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Cache memories are used in modern, medium and high-speed CPUs to hold temporarily 
those portions of the contents of main memory which are {believed to be) currently in 
use. Since instructions and data in cache memories can usually be referenced in 10 to 25 
percent of the time required to access main memory, cache memories permit the 
executmn rate of the machine to be substantially increased. In order to function 
effectively, cache memories must  be carefully designed and implemented. In this paper, 
we explain the various aspects of cache memorms and discuss in some detail the design 
features and trade-offs. A large number of original, trace-driven simulation results are 
presented. Consideration is given to practical implementatmn questions as well as to more 
abstract design issues. 

Specific aspects of cache memories tha t  are investigated include: the cache fetch 
algorithm (demand versus prefetch), the placement and replacement algorithms, line size, 
store-through versus copy-back updating of main memory, cold-start versus warm-start  
miss ratios, mulhcache consistency, the effect of input /output  through the cache, the 
behavior of split data/instruction caches, and cache size. Our discussion includes other 
aspects of memory system architecture, including translation lookaside buffers. 
Throughout the paper, we use as examples the implementation of the cache in the 
Amdahl 470V/6 and 470V/7, the IBM 3081, 3033, and 370/168, and the DEC VAX 11/780. 
An extensive bibliography is provided. 

Categories and Subject Descriptors: B.3.2 [Memory  S t ruc tu res ] :  Design Styles--cache 
memorws; B.3.3 [Memory  S t ruc tu res ] :  Performance Analysis and Design Aids; C.O. 
[Computer Systems Organization]: General; C.4 [Computer Systems Organiza- 
tion]: Performance of Systems 

General Terms: Design, Experimentation, Measurement, Performance 

Additional Key Words and Phrases'  Buffer memory, paging, prefetching, TLB, store- 
through, Amdah1470, IBM 3033, BIAS 

INTRODUCTION 

Definition and Rationale 

Cache memories are small, high-speed 
buffer memories used in modern computer 
systems to hold temporarily those portions 
of the contents of main memory which are 
(believed to be) currently in use. Informa- 
tion located in cache memory may be ac- 
cessed in much less time than that located 
in main memory (for reasons discussed 
throughout this paper}. Thus, a central 
processing unit (CPU) with a cache mem- 
ory needs to spend far less time waiting for 

instructions and operands to be fetched 
and/or stored. For exam,~le, in typical large, 
high-speed computers (e.g., Amdahl 470V/ 
7, IBM 3033), main memory can be ac- 
cessed in 300 to 600 nanoseconds; informa- 
tion can be obtained from a cache, on the 
other hand, in 50 to 100 nanoseconds. Since 
the performance of such machines is al- 
ready limited in instruction execution rate 
by cache memory access time, the absence 
of any cache memory at all would produce 
a very substantial decrease in execution 
speed. 

Virtually all modern large computer sys- 
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terns have cache memories; for example, 
the Amdahl 470, the IBM 3081 [IBM82, 
REIL82, GUST82], 3033, 370/168, 360/195, 
the Univac 1100/80, and the Honeywell 66/ 
80. Also, many medium and small size ma- 
chines have cache memories; for example, 
the DEC VAX 11/780, 11/750 [ARMS81], 
and PDP-11/70 [SIRE76, SNOW78], and 
the Apollo, which uses a Motorolla 68000 
microprocessor. We believe that within 

two to four years, circuit speed and density 
will progress sufficiently to permit cache 
memories in one chip microcomputers. 
(On-chip addressable memory is planned 
for the Texas Instruments 99000 [LAFF81, 
ELEC81].) Even microcomputers could 
benefit substantially from an on-chip cache, 
since on-chip access times are much smaller 
than off-chip access times. Thus, the ma- 
terial presented in this paper should be 
relevant to almost the full range of com- 
puter architecture implementations. 

The success of cache memories has been 
explained by reference to the "property of 
locality" [DENN72]. The property of local- 
ity has two aspects, temporal and spatial. 
Over short periods of time, a program dis- 
tributes its memory references nonuni- 
formly over its address space, and which 
portions of the address space are favored 
remain largely the same for long periods of 
time. This first property, called temporal 
locality, or locality by time, means that  the 
information which will be in use in the near 
future is likely to be in use already. This 
type of behavior can be expected from pro- 
gram loops in which both data and instruc- 
tions are reused. The second property, lo- 
cality by space, means that portions of the 
address space which are in use generally 
consist of a fairly small number of individ- 
ually contiguous segments of that address 
space. Locality by space, then, means that 
the loci of reference of the program in the 
near future are likely to be near the current 
loci of reference. This type of behavior can 
be expected from common knowledge of 
programs: related data items (variables, ar- 
rays) are usually stored together, and in- 
structions are mostly executed sequentially. 
Since the cache memory buffers segments 
of information that have been recently 
used, the property of locality implies that 
needed information is also likely to be 
found in the cache. 

Optimizing the design of a cache memory 
generally has four aspects: 

(1) Maximizing the probability of finding a 
memory reference's target in the cache 
(the hit ratio), 

(2) minimizing the time to access informa- 
tion that is indeed in the cache {access 
time), 

(3) minimizing the delay due to a miss, and 

Computing Surveys, Vol 14, No. 3, September 1982 

Petitioners Microsoft Corporation and HP Inc. - Ex. 1022, p. 474
f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


(4) minimizing the overheads of updating 
main memory, maintaining multicache 
consistency, etc. 

(All of these have to be accomplished 
under suitable cost constraints, of course.) 
There is also a trade-off between hit ratio 
and access time. This trade-offhas not been 
sufficiently stressed in the literature and it 
is one of our major concerns in this paper. 
In this paper, each aspect of cache memo- 
ries is discussed at length and, where avail- 
able, measurement results are presented. In 
order for these detailed discussions to be 
meaningful, a familiarity with many of the 
aspects of cache design is required. In the 
remainder of this section, we explain the 
operation of a typical cache memory, and 
then we briefly discuss several aspects of 
cache memory design. These discussions 
are expanded upon in Section 2. At the end 
of this paper, there is an extensive bibliog- 
raphy in which we have attempted to cite 
all relevant literature. Not all of the items 
in the bibliography are referenced in the 
paper, although we have referred to items 
there as appropriate. The reader may wish 
in particular to refer to BADE79, BARS72, 
GIBS67, and KAPL73 for other surveys of 
some aspects of cache design. CLAR81 is 
particularly interesting as it discusses the 
design details of a real cache. (See also 
LAMPS0.) 

Overview of Cache Design 

Many CPUs can be partitioned, concep- 
tually and sometimes physically, into three 
parts: the I-unit, the E-unit, and the S-unit. 
The I-unit (instruction) is responsible for 
instruction fetch and decode. It may have 
some local buffers for lookahead prefetch- 
ing of instructions. The E-unit (execution) 
does most of what is commonly referred to 
as executing an instruction, and it contains 
the logic for arithmetic and logical opera- 
tions. The S-unit (storage) provides the 
memory interface between the I-unit and 
E-unit. (IBM calls the S-unit the PSCF, or 
processor storage control function.) 

The S-unit is the part of the CPU of 
primary interest in this paper. It contains 
several parts or functions, some of which 
are shown in Figure 1. The major compo- 
nent of the S-unit is the cache memory. 
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Figure 1. A typical CPU design and the S-unit. 

There is usually a translator, which trans- 
lates virtual to real memory addresses, and 
a TLB (translation lookaside buffer) which 
buffers (caches) recently generated (virtual 
address, real address) pairs. Depending on 
machine design, there can be an ASIT (ad- 
dress space identifier table), a BIAS (buffer 
invalidation address stack), and some write- 
through buffers. Each of these is discussed 
in later sections of this paper. 

Figure 2 is a diagram of portions of a 
typical S-unit, showing only the more im- 
portant parts and data paths, in particular 
the cache and the TLB. This design is 
typical of that used by IBM (in the 370/168 
and 3033) and by Amdahl (in the 470 series). 
Figure 3 is a flowchart that corresponds 
to the operation of the design in Figure 
2. A discussion of this flowchart follows. 

The operation of the cache commences 
with the arrival of a virtual address, gener- 
ally from the CPU, and the appropriate 
control signal. The virtual address is passed 
to both the TLB and the cache storage. 
The TLB is a small associative memory 
which maps virtual to real addresses. It is 
often organized as shown, as a number of 
groups (sets) of elements, each consisting 
of a virtual address and a real address. The 
TLB accepts the virtual page number, ran- 
domizes it, and uses that hashed number to 
select a set of elements. That set of ele- 
ments is then searched associatively for a 
match to the virtual address. If a match is 
found, the corresponding real address is 
passed along to the comparator to deter- 
mine whether the target line is in the cache. 
Finally, the replacement status of each en- 
try in the TLB set is updated. 

If the TLB does not contain the (virtual 
address, real address) pair needed for the 
translation, then the translator (not shown 
in Figure 2) is invoked. It uses the high- 
order bits of the virtual address as an entry 
into the segment and page tables for the 
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process and then returns the address pair 
to the TLB (which retains it for possible 
future use), thus replacing an existing TLB 
entry. 

The virtual address is also passed along 
initially to a mechanism which uses the 
middle part of the virtual address (the line 
number) as an index to select a set of entries 
in the cache. Each entry consists primarily 
of a real address tag and a line of data (see 
Figure 4). The line is the quantum of stor- 
age in the cache. The tags of the elements 
of all the selected set are read into a com- 
parator and compared with the real address 
from the TLB. (Sometimes the cache stor- 
age stores the data and address tags to- 
gether, as shown in Figures 2 and 4. Other 
times, the address tags and data are stored 
separately in the "address array" and "data 
array," respectively.) If a match is found, 
the line (or a part of it) containing the 
target locations is read into a shift register 
and the replacement status of the entries in 
the cache set are updated. The shift register 
is then shifted to select the target bytes, 
which are in turn transmitted to the source 
of the original data request. 

If a miss occurs (i.e., addresss tags in the 
cache do not match), then the real address 
of the desired line is transmitted to the 
main memory. The replacement status in- 
formation is used to determine which line 
to remove from the cache to make room for 
the target line. If the line to be removed 
from the cache has been modified, and main 
memory has not yet been updated with the 
modification, then the line is copied back to 
main memory; otherwise, it is simply de- 
leted from the cache. After some number of 
machine cycles, the target line arrives from 
main memory and is loaded into the cache 
storage. The line is also passed to the shift 
register for the target bytes to be selected. 

Cache Aspects 

The cache description given above is both 
simplified and specific; it does not show 
design alternatives. Below, we point out 
some of the design alternatives for the 
cache memory. 

Cache Fetch Algorithm. The cache fetch 
algorithm is used to decide when to bring 
information into the cache. Several possi- 
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Figure 4. Structure of cache entry and cache set. 

bilities exist: information can be fetched on 
demand (when it is needed) or prefetched 
(before it is needed). Prefetch algorithms 
attempt to guess what information will soon 
be needed and obtain it in advance. It is 
also possible for the cache fetch algorithm 
to omit fetching some information (selec- 
tive fetch) and designate some information, 
such as shared writeable code (sema- 
phores), as unfetchable. Further, there may 
be no fetch-on-write in systems which use 
write-through (see below). 

Cache Placement Algorithm. Informa- 
tion is generally retrieved from the cache 
associatively, and because large associative 
memories are usually very expensive and 
somewhat slow, the cache is generally or- 
ganized as a group of smaller associative 
memories. Thus, only one of the associative 
memories has to be searched to determine 
whether the desired information is located 
in the cache. Each such (small) associative 
memory is called a set and the number of 
elements over which the associative search 
is conducted is called the set size. The 
placement algorithm is used to determine 
in which set a piece {line) of information 
will be placed. Later in this paper we con- 
sider the problem of selecting the number 
of sets, the set size, and the placement 
algorithm in such a set-associative memory. 

Line Size. The fixed-size unit of infor- 
mation transfer between the cache and 
main memory is called the line. The line 
corresponds conceptually to the page, 
which is the unit of transfer between the 
main memory and secondary storage. Se- 
lecting the line size is an important part of 
the memory system design. (A line is also 
sometimes referred to as a block.) 

Replacement Algorithm. When infor- 
mation is requested by the CPU from main 
memory and the cache is full, some infor- 
mation in the cache must be selected for 
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