U.S. UTILITY Patent Application
(2) O.I.P.E.

Fixem men t memorywe
쁱

Qualcomm Incorporated
EX1004
Page 1 of 186

PATENT APPLICATION
09504344

CONTENTS

\qquad

Date Received

Date Received (Incl. C. of M.)

(inci. C. of M.)
Date Mailed

1/90. Aducseny Action $\frac{1216102}{1 / 10 / 03}$
11. Natece at Maplal
12. Appeal Briel
$1-28-03$
3-28-03
1914185
16. \quad
17.
19. \quad 20. $\quad \square$
21. 22.
23.
25.
27.
28.
29.
30.
31. \longrightarrow
32.
33.
34.

41. \qquad

PATENT APPLICATION SERIAL NO.

\qquad
U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE FEE RECORD SHEET

CHRISTOPHER P. MAIORANA, P.C.

24025 Greater Mack, Suite 200 St. Clair Shores, Michigan 48080

Utility Patent Application Transmittal
(Only for new non-provisional applications Under 37 CFR 1.53(b))

ASSISTANT COMMISSIONER FOR PATENTS
Washington, D. C. 20231

Case Docket No.0325.00030
Date: February 14, 2000

Sir:
Transmitted herewith for filing is a patent application of:
Inventor(s): Cathal G. Phelan
For: FLXED BURST MEMORIES
Enclosed are:

1. $\underline{\mathrm{X}} \quad$ Specification (13 pages); Claims (4 pages); Abstract (1 page)
2. $\underline{X} \quad 5$ sheets of formal drawings.
3. $\underline{\mathrm{X}} \quad$ Oath or Declaration Total Pages $\quad 2$
a. X Newly executed (original or copy)
b. - Copy from a prior application (37 CFR 1.63(d)) (for continuation/divisional with Item 5 completed)
c. - Copy of Revocation of Previous Power
4. _ Incorporation By Reference (usable if Item 3b is checked) The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Item 3 b , is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein.
5. If a Continuing Application, check appropriate box and supply the requisite information below and in a preliminary amendment:
Continuation Divisional_C Continuation-in-part (CIP)
of prior application no. \qquad
6. $\underline{\mathrm{X}}$ An assignment to CYPRESS SEMICONDUCTOR CORP. along with PTO form 1595.
7. - A PTO Form 1449 with a copy of the references not previously cited.
8. \underline{X} Return Receipt Postcard
9. Other:

Page 2 of 2
The filing fee has been calculated as shown below:

	No. Filed	No. Extra	Fee	Amount
Basic Fee	--	--	--	$\$ 690.00$
Total Claims	17	0	$\mathrm{x} \quad \$ 18.00$	$\$ 0.00$
Indep. Claims	3	0	$\mathrm{x} \quad \$ 78.00$	$\$ 0.00$
Mult. Dep. Claims			$\$ 260.00$	$\$ 0.00$

SMALL ENTITY STATUS
$\bar{X} \quad$ Assignment Recordal Fee ($\$ 40.00$) . $\$ 40.00$ TOTAL $\$ 730.00$

X A check in the amount of $\$ 730.00$ to cover the filing fee is enclosed.
X The Commissioner is hereby authorized to charge any fees under 37 CFR 1.16 and 1.17 which may be required by this paper or associated with this filing to Deposit Account No. $50-0541$. A duplicate copy of this sheet is enclosed.

Correspondence Address:

| Customer Number or Bar Code Label: | \|||||||||||||||||||||||||||||||||||| |
| :---: | :---: |
| | 021363 |
| | Patrent rencemax office |

CERTIFICATE OF EXPRESS MAILING

I hereby certify that this paper (along with any paper referred to as being attached or enclosed) is being deposited with the United States Postal Service via Express Mail Label No. EL417953316US in an envelope addressed to: BOX PATENT APPLICATION, Assistant Commissioner for Patents, Washington, D.C. 20231, on February 14, 2000.

Date: February 14, 2000

Attorney Docket No.: 0325.00309

Christopher P. Maiorana Reg. No. 42,829
CHRISTOPHER P. MAIORANA, P.C.
24025 Greater Mack, Suite 200
St. Clair Shores, Michigan 48080
(810) 498-0670

The present invention relates to memory devices generally and, more particularly, to a memory device that transfers a fixed number of words of data with each access.

```
Background of the Invention
A synchronous Static Random Access Memory (SRAM) can provide data from multiple address locations using a single address. Accessing multiple locations in response to a single address is called a burst mode access. A memory device that provides a burst mode can reduce activity on the address and control buses. The burst mode of a conventional synchronous SRAM can be started and stopped in response to a control signal.
```

A conventional Dynamic Random Access Memory (DRAM) preserves data during periodic absences of power by implementing a memory cell as a capacitor and an access transistor. Since the charge on the capacitor will slowly leak away, the cells need to be "refreshed" once every few milliseconds. Depending on the frequency of accesses, a conventional DRAM can need an interrupt to 1
perform data refreshes. Using a DRAM in a burst application is difficult because of the need to refresh. Completely hiding refresh cycles (e.g., refreshing data without the need for interrupts) in a DRAM cannot happen with conventional memory devices due to architecture choices that have been made. Data word bursts can be interrupted while in progress since conventional architectures support both burst and single access modes. Conventional DRAM access takes about 10 ns to get data, but nearly 20ns to complete writeback and equalization. The addition of another 20 ns for a refresh results in a total access of 40 ns .

Since the data burst transfers of conventional memories can be interrupted and single accesses made, the amount of time that the data, address and control busses are not in use can vary. The variability of bus availability complicates the design of systems with shared data, address and control busses.

It would be desirable to have a memory device that has a fixed burst length.

Summary of the Invention

The present invention concerns an integrated circuit comprising a memory and a logic circuit. The memory may comprise
0325.00309

CD99073
a plurality of storage elements each configured to read and write data in response to an internal address signal. The logic circuit may be configured to generate a predetermined number of the internal address signals in response to (i) an external address signal, (ii) a clock signal and (iii) one or more control signals. The generation of the predetermined number of internal address signals may be non-interruptible.

The objects, features and advantages of the present invention include providing a fixed burst memory that may (i) give network customers who typically burst large data lengths the ability to set a fixed burst length that suits particular needs; (ii) have non-interruptible bursts; (iii) free up the address bus and control bus for a number of cycles; (iv) provide programmability for setting the burst length by using DC levels [Uss or VCC] on external pins; (v) hide required DRAM refreshes inside a known fixed burst length of data words; and/or (vi) operate at higher frequencies without needing interrupts to perform refreshes of data.

0325.00309

CD99073
Brief Description of the Drawings
These and other objects, features and advantages of the present invention will be apparent from the following detailed description and the appended claims and drawings in which:

FIG. 1 is a block diagram illustrating a preferred embodiment of the present invention;

- FIG. 2 is a detailed block diagram illustrating a circuit 102 of FIG. 1;

FIG. 3 is a detailed block diagram of a circuit 102' illustrating an alternative embodiment of the circuit 102 of FIG. 1;

FIG. 4 is a flow diagram illustrating an example burst address sequence;

FIGS. 5A and 5B are diagrams illustrating example operations of a 4 word (FIG. 5A) and an 8 word (FIG. 5B) fixed burst access in accordance with the present invention; and

FIG. 6 is a diagram illustrating an example operation where a burst length may be long enough to include a writeback and a refresh cycle.

Detailed Description of the Preferred Embodiments

Referring to FIG. 1, a block diagram of a circuit 100 is shown in accordance with a preferred embodiment of the present invention. The circuit 100 may be implemented, in one example, as a fixed burst memory. The circuit 100 may be configured to transfer a fixed number of words of data with each access (e.g., read or write). A number of words transferred as a group is called a burst. The circuit 100 generally comprises a circuit 102 and a memory array (or circuit) 104. The circuit 102 may be implemented, in one example, as a burst address counter/register. The memory array 104 may be implemented, in one example, as a static random access memory (SRAM), a dynamic random access memory (DRAM), or other appropriate memory to meet the design criteria of a particular implementation.

The circuit 102 may have an input 106 that may receive a signal (e.g., ADDR_EXT), an input 108 that may receive a signal (e.g., LOAD), an input 110 that may receive a signal (e.g., CLK), an input 112 that may receive a signal (e.g., ADV), and an input 114 that may receive a signal (e.g., BURST). The circuit 102 may have an output 116 that may present a signal (e.g., ADDR_INT) to an input 118 of the memory 104. The memory 104 may have an input 120 5
0325.00309

CD99073
that may receive a signal (e.g., R / Wb), an input 122 that may receive a signal (e.g., DATA IN) and an output 122 that may present a signal (e.g., DATA OUT). The various signals are generally "on" (egg., a digital HIGH, or 1) or "off" (egg., a digital LOW, or 0). However, the particular polarities of the on (egg., asserted) and off (egg., de-asserted) states of the signals may be adjusted (e.g., reversed) accordingly to meet the design criteria of a particular implementation.

The signal ADDR_EXT may be, in one example, an external address signal. The signal ADDR_EXT may be n-bits wide, where n is an integer. The signal CLK may be a clock signal. The signal R / Wb may be a control signal that may be in a first state or a second state. When the signal R / Wb is in the first state, the circuit 100 will generally read data from the memory circuit 104 for presentation as the signal DATA_OUT. When the signal $R / W b$ is in the second state, the circuit 100 will generally store data received as the signal DATA_IN.

The signal LOAD may be, in one example, an address load control signal. The circuit 100 may be configured to load an initial address, presented by the signal ADDR EXT, in response to the signal LOAD. The initial address may determine the initial
032.5 .00309 CD99073
location where data transfers to and from the memory 104 will generally begin.

The signal ADV may be, in one example, used as a control signal. The circuit 100 may be configured to transfer a fixed number of words to or from the memory 104 in response to the signals $A D V$, $C L K$ and $R / W b$. When the signal $A D V$ is asserted, the circuit 100 will generally begin transferring a predetermined number of words. The transfer is generally non-interruptible. In one example, the signal ADV may initiate the generation of a number of addresses for presentation as the signal ADDR_INT.

The signals ADV and LOAD may be, in one example, a single signal (e.g., ADV/LDb). The signal $A D V / L D b$ may be a control signal that may be in a first state or a second state. When the signal ADV/LDb is in the first state, the circuit 102 will generally load an address presented by the signal ADDR_EXT as an initial address. When the signal ADV/LDb is in the second state, the circuit 102 may be configured to generate the signal ADDR_INT as a fixed number of addresses in response to the signal CLK. The signal ADDR_INT may be, in one example, an internal address signal. The signal ADDR_INT may be n-bits wide. Once the circuit 102 has started -- generating the fixed number of addresses, the circuit 102 will 7
generally not stop until the fixed number of addresses has been generated (e.g., a non-interruptible burst).

The signal BURST may be, in one example, a configuration signal for programming the fixed number of addresses that the circuit " 102 may generate in response to the signals CLK and ADV/LDb. The signal BURST may be generated, in one example, by (i) using bond options, (ii) voltage levels applied to external pins, or (iii) other appropriate signal generation means. When the memory 104 is implemented as a DRAM, the circuit 100 may be configured to hide required DRAM refreshes (e.g., refreshes may occur without affecting external environment) inside a known fixed burst length of data words. The fixed burst length may allow the circuit 100 to operate at higher frequencies than a conventional DRAM without needing interrupts to perform refreshes of data. In one example, the fixed burst length may be four or eight words. However, the burst length may be set to whatever length is necessary to meet the design criteria of a particular application. For example, the burst length may be programmed, in one example, to allow both writeback and refresh to occur within a single access. The fixed burst length may be set, in one example,

8

longer or shorter depending upon a frequency or technology to be used.

The circuit 100 may be configured to provide a fixed burst length that may suit the requirements of network customers who typically burst large data lengths. By providing a fixed burst length, the circuit 100 may allow shared usage of data, address and control busses. A fixed length non-interruptible burst generally frees up the address bus and control bus for a known number of cycles. The address and control busses may be shared by a number of memory devices. The circuit 100 may provide a more reliable and /or accurate burst than is possible with multiple chips.

Referring to FIG. 2, a detailed block diagram illustrating implementation of the circuit 102 is shown. The circuit 102 may comprise an address counter register 126 and a burst counter 128. The address counter register 126 generally receives the signals ADDR_EXT, LOAD, and CLK. The address counter register 126 may be configured to present the signal ADDR_INT. The signal ADV and the signal BURST may be presented to a burst counter 128. The signal CLK may be presented at an input 130 of the burst counter 128. The burst counter 128 may have an output 132 that may present a signal (e.g., BURST_CLK) at an input 134 of the circuit
126. An initial address may be loaded into the address counter register 126 by presenting the initial address in the signal ADDR_EXT and asserting the signal LOAD. The circuit 126 may be configured to increment an address in response to the signal BURST_CLK. When the signal ADV is asserted, the burst counter 128 will generally present the signal BURST_CLK in response to the signal CLK. The signal BURST_CLK generally contains a number of pulses that has been programmed by the signal BURST.

Referring to FIG. 3, a detailed block diagram illustrating an alternative embodiment of the circuit 102 is shown. The circuit 102' may comprise a latch 134, a multiplexer 136 and a counter 138. The signals ADDR_EXT, LOAD and CLK may be presented to the latch 134. The latch 134 may have an output 140 that may present a portion (e.g., m bits, where m is an integer smaller than n) of the signal $A D D R$ _EXT as a portion of the signal ADDR_INT, an output 142 that may present a second portion (egg., k bits, where k is an integer smaller than n) of the signal ADDR_EXT to a first input of the multiplexer 136, and an output 144 that may present the second portion of the signal ADDR_EXT to an input 146 of the counter 138.

The signals ADV, CLK and BURST may be presented to inputs of the counter 138. The counter 138 may be configured to generate a number of addresses in response to the signals CLK, BURST and ADV. The number of addresses generated by the counter 138 may be programmed by the signal BURST.

The signal BURST may be presented to a control input of the multiplexer 136. The multiplexer 136 may select between a number of signals from the latch 134 and a number of signals from the counter 138 to be presented as a second portion of the signal ADDR_INT in response to the signal BURST.

Referring to FIG.' 4, a flow. diagram illustrating an example burst address sequence is shown. When the signal $A D V$ is asserted, the circuit 100 will generally generate a number of address signals, for example, N where N is an integer. The address signals may be generated, in one example, on a rising edge of the signal CLK. The address signals will generally continue to be generated until the Nth address signal is generated.

Referring to FIGS. 5 A and 5 B , timing diagrams illustrating example operations for a four word (FIG. 5A) and an eight word (FIG. 5B) fixed burst memory in accordance with the present invention are shown. The timing diagrams generally
illustrate externally measurable signals for four and eight word fixed burst read/write architectures. In general, an operation (egg., read or write) of the circuit 100 begins with loading an initial address (egg., portions 150, 154, and 158 of FIG. 5A; portions 150', 154', and 158' of FIG. 5B). Starting with the initial address, a fixed number of words are generally transferred (e.g., line DQ of FIGS. 5A and 5B). During the transfer of the fixed number of words, the address and control buses (e.g., ADDR, CE, R/W, etc.) are generally available to other devices (e.g., portions 152, 156, and 160 of FIG. 5A; portions 152', 156', and 160' of FIG. 5B). In one example, the control and address bus activity may be one-fourth (FIG. 5A) or one-eighth (FIG. 5B) the data bus activity (e.g., compare line ADDR with line DQ of FIGS. 5A and 5B). The reduced bus activity may be an effect of the architecture. The data bus may be, in one example, active nearly 100% of the time (e.g., line DQ of FIGS. $5 A$ and $5 B$) In one example, there may be no inefficiencies switching from read to write to read etcetera (e.g., see labels under line DQ of FIGS. 5A and 5B).

Referring to FIG. 6, a timing diagram illustrating a fixed burst length long enough to hide a writeback and a refresh cycle is shown. Internally the action being performed may
completely hide DRAM refresh activity inside nominal external activities. A portion 162 illustrates that refresh activity (e.g., writeback, read for refresh, and writeback for refresh) may be completed within the time of the burst transfer. When a fixed burst long enough to completely hide refresh activity is provided, there may be no penalty for using DRAM instead of SRAM for the memory 104.
While the invention has been particularly shown and
described with reference to the preferred embodiments thereof, it
will be understood by those skilled in the art that various changes
in form and details may be made without departing from the spirit
and scope of the invention.

1. An integrated cirquit comprising:
a memory comprising a plurality of storage elements each configured to read and write dota in response to an internal
address signal; and
a logic circuit configured to generate a predetermined number of said internal address signals in response to (i) an external address signal, (ii) a cldck signal and (iii) one or more control signals, wherein said genferation of said predetermined number of internal address signals is non-interruptible.
2. The integrated circuit according to claim 1 , wherein said predetermine number of internal address signals is determined by a fixed burst length.
3. The integrated circuit according to claim 1 , wherein said predetermined number of internal address signals is 4.
4. The integrated circuit according to claim 1, wherein said predetermined number of internal address signals is 8.

5. The integrated circuit according to claim 1, wherein said predetermined number of internal address signals is chosen to

meet predetermined criteria for sharing address and control busses.
means for reading and whiting data in response to an
internal address signal; and
means for generating a predetermined number of said
internal address signals in response to (i) an external address
signal, (ii) a clock signal and (if) one or more control signals,
wherein said generation of said predetermined number of internal
address signals is non-interruptiple.
6. A method of providing a fixed burst length data transfer comprising the steps of
reading from and writing data to a memory in response to an internal address signal; and
generating a predetermined number of said internal address signals in response to (i) an external address signal, (ii) a clock signal and (iii) a control signal, wherein said generation $15 \quad \vdots$
of said predetermined number of internal /address signals is non-interruptible.
7. The method according to claim 13, further comprising the step of programming said predetermined number.
8. The method according to claim 14, wherein said programming step is performed using bond options.
9. The method according to claim 14, wherein said programming step is performed using voltage levels.
10. The method according to claim 13, further comprising
the step of selecting said predetermined number to provide time for
0325.00309

CD99073

ABSTRACT OF THE DISCLOSURE

Abstract

An integrated circuit comprising a memory and a logic circuit. The memory may comprise a plurality of storage elements each configured to read and write data in response to an internal address signal. The logic circuit may be configured to generate a predetermined number of the internal address signals in response to (i) an external address signal, (ii) a clock signal and (iii) one or more control signals. The generation of the predetermined number of internal address signals may be non-interruptible.

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5A

FIG. 5B

FIG. 6

PRINT OF DRAWINGS
 AS ORIGDALLY FILI

FIG. 1

PRINT OF DRAWINGS

AS ORIGINALLY FIL

FIG. 2

FIG. 3

FIG. 4

[^0]PRINT OF DRAWINGS AS ORIGINALLY FILF

FIG. 5A

FIG. 5B

FIG. 6

Docket No. 0325.00309

DECLARATION, POWER OF ATTORNEY AND PETITION

I, the undersigned inventor, hereby declare that:
My residence, post office address and citizenship are given next to my name;
I believe that I am the first, original and solc inventor of the subject matter claimed in the application for patent entitled "HIDDEN DRAM REFRESH IN FIXED BURST MEMORIES", which:

X is submitted herewith;
. was filed on \qquad as Application Serial No. \qquad and amended on \qquad ;

I have reviewed and understand the contents of the above-identified application for patent (hereinafter, "this application"), including the claims;

I acknowledge the duty under Title 37, Code of Federal Regulations, Section 1.56, to disclose to the United States Patent and Trademark Office information known to be material to the patentability of this application. I also acknowledge that information is material to patentability when it is not cumulative to information already provided to the United States Patent and Trademark Office and when it either
compels, by itself or in combination with other information, a conclusion that a claim is unpatentable under the preponderance of evidence standard, giving each term in the claim its broadest reasonable construction consistent with the application, and before any consideration is given to evidence which may be submitted to establish a contrary conclusion of patentability, or
refutes or is inconsistent with a position taken in either (i) asserting an argument of patentability, or (ii) opposing an argument of unpatentability relied on by the United States Patent and Trademark Office;

I hereby claim the priority benefit under Title 35, Section 119(e), of the following United States provisional patent applications:

Application No. Filing Date

Ihereby clain the priority benefit under Title 35, Section 120, of the following United States patent applications:
Serial No.
Filing Date
Status

I hereby claim the prionity benefit under Title 35, Section 365(c), of the following PCT International patent applications designating the United States:

$$
\text { Application No. } \quad \text { Filing Date }
$$

Where the subject matter of the claims of this application is not disclosed in the United States or PCT prionity patent applications identified above, I acknowledge the duty to disclose information known to be material to the patentability of this application that became available between the filing dates of this application and of the priority United States or PCT patent applications.

I hereby appoint as my attorneys with full power of substitution to prosecute this application and conduct all business in the United States Patent and Trademark Office associated with this application: Customer No. 021363.

> 021363

I declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that williful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of this application or any patent issuing thereon.

Cathal G. Phelan

Post Office Address:

394 Mountain View Ave.
Mountain View. CA 94041
Citizen of: \quad Ireland
Residence: $\frac{394 \text { Mountain View Ave. }}{\text { Mountain View, CA } 94041}$

Attorns's Docket No. 0325.00309

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: Cathal G. Phelan

Serial No.:
Filed:
For:

09/504,344
February 14, 2000
FIXED BURST MEMORIES

Art Unit: 2824
Examiner:

Assistant Commissioner For Patents
Washington, D.C. 20231

> TRANSMITTAL OF INFORMATION DISCLOSURE STATEMENT WITHIN THREE MONTHS OF FILING OR BEFORE MAILING OF FIRST OFFICE ACTION (37 CR $1.97(\mathrm{~b})$)

NOTE: "An information disclosure statement shall be considered by the Office if filed: (1) within three months of the filing date of a national application; (2) within three months of the date of entry of the national stage as set forth in § 1.491 in an international application; or (3) before the mailing date of a first Office action on the merits, whichever event occurs last." 37 CFR 1.97(b).

IDENTIFICATION OF TIME OF FILING THE ACCOMPANYING INFORMATION DISCLOSURE STATEMENT

The information disclosure statement submitted herewith is being filed within three months of the filing date of the application or date of entry into the national stage of an international application before the mailing date of a first Office action on the merits, whichever event occurs last. 37 CFR 1.97(b).

[^1]

Sheet \qquad of 1

UNITED STATT DEPARTMENT OF COMMERCE Patent and Tract,mark Office
Address: COMMISSIONER OF PATENTS AND TRADEMARKS Washington, D.C. 20231

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.


```
\Gamma
ण\कब%
M0%/10u%
```



```
थ|क कREATER MMT
E|TE 200
```


Please find below and/or attached an Office communication concerning this application or proceeding.

Commissioner of Patents and Trademarks

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE three MONTH(S) FROM
THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136 (a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the malling date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).
- Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704 (b).

Status

1) \mathbb{X} Responsive to communication(s) filed on Feb 14, 2000
2a)
This action is FINAL.
2b) \bar{X} This action is non-final.
2) \square Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quap/a35 C.D. 11; 453 O.G. 213.

Disposition of Claims

4) X Claim(s) 1-17 is/are pending in the applica

4a) Of the above, claim(s) \qquad is/are withdrawn from considera
5)

Claim(s) \qquad is/are allowed.Claim(s) \qquad is/are rejected.
7) \triangle

Claim(s) $1-17$ is/are objected to.Claims \qquad are subject to restriction and/or election requirem

Application Papers

9) \square The specification is objected to by the Examiner.
10) The drawing(s) filed on \qquad is/are objected to by the Examiner.The proposed drawing correction filed on \qquad is: $a \square$ approved b) \square disapproved.
11) The oath or declaration is objected to by the Examiner.

Priority under 35 U.S.C. § 119

13) \square Acknowledgement is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d).
a) \square All b)Some* c) \square None of:
1. Certified copies of the priority documents have been receivedCertified copies of the priority documents have been received in Application No. \qquad -.
2. \squareCopies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).
*See the attached detailed Office action for a list of the certified copies not received.
14) Acknowledgement is made of a claim for domestic priority under 35 U.S.C. § 119(e).

Attachment(s)

15) $\overline{\text { X }}$ Notice of References Cited (PTO-892)
16) X Notice of Drattspersori's Patent Drawing Review (PTO-948)
17) XIIformation Disclosure Statement(s) (PTO-1449) Paper $\mathrm{No}(\mathrm{s})$. 2

Art Unit: 2187

DETAILED ACTION

1. Claims 1-17 are presented for examination. This office action is in response to the application filed 02/14/2000.

In the Title

2. The title of the invention is not descriptive. A new title is required that is clearly indicative of the invention to which the claims are directed. It appears --A memory device that transfers a fixed number of words of data with non-interruptible burst-- or other similar language(see claim 1, specification, pages 1 and 9, e.g.). The loss in brevity of title is more than offset by the gain in its informative value in indexing, classifying, searching, etc. See MPEP 606 and 606.01 .

Claim Rejections - 35 USC § 112

3. The following is a quotation of the first paragraph of 35 U.S.C. 112:

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.
4. Claims 6 and 15 are rejected under 35 U.S.C. 112, first paragraph, as containing subject matter which was not described in the specification in such a way as to enable one skilled in

Art Unit: 2187
the art to which it pertains, or with which it is most nearly connected, to make and/or use the invention.

As per claims 6 and 15, the specification does not provide support. for limitation such as bond options.

Claim Rejections - 35 USC § 102

5. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless --
(e) the invention was described in a patent granted on an application for patent by another filed in the United States before the invention thereof by the applicant for patent, or on an international application by another who has fulfilled the requirements of paragraphs (1), (2), and (4) of section 3710 of this title before the invention thereof by the applicant for patent.
6. Claims 1-17 are rejected under 35 U.S.C. $102(e)$ as being anticipated by Yip et al.(YIP)(U.S.Patent No. 6, 289,138).

As per claims 1 and $12-13$ Yip teaches an integrated circuit comprising: a memory comprising a plurality of storage elements each configured to read and write data in response to an internal address signal(fig. 144B, element 230); and a logic circuit configured to generate a predetermined number of said internal address signals in response to (I) an external address signal(fig. 144A, "ext_addr"), (ii) a clock signal(inherent) and

Art Unit: 2187
(iii) one or more control signals(col. 2, lines 15-20), wherein said generation of said predetermined number of internal address signals is non-interruptible(col. 115, lines 60-64).

As-per claims 2, Yip teaches wherein said predetermine number of internal address signals is determined by a fixed burst length (col. 115, lines 62-63).

As per claims 3-4 and 14, Yip teaches wherein said predetermined number of internal address signals are 4 or (col. 115, lines 62-63 teaches preset number of words, which means preset numbers of internal signals).

As per claim 5, Yip teaches wherein said fixed burst length is programmable(col. 109, lines 35-43).

As per claims 6 and 15, Yip teaches wherein said fixed burst length is programmed by bond options(col. 109, lines 35-43).

As per claims 7 and 16, Yip teaches wherein said fixed burst length is programmed by voltage levels on external pins(it is inherent to have voltage levels for each burst).

As per claim 8, Yip teaches wherein said memory comprises a static random access memory(fig. 1, element 230).

As per claim 9, Yip teaches wherein said memory comprises a dynamic random access memory(fig. 146, element 1910).

Art Unit: 2187

As per claims 10 and 17, Yip teaches wherein said predetermined number of internal address signals is chosen to provide time for writeback and refresh cycles(it is inherent to have time included for writeback and refresh cycle during each burst).

As•per claim 11, Yip teaches wherein said predetermined number of internal address signals is chosen to meet predetermined criteria for sharing address and control busses(col. 115, lines 62-63).

Conclusion

7. The prior art made of record and not relied upon is considered pertinent to applicant's disclosure.
U.S. Patent 5,651,138(Le et al.) Teaches data processor with controlled burst memory accesses and method therefor.
U.S. Patent 5,805,928(Lee) Teaches burst length detection circuit for detecting a burst end time point and generating a burst mode signal without using a conventional burst length detection counter.

Art Unit: 2187
U.S. Patent 5,936,975 (Okamura) Teaches semiconductor memory device with switching circuit for controlling internal addresses in parallel test.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Mehdi Namazi whose telephone number is (703) 306-2758. The examiner can normally be reached on Monday-Thursday from 7:00 to 5:30.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Do Hyun yoo, can be reached on (703) 308-4908.

Any inquiry of a general nature or relating to the status of this application or proceeding should be directed to the Group receptionist whose telephone number is (703) 305-9600.

Any response to this action should be mailed to:
Commissioner of Patents and Trademarks
Washington, D.C. 20231

or faxed to:

(703) 746-7239 (for formal communications intended for entry)

Or:
(703) 746-7240 (for informal or draft communications, please label PROPOSED or DRAFT)

Art Unit： 2187

Hand－delivered responses should be brought to Crystal Park 2， 2121 Crystal Drive，

Arlington，VA．，Sixth Floor（Receptionist）．

M．有的々i，

NOTICE OF DRAFTSPERSON'S PATENT DRAWING REVIEW

The drawing(s) filed (insert date

A. \square sproved by the Draftsperson under 37 CFR 1.84 or 1.152 .
B. -2 giected to by the Draftsperson under 37 CFR 1.84 or 1.152 for the reasons indicated below. The Examiner will require
mbmission of new, contecied drawings when necessary. Corrected drawing must be sumited according to the instructions on the back of this notice.

1. ORAWINOS 37 CFR $1.84(a):$ Acceptable categories of dawings:
mack ink. Colot.
_-_Color dtaming are not acceptable until petion is granted
Fig($)$
Pencil and non black ink not permined. Fig(s) \qquad
2. PHOTOORAPHS. 37 CFR 1.84 b
….. fall tone set is Tequited. Fig(s)
——.... Photograph not properly mounted (must use brystol board or phoosgraphe conble *wigh paper). Fig(s) Foor chality (hatfona). Te(s)
3. TYPE OF PAPER $37 \mathrm{CFR} 1.84(\mathrm{c})$
-anacr not hexible, strong, white, and durable.
Fig(s)
Ftasures, aterations, wewribigs, interincations,
foids, copy machime marks nol aceppted. Fig(s)
_-. Myha, vetumpaper is not acceptable (two thin). Fig(s)
4. SRE OF PAPFR, 37 CFR 1. $84(9):$ Acceptable swes:
21.0 cm by 29.7 cm (D1N sire A4)21.6 cm by $27.9 \mathrm{~cm}(81 / 2 \times 11$ inches)

Alf drawing sheets not the same size.
Shem(s)
Drawings shects not an aceeptable size. Fig(s)
MARGINS. 37 CFR 1.84(g): Accepable margins:
Top 2.5 cm , e . 25 cm Right 1.5 cm Botom 1.0 cm S2E: A4SER
Top 25 cm Left 2.5 cm Right 1.5 cm Botumi 1.0 cm
\qquad Left (L)

VEWS. 37 CRR $1.84(\mathrm{~h})$
REMINDER: Specification may require revision io correspond to drawing changes.
Phtat views. 37 CR 1.84(h)(2)
.... Brackes necded to show figure as one entity.
$\mathrm{BI}(\mathrm{s})$
.-. Vews not habeled separately or properly.
Fig(s)
Enlarged view not labeled separetely or properly. Fig(s) \qquad
7. SECTIONAL VIEWS. 37 CFR 1.84 (h)(3)
.-...Hatchng not indicated for sectional portions of an object. Fig(s)
Sectional designation should be noied with Arabic or
Roman numbers. Fig(s) \qquad
8. ARRANGEMENT OF VIEWS: 37 CFR $1.84(\mathrm{i})$
._-_ Words do not appear on a horizontal, left-to-right fashion when page is either upnight or turned so that the top becomes the right side, except for graphs. Fig(s)
9. SCALE. 37 CFR $1.84(\mathrm{k})$
.-... Scale not large enough to show mechanism without crowding when drawing is reduced in size to two-thirds in reproduction. Fig(s)
10. CHARACTER OF LINES, NUMBERS, \& LETTERS. 37 CPR 1.84(i)
Lines, numbers \& letters not uniformly thick and well defined, gean, dyable, and black (poor line quality). Fig(s) $\quad 1$
11. SHADING. 37 CFR 1.84 (m)

Solid black areas pale. Fig(s)
Solid black shading not permitted. Fig(s)
Shade lines, pale, rough and blurred. Fig(s)
12. NUMEERS, LETTERS, \& REFERENCE CHARACTERS. $37 \mathrm{CFR} 1.84(\mathrm{p})$
.-..... Numbers and reference characters not plain and legible. Fig(s)
Figure legends are poor. Fig(s)Numbers and reference characters not oriented in the same direction as the view. 37 CFR $1.84(\mathrm{p})(1)$ Fig(s) \qquad
English alphabet not used. 37 CFR 1.84(p)(2) Figs
Numbers, letters and reference characters must be at least $32 \mathrm{~cm}(1 / 8$ inch $)$ (f peight. 37 CFR $1.84(\mathrm{p})(3)$ Fg(s)
13. LEAD LINES. 37 CFR $1.84(9)$
.... Lead lines cross each other. Fig(s)
\cdots Lead lines missing. Fig(s)
\qquad
14. NUMBERING OF SHEETS OF DRAWINGS. 37 CFR 1.84 (1)
…-. Sheets not numbered consecutively, and in Arabie numerals beginning with number 1. Sheet(s)
15. NUMBERING OF VIEWS. 37 CFR $1.84(4)$
.-. Views not numbered consecutively, and in Arabic numerals, beginning with number I. Fig(s)
16. CORRECTIONS. 37 CFR 1.84 (w)

Corrections not made from prior PTO-948 dated
17. DESIGN DRAWINGS. 37 CFR 1.152

Surface shading shown not appropriate. Fig(s)
\qquad Solid black shading not u
Fig(s) \qquad

COMMENTS

DATE \qquad
\qquad 3

Attachment for PTO-948 (Rev. 03/01, or earlier) 6/18/01

The below text replaces the pre-printed text under the heading, "Information on How to Effect Drawing Changes," on the back of the PTO-948 (Rev. 03/01, or earlier) form.

INFORMATION ON HOW TO EFFECT DRAWING CHANGES

1. Correction of Informalities -- 37 CFR 1.85

New corrected drawings must be filed with the changes incorporated therein Identifying indicia, if provided, should include the title of the invention, inventor's name, and application number, or docket number (if any) if an application number has not been assigned to the application. If this information is provided, it must be placed on the front of each sheet and centered within the top margin. If corrected drawings are required in a Notice of Allowability (PTOL37), the new drawings MUST be filed within the THREE MONTH shortened statutory period set for reply in the Notice of Allowability. Extensions of time may NOT be obtained under the provisions of 37 CFR 1.136(a) or (b) for filing the corrected drawings after the mailing of a Notice of Allowability. The drawings should be filed as a separate paper with a transmittal letter addressed to the Official Draftsperson.
2. Corrections other than Informalities Noted by Draftsperson on form PTO948.

All changes to the drawings, other than informalities noted by the Draftsperson, MUST be made in the same manner as above except that, normally, a highlighted (preferably red ink) sketch of the changes to be incorporated into the new drawings MUST be approved by the examiner before the application will be allowed. No changes will be permitted to be made, other than correction of informalities, unless the examiner has approved the proposed changes.

Timing of Corrections

Applicant is required to submit the drawing corrections within the time period set in the attached Office communication. See 37 CFR 1.85(a).

Failure to take corrective action within the set period will result in ABANDONMENT of the application.

COMYOF PETS
ODGMABLY ED

ART UNIT:

Cathal G. Phelan
09/504,344
FIXED BURST MEMORIES
February 14, 2000
Namzai, M.
2187

ASSISTANT COMMISSIONER FOR PATENTS
Washington, D.C. 20231
Sir:

Attorn Docket: 0325.003

RESPONSE TRANSMITTAL AND

 EXTENSION OF TIME REQUEST, (IF REQUIRED)

RECEIVED

FEB 22 200?
Tacinnology Center 2100

Enclosed please find an amendment, copies of three patents and a postcard along with the fee calculation below: FEE CALCULATION FOR ENCLOSED AND EXTENSION REQUEST (IF ANY)

Multiple Dependent Claim First Added

> TOTAL IF NOT SMALL ENTITY
$\$ 0.00$

The Commissioner is hereby authorized to charge any overpayment or underpayment of the above fee associated with this Communication to Deposit Account No. 50-0541. A duplicate copy of this sheet is attached.

24025 Greater Mack, Suite 200
St. Clair Shores, Michigan 48080
(586) 498-0670

I hereby certify that this letter, the response or amendment attached hereto are being deposited with the United States Postal Service as first class mail in an envelope addressed to Assistant Commissioner for Patents, Washington, D.C. 20231, on February 4, 2002.

I hereby certify that this letter, the response or amendment attached hereto are being deposited with the United States Postal Service as first class mail in an envelope addressed to Assistant Commissioner for Patents, Washington, D.C. 20231, on February 4, 2002.

AMENDMENT

Assistant Commissioner for Patents
Washington, D.C. 20231
Sir:

In response to the Office Action mailed October 2, 2001
please amend the above-identified application as follows:

VERSION WITH MARKINGS TO SHOW CHANGES MADE

Please replace the title with the following:
[FIXED BURST MEMORIES] MEMORY DEVICE WITH FIXED LENGTH
NON-INTERRUPTIBLE BURST

IN THE CLAIMS

Please amend the claims as follows:

5. (AMENDED) The circuit according to claim 2, wherein said fixed burst length is programmable.
6. (AMENDED The circuit according to claim 5, wherein said fixed burst length is programmed by bond options.
7. (AMENDED) The \&ircuit according to claim 5, wherein said fixed burst length is prognammed by voltage levels on external
8. (AMENDED) The circuit according to claim 1, wherein said memory comprises a static random access memory.
9. (AMENDED) The circuit according to claim 1, wherein said memory comprises a dynamic random access memory.
10. (AMENDED) The circuit according to claim 9, wherein said predetermined number of internal dddress signals is chosen to provide time for at least one writeback or refresh cycle.
11. (AMENDED) The circuit acconding to claim 1, wherein said predetermined number of internal address signals is chosen to meet predetermined criteria for sharing addrelss and control busses.

Please add the following new claims:

VERSION WITH MARKINGS TO SHOW CHANGES MADE

```
1. (AMENDED) [An integrated] A circuit comprising:
a memory comprising a plurality of storage elements each configured to read and write data in response to an internal address signal; and
a logic circuit configured to generate a predetermined number of said internal address signals in response to (i) an external address signal, (ii) a clock signal and (iii) one or more control signals, wherein said generation of said predetermined number of internal address signals is non-interruptible.
```

2. (AMENDED) The [integrated] circuit according to claim 1, wherein said [predetermine] predetermined number of internal address signals is determined by a fixed burst length.
3. (AMENDED) The [integrated] circuit according to claim 1, wherein said predetermined number of internal address signals is at least 4.
4. (AMENDED) The [integrated] circuit according to claim 1 , wherein said predetermined number of internal address signals is 8.
5. (AMENDED) The [integrated] circuit according to claim 2, wherein said fixed burst length is programmable.

6. (AMENDED) The [integrated] circuit according to claim 5, wherein said fixed burst length is programmed by bond options.
7. (AMENDED) The [integrated] circuit according to claim 5, wherein said fixed burst length is programmed by voltage levels on external pins.
 memory.
8. (AMENDED) The [integrated] circuit according to claim 1 , wherein said memory comprises a dynamic random access memory.
9. (AMENDED) The [integrated] circuit according to claim 9, wherein said predetermined number of internal address signals is chosen to provide time for at least one writeback [and] ör refresh [cycles] cycle.
10. (AMENDED) The [integrated] circuit according to claim 1, wherein said predetermined number of internal address signals is chosen to meet predetermined criteria for sharing address and control busses.
11. (AMENDED) A method of providing a fixed burst length data transfer comprising the steps of:
[reading from and writing data to] accessing a memory in response to [an] a plurality of internal address [signal] signals;
and
generating a predetermined number of said internal address signals in response to (i) an external address signal, (ii) a clock signal and (iii) a control signal, wherein said generation
of said predetermined number of internal address signals is noninterruptible.

Abstract

17. (AMENDED) The method according to claim 13, further comprising the step of selecting said predetermined number to provide time for at least one writeback [and] or refresh [cycles] cycle.

-18. (NEW) The circuit according to claim 1, wherein said logic circuit comprises a counter configured to generate said predetermined number of internal address signals.
19. (NEW) The circuit according to claim 1, wherein said external address signal comprises an initial address for data transfers to an from said memory.
20. (NEW) A memory device according to claim 1, wherein said circuit is an integrated circuit.

R E M A R K S

Careful review and examination of the subject application are noted and appreciated.

The present invention concerns an integrated circuit comprising a memory and a logic circuit. The memory may comprise a plurality of storage elements each configured to read and write data in response to an internal address signal. The logic circuit may be configured to generate a predetermined number of the internal address signals in response to (i) an external address signal, (ii) a clock signal and (iii) one or more control signals. The generation of the predetermined number of internal address signals is non-interruptible.

SUPPORT FOR CLAIM AMENDMENTS

Support for the amendments to the claims and new claims 18-20 may be found in the drawings (e.g., FIGS. 1-6) and the specification (e.g., page 5, lines 2-14 and page 6, line 19 thru page 8, line 2) as originally filed. As such, no new matter has been added.

OBJECTION TO THE TITLE

The objection to the title has been obviated by appropriate amendment and should be withdrawn.

CLAIM REJECTIONS UNDER 35 U.S.C. § 112

The rejection of claims 6 and 15 under 35 U.S.C. §112,
second paragraph, is respectfully traversed and should be withdrawn.

Support for claims 6 and 15 may be found on page 8, lines 3-8 of the specification. Furthermore, bond options are well known in the art and, therefore, one skilled in the art would understand how to make and/or use bond options. Copies of U.S. patents 6,188,636' (issued February 13, 2001), 5,900,021 (issued May 4, 1999) and $5,360,992$ (issued November 1, 1994) from the USPTO web site (www.uspto.gov) are attached as evidence of bond options being well known in the art.

CLAIM REJECTIONS UNDER 35 U.S.C. $\$ 102$

The rejection of claims 1-17 under 35 U.S.C. §102(e) as being anticipated by Yip et al. '138 (hereinafter Yip) is respectfully traversed and should be withdrawn.

Yip discloses a general image processor (Title). The image processor includes a raster image coprocessor with a cache memory (elements 224 and 230 of FIG. 1 of Yip) connected to an external DRAM (element 1910 of FIG. 146 of Yip) via a local memory controller and an external interface (see FIG. 2). Accesses to the cache 230 and the external DRAM 1910 are interruptible (see column

54, lines 42-47, column 115, lines 26-29 and lines 52-55 and column 116, lines 20-22 of Yip).

In contrast, the present invention provides a logic circuit configured to generate a predetermined number of the internal address signals in response to (i) an external address signal, (ii) a clock signal and (iii) one or more control signals, where the generation of the predetermined number of internal address signals is non-interruptible. Assuming, arguendo, that the cache 230° of Yip is similar to the presently claimed memory (as suggested by the Office Action in the last paragraph on page 3 and for which Applicants' representative does not necessarily agree), Yip does not disclose or suggest the generation of a predetermined number of internal address signals that is non-interruptible, as presently claimed. As such, the present invention is fully patentable over the cited reference and the rejection should be withdrawn.

In particular, during an access of the cache 230, Yip teaches that when a cache miss occurs the cache access is stalled until all the values needed are read from an external memory and stored in the cache (column 54, lines 42-47 of Yip). Since the access to the cache 230 can be stalled and writing of updated data to the cache must be accommodated, it follows that the generation of addresses for accessing the cache 230 is interruptible. Yip
teaches a cache access that can be stalled. Yip fails to disclose or suggest the generation of a predetermined number of internal address signals that is non-interruptible, as presently claimed. As such, the present invention is fully patentable over the cited reference and the rejection should be withdrawn.

Furthermore, assuming, arguendo, that the external DRAM 1910 of Yip is similar to the presently claimed memory (as suggested by the Office Action on page 4, lines 20-21 and for which Applicants' representative does not necessarily agree), Yip still does not disclose or suggest the generation of a predetermined number of internal address signals that is non-interruptible, as presently claimed. As such, the present invention is fully patentable over the cited reference and the rejection should be withdrawn.

Specifically, Yip teaches that a write burst to the DRAM 1910 can be interrupted when there is a cycle request from a higher priority port (column 115, lines 26-29 of Yip). Similarly, Yip teaches that a read burst will be terminated when a higher priority DRAM request is received (column 115, lines 52-55 of Yip). Since Yip teaches that a burst can be interrupted, Yip fails to disclose or suggest the generation of a predetermined number of internal address signals that is non-interruptible, as presently claimed.

As such, the present invention is fully patentable over the cited reference and the rejection should be withdrawn.

Despite the suggestion of the Office Action on page 4, lines 1-3, Yip does not disclose or suggest generating a predetermined number of internal address signals that is noninterruptible, as presently claimed. Restricting rearbitration for the DRAM 1910 so that an interruptible burst is not interrupted until a preset number of data words have been transferred (see column 115, lines 60-64 of Yip) is not the same as generating a predetermined number of internal address signals that is noninterruptible, as presently claimed. Therefore, Yip does not disclose or suggest generating a predetermined number of internal address signals that is non-interruptible, as presently claimed. As such, the present invention is fully patentable over the cited reference and the rejection should be withdrawn.

New claims 18-20 depend directly from independent claim 1, which is believed to be allowable, and, therefore, are fully patentable over the cited reference.

Accordingly, the present application is in condition for allowance. Early and favorable action by the Examiner is respectfully solicited.

The Examiner is respectfully invited to call the Applicants' representative should it be deemed beneficial to further advance prosecution of the application.

If any additional fees are due, please charge our office Account No. 50-0541.

Docket No.: 0325.00309

Please find below and/or attached an Office communication concerning this application or proceeding.

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE three
\qquad MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION

- Extensions of time may be available under the provisions of 37 CFR 1.136 (a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).
- Any reply received by the Office later than three months after the maling date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) X Responsive to communication(s) filed on Feb 14, 2002

2a) \square This action is FINAL. $2 b$) \mathbb{Z} This action is non-final.
3) \square Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quapy835 C.D. 11; 453 O.G. 213.

Disposition of Claims

4) $\mathbb{X C l a i m}(\mathrm{s}) 1-20$ is/are pending in the applica
4a) Of the above, claim(s) \qquad is/are withdrawn from considere
5) \square Claim(s) \qquad is/are allowed.
6) 区

Claim(s) $1-20$ is/are rejected.
7) \square

Claim(s) is/are rejected.
8)
\square Claims \qquad are subject to restriction and/or election requirem

Application Papers

The specification is objected to by the Examiner.10)The drawing(s) filed on \qquad is/are objected to by the Examiner.
11)The proposed drawing correction filed on \qquad is: $a \square$ approved b) \square disapproved.
12) The oath or declaration is objected to by the Examiner.

Priority under 35 U.S.C. § 119
13) \square Acknowledgement is made of a claim for foreign priority under 35 U.S.C. § 119 (a)-(d).
a) \squareb) \square \square Some* c) \square None o\square Certified copies of the priority documents have been received.Certified copies of the priority documents have been received in Application No. \qquad -.Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).
*See the attached detailed Office action for a list of the certified copies not received.
14) \square Acknowledgement is made of a claim for domestic priority under 35 U.S.C. § 119(e).

Attachment(s)

15) \square Notice of References Cited (PTO-892)
16) \square Notice of Draftsperson's Patent Drawing Review (PTO-948)
17) \square Information Disclosure Statement(s) (PTO-1449) Paper No(s). \qquad
18) \square Interview Summary (PTO-413) Paper No(s). \qquad
19) \square Notice of Informal Patent Application (PTO-152)
20) \square other:

DETAILED ACTION

1. This office action is in response to the amendment filed February 14, 2002 (Amendment A).
2. Claims 1-17 are presented for further examination in view of the foregoing amendments and remarks. Claims 1-13, and 17 have been amended. No claim has been canceled. New claims 18-20 have been added. Therefore, claims 1-20 are pending.

Response to Arguments

3. Applicant's arguments with respect to claims $1-17$ have been considered but are moot in view of the new ground(s) of rejection.

Claim Objections

4. Claim 19 is objected to because of the following informalities:

As per claim 19, line 3, replace "an" with --and--. Appropriate correction is required.

Art Unit: 2187

Claim Rejections - 35 USC § 102
5. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless --
(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.
6. Claims $1-20$ are rejected under 35 U.S.C. 102 (b) as being anticipated by Cowles(U.S.Patent No. 5,729,504).

As per claims 1 and $12-13$ Cowles teaches a circuit
comprising: a memory comprising a plurality of storage elements each configured to read and write data in response to an internal address signal(fig. 1, element 12); and a logic circuit configured to generate a predetermined number of said internal address signals in response to (I) an external address signal (col. 2, lines 20-21), (ii) a clock signal(col. 9, lines 59-61) and (iii) one or more control signals(fig. 1, element 38, produce control signal), wherein said generation of said predetermined number of internal address signals is non-interruptible(col. 8, lines 18-22).

Art Unit: 2187

As per claims 2, Cowles teaches wherein said predetermine number of internal address signals is determined by a fixed burst length(col. 5, lines 47-53).

As per claims $3-4$ and 14 , Cowles teaches wherein said predetermined number of internal address signals are 4 or 8 (fig. 2, shows various burst length of 2,4 , and 8).

As per claim 5, Cowles teaches wherein said fixed burst length is programmable(col. 5, lines 31-34).

As per claims 6 and 15, Cowles teaches wherein said fixed burst length is programmed by bond options(it is well known in the art to include multiple modes of operation selected by bond options).

As per claims 7 and 16, Cowles teaches wherein said fixed burst length is programmed by voltage levels on external pins(it is inherent to have voltage levels for each burst).

As per claim 8, Cowles teaches wherein said memory comprises a static random access memory(fig. 1, element 12).

As per claim 9, Cowles teaches wherein said memory comprises a dynamic random access memory(fig. 1, element 12).

As per claims 10 and 17, Cowles teaches wherein said predetermined number of internal address signals is chosen to provide time for at least one writeback or refresh cycle(it is

Art Unit: 2187

inherent to have time included for writeback and refresh cycle during each burst).

As per claim 11, Cowles teaches wherein the predetermined number of internal address signals is chosen to meet predetermined criteria for sharing address and control busses (col. 8; lines 18-22).

As per claim 18, Cowles teaches wherein the logic circuit comprises a counter configured to generate the predetermined number of internal address signals(fig. 1, element 26).

As per claim 19, Cowles teaches wherein the external address signal comprises an initial address for data transfers to and from the memory(col. 2, lines 21-22).

As per claim 20, Cowles teaches wherein the circuit is an integrated circuit(abstract).

Conclusion
7. The prior art made of record and not relied upon is considered pertinent to applicant's disclosure.
U.S. Patent ($5,966,724$) (Ryan) Teaches synchronous memory device with dual page and burst mode operations.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Mehdi

Art Unit: 2187

```
Namazi whose telephone number is (703) 306-2758. The examiner
can normally be reached on Monday-Thursday from 7:00 to 5:30.
    If attempts to reach the examiner by telephone are
unsuccessful, the examiner's supervisor, Do Hyun yoo, can be
reached on (703) 308-4908.
    Any inquiry of a general nature or relating to the status of
this application or proceeding should be directed to the Group
receptionist whose telephone number is (703) 305-9600.
Any response to this action should be mailed to:
    Commissioner of Patents and Trademarks
    Washington, D.C. 20231
or faxed to:
```

 (703) 746-7239 (for formal communications intended for
 entry)
Or:
(703) 746-7240 (for informal or draft communications, please
label PROPOSED or DRAFT)
Hand-delivered responses should be brought to Crystal Park 2,
2121 Crystal Drive,
Arlington, VA., Sixth Floor (Receptionist).

RECEIVED

IN THE CLAIMS

Please amend the claims as follows:

07/15/2002 MOHARA1 00000026 09504334
01 FC:103
18.00 op

2. (AMENDED) The circuit according to claim 1, wherein said predetermined number of internal address signals is determined by a fixed burst length.
3. (AMENDED) The circuit according to claim 1, wherein said predetermined number of internal address signals is at least 4.
4. (AMENDED) The circuit adcording to claim 1, wherein said predetermined number of internal address signals is 8 .
5. (AMENDED) The circuit according to claim 2, wherein "said fixed burst length is programmable.

2
6. (AMENDED) The circuit according to claim 5, wherein OX said said fixed burst length is programmed by bond options.
7. (AMENDED) The circuit according to claim 5, wherein said fixed burst length is programmed by voltage levels on external pins.
8. (AMENDED) The circuit according to claim 1, wherein said memory comprises a static random access memory.
9. (AMENDED) The circuit according to claim 1, wherein said memory comprises a dynamic random access memory.
10. (AMENDED) The circuit according to claim 9, wherein said predetermined number of internal address signals is chosen to provide time for at least one writeback or refresh cycle.
11. (AMENDED) The circuit according to claim 1, wherein said predetermined number of internal address signals is chosen to meet predetermined criteria for sharing address and control busses.

13. (AMENDED) A method of providing a fixed burst length data transfer comprising the steps of:
accessing a memory in response to a plurality of internal address signals; and
generating a predetermined number of said internal address signals in response to (i) an external address signal, (ii) a clock signal and (iii) a control signal, wherein said generation of said predetermined number of internal address signals is noninterruptible.
14. The method according to claim 13, further comprising the step of programming said predetermined number.

17. (AMENDED) The method according to claim 13, further
comprising the step of selecting said predetermined number to
provide time for at least one writeback or refresh cycle.
18. The circuit according to claim 1, wherein said logic circuit comprises a counter configured to generate said predetermined number of internal address signals.
19. (AMENDED) The circuit according to claim 1, wherein said external address signal comprises an initial address for data transfers to and from said memory.
20. A memory device according to claim 1, wherein said circuit is an integrated circuit.
(Please add the following new claim:)

VERSION WITH MARKINGS TO SHOW CHANGES MADE

19. (AMENDED) The circuit according to claim 1, wherein said external address signal comprises an initial address for data transfers to [an] and from said memory.
20. (NEW) The circuit according to claim 1, further comprising an address and control bus configured to present said external address signal and said one or more control signals, wherein said bus is freed up during the generation of said predetermined number of internal address signals.

REMARKS

Careful review and examination of the subject application are noted and appreciated.

The present invention concerns an integrated circuit comprising a memory and a logic circuit. The memory may comprise a plurality of storage elements each configured to read and write data in response to an internal address signal. The logic circuit may be configured to generate a predetermined number of the internal address signals in response to (i) an external address signal, (ii) a clock signal and (iii) one or more control signals. The generation of the predetermined number of internal address signals is non-interruptible.

SUPPORT FOR CLAIM AMENDMENTS

Support for the amendments to the claims can be found in the drawing as originally filed, for example, FIGS. 5A, 5B and 6, and in the specification as originally filed, for example, on page 9, lines 3-11. As such, no new matter has been added.

OBJECTION TO THE CLAIMS

The objection to claim 19 has been obviated by appropriate amendment and should be withdrawn.

The rejection of claims $1-20$ under 35 U.S.C. §102(b) as being anticipated by Cowles is respectfully traversed and should be withdrawn.

Cowles is directed to a continuous burst EDO memory device (Title). Cowles does not disclose or suggest generating a predetermined number of internal address signals in response to (i) an external address signal, (ii) a clock signal and (iii) one or more control signals, where the generation of the predetermined number of internal address signals is non-interruptible, as presently claimed.

In contrast, the present invention (claim 1) provides a circuit comprising a memory comprising a plurality of storage elements each configured to read and write data in response to an internal address signal and a logic circuit configured to generate a predetermined number of said internal address signals in response to (i) an external address signal, (ii) a clock signal and (iii) one or more control signals. The generation of the predetermined number of internal address signals is non-interruptible. Claims 12 and 13 recite similar limitations.

Assuming, arguendo, that the memory array 12 of Cowles is similar to the presently claimed memory (as suggested by the Office . Action in section no. 6, on page 3 and for which Applicants'
representative does not necessarily agree), Cowles does not disclose or suggest the generation of a predetermined number of internal address signals that is non-interruptible, as presently claimed. As such, the present invention is fully patentable over the cited reference and the rejection should be withdrawn.

In particular, Cowles teaches that a continuous burst read operation can be terminated "merely" by a low to high transition of the write enable signal WE* prior to a falling edge of the CAS* signal (column 8, lines 32-36 of Cowles). Since the burst read operation can be terminated, it follows that the generation of addresses for accessing the memory array of Cowles is interruptible. Cowles teaches a burst read access that can be terminated. Cowles fails to disclose or suggest the generation of a predetermined number of internal address signals that is non-interruptible, as presently claimed. As such, the present invention is fully patentable over the cited reference and the rejection should be withdrawn.

Furthermore, Cowles teaches that a low to high transition of the WE* signal within a burst write access to the memory array 112 will terminate the burst access, preventing further writes from occurring (column 7, lines 36-38 of Cowles). Likewise, a high to low transition of the WE* signal within a burst read access will terminate the burst read access (column 7, lines 38-41 of Cowles).

Similarly, Cowles teaches that control circuitry can terminate a data burst based upon the states of signals CAS*, RAS* and WE* (column 7, lines 50-61 of Cowles). Since Cowles teaches that a burst can be terminated, Cowles fails to disclose or suggest the generation of a predetermined number of internal address signals that is non-interruptible, as presently claimed. As such, the present invention is fully patentable over the cited reference and the rejection should be withdrawn.

Despite the suggestion of the Office Action on page 3, paragraph no. 6, Cowles does not disclose or suggest generating a predetermined number of internal address signals that is non-interruptible, as presently claimed. Therefore, Cowles does not disclose or suggest each and every element of the presently pending claims, arranged as in the presently pending claims. As such, the present invention is fully patentable over the cited reference and the rejection should be withdrawn.

New claim 21 depends directly from claim 1 , which is believed to be fully patentable over the cited reference, and, therefore, is also believed to be fully patentable over the cited reference.

Accordingly, the present application is in condition for allowance. Early and favorable action by the Examiner is respectfully solicited.

```
The Examiner is respectfully invited to call the Applicants' representative should it be deemed beneficial to further advance prosecution of the application.
If any additional fees are due, please charge our office Account No. 50-0541.
```

Respectfully submitted,
CHRISTOPHER P. MAIORANA, P.C.

Docket No.: 0325.00309

SERIAL NO.:
TITLE:
FILED:
EXAMINER:
ART UNIT:

09/504,344
FIXED BURST MEMORIES
February 14, 2000
Namzai, M.
2187

ASSISTANT COMMISSIONER FOR PATENTS
Washington, D.C. 20231
Sir:
Enclosed please find an amendment and a postcard along with the fee calculation below: FEE CALCULATION FOR ENCLOSED AND EXTENSION REQUEST (IF ANY)

Multiple Dependent Claim First Added

TOTAL IF NOT SMALL ENTITY .. \$0.00

[] SMALL ENTITY STATUS - If applicable, divide by 2

RECEIVED
JUL 162002
Technology Center 2100

The Commissioner is hereby authorized to charge any overpayment or underpayment of the above fee associated with this Communication to Deposit Account No. 50-0541. A duplicate copy of this sheet is attached.

24025 Greater Mack, Suite 200
St. Clair Shores, Michigan 48080
(586) 498-0670

CHRISTOPHER P. MAIORANA, PAC.

I hereby certify that this letter, the response or amendment attached hereto are being deposited with the United " States Postal Service as first class mail in an envelope addressed to Assistant Commissioner for Patents, Washington, D.C. 20231, on June 26, 2002.

Registration No.: 42,892

Please find below and/or attached an Office communication concerning this application or proceeding.

Period for Reply
A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE three MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136 (a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timaly
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. 5 133).

Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any
earned patent term adjustment. See 37 CFR $1.704(\mathrm{~b})$.
Status

1) Responsive to communication(s) filed on Jul 9, 2002

2a) X This action is FINAL. \quad 2b) \square This action is non-final.
3) \square Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11; 453 O.G. 213.

Disposition of Claims

4) X Claim(s) 1-21 is/are pending in the application.
4a) Of the above, claim(s) \qquad is/are withdrawn from consideration.
5) \square Claim(s) \qquad is/are allowed.
6) X Claim(s) 1-21 is/are rejected.
7) \square Claim(s) is/are objected to.
8) \square Claims \qquad are subject to restriction and/or election requirement.

Application Papers

9)区 The specification is objected to by the Examiner.
10) \mathbb{X} The drawing(s) filed on $02 / 14 / 00 \quad$ is/are a) \square accepted or b) X objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
11) \square The proposed drawing correction filed on \qquad is: a) \square approved b) \square disapproved by the Examiner If approved, corrected drawings are required in reply to this Office action.
12) \square The oath or declaration is objected to by the Examiner.

Priority under 35 U.S.C. $\S \S 119$ and 120
13) \square Acknowledgement is made of a claim for foreign priority under 35 U.S.C. § $119(\mathrm{a})$-(d) or (f).
a) \square All b) \square Some* c) \square None of:

1. \square Certified copies of the priority documents have been received.
2. \square Certified copies of the priority documents have been received in Application No. \qquad .
3. \square Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).
*See the attached detailed Office action for a list of the certified copies not received.
14) \square "Acknowledgement is made of a claim for domestic priority under 35 U.S.C. § 119(e).
a) \square " The translation of the foreign language provisional application has been received.
$15) \square$ Acknowledgement is made of a claim for domestic priority under 35 U.S.C. $\S \S 120$ and/or 121.
Attachment(s)
15) \square Notice of References Cited (PTC-892)
16)

\square Interview Summary (PTO-413) Paper No(s). \qquad
2) \square Notice of Draftsperson's Patent Drawing Review (PTO-948)
3) \square Information Disclosure Statement(s) (PTO-1449) Paper No(s). \qquadNotice of Informal Patent Application (PTO-152)
6) \square Other:

Art Unit: 2188

DETAILED ACTION

1. This office action is in response to the amendment filed June 9, 2002. Applicant's amendment and arguments have been considered with results that follow.

Claims

2. Claims 1-20 have been presented in this application for examination. Claim 19 has been amended. Claim 21 has been added. No claim have been canceled. Therefore, claims 1-21 remain pending in the application.

Response to Arguments

3. Applicant's arguments filed on June 9, 2002 have been fully considered. With regard to claims 1, 12 and 13 the applicant's arguments is not persuasive.

Examiner is agree with applicant's arguments on pages 9-11 with regard to termination of continuous burst (col. 8, lines 3236 or col. 7, lines 36-38, or col. 7, lines 38-41). However, I should point out this fact that the termination is with regard to continuous burst and not with a row burst which represents a fixed burst length with no interruption. Cowles provides a solution for avoiding termination of row burst, "To avoid a

Art Unit: 2188

```
premature termination of a burst, RSA* cannot transition high
until after the column associated with each row has been
latched".(col. 8, lines 63-65)
```


Drawings

4. The drawings are objected to under 37 CFR 1.83(a). The drawings must show every feature of the invention specified in the claims. Therefore, the "address and control bus" must be shown or the feature(s) canceled from the claim(s). No new matter should be entered.

A proposed drawing correction or corrected drawings are required in reply to the office action to avoid abandonment of the application. The objection to the drawings will not be held in abeyance.

Specification

5. The amendment filed on June 9, 2002 is objected to under 35 U.S.C. 132 because it introduces new matter into the disclosure. 35 U.S.C. 132 states that no amendment shall introduce new matter into the disclosure of the invention. The added material which is not supported by the original disclosure is as follows:

Art Unit: 2188
as per claim 21, line 2, "an address and control bus" is not supported by specification. Page 9, lines 8 of specification teaches two separate address bus and control bus.

Applicant is required to cancel the new matter in the reply to this Office Action.

Claim Rejections - 35 USC § 112

6. The following is a quotation of the first paragraph of 35 U.S.C. 112:

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.
7. Claim 21 is rejected under 35 U.S.C. 112, first paragraph, as containing subject matter which was not described in the specification in such a way as to reasonably convey to one skilled in the relevant art that the inventor(s), at the time the application was filed, had possession of the claimed invention.

As per claim 21, line 2, "an address and control bus" is not supported by specification.

Art Unit: 2188

Claim Rejections - 35 USC § 102

8. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless --
(b) the invention was patented or described in a printed publication in
this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.
9. Claims 1-21 are rejected under 35 U.S.C. $102(\mathrm{~b})$ as being anticipated by Cowles(U.S.Patent No. 5,729,504).

As per claims 1 and 12-13 Cowles teaches a circuit comprising: a memory comprising a plurality of storage elements each configured to read and write data in response to an internal address signal(fig. 4, element 112); and a logic circuit configured to generate a predetermined number of said internal address signals in response to (I) an external address signal (col. 2, lines 20-21), (ii) a clock signal(col. 9, lines 59-61) and (iii) one or more control signals (fig. 4, element 138, produce control signal), wherein said generation of said predetermined number of internal address signals is noninterruptible(col. 8, lines 18-22).

Art Unit: 2188

As per claims 2, Cowles teaches wherein said predetermine number of internal address signals is determined by a fixed burst length(col. 5, lines 47-53).

As per claims 3-4 and 14, Cowles teaches wherein said predetermined number of internal address signals are 4 or 8 (fig. 2, shows various burst length of 2,4 , and 8).

As per claim 5, Cowles teaches wherein said fixed burst length is programmable(col. 5, lines 31-34).

As per claims 6 and 15, Cowles teaches wherein said fixed burst length is programmed by bond options (it is well known in the art to include multiple modes of operation selected by bond options).

As per claims 7 and 16, Cowles teaches wherein said fixed burst length is programmed by voltage levels on external pins (it is inherent to have voltage levels for each burst).

As per claim 8, Cowles teaches wherein said memory comprises a static random access memory(fig. 4, element 112).

As per claim 9, Cowles teaches wherein said memory comprises a dynamic random access memory(fig. 4, element 112).

As per claims 10 and 17 , Cowles teaches wherein said predetermined number of internal address signals is chosen to provide time for at least one writeback or refresh cycle(col. 8,

Art Unit: 2188
lines 33-36, lines 63-65) (Cowles teaches that continuous burst between rows are intruptable but row or fixed burst are not).

As per claim 11, Cowles teaches wherein the predetermined number of internal address signals is chosen to meet predetermined criteria for sharing address and control busses (col. 8, lines 18-22).

As per claim 18, Cowles teaches wherein the logic circuit comprises a counter configured to generate the predetermined number of internal address signals(fig. 4, element 126).

As per claim 19, Cowles teaches wherein the external address signal comprises an initial address for data transfers to and from the memory(col. 2, lines 21-22).

As per claim 20, Cowles teaches wherein the circuit is an integrated circuit(abstract).

As per claim 21, Cowles teaches an address and control bus configured to present the external address signal and the one or more control signals, wherein the bus is freed up during the generation of the predetermined number of internal address signal(fig. 5) (col. 6, lines 47-50).

Art Unit: 2188

Conclusion
10. THIS ACTION IS MADE FINAL. Applicant is reminded of the extension of time policy as set forth in $37 \mathrm{CFR} 1.136(\mathrm{a})$.

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. • In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR $1.136(\mathrm{a})$ will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Mehdi Namazi whose telephone number is (703) 306-2758. The examiner can normally be reached on Monday-Thursday from 7:00 to 5:30.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Do Hyun yoo, can be .reached on (703) 308-4908.

```
    Any inquiry of a general nature or relating to the status of
this application or proceeding should be directed to the Group
receptionist whose telephone number is (703) 305-9600.
Any response to this action should be mailed to:
    Commissioner of Patents and Trademarks
    Washington, D.C. 20231
or faxed to:
    (703) 746-7239 (for formal communications intended for
entry)
Or:
    (703) 746-7240 (for informal or draft communications, please
label PROPOSED or DRAFT )
Hand-delivered responses should be brought to Crystal Park 2,
2121 Crystal Drive,
Arlington, VA., Sixth Floor (Receptionist).
```


1. (AMENDED) A circuit comprising:
a memory comprising a plurality of storage elements coach configured to road and write data in response to an internal address signal; and
a logic circuit configured to generate a predetermined number of said internal address signals in response to (i) an oxternal address signal, (ii) a clock signal and (iii) one or more control signals, wherein said generation of maid predetermined number of internal address signals is non-interruptible.
2. (AMENDED) The circuit according to claim 1 , wherein said prodetermined number of internal address signals is determined by a fixed burst length.
3. (AMENDED) The circuit according to claim 1 , whoreir said prodetarmined number of internal address signals is at least: 4.
[^2][^3]7. (AMENDED) The circuit according to claim 5 , wheroin said fixed buret length is programmed by voltage levels on external pine.

> - (AMENDED) The circuit according to claim 1 , wherein said memory comprises a static random access memory.

```
9. (AMENDED) The circuit according to claim 1 , wherein said memory comprises a dynamic random access memory.
```

10. (AMENDED) The circuit according to claim 9, wherein paid predetermined number of internal address signals is chosen to provide time for ac least one writeback or refresh cycle.
11. (AMENDED) The circuit according to claim 1 , wherein gaia predetermined number of internal address signals is chosen to meet predetermined criteria for sharing address and control busses,

12. The method according to cain 7 further comprising the step of programming said predetermined number.

4

Received from < 5864980673) at 12116002 11:38:41 AM [Eastern Standard Time]

C
 programming step is performed using bond options.
 programming step is performed using voltage levels.

2127 (AMENDED) The method according to claim 17 , further comprising the step of selecting said predetermined number to provide time for at least one writeback or refresh cycle.

榢
(AMENDED) The circuit according to claim 1 , wherein said external address signal comprises an initial address for data transfers to and from said memory.

14
A memory device according to claim 1, wherein said circuit is an integrated circuit.
151. (AMENDED) The circuit: according to claim I, further comprising address and control busses configured to present said
$C 1$ extornal address signal and said one or more control signals, wherein said busses are freed up during the generation of said predetormined number of internal addreas signals.

VERSION WITH MARKINGS TO GHOW CHANGES MADE

21. (AMENDED) The circuit according to clairn 1, furthor comprising [an] address and control [hus] busses configured to present said extemal addross signal and said one or more control signals, whorein said [bus is] hugses are freed up during tho 5 gonexation of said predetermined number of internal addross signals.

REMABEKS

Careful review and examination of the subject application are noted and appreciated.

The present invention concorns an integrated circuit comprising a memory and a logic circuit. The memory may comprise a plurality of storage elements each configured to read and writo data in rosponse to an internal address signal. The logic circuit may be configured to generate a predetermined number of the intemal address signals in response to (i) an extomal address aignel, (ii) a clock signal and (iii) one or more control signala. The yeneration of the predetermined number of internal address gignals is non-interruptible.

SUPPORT FOR CLATM AMENDMENTS

Support for the amendment to claim 21 can be found in tho drawinges as oxiginally filed, for example, FTGS. $1-3,5 \mathrm{~A}$ and 5 B , and in the spocification as originally filed, for example, on page 9, lines 5-10; and page 12, lines 7-15. As such, no new mattor has bean added.

Furthermore, the present amendment doos not raise new issues. the amendment to claim 21 merely changes the grammatically singular "address and control bus" (which Applicant'ci representatives believe is supported hy the specification) to the
grammatically plural "addreas and control busses." The Examínor has already considered this issue (see page 4, first paragraph of the Office Action dated Ootober 22, 2002). Therefore, the present amendment raises no new issues, and should bo entered and considered.

Claim 21 has been amended. Claims $1-21$ remain active in the present application.

OBJECTION TO THE DRAWINGS
The objection to the drewings has been obviatod by appropriate amendment and should bo withdrawn.

OBIECTION TO THE CLAIMS
The objection to claim 21. has been obviated by appropriate amondment and should be withdrawn.

CLATM REJEGTIONS UNDER 35 U.S.C. SII2
The objoction to claim 21 under $35 \mathrm{U} . \mathrm{S} . \mathrm{C} . \$ 112$, first paragraph, has beon obviated by appropriate amendment and should be withdrawrı.

[^4]
Abstract

col. 5, 2. 6. through col. 6, 1. 9; and col. 8, 11. 3\%-48 of Cowles).

In contrast, the present claim 1 recites a circuit comprising a memory comprising a plurality of storage elements each configured to read and write data in rosponse to an intermal address aignal and a logic cirouit conrigured to genemate now-interruptibly a predetermined number of paid internal address signala in response to (i) an external address aignal, (ii) a clock signal and (iii) one or more control signals. Claing 12 and 13 reaite similar limitations. Therefore, Cowles neither dieclosen nor auggestg the presently claimod invention.

The Office Action appoars to drew a distinction betwoon a "continuous burge" and a "row buret" as they relate to intermuplibility (see, e.g., the paragraph bridging pagea $2-3$ of the office Action, which appears to suggest that a continuous burst can be terminated or interrupted, while a row burst annot). However, Cowles draws such a distinction for only one of theec comojtions under which a burst can be prematurely terminated or intorxupted. In fact, Cowles discloses that a BEDO access can be intuermpted under any of the three conditions, whoreas a CBEDO accees can be interrupted under only two of the thrce conditions. The pasisage relied upon in the office Action to alupport the distinction botween a "continuous burst" and a "row burst" is

aotually directed to a difference between BEDO and CBEDO memories that affects only one of the three ReDO termination conditions; soe the dotailod discussion below. As a result, both the "continuous buret" and "row buret" modes disclosed by Cowles are interruptible.

For example, with regard to Bedo memories, Cowlea states thent:
"The time at which data will be valid at the outputs of the burst EDO DRAM is dependent only on the timing of the CAS* signal provided that of* is matntained low, and we* remains high." (Col. 4, 11. 8-1.1 of Cowles; emphasios added.)

Furthermore, with regard to bero menories, Cowles also states that:
"Once the memory device begins to output data in a burest read cycle, the output drivere 34 will contirue to drive the data lines without tri-stating the data outpute during CAS* high intervals dependent on the state of the output enable 42 and write enable 36 (OE* and WE*) control lines, thus allowing additional time for the system to latch the output data." (Col. 3, J. 65-col. 1, 1. 4 of Cowles; emphasis added.)
"The control circuit [r]y determines when a current data burst ahould be terminated based upon the state of RAS* 14, CAS* 24 and WE* 36." (Col. 4, 11. 63-65 of Cowles; emphasis added.)
"The level of the WE* signal mugt remain high for read and low for write burst accesses throughout the burst access. A low to high transition within a burat write access will terminate the burst acceas, preventing further wxites from occurring. A high to low transition on WE* within a burst read access wi.ll likewise terminate the burst read access and will place the data output 10 in a high impedanco st:ate." (Col. 5, 11. 4-10 of Cowlos; emphasis added.)

[^5]
Abstract

"Once the memoxy device bogins to output data in a burst read cycle, the output drivers 134 will continue to drive the data lines without tri-stating the data outputs during CAS* high intervalas dependent on the state of the output enable and write enable (on* and WE*) dontrol Innes, thus allowing additional. time for the systom to latch the output data." (Col. 7, 11. 53-59 of Cowles [emphasis added]; note the mimilarities to col. 3, 1. 65col. 4, 1. 4 of Cowles, cited abova.) "The control circuit $[r] y$ detorminos when a current data burst should be terminated based upon the state of Ras* 114. CAS* 124 and WE* $136 . "$ (Col. \% 11. 52-54 of Cowles [emphasis added]; note the similaritieg [including the typographical errorl to col. 4, 11. 63-65 of cowlos, "The level of the WE* signal must remain high for read and low for write burst accessen throughout the burat aacess. A low to high transition within a burst write access will terminate the burst access, preventing furthor writes from, occurring. A high to low transition on WE* within a burst road access will likewiso terminate the burst read access and will place the data output 110 in a high impedance state." (Col. 7, 11. 34-4] of Cowles [emphasis added]; note the similarities to col. 5, 1.1. 110 of Cowles, cited above.)

Thus, in CBEDO memories, Cowles teaches that at least two of the threa conditions above that terminate a BRDO access (WE* trang,tioning and oE* going high will also temminate a cembo access, Cowles is quite clear in this teaching with rogerd to we*

 transitions:"In a CBEDO operation, control cixcuitry 138 doos not
terminate a burat operation when CAS* and Ens* go high,
but looks to WE* for an indication that a burst operation
is to be terminated." (Col. 7, 11. $57-61$ of Cowles;
emphasiss added.)

```
"To terminate a continuous burst read operation, the we* signal merely has to transition high prior to a falling edge of the CAS* signal." (Col. 8, 11. 33-36 of Cowloe; cmphasis added.)
Therefore, even if we assume for the sake of argumont that OF* does not affect the generation of internal adaressen, there ies still one condjtion under which the mernories of cowlen wil. intermpt (oln prematurely torminate) an access: wBt Lronsitionincr. Cowles rather explicitly teaches how such a prematire temmination can take place.
For example, in FIG. 4 of Cowles, the acoess at "comm" iss premeturoly terminated when we* transitione from low to high, causing the "colp" address to be latched and data from the "conp" adrroas to be read out (see; e.g., the "ADDR," "Wr" and "DQ" waveforms in FIG. 4 and the corresponding description at col. 5, 1. 6.-col. 6, 1. 9 of Cowlea). Cowles correlates the read and write operations of the BEDO memory of FIG. 3 and the CBEDO memory of PrG. 5; i.e., in both manories, the next falling edge of cas* after the wr* signal transitions low latches a new columa address for a burat write operation (see, e.g., col. 8, 11. 37-48 of Cowles). One of oxdinary skill in the art would undorstend that the next falling edge of CAS* aftex the WE* signal tiansitions high latchos a new columin address for a burst read operation. Thus, thia
```

pasaage further subatantiates the interruptibility of both tho BrDO and CBEDO memories of Cowles.

Thus, it appears that cowles consistently discloses at Jeart one condition under which the generation of internal addresses can be interrupted, contrazy to the non-interruptible internal address generation presently clained.

As noted in the office Action, Cowles discloses that:
"To avoid a premature termination of burst, RAS* cannot transition high until after the last column associatod with oach row has been latched." (col. 8, l.t. 63-65 of Cowles.)

However, as discussed above, this statement rofers to heducing the impact of burst termination condition 非2 above (see. e.g., col. 8, 1. 65-col. 9, 1. 15 of Cowles), a condition that aleo Learminatos a burst access in the sedo memory of Cowles. More to the point of the present claims, Cowles disclosen that:
"rransiltions of the We* signal may bo looked out during
critical timing perioda within an access cyole in order
to reduce the possibility of triggoring a false write
cycle. After the critical timing period, the atate_of
WF* will determine whether a burst access continues. ins
injitiated, or is termirated," (CO1. 5, 11, 11-16 and col. 7, 11. 42-47 of Cowles; emphasis added.)

These statements in Cowles apply to both the BEDO and CREDO memory architectures (consistent with the WE*-initiated interrupt shown in FIG. 4 applying to both BEDO and CBEDO momories). Howevar, as the plain language of the passage
 or not.
more, Cowles provides very little guidance as to what the "critical timing periods" might be. Cowles teaches that RAS* must remain high for a minimum of about 100 ns in a BRLDO memory (col, 6, 11, 18-29 of Cowles). Howevor, other than to rafer: to a specificd minimum time period relating to the ras signal (seo col. B, 1.1. 60-63), Cowles is largely silent as to what the "oritical timing periods" are for a CBEDO memory. From those indications, one of ordinary skill in the art could only surmise that "critical timing periods within an access dycle" means something considerably less than an ontire access cycle. Thus, it is ontirely possible, if not likely, that a burst access can be interfupted during an access cycle by a We* transition outaido tho "critical timing period." Consequently, the disclosure that wE* transitions "may be locked out during critical timing periods

```
within an access oycle" does not mean that burst acceasce in a nemo
and/or CBEDO momory are non-interruptible, ag presently claimed.
    Since Cowles teaches that a burst can be terminated
during a read or write access, whether in BEDO or CREDO mode,
Cowless fails to disclose or suggest the non-interruptible
generation of a predetermined number of intexmal addrese sigmals,
as presently claimed. As such, Cowles doos not disclose or suggest
each and every element of the presently pending claims, arranged as
in the presently pending claims. therefore, Cowles doos not:
antloipate the present claims, and the rejection should be
withdrawn.
```


CONCLUGION

```
Accordingly, the prosent application is in condition for allowance. Eaxly and favorable action by the Examiner if renpoctfully solicited.
The Examiner is respectfully invited to call the
Applicants' representative should it be doemed boneficial to
furthor advance prosecution of the application.
```

If any additional fees are due, please charge our office Account No. 50-0542.

Dackot No.: 0325.00309

CIRSSL'IUITR P. MAIORANA
ROBLETY M. MISAKR JOIIN S. KINATOWSKI

LAW OPFICRS
Christopier P. Maiorana. P.C.

24025 GREATER MACK, SUHE: 200

 Sr. Clair Siores, Micimonn aboroPACSIMLIEMRSSAGE

70:	Examiner M. Namari
COMPANY:	US Pratentand Tradumark Olice
RE:	Serial No::09/504,344-Filed: Februery 14, 2000
[llano:	0325.00309
JAXNO.	(703) 74677238
FROM:	Christonher Pr Maiorina, Esq.
DATE:	December 16,2002 TIME:
	TOTAL NIJMBER OF PAlfies 20 (inchuling coversheel)

If you do not receive any of these pages, please telephone ans at (586) 498-0670 or telofax us at (586) 108-0673.
COMMENTS:
Enclosed is the following:
Amendment After Final (19 pages).


```
    1,AW OFICES
    Christophter P. Maiorana, P.C.
    24025 GRFATER MACK, SUTIF:200
    ST. Clair Sigmis, Micingan 4080
                                    -r...-
```

CHRISTOIMIIR P. MAORANA
RODER't M. MILLL:K
MOFND. LGNATOKOKL
$(586) 498-0670$
Fax $(586) 498-0673$
matoratinnc.com

FATENTS, IRADIMALKGS \& colvhimirs

```
December 16, 2002
```

Mcredih McKenzie, Esq.
Managerof Intellectual Property
Cypross Semiconductor Corp.
3901 North First Sirvet, Building 2
San Jose, CA 95134-1599
Re: Uniled Stales Patent Application Entitled:
FIXFD BURST MEMORIES
Cypress Referonce No.: CD99073
Our Reference No.: 0325.00309
Dear Mercdith:
Enclosed is a copy of the Amenduent After Final and accompanying documents that wore filed today, via facsimilo, with the United States Patent and lrademark Orfice for the aboveidentified palent application.

Plase call me if you have any questions.

CPM/ndb
Enclusure

Please find below and/or attached an Office communication concerning this application or proceeding.

Art Unit: 2188

The examiner respectfully disagree with applicant's argument. Broadly interpreting the claim language, applicant's invention teaches "the fixed burst length may allow the circuit 100 to operate at higher frequencies then a conventional DRAM without needing interrupts to preform refreshes of data." (specification , page 8, lines 12-15). Cowles clearly teaches a continuous (non-interruptible) stream while new rows of the memory are accessed(abstract). In fact Cowles does not interrupt any signal during refreshing of data.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

\author{

Group Art Unit: 2188
 | Examiner: | Namazi, M. |
| :--- | :--- |
| Applicant: | Cathal G. Phelan |
 Serial No: 09/504,344
 Filing Date: February 14, 2000
 For: $\begin{aligned} & \text { MEMORY DEVICE WITH FIXED LENGTH NON-INTERRUPT } \\ & \text { BURST }\end{aligned}$

}

I hereby certify that this letter, the response or amendment attached hereto are being deposited with the United States Postal Service as first class mail in an envelope addressed to Assistant Commissioner for Patents, Washington, D.C. 20231, on January 22, 2003.

NOTICE OF APPEAL

Patent and Trademark Board of Appeals and Interferences
Assistant Commissioner for Patents
Washington, DC 20231

Dear Sir:
The Applicant of the above-captioned patent application hereby appeals to the Board of Patent Appeals and Interferences from the decision dated October 22, 2002 of the Examiner finally rejecting Claims 1-21.

The payment for the appeal fee is enclosed herewith.

01 F6:1401.
30.006

If Applicant has not requested a sufficient extension and/or has not paid a sufficient fee for this matter, and/or for the extension necessary to prevent the abandonment of this application, please consider this as a request for an extension for the required time period and/or authorization to charge our Deposit Account No. 50-0541 for any fee which may be due.

Respectfully submitted,

Date: January 22, 2003

Attorney Docket No.: 0325.00309

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

Applicant Cathal G. Phelan
Application No.: 09/504,344 Examiner: Namazi, M.
Filed: \quad February 14, 2000 Art Group: 2188
For: . MEMORY DEVICE WITH FIXED LENGTH NON-INTERRUPTIBLE BURST

I hereby certify that this letter, the response or amendment attached hereto are being deposited with the United States Postal Service as first class mail in an envelope addressed to Assistant Commissioner for Patents, Washington, D.C. 20231, on March 24, 2003.

Assistant Commissioner for Patents
Washington, D.C. 20231
APPEAL BRIEF
RECEIVED
MAR 312001
Technology Center 2100
Dear Sir:

Appellants submit, in triplicate, the following Appeal Brief pursuant to 37 C.F.R. §1.192 for consideration by the Board of Patent Appeals and Interferences. Appellants also submit herewith a PTO-2038 Form in the amount of $\$ 320.00$ to cover the cost of filing the opening brief as required by 37 C.F.R. $\S 1.17(\mathrm{c})$. Please charge any additional fees or credit any overpayment to our Deposit Account Number 50-0541.

TABLE OF CONTENTS

I. REAL PARTY IN INTEREST
II. RELATED APPEALS AND INTERFERENCES
III. STATUS OF CLAIMS

IV STATUS OF AMENDMENTS
V. SUMMARY OF INVENTION
VI. ISSUE
VII. GROUPING OF CLAIMS
VIII. ARGUMENTS
A. Selected groupings of the claims are each patentable under 35 U.S.C. $\S 102$ over Cowles. ${ }^{1}$
B. Conclusion
IX. APPENDIX
${ }^{1}$ U.S. Patent No. 5, 729,504.
Docket Number:0325.00309
Application No.: 09/504,344

I. REAL PARTY IN INTEREST

The real party in interest is the Assignee, Cypress Semiconductor Corporation.

II. RELATED APPEALS AND INTERFERENCES

There are no related appeals or interferences known to the Appellant, the Appellant's legal representative, or the Assignee which will directly affect or be directly affected by or have a bearing on the Board's decision in the pending appeal.

III. STATUS OF CLAIMS

Claims 1-21 are pending and remain rejected. The Appellant hereby appeals the rejection of claims 1-21. A copy of the currently pending claims is included in the Appendix.

IV. STATUS OF AMENDMENTS

Appellant is appealing a final Office Action issued by the Examiner on October 22, 2002. On December 16, 2002, Appellant filed an Amendment After Final. An Advisory Action dated January 10, 2003 entered the amendment and maintained the rejection. Appellant filed a Notice of Appeal on January 22, 2003. The Notice of Appeal was received by the B.P.A.I. on January 28, 2003.

[^6]
V. SUMMARY OF INVENTION

In one embodiment, the present invention concerns a circuit (100) comprising a memory (104) and a logic circuit(102). The memory may comprise a plurality of storage elements each configured to read and write data in response to an internal address signal (ADDR_INT). The logic circuit may be configured to generate a predetermined number of the internal address signals in response to (i) an external address signal (ADDR_EXT), (ii) a clock signal (CLK) and (iii) one or more control signals (LOAD, ADV, BURST). The generation of the predetermined number of internal address signals is non-interruptible ${ }^{2}$.

In another embodiment, the present invention concerns a circuit (100) comprising (a) means for reading data from and writing data to a plurality of storage elements in response to a plurality of internal address signals (104) and (b) means for generating a predetermined number of the internal address signals in response to (i) an external address signal, (ii) a clock signal and (iii) one or more control signals (102). The generation of the predetermined number of internal address signals is non-interruptible. ${ }^{3}$

In yet another embodiment, the present invention concerns a method of providing a fixed burst length data transfer (see the signal DQ in FIGS. 5A, 5B and 6) comprising the steps of (A) accessing a memory in response to a plurality of internal address signals and (B) generating a predetermined number of the internal address signals in response to (i) an external address signal

[^7](ADDR), (ii) a clock signal (CLK) and (iii) a control signal (ADV), where the generation of the predetermined number of internal address signals is non-interruptible. ${ }^{4}$

VI. ISSUE

The issue is whether claims 1-21 are patentable under 35 U.S.C. §102(b) over Cowles. ${ }^{5}$

VII. GROUPING OF CLAIMS

Appellant contends that the claims of the present invention do not stand or fall together. In particular, the following groups of claims are separately patentable:

Group 1: Claims 1, 2-5, 8, 9, and 18-20 stand together.
Group 2: Claim 6 stands alone.
Group 3: Claim 7 stands alone.
Group 4: Claim 10 stands alone.
Group 5: \quad Claim 11 stands alone.
Group 6: Claim 12 stands alone.
Group 7: Claim 13, 14 and 16 stand together.
Group 8: Claim 15 stands alone.
Group 9: Claim 17 stands alone.
Group 10: Claim 21 stands alone.

[^8]Docket Number:0325.00309
Application No.: 09/504,344

The claim(s) in each group is(are) separately patentable from the claim(s) in any other groups. During prosecution, each independent and dependent claim is considered to be separately patentable over every other claim. ${ }^{6}$ As such, each of the above groups is considered to be separately patentable over every other group. ${ }^{7}$

In particular, groups 1-5 concern a circuit, group 6 concerns a means plus function and groups 7-10 concern a method. Since the means plus function claim of group 6 and the method claims of groups 7-10 do not necessarily encompass all the structure comprising the circuit of the claims of any of the groups 1-5, groups 1-5 are separately patentable with respect to groups 6-10. Detailed reasons why the groups are patentable over the cited references are provided in the Arguments below.

Group 2 is separately patentable over group 1 due to the added structure of group 2. In particular, the recitation in claim 6 that the fixed burst length is programmed by bond options provides claim 6 of group 2 with structure not recited the independent claim 1 of group 1 . Therefore, the dependent claim 2 in group 2 may be found patentable over the cited reference even if the independent claim 1 in group 1 is not. As such, group 2 is separately patentable as compared to group 1. Detailed reasons why claim 2 is separately distinguishable over the cited reference is provided in the Arguments below.

[^9]Group 3 is separately patentable over groups 1 and 2 due to the added structure of group 3. In particular, the recitation in claim 7 that the fixed burst length is programmed by voltage levels at external pins provides claim 7 of group 3 with structure not recited the independent claim 1 of group 1 or the dependent claim 6 of group 2 . Therefore, the dependent claim 7 in group 3 may be found patentable over the cited reference even if the independent claim 1 in group 1 and the dependent claim 6 in group 2 are not. As such, group 3 is separately patentable as compared to groups 1 and 2. Detailed reasons why claim 7 is separately distinguishable over the cited reference is provided in the Arguments below.

- Group 4 is separately patentable over groups 1-3 due to the added structure of group 4. In particular, the recitation in claim 10 that the predetermined number of internal address signals is chosen to provide time for at least one writeback or refresh cycle provides claim 10 of group 4 with structure not recited the independent claim 1 of group 1 or the dependent claims 6 and 7 of groups 2 and 3. Therefore, the dependent claim 10 in group 4 may be found patentable over the cited reference even if the independent claim 1 in group 1 and the dependent claims 6 and 7 in groups 2 and 3 are not. As such, group 4 is separately patentable as compared to groups 1, 2 and 3. Detailed reasons why claim 10 is separately distinguishable over the cited reference is provided in the Arguments below.

Group 5 is separately patentable over groups 1-4 due to the added structure of group
5. In particular, the recitation in claim 11 that the predetermined number of internal address signals is chosen to meet predetermined criteria for sharing address and control busses provides claim 11 of group 5 with structure not recited the independent claim 1 of group 1 or the dependent claims 6 , 7 and 10 of groups 2-4. Therefore, the dependent claim 11 in group 5may be found patentable over
the cited reference even if the independent claim 1 in group 1 and the dependent claims 6, 7 and 10 in groups 2-4 are not. As such, group 5 is separately patentable as compared to groups 1-4. Detailed reasons why claim 11 is separately distinguishable over the cited reference is provided in the Arguments below.

The means plus function of group 6 is separately patentable over the circuit of groups $1-5$ and/or the method of groups $7-10$ because group 6 includes the means to perform the claimed functions. In particular, independent claim 12 in group 6 provides means for generating a predetermined number of the internal address signals where the generation of the predetermined number of internal address signals is non-interruptible not necessarily provided for in groups 1-5 and 7-10. References to the specific means plus the respective specific functions in claim 12 provide separately distinguishable limitations over the cited reference. Therefore, claim 12 may be found patentable over the cited reference even if groups 1-5 and 7-10 are not. As such, group 6 is separately patentable as compared to groups $1-5$ and $7-10$. Detailed reasons why claim 12 is separately distinguishable over the cited reference is provided in the Arguments below.

The method of group 7 is separately patentable over the apparatus of groups 1-5 and/or the means plus function of group 6 because group 7 involves process steps and/or specific circuit elements not necessarily in groups 1-6. In particular, independent claim 13 in group 7 provides the step of generating a predetermined number of the internal address signals where the generation of the predetermined number of internal address signals is non-interruptible. Independent claim 1 in group 1, dependent claims $6,7,10$, and 11 in groups 2-5, and/or independent claim 12 in group 6 recite structure not necessarily provided for in group 7. Therefore, claims $1,6,7,10,11$ and 12 in groups 1-6 may be found patentable over the cited reference even if claim 14 in group 7
is not. As such, group 7 is separately patentable as compared to groups 1-6. Detailed reasons why claim 14 is separately distinguishable over the cited reference is provided in the Arguments below.

Group 8 is separately patentable over group 7 due to the added step of group 8. In particular, claim 15 includes the step of programming the fixed burst length using bond options not provided for by the independent claim 13 in group 7. Therefore, the dependent claim 15 in group 8 may be found patentable over the cited reference even if the independent claim 13 in group 7 is not. As such, group 8 is separately patentable as compared to group 7. Detailed reasons why claim 15 is separately distinguishable over the cited reference is provided in the Arguments below.

Group 9 is separately patentable over group 7 due to the added step of group 9 . In particular, claim 17 which includes the step of selecting the predetermined number to provide time for at least one writeback or refresh cycle. Independent claim 1 in group 1, dependent claims 6, 7, 10 , and 11 in groups $2-5$, and/or independent claim 12 in group 6 recite structure not necessarily provided for in group 9. Therefore, claims $1,6,7,10,11$ and 12 in groups 1-6 may be found patentable over the cited reference even if claim 17 in group 9 is not. As such, group 9 is separately patentable as compared to groups 1-7. Detailed reasons why claim 17 is separately distinguishable over the cited reference is provided in the Arguments below.

Group 10 is separately patentable over group 1 due to the added structure of group 10. In particular, the recitation in claim 21 of address and control busses configured to present the external address signal and the one or more control signals, where the busses are freed up during the generation of the predetermined number of internal address signals provides claim 21 of group 10 with structure not recited the independent claim 1 of group 1. Therefore, the dependent claim 21 in group 10 may be found patentable over the cited reference even if the independent claim 1 in group

1 is not. As such, group 10 is separately patentable as compared to group 1 . Detailed reasons why claim 21 is separately distinguishable over the cited reference is provided in the Arguments below.

VIII. ARGUMENTS

A. Selected groupings of the claims are each patentable over Cowles

35 U.S.C. § 102

As set forth in the Final Office Action, ${ }^{8}$ claims 1-21 are rejected under 35 U.S.C. § 102(b) as anticipated by Cowles. ${ }^{9}$

The Federal Circuit has stated that "[a]nticipation requires the presence in a single prior art reference disclosure of each and every element of the claimed invention, arranged as in the claim. ${ }^{10}$ The Federal circuit has added that the anticipation determination is viewed from one of ordinary skill in the art: "There must be, no difference between the claimed invention and the reference disclosure, as viewed by a person of ordinary skill in the field of the invention."11 As explained herein below, because Cowles does not disclose or suggest each and every element of the presently pending claims, arranged as in the claims, Cowles does not anticipate the presently claimed invention.

[^10]1. Group 1 (claims $1,2-5,8,9$ and 18-20) is fully patentable over Cowles.

The presently pending claim 1 provides a circuit comprising a memory and a logic circuit. The memory comprises a plurality of storage elements each configured to read and write data in response to an internal address signal. The logic circuit is configured to generate a predetermined number of the internal address signals in response to (i) an external address signal, (ii) a clock signal and (iii) one or more control signals. The generation of the predetermined number of internal address signals is non-interruptible.

Cowles does not disclose or suggest each and every element of the presently pending claim 1, arranged as in claim 1. Specifically, Cowles does not disclose or suggest the non-interruptible generation of the predetermined number of address signals as presently claimed. Cowles is directed to a continuous burst EDO memory device. ${ }^{12}$ The Examiner admits that a continuous burst of Cowles is interruptible. ${ }^{13}$ Specifically, the Examiner states that he agrees with Appellant's arguments with regard to termination of a continuous burst. ${ }^{14}$ In particular, the Examiner admits that the interruptibility of a continuous burst is supported by the following passages in Cowles. ${ }^{15}$

To terminate a continuous burst read operation, the WE* signal merely has to transition high prior to a falling edge of the CAS* signal. (Column 8, lines 33-36 of Cowles; emphasis added).

[^11]> The level of the WE* signal must remain high for read and low for write burst accesses throughout the burst access. A low to high transition within a burst write access will terminate the burst access, preventing further writes from occurring. A high to low transition on WE* within a burst read access will likewise terminate the burst read access and will place the data output 110 in a high impedance state. (Column 7, lines 34-41 of Cowles; emphasis added).

However, the Examiner urges that while a "continuous burst" can be terminated, a
"row burst" represents a fixed burst length with no interruption. ${ }^{16}$ Despite the position taken by the Examiner, Cowles does not appear to draw such a distinction between bursts. Specifically, with regard to a burst from a BEDO memory, Cowles states:

Once the memory device begins to output data in a burst read cycle, the output drivers 34 will continue to drive the data lines without tristating the data outputs during CAS* high intervals dependent on the state of the output enable 42 and write enable 36 (OE* and WE*) control lines, thus allowing additional time for the system to latch the output data. (Column 3, line 65 through column 4, line 4 of Cowles; emphasis added).

The control circuit[r]y determines when a current data burst should be terminated based upon the state of RAS* 14, CAS* 24 and WE* 36. (Column 4, lines 63-65 of Cowles; emphasis added).

The level of the WE* signal must remain high for read and low for write burst accesses throughout the burst access. A low to high transition within a burst write access will terminate the burst access, preventing further writes from occurring. A high to low transition on WE* within a burst read access will likewise terminate the burst read access and will place the data output 10 in a high impedance state. (Column 5, lines 4-10 of Cowles; emphasis added).

Both RAS* and CAS* going high during a burst access will also terminate the burst access cycle placing the data drivers in a high

[^12]- Docket Number:0325.00309

Application No.: 09/504,344
impedance output state, and resetting the burst length counter. (Column 5, lines 25-28 of Cowles; emphasis added).

Thus, in BEDO memories, Cowles clearly teaches that there are three conditions that will terminate (i.e., interrupt) a burst access:

1. WE* transitioning, either from low to high or from high to low;
2. RAS* and CAS* going high; or
3. OE* going high. ${ }^{17}$

Cowles is quite clear that WE* transitions will terminate both a row burst and a continuous burst access. In particular, Cowles states:

The control circuit[r]y determines when a current data burst should be terminated based upon the states of RAS* 114, CAS* 124 and WE* 136. In the standard BEDO operation described above, control circuitry 138 terminated a data burst when WE* transitioned during a burst, or when both CAS* and RAS* transitioned high. In a CBEDO operation, control circuitry 138 does not terminate a burst operation when CAS* and RAS* go high, but looks to WE* for an indication that a burst operation is to be terminated. (Column 7, lines 52-61 of Cowles; emphasis added).

To terminate a continuous burst read operation, the WE* signal merely has to transition high prior to a falling edge of the CAS* signal. (Col. 8, 11. 33-36 of Cowles; emphasis added).

Therefore, since Cowles states that a transition of the signal WE* during a burst can terminate the burst in both the standard BEDO operation and in the continuous BEDO (CBEDO) operation, Cowles explicitly teaches that a premature termination of a row burst can take place.

FIG. 4 of Cowles further evidences that row bursts are interruptible. Specifically, FIG. 4 illustrates a burst access starting at column address "COLn" is terminated (i.e., interrupted)

[^13]Docket Number:0325.00309
Application No.: 09/504,344
when the signal WE* transitions from low to high. ${ }^{18}$ Furthermore, Cowles shows addressing sequences for burst lengths of 2,4 , and 8 cycles. ${ }^{19}$ However, FIG. 4 of Cowles illustrates a burst access starting at the column address "COLp" is interrupted after only three cycles by the signal RAS* rising. ${ }^{20}$ With regard to the operations illustrated in FIG. 4, Cowles further states:

It will be appreciated that the read and write operations performed on a single memory row of the memory of FIG. 5 are identical to the operation of the memory of FIG. 1 as shown in FIG. 3. That is, after completing a burst read, the WE* signal transitions low and the next falling edge of CAS* latches a new column address for a burst write operation. Likewise, the timing diagram of FIG. 4 depicting burst write access cycles followed by burst read cycles can be replicated with the memory of the present invention. As such, BEDO memory devices can be replaced with CBEDO memory devices without effecting the operation of the memory support system. It will further be appreciated by those skilled in the art that the memory device of FIG. 5 can operate with burst lengths of $2,4,8$, or full row cycles. (Column 8, lines 37-50 of Cowles; emphasis added).

Therefore, despite the position taken by the Examiner, ${ }^{21}$ Cowles does not disclose or suggest generating a predetermined number of internal address signals, where the generation of the predetermined number of internal address signals is non-interruptible, as presently claimed.

Furthermore, contrary to the position taken by the Examiner, ${ }^{22}$ merely because Cowles teaches that a premature termination of a burst may be avoided, it does not necessarily (or

[^14]logically) follow that the burst is non-interruptible, as presently claimed. Specifically, Cowles recites that:

To avoid a premature termination of a burst, RAS* cannot transition high until after the last column associated with each row has been latched. (Column 8, lines 63-65 of Cowles).

However, the sentence cited by the Examiner only pertains to termination of a burst in response to a transition of the signal RAS*. The passage is silent with respect to the signal WE*. As discussed above, Cowles discloses that a transition of the signal WE* during a burst can terminate the burst in both the standard BEDO operation and in the continuous BEDO (CBEDO) operation. In particular, Cowles states:

The control circuit[r]y determines when a current data burst should be terminated based upon the states of RAS* 114, CAS* 124 and WE* 136. In the standard BEDO operation described above, control circuitry 138 terminated a data burst when WE* transitioned during a burst, or when both CAS* and RAS* transitioned high. In a CBEDO operation, control circuitry 138 does not terminate a burst operation when CAS* and RAS* go high, but looks to WE* for an indication that a burst operation is to be terminated. (Column 7, lines 52-61 of Cowles; emphasis added).

To terminate a continuous burst read operation, the WE* signal merely has to transition high prior to a falling edge of the CAS* signal. (Col. 8, 11. 33-36 of Cowles; emphasis added).

Cowles expressly states that the method of operation of the memory device includes (i) receiving a signal on a write enable input and (ii) terminating the step of outputting data in response to the signal. ${ }^{23}$ Furthermore, the fact that Cowles addresses a way to avoid a premature termination of a burst due to the signal RAS* is acknowledgment that the burst can be prematurely terminated (i.e.,interrupted). Therefore, the burst is not non-interruptible, as presently claimed.

[^15]Because Cowles teaches that a burst can be terminated by at least a transition of a write enable signal WE* during a read or write access, whether in a BEDO or a CBEDO operating mode, Cowles fails to disclose or suggest the non-interruptible generation of a predetermined number of internal address signals, as presently claimed. Therefore, Cowles does not disclose or suggest each and every element of the presently pending claim 1, arranged as in the presently pending claim 1. As such, the presently pending claim 1 is fully patentable over the cited reference ${ }^{24}$ and the rejection should be reversed.

2. Group 2 (claim 6) is fully patentable over Cowles

Claim 6 depends indirectly from claim 1 and, therefore, includes the limitations of claim 1. Consequently, the arguments presented in support of the patentability of claim 1 are hereby incorporated by reference in support of claim 6. Claim 6 further recites that a fixed burst length is programmed by bond options.

Cowles does not disclose or suggest each and every element of the presently pending claim 6. Specifically, Cowles is silent regarding programming a fixed burst length by bond options. ${ }^{25}$ In particular, the Office Action fails to point to any specific language or figure in Cowles that is considered to disclose or suggest a fixed burst length is programmed by bond options, as

[^16]presently claimed. ${ }^{26}$ Furthermore, the position taken in the Office Action that "it is well known in the art to include multiple modes of operation selected by bond options ${ }^{127}$ does not adequately address the deficiencies of Cowles to support the rejection under 35 U.S.C. § 102. In particular, the Federal Circuit has stated:

To serve as anticipation, when the reference is silent about the asserted inherent characteristic, such gap in the reference may be filled with recourse to extrinsic evidence. Such evidence must make clear that the missing descriptive matter is necessarily present in the thing described in the reference, and it would be so recognized by persons of ordinary skill. ${ }^{28}$

Even assuming, arguendo, it is well known in the art to include multiple modes of operation selected by bond options as urged by the Examiner, ${ }^{29}$ the Examiner failed to present any evidence that a person of ordinary skill would recognize bond options for programming a burst length are necessarily present in Cowles. Inherency requires certainty of results, not mere possibility. ${ }^{30}$ Therefore, because Cowles doés not disclose or suggest each and every element of the presently pending claim 6, arranged as in the present claim 6, the Examiner failed to meet the

[^17]Office's burden of factually establishing a prima facie case of anticipation. ${ }^{31}$ As such, the presently pending claim 6 is fully patentable over the cited reference and the rejection should be reversed.

3. Group 3 (claim 7) is fully patentable over Cowles

Claim 7 depends indirectly from claim 1 and, therefore, includes the limitations of claim 1. Consequently, the arguments presented in support of the patentability of claim 1 are hereby incorporated by reference in support of claim 7. Claim 7 further recites that a fixed burst length is programmed by voltage levels on external pins.

Cowles does not disclose or suggest each and every element of the presently pending claim 7. Specifically, Cowles is silent regarding programming a fixed burst length by voltage levels on external pins. ${ }^{32}$ In particular, the Examiner failed to point to any specific language or figure in Cowles that is considered to disclose or suggest a fixed burst length is programmed by voltage levels on external pins, as presently claimed. ${ }^{33}$ Furthermore, the conclusory statement in the Office Action that "it is inherent to have voltage levels for each burst" ${ }^{34}$ does not adequately address why

[^18]a person of ordinary skill would recognize programming a fixed burst length by voltage levels
on external pins as being necessarily present in Cowles. In particular,
To serve as anticipation, when the reference is silent about the asserted inherent characteristic, such gap in the reference may be filled with recourse to extrinsic evidence. Such evidence must make clear that the missing descriptive matter is necessarily present in the thing described in the reference, and it would be so recognized by persons of ordinary skill. ${ }^{35}$

The Examiner has presented no evidence to support such a position. ${ }^{36}$ Inherency requires certainty of results, not mere possibility. ${ }^{37}$

Thus, the Examiner failed to factually establish that Cowles discloses or suggests each and every element of the presently pending claim 7 , arranged as in the present claim $7 .{ }^{38}$ Therefore, the Examiner has not met the Office's burden of factually establishing a prima facie case of anticipation. ${ }^{39}$ As such, claim 7 is fully patentable over Cowles and the rejection should be reversed.
${ }^{35}$ Continental Can Co. USA v. Monsanto Co., 948 F.2d 1264, 20 USPQ 2d 1746, 1749 (Fed. Cir. 1991) (citations omitted) See also In re Sun, 31 USPQ 2d 1451, 1453 (Fed. Cir. 1993) (unpublished) ("under section 102(b), anticipation requires that the prior art reference disclose either expressly or under the principles of inherency, every limitation of the claim").
${ }^{36}$ See page 6, lines 13-15 of the Office Action.
${ }^{37}$ See, e.g., Ethyl Molded Products Co. v. Betts Package, Inc., 9 U.S.P.Q. 2d 1001 (E.D.Ky 1988). See also, In re Oelrich, 666 F.2d 578, 581, 212 USPQ 323, 326 (C.C.P.A. 1981).
${ }^{38}$ Brown v. 3M, 60 USPQ2d 1375, 1376 (Fed. Cir. 2001) citing Karsten Mfg. Corp. v. Cleveland Golf Co., 242 F.3d 1376, 1383, 58 USPQ2d 1286, 1291 (Fed. Cir. 2001); Scripps Clinic \& Research Found. v. Genentech Inc., 927 F.2d 1565, 18 U.S.P.Q.2d 1001, 1010 (Fed. Cir. 1991).
${ }^{39}$ In re Skinner, 2 USPQ2d 1788, 1788-89 (B.P.A.I. 1986). See also Ex parte Natale, 11 USPQ2d 1222, 1226 (B.P.A.I. 1989) ("[i]t is by now well settled that the burden of establishing a prima facie case of anticipation resides with the Patent and Trademark Office").

Docket Number:0325.00309
Application No.: 09/504,344

4. Group 4 (claim 10) is fully patentable over Cowles

Claim 10 depends indirectly from claim 1 and, therefore, includes the limitations of claim 1. Consequently, the arguments presented in support of the patentability of claim 1 are hereby incorporated by reference in support of claim 10. Claim 10 further recites that the predetermined number of internal address signals is chosen to provide time for at least one writeback or refresh cycle. ${ }^{40}$

Cowles does not disclose or suggest each and every element of the presently pending claim 10. Specifically, Cowles is silent regarding choosing the predetermined number of internal address signàls to provide time for at least one writeback or refresh cycle. ${ }^{41}$ In particular, the lines of Cowles cited by the Examiner in support of the rejection do not address choosing the predetermined number of internal address signals to provide time for at least one writeback or refresh cycle, as presently claimed. ${ }^{42}$ The Federal Circuit has stated:

> To serve as anticipation, when the reference is silent about the asserted inherent characteristic, such gap in the reference may be filled with recourse to extrinsic evidence. Such evidence must make clear that the missing descriptive matter is necessarily present in the thing described in the reference, and it would be so recognized by persons of ordinary skill. ${ }^{43}$

[^19]The Examiner failed to present any evidence that a person of ordinary skill would recognize that Cowles necessarily chooses a burst length to provide time for at least one writeback or refresh cycle. ${ }^{44}$ Inherency requires certainty of results, not mere possibility. ${ }^{45}$ Therefore, because Cowles does not disclose or suggest each and every element of the presently pending claim 10 , arranged as in the present claim 10, the Examiner failed to meet the Office's burden of factually establishing a prima facie case of anticipation. ${ }^{46}$ As such, the presently pending claim 10 is fully patentable over the cited reference and the rejection should be reversed.

5. Group 5 (claim 11) is fully patentable over Cowles

Claim 11 depends directly from claim 1 and, therefore, includes the limitations of claim 1. Consequently, the arguments presented in support of the patentability of claim 1 are hereby incorporated by reference in support of claim 11. Claim 11 further recites that the predetermined number of internal address signals is chosen to meet predetermined criteria for sharing address and control busses.

Cowles does not disclose or suggest each and every element of the presently pending claim 11. Specifically, Cowles is silent regarding choosing the predetermined number of internal

[^20]address signals to meet predetermined criteria for sharing address and control busses. ${ }^{47}$ In particular, the lines of Cowles cited by the Examiner in support of the rejection do not address choosing the predetermined number of internal address signals to meet predetermined criteria for sharing address and control busses, as presently claimed. ${ }^{48}$ The Federal Circuit has stated:

To serve as anticipation, when the reference is silent about the asserted inherent characteristic, such gap in the reference may be filled with recourse to extrinsic evidence. Such evidence must make clear that the missing descriptive matter is necessarily present in the thing described in the reference, and it would be so recognized by persons of ordinary skill. ${ }^{49}$

The Examiner failed to present any evidence that a person of ordinary skill would recognize that Cowles necessarily chooses a burst length to meet predetermined criteria for sharing address and control busses. ${ }^{50}$ Inherency requires certainty of results, not mere possibility. ${ }^{51}$ Therefore, because Cowles does not disclose or suggest each and every element of the presently pending claim 11, arranged as in the present claim 11, the Examiner failed to meet the Office's

[^21]burden of factually establishing a prima facie case of anticipation. ${ }^{52}$ As such, the presently pending claim 11 is fully patentable over the cited reference and the rejection should be reversed.

6. Group 6 (claim 12) is fully patentable over Cowles

The presently pending claim 12 provides (a) means for reading data from and writing data to a plurality of storage elements in response to a plurality of internal address signals and (b) means for generating a predetermined number of the internal address signals in response to (i) an external address signal, (ii) a clock signal and (iii) one or more control signals, where the generation of the predefermined number of internal address signals is non-interruptible.

Cowles does not disclose or suggest each and every element of the presently pending claim 12, arranged as in claim 12. Specifically, Cowles does not disclose or suggest the non-interruptible generation of the predetermined number of address signals, as presently claimed. Cowles is directed to a continuous burst EDO memory device. ${ }^{53}$ The Examiner admits that a continuous burst of Cowles is interruptible. ${ }^{54}$ Specifically, the Examiner states that he agrees with Appellant's arguments with regard to termination of a continuous burst. ${ }^{55}$ In particular, the

[^22]Examiner admits that the interruptibility of a continuous burst is supported by the following passages
in Cowles: ${ }^{56}$
To terminate a continuous burst read operation, the WE* signal merely has to transition high prior to a falling edge of the CAS* signal. (Column 8, lines 33-36 of Cowles; emphasis added).

The level of the WE* signal must remain high for read and low for write burst accesses throughout the burst access. A low to high transition within a burst write access will terminate the burst access, preventing further writes from occurring. A high to low transition on WE* within a burst read access will likewise terminate the burst read access and will place the data output 110 in a high impedance state. (Column 7, lines 34-41 of Cowles; emphasis added).

However, the Examiner urges that while a "continuous burst" can be terminated, a
"row burst" represents a fixed burst length with no interruption. ${ }^{57}$ Despite the position taken by the Examiner, Cowles does not appear to draw such a distinction between bursts. Specifically, with regard to a burst from a BEDO memory, Cowles states:

Once the memory device begins to output data in a burst read cycle, the output drivers 34 will continue to drive the data lines without tristating the data outputs during CAS* high intervals dependent on the state of the output enable 42 and write enable 36 (OE* and WE*) control lines, thus allowing additional time for the system to latch the output data. (Column 3, line 65 through column 4, line 4 of Cowles; emphasis added).

The control circuit[r]y determines when a current data burst should be terminated based upon the state of RAS* 14, CAS* 24 and WE* 36. (Column 4, lines 63-65 of Cowles; emphasis added).

[^23]The level of the WE* signal must remain high for read and low for write burst accesses throughout the burst access. A low to high transition within a burst write access will terminate the burst access, preventing further writes from occurring. A high to low transition on WE* within a burst read access will likewise terminate the burst read access and will place the data output 10 in a high impedance state. (Column 5, lines 4-10 of Cowles; emphasis added).

Both RAS* and CAS* going high during a burst access will also terminate the burst access cycle placing the data drivers in a high impedance output state, and resetting the burst length counter. (Column 5, lines 25-28 of Cowles; emphasis added).

Thus, in BEDO memories, Cowles clearly teaches that there are three conditions that will terminate (i.e., interrupt) a burst access:

1. WE* transitioning, either from low to high or from high to low;
2. RAS* and CAS* going high; or
3. OE^{*} going high. ${ }^{58}$

Cowles is quite clear that WE* transitions will terminate both a row burst and a continuous burst access. In particular, Cowles states:

The control circuit[r]y determines when a current data burst should be terminated based upon the states of RAS* 114, CAS* 124 and WE* 136. In the standard BEDO operation described above, control circuitry 138 terminated a data burst when WE* transitioned during a burst, or when both CAS* and RAS* transitioned high. In a CBEDO operation, control circuitry 138 does not terminate a burst operation when CAS* and RAS* go high, but looks to WE* for an indication that a burst operation is to be terminated. (Column 7 , lines 52-61 of Cowles; emphasis added).

To terminate a continuous burst read operation, the WE* signal merely has to transition high prior to a falling edge of the CAS* signal. (Col. 8, 11. 33-36 of Cowles; emphasis added).

[^24]Docket Number:0325.00309
Application No.: 09/504,344

Therefore, since Cowles states that a transition of the signal WE* during a burst can terminate the burst in both the standard BEDO operation and in the continuous BEDO (CBEDO) operation, Cowles explicitly teaches that a premature termination of a row burst can take place.

FIG. 4 of Cowles further evidences that row bursts are interruptible. Specifically, FIG. 4 illustrates a burst access starting at column address "COLn" is terminated (i.e., interrupted) when the signal WE* transitions from low to high. ${ }^{59}$ Furthermore, Cowles shows addressing sequences for burst lengths of 2,4 , and 8 cycles. ${ }^{60}$ However, FIG. 4 of Cowles illustrates a burst access starting at the column address "COLp" is interrupted after only three cycles by the signal RAS* rising. ${ }^{61}$ With regard to the operations illustrated in FIG. 4, Cowles further states:

It will be appreciated that the read and write operations performed on a single memory row of the memory of FIG. 5 are identical to the operation of the memory of FIG. 1 as shown in FIG. 3. That is, after completing a burst read, the WE* signal transitions low and the next falling edge of CAS* latches a new column address for a burst write operation. Likewise, the timing diagram of FIG. 4 depicting burst write access cycles followed by burst read cycles can be replicated with the memory of the present invention. As such, BEDO memory devices can be replaced with CBEDO memory devices without effecting the operation of the memory support system. It will further be appreciated by those skilled in the art that the memory device of FIG. 5 can operate with burst lengths of $2,4,8$, or full row cycles. (Column 8, lines 37-50 of Cowles; emphasis added).

[^25]Therefore, despite the position taken by the Examiner, ${ }^{62}$ Cowles does not disclose or suggest generating a predetermined number of internal address signals, where the generation of the predetermined number of internal address signals is non-interruptible, as presently claimed.

Furthermore, contrary to the position taken by the Examiner, ${ }^{63}$ merely because Cowles teaches that a premature termination of a burst may be avoided, it does not necessarily (or logically) follow that the burst is non-interruptible, as presently claimed. Specifically, Cowles recites that:

To avoid a premature termination of a burst, RAS* cannot transition high until after the last column associated with each row has been latched. (Column 8, lines 63-65 of Cowles).

However, the sentence cited by the Examiner only pertains to termination of a burst in response to a transition of the signal RAS*. The passage is silent with respect to the signal WE*. As discussed above, Cowles discloses that a transition of the signal WE* during a burst can terminate the burst in both the standard BEDO operation and in the continuous BEDO (CBEDO) operation. In particular, Cowles states:

The control circuit[r]y determines when a current data burst should be terminated based upon the states of RAS* 114, CAS* 124 and WE* 136. In the standard BEDO operation described above, control circuitry 138 terminated a data burst when WE* transitioned during a burst, or when both CAS* and RAS* transitioned high. In a CBEDO operation, control circuitry 138 does not terminate a burst operation when CAS* and RAS* go high, but looks to WE* for an indication that a burst operation is to be terminated. (Column 7, lines 52-61 of Cowles; emphasis added).

[^26]To terminate a continuous burst read operation, the WE* signal merely has to transition high prior to a falling edge of the CAS* signal. (Col. 8, 11. 33-36 of Cowles; emphasis added).

Cowles expressly states that the method of operation of the memory device includes (i) receiving a signal on a write enable input and (ii) terminating the step of outputting data in response to the signal. ${ }^{64}$ Furthermore, the fact that Cowles addresses a way to avoid a premature termination of a burst due to the signal RAS* is acknowledgment that the burst can be prematurely terminated (i.e.,interrupted). Therefore, the burst is not non-interruptible, as presently claimed.

Because Cowles teaches that a burst can be terminated by at least a transition of a write enable-signal WE* during a read or write access, whether in a BEDO or a CBEDO operating mode, Cowles fails to disclose or suggest the non-interruptible generation of a predetermined number of internal address signals, as presently claimed. Therefore, Cowles does not disclose or suggest each and every element of the presently pending claim 12 , arranged as in the presently pending claim 12. As such, the presently pending claim 12 is fully patentable over the cited reference ${ }^{65}$ and the rejection should be reversed.

[^27]
7. Group 7 (claims 13,14 and 16) is fully patentable over Cowles

The presently pending claim 13 provides the steps of (a) accessing a memory in response to a plurality of internal address signals and (b) generating a predetermined number of the internal address signals in response to (i) an external address signal, (ii) a clock signal and (iii) one or more control signals, where the generation of the predetermined number of internal address signals is non-interruptible.

Cowles does not disclose or suggest each and every element of the presently pending claim 13, arranged as in claim 13. Specifically, Cowles does not disclose or suggest the non-interruptible generation of the predetermined number of address signals as presently claimed. Cowles is directed to a continuous burst EDO memory device. ${ }^{66}$ The Examiner admits that a continuous burst of Cowles is interruptible. ${ }^{67}$ Specifically, the Examiner states that he agrees with Appellant's arguments with regard to termination of a continuous burst. ${ }^{68}$ In particular, the Examiner admits that the interruptibility of a continuous burst is supported by the following passages in Cowles: ${ }^{69}$

To terminate a continuous burst read operation, the WE* signal merely has to transition high prior to a falling edge of the CAS* signal. (Column 8, lines 33-36 of Cowles; emphasis added).

The level of the WE* signal must remain high for read and low for write burst accesses throughout the burst access. A low to high transition within a burst write access will terminate the burst
${ }^{66}$ Title of Cowles.
${ }^{67}$ See page 2, paragraph no. 3, lines 4-6 of the Office Action mailed October 22, 2002.
${ }^{68} I d$.
${ }^{69}$ Id.
access, preventing further writes from occurring. A high to low transition on WE* within a burst read access will likewise terminate the burst read access and will place the data output 110 in a high impedance state. (Column 7, lines 34-41 of Cowles; emphasis added).

However, the Examiner urges that while a "continuous burst" can be terminated, a "row burst" represents a fixed burst length with no interruption. ${ }^{70}$ Despite the position taken by the Examiner, Cowles does not appear to draw such a distinction between bursts. Specifically, with regard to a burst from a BEDO memory, Cowles states:

Once the memory device begins to output data in a burst read cycle, the output drivers 34 will continue to drive the data lines without tristating the data outputs during CAS* high intervals dependent on the state of the output enable 42 and write enable 36 (OE* and WE*) control lines, thus allowing additional time for the system to latch the output data. (Column 3, line 65 through column 4, line 4 of Cowles; emphasis added).

The control circuit[r]y determines when a current data burst should be terminated based upon the state of RAS* 14, CAS* 24 and WE* 36. (Column 4, lines 63-65 of Cowles; emphasis added).

The level of the WE* signal must remain high for read and low for write burst accesses throughout the burst access. A low to high transition within a burst write access will terminate the burst access, preventing further writes from occurring. A high to low transition on WE* within a burst read access will likewise terminate the burst read access and will place the data output 10 in a high impedance state. (Column 5, lines 4-10 of Cowles; emphasis added).

Both RAS* and CAS* going high during a burst access will also terminate the burst access cycle placing the data drivers in a high impedance output state, and resetting the burst length counter. (Column 5, lines 25-28 of Cowles; emphasis added).

[^28]Thus, in BEDO memories, Cowles clearly teaches that there are three conditions that
will terminate (i.e., interrupt) a burst access:

1. WE^{*} transitioning, either from low to high or from high to low;
2. RAS* and CAS* going high; or
3. OE* going high. ${ }^{71}$

Cowles is quite clear that WE* transitions will terminate both a row burst and a continuous burst access. In particular, Cowles states:

The control circuit[r]y determines when a current data burst should be terminated based upon the states of RAS* 114, CAS* 124 and WE* 136. In the standard BEDO operation described above, control circuitry 138 terminated a data burst when WE* transitioned during a burst, or when both CAS* and RAS* transitioned high. In a CBEDO operation, control circuitry 138 does not terminate a burst operation when CAS* and RAS* go high, but looks to WE* for an indication that a burst operation is to be terminated. (Column 7, lines 52-61 of Cowles; emphasis added).

To terminate a continuous burst read operation, the WE* signal merely has to transition high prior to a falling edge of the CAS* signal. (Col. 8, 11. 33-36 of Cowles; emphasis added).

Therefore, since Cowles states that a transition of the signal WE* during a burst can terminate the burst in both the standard BEDO operation and in the continuous BEDO (CBEDO) operation, Cowles explicitly teaches that a premature termination of a row burst can take place.

FIG. 4 of Cowles further evidences that row bursts are interruptible. Specifically, FIG. 4 illustrates a burst access starting at column address "COLn" is terminated (i.e., interrupted)

[^29]when the signal WE* transitions from low to high. ${ }^{72}$ Furthermore, Cowles shows addressing sequences for burst lengths of 2,4 , and 8 cycles. ${ }^{73}$ However, FIG. 4 of Cowles illustrates a burst access starting at the column address "COLp" is interrupted after only three cycles by the signal RAS* rising. ${ }^{74}$ With regard to the operations illustrated in FIG. 4, Cowles further states:

It will be appreciated that the read and write operations performed on a single memory row of the memory of FIG. 5 are identical to the operation of the memory of FIG. 1 as shown in FIG. 3. That is, after completing a burst read, the WE* signal transitions low and the next falling edge of CAS* latches a new column address for a burst write operation. Likewise, the timing diagram of FIG. 4 depicting burst write access cycles followed by burst read cycles can be replicated with the memory of the present invention. As such, BEDO memory devices can be replaced with CBEDO memory devices without effecting the operation of the memory support system. It will further be appreciated by those skilled in the art that the memory device of FIG. 5 can operate with burst lengths of $2,4,8$, or full row cycles. (Column 8, lines 37-50 of Cowles; emphasis added).

Therefore, despite the position taken by the Examiner, ${ }^{75}$ Cowles does not disclose or suggest generating a predetermined number of internal address signals, where the generation of the predetermined number of internal address signals is non-interruptible, as presently claimed.

Furthermore, contrary to the position taken by the Examiner, ${ }^{76}$ merely because Cowles teaches that a premature termination of a burst may be avoided, it does not necessarily (or

[^30]Docket Number:0325.00309
Application No.: 09/504,344
logically) follow that the burst is non-interruptible, as presently claimed. Specifically, Cowles recites that:

To avoid a premature termination of a burst, RAS* cannot transition high until after the last column associated with each row has been latched. (Column 8, lines 63-65 of Cowles).

However, the sentence cited by the Examiner only pertains to termination of a burst in response to a transition of the signal RAS*. The passage is silent with respect to the signal WE*. As discussed above, Cowles discloses that a transition of the signal WE* during a burst can terminate the burst in both the standard BEDO operation and in the continuous BEDO (CBEDO) operation. In particular, Cowles states:

The control circuit[r]y determines when a current data burst should be terminated based upon the states of RAS* 114, CAS* 124 and WE* 136. In the standard BEDO operation described above, control circuitry 138 terminated a data burst when WE* transitioned during a burst, or when both CAS* and RAS* transitioned high. In a CBEDO operation, control circuitry 138 does not terminate a burst operation when CAS* and RAS* go high, but looks to WE* for an indication that a burst operation is to be terminated. (Column 7, lines 52-61 of Cowles; emphasis added).

To terminate a continuous burst read operation, the WE* signal merely has to transition high prior to a falling edge of the CAS* signal. (Col. 8, 1l. 33-36 of Cowles; emphasis added).

Cowles expressly states that the method of operation of the memory device includes (i) receiving a signal on a write enable input and (ii) terminating the step of outputting data in response to the signal. ${ }^{77}$ Furthermore, the fact that Cowles addresses a way to avoid a premature termination of a burst due to the signal RAS* is acknowledgment that the burst can be prematurely terminated (i.e.,interrupted). Therefore, the burst is not non-interruptible, as presently claimed.

[^31]Because Cowles teaches that a burst can be terminated by at least a transition of a write enable signal WE* during a read or write access, whether in a BEDO or a CBEDO operating mode, Cowles fails to disclose or suggest the non-interruptible generation of a predetermined number of internal address signals, as presently claimed. Therefore, Cowles does not disclose or suggest each and every element of the presently pending claim 13 , arranged as in the presently pending claim 13. As such, the claims of Group 7 are fully patentable over the cited reference ${ }^{78}$ and the rejection should be reversed.

8. Group 8 (claim 15) is fully patentable over Cowles

Claim 15 depends indirectly from claim 13 and, therefore, includes the limitations of claim 13. Consequently, the arguments presented in support of the patentability of claim 13 are hereby incorporated by reference in support of claim 15. Claim 15 further recites that a programming step is performed using bond options.

Cowles does not disclose or suggest each and every element of the presently pending claim 6. Specifically, Cowles is silent regarding bond options. ${ }^{79}$ In particular, the Office Action fails to point to any specific language or figure in Cowles that is considered to disclose or suggest

[^32]a programming step performed using bond options, as presently claimed. ${ }^{80}$ Furthermore, the position taken in the Office Action that "it is well known in the art to include multiple modes of operation selected by bond options ${ }^{\prime 81}$ does not adequately address the deficiencies of Cowles to support the rejection under 35 U.S.C. § 102. In particular, the Federal Circuit has stated:

To serve as anticipation, when the reference is silent about the asserted inherent characteristic, such gap in the reference may be filled with recourse to extrinsic evidence. Such evidence must make clear that the missing descriptive matter is necessarily present in the thing described in the reference, and it would be so recognized by persons of ordinary skill. ${ }^{82}$

Even assuming, arguendo, it is well known in the art to include multiple modes of operation selected by bond options as urged by the Examiner, ${ }^{83}$ the Examiner failed to present any evidence that a person of ordinary skill would recognize a programming step performed using bond options, as necessarily present in Cowles. Inherency requires certainty of results, not mere possibility. ${ }^{84}$ Therefore, because Cowles does not disclose or suggest each and every element of the presently pending claim 15 , arranged as in the present claim 15 , the Examiner has not met the

[^33]Office's burden of factually establishing a prima facie case of anticipation. ${ }^{85}$ As such, the presently pending claim 15 is fully patentable over Cowles and the rejection should be reversed.

9. Group 9 (claim 17) is fully patentable over Cowles

Claim 17 depends directly from claim 13 and, therefore, includes the limitations of claim 13. Consequently, the arguments presented in support of the patentability of claim 13 are hereby incorporated by reference in support of claim 17. Claim 17 further recites the step of selecting the predetermined number of internal address signals to provide time for at least one writeback or refresh cycle. ${ }^{86}$

Cowles does not disclose or suggest each and every element of the presently pending claim 17. Specifically, Cowles is silent regarding selecting the predetermined number of internal address signals to provide time for at least one writeback or refresh cycle, as presently claimed. ${ }^{87}$ In particular, the lines of Cowles cited by the Examiner in support of the rejection do not address selecting the predetermined number of internal address signals to provide time for at least one writeback or refresh cycle, as presently claimed. ${ }^{88}$ The Federal Circuit has stated:

[^34]To serve as anticipation, when the reference is silent about the asserted inherent characteristic, such gap in the reference may be filled with recourse to extrinsic evidence. Such evidence must make clear that the missing descriptive matter is necessarily present in the thing described in the reference, and it would be so recognized by persons of ordinary skill. ${ }^{89}$

The Examiner failed to present any evidence that a person of ordinary skill would recognize that selecting a burst length to provide time for at least one writeback or refresh cycle is necessarily present in Cowles. ${ }^{90}$ Specifically, the sections of Cowles cited by the Examiner in support of the rejection of claim 17 provide:

To terminate a continuous burst read operation, the WE* signal merely has to transition high prior to a falling edge of the CAS* signal.

To avoid a premature termination of a burst, RAS* cannot transition high until after the last column associated with each row has been latched. ${ }^{91}$

The portions of Cowles cited by the Examiner are silent regarding selecting the predetermined number of internal address signals to provide time for at least one writeback or refresh cycle, as presently claimed. Furthermore, the Examiner provided no line of reasoning why the passages were considered to make clear that the missing descriptive matter was necessarily present in the memory

[^35]Docket Number:0325.00309
"'Application No.: 09/504,344 37
device of Cowles. Inherency requires certainty of results, not mere possibility. ${ }^{92}$ Therefore, because Cowles does not disclose or suggest each and every element of the presently pending claim 17 , arranged as in the present claim 17, the Examiner failed to meet the Office's burden of factually establishing a prima facie case of anticipation. ${ }^{93}$ As such, the presently pending claim 17 is fully patentable over the cited reference and the rejection should be reversed.

10. Group 10 (claim 21) is fully patentable over Cowles

Claim 21 depends directly from claim 1 and, therefore, includes the limitations of claim 1. Consequently, the arguments presented in support of the patentability of claim 1 are hereby incorporated by reference in support of claim 21. Claim 21 further recites that the circuit further comprises address and control busses configured to present the external address signal and one or more control signals, where the busses are freed up during the generation of the predetermined number of internal address signals.

Cowles does not disclose or suggest each and every element of the presently pending claim 21, arranged as in the presently pending claim 21. Specifically, Cowles is silent regarding address and control busses configured to present the external address signal and one or more control signals, where the busses are freed up during the generation of the predetermined number of

[^36]Docket Number:0325.00309
Application No.: 09/504,344
internal address signals, as presently claimed. ${ }^{94}$ In particular, the lines of Cowles cited by the Examiner in support of the rejection do not address address and control busses configured to present the external address signal and one or more control signals, where the busses are freed up during the generation of the predetermined number of internal address signals, as presently claimed. ${ }^{95}$ Furthermore, the Federal Circuit has stated:

To serve as anticipation, when the reference is silent about the asserted inherent characteristic, such gap in the reference may be filled with recourse to extrinsic evidence. Such evidence must make clear that the missing descriptive matter is necessarily present in the thing described in the reference, and it would be so recognized by persons of ordinary skill. ${ }^{96}$

The Examiner failed to present any evidence that a person of ordinary skill would recognize that Cowles necessarily presents address and control busses configured to present the external address signal and one or more control signals, where the busses are freed up during the generation of the predetermined number of internal address signals, as presently claimed. ${ }^{97}$ Inherency requires certainty of results, not mere possibility. ${ }^{98}$ Therefore, because Cowles does not

[^37]disclose or suggest each and every element of the presently pending claim 21 , arranged as in the present claim 21, the Examiner failed to meet the Office's burden of factually establishing a prima facie case of anticipation. ${ }^{99}$ As such, the presently pending claim 21 is fully patentable over the cited reference and the rejection should be reversed.

B. CONCLUSION

Cowles does not disclose or suggest a logic circuit configured to generate a predetermined number of the internal address signals in response to (i) an external address signal, (ii) a clock signal and (iii) one or more control signals, where the generation of the predetermined number of internal address signals is non-interruptible, as presently claimed. Hence, the Examiner has clearly erred with respect to the patentability of the claimed invention. It is respectfully requested that the Board overturn the Examiner's rejection of all pending claims, and hold that the

[^38]claims are not rendered anticipated or obvious by the cited reference. However, should the Board find the arguments herein in support of independent claims 1,12 and/or 13 unpersuasive, the Board is respectfully requested to carefully consider the arguments set forth above in support of each of the independently patentable groups.

Respectfully submitted,
CHRISTOPHER P. MAIORANA, P.C.

Dated: March 24, 2003

24025 Greater Mack
Suite 200
St. Clair Shores, MI 48080
(586) 498-0670

IX. APPENDIX

CLAIMS IN CURRENT FORM

1. (AMENDED) A circuit comprising: a memory comprising a plurality of storage elements each configured to read and write data in response to an internal address signal; and
a a logic circuit configured to generate a predetermined number of said internal address signals in response to (i) an external address signal, (ii) a clock signal and (iii) one or more control signals, wherein said generation of said predetermined number of internal address signals is non-interruptible.
2. (AMENDED) The circuit according to claim 1, wherein said predetermined number of internal address signals is determined by a fixed burst length.
3. (AMENDED) The circuit according to claim 1, wherein said predetermined number of internal address signals is at least 4.
4. (AMENDED) The circuit according to claim 1, wherein said predetermined number of internal address signals is 8.

Docket Number:0325.00309
Application No.: 09/504,344
5. (AMENDED) The circuit according to claim 2, wherein said fixed burst length is programmable.
6. (AMENDED) The circuit according to claim 5, wherein said fixed burst length is programmed by bond options.
7. (AMENDED) The circuit according to claim 5, wherein said fixed burst length is programmed by voltage levels on external pins.
8. (AMENDED) The circuit according to claim 1, wherein said memory comprises a static random access memory.
9. (AMENDED) The circuit according to claim 1, wherein said memory comprises a dynamic random access memory.
10. (AMENDED) The circuit according to claim 9, wherein said predetermined number of internal address signals is chosen to provide time for at least one writeback or refresh cycle.
11. (AMENDED) The circuit according to claim 1, wherein said predetermined number of internal address signals is chosen to meet predetermined criteria for sharing address and control busses.

```
            12. (AMENDED) A circuit comprising:
            means for reading data from and writing data to a
plurality of storage elements in response to a plurality of
internal address signals; and
    means for generating a predetermined number of said
internal address signals in response to (i) an external address
signal, (ii) a clock signal and (iii) one or more control signals,
wherein said generation of said predetermined number of internal
address signals is non-interruptible.
```

13. (AMENDED) A method of providing a fixed burst length data transfer comprising the steps of:
accessing a memory in response to a plurality of internal address signals; and
generating a predetermined number of said internal address signals in response to (i) an external address signal, (ii) a clock signal and (iii) a control signal, wherein said generation
of said predetermined number of internal address signals is non-interruptible.
the step of programming said predetermined number.
14. The method according to claim 14 , wherein said programming step is performed using bond options.
15. The method according to claim 14 , wherein said programming step is performed using voltage levels.
16. (AMENDED) The method according to claim 13, further comprising the step of selecting said predetermined number to provide time for at least one writeback or refresh cycle.
17. The circuit according to claim I, wherein said logic circuit comprises a counter configured to generate said predetermined number of internal address signals.
18. (AMENDED) The circuit according to claim 1 , wherein said external address signal comprises an initial address for data transfers to and from said memory.

Docket Number:0325.00309
Application No.: 09/504,344 45
20. A memory device according to claim 1 , wherein said circuit is an integrated circuit.
21. (AMENDED) The circuit according to claim 1, further comprising address and control busses configured to present said external address signal and said one or more control signals, wherein said busses, are freed up during the gereration of said predetermined number of internal address signals.

IN RE APPLICATION OF:

SERIAL NO.:

TITLE:
FILED:
EXAMINER:

ART UNIT:
ASSISTANT COMMISSIONER FOR PATENTS
Washington, D.C. 20231
Sir:
Enclosed please find an appeal brief and a postcard along with the fee calculation below:
RESPONSE TRANSMITTAL AND EXTENSION OF TIME REQUEST (IF REQUIRED) FEE CALCULATION FOR ENCLOSED AND EXTENSION REQUEST (IF ANY)

The Commissioner is hereby authorized to charge any overpayment or underpayment of the above fee associated with this Communication to Deposit Account No. 50-0541. A duplicate copy of this sheet is attached.

> CHRISTOPHER P. MAIORANA, P.C.

24025 Greater Mack, Suite 200
St. Clair Shores, Michigan 48080
(586) 498-0670

I hereby certify that this letter, the response or amendment attached hereto are being deposited with the United States Postal Service as first class mail in an envelope addressed to Assistant Commissioner for Patents, Washington, D.C. 20231, on March 24, 2003.

Art Unit: 2188

DETAILED ACTION

Drawings

1. The application having been allowed, formal drawings are required in response to this Office Action.

Allowable Subject Matter

2. The following is an examiner's statement of reasons for allowance: the prior art discloses an integrated circuit memory device which can operate at high data speeds. The integrated circuit memory can output data of a "fixed burst length" in a continuous stream while rows of the memory are accessed.

However, to terminate a continuous burst read operation, the WE signal merely has to transition high prior to a falling edge of the CAS signal(see, for example, Cowles). thus prior art of record does not teach or fairly suggest the non-interruptible generation of a predetermined number of internal address signals. Accordingly, the invention as claimed is not seen to be anticipated or made obvious, within the meaning of 35 U.S.C. 103, by the prior art of record.
3. Any comments considered necessary by applicant must be submitted no later than the payment of the issue fee and, to

Art Unit: 2188
avoid processing delays, should preferably accompany the issue fee. Such submissions should be clearly labeled "Comments on Statement of Reasons for Allowance."

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Mehdi Namazi whose telephone number is (703) 306-2758. The examiner can normally be reached on Monday-Friday from 8:00 to 4:30.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Donald A. Sparks, can be reached on (703) 308-1756. Any inquiry of a general nature or relating to the status of this application or proceeding should be directed to the Group receptionist whose telephone number is (703) 305-9600.

NOTICE OF ALLOWANCE AND FEES) DUE

TITLE OF INVENTION: MEMORY DEVICE WITH FIXED LENGTH NON-INTERRUPTIBLE BURST

APPLN. TYPE	SMALL ENTITY	ISSUE FEE	PUBLICATION FEE	TOTAL FEE (S) DUE	DATE DUE
nonprovisional	NO	$\$ 1300$	$\$ 0$	$\$ 1300$	$09 / 16 / 2003$

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT. PROSECUTION ON THE MERITS IS CLOSED, THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS. PETITION BY THE APPLCHE OR OR OR ON PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308.

THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHIN THREE MONTHS FROM THE MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL

 PERIOD CANNOT BE EXTENDED. SEE 35 USMC 151 THE ISSUE FEE DUE REGARDED AS ABANDONED. THIS STATUTORY FOR ANY PREVIOUSLY PAID ISSUE FEE APPLIED IN THIS APPLICATION MUST BE RETURNED WITHIN THIS PERIOD EVEN IF NO FEE IS DUE OR THE THE PTOL-85B (OR AN EQUIVALENT) ABANDONED.
HOW TO REPLY TO THIS NOTICE:

I. Review the SMALL ENTITY status shown above.

If the SMALL ENTITY is shown as YES, verify your current SMALL ENTITY status:
A. If the status is the same, pay the TOTAL FEE(S) DUE shown above.
B. If the status is changed, pay the PUBLICATION FEE (if required) and twice the amount of the ISSUE FEE shown above and notify the United States Patent and Trademark Office of the change in status, or

If the SMALL ENTITY is shown as NO:
A. Pay TOTAL FEE (S) DUE shown above, or
B. If applicant claimed SMALL ENTITY status before, or is now claiming SMALL ENTITY status, check the box below and enclose the PUBLICATION FEE and $1 / 2$ the ISSUE FEE shown above.

- Applicant claims SMALL ENTITY status. See 37 CR 1.27.
II. PART B - FEE (S) TRANSMITTAL should be completed and returned to the United States Patent and Trademark Office (USPTO) with your ISSUE FEE and PUBLICATION FEE (if required). Even if the fees) have already been paid, Part B - Fees) Transmittal should be completed and returned. If you are charging the fee (s) to your deposit account, section "tb" of Part B - Fees) Transmittal should be completed and an extra copy of the form should be submitted.
III. All communications regarding this application must give the application number. Please direct all communications prior to issuance to Box ISSUE FEE unless advised to the contrary.
IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of maintenance fees. It is patentee's responsibility to ensure timely payment of maintenance fees when due.

PART B - FEE(S) TRANSMITTAL

Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE Commissioner for Patents Alexandria, Virginia 22313-1450
 Fax (703)746-4000

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 4 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as mainted unless corrected below or directed otherwise in Block 1 , by (a) secify a new correspondence address; and/or (b) indicating a separate $F E$ ADDRESS" for

CURRENTCORRESPOUNENCE ADDRESS (Note: Legibly mark-up with any corrections or use Block I)			Note: A certificate of mailing can only be used for domestic mailings of the Fee(s) Transmittal. This certificate cannot be used for any other	
	06/16/2003			
CHRISTOPHER P. MAIORANA, P.C.				
24025 GREATER MACK			Certificate of Mailing or Transmission	
SUITE 200			I hereby certify that this Fee(s) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope addressed to the Box Issue Fee address above, or being facsimile transmitted to the USPTO, on the date indicated below.	
ST. CLAIR SHORES, MI 48080				
				(Depositor's name)
				(Signature)
\cdots				(Date)
APPLICATION NO.	FILING DATE	FIRST NAM	OR ATTORNEY DOCKET NO.	MATION NO.

3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. Inclusion of assignee data is only appropriate when an assignment has (A) NAME OF ASSIGNEE
(B) RESIDENCE: (CITY and STATE OR COUNTRY)

Please check the appropriate assignee category or categories (will not be printed on the patent)
\square individual corporation or other private group entity government

4a. The following fee(s) are enclosed:
4b. Payment of Fee(s)
Issue Fee

- Publication Fee

Advance Order - \# of Copies
\square A check in the amount of the fee(s) is enclosed.
O Payment by credit card. Form PTO-2038 is attached.
The Commissioner is hereby authorized by charge the required fee(s), or credit any overpayment, to Deposit Account Number __ (enclose an extra copy of this form).

Commissioner for Patents is requested to apply the Issue Fee and Publication Fee (if any) or to re-apply any previously paid issue fee to the application identified above.

(Authorized Signature)
(Date)
NOTE; The Issue Fee and Publication Fee (if required) will not be accepted from anyone
other than the applicant; a registered attomey or agent; or the assignee or other party in
interest as shown by the records of the United States Patent and Trademark Office.
This collection of information is required by 37 CFR 1.311. The information is required to
obtain or retain a benefit by the public which is to file (and by the USPTO to process) an
application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is
estimated to take 12 minutes to complete, including gathering, preparing, and submitting the
completed application form to the USPTO. Time will vary depending upon the individual
case. Any comments on the amount of time you require to complete this form and/or
suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S.
Patent and Trademark Office, U.S. Department of Commerce, Alexandria, Virginia
22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS.
SEND TO: Commissioner for Patents, Alexandria, Virginia 22313-1450.
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a
collection of information unless it displays a valid OMB control number.

Determination of Patent Term Extension under 35 U.S.C. 154 (b) (application filed after June 7, 1995 but prior to May 29, 2000)

The patent term extension is 0 days. Any patent to issue from the above identified application will include an indication of the 0 day extension on the front page.

If a continued prosecution application (CPA) was filed in the above-identified application, the filing date that determines patent term extension is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) system. (http://pair.uspto.gov)

Any questions regarding the patent term extension or adjustment determination should be directed to the Office of Patent Legal Administration at (703)305-1383.

Notice of Fee Increase on January 1, 2003

If a reply to a "Notice of Allowance and Fee(s) Due" is filed in the Office on or after January 1, 2003, then the amount due will be higher than that set forth in the "Notice of Allowance and Fee(s) Due" since there will be an increase in fees effective on January 1, 2003. See Revision of Patent and Trademark Fees for Fiscal Year 2003; Final Rule, 67 Fed. Reg. 70847, 70849 (November 27, 2002).

The current fee schedule is accessible from: http://www.uspto.gov/main/howtofees.htm.
If the issue fee paid is the amount shown on the "Notice of Allowance and Fee(s) Due," but not the correct amount in view of the fee increase, a "Notice to Pay Balance' of Issue Fee" will be mailed to applicant. In order to avoid processing delays associated with mailing of a "Notice to Pay Balance of Issue Fee," if the response to the Notice of Allowance and Fee(s) due form is to be filed on or after January 1, 2003 (or mailed with a certificate of mailing on or after January 1, 2003), the issue fee paid should be the fee that is required at the time the fee is paid. If the issue fee was previously paid, and the response to the "Notice of Allowance and Fee(s) Due" includes a request to apply a previously-paid issue fee to the issue fee now due, then the difference between the issue fee amount at the time the response is filed and the previously paid issue fee should be paid. See Manual of Patent Examining Procedure, Section 1308.01 (Eighth Edition, August 2001).

Questions relating to issue and publication fee payments should be directed to the Customer Service Center of the Office of Patent Publication at (703) 305-8283.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Group Art Unit:	2188
Examiner:	Namazi, M.
Applicants:	Cathal G. Phelan
Serial No:	$09 / 504,344$
Filing Date:	February 14, 2000
For:	MEMORY DEVICE WITH FIXED LENGTH NON-INTERRUPTIBLE

DRAWING TRANSMITTAL

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
Dear Sir:
In response to the Notice of Allowance mailed June 16,2003 indicating that formal drawings are due, enclosed are three (3) sheets of formal drawings.

Attorney Docket No.: 0325.00309
CERTIFICATE OF MAILING
I hereby certify that this paper (along with any paper referred to as being attached or enclosed) is being deposited with the United States Postal Service via First Class Mail in an envelope with sufficient postage and is addressed to: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450, on September 15,2003.

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5A

FIG. 5B

FIG. 6

maintenance fee notifications.

O6162003

CHRISTOPHER P. MAIORANA, P.C.
24025 GREATER MACK
Fec(s) Transmittal This can only be used for domestic mailings of the Fee(s) Transmittal. This certificale camnot be used for any other accompanying papers. Each adaitional paper, such as an trawing, must have its own cetificate of mailing or cransmission.

Certificate of Maning or Transmitsion

ST. CLAIR SHORES, MI 48080 1 hercby certify that this Fee(s) Transmittal is being deposited with the envelope addressed to the Box Issue Fee address above, or being facsimile
transmitted to the USPTO, on the date indicated below.

| Mary Donna Berkley |
| :--- | :--- |
| Septelnber 15, 2003 |

ptember 15, 2003

TITLE OF INVENTION: MEMORY DEVICE WITH FIXED LENGTH NON-INTERRUPTIBLE BURST

3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the pateat Inclusion of assignee data is only approppiate when an assignnent has
been previously submitted to the USPTO or is being submitted under scparate cover. Conpletion of this form is NOT a substitute for filing an assignment.
(A) NAME OF ASSIGNEE
(B) RESIDENCE: (CITY and STATE OR COUNTRY)

Cypress Semiconductor Corp.
San Jose, CA

ISSUE SLIP STAPLE AREA (for additional cross references)

POSITION	INITIALS	ID NO.	DATE
FEE DETERMINATION			
O.I.P.E. CLASSIFIER			23
FORMALITY REVIEW		0	330
RESPONSE FORMALITY REVIEW			
	0		

INDEX OF CLAIMS

N	Non-elected
1	Interference
A	Appeal
0	Objected

Claim	- Date								
	92								
1 1)	1	\checkmark V	<						
22	7	-	$\underline{ }$						
3 3			-						
$4 \begin{array}{ll}4 & 4\end{array}$			2						
5			$=$						
$\begin{array}{ll}6 & 6\end{array}$			2						
7 7 8			2						
88			2						
49			2						
18 10 8 10			2						
1111			2						
164			$=$						
17. 13			2						
18 14 18			2						
17 15			$=$						
2916			2						
2117	7		2						
1218			$=$						
13 19			2						
14 150		\square	$=$						
1521		D	2						
22									
23									
24									
25									
26									
27									
28									
29									
30									
31									
32									
33									
34									
35									
36									
37									
38									
39									
40									
41									
42									
43									
44									
45									
46									
47									
48									
49									
50									

If more than 150 claims or 10 actions
staple additional sheet here

[^0]:

[^1]: I hereby certify that this letter, the response or amendment attached hereto are being deposited with the United States Postal Service as first class mail in an envelope addressed to Assistant Commissioner for Patents, Washington, D.C. 20231, on May 8, 2000.

[^2]: 4. (AMENDED) 'The circuit according to claim, , wherein said predetermined number of intemal address signals ins 8.
 5. (AMENDED) The circuit according to claim 2, wherein said fixed burst length is programmable.
[^3]: 6. (AMENDED) The circuit according to claim 5, wherein said fixed burst length is programmed by bond options.
[^4]: CLATM RETECTIONS UNDER 35 U. S, C. $\$ 10$.
 The rejection of claims J-21, under 35 U.S.C. SJ.02(b) as boing anticipated by Cowles is respectiully traversed.

 Cowles in directed to a continuous burst evo memory devico (Title). The invention disclosed by Cowles improves upon a conventional. burse "extended data out" (or "BEDO") memory architecture, Despite the statemonts to the contrary in the office Action dated Ootober 22, 2002 (hexeination "tho Office Action"), Cowles doos not disclose or suggest gererating a predeterminod mumber of internal address aignals non-interruptibly, as presently claimed. Instem, Cowles teaches thai the improvement disolused thorejn relates to an ability to aceess a second row of memory while bursting data out of a first row (a so-calded "continuous BEDO," ox "CBEDO" architecture; see, a.g., FIG. 5 and col. 2, 11. 15-18, 44-48 and 55-61; col. 6, 11. 17-29; col. 7, 11. 55-64; col. 8, 17. 26-33 and 60-63; and col. 9, 1.1. 4-17, 21-23 and 47-52 of Cowlos). 'rhis ability to access a second row of memory while burbiting data out of firgt row has little or nothing to do with whethor a "burst" can be interrupted, In fact, each of the various buret accesses disclosed by Cowles can be interpupted. Gomsequantly, it appears that any goneration of internal addrensos performed hy the various momory architectures of Cowles can alno be interrupted (see, e.g., the detailed discussion bolow and FYG. 4;

[^5]: "Both RAS* and CAS* going high during a burst access will also terminate the burst access cycle placing the data drivers in a high impedance output state, and resetting the burst length countex." (Col. 5, 1.1. 25-28 of cowles; emphasis added.)

 Thus, in BEDO memories, Cowlos teaches that thore are three conditions that will terminate a RFDO access: 1. WE* transitioning, either from low to high or from kigh to
 low; 2. RAS* and CAS* going high; or
 3. OE* going high (although, arguably, the state of of* may have little, if anything, to do with generating a prodeterminod number of internal addresses).

 The improvement to BEDO memories disclosed by Cowles and diacussed above is directed to minimizing the impact of condition \#2 above when accessing a different row. If we assume arguendo that the OE* signal disclosed by Cowles has litele, if anything, to do with generation of internal addresses, thore remains one condition (WE* transitioning) undor which the CBEDO memory of Cowlos will terminate a burst access, and thus, interrupt the genoration of internal addresses, contrary to the prescmt claima.

 With regard to CBEDO memories, Cowles states that:
 "The time at which data will be valid at the outputa of the burgt EDO DRAM is dependent only on the timing of the CAS* aignal provided that oE* is maintained low, and WE* remains high." (Col. 6, 11. 63-66 of Cowles [emphasis adical; note the similaritiess to col. 4, 11. 8-11 of Cowles, cited above.)

[^6]: Docket Number:0325.00309
 Application No.: 09/504,344

[^7]: ${ }^{2}$ See FIG. 4 and page 11, lines 11-17 of the specification.
 ${ }^{3} I d$.

[^8]: ${ }^{4}$ See FIG. 4 and page 11 , lines 11-17 of the specification.
 ${ }^{5}$ U.S. Patent No. 5,729,504.

[^9]: ${ }^{6}$ See, e.g., Rowe v. Dror, 42 USPQ2d 1550, 1552 (Fed. Cir. 1997), Preemption Devices, Inc. v. Minnesota Mining and Manufacturing Company, 221 USPQ 841, 843 (Fed. Cir. 1984), and Jones v. Hardy, 727 F.2d 1524, 1528, 220 USPQ 1021, 1024 (Fed. Cir. 1984) (It is well established that each claim in a patent constitutes a separate invention.).
 ${ }^{7}$ Manual of Patent Examining Procedure (M.P.E.P.), Eighth Edition, August, 2001, §1206.

[^10]: ${ }^{8}$ Page 5, paragraph no. 9 of the Final Office Action mailed October 22, 2002.
 ${ }^{9}$ U.S. Patent No. 5,729,504.
 ${ }^{10}$ Brown v. 3M, 60 USPQ2d 1375, 1376 (Fed. Cir. 2001) citing Karsten Mfg. Corp.v. Cleveland Golf Co., 242 F.3d 1376, 1383, 58 USPQ2d 1286, 1291 (Fed. Cir. 2001); Scripps Clinic \& Research Found. v. Genentech Inc., 927 F.2d 1565, 18 U.S.P.Q.2d 1001, 1010 (Fed. Cir. 1991) (Emphasis added by Appellant.).
 ${ }^{11}$ Scripps Clinic \& Research Found. V. Genentech Inc., 927 F.2d 1565, 18 U.S.P.Q.2d 1001, - 1010 (Fed. Cir. 1991).

 Docket Number:0325.00309
 Application No.: 09/504,344 10

[^11]: ${ }^{12}$ Title of Cowles.
 ${ }^{13}$ See page 2, paragraph no. 3, lines 4-6 of the Office Action mailed October 22, 2002.
 ${ }^{14} I d$.
 ${ }^{15}$ Id.

[^12]: ${ }^{16}$ See page 2, paragraph no. 3, lines 6-9 of the Office Action mailed October 22, 2002, which appears to suggest that a continuous burst can be terminated or interrupted, while a row burst cannot.

[^13]: ${ }^{17}$ However, the state of OE^{*}, arguably, may have little, if anything, to do with generating a predetermined number of internal addresses.

[^14]: ${ }^{18}$ See column 6, lines 1-6 of Cowles.
 ${ }^{19}$ See FIG. 2, column 4, lines 14-18 and column 8, lines 48-50 of Cowles.
 ${ }^{20}$ See FIG. 4 and column 6, lines 6-9 of Cowles).
 ${ }^{21}$ See page 2, paragraph no. 3, lines 6-9 of the Office Action mailed October 22, 2002.
 ${ }^{22}$ See page 2, last two lines through page 3, line 3 of the Office Action mailed October 22, 2002.

[^15]: ${ }^{23}$ See column 11, lines 37-41 and column 12, lines 36-40 of Cowles.
 " Docket Number:0325.00309
 Application No.: 09/504,344

[^16]: ${ }^{24}$ Brown v. 3M, 60 USPQ2d 1375, 1376 (Fed. Cir. 2001) citing Karsten Mfg. Corp. v. Cleveland Golf Co., 242 F.3d 1376, 1383, 58 USPQ2d 1286, 1291 (Fed. Cir. 2001); Scripps Clinic \& Research Found. v. Genentech Inc., 927 F.2d 1565, 18 U.S.P.Q.2d 1001, 1010 (Fed. Cir. 1991). Scripps Clinic \& Research Found. V. Genentech Inc., 927 F.2d 1565, 18 U.S.P.Q.2d 1001, 1010 (Fed. Cir. 1991).
 ${ }^{25}$ Appellant's representative has downloaded an electric version of the Cowles reference and performed a search for the words "bond" and "bond option", with no such occurrences.

 Docket Number:0325.00309
 Application No.: 09/504,344

[^17]: ${ }^{26}$ See page 6, lines 9-12 of the Office Action mailed October 22, 2002.
 ${ }^{27}$ See page 6, lines 9-12 of the Office Action mailed October 22, 2002.
 ${ }^{28}$ Continental Can Co. USA v. Monsanto Co., 948 F.2d 1264, 20 USPQ 2d 1746, 1749 (Fed. Cir. 1991) (citations omitted) See also In re Sun, 31 USPQ 2d 1451, 1453 (Fed. Cir. 1993) (unpublished) ("under section 102(b), anticipation requires that the prior art reference disclose either expressly or under the principles of inherency, every limitation of the claim").
 ${ }^{29}$ See page 6, lines 9-12 of the Office Action mailed October 22, 2002.
 ${ }^{30}$ See, e.g., Ethyl Molded Products Co. v. Betts Package, Inc., 9 U.S.P.Q. 2d 1001 (E.D.Ky 1988). See also, In re Oelrich, 666 F.2d 578, 581, 212 USPQ 323, 326 (C.C.P.A. 1981).

 Docket Number:0325.00309
 Application No.: 09/504,344

[^18]: ${ }^{31}$ Lindemann Maschinenfabrik GmbHv. American Hoist \& Derrick Co., 221 USPQ 481, 485 (Fed. Cir. 1984). (Anticipation requires the presence in a single prior art reference disclosure of each and every element of the claimed invention, arranged as in the claim). In re Skinner, 2 USPQ2d 1788, 1788-89 (B.P.A.I. 1986) ("[i]t is by now well settled that the burden of establishing a prima facie case of anticipation resides with the Patent and Trademark Office"). See also Ex parte Natale, 11 USPQ2d 1222, 1226 (B.P.A.I. 1989).
 ${ }^{32}$ Appellant's representative has downloaded an electronic version of the Cowles reference and performed a search for the words "bond" and "bond option", with no such occurrences.
 ${ }^{33}$ See page 6, lines 9-12 of the Office Action mailed October 22, 2002.
 ${ }^{34}$ See page 6, lines 9-12 of the Office Action mailed October 22, 2002.

[^19]: ${ }^{40}$ See page 3, paragraph no. 12 of the final Office Action dated May 24, 2002.
 ${ }^{41}$ Appellant's representative has downloaded an electric version of the Cowles reference and performed a search for the words "writeback" and "refresh", with no such occurrences.
 ${ }^{42}$ See page 6, line 20 through page 7, line 2 of the Office Action mailed October 22, 2002.
 ${ }^{43}$ Continental Can Co. USA v. Monsanto Co., 948 F.2d 1264, 20 USPQ 2d 1746, 1749 (Fed. Cir. 1991) (citations omitted) See also In re Sun, 31 USPQ 2d 1451, 1453 (Fed. Cir. 1993) (unpublished) ("under section 102(b), anticipation requires that the prior art reference disclose either expressly or under the principles of inherency, every limitation of the claim").

[^20]: ${ }^{44}$ See page 6, line 20 through page 7, line 2 of the Office Action mailed October 22, 2002.
 ${ }^{45}$ See, e.g., Ethyl Molded Products Co. v. Betts Package, Inc., 9 U.S.P.Q. 2d 1001 (E.D.Ky 1988). See also, In re Oelrich, 666 F.2d 578, 581, 212 USPQ 323, 326 (C.C.P.A. 1981).
 ${ }^{46}$ Lindemann Maschinenfabrik GmbHv. American Hoist \& Derrick Co., 221 USPQ 481, 485 (Fed. Cir. 1984). (Anticipation requires the presence in a single prior art reference disclosure of each and every element of the claimed invention, arranged as in the claim). In re Skinner, 2 USPQ2d 1788, 1788-89 (B.P.A.I. 1986) (" $[\mathrm{i}] \mathrm{t}$ is by now well settled that the burden of establishing a prima facie case of anticipation resides with the Patent and Trademark Office"). See also Ex parte Natale, 11 USPQ2d 1222, 1226 (B.P.A.I. 1989).

 Docket Number:0325.00309
 Application No.: 09/504,344

[^21]: ${ }^{47}$ Appellant's representative has downloaded an electric version of the Cowles reference and performed a search for the words "free," "freed up," "share" and "sharing", with no such occurrences.
 ${ }^{48}$ See page 7, lines 3-6 of the Office Action mailed October 22, 2002.
 ${ }^{49}$ Continental Can Co. USA v. Monsanto Co., 948 F.2d 1264, 20 USPQ 2d 1746, 1749 (Fed. Cir. 1991) (citations omitted) See also In re Sun, 31 USPQ 2d 1451, 1453 (Fed. Cir. 1993) (unpublished) ("under section 102(b), anticipation requires that the prior art reference disclose either expressly or under the principles of inherency, every limitation of the claim").
 ${ }^{50}$ See page 7, lines 3-6 of the Office Action mailed October 22, 2002.
 ${ }^{51}$ See, e.g., Ethyl Molded Products Co. v. Betts Package, Inc., 9 U.S.P.Q. 2d 1001 (E.D.Ky 1988). See also, In re Oelrich, 666 F.2d 578, 581, 212 USPQ 323, 326 (C.C.P.A. 1981).

[^22]: ${ }^{52}$ Lindemann Maschinenfabrik GmbHv. American Hoist \& Derrick Co., 221 USPQ 481, 485 (Fed. Cir. 1984). (Anticipation requires the presence in a single prior art reference disclosure of each and every element of the claimed invention, arranged as in the claim). In re Skinner, 2 USPQ2d 1788, 1788-89 (B.P.A.I. 1986) ("[i]t is by now well settled that the burden of establishing a prima facie case of anticipation resides with the Patent and Trademark Office"). See also Ex parte Natale, 11 USPQ2d 1222, 1226 (B.P.A.I. 1989).
 ${ }^{53}$ Title of Cowles.
 ${ }^{54}$ See page 2, paragraph no. 3, lines 4-6 of the Office Action mailed October 22, 2002. ${ }^{55}$ Id.

[^23]: ${ }^{56}$ Id.
 ${ }^{57}$ See page 2, paragraph no. 3, lines 6-9 of the Office Action mailed October 22, 2002, which appears to suggest that a continuous burst can be terminated or interrupted, while a row burst cannot.

[^24]: ${ }^{58}$ However, the state of OE^{*}, arguably, may have little, if anything, to do with generating a predetermined number of internal addresses.

[^25]: ${ }^{59}$ See column 6, lines 1-6 of Cowles.
 ${ }^{60}$ See FIG. 2, column 4, lines 14-18 and column 8, lines 48-50 of Cowles.
 ${ }^{61}$ See FIG. 4 and column 6, lines 6-9 of Cowles.

[^26]: ${ }^{62}$ See page 2, paragraph no. 3, lines 6-9 of the Office Action mailed October 22, 2002.
 ${ }^{63}$ See page 2, last two lines through page 3, line 3 of the Office Action mailed October 22, 2002.

[^27]: ${ }^{64}$ See column 11, lines 37-41 and column 12, lines 36-40 of Cowles.
 ${ }^{65}$ Brown v. 3M, 60 USPQ2d 1375, 1376 (Fed. Cir. 2001) citing Karsten Mfg. Corp. v. Cleveland Golf Co., 242 F.3d 1376, 1383, 58 USPQ2d 1286, 1291 (Fed. Cir. 2001); Scripps Clinic \& Research Found. v. Genentech Inc., 927 F.2d 1565, 18 U.S.P.Q.2d 1001, 1010 (Fed. Cir. 1991). Scripps Clinic \& Research Found. V. Genentech Inc., 927 F.2d 1565, 18 U.S.P.Q.2d 1001, 1010 (Fed. Cir. 1991).

[^28]: ${ }^{70}$ See page 2, paragraph no. 3, lines 6-9 of the Office Action mailed October 22, 2002, which appears to suggest that a continuous burst can be terminated or interrupted, while a row burst cannot.

[^29]: ${ }^{71}$ However, the state of OE^{*}, arguably, may have little, if anything, to do with generating a predetermined number of internal addresses.
 "Docket Number:0325.00309
 Application No.: 09/504,344

[^30]: ${ }^{72}$ See column 6, lines 1-6 of Cowles.
 ${ }^{73}$ See FIG. 2, column 4, lines 14-18 and column 8, lines 48-50 of Cowles.
 ${ }^{74}$ See FIG. 4 and column 6, lines 6-9 of Cowles.
 ${ }^{75}$ See page 2, paragraph no. 3, lines 6-9 of the Office Action mailed October 22, 2002.
 ${ }^{76}$ See page 2, last two lines through page 3, line 3 of the Office Action mailed October 22, 2002.

[^31]: ${ }^{77}$ See column 11, lines 37-41 and column 12, lines 36-40 of Cowles.
 .-Docket Number:0325.00309
 Application No.: 09/504,344

[^32]: ${ }^{78}$ Brown v. 3M, 60 USPQ2d 1375, 1376 (Fed. Cir. 2001) citing Karsten Mfg. Corp. v. Cleveland GolfCo., 242 F.3d 1376, 1383, 58 USPQ2d 1286, 1291 (Fed. Cir. 2001); Scripps Clinic \& Research Found. v. Genentech Inc., 927 F.2d 1565, 18 U.S.P.Q.2d 1001, 1010 (Fed. Cir. 1991). Scripps Clinic \& Research Found. V. Genentech Inc., 927 F.2d 1565, 18 U.S.P.Q.2d 1001, 1010 (Fed. Cir. 1991).
 ${ }^{79}$ Appellant's representative has downloaded an electric version of the Cowles reference and performed a search for the words "bond" and "bond option", with no such occurrences.

 Docket Number:0325.00309
 Application No.: 09/504,344 34

[^33]: ${ }^{80}$ See page 6, lines 9-12 of the Office Action mailed October 22, 2002.
 ${ }^{81}$ See page 6, lines 9-12 of the Office Action mailed October 22, 2002.
 ${ }^{82}$ Continental Can Co. USA v. Monsanto Co., 948 F.2d 1264, 20 USPQ 2d 1746, 1749 (Fed. Cir. 1991) (citations omitted, emphasis added) See also In re Sun, 31 USPQ 2d 1451, 1453 (Fed. Cir. 1993) (unpublished) ("under section 102(b), anticipation requires that the prior art reference disclose either expressly or under the principles of inherency, every limitation of the claim").
 ${ }^{83}$ See page 6, lines 9-12 of the Office Action mailed October 22, 2002.
 ${ }^{84}$ See, e.g., Ethyl Molded Products Co. v. Betts Package, Inc., 9 U.S.P.Q. 2d 1001 (E.D.Ky 1988). See also, In re Oelrich, 666 F.2d 578, 581, 212 USPQ 323, 326 (C.C.P.A. 1981).

 Docket Number:0325.00309
 Application No.: 09/504,344

[^34]: ${ }^{85}$ Lindemann Maschinenfabrik GmbHV. American Hoist \& Derrick Co., 221 USPQ 481, 485 (Fed. Cir. 1984). (Anticipation requires the presence in a single prior art reference disclosure of each and every element of the claimed invention, arranged as in the claim). In re Skinner, 2 USPQ2d 1788, 1788-89 (B.P.A.I. 1986)("[i]t is by now well settled that the burden of establishing a prima facie case of anticipation resides with the Patent and Trademark Office"). See also Ex parte Natale, 11 USPQ2d 1222, 1226 (B.P.A.I. 1989) .
 ${ }^{86}$ See page 3, paragraph no. 12 of the final Office Action dated May 24, 2002.
 ${ }^{87}$ Appellant's representative has downloaded an electric version of the Cowles reference and performed a search for the words "writeback" and "refresh", with no such occurrences.
 ${ }^{88}$ See page 6, line 20 through page 7, line 2 of the Office Action mailed October 22, 2002.

[^35]: ${ }^{89}$ Continental Can Co. USA v. Monsanto Co., 948 F.2d 1264, 20 USPQ 2d 1746, 1749 (Fed. Cir. 1991) (citations omitted) See also In re Sun, 31 USPQ 2d 1451, 1453 (Fed. Cir. 1993) (unpublished) ("under section 102(b), anticipation requires that the prior art reference disclose either expressly or under the principles of inherency, every limitation of the claim").
 ${ }^{90}$ See page 6, line 20 through page 7, line 2 of the Office Action mailed October 22, 2002.
 ${ }^{91}$ See page 6, line 20 through page 7, line 2 of the Office Action mailed October 22, 2002 (citing column 8, lines 33-36 and 63-65 of Cowles).

[^36]: ${ }^{92}$ See, e.g., Ethyl Molded Products Co. v. Betts Package, Inc., 9 U.S.P.Q. 2d 1001 (E.D.Ky 1988). See also, In re Oelrich, 666 F.2d 578, 581, 212 USPQ 323, 326 (C.C.P.A. 1981).
 ${ }^{93}$ Lindemann Maschinenfabrik GmbHv. American Hoist \& Derrick Co., 221 USPQ 481, 485 (Fed. Cir. 1984). (Anticipation requires the presence in a single prior art reference disclosure of each and every element of the claimed invention, arranged as in the claim). In re Skinner, 2 USPQ2d 1788, 1788-89 (B.P.A.I. 1986)("[i]t is by now well settled that the burden of establishing a prima facie case of anticipation resides with the Patent and Trademark Office"). See also Ex parte Natale, 11 USPQ2d 1222, 1226 (B.P.A.I. 1989).

[^37]: ${ }^{94}$ Appellant's representative has downloaded an electric version of the Cowles reference and performed a search for the words "free," "freed up," "share" and "sharing", with no such occurrences.
 ${ }^{95}$ See page 7, lines 15-19 of the Office Action mailed October 22, 2002.
 ${ }^{96}$ Continental Can Co. USA v. Monsanto Co., 948 F.2d 1264, 20 USPQ 2d 1746, 1749 (Fed. Cir. 1991) (citations omitted) See also In re Sun, 31 USPQ 2d 1451, 1453 (Fed. Cir. 1993) (unpublished) ("under section 102(b), anticipation requires that the prior art reference disclose either expressly or under the principles of inherency, every limitation of the claim").
 ${ }^{97}$ See page 7, lines 15-19 of the Office Action mailed October 22, 2002.
 ${ }^{98}$ See, e.g., Ethyl Molded Products Co. v. Betts Package, Inc., 9 U.S.P.Q. 2d 1001 (E.D.Ky 1988). See also, In re Oelrich, 666 F.2d 578, 581, 212 USPQ 323, 326 (C.C.P.A. 1981).

 Docket Number:0325.00309
 Application No.: 09/504,344

[^38]: ${ }^{99}$ Lindemann Maschinenfabrik GmbH v. American Hoist \& Derrick Co., 221 USPQ 481, 485 (Fed. Cir. 1984). (Anticipation requires the presence in a single prior art reference disclosure of each and every element of the claimed invention, arranged as in the claim). In re Skinner, 2 USPQ2d $1788,1788-89$ (B.P.A.I. 1986) (" i i$] \mathrm{t}$ is by now well settled that the burden of establishing a prima facie case of anticipation resides with the Patent and Trademark Office"). See also Ex parte Natale, 11 USPQ2d 1222, 1226 (B.P.A.I. 1989).

 Docket Number:0325.00309
 Application No.: 09/504,344

