US005764693A

United States Patent (i (111 Patent Number: 5,764,693
Taylor et al. 451 Date of Patent: Jun. 9, 1998
[54] WIRELESS RADIO MODEM WITH 0599632 6/1994 European Pat. Off. .
MINIMAL INTER-DEVICE RF 0631398 12/1994 European Pat. Off. .
INTERFERENCE (List continued on next page.)
[75] Inventors: Bryan Taylor; Mihal Lazaridis. both OTHER PUBLICATIONS
of Waterloo; Peter Edmonson, . .
Hamilton; Perry Jarmuszewski. Electronic Design. vol. 41, No. 16, 5 Aug. 1993 pp. 45-50.
Guelph; Lizhong Zhu, Waterloo; Leonard ‘PCMCIA-sized radio links portable WLan termi-
Steven Carkner, Waterloo; Matthias nals’ see figure 2. o
Wandel. Waterloo. all of Canada IEICE Transactions On Communications, vol. E76-B. No.
8. Aug. 1993 pp. 990-995, Takehara ‘A SAW-based spread
[73] Assignee: Research In Motion Limited. spectrum wireless LAN system’see figures 2. 3. 7.
Waterloo, Canada IEEE Transactions On Vehicular Technology. vol. 43. No. 4,
1 Nov. 1994 pp. 863-869, Mitsutaka Hihita et al ‘A wide-
[21] Appl. No.: 488,695 band SAW resonator and its application to a VCO for movile
ppl. No.: 485 radio transceivers’ see abstract.
[22] Filed: Jun. 8, 1995 “Surface Transverse Wave Based FM Modulator/Demodu-
lator”. Reprinted from Electronics Letters 15th Mar. 1990
Related U.S. Application Data vol. 26 No. 6 pp. 364-365.

“A Surface Transverse Wave-Based MSK System”. Ivan D.
[63] Continuation-in-part of Ser. No. 337,841, Nov. 14, 1994, Avramov, PJ. Edmonson. Member, IEEE. Peter M. Smith,

Pat. No. 5,619,531. Member, IEEE IEEE Transactions On Ultrasonics. Ferro-
RV T & K HO4L 5/16; HO4L 27/10 ¢lectrics. And Frequency Control Vol. 38. No. 3. May 1991.
[52] U.S. CL. oo 375/222; 375/274; 45573~ Product Note 11729B-1 Phase Noise Characterization Of

[58] Field of Searchoooeeescoens 375222295, Microwave Oscillators Phase Detector Method Hewlett

375/298. 308. 261. 219. 316, 340, 274, T ackard. Aug. 1983.
336. 305. 329. 279; 379/93.01; 455/73. Primary Examiner—Tesfaldet Bocure
88. 86; 332/103. 100; 329/300. 304 Attorney, Agent, or Firm—Jones. Day. Reavis & Pogue;
Charles B. Meyer

[56] References Cited [57] ABSTRACT

US. P T DOCUMENTS A wireless radio modem that may be incorporated into a host

4,087,756 5/1978 Rogers, Jr. . system or connected through a PCMCIA or similar port to a
4,418,320 11/1983 Guyton . host system includes radio frequency modulation/
4,562,404 12/1985 Futakuchi . demodulation circuitry employing electronic device ele-
4,630,314 12/1986 Smith . ments that operate in a frequency range that minimizes the

4,646,326 2/1987 Backof, Jr. et al. .

4665519 5/1987 Kirchner et al. . RF interference between the radio modem and the host

system. Radio modem power conservation is maximized by

(List continued on next page.) 1) simplifying signal modulation processing by use of a
two-point waveform transition table. thereby reducing pro-
FOREIGN PATENT DOCUMENTS cessing requirements; and 2)incorporating a “‘sleep mode”

feature in which all non-timer circuitry is powered-down

0416423 3/1991 European Pat. Off. . when not in use.

0494696 7/1992 European Pat. Off. .
0531100 3/1993 Eurcpean Pat. Off. .
0584872 3/1994 European Pat. Off. . 12 Claims, 8 Drawing Sheets

0AlA 10

DEMODULATOR
! (‘{ PHASE SHIFTER a3
122

1F
BAND IMAGE ED,&OE'&",ER CHANNEL GAIN NOISE
TILTER LNA FILTER FILTER WP FILTER LIM

3dB
SPLITFER
ISOLATION
L3

FQWER BAND EXCETER
AP FILTER ANP

OIRECT OIGITAL
QUADRATLRE POOULATOR

INTEL 1009

5,764,693

Page 2
U.S. PATENT DOCUMENTS 5,317,707 5/1994 Wallace .
5,347,304 9/1994 Moura et al. .
4,682344 7/1987 Somer . 5,548,253 8/1996 DUITADL .o.ooovvevvreeesnrensensensenns 3751296
4,843,613 6/1989 Crowlececeeereeerecnsienceneenns 375295
4,893,347 1/1990 Eastmond et al. . FOREIGN PATENT DOCUMENTS
4,962,510 10/1990 McDavid et al.cccevreeereennne 375/308
5,020,093 5/1991 Pireh . 62-292005 12/1987 Japan .
5230,094 7/1993 Kitching et al. . 930577 5/1982 USSR .
5,231,647 7/1993 Deguchi . 2114392 8/1983 United Kingdom .

5313211 5/1994 Tokuda . 2261345 5/1993 United Kingdom .

/7—1
BAND

FILTER LNA

AMP

BB
I Ly s

2
_Ej/\Tx/Rx <
SWITCH

POWER BAND EXCITER
FILTER

DOWN
IMAGE converTER CH

FILTER

6

S0~
T/R CONTROL

IF IF

ANNEL GAIN NOISE
FILTER AMP FILTER LIM

DATA 1/0

DEMODULATOR i

f;{ PHASE SHIFTER | e79| scc
12 MEM [T IMER

3d8B

SPLITTER

AMP

FILTER
= 0 -2
= LPF D/A

38 L-g 37 L 55 —

3 29

DIRECT DIGITA
QUADRATURE
MODULATOR

dIRd SN

8661 ‘6 ‘unf

8 JO 1 194§

€69°P9L‘S

s

t

1

BAND

3 4 5 ;375

DOWN
IMAGE R
FILTER LNA FILTER (ONVERTE

DEMODULATOR

S

IF IF
CHANNEL GAIN NOISE
FILTER AMP FILTER LIM

PHASE SHIFTER |

OPAMP LPF

A/D

DATA 1/0

T

Scc

MEM [T IMER

Fz'g. 1b

S 1

DIRECT DIGITA
QUADRATURE MODULATOR

6
2 S0~
:jn;x/Rx L J/RCONTROL |
SWITCH
348
SPLITTER
[SOLATION
AMP
EXCI {'"“' 53] [
POVER BAND EXCITER | (&
AMP FILTER AMP | X % | Cs3
!42 ! ! | <L M Q
: | 54
! &732

Juajed SN

8661 ‘6 "unf

8 JO T 199YS

€69‘Y9L‘S

DEMODULATOR

15

61 SJI PHASE SHIFTER |
IF e

DOWN
BAND [MAGE CHANNEL IF NOISE
FILTER LNA FILTER CONVERTER Fl

GAIN FILTER LIM

Tx/Rx . T/R CONTROL

H:Q LPF OPAMP LpF

DATA 1/0

i

Scc

MEM|TIMER

SWITCH = 7T

POWER BAND
AMP FILTER EXCITER

SPLITTER | veo 202
] | MODULAT [ON

~~—""CONTROL
SYNTH LPF

LPF

SYNTH _CONTROL

—.*—!-—/—— CJ—%
-30 28

26

=
[=)
o
c
=
>
—
—
o
=

L e mmem i ———

LOCAL OSCILLATOR

Judged SN

8661 ‘6 ‘unf

8 JO £ 13YS

€69°49L‘S

DEMODULATOR

L PHASE SHIFTER |
ﬁ 5 200
IF Lé

WN
BAND IMAGE CONDVDERTER CHANNEL 1 NOISE
FILTER LNA FILTER FILTER

GAIN FILTER LIM

14 24~ 25 T
v 5 :
LPF OPAMP - ‘
(X LPF RAM] | J

7]8)

213~

Tx/Rx __T/R CONTROL
SWITCH

POWER BAND
AMP FILTER EXCITER

e e e mmecmeecmeemmmmemmmmemmememm e EmeTe == Ae——————————————————————— e e ma e m mmm e e e

3dB
SPLITTER

Col0 ! CONTROL| | 20 28
; SYNTH LPF

LPF 0/A

LOCAL OSCILLATOR

uNed SN

8661 ‘6 "unf

8 JO p 1934S

€69°P9L’S

U.S. Patent

Jun. 9, 1998 Sheet 5 of 8 5,764,693

(’400

NO

1 IS TASK LIST

EMPTY ?

<—

YES

////,_ 401

SET SERIAL CONTROLLER TO GENERATE
INTERRUPT ON HOST DATA RECEIVED.
SET UP TIMER TO GENERATE INTERRUPT
AFTER DESIRED TIMEOUT PERIOD.

l

404
- //’

>1 FORCE SOF TWARE T0
CONTINUE FROM NEW

—>| LOCATION IN COOE

UNMASK THE
100 | MRS THE | UNEXPECTED NI
PROCESSOR
Y
HALT |
PROCESSOR [~ EXPECTED NMI

vee
R305 VBATT VBATT U301 /\‘502 °
10K 8 1 vCC
T RN N lN OUT
R ivonT]
o 1+
K GND o~ CFO4
TURNON 0301 SHON c GND 6 e
LTURNON ' 4 : SHON P GND
500 %E&S?‘ﬁ? VBATT LT1121ACS8-5 =
R304 GND
| 200K
3 I w® w
K co2
I IMBT3904
MARK [N
B02 0302 =
IMBT3904
MARK TN GND
801 _
o Fi g. 5
BO3 OND 0303
IMBT3?04
MARK IN
ONI quf DONI
T _/// > —
501 IMBD4 148 R307 GND
MARK IN 20K

JuEd ‘SN

8661 ‘6 "unf

8 JO 9 1994§

€69°V9L’S

VALID TURNOF F
TURNON GLITCH

SIGNAL —\ lGNORED-—\

VALID
TURNOFF

/— SIGNAL

TURNON SIGNAL FROM | i

HOST (ACTIVE HIGH)

(601
ON INDICATION (ONI) ——/—_—I—i

(ACTIVE LOW)

|

ONI

GLITCHES

IGNORED
N\

AW

POWER SUPPLY

(ACTIVE HIGH)
1L L

1)

;Ig

PONER | SYSTEM | NORMAL OPERATING MODE
ON BOOTS

Fig. §)

CONTROL
POWER
DOWN

I

POWER

OFF ‘2
600

wded 'S’

8661 ‘6 "unf

8 JO L 199§

€69°P9L‘S

U.S. Patent Jun. 9, 1998 Sheet 8 of 8 5,764,693

ONE
BIT TIME

i 1
0 0 1 0 0

7 S~
aQ b C d e
00> 700> 015
Fig. ‘a
ONE
BIT TIME
0 0 I 0 0

A
VAN

7035 705-S 706S

Fig. 7b

5.764.693

1

WIRELESS RADIO MODEM WITH
MINIMAL INTER-DEVICE RF
INTERFERENCE

This application is a continuation-in-part of U.S. patent
application Ser. No. 08/337.841. filed Nov. 14, 1994 entitled
“Wireless Radio Modem With Minimal Interdevice RF
Interference”. nowissued as U.S.Pat. No. 5.619,531 on Apr.
8. 1997.

COPYRIGHT NOTICE

Portions of the disclosure of this patent document, includ-
ing the appendices, contain material that is subject to copy-
right protection. The copyright owner has no objection to the
facsimile reproduction by anyone of the patent document or
the patent disclosure as it appears in the Patent and Trade-
mark Office patent file or records. but otherwise reserves all
copyright rights whatsoever.

TECHNICAL FIELD OF THE INVENTION

This invention relates generally to data communication at
radio frequencies in a wireless environment and. in
particular, to a method of wireless data communication and
to a device that can be imbedded within a host data pro-
cessing or communications unit (such as a PC. a laptop. a
workstation. a personal digital assistant (PDA). a two-way
pager or other equipment for data communications or
processing) or attached directly through an external data
interface, such as one that is constructed and controlled in a
manner that meets the standards set forth in two documents
entitled “PC Card Standard,” Release 2.0, and “Socket
Services Interface Specification.” Release 1.01. both pub-
lished by the Personal Computer Memory Card International
Association (PCMCIA). in September 1991. As will be
appreciated by reference to the specification that follows,
although communication through a PCMCIA interface is
preferable, the invention is not restricted to a particular
communication interface and may be connected in any
manner to a host data processing or communications unit
(either, a “host unit”), or integrated into such a unit. The
method and device enables a host unit to transmit data to and
receive data from a communication network wirelessly so
that the RF interference between the host unit and the radio
modem is minimized and power consumption is at areduced
level. It is envisioned that in its preferred use, the invention
will be used to communicate between a host unit and a
remote data processing or communications device. either
directly or via a network through a data transmission/
reception network station.

BACKGROUND OF THE INVENTION

Wireless radio modems are used to permit remotely
located computers and other data communications equip-
ment to communicate with one or more other computers or
equipment for data communications, usually as part of a
computer network. Over the past several years. a number of
efforts have been undertaken to reduce the size, weight,
power consumption and portability of radio modems in
order to increase their attractiveness to both the technical
community and the consuming public. In spite of advances
in technology. most state of the art radio modem designs
usually involve a flexible cable connection to the host unit
and a bulky external battery pack to supply the necessary
power. Previous attempts to incorporate a radio modem
within a host unit or to connect a radio modem through a
PCMCIA interface have resulted in extremely poor operat-

10

20

25

30

35

40

45

50

55

60

65

2

ing performance predominately as a result of radio fre-
quency interference caused by electrical noise generated by
the host unit.

SUMMARY OF THE INVENTION

The present invention has utility in allowing a host unit to
communicate with a wireless network. The present inven-
tion is a wireless radio modem that is designed to be located
within a host unit, or connected to a host unit through an
external port. such as a PCMCIA interface, so that the host
unit can communicate with other units for data processing or
communication via a wireless data network. In its preferred
embodiment, the radio modem is designed to operate in a
wireless data network that uses packet-switched communi-
cation such as a network that uses the Mobitex™ network
protocol, the Ardis™ network protocol or the Celluar Digital
Packet Data (CDPD) wireless network protocol. The radio
modem design allows different network protocols to be
supported by software changes only (i.e.. with no substan-
tive hardware modifications). so the scope of the invention
is not limited to any specific protocol. For the preferred
embodiments. however. reference is made to the Mobitex™
standard, which is a published communications standard for
the Mobitex™ wireless network. The references herein to
the standard shall mean the Mobitex Interface Specification,
Rev. 3A. published September 1994 and available from
RAM Mobile Data. 10 Woodbridge Center Drive.
Woodbridge. N.J. 07095.

The radio modem is preferably designed to be built into
a host unit (the OEM version) or to be directly connected to
a host unit through a PCMCIA interface (the PCMCIA
version). although the design may be incorporated into a
stand-alone modem separate from the host unit. Both the
size and performance of the present invention represent a
significant improvement over the state of the art.

The radio modem hardware and software of both the
OEM version and the PCMCIA version are carefully
designed to minimize power consumption. In the preferred
embodiments. each version can be configured in one of two
forms: (i) with an on-board microprocessor that provides
overall control of the operation of the various subsystems of
the radio modem (the “on-board processor form”) or (ii)
without an on-board processor. whereby the essential control
functions that are performed by the microprocessor in the
on-board processor form are performed by the host unit
microprocessor (the “microprocessor-less form”). To reduce
power consumption significantly in each version. the key
power-consuming components are placed into lower power
modes when they are not needed and are placed in a higher
power mode only when data that the radio modem is to
process are detected or when a predetermined period time
has elapsed from the point the components have been put
into a lower power or a “sleep” mode. As one of ordinary
skill in the art of digital communications equipment design
will appreciate, the microprocessor is one of the key power-
consuming components in the on-board processor form. In
addition to the power management circuitry. the method of
operation of each version of the radio modem was optimized
to reduce power consumption using low-power components
and power-efficient design where possible.

Operational performance is also enhanced over the state
of the art because both versions of the radio modem are
designed to operate in the high electrical noise environment
present within, or immediately proximate to a host unit. The
major electrical noise immunity strategy employed is the use
of circuitry designed to operate outside the electrically noisy

5.764.693

3

frequency bands that are present within an operating data
processing unit. Among the features that enable the modem
to avoid the RF interference of its host data processing unit
is the implementation of frequency discrimination at an
intermediate frequency (at or above 10.7 MHz) that is well
above the noise frequencies emanating from the operation of
a host unit.

In order to generate the intermediate frequency at which
discrimination takes place. the receiver circuitry uses a
single intermediate frequency down conversion step. In the
preferred embodiment. the intermediate frequency is 45
MHz. After down conversion the signal is channel filtered
and then demodulated and digitized. The resulting digitized
signal is then conveyed to a digital signal processor (“DSP”)
where the data is recovered and conveyed to the host unit.

On the transmission side. the transmitter circuitry accepts
data from the host unit. via the DSP. in a pre-modulated
form. In the preferred embodiment. the data received by the
transmitter is modulated using either quadrature modulation
or baseband modulation. although one of ordinary skill in
the art will appreciate that various modulation techniques
could be applied to modulate the signal received from the
DSP.

Quadrature Modulation

In the implementation in which the data are quadrature
modulated. the DSP presents the signal to the modulation
circuitry in in-phase and quadrature phase components. The
signal is then modulated directly. using quadrature
modulation. and is filtered, amplified. upconverted. filtered
and then amplified again before being conveyed, via a
transmit/receive switch. to an antenna for propagation.

Baseband Modulation

In the implementation in which the data is baseband
modulated. the DSP presents the signal to the modulation
circuitry in the form of two modulation voltage signals for
the Voltage Controlled Temperature Compensated Crystal
Oscillator (VCTCXO) and Voltage Controlled Oscillator
(VCO). The signal is then frequency modulated, using
baseband modulation and is filtered and then amplified
before being conveyed. via a transmit/receive switch, to an
antenna for propagation.

Modulation Lookup Tables

The modulation scheme, in the preferred embodiment.
relies upon pre-calculated wave segments that are pieced
together at run time to produce smooth Gaussian Minimum
Shift Keyed (GMSK) or GMSK Inphase (I) and Quadature
Phase (Q) modulated waveforms. For efficiency purposes
and to reduce the processing time required to modulate the
signal (and thus the processing power required), a look-up
table stored preferably in DSP memory is employed as a part
of the modulation process.

In the case of quadrature modulation. the look-up table
provides precalculated waveform segments that are pieced
together, taking into account the interrelationship of a digital
four bit transmission stream on the waveform shape asso-
ciated with the second bit of the four bit stream. Simple
transforms are used to phase shift this signal by steps of 90
degrees. to compensate for the different phases that the I and
Q channels may be in at the start of the segment.

In the case of baseband modulation, instead of using the
I and Q channels. baseband signals are encoded. Thus. it is
only necessary to have one channel instead of two, as both
channels are either the same, or related by a constant
multiple. The need to shift the signal by 90 degrees is no
longer necessary in baseband, as there is no need to use
accumulated phase from previous bits.

10

20

25

45

50

55

65

4

The modulation tables. in the preferred embodiment, were
generated by a program called MODTAB. MODTAB.C. the
main c source file found in Appendix A, contains the
mathematics to generate the modulation tables. The formu-
las in this code implement the modulation scheme in a
simplified form and the source code is structured in such a
manner that certain of its modules can be used to generate
tables for quadrature phase modulation and not used when
baseband modulation tables are desired.

For both types of modulation, the GMSK wave form is
first calculated and used to generate a baseband modulated
wave form. To FM modulate the baseband GMSK signal
into T and Q signals for quadrature phase modulation. a
phase accumulator is used. Because frequency is a rate of
phase change, the baseband values from the GMSK wave
form represent the rate of change of the phase accumulator.
The Sine and COSINE of value in the phase accumulator is
then used to calculate the I and Q signals. Optionally. the
effect of an RC filter on the I and Q signals can be
compensated for by applying the inverse function of an RC
filter to the I and Q signals. Thus, the output of the RC filter
can be forced to correspond with the desired wave form. The
math is performed in a laborious manner. using floating
point evaluation. For each possible combination of four bits,
all the shapes for all four bits are generated. To build the
tables, the interval between the centers of bits 2 and 3 is then
bracketed. extracted and placed in the table.

When generating tables for baseband code, the phase
accumulator and SINE/COSINE calculation steps are
skipped. and the baseband wave forms are placed in the
tables directly. There is also no need to compensate for RC
filter effects in the development of the baseband table. When
the tables are generated and stored., modulation can be
accomplished through application of the table data.

The object of the demodulation scheme is to provide a
nearly optimal method for decoding bits accurately. while
using as little processing power and additional hardware as
possible. in order to keep power consumption and cost to a
minimum. In order to eliminate the need for sophisticated
hardware filters, the incoming signal is sampled at a rate that
is a multiple of the bit rate. In the preferred embodiment. the
sampling rate is six times the GMSK bit rate. A Finite
Impulse Response (FIR) filter is applied to the signal every
n samples. where n is the number of analog to digital
converter (A/D) samples per GMSK bit. This implements a
decimating filter, producing output samples at a rate equal to
the bit rate. The FIR filter cuts off sharply after a frequency
equal to half the bit rate. thus keeping to a minimum the
amount of aliasing resulting from the decimation. This
technique takes advantage of the Nyquist sampling theorem.
fully capturing a bandwidth of half the sampling rate by
taking periodic samples.

Even though the effective sampling rate is equal to the bit
rate, repetitious patterns of seemingly lower bit rates. such
as a GMSK Bitsync of the pattern 110011001100, can
nevertheless be recognized. as such a pattern produces a
wave form similar to a sinusoid at a frequency of one fourth
the bit rate. A series of increasingly stringent criteria is used
to determine whether the received signal is a bit sync
pattern. When all the criteria are satisfied, preferably 12
samples of the bit sync are correlated to SINE and COSINE
functions. Because 12 samples represent three complete
periods of the sinusoid. compensating for different direct
current (DC) levels is not necessary. Because the SINE and
COSINE functions need only be evaluated at 90 degree
intervals. this process is trivial. The SINE function. for
example, takes on values of 0.1,0.-1.0,1.0.-1,0.. . . etc.. The

5,764.693

5

two resulting correlations of the SINE and COSINE func-
tions are then combined to form a Cartesian vector and
mathematically transformed through rotations of 90 degrees
to be within an angle of +/—45 degrees. A cubic function of
the slope of this vector is then used to approximate the
arctangent of the resultant vector. The difference between
the resultant angle and 45 degrees (or —45 degrees, which-
ever is closer). divided by 90 degrees is the fraction of a bit
by which the sampling point in the decimation filter must be
adjusted to be coincident with the center of the GMSK bit.
In the preferred embodiment, for ease of implementation,
the adjustment is rounded to the nearest A/D sample. As one
of ordinary shill in the art will appreciate, however,
enhanced accuracy can be obtained by varying the shape of
the FIR filter to accomplish shifts of less than one A/D
sample. When the adjustment is performed. samples coin-
cide with the centers of bits. so bit decoding can be done
using a threshold that is a function of a DC level calculated
from the 12 samples used for bit synchronization, as well as
the value of the previous bit.

OBJECTS OF THE INVENTION

Accordingly. it is an object of the invention to provide a
radio modem with modulation/ demodulation means that
incorporates circuit elements that operate at frequencies
outside the frequency range of the RF noise associated with
the host unit in which the radio modem is installed.

It is a another object of the invention to provide a radio
modem in which frequency discrimination occurs at a data
discrimination frequency of 10.7 MHz or higher.

It is a further object of the invention to perform FM
frequency discrimination through the use of one or more
piezoelectric phase-shift devices. such as surface acoustic
wave (“SAW™) filters. surface transverse wave (“STW™)
filters, surface skimming bulk wave (“SSBW”) filters, leaky
SAW filters or crystal filters such that the frequency dis-
crimination takes place outside the RF noise frequencies
generated by the host unit associated with the radio modem.

It is a yet further object of the invention to provide a
stored waveform transition table as part of the digital signal
processing circuitry to minimize processing time and power
consumption during the digital signal processing phase of
the operation of the radio modem.

It is another object of the invention to provide circuitry for
minimizing power consumption in a radio modem that
permits the major power-consuming components of the
radio modem to enter into an inactive or lower-powered state
and to be later activated or repowered by the detection of
data communications or by the expiration of a predeter-
mined period of time, whichever occurs first.

These objects as well as others appreciated by those of
ordinary shill in the art will become apparent from the
detailed description and in reference to the drawings that
follow. The specific examples that are set forth in the
detailed description of the preferred embodiment should be
understood to be given for illustrative purposes only and are
not intended to limit the spirit and scope of the invention.

BRIEF DESCRIPTION OF FIGURES

FIG. 1a is a block diagram of the hardware layout for the
on-board processor form of the radio modem using quadra-
ture modulation and two local oscillators.

FIG. 15 is a block diagram of the hardware layout for an
alternative embodiment of the on-board processor form of
the radio modem using quadrature modulation and a single
local oscillator.

25

30

35

45

55

65

6

FIG. 2 is a block diagram of the hardware layout for the
on-board processor form of the radio modem using baseband
modulation.

FIG. 3 is a block diagram of the hardware layout for the
microprocessor-less version of the radio modem using base-
band modulation and an external interface to the host unit,
such as a PCMCIA interface.

FIG. 4 is a block diagram of the operation of the interrupt
handler for the power management hardware.

FIG. § is a schematic of circuitry that provides a “soft
turn-on”.
FIG. 6 is timing diagram for the soft turn-on function.

FIGS. 7a and 7b relate to the operation of the pre-
modulated waveform segment lookup table.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The preferred embodiments of the present invention are
radio modems that can be built into the host unit or attached
to a host unit through a PCMCIA or similar port. Each radio
modem generally comprises transmission/reception means
and a modulation/demodulation means.

With reference to FIG. 1a, the received signal is conveyed
from an antenna (1) via a transmit/receive switch (2) to a
bandpass filter (3), which is preferably an electronically-
coupled piezoelectric device such as an acoustic wave
device and more specifically a SAW, an STW filter. an
SSBW filter or what has been commonly referred to a leaky
SAW filter. The filtered signal is conveyed to a low-noise
amplifier (4) and image filter (5). and to the downconverter
(6). In the preferred embodiments, bandpass filters (3) and
(5) are SAW filters. Within the downconverter. the signal
amplified by a linear amplifier (7) is mixed with a signal (50)
from a local oscillator (39) at the mixer (8) to produce a
signal (51) at an intermediate frequency greater than or
equal to 10.7 Mhz. Signal (51) is conditioned by the inter-
mediate frequency (IF) channel filter (9) and is amplified by
the IF gain block (1) then conditioned by a noise filter (11).
The resulting intermediate frequency signal is demodulated
within the demodulator (12). In the preferred embodiment.
the intermediate frequency is 45 MHz.

The demodulator consists of a limiting amplifier (13) to
produce a signal having constant amplitude. This signal is
split into two parts which are mixed in a mixer (14). with one
of the parts shifted in phase relative to the other. The phase
shift element (15) is preferably an electronically-coupled
piezoelectric device such as surface acoustic wave filter or
a crystal filter. The demodulated signal is conditioned and
converted to a digital representation before being conveyed
to a digital signal processor (DSP) (24). The digital signal
processor (24) is preferably an ADSP-2171KST-133 com-
mercially available from Analog Devices. Inc., Norwood.
Mass. The conditioning and conversion to a digital repre-
sentation is performed by low pass filter (16), amplified by
operational amplifier (17), conditioned by anti-aliasing filter
(18) and converted to a digital representation by analog to
digital converter (19).

The limiting amplifier (13) produces a second signal (52)
with a DC voltage proportional to the received signal
strength at the input of the limiter. This signal is referred to
as the Received Signal Strength Indicator (RSSI) and is
conditioned by low pass filter (20). amplified by operational
amplifier (21), conditioned by anti-aliasing filter (22) and
converted to a digital representation by analog to digital
converter (23).

5.764.693

7

In the on-board processor version. the digital data is
conveyed to the host unit via the microprocessor (uP) (26).
preferably an Intel SB8OL188EB-8 (available from Intel
Carporation. Santa Clara, Calif.). and a serial communica-
tions controller (“SCC”) (27). preferably a Phillips SCC
9291 (available from Phillips Electronics North America
Corporation. Sunnyvale, Calif.). In the microprocessor-less
version, as seen on FIG. 3. the modem utilizes the micro-
processor of the host (200), and thus there is no need to have
a microprocessor resident within the externally connected
modem, i.e. within the PCMCIA form factor. Additionally,
because of the physical connection in the preferred embodi-
ment through the PCMCIA port. the need for an SCC is also
eliminated. One of ordinary skill in the art will appreciate
that each of the aforementioned components for which
particular part numbers are not referenced are well known in
the art.

When the radio modem is transmitting, the data to be sent
is conveyed from a host data processing unit. via the serial
communications controller (27) and the microprocessor (26)
to the digital signal processor (24). In the case of quadrature
phase modulation, the digital signal processor (24) generates
the appropriate in-phase and quadrature-phase modulated
waveform segments, which are based on the current and
previous bits to be sent, from a precalculated look-up table
stored in the associated random-access memory (25). The
digital signals are converted to analog signals by two
digital-to-analog converters (28) (29). conditioned by two
low passfilters (30) (31) and are conveyed to the quadrature
modulator (32). Within the quadrature modulator (32) the
in-phase signal (53) is mixed in a mixer (33) with the signal
from L01 (36), one of two local oscillators, and the
quadrature-phase signal (54) is mixed in a mixer (34) with
a ninety-degree phase shifted signal from the local oscillator
L01 (36) supplied via the phase shift element (35). The
emerging modulated signal (55) is passed through a band-
pass filter (37). and input to an upconverter mixer (38).
where it is mixed with a signal (56) from the local oscillator
L02 (39). The resulting signal (57) is amplified by exciter
amplifier (40). conditioned by a band-pass filter (41). ampli-
fied in a three-stage power amplifier (42) and transmitted
from the antenna (1) via the transmit/receive switch (2). As
can be seen in FIG. 1b, the two local oscillators of FIG. (1a)
can be replaced by a single oscillator (L0) (43) by bypassing
the upconversion stage affected by the local oscillators (L01)
(36). (L02) (39). the mixer (38) and the band pass filter (37).

As illustrated by FIGS. 2 and 3. in the case of baseband
modulation, the digital signal processor (24) similarly
generates. from the look-up table store in the associated
RAM (25). the appropriate modulation voltage segments for
the Voltage Controlled Temperature Compensated Crystal
Oscillator (VCTCXO) (201) and the Voltage Controlled
Oscillator (VCO) (202). The digital signals thus generated
are then converted to modulation voltages by digital to
analog converters (28) and (29) and are conditioned by low
pass filters (30) and (31). These modulation voltages are
applied to the VCO (202) and VCTCXO (201) to shift the
local oscillator frequency by a maximum of 2 Khz from its
nominal frequency. As one of ordinary skill in the art will
appreciate, a single D/A converter may perform the func-
tions of the two converters (28) and (29). The resultant local
oscillator signal (210) in the baseband modulation scheme is
conveyed by splitter (211) to the exciter amplifier (40),
conditioned by a band-pass filter (41), amplified in a three-
stage power amplifier (42) and is transmitted from the
antenna (1) via the transmit/receive switch (2).

During operation in a baseband modulation configuration,
in both the receive and transmit modes, the local oscillator

20

25

30

35

45

50

55

65

8
(L0)(208) comprising VCTCXO (201). VCO (202) and
synthesizer (209) operates to pass its output signal (210) to
both the receive and transmit section of the radio via splitter
(211). If the radio modem is in its receive mode, the signal
(212) is “ignored”—the transmit circuitry is not active
because of power management and a signal is not conveyed
to the antenna (1) as a result of the T/R switch (2).
Correspondingly, when the radio modem is in its transmit
mode, the L0 signal (213) that is transferred via splitter (211)
to the receive side is “ignored”—because the receive cir-
cuitry is not active as a result of power management. It
should be noted that when the radio modem is in its receive
mode, the LO (208) is programmed at the reception
frequency. at the beginning of the receive cycle. In the
transmit mode. the L0 (208) is continuously updated by the
VCO and VCTCXO modulation voltages in order to pro-
duce the desired frequency shifts required for modulation.

In greater detail, and again with reference to FIGS. 1a and
15, 2 and 3. frequency modulation discrimination occurs
through the employment of an electronically coupled piezo-
electric phase shift element (15). such as a crystal filter. The
use of this element represents an improvement over the prior
art due to the fact that electronically coupled piezoelectric
phase-shift devices have a steeper phase slope relative to
changing frequency compared to the resistor inductor
capacitor (RLC) tank circuits that have been used in the prior
art for frequency discrimination. One advantage of the
present innovation is that the discriminator can be operated
at higher intermediate frequencies. which is of particular
importance to this invention. and is discussed in greater
detail below. A second advantage is that the steeper phase
slope associated with an electronically-coupled phase-shift
element makes the resulting discriminator more sensitive,
thereby increasing the sensitivity and receiver performance
of the radio modem. The use of a frequency modulation
discriminator employing an electronically tuned phase shift
element is not limited to use within a radio modem. Such
means can be used to discriminate any frequency modulated
signal in other systems as well. In addition. as one of
ordinary skill in the art will appreciate, because of the close
relationship between frequency modulation and phase
modulation, the frequency modulation discriminator dis-
closed means could also be used with minor modifications to
discriminate a phase modulated signal.

As discussed above, the discriminator disclosed in the
present invention is capable of operating with superior
performance at higher frequencies than known discriminator
designs. An integral part of the innovation for the present
invention is preclusion of electrical interference from the
host data processing device. such as “software noise”, which
is a characteristic emission from any running computer.
Typically. such noise is of significantly higher amplitude at
frequencies less than 10.7 MHz. In the present invention, the
received signal is down-converted in a single stage to an
intermediate frequency that is above the aforementioned
threshold frequency of 10.7 MHz, such as 45 MHz. By this
method, the radio modem achieves greater noise immunity
over known devices, permitting the radio modem to be
integrated within a host data processing device without
compromising performance of the radio modem.

Again with reference to FIGS. 1a and 15, in the case of
quadrature modulation, in-phase and quadrature-phase
modulated waveform segments are generated by the digital
signal processor (24). In the case of baseband modulation.
the waveform segments generated are the VCO and
VCTCXO modulation voltages. In each case, the waveform
segments are based on the current bit, previous bits and

5.764.693

9

future bits to be sent, from a precalculated look-up table
stored in the associated random access memory (25). The
operation of this method is described below.

As discussed previously. pre-calculated waveforms can be
used to eliminate the need to compute complicated formulae
at run time. In the case of Gaussian Minimum Phase Shift
Keying, as is specified under the Mobitex™ standard, with
a bandwidth time product of 0.3, the actual waveform used
to identify a bit is in excess of three bit periods long, as is
shown in FIG. 7a, for the bit sequence 00100. With refer-
ence to FIG. 7a, the bit period a (700) and bit period e (701)
are affected by the bit in period c (702). Therefore, to store
all possible shapes for any bit period c (702), thirty-two
different segments are required to represent all possible
values for the five bit periods shown. By realizing that the
significant portion of the Gaussian shape is only four bit
periods long, and by shifting the waveform by half of one
bit, the number of table enwies can be reduced by half to
sixteen. The segments are centered on one interbit period
(703). as shown in FIG. 7b. With reference to FIG. 75, the
bit center (704) is positioned between the bit period ¢ (705)
and the bit period d (706). Therefore the value of segment c
(705) is only affected by the values of four bits, and therefore
has only sixteen possible shapes.

The method described above yields baseband, but not in
phase and quadrature phase signals. If baseband modulation
is desired. no further calculations are needed. I and Q
signals, however, for quadrature modulation. are readily
calculated from the tabulated data described above, using the
following approach. The in-phase and quadrature phase
signals depend on the initial phase at the beginning of the bit
period. This initial phase must be known when the tables are
calculated. In the Mobitex™ system. the modulation is such
that the frequency difference between a stream of continuous
I’s and a stream of continuous 0’s is an even fraction of the
bitrate constraining the starting phaseto one of a discrete set
of values. For example, in Mobitex™, the frequency devia-
tion is 2000 Hz and the baudrate is 8000 bits/second. Thus,
a 1 transmitted previously will cause a phase shift in the
modulated signal of 90 degrees, whereas a 0 transmitted
previously will cause a phase shift of —90 degrees. There are
four multiples of 90 degree phase shifts. or four possible
distinct starting phases for each wave segment for a given
surrounding four bit sequence. The rotation of a Cartesian
vector by steps of 90 degrees is a simple operation and can
be easily calculated as required. No additional precomputed
samples are required to accommodate different starting
phases. In particular, only trivial trigonometric calculations
or look-up tables are required.

Power Management

The present invention also employs innovative power
management means and methods, in order to minimize
power consumption. Although such power management
techniques are directed to the on-board processor form of the
instant invention, one of ordinary skill in the art could
recognize their applicability, albeit with potentially reduced
power savings, if the techniques were incorporated into the
form of the microprocessor-less form of the invention.

The major components of the power management circuit
are the serial communications controller (27), incorporating
an integrated timer and memory. and microprocessor (26). as
shown in FIGS. 1a and 1b. Through implementation of the
power management means, the radio modem circuitry con-
sumes approximately one half the power of other known
systems. In general, maximum power savings in any situa-
tion are accomplished by completely turning the device off.

20

25

30

50

55

60

65

10

The microprocessor (26) has the ability to enter a dormant
mode of operation where it consumes virtually no power.
The circuit has been implemented such that the processor
can also shut down other circuitry that is not in use. The
processor is brought back to active mode by activating reset
or providing an external non-maskable interrupt signal.

The present invention utilizes a system that allows the
processor to shut down most of the circuitry, but remains
able to power-up on one of two conditions, namely, that
either a predetermined time had elapsed, or that the host
system attempts to communicate. Both of these conditions
are problematic, requiring innovative solutions, which are as
follows:

Timer System

In order to “wake up” the microprocessor and.
subsequently. the digital signal processor. a programmable
timer circuit, external to the microprocessor. is set such that
it produces an output pulse to the processor after the
expiration of a selectable, predetermined time period. As
seen in FIG. 4 in block (401), the timer is set when it is
determined that the microprocessor does not have any tasks
left to be completed in its task list therefore the micropro-
cessor and the digital signal processor are permitted enter
their lowest power mode. Although in the preferred embodi-
ment the microprocessor when directed to shut down first
shuts down the digital signal processor before shutting itself
down, it would be appreciated by one of ordinary skill in the
art that the digital signal processor could first determine that
it is able to shut down. and then advise the microprocessor
to shut down.

Communication System

In most applications. the host data processing system or
data communication system communicates with the circuit
at a very high rate, often exceeding 9600 bits per second.
When the host begins communicating, the circuit has only
about 1 millisecond to initialize to prevent information from
being lost. By using a serial communications controller (27)
with a built in memory. it is possible to store the first few
characters external to the processor. This allows the proces-
sor over four times longer to initialize and respond to the
host.

Masking the Non-Maskable Interrupt

If the extermal serial communications controller were
connected directly to the non-maskable interrupt of the
processor, inefficient operation would result as an non-
maskable interrupt requires longer to service than a standard
interrupt. To overcome this problem, the non-maskable
interrupt is connected through standard logic gates to pro-
vide a masking operation. By enabling the processor to mask
the non-maskable interrupt, faster response time, reduced
processor ‘on’ time in a fully-powered state. and lower
power consumption result. Masking a non-maskable inter-
rupt for the purposes of power saving is previously unknown
in the prior art.

Power Management Software Description

The Power Management Software contains several key
components, the most important of these is the task list. As
suggested by FIG. 4, if the processor or associated circuitry
is ‘busy’ with a task, it will be indicated by an entry in the
task list. When the task list becomes empty the processor
will enter the lowest power mode possible. and as seen in
block (401) of FIG. 4. the serial controller is posted as a
sentry to detect data communications so as to initiate an
activating interrupt to the microprocessor to begin an acti-
vation cycle. Additionally, the timer associated with the
serial communications controller (27) is set to initiate an

5.764.693

11

output pulse that will also serve to activate the micropro-
cessor prior to the initiation of the activating interrupt by the
serial communications controller (27). In normal operation
under this power management scheme, the processor spends
about 5% of its time active. and 95% in the fully idle. lowest
power mode.

One of the key elements in the software system is
improvement to the interrupt handler. Normally. in existing
systems, software would return to the instruction following
the point at which the interrupt occurred. However, there is
a window of vulnerability when using a maskable non-
maskable interrupt as previously described. If an interrupt
occurs at the instant that the interrupt is unmasked
(unexpected non-maskable interrupt), and the interrupt han-
dler was written in the manner of prior existing systems.
program execution would return to the instruction following
where the interrupt occurred. In this case, the instruction
would be a halt instruction. Therefore. the processor would
be caused to halt execution by an interrupt. when what is
required is an interrupt that initiates execution. As seen in
blocks (402), (403) and (404) of FIG. 4, the present inven-
tion incorporates modifications to the standard operation of
the processor by modifying the program stack and forcing
the code to execute from a specific known state that would
be ‘safe’ after either an expected. or unexpected non-
maskable interrupt. The unexpected result of implementing
the above power management scheme combined with the
previously described circuit that includes a serial commu-
nications controller (27) to provide a masked nonmaskable
interrupt. is the power consumption for continuous operation
of the serial communications controller (27) is dramatically
less than the power requirement of the microprocessor and
the digital signal processor. In the preferred embodiment, the
overall system power requirement was reduced by a factor
of more than 6.

Soft “Turn-on” Operation

The function of the soft “turn-on” circuit is to allow the
host to turn the radio on and off with a minimum of extra
circuitry. The soft turn-on is required to be rugged in the
sense that it should not accidentally turn on or off when
variations in supplied power occur. The quiescent power
dissipation of the circuit must be as low as possible. espe-
cially when the circuit is in its off state. The circuit is
required to operate at varying supply voltages. such as when
the system battery is substantially discharged or
overcharged, with the circuit most importantly maintaining

20

25

30

35

45

12

correct operation of the radio modem by keeping the radio
off or on as desired. Standard off-the shelf components and
circuits generally have undefined operation below a few
volts making them unsuitable for this purpose.

The circuit used to achieve the above goal is shown in
FIG. 5. The circuit is similar in operation to an RS flip-flop
that satisfies the additional operational constraints:

1) When the host ‘Turnon’ signal (500) is active. power is
supplied to the radio modem through microprocessor power
supply (502) which is preferably a LT1121ACS8-5 manu-
factured by Linear Technology. Miltitas. Calif. As seen in the
timing diagram FIG. 6, a period of time elapses from the
time the Turnon signal is initiated to the time the power
supply is reaches operating voltage.

2) When the on indication (‘ONI’) signal (501) is active
while Turnon signal (500) goes from active to in-active.
power remains supplied until both control power down
functions are completed and the Turpon signal (500) is
determined to be constantly active. Also. as FIG. 6
illustrates, the ONI signal (601) remains in an inactive state
until the radio modem has completed its initialization cycle
and remains active until the expiration of the control power
down cycle.

3) When the host ‘Turnon’ signal (500) is inactive, power
will only be removed from the circuit if ‘ONI’ is also
inactive. This is illustrated as well on FIG. 6 at the point
(600) where the control power down cycle ends.

4) A brief transition of ‘ONI’ from inactive to active while
‘Turnon’ is inactive will not cause power to be applied to the
circuit as also displayed in FIG. 6.

Waveform Table Generating and DSP Software

As discussed previously, the waveform tables were gen-
erated from two software modules that can be found. in
source code form in Appendix A. In Appendix B. can be
found the software used to processing the received signals
and to generate the transmitted signals. Although the inven-
tion is fully described in the specification without reference
to the appended source code modules, the Appendices are
presented to provide further insight into the advancement
over the prior art.

Although the present invention has been described and
illustrated in detail, the description is meant to be illustrative
and not limiting the spirit or scope of the invention. which
is limited and defined with particularity only by the terms of
the appended claims.

5.764.693
13 14

APPENDIN A
WAVEFORM TABLE GENERATING SOFTWARE AND ASSOCIATED TABLES
1. Table-building Module (Modtab.C)

#include <stdio.n>
#inciude <stalib h>
#inciude <conio h>
finciude <rrath.k>

sdetine TRUE §
=define FALSE O

 Mode vanables 1or coatroiling wnat the program does
stauc int bGraphit:

static int bBaseband:

stauc int GaussiankullScaie:

stauc int bBasestauon:

static ot correct_samples _tlag.

- Graphine stutt
#define GREEN
adefine UYAN 3
sdefine RED 2
#define BRWHITE 15
#define BLLE |
#define WHITE ~

voud SetGraptParametersclone MinVal long MaxVal.int TimeScale. it Numsamples. char Titlel],
void GrapnFuncuontint Funcuoni}, it colory:

vaid Graph2Funcuonant Fuacuoni (], int Fuacuon2{]. int colory:

vord TimeMarkint SamplePorat. int bBetween. int colory.

vond SetHiresModecvord)

voud SctTextModetvind .

modtab.¢ - VMake § and () Tables tor
the DSP

#define OVERSAMPLING 20 // Oversampling rate (samples per bit)

#define SAMPLING _FREQUENCY 1double: 8000 * OVERSAMPLING
#define RESISTANCE doubler 3920

#define CAPACITANCE rdoubler O 0000000101 1

#define CORRECTION _FACTOR 1 75

#define GAUSSLENGTH tOVERSAMPLING * &1 /¢ Totai length of a emsk gaussian.
#define GAUSSFULLSCALE 8000 / Maximu +/- value for gassian
wavelorm

#define BTSCALE 1.6 /f Scale tactor tor BT constant iguessed:
adefine tANDQFULLSCALE Ox7FFF # 1 and Q mauximum value

=define PI 314159

5.764.693
15 16

sdefine BITRATE 8000 / Mobutex bitrate
#detine FILTER _R 3290 /i Filter resistor
sdetine FILTER _C 6 8e-y /1 Filter capacitro
adetine TIMECONST (FILTER R * FILTER C - 2~ Ph

“ Working arravs for generaung { and Q modulation segments
int Gaussiant GAUSSLENGTHI
intumskShape(GAUSSLENGTH + OVERSAMPLING* !

it {Shape; GAUSSLENGTH + OVERSAMPLING 4.
atQShape| GAUSSLENGTH » OVERSAMPLING < 4]

"Storage asravs for precemputed guassian 1 and () segments
ot {Tablesi 222727 2*OVERSAMPLING].
int QTables 2*2*2*2*OVERSAMPLING|

int [StartTablelOVERSAMPLING* 3],
int QStartTable[OVERSAMPLING* 31,

!+ Towal sample space required = OVERSAMPLING * %

Jruct
mnt * {Ponier:
int * QPointer:
e [Sign;
mt QSien:

i IQInutl4),

i,

‘/ Generates the master guassian wave shape to be used later.
it

static vond BuildGaussianivordy
'

tloat power:

inta.b.

if (bGraptuty! _
SetGraphParametersiu GaussiantullScale. 16 10.0AUSSLENGTH. "Natural and Moditied
Jaussian shapes),
tor 1a=0:a<=5.a++H
TumeMarktOVERSAMPLING *a-1. -1. RED):
i
H

/f Calculate the natural gaussian

for (a=0:a<GAUSSLENGTH:.a++){
power = 13-t fl0oatIGAUSSLENGTH-2)/2} / OVERSAMPLING.
power = -(power*powert;

Gaussianla)} = cn) (t(tlong ¥GaussianFullScaje*2)3) * expipower * BTSCALE):
1

1f (bGrapmiti GraphFuncuoniGaussian. GREEN).

/ Normanze the zaussian with an 8 khz rate.
tor 13=0:a<OVERSAMPLING a++1{

long Sum:

Sum =t

5,764,693
17 18

tor tb=:b<GAUSSLENGTH.b+= OVERSAMPLING)
Sum += Gaussiania+bi:
|
tor b= b<GAUSSLENGTH:b+= OVERSAMPLING !
Gaussiania+bi = ninti(Gaussiania+b| * tlongiGaussianFuliScale) / Sumy.
§

f
il 1bGraphut

GraphFuncuoniGaussian. CY AN
getcht):

il

i/ Builds a GMSK wavetorm trom four bits specitied n butstream BitArrav]
i/ Wavetorm ts placed in aray GmskShapej| and 1s 9 bit umes long.
IR R
static void BuilldGMSKant BitArrayi)
[

int a.bit:

for (a=2a<UGAUSSLENGTH + OVERSAMPLING *+:a++)§

GmskShape(a| =0
}

for (bit=t).bit<d.bir++ it

tor (3=0.a<GAUSSLENGTH.ar+1t
if tBitArravibit] == 1) GmskShape(bit*OVERSAMPLING + 4/ += Guausstan{a].
if (BitArray(bit} == 11 GmskShapef bit*QOVERSAMPLING + 4 -= Gausstanta):

]
!
I
/l

/1 Takes the wavetormn tn GinskShape and | and Q modulates st into landQShape
"

statc voud {andQModulateny oid)
{

double phase.

mta:

phase = t}.

if (bBaseband)f
Shon circurt - do not | and Q modulate tor basebund tesung.
for (a=0:a<GAUSSLENGTH + OVERSAMPLING 4 a++1{
[Shapetaj = GmskShape{al:
QShape|a) = -(imskShape{a]:
!
lelsel
for (3=0:a<GAUSSLENGTH + OVERSAMPLING*4.a++){
[Shapeta) = 1int)ilANDQFULLSCALE * singphase»:
QShape(a) = «intt IANDQFULLSCALE * cosiphasen:
phase += GimskShape(aj * (P! / OVERSAMPLING / GaussianFullScale / 2,

|
i

!

stauc

void

comrect_samplest void)
{

inta:

5.764.693

souble k.
Jdouble temp.
double | temnp:
Jdouble Q _temp.

» = expt (doubler 1 tdoubler i< 11 tdiubte 1 SAMPLING _FREQUENCY * RESISTANCE *
CAPACITANCE 1.

| _temp = iShape; 1 |* CORRECTION FACTOR:
Q_temp = QShape| ¢ [*CORRECTION _F ACTOR:

tort a= 1 a<GAUSSLENGTH + OVERSAMPLING b a++ 4§

temp = {Shapej o |*CORRECTION _FACTOR.
IShapejal = tinofttemp - » " [_temp 1.6 1 oK),
| _temp = temp:

temp = QShape(a {*CORRECTION FACTOR:
QShapefal = nnti(temp ~h * Q_temp o b -k
Q_temp = remp:

'

slate vord BuldSexmentsivoidi
i

int Array(4].

inta.

int Basedndlex:

1 (bGraphiny|
SetGraphParametersi -l ANDQFULLSCALE. IANDQFULLSCALE. 16%10. GAUSSLENGTH
+ OVERSAMPLING*2.
‘land (Q patterms 1.
{
" Based on all 16 combination ot the tour surrounding bits of a transiuon. calcuiate
/all T and seements tor the 16 possible combinauons
tar tArravi)) = L Amavi] < 2 Amavid} ey
fortArras [= 0. Amav(1} < 2.Amav[L]+
tor tArrav| 2] = Autav) 2] < JArmavi 2] ++
tor (Array(3] = V. Arrav(}] < 2Armay(3+ +){
BuiidGMSK(Amav):
fandQModuiate):

1f(correct_sampies_tlag) |
correct _samplesi 1.

!

1f (bGraphiti

for tazt:a<Ya++|
TimeMarkiOVERSAMPLING*a. -1 BLUE).

t
GraphFuncuoniGmskShape. RED),
GraphFunctiontiShape. CY AN,
GraphtunctionsQShape GREEN!.

|

Baselndex = (Amay) 3] + Arravi2]*2 + Arravi L]*4 + Amavi0]*® * OVERSAMPLING.

5.764.693
21 22

/! Take the data 1rom between the second and third bus, where 1t 1s

#/ least inrluenced by unactermuned outside tits. These segments will

*/ later be used to piece toenether § and Q data for regular modulauon.

for 1ta=:a<OVERSAMPLING a++1
[TablesiBaseindex+a] = 1Shape] OVERSAMPLING*2 + OVERSAMPLING/Z + ai:
QTablesi Baseindex+ar = 1)Shapet OVERSAMPLING? 2 « OVERSAMPLING/Y + af:

11 tbGraphity geteho.
2 Now owld the 1able tor the startup sequence. based on a { 1001001100 bit svne
fslaming sequence Startup ts special as 1t s not surrounded by bits on the

i left side. which makes a shight difference 1n the caussian and [and Q seegments

if ihBasestauon)y

Ammavi0) =1 Arravil] = i.

Arrayt2]) =0, Arravid] = o
telsed

AmaviO] =0 Arrav(lj =1h

Amav(2] = | Arrav{d] = |

BulldGMSK(Arrav);
landQModulate),

/ Copy 1he segments sately away 1nto a storape aray. Segments are already
// 1n thetr proper order.
for 13=1>a<OVERSAMPLING* 3a++ 4
ISwartTablefa] = {Shape(a+OVERSAMPLING/2],
QSunTublefa] = QShapeja+OVERSAMPLING/2];
]

t

¢

-+ Function to tmualize the table ottsets tor ditferent staring phases.
void InitPhaseindicescvond)

if (bBaseband)|
[QInit{0] 1Pownter = 1Tables:
[QIn1t{0).QPointer = QTables:
[QIn1t{0].1Sign = 1
[QImt{0].QSign = I,

[QInut{ 1].IPoynter = {Tables:
[QInit[1] QPointer = QTables:
IQfnu| 1].ISign = 1

(QInn{ 1] QSign = {

[QImt{2].IPointer = ITables:
1QInitj 2} QPointer = QTables:
IQInuti2].ISign = t.

1QIniti 2].QSign = |

IQIniti 3].IPointer = iTables:
1QInit(3}.QPointer = QTaubles:

5.764.693
23 24

10Inw 31 [Sien = i
10101 3] QSign = |

:‘Iie '
Q1m0 [Pointer = [Tubles.
1QIntit); QPointer = QTables.
Q0] ISign = -
IQInt31.QSien = §

IQInati i] IPointer = ()Tables
[QInuf i].QPounter = (Tables.
[QInuti 1} 1Sign = |
IQInutf 11 QSign = -4

101nit1 2] 1Potnter = [Tubles.
1t} 2] QPointer = YTables:
1QInn{2].1S12n = -1

1QIntj 2].QSign = -1

1QInut) 3].[Pownter = 1)Tables.
1Qlni1] 3] QPornter = [Tubles.
1QInutj3] ISign = -1
1QIni] 3] QSien = 4

[/
voud TestModulater)
|
// Modulation status vanables:
it BitHistory: i1 Contains history of surrounding bits used
/1 selecting the appropnate gaussian segment

int SumplesLett /¢ Number ot samples remamning in current scgment

it StartingPhase. /# Cumulative phase 1) tc 31 ot bits no loager under
/ direct consideration 1n BatHastory

it * IPointer. * Pounter. i | & Q Wavetorm pointers
intASign. JSign: T & Q Suens (- 11

J e UL PR T

i/ Following lines tor demo code oniv
nt SourceBits{25}; // Bit pattern to modulate

statse int Output [OVERSAMPLING*21}: /7 Place tor storing [part ot wave
stauc ine OutputQ[OVERSAMPLING*21]. // Place tor storing Q part of wave
int Sample: // Modulated sampte count

it Bitlndex: // Index 1nt0 SourceBits{] Arrav

/{ Generate a series ol bits

tor ¢Butlndex=0 Butlndex<2$. Butlndex++f
SourceBits(Bitlndex| = 0.

i

SourceBitsi2) = |

SourceBats(3] = |

SourceButs(4] = 1.
SourceBitsI5] = t,
SourceButsl9] = |

5.764.693
25

SourceBits{li' = I:

i/ Setup the starung sequence of Moving from carreer to bitsyne

i This is different trom regusar bats. as the non bits (neutrat bitsy have a different

if effect on the | and Q se2ments o be used than regular bits wouid. We use a speciai
“ Starung sequence. hich assumes that the start ot the moduiation 1s 1100. the start
+/ of the mobdle bitsvnc:

if tbBasestation);
* Starung conditions 1or 11001100 - Base stanon ”'
SampiesLett = OVERSAMPLING * 32
{Pointer = IStartTable.
QPointer = QStartTable:
ISign= 1.
QSign =1,
BitHistory = 6.
StarungPhase = |,
Bitlndex = 3;
Jeiset
-+ Starung conditions lor UNLINOLT \fobile ransmit *¢
SampiesLeft = OVERSAMPLING = ?
{Pointer = IStanTabie.
QPointer = ()Stant Tuble.
1Sign= 1.
QSign = i,
BitHistory = i,
StarungPhase = 1.
Bitlndex =
}

// Generate the wavetorm by sending out segments of the precalculated tables
tor (Sample = t:Sampte<UUVERSAMPLING*21.Sampie++{

f (SampiesLett == 0\

/1 Take the bit no longer used for selectng | and Q segmeni. and
/f add its phase contribution to StarungPhase
«f (BitHistorv & 8¢
StartngPhase = 1 StarungPhase + 1 & 3.
Jelsel
StarungPhase = (StarungPhase - 1) & 3.
!

/t Shift the buts currently under consideration to accomodate new bit.
{f MSB 1s discarded (11s phase contribution 1s 1s aircady accounted for).
BitHistory = tiBitHisiory << 1) + SourceBits[Bitlndex++]) & 15:

/f Based on siarung phase and surrounding bits. seiect the appropnate
/1 and Q segments. Phase shift is in increments ot 90 degrees. Use
/1 Tables to select the proper phase shifi.

IPointer = BitHistarv «+ OVERSAMPLING + IQlai| SiarungPhase).1Pointer;
QPointer = RitHistory * O VERSAMPLING + 1QIniti StarungPhase| QPointer:
1Sign = {Olnitf StarmngPhase|.[Sign.

QSign = 1QInit{StarungPhasei.QSign:

i/ Now have OVERSAMPLING samples betore this calculauon nees repetiuon.
SamplesLeft = OVERSAMPLING.

5.764.693
27

Crank out one sampie at 4 LME. unt 1ty (IMe 10 SeIect 2 new sepment.
Sampleslett = i

Outputt Sampiej = *11Pointer++ 1 = [Sign;
QutputQ[Sumpie| = “tQPomnter++: ~ OSign:

11 (bGraphutif
mtac

SetGraphParameterst-IANDOFULLSCALE. IANDQFULLSCALE. 16+10.
OVERSAMPLING*16.71 ung Q segments
o ta=ta<tb.a e+
TimeMarktOVERSAMPLING 0. -1. RED».
]

GraphFunctoniOutputl. CY AN
GraphFuncuoniQutputy). GREEN)

tor tasOVERSAMPLING® 16 a>t.0--4s
Outputtial = (Outputlial-Outputhio- 1 * tOVERSAMPLING, 2.
Qutputa] = (Outpuiial-Output]a- 111 * IOVERSAMPLING/ 2.

1

getchi),

SetGraphParameterst-IANDQFULLSCALE. IANDQFULLSCALE. 1610,

OVERSAMPLING* 6.1 and Q stupes 1.

for ta=tha<ifu++

TimeMark(OVERSAMPLING*a -1. RED).

3

i

GraphFuncuontOutpudl. CY AN,
GraphFuncuon(Output). GREEN 1.

getcht):

!

"
// How tu use program 1if used wrong

i

static voiud Usaget)
[
pnntft“usage ot modtab program:n’
‘modiab |-b] [-gj\n”
‘where:\n”
-b Indicates baseband eraphin’
-g Indicates graphine enabledin
-t Indicates base ransnut\n
-1 use ideal samplesin’ ¥,
exauoy.
|

'

[Dp— R P

/ Main program

5,764.693
29

vola mainnearee. char <arev(})

it a.
char * outilename = ‘moddata.h”

FILE *outtile.

I Interpret the command line arguments
bGraphit = FALSE:
bBaseband = FALSE:
hBasestaton = FALSE.
GausstanFuliScale = GAUSSFULLSCALE.
correct_samples_tlag = TRUE.
tor1a = i.a<argcia++i|
i argv[al[0] == / Narev(af[0} ==
switch targvyal{ I D{
case 'g"
case G'.
prntt("Graphing enabledin
bGraphit = TRUE:
break:
case b
case B~
pantfi “Baseband :nstead of | and Q'n 5.
bBaseband = TRUE:
break:
case '
case F:
pontt(“Full scale baseband enabled\n” 1,
GaussianFullScale = IANDQFULLSCALE:
break:
case 1’
case T
pnnitt "Base stauon transmit scquencewn”).
bBasestauon = TRUE.
break:
case
case I’
panttt “Using ideal sampieswn).
correct_samples tlag = FALSE.
break:
case 0
case O
pnmf(”creaung output file ‘Srs\n".argviaj+2).
outfilename = argv(a)+2.
goto skupcheck:

default:
Usage():
§
if (argv{ai[2]) Usagel):
~kipcheck::
ielsel
Usage().

]
1f 1bGraphut) SetHiresModel)

5.764.693
31

+ Build e GMSK wavetorm
BuildGausstant i

Build the 16 puirs of [ana (Q sexments and staruns segments
BuildSegmentsi .

! [mualize phase index tables
fmitPhaselndicesi

! Try out the modulution sceme
TestModulatet:

1 1dGraphity
SetGraphParameterst-IANDQFULLSCALE. INNDQFULLSCALE. lo=10.
OVERSAMPLING*16."1 and Q sexments 1.
or ta=aclba++f
TimeMarktOVERSAMPLING .1 -1 REDY.

|

GraphFuncuontiTables. CYANy,
CraphFuncuoniQTables. GREEN:

cetcho)

if (bGraphit) SerTextModet 1.

Generate an output file ot all the seements.
nutfile = topeniouttilename. W ™)

ift ouctile == NULL)

!
pantf"Failed to create ‘<~ .outtilename).
exe),

tpanttiouttile. /7).
tpnnttiouthie.” * s was created using the command hine:n” vuttilename 1.
tponttioutttle. " * ")
tor (a=):a<arec.a++ i
fonnurcouttile.” s " argvial).

)
!

fpanutiouttile. \n *wn),

f bBasevand)
fprintttouttile.” * This file 1s BASEBAND 1.
lelsef
fpantttouttile.” * This fiie 1s | and Q\n').
|
fpamtouttile.” *An\n"1.

if ibBaseband) fpnnttiouttile. “#define BASEBAND I\n'),
fpanttiouttile.” INIT1_swnptes::n).

fort o =1 a < [6*OVERSAMPLING. u+=4d)

32

5,764,693
33

ipanttioutrite. SMOX % 4x00. OxT 4x00. Ox 4x00.
imY 3x00" .1 Tables{a) I Tablesia+ 1] Tublesja+2]. 1 Tablesfa+ 31i.
il a < 16*OVERSAMPLING - 4 «

tprnthicuttile.”),

i

fprintfrouttile. . an' 1
tpanttioutniie. " INIT Q_sumplesn 1.

torta=0.2< [b*OVERSAMPLING u+= 4
‘ tpanttrouttile. \MMOX % 4x00. OxGF 4x00. Cxlr Hx00.
11x% 4100" QTables{uj.QTables(a+ 1. QTables(a+2].QTablesa+3] .
itta< 16*OVERSAMPLING - 4
1

fprnttioutrile.” n"):

t

}

ai1fdet NEVER

b
int Sampie:
long MaxMag:
long MinMag:
int MinSample:
nt MaxSampie:
long Mag:
long ISum:
long QSum:
long lAve:
long QAve:

MinMag = OxTFFFFFEF.

MaxMag = 11x80000000,

MinSample = Ox7FFF.

MaxSample = ()x3000.

ISum =«

QSum =1

tor tSample = 0).Sampie< | 6*OVERSAMPLING.Sampie+++;
Mag = «(long)iTables(Sumpie}) ¢ ((long)iTables|Sampie|!

+ ((long)QTables| Sampie |y * ({longiQTables(Samplel);

if (MaxMag < Mag) MaxMag = Mag:
1f (MinMag > Mag) MinMag = Mag,

prantf("Mag: <%Id MinMae. “tld MaxMag: “tld\n". Mag, MinMag. MaxMae);

if (MaxSampie < ITables{ Sample}) MaxSample = [Tables|Sample|.
if (MaxSampie < QTables| Sample}) MaxSampie = Q) Tablesi Sample]:
1f (tMinSample > I Tables{ Sample|) MinSample = I Tables{Sumpiel.
If (MinSample > ()Tables| Sampie|) MinSample = (QTables{Sampie|:

[Sum = ISum + [Tables|Samptel:
QSum = QSum + iTables|Samplej:
}
[Avg = ISum/ 16*OVERSAMPLING:
QAve = QSum/ 16*OVERSAMPLING:

5.764,693
35

pantc“MinSampte: ¢ d Maxsampie ¥ o MinSample. MaxSample).
pnnti(Sum: ¢ id QSum: <#1d lave 7 1d QAve: rldn” 1Sum.QSum.iAve.QAve):
panthi“MagError: i f% % cdoable)MaxMag/idouble MinMag- 117 100)),

vetchty:
retum:

1
l

zendif
fpanttiouttile.”.'n\n ")
tprnttcouttite.” INIT initai_|_amplesin

ot a =0:a < 2*OVERSAMPLING a+= 31
I
fpantfiouttile. 00X % Ia00. Ox% SO0
0x% . 4x00" IStartTablela).IStart Tablefa+ t | 1Start Cublela+ 21).
ift a < 3*OVERSAMPLING - &)
|

tprntttouttile.” “n 1.

|
toanttiouthle. o’y

tpantttouttile. INIT imual _Q_samptes).

torC a =1 a< 3*OVERSAMPLING. a+=3)
|
fprnttcouttite. Ox S xiX). Ux . 300,
0x% 4x00”".QStanTable(a].QStart Tuble[a+ | |.QStart Tablefa+21).
it a < 3I*OVERSAMPLING - ¥
{
fprinutcouttile.” '),

t

!
f

Ipanttiouttile. ’n);

tpAnttiouttile. 'n),
[(bBaseband i
tprinttiouttile.” INIT carrier | _sumple: 0x000000 \n").
fpantttouttile,” INIT camer_Q_sample: 0x000000:\n").
lelsed
fprinttiouttile.” INIT camer _|_sample. 0x000000:\n ™).
fpnattioudtile.” INIT camer_(3_sample: 0x7fff00:\n");
|

fpninttiouttile.\n "y,

exitt 0,

5.764.693
37

II. Tuble for Quadrature Phase Modulation

i

= objimoddatig h: was created using the command hine:
* nbjunoduab.exe - -vobjunoddang.h

* The data 1s in the 16 MSB of the 23 but words. which
* are used by the DSP when getung data trom program
® memorv.

* This file is | and Q

Ly

INIT | _samples:

11xa91100. OxbOb200. Oxb8J 101, i2xc 1 6(00.
“1x€a3300. 0xd39200. 0xdd2800. Uxetecul).
0xf0d800 Oxfadc00. 0x04e700. Ox{eevV().
0x18d800. 0x229e00. 0x2¢2d00. Gx357600.
1x3e6b00. 0x46fc00, 0x4f1e0U. 0x56¢200,
xa90500. 0xb02000. 0xb8b4). Vxc 13500.
Oxca1400. 0xd34000. 0xdcav00. Dxe63d00.
1xefeb00. 0xt99f00. 0x034700. OxOcct()0.
1x162500. Ox [f3600. 0x27f200. Ux304500.
1x382400. 0x 3700, V3600, Ux3c850).
1)x9deBO). 0xa25300. 0xa69¢). Uxaaasu0.
(xae3100. Oxblaaky. 0xb47300. 0xbsad0.
0xb84a00. 0xb94300. 0xb99600. Oxb94700.
0xb85d00. 0xb6e?00. 0xb4t300. 0xb29700.
Oxatea00. 0xad0400. Oxa9fd00. Oxabee)).
0x9dde00. 0xa24300. 0xa68300. Uxaag300.
Nxae2a00.0xb15e00. 0xb40a00. 0xb61b00.
0xb78500. 0xb83c00. 0xb83c00. 0xb78500.
Nxb61b00. 0xb40a00. 0xb15¢G0. Cxae2a00.
)xaa8300. 0xa68300. 0xa24300. 0x9dde00.
0xa70300. Oxaal400. 0xad1b00. 0xb00200.
Nxb2af00. 0xb50c00. 0xb70000. 0xb87700.
0xb96000. 0xb9b000. 0xb95c00. 0xb86300.
)xb6c600. 0xb48c00. Oxb1¢200. Uxae7600.
1xaabt00. 0xa6bb200. 0xa26800. Ox9dfc00.
1)xa70f00. 0xaa2500. Oxad3500. Oxb02800.
1}xb2e700. 0xb55900. 0xb76c00). 0xbYObX).
)xba2800. Oxbabat)0. Oxbaba00. 0xba2800
0xb90b00. 0xb76c00. 0xb55900. Oxb2e700.
0xb02800. 0xad3500. 0xaa2500. 0xa70{00.
0xb35600. 0xb98600. 0xc04900. 0xc79500.
0xcf5¢00. 0xd79700. 0xe02d00. 0xe90e00.
0x£22500, 0xfb5¢00. 0x04a200. 0x0ddbCQ.
0x 16£200. 0x 1fd300. 0x286900. 0x30a200,
0x386b00. 0x3fb700. 0x467a00. Ox4caal0.
0xb36300. 0xb99a00. 0xc06700. Cxc7c100.
0xcf9f0, 0xd71200. Oxe¥ac00. Oxeybd0O.
0xf31300. Oxfc9b00. 0x064200. 0x0ff700.
0x19a500. 0x233a00. 0x2ca300. 0x35d100.
0x3eb000. 0x473200. 0x4t4800. 0x56e400.
0x4¢9d00. 0x466600. 0x3f9900. 0x383f00.
0x306100. 0x280¢00. 0x 1f5400. Ox 164300.
0x0cedV0. 0x036500. 0xf9be00. 0xtBR900.
0xe65b00. 0xdcc600. 0xd35d00. Uxca2f00.
Nxc15000. 0xb8ce(0. 0xb0b80OO. 0xay 1c00.
Jxdcaav0. 0x467a00. 0x31b700. 0x386b0Y).

5.764.693
39

11x302200. 0x286900. Ox 1£d300. Ux16200.
11x0ddb0®. 0x04a200. Ox{b5e00. (x122500.
11xe90e1}0. 0xet02d00. 0xd79700. Uxct3e00.
11xc79500. 0xcU4900. 0xbY8600. Uxb3S600.
0x58f100. 0x55db00. 0x52¢b00. Vx4 tdB00.
1x4d1900. 0x42a700. 0x439400 0x-46{500.
Ix45d800. 0x454600. (x454600. Ux45d800
1x46f500. Ux489400. Ox4aa700. Ox431900.
71x4fd800. 0x52¢b00. Ux55db00. 0x38f100.
0x58€d00. 0x55ec00. 0x52e500 Ox4ife0n.
M1x4dS 100, 0x4at400. 0x490000. 0x478900.
(1x46a000. 0x465000. 0462400, Ux479d00).
3x493200. 0x4b7400. Ox4e 300, 0x3518a00.
()x554100. 0x594e00. 0x5d9800. 0x620300
1x622200. Ux5dbd00. 0x597d00. Ox537J00.
)xS1d600. Ox4ea200. Ox4bt600. Ox4Ye500.
1x487b00. 0x47c400. Ox47c4K). 0x487b00.
0Ux49e500. 0x4bf600. Ox4ea200. Ux5 1d600.
0x5574d00. 0x597d00. 0x5dbd00. 0x622200.
0x621800. 0x5dad00. @x596400. 0x555800.
0x512100. 0x4e5600. 0x4b8d00. 0x495300
1x47b600. 0x46bd00. 0x466a00. Ox46bYNN.
1x47a300. 0x491900. 0x4b0d00.) x4d6900.
x50 16K, 0x52fc00. 0x560300. Ux591200.
0x56fH00. 0x4t6000. Ox474c00. 0x3ecbu().
0x35ec00. 0x2cc000. 0x235700. Ox19¢300.
0x101500. 0x066100. 0xfcb900. Oxf33100.
0xe9db00. Oxetca00. 0xd80e00. 0xcibb0O.
0xc7dc00. 0xc08 100. 0xb9b300. 0xb37H00.
0x56ef00. Ox4t4e00. 0x472(00. Ox3eal0.
0x35ad00. 0x2c6600. 0x22d800. 0x 191400,
0x0§2800. 0x052400. 0xfb1900. Oxf1 1500
0xe72800. 0xdd6200. 0xd3d300. Oxcasa00.
0xc19500. 0xb9040N0. Uxbe200. 0xay3e00.

INIT Q_samples:
0xa20f00. 0x9b8900. 0x¥52000. 0x905f00.
0x8bcev0. 0x87f400. 0x84d700. Ox827d00.
0x80e800. 0xB01c00. 0x801a00. 0x80e 11X).
0x827100. 0x84¢700. 0x87df00. Ux8bb501).
02904200. 0x95700. 0x9b6300. Oxate600.
0xa21a00. 0x9b9800. 0x9 5b4X¥). 0x907800.
0x8beb00. 0x88 1500. 0x84fb00. 0x82a000.
0x810500. 0x802a00. 0x800c00. 0x80a600.
0x81f000. 0x83dfD0. 0x866600. 0x897500.
0x8cfa00. 0x90de0d. 0x950a00. 0x996600.
0Oxadc800. 0xa8c800. 0xa46500. 0xa09d00.
0x9d62a00. 0x9ac800. 0x98af00. 0x971700.
0x95£c00. 0x955400. 0x951e00. 0x955200.
0x95eet0. 0x96efD0. 0x985200. 0x9al100.
0x9¢2800. 0x9eBe00. Oxa3700. Oxad 1500,
0xadd<400. 0xa8d900. 0xa47d00. Oxalbe00.
0x9d9700. 0x9b0200. Ox98fc00. 0x977¢00.
0x968200. 0x960500. 0x960500. 0x968200.
0x977¢00. 0x98£c00. 0x960200. 0x9d9700.
Nxa0be00. 0xa47d00. 0xa8d900 Oxadd400.
)x5¢0000. 0x5ede00. 0x618600. 0x63eb00.
0x660190. 0x67c000. 0x692200. 0x6a2300.
0x6abf00. Ox6af300. 0x6abc00. Oxbal 500.

41

Nx68fa00. Ux676300. 0x654bM). 0x623900.
Jx567800. 0x5bbO00. Dx5Tdeli). 0x525000.
0x5cOb¥). 0xSeeev. 0x6 19¢00. 0x640a00.
1x662b00. (1x671800. 0x696d00. Hx6a8600.
Nx6b4200. 0x6balX}0. 0x6ba000. 0x6b4200.
{)x6a8600. 8x696d00. Nx67f800. 0x662b00.
0x640a00. 0x619¢00. Ox SeeeV). 0x5cOb00.
0x667¢00. 0x6ad800. 0x6f0200. Ux72e¢300.
1x766500. 0x797200. 0x7bf900. Ox 7dect).
)x7f3e00. 0x?fe900. 0x7fe900. 0x7f3e00.

Ox7decu). 0x7bf900. 0x797200. 0x766500.
(1x72e300. (5x6£0200. Ux6ad300. 0x667e(0.
0x668808. Ux6ae500. Ux6f1300. 0x72900.
0x767{00. 0x799000. 0x7¢ 1300. 0x7e0bON).
0x7f5700. Ox7fF300. 0x7fd700. Ox 7¢ffQ0.

0x7d6600. 0x7b0d00. (1x77fS00. 0x742100.
0x6f9700. 0x6a5d00. Ox647b00. UxSdb00.
0x668800. 0x6ae500. 0x6¢1300. 0x72(900.
0x76700. 0x799000. Ox7¢ 1200. 0x7¢0b00.
Ox775700. 0x7fF300. 0x7fd700. Ox7e ff0O.

x7d6600. 0x7b0d00. 0x77fS00. ¥x742100.
Nx613700. 0x6a5d00. Ux647b00. Ux5d1b00.
x667e00. 0x6ad800. 0x6t0200. 0x72300.
1x766500. 0x797200. 0x7bf900. 0x7decOn).
0x7F3e00. 0x7fe900. (x7fe900. 0x 7300,

0x7dec00. 0x7bf900. 0x797200. 0x766500.
0x72e300. 0x6f0200. 0x6ad800. 0x667¢00.
0x5¢0b00. OxSeee0X). 0x6 [9¢00. 0x640a00.
0x662b00. 0x67f800. 0x696d00. 0x6a8600.

5,764,693

0x6b4200. 0x6bav00. 0x6bal00. 0x6b4200.

0x6a8600. 0x696d00. 0x67fB00. 0x662b00.
0x640a00. 0x619c00. OxSeeet). 0x5c0b00.
0x5c¢0000. Ox5ede00. 0x618600. 0x63eb00.

0x660100. 0x67c000. 0x692200. 0x6a2300.

0x6abt00. 0x6af300. 0x6abc00. 0x6alS00.

0x68fa00. 0x676300. 0x654b00. 1x62a900.
0x5§7800. 0x5bb000. Bx574e00. 0x525000.
0xadd400. 0xa8d900. 0xa47d00. 0xaLbeV)).
0x9d9700). 0x9b0200. ¢ x98fc00. 0x977¢00.

0x968200. 0x960500. 0x960500. 0x968200.

0x977200. 0x98fc00. 0x9b0200. 0x9d9700.
0xa0be00. 0xad7d00. 0xa8d900. Oxadd400.
0xadc800. 0xa8c800. 0xa46500. 0xaL9d00.
0x9d6a00. 0x9ac800. 0x98af00. 0x971700.
0x95fc00. 0x955400. 0x951e00. 0x955200.
0x95ee00. 0x96e£00. 0x985200. 0x9al 100.
0x9¢2800. 0x9¢8e00. Oxal13700. Oxa41500.

0xa21a00. 0x9b9800. 0x95b400, 0x907800.

0x8beb00. 0x881500. 0x84{H00. 0x82a000.
0x810500. 0x802a00. 0x800¢00. 0x80a600.
0x81f00C. 0x83df00. 0x866600. 0x897500.
0x8cfa00. 0x90de0Q. 0x950a00. 0x996600.

0xa20f00. 0x9b8900. 0x95a3000. 0x90S 0O,

Ox8bcetr). 0x87f400. 0x84d700. 0x827400.
0x80e800. 0x801c00. 0x801a00. 0x80e100.
0x827100. 0x84¢700. 0x87df00. 0x8bbS500.
0x904200.0x957100. 0x9b6300. (Oxale600-

INIT truual _l_samples:

42

43

1xfEf800. O« rffS00. (xtret®).
0x(fe800. Oxffde00. Uxtfd 100
0xffbf0O. Oxfta700. Ux1fB00.
1xt£6200. 0xff3000. Uxtel100.
oxfeal 00. Oxte3e0n). Oxtde300.
Nxfd2c00. Oxtc7400. Gx b3 700
Oxfag8e00. 0x195400). (xtTe HiXY.
11xf6200. 0x143600. Uxtifl00.
1xet3900 Oxeco900. tixe 1cl.
xeS6e00. Oxe { 500, Uxdceftn.
xd82100. 0xd2fb00. (Hxcd8500
0x¢c7c¢b00. Oxcldb0i). Oxbbedix)
(1xbS9800. Lxaf6cti). Lixavs5200.
(1xa36000. 0x9dabu0. 0x984700
1x934800. 0x8ebt0. HxBabcX!.

0x8744d00. 0x847¢00 UxB2580X).
0x80e200. 0x802000. Hx301100.
Nx80b40¥). 0x820200. 0x83f300.
0x867a00. 0x898800. 0x8dUbO).
0x90ed00 0x951700. 0xY97100-,

INIT inival_Q_samples:

Ox7ffe00. Ox7ffeX). Ux7{feV0).
e 7fe00. Ox7ffc00. Dx 7ffelty.
0x7fe00. 0x7fe00. Ox7ffe00.
0x7{fe00. Ox7ffe00. Ox7{fd).
0x7f{d00. 0x7ffb00. Ux7ff900.
0Ox7ff600. 0x 71£200. Ox 7feb00.
0x7fe100. 0x7fd200. 0x7fbcl0).
0x7f9e00. 0x7£7300. 0x7F3800.
0x7eeB00. UxTe7c00. Ox7deetx).
0x7d3500. 0x7c4600. 0x7b 190X).
0x79a000. 0x77d100. 0x759¢00)
0x72{e00. 0x6fe500. OxbcdalL,
0x682500. Ox637200. Cx35e2d00.
0x585600. 0x51¢f0. Ux4at100.
0x438c00. 0x3bal00. 0x334a00.
0x2a96(0X). 0x219600. 0x 185b00.
0x0ef800. 0x058100. 0xtc0cO0.
0xf2ab00. Uxe97400. Uxew7h0l)
0xd7d300. Oxct¥d00. Oxc7batX).
0xc06700. 0xb9a000. 0xb36d00.

INIT camer _|I_sample: 0x000000.
INIT camer _Q_sample: Ox7{ff00:

5.764.693

5.764.693
45

[I1. Table for Baseband Modulation

* nbitmoddatbb.h: was created ustng the command line:
* nbjunodtab.exe -6 -f -i -oobj\moddazbb h

* The data 15 1n the 16 MSB ot the 24 bit words. which
“ are used by the DSP when getung data rrom program
* memory

N

* This tile is BASEBAND

!

INIT I_samples:

11x801e00. 0x801600. 0x801 100. 0x8030400
1x800a00. 0x800700. 0x800600. Ux800S500
)x800500. 0x800400. 0x800500. Ox300S500.
1)x800600. 0x800700. 0x300a00. 0x800400).
0x801100.0x801600. 0x801e00. 0x802500.
0x808600. 0x80a400. 0x80d300. Ux3 1 1100.
0x816400. 0x81d100. 0x825¢00. 0x830f00.
0x83ef00. 0x850400. 0x865b0). Ux87{b0J.
Nx89ee00. 0x8c4500. 0x8f0800. 0x924300.
1x960500. 0x925a00. 0xYf4c00. Oxade 300
)xableU0. Oxb1e300. Uxby6d00. Oxci9300.
)xca3000. 0xd38b00.0xdd2c00. 0xe71100.
0xfL1100. 0xfb000O. 0x04at00. 0x0det0l.
0x169400. 0x1e6d00. 0x255800. 0x2b3300.
0x2fdd00. 0x334600. 0x355c¢00. 0x361700.
0xab7600. 0xb27600. 0xba2100. 0xc25700.
0xcbaa00. 0xdSS5500. 0xdf840Q. Oxea1b00.
0xf4fb00. 0x0Q00CA. 0x0b0S00. Ux 15¢500.
0x207c00. 0x22abG0. 0x345600. 0x3d6900.
0x45d100. 0x4d8a00. 0x548a00. 0x5ad t00.
1)x355c00. 0x334600. 0x2fdd00. 0x2b3300.
0x255800. 0x te6d00. 0x 169400, 0x0def00.
0x04af00. 0xfb0000. Oxt!1100. Oxe71100.
0xdd2c00. 0xd38H00. 0xca3000. 0xc19300.
0xb96d00. Oxb 1€800. 0xab0e00. Oxade300.
0x35c400. 0x33d400. 0x309f00. 0x2¢3700.
0x26b200. 0x203700. Ux 18ec00. Ox 10f900.
0x089900. 0x000000. 6xI76700. LxetQ700.
Oxe71400, 0xdfc900. 0xd94¢00. 0xd3c900.
0xcf6100. 0xcc2c00. 0xca3c00. 0xc99d00.
0x604c00. 0x651800.0x693900. 0x6¢cb300.
0x6f9e00. 0x71£100. 0x73ba00. 0x74fb00.
0x75bb00. 0x75£c00. 0x75bb00. 0x74£dO0.
0x73ba00. 0x71£100. 0x6f9¢00. 0x6cb900.
0x693900. 0x65 1800. 0x604c00. Ox5ad 100.
0x60b400. 0x652600. 0x69tb00. 0x6dbd00.
0x70f800. 0x73bbAC. 0x761200. 0x780500.
0x79a500. 0x7afc00. 0x7¢1100. 0x7¢cf100.
0x7da200. 0x7e2f00. 0x7e9c00. Ox7eet00.
0x72d00. 0x7f5¢00. 0x7{7200. Ox 7f8b00.
0x9f4c00. 0x9a5a00. 0x960500. 0x924300.
0x8f0800. 0x8c4500. 0x89eeV0. 0x87fb00.
)x865b00. 0x850400. 0x83ef00. Gx330f00.
0x825¢00. 0x81d100. 0x816400. Ox811100.
0x80d300. Ux80a400. 0x808600. 0x807500.
0x9t6400. 0x9aeB00. 0x96c700. 8x934700.

5.764.693
47

1x906200. 0x8e0f00. 0x8c4600. 0x¥b0500.
1x8a4500. 0x820400. 0x8a4500. 0x8b0S00.
1x8c4600. 0x8e0f00. 0x906200. 0x934700.,
1x96¢700. 0x9aeB800). 0x9tb400. 0%a32f00.
{1xca3c00. Oxcc2c00. 0xcf6100. 0xd3¢900.
1xd94e00. Oxdfc900. Oxe71400. UxetQ700.
1)xf76700. 0x000000. 0x089900. 0« 10f900.
1x18ec0. 0x203700. 0x26b200. 0x2c3700.
x30900. 0x33d400. 0x35¢400. 0x366300.
0xcaa400. 0xccba00. 0xd02300. 0xd4cd00.
(xdaag00. 0xe19300. 0xe96c00. ¥xt21109.
0xfb5100. 0x050000. 0xVeetD0. Ox | 8ef00.
()x22d400. 0x2c7500. 0x35b000. Ox3e6d00.
)x469300. Oxde 1800. 0x54f200. 0x5b 1d00.
11x548a00. Ox4d8a00. Ux45d100. 1x3d6900.
Nx345600. 0x2aab00. 0x207¢00. Ox | 5¢500.
Nx0b0500. 0x000000. Oxt4fb00. Uxeatb00.
0Oxdf8400. 0xd55500. Oxcbaad0. 0xc29700.
0Oxba2f00. 0xb27600. 0xab7600. 0xa52f00.
0x54£200. Ox4e1800. 0x469300. 0x3¢6d00
0x35b000. 0x2¢7500. 0x22d300. Ox 1 Bef0O.
1x0ee100. 0x050000. Uxtb5100. 0x21100.
1xe96c00. Uxe19300. Oxdaas00. Uxddcd00.
1xd02300. Oxccbal0. 0xcaad00. Uxc9e900
0x7€7a00. 0x7fSc00. 0x762d0V. UxTeetO0.
0x7¢9¢00. 0x 7 2f00. 0x7da200. Ox7cf100.
0x7c¢1100. 0x7afc00. 0x792500. 0x780500.
0x761200. 0x73bb00. 0x70f800. 0x6dbd00.
0x69fb00. 0x652600. 0x60b400. Ox5b1d00.
0x7(e200. Ox7fea00. Ox 7fef00. 0x7{f300.
0x7ff600. 0x7fR00. Ux7(fa00. Ox 7f1dQO.
0x7(fb00. Ux7ffc00. Ox7ffb0O0. Ox7£{b0O.
0x7(fa00. 0x7ff900. 0x 7f£600. Ox 7(f300.
0x7fef00. Ox 7fea00. 0x7(e200. 0x 7§d700:

INIT Q_sampies:
0x7fe200. 0x7fea0u. Ox7fef00. Ox 7ff300.
0x7(£600. 0x7ff300. 0x7ffa00. Ox7ffH00.
0x7fb00. Ox71fc00. 0x 7ffb00. 0x7fH0O.
0x7f200. 0x7€M900. 0x7ff600. 0x7(f300.
0x7fef00. 0x7fea00. 0x7fe 200. 0x7fd700.
0x767200. 0x7f5¢00. 0x7£2400. Ox7eef00.
0x7€9c00. 0x7e2f00. 0x7da200. 0x7cf100.
0x7¢1100. 0x7afc00, 0x792500. 0x780500.
0x761200. 0x73bb00. 0x70£800. Ux6dbd00.
0x69fb00. 0x652600. 0x60b400. 0xSb1d00.
0x54£200. 0x4¢1800. 0x469300. 0x3e6d00.
0x35b000. 0x2c7500. 0x22d400. Ox L 8ef00.
0x0Oeef00. 0x05S0000. OxtbS5100.0xf21100.
0x€96c00. Oxet9300. 0xdaaB00. Oxd4cd00.
02d02300. 0xccba00. Oxcaa400. 0x¢9e900.
0x548a00. 0x4d8a00. 0x45d 100. 0x3d6900.
0x345600. 0x22ab00. 0x207c00. Ox 15e500.
0x0b0500. 0x000000. 0xf4fb00. Uxeal bOO.
0xdf8400. 0xd55500. Oxcbaal0. 0xc29700.
0xba2f00. 0xb27600. Uxab?600. 0xa52f00.
0xcaa+00. Oxccba00. 0xd02300. Oxd4cd00.
Nxdaagd00. Oxe 19300. 0xe96c00. 0xt21100.
Ixfb5100. #x050000. UxUeeth0. 0| 8ef00.

5.764.693
49

1x22d400. 0x2¢7500. 0x35b000. 9x326d00.
)x469300. 0x4e1800. 0x54£200. OxSb1d00.
xca3c00. Oxcc2c00. 0xctf6100. Uxd3c900.
0xd94¢00. 0xdfc900. Oxe71400. Oxef0700.
9xf76700. 0x000000. 0x089904. Ux 10f900.
Nx 18ecd. 0x203700. 0x26b200. 0x2c¢3700.
0x30900. 0x33d400. 0x35c400. Ux366300.
0x9fb400. 0x92e800. 0x96c700. 0xY34700.
)x906200. 0x8¢0f00. 0x8c4600. 0x8b0S00.
0x8a4500. 0x8a0400. 0x3a4500. 0x8b0S00.
0x8c4600. 0x8e0100. 0x906200. 0x934700.
0x96¢700. 0x9ae800.0x9fb400. 0xa52(00.
0x9f4c00. 0x9a5200. 0x960500. 0x9243(X).
0x8f0800. 0x8c4500. 0x89¢e(. 0x871b00.
0x865b00. 0x850400. 0x83ef00. (1x830(00
0x825e00. 0x81d100. 0x816400. Ox811100.
0x80d300. 0x80a400. 0x808600. 0x507500.
0x60b400. 0x65a600. 0x69fb00. 0x6dbd00.
0x70fB00. 0x73bb00. 0x76 1200. 0x780500.
0x79a500. 0x7afc00. Ox7c1100. 0x7cf100.
0x7da200. 0x7€2f00. 0x 7¢9c00. Ox7eet00.
0x7f2d00. 0x7f5¢00. 0x7§7a00. Ox7f8b00.
#x604¢00.0x651800. 0x693900. Ux6cb900.
Nx6f9e00. 0x71£100. Ux73ba00. 0x 7400,
0x75bb0Q. 0x75£c00. 0x75bb0N. 0x74fb00.
0x73bav0. 0x71£100. 0x6f9e00). 0x6cb9C0.
0x693900. 0x65 1800. 0x604c00. 0x5ad 100.
0x35c400. 0x33d400. 0x309€00. 0x2c3700.
0x26b200.0x203700. 0x 18ec00. 0x10{900.
0x089900. 0x000000. 0xt76700. 0xet0700.
0xe71400. 0xdfc900. 0xd94e00. 0xd3c900.
0xcf6100. 0xce2c00. 0Oxca3dc00. 0xc¥9d00.
0x355c00. 0x334600. 0x2(dd00. 0x2b3300.
0x255800. 0x 1e6d00. Ox 1 69400. 0x0def00.
0x04af00. 0xfb0000. Oxf1 1100, Oxe71100.
0xdd2c00. 0xd38b00. 0xcaS000. Oxc 19300.
0xb96d00. Oxbie800. 0xabe00. Oxade300.
0xab7600. 0xb27600. 0xba2£00. 0xc29700.
Oxcbaal). 0xd55500. 0xdt8400. Oxeal b00.
0x£4fb00. 0x000000. Ox0bOS00. Ux t 5¢S00.
0x207¢00. 0x22ab00. 0x345600. 0x3d6900.
0x45d100. 0x4d8200. Ux548a00. 0xSad100.
0xab0e00. 0xb 1800. 0xb96d00. Oxc 19300.
0xca3000. 0xd38b00. 0xdd2¢00. Oxe71100.
0xf11£00. 0xf20000. 0x04af00. 0x0Odef00.
0x169400. Ox 1e6d00. 0x255800. 0x2b3300.
0x2£dd00. 0x334600. 0x355c00. 0x361700.
0x808600. 0x80ad00). 0x80d300. 0x811100.
0x816400. 0x81d100. 0x825¢00. 0x830f00.
0x83ef00. 0x850400. 0x865b00. 0x87fb0O.
0x89ecU0. 0x8c4500. 0x8f0800. 0x924300.
0x960500. 0x9a5a00. 0x9f4¢00. 0xade300.
0x801¢00. 0x801600. 0x80 1 100. 0xBOOdOO.
0x800300. 0x800700. 0x800600. 0x800500.
0x800500. 0x800400. 0x800500. 0x800500.
0x800600. 0x800700. 0x800a00. 0x800d00.
0x801100. 0x801600. 0x80 100. 0x802900:

INIT iniual _[_sumples:

51

Oxffcc00. 0xrfh900. OxFIfDO.
0xf7e00. 0x£5300. Oxff1b00.
Oxfed400. 0xfe7b00. 0xfe0b0OO.
Nxfd8000. Oxfed400. Uxtc0300.
Nxfb0900. Oxt9dd00. 0xt87b00.
Nxf6dc00. 0x14f900. 0x12cb00.
Nxf04€00. 0xed7d00. Oxea3400.
Nxe6d000. 0xe2f100. OxdebbO.
Nxda3000. 0xd55900. 0xd04100.
Dxcat'500. 0xc38500. 0xcU0200.
Nxba8100. 0xb51200. 0xafc800.
xaab200. 0xa5e000. 0xat5b00
0x9d2d00. 0x995900. 0x95e50(}.

0x92d200. 0x901d00. 0xBdc600.

0x8bcd0. 0x8a2¢00. 0x88e300.
0x87F000. 0x875200. 0x870a00.

0x871a00. 0x878400. Ux¥85100.

0x898200. 0x8b1400. 0x8d2e00.
0x8fbb00. 0x92ce). 0x967300.
0x9ab400. 0x9b0O0. 0xa52f00.

INIT imiual _Q_samples:
0x003400. 0x004700. 0x006100.

)x008200. 0x00ad00. 0x00e500
0x012c00. 0x018500. 0x01£500.
0x028000. Ux032c00. 0x03£d00.
0x04£700. 0x062300. 0x078500.

0x092400. 0x0b0700. 0x0d3500.

0x0fb200. 0x128300. 0x I 5ac00.
0x193000. Ox 1d0f00. 0x214500.
0x25d000. 0x2aa700. 0x 21bf00.
0x350b00. 0x3a7b00. 0x Iffe00.
0x45700. Ox4aee00. 0x503800.
0x554e00. 0x5a2000. 0x Sea500.
0x62d300. 0x66a700. Ox6a1b00.
0x6d2e00. 0x6fe300. 0x723a00).

0x743300. 0x75d400. 0x771d00.

0x781000. 0x 78aev). 0x78f600.
0x78¢608. 0x787c00. 0x77af00.

0x767¢00. 0x74¢300. 0x72d200.
0x704500. 0x6d3200. 0x698d00.
0x654c00. 0x606500. 0xSad 100.

INIT camer_|_sampie: 0x000000.
INIT camer_Q_sampie: 0x000000:

5.764.693

52

5.764,693
53 54

APPENDIX B
MODULATION/DEMODULTION 45D COMMUNICATIONS PROTOCOL SOFTWARE
l. Recerve Code
MODULE/RAM Jecoce,

sinciude " dsp.h”
sinciude “dspemd.h”

ENTRY slan_decode:

ENTRY find_next_head.

EXTERNAL aet_tiltered _sample:
EXTERNAL adjust_sampling_ana_read Issi
EXTERNAL it _filier:

EXTERNAL slan_slot_tmer:

EXTERNAL queue _signal.

GLOBAL network _id.

..................................... [————- -

VAR/MM/CIRC bitsvnc _buttl12+1],
INIT busvnc _butt: L2000, O3I0C0. Ox 2000, Ux2000. Hx2000, G 2000, Ux 2000
0x2000. 0x 2000, 1112000, Dy 2000. 01 2000, (x 2000

VAR/DM rsst_save.

CONST NOISE_DECAY =31130:/*005 */

CONST DC_DECAY =32162./* 000815 */

CONST DC _PASTWEIGHT = -2416: /* /12 1106 * -0 8 */
CONST DC_NEWWEIGHT = 020: /* /12* 1 106 */
VAR/DM network _iJ.

INIT network 1d: Oxcdd?.

VAR/PM/RAM/CIRC single_bisitol,

INIT singie _bits' 0x800000 0x40000V0. 0x 200000. Ux 100000,
02080000, UxU4NGX), DxD20000. OXO TOKK).
0x00800(). 0xLUA. UXOVT000. VXLV 100,
0x000800. 0x000400. 1x000200. 0x000100:

VAR/DM DC_Level:
PORT debug_out:
re. *!

start_dccode:
call innt_filter:
ayl = x2000:
dm(DC Levelh =ayi:

tind_next_head:

ayl = dmiDC _Leveh: I* avl 15 used to store dc levet *f
mxl =avl: /* mx1 contans old sampie */

axl =0; *ax | 1y used 0 store nuise tota. *’

15 = ~bitsyac _butt:

15=12+1

md =0

5.764.693
55

svnc_scarch:
sall get_titerea sample. +* must preserve 1308 m3aviani.mxivi </
<midebug _outs =nri.
- does not corrupt: mx I.my .axi.avv.ayi -
‘= does conmupt: <i.srU.501.axy, mxy.mvU.mru.mrl.me2 *f

amad.mdy =mrl

v = mxl:

a = mrl-ay). mxi = mri: /* arnow comans Sa-Sn-j ¥/

mw) = ar:

mr = ar*my$) (s85. mx U= axl, * (sampie-uldsampler * fxample-oldsampie) ¢/
mvU = NOISE _DECAY:

U = M + mxU”myo (ss /= decaving old notse */

axl =mrl:

% axl now contains updated notse index *f

* now update the DC level readings </
/% nu) = cumrent sampie */
mwU = DC_NEWWEIGHT.
mr=mxl " myy (\S1LomxU = avi. r* mxu = past DC level */
myt = DC_DECAY.
MI = Mr + mxU * myu (s mxy = dmaS.m3 e © mxg = past sample =/
mvU = DC_PASTWEIGHT
mr=mr+ mxU * myy tmd).
* mri now contauns new BC level */

/* now apply the critena for determuming bit svacrhonization #/

Jdmidebue_out) = avl,

‘* cntena 1. 'noise’ must be above 4 cenain level ¢/
avy = 550;

ar=axl - ayy. ayl = mri:

1f It Jump sync _search:

/* cnitena 2. ‘noise’ must be below a certain level */
ayu = 1600:

a=axl -avy:

if gt jump sync_search:

/* cnterta 3. oldest sample 1n history butfer must be above threshold */
axd = 700;

af = ax0 + ayl. ax0 = dmus.m3).

ar = at - axU. axU = mx 1.

1f gt jump sync_search:

/* cntenia 4 newest sample in history buffer must be above threshold */
ar= af - axu:
if gt jump svac_search:

/* now correlate to 2 khz sine wave to get data tor next critena */
/* use AR and AF (o teed stutt back.*/

ar = pass (-
<ng = 3¢
avl) = dmeiS.mdy. al = pass O:

/* mi s aireadv | *

56

5.764.693
57 58

4o sin_loop unul ce:
ar = ar + avy, axv = dmuldamd
af = axv « ar. av0 = dmiid.m4.
ar = ar - avU. ax0 = dma3.m4):
sin_leop: at = at - avu. avy = dmad.md),

“ ar and at now contain sin and cos components *!
"* 15 shouid be what it was betore the joop ™

= make sure al < ar */
axO0=ar.ar=ar - af:
11 it jump sync_search.

* make sure at > -ar 4/

ar=ax0 +at. myl = axv.

ar=ar + 312 +* add tolerance tor border cases */

Il It jump svac_scarch: /* which could have tailed on last check */
/* but corssed the border since */

my = axv, ar = pass at:
mf = mxU * mvi(ss, mv) = ari /* square the orteinal ar component */

mr=mr +ar * myl (syi. ‘* square the af component *f
avt) = 1700:
ar=mri - avy: /* threshold =/

/* make sure sinusordal component s of a certn size at least =/
if It jump sync_search:

/=- */
/* by now we are ceniain that the bit sync 1s reai. Now prepare to use it */
Al !

avy =)

ar = pass axv.

i* dvidend s 1n at:avy), which contasns onginai s:n_loop af result */
‘* devisorisan srU | which contains ongtnal sin _loop ar result */

divs at. ar.

catr = 15:

do div_loop unul ce:
div_lvop: divgar.

/* the result of this 1s 1n avU and can span the fuil range os a signed */
/*integer. now use this value to compute the adjustment */

i* Adjustment =5 * 1 243 +5°3* -0 25~/
* scale umes 768 */

mx® = avQ:

myy) = 955 /* linear scale factor */
mr = mx0 * myvU (ss). myU = mx0:
mf = mxy * myU (md1.

mf = mxU * mt (md).

mx0 = -192; /* cubic scale factor */
mr=mz + mx * mt(md),

* Result: between -768 and 768 in mrl (thanks to 1.15 anthmeuc) */
= each increment ot 256 ts one sample's worth. =

.* now add an arbitrary value tor tweaking. -/

w0 =712

5.764.693
59

ar=mrl 4 avi,

Jdmtdebug _outy = ar.
Jdm(debug_out) = ar:

" now divide bv 256 to calculate actuai numper ol samples to adjust */
sr=ashaftar by -8 (o).

* result1s 10 the range of -6 10 +»insr) ¥/
call adjust_sampling _und read _rsst.

= avU now contains the raw rsst value */
Jmirssi_save) = avy,

se. B . .
/* Bit sync 15 completed and RSSI i» read. set up for bitdecodine
/*- [P, -t

set_levels:
/* next: Set the wigger {evels </

VAR/DM/RAM Threshold _l.ast _{
VAR/DM/RAM Threshold _l.ast_0.
VAR/DM/RAM Threshold Next_Bit

*av! contains the DC {evel Irom busyac !
ax0 = 200:

dm¢DC _Leveiy = avi:

ar = ax0 + avl.

Jdmt Threshoid _Last_1) = ar:

ar=avl - axy;

dmuThreshold _Last_0) = ar;

dm(Threshold _Next_Biy =avl.

AN S M

/* Now search for frame sync =/

/.

¢/

/* ialize inual frame svnc to ai I's. Canadsan and us trame */
/* syncs stan with a {. 50 tis improves our chance of gettine 1t =/
/*1f we were late by one bit on catching 1! e

s10 = Oxfff:

/* search for frame svnc for 2- bit umes */
cntr = 24:

do fsync_search unul ce.

cntr = 1.
call get_n_bits_data: /* uses: AY). AX1, AF. SR, SI. CNTR */

/* xor currem shufter contents with network 1d word */
ayQ = DM(network _id),

ar = stV xor av:

ax0 = ar:

/* count number of incorrect bits */
14 = ~cingle_bats:

ayQ = pmusd.mdl. at = pass U.

cnr = 16:

60

5.764.693
61

/* loop for bits */
do count _errors until ce:
ar =axU and avy.avU = pmiis md),
count_errors: ifneat =at + -

i~ AF now contains number ot nusmatches */
af=af - I,
if le Jump found_frame _syvoc:

fsvac_vearch:nop; /* end of loop **

‘* 1f loop termunates normadls. bisyne was not tound */
ump tind _next_head.

i+ 1f loop was jumped out of. frame svnc was found. =/
tound _frame_sync:

i* pop stack of unfirushed loop */
pop pc. pop cntr. pop ioop:

* Found frame svnc. Now decode duta. !

/* et first 8 buts ot first word */

s =10
call get_8_bits_data.
mx1 = 5e():

/* get first 8 bats of second word =/

se0 =0,

call get_R_bits_data.

myl = s1);

’* get remaning 4 bits ot first wora </
o =4

sl =0,

call get_n_bus _dwa.

/* build first 12 bit word */
sr = Ishift st by B(lo).

ay0 = mxl:

ar = sr0 or avt):

/* fec comrect and store resulung 3 bit word */

ax0 = ar:
call fec_correct:
mxl =ar.

/* get remaining 4 bits of secona word */
cnr =4,

st =1).

call get_n_bits_data.

/* build second 12 bit word */
sr = ishift sty bv X (loy

ay0 =myi:

ar = sr0 or avy:

5.764.693
63

axU = ar
call fec _correct:

i put trame nead data into nip “/
Jdmihp_daayy = mxi:
dmihip_datal) = ar;

JXU = UMUrss: _saves:
dmthip_daar = ax0:

= check 1f silence ot slot clock biuts are set 7
ave) = (x0003,
at = ar and avu:
1f eq jump more_daa_tottows.
 signat host head only 15 recerved */
a0 = RECEIVED _FRAME _HEAD_ONLY.
:all queve_signat.
jump find_next_head:
more_data tollows-

'* stgnal host that head with data s recerved */
110 = RECEIVED _FRAME _HEAD.
cail queue signal.

/* check for siot clock reser bit */
ar =arand 4.
if ne call stast_slot_umer:

/* transter bits to host unul there 1s no more bits =/
shovel _data:

call get_¥_buts _data:

mxi = sr0:

cali get_¥_buts_data:

myl = sr0:

call get_%_bits _daca:

dmthip_data0) = mu).

dmthip_datal) = mvi.

dmihip _data) = <r0:

axU = RECEIVED_3_BYTES.
call queue _signal:

jump shovel _data:

Iad .
/* subrostne to read a specified number of bits. *
/* Makes use of the follow:ng vanables: AY 1. AX 1. AF. SR, SI. CNTR. AX0. AR */
!* Shifis recesved bits into the SRO register. Bits already :n SRO will =/
/* conunue to be shifted. number ot bits o read is specitied in CNTR !
-/

A

VAR/DM/RAM rU_save.

get_¥_bis_data:
cnmr = 8-

get_n_bits_data:

5.764.693
65 66

vl =dmtThreshold Next_Bit:

do get_bus unui CE.
dmisrv_cave) = snd.
call get_tiitered_simnpie: ¢ resultia mrl =
srU = dmtsi)_save .
dmidebue_out) = mri.
dmidebug _out) = mri:

/* threshold to determune one-nes or zero-nes =/

at=mri - avl:

if 1t jump iszero2.
s1= ke
i* set threshold for previovs bit 1=/
ayl = dmtThreshold Last_ 1.
/* SET FL2: */
Jump endif_getn:

iszerol:
s1=1);
/* set threshold for previovs bit () =/
avl = dmiThreshoid Last),
/* RESET FL2. */

endit _getn:

sr=ishifism) by 1(LO)Y

get_buts:
st = sroor Ishift st by 0 ol

dmuThreshold_Next_Bit) = AY |:

s:

F® e mce e mammmeaamnamane e mmmmeman S

7* subroutine to do FEC correcuon on a |12 bit word)

/* Makes use of ALU and SHIFTER. and [4.L4.M4 and I5. LS. MAC is untouched. */
7* 12 bie word 15 passed in AX0 ./

/* resultis retuned 1n AR !

e U, =

VAR/PM/RAM fec_masksl {2].

INIT tec_masks: UxOBEC00. Ux04D300. 0x32BAD0. UxB17500.

.VAR/PM/RAM fec_syndrome _lix{16]:
INIT fec_syndrome _fix:
0x000000.0x000000.0x000000.0x00£f0.0x000000.0x 000 100.0x000200.0x00 1000.
0x000000.0x000400.0x000800.0x002000.0x00£f00.0xV0400.0x008000.0x00{f00.

fec_correct:
4 =0
15=0:
m4=1.
15 = “fec_masks: /* set up tor indexing tec Lable. */
st= 1. 7* shufter setup for creating syndrome */
se=A)
avl =,

sr0 =0, /* clear out locanon tor syndrome */

5.764.693
67

nr =4
do andlp unui ce.
ay) = pmaid.nds * load next bit and vector </

ar = axv and avy) i+ do first vector multiply */

ax | =ar. at =axy and avi " move 1o AX1 for bit counting. make AF =0 */
cntr = |2

4 = "singie_bits+4 -
ay0 = pmud.md)
do count_loop unul ce
ar = axl and avu. azvU = picid md.
count_toop- ifneat=ut + |.

sel up lor going through bt tabie */

’* AF now contains number ot se¢ bus' <!

sr= hftsiobye o * shitt previous syndrome by | */

axid = 1. /* geta | so we can and with § 7
at =axl and at. * check If Isb was set =/
andlp: 11 ae sr= sroor ishift siion * 1sb set. sct butin syndrome #/

md =\, ' move syndrome to dug tor indexing *¢
15 = Mec_syndrome _tix. /* pet svndorme table address */
modifv (3.md); /* compute indexed address =/
ay0 = pmuS.md): /* getenuy */
ar = axt xor avl, f* fix the corrupted but */
rns:

___________ !

ENDMOD.

5.764.693
69

I11. Transmission Code

..
teSasYesssEEEEESSSEAEeESEAESTixmssEsssuEENSzIESYesSsNsnSeeaseR SRR RRAnS

.

« DSP Transrmut code

* Herb Little

70

R A e T e e L LA L R L R b b L L Ly

MODULE/RAM transnuc_code
#inciude "dsp.h”

#include “dspcmd.h”:
#mciude “hip.h’

#define TX _ZERO_SAMPLES

EXTERNAL process _dsp_command.
EXTERNAL wait_for_asp_command
EXTERNAL queue_signal:

ENTRY inuahize _transnut:
ENTRY process_transeut _command:
ENTRY SPORTO_tx_interrupt:

/o
* coastants

*/

CONST POSITIVE _ONE = Ox7EFF:
CONST POSITIVE _HALF = ()x4000
CONST NEGATIVE_ONE = 1x8001
CONST ZERO = 0x0000:

CONST TRUE = x|,
CONST FALSE = 0x0:

CONST INITIAL _BIT_HISTORY = 1x0033:
CONST INITIAL _BIT_SHIFT = 0x0003.
CONST INITIAL_PHASE = 0x0001.

CONST OLDEST_BIT = %

#ifdef LARGE_DATA _BUFFER

CONST DATA_BUFFER_LENGTH = 1000.
#else

CONST DATA_BUFFER _LENGTH =9:
#endaf

CONST NUM_PENDING _BITS_THRESHOLD = (DATA _BUFFER _LENGTH - 61 * 8;

CONST OVERSAMPLING = 20:

* Added an extra 10 ms of camer [or now to compensate VCO not locking as 1ast as 1t
* sould for now. Remove when PLL is woring to spec. Matthias

5.764.693
71 72

CONST INITIAL _MIN_CARRIER SAMPLES = OVERSAMPLING * ¥ * £ + (OVERSAMPLING

X2

CONST SERIALU_ENABLE _BIT = 12

* vanables

VARDM x scale tactor:
VAR/DM 1 |_.cale_facor:
VAR/DM tx_|_phase _ractor.
VAR/DM tx_t_olfset:
VAR/DM tx _Q_phase tactor:
VAR/DM 1x_Q_otiset:

VARDM 1t t_sign:

VAR/DM tx _Q_sign:

VAR/DM I1x_next _{_sign:

VAR/DM (x next_Q_sign:

VAR/MDM t1x_num _samples.

VAR/DM tx _next_num _samples.

VAR/DM use _num _pendine_bus threshoid. copy of NUM_PENDING _BITS _THRESHOLD orv

b

VAR/DM tx _next_I_sampie_ptr:
VAR/DM tx_next_|_sample_leneth;
VAR/DM tx _next _Q_sample _ptr:
VAR/DM tx_next (Q_sampte_leagth,

VAR/DM tx _readv_tor_more samples tlag:

VAR/DM tx _next_Q_sample.
VAR/DM tx_|_ample _llag.

VAR/DM 1x _num_bits _in_srO:

VAR/DM x _num _pending _bits:
VAR/DM x _phase:

VAR/MDM (x_received _data tlag:

VAR/DM tx_min_camer_sampies:

VAR/DM/CIRC data_buffer| DATA_BUFFER _LENGTH |:
/o

* modulation data
./

VARPM/CRC camer_|_sampie:
VAR/PM/CIRC caumier_Q_sampie.

VAR/PM 1n1ual _{_samples(3 * OVERSAMPLING 1.
VAR/PManwial_Q_sampiesf 3 * OVERSAMPLING |,

VAR/PM I sumples(16 * OVERSAMPLING |
VAR/PM Q_samples{ 16 * OVERSAMPLING |

VAR/PM phase_dataj 4 * 1t

5.764,693
73 74

fndef BASEBAND

#inciude “objimoddaua.n’

INIT phase _data: A _samples. “Q_samples. Ux7fff00. Ox7fff0. ;= n =/
*Q_samples. | _samples. Gx7EFR00. 0x800100. /< 1 =
~l _samples. “(Q_campic¢s. Ux800100. UxS80100. /2 =~
*Q_samples. “!_samples. 0x300 180, OO0 /= ¥ =

"else

/*1f baseband 15 specitied. alwavs send same positive phase

#inctude "ob)\moddatbb.h’

INIT phase_data: *f_sampies. “Q_sampies. Ox7fff00. O\ D0, = 0 =7
Al _sampies *()_samples. ONTIEFO0. UXTFFO0 i= 0 =
Al _sampies ~0_samples. ON7HEE00. OxTIfO0 /=0 =«
~_samples. “Q_samples. ZTIE00. OXT[f00. 7= 0 <

sendif

#ifdef TN_ZERG _SAMPLES
VAR/PM/CIRC zero_sampie.

INIT zero _sample: Ox000000:
#endit

* transnut jump table

~/

CONST FIRST_TRANSMIT_COMMAND = 0x10:
CONST NUM_TRANSMIT COMMANDS = {2,

VAR/PM transnut_jump_tablef NUM _TRANSMIT_COMMANDS [
INIT transmit_jump_table:
~process_transmtt_scale _factor
~process_transmut _[_scale _tactor.
“process _transmut_Q_phase _tactor.
“process _transmut _|_offser.
“process_transmit_Q_oftset.

‘process _transmit _min _carrier _.amples.
“process _transmit _stan_curner.
“save_one _byte,

“save_two_bytes.

“save _three bytes,

Aprocess _transmut_compiete _command.
“wait _for_transmut_command.

(4848000000 Ce0assaUsersrss 000000000 rPsEEsssEsSSSssEEEttsRRssEEEd RRRRRERRRRS

N

* imitalize _transrut

L L L R P LR R L L s

imualize _transnut:

axQ = INITTAL _MIN _CARRIER _SAMPLES.
dm(tx_nun_camer _samples) = ax0:

m7 =, /* mwaiize dummy sanabies </
17 =0.

5.764.693
75 76

ris:

Lt EeinEsaeumasaSRatisaiseccasassccaTresesaasNENEIEESSszEREANmsmSSSSSsssasans
© Process _transmit_commanc

e L e L LR L R R LR LR L R Lt s

process _transmut_command:
ena m_mode.
call imuahize _transout_yariables.
sump check _lor valid_tx _command.
wait_for_transmut _command

idle:
.

* check if more sumpies required

<

axU = dmi tx _ready _tor_more _samples_tlag 1.
avU = dm tx _recerved _data _tlag),

ar = axV and ay0:

\f ne yump calculate _next _bit_samples.

1o
* check tor data from host

./

ax0 = dmt HSR6_SHADOW).

ar = 1stbit HSR_DSP _COMMAND _BIT ot axu:
if eq yump watt_for_transmit _command.

check _tor_vald _tx_commang

.
® reset HSR6

axy = 0x0:

dmt HSR6_SHADOW) = axu:

/e
* transnut command”?

*!

ax0 = dmt HIP_DSP_COMMAND_SHADOW),

ay0 = FIRST_TRANSMIT_COMMAND.
af = axV - ayv:
1f It jump transnus_stop;

axU = NUM_TRANSMIT_COMMANDS:
ar = ax0 - af:
if gt jump process _1v_commandg:

® non-transfmit command

5.764.693

77 78

s

transmit_stop
<all stop_senal _port:

Jump process_dsp_command.

process _tx_command:
* Jump through transmit_jump _table hased on command
e
axU = “transmut_jump _table.
ar = axy + at.
17 =ar:
axu = pmt 17 m7)
17 = axV:

Jjump 77,

R T P R R R P E R RN LR R L L LR Rl il

* seLuransmil parameters

L L L R N T P R P R R L L R R R LR LR At

process _transmut_scale _tactor:
call get_word _from_HIP;
DM(tx _scale _factor) = mrU):
yump waut _for _transmut_command:

process _transmue _|_scale _factor:
call ge1_word_from_HIP:
DM(tx_| _scale _factor | = mru),
jump wait_tor_transaut _command.

process _transaut_I_otfset:
call get_word_from_HIP.
dmt x_I_offset) = mri):
jump wait_for_transmut_command.

process_transmit_Q_phase Iactor:
call get_word_from_HIP:
dmt tx_Q_phase _tactor 1 = mru.

1=
~ I_phase = | - abs(Q_phase
Y

at = abs mr:

axV = POSITIVE_ONE.
ar = axy - at.

5.764.693
79 80

Jme iy _|_phase :actor) =
jump wait_tor_ransmit command.

process_transtrut () _ottset.
call get_word _trom _HIP.
dme tx _Q_otfset 1 = mru.
JumMp wail_fer_transnut_coemmand.

Process _transmit _min_cartier Simpies
call get_word_rom_HIP.
dmi Ix_mun_camer_sampies) = mry,
Jjump wat _for_transmut_command.

vet_word_from HiP
mxU = dmt HIP_DATAO_SHADOW
mvU = UxQJ0U:
mr =mx) * my (LU,
mxU = dme HIP_DATAL SHADOW

myO = UxGOO!
mr = mr + mxU * mvo (UL
rns:

T T T T T T T e CE T T LY RRLLEREL LR AL R A
.
* save transmit ¢ata

AR L L L Y P Y P PP TR R N R R R R AL L L L L L L s

save three bhytes
axV = dm¢ HIP_DATA2_SHADOW 1.
dm 0. mu) = axo:
call increment_num_pending_bits by _x

\ave_two_bytes:
axl = dmt HIP_DATAL _SHADOW »
dm¢ 0. mu) = axi);
call increment_num_pendine _buts_bv_8

save _one_byte
axU = dmi HIP_DATAO_SHADOW
dmi 10. m0 | = axu:
call increment_num _pending _bus_by_%

ax0 = dm(1x _recerved _data_tlag ».
ar = pass ax0:
if eq call setup_bitsvnc samples.

axt = NUM_PENDING _BITS THRESHOLD.
dmt use_num_pending _bits_threshold) = axu:

call transmut_readyv_tor_data:
Jump wat _tor _transrrul _command

5.764.693
81

Increment_num_paading_olts_byv_X

.
* increment the num penaine bits by the number of bits 1n a byvte
.

axU = dmi (Xx_num_penrding _bits

ar =axy + 8:

dme tx_num _p2rding_bits) = ur:

rs:

setup _oitsvnc_samples:

T make sure interrupt routine does not run oul of carrier samples
* so 1t wiil not copy a half inittalized next sample set

.oy
/

axU = dmy (x_num _samples 1.
auo=axy + 4
¢mi tx_num_samples 5 = ar.

* set up Initial wave for biisvne

*

ax0 = “imual _I_samples:

dm(tx _next_{_sample _ptr) = ax0.

ax0 = “imual_Q_sampies:
dmi 1x_next Q_sample_ptr) = axu:

e

* set up lengths tor imitial samptes

* NOTE. circular butfers must be alizned on address

* boundries of 2*n words where n 15 the number of

* buts required to represent the butter eneth.

* [E. for fengnt 1S align on 16 word boundnes.

* OTHERWISE: set tenght renisters (o zero. consider
* the butter as iinear and there 1s no need to align data
"

ax0 = “cimual _I_samples:

dm(tx_next_num_sampies) = axU:

ux0 =90
dmt tx _next_{_sample _length) = axu):
dmi tx_next_Q_sampie_Jength) = ux0.

ax0 = POSITIVE_ONE:
dm¢ tx_next_I_sign) = ux0:
dmt tx_next_Q_sign 1 = axV:

si= INITIAL_BIT_HISTORY.
sr = Ishift st by INITIAL _BIT_SHIFT + 5 (LOX:

axV = 0x8 - INITIAL _BIT_SHIFT.
Jdme tx_num_bits_in_sr) = ax0:

82

5.764.693
83 84

axu = INITIAL PHASE.
dmi tx_phase 1 = axu.

axu = TRUE.
Jdmex_recetved data thag b = axd.

axU = FALSE.
dmt 1x _readv _for_more samples _tlat) = uxt:

s

process _transmit _complete _command
N

“ save guard bits

Y]
!

axl = dmt HIP_DATAL _SHADOW .
dm(10). 10) = ax0:

* increment tx _num _pending _bits by the number ot yuard bits

.t

AU = dmt (x_nom_pending _bits)
av) = dm HIP_DATAO_SHADOW

ar = ax0 + ayu,
dmt 1x_rum_pending_buts) = ar;

.
!

* 1f TRANSMIT_COMPLETE command 1s recerved. then set num _pending_bits
* threshiold to zero. xo we wan t ask tor more data.

M

ax0 =0,

dmtuse _num _pending_bits thresholdi = axu:

yump vt _lor_transmit_command:

R L P L LR R LR Y

-

* process _transmit_start _camer

»

e L e r e R L L LR R L LR L LY
process _transmui_stant_camer:
calt stop_senal _port.

cadl enualize _transmut_variables:
/e

° set up carner
° setup next sct ot samples 10 be currier as well

* NOTE. use 2 circular butters ot | sumpie each for i and for Q
=t

5.764.693
85

i+ = *camer__sampte:
|4 = Secarner_I_sample.

15 ="camer _(J_sampie.

IS = < camer () _sample.
m4 = Oxi:

axt) = ~camer _|_sample:
dmi 1 _next_l_sampte_pu b= axd:

ax0) = ~camer_(Q_sampie:
Jdme tx _next_Q_sample_ptr) = axu

axu = “rcamer_{_sampie.
dmt tx_next_I_sample _tength) = axy
dmi tx_next_Q_sampie_jength b = o)

ax0 = dmg tx_nmun_camer _samples)
dm¢ 1x_num _samples } = axy,

axt = OVERSAMPLING.

dmt tx_next_num_sampies § = axu,

ax0 = POSITIVE _ONE:

dme e l_sign oy = axus

dmietx _Q_sign) =axts

dmt tx_next_{_sign) = uxy.
dmt tx_next_(Q_sign) = axu.

ax0 = TRLE:
dmt tx_I_sample_flag j = ax0.

ax0 = FALSE.
dme tx _readv_for_more _samples _tlag) = ax0;
m

* copy NUM _PENDING _BITS_THRESHOLD over to vanable/flag
]

axV = NUM _PENDING _BITS _THRESHOLD.
Jdm tuse_num _pending _tits _threshoid) = axu.

* set up sport clock

sertal clock = 8000 butsssec * 2 channeis ([and Q) * OVERSAMPLING samples/bit
* =8000*2°20

=320 000 samples/sec

* main clock =4 6 MHz

modulus = main_clock / senal _ciock

- =9 600 000 7 320 000
- =30

* =1*20

«t

ax0=1-1.

dm¢ SPORTO_CLOCK_MODULLS) = axV.

ax0 = 30 - |,
Jm(SPORTO_RX_FS_MODULLS ! = ax:

5.764.693
87

° start senal pun y

cill senal word length -
cata format W) = right jusury zero fll MSBs
©l.. invertreceive frame sync
invert ranmit frame svnc
.. internal recerve frame svnc enabie
. internal transmit frame svnc enabie

- ..l ransmut frrame svnc width
R IO .. ransmut trame svnc reyuired
" 1receive trame svnc width

.. Tecelve trame sync required
. intemai senal clock generation
- multichannel enable

= OUL 10T 1100 L1t = 0x7DCF
¢

ol = Ox7dct:

dm(SPORTH_CONTROL 1 = axu.

* enablc senal port

-t

ax0 = dmt SYSTEM _CONTROL »

ar = sctbit SERIALO_ENABLE _BIT of axy.
dm(SYSTEM_CONTROL) = ur:

i

* transimut dummy word cut senal pon

ot
al = Oxy:
1x0 = axy;

* reset transmut D/A thp tlop
=

reset fL 1.
nop.
setFLI:

‘.
/

* wait for data
=/
call transmu_rcady _for_data.

Jump wait_for _transmut_command:

transmut _readv_tor_daw:

/e
* do we need to transmut Tx_Ready_For _Dan’
.t
4x0 = dmt use _num_pending _bits _threshold)

ayd = dmt tx _num_pending _bits):
ar=axu - ayu:

5.764.693
89 %

it le ns:

ves

.

axU = TRANSMIT _READY _FOR_DATA.

call quene_signal,

("
i

“ do notresend TX_READY _FOR_DATA unul we recerve more data

“
axy =,

dmt use_num _pending_bus_threshold) = axu:

s,

imualize _transmat _variables

* set up data puffer poiners
o

10 = ~data_butfer.

10 = ¥ data_butfer:

1l = ~dala_butfer:

11 = data_butfer:

m0 = (ix1,

Ie

* set tlags

¢/

ax0 = Nx000:

dmt 1x _readv_for_more <amples_tlag) = ax0.
dm(tx_received _data tlag) = axU:

dm(tx_num_pending_tits | = axu.

rse

-
/.'I--"Q.t--l..--..--l-‘-,-ll‘-..---ll.--.......'--'.‘-.-‘--...‘....“.“‘.

* calculate next_bil_sampies
.

L e L L L Ryl

calculate _next_bit_samples:

/o

* update phase based on oldest bit

* phase = phase + ¢ oldest_bit 71 -1
*/

ar = 1stbit OLDEST _BIT of srl;

a=i.
feqar = - an

avi = dmt tx _phase)

5.764.693
91

L= ur o+ avl,

“ phase = chase mod 4
.

avU = tx3;

ar = ar and avy;

dm(1x_phase) = ur:

je
* do we need to shift ina byte’
o

axU = dmit ix_num_Bits in_sn) o,
ar = pass axu:

1f ne jump shift_bus:

* 1s there another byvte to shift in”
.t

axl =dm(tx_num_pendine hits)
ar = pass axi.

if fe yump transmyt_compieted.

* shaft 1n new bvic
M4
st=dmtil. mO).

st = sc of ishift st bv B (LO).

.
/

* do we have 3 bits?
¢/
avd = 0«8

ar = axl - avy;
i ge Jump adjust _bit_counts:

avl) = ax{.
1o
* adjust bit counts
.
!

adjust _bit_counts:
dm(tx_num _bits_in_sr)) = avu:

ar = axi - av);
dm(tx_num_pending _bis 1 = ar:

I

* room for more data’
.
call transmut_ready _for_data:

shaft_buts

* shift bits

92

5.764.693
93

M-V N
sr=Ishift srl by [(HIK
r = sror istuft si by ((LO¥:

= decrement bit counter

.

a0 = dmi tx_num _bus_in_stJ)
ar=avu- 1.
dmiix_num _bus _in_srU) = ar:

* calcutate otrset ynto { and Q tabies
y

avl = tixf:

ar = srl and avu;

myu = OVERSAMPLING.

mr = ar * mvo (ULY;
axt = mu.

.

* decide which samples to play back based on phase uad bit_history

-r
mx0 = dmc tx_phase).

my0 =4,
mr = nxU * myo (UUY

av0 = ~phase _data:
ar=mr + avl);

17 =ar.

 getf ponter
./

avi=pmua7. md)
ar = axt o+ avy:
dme ix_next_[_sampte _pir)= ar.

"
* get Q pointer
=

ay0 =pmt17. md4)
ar = axl + ay0,
dmq tx_next_Q_sample_ptr) =ar.

s
= getlsign

M

av0=pmtt7. md)

dm(tx_next_[_sign) = avy.

= get sign
-/

av) = pmt17. m4).

94

5.764.693
95

dmt x_next_t_sign 3 = av:

set lengths

NOTE: circuiar butfers must be alizned on acdress
boundries of 2*n words where n 1y the numoer of

* hits required to represent the butter length.

I.LE. for fenght {5 align on 16 word boundnes
OTHERWISE: set tenght registers to zero. consider
the butfer as linear and there 15 no need to wien dala.

ne

axtt = OVERSAMPLING

Jmitix_nexi_num _samples b = axu.

axV =0,

dmit tx_next_{_sample_icngth) = avxu.

dmi tx_next_Q_sample_length) = axu:

e

" reset tlags

.

1xU = FALSE.

Jdme tx _readv tor_more _samples tlae o= aa.

jump warl_tor_transnut _command:

transmiut_completed:

#ifdef TX _ZERO _SAMPLES
* set up tinat zero samples
“ set up next set of samples to be zeroes as weth

* NOTE: use ¢ buffer ot | sample tor [and tor Q
.

axt) = “zero_sample:
Jdme Ix_next_|_sample _pur ¥ = axu:
dmy tx_next_Q_sampie _ptr) = axv.

ax0 = % zero_sample.
dm(tx_next_{_sample _iength) = axu.
dmt tx_next_Q_sampie_tength) = axu:

ax0 =2,
dme tx_next_num_sampies) = axy:

ax0 = POSITIVE _ONE:
Jdm(tx_next_|_sign 1 = axy.
dmi tx_next_Q_siga)} = axt):

ax0 = FALSE.
dm(tx_readv_for_more _samplies_tlag } = axd:

want_for_readv _tor_more samples |
idle:

5.764,693
97 98

axU = dm(Ix_readv_rer_more _sameles _1lag i
ar = pass axy;

if eq jump waut _for_readv_tor_more sampies!.

axt) = FALSE.
Jdmi tx_reaaV_for_more _s.unpies_tiae | = axy:

wait_for_rcads _tor_more samples2:
wdle:

ax0 = dmi tx_ready _tor_more _vimples _tlag o,
Ar = pass axu.

if eq Jump waut_tor_readyv _tor_more _samples 2,

sendif

a0 = TRANSMIT_COMPLETED.
call queue_signat:

call stop_semal _port:

Jump wait_for_dsp_command.

stop_senal _port:
ax0 = dm(SYSTEM _CONTROL .
ar = cirbit SERIALO_ENABLE BIT ot axu:
dmit SYSTEM _CONTROL) = ar:

AX0 = 0x0000.
DM SPORTO_CONTROL 1=AX0.

as:

js%sscccscccccessssssssssescssscessnssseccecatanaccsatssssssscactEaasssssere"

-

* SPORTO_tx_interrupt

3399000000 r00e990000EErT00000E0s0EEsEEEEEEEEsEEtcEEt eSS ssEEEt P RacRREtet S/

SPORTO _tx_interrupt:

“ enable secondary registers
*/
ena sec_reg. dis m_mode, ena ar_sat:

* transmit | or Q bit?

!

ax0 = dme 1x _I_sample _tlag 1.
Ar = pass axy:

5,764.693
99 100

It eq Jump transut_Q _sampie:

transrut_i_sample:
* calcuiate | and Q samples
-
mxuU = pme 1S, md),
mv = dmit 1x_Q_sign 1.

mx| =dm(tx_scale factoc).
ayy = dme 1x_Q_offset 1

mt = mxVU * mvU (SS), "~ Q_sampie =1) * Q_sign o
mr=mxl*mt (SS)n * scale !

f my satmr:

ar=mrl + avk - + Q_ottset =

dmi tx_next_Q_sample 1 = ar.

myvl = dm tx_Q_phase _1actor 1.
mr=mrl * myt {SS):

mxU = pmy b md)
mv) = dme tx_l_sign)

avu = dme tx_I_offser)

mf = mx0 * my0 (SSY, '* [_sample =1 *1_sign ./
mf = mx| * mf (SS). * " scaie !

mx0 = dm¢ tx_I_phase_factor »:

mr =mr + mxU * mt (SS), /* *{_phase (= -abs(Q_phase)) °*f
’* +Q* Q_sign * scale * Q_phase]

my0 = Jdmi tx_l_scale _factor).

mr=mri * myo(SS)y /* * 1 _scale !

my0 = mrl,

mxt) = POSITIVE_ONE.

mr=mr + mxU * myU(SS). /" * 2 (since [_scale ts U to 2 mapped onto U to 1} %/

if mv sat mr:

ar=mrl + ay0: I + 1 _offset */

x0 = ar;

axV = FALSE!

DM t_I_sample _flag) = axU:
'S

transmut _Q_sample:
ax0 = DM tx_next _Q_sampie 1.

1x0 = axu:

axU = TRUE:
DM tx_{_sampie_tlag) = axu:

5.764.693
101

° jacrement number of samples left to be plaved

.

vy = DM(tx _num _samples 1.
ar=ayu -1,

DM(1x_num_samples ! = ar:

* 1f more sampies then rt
-

if ne A1;

* et next set of samples

-

1+ =dm(tx_next_|_sampie _ptr)
14 =dmi tx_next_|_sample _leagth).
i3 =dml tx_next_Q_sample_pir).
15 = dm¢ tx_next_Q_sample _length 1

4xU = DM(1x_next_num _samptes o
DMi tx_num_sampies) = axu:

ax0 = dmy 1x_next_[_sign)
Jdme i _[_sign) = axU.

ax0 = dm 1x_next_Q_sign k.
dm(tx_Q_sign } = ax(.
/e

° start mainline processing next bit
o/

= TRUE!
DM(tx_rcady_for_more_sumples _flag) = ax0:

nt

ENDMOD:

102

5,764.693
103 104

111. Main Code

R L L e Ty R L LR LR R R R R Lt Al ke ok

* DSP Main Line code
* Herb Lintle

R e L L L L R LR LR AL Ll bl d bbb

MODULE/RAM/ABS=0 main_line_cuuie:

adefine EXTERNAL PORT
#include <dsp.h>
sunder EXTERNAL

#define EXTERNAL GLOBAL
#include <dsp h>
sundef EXTERNAL

PORT HMASK.

VAR/DM HIP_DATAUO _SHADOW
VAR/DM HIP_DATA I _SHADOW:

VAR/DM HIP_DATA2 SHADOW:

VAR/DM HIP_DSP_COMMAND _SHADOW,
VAR/DM HIP TIMER _SHADOW

VAR/DM HSR6_SHADOW,

GLOBAL HIP_DATAO_SHADOW

GLOBAL HIP_DATAI_SHADOW:
GLOBAL HIP_DATA2_SHADOW

GLOBAL HIP_DSP_COMMAND_SHADOW-"
GLOBAL HIP_TIMER_SHADOW:
.GLOBAL I{SR6_SHADOW:

mnclude "dspecmd.h .

EXTERNAL SPORTO _tx_interrupt:
EXTERNAL spontl _rx_handic.
/* EXTERNAL umer _interrupt. */

EXTERNAL iuualize _transmit:

EXTERNAL process _transmut _command.
EXTERNAL process_receive _command.
EXTERNAL process RSSI_command.
EXTERNAL process_parameter _command:
EXTERNAL process_powerdown_command:
EXTERNAL process_delay_command.

EXTERNAL slot_clock _period.
EXTERNAL stop_siot _timer:

ENTRY process_dsp_command.
ENTRY wat_lor_dsp_command:

ENTRY gueue_signal:
\VAR/DM/CIRC wignai _yueutl 8 |

105

\ AR/DM waiung _tor_HIP _read_tlag,

5.764.693

106

ennsextnmas
T T e T L T e TP TR R L L LR T T bl dahhoh

* Interrupt Vector Tuble

R NEACEENAANNRTFEAEAR AR IR RAE KA

jump main:
nop;
nop:
nop:

/* Reset

e

nop:
nop:
nop:

/*IRQ2 -
/* 1gnored !

ump HIP _wruie _tnterrupt.
nop.
nop.
nop.

* HIP wnite

yump HIP _read interrupt,
nop:
nop:
nop.

' HIP read
/* ignored !

yump SPORTO _tx_interrupt;
nop:
nop:
nop:

/* SPORT

[3(H

nop:
nop.
nop:

/* SPORT 0 Recenve
/* 1gnored o

.

nop:
nop:
nop:

/* Software Interrupt |
/* ignored /

ru:

nop:
nop:
nop.

/* Software Interrupt O
/* 1gnored d

LR
nop:
nop:
nop:

/* SPORT | Transmut
/= ignored !

jump SPORT! _rx_handle.
nop:
nop:
nop.

'* SPORT

0 Transnut

-

-

¢

Y

1 Receive

A EEEAEIAZEEARFRREATRRAMMAS SRR SHUR RS K]

5.764.693
107 108

atH :* Timer
nop.
anp:
noo:

dle. ! Powerdown !
[{IR * walt ter reset s
nop.

nop:

nsesans
TR eSsarTEmeatvecese s AN EsAEE RS sKERR e RUT RSt anuntanNRRTRAANNTEES -

* DSPamuahizauon

- YY)
B T T L T e P P R R R PR L L L LT L L R bt ko !

main

= Imualize interrupt controller
[MASK = 130000, | no nterrups enabled |
ICNTL =1, | no nesting. IRQs fevel sensitive |

* intbalize signal queue repisters

o

16 = *signal_queue: /* write pointer */
16 = %signal _queue:

mo=i:

t3 = Asignal_queue: /* read pointer */
13 = “signal _queue.
m3=|

JXY = 1),
Jmi waang _tor_HIP_rcad_flag) = axu:

* mualize tlag pins

.

reset f10.
reset 111,
reset 112:
‘.

* mmuahize system control registers

*00 0000 = hoot / program watt states }

¢000. .. =bool page i
* ..0...... =boot force bt *
" ..bo. ... =spoat | contigure !
0. =spont|¢nable !
" V... ... = sport U enable)
© xxx0 0100 0000 0000 = HxLIOO

=t

axU = 0400,

5,764.693
109 110

DM SYSTEM_CONTROL 1 = axu:

AXO = OxU000:
DMi DM _WAITSTATE_CONTROL } = ux0:

* imuahize sport U

»r

DM(SPORTO_CONTROL } = axv;

DM(SPORTO_TX_MULTICHANNEL _CONTROLO }
DMt SPORTO_TNX_MULTICHANNEL_CONTROLI i = axv:
DMi SPORTO_RX _MULTICHANNEL _CONTROL®) = ax:
DM SPORTO_RX _MULTICHANNEL _CONTROLI } = axw.

axv.

0o

DM(SPORTO_AUTOBUFFER _CONTROL 1 = axu:

i

*imualize sport t

.
h

DMi SPORTI CONTROL : = uxu.

DM SPORT! _AUTOBUFFER .CONTROL 1 = axu:

* lniualize the umer

-y
/

DM(TIMER _TPERIOD) = axt:
DM(TIMER _TCOUNT) = axu:
DM(TIMER _TSCALE 1 = ax0;

* enable HIP interrupts

*0 Host HDRO Wnite (Datav)
* ..«0. Host HDR1 Wnte (Datal)
-0.. Host HDR2 Wnte (Datal)

.. Host HDR3 Wnte (DSP Command)
.. Host HDR4 Wrute (DSP Signal)
... Host HDRS Write 1 Timer»

Host HDRO Read (Data0)
Host HDR] Read (Datal)
... Host HDR2 Read (Datal}
. Host HDR3 Read (DSP Command)
* l......Host HDR4 Read {DSP Stgnai)
* .0.........Host HDRS5 Read (Timer)

* xx0l 0000 xxWX) 1000 = 1)x 1008

l’!
ax0 = 0x [008:
DM(HMASK)) = axu:

i

* enable 1ntercupts

.. .o ..} Timer mnterrupt
. ..1. Sport | receive
+ e -0 Sport | transnut

5,764,693

L 000 Software interrunts
T 000 spontu recerve
.. Sport u transmut
Hip read
. Hipuwrie
iRQ2

< xxxx xxul 11000011 = oxiC2

=

IMASK = IMASK _VALLE.

* imimalize tne different secuons ot cede

Y]

cafl imitialize transmat:

{$¥essssEsEssTauREEEseTIsT I INIIISASEESEEEEsTESSassTEEEsEEERSRSESeEsENERERnS

.

* process _Jsp_command

.

* Note: stacks must be reset by this point!

.
R L R R L L

-
i

* waut for command frem the host
</
wait_for dsp_command.

wdle:

1x0 = dm(HSR6_SHADOW .,
ar = tstbit HSR _DSP _COMMAND _BIT ot axu.
1f eq jump wait _tor_dsp_command:

process _dsp_command

* HDRO contans the cammand bvie

¢/

st = DM(HIP_DSP COMMAND _SHADOW ?
.

¢ get the command type

*/

sr = ishift si bv HIP_DSP_COMMAND _SHIFT (LO):
‘e

* switch on command t\pe

.

ar = stV - TRANSMIT _COMMAND.

if eq Jump process _transmit_command.

ar = stu - RECEIVE_COMMAND.
il € JUMP Procgss receive _cumumand:

5.764.693
113 114

ir = <r) - RSST COMMAND.
if eq jump process _RSSI[_comumana.

avy = DELAY _COMMAND.
ar = st - avy:
il eq jump process _delay_command:

a0 = POWERDOWN _COMMAND
4= s - avy,
if eq jump process _powerdown _command:

ar = pass srU;
Il eq Jump process_parameler <ommand:

jn
* invahid command

.y

Jump wt_tor_dsp_command.

4 SSEESsvENESSEE NS EEsNsTIEESRcecisasastoscatEaaETEUETECatTENgEEEERREETERERERaNS,
.

* queue _sipgnal

¢ expects signal n axu

* uses secondarv register set tor vanables

L R T e R T L LR L EE L Lk o)

queue _si1gnal.
dis tnts:

I
* are we wawung tor the previous signal 1o be read by host!

o
ena see regs

ax | =dmt waiung _tor_HIP read g o,
ar = pass axi.

+f ne jump siore _sipznal:

-
/

* no: wnte signal 10 HIP
«

axl =1
dm(waiung_tor_HIP_read_flag » = axl:

dis sec_rep:

dmt HIP_DSP_SIGNAL) = axu:
set f10;

enants,
rs.

fn

* ves: save signal for later
!
store_signal:

5.764.693
115 116

hs sec_reg:

dmiib mo s = axu.
Cna inis:
ns

e L L s N e L R P e L R R LA L bbb

* HIP wnite interrupt

L L L e P T PP AR L L R LR L Ll

HIP_ nie _interrupt:

.
* znable secondary regisiers
!

€0a sec_rep:

* save HIP reauisters

axl = dmy HSR6 &
Jdmic HSR6_SHADOW) = axl:

ax0 = dm(HIP_DATAO).
dmt HIP_DATAO_SHADOW) = ixu:

axU = dmt HIP_DATAL),
dmt HIP_DATAI _SHADOW) = wx0.

ax0 = dmt HIP_DATA2),
Jdm(HIP_DATA2_SHADOW ! = ux0:

ax0 = dmt HIP_DSP_COMMAND 1

avU = Ox00[f:

ar = axy and awy.

dm¢ HIP_DSP_COMMAND_SHADOW) = ar.

i

L e L L L L L L]
.

* HIP read interrupt

L L L L P PR R L AL LR L LA L L LY]

HIP _read intermupt:

* enable secondary regisiers
=t

ena sec_reg:

5,764.693
117 118

* check siznai queue lengin

b

axu = 16:

avu =1

ar = axU - avy:

1f ne jump output_ncxt_signai.

* s1gnal queue 1s empty

o
reset 110:
ax0 =0

dmt HIP_DSP_SIGNAL) = axu.
dmi waing_for_HIP read_tlag) = ax0.

m:

"

.

signal queue s not emply

.

output_next_signat:
axU =amed, m3
dmt HIP_DSP_SIGNAL) = ax:

me

ENDMOD:

5.764.693
119 120

IV. Delav Code

4SaararvaSSsancsmavassasESEsemSmsaaSsssssnsatitssesessateRseagtttassseneTe

* DSP Delay code

* Herb Liule

AL LT] -‘.---I'II--.Il-.ll:--l-xl.....ll..'I--l‘-----I.'.--.-II'....-I--..-'--‘l
MODULE/RAM Belay _coue:

#inciude “dsp.h
#inciude "dspema.h,
#include "hip.h

CONST SPORTI _ENABLE BIT = il

* Delays are specitied in multiples ot 125 microseconds

]

CONST COUNT DELAY PLL STROBE =5, ° | nubseconds *!
CONST COUNT _DELAY P'LL_LLOCK =24 " }mhscconds *7

EXTERNAL hextet tull:
EXTERNAL process _dsp_command.
EXTERNAL wait_tor_dvp_command.
EXTERNAL queue _signal.
EXTERNAL stop _sport! senal_pon:

ENTRY process delav_command.

J¥¥SaasatantsascsatsssstanatatssssaatanasastSSetEtanasssasnastasantatanantana

* process welav_commana

«

vessaccsssesesessacasssssssstesssaNSstesanans ke ttanmcacatsasTsaanEeIRRRRTE/

process_delav_vommand:

/‘

* reset command that we recetved.
*/

ax0 = Nx0:

DM(hip_dsp_command_shadow) = axU:

/e
* disable autobuffering

.

dm(SPORT!_AUTOBUFFER _CONTROL) = ax0,

start sport {

e . IO senal word length -
00 ... Jata tormat UU = neht jusury, zero il MSBs
..i......1ven receive frame svnc

5.764.693
121 122

" ...l Linven ranmit frame sync

R Intemal recerve frame svac enaole
.. intemal transmuat frame svnc enable
. transmut frame svnc width

transmut frame svne required
recetve frame syvoc width

.. fecewve frame s\Tic required

.. intemnai senal ¢leck generation

.. multichannei ¢nable

O LI 1101 1100 1110 = fixTdee

axt = Ox7DCE.
dm(SPORTI] _CONTROL) = uwy

ix

* setup spon clock for 0.125 ms penod
“delay =6ms/0125ms
- =48

© main clock = Y 6 MHz
* pertiod =4 600000 * 0000128
* = 1200

./

ayl = COUNT_DELAY _PLL _LOCK - COUNT_DELAY_PLL_STROBE:
axl = COUNT_DELAY_PLL_LOCK.

ax0=1-1.
dmt SPORT! CLOCK MODULLUS) = ax0:

ax0=1200- 1.

dmt SPORT! _RX_FS_MODULLUS) = ux0:
* enable sport |

ax0 = dm(SYSTEM _CONTROL 1.

ar = setbit SPORT1_ENABLE _BIT vl axu:
dmt SYSTEM_CONTROL) = AR.

/e
* stan transiuung command to DAC to read channel |
* Note: thus value 15 constantiy transmtted

L2

ax0 = 0x6000;

TX1 = axQ:

/e

= waut for command from the host
-t

want_for_detay_nmeout;

ax0 =1
dm(hextet_full) = ax:

idle:

5.764.693
123 124

axi = DMthip_dsp_command _shadow «:
dr = PASS axu:

if eq Jump not_terminate_delay’

call stop_sport! _senai_pon:
sump process_dsp_command.

not_termunate_delay’
4x = dmi hextet_tull).
ar = pass axy:
If ne jump check _lor_delav_tmeout:
Jump wait_for_delav_umeout:
check _tor_delav _timeout:

Ja
* check for strobe delay compieted

ar=axt - avl:

if ne jump not_pll_suwobe delav_cnded.
ax0 = DELAY _PLL _STROBE.
call queue _signal:

not_pll _strabe _delay _ended

/o

* check tor lock delav completed

!

ar=axi - |.
axl = ar:

il ne jump wart_tor_delay_timeout.
call stop_sportl _senal _port:

ax0 = DELAY_PLL _LOCK.
call queue _signal:

Jjump wait_for_dsp_command.

ENDMOD:

5.764.693
125

V. 10 Medule
MODULE/RAM 10
minciude “dsp.n”

minciude ‘dspemd.b”
sinclude Thiph”

ENTRY sport) _rx_handle: {* interrupt service routine tor sportl 1y ¢/
ENTRY process_recetve _command.

/* calls 10 herb s moduies */

EXTERNAL wait_tor_dsp_command:
EXTERNAL stop_slot_timer.
EXTERNAL new _slot_value:
.EXTERNAL update _stot_timer:
EXTERNAL process _dsp _command:

GLOBAL hextet _tull.
GLOBAL rssi_sample:

/* calls trom decode dsp */

ENTRY get_tiftered _sample.

ENTRY adjust_saunphing_and_read _rssi:
ENTRY nae_filter:

/* calis to decode dsp */
EXTERNAL stan_decode:
EXTERNAL find_next_head:

/* network id (frame svnc) for decode */
EXTERNAL network _1d.

CONST SERIALt_ENABLE BIT = i1.
CONST READ_AD_DESCRIMINATOR _WORD =tx6000:
CONST READ_AD_RSSI_WORD = 1x7000

CONST OVERSAMPLING =o6:

VAR/DM/CIRC hexter_bufferf OVERSAMPLING].

VAR/DM hextet_tull.

VAR/DM rss1_sample: /* for conttnuous rssi readings */

CONST PAST_SIZE = 36:

VAR/DM/CIRC past_sampies(PAST _SIZET.

INIT past_samples: 0x4000,0x4000.0x4000.Cx+4000.0x4000.0x4000.
0x4000.0x4000.0x4000.0x 400 .0x4000.0x 4000
0x4000.0x4000.0x4000.0x4000.0x $000.0x4)00.
0x4000.0x3000.0x4000.0x4000.0x4(100.0x4000.
0x4000.0x4004}.0x4000.0x4000.0x4:300.0x4000.
0x4000.0 x4000.0x:4000.0x3000.0x4000.0x$000.

CONST FILTER_LENGTH = 24:
VAR/PM/CIRC tilter_response] FILTER _LENGTH].
INIT tilter _response:

126

5.764.693
127 128

HX002060.0(103600.0x t1f00.0xt£9900.0x1£2c00.0x tefc00.
Hxff5100.0x003500.0x01 1900 .0x03e700.0x15a100.0x062500.
Nx06a3u0.0x05ai00.0x032700.0x0 | 900 .0x005500.0x S 100.
defc0u.0x12:00.0x 9900 Gx 100,01 003600.0x003¢00:

T -
‘¢ Command interpreter *
I N M

process_rcceive _command
ax0 = dmihip_dsp_command _shadow +:
ar = axV - RECEIVE _STOP_SLOT_CLOCK.

= af we getissued an iavaiid recerve command from masatine. then we should */
i* not not restore 1t as this wiil cause an wnfinite leop. Put a bogus *f

/* value 1010 axu ana lump 1o the appropriate place. “f

/* on the other hand. it we receive u bogus receive commang duning recewve */
#* we pass 1t back 10 mainhne. recerve 1t here. and then aiscard it M

ax0 =0

call restore _command _impossible _kluge:
yump wal _for_dsp_command.

process _command dunng_rcceve:
/¢ Wamnine- This tunction may use axU and ar and the shifter only! "' 7

ax0 = dmchip_dsp _command _shadow). ‘* read hip host command locauon =/
ar = pass (). /* wipe out the command. !
dmthip_dsp_command_,hadow) = ar: /* s0 1t will not be re-processed */

ar =axU - RECEIVE_STOP_SLOT CLOCK.

/* first check for commands that execute without interrupung the program tlow */
/* these commands w1il execute an 'ns' and cause reguiar recetve processing */
/* to resume upon compietion. ¢

restore_command _impossible _kluge:
r* test RECEIVE _STOP_SLOT _CLOCK */
1f eq Jump stop_slot_umer: * 1ts trom cailed does our rts !

CONST xxt = RECEIVE _SLOT _LLENGTH - RECEIVE _STOP _SLOT_CLOCK.
ar=ar - xxJ;
* test RECEIVE_SLOT _LENGTH */

if eq Jump new _slot_value, /* 1ts trom cailed does our 11s. g

/= The foliowing commands cause the receive algonthun to be restarted. */
/* The stack context is cleared by popping evervthing a number of mes °!
/* we mav Now COrrupt any registers we want 10. =/

PoOp cAu. pop pc. pop loop:
pop cnu. pop pc. pop toop:
pop cntr. pop pc. pop loop:
pop cnur. pop pc. pop ioop:
pop cntr. pop pc. pop loop:

CONST xx2 = RECEIVE_LOAD_FRAME SYNC - RECEIVE _SLOT _LENGTH:
ar = ar - xx2.
/* test RECEIVE _LOAD_FRAME _SYNC -
if eq jump loadframesync:

CONST xx3 = RECEIVE_NEXT _HEAD - RECEIVE_LOAD _FRAME_SYNC:

5,764,693
129 130

ar = ar - xx3:
/= test RECEIVE_NEXT_HEAD ~*
if eq jump 1ind_next_head:

CONST xx4 = RECEIVE _START - RECEIVE_NEXT_HEAD:

'

ar = ar - xx4;
/* test RECEIVE _START *’
if eq yjump tuahze _receive:

/* The command :s unknown to the receive code. Pass 1t to maniine. */
/* restore the command - as we didn t process il. ")

/* ax0 still contasns the command we were tving 1o process =/
dmthip_dsp_command _shadow1 = axu:

ax0 =dmi SYSTEM _CONTROL 1. /= rx done. Disabie sport) */
ar = cirbit senal | _enabte _bit ot axu
dm(SYSTEM_CONTROL i = ur;

ax0 =0:
dmt SPORTI_CONTROL ! = axu:

/* exat the receive code */
Jump process_dsp_command:

.y

loadframesync: /* exectue load frame svnc command *!

s1 =dm(HIP_DATAO).
sr = Ishift s by 8 (lo)
ay0 = dJm(HIP_DATAI).

ar = srU or ayu,
dm(network _1d) = ar:
rns; /* go back to where we came from. */
</
iutalize _receive:
------ {nitialize SP1 control regusters - - =/
/.1 bl = exontermal frame syne. altemate framung, acuve low */
/*..110.1...... = 1x external frame sync. altenate framung. acuve low =/
. = internal senai clock *!
I ... = nght jusufy. zero fill unused MBS’ */
1% e 1110 = iS5 bit word length *!
/*0111110111001110 = 0x7DCE *
ax0 = 0x7DCE.
dm(SPORT1_CONTROL) = ax0: /* [Imeernal clock. 1S bit word length ¢/
/* right jusufv. zero fill unused msb's */
ax0O=1-1. /* Make 9 6 Mhz SCLK1 i
do(SPORT ! _CLOCK _MODULUS)=axu: /* from 9 60 MHz CLKIN !
ax0 = 200-t. /* divide by 200 for 48 khz !
dm(SPORTI1 _RX_FS_MODULUS=axu. '* 6x oversampling !

#*_...000000. = tx autobuftenng disabled */

5.764.693
131 132

f J00O. | = rx autoburtenine using 1w md 10 !
“5000000NBN00000 | = 110001 =
ax0=0x08)1:

Jm(SPORTI _AUTOBUFFER _CONTROL 1=axu:

10 = “hextet _butfer: /= set up hextet butfer =
D=6

md=1:

axu =i

dmthexter_tully = sxv:

axU = READ_AaD_DESCRIMINATOR_WORD. " setup 10 read descninunator

= axe: %15 rannuued by detault “!
dis M _MODE. #* configure MAC for 1 |S arnhmeuc */
ax0 = DM(SYSTEM _CONTROL 1. = enable sport | !

ar = SETBIT SERIAL! _ENABLE _BIT of axo.
dm(SYSTEM _CONTROL i = ar:

catl stop_stot_timer: S amuabize 7 hall old slots .t

jump start_decode:

(-

.- o
* Wat for 6 new sampies and then retum */
r- M
get_hextet:
imask = 0: /* begin critical section */
/* check for new commands that mav have amived. */
ax0 = dmifup_dsp_command_shadow)
ar = pass ax0.
if eq jump not_command.
imask = IMASK_VALUE.
call process_command_dunng_receive:
Jump get_hextet:
not _command.
ax0 = dmthextet_full); /=15 fifo empty ? */
ar = pass ax0:
if ne jump got _new _hextet;
/* Note: Mantpulaung 1mask dicectly instead of disabling tmierrupt. !

/* this is aecessary. as mampulaung 1mask will disable interrupts for *’
/* one cycte. which will knock us out of 1dle mode 1if we enter it ata bad +/

/* ume. *f
imask = IMASK _VALUE. /* end critical section =/
idle:

jump get_hexiet:

zot_new _hextet:
imask = IMASK _VALUE.
ax0 =0
dmthextet_full) = axu:

5,764.693
133

call uogate siot_timer:
rs:

-/
'* Interrupt service routine =

-/

sporti _rx_handie:
ena sec reg:
ax =t
dmihextet_full) = ax0:

/= This insuucuon ts only meannctul when duine conanuous */

/* RSSI. @therwise it has no ettect. ¢!

dmitrssi_sample) = rx|.

[{{H
% - "
/* Imualize filter siate °f
e i Y
e _rilter:

it = “past_sampies + FILTECR _LENGTH - OVERSAMPLING.

|1 = PAST SIZE.

mi =1

12 = “past_samples:

12 = PAST _SIZE:

ns:
Je. .- *f
/= Get one decsmated sample !
. «“t

get_filtered _sampie:
/* get 6 bvies </

call get_nextet:

/* truncate junk bits and scale O - 255100 - 65535 ¢/
14 = “hextet_butfer:

4=0.

ma=1,

cnr =6,
se=8;

si = dmoid.m4);
/* this loop shifts the data left by 8 */
do copy_toop unul ce;
st = tshift s1 tlo), st = dm(id.m4»:
copy_toop: dmil.ml) = srU:

/* apply the tir filier by multiplying and accumulaung. */
/* this muluples the data by 16384 el

4 = *tilter_response:

/* 14 =0 already 0 */

i*m4 = | already */

134

5.764.693
135 136

onr = FILTER _LENGTH-I
MXU = dm12.m i) myy = pmid.m-). mr =1,

do filter _mac unui ce:
filter.mac: mr = mr + mxu * mvU (use.mxU = dmalmb. mvU = pmu-bmidy

M =mr + MxU * MU (ush
m2 =PAST _SIZE - FILTER_LENGTH + OVERSAMPLING:

/* restore original indices */
modifva2.m2y

/* return vaiue in mri. with 2 range ot 010 16384 */
ris;

re =}

/* Adjust the sampling point and get an rssi sampie -
/* sampiing adjustment 1actor 15 In srt} -

g “

adjust_samphing_and read _rssi:
/* srU contasns numoer of sampies 1o move dectmanon pont torward by */

* (the lower sru. the otder the samples we uset -

#* SrU contuns numoer ot sampies to adpust by This value MUST be 77
‘* in the range ol -H 10 +0 !

m2 = sru;

/* modifv i2. the read point. bv adjustment tactor </
modifyti2.m2):

axQ =12, /* read point */

avl =1l. /* write point */

ar = av0 - axU: /* write potnt - read point */

/= as could be 1n range ot +/- PAST _SIZE butter length. */
ayl = PAST _SIZE:
ifltar =ar + avu:

/= ar now has a value trom v to PAST _SIZE-1 */
/= three possibilities
P FILTER_LENGTH-OVERSAMPLING «=ar < FILTER _LENGTH

no adyustment necessary

D FILTER LENGTH <= ur
add OVERSAMPLING (o read pont

3 ar <= FILTER_LENGTH-OVERSAMPLING
subtract 6 from read point

*

m2=0

av0 = FILTER _LENGTH-OVERSAMPLING:
af =ar - ayQ;

If ge jump notl:
/* ar <= FILTER _LENGTH-OVERSAMPLING */
m2 = -OVERSAMPLING.

noti.

avy = FILTER _LENGTH.

5.764.693
137 138

Jd=ar- avi,
11t jump not2.
/™ FILTER _LENGTH <=ar **
2 = OVERSAMPLING
not2:
modifyi12.m2y;

* busy wiut for autobutfer index to reach end of butter */
/* note: not gomng into IDLE moae. and not responding **
/* to commands for up t0 125 u$ =

ax0 = ~hextet _butfer + OVERSAMPLING-!.

walt

ay) =10,

ar = axv - avy,
1f ne jump wait;

/* switch channeis */
ay0 = READ_AD_RSSI WORD.
x| = ayu:

% wait for next ry sample to be aquired */
wand.

ayth = 10,

ar=axU - ay0:
if eq jump wan;

/* switch A/D back (o rcading the descnmunator output */
ax0 = READ_AD_DESCRIMINATOR _WORD:
x1 = ax0:

/* save RSSI sample 1nto avy =/
ay0 = dmthextet_buffer+OVERSAMPLING-1).

/* fix rssi sample bv copying in sample {rom atter wt */
ax0 = dmthextet_butfer:
dmihextet_butfer+OVERSAMPLING-1) = ax0:

/* rss1 sampie 1s retumed in AYD Y

as;
ENDMOD.

/*

Index Register alocauon:

IIndex & Length | Moditier !
01 RX autobuffer I RX autobuffer. aiways | |
PR +
1 1 Past sample write | Always i !
| pointer | |
2 | Past sample read | Temporary usage
{1ndex ! [

3

| ! |

5.764.693
139 140

!

11 MAC index for FIR (reusable) Alwavs | I
' muluply accumulate treusable: I
Hextet copy source treusable} '

Ao teeaemo e ommeeeseenemanmmneneaseensennnn e aea ean emeee -
51 Used by FEC correction code |
I Used for bitsyne detect butter 1
-
6l i
e e e emem e amaane. . R
- :

5,764,693
141 142

V1. Parameter Initilization Module

(4 S EE s RN aENNsRENsAREUsAERcEEETAUsATEEIEIEICNTEIILITTIRCSASSpASARARSRREnS

* DSP Parameter {nstiahizauon code

* Herb Lile

R R L e PP E LA LR L AL AL

MODULERAM parameter _ntualization _code:

sinciude " dsp.h
#nciude "hip.h

#include " dspemd.h"™;

EXTERNAL wan_tor_dsp_command:
EXTERNAL queue signal:

ENTRY process_parameter command.

R R e L R L LR L L AR L L

»

* process_parameter_command

$80000400.00900000000900000040,00000000999999°000RTEREREURERCNCESRREREOROTY/

process _parameter_command:

* test code --- 7

ax0 = Ox0.
dm(HSR6_SHADOW) = uxd.

w0 = dmi HIP_DSP_COMMAND _SHADOW 1,
ar=axv- i,
if ne jump want_tor_dsp_command:

axy = 2.
call queue_signal:

=

jump wait_for_dsp_command:

ENDMOQD:

5.764.693
143 144

VII. Powerdown Module

‘*Messssassasssessencscecsssesstrnsacces tecescenasnnenEtnEne oSN aRREEanERS

* DSP Poweraown code

* Herb Little

PP PP TP TR T Y EEE L LT
MODULE/RAM powerdown _cude:

#nclude ‘dsp.h’

#include "dspema.h”:

LEXTERNAL wail_for_dsp_command:

ENTRY process powerdown_command:

R P LR R I LT LT L LT

" process _parameler _command
.

B T e e P O R A P TR R T EL L LA Ad hbdh it

process_powerdown _command:

g

* powerdown dsp

°/

axV = dm¢ SPORT1_AUTOBUFFER _CONTROL ».
ar = sethie |3 of axu:

dmt SPORTI_AUTOBUFFER _CONTROL) = ar:

jump wait_for_dsp_comsmand.

ENDMOD.

5,764.693
145 146

VIII. RSSI Module

- setns
)“lll-------------------.--------------------.--.---I----'.'t.-"‘ seses

* DSP RSSI code

* Herb Liule

[T AL E TR L LELEL L L DL L bbb
MODULE/RAM RSSi_code:

#include "dsp.h’
#include "dspemd.h”.
#include "hip.h”

CONST SPORT1 _ENABLE BIT = i1
CONST INITIAL_DISCARD_SAMPLE_COUNT = 2:
CONST MAXIMUM _SAMPLE_COUNT = 255.

EXTERNAL hextet_tull:
EXTERNAL rssi_sampie.

EXTERNAL process_dsp_command:
EXTERNAL wait_for_dsp_command:
EXTERNAL queue_signal:

ENTRY process_RSSI_command:
ENTRY stop_spont] _senal _porn:

.VAR/DM discard_sample_count:
VAR/DM coilected _sampie_count:

T T P P PP PP PP PP PP PRSI ST R TTT R L EL LIS A AL AL A At

.

* process _RSSI_command

.

1seasseemsrersresersaresassessssssstsssettstsmomeReePeEsERsERTSaRRsATRRRRRSS

process _RSSI_command.
set f12.

I.

* reset flags

¢/

ax0=0;

dm¢ hextet_full) = ax0:

ax0 = INITIAL_DISCARD _SAMPLE_COUNT:
dm(discard_sampie_count) = ax0;

ax0 = MAXIMUM _SAMPLE_COUNT.
dm(collected _sample_count) = axu.

o
* initialize register vanables

.

* ax! = number of sampies

5.764.693
147 148

= 3vU = LLSW of accumulated samples

T at = MISW o! accumulated sampies

* at'(s set to U since we do not expect to need more than 16 bits
* 10 store the accumuiated samples.

.

axl =t}
vl =f):
al = pass U,

jump validate_RSSI_command.

* wait tor command from the host

-t

wait_for_RSSI_command:
idle:

ax0 = dmt HSR6_SHADOW).
ar = tstbit HSR_DSP_COMMAND BIT ot axu:
1f ne yump validate _RSSI _commana:

ax0 = dmt hextet_tull).
a1 = pass axv.
if ne jump collect_RSS1_sumple.

jump wait_for_RSSI_command.
validate_RSS!_command:

Ie
* reset HSR6

b

ax0 = Nx0;

dmt HSR6 SHADOW) = ax0.

.

* fetch the command byte

.

ax0 = dmt HIP_DSP_COMMAND _SHADOW 1,

1
* swatch on command type

./

ayl = RSSI_START_COMMAND:
a=ax0 - ayl:

if eq jump stant_RSSI_command:

ayl = RSSI_STOP_COMMAND:
ar=axU- avi.
if eq jump stop_RSSI_command:

I

* invalid RSSI command
]

call stop_sport| _senal_port:

reset t12:

5.764.693
149 150

nop:
settl2,
nop:
reset 112:

Jump process_dsp_command.

jte%asssssssssssssssaressssssesatasssssusnustiEnnEEEnnnget AR ORRSARAn "

* start_RSSI_command

ssssscsssssssscassssEcEEnsaREeR s sanTsann AR RaT e ERAUsaRtRNNUSREREeRRREn/

stan_RSSI_command:

I
* disable autobuffening

(i

axU =0,

Jdm(SPORT! _AUTOBUFFER _CONTROL) = axu:

I

* san sport !

..... 1110 ser1al word length - |
.00 ... Jata format)0 = right jusuty. zero fiil MSBs
*l...nvenreceive frame svnc
... mvert tranmit frame syva¢
.. intermal receive trame sync enable
.. intemal transnut frame sync enable
.. ransmut frame sync width
.. ransmst frame sync requued

* ..l......receive frame sync width

* .l recewve frame sync required

* 1. imemat senai clock generation
© 0l multichannel enable

* 0011 T101 1100 FH10 = Ux7dce
Y]

axV) =N¢7DCE;

dmt SPORTI_CONTROL) = axV:

/e
* set up sport clock
L]

* sampte rate = SO0 bits/sec

* man clock =9 6 MHz

* modulus = main_clock / sample _rate

. =9 600 000/ 500
» = 19200

*/

ax0=1t.1,

dm(SPORT1_CLOCK _MODULLS 1 = axv.

axU= 19200 - i:

5.764.693
151 152

Jdmi SPORTI1_RX_F3_MODULLUS ; = axu:

“ 2nable sport |

]

ax0 = dm¢ SYSTEM _CONTROL 1.
ar = setbit SPORT!_ENABLE _BIT ol ax0:
dm(SYSTEM _CONTROL 1 = AR:

I

* stan transnuung command to DAC to read channel |
* Note: this value is constantly transmitted

I

ax0 = (x7000;
TX1 = axv:

jump wain_for_RSSI_command:

/seesscsssssssssscesssssssnsssssusaTsscstesssenUsREscssssRsteRsRRER BTN TS

.

* stop_RSSI_command

B

sssssss
L R L LRI L R L S hb e !

stop_RSSI_command.
reset {12,

cald stop_spont| _senal_por:

/l
* divide accumulated RSSI values by number ot samples

* axl = divisor (number of samples)
* af = MSW ot dividend (0}
* av0 = LSW of divided (accumuiated RSSI vaiue)

* ayU wiit contain quouent
o

ASTAT =,
dm(HIP_DATA2)=axi : /* put# of samples .o HDR2 */
’I

* for integer divides we need to shift the dividend left one bnt
* AFAY0O=AY0 <<}

¢!

st = av0:

sr=dshift sibv { (LOY,
ay0 = srt):

af = pass srl:

CNTR = i6:

do divide _{oop unul ce.
divide _lvop: divg ax 1.

/-
* write gqouent to HIP

5,764.693
153 154

i

dm(HIP_DATAOQ 1 = avu:

ax0 = dm¢ rss1_sample . < put newest sample in HOR 1 =/
dmt HIP_DATA1 j = axu:

ax0 = RSS1_COMPLETED.
call queue_signai:

jump wan_for_dsp_command.

/'Itt.-ttt-‘lt.-:‘----lt-u------l-.-a..-.‘n-l'““"""*'."---*"-“.'--‘
.

* collect_RSS1_sample

.

ssesvesy
T T e e T PR R LT L L LR AR ki f

collect _RSSI _sample:
toggle f12;

/.
* reset tlag indicating new sample
<!
ax0=0.

DM(hextet_full) = ax0:

.
ax0 = dmi discard _sample _couat)
ar=ax0- I.
1f eq jump get_new_sampie:

dm¢ discard_sampie _count) = ar.

Jjump waie_tor_RSSI_command.
<!

get_new_sample:
/e
* only collect 255 sampies maximum
./
ax0 = dm(collected _sample_count 1.
ar=ax0- I.
if eq yjump wan_for_RSSI_command:

dm(collected_sample_count) = ar:

o
* get new sample

-t

ax0 = dmi rssi_sample):

ayl = 255,
ar=ax0 and av!.

5.764.693
155 156

* azcumulate new sampie

“y
ar = ar + avyl
avu = ar;

e
!

* increment number ot samples
L

ar=axl + i,
ax| = ar;

jump wait_tor _RSSI_command:

L L e R R R PR L)

.

* stop_sport| _scnal_pon
B T T T LT L T T T E T LR YL P Y]
sop_sporti _senal_pon:

x0 = dmt SYSTEM_CONTROL ¢,

ar = clrbit SPORTI_ENABLE _BIT ot ax0.

dmt SYSTEM _CONTROL) = ax0:

ax0 = 0.
dm(SPORTI_CONTROL) = axQ:

ns.

ENDMOD.

5.764,693
157 158

IX. Timer Code Module for slot clock timing

T e M AN EANSE S EEFLINENASANEStTEAISEEARIAISTASSEASRARSRSRNNSRRR SRNRREIRRER.

* DSP Timer code for slot clock uirrung using the sampling mterval as a
“ ume reterence,

* Based on Herb Little’s onginal slot clock code using hardware umer

-

* Mauthias Wandel

seseeNmensssEsENRIT TSN e AT TITIERERRINS A RRAREno SR RINNARB RS IR ARARETO RN/

MODULE/RAM umer_code:
EXTERNAL yueue_signal:

#include “dsp.h
#inciude "dspecmd.h”

e

* Inidal period should be 44) ms trom trahe head tcount bitsvnc "™

* of 35ms trom end of frame head. Added | ms tor mangin on i88 SW
- If slots are with respect ot start of buisvnc. we must make decoding

* pant ot the DSP code or do 1t more pipeiined tn the 188.

* Mauhias

.

CONST INITIAL _SLOT_CLOCK_PERIOD = 35 * 236 + 256:

EXTERNAL wait_for_dsp_command.

ENTRY stan_slot_timer:
ENTRY stop_siot_tumer:
ENTRY update_slot_tumer:
ENTRY new_slot_value:

VAR/DM slot_clock _penod:
GLOBAL »lot_clock_pertod.

VAR/DM coumdown:
VAR/DM slot_count_start:

. -~/
/* Stan the slot timer - called from decode. !
/o —
stan_siot_timer:

ax0 = 320: /* 40 mthiseconds at 8 khz ticks */

dm(countdown = ax0:

f1s;
i -/
+* Called to stop the timer trom runing. ot
. . .
stop_siot_tumer:

ax0 =0

dm(countdown) = axu:
s:

5.,764.693
159

-/
* This rouune 1s catled BOOO times per second while recesve ts active. =/
. : -/
update _slot_timer:
axU = dmicountdown)
ar = pass axU:
1f eq ns:
ar=axu- |,
dmtcountdown) = ar.
if ne nts:

/* counter has just counted down 1o zero. Time tor slot clock ume’ */
ax0 = RECEIVED _SLOT _CLOCK:
call queue _signal:

ax0 = dmueslot_count_start);
dmicountdown! = ax0:

fs:
. -
/* This rouune 15 called when the slot length has changed ~
i -~ et
new _siot_value:
st = dmiHIP_TIMER).
st= Ishuft s1 by 8 (Jo). /" conven to multiples of § khz -/
st = Ishift st by -3 (lo): /* whilc truncaung unwanted bus with */
/* the shifter. ~
dm(slot_count_start) = srU:

ns:

ENDMOD.

160

5,764.693

161

We claim:

1. A wireless radio modem for transferring data between
a host data processing device and a remote data processing
device or a data transmission/reception network station
comprising:

(a) transmission/reception means for transferring data at
radio frequencies between the host data processing
device and at least one of the remote data processing
device and the data transmission/reception network
station; and

(b) modulation/demodulation means. wherein the
modulation/demodulation means comprises
i. means for demodulating data received from the
transmission/reception means; and
ii. means for modulating data generated by the host data
processing device;
wherein the means for demodulating data includes fre-
quency discrimination means for discriminating at a high
intermediate frequency digital data signal states expressed in
a signal of interest received from the transmission/reception
means and the means for modulating data includes a digital
signal processor with a waveform transition lookup table for
storing a set of precomputed waveform segments that are
pieced together by the digital signal processor to form a
modulated waveform.

2. The wireless radio modem of claim 1 wherein the
transmission/reception means and the modulation/
demodulation means are together physically enclosed within
the host data processing device.

3. The wireless radio modem of claim 1. wherein the
frequency discrimination means includes one or more
electronically-coupled piezoelectric phase-shift devices.

4. The wireless radio modem of claim 1, wherein the
means for demodulating data includes a single-step down-
converter connected between the transmission/reception
means and the frequency discrimination means. for convert-
ing the signal of interest from a reception frequency to the
high intermediate frequency in a single-step.

5. The wireless radio modem of claim 1, wherein the
modulation/demodulation means operates at frequencies
outside the host data processing device internal circuitry
operational frequency range.

6. The wireless radio modem of claim 1, wherein the
precalculated waveform segments represent baseband
modulated data.

7. The wireless radio modem of claim 6. wherein the
means for modulating data includes a baseband modulator
connected to the digital signal processor for converting the
precalculated waveform segments into an analog modulated
signal.

8. The wireless radio modem of claim 1, wherein the
precalculated waveform segments represent in-phase and
quadrature phase modulated data.

9. The wireless radio modem of claim 8, wherein the
means for modulating data includes a quadrature modulator
connected to the digital signal processor for converting the
precalculated waveform segments into an analog modulated
signal.

10. A microprocessor-less radio modem for use in con-
junction with a computing device containing one or more
microprocessors, wherein at least one of the one or more

10

15

25

30

35

45

55

162

microprocessors of the computing device is utilized to
establish communications between the computing device
and one or more remote communications devices. the
microprocessor-less radio modem comprising:
(a) a receiver for the receipt of one or more received
signals from one or more of the one or more remote
communications devices;

(b) a transmitter for transmitting data to one or more of the
one or more remote communications devices; and

(c) a demodulator for demodulating data received via the
receiver, the demodulator comprising:

i. frequency conversion elements that perform a single
conversion of at least one of the one or more received
radio signals from its reception frequency to an
intermediate data discrimination frequency; and
discrimination elements that perform frequency dis-
crimination at an intermediate data discrimination
frequency, wherein the discrimination elements
include one or more electronically-coupled piezo-
electric phase-shift devices that retrieve baseband
information from the received radio signals.

11. The microprocessor-less radio modem of claim 10,
wherein the frequency conversion elements and the dis-
crimination elements operate at frequencies outside a given
operational frequency range of the computing device inter-
nal circuitry range.

12. A method for assembling waveforms from precom-
puted wave segments for transforming digital data into a
modulated waveform based upon the waveforms so precom-
puted and assembled. and the digital data received. wherein
the precomputed waveform segments represent in-phase and
quadrature phase modulated data. the method comprising
the steps of:

(a) pre-calculating the effect of a digital multibit trans-
mission stream on a waveform shape associated with
one or more particular bits contained within the digital
multibit transmission stream to create a set of the
precomputed waveforrn segments;. wherein the pre-
calculating step includes the steps of:

i. generating a set of baseband modulated waveform
segments;

ii. accumulating the phase change of the baseband
modulated waveform segments to form phase accu-
mulated data; and

iii. calculating the sine and cosine of the phase accu-
mulated data to form the in-phase and quadrature
phase modulated precomputed waveform segments;

(b) storing the set of precomputed waveform segments in
a look-up table;

(c) receiving digital data; and

(d) transforming the digital data into a modulated wave-
form by;

i. retrieving the appropriate waveform segments from
the look-up table that are associated with the data;

ii. assembling the waveform segments retrieved into a
waveform;,

iii. and transmitting the waveform to a remote data
receiver.

ii.

