United States Patent [19]

New, Jr. et al.

[22] Filed:

[11] Patent Number: 4,700,708

[45] Date of Patent: * Oct. 20, 1987

[54]	CALIBRATED OPTICAL OXIMETER PROBE		
[75]	Inventors:	William New, Jr., Woodside; James E. Corenman, Alameda, both of Calif.	
[73]	Assignee:	Nellcor Incorporated, Hayward, Calif.	
[*]	Notice:	The portion of the term of this patent subsequent to Nov. 11, 2003 has been disclaimed.	
[21]	Appl. No.:	911,978	

Related U.S. Application Data

Sep. 26, 1986

[63]	Continuation of Ser. No. 827,478, Feb. 5, 1986, Pat.
	No. 4,621,643, which is a continuation of Ser. No.
	695,402, Jan. 24, 1985, abandoned, which is a continua-
	tion of Ser. No. 414,176, Sep. 2, 1982, abandoned.

[58]	Field of Search .	250/252.1 128/633, 634, 664–666; 73/1 R; 356/39–42; 280/252.1

[56] References Cited

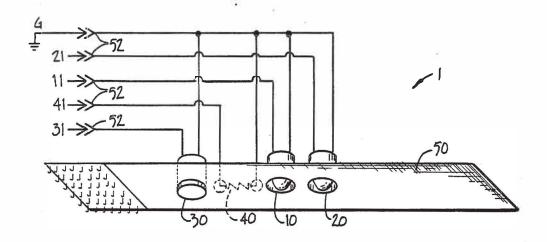
U.S. PATENT DOCUMENTS

2,706,927	4/1955	Wood	88/14
3,638,640	2/1972	Shaw	128/2 R
3,704,706	12/1972	Herczfeld et al	128/2 R
3,720,199	3/1973	Rishton et al	128/1 D
3,819,276	6/1974	Kiess et al	356/184
3,833,864	9/1974	Kiess et al	356/184
3,847,483	11/1974	Shaw et al	
3,880,006	4/1975	Poduje	73/362 AR
3,910,701	10/1975	Henderson et al	356/39
3,998,550	12/1976	Konishi et al	356/39
4,059,991	11/1977	Dybel et al	73/88.5 R
4,086,915	5/1978	Kofsky et al	128/2 L
4,167,331	9/1979	Nielsen	356/39

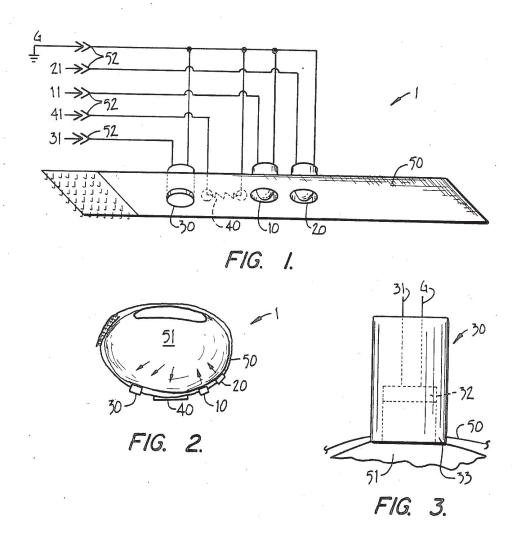
4,225,410	9/1980	Pace 20	04/195 R
4,236,935	12/1982	Clark, III	378/48
4,266,554	5/1981	Hamaguri	128/633
4,407,272	10/1983	Yamaguchi	128/6
4,407,290	10/1983	Wilber	128/633
4,407,298	10/1983	Lentz et al	128/713
4,446,715	5/1984	Bailey	. 73/1 R
4,494,550	1/1985	Blazek et al	128/664
4,621,643	11/1986	New et al	128/633

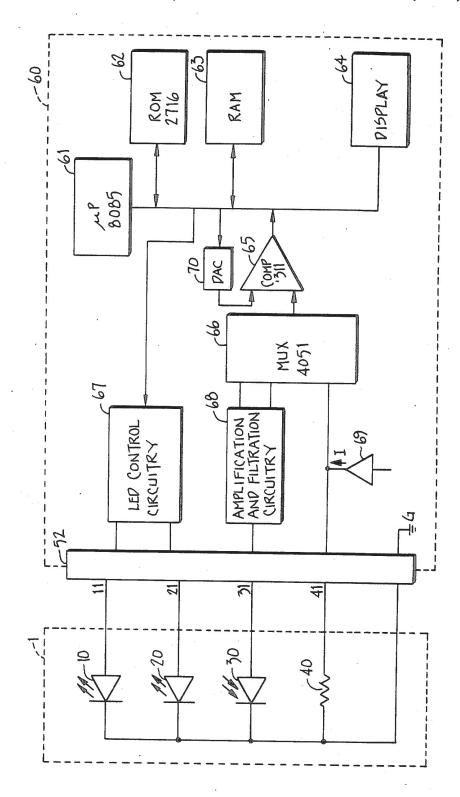
OTHER PUBLICATIONS

Grover, Conf. Proceed. of the 26th Annual Conf. on Engr. in Med. and Biol., Minn., Minn., Sep. 20-Oct. 4, 1973

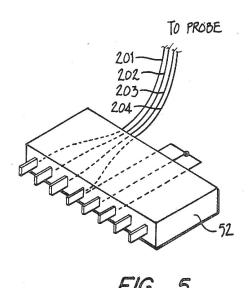

Schibli et al., IEEE Trans. of Biomed. Engr., vol. BME-25, No. 1, Jan. 1978, pp. 94-96. Yee et al., IEEE Trans. Biomed. Engr., vol. BME-24, No. 2, Mar. 1977, pp. 195-197.

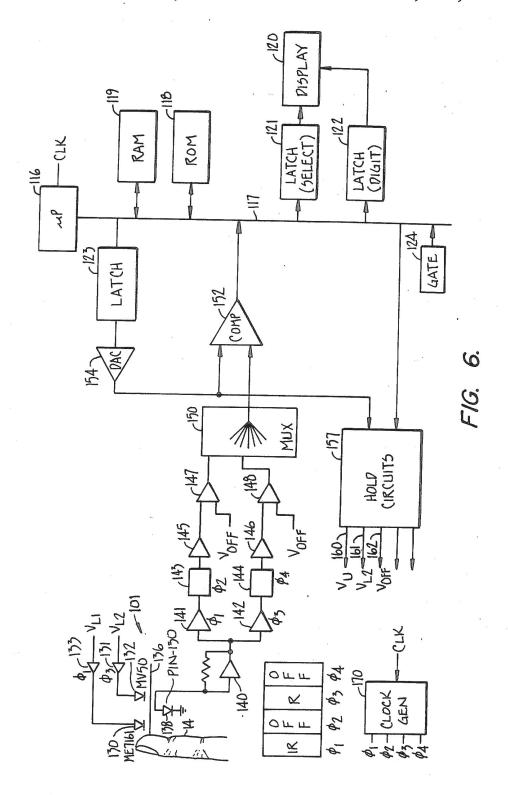
Primary Examiner—Kyle L. Howell Assistant Examiner—John C. Hanley


[57] ABSTRACT


A probe apparatus for use with an optical oximeter is disclosed. A pair of light emitting diodes emit light of known narrow wavelengths through an appendage of a patient onto a photosensor. A resistor of coded known resistance is used to enable the oximeter to calculate the co-efficient of extinction of the wavelengths of the LEDs. The resistor, LEDs and photosensor are mounted on self-attaching hook and eye tape for mounting the probe onto the appendage of the patient. The probe is detachably wired to the oximeter, rendering the probe completely disposable. The oximeter is programmed at the factory to calculate the co-efficients of extinction of any LEDs which may be encountered in a series of disposable probes. From the co-efficients of extinction, the pulse rate and degree of arterial oxygen saturation is computed and displayed by the oximeter.

11 Claims, 6 Drawing Figures





DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

