
Tarzan: A Peer-to-Peer Anonymizing Network Layer

Michael J. Freedman
NYU Dept of Computer Science

715 Broadway #715
New York, NY 10003 USA

mfreed@cs.nyu.edu

Robert Morris
MIT Lab for Computer Science

200 Technology Sq. #509
Cambridge, MA 02139 USA

rtm@lcs.mit.edu

ABSTRACT
Tarzan is a peer-to-peer anonymous IP network overlay. Because
it provides IP service, Tarzan is general-purpose and transparent
to applications. Organized as a decentralized peer-to-peer overlay,
Tarzan is fault-tolerant, highly scalable, and easy to manage.

Tarzan achieves its anonymity with layered encryption and multi-
hop routing, much like a Chaumian mix. A message initiator
chooses a path of peers pseudo-randomly through a restricted topol-
ogy in a way that adversaries cannot easily influence. Cover traffic
prevents a global observer from using traffic analysis to identify an
initiator. Protocols toward unbiased peer-selection offer new direc-
tions for distributing trust among untrusted entities.

Tarzan provides anonymity to either clients or servers, without
requiring that both participate. In both cases, Tarzan uses a net-
work address translator (NAT) to bridge between Tarzan hosts and
oblivious Internet hosts.

Measurements show that Tarzan imposes minimal overhead over
a corresponding non-anonymous overlay route.

1. INTRODUCTION
The ultimate goal of Internet anonymization is to allow a host to

communicate with an arbitrary server in such a manner that nobody
can determine the host’s identity. Toward this goal, we envision a
system that uses an Internet-wide pool of nodes, numbered in the
thousands, to relay each others’ traffic to gain anonymity.

Different entities may be interested in exposing the host’s iden-
tity, each with varying capabilities to do so: curious individuals
or groups may run their own participating machines to snoop on
traffic; parties skirting legality may break into a limited number of
others’ machines; and large, powerful organizations may tap and
monitor Internet backbones.

Clearly, each type of adversary suggests different design criteria
for an anonymizing system. Prior systems have either underesti-
mated the ease of cracking or crashing individual machines, or dis-
counted the prevalence of wide-spread eavesdropping capabilities,
exemplified by the “Great Firewall of China” [30], the FBI’s Carni-
vore system [11], or subpoenas of Tier-1 ISP traffic for copyright-
protection compliance [22].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’02,November 18–22, 2002, Washington, DC, USA.
Copyright 2002 ACM 1-58113-612-9/02/0011 ...$5.00.

This paper describes Tarzan, a practical system aimed at realiz-
ing anonymity against all three flavors of adversary. First, however,
we discuss why less ambitious approaches are not adequate.

In the simplest alternative, a host sends messages to a server
through a proxy, such as Anonymizer.com [1]. This system fails
if the proxy reveals a user’s identity [18] or if an adversary can
observe the proxy’s traffic. Furthermore, servers can easily block
these centralized proxies and adversaries can prevent usage with
denial-of-service attacks.

To overcome this single point of failure, a host can connect
to a server through a set of mix relays [3]. The anonymous re-
mailer system [10], Onion Routing [26], and Zero-Knowledge’s
Freedom [13] offer such a model, providing anonymity through a
small, fixed core set of relays. However, if a corrupt relay receives
traffic from a non-core node, the relay can identify that node as
the ultimate origin of the traffic. Colluding entry and exit relays
can use timing analysis to determine both source and destination.
Even an external adversary can mount the same attack. Therefore,
the connecting host remains vulnerable to individual relay failures,
and these relays provide obvious targets for attacking or blocking.

Few of these systems attempt to provide anonymity against an
adversary that can passively observe all network traffic. Such pro-
tection requires fixing traffic patterns or using cover traffic to make
such traffic analysis more difficult. Proposals that do exist have
several shortcomings, however. Some protect only the core of the
static mix network and thus allow traffic analysis on its edges [2,
26]. Some simulate full synchrony and thus trivial DoS attacks halt
their operation in entirety [7]. And some require central control and
knowledge of the entire network [15].

Tarzan, on the other hand, does not suffer from these same weak-
nesses. Its main contributions are two-fold.

First, Tarzan extends known mix-net designs to a peer-to-peer
environment. Tarzan nodes communicate over sequences of mix
relays chosen from an open-ended pool of volunteer nodes, without
any centralized component. We present techniques to securely dis-
cover and select other nodes as communication relays: All peers are
potential originators of traffic; all peers are potential relays. Such a
scalable design lessens the significance of targeted attacks and in-
hibits network-edge analysis, as a relay cannot tell if it is the first
hop in a mix path. Furthermore, we leverage our new concept of a
domainto remove potential adversarial bias: An adversary may run
hundreds of virtual machines, yet is unlikely to control hundreds of
different IP subnets.

Second, Tarzan introduces a scalable and practical technique
for cover traffic that uses a restricted topology for packet routing:
Packets can be routed only between mimics, or pairs of nodes as-
signed by the system in a secure and universally-verifiable manner.
This technique is practical in that it does not require network syn-

CODE200 ET AL. EXHIBIT 1033
Page 1 of 14

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

chrony and consumes only a small factor more bandwidth than the
data traffic to be hidden, and it is powerful as it shields all network
participants, not only core routers.

Tarzan allows client applications on participating hosts to talk to
non-participating Internet servers through special IP tunnels. The
two ends of a tunnel are a Tarzan node running a client application
and a Tarzan node running a network address translator; the lat-
ter forwards the client’s traffic to its ultimate Internet destination.
Tarzan is transparent to both client applications and servers, though
it must be installed and configured on participating nodes.

Tarzan supports a systems-engineering position: anonymity can
be built-in at the transport layer, transparent to most systems, triv-
ial to incorporate, and with a tolerable loss of efficiency compared
to its non-anonymous counterpart. This approach immediately
reduces the effort required for application writers to incorporate
anonymity into existing designs, and for users to add anonymity
without changing existing non-anonymous applications. In the long
term, the ability for individual anonymizing relays to easily partic-
ipate in multiple kinds of traffic may make it easier to achieve a
critical mass of anonymizing relays.

The rest of this paper is structured as follows. Section 2 explains
Tarzan’s design goals and threat models. Section 3 describes the de-
sign of Tarzan: its tunneling architecture, peer discovery and selec-
tion protocols, and restricted topology and cover traffic mechanism.
Section 4 presents an analysis of Tarzan’s anonymity properties.
Section 5 describes Tarzan’s implementation, and Section 6 evalu-
ates its performance. Section 7 discusses integration transparency,
Section 8 describes related work, and Section 9 concludes.

2. DESIGN GOALS AND NETWORK MODEL
This paper uses the following terminology. A nodeis an Internet

host’s virtual identity in the system, created by running an instan-
tiation of the Tarzan software on a single IP address. A tunnel is
a virtual circuit for communication spread across an ordered se-
quence of nodes. A relay is a node acting as a packet forwarder as
part of a tunnel.

We designed Tarzan to meet a number of goals. Ordered by pri-
ority, these goals are the following:

1. Application independence: Tarzan should be transparent to
existing applications and allow users to interact with existing
services. To achieve this, Tarzan should provide the abstrac-
tion of an IP tunnel.

2. Anonymity against malicious nodes: Tarzan should pro-
vide senderor recipient anonymityagainst colluding nodes.
That is, a particular host should not be uniquely linkable
as the sender (recipient) of any message, or that a message
should not be linkable to any sender (recipient) [20]. We
consider these properties in terms of an anonymity set: the
set of possible senders of a message. The larger this set, the
“more” anonymous an initiator remains.

These properties implies the weaker relationship anonymity:
an adversary should not be able to identify a pair of hosts as
communicating with each other, irrespective of which host is
running Tarzan.

3. Fault-tolerance and availability: Tarzan should resist an
adversary’s attempts to overload the entire system or to block
system entry or exit points. Tarzan should minimize the dam-
age any one adversary can cause by running a few compro-
mised machines.

X

local subnet

unswitched
LAN

border gateway

malicious nodes

spoofed nodes

honest nodeshonest routers

malicious routers

corrupted domains

Figure 1: Tarzan network model. In relation to node X, ad-
versarial machines can control address spaces and can spoof
virtual nodes within corrupted domains.

4. Performance: Tarzan should maximize the performance of
tunnel transmission, subject to our anonymity requirements,
to make Tarzan a viable IP-level communication channel.

5. Anonymity against a global eavesdropper: An adversary
observing the entire network should be unable to determine
which Tarzan relay initiates a particular message. Therefore,
a node’s traffic patterns should be statistically independent of
it originating data traffic.

Because anyone can join Tarzan, the system will likely be tar-
geted by misbehaving users. While a correct host runs only one
honestnode—which forwards packets properly, does not log ad-
dressing or timing information, and so on—an adversary can run
potentially many malicious nodes or spoof many fake addresses. A
node is maliciousif it modifies, drops, or records packets, analyzes
traffic patterns, returns incorrect network information, or otherwise
does not properly follow the protocols.

From a naive viewpoint, the fraction of Tarzan nodes that are ma-
licious determines the probability that a tunnel relay is malicious.
Yet, a single compromised computer may operate on multiple IP
addresses and thus present multiple Tarzan identities.

To defend against such a situation, we make the observation that
a single machine likely controls only a contiguousrange of IP ad-
dresses, typically by promiscuously receiving packets addressed to
any IP address on a particular LAN or by acting as a gateway router.

This observation is useful in bounding the damage each mali-
cious node can cause. We will call this subnet controllable by a
single malicious machine a domain.1

A node belongs to a /d domain if the node’s d-bit IP prefix
matches that of the domain. Figure 1 shows the dependence of
intra-domain node failure: a malicious machine “owns” all of the
address space behind it.

Domains capture some notion of fault-independence: While an
adversary can certainly subvert nodes within the same domain in

1Our domain notion is completely unrelated to DNS and applies to
both IPv4 and IPv6.

CODE200 ET AL. EXHIBIT 1033
Page 2 of 14

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

relayd

PNATinitiatorclient
app

divert
kernel

relayd

Tag: 59
src: Priv
dst: Dest

Tag: 17

src: Priv
dst: Dest

Tag: 31

src: Priv
dst: Dest

src: PNAT
dst: Dest

src: App
dst: Dest

relayd

(31 17) (17 59)

Internet

(App Priv) (Priv PNAT)

Dest

relayd

Figure 2: Tarzan Architecture Overview: An IP packet is diverted to the local tunnel initiator, which NATs it to a private address
space, wraps it in several layers of encryption, and sends it to the first relay in UDP. Based on the packet’s flow tag, the relay decrypts
one layer of the encryption and sends the result to the next relay. The PNAT decrypts the last layer, extracts the original IP packet,
NATs the packet to its own public address, and writes the raw packet to the Internet.

a dependent fashion, nodes in different domains may fail indepen-
dently. Therefore, when selecting relays, Tarzan should consider
the notion of distinct domains, not that of distinct nodes.

Ideally, we would know the actual size of each domain in address
space and count all nodes within that address space as a single en-
tity. However, this internetwork topology is non-uniform and dif-
ficult to measure. Therefore, Tarzan chooses some fixed IP prefix
size as its granularity for counting domains: first among /16 sub-
net masks, then among /24 masks. We believe that this provides a
reasonable notion of distinct physical and administrative control.2

3. ARCHITECTURE AND DESIGN
This section describes Tarzan’s design: its basic tunnel mecha-

nism, its peer-discovery protocol, and its cover-traffic technique.
Figure 2 shows a simple Tarzan overlay network. All participat-

ing nodes run software that 1) discovers other participating nodes,
2) intercepts packets generated by local applications that should be
anonymized, 3) manages tunnels through chains of other nodes to
anonymize these packets, 4) forwards packets to implement other
nodes’ tunnels, and 5) operates a NAT (network address translator)
to forward other participants’ packets onto the ordinary Internet.

Typical use proceeds in three stages. First, a node running an
application that desires anonymity selects a set of nodes to form a
path through the overlay network. Next, this source-routing node
establishes a tunnel using these nodes, which includes the distri-
bution of session keys. Finally, it routes data packets through this
tunnel. The exit point of the tunnel is a NAT. This NAT forwards
the anonymized packets to servers that are not aware of Tarzan, and
it receives the response packets from these servers and reroutes the
packets over this tunnel.

Tarzan restricts route selection to pairs of nodes that use cover
traffic to maintain traffic levels independent of data rates. The sys-
tem enforces this topology by assigning neighbors in a decentral-
ized yet verifiable manner.

Tarzan operates at the IP (Internet Protocol) level and offers a
best-effort delivery model. End hosts must provide functionality
like reliability or authentication.

Tarzan uses layered encryption similar to Chaumian mixes [3]:
each leg of the tunnel removes or adds a layer of encryption, de-
pending upon the packet’s direction of traversal. The tunnel initia-
tor sanitizes IP headers, as well as TCP headers if applicable.

2Even years since the introduction of CIDR, active Internet ad-
dresses still disproportionally belong to network prefixes that re-
flect classful addressing [17].

3.1 Packet relay
A Tarzan tunnel passes two distinct types of messages between

nodes: data packets, to be relayed through existing tunnels, and
control packets, containing commands and responses that establish
and maintain these virtual circuits. Tarzan encapsulates both packet
types inside UDP.

A flow tag (similar to MPLS [23]) uniquely identifies each link
of each tunnel. A relay rapidly determines how to route a packet
tag. Symmetric encryption hides data, and a MAC protects its in-
tegrity, on a per-relay basis. Separate keys are used in each direc-
tion of each relay.

In the forward path, the tunnel initiator clears each IP packet’s
source address field, performs a nested encoding for each tun-
nel relay, and encapsulates the result in a UDP packet. More
precisely, consider a tunnel that consists of a sequence of nodes
T = (h1, h2, . . . , hl, hpnat).3 Let the forward encryption and in-
tegrity keys for each node be ekhi and ikhi , respectively, and let
seq be the packet sequence number, initiated to zero at the time
of tunnel establishment. Then, an initiator produces the following
block Bi for each relay hi in the tunnel, starting with hpnat:

ci = ENC(ekhi , {Bi+1})
ai = MAC(ikhi , {seq, ci})
Bi = {seq, ci, ai}

The origin tags block B1 with the first relay’s flow identifier and
forwards the result to h1. The first relay extracts the packet’s pay-
load, determines the relevant keys by its flow identifier, checks the
block’s integrity, decrypts the block (i.e., strips off one layer of en-
cryption), retags the resulting block B2, encapsulates it in a new
UDP packet, and forwards the packet on to the next relay. The
node drops any packet that fails its integrity check. This process
continues until the packet reaches the last relay, which strips off the
innermost layer of encryption, revealing the initiator’s IP packet.

On the reverse path, each successive relay performs a single en-
cryption with its appropriate key for the reverse direction, re-tags
and forwards the packet back towards the origin. This process
wraps the packet in layers of encryption, which the origin of the
tunnel must unwrap by performing l+1 decryptions. This design
places the bulk of the encryption workload on the node seeking
anonymity. Nodes that are merely relaying perform only a single
symmetric key operation per packet that is processed.4

3Section 3.7 explains our strange bookkeeping with the last relay.
4Section 3.7 describes an additional encryption-decryption used
between immediate nodes.

CODE200 ET AL. EXHIBIT 1033
Page 3 of 14

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

h0 = initiator ;
h1 ∈R {h0.neighbors};
for i = 1 to l

hi+1 ∈R {hi.neighbors}
send establishrequest(hi−1, hi+1) to hi via tunnel;
rc =wait for establishresponse;
if rc ∈ {!ok,timeout}

i = i − 1;
while rc ∈ {!ok, timeout}

if max retries exceeded
decrementi and break;

hi+1 ∈R {hi.neighbors};
send resetforward request(hi+1) to hi;
rc =wait for resetforward response;

send establishresponse(hl) to hpnat via tunnel;

Figure 3: Pseudocode for tunnel establishment protocol

3.2 Tunnel setup
When forming a tunnel, a Tarzan node pseudo-randomly selects

a series of nodes from the network based on its local topology (see
Section 3.7). The initiator is responsible for iteratively setting up
the entire tunnel, one relay at a time. This process consists mainly
of generating and distributing the symmetric keys, encrypted un-
der the relays’ public keys. Section 3.5 describes how an initiator
discovers nodes and their corresponding public keys. Each node
generates its public key locally the first time it enters the network.

The high-level establishment algorithm is shown in Figure 3. An
establish request sent to node hi is relayed as a normal data packet
from h1 through hi−1. Node hi cannot distinguish whether the
packet originated from node hi−1 or from one of that node’s prede-
cessors; node hi−1 cannot distinguish successive establish requests
from ordinary tunneled data.

The initiating node creates an establish request by using the pub-
lic key of node hi to encrypt the initial forward session key, there-
after used to decrypt packets received from hi−1. This session key
encrypts the forward integrity key, the subsequent reverse keys for
packets from hi+1, the addresses of hi−1 and hi+1, and the flow
identifiers that will be used to tag packets going in each direction.
When hi has successfully stored the state for this request, it re-
sponds to the origin for an end-to-end check of correctness.

For path length l, this algorithm takes O(l) public-key opera-
tions and O(l2) inter-relay messages to complete. This overhead is
sufficiently small for realistic choices of l.

3.3 IP packet forwarding
Tarzan provides a client IP forwarder and a server-side pseudony-

mous network address translator (PNAT) to create a generic anony-
mizing IP tunnel. The IP forwarder diverts certain packets from
the client’s network stack that matches user-specified IP firewall
rules and ships them over a Tarzan tunnel. The client forwarder
replaces its real address in the packets with a random address as-
signed by the PNAT from the reserved private address space. The
PNAT translates this private address to one of its real addresses.
Remote hosts can communicate with PNAT normally, as if it origi-
nated the traffic. Correspondingly, response packets are deNAT’ed
twice, once at each end of the tunnel.

The IP forwarder only hides the Internet Protocol address and
special header fields, such as origin port numbers, for TCP and
UDP packets. Section 7 discusses ways of coping with applications
that require more work than this to anonymize.

The pseudonymous NAT also offers port forwarding to allow or-
dinary Internet hosts to connect through Tarzan tunnels to anony-
mous servers. In fact, to achieve both sender and recipient

anonymity, any two users can communicate by each creating a tun-
nel to a different PNAT; each user’s application connects to the
other’s PNAT to form a double-blindedchannel.

3.4 Tunnel failure and reconstruction
A tunnel fails if one of its relays stops forwarding packets. To de-

tect failure, the initiator regularly sends ping messages to the PNAT
through the tunnel and waits for acknowledgments. Upon multiple
unsuccessful retries, the initiator attempts to determine the point-
of-failure by sending pings through the tunnel to each relay.

If the PNAT is the point-of-failure, i.e.,hl still responds to pings,
the initiator selects a new hpnat for the tunnel. Otherwise, it at-
tempts to rebuild the tunnel to the original PNAT, so that higher-
level connections, such as TCP, do not die upon tunnel failure.

If the furthest node to reply to the ping is hi, for i < l, interme-
diate relay hi+1 is unreachable. So, the initiator attempts to rebuild
the tunnel from hi forward, T ′ = (h1,. . ., hi, h

′
i+1,. . ., h

′
l, hpnat).

Upon multiple unsuccessful attempts, the initiator decrements i by
one and reattempts reconstruction.

3.5 Peer discovery
A Tarzan node requires some means to learn about all other

nodes in the network, knowing initially only a few other nodes.
Anything less than near-complete network information allows an
adversary to bias the distribution of a node’s neighbor set towards
malicious peers, leaks information through combinatorial profiling
attacks, and results in inconsistencies during relay selection. Sec-
tion 4.1 discusses these attacks in more depth.

Tarzan uses a simple gossip-based protocol for peer discovery.
Tarzan’s goal—to learn about all network resources—differs from
recent peer-to-peer lookup protocols [25], which spend great effort
to achieve immediate information propagation and load balancing
in a flat namespace, often at the cost of security.

Gossiping offers a simple mechanism for nodes to learn about
new neighbors.5 A node can prune inactive neighbors lazily when
they do not respond to cover traffic establishment requests, which
we explain further in Section 3.7.

This problem can be modeled as a directed graph: vertices rep-
resent Tarzan nodes; edges correspond to the relation that node a
knows about, and thus can communicate with, node b. Edges are
added to the graph as nodes discover other peers. We assume that
the graph is initially weakly connected; otherwise, nodes in sepa-
rate network partitions could never learn of one another. Tarzan’s
peer discovery goal is to make this graph fully connected.

Our technique to grow this network graph is similar to the Name-
Dropper resource discovery protocol [16]. In each round of Name-
Dropper, node a simply contacts one neighbor at random and trans-
fers its entire neighbor set.

The Tarzan discovery protocol supports three related operations:
initialization, redirection, andmaintenance. Initialization provides
the bulk-transfer functionality of Name-Dropper, which allows fast
information propagation. Redirection allows nodes to shed load
by redirecting new nodes to random neighbors. As this protocol
progresses, nodes sending entire neighbor sets will transmit many
elements already known to their recipients, wasting bandwidth.

In response, maintenance messages provide an incremental up-
date P of a node’s peer database with only new information
(P ∩ db = ∅). Tarzan calculates these set differences efficiently
by performing k-ary searches on prefix-aggregated hashes of the
set elements. This mechanism is briefly described in Section 4.1.

5“Gossiping” is a slight misnomer. Traditional gossiping protocols
assume a fully-connected or fixed network and seek to optimize the
broadcast of extra information, such as link state.

CODE200 ET AL. EXHIBIT 1033
Page 4 of 14

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

// LetUa be the set ofa’s unvalidated known peers
// LetVa be the set ofa’s validated known peers
a.gossip()

while true
if (Ua = ∅), Ua = Va;
b ∈R Ua;
if (|Va| < 1

c
|Vb|)

b.busy ? a.redirect(b) : a.initialize(b);
else if (|Vb| < 1

c
|Va|)

a.busy ? b.redirect(a) : b.initialize(a);
else

a.maintain(b); b.maintain(a);

Figure 4: Pseudocode for the peer discovery protocol

Tarzan differentiates between unvalidated addresses(Ua) and
validated addresses(Va) in a node’s peer database. A node learns
{ipaddr, port, hash(pubkey)} tuples through gossiping: these un-
validated values can easily be forged.

A node validates a tuple once its corresponding peer correctly re-
sponds to a discovery request sent directly to its gossiped address.
The request includes a random nonce. This two-way network hand-
shake is a weak yet practical authentication mechanism to show a
node “speaks for” its address. This validation distinction stops an
adversary from injecting arbitrary tuples into a peer database and
later impersonating a streak of invalid addresses following it in a
tunnel (see Section 4.1).

Figure 4 shows the main gossip protocol. To join the system, a
new node a contacts some existing node b to discover a new set
of unvalidated addresses. Node a validates b once a receives a
response. Node a successively contacts the new neighbors in Ua

before retrying neighbors in Va.
Running the discovery protocol, a node learns about and vali-

dates all other nodes in the network in O(n) connections.

3.6 Peer selection
This section describes Tarzan’s method for selecting nodes from

this peer database.
One may be tempted to simply choose nodes completely at ran-

dom from Va. This approach is problematic: if an adversary runs as
many Tarzan nodes as IP addresses to which it has access, a user is
very likely to select malicious nodes. However, these addresses are
rarely scattered uniformly through the IP address space. Instead,
they are often located in the same IP prefix space. Thus, we choose
among distinctIP prefixes, not among all known IP addresses.

We select nodes by choosing randomly among the populated do-
mainsat each level of the table in Figure 5. Tarzan uses a three-level
hierarchy: first among all known /16 subnets, then among /24 sub-
nets belonging to this 16-bit address space, then among the relevant
IP addresses.

A node generates this table by inserting all peers in Va into their
corresponding identifier rings. The leadingd-bits of a node’s IP
address are transformed to an identifiervia hash(ipaddr/d , date),
where hashis a cryptographic hash function and date is the day-
of-the-month according to GMT. Identifiers are ordered on their
corresponding rings modulo 2|id|.

Therefore, Tarzan’s lookup(key) method selects peers as fol-
lows: Node a first generates identifier id16 via hash(key/16 , date)
and finds the smallest identifier ≥ id16 (with wrap-around) on the
/0 identifier ring; it repeats this process recursively with id24 and
id32 on their corresponding rings of increased specificity.

Note that a node executes lookupcompletely locally, based on in-
formation already accumulated in its peer database. Therefore, two

18D3

3CB8

49A1

58E2

712F

9D37

B541

CA13

F72A

/0

18.26/16

18.26.4/24

21F8

3A25

45F1

5212

7C38

94D1

B1E3

E436

23A5

4F9A

61D1

974F

B11A

Figure 5: Peer selection on validated nodes. Shown is a
lookup(key) with id16 = 541A, id24 = 82F1, and id32 = 261B.
This ultimately maps to the hash value 4F9A, which yields a
node with IP address 18.26.4.9.

nodes may have slightly different lookup structure replicas, which
can yield temporarily inconsistent results. We return to the impact
of inconsistencies in the next section.

Tarzan includes the date in identifier hashes to daily reorder of
ring elements. This randomization stops any particular domain or
address from owning a larger space in the ring for any duration.
Furthermore, this rebalancing reorders the validated set daily, ran-
domizing how nodes propagate their neighbors during maintain.

3.7 Cover traffic and link encoding
If the pattern of inter-node Tarzan traffic varied with usage, a

wide-spread eavesdropper could analyze the patterns to link mes-
sages to their initiators. Prior work has suggested the use of cover
traffic to provide more time-invariant traffic patterns independent of
bandwidth demands [3]. Such traffic provides a node with stronger
plausible deniabilitythat it is the actual message initiator.

Our key contributions include introducing the concept of a traffic
mimic. We propose traffic invariants between a node and its mimics
that protect against information leakage. These invariants require
some use of cover traffic and yield an anonymity set exponential in
path length.

3.7.1 Selecting mimics
Upon joining the network, node a asks k other nodes to exchange

mimictraffic with it. Similarly, an expected k nodes select a as they
look for their own mimics. Thus, each node has κ mimics, where
E(κ) = 2k for some global parameter k. Mimics are assigned
verifiably at random from the set of nodes in the network.

A node establishes a bidirectional, time-invariant packet stream
with a mimic node, into which real data can be inserted, indistin-
guishable from the cover traffic.

This mimic relationship must be symmetric for three reasons.
First, a otherwise would send data only on its outgoing links, not
trusting its incoming mimic connections. This practice halves a’s
anonymity set on average. Second, and related, variations in host
density behind different IP prefixes may account for some nodes
receiving few incoming connections. Second, a otherwise would
not be incentivized to provide cover traffic on its incoming links.

CODE200 ET AL. EXHIBIT 1033
Page 5 of 14

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

