
Cache Memories

ALAN JAY SMITH

Unwersity of California, Berkeley, Californm 94720

Cache memories are used in modern, medium and high-speed CPUs to hold temporarily
those portions of the contents of main memory which are {believed to be) currently in
use. Since instructions and data in cache memories can usually be referenced in 10 to 25
percent of the time required to access main memory, cache memories permit the
executmn rate of the machine to be substantially increased. In order to function
effectively, cache memories must be carefully designed and implemented. In this paper,
we explain the various aspects of cache memorms and discuss in some detail the design
features and trade-offs. A large number of original, trace-driven simulation results are
presented. Consideration is given to practical implementatmn questions as well as to more
abstract design issues.

Specific aspects of cache memories tha t are investigated include: the cache fetch
algorithm (demand versus prefetch), the placement and replacement algorithms, line size,
store-through versus copy-back updating of main memory, cold-start versus warm-start
miss ratios, mulhcache consistency, the effect of input /output through the cache, the
behavior of split data/instruction caches, and cache size. Our discussion includes other
aspects of memory system architecture, including translation lookaside buffers.
Throughout the paper, we use as examples the implementation of the cache in the
Amdahl 470V/6 and 470V/7, the IBM 3081, 3033, and 370/168, and the DEC VAX 11/780.
An extensive bibliography is provided.

Categories and Subject Descriptors: B.3.2 [Memory S t ruc tu res] : Design Styles--cache
memorws; B.3.3 [Memory S t ruc tu res] : Performance Analysis and Design Aids; C.O.
[Computer Systems Organization]: General; C.4 [Computer Systems Organiza-
tion]: Performance of Systems

General Terms: Design, Experimentation, Measurement, Performance

Additional Key Words and Phrases' Buffer memory, paging, prefetching, TLB, store-
through, Amdah1470, IBM 3033, BIAS

INTRODUCTION

Definition and Rationale

Cache memories are small, high-speed
buffer memories used in modern computer
systems to hold temporarily those portions
of the contents of main memory which are
(believed to be) currently in use. Informa-
tion located in cache memory may be ac-
cessed in much less time than that located
in main memory (for reasons discussed
throughout this paper}. Thus, a central
processing unit (CPU) with a cache mem-
ory needs to spend far less time waiting for

instructions and operands to be fetched
and/or stored. For exam,~le, in typical large,
high-speed computers (e.g., Amdahl 470V/
7, IBM 3033), main memory can be ac-
cessed in 300 to 600 nanoseconds; informa-
tion can be obtained from a cache, on the
other hand, in 50 to 100 nanoseconds. Since
the performance of such machines is al-
ready limited in instruction execution rate
by cache memory access time, the absence
of any cache memory at all would produce
a very substantial decrease in execution
speed.

Virtually all modern large computer sys-

Permission to copy without fee all or part of this matenal is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying Is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
© 1982 ACM 0010-4892/82/0900-0473 $00.75

Computing Surveys, Vol. 14, No. 3, September 1982

Petitioners Microsoft Corporation and HP Inc. - Ex. 1022, p. 473
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

474 * A . J . S m i t h

CONTENTS

INTRODUCTION
Definltlon and Rationale
Overwew of Cache Deslgn
Cache Aspects

1. DATA AND MEASUREMENTS
1 1 Ratmnale
12 Trace-Driven Snnulatlon
1 3 Slmulatlon Evaluatmn
14 The Traces
15 Swnulatmn Methods

2 ASPECTS OF CACHE DESIGN AND OPERA-
TION
2.1 Cache Fetch Algorithm
2.2 Placement Algorithm
2.3 Line Size
2.4 Replacement Algorithm
2.5 Write-Through versus Copy-Back
2.6 Effect of Multlprogramming Cold-Start and

Warm-Start
2.7 Multmache Conslstency
2.8 Data/Instruction Cache
2 9 Virtual Address Cache
2.10 User/Super~sor Cache
2.11 Input/Output through the Cache
2 12 Cache Size
2 13 Cache Bandwldth, Data Path Width, and Ac-

cess Resolutmn
2 14 Multilevel Cache
2 15 Plpehmng
2 16 Translatmn Lookaslde Buffer
2 17 Translator
2 18 Memory-Based Cache
2 19 Specmlized Caches and Cache Components

3 DIRECTIONS FOR RESEARCH AND DEVEL-
OPMENT
3 1 On-Clnp Cache and Other Technology Ad-

vances
3.2 Multmache Consistency
3.3 Implementatmn Evaluatmn
3.4 Hit Ratio versus S~e
3.5 TLB Design
3.6 Cache Parameters versus Architecture and

Workload
APPENDIX EXPLANATION OF TRACE NAMES
ACKNOWLEDGMENTS
REFERENCES

A

v

terns have cache memories; for example,
the Amdahl 470, the IBM 3081 [IBM82,
REIL82, GUST82], 3033, 370/168, 360/195,
the Univac 1100/80, and the Honeywell 66/
80. Also, many medium and small size ma-
chines have cache memories; for example,
the DEC VAX 11/780, 11/750 [ARMS81],
and PDP-11/70 [SIRE76, SNOW78], and
the Apollo, which uses a Motorolla 68000
microprocessor. We believe that within

two to four years, circuit speed and density
will progress sufficiently to permit cache
memories in one chip microcomputers.
(On-chip addressable memory is planned
for the Texas Instruments 99000 [LAFF81,
ELEC81].) Even microcomputers could
benefit substantially from an on-chip cache,
since on-chip access times are much smaller
than off-chip access times. Thus, the ma-
terial presented in this paper should be
relevant to almost the full range of com-
puter architecture implementations.

The success of cache memories has been
explained by reference to the "property of
locality" [DENN72]. The property of local-
ity has two aspects, temporal and spatial.
Over short periods of time, a program dis-
tributes its memory references nonuni-
formly over its address space, and which
portions of the address space are favored
remain largely the same for long periods of
time. This first property, called temporal
locality, or locality by time, means that the
information which will be in use in the near
future is likely to be in use already. This
type of behavior can be expected from pro-
gram loops in which both data and instruc-
tions are reused. The second property, lo-
cality by space, means that portions of the
address space which are in use generally
consist of a fairly small number of individ-
ually contiguous segments of that address
space. Locality by space, then, means that
the loci of reference of the program in the
near future are likely to be near the current
loci of reference. This type of behavior can
be expected from common knowledge of
programs: related data items (variables, ar-
rays) are usually stored together, and in-
structions are mostly executed sequentially.
Since the cache memory buffers segments
of information that have been recently
used, the property of locality implies that
needed information is also likely to be
found in the cache.

Optimizing the design of a cache memory
generally has four aspects:

(1) Maximizing the probability of finding a
memory reference's target in the cache
(the hit ratio),

(2) minimizing the time to access informa-
tion that is indeed in the cache {access
time),

(3) minimizing the delay due to a miss, and

Computing Surveys, Vol 14, No. 3, September 1982

Petitioners Microsoft Corporation and HP Inc. - Ex. 1022, p. 474
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

(4) minimizing the overheads of updating
main memory, maintaining multicache
consistency, etc.

(All of these have to be accomplished
under suitable cost constraints, of course.)
There is also a trade-off between hit ratio
and access time. This trade-offhas not been
sufficiently stressed in the literature and it
is one of our major concerns in this paper.
In this paper, each aspect of cache memo-
ries is discussed at length and, where avail-
able, measurement results are presented. In
order for these detailed discussions to be
meaningful, a familiarity with many of the
aspects of cache design is required. In the
remainder of this section, we explain the
operation of a typical cache memory, and
then we briefly discuss several aspects of
cache memory design. These discussions
are expanded upon in Section 2. At the end
of this paper, there is an extensive bibliog-
raphy in which we have attempted to cite
all relevant literature. Not all of the items
in the bibliography are referenced in the
paper, although we have referred to items
there as appropriate. The reader may wish
in particular to refer to BADE79, BARS72,
GIBS67, and KAPL73 for other surveys of
some aspects of cache design. CLAR81 is
particularly interesting as it discusses the
design details of a real cache. (See also
LAMPS0.)

Overview of Cache Design

Many CPUs can be partitioned, concep-
tually and sometimes physically, into three
parts: the I-unit, the E-unit, and the S-unit.
The I-unit (instruction) is responsible for
instruction fetch and decode. It may have
some local buffers for lookahead prefetch-
ing of instructions. The E-unit (execution)
does most of what is commonly referred to
as executing an instruction, and it contains
the logic for arithmetic and logical opera-
tions. The S-unit (storage) provides the
memory interface between the I-unit and
E-unit. (IBM calls the S-unit the PSCF, or
processor storage control function.)

The S-unit is the part of the CPU of
primary interest in this paper. It contains
several parts or functions, some of which
are shown in Figure 1. The major compo-
nent of the S-unit is the cache memory.

Cache Memor ies * 475

I Moln Memory I

I ..,,,"~oc he

{I S-Unlt Tronslotor
' ASrT I T-Unit E-Unlt " ~ r i t e Through Buffers~

Figure 1. A typical CPU design and the S-unit.

There is usually a translator, which trans-
lates virtual to real memory addresses, and
a TLB (translation lookaside buffer) which
buffers (caches) recently generated (virtual
address, real address) pairs. Depending on
machine design, there can be an ASIT (ad-
dress space identifier table), a BIAS (buffer
invalidation address stack), and some write-
through buffers. Each of these is discussed
in later sections of this paper.

Figure 2 is a diagram of portions of a
typical S-unit, showing only the more im-
portant parts and data paths, in particular
the cache and the TLB. This design is
typical of that used by IBM (in the 370/168
and 3033) and by Amdahl (in the 470 series).
Figure 3 is a flowchart that corresponds
to the operation of the design in Figure
2. A discussion of this flowchart follows.

The operation of the cache commences
with the arrival of a virtual address, gener-
ally from the CPU, and the appropriate
control signal. The virtual address is passed
to both the TLB and the cache storage.
The TLB is a small associative memory
which maps virtual to real addresses. It is
often organized as shown, as a number of
groups (sets) of elements, each consisting
of a virtual address and a real address. The
TLB accepts the virtual page number, ran-
domizes it, and uses that hashed number to
select a set of elements. That set of ele-
ments is then searched associatively for a
match to the virtual address. If a match is
found, the corresponding real address is
passed along to the comparator to deter-
mine whether the target line is in the cache.
Finally, the replacement status of each en-
try in the TLB set is updated.

If the TLB does not contain the (virtual
address, real address) pair needed for the
translation, then the translator (not shown
in Figure 2) is invoked. It uses the high-
order bits of the virtual address as an entry
into the segment and page tables for the

Computing Surveys, Vol. 14, No. 3, September 1982

Petitioners Microsoft Corporation and HP Inc. - Ex. 1022, p. 475
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

476

L

A. J. Smith

From translator
Virtuo! Real

Address Address

I

Tronslehon
i ~ Lookes~de

Buffer

I

CPU

Virtual Address
/ t L,°e Number Number Line I

/ \

9 -

t # #
.]Compore Virtual
"7 Addresses

S =select

Real I Address

To Morn Memory

i
J
I
I

•] :

I
I
I
I
l
!

: To translator

I Address ~l~oto Line I

C~._.~mory

essl Data I

i
I Cache

Address
1 Data
I Arrays I
f

Addresses & Select Data I ~l C o m p a r e
i

L Data ¥
Byte Select & Al.,on I

Data Out

Figure 2. A typical cache and TLB design.

I HCsh Page Numbe~
(,

[Search TLB I

J Send v,rtool Address J to Translator

I Use Poo~ & Segment Tables
1"o Translate Address I

1
I Put ,. TLB]

CACHE OPERATION FLOW CHART

l
I Rece,ve Virtual Address I

I I
t

Select Set
t

(~) ~ e o d Out Address Tags I

yes ~ =t Compare Addresses I

I Update Replacement 1 Jl ~ Status in TLB } yes

IUpdate ; t e~ : ement I send Realto Ma,n Address IMemory

'
I ReceweLine from I

Morn Memory

I ,.,~, co,,,o, 1 Bytes from Line

Figure 3. Cache operahon flow chart.

Computing Surveys, Vol. 14, No. 3, September 1982

Petitioners Microsoft Corporation and HP Inc. - Ex. 1022, p. 476
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

process and then returns the address pair
to the TLB (which retains it for possible
future use), thus replacing an existing TLB
entry.

The virtual address is also passed along
initially to a mechanism which uses the
middle part of the virtual address (the line
number) as an index to select a set of entries
in the cache. Each entry consists primarily
of a real address tag and a line of data (see
Figure 4). The line is the quantum of stor-
age in the cache. The tags of the elements
of all the selected set are read into a com-
parator and compared with the real address
from the TLB. (Sometimes the cache stor-
age stores the data and address tags to-
gether, as shown in Figures 2 and 4. Other
times, the address tags and data are stored
separately in the "address array" and "data
array," respectively.) If a match is found,
the line (or a part of it) containing the
target locations is read into a shift register
and the replacement status of the entries in
the cache set are updated. The shift register
is then shifted to select the target bytes,
which are in turn transmitted to the source
of the original data request.

If a miss occurs (i.e., addresss tags in the
cache do not match), then the real address
of the desired line is transmitted to the
main memory. The replacement status in-
formation is used to determine which line
to remove from the cache to make room for
the target line. If the line to be removed
from the cache has been modified, and main
memory has not yet been updated with the
modification, then the line is copied back to
main memory; otherwise, it is simply de-
leted from the cache. After some number of
machine cycles, the target line arrives from
main memory and is loaded into the cache
storage. The line is also passed to the shift
register for the target bytes to be selected.

Cache Aspects

The cache description given above is both
simplified and specific; it does not show
design alternatives. Below, we point out
some of the design alternatives for the
cache memory.

Cache Fetch Algorithm. The cache fetch
algorithm is used to decide when to bring
information into the cache. Several possi-

Cache Memories * 477

I e°A00r"s '100'ol Vo,0 1
Cache Entry

[Eo,ry, I E°,..21 i E°,ry I.e0,oce.°, s,oio.
Cache Set

Figure 4. Structure of cache entry and cache set.

bilities exist: information can be fetched on
demand (when it is needed) or prefetched
(before it is needed). Prefetch algorithms
attempt to guess what information will soon
be needed and obtain it in advance. It is
also possible for the cache fetch algorithm
to omit fetching some information (selec-
tive fetch) and designate some information,
such as shared writeable code (sema-
phores), as unfetchable. Further, there may
be no fetch-on-write in systems which use
write-through (see below).

Cache Placement Algorithm. Informa-
tion is generally retrieved from the cache
associatively, and because large associative
memories are usually very expensive and
somewhat slow, the cache is generally or-
ganized as a group of smaller associative
memories. Thus, only one of the associative
memories has to be searched to determine
whether the desired information is located
in the cache. Each such (small) associative
memory is called a set and the number of
elements over which the associative search
is conducted is called the set size. The
placement algorithm is used to determine
in which set a piece {line) of information
will be placed. Later in this paper we con-
sider the problem of selecting the number
of sets, the set size, and the placement
algorithm in such a set-associative memory.

Line Size. The fixed-size unit of infor-
mation transfer between the cache and
main memory is called the line. The line
corresponds conceptually to the page,
which is the unit of transfer between the
main memory and secondary storage. Se-
lecting the line size is an important part of
the memory system design. (A line is also
sometimes referred to as a block.)

Replacement Algorithm. When infor-
mation is requested by the CPU from main
memory and the cache is full, some infor-
mation in the cache must be selected for

Computing Surveys, Vol. 14, No. 3, September 1982

Petitioners Microsoft Corporation and HP Inc. - Ex. 1022, p. 477
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

