
Reducing File System Latency using a
Predictive Approach �

James Griffioen, Randy Appleton

Department of Computer Science
University of Kentucky
Lexington, KY 40506

Abstract

Despite impressive advances in file system throughput
resulting from technologies such as high-bandwidth
networks and disk arrays, file system latency has not
improved and in many cases has become worse. Con-
sequently, file system I/O remains one of the major
bottlenecks to operating system performance [10].

This paper investigates an automated predictive
approach towards reducing file latency. Automatic
Prefetching uses past file accesses to predict future
file system requests. The objective is to provide data in
advance of the request for the data, effectively masking
access latencies. We have designed and implement a
system to measure the performance benefits of auto-
matic prefetching. Our current results, obtained from
a trace-driven simulation, show that prefetching results
in as much as a 280% improvement over LRU espe-
cially for smaller caches. Alternatively, prefetching
can reduce cache size by up to 50%.

1 Motivation

Rapid improvements in processor and memory speeds
have created a situation in which I/O, in particular file
system I/O, has become the major bottleneck to operat-
ing system performance [10]. Recent advances in high
bandwidth devices (e.g., RAID, ATM networks) have
had a large impact on file system throughput. Unfor-
tunately, access latency still remains a problem and is
not likely to improve significantly due to the physical
limitations of storage devices and network transfer la-
tencies. Moreover, the increasing popularity of certain
file system designs such as RAID, CDROM, wide area
distributed file systems, wireless networks, and mo-
bile hosts has only exacerbated the latency problem.
For example, distributed file systems experience net-
work latency combined with standard disk latency. As

�This work was supported in part by NSF grant number CCR-
9309176

distributed file systems scale both numerically and ge-
ographically, as envisioned by the Andrew File System
designers [7], network delays will become the dom-
inant factor in remote file system access. Similarly,
local file systems built on technologies like CD-ROMs
also suffer from very high latencies but continue to in-
crease in popularity due to the large amount of storage
space they offer.

Although a variety of high bandwidth technologies
are now available, it is unlikely that existing (and
emerging) low-end technologies such as serial lines
running SLIP or PPP, 64/128 Kb ISDN and other slower
speed networks will disappear in the near future given
their low-cost and wide-spread use. Such communica-
tion technologies suffer from both high latencies and
low bandwidths. Distributed file systems that build on
or incorporate these technologies will experience la-
tencies substantially higher than that of conventional
file systems. However, the appeal of low-cost widely
available shared access to files will certainly prolong
the existence of such file systems, despite their poor
performance.

The goal of our research is to investigate methods
for successfully reducing the the perceived latency as-
sociated with file system operations. In this paper, we
describe a new method for masking file system latency
called automatic prefetching. Automatic prefetching
takes a heuristic-based approach using knowledge of
past accesses to predict future access without user or
application intervention. As a result, applications au-
tomatically receive reduced perceived latencies, better
use of available bandwidth via batched file system re-
quests, and improved cache utilization.

2 Related work

Both caching and prefetching have been used in a vari-
ety of settings to improve performance. The following
briefly describes related work involving caching and
prefetching to improve file system performance.

Adobe - Exhibit 1119, page 1f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2.1 Caching

Caching has been used successfully in many systems
to substantially reduce the amount of file system I/O
[16, 6, 8, 1]. Despite the success of caching, it is pre-
cisely the accesses that cannot be satisfied from the
cache that are the current bottleneck to file system per-
formance [10]. Unfortunately, increasing the cache
size beyond a certain point only results in minor per-
formance improvements. Experience shows that the
relative benefit of caching decreases as cache size (and
thus cache cost) increases [9, 8]. There exists a thresh-
old beyond which performance improvements are mi-
nor and prohibitively expensive. Moreover, studies
show that the “natural” cache size or threshold is be-
coming a substantially larger fraction (one forth to one
third) of the total memory, due in part to larger files
(e.g., big applications, databases, video, audio, etc.)
[2]. Consequently, new methods are needed to reduce
the perceived latency of file accesses and keep cache
sizes in check.

Although machines with large memories are now
available, low-end workstations, PCs, mobile lap-
tops/notebooks, and now PDAs (personal data assis-
tants) with limited memory capacities enjoy wide-
spread use. Because of cost or space constraints these
machines cannot support large file caches. The desire
for smaller portable machines combined with continu-
ally increasing files size means that large caches cannot
be assumed to be the complete solution to the latency
problem.

Finally, as a result of rapid improvements in band-
width, cache miss service times are dominated by la-
tency. Note that:

� Most files are quite small. In fact, measurements
of existing distributed file systems show that the
average file is only a few kilobytes long [9, 2].
For files of this size, transmission rate is of lit-
tle concern when compared to the access latency
across a WAN or from a slow device. As a result,
access latency, not bandwidth, becomes the dom-
inate cost for references to files not in the cache.

� In many distributed file systems, the open() and
close() functions represent synchronization points
for shared files. Although the file itself may reside
in the client cache, each open() and close() call
must be executed at the server for consistency
reasons. The latency of these calls can be quite
large, and tends to dominate other costs, even
when the file is in the file cache.

In short, the benefits of standard caching have been
realized. To improve file system performance further

and keep file cache sizes in check, caching will need to
be supplemented with new methods and algorithms.

2.2 Prefetching

The concept of prefetching has been used in a va-
riety of environments including microprocessor de-
signs, virtual memory paging, databases, and file read
ahead. More recently, long term prefetching has been
used in file systems to support disconnected operation
[14, 15, 5]. Prefetching has also been used to improve
parallel file access on MIMD architectures [4].

One relatively straight forward method of prefetch-
ing is to have each application inform the operating
system of its future requirements. This approach has
been proposed by Patterson et. al. [11]. Using this ap-
proach, the application program informs the operating
system of its future file requirements, and the operating
system then attempts to optimize those accesses. The
basic idea is that the application knows what files will
be needed and when they will be needed.

Application directed prefetching is certainly a step
in the right direction. However, there are several draw-
backs to this approach. Using this approach, applica-
tions must be rewritten to inform the operating system
of future file requirements. Moreover, the program-
mer must learn a reasonably complex set of additional
system directives that must be strategically deployed
throughout the program. This implies that the appli-
cation writer must have a thorough understanding of
the application and its file access patterns. Ironically, a
key goal of many recent languages, in particular object-
oriented languages, is abstraction and encapsulation;
hiding the implementation details from the program-
mer. Even when the details are visible, our experience
indicates that the enormity and complexity of many
software systems creates a situation in which experts
may have difficulty grasping the complete picture of
file access patterns. Moreover, incorrectly placed di-
rectives or an incomplete set of directives can actually
degrade performance rather than improve it.

A second problem is that the operating system needs
a significant lead-time to insure the file is available
when needed. Therefore, in order to benefit from
prefetching, the application must have a significant
amount of computation to do between the time the file
is predicted and the time the file is accessed. However,
many applications do not know which files they will
need until the actual need arises. For instance, the pre-
processor of a compiler does not know the pattern of
nested include files until the files are actually encoun-
tered in the input stream, nor will an editor necessarily
know which files a user normally edits. Our approach
attempts to solve this problem by predicting the need

Adobe - Exhibit 1119, page 2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

for a file well in advance of when the application could;
in some cases long before the application even begins
to execute.

A third problem with application driven prefetching
arises in situations where related file accesses span mul-
tiple executables. Typically applications are written in-
dependently and only know file access patterns within
the application. In situations where a series of applica-
tions execute repeatedly, like an edit/compile/run cycle,
or certain commonly run shell scripts, no one applica-
tion knows the cross-application file access patterns,
and therefore cannot inform the operating system of a
future application’s file requirements. In some cases,
batch-type utilities, such as the Unix make facility, can
be instrumented to understand cross-application access
patterns. However, even in this case, a complete view
of the real cross application pattern is often unknown to
the user or requires extreme expertise to determine the
pattern. Our approach uses long term history informa-
tion to support prefetching across application bound-
aries.

3 Automatic Prefetching

We are investigating an approach we call automatic
prefetching, in which the operating system rather
than the application predicts future file requirements.
The basic idea and hypothesis underlying automatic
prefetching is that future file activity can be success-
fully predicted from past file activity. This knowledge
can then be used to improve overall file system perfor-
mance.

Automatic prefetching has several advantages over
existing approaches. First, existing applications do not
need to be rewritten or modified, nor do new appli-
cations need to incorporate non-portable prefetching
operations. As a result, all applications receive the
benefits of automatic prefetching, including existing
software. Second, because the operating system au-
tomatically performs prefetching on the application’s
behalf, application writers can concentrate on solving
the problem at hand rather than worrying about opti-
mizing file system performance. Third, the operating
system monitors file access across application bound-
aries and can thus detect access patterns that span mul-
tiple applications executed repeatedly. Consequently,
the operating system can prefetch files substantially
earlier than the file is actually needed, often before the
application even begins to execute.

Automatic prefetching allows the operating system
effectively to overlap processing with file transfers.
The operating system can also use past access infor-
mation to batch together multiple file requests and thus
make better use of available bandwidth. Past access in-

formation can also be used to improve the cache man-
agement algorithm, effectively reducing cache misses
even if no prefetching occurs.

The first goal of our research was to determine
whether such an approach is viable. Our second goal
was to develop effective prefetch policies and quantify
the benefits of automatic prefetching. The following
sections consider each of these objectives and describe
our results.

4 Analysis of Existing Systems

To determine the viability of automatic prefetching, we
analyzed current file system usage patterns. Although
other researchers have gathered file system traces [9, 2],
we decided to modify the SunOS kernel in order to
gather our own traces that extract specific information
important to our research. In addition to recording all
file system calls made by the system, the kernel gathers
precise information regarding the issuing process and
the timing for every operation. The timing information
not only serves as an indicator of the system’s perfor-
mance, but it also provides information as to whether
prefetching can have any substantial effects on perfor-
mance.

We gathered a variety of traces, including the normal
daily usage of several researchers, and also various
synthetic workloads. Traces were collected on a single
Sun Sparcstation supporting several users executing a
variety of tasks. Traces were collected for varying time
periods with the longest traces spanning more than 10
days and containing over 500,000 operations. Users
were not restricted in any way. Typical daily usage
included users processing email, editing, compiling,
preparing documents and executing other task typical
of an academic environment. This particular set of
traces contains almost no database activity. The data
we collected appears to be in line with that of other
studies [9, 2] given similar workloads.

Our initial analysis of the trace data indicates that
typical file system usage can realize substantial per-
formance improvements from the use of prefetching,
and also provides several guidelines for a successful
prefetching policy.

First, the data shows that there is relatively little time
between the moment when a file is opened and the
moment when the first read occurs (see figure 1). In
fact, the median time for our traces was less than three
milliseconds. Consequently, prefetching must occur
significantly earlier than the open operation to achieve
any significant performance improvement. Prefetching
at open time will only provide minor improvements.

Second, the data shows that the average amount
of time between successive opens is substantial (200

Adobe - Exhibit 1119, page 3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

0

10

20

30

40

50

60

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

P
er

ce
nt

 o
f a

ll
O

pe
ns

Time in ms

Figure 1: Histogram of times between open and first read of a file.

ms). If the operating system can accurately predict the
next file that will be accessed, there exists a sufficient
amount of time to prefetch the file.

In a multi-user, multiprogramming environment,
concurrently executing tasks may generate an inter-
leaved stream of file requests. In such an environment,
reliable access patterns may be difficult to obtain. Even
when patterns are discernable, the randomness of the
concurrency may render the prefetching effort inef-
fective. However, analysis of trace data consisting of
multiple users (and various daemons) shows that even
in a multiprogramming environment accesses tend to
be “sequential” where we define sequential as a sen-
sible/predictable uninterrupted progression of file ac-
cesses associated with a task. In fact, measurements
show that over 94% of the accesses follow logically
from the previous access. Thus multiprogramming
seems to have little effect on the ability to predict the
next file referenced.

5 The Probability Graph

We have designed and implemented a simple analyzer
that attempts to predict future accesses based on past
access patterns. Driven by trace data, the analyzer
dynamically creates a logical graph called a Probability
Graph. Each node in the graph represents a file in the
file system.

Before describing the probabilitygraph, we must de-

fine the lookahead period used to construct the graph.
The lookahead period defines what it means for one file
to be opened “soon” after another file. The analyzer
defines the lookahead period to be a fixed number of
file open operations that occur after the current open.
If a file is opened during this period, the open is consid-
ered to have occurred “soon” after the current open. A
physical time measure rather than a virtual time mea-
sure could be used, but the above measure is easily
obtained and can be argued to be a better definition
of “soon” given the unknown execution times and file
access patterns of applications. Our results show that
this measure works well in practice.

We say two files are related if the files are opened
withina lookahead period of one another. For example,
if the lookahead period is one, then the next file opened
is the only file considered to be related to the current
file. If the lookahead period is five, then any file opened
within five files of the current file is considered to be
related to the current file.

The analyzer allocates a node in the probability
graph for each file of interest in the file system. Unix
exec system calls are treated like opens and thus are
included in the probability graph. One graph, derived
from the trace described in section 7, generated ap-
proximately 6,500 nodes accessed over an eight day
period. Each node consumes less than one hundred
bytes, and can be efficiently stored on disk in the inode
of each associated file, with active portions cached for

Adobe - Exhibit 1119, page 4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

better performance. Our current graph storage scheme
has not been optimized and thus is rather wasteful. We
have recently begun investigating methods that will
substantially reduce the graph size via graph pruning,
aging, and/or compression.

Arcs in the probability graph represent related ac-
cesses. If the open for one file follows within the
lookahead period of the open for a second file, a di-
rected arc is drawn from the first to the second. Larger
lookaheads produce more arcs. The analyzer weighs
each arc by the number of times that the second file is
accessed after the first file. Thus, the graph represents
an ordered list of files demanded from the file system,
and each arc represents the probability of a particular
file being opened soon after another file.

Figure 2 illustrates the structure of an example prob-
ability graph. The probability graph provides the in-

alloca.h

171

65

66
40

30

4

97

131

40

config

tm.h

Figure 2: Three nodes of an example probabilitygraph.

formation necessary to make intelligent prefetch de-
cisions. We define the chance of a prediction being
correct as the probability of a file (say file B) being
opened given the fact that another file (file A) has been
opened. The chance of file B following file A can be
obtained from the probability graph as the ratio of the
number of arcs from file A to file B divided by the total
number of arcs leaving file A. We say a prediction is
reasonable if the estimated chance of the prediction is
above a tunable parameter minimum chance. We say
a prediction is correct if the file predicted is actually
opened within the lookahead period.

Establishing a minimum chance requirement is cru-
cial to avoid wasting system resources. In the absence
of a minimum requirement, the analyzer would produce
several predictions for each file open, consuming net-
work and cache resources with each prediction, many
of which would be incorrect.

To measure the success of the analyzer we define an
accuracy value. The accuracy of a set of predictions is
the number of correct predictions divided by the total
number of predictions made. The accuracy will almost
always be at least as large as the minimum chance, and
in practice is substantially higher.

The number of predictions made per open call varies
with the required accuracy of the predictions. Re-
quiring very accurate predictions (predictions that are
almost never wrong) means that only a limited number
of predictions can be made. For one set of trace data,
using a relatively low minimum chance value (65%) the
predictor averaged 0.45 files predicted per open. For
higher minimum chance values (95%) the predictor av-
eraged only 0.1 files predicted per open. Even when
using a relatively low minimum chance (e.g., 65%), the
predictor was able to make a prediction about 40% of
the time and was correct on approximately 80% of the
predictions made.

Figure 3 shows the distribution of estimated chance
values with a lookahead of one. The distributionshows
that a large number of predictions have an estimated
chance of 100%. Setting the minimum chance less
than 50% places the system in danger of prefetching
many unlikely files. By setting the minimum chance at
50%, very few files that should have been prefetched
will be missed. Moreover, the distribution shows how
a low minimum chance can still result in a high average
accuracy.

6 A Simulation System

To evaluate the performance of systems based on au-
tomatic prefetching, we implemented a simulator that
models a file system. In order to simulate a variety
of file system architectures having a variety of perfor-
mance characteristics, the simulator is highly parame-
terized and can be adjusted to model several file system
designs. This flexibility allows us to measure and com-
pare the performance of various cache management
policies and mechanisms under a wide variety of file
system conditions. The simulator consists of four basic
components: a driver, cache manager, disk subsystem,
and predictor.

The driver reads a timestamped file system trace and
translates each file access into a file system request for
the simulator to process. Because the driver generates
file requests directly from the trace data, the workload
is exactly like that of typical (concurrent) user-level
applications. However, the driver must modify the
set of requests in a few special cases. Because the
simulator is only interested in file system I/O activity,
the driver removes accesses made to files representing
devices such as terminals or /dev/null. References to

Adobe - Exhibit 1119, page 5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

