. 4.36. Once again using Snell’s law, we
find that

 sin? 9,\?
£4.72)k, cos 6, = 41 - 5ti

since we are concerned with the case where sin 6; >

 

or,
Mes

+2 1a
., fsa’ @ .ky = sia( = 1) = +18tt

and

hy =— sin @.tH

Hence

E, —4 Eyeett sin Biot (4.73)

Neglecting the positive exponential, whichis physically
untenable, we have a wave whose amplitude drops off
exponentially as it penetrates the less dense medium.
The disturbance advances in the x-direction as a surface
or evanescent wave. Notice that the wavefronts or sur-

faces of constant phase (parallel to the yz-plane) are
perpendicular to the surfaces of constant amplitude
(parallel to the xz-plane), and as such the wave is
inhomogeneous (see Section 2.5). Its amplitude decays
rapidly in the y-direction, becoming negligible at a dis-
tarice into the second medium ofonly a few wavelengths.

If you are still concerned about the conservation of
energy, a more extensive treatment would have shown
that energy actually circulates back and forth across the
interface, resulting on the average in a zero net flow
through the boundary into the second medium. Yet
one puzzling point remains, inasmuch as thereisstill a
bit of energy to be accountedfor, namely, that associated
with the evanescent wave that moves along the boundary
in the plane of incidence. Since this energy could not
have penetrated into the less dense medium under the
present circumstances (so long as 6; = 6,), we must look
elsewhere for its source. Under actual experimental
conditions the incident beam would have a finite crass

section and therefore would obviously differ from a
true plane wave. This deviation gives rise (via diffrac-
tion) to a slight transmission of energy across the inter-
face, which is manifested in the evanescent wave.
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Figure 4.36 Propagation vectors for internal reflection.

Incidentally, it is clear from (c} and (d) in Fig. 4.25
that the incident and reflected waves (except at #, = 90°}
do not differ in phase by # and cannot therefore cancel
each other.It follows from the continuity of the tangen-
tial component of E that there must be an oscillatory
field in the less dense medium witha componentparallel
to the interface having a frequency « (i-e., the evanes-
cent wave).

The exponential decay of the surface wave, or boun-
dary wave, as it is also sometimes called, has been
confirmed experimentally at optical frequencies.”

Imagine that a beam of light traveling within a block
of glass is internally reflected at a boundary. Presum-
ably, if you pressed anotherpiece of glass against the
rst, the air-glass interface could be made to vanish,
and the beam would then propagate onward undis-
turbed. Furthermore, you might expect this transition
fromtotal to no reflection to occur gradually as the air
film thinned out. In much the same way, if you holda
drinking glass or a prism, you cansee the ridges of your
fingerprints in a region that, because of total internal
reflection, is otherwise mirrorlike. In more general
terms, if the evanescent wave extends with appreciahle
amplitude across the rare mediuminto a nearby region
occupied by a bigher-index material, energy may flow
through the gap in what is known as frustrated total 

*Take a look at the fascinating article by K. H. Drexhage,
“Monomolecular Layers and Light.” Sei, Am. 222, 108 (1970).
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Figure 4.37 Frustrated totak internal reflection.

internal reflection (FTIR). In other words, if the
evanescent wave, havingtraversed the gap, is still strong
enough to drive electrons in the “frustrating” medium,
they in turn will generate a wave thatsignificantly alters
the field configuration, thereby permitting energy to
flow. Figure 4.37 isa schematic representation of FTIR.
The width of the lines depicting the wavefronts
decreases across the gap as a reminderthat the ampli-
tude of the held behaves in the same way. The process
as a whole is remarkably similar to the quantum-
mechanical phenomenon of barrier penetration or tunnel
ing, which has numerousapplications in contemporary
physics.

One can demonstrate FTIR with the prisin arrange-
ment of Fig. 4.38 in a mannerthatis fairly self-evident.
Moreover, if the hypotenuse faces of both prisms are
made planar and parallel, they can be positioned so as
to transmit and reflect any desired fraction of the
incident flux density. Devices that perform this function
are known as beam-splitters, A beam-splitter cube can be
made rather conveniently by using a thin, low-index
transparent him as a precision spacer. Low-loss reflec-
tors whose transmittance can be controlled by frustrat-
ing internal reflection are of considerable practical
interest. FTIR can also be observed in other regions of
the electromagneticspectrum, Three-centimeter micro-

35

waves are particularly easy to work with, inasmuch as
the evanescent wave will extend roughly 10° times
farther than it would at optical frequencies. One can
duplicate the above optical experiments with solid
prisms made of paraffin or hollow ones of acrylic plastic
filled with kerosene or motor oil, Any one of these
would have an index of about 1.5 for 3-cm waves. It

then becomes an easy matter to measure the depen-
dence of the field amplitude on ».

43.5 Optical Properties of Metals

The characteristic feature of conducting media is the
presence of a numberof free electric charges (free in
the sense of being unbound, i.c., ableto circulate within
the material). For metals these charges are of course
electrons, and their motion constitutes a current. The

current per unit area resulting from the application of
a field E is related by means of Eq. (AI.15) to the
conductivity of the medium co. For a dielectric there are
no free or conduction electrons and ¢ = 0, whereas for
actual metals @ is nonzero and Anite. In contrast, an

idealized “perfect”? conductor would have an infnite
conductivity. This is equivalent to saying that the elec-
trons, driven into oscillation by a harmonic wave, would
simply follow the field's alternations. There would he
no restoring force, no natural frequencies, and no
ahsorption, only reemission. In real metals the conduc-
tion electrons undergo collisions with the thermally
agitated lattice or with imperfections and in so doing
irreversibly convert electromagnetic energy into joule
heat. Evidently the absorption of radiant energy by a
material is a function of its conductivity.

) Wavesin a Metal

If we visualize the medium as continuous, Maxwell’s
equations lead to

vE aE aE ve dE antsats tts Hert ue, 74
axe ay? axe MS ag? BF ay ee

which is Eq. (A1.21) in Cartesian coordinates. The last
term, po JE/#t, is a first-order time derivative, like the
damping force in the oscillator mode! discussed in Sec-
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Figure 4.38 (a) A beam-splitter utilizing FTIR. (6) A typical modern
application of FTIR: a conventional beam-splitter arrangement used
to take photographs through a microscope. {c) Beam-splitter cubes.
(Photo courtesy Melles Griot.) 

From object

 
(b)

 
36



37

150 Chapter g The Propagation of Light

tion 3.5.1. The time rate of change of E generates a
voltage, currents circulate, and since the material is
resistive, light is converted to heat—ergo absorption.
This expression can be reduced to the unattenuated
wave equation, if the permittivity is reformulated as a
complex quantity. This in turn leads to a complex index
of refraction, which, as we saw earlier (Section 3.5.1),
is tantamount to absorption. We then need only sub-
stitute the complex index

nh, = flp — iny {4.75}

(where the real and imaginary indices ag and nm, are
both real numbers) into the corresponding solution for
a nonconducting medium. Alternatively, we can utilize
the wave equation and appropriate boundary conditions
to yield a specific solution. In either event, we can find
a simple sinusoidal plane-wave solution applicable
within the conductor. Such a waye propagating in the
y-direction is ordinarily written as

E= E, cos (wt — Ry)

or as a function of x,

E = Ey cos w(t — nye),

but here the refractive index must be taken as complex.
Accordingly, writing the wave as an exponential and
using Eq. (4.75), we obtain

E= Egeoteng int Agile) (4.76)
or

E= Eye“*""* cos wit — myc). (477)

The disturbance advances in the y-direction with a
speed c/n, precisely as if np were the more usual index
of refraction. As the wave progresses into the conductor,
its amplitude, Ey exp (—wn;y/c), is exponentially attenu-
ated. Inasmuch as irradiance is proportional to the
square of the amplitude, we have

I(s) = Ine", (4.78)

where f, = I(0), that is, Ip is the irradiance at y = 0 (the
interface), and a =2wn,;/c is called the absorption
coeficient or (even better) the attenuation coefficient.
The flux density will drop by a factor of e' = 1/2.7 =}
after the wave has propagated a distance y = 1/a, known
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as the skin or penetration depth. For a material to be
transparent the penetration depth must be large in
comparisontoits thickness. The penetration depth for
metals, however, is exceedingly small. For example,
copperat ultraviolet wavelengths (Ag ~ 100 nm) has a
miniscule penetration depth, about 0.6 nm,while it is
still only about 6 nm in the infrared (Ag ~ 10,000 nm),
This accounts for the generally observed opacity of
metals, which nonetheless can become partly trans-
parent when formedinto extremely thin films (e.g., in
the case of partially silvered two-way mirrors). The
familiar metallic sheen of conductors corresponds to a
high reflectance, which arises from the fact that the
incident wave cannot effectively penetrate the material,
Relatively few electrons in the metal ‘‘see’’ the transmit-
ted wave, and therefore, although each absorbs
strongly, little total energy is dissipated by them.
Instead, most of the incoming energy reappears as the
reflected wave. The majority of metals, including the
less common ones (e.g., sodium, potassium, cesium,
vanadium, niobium, gadolinium, holmium, yttrium,
scandium, and osmium) havea silvery gray appearance
like that of aluminum, tin, or steel. They reflect almost
all the incident light regardless of wavelengths and are
therefore essentially colorless.

Equation (4.77) is certainly reminiscent of Eq. (4.73)
and FTIR. In both cases there is an exponential decay
of the amplitude. Moreover, a complete analysis would
showthat the transmitted waves are notstrictly trans-
verse, there being a component of the field in the
direction of propagation in both instances.

The representation of metal as a continuous medium
worksfairly well in the low-frequency, long-wavelength
domain of the infrared. Yet we certainly might expect
that as the wavelength of the incident beam decreased
the actual granular nature of matter would have to he
reckoned with. Indeed, the continuum medel shows

large discrepancies from experimental results at optical
frequencies. And so we again turn to theclassical
atomistic picture initially formulated by Hendrik
Lorentz, Paul Karl Ludwig Drude (1863-1906), and
others. This simple approach will provide qualitative
agreement with the experimental data, butthe ultimate
treatment nonetheless requires quantum theory.
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ip The Dispersion Equation
Envision the conductor as an assemblage of driven,
damped oscillators. Some correspond to free electrons
and will therefore have zero restoring force, whereas
others are bound to the atom, much like those in the
dielectric media of Section 3.5.1. The conduction elec-
trons are, however, the predominant contributors to
ihe optical properties of metals. Recall chat the displace-
ment of a vibrating electron was given by

GoiTe
Oba Ei). £3.65}

With no restoring force, w) = 0, the displacement is
opposite in sign tothe driving force ¢,£(t) and therefore
180° out of phase with it. This is unlike the situation
for transparent dielectrics, where the resonance
frequencies are abovethe visible and the electrons oscil-
late in phase with the driving force (Fig. 4.39). Free
electrons oscillating out of phase with the incidentlight
will reradiate wavelets that tend to cancel the incom-

ing disturbance. The effect, as we have alreadyseen, is
a rapidly decaying refracted wave.

Assuming that the average field experienced by an
electron moving about within a conductor is just the
applied field E(#), we can extend the dispersion equation
of a rare medium (3.71) to read

2

nw) = 1 +X t+.eqn, L—w? + iy Ff ws — wo + ine
(4.79)

The first bracketed term is the contribution from the

free electrons, wherein N is the number of atoms per
unit volume, Each of these has f, conduction electrons,
which have no natural frequencies. The second term
arises from the hound electrons and is identical to Eq.
(3.71). It should be noted that if a metal has a particular
color, it indicates that the atoms are partaking of selec-
tive absorption by way of the bound electrons, in addi-
tion to the general absorption characteristic of the free
electrons. Recall that a medium that is very strongly
absorbing at a given fequency doesn’t actually absorb
much of the incidentlight at that frequency but rather
seleciively reflects it. Gold and copperare reddish yellow
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Figure 4.39 Oscillations of bound and free electrons.

because , increases with wavelength, and the larger
values of A are reflected more strongly. Thus, for
example, gold should be fairly opaque to the longer
visible wavelengths. Consequently, under whitelight, a
gold foil less than roughly 10° m thick will indeed
transmit predominantly greenish blue light.

Wecan get a rough idea of the response of metals to
light by making a few simplifying assumptions. Accord-
ingly, we neglect the bound electron contribution and
assume that +, is also negligible for very large «,
whereupon

2 , __Ng
n“(@)=1 en ™,to" . (4.50)
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The latter assumption is based on the fact that at high
frequencies the electrons will undergo a great many
oscillations between cach collision. Free electrons and

positive ions within a metal may be thought of as a
plasma whose density oscillates at a natural frequency
w,, the plasma frequency. This in turn can be shown to2 2
equal (Ng-/éom.) “, and so

mie} = 1- (ofa). 81)

The plasma frequency serves as a critical value below
which the index is complex and the penetrating wave
drops off exponentially (4.77) from the boundary; at
frequencies above w,, n is real, absorption is small, and
the conductoris transparent. In the latter circumstance
nm is less than I, as it was for dielectrics at very high
frequencies. Hence we can expect metals in general to
be fairly transparentto x-rays. Table 4.2 lists the plasma
frequencies for someof the alkali metals that are trans-
parent even toultraviolet.

The index of refraction for a metal will usually be
complex, and the impinging wave will suffer absorption
in an amountthatis frequency dependent. For example,
the outer visors on the Apollo space suits were overlaid
with a very thin film of gold (Fig. 4.40). The coating
reflected about 70% of the incident light and was used
under bright conditions, such as low and forward sun
angles. It was designed to decrease the thermal load on
the cooling system by strongly reflecting radiant energy
in the infrared while still transmitting adequatelyin the
visible. Inexpensive metal-coated sunglasses which are
quite similar in principle are also available commercially
and they're well worth having just to experimentwith.

The ionized upper atmosphere of the Earth contains
a distribution of free electrons that behave very much
like those confined within a metal. The index of refrac-
tion of such a medium will be real and less than | for

frequencies above w,. In July of 1965 the Mariner IV
spacecraft made use of this effect to examine the iono-
sphere of the planet Mars, 216 million kilometers from
Earth.*

If we wish to communicate between two distant terres-

trial points, we might bounce low-frequency waves off
the Earth's ionosphere. To speak to someone on the

*R. Von Eshelman, Sei. Am. 220, 78 (1969).

Table 4.2 Critical wavelengths and frequencies for some alkalj
metals.

  
 
  
   

Ap A p= cfg
{observed} (calculated) (observed)

Metal nm nm Hz

Lithium (Lp | 155 155 1.94 x 19%
Sodium(Na) 210 | 209 1.43 x 10
Potassium {K} 315 287 0.95 x 10'S

Rubidium (Rb) | 340 399 | 0,88 x 10!

Moon, however, we should use high-frequency signals,
to which the ionosphere would be transparent.

ii) Reflection From a Metal

Imagine that a plane waveinitially in air impinges on
a conducting surface. The transmitted wave advancing
at some angle to the normal will be inhomogeneous.
But if the conductivity of the mediumis increased, the

 
Figure 4.40 Edwin Aldrin Jr. at Tranquility Base on the Moon, The
photographer, Neil Armstrong, is reflected in the gold-coated visor.
(Photo courtesy NASA.)
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wavefronts will become aligned with the surfaces of
constantam plitude, whereuponk, and a, will approach

arallelism. In other words, in a good conductor the
transmitted wave propagates in a direction normalto
the interface regardless of 6;.

Let’s now compute thereflectance, RK = £,/I,, for the
simplest case of normal incidence on a metal. Taking
n, = 1 and 1, =n, (i.c., the complex index), we have
from Eq. (4.47) that

ne —-1\fn.-1\*
R= sae! hae(2) (AS) P=?

and therefore, since mn, = ng — in;,

_ (ag— 1tj
(me tly tng

 

4.83}

If the conductivity of the material goes to zero, we
have the case of a dielectric, whereupon in principle
the index is real (x, = 0), and the attenuation coefficient,
a, is zero. Underthose circurnstances, the index of the
transmitting medium n, is ng, and the reHectance (4.83)
becomes identical with that of Eq. (4.67). If instead 2;
is large while mz is comparatively small, R in turn
becomes large (Problem 4.49). In the unattainable limit
where 7, is purely imaginary, 100% of the incident flux
density would be reflected (K = 1). Notice that it is
possible for the reflectance of one metal to be greater
than that of another even thoughits n; is smaller. For
example, at Ay = 589.3nmthe parameters associated
with solid sodium are roughly ng = 0.04, ny = 2.4, and
R=0,9: and those for bulk tin are ng = 1.5, ny = 5.3,
and R = 0.8; whereas for a gallium single crystal ng =
3.7, ny = 5.4, and R = (0.7.

The curves of Ky and R, for oblique incidence shown
in Fig. 4.41 are somewhattypical of absorbing meciia.
Thus, although R at @, =90 is about 0.5 for gold, as
opposed to nearly 0.9 for silver in white light, che two
metals have reflectances that are quite similar in shape,
approaching1.0 at 6; = 90°. Just as with dielectrics (Fig.
4.29), R, drops to a minimum at what is now called the
principle angle of incidence, but here that minimum is
nonzero. Figure 4.42 illustrates the spectral reHectance
at normal incidénce for a number of evaporated metal
films under ideal conditions. Observe that although gold
fransmits fairly well in and belowthe green region of
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0

Reflectance

a v,i

Figure 4.41 Typical reflectance for a linearly polarized beam of
white light incident on an absorbing medium.

the spectrum, silver, which is highly reflective across
the visible, becomes transparent in the ultraviolet at
about 316 nm.

Phase shifts arising from reflection off a metal occur
in both components of the field (i.e., parallel and per-
pendicular to the plane of incidence). These are gen-
erally neither 0 nor #7, with a notable exception at
8, = 90°, where, just as with a dielectric, both com-
ponents shift phase by 180° on reflection.

e Frequency, ¥ (Hz) 

ReflectanceA a

0.3
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Figure 4.42 Reflectance versns wavelength for silver, gold, copper,
and aluminum.
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4.4 FAMILIAR ASPECTS OF THE
INTERACTION OF LIGHT AND MATTER

Let’s now examine some of the phenomena that paint
the everyday world in a marvel of myriad colors.

As we sawearlier (p. 72), light that contains a roughly
equal amount of every frequency in the visible region
of the spectrum is perceived as white. Thus a broad
source of white light (whether natural or artificial) is
one for which every point on its surface can be imagined
as sending out, more orless in all directions, a stream
of light of everyvisible frequency, Similarly, a reflecting
surface that accomplishes essentially the same thing will
also appear white: a highly reflecting, frequency-
independent, diffusely scattering objectwill be perceived
as white underwhite light.

Althoughwateris essentially transparent, water vapor
appears white, as does grouud glass. The reason is
simple enough—if the grain size is small but muchlarger
than the wavelengths involved, light will enter each
transparent particle, be reflected and refracted several
times, and emerge. There will be no distinction among
any of the frequency components, so the reflected light
reaching the observerwill be white. This is the mechan-
ism accountable for the whiteness ofthings like sugar,
salt, paper, clouds, talcum powder, snow, and paint,
each grain of which is actually transparent. Similarly, a
wadded-up piece of crumpled clear plastic wrap will
appear whitish, as will an ordinarily transparent
material filled with small air bubbles (e.g., beaten egg
white). Even though we usually think of paper, talcum
powder, and sugar as each consisting of some sort of
opaque white substance, it’s an easy matter to dispel
that misconception. Coyer a printed page with a fewof
these materials (a sheet of white paper, some grains of
sugar, or talcum) and illuminate it from behind. You'll
have little difficulty in seeing through them. In the case
of white paint, one simply suspends colorless trans-
parentparticles, such as the oxides of zinc, titanium, or
lead, in an equally transparent vehicle, for example,
linseed oil or the neweracrylics. Obviously, if the parti-
cles and vehicle have the same index of refraction, there
will not be any reflections at the grain boundaries. The
particles will simply disappear into the conglomeration,

which itself remains clear. In contrast, if the indices are

markedly different, there will be a good deal of reflec.
tion at all wavelengths (Problem 4.42), and the paint
will appear white and opaque[take another look at Eq.
(4.67)]. To color paint one need only dye the particles
so that they absorb all frequencies except the desired
range.

Carrying the logic in the reverse direction, if we
reduce the relative index, 2,;, at the grain or fiber
boundaries, the particles of material will reflect less,
thereby decreasing the overall whiteness of the object.
Consequently, a wet white tissue will have a grayish,
more transparent look. Wet talcum powder loses its
sparkling whiteness, becoming a dull gray, as does wet
white cloth. In the same way, 2 piece of dyed fabric
soaked in a clear liquid (e.g., water, gin, or benzene)
will lose its whitish haze and become much darker, the

colors then being deep andrichlike those of a still-wet
water-color painting.

A diffusely reflecting surface that absorbs somewhat—
uniformly right across the spectrum—will reflect a bit
less than a white surface and so appear mat gray. The
less it reflects, the darker the gray, until it absorbs almost
all the light and appears black. A surface that reflects
perhaps 70% or 80% or more, but does so specularly,
will appear the familiar shiny gray of a typical metal.
Metals possess tremendous numbers of free electrons
(p. 111} that scatter light very eflectively, independent
of frequency: they are not boundto the atoms and have
no associated resonances. Moreover, the amplitudes of
the vibrations are an order of magnitude larger than
they were for the bound electrons. The incidentlight
cannot penetrate into the metal any more thanafraction
of a wavelength or so before it’s canceled completely.
There is little or no refracted light: most of the energy
is reflected out, and only the small remainderis ab-
sorbed. Note that the primary difference between a gray
surface and a mirrored surface is one of diffuse versus

specular reflection. An artist paints a picture of a pol-
ished “white” metal, such as silver or aluminum, by
“reflecting” images of things in the room ontop of a
gray surface.

When the distribution of energy in a beam of light
is not effectively uniform across the spectrum, the light
appears colored. Figure 4.43 depicts typical frequency
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Figure 4.43 Reflection curves for blue, green, and red Pigments.
est are typical, but there is a great deal of possible variation among

the colors.
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distributions for what would be perceived as red, green,
and blue light. These curves show the predominant
frequency regions, but there can be a great deal of
variation in the distributions, and they will still provoke
the responsesof red, green, and bluc.In the early 1800s
Thomas Young showed that a broad range of colors
could be generated by mixing three beams of light,
provided their frequencies were widely separated.
Whenthree such beams combine to produce white light
they are called primary colors. There is no single
uniqueset of these primaries, nor do they have to be
quasimonochromatic. Since a wide range of colors can
be created by mixing red (R), green (G), and blue (B),
these tend to be used most frequently. They are the
three components (emitted by three phosphors) that
generate the whole gamut of hues seen on a color
television set.

Figure 4.44 summarizes the results when beams of
these three primaries are overlapped in a number of
different combinations: Red plus blue is seen as magenta
(M), a reddish purple; blue plus green is seen as gan
(C), a bluish green or turquoise; and perhaps most
surprising, red plus green is seen as yellow CY}. The sum
of all three primaries is white:

R+B+G=W,

M+G=W, since R+B=M,

C+R=W, since B+G=C,

¥+B=W,since R+G=Y.

Any two colors that together produce white are said to
be complementary. andthe last three symbolic state-

Figure 4.44 Three overlap-
ping beams of colored light. A
color television set uses these Red \ Cirken
same three primary light seur-
ces—red, green, and blue. Yallew

White i.
‘ ‘

Mugenta Sy Cyan
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ments exemplify that situation. Now suppose we overlap
a beam of magenta and a beam of yellow:

M+Y=(R+B)+(R+G)=W+R;

the result is a combination of red and white, or pmk.
Thatraises another point: we say a coloris saturated,
that it is deep andintense, whenit does not contain any
white light. As Fig. 4.45 shows, pink is unsaturated
red—tred superimposed on a background of white.

The mechanism responsible for the yellowish red hue
of gold and copperis, in some respects, similar to the
process that causes the sky to appear blue. Putting it
rather succinctly (see Section 8.5 for a further discussion
of scattering in the atmosphere), the molecules of air
have resonances in the ultraviolet and will therefore

be driven into larger-amplitude oscillations as the
frequency of the incident light increases toward the
ultraviolet, Consequently, they will effectively take
energy from and reemit (e., scatter) the blue com-
ponent of sunlight in all directions, transmitting the
complementary red end of the spectrum with little
alteration. This is analogous to the selective reflection
or scattering of yellow-red light that takes place at the
surface of a gold film and the concomitant transmission
of blue-green light. In contradistinction, the charac-
teristic colors of most substances have their origin in
the phenomenon of selective or preferential absorption.
For example, water has a very light green-blue tint
because ofits absorption of red light. That is, che H2O
molecules have a broad resonance in the infrared, which

extends somewhatinto the visible. The absorption isn’t
very strong, so there is no accentuated reflection of red
light at the surface. Instead it is transmitted and
gradually absorbed out until at a depth of about 30m
of sea water, red is almost completely removed from
sunlight. This same process of selective absorption is
responsible for the colors of brown eyes and butterflies,
of birds and bees and cabbages and kings. Indeed the
great majority of objects in nature appear to have
characteristic colors as the result of preferential absorp-
tion by pigment molecules, In contrast with most atoms
and molecules, which have resonancesin the ultraviolet

and infrared, the pigment molecules must obviously
have resonances inthevisible. Yet visible photons have
energies of roughly 1.6eV to 3.2eV, which, as you
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Figure 4.45 Spectral reflection of a pink pigment.

might expect, are on the lowside for ordinary electron
excitation and on the high side for excitation via
molecular vibration. Despite this, there are atoms where
the bound electrons form incomplete shells (gold, for
example) and variations in the configuration of these
shells provide a mode for low-energy excitation. In
addition, there is the large group of organic dye
molecules, which evidently also have resonances in the
visible, All such substances, whether natural or syn-
thetic, consist of long-chain molecules made up of regu-
larly alternating single and double bonds in what ts
called a conjugated system. This structure is typified
by the carotene molecule Cy)Hsg (Fig. 4.46). The
carotenoids range in color fromyellow to red and are
found in carrots, tomatoes, daffodils, dandelions,
autumn leaves, and people. The chlorophylls are
another group of familiar natural pigments, but here
a portion of the long chain is turned aroundonitself
to form a ring. In any event, conjugated systems ofthis
sort contain a number of particularly mobile electrons
knownas #2 electrons. They are not bound to specific
atomic sites but insteacl can range over the relatively
large dimensions of the molecularchain or ring. In the
phraseology of quantum mechanics, we wouldsay that
these are long-wavelength, low-frequency, and there-
fore low-energy, electron states. The energy required
to raise a pi electron to an excited state is accordingly
comparatively low, corresponding to that of visible
photons. In effect, we can imagine the molecule as an
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oscillator having a resonance frequency in the visible.
The energy levels of an individual atom are precisely

defined, that is, the resonances are very sharp. With
solids and liquids, however, the proximity of the atoms
results in a broadening of the energy levels into wide
bands. In other words, the resonances spread over 2
proad range of frequencies. Consequently, we can
expect that a dye will not absorb just a narrow portion
of the spectrum; indeedif it did, it would reflect most
frequencies and appear nearly white.

Imagine @ piece of stained glass with a resonancein
the blue where it strongly absorbs. If you look through
it at a white-light source composed of red, green, and
blue, the glass will absorb blue, passing red and green,
whichis yellow (Fig. 4.47). The glass looks yellow: yellow
doth, paper, dye, paint, and inkall selectively absorb
blue. [f you peer at something that is a pure blue
through a yellow filter, one that passes yellow and
absorbs blue, the object will appear black. Here the filter
colors the light yellow by removing blue, and we speak
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Figure 4.46 The carotene molecule.
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Figure 4.47 Yellow stained glass.

of the process as subtractive coloration, as opposed to
additive coloration, which results from overlapping
beams of light.

In the same way, fibers of a sample of white cloth or
paper are essentially transparent, but when dyed each
fiber behaves as if it were a chip of colored glass. The
incident light penetrates the paper, emerging for the
most part as a reflected beam only after undergoing
numerous reflections and refractions within the dyed
fibers. The exiting light will be colored to the extent
that it lacks the frequency component absorbed by the
dye, This is precisely why a leaf appears green, or a
banana yellow,

A bottle of ordinary blue ink looks blue in either
reflected or transmitted light. But if the ink is painted
on a glass slide and the solvent evaporates, something
rather interesting happens. The concentrated pigment
absorbs se effectively that it preferentially reflects at the
resonant frequency, and we are back to the idea that a
strong absorber (large m;) is a strong reflector. Thus,
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Figure 4.48 Transmission curves for colored filters.
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concentrated blue-green ink reflects red, whereas red.
blue ink reflects green. Try it with a felt marking pen,
but you must use reflected light, being careful not to
inundate the sample with unwantedlight from below,
(Wipe the ink to obtain a thin layer and then place the
slide on a piece of black paper.)

The whole range of colors (including red, green, and
blue) can be produced by passing light throughvarious
combinations of magenta, cyan, and yellowfilters (Fig,
4.48). These are the primary colors of subtractive mix.
ing, the primaries of the paint box, although they are
often mistakenly spoken of as red, blue, and yellow,
They are the basic colors of the dyes used to make
photographs and the inks used to print them. Ideally,
if you mix all the subtractive primaries together(either
by combining paints or by stacking filters), you get no
color, no light—black. Each removes a region of the
spectrum, and together they ahsorbit all.

If the range of frequencies being absorbed spreads
across the visible, the object will appear black. That is
not to say that there is no reflection at all—you obviously
can see a reflected image in a piece of black patent
leather, and a rough black surface reflects also, only
diffusely. If you still have those red andblue inks, mix
them, add some green, andyou'll get black.

In addition to the above processes specilically related
to reflection, refraction, and absorption, there are many
other color-generating mechanisms, which we shall
explore later on. For example, the scarabaeid beetles
mantle themselves in the brilliant colors produced by
diffraction gratings on their wing cases, and wavelength-
dependent interference effects contribute to the color
patterns seen on oil slicks, mother-of-pearl, soap
bubbles, peacocks, and hummingbirds.

 

4.5 THE STOKES TREATMENT OF
REFLECTION AND REFRACTION

A rather elegant and novel wayoflooking atreflection
and transmission at a boundary was developed by the ,
British physicist Sir George Gabriel Stokes (1819-1903).
Since we will often make use of his results in future

chapters, let’s now examine that derivation. Suppose
that we have an incident wave of amplitude Eo; imping-



46

4-5 The Stokes Treatment of Reflection and Refraction 119

 
Figure 4.49 Reflection and refraction via the Stokes treatment.

ing on the planar interface separating two dielectric
media, as in Fig. 4.49(a). As we saw earlier in this
chapter, since r and ¢ are the fractional amplitudes
reflected and transmitted, respectively (where n, = my
and n, = Mg), then Eo, = rEp, and Ey, = t£o,. Again we
are reminded of the fact that Fermat’s principle led to
the principle of reversibility, which implies that the
situation depicted in Fig. 4.49(b), where all the ray
directions are reversed, must alsobe physically possible.
With the one proviso that there be no energydissipation
{no absorption), a wave’s meanderings must be revers-
ible, Equivalently, in the idiom of modern physics one
speaks of itme-reversal invariance, that is, if a process
occurs, the reverse process can also occur. Thus if we
take a hypothetical motion picture of the wave incident
on, reflecting from, andtransmitting throughtheinter-
face, the behavior depicted when the film is run back-
ward must also be physically realizable. Accordingly,
examine Fig. 4.49(c}, where there are nowtwo incident
waves of amplitudes Ey;r and Ey¢. A portion of the
wave whose amplitude is Ey; is both reflected and
transmitted at the interface. Without making any
assumptions, let 7‘ and ¢’ be the amplitude reflection
and transmission coefficients, respectively, for a wave
incident from below (.e., nm; ="e, m=). Con-
sequently, the reflected portion is E;ir', and the trans-
Mitted portion is Epjll’. Similarly, the incoming wave
Whose amplitude is Eo;r splits into segments of ampli-
tude E,;rr and Epo;rt. If the configuration in Fig. 4.49(c)

is to be identical with that in Fig. 4.49(b), then obviously

Eqjtt' + Eoivr = Eo, (4.84)
and

Egitt + Epitr’ = 0. (4.85)

Hence

wt=J]-r (4.86)
and

r=, (4.87)

the latter two equations being known as the Stokes
relations. Actually this discussion calls for a bit more
caution than is usually granted it. It must be pointed
outthatthe amplitude coefficients arefunctionsofthe incident
angles, and therefore the Stokes relations might better
be written as

£(8))t(@2) = 1 - #°(6)) (4.88)
and

r'(62) = —r(91), (4.89}

where 1, sin @, = ng sin 6g. The second equation indi-
cates, by virtue of the minussign, that there is a 180°
phase difference between the waves internally and externally
reflected. It is most important to keep in mind thathere
6, and @are pairs of angles thatare related by way of
Snell’s law. Note as well that we never did say whether
n, was greater or less than mg, so Eqs. (4.88) and (4.89)
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apply in either case. Let’s return for a momentto one
of the Fresnel equations:

- _sin (0, — 6)
7. Sin (8; + 8)

If a ray enters from above, as in Fig. 4.49(a), and we
assume wp > 7, 7, is computed by setting @; = 0, and
6, = 6, (external reflection), the latter being derived
from Snell's law. If, on the other hand, the wave is
incidentat that same angle from below (in this instance
internal reflection}, @; = @, and we again substitute-in
Eg. (4.42), but here @, is not @;, as before. The values
of r, for internal and external reflection ai the same
incident angle are obviously different. Now suppose, in
this case of internal reflection, that 6; = 8). Then 6, =

@,, the ray directions are the reverse of those in the
first situation, and Eq, (4.42) yields

sin (82 oJ 8}

sin (85+ 04)"

[4.42]

7(82) =

Although it may be unnecessary we once again point
out that this is just the negative of what was determined
for 6; = 8, and external reflection, that is,

ri.(9) = —7,(6)).

The use of primed and unprimed symbols to denote
the amplitude coefficients should serve as a reminder
that we are once more dealing with angles related by
Snell's law. In the same way, interchanging @, and 4, in
Eq. (4.43) leads to

r| (85) = —1rq(@}).

The 180° phase difference between each pair of com-
ponents is evident in Fig. 4.25, but do keep in mind
that when 6; = @,, 0, = 0} and vice versa (Problem 4.46).
Beyond @; = @, there is no transmitted wave, Eq. (4.89)
is not applicable, and as we have seen, the phase
difference is no longer 180°.

It is common to conclude that both the parallel and
perpendicular components of the externally reflected
beam change phase by a radians while the internally
reflected beam undergoes no phaseshift at all. By now,
within the particular convention we've established,this
should be recognized as incorrect, or at least almost
obviously [compare Figs. 4.26(a) and 4.27 (a)].

(4.90)

(4.91)
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4.4 PHOTONS AND THE LAWS OF
REFLECTION AND REFRACTION

Suppose that light consists of a stream of photons and
that one such photon strikes the interface between two
dielectric media at an angle @; and is subsequently
transmitted acrossit at an angle @,. We know thatif this
were just one of billions of such quanta in a narrow
laserbeam, it would obediently conformto Snell’s law,
To appreciate this behaviorlet’s examine the dynamics
associated with the odyssey of our single photon. Recall
that

p=hk, | [4.53]

and consequently the incident and transmitted mo-
menta are p;j = kk; and p,= 4k,, respectively. We
assume (without much justification) that although the
material in the vicinity of the interface affects the »
component of momentum, it leaves the x-component
unchanged. Indeed we know experimentally that linear
momentum can be transferred to a medium from a

light beam (see Section 3.3.2), The statement of con-
servation of the component of momentum parallel to
the interface takes the form

Pic = Bix (4.92)
or

fr sin 6; = p, sin @.

If we use Eq. (3.53), this becomes

k, sin @, = k, sin 4,

and hence

lL. 1,

= 6; 732 6,.
Multiplying both sides by ¢/», we have

n; sin 6 = 7, sin @,

which of course is Snell’s law. In exactly the same way,
if the photon reflects off the interface instead of being
transmitted, Eq. (4.92) leads to

k; sin 6, = k, sin 6,,
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nd since Ai = Ay, & = @,. It is interesting to note thata

joe
mi = (4.95)

and so if %& > L, #. > p, Experiments dating back as
far as 1850, to those of Foucault, have shown that when
ni?! the speed of propagation is actually reduced in
the transmitting media, even though the momentum
apparently increases.’

Do keep in mind that we have been dealing with a
yery simple representation that leaves much to be
desired. For example, it says nothing about the atomic
structure of the media or aboutthe probability that a
photon will traverse a given path. Even though this
treatment is obviously simplistic, ic is appealing
pedagogically (see Chapter 13).

 

+ This suggests an increase in the photon's elective mass. See F. R.
Tangherlini, “Qn Snell’s Law and the Gravilational Deflection of
Light.” Am, jf. Phys. 36, 1001 (1968). Take a cautious look at R. A.
Houstoun, “Nature of Light.” f. Opi. Soc, Am. 55, 1186 (1965). 

a4.50 (Photos courtesy Physics, Boston, D. C. Heath & Co.,900.)
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PROBLEMS

4.1 Calculate the transmission angle for a ray incident
in air at 30° on a block of crown glass (n, = 1.52).

4.2" A ray of yellow light from a sodium discharge
lamp falls on the surface of a diamondin air at 45°. If
at that frequency n, = 2.42, compute the angular devi-
ation suffered upon transmission.

4.3 Use Huygens’s construction to create a wavefront.
diagram showing the form a spherical wave will have
after reflection from a planar surface, as in the ripple
tank photos of Fig. 4.50. Drawthe ray diagram as well.

4.4* Given aninterface between water (#, = 1.33)and
glass (n, = 1.50), compute the transmission angle for a
beam incident in the water at 45°. If the transmitted

beam is reyersed so that it impinges on the interface,
show that 6, = 45°.

4.5 A beam of !2-cm planar microwaves strikes the
surface of a dielectric at 45°. If 7, =%, compute (a) the
wavelenptb in the transmitting medium, and (b) the
angle @,.
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4.6* Light of wavelength 600 nmin vacuumenters a
block of glass where nz = 1.5. Compute its wavelength
in the glass. What color would it appear to someone
imbeddedin the plass (see Table 3.2)?

4.7 Figure 4.51 shows a bundleof rays entering and
emerging from a glass disk (a lens}. From the configu-
ration ofthe rays, determinetheshape of the wavefronts
at various points. Draw a diagram in profile.

Figure 4.51

4.8 Make a plot of 6; versus 0, for an air—glass boun-
dary where n,, = 1.5,

4.9 In Fig. 4.52 the wavefrontsin the incident medium
match the fronts in the transmitting medium every-

 
Figure 4.52

 

where on the interface—a concept known as wavefron
continuity, Write expressions for the numberof waves
per unit Jength along the interface in terms of @, and
A, in one case and 6, and A, in the other. Use these to
derive Snell’s law. Do you think Snell’s law applies ty
sound waves? Explain.

4.10* With the previous problem in mind, return to
Eq. (4.19} and take the origin of the coordinate system
in the plane of incidence and ontheinterface (Fig,
4.20). Show that that equation is then equivalent to
equating the x-components of the various propagation
vectors. Show that it is also equivalent to the notion of
wavefront continuity.

4.11* Figure 4.53 depicts a wavefront at AB that sub-
sequently sweeps across the interface, driving atoms
along it, which in turn radiate transmitted wavelets,

Since the refracted wave travels at a speed wv,, assume
the transmitted wavelets also propagate at v,. These
wavelets then overlapand interfere (which is essentially
the Huygens—Fresnel principle) to form the refracted
wave. Showthat the transmitted wavelets will arrive in

phase along DC, provided Snell’s law obtains.

4.12. Making use of the ideas of equal transit times
between corresponding points and the orthogonality of

  
Figure 4.53
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rays and wavefronts, derive the law of reflection and
gnell’s law. The ray diagram of Fig. 4.54 should be
helpful.

 
Figure 4.54

4.13 Starting with Snell’s law, prove that the vector
refraction equation has the form

nik, = nik; = (n, cos 8, — n; cos 6,)ai,,. [4.8]

4.14 Derive a vector expression equivalent to the law
of reflection. As before, let the normal go from the
incident to the transmitting medium, even though it
obviously doesn’t really matter.

4.15 In the case of reflection from a planar surface,
use Fermat’s principle to prove that the incident and
reflected rays share a commonplane with the normal
a,,, namely, the plane of incidence.

4.16" Derive the law of reflection, 6; = 9,, by using
the calculus to minimize the transit time, as required
by Fermat’s principle.

4.17" According to the mathematician Hermann
Schwarz, there is one triangle that can be inscribed
within an acute triangle such that it has a minimal
Perimeter, Using two planar mirrors,a laserbeam, and
Fermat’s principle, explain howyou can shew thatthis
inscribed triangle has its vertices at the points where
the altitudes of the acute triangle intersect its corre-
sponding sides.

Problems 123

4.18 Show analytically that a beam entering a planar
transparent plate, as in Fig. 4.55, emerges parallel to
its initial direction. Derive an expression for the lateral
displacement of the beam. Incidentally, the incoming
and outgoing rays would be parallel even for a stack of
plates of different material.

  
Figure 4.45 (Source unknown.)

4.19" Show that the two rays that enter the system in
Fig. 4.56 parallel to each other emerge from it being
parallel.

 
Figure 4.56

4.20 Discuss the results of Problem 4.18 in the light
of Fermat’s principle, that is, how does the relative index
Mo, affect things? To see the lateral displacement, look
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at a broad source through a thick piece of glass (=
inch) or a stack (four will do} of microscope slides held
at an angle. There will be an obvious shift between the
region of the source seen directly and the region viewed
through the glass.

4.21 Suppose a lightwave that is linearly polarized
in the plane of incidence impinges at 30° on a crown-
glass (n, = 1.52} plate in air. Compute the appropriate
amplitude reflection and transmission coeMcientsat the
interface. Compare your results with Fig. 4.22.

4.22. Showthat even inthe nonstatic case the tangential
componentof the electric held intensity E is continuous
across an interface. [Hint: using Fig. 4.57 and Eq. (3.5),
shrink sides FB and CD, thereby letting the area
bounded go to zero.]

£y Ey

Ea.

Figure 4.57

4.23 Derive Eqs. (4.42) through (4.45) for m1, 74, t1,
and ty.

4,24 Prove that

itr crj=l {4.49}

for all @,, first from the boundary conditions and then
from the Fresnel] equations.

51

4,25* Verify that

htrterj=1 [4.49}

for # = 30° at a crownglass and air interface {n,, =
1,52).

4.26* Calculate the critical angle beyond which there
is total internal reflection at an air—glass (a, = 1.5) inter.
face. Compare this result with that of Problem 4.8.

4.27 Derive an expression for the speed of the evanes.
cent wave in the case of internal reflection. Wniteit in
terms of ¢, n;, and @,,

4.28 Light having a vacuum wavelength of 600 nn,
traveling in a glass (2, = 1.50) block, is incident at 45°
on a glass—air interface. It is then totally internally
reflected. Determinethe distance into the air at which

the amplitude of the evanescent wave has droppedto
a value of 1/e of its maximumvalue at the interface.

4.29 Figure 4.58 shows a laserbeam incident on a wet
piece of filter paper atop a sheet of glass whose index
of refraction is to be measured—the photograph shows
the resulting light pattern, Explain what is happening
and derive an expression for n; in terms of R and d.

4.30 Consider the common mirage associated with an
inhomogeneous distribution of air situated above a
warm roadway. Envision the bending of the rays as if
it were instead a problem in total internal reflection. If
an observer, at whose head nx, = 1.00029, sees an
apparent wet spot at 6; = 88.7° down the road, find the
index of the air immediately ahove the read.

4.31% Use the Fresnel equations to prove that light
incidentat 9, =i — 6, results in a reflected beamthat
is indeed polarized.

4.32 Show thattan ¢, = n,/n,; and calculate the polariz-
ation angle for external incidence on a plate of crown
glass (n, = 1.52) in air.

4.33* Beginning with Eq. (4.38), show that for
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media, in

ye?
two dielectric

feteitts — Cresdie (Ege — Expt)
general tan #, =

4.34 Show that the polarization angles for internal
and external reflection at a given interface are com-
plementary, thatis, 6, + 0; = 90° (see Problem 4.32).

4.35  Itis often useful to work with the azimuthal angle
y, which is defined as the angle betweenthe plane of
vibration and the plane of incidence. Thus for linearly
polarizedlight,

tan ¥ = [Eo]. /[2oi]) (4,94)

tan ¥, = [Eo Ji/LEo.)) (4.95)
and

tan y¥, = [Eo,)/[Eor])- (4.96)

Figure 4.59 is a plot of y, versus @, for internal and
external reflection at an air—glass interface (n,, = 1.51),
where y, = 45°, Verify a few of the points on the curves
and in addition showthat

_cos (9, — 4)t =
ls cos (8; + 6) fan ¥;. (4.97)

Problems 125

My

Air Glass

Figure 4.58 (Photo and diagram cour-
tesy 5. Reich, The Weizmann Institute
of Saence, Israel.)

eeoe

 
4.36" Making use of the definitions of the azimuthal
angles in Problem 4.35, show that

R= R, cos" y¥,+ R, sin? ¥; (4.98)
and

T = Tycos* y;, + T, sin® y,. (4.99)

4.37 Make a sketch of R, and R, for n, = 1.5 and
n, = I (Le., internal reflection).

 

i

t Internal reflection

 
 

0 10 20 30 40 50 60 TO 30 90

0, degrees)

Figure 4.59
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4.38 Show that

sin 26; sin 26,1) °*SSSe 4.
I" sin? (8; + 8,) cos® (6 — 8,) a

and

sin 29; sin 28,2S .
+” sin* (8; + 6.) bac

4.39" Using the results of Problem 4.38, that is, Eqs.
(4.100) and (4.101), show that

Ry t+ Ty =1 [4.65}
and

R,t+TL,=1. {4,66}

4.40 Suppose that we look at a source perpendicularly
through a stack of N microscope slides. The source
seen through even a dozen slides will be noticeably
darker. Assuming negligible absorption, show that the
total transmittance of the stack is given by

T,=(1~ Ry"

and evaluate T, for three slides in air.

4.41 Making use of the expression

IQ) = Ihe? [478)

for an absorbing medium, we define a quantity called
the unit transmittance T,. At normal incidence (4.55)
T = 4,/2,,andthuswhen y = 1, T, = I(1)/Io. lfthe total
thickness of the slides in the previous problem is d and
if they now have a transmittance per unit length T;,
show that

T =(-RP(T)*

4.42 Showthatat normal incidence on the boundary
between two dielectrics, as n, 2 1, R70, and T= 1.

Moreover, provethat as n, > 1, Ry > 0, R, > 0, T) > 1,
and 7, ~ 1 for all 6,. Thus as the two media take on
more similar indices of refraction, less and less energy
is carried off in the reflected wave. It should be obvious

that when n, =1 there will be no interface and ne
reflection.

4.43* Derive the expressions for 7, and 7 given by
Eqs. (4.70) and (4.71).

4.44 Showthat when @, > 6, at a dielectric interface
r, and r, are complex and ryrft = yrf = 1.

4.45 Figure 4.60 depicts a ray being multiply reflecteg
by a transparentdielectric plate (the amplitudes of the
resulting fragments are indicated). As in Section 4,5
we use the primed coefficient notation, because the
angles are related by Snell’s law.

a) Finish labeling the amplitudes of the last four Tays,
b) Show, using the Fresnel equations, that

ity = Fy (4.103)

t= T, (4,103)

r= r= (4.104)
and

r=r?=R,. (4.105)

 
Figure 4.60

4.46* A wave, linearly polarized in the plane of
incidence, impinges on the interface between two
dielectric media. If 7; > 7, and 6; = 04, there is no
reflected wave, that is, rj(@,) = 0. Using Stokes’s tech-
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nique, start from scratch to show that ¢(6,)¢\(8,) = 1,
ry(Op) = 9 and 6, = 64, (Problem 4.34). How does this
vrmpare with Eq. (4.102)?

4.47 Making useof the Fresnel equations, showthat
t (8,448) = 1, as in the previous problem.

4.48 Figure 4.61 depicts a glass cube surrounded by
four glass prisms in very close proximity to its sides.
Sketch in the paths that will be taken by the two rays
shown and discuss a possible application for the device.

Figure 4.61

4.49 Figure 4.62 is a plot of m, and mp versus A fora
common metal. Identify the metal by comparing its
characteristics with those considered in the chapter and
discuss its optical properties.

4.50 Figure 4.63 shows a prism-coupler arrangement
developed at the Bell Telephone Laboratories. Its func-
tion is to feed a laserbeam into a thin (0.00001-inch)
transparent film, which then serves as a sort of
waveguide. One application is that of thin-film laser-
beam circuitry—a kind of integrated optics. How do
you think it works?

Problems 127
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GEOMETRICAL
OPTICS—PARAXIAL

=== THEORY

 

5.1 INTRODUCTORY REMARKS

Suppose we have an object thatis either self-luminous
or externally illuminated, and imagine its surface as
consisting of a large number of point sources. Each of
these emits spherical waves, that is, rays emanateradially
in the direction of energy flow or, if you like, in the
direction of the Poynting vector (Fig. 4.1). Inthis case,
the rays diverge from a given point source 5, whereas
if the spherical wave were collapsing to a point, the rays
would of course be converging. Generally one deals only
with a small portion of a wavefront. A point from which
a portion of a spherical wave diverges, or one toward which
ihe wave segment converges, is known as a focal peini of the
bundle of rays.

Now envision the situation in which we have a point
source in the vicinity of some arrangementofreflecting
and refracting surfaces representing an optical system.
Of the infinity of rays emanating from 5, generally
speaking, only one will pass throughan arbitrary point
in space. Evenso, it is possible to arrange for an infinite
number of rays to arrive at a certain point P, as in Fig.
5.1, Thus, if for a cone of rays coming from $ thereis
a corresponding cone of rays passing through P, the
system is said to be stigmatic for these two points. The
energy in the cone(apart from some inadvertentlosses
due to reflection, scattering, and absorption) reachesP,
which is then referred to as a perfect image of 5. The
wave could conceivably arrive to form a hnite patch of
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light, or blur spot, about P; it would still be an image of
S but no longer a periect one.

It follows from the principle of reversibility (see Sec-
tion 4.2.4) that a point source placed at P would be
equally well imaged at S, and accordingly the two are
spoken of as conjugate points. In an ideal optical system
every point of a three-dimensional region will be per-
fectly (or stigrnatically) imaged im another region, the
former being the object space, the latter the image space.

Most commonly, the function of an optical device is
to collect and reshape a portion of the incident wave-
front, often with the ultimate purpose of forming an
image of an object. Notice that inherent in realizable
systems is the limitation of being unable to collectall
the emitted light; the system accepts only a segment of
the wavefront. As a result, there will always be an

Object

Optical
system

Figure 5.1 Converging and diverging waves.
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ec- Figure 5.2 Reshaping a spherical wave at a refracting interface
be {n, < fg).

a apparent deviation from rectilinear propagation even
ve in homogeneous media—the waves will be diffracted.
a The attainable degree of perfection in the imaging

capability of a real optical system will therefore be
diffraction-limited (there will always be a blur spot). As
the wavelength of the radiant energy decreases in com-
parison to the physical dimensionsof the optical system,
the effects of diffraction becomeless significant. In the
Conceptual limit as A,>O, rectilinear propagation
obtains in homogeneous media, and we have theideal-
ged domain of geometrical optics.* Behavior that is
pecifically attributable to the wave natureoflight (e.g.,
ferference anddiffraction) would no longerbe observ-
i€. There are many situations in which the great

Simplicity arising from the approximation of geo-
metrical optics more than compensates for its inac-

‘fUracies. In short, the subject treats the controlled manipula-
on of wavefronts (or rays) by means of the interpositioning

afaeand/or refracting bodies, neglecting any diffrac-effects, ’

 

 
 

  
, Ce optics deals with situations in which the nonzero wavelength
ae be reckoned with. Analogously, when the de Broglie
uke of a Material object is negligible, we have classicalCun che seas

ha i when it is not, we have the domain of quantum mechanicspler 13),
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Figure 5.3. The Cartesian oval.

5.2 Lenses 129

§.2 LENSES

No doubt the mest widely used optical device is the
lens, and that notwithstanding the fact that we see the
world through a pair of them. Lenses date back to the
burning glasses of antiquity, and indeed who can say
when people first peered throughtheliquid lens formed
by a droplet of water?

As aninitial step toward an understanding of what
lenses do and how they manageto doit, let’s examine
what happens when light impinges on the curved sur-
face of a transparent dielectric medium.

§.2.1 Refraction at Aspherical Surfaces

Imagine that we have a point source 5 whose spherical
waves arrive at a boundary between two transparent
media, as shownin Fig. 5.2. We would like to determine
the shape that the interface must have for the wave
traveling within the second medium to converge at a
point P, there forming a perfect image of S. Practical
reasons for wanting to focus a diverging wave toa point
will become evident as we proceed.

The time it takes for each and every portion of a
wavefront leaving S to converge at P must be identical,
if a perfect image is to be formed—that much was
implied by Huygens in 1678. Or as we saw in Section

te

    
 



57

130

4.2.3, the distance between corresponding points on
any and all rays will be traversed in that same time.
Another way to say essentially the same thing fram the
perspective of Fermat’s principleis that if a great many
different rays are to go from S to P (i.e., if point A in
Fig. 5.3 can be anywhere on the interface), each ray
must traverse the same optical path length. Thus, for
example, if S is in a medium of index n, and P is in
an optically more dense medium of index no,

&,ny + Eng = sry + 5:%, (1)

where s, and s; are the object and image distances
measured from the vertex or pole V, respectively. Once
we choose 5, and s,, the right-handside of this equation
becomes fixed, and so

fn, + &ne = constant. (5.2)

This is the equation of a Cartesian oval whose sig-
nificance in optics was studied extensively by René
Descartes in the early 1600s (Problem 5.1). Hence, when
the boundary between two media has the shape of a
Cartesian aval of revolution about the SP, or optical

Figure 5.4 Ellipsoidal and hyperboloidal refracting surfaces {ng > 1). 
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axis, S and P will be conjugate points, that is, a point
source at either location will be perfectly imaged atthe
other. What's actually occurring physically is rathereasy
te comprehend. Since mg > n,, those regions of the
wavefront traveling in the optically more dense mediu,
move slower than those regions traversing the rare;
material. Consequently, as the wave begins to pass
throughthe vertex of the oval, the segment immediate}
about the optical axis is slowed down from ¢/1) to e/ny,
Regions of the same wavefront remote from the axis
are still in the first medium traveling with a greate;
speed, c/n,. Thus the wavefronts bend, and if the boun.
dary is properly configured (in the formof a Cartesian
ovoid), the wavefronts will be inverted from diverging
to converging spherical segments.

In addition to focusing a spherical wave, we would
like to be able to perform a few other reshaping
operations using refracting interfaces; some of these
are illustrated in Fig. 5.4. We shall consider them only
briefly and more for pedagogical than practical reasang
The surfaces in Fig. 5.4(a) and (b) are ellipsoidal
whereas those in (c) and (d) are hyperboloidal. Notice

!
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that in alll cases, the rays either diverge from or converge
toward the foci. The arrowheads have been omitted to
indicate that the rays can go either way. In other words,
an incident plane wave will converge to the farthest
focus of an ellipsoid Just as a spherical wave emitted
from that focus will emerge as a plane wave. Further-
more, as you might expect,if we let the point S in Fig.
5.2 move out to infinity, the ovoid would gradually
metamorphoseinto anellipsoid.
” gather than deriving expressions for these surfaces,

 
 
 
 

  
 

7 let's just justify the above remarks. To that end, examine
J Fig. 5.5; whichrelates back to Fig. 5.4(a). The optical
. path lengths from any point D on the planar wavefront
‘ ¥ to the focus F, must all be equal to the same constant
% C, thatis,
ld (F\A)ne + (AD)n, = C
1g

<é or _
ily (FA) + (ADny= C/ng. (5.3)

al To see that this relationship is indeed satished by an
a ellipsoid of revolution, recall that if & corresponds to

 

 the directrix of the ellipse, (F,A) = e(AD), where¢is
the eccentricity. Thus if ¢ = m2, the left-hand side of
ia. (5.3) becomes (FA) + (F,A), whichis certainly con-
sant for an ellipse. Here the eccentricity is less than 1
{¢€=7,/n2) and it is left for Problem 5.2 to showthat
hadit been greater than ] (i.e., 2; > ng), the curve would
have been a hyperbola instead [compare(a) with (c) and
(b) with (d) in Fig. 5.4], If all this brings back memories
of analytic geometry, you might keep in mindthatthat
subject was originated by Descartes. Interestingly,it was
Kepler who first (1611) suggested using conic sections

Fimirrors and lenses.

The knowledge we have at hand now may beused
Sonstruct lenses such that both the object and image
Matscan be in the same medium, which is usually air.

First such device to be considered [Fig. 5.6{a)] is a
‘fonvex hyperbolic lens, which utilizes the response
serized in Fig. 5.4(c). A diverging spherical wave
'y ear after traversing the first hyperbolic

‘oe then spherically converging on leaving the
ely, if the second surface is made planar
s ave a hyperbolic planar convex lens, as in Fig.

~ blane waves within the lens will strike the
~*“ perpendicularly and emerge unaltered.
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Figure 5.5 Geometry of an ellipsoid. =

Another arrangement that will convert diverging
spherical waves into plane waves is illustrated in Fig.
5.6(c). This is a sphero-ellipiic convex lens, where F, is
simultaneously at the center of the spherical surface
and at the focus of the ellipsoid. Rays from F; strike
the first surface perpendicularly and are therefore
undeviated byit. Asin Fig. 5.4(a), the exiting wavefronts
are planar. All the elements thus far examined have
been thicker at their midpoints than at their edges and
are for that reason said to be convex (from the Latin
convexus, meaning arched). In contrast, the planar Ayper-
balic concave lens (from the Latin concawus, meaning
hollow, and easily remembered because it contains the
word cave) is thinner at the middle than at the edges,
as is evident in Fig. 5.6(d). A numberof other arrange-
ments are possible, and a few will be considered in the
problems(5.3). Note that each of these lenses will work
just as well in reverse: the waves shown emerging can
instead be thought of as entering from the right.

If a point source is positioned on the optical axis at
the point F, of the lens in Fig. 5.6(a), rays will converge
to the conjugate point F,. A luminous image of the
source would appear on a screen placed at F,, an image
that is therefore said to be real. On the other hand, in

Fig. 5.6(d) the point source is at mfinity, and the rays
emerging from the system this time are diverging. They
appearto comefrom a point Fg, but no actual luminous
image would appearona screen at that location. The
image here is spoken of as virtual, as is the familiar
image generated by a plane mirror.

Optical elements {lenses and mirrors) of the sort we
have talked about, with one or both surfaces neither
planar nor spherical, are referred to as aspherics.
Althoughtheir operation is easy to understand and they
perform certain tasks exceedingly well, they are still
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fe)

difficult to manufacture with great accuracy. Nonethe-
less, where the costs are justifiable or the required
precision is not restrictive or the volume produced is
large enough, aspherics are being used extensively and
will surely have an increasingly importantrole. The first
quality glass aspheric to be manufacturedin great quan-
tities (tens of millions) was a lens for the Kodak disk

camera (1982). And the small-scale production of
diffraction-limited melded-glass aspheric lenses has
been reported in recenttimes. Today aspherical lenses
are frequently used as an elegant means of correcting
imaging errors in complicated optical systems.

A new generation of computer-controlled machines,
aspheric generators, is producing elements with toler-
ances (.¢e.; departures from the desired surface) of
better than 0.5 pm (0.000020 inch). This is stil] about
a factor of 10 away from the generally required toler-
ance of A/4 for quality optics, but that will surely come
in time. Nowadays aspherics made in plastic ana glass
can be foundin all kinds of instruments across the whole

range of quality, including telescopes, projectors,
cameras, and reconnaissance devices.

Figure 5.6 (a) A double hyperbolic lens, (b) A hyperbolic planar
convex lens. {¢) A sphero-elliptic lens. (d) A planar hyperbolic lens.
(e) Photo courtesy Melles Griot.

5.2.2 Refraction at Spherical Surfaces

Imagine that we have two pieces of material, one with
a concave and the other a convex spherical surface, both
having the same radius. It is a unique property of the
sphere that such pieces will fit together in intimate
contact regardless of their mutual orientation. Thusif
we take two roughly spherical objects of suitable cur-

 
Figure 5.7 Polishing a sphericallens. (Phota courtesy Optical Society
of America.)
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yature, one a grinding tool and the othera disk of glass,
separate them with some abrasive, and then randomly
move them with respect to each other, we can anticipate
that any high spots on either object will wear away. As
they wear, both pieces will gradually become more
spherical (Fig. 5.7). Such surfaces are now commonly
generated in batches by automatic grinding and polish-
ing machines. In contrast, high-quality aspherical
shapes require considerably more effort to produce.

It should therefore come as no surprise that the vast
majority of quality lenses in use today have spherical
surfaces. Our intent here is to establish techniques for
using such surfaces whereby a great many object points
can besatisfactorily imaged simultaneouslyin light cam-
posed of a broad frequency range. Image errors, known
as aberrations, will occur, but it is possihle with the
present technology to construct high-quality spherical
lens systems whose aberrations are so wel! controlled
that image fidelity is limited only by diffraction.

Now that we know whyand where we are going,Iet’s
move on. Figure 5.8 depicts a wave from the point
source § impinging on a spherical interface of radius
R centered at C. The ray (SA)will be refracted at the
interface toward the local normal (n. > nj) and there-
fore toward the optical axis. Assume that at some point
P it will cross the axis, as will all other rays incident at
thesame angle 6; (Fig. 5.9). Fermat’s principle maintains
that the optical path length (OPL) will bestationary,
thatis, its derivative with respectto the positionvariable
will be zero. For the ray in question,

(OPL) = 2,6, + nod. (5.4)

sing the law of cosines in triangles SAC and ACP
along with the fact that cos ¢=—cos (180 — ¢), we get

#, =(R? + (5, + RJ’ —2R(s, + R) cos g]!”
ik

G=[R* + (5, — R)? + 2R(s, — R)cos p}!”.
ME OPL can be rewritten as

+ nz[R* + (5, — R)? + 2R(5, — R) cos o]*.

entities in the diagram (5,,5,, 8, etc.) are
nition “a and these form the basis of a sign

Wich is gradually unfolding and to which 
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Ay Gk)

Figure 5.8 Refraction at a spherical interface.

weshall return time and again (see Table 5.1). Inasmuch
as the point A moves at the end of a fixed radius (i.e.,
R = constant), ¢ is the position variable, and thussetting
a4(OPL)/dg = 0, via Fermat’s principle we have

a R(s, + Rj simpne R(s, — R) ane,
2e, 24 ,

from whichit follows that

mh Tis 1
z (5.4)e (28-28R\ &é;

This is the relationship that must hold among the para-
meters for a ray going from 5 to P by way of refraction
at the spherical interface. Although this expression is
exact, it is rather complicated. We already know thatif
A is moved to a new location by changing @, the new
ray will not intercept the optical axis at P—this is not a

 
Figure 5.9 Rays incident at the same angle.
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Table 5.1 Sign conventionfor spherical refracting surfaces and thin
lenses* (light entering fromtheleft).Sr

Sos bo + left of V
% + left af F,
Sia fi + right of ¥
x + right of F,
R +if C is right of V
For K + above optical axis

* This table anticipates the imminent introduction of a few quantities not yet
spoken of.

Cartesian oval. The approximations tbat are used, to
represent ¢ and é, and therebysimplify Eq. (5.5), are
crucial in all that is to follow. Recall that

2 4 6
e 9 ¢

§ =)]-—4+-—-—-—+H+ se: $6
cosg =] or al bl (5.6)

and
8 5 7

e ¢ ¢
= ae tara tH tz—"e ‘ae

= 31 6t 7! oP

If we assurne small values of @ (ie., A close to V),
cos p = 1. Consequently, the expressions for ¢, and 4;
yield ¢, + 5,,  ** s;, and to that approximation

My 4 Re
Rtg ~My

iaa 5.8)

We could have begun this derivation with Snell’s law
rather than Fermat’s principle (Problem 5.4), in which
case small values of ¢ would haveled to sin ¢ ~ @ and
Eq. (5.8) once again. This approximation delineates the
domain of whatis called first-order iheory—we'll exam-
mine third-order theory (sin ¢ = » — »°/31) in the next
chapter. Rays that arrive at shallow angles with respect
to the optical axis (such that @ and & are appropriately
small) are known as paraxial rays. The emerging wave-
front segment corresponding to these paraxial rays is essentially
spherical and will form a “perfect” image at its center P
located al s;, Notice that Eq. (5.8) is independent of the
location of A over a small area about the symmetryaxis,
namely, the paraxial region. Gauss, in 1841, was the first
to give a systematic exposition of the formation of
images under the above approximation, andtheresult

is variously known as first-order, perexial, or Gaussian
Optics. It soon became the basic theoretical tool by which
lenses would be designed for several decades to come,
If the optical system is well corrected, an incident
spherical wave will emerge in a form very closely resem.
bling a spherical wave. Consequently, as the perfection
of the systemincreases, it more closely approachesfirst-
ordertheory. Deviations from that of paraxial analysis
will provide a convenient measure of the quality of an
actual optical device.

If the point F, in Fig. 5.10 is imaged at infinity
(3, = 0}, we have

Ry My No fy— +- Se
4, © Rg,

That special object distance is defined as the first focal
length or the object focal length, s, = J, so that

on
£e=— eR &.9)Tho — Fy

The point F, is known asthe first or ebject focus. Similarly
the second or image focus is the axial point F,, where the
image is formed when s, = ©, that is,

_ fig7 hyThy i.
iy, Bie
oO ss R

 
Figure §.10 Plane waves propagating heyond a spherical interface-— ,
the object focus.
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Figure 5.11 The reshaping of plane into spherical waves at a
spherical interface—the image focus.

Defining thé second or image focal length f, as equalto 5;
inthis special case (Fig. 5.11), we have

f=ei.R. (6.10)Mg — My

Recall that an imageis virtual whenthe rays diverge
‘from it (Fig. 5.12). Analogously, an objeet is virtual when
thérays converge toward it (Fig. 5.13). Observe that the
virtual object is now on the right-handsideof the vertex,
and therefores, will be a negative quantity. Moreover,
the surface is concave, and its radius will also be nega-
tive, as required by Eq. (5.9), since f, would be negative.
Ii the same way the virtual image distance appearing
totheleft of V is negative.
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Figure 5.13. A virtual object point.

5.2.3 Thin Lenses

Lenses are made in a wide range of forms; for example,
there are acoustic and microwave lenses; some of the
latter are madeof glass or wax in easily recognizable
shapes, whereas others are far more subtle in appear-
ance (Fig. 5.14}, In the traditional sense, a2 lens is an
optical system consisting of two or more refracting inierfaces,
al least one of which is curved. Generally the nonplanar
surfaces are centered on a commonaxis. These surfaces

are most frequently spherical segments and are often
coated with thin dielectric films to control their trans-

mission properties (see Section 9.9). A lens that consists
of one element(ié., it has only two refracting surfaces)
is a simple lens. The presence of more than one element
makes it a compound lens. A lens is also classified as to
whetherit is dhin or thick, that is, whether its thickness
is effectively negligible or not. We will limit ourselves,
for the most part, to centered systems (for which all sur-
faces are rotationally symmetric about a common axis)
of spherical surfaces. Under these restrictions, the
simple lens can take the diverse forms shownin Fig.
5.15. Lenses that are variously known as convex, converg-
ing, or positive are thicker at the center and so tend to
decrease the radius of curvature of the wavefronts-In

other words, the wave converges more as it traverses
the lens, assuming, of course, that the index of the lens
is greater than that of the media in whichit is immersed.
Concave, diverging, or negative lenses, on the other hand,
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Figure 5.14 A lens for short-wavelength radiowaves. The disks serve
to refract these waves much as rows of atoms refract light. (Photo
courtesy Optical Society of America.)

are thinner at the center and tend to advance that

portion of the wavefront, causing it to diverge more
then it did upon entry.

In the broadest sense, a lens is a refracting device that
is used to reshape wavefronts tn a controlled manner.
Although this is usually done by passing the wave
through at least one specially shaped interface separat-
ing two different homogeneous media,it is not the only
approach available. For example, it is also possible to
reconfigure a wavefront by passing it through an
inhomogeneous medium. A gradieni-index, or GRIN,
lens is one where the desired effect is accomplished by
using a medium in which the index of refraction varies
in a prescribed fashion. Different portions of the wave
propagateat different speeds, and the front changes
shapeasit progresses. In the commercial GRIN material
(available only since 1976) the index varies radially,
decreasing parabolically out from the central axis.
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Figure 5.15 Cross sections of
yarious centered spherical simple
lenses. The surface on the Jeft is
#1 since it is encountered first.Its

radius is R,. (Photo courtesy of
Melles Griot.)

CONVEX CONCAVE

R,>0 R,=0
RZ <0 &>0

Scents|Birconcave_|
Ry, =a |) AR, =o
A,<0 A,>O

Planar canvex ae
Planac concave  

R,>0 R,>0
+ Rp>0 R,>0

Meniscus MeniscusCOnvVes concave

{a)
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GRINlenses are still fabricated in quantity only
formof small-diameter, parallel, flat-faced rods.

grouped together in large arrays, they have
Med extensively in such equipment as facsimile

nd compact copiers. There are other uncon-
enses, including the holographic lens and

in the
psuall
heen 4
machines @

tional | ;
a the gravitational lens (where, for example, theev

ity of a galaxy bendslight passing in its vicinity,
en by forming multiple images of distant celestial
ae such as quasars). We shall focus ourattention
EO remainder of this chapter on the moretraditional
2 E of lenses, even thoughyou are actually reading
fee words through a GRIN lens (p.179).

fi Thin-Lens Equations
Return for a momentto the discussion of refraction at
a single spherical interface, where the location of the
conjugate points S and P ts given by

Ry Me Me My 5
So 3 R ay

When s, is large for a fixed (ng — )/R, s; is relatively
small. As s, decreases, s; moves away from the vertex,
that is, both @; and @, increase until finally 5s, = f, and
5 =o. At that point, m/s, = (n2e—2,)/R, so that if s,
gets any smaller, s, will have to be negative, if Eq. (5.8)
isto hold. In other words, the image becomesvirtual
(Fig. 5.16). Let’s now locate the conjugate points for
the lens of index », surrounded by a medium of index
fm, as in Fig. 5.17, where anotherend has simply been
ground onthe piece in Fig, 5.16(c). This certainly isn’t
the most generalset of circumstances, butit is the most
common, and even more cogently, it is the simplest.*
We knowfrom Eq. (5.8) that the paraxial rays issuing
from S$ at 5, will meet at P', a distance, which we now
Gill s;,, from V,, given by

Ban pH RAT My
Sor Fi R,

US as far as the second surface is concerned,it “sees”
Scoming towardit from P’, which servesasits object

G.i1)

  

Jenkins and White, Fundamentels ofOptics, p. 57, fora derivation
Ming three different indices.
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Figure 5.16 Refraction at a spherical interface.

point a distance s,, away. Furthermore,the rays arriving
at that second surface are in the medium of index ny.
Thus, the object space for the second interface that
contains P’ has an index n,. Note that the rays from P’
to that surface are indeed straight lines. Considering
the fact that

Seal = [sil + d,

sINCce 3,9 is on the left and therefore positive, 5,9 = |5,0|,
and s,, is also on the left and therefore negative, —s,, =
|sii|, we have

Soo = 53) + d, (5.12)

Thus at the second surface Eq. (5.8) yields

—si.4 teei
(-Si td) S29 Re

 
, (5.19)
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fa)

Figure 5.17 A spherical lens. (a) Refraction at the interfaces. The
radius drawn from C, is normal to the first surface, and as the ray
enters the lens it bends down toward that normal. The radius trom

Here n, > 7,, and Rs < 0, so that che right-handsideis
positive. Adding Eqs, (5.11) and (5.13), we have

Th Thin 1 1 nadMoy 72 =(ny~ n,,)(—-—) +—“*_.Sol Si (ms na)( x (Si. — 2)5;
(5.14)

If the lens is thin enough {d > 0), the last term on the
Tight is effectively zero. As a further simplification,
assume the surrounding medium tobeair (i.€., 7,, ~ 1).
Accordingly, we have the very useful thin-lens equa-
tion, often referred to as the lensmaker’s formula:

1 ete @-n(F-Z), (5.15)XO R, Rs

where welet s,; = s, and sj. = s;. The points V; and V2
tend to coalesce as d+, so that s, and s, can be
measured fromeither the vertices or the lens center.

Just as in the case of the single spherical surface, if
$, is moved outto infinity, the image distance becomes
the focal length f,, or symbolically,

lim s; = fi.yee

Similarly

hm s, = f-sy roe

 
Cy is normal to the second surface; and as the ray emerges, since
n, > n,, the ray bends down away from that normal. (b) The geometry.

It is evident from Eq. (5.15} that for a thin lens f = f,,
and consequently we drop the subscripts altogether.
Thus

1 1 1

fm n(}--F) (5.16)
and

1,il1 af
Ce ©.

which is the famous Gaussian lens formula. As an

example of howthese expressions might be used, let’s
compute the focal length in air of a thin planar-convex
lens having a radiusof curvature of 50 mm andanindex
of 1.5, With light entering on the planar surface (R, =
00, Ry = —50),

1 -as—-p(t-L+= a5- (2-2),
whereas if instead it arrives at the curved surface (R, =
+50, Ry = «),

I 1 1

teos-ufeh-d).
and in either case f = 100 mm. If an objectis alternately
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placed at distances 600 mm, 200 mm, 150 mm, 100 mm,
and 50 mm from thelens on either side, we can find
the image points from Eq.(5.17). Hence

Lil 1

600 5 100

and s; = 120mm. Similarly, the other image distances
are 200 mm, 300 mm, 9%, and —100 mm,respectively,
Interestingly enough, when s,=0, 5 =f; as 5,
decreases, 5; increases positively until 5, =f and s; is
negative thereafter. You can qualitatively check this out
with a simple convex lens and a small electric light—the
high-intensity variety that uses auto lamps is probably
the most convenient. Standing as far as you can from
the source, project a clear image of it onto a white sheet
of paper. You should be able to sce the lamp quite
dearly and not just as a blur. That image distance
approximates f. Now movethelens in toward S, adjust-
ing 4 to produce a clear image.It will surely increase.
As s, > f,a clear imageof the filament can be projected,

$e

Bid)
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but only on an increasingly distant screen. For s, < f,
there will just be a blur where the farthest wail intersects
the diverging cone of rays—the imageis virtual.

i) Focal Points and Planes

Figure 5.18 summarizes pictorially some of the situ-
ations described analytically by Eq. 5.16. Observe that
if a lens of index nm, is ina medium of index »,,,

1 1 1f (fim — D(z - x) . (5.18)
The focal lengths in (a) and (b) of Fig. 5.18 are equal,
because the same medium exists on either side of the

lens. Since nm, > n,,, it follows that m,, > I. In both cases
R, > 0 and &, < 0, so that eachfocal length is positive.
We have a real object in (a) and a real image in (b). In
(c), 2 < 7,,, and consequently f is negative. In (d) and
(e), ty, > 1 but RK, <0, whereas Ry > 0, so f is again
negative, and the object in one case and the image in

 

| Figure 5.18 Focal lengths for converging and
diverging lenses,
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the other are virtual. The last situation SHOWS 7m <1,
yielding an f>o.Notice that in eact instance it is particularly con-
venient to draw 4 ray through the center of the lens,
which, because it is perpendicular to both surfaces, is
undeviated. Suppose, however,that an off-axis paraxial
ray emerges from the lens parallelto its incident direc-tion, as in Fig. 4.19, We maintain that all such rays will
pass through the point defined as the optical center of
the lens O. To see this, draw two parallel planes, oneon each side tangent to the lens at any pair of points A
and B, This can easily be done by selecting A and B
such that the radii “AC, and BC, are themselves parallel.It ig to be shown that the paraxial ray traversing AB
enters and leaves the lens in
evident from the diagram that triangles AOC,

the same direction. Ie is
and

  

 
Figure 5.19 The optical center of a lens. (Photo by E.H.}
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Figure 5.20 Focusing of several ray bundles.
BOC,aresimilar,in the geometric sense, and therefore.
their_sides are proportional. Hence, |R,\(OC.)=
|Rel(OC,), and since the radii are constant, the location
of O is constant, independent of A and B. As we saw
earlier (Problem 4.19 and Fig. 4.55), a ray traversinga
medium bounded by parallel planes will be displaced:laterally but will suffer no angular deviation. This dia
placementis proportional to the thickness, whichf
thin lens is negligible. Rays passing through O may, accord —~
ingly, be drawn as straight lines. It is customary when
dealing with thin lenses simply to place O midway”between the vertices. 7

Recall that a bundle of parallel paraxial rays incident
on a spherical refracting surface comes to @ focusat
point on the optical axis (Fig. 5.11). As shown in Fig;5.20, this implies that several such bundles entering il
a narrow cone will be focused on a spherical segment
a, also centered on C. The undeviated rays normal10
the surface, and therefore passing through ©,localg
the foci on o. Since the ray cone must indeed be narray@ can satisfactorily be represented as a plane no} ow
to the symmetry axis and passing through the imag
focus. It is known as 4 focal plane. In the same
limiting ourselves to paraxial theory, 4
all incident parallel bundles of rays”
called the second or hack focal plane, as in Fig.each point on @ is located by the undeviated ray thTOusO. Similarly, the first or front focal plane contains
object focus F,.

 

* Perhaps the earliest literary reference to the focal propelslens appears in Aristophanes’ play. The Clouds, which dates a493 p.c. Ln it Strepsiades plots to use a burning giass f° an.Sun's rays onto a wax tablet and thereby melt oul the rece j
gambling debt.
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will generate a final image. Suppose then that g;in Fig.
5,.22¢a) is the object for the second surface, which is
assumed to have a negative radius, We already know
whatwill happen next—thesituation is identical to Fig.
5.22(b) with the ray directions reversed, The final image
formed by a lens of a small planarobject normal to the optical
axis will itself be a small plane normal to that axis.

The location, size, and orientation of an image pro-
duced by a lens can be determined,particularly simply,
with ray diagrams. To find the image of the object in
Fig. 5.23, we must locate the image point corresponding
to each object point. Since all rays issuing from a source

g point in a paraxial cone will arrive at the image point,

| any two such rays will suffice to fix that point. Since we

 
 
 
 
 

 

2 ) Figure 5.21 The focal plane ofa lens. knowthe positions of the focal points, there are three
al rays that are especially easy to apply. Two of these make
d | use of thefact that a ray passing through the focal point
i will emerge from the lens parallel to the optical axis
a and vice versa; the third is the undeviated ray through

li) Finite Imagery

Thus far we've dealt with the mathematical abstraction

of a single-point source, but nowlet’s suppose that a
great many such points combine to form a continuous
finite object. For the moment, imagine the object to be
a segment of a sphere, ¢,, centered on C, as in Fig.
5.22, If o, is close to the spherical interface, point §
wil have a virtual image P (s; < 0 and therefore on the
Teft of V). With S farther-away, its image will be real
AS, > 0 and therefore on the right-handside). In either
se, each point on @, has a conjugate point on a; lying
Sha straightline through ©. Withinthe restrictions of
paraxial theory, these surfaces can be considered planar.
Thus a small planar object normal to the optical axis
Millbe imaged into a small planar region also normal
to that axis, It should be noted that if o, is moved out
Mintinity, the cone of rays from each source pointwill
: some collimated (i.c., parallel), and the image points
HmOnthe focal plane (Fig. 5.21).

*y sulting and polishing the right side of the piece
Bitted in Fig. 5.22, we can construct a thin lens, just

>)« in Section(i). Once again, the image (c; in
b tec. by the first surface of the lens will

7 ject for the second surface, which in turn

 
  ant

a         
  
  
  
  
  

  
  
 
  

 
     
  
 Figure 5,22 Finite imagery.  
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bo

 

 

 
Figure 5,23 Tracing a few key rays through a positive and negative
lens.

 

5

O. Figure 5.24 shows how any two of these three rays
locate the image of a point on the object. Incidentally,
this technique dates back to the work of Robert Smith
as long ago as 1738.

This graphical procedure can be made even simpler
by replacing the thin lens with a plane passing through
its center (Fig. 5.25). Presumably, if we were to extend
every incoming ray forwarda little and every outgoing
ray backwarda bit, each pair would meetonthis plane,
Thusthe total deviation of any ray can be envisaged as
occurring all at once on that plane. This is equivalent
to the actual process consisting of two separate angular
shifts, one at each interface. (As we will see later, this
is tantamountto saying that the two principal planes of
a thin lens coincide.) =

In accord with convention, transverse distances above
the optical axis are taken as positive quantities, and
those belowthe axis are given negative numerical values,
Therefore in Fig. 5.25 y, > Qand 9; < 0, Here the image
is said to be inverted, whereas if y; > 0 wheny, > 0, it is
erect. Observe that triangles AOF, and P,P\F, are
similar. Ergo

 
yo f
vo . (5.19)
ee

Likewise, triangles S25,O and P,P,O are similar and

=ea (5.20)
In| 8:

where all quantities other than 4, are positive. Hence

Se f
= =+ (5.21)
s (&-f)

and

Jill
Fo % 5;

which is, of course, the Gaussian lens equation (5.17).
Furthermore, triangles 5,5,F, and BOF, are similar
and

fist
i-f)  %

Using the distances measured from the focal points and

 
(5.22)
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iure 5.24 {a} A real object and a positive lens. (b) A real object
[pia negative lens. (c) A real image projected on the viewing screen

ombining this information with Eq. (5.19), we have

tay = fF (5.23)

his is the Newtonian form of the lens equation, the
ststatement of which appeared in Newton’s Opticks
e 4, Thesignsof x, and x; are reckoned with respect
___ = Concomitantfoci, By convention x, is taken to
Se left of F,, whereas x; is positive on the right

To be sure,it is evident from Eq. (5.23) that x,
“havelike signs, which means that the object and

: oe beon opposite sides of their respective focal points.
4 g00d thing for the neophyte to remember
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much as the eye projects its image on theretina. (d) The minified,

(d)

rightside-up, virtual image formed by a negative lens.

 

 

 

Figure 5.25 Object and image location for a thin lens.  
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MORE ON

I. preceding chapter, for the most part, dealt with
paraxial theory as appliedto thin spherical lens systems.
The two predominant approximations were, rather
obviously, that we had thin lenses and that first-order
theory was sufficient for their analysis. Neither of these
assumptions can be maintained throughout the design
of a precision optical system, but, taken together, they
provide the basis for a first roughsolution. This chapter
will carry things a bit further by examining thick lenses
and aberrations; even at that, it is only a beginning.
The advent of computerized lens design requires a
certain shift in emphasis—thereis littrle need to do what
a computer can do better. Moreover, the sheer wealth
of existing material developed over centuries demands
a bit of judicious pruning to avoid a plethora of
pedantry.

6&1 THICK LENSES AND LENS SYSTEMS

Figure 6.1 depicts a thick lens(7.c., one whose thickness
is by no means negligible). As we shall see, it could
equally well be envisioned more generally as an optical
system, allowing for the possibility that it consists of a
numberof simple lenses, not merely one. The first and
second focal points, orif you like, the object and image
foci, F, and F;, can conveniently be measured from the
{wo (outermost) vertices. In that case we have the
familiar front and back focal lengths denotedby f.£.1.
and b.f£.1. When extended, the incident and emerged

GEOMETRICALOPTICS

Primary
principal

plane

 
  

First focal
point 

 
Secondary
principal

plane

Figure 6.1 A thick lens.

grr

    
 

71



72

212 Chapter 6 More on Geometrical Optics

rays will meet at points, the locus of which forms a
curved surface that may or maynot reside within the
lens: The surface, approximatinga plane in the paraxial
region, is termed the principal plane (see Section 6.3.1).
Points where the primary and secondary principal
planes (as shownin Fig. 6.1) intersect the optical axis
are knownas the first and second principal points, ff,
and Hy, respectively. ‘They provide a set of very useful
references from which to measure several of the system
parameters. We saw earlier (Fig. 5.19, p.140) that a ray
traversing the lens throughits optical center emerges
parallel to the incident direction. Extending both the
incoming and outgoing rays until they cross the optical
axis locates what are called the modal points, N, and

Ng in Fig. 6.2. Whenthe lens is surrounded on both sides
by the same medium, generally air, the nodal and principal
points will be coincident. The six points, two focal, two
principal, and two nodal, constitute the cardinal points
of the system. As shownin Fig. 6.3, the principal planes
can lie completely outside the lens system. Here,
although differently configured, each lens in either
group has the same power. Observe that in the sym-
metrical lens the principal planes are, quite reasonably,
symmetrically located. In the case of either the planar-
concave or planar-convex lens, one principal plane is
tangent to the curved surface—as should be expected
from the definition (applied to the paraxial region). In
contrast, the principal points can be external for menis-
cus lenses. One often speaks of this succession of shapes
with the same power as exemplifying lens bending. A

 
Figure 6.2) Nodal points.

Figure 6.3 Lens bending.

rule of thumbfor ordinary glass lenses in air is that the
separation 1,H», roughly equals one third the lens
thickness V, Vo.

The thick lens can be treated as consisting of two
spherical refracting surfaces separated by a distance d
between their vertices, as in Section 5.2.3, where the
thin-lens equation was derived. After a great deal of
algebraic manipulation,” wherein d is not negligible,
one arrives at a very interesting result for the thick lens
immersed in air. The expression for the conjugate
points once again can be put in the Gaussian form,

till al
4 5 f ‘

provided that both these object and imagedistances are
measured from the first and second principal planes,
respectively. Moreover, the effective focal length, or
simply the focal length, f, is also reckoned with respect
to the principal planes andis given by

1 LoL ty ue==(n,-1)|—-—+-— |. 6.2f (mi ole Ry RR, C4

 
 

The principal planes are located at distances of V, Ahi =
h, and V¥aHe = he, which are positive when the planes he
to the right of their respective vertices. Figure 6.4 illustrates

 

 

* For the complete derivation, see Morgan, [néroduction to Geameirical
and Physical Optics, p. 57.
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Figure 6.4 Thick lens geometry.

the arrangement of the various quantities. The values and |
of kh, and Ay are given by 26.8(0.5)1 |

he = ES = egy,
y= fim did ; 20.5) to™ |
‘~ Ron, 8) |

eo which meansthat H, is to the nght of V,, and Hy,is to

: and the left of V,. Finally, s, = 30 + 0.22, whence |
5 fn, — UdereS 6.4

o Rin (6.4))

1 In the same way the Newtonian form of the lens
equation holds, as is evident from the similar triangles

  
  

fi in Fig. 6.4. Thus

5 nity =f, (6.5) |
3 so long as f is given the present interpretation, And

from the sametriangles

) M; = Bieai (6.6)
y fm

e Obviously if d + 0, Eqs. (6.1), (6.2), and (6.5) are trans-
ij formed into the thin-lens expressions (5.17), (5.16), and
r (5.23). As a numerical example, let’s find the image

distance for an object positioned 30 cm from the vertex
ofa double convex lens having radii of 20 cm and 40cm,
athickness of | cm, and an index of1.5. From Eq. (6.2)

2) the focal length (in centimeters) is

1 1 1 15-11: teas-p[t-— aie f 20 —-40  1.5(20)(-40)
s $0 f= 26.8 cm. Furthermore,

B 26.8(0.5)1 b) |
al ==Hhi —40(1.5) am Figure 6.5 A compoundthick lens.
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The principal points are conjugate to each other. In
other words, since f = 5,5;/(s, + s;), when s, = 0, s; must
be zero, because f is hnite and thus a point at Ay is
imaged at H,. Furthermore, an object in the first prin-
cipal plane (x, = —f) is imaged in the second principal
plane (x, = —f) with unit magnification (M7 = 1). It is
for this reason that they are sometimes spoken of as
unit planes. Hence any ray directed toward a point on
the first principal plane will emerge from the lens as if
it originated at the corresponding point (the samedis-
tance above or belowthe axis) on the second principal
plane.

Suppose we nowhave a compound lensconsisting of
two thick lenses, £, and Le (Fig. 6.5). Let 5,,, 5;;, and
fi and 5,2, $2, and fg be the object and image distances
and focal lengths for the twolenses, all measured with
respect to their own principal planes. We knowthat the
transverse magnification is the product of the mag-
nifications of the individual lenses, that is,

Sot $a2 35

where s, and 5; are the object and imagedistances for
the combination as a whole. Whens, is equalto infinity
Jo ™ Sore Si = fi » ton > —(Sa 7 d), and > f Since

1,1 1

Seg 53 fi2 :

it follows (Problem 6.1), upon substituting into Eq. (6.7),
that

 
— £132 =

Soo

p--A( Sun fo ) ___fifeSoa \So2 — fe Si d+ fy’
Hence

1 JI 4 d

iftBolte ~
This is the effective focal length of the combination of
two thick lenses whereall distances are measured from

principal planes. The principal planes for the system as

 
Ril. = 150m

Figure 6.6 A compound lens.

a whole are located using the expressions

==> fd
Ay, Ay wit (6.9)

fe

and

f= id
Ann =~", 6.30)

fi

which will not be derived here (see Section 6.2.1). We
have in effect found an equivalent thick-lens representa-
tion of the compoundlens. Note thatif the component
lenses are thin, the pairs of points H,,, Hig and Hs,,
Hy. coalesce, whereupon d becomes the center-to-
center lens separation, as in Section 5.2.3. For example,
returning to the thin lenses of Fig. 5.31 where f; = —30,
fo = 20, and d = 10, as in Fig. 6.6,-

1 IL 1 10=—_}+—_
f —30 20 (—30;20)’

so f= 30cm. We foundearlier (p.148)} that bf. =
40 cm and £.f.1. = 15cm. Moreover, since these are thin

lenses, Eqs. (6.9) and (6.10) can be written as
 
 

 

30(10

O.,H, = - ) 45cm
and

30(10

OF = ~20 410m,
Both are positive, and therefore the planes lie to the
right of O, and Og, respectively. Both computed values
agree with the results depicted in the diagram.If light
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ers from the right, the system resembles a telephoto
a that must be placed 15 cm from the film plane, yet
Bean effective focal length of 30 cm.
che same procedures can be extendedto three, four,
pr more lenses. Thus

fz a(-#8)(-8).... (6.11)
gquivalently, the first two lenses can be envisioned ay
combined to form a single thick lens whose principal
ints and focal length are calculated. It, in turn, is

combined with the third lens, and so on with each
successive element.

a

42 ANALYTICAL RAY TRACING

Ray tracing is unquestionably one of the designer’s chief
tools. Having formulated an optical system on paper,
one can mathematically shine rays throughit to evaluate
its performance. Any ray, paraxial or otherwise, can be
traced through the system exactly. Conceptually it’s a
simple matter of applying the refraction equation

n,(k; x a,.) = n,(k, x G,) [4.7]

f

 
la}

Figure 6.7 (a) Computerlensdisplay. (Photo by E.H.) (b) Compucer
Output. (Photo courtesy of Optical Research Associates.)

é.z Analytical Ray Trecing 215

at the first surface, locating where the transmitted ray
then strikes the second surface, applying the equation
once again, and so onall the way through. At one time
meridional rays (those in the plane of the optical axis)
weretraced almost exclusively, because nonmeridional
or skew rays (which do not intersect the axis} are con-
siderably more complicated to deal with mathematically.
The distinction is of less importance to a high-speed
electronic computer(Fig. 6.7) which simply takesa trifle
longer to make the trace. Thus, whereas it would prob-
ably take 10 or 15 minutes for a skilled person with a
desk calculator to evaluate the trajectory of a single
skew ray through a single surface, a computer might
require less than a thousandthof a secondfor the same
job, and equally important, it would be ready for the
next calculation with undiminished enthusiasm.

The simplest case that will serveto illustrate the ray-
tracing process is that of a paraxial, meridional ray
traversing a thick spherical lens. Applying Snell's law
in Fig. 6.8 at point P, yields

74185, = 7 Oy

Raj, + @,) = ry loy, + a).

 
(b)
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Figure 6.8 Ray geometry. dz;

 
ity Ay = A

Inasmuch as @, = 9,/R,, this becomes

ny) (1) + ¥/R1) = Malay + ¥1/R1)-

Rearranging terms, we get

M1.) = Hyya (=),Qe) = Hyp Ai Ll
- RR

but as we saw in Section 5.7.2, the power of a single
refracting surface is

(Mi = Ma)
g, =e

R,

Hence

Ny Ay = Aye — Dy. (6.12)

This is often called the refraction equation pertaining ta
the first interface. Having undergonerefractionat point
P,, the ray advances through the homogeneous medium
of the Jens to point P, on the secondinterface. The
height of Ps can be expressed as

yo = mt den, (6.13)

on the basis that tan @,, ~ @,,. This is known as the
ivansfer equation, because it allows us to follow the ray
from P, to Py. Recall that the angles are positive if the
ray has a positive slope. Since we are dealing with the
paraxial region dg, = V.V, and yp is easily computed.
Equations (6.11) and (6.12) are then used successively
to trace a ray through the entire system. Of course,
these are meridional rays and because of the lenses’

 

= dag =|

¥3

 

M2 = Hig Mn

symmetry aboutthe optical axis, such a ray remaing in
the same meridional plane throughout its sojourn. The
process 1s two-dimensional; there are two equations ang
two unknowns, «,, and yz. In contrast, a skewray would
have to be treated in three dimensions.

6.2.1 Matrix Methods

In the beginning of the 1930s, ‘T. Smith formulateda
rather interesting way of handling the ray-tracing
equations. The simple linear form of the expressions
and the repetitive mannerin which they are applied
suggested the use of matrices, The processes of refrac-
tion and transfer might then be performed mathemati
cally by matrix operators. These initial insights were
not widely appreciated for almost thirty years. However,
the early 1960s sawa rebirth of interest in this approach,
which is now Aourishing.* We shall only outline some
of the salient features of the method, leaving a more
detailed study to the references.

Let’s begin by writing the formulas

Mey = MA — Dyin (6.14)

and

my =O+%, (6.15)

* For further reading see K. Hallbach, ‘Matrix Representation of
Gaussian Optics.” Am. fF. Phys. $2, 90 (1964); W. Brouwer, Matrix
Methods in Optical Instrument Design; E. L. O'Neill, Introduction @
Statistical Optics; or A. Nussbaum, Geometric Optics.
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the

wpich are not very insightful, since we merely replaced
y in Ea- (6.12) by the symbol y,, and then let 1 = 91 -
This last bit of business is for purely cosmetic purposes,

you will see in a moment. Ineffect, it simply says that
height of reference point P, above the axis in the

incident medium (41) equals its height in the transmit-
ting medium (%,:)—which is obvious. But now the pair
of equations can be recast in matrix form as

Pei - E bel(a (6.16)3) 0 l va

This could equally well be written as

e| = ses Site[ ; (6.17)YI 0 1 va

so that the precise form of the 2X 1 column matrices
js actually a matter of preference. In any case, these
can be envisioned as rays on either side of P|, one
before and the other after refraction. Accordingly,
using 4,; and 2;, for the two rays, we can write

Fy & Ay ee4S | : | and %,= | ‘|. (6.18)Ma Mit

The 2% 2 matrix is the refraction matrix, denoted as

1 =a,= ‘ 6.191 i, 1 (6.19)
so Eq. (6.16) can be concisely stated as

ay = Byrn, (6.20)

which just says that @, transforms the ray 2;, into the
ray 2,, during refraction at the first interface. From Fig.
6.8 we have njoajg = n,, %,, that is,

Tig Kg = MH a, +0 (6.21)

and

ye = dy, + ys (6.22)

Where nyo = 1. Oo = G1. and use was made of Eq.
(5.13), with yo rewritten as y,. to make things pretty.
Thus

Hyg Ojs 1 |pn= . (6,23)| Rig wore I Fe

6.2 Analytical Ray Tracing 257

The transfer matrix

1 0

Fa, = | | ‘AS‘ a | Gee
takes the transmitted ray at P, ¢ie., 2,,) and transforms
it into the incident ray at Ps:

=: Rig Wotia [ |dig

Hence Eqs. (6.21) and (6.22) became simply

tig = Faitn. (6.25)

If we make use of Eq. (6.20), this becomes

tia = Fo, RA). (6.26)

‘The 2 * 2 matrix formedby the productof the transfer
and refraction matrices ¥;,#, willcarry the ray incident
at P, into the ray incident at Ps. Notice tbat the deter-
minantof ¥,, denoted by |¥o,|, equals t, that is, (1)(1) —
(O}(ds,/n,,) = 1, Similarly |@,| = 1, and since the deter-
minant of a matrix product equals the product of the
individual determinants, |42,4,| = 1. This provides a
quick check on the computatious. Carrying the pro-
cedure through the second interface (Fig. 6.8) of the
lens, which has a refraction matrix @g¢, it follows that

ty = Roti, (6.27)

or from Eq. (6.26)

yo = BoPRiri. (6.28)

The system matrix .s is defined as

a = RF | R, (6.29)

and has the form

w= [%" pall (6.30)Qo, 429

Since

1 -@ ) —g

“(Le IG 20 1 defn 1JLO 1
or

a=! I 1 —ByOo J do fm, —B,doyfm, +1)’
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we can write

[ =|Go, age

= ’ — Dodo /Ny —a + (BoB do)/n4) Pe =|do, fny ]—Bdeity +1
(6.31)

and again |[s|=1 (Problem 6.15). The value of each
elementin of is expressed in terms of the physical lens
parameters, such as thickness, index, and radii (via 9).
‘Thusthe cardinal points that are properties of the lens,
determined solely by its make-up, should be deducible
from sf. The system matrix in this case (6.31) transforms
an incident ray at the first surface to an emerging ray
at the second surface; as a reminder we will write it as
fo) 1

The concept of image formation enters rather directly
(Fig. 6.9) after introduction of appropriate object and
image planes. Consequently, the first operator Fic
transfers the reference point from the object (ie., Po
to P,), The next operator sz, then carries the ray
through the lens, and a final transfer ¥;, brings it to
the image plane (i.c., P,;). Thus the ray at the image
point (¢;) is given by

4, = FigstaF ato,

where 4is the ray at Pg. In component form this is

eenbeeaii drofn; Itla@e1 G22

lates Wedigitio 1 Yo

Notice that 7j949 =4;, and that .2)4;,; = 4,2, hence
Fiotyg =+;. The subscripts O,1,2,..., 1 correspond
to reference points Po, P,, P>,andso on, and subscripts
i and ¢ denote the side of the reference point (.e.,
whether incidentor transmitted). Operationbya refrac-
tion matrix will changei to ¢ but not the reference point
designation. On the other hand, operation by a transfer
matrix obviously does change the latter.

Ordinarily the physical significances of the com-
ponents of .f are found by expanding out Eq. (6.33),
but this is too involved to do here. Instead, let’s return

(6.32)

(6.33)
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Ho = fy fy Sp 

 dio dy

Figure 6.9 image geometry.

to Eq. (6.31) and examine several of the terms. For
example, .

ag = DB, + By — By Dy doi/n1.

If we suppose, for the sake of simplicity, that the lens
is in air, then

yy i ny They ]
R, and oeé

as in Egs. (5.70) and (5.71). Hence

1|(tan Uées—_—-{_
RiRetn ,

But this is the expression for the focal length of a thick
lens (6,2); in other words,

o=-lif

Lf the imbedding media were different on each side of
the lens (Fig. 6.10), this would become

g,=
 

1412 = (M1 — »[4- R1 2

(6.84)

iy Mea2 = : (6.35}
lz fo f

Similarly it is left as a problem to venfy that

——— eyeVil =ma{l~au)(6.36)
ale

and

Vo Ho = Tra(Gae—1)(6.57)
THe

which locate the principal points.
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Figure 6.10 Principal planes and focal lengths.

" As an example of how the technique can be used,
, Jet's apply it, ac least in principle, to the Tessar lens*

shown in Fig. 6.11. The system matrix has the form

hg) = RF,RTF5 RsFgByFkoFy.RoF,1s
where

1 0 | 0

Fa, =|0.357 pp Fse=|0189 if
L.6116 1

] 0

k Fy, = 0.081 ,
1.6053

M4) and so forth. Furthermore,

of _ 16116-1 1 1— 1.6116
R, = 1.628 ; By = —27.57

0 1 0 1
i)

_ 1.6053—1
Rs a —3.457 +

0 1
36)

and so on. Multiplying out the matrices, in what is
a

* This particular example was chosen primarily because Nussbaum’s
77) uk Geometric Optics contains a simple Fortran computer program

Spedfically written for this lens. IL would be almost silly to evaluate
the system matrix by hand. Since Fortran is an easily mastered com-
Puter language, the program is well worth further study.

6.2 Analytical Ray Tracing 21g

obviously a horrendous although conceptually simple
calculation, one presumably will get

+, =|tae oat"11.338 0.867’

and from that, f=5.06, V,H,=0.77, and V,H3=
-0.67.

As a last point, it is often convenient to consider a
system of thin lenses using the matrix representation.
To that end, return to Eq, (6.31), It describes the system
matrix for a single lens, and if we Jet dy, + 0, it corre-
spondsto a thin lens. This is equivalent to making Fo,
a unit matrix, thus

1 2, hdl faey= RoR, =. 0 1

But as we sawin Section 5.7.2, the powerofa thin lens
@ is the sum of the powersofits surfaces. Hence

1 -9)_f1 1)w= = . 6.39); 1 ; t ‘

tj, = 1 ha = |
Hy =V6N6 ayy = 1.6083 ag = 1.5123

tea = |1lG

 
0.357 |d,.! ! ozs 0.3960.189

R, = 1.628 R,= 0
Ry = —27.57 R, = 1.920
R, = —3.487 Ry = —2.400
Ry = 1.582

Figure 6.11 A Tessar.
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In addition, for two thin lenses separated by a distance
d, in air, the system matrix is

fe Ie
or

ws : ~ dife fit dif fo- uald —dif, +)

Clearly then,

141i d

“AEETe
and from Eqs. (6.36) and (6.37)

OF, = falf,,  OzH = -fadifi,

all of which by now should be quite familiar. Note how
easy it would be with this approach to find the focal
length and principal points for a compound lens com-
posed of three, four, or more thinlenses.

6.3 ABERRATIONS

To be sure, we already know that first-order theory is
no more than a good approximation—anexactray trace
or even measurements performed on a prototypesys-
tem would certainly reveal inconsistencies with the cor-
responding paraxial description. Such departures from
the idealized conditions of Gaussian optics are known
as aberrations. There are two main types: chromatic
aberrations (which arise from the fact that n is actually
a function of frequency or color) and monochromatic
aberrations. The latter occur even with light thatis
highly monochromatic, and they in turn fall into two
subgroupings. There are monochromatic aberrations
that deteriorate the image, making it unclear, such as
spherical aberration, coma, and astigmalism. In addition,
there are aherrations that deform the image, for
example, Petzval field curvature and distortion.

We have known all along chat spherical surfaces in
general would yield perfect imagery only in the paraxial
region. Now we must determine the kind and extent
of deviations that result simply from using those sur-

faces with finite apertures. By the judicious manipul,.
tion of a system's physical parameters(e.g., the Powers
shapes, thicknesses, glass types, and separations of the
lenses, as well as the locationsof stops), these aberrations
can indeed be minimized. In effect, one cancels out the
most undesirable faults by a slight changein the shane
of a lens here or a shift in the position of a stop ther,
(very muchlike trimming upacircuit with small variab|,
capacitors, coils, and pots). Whenit’s all finished, the
unwanted deformations of the wavefront incurred as it
passes through one surfacewill, it is hoped, be negateq
as it traverses some other surfaces further downtheling,

As early as 1950 ray-tracing programs were being
developed for the newdigital computers, and by 1954
efforts were already under way to create lens-designing
software. In the early 1960s computerized lens design
was a too] of the trade used by manufacturers world-
wide. Today there are elaborate computer programs
for “automatically” designing and analyzing the perfor.
mance of all sorts of complicated optical systems,
Broadly speaking, you give the computeraquality factor
{or merit function) of some sort to aim for (i-e., you
essentially tell it how much of each aberration you are
willing to tolerate}. Then you give it a roughly designed
systern (¢.¢., some Tessar configuration), which in the
first approximation meets the particular requirements.
Along with that, you feed in whatever parameters must
be held constant, such as a given f-number, focal length,
or lens diameter, the field of view, or magnification.
The computer will then trace several rays through the
system and evaluate the image errors. Having been
given leave to vary, say, the curvatures and axial sepa-
rations of the elements, it will calculate the optimum
effect of such changes on the quality factor, make them,
and then reevaluate. After a number of iterations, it

will have changedtheinitial configuration so that it now
meets the specified limits on aberrations. The final lens
design will still be a Tessar, but not the original one.
The result is, if you will, an optimum configuration but
probably not the optimum. Wecan befairly certain that
all aberrations cannot be made exactly zero in any
real system comprising spherical surfaces. Moreover,
there is no currently known way to determine how clos€
to zero we can actually come. A quality factor is some-
whatlike a crater-pocked surface in a multidimensional
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