attorneys at law

IIOO NEW YORK AVENUE, N W, SUITE GOO
WASHINGTON. D C 20005-3934
WWW skgf com
PHONE (202) 371-2600 FACSIMILE (202) 371-2540
KAREN R MARKOWICZ**
Heidi l Kraus Jeffrey S weaver

Steven R Ludwig	Heidi l kraus	Jeffrey S Weaver
JOHN M COVERT*	Jeffrey R Kurin	Kristin K Vidovich
LINDA E ALCORN	Raymond Millien	Kendrick P Patterson
Raz e fleshner	Patrick D O'Brien	Donald J Featherstone
Robert C Millonig	LAWRENCE B Bugalisky	Grant E Reed
Michael V Messinger	Crystal D Sayles*	Vincent l Capuano
JUDITH U KIM	Edward W Yee	JOHN A HARROUN*
TIMOTHY J SHEA, JR	Albert l Ferro*	Matthew M Catlett*
DONALD R MCPHAIL	DONALD R BANOWIT	Nathan K Kelley*
Patrick E Garrett	Peter a Jackman	Albert J Fasulo III
Stephen G Whiteside	molly a mccall	W Brian Edge*
Jeffrey T Helvey*	teresa u Medler	

- bar Other than DC **registered patent agents

Robert Greene Sterne EOWARD J KESSLER JORGE A GOLDSTEIN Samuel l fox DAVID K S CORNWELL Robert W Esmond Tracy-Gene G Durkin Michele a Cimbala Michael b Ray ROBERT E SOKOHL Eric K. Steffe michael 0 lee
effrey T Helvey* Teresa u Medler

KRISTIN K VIDOVICH KENDRICK P PATTERSON DONALD J FEATHERSTONE Grant E REED JOHN A HARROUN* MATTHEW M CATLETT* Nathan K Kelley* Albert J Fasulo II W BRIAN EDGE*

August 4, 2000

Re: U.S. Non-Provisional Utility Patent Application under 37 C.F.R. § 1.53(b) Appl. No. To be assigned; Filed: August 4, 2000
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit Implementations
Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Jr., Gregory S. Rawlins, and Michael W. Rawlins
Our Ref: 1744.0630003
Sir:
The following documents are forwarded herewith for appropriate action by the U.S. Patent and Trademark Office:

1. USPTO Utility Patent Application Transmittal Form PTO/SB/05;
2. U.S. Utility Patent Application entitled:

Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit Implementations
and naming as inventors:
David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Jr., Gregory S. Rawlins, and Michael W. Rawlins

Commissioner for Patents
August 4, 2000
Page 2
the application comprising:
a. specification containing:
i. $\quad \underline{98}$ pages of description prior to the claims;
ii. $\quad \underline{7}$ pages of claims ($\underline{40}$ claims);
iii. a one (1) page abstract;
b. Two-hundred and eight (208) sheets of drawings: (Figures $1 \mathrm{~A}-\mathrm{D}_{2}$ 2A, 2B, 3-14, 15A-F, 16-19, 20A, 20A-1, 20B-F, 21, 22A-F, 23A, $24 \mathrm{~A}-\mathrm{J}, 25-45,46 \mathrm{~A}, 46 \mathrm{~B}, 47,48,49 \mathrm{~A}, 49 \mathrm{~B}, 50,51,52 \mathrm{~A}-\mathrm{C}, 53-55$, $56 \mathrm{~A}, 56 \mathrm{~B}, 57-60,61 \mathrm{~A}, 61 \mathrm{~B}, 62-66,67 \mathrm{~A}, 67 \mathrm{~B}, 68 \mathrm{~A}, 68 \mathrm{~B}, 69 \mathrm{~A}$, 69B, 70A-S, 71A-D, 72A-J, 73A, 73B, 74, 75A-C, 76A, 76B, 77, 78, 79A-D, 80, 81A-C, 82-88, 89A-E, 90A-D, 91-94, 95A-C, $96-$ (61);
3. 37 C.F.R. § 1.136(a)(3) Authorization to Treat a Reply As Incorporating An Extension of Time (in duplicate); and
4. Two (2) return postcards.

It is respectfully requested that, of the two attached postcards, one be stamped with the filing date of these documents and returned to our courier, and the other, prepaid postcard, be stamped with the filing date and unofficial application number and returned as soon as possible.

This patent application is being submitted under 37 C.F.R. § 1.53(b) without Declaration and without filing fee.

Commissioner for Patents
August 4, 2000
Page 3
This application claims priority to U.S. Provisional Application No. 60/147,129, filed August 4, 1999; U.S. Application No. 09/525,615, filed on March 14, 2000; and U.S. Application No. 09/526,041, filed on March 14, 2000.

Respectfully submitted,

0630003 pt Under the Paperwork Reduction Act of 1995 , no persons are required to respond to a collection of nnformation unless it displays a valid OMB control number.

17. If a CONTINUING APPLICATION, check appropriate box, and supply the requiste information below and in a preliminary amendment:
\square Continuation $\quad \square$ Divisional $\quad \square$ Continuation-in-Part (CIP) of prior application No: \qquad 1

Prior application information: Examiner \qquad Group/Art Unit: \qquad
18. CORRESPONDENCE ADDRESS

Customer Number or Bar Code Label		mer.No. or Attach bar code label here)...........		区 Correspondence address below	
NAME	Sterne, Kessler, Goldstein \& Fox P.l.l.c.				
	Attorneys at Law				
ADDRESS	Suite 600, 1100 New York Avenue, N.W				
CITY	Washington	STATE	DC	ZIP CODE	20005-3934
COUNTRY	USA	TELEPHONE	(202) 371-2600	FAX	(202) 371-2540

Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including MultiPhase Embodiments and Circuit Implementations

David F. Sorrells
Michael J. Bultman
Robert W. Cook
Richard C. Looke
Charley D. Moses, Jr.
Gregory S. Rawlins
Michael W. Rawlins

This application claims the benefit of the following: U.S. Provisional Application No.60/147,129, filed on August 4, 1999; U.S. Application No. 09/525,615, filed on March 14, 2000; and U.S. Application No. 09/526,041, filed on March 14, 2000, all of which are incorporated herein by reference in their entireties.

Cross-Reference to Other Applications

The following applications of common assignee are related to the present application, and are herein incorporated by reference in their entireties:
"Method and System for Down-Converting Electromagnetic Signals," Ser. No. 09/176,022, filed October 21, 1998, issued as U.S. Patent No. 6,061,551 on May 9, 2000.
"Method and System for Down-Converting Electromagnetic Signals Having Optimized Switch Structures," Ser. No. 09/293,095, filed April 16, 1999.
"Method and System for Down-Converting Electromagnetic Signals Including Resonant Structures for Enhanced Energy Transfer," Ser. No. 09/293,342, filed April 16, 1999.
"Method and System for Frequency Up-Conversion," Ser. No. 09/176, 154, filed October 21, 1998, issued as U.S. Patent No. 6,091,940 on July 18, 2000.
"Method and System for Frequency Up-Conversion Having Optimized Switch Structures," Ser. No. 09/293,097, filed April 16, 1999.
"Method and System for Ensuring Reception of a Communications Signal," Ser. No. 09/176,415, filed October 21, 1998, issued as U.S. Patent No. 6,061,555 on May 9 , 2000.
"Integrated Frequency Translation And Selectivity,"Ser. No. 09/175,966, filed October 21, 1998, issued as U.S. Patent No. 6,049, 706 on April 11, 2000.
"Integrated Frequency Translation and Selectivity with a Variety of Filter Embodiments," Ser. No. 09/293,283, filed April 16, 1999.
"Applications of Universal Frequency Translation," Ser. No. 09/261,129, filed March 3, 1999.
"Method and System forDown-Converting anElectromagnetic Signal, Transforms For Same, and Aperture Relationships", Ser. No. 09/550,644, filed on April 14, 2000.
"Wireless Local Area Network (WLAN) Technology and Applications Including Techniques of Universal Frequency Translation", Attorney Docket No. 1744.0630002, filed on August 4, 2000.

Background of the Invention

Field of the Invention

The present invention is generally related to wireless local area networks (WLANs), and more particularly, to WLANs that utilize universal frequency translation technology for frequency translation, and applications of same.

Related Art

Wireless LANs exist for receiving and transmitting information to/from mobile terminals using electromagnetic (EM) signals. Conventional wireless communications circuitry is complex and has a large number of circuit parts. This complexity and high parts count increases overall cost. Additionally, higher part counts result in higher power
consumption, which is undesirable, particularly in battery powered wireless units. Additionally, various communication components exist for performing frequency downconversion, frequency up-conversion, and filtering. Also, schemes exist for signal reception in the face of potential jamming signals. Summary of the Invention

The present invention is directed to a wireless local area network (WLAN) that includes one or more WLAN devices (also called stations, terminals, access points, client devices, or infrastructure devices) for effecting wireless communications over the WLAN. The WLAN device includes at least an antenna, a receiver, and a transmitter for effecting wireless communications over the WLAN. Additionally, the WLAN device may also include a LNA/PA module, a control signal generator, a demodulation/modulation facilitation module, and a media access control (MAC) interface. The WLAN receiver includes at least one universal frequency translation module that frequency down-converts a received electromagnetic (EM) signal. In embodiments, the UFT based receiver is configured in a multi-phase embodiment to reduce or eliminate re-radiation that is caused by DC offset. The WLAN transmitter includes at least one universal frequency translation module that frequency up-converts a baseband signal in preparation for transmission over the WLAN. In embodiments, the UFT based transmitter is configured in a differential and/or multi-phase embodiment to reduce carrier insertion and spectral growth in the transmitted signal.

WLANs exhibit multiple advantages by using UFT modules for frequency translation. These advantages include, but are not limited to: lower power consumption, longer battery life, fewer parts, lower cost, less tuning, and more effective signal transmission and reception. These advantages are possible because the UFT module enables direct frequency conversion in an efficient manner with minimal signal distortion.

The structure and operation of embodiments of the UFT module, and various applications of the same are described in detail in the following sections.

Further features and advantages of the invention, as well as the structure and operation of various embodiments of the invention, are described in detail below with reference to the accompanying drawings. The drawing in which an element first appears is typically indicated by the leftmost character(s) and/or digit(s) in the corresponding reference number.

Brief Description of the Figures

The present invention will be described with reference to the accompanying drawings, wherein:

FIG. 1A is a block diagram of a universal frequency translation (UFT) module according to an embodiment of the invention;

FIG. 1B is a more detailed diagram of a universal frequency translation (UFT) module according to an embodiment of the invention;

FIG. 1C illustrates a UFT module used in a universal frequency down-conversion (UFD) module according to an embodiment of the invention;

FIG. 1D illustrates a UFT module used in a universal frequency up-conversion (UFU) module according to an embodiment of the invention;

FIG. 2A-2B illustrate block diagrams of universal frequency translation (UFT) modules according to an embodiment of the invention;

FIG. 3 is a block diagram of a universal frequency up-conversion (UFU) module according to an embodiment of the invention;

FIG. 4 is a more detailed diagram of a universal frequency up-conversion (UFU) module according to an embodiment of the invention;

FIG. 5 is a block diagram of a universal frequency up-conversion (UFU) module according to an alternative embodiment of the invention;

FIGS. 6A-6I illustrate example waveforms used to describe the operation of the UFU module;

FIG. 7 illustrates a UFT module used in a receiver according to an embodiment of the invention;

FIG. 8 illustrates a UFT module used in a transmitter according to an embodiment of the invention;

FIG. 9 illustrates an environment comprising a transmitter and a receiver, each of which may be implemented using a UFT module of the invention;

FIG. 10 illustrates a transceiver according to an embodiment of the invention;
FIG. 11 illustrates a transceiver according to an alternative embodiment of the invention;

FIG. 12 illustrates an environment comprising a transmitter and a receiver, each of which may be implemented using enhanced signal reception (ESR) components of the invention;

FIG. 13 illustrates a UFT module used in a unified down-conversion and filtering (UDF) module according to an embodiment of the invention;

FIG. 14 illustrates an example receiver implemented using a UDF module according to an embodiment of the invention;

FIGS. 15A-15F illustrate example applications of the UDF module according to embodiments of the invention;

FIG. 16 illustrates an environment comprising a transmitter and a receiver, each of which may be implemented using enhanced signal reception (ESR) components of the invention, wherein the receiver may be further implemented using one or more UFD modules of the invention;

FIG. 17 illustrates a unified down-converting and filtering (UDF) module according to an embodiment of the invention;

FIG. 18 is a table of example values at nodes in the UDF module of FIG. 19;
FIG. 19 is a detailed diagram of an example UDF module according to an embodiment of the invention;

FIGS. 20A and 20A-1 are example aliasing modules according to embodiments of the invention;

FIGS. 20B-20F are example waveforms used to describe the operation of the aliasing modules of FIGS. 20A and 20A-1;

FIG. 21 illustrates an enhanced signal reception system according to an embodiment of the invention;

FIGS. 22A-22F are example waveforms used to describe the system of FIG. 21;
FIG. 23A illustrates an example transmitter in an enhanced signal reception system according to an embodiment of the invention;

FIGS. 23B and 23C are example waveforms used to further describe the enhanced signal reception system according to an embodiment of the invention;

FIG. 23D illustrates another example transmitter in an enhanced signal reception system according to an embodiment of the invention;

FIGS. 23E and 23 F are example waveforms used to further describe the enhanced signal reception system according to an embodiment of the invention;

FIG. 24A illustrates an example receiver in an enhanced signal reception system according to an embodiment of the invention;

FIGS. 24B-24J are example waveforms used to further describe the enhanced signal reception system according to an embodiment of the invention;

FIG. 25 illustrates a block diagram of an example computer network;
FIG. 26 illustrates a block diagram of an example computer network;
FIG. 27 illustrates a block diagram of an example wireless interface;
FIG. 28 illustrates an example heterodyne implementation of the wireless interface illustrated in FIG. 27;

FIG. 29 illustrates an example in-phase/quadrature-phase (I/Q) heterodyne implementation of the interface illustrated in FIG. 27;

FIG. 30 illustrates an example high level block diagram of the interface illustrated in FIG. 27, in accordance with the present invention;

FIG. 31 illustrates a example block diagram of the interface illustrated in FIG. 29, in accordance with the invention;

FIG. 32 illustrates an example I/Q implementation of the interface illustrated in FIG.31;

FIGS. 33-38 illustrate example environments encompassed by the invention;
FIG. 39 illustrates a block diagram of a WLAN interface according to an embodiment of the invention;

FIG. 40 illustrates a WLAN receiver according to an embodiment of the invention;
FIG. 41 illustrates a WLAN transmitter according to an embodiment of the invention;

FIGS. 42-44 are example implementations of a WLAN interface;
FIGS. 45, 46A, and 46B relate to an example MAC interface for an example WLAN interface embodiment;

FIGS. 47, 48, 49A, and 49B relate to an example demodulator/modulator facilitation module for an example WLAN interface embodiment;

FIGS. 50, 51, 52A, 52B, and 52 C relate to an example alternate demodulator/modulator facilitation module for an example WLAN interface embodiment;

FIGS. 53 and 54 relate to an example receiver for an example WLAN interface embodiment;

FIGS. 55, 56A, and 56B relate to an example synthesizer for an example WLAN interface embodiment;

FIGS. 57, 58, 59, 60, 61A, and 61B relate to an example transmitter for an example WLAN interface embodiment;

FIGS. 62 and 63 relate to an example motherboard for an example WLAN interface embodiment;

FIGS. 64-66 relate to example LNAs for an example WLAN interface embodiment;

FIGS. 67A-B illustrate IQ receivers having UFT modules in a series and shunt configurations, according to embodiments of the invention;

FIGS. 68A-B illustrate IQ receivers having UFT modules with delayed control signals for quadrature implementation, according to embodiments of the present invention;

FIGS. 69A-B illustrate IQ receivers having FET implementations, according to embodiments of the invention;

FIG. 70A illustrates an IQ receiver having shunt UFT modules according to embodiments of the invention;

FIG. 70B illustrates control signal generator embodiments for receiver 7000 according to embodiments of the invention;

FIGS. 70C-D illustrate various control signal waveforms according to embodiments of the invention;

FIG. 70E illustrates an example IQ modulation receiver embodiment according to embodiments of the invention;

FIGS. 70F-P illustrate example waveforms that are representative of the IQ receiver in FIG. 70E;

FIGS. 70Q-R illustrate single channel receiver embodiments according to embodiments of the invention;

FIG. 70S illustrates a FET configuration of an IQ receiver embodiment according to embodiments of the invention;

FIG. 71A illustrate a balanced transmitter 7102, according to an embodiment of the present invention;

FIGs. 71B-C illustrate example waveforms that are associated with the balanced transmitter 7102, according to an embodiment of the present invention;

FIG. 71D illustrates example FET configurations of the balanced transmitter 7102, according to embodiments of the present invention;

FIGs. 72A-I illustrate various example timing diagrams that are associated with the transmitter 7102, according to embodiments of the present invention;

FIG. 72J illustrates an example frequency spectrum that is associated with a modulator 7104, according to embodiments of the present invention;

FIG. 73A illustrate a transmitter 7302 that is configured for carrier insertion, according to embodiments of the present invention;

FIG. 73B illustrates example signals associated with the transmitter 7302, according to embodiments of the invention;

FIG. 74 illustrates an IQ balanced transmitter 7420, according to embodiments of the present invention;

FIGs. 75A-C illustrate various example signal diagrams associated with the balanced transmitter 7420 in FIG. 74;

FIG. 76A illustrates an IQ balanced transmitter 7608 according to embodiments of the invention;

FIG. 76B illustrates an IQ balanced modulator 7618 according to embodiments of the invention;

FIG. 77 illustrates an IQ balanced modulator 7702 configured for carrier insertion according to embodiments of the invention;

FIG. 78 illustrates an IQ balanced modulator 7802 configured for carrier insertion according to embodiments of the invention;

FIG. 79A illustrate a transmitter 7900, according to embodiments of the present invention;

FIGs. 79B-C illustrate various frequency spectrums that are associated with the transmitter 7900;

FIG. 79D illustrates a FET configuration for the transmitter 7900, according to embodiments of the present invention;

FIG. 80 illustrates an IQ transmitter 8000 , according to embodiments of the present invention;

FIGs. 81A-C illustrate various frequency spectrums that are associated with the IQ transmitter 8000, according to embodiments of the present invention;

FIG. 82 illustrates an IQ transmitter 8200, according to embodiments of the present invention;

FIG. 83 illustrates an IQ transmitter 8300 , according to embodiments of the invention;

FIG. 84 illustrates a flowchart 8400 that is associated with the transmitter 7102 in the FIG. 71 A , according to embodiments of the invention;

FIG. 85 illustrates a flowchart 8500 that further defines the flowchart 8400 in the FIG. 84, and is associated with the transmitter 7102 according to embodiments of the invention;

FIG. 86 illustrates a flowchart 8600 that is associated with the transmitter 7900 and further defines the flowchart 8400 in the FIG. 84, according to embodiments of the invention;

FIG. 87 illustrates a flowchart 8700 , that is associated with the transmitter 7420 in the FIG. 74, according to embodiments of the invention;

FIG. 88 illustrates a flowchart 8800 that is associated with the transmitter 8000 , according to embodiments of the invention;

FIG. 89A illustrate a pulse generator according to embodiments of the invention;
FIGS. 89B-C illustrate various example signal diagrams associated with the pulse generator in FIG. 89A, according to embodiments of the invention;

FIG. 89D-E illustrate various example pulse generators according to embodiments of the present invention;

FIGS. 90A-D illustrates various implementation circuits for the modulator 7410, according to embodiments of the present invention;

FIG. 91 illustrates an IQ transceiver 9100 according to embodiments of the present invention;

FIG. 92 illustrates direct sequence spread spectrum according to embodiments of the present invention;

FIG. 93 illustrates the LNA/PA module 3904 according to embodiments of the present invention;

FIG. 94 illustrates a WLAN device 9400 , according to embodiments of the invention of the present invention; and

FIGs. 95A-C, and FIGs. 96-161 illustrate schematics for an integrated circuit implementation example of the present invention.

Detailed Description of the Preferred Embodiments

Table of Contents

1. Universal Frequency Translation
2. Frequency Down-Conversion
3. Frequency Up-Conversion
4. Enhanced Signal Reception
5. Unified Down-Conversion and Filtering
6. Example Application Embodiments of the Invention
6.1 Data Communication
6.1.1 Example Implementations: Interfaces, Wireless Modems, Wireless LANs, etc.
6.1.2 Example Modifications
6.2 Other Example Applications
7.0 Example WLAN Implementation Embodiments
7.1 Architecture
7.2 Receiver
7.2.1 IQ Receiver
7.2.2 Multi-Phase IQ Receiver
7.2.2.1Example I/Q Modulation Control Signal Generator Embodiments

7.2.2.2 Implementation of Multi-phase I/Q Modulation Receiver Embodiment with Exemplary Waveforms

7.2.2.3 Example Single Channel Receiver Embodiment
7.2.2.4 Alternative Example I/Q Modulation Receiver Embodiment
7.3 Transmitter
7.3.1 Universal Transmitter with 2 UFT Modules
7.3.1.1 Balanced Modulator Detailed Description
7.3.1.2 Balanced Modulator Example Signal Diagrams and Mathematical Description
7.3.1.3 Balanced Modulator Having a Shunt Configuration 7.3.1.4 Balanced Modulator FET Configuration
7.3.1.5 Universal Transmitter Configured for Carrier Insertion
7.3.2 Universal Transmitter In IQ Configuration
7.3.2.1 IQ Transmitter Using Series-Type Balanced Modulator
7.3.2.2 IQ Transmitter Using Shunt-Type Balanced Modulator
7.3.2.3 IQ Transmitters Configured for Carrier Insertion
7.4 Transceiver Embodiments
7.5 Demodulator/Modulator Facilitation Module
7.6 MAC Interface
7.7 Control Signal Generator - Synthesizer
7.8 LNA/PA
8.0 802.11 Physical Layer Configurations
9.0 Appendix
10.0 Conclusion

1. Universal Frequency Translation

The present invention is related to frequency translation, and applications of same. Such applications include, but are not limited to, frequency down-conversion, frequency up-conversion, enhanced signal reception, unified down-conversion and filtering, and combinations and applications of same.

FIG. 1A illustrates a universal frequency translation (UFT) module 102 according to embodiments of the invention. (The UFT module is also sometimes called a universal frequency translator, or a universal translator.)

As indicated by the example of FIG. 1A, some embodiments of the UFT module 102 include three ports (nodes), designated in FIG. 1A as Port 1, Port 2, and Port 3. Other UFT embodiments include other than three ports.

Generally, the UFT module 102 (perhaps in combination with other components) operates to generate an output signal from an input signal, where the frequency of the output signal differs from the frequency of the input signal. In other words, the UFT module 102 (and perhaps other components) operates to generate the output signal from the input signal by translating the frequency (and perhaps other characteristics) of the input signal to the frequency (and perhaps other characteristics) of the output signal.

An example embodiment of the UFT module 103 is generally illustrated in FIG. 1B. Generally, the UFT module 103 includes a switch 106 controlled by a control signal 108. The switch 106 is said to be a controlled switch.

As noted above, some UFT embodiments include other than three ports. For example, and without limitation, FIG. 2 illustrates an example UFT module 202. The example UFT module 202 includes a diode 204 having two ports, designated as Port 1 and Port $2 / 3$. This embodiment does not include a third port, as indicated by the dotted line around the "Port 3" label.

The UFT module is a very powerful and flexible device. Its flexibility is illustrated, in part, by the wide range of applications in which it can be used. Its power is illustrated, in part, by the usefulness and performance of such applications.

For example, a UFT module 115 can be used in a universal frequency downconversion (UFD) module 114, an example of which is shown in FIG. 1C. In this capacity, the UFT module 115 frequency down-converts an input signal to an output signal.

As another example, as shown in FIG. 1D, a UFT module 117 can be used in a universal frequency up-conversion (UFU) module 116. In this capacity, the UFT module 117 frequency up-converts an input signal to an output signal.

These and other applications of the UFT module are described below. Additional applications of the UFT module will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. In some applications, the UFT module is a required component. In other applications, the UFT module is an optional component.

2. Frequency Down-Conversion

The present invention is directed to systems and methods of universal frequency down-conversion, and applications of same.

In particular, the following discussion describes down-converting using a Universal Frequency Translation Module. The down-conversion of an EM signal by aliasing the EM signal at an aliasing rate is fully described in co-pending U.S. Patent Application entitled "Method and System for Down-Converting Electromagnetic Signals," Ser. No. 09/176,022, filed October 21, 1998, issued as U.S. Patent No. 6,061,551 on May 9, 2000, the full disclosure of which is incorporated herein by reference. A relevant portion of the above mentioned patent application is summarized below to describe down-converting an input signal to produce a down-converted signal that exists at a lower frequency or a baseband signal.

FIG. 20A illustrates an aliasing module 2000 (also called a universal frequency down-conversion module) for down-conversion using a universal frequency translation (UFT) module 2002 which down-converts an EM input signal 2004. In particular embodiments, aliasing module 2000 includes a switch 2008 and a capacitor 2010. The electronic alignment of the circuit components is flexible. That is, in one implementation,
the switch 2008 is in series with input signal 2004 and capacitor 2010 is shunted to ground (although it may be other than ground in configurations such as differential mode). In a second implementation (see FIG. 20A-1), the capacitor 2010 is in series with the input signal 2004 and the switch 2008 is shunted to ground (although it may be other than ground in configurations such as differential mode). Aliasing module 2000 with UFT module 2002 can be easily tailored to down-convert a wide variety of electromagnetic signals using aliasing frequencies that are well below the frequencies of the EM input signal 2004.

In one implementation, aliasing module 2000 down-converts the input signal 2004 to an intermediate frequency (IF) signal. In another implementation, the aliasing module 2000 down-converts the input signal 2004 to a demodulated baseband signal. In yet another implementation, the input signal 2004 is a frequency modulated (FM) signal, and the aliasing module 2000 down-converts it to a non-FM signal, such as a phase modulated (PM) signal or an amplitude modulated (AM) signal. Each of the above implementations is described below.

In an embodiment, the control signal 2006 includes a train of pulses that repeat at an aliasing rate that is equal to, or less than, twice the frequency of the input signal 2004. In this embodiment, the control signal 2006 is referred to herein as an aliasing signal because it is below the Nyquist rate for the frequency of the input signal 2004. Preferably, the frequency of control signal 2006 is much less than the input signal 2004.

A train of pulses 2018 as shown in FIG. 20D controls the switch 2008 to alias the input signal 2004 with the control signal 2006 to generate a down-converted output signal 2012. More specifically, in an embodiment, switch 2008 closes on a first edge of each pulse 2020 of FIG. 20D and opens on a second edge of each pulse. When the switch 2008 is closed, the input signal 2004 is coupled to the capacitor 2010, and charge is transferred from the input signal to the capacitor 2010. The charge stored during successive pulses forms down-converted output signal 2012.

Exemplary waveforms are shown in FIGS. 20B-20F.
FIG. 20B illustrates an analog amplitude modulated (AM) carrier signal 2014 that is an example of input signal 2004. For illustrative purposes, in FIG. 20C, an analog AM
carrier signal portion 2016 illustrates a portion of the analog AM carrier signal 2014 on an expanded time scale. The analog AM carrier signal portion 2016 illustrates the analog AM carrier signal 2014 from time t_{0} to time t_{1}.

FIG. 20D illustrates an exemplary aliasing signal 2018 that is an example of control signal 2006. Aliasing signal 2018 is on approximately the same time scale as the analog AM carrier signal portion 2016. In the example shown in FIG. 20D, the aliasing signal 2018 includes a train of pulses 2020 having negligible apertures that tend towards zero (the invention is not limited to this embodiment, as discussed below). The pulse aperture may also be referred to as the pulse width as will be understood by those skilled in the art(s). The pulses 2020 repeat at an aliasing rate, or pulse repetition rate of aliasing signal 2018. The aliasing rate is determined as described below, and further described in co-pending U.S. Patent Application entitled "Method and System for Down-converting Electromagnetic Signals," Application No. 09/176,022, Attorney Docket Number 1744.0010000, issued as U.S. Patent No. 6,061,551 on May 9, 2000.

As noted above, the train of pulses 2020 (i.e., control signal 2006) control the switch 2008 to alias the analog AM carrier signal 2016 (i.e., input signal 2004) at the aliasing rate of the aliasing signal 2018. Specifically, in this embodiment, the switch 2008 closes on a first edge of each pulse and opens on a second edge of each pulse. When the switch 2008 is closed, input signal 2004 is coupled to the capacitor 2010, and charge is transferred from the input signal 2004 to the capacitor 2010. The charge transferred during a pulse is referred to herein as an under-sample. Exemplary under-samples 2022 form down-converted signal portion 2024 (FIG. 20E) that corresponds to the analog AM carrier signal portion 2016 (FIG. 20C) and the train of pulses 2020 (FIG. 20D). The charge stored during successive under-samples of AM carrier signal 2014 form the downconverted signal 2024 (FIG. 20E) that is an example of down-converted output signal 2012 (FIG. 20A). In FIG. 20F, a demodulated baseband signal 2026 represents the demodulated baseband signal 2024 after filtering on a compressed time scale. As illustrated, down-converted signal 2026 has substantially the same "amplitude envelope" as AM carrier signal 2014. Therefore, FIGS. 20B-20F illustrate down-conversion of AM carrier signal 2014.

The waveforms shown in FIGS. 20B-20F are discussed herein for illustrative purposes only, and are not limiting. Additional exemplary time domain and frequency domain drawings, and exemplary methods and systems of the invention relating thereto, are disclosed in co-pending U.S. Patent Application entitled "Method and System for Down-converting Electromagnetic Signals," Application No.09/176,022, Attorney Docket Number 1744.0010000, issued as U.S. Patent No. 6,061,551 on May 9, 2000.

The aliasing rate of control signal 2006 determines whether the input signal 2004 is down-converted to an IF signal, down-converted to a demodulated baseband signal, or down-converted from an FM signal to a PM or an AM signal. Generally, relationships between the input signal 2004, the aliasing rate of the control signal 2006, and the downconverted output signal 2012 are illustrated below:
(Freq. of input signal 2004) $=n^{\bullet}$ (Freq. of control signal 2006) \pm (Freq. of down-converted output signal 2012)

For the examples contained herein, only the " + " condition will be discussed. The value of n represents a harmonic or sub-harmonic of input signal 2004 (e.g., $n=0.5,1,2,3$. . . .).

When the aliasing rate of control signal 2006 is off-set from the frequency of input signal 2004, or off-set from a harmonic or sub-harmonic thereof, input signal 2004 is down-converted to an IF signal. This is because the under-sampling pulses occur at different phases of subsequent cycles of input signal 2004. As a result, the under-samples form a lower frequency oscillating pattern. If the input signal 2004 includes lower frequency changes, such as amplitude, frequency, phase, etc., or any combination thereof, the charge stored during associated under-samples reflects the lower frequency changes, resulting in similar changes on the down-converted IF signal. For example, to downconvert a 901 MHZ input signal to a 1 MHZ IF signal, the frequency of the control signal 2006 would be calculated as follows:

$$
\left(\text { Freq }_{\text {input }}-\mathrm{Freq}_{\mathrm{IF}}\right) / n=\text { Freq }_{\text {control }}
$$

$$
(901 \mathrm{MHZ}-1 \mathrm{MHZ}) / n \quad=900 / n
$$

For $n=0.5,1,2,3,4$, etc., the frequency of the control signal 2006 would be substantially equal to $1.8 \mathrm{GHz}, 900 \mathrm{MHZ}, 450 \mathrm{MHZ}, 300 \mathrm{MHZ}, 225 \mathrm{MHZ}$, etc.

Exemplary time domain and frequency domain drawings, illustrating down- conversion of analog and digital AM, PM and FM signals to IF signals, and exemplary methods and systems thereof, are disclosed in co-pending U.S. Patent Application entitled "Method and System for Down-converting Electromagnetic Signals," Application No. 09/176,022, Attorney Docket Number 1744.0010000, issued as U.S. Patent No. $6,061,551$ on May 9, 2000.

Alternatively, when the aliasing rate of the control signal 2006 is substantially equal to the frequency of the input signal 2004, or substantially equal to a harmonic or sub-harmonic thereof, input signal 2004 is directly down-converted to a demodulated baseband signal. This is because, without modulation, the under-sampling pulses occur at the same point of subsequent cycles of the input signal 2004. As a result, the undersamples form a constant output baseband signal. If the input signal 2004 includes lower frequency changes, such as amplitude, frequency, phase, etc., or any combination thereof, the charge stored during associated under-samples reflects the lower frequency changes, resulting in similar changes on the demodulated baseband signal. For example, to directly down-convert a 900 MHZ input signal to a demodulated baseband signal (i.e., zero IF), the frequency of the control signal 2006 would be calculated as follows:

$$
\begin{aligned}
& \left(\text { Freq }_{\text {input }}-\text { Freq }_{\text {IF }}\right) / n=\text { Freq }_{\text {control }} \\
& (900 \mathrm{MHZ}-0 \mathrm{MHZ}) / n \quad=900 \mathrm{MHZ} / n
\end{aligned}
$$

For $n=0.5,1,2,3,4$, etc., the frequency of the control signal 2006 should be substantially equal to $1.8 \mathrm{GHz}, 900 \mathrm{MHZ}, 450 \mathrm{MHZ}, 300 \mathrm{MHZ}, 225 \mathrm{MHZ}$, etc.

Exemplary time domain and frequency domain drawings, illustrating direct downconversion of analog and digital AM and PM signals to demodulated baseband signals, and exemplary methods and systems thereof, are disclosed in the co-pending U.S. Patent

Application entitled "Method and System for Down-convertingElectromagnetic Signals," Application No. 09/176,022, issued as U.S. Patent No. 6,061,551 on May 9, 2000.

Alternatively, to down-convert an input FM signal to a non-FM signal, a frequency within the FM bandwidth must be down-converted to baseband (i.e., zero IF). As an example, to down-convert a frequency shift keying (FSK) signal (a sub-set of FM) to a phase shift keying (PSK) signal (a subset of PM), the mid-point between a lower frequency F_{1} and an upper frequency F_{2} (that is, $\left[\left(F_{1}+F_{2}\right) \div 2\right]$) of the FSK signal is down-converted to zero IF. For example, to down-convert an $F S K$ signal having F_{1} equal to 899 MHZ and F_{2} equal to 901 MHZ , to a PSK signal, the aliasing rate of the control signal 2006 would be calculated as follows:

$$
\begin{aligned}
\text { Frequency of the input } & =\left(\mathrm{F}_{1}+\mathrm{F}_{2}\right) \div 2 \\
& =(899 \mathrm{MHZ}+901 \mathrm{MHZ}) \div 2 \\
& =900 \mathrm{MHZ}
\end{aligned}
$$

Frequency of the down-converted signal $=0$ (i.e., baseband)

$$
\begin{aligned}
& \left(\text { Freq }_{\text {input }}-\text { Freq }_{\text {IF }}\right) / n=\text { Freq }_{\text {control }} \\
& (900 \mathrm{MHZ}-0 \mathrm{MHZ}) / n \quad=900 \mathrm{MHZ} / n
\end{aligned}
$$

For $n=0.5,1,2,3$, etc., the frequency of the control signal 2006 should be substantially equal to $1.8 \mathrm{GHz}, 900 \mathrm{MHZ}, 450 \mathrm{MHZ}, 300 \mathrm{MHZ}, 225 \mathrm{MHZ}$, etc. The frequency of the down-converted PSK signal is substantially equal to one half the difference between the lower frequency F_{1} and the upper frequency F_{2}.

As another example, to down-convert a FSK signal to an amplitude shift keying (ASK) signal (a subset of AM), either the lower frequency F_{1} or the upper frequency F_{2} of the FSK signal is down-converted to zero IF. For example, to down-convert an FSK signal having F_{1} equal to 900 MHZ and F_{2} equal to 901 MHZ , to an ASK signal, the aliasing rate of the control signal 2006 should be substantially equal to:

$$
\begin{aligned}
& (900 \mathrm{MHZ}-0 \mathrm{MHZ}) / \mathrm{n}=900 \mathrm{MHZ} / \mathrm{n} \text {, or } \\
& (901 \mathrm{MHZ}-0 \mathrm{MHZ}) / \mathrm{n}=901 \mathrm{MHZ} / \mathrm{n} .
\end{aligned}
$$

For the former case of $900 \mathrm{MHZ} / n$, and for $n=0.5,1,2,3,4$, etc., the frequency of the control signal 2006 should be substantially equal to $1.8 \mathrm{GHz}, 900 \mathrm{MHZ}, 450 \mathrm{MHZ}, 300$ MHZ, 225 MHZ , etc. For the latter case of $901 \mathrm{MHZ} / n$, and for $n=0.5,1,2,3,4$, etc., the frequency of the control signal 2006 should be substantially equal to $1.802 \mathrm{GHz}, 901$ MHZ, 450.5 MHZ, 300.333 MHZ, 225.25 MHZ , etc. The frequency of the downconverted AM signal is substantially equal to the difference between the lower frequency F_{1} and the upper frequency F_{2} (i.e., 1 MHZ).

Exemplary time domain and frequency domain drawings, illustrating downconversion of FM signals to non-FM signals, and exemplary methods and systems thereof, are disclosed in the co-pending U.S. Patent Application entitled "Method and System for Down-converting Electromagnetic Signals," Application No. 09/176,022, issued as U.S. Patent No. 6,061,551 on May 9, 2000.

In an embodiment, the pulses of the control signal 2006 have negligible apertures that tend towards zero. This makes the UFT module 2002 a high input impedance device. This configuration is useful for situations where minimal disturbance of the input signal may be desired.

In another embodiment, the pulses of the control signal 2006 have non-negligible apertures that tend away from zero. This makes the UFT module 2002 a lower input impedance device. This allows the lower input impedance of the UFT module 2002 to be substantially matched with a source impedance of the input signal 2004. This also improves the energy transfer from the input signal 2004 to the down-converted output signal 2012, and hence the efficiency and signal to noise (s / n) ratio of UFT module 2002.

Exemplary systems and methods for generating and optimizing the control signal 2006, and for otherwise improving energy transfer and s / n ratio, are disclosed in the copending U.S. Patent Application entitled "Method and System for Down-converting Electromagnetic Signals," Application No. 09/176,022, issued as U.S. Patent No. $6,061,551$ on May $9,2000$.

3. Frequency Up-Conversion

The present invention is directed to systems and methods of frequency upconversion, and applications of same.

An example frequency up-conversion system 300 is illustrated in FIG. 3. The frequency up-conversion system 300 is now described.

An input signal 302 (designated as "Control Signal" in FIG. 3) is accepted by a switch module 304. For purposes of example only, assume that the input signal 302 is a FM input signal 606, an example of which is shown in FIG. 6C. FM input signal 606 may have been generated by modulating information signal 602 onto oscillating signal 604 (FIGS. 6A and 6B). It should be understood that the invention is not limited to this embodiment. The information signal 602 can be analog, digital, or any combination thereof, and any modulation scheme can be used.

The output of switch module 304 is a harmonically rich signal 306, shown for example in FIG. 6D as a harmonically rich signal 608. The harmonically rich signal 608 has a continuous and periodic waveform.

FIG. 6 E is an expanded view of two sections of harmonically rich signal 608, section 610 and section 612. The harmonically rich signal 608 may be a rectangular wave, such as a square wave or a pulse (although, the invention is not limited to this embodiment). For ease of discussion, the term "rectangular waveform" is used to refer to waveforms that are substantially rectangular. In a similar manner, the term "square wave" refers to those waveforms that are substantially square and it is not the intent of the present invention that a perfect square wave be generated or needed.

Harmonically rich signal 608 is comprised of a plurality of sinusoidal waves whose frequencies are integer multiples of the fundamental frequency of the waveform of the harmonically rich signal 608. These sinusoidal waves are referred to as the harmonics of the underlying waveform, and the fundamental frequency is referred to as the first harmonic. FIG. 6F and FIG. 6G show separately the sinusoidal components making up the first, third, and fifth harmonics of section 610 and section 612. (Note that in theory there may be an infinite number of harmonics; in this example, because harmonically rich
signal 608 is shown as a square wave, there are only odd harmonics). Three harmonics are shown simultaneously (but not summed) in FIG. 6H.

The relative amplitudes of the harmonics are generally a function of the relative widths of the pulses of harmonically rich signal 306 and the period of the fundamental frequency, and can be determined by doing a Fourier analysis of harmonically rich signal 306. According to an embodiment of the invention, the input signal 606 may be shaped to ensure that the amplitude of the desired harmonic is sufficient for its intended use (e.g., transmission).

A filter 308 filters out any undesired frequencies (harmonics), and outputs an electromagnetic (EM) signal at the desired harmonic frequency or frequencies as an output signal 310, shown for example as a filtered output signal 614 in FIG. 6I.

FIG. 4 illustrates an example universal frequency up-conversion (UFU) module 401. The UFU module 401 includes an example switch module 304 , which comprises a bias signal 402, a resistor or impedance 404, a universal frequency translator (UFT) 450, and a ground 408. The UFT 450 includes a switch 406. The input signal 302 (designated as "Control Signal" in FIG. 4) controls the switch 406 in the UFT 450, and causes it to close and open. Harmonically rich signal 306 is generated at a node 405 located between the resistor or impedance 404 and the switch 406.

Also in FIG. 4, it can be seen that an example filter 308 is comprised of a capacitor 410 and an inductor 412 shunted to a ground 414. The filter is designed to filter out the undesired harmonics of harmonically rich signal 306.

The invention is not limited to the UFU embodiment shown in FIG. 4.
For example, in an alternate embodiment shown in FIG. 5, an unshaped input signal 501 is routed to a pulse shaping module 502. The pulse shaping module 502 modifies the unshaped input signal 501 to generate a (modified) input signal 302 (designated as the "Control Signal" in FIG. 5). The input signal 302 is routed to the switch module 304, which operates in the manner described above. Also, the filter 308 of FIG. 5 operates in the manner described above.

The purpose of the pulse shaping module 502 is to define the pulse width of the input signal 302. Recall that the input signal 302 controls the opening and closing of the
switch 406 in switch module 304. During such operation, the pulse width of the input signal 302 establishes the pulse width of the harmonically rich signal 306. As stated above, the relative amplitudes of the harmonics of the harmonically rich signal 306 are a function of at least the pulse width of the harmonically rich signal 306. As such, the pulse width of the input signal 302 contributes to setting the relative amplitudes of the harmonics of harmonically rich signal 306.

Further details of up-conversion as described in this section are presented in pending U.S. application "Method and System for Frequency Up-Conversion," Ser. No. 09/176,154, filed October 21, 1998, incorporated herein by reference in its entirety.

4. Enhanced Signal Reception

The present invention is directed to systems and methods of enhanced signal reception (ESR), and applications of same.

Referring to FIG. 21, transmitter 2104 accepts a modulating baseband signal 2102 and generates (transmitted) redundant spectrums 2106a-n, which are sent over communications medium 2108. Receiver 2112 recovers a demodulated baseband signal 2114 from (received) redundant spectrums 2110a-n. Demodulated baseband signal 2114 is representative of the modulating baseband signal 2102 , where the level of similarity between the modulating baseband signal 2114 and the modulating baseband signal 2102 is application dependent.

Modulating baseband signal 2102 is preferably any information signal desired for transmission and/or reception. An example modulating baseband signal 2202 is illustrated in FIG. 22A, and has an associated modulating baseband spectrum 2204 and image spectrum 2203 that are illustrated in FIG. 22B. Modulating baseband signal 2202 is illustrated as an analog signal in FIG. 22a, but could also be a digital signal, or combination thereof. Modulating baseband signal 2202 could be a voltage (or current) characterization of any number of real world occurrences, including for example and without limitation, the voltage (or current) representation for a voice signal.

Each transmitted redundant spectrum 2106a-n contains the necessary information to substantially reconstruct the modulating baseband signal 2102. In other words, each redundant spectrum 2106a-n contains the necessary amplitude, phase, and frequency information to reconstruct the modulating baseband signal 2102.

FIG. 22C illustrates example transmitted redundant spectrums 2206b-d. Transmitted redundant spectrums 2206 b -d are illustrated to contain three redundant spectrums for illustration purposes only. Any number of redundant spectrums could be generated and transmitted as will be explained in following discussions.

Transmitted redundant spectrums 2206b-d are centered at f_{1}, with a frequency spacing f_{2} between adjacent spectrums. Frequencies f_{1} and f_{2} are dynamically adjustable in real-time as will be shown below. FIG. 22D illustrates an alternate embodiment, where redundant spectrums 2208 c , d are centered on unmodulated oscillating signal 2209 at f_{1} (Hz). Oscillating signal 2209 may be suppressed if desired using, for example, phasing techniques or filtering techniques. Transmitted redundant spectrums are preferably above baseband frequencies as is represented by break 2205 in the frequency axis of FIGS. 22C and 22D.

Received redundant spectrums 2110a-n are substantially similar to transmitted redundant spectrums $2106 \mathrm{a}-\mathrm{n}$, except for the changes introduced by the communications medium 2108. Such changes can include but are not limited to signal attenuation, and signal interference. FIG. 22E illustrates example received redundant spectrums 2210b-d. Received redundant spectrums $2210 \mathrm{~b}-\mathrm{d}$ are substantially similar to transmitted redundant spectrums 2206b-d, except that redundant spectrum 2210 c includes an undesired jamming signal spectrum 2211 in order to illustrate some advantages of the present invention. Jamming signal spectrum 2211 is a frequency spectrum associated with a jamming signal. For purposes of this invention, a "jamming signal" refers to any unwanted signal, regardless of origin, that may interfere with the proper reception and reconstruction of an intended signal. Furthermore, the jamming signal is not limited to tones as depicted by spectrum 2211, and can have any spectral shape, as will be understood by those skilled in the art(s).

As stated above, demodulated baseband signal 2114 is extracted from one or more of received redundant spectrums 2210 b-d. FIG. 22F illustrates example demodulated baseband signal 2212 that is, in this example, substantially similar to modulating baseband signal 2202 (FIG. 22A); where in practice, the degree of similarity is application dependent.

An advantage of the present invention should now be apparent. The recovery of modulating baseband signal 2202 can be accomplished by receiver 2112 in spite of the fact that high strength jamming signal(s) (e.g. jamming signal spectrum 2211) exist on the communications medium. The intended baseband signal can be recovered because multiple redundant spectrums are transmitted, where each redundant spectrum carries the necessary information to reconstruct the baseband signal. At the destination, the redundant spectrums are isolated from each other so that the baseband signal can be recovered even if one or more of the redundant spectrums are corrupted by a jamming signal.

Transmitter 2104 will now be explored in greater detail. FIG. 23A illustrates transmitter 2301, which is one embodiment of transmitter 2104 that generates redundant spectrums configured similar to redundant spectrums 2206b-d. Transmitter 2301 includes generator 2303, optional spectrum processing module 2304 , and optional medium interface module 2320. Generator 2303 includes: first oscillator 2302, second oscillator 2309, first stage modulator 2306, and second stage modulator 2310.

Transmitter 2301 operates as follows. First oscillator 2302 and second oscillator 2309 generate a first oscillating signal 2305 and second oscillating signal 2312, respectively. First stage modulator 2306 modulates first oscillating signal 2305 with modulating baseband signal 2202, resulting in modulated signal 2308. First stage modulator 2306 may implement any type of modulation including but not limited to: amplitude modulation, frequency modulation, phase modulation, combinations thereof, or any other type of modulation. Second stage modulator 2310 modulates modulated signal 2308 with second oscillating signal 2312 , resulting in multiple redundant spectrums 2206a-n shown in FIG. 23B. Second stage modulator 2310 is preferably a phase modulator, or a frequency modulator, although other types of modulation may be implemented including but not limited to amplitude modulation. Each redundant spectrum

2206a-n contains the necessary amplitude, phase, and frequency information to substantially reconstruct the modulating baseband signal 2202.

Redundant spectrums 2206a-n are substantially centered around f_{1}, which is the characteristic frequency of first oscillating signal 2305. Also, each redundant spectrum 2206a-n (except for 2206c) is offset from f_{1} by approximately a multiple of $f_{2}(H z)$, where f_{2} is the frequency of the second oscillating signal 2312. Thus, each redundant spectrum 2206a-n is offset from an adjacent redundant spectrum by $\mathrm{f}_{2}(\mathrm{~Hz})$. This allows the spacing between adjacent redundant spectrums to be adjusted (or tuned) by changing f_{2} that is associated with second oscillator 2309. Adjusting the spacing between adjacent redundant spectrums allows for dynamic real-time tuning of the bandwidth occupied by redundant spectrums 2206a-n.

In one embodiment, the number of redundant spectrums 2206a-n generated by transmitter 2301 is arbitrary and may be unlimited as indicated by the "a-n" designation for redundant spectrums 2206a-n. However, a typical communications medium will have a physical and/or administrative limitations (i.e. FCC regulations) that restrict the number of redundant spectrums that can be practically transmitted over the communications medium. Also, there may be other reasons to limit the number of redundant spectrums transmitted. Therefore, preferably, the transmitter 2301 will include an optional spectrum processing module 2304 to process the redundant spectrums 2206a-n prior to transmission over communications medium 2108.

In one embodiment, spectrum processing module 2304 includes a filter with a passband 2207 (FIG. 23C) to select redundant spectrums 2206b-d for transmission. This will substantially limit the frequency bandwidth occupied by the redundant spectrums to the passband 2207. In one embodiment, spectrum processing module 2304 also up converts redundant spectrums and/or amplifies redundant spectrums prior to transmission over the communications medium 2108. Finally, medium interface module 2320 transmits redundant spectrums over the communications medium 2108. In one embodiment, communications medium 2108 is an over-the-air link and medium interface module 2320 is an antenna. Other embodiments for communications medium 2108 and medium interface module 2320 will be understood based on the teachings contained herein.

FIG. 23D illustrates transmitter 2321, which is one embodiment of transmitter 2104 that generates redundant spectrums configured similar to redundant spectrums $2208 \mathrm{c}-\mathrm{d}$ and unmodulated spectrum 2209. Transmitter 2321 includes generator 2311, spectrum processing module 2304, and (optional) medium interface module 2320. Generator 2311 includes: first oscillator 2302, second oscillator 2309 , first stage modulator 2306, and second stage modulator 2310 .

As shown in FIG. 23D, many of the components in transmitter 2321 are similar to those in transmitter 2301. However, in this embodiment, modulating baseband signal 2202 modulates second oscillating signal 2312. Transmitter 2321 operates as follows. First stage modulator 2306 modulates second oscillating signal 2312 with modulating baseband signal 2202, resulting in modulated signal 2322. As described earlier, first stage modulator 2306 can effect any type of modulation including but not limited to: amplitude modulation frequency modulation, combinations thereof, or any other type of modulation. Second stage modulator 2310 modulates first oscillating signal 2304 with modulated signal 2322, resulting in redundant spectrums 2208a-n, as shown in FIG. 23E. Second stage modulator 2310 is preferably a phase or frequency modulator, although other modulators could used including but not limited to an amplitude modulator.

Redundant spectrums 2208a-n are centered on unmodulated spectrum 2209 (at $f_{1} \mathrm{~Hz}$), and adjacent spectrums are separated by $f_{2} \mathrm{~Hz}$. The number of redundant spectrums 2208a-n generated by generator 2311 is arbitrary and unlimited, similar to spectrums 2206a-n discussed above. Therefore, optional spectrum processing module 2304 may also include a filter with passband 2325 to select, for example, spectrums 2208c,d for transmission over communications medium 2108. In addition, optional spectrum processing module 2304 may also include a filter (such as a bandstop filter) to attenuate unmodulated spectrum 2209. Alternatively, unmodulated spectrum 2209 may be attenuated by using phasing techniques during redundant spectrum generation. Finally, (optional) medium interface module 2320 transmits redundant spectrums 2208 c , d over communications medium 2108.

Receiver 2112 will now be explored in greater detail to illustrate recovery of a demodulated baseband signal from received redundant spectrums. FIG. 24A illustrates
receiver 2430 , which is one embodiment of receiver 2112. Receiver 2430 includes optional medium interface module 2402 , down-converter 2404, spectrum isolation module 2408, and data extraction module 2414. Spectrum isolation module 2408 includes filters 2410a-c. Data extraction module 2414 includes demodulators 2416a-c, error check modules 2420a-c, and arbitration module 2424. Receiver 2430 will be discussed in relation to the signal diagrams in FIGS. 24B-24J.

In one embodiment, optional medium interface module 2402 receives redundant spectrums 2210b-d (FIG. 22E, and FIG. 24B). Each redundant spectrum 2210b-d includes the necessary amplitude, phase, and frequency information to substantially reconstruct the modulating baseband signal used to generated the redundant spectrums. However, in the present example, spectrum 2210c also contains jamming signal 2211, which may interfere with the recovery of a baseband signal from spectrum 2210 c . Downconverter 2404 down-converts received redundant spectrums 2210b-d to lower intermediate frequencies, resulting in redundant spectrums 2406a-c (FIG. 24C). Jamming signal 2211 is also down-converted to jamming signal 2407, as it is contained within redundant spectrum 2406b. Spectrum isolation module 2408 includes filters 2410a-c that isolate redundant spectrums 2406a-c from each other (FIGS. 24D-24F, respectively). Demodulators 2416a-c independently demodulate spectrums 2406a-c, resulting in demodulated baseband signals 2418a-c, respectively (FIGS. 24G-24I). Error check modules 2420a-c analyze demodulate baseband signal 2418a-c to detect any errors. In one embodiment, each error check module 2420a-c sets an error flag 2422a-c whenever an error is detected in a demodulated baseband signal. Arbitration module 2424 accepts the demodulated baseband signals and associated error flags, and selects a substantially errorfree demodulated baseband signal (FIG. 24J). In one embodiment, the substantially errorfree demodulated baseband signal will be substantially similar to the modulating baseband signal used to generate the received redundant spectrums, where the degree of similarity is application dependent.

Referring to FIGS. 24G-I, arbitration module 2424 will select either demodulated baseband signal 2418a or 2418c, because error check module 2420b will set the error flag 2422 b that is associated with demodulated baseband signal 2418 b .

The error detection schemes implemented by the error detection modules include but are not limited to: cyclic redundancy check (CRC) and parity check for digital signals, and various error detections schemes for analog signal.

Further details of enhanced signal reception as described in this section are presented in pending U.S. application "Method and System for Ensuring Reception of a Communications Signal," Ser. No. 09/176,415, filed October 21, 1998, issued as U.S. Patent No. 6,061,555 on May 9, 2000.

5. Unified Down-Conversion and Filtering

The present invention is directed to systems and methods of unified downconversion and filtering (UDF), and applications of same.

In particular, the present invention includes a unified down-converting and filtering (UDF) module that performs frequency selectivity and frequency translation in a unified (i.e., integrated) manner. By operating in this manner, the invention achieves high frequency selectivity prior to frequency translation (the invention is not limited to this embodiment). The invention achieves high frequency selectivity at substantially any frequency, including but not limited to RF (radio frequency) and greater frequencies. It should be understood that the invention is not limited to this example of RF and greater frequencies. The invention is intended, adapted, and capable of working with lower than radio frequencies.

FIG. 17 is a conceptual block diagram of a UDF module 1702 according to an embodiment of the present invention. The UDF module 1702 performs at least frequency translation and frequency selectivity.

The effect achieved by the UDF module 1702 is to perform the frequency selectivity operation prior to the performance of the frequency translation operation. Thus, the UDF module 1702 effectively performs input filtering.

According to embodiments of the present invention, such input filtering involves a relatively narrow bandwidth. For example, such input filtering may represent channel select filtering, where the filter bandwidth may be, for example, 50 KHz to 150 KHz . It
should be understood, however, that the invention is not limited to these frequencies. The invention is intended, adapted, and capable of achieving filter bandwidths of less than and greater than these values.

In embodiments of the invention, input signals 1704 received by the UDF module 1702 are at radio frequencies. The UDF module 1702 effectively operates to input filter these RF input signals 1704. Specifically, in these embodiments, the UDF module 1702 effectively performs input, channel select filtering of the RF input signal 1704. Accordingly, the invention achieves high selectivity at high frequencies.

The UDF module 1702 effectively performs various types of filtering, including but not limited to bandpass filtering, low pass filtering, high pass filtering, notch filtering, all pass filtering, band stop filtering, etc., and combinations thereof.

Conceptually, the UDF module 1702 includes a frequency translator 1708. The frequency translator 1708 conceptually represents that portion of the UDF module 1702 that performs frequency translation (down conversion).

The UDF module 1702 also conceptually includes an apparent input filter 1706 (also sometimes called an input filtering emulator). Conceptually, the apparent input filter 1706 represents that portion of the UDF module 1702 that performs input filtering.

In practice, the input filtering operation performed by the UDF module 1702 is integrated with the frequency translation operation. The input filtering operation can be viewed as being performed concurrently with the frequency translation operation. This is a reason why the input filter 1706 is herein referred to as an "apparent" input filter 1706.

The UDF module 1702 of the present invention includes a number of advantages. For example, high selectivity at high frequencies is realizable using the UDF module 1702. This feature of the invention is evident by the high Q factors that are attainable. For example, and without limitation, the UDF module 1702 can be designed with a filter center frequency f_{C} on the order of 900 MHZ , and a filter bandwidth on the order of 50 KHz . This represents a Q of 18,000 (Q is equal to the center frequency divided by the bandwidth).

It should be understood that the invention is not limited to filters with high Q factors. The filters contemplated by the present invention may have lesser or greater Qs ,
depending on the application, design, and/or implementation. Also, the scope of the invention includes filters where Q factor as discussed herein is not applicable.

The invention exhibits additional advantages. For example, the filtering center frequency f_{C} of the UDF module 1702 can be electrically adjusted, either statically or dynamically.

Also, the UDF module 1702 can be designed to amplify input signals.
Further, the UDF module 1702 can be implemented without large resistors, capacitors, or inductors. Also, the UDF module 1702 does not require that tight tolerances be maintained on the values of its individual components, i.e., its resistors, capacitors, inductors, etc. As a result, the architecture of the UDF module 1702 is friendly to integrated circuit design techniques and processes.

The features and advantages exhibited by the UDF module 1702 are achieved at least in part by adopting a new technological paradigm with respect to frequency selectivity and translation. Specifically, according to the present invention, the UDF module 1702 performs the frequency selectivity operation and the frequency translation operation as a single, unified (integrated) operation. According to the invention, operations relating to frequency translation also contribute to the performance of frequency selectivity, and vice versa.

According to embodiments of the present invention, the UDF module generates an output signal from an input signal using samples/instances of the input signal and samples/instances of the output signal.

More particularly, first, the input signal is under-sampled. This input sample includes information (such as amplitude, phase, etc.) representative of the input signal existing at the time the sample was taken.

As described further below, the effect of repetitively performing this step is to translate the frequency (that is, down-convert) of the input signal to a desired lower frequency, such as an intermediate frequency (IF) or baseband.

Next, the input sample is held (that is, delayed).

Then, one or more delayed input samples (some of which may have been scaled) are combined with one or more delayed instances of the output signal (some of which may have been scaled) to generate a current instance of the output signal.

Thus, according to a preferred embodiment of the invention, the output signal is generated from prior samples/instances of the input signal and/or the output signal. (It is noted that, in some embodiments of the invention, current samples/instances of the input signal and/or the output signal may be used to generate current instances of the output signal.). By operating in this manner, the UDF module preferably performs input filtering and frequency down-conversion in a unified manner.

FIG. 19 illustrates an example implementation of the unified down-converting and filtering (UDF) module 1922. The UDF module 1922 performs the frequency translation operation and the frequency selectivity operation in an integrated, unified manner as described above, and as further described below.

In the example of FIG. 19, the frequency selectivity operation performed by the UDF module 1922 comprises a band-pass filtering operation according to EQ .1 , below, which is an example representation of a band-pass filtering transfer function.

$$
\begin{equation*}
\mathrm{VO}=\alpha_{1} \mathrm{z}^{-1} \mathrm{VI}-\beta_{1} \mathrm{z}^{-1} \mathrm{VO}-\beta_{0} \mathrm{z}^{-2} \mathrm{VO} \tag{EQ. 1}
\end{equation*}
$$

It should be noted, however, that the invention is not limited to band-pass filtering. Instead, the invention effectively performs various types of filtering, including but not limited to bandpass filtering, low pass filtering, high pass filtering, notch filtering, all pass filtering, band stop filtering, etc., and combinations thereof. As will be appreciated, there are many representations of any given filter type. The invention is applicable to these filter representations. Thus, EQ. 1 is referred to herein for illustrative purposes only, and is not limiting.

The UDF module 1922 includes a down-convert and delay module 1924, first and second delay modules 1928 and 1930, first and second scaling modules 1932 and 1934, an output sample and hold module 1936, and an (optional) output smoothing module
1938. Other embodiments of the UDF module will have these components in different configurations, and/or a subset of these components, and/or additional components. For example, and without limitation, in the configuration shown in FIG. 19, the output smoothing module 1938 is optional.

As further described below, in the example of FIG. 19, the down-convert and delay module 1924 and the first and second delay modules 1928 and 1930 include switches that are controlled by a clock having two phases, ϕ_{1} and $\phi_{2} . \phi_{1}$ and ϕ_{2} preferably have the same frequency, and are non-overlapping (alternatively, a plurality such as two clock signals having these characteristics could be used). As used herein, the term "non-overlapping" is defined as two or more signals where only one of the signals is active at any given time. In some embodiments, signals are "active" when they are high. In other embodiments, signals are active when they are low.

Preferably, each of these switches closes on a rising edge of ϕ_{1} or ϕ_{2}, and opens on the next corresponding falling edge of ϕ_{1} or ϕ_{2}. However, the invention is not limited to this example. As will be apparent to persons skilled in the relevant art(s), other clock conventions can be used to control the switches.

In the example of FIG. 19, it is assumed that α_{1} is equal to one. Thus, the output of the down-convert and delay module 1924 is not scaled. As evident from the embodiments described above, however, the invention is not limited to this example.

The example UDF module 1922 has a filter center frequency of 900.2 MHZ and a filter bandwidth of 570 KHz . The pass band of the UDF module 1922 is on the order of 899.915 MHZ to 900.485 MHZ . The Q factor of the UDF module 1922 is approximately 1879 (i.e., 900.2 MHZ divided by 570 KHz).

The operation of the UDF module 1922 shall now be described with reference to a Table 1802 (FIG. 18) that indicates example values at nodes in the UDF module 1922 at a number of consecutive time increments. It is assumed in Table 1802 that the UDF module 1922 begins operating at time t-1. As indicated below, the UDF module 1922 reaches steady state a few time units after operation begins. The number of time units necessary for a given UDF module to reach steady state depends on the configuration of
the UDF module, and will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein.

At the rising edge of ϕ_{1} at time $t-1$, a switch 1950 in the down-convert and delay module 1924 closes. This allows a capacitor 1952 to charge to the current value of an input signal, $\mathrm{VI}_{\mathrm{t}-1}$, such that node 1902 is at $\mathrm{VI}_{\mathrm{t}-1}$. This is indicated by cell 1804 in FIG. 18. In effect, the combination of the switch 1950 and the capacitor 1952 in the down-convert and delay module 1924 operates to translate the frequency of the input signal VI to a desired lower frequency, such as IF or baseband. Thus, the value stored in the capacitor 1952 represents an instance of a down-converted image of the input signal VI.

The manner in which the down-convert and delay module 1924 performs frequency down-conversion is further described elsewhere in this application, and is additionally described in pending U.S. application "Method and System for DownConverting Electromagnetic Signals," Ser. No. 09/176,022, filed October 21, 1998, issued as U.S. Patent No. 6,061,551 on May 9, 2000, which is herein incorporated by reference in its entirety.

Also at the rising edge of ϕ_{1} at time $\mathrm{t}-1$, a switch 1958 in the first delay module 1928 closes, allowing a capacitor 1960 to charge to $\mathrm{VO}_{\mathrm{t}-1}$, such that node 1906 is at $\mathrm{VO}_{\mathrm{t}-1}$. This is indicated by cell 1806 in Table 1802. (In practice, $\mathrm{VO}_{\mathrm{t}-1}$ is undefined at this point. However, for ease of understanding, $\mathrm{VO}_{\mathrm{t}-1}$ shall continue to be used for purposes of explanation.)

Also at the rising edge of ϕ_{1} at time $t-1$, a switch 1966 in the second delay module 1930 closes, allowing a capacitor 1968 to charge to a value stored in a capacitor 1964. At this time, however, the value in capacitor 1964 is undefined, so the value in capacitor 1968 is undefined. This is indicated by cell 1807 in table 1802.

At the rising edge of ϕ_{2} at time $t-1$, a switch 1954 in the down-convert and delay module 1924 closes, allowing a capacitor 1956 to charge to the level of the capacitor 1952. Accordingly, the capacitor 1956 charges to $\mathrm{VI}_{\mathrm{t}-1}$, such that node 1904 is at $\mathrm{VI}_{\mathrm{t}-1}$. This is indicated by cell 1810 in Table 1802.

The UDF module 1922 may optionally include a unity gain module 1990A between capacitors 1952 and 1956. The unity gain module 1990A operates as a current source to enable capacitor 1956 to charge without draining the charge from capacitor 1952. For a similar reason, the UDF module 1922 may include other unity gain modules 1990B-1990G. It should be understood that, for many embodiments and applications of the invention, these unity gain modules 1990A-1990G are optional. The structure and operation of the unity gain modules 1990 will be apparent to persons skilled in the relevant art(s).

Also at the rising edge of ϕ_{2} at time $t-1$, a switch 1962 in the first delay module 1928 closes, allowing a capacitor 1964 to charge to the level of the capacitor 1960. Accordingly, the capacitor 1964 charges to $\mathrm{VO}_{\mathrm{t}-1}$, such that node 1908 is at $\mathrm{VO}_{\mathrm{t}-1}$. This is indicated by cell 1814 in Table 1802.

Also at the rising edge of ϕ_{2} at time $t-1$, a switch 1970 in the second delay module 1930 closes, allowing a capacitor 1972 to charge to a value stored in a capacitor 1968. At this time, however, the value in capacitor 1968 is undefined, so the value in capacitor 1972 is undefined. This is indicated by cell 1815 in table 1802.

At time t, at the rising edge of ϕ_{1}, the switch 1950 in the down-convert and delay module 1924 closes. This allows the capacitor 1952 to charge to VI_{t}, such that node 1902 is at VI_{t}. This is indicated in cell 1816 of Table 1802.

Also at the rising edge of ϕ_{1} at time t, the switch 1958 in the first delay module 1928 closes, thereby allowing the capacitor 1960 to charge to $\mathrm{VO}_{\mathbf{t}}$. Accordingly, node 1906 is at VO_{t}. This is indicated in cell 1820 in Table 1802.

Further at the rising edge of ϕ_{1} at time t, the switch 1966 in the second delay module 1930 closes, allowing a capacitor 1968 to charge to the level of the capacitor 1964. Therefore, the capacitor 1968 charges to $\mathrm{VO}_{\mathrm{t}-1}$, such that node 1910 is at $\mathrm{VO}_{\mathrm{t}-1}$. This is indicated by cell 1824 in Table 1802.

At the rising edge of ϕ_{2} at time t, the switch 1954 in the down-convert and delay module 1924 closes, allowing the capacitor 1956 to charge to the level of the capacitor 1952. Accordingly, the capacitor 1956 charges to VI_{t}, such that node 1904 is at VI_{t}. This is indicated by cell 1828 in Table 1802.

Also at the rising edge of ϕ_{2} at time t, the switch 1962 in the first delay module 1928 closes, allowing the capacitor 1964 to charge to the level in the capacitor 1960. Therefore, the capacitor 1964 charges to VO_{t}, such that node 1908 is at VO_{t}. This is indicated by cell 1832 in Table 1802.

Further at the rising edge of ϕ_{2} at time t, the switch 1970 in the second delay module 1930 closes, allowing the capacitor 1972 in the second delay module 1930 to charge to the level of the capacitor 1968 in the second delay module 1930. Therefore, the capacitor 1972 charges to $\mathrm{VO}_{\mathrm{t}-1}$, such that node 1912 is at $\mathrm{VO}_{\mathrm{t}-1}$. This is indicated in cell 1836 of FIG. 18.

At time $t+1$, at the rising edge of ϕ_{1}, the switch 1950 in the down-convert and delay module 1924 closes, allowing the capacitor 1952 to charge to $\mathrm{VI}_{\mathrm{t}+1}$. Therefore, node 1902 is at $\mathrm{VI}_{\mathrm{t}+1}$, as indicated by cell 1838 of Table 1802.

Also at the rising edge of ϕ_{1} at time $t+1$, the switch 1958 in the first delay module 1928 closes, allowing the capacitor 1960 to charge to VO_{t+1}. Accordingly, node 1906 is at $\mathrm{VO}_{\mathrm{t}+1}$, as indicated by cell 1842 in Table 1802.

Further at the rising edge of ϕ_{1} at time $t+1$, the switch 1966 in the second delay module 1930 closes, allowing the capacitor 1968 to charge to the level of the capacitor 1964. Accordingly, the capacitor 1968 charges to VO_{t}, as indicated by cell 1846 of Table 1802.

In the example of FIG. 19, the first scaling module 1932 scales the value at node 1908 (i.e., the output of the first delay module 1928) by a scaling factor of -0.1 . Accordingly, the value present at node 1914 at time $t+1$ is $-0.1 *$ VO $_{\mathrm{t}}$. Similarly, the second scaling module 1934 scales the value present at node 1912 (i.e., the output of the second scaling module 1930) by a scaling factor of -0.8 . Accordingly, the value present at node 1916 is $-0.8 * \mathrm{VO}_{\mathrm{t}-1}$ at time $\mathrm{t}+1$.

At time $\mathfrak{t}+1$, the values at the inputs of the summer 1926 are: VI_{t} at node 1904, $-0.1 * \mathrm{VO}_{\mathrm{t}}$ at node 1914, and $-0.8 * \mathrm{VO}_{\mathrm{t}-1}$ at node 1916 (in the example of FIG. 19, the values at nodes 1914 and 1916 are summed by a second summer 1925, and this sum is presented to the summer 1926). Accordingly, at time $t+1$, the summer generates a signal equal to $\mathrm{VI}_{\mathrm{t}}-0.1 * \mathrm{VO}_{\mathrm{t}}-0.8 * \mathrm{VO}_{\mathrm{t}-1}$.

At the rising edge of ϕ_{1} at time $t+1$, a switch 1991 in the output sample and hold module 1936 closes, thereby allowing a capacitor 1992 to charge to $\mathrm{VO}_{\mathrm{t}+1}$. Accordingly, the capacitor 1992 charges to $\mathrm{VO}_{\mathrm{t}+1}$, which is equal to the sum generated by the adder 1926. As just noted, this value is equal to: $\mathrm{VI}_{\mathrm{t}}-0.1 * \mathrm{VO}_{\mathrm{t}}-0.8 * \mathrm{VO}_{\mathrm{t}-1}$. This is indicated in cell 1850 of Table 1802. This value is presented to the optional output smoothing module 1938, which smooths the signal to thereby generate the instance of the output signal $\mathrm{VO}_{\mathrm{t}+1}$. It is apparent from inspection that this value of $\mathrm{VO}_{\mathrm{t}+1}$ is consistent with the band pass filter transfer function of EQ .1 .

Further details of unified down-conversion and filtering as described in this section are presented in pending U.S. application "Integrated Frequency Translation And Selectivity," Ser. No. 09/175,966, filed October 21, 1998, issued as U.S. Patent No. $6,049,706$ on April 11, 2000, incorporated herein by reference in its entirety.

6. Example Application Embodiments of the Invention

As noted above, the UFT module of the present invention is a very powerful and flexible device. Its flexibility is illustrated, in part, by the wide range of applications in which it can be used. Its power is illustrated, in part, by the usefulness and performance of such applications.

Example applications of the UFT module were described above. In particular, frequency down-conversion, frequency up-conversion, enhanced signal reception, and unified down-conversion and filtering applications of the UFT module were summarized above, and are further described below. These applications of the UFT module are discussed herein for illustrative purposes. The invention is not limited to these example applications. Additional applications of the UFT module will be apparent to persons skilled in the relevant art(s), based on the teachings contained herein.

For example, the present invention can be used in applications that involve frequency down-conversion. This is shown in FIG. 1C, for example, where an example UFT module 115 is used in a down-conversion module 114. In this capacity, the UFT module 115 frequency down-converts an input signal to an output signal. This is also
shown in FIG. 7, for example, where an example UFT module 706 is part of a downconversion module 704, which is part of a receiver 702

The present invention can be used in applications that involve frequency upconversion. This is shown in FIG. 1D, for example, where an example UFT module 117 is used in a frequency up-conversion module 116. In this capacity, the UFT module 117 frequency up-converts an input signal to an output signal. This is also shown in FIG. 8, for example, where an example UFT module 806 is part of up-conversion module 804, which is part of a transmitter 802.

The present invention can be used in environments having one or more transmitters 902 and one or more receivers 906, as illustrated in FIG. 9. In such environments, one or more of the transmitters 902 may be implemented using a UFT module, as shown for example in FIG. 8. Also, one or more of the receivers 906 may be implemented using a UFT module, as shown for example in FIG. 7.

The invention can be used to implement a transceiver. An example transceiver 1002 is illustrated in FIG. 10. The transceiver 1002 includes a transmitter 1004 and a receiver 1008. Either the transmitter 1004 or the receiver 1008 can be implemented using a UFT module. Alternatively, the transmitter 1004 can be implemented using a UFT module 1006, and the receiver 1008 can be implemented using a UFT module 1010. This embodiment is shown in FIG. 10.

Another transceiver embodiment according to the invention is shown in FIG. 11. In this transceiver 1102, the transmitter 1104 and the receiver 1108 are implemented using a single UFT module 1106. In other words, the transmitter 1104 and the receiver 1108 share a UFT module 1106.

As described elsewhere in this application, the invention is directed to methods and systems for enhanced signal reception (ESR). Various ESR embodiments include an ESR module (transmit) in a transmitter 1202, and an ESR module (receive) in a receiver 1210. An example ESR embodiment configured in this manner is illustrated in FIG. 12.

The ESR module (transmit) 1204 includes a frequency up-conversion module 1206. Some embodiments of this frequency up-conversion module 1206 may be implemented using a UFT module, such as that shown in FIG. 1D.

The ESR module (receive) 1212 includes a frequency down-conversion module 1214. Some embodiments of this frequency down-conversion module 1214 may be implemented using a UFT module, such as that shown in FIG. 1C.

As described elsewhere in this application, the invention is directed to methods and systems for unified down-conversion and filtering (UDF). An example unified downconversion and filtering module 1302 is illustrated in FIG. 13. The unified downconversion and filtering module 1302 includes a frequency down-conversion module 1304 and a filtering module 1306. According to the invention, the frequency down-conversion module 1304 and the filtering module 1306 are implemented using a UFT module 1308, as indicated in FIG. 13.

Unified down-conversion and filtering according to the invention is useful in applications involving filtering and/or frequency down-conversion. This is depicted, for example, in FIGS. 15A-15F. FIGS. 15A-15C indicate that unified down-conversion and filtering according to the invention is useful in applications where filtering precedes, follows, or both precedes and follows frequency down-conversion. FIG. 15D indicates that a unified down-conversion and filtering module 1524 according to the invention can be utilized as a filter 1522 (i.e., where the extent of frequency down-conversion by the down-converter in the unified down-conversion and filtering module 1524 is minimized). FIG. 15E indicates that a unified down-conversion and filtering module 1528 according to the invention can be utilized as a down-converter 1526 (i.e., where the filter in the unified down-conversion and filtering module 1528 passes substantially all frequencies). FIG. 15F illustrates that the unified down-conversion and filtering module 1532 can be used as an amplifier. It is noted that one or more UDF modules can be used in applications that involve at least one or more of filtering, frequency translation, and amplification.

For example, receivers, which typically perform filtering, down-conversion, and filtering operations, can be implemented using one or more unified down-conversion and filtering modules. This is illustrated, for example, in FIG. 14.

The methods and systems of unified down-conversion and filtering of the invention have many other applications. For example, as discussed herein, the enhanced signal
reception (ESR) module (receive) operates to down-convert a signal containing a plurality of spectrums. The ESR module (receive) also operates to isolate the spectrums in the down-converted signal, where such isolation is implemented via filtering in some embodiments. According to embodiments of the invention, the ESR module (receive) is implemented using one or more unified down-conversion and filtering (UDF) modules. This is illustrated, for example, in FIG. 16. In the example of FIG. 16, one or more of the UDF modules $1610,1612,1614$ operates to down-convert a received signal. The UDF modules $1610,1612,1614$ also operate to filter the down-converted signal so as to isolate the spectrum(s) contained therein. As noted above, the UDF modules 1610, 1612, 1614 are implemented using the universal frequency translation (UFT) modules of the invention.

The invention is not limited to the applications of the UFT module described above. For example, and without limitation, subsets of the applications (methods and/or structures) described herein (and others that would be apparent to persons skilled in the relevant art(s) based on the herein teachings) can be associated to form useful combinations.

For example, transmitters and receivers are two applications of the UFT module. FIG. 10 illustrates a transceiver 1002 that is formed by combining these two applications of the UFT module, i.e., by combining a transmitter 1004 with a receiver 1008.

Also, ESR (enhanced signal reception) and unified down-conversion and filtering are two other applications of the UFT module. FIG. 16 illustrates an example where ESR and unified down-conversion and filtering are combined to form a modified enhanced signal reception system.

The invention is not limited to the example applications of the UFT module discussed herein. Also, the invention is not limited to the example combinations of applications of the UFT module discussed herein. These examples were provided for illustrative purposes only, and are not limiting. Other applications and combinations of such applications will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Such applications and combinations include, for example and without limitation, applications/combinations comprising and/or involving one or more of: (1) frequency translation; (2) frequency down-conversion; (3) frequency up-conversion;
(4) receiving; (5) transmitting; (6) filtering; and/or (7) signal transmission and reception in environments containing potentially jamming signals.

Additional example applications are described below.

6.1 Data Communication

The invention is directed to data communication among data processing devices. For example, and without limitation, the invention is directed to computer networks such as, for example, local area networks (LANs), wide area networks (WANs), including wireless LANs (WLANs) and wireless WANs, modulator/demodulators (modems), including wireless modems, etc.

FIG. 25 illustrates an example environment 2502 wherein computers 2504, 2512, and 2526 communicate with one another via a computer network 2534. It is noted that the invention is not limited to computers, but encompasses any data processing and/or communications device or other device where communications with external devices is desired. Also, the invention includes but si not limited to WLAN client (also called mobile terminals, and/or stations) and infrastructure devices (also called access points). In the example of FIG. 25 , computer 2504 is communicating with the network 2534 via a wired link, whereas computers 2512 and 2526 are communicating with the network 2534 via wireless links.

In the teachings contained herein, for illustrative purposes, a link may be designated as being a wired link or a wireless link. Such designations are for example purposes only, and are not limiting. A link designated as being wireless may alternatively be wired. Similarly, a link designated as being wired may alternatively be wireless. This is applicable throughout the entire application.

The computers 2504, 2512 and 2526 each include an interface 2506, 2514, and 2528, respectively, for communicating with the network 2534. The interfaces 2506, 2514, and 2528 include transmitters 2508,2516 , and 2530 respectively. Also, the interfaces 2506, 2514 and 2528 include receivers 2510,2518 , and 2532 respectively. In embodiments of the invention, the transmitters 2508, 2516 and 2530 are implemented
using UFT modules for performing frequency up-conversion operations (see, for example, FIG. 8). In embodiments, the receivers 2510,2518 and 2532 are implemented using UFT modules for performing frequency down-conversion operations (see, for example, FIG. 7).

As noted above, the computers 2512 and 2526 interact with the network 2534 via wireless links. In embodiments of the invention, the interfaces 2514,2528 in computers 2512, 2526 represent modulator/demodulators (modems).

In embodiments, the network 2534 includes an interface or modem 2520 for communicating with the modems 2514,2528 in the computers 2512,2526 . In embodiments, the interface 2520 includes a transmitter 2522, and a receiver 2524. Either or both of the transmitter 2522, and the receiver 2524 are implemented using UFT modules for performing frequency translation operations (see, for example, FIGS. 7 and 8).

In alternative embodiments, one or more of the interfaces $2506,2514,2520$, and 2528 are implemented using transceivers that employ one or more UFT modules for performing frequency translation operations (see, for example, FIGS. 10 and 11).

FIG. 26 illustrates another example data communication embodiment 2602. Each of a plurality of computers 2604, 2612, 2614 and 2616 includes an interface, such as an interface 2606 shown in the computer 2604. It should be understood that the other computers 2612, 2614, 2616 also include an interface such as an interface 2606. The computers 2604, 2612, 2614 and 2616 communicate with each other via interfaces 2606 and wireless or wired links, thereby collectively representing a data communication network.

The interfaces 2606 may represent any computer interface or port, such as but not limited to a high speed internal interface, a wireless serial port, a wireless PS2 port, a wireless USB port, PCMCIA port, etc.

The interface 2606 includes a transmitter 2608 and a receiver 2610. In embodiments of the invention, either or both of the transmitter 2608 and the receiver 2610 are implemented using UFT modules for frequency up-conversion and downconversion (see, for example, FIGS. 7 and 8). Alternatively, the interfaces 2806 can be
implemented using a transceiver having one or more UFT modules for performing frequency translation operations (see, for example, FIGS. 10 and 11).

FIGS. 33-38 illustrate other scenarios envisioned and encompassed by the invention. FIG. 33 illustrates a data processing environment 3302 wherein a wired network, such as an Ethernet network 3304, is linked to another network, such as a WLAN 3306, via a wireless link 3308. The wireless link 3308 is established via interfaces 3310, 3312 which are preferably implemented using universal frequency translation modules.

FIGS 35-38 illustrate that the present invention supports WLANs that are located in one or more buildings or over any defined geographical area, as shown in FIGs. 35-38.

The invention includes multiple networks linked together. The invention also envisions wireless networks conforming to any known or custom standard or specification. This is shown in FIG. 34, for example, where any combination of WLANs conforming to any WLAN standard or configuration, such as IEEE 802.11 and Bluetooth (or other relatively short range communication specification or standard), any WAN cellular or telephone standard or specification, any type of radio links, any custom standard or specification, etc., or combination thereof, can be implemented using the universal frequency translation technology described herein. Also, any combination of these networks may be coupled together, as illustrated in FIG. 34.

The invention supports WLANs that are located in one or multiple buildings, as shown in FIGS. 35 and 36. The invention also supports WLANs that are located in an area including and external to one or more buildings, as shown in FIG. 37. In fact, the invention is directed to networks that cover any defined geographical area, as shown in FIG. 38. In the embodiments described above, wireless links are preferably established using WLAN interfaces as described herein.

More generally, the invention is directed to WLAN client devices and WLAN infrastructure devices. "WLAN Client Devices" refers to, for example, any data processing and/or communication devices in which wired or wireless communication functionality is desired, such as but not limited to computers, personal data assistants (PDAs), automatic identification data collection devices (such as bar code
scanners/readers, electronic article surveillance readers, and radio frequency identification readers), telephones, network devices, etc., and combinations thereof. "WLAN Infrastructure Devices" refers to, for example, Access Points and other devices used to provide the ability for WLAN Client Devices (as well as potentially other devices) to connect to wired and/or wireless networks and/or to provide the network functionality of a WLAN. "WLAN" refers to, for example, a Wireless Local Area Network that is implemented according to and that operates within WLAN standards and/or specifications, such as but not limited to IEEE 802.11, IEEE 802.11a, IEEE 802.11b, HomeRF, Proxim Range LAN, Proxim Range LAN2, Symbol Spectrum 1, Symbol Spectrum 24 as it existed prior to adoption of IEEE 802.11, HiperLAN1, or HiperLAN2. WLAN client devices and/or WLAN infrastructure devices may operate in a multi-mode capacity. For example, a device may include WLAN and WAN functionality. Another device may include WLAN and short range communication (such as but not limited to Blue Tooth) functionality. Another device may include WLAN and WAN and short range communication functionality. It is noted that the above definitions and examples are provided for illustrative purposes, and are not limiting. Equivalents to that described above will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein.

6.1.1. Example Implementations: Interfaces, Wireless Modems, Wireless LANs, etc.

The present invention is now described as implemented in an interface, such as a wireless modem or other device (such as client or infrastructure device), which can be utilized to implement or interact with a wireless local area network (WLAN) or wireless wide area network (WWAN), for example. In an embodiment, the present invention is implemented in a WLAN to support IEEE WLAN Standard 802.11, but this embodiment is mentioned for illustrative purposes only. The invention is not limited to this standard.

Conventional wireless modems are described in, for example, U.S. Patent 5,764,693, titled, "Wireless Radio Modem with Minimal Inter-Device RF Interference,"
incorporated herein by reference in its entirety. The present invention replaces a substantial portion of conventional wireless modems with one or more universal frequency translators (UFTs). The resultant improved wireless modem consumes less power that conventional wireless modems and is easier and less expensive to design and build. A wireless modem in accordance with the present invention can be implemented in a PCMCIA card or within a main housing of a computer, for example.

FIG. 27 illustrates an example block diagram of a computer system 2710, which can be wirelessly coupled to a LAN, as illustrated in FIGS. 25 and 26. The computer system 2710 includes an interface 2714 and an antenna 2712. The interface 2714 includes a transmitter module 2716 that receives information from a digital signal processor (DSP) 2720, and modulates and up-converts the information for transmission from the antenna 2712. The interface 2714 also includes a receiver module 2718 that receives modulated carrier signals via the antenna 2712. The receiver module 2718 down-converts and demodulates the modulated carrier signals to baseband information, and provides the baseband information to the DSP 2720. The DSP 2720 can include a central processing unit (CPU) and other components of the computer 2712. Conventionally, the interface 2714 is implemented with heterodyne components.

FIG. 28 illustrates an example interface 2810 implemented with heterodyne components. The interface 2810 includes a transmitter module 2812 and a receiver module 2824. The receiver module 2824 includes an RF section 2830, one or more IF sections 2828, a demodulator section 2826, an optional analog to digital (A/D) converter 2834, and a frequency generator/synthesizer 2832. The transmitter module 2812 includes an optional digital to analog (D/A) converter 2822, a modulator \section 2818, one or more IF sections 2816, an RF section 2814, and a frequency generator/synthesizer 2820. Operation of the interface 2810 will be apparent to one skilled in the relevant art(s), based on the description herein.

FIG. 29 illustrates an example in-phase/quadrature-phase (I/Q) interface 2910 implemented with heterodyne components. I/Q implementations allow two channels of information to be communicated on a carrier signal and thus can be utilized to increase data transmission.

The interface 2910 includes a transmitter module 2912 and a receiver module 2934. The receiver module 2934 includes an RF section 2936, one or more IF sections 2938, an I/Q demodulator section 2940, an optional A/D converter 2944, and a frequency generator/synthesizer 2942. The I/Q demodulator section 2940 includes a signal splitter 2946, mixers 2948, and a phase shifter 2950. The signal splitter 2946 provides a received signal to the mixers 2948 . The phase shifter 2950 operates the mixers 2948 ninety degrees out of phase with one another to generate I and Q information channels 2952 and 2954, respectively, which are provided to a DSP 2956 through the optional A/D converter 2944.

The transmitter module 2912 includes an optional D/A converter 2922, an I/Q modulator section 2918, one or more IF sections 2916, an RF section 2914, and a frequency generator/synthesizer 2920. The I/Q modulator section 2918 includes mixers 2924, a phase shifter 2926, and a signal combiner 2928. The phase shifter 2926 operates the mixers 2924 ninety degrees out of phase with one another to generate I and Q modulated information signals 2930 and 2932, respectively, which are combined by the signal combiner 2928. The IF section(s) 2916 and RF section 2914 up-convert the combined I and Q modulated information signals 2930 and 2932 to RF for transmission by the antenna, in a manner well known in the relevant art(s).

Heterodyne implementations, such as those illustrated in FIGS. 28 and 29, are expensive and difficult to design, manufacture and tune. In accordance with the present invention, therefore, the interface 2714 (FIG. 27) is preferably implemented with one or more universal frequency translation (UFT) modules, such as the UFT module 102 (FIG. 1A). Thus previously described benefits of the present invention are obtained in wireless modems, WLANs, etc.

FIG. 30 illustrates an example block diagram embodiment of the interface 2714 that is associated with a computer or any other data processing and/or communications device. In FIG. 30, the receiver module 2718 includes a universal frequency downconverter (UFD) module 3014 and an optional analog to digital (A/D) converter 3016, which converts an analog output from the UFD 3014 to a digital format for the DSP 2720. The transmitter module 2716 includes an optional modulator 3012 and a universal
frequency up-converter (UFU) module 3010. The optional modulator 3012 can be a variety of types of modulators, including conventional modulators. Alternatively, the UFU module 3010 includes modulator functionality. The example implementation of FIG. 30 operates substantially as described above and in co-pending U.S. Patent Applications titled, "Method and System for Down-Converting Electromagnetic Signals," Ser. No. 09/176,022, filed October 21, 1998, issued as U.S. Patent No. 6,061,551 on May 9, 2000, and "Method and System for Frequency Up-Conversion," Ser. No. 09/176,154, filed October 21, 1998, issued as U.S. Patent No. 6,091,940 on July 18, 2000, as well as other cited documents.

FIG. 31 illustrates an example implementation of the interface 2714 illustrated in FIG. 30, wherein the receiver UFD 3014 includes a UFT module 3112, and the transmitter UFU 3010 includes a universal frequency translation (UFT) module 3110. This example implementation operates substantially as described above and in co-pending U.S. Patent Applications titled, "Method and System for Down-Converting Electromagnetic Signals," Ser. No. 09/176,022, filed October 21, 1998, issued as U.S. Patent No. 6,061,551 on May 9, 2000, and "Method and System for Frequency Up-Conversion," Ser. No. 09/176,154, filed October 21, 1998, "Method and System for Frequency Up-Conversion," Ser. No. $09 / 176,154$, filed October 21, 1998, issued as U.S. Patent No. 6,091,940 on July 18, 2000, as well as other cited documents.

FIG. 32 illustrates an example I/Q implementation of the interface module 2710. Other I/Q implementations are also contemplated and are within the scope of the present invention.

In the example ofFIG. 32, the receiver UFD module 3014 includes a signal divider 3228 that provides a received I/Q modulated carrier signal 3230 between a third UFT module 3224 and a fourth UFT module 3226. A phase shifter 3232 , illustrated here as a 90 degree phase shifter, controls the third and fourth UFT modules 3224 and 3226 to operate 90 degrees out of phase with one another. As a result, the third and fourth UFT modules 3224 and 3226 down-convert and demodulate the received I/Q modulated carrier signal 3230, and output I and Q channels 3234 and 3236, respectively, which are provided to the DSP 2720 through the optional A/D converter 3016.

In the example of FIG. 32, the transmitter UFU module 3010 includes first and second UFT modules 3212 and 3214 and a phase shifter 3210 , which is illustrated here as a 90 degree phase shifter. The phase shifter 3210 receives a lower frequency modulated carrier signal 3238 from the modulator 3012. The phase shifter 3210 controls the first and second UFT modules 3212 and 3214 to operate 90 degrees out of phase with one another. The first and second UFT modules 3212 and 3214 up-convert the lower frequency modulated carrier signal 3238 , which are output as higher frequency modulated I and Q carrier channels 3218 and 3220 , respectively. A signal combiner 3216 combines the higher frequency modulated I and Q carrier channels 3218 and 3220 into a single higher frequency modulated I/Q carrier signal 3222 for transmitting by the antenna 2712.

The example implementations of the interfaces described above, and variations thereof, can also be used to implement network interfaces, such as the network interface 2520 illustrated in FIG. 25.

6.1.2. Example Modifications

The RF modem applications, WLAN applications, etc., described herein, can be modified by incorporating one or more of the enhanced signal reception (ESR) techniques described herein. Use of ESR embodiments with the network embodiments described herein will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein.

The RF modem applications, WLAN applications, etc., described herein can be enhanced by incorporating one or more of the unified down-conversion and filtering (UDF) techniques described herein. Use of UDF embodiments with the network embodiments described herein will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein.

6.2. Other Example Applications

The application embodiments described above are provided for purposes of illustration. These applications and embodiments are not intended to limit the invention. Alternate and additional applications and embodiments, differing slightly or substantially from those described herein, will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. For example, such alternate and additional applications and embodiments include combinations of those described above. Such combinations will be apparent to persons skilled in the relevant art(s) based on the herein teachings.

7.0. Example WLAN Implementation Embodiments

7.1 Architecture

FIG. 39 is a block diagram of a WLAN interface 3902 (also referred to as a WLAN modem herein) according to an embodiment of the invention. The WLAN interface/modem 3902 includes an antenna 3904, a low noise amplifier or power amplifier (LNA/PA) 3904, a receiver 3906, a transmitter 3910, a control signal generator 3908, a demodulator/modulator facilitation module 3912, and a media access controller (MAC) interface 3914. Other embodiments may include different elements. The MAC interface 3914 couples the WLAN interface/modem 3902 to a computer 3916 or other data processing device. The computer 3916 preferably includes a MAC 3918.

The WLAN interface/modem 3902 represents a transmit and receive application that utilizes the universal frequency translation technology described herein. It also represents a zero IF (or direct-to-data) WLAN architecture.

The WLAN interface/modem 3902 also represents a vector modulator and a vector demodulator using the universal frequency translation (UFT) technology described herein. Use of the UFT technology enhances the flexibility of the WLAN application (i.e., makes it universal).

In the embodiment shown in FIG. 39, the WLAN interface/modem 3902 is compliant with WLAN standard IEEE 802.11. However, the invention is not limited to this standard. The invention is applicable to any communication standard or specification, as will be appreciated by persons skilled in the relevant art(s) based on the teachings contained herein. Any modifications to the invention to operate with other standards or specifications will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein.

In the embodiment shown in FIG. 39, the WLAN interface/modem 3902 provides half duplex communication. However, the invention is not limited to this communication mode. The invention is applicable and directed to other communication modes, as will be appreciated by persons skilled in the relevant art(s) based on the teachings contained herein.

In the embodiment shown in FIG. 39, the modulation/demodulation performed by the WLAN interface/modem 3902 is preferably direct sequence spread spectrum QPSK (quadrature phase shift keying) with differential encoding. However, the invention is not limited to this modulation/demodulation mode. The invention is applicable and directed to other modulation and demodulation modes, such as but not limited to those described herein, as well as frequency hopping according to IEEE 802.11, OFDM (orthogonal frequency division multiplexing), as well as others. These modulation/demodulation modes will be appreciated by persons skilled in the relevant art(s) based on the teachings contained herein.

The operation of the WLAN interface/modem 3902 when receiving shall now be described.

Signals 3922 received by the antenna 3903 are amplified by the LNA/PA 3904. The amplified signals 3924 are down-converted and demodulated by the receiver 3906 . The receiver 3906 outputs I signal 3926 and Q signal 3928.

FIG. 40 illustrates an example receiver 3906 according to an embodiment of the invention. It is noted that the receiver 3906 shown in FIG. 40 represents a vector modulator. The "receiving" function performed by the WLAN interface/modem 3902 can
be considered to be all processing performed by the WLAN interface/modem 3902 from the LNA/PA 3904 to generation of baseband information.

Signal 3924 is split by a 90 degree splitter 4001 to produce an I signal 4006A and Q signal 4006B that are preferably 90 degrees apart in phase. I and Q signals 4006A, 4006B are down-converted by UFD (universal frequency down-conversion) modules 4002A, 4002B. The UDF modules 4002A, 4002B output down-converted I and Q signals 3926, 3928. The UFD modules 4002A, 4002B each includes at least one UFT (universal frequency translation) module 4004A. UFD and UFT modules are described above. An example implementation of the receiver 3906 (vector demodulator) is shown in FIG. 53. An example BOM list for the receiver 3906 of FIG. 53 is shown in FIG. 54.

The demodulator/modulator facilitation module 3912 receives the I and Q signals 3926, 3928. The demodulator/modulator facilitation module 3912 amplifies and filters the I and Q signals 3926, 3928. The demodulator/modulator facilitation module 3912 also performs automatic gain control (AGC) functions. The AGC function is coupled with the universal frequency translation technology described herein. The demodulator/modulator facilitation module 3912 outputs processed I and Q signals 3930, 3932.

The MAC interface 3914 receives the processed I and Q signals 3930, 3932. The MAC interface 3914 preferably includes a baseband processor. The MAC interface 3914 preferably performs functions such as combining the I and Q signals 3930, 3932, and arranging the data according to the protocol/file formal being used. Other functions performed by the MAC interface 3914 and the baseband processor contained therein will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. The MAC interface 3914 outputs the baseband information signal, which is received and processed by the computer 3916 in an implementation and application specific manner.

In the example embodiment of FIG. 39, the demodulation function is distributed among the receiver 3906, the demodulator/modulator facilitation module 3912, and a baseband processor contained in the MAC interface 3914. The functions collectively performed by these components include, but are not limited to, despreading the information, differentially decoding the information, tracking the carrier phase,
descrambling, recreating the data clock, and combining the I and Q signals. The invention is not limited to this arrangement. These demodulation-type functions can be centralized in a single component, or distributed in other ways.

The operation of the WLAN interface/modem 3902 when transmitting shall now be described.

A baseband information signal 3936 is received by the MAC interface 3914 from the computer 3916. The MAC interface 3914 preferably performs functions such as splitting the baseband information signal to form I and Q signals 3930, 3932, and arranging the data according to the protocol/file formal being used. Other functions performed by the MAC interface 3914 and the baseband processor contained therein will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein.

The demodulator/modulator facilitation module 3912 filters and amplifies the I and Q signals 3930, 3932. The demodulator/modulator facilitation module 3912 outputs processed I and Q signals 3942, 3944. Preferably, at least some filtering and/or amplifying components in the demodulator/modulator facilitation module 3912 are used for both the transmit and receive paths.

The transmitter 3910 up-converts the processed I and Q signals 3942, 3944, and combines the up-converted I and Q signals. This up-converted/combined signal is amplified by the LNA/PA 3904, and then transmitted via the antenna 3904.

FIG. 41 illustrates an example transmitter 3910 according to an embodiment of the invention. The device in FIG. 41 can also be called a vector modulator. In an embodiment, the "transmit" function performed by the WLAN interface/modem 3902 can be considered to be all processing performed by the WLAN interface/modem 3902 from receipt of baseband information through the LNA/PA 3904. An example implementation of the transmitter 3910 (vector modulator) is shown in FIGS. 57-60. The data conditioning interfaces 5802 in FIG. 58 effectively pre-process the I and Q signals 3942, 3944 before being received by the UFU modules 4102. An example BOM list for the transmitter 3910 of FIGS. 57-60 is shown in FIGS. 61A and 61B.

I and Q signals 3942 , 3944 are received by UFU (universal frequency upconversion) modules 4102A, 4102B. The UFU modules 4102A, 4102B each includes at least one UFT module 4104A, 4104B. The UFU modules 4102A, 4102B up-convert I and Q signals 3942 , 3944. The UFU modules 4102A, 4102B output up-converted I and Q signals 4106,4108 . The 90 degree combiner 4110 effectively phase shifts either the I signal 4106 or the Q signal 4108 by 90 degrees, and then combines the phase shifted signal with the unshifted signal to generate a combined, up-converted I/Q signal 3946.

In the example embodiment of FIG. 39, the modulation function is distributed among the transmitter 3910, the demodulator/modulator facilitation module 3912, and a baseband processor contained in the MAC interface 3914. The functions collectively performed by these components include, but are not limited to, differentially encoding data, splitting the baseband information signal into I and Q signals, scrambling data, and data spreading. The invention is not limited to this arrangement. These modulation-type functions can be centralized in a single component, or distributed in other ways.

An example implementation of the transmitter 3910 (vector modulator) is shown in FIGS. 57-60. The data conditioning interfaces 5802 in FIG. 58 effectively pre-process the I and Q signals 3942,3944 before being received by the UFU modules 4102. An example BOM list for the transmitter 3910 of FIGS. 57-60 is shown in FIGS. 61A and 61B.

The components in the WLAN interface/modem 3902 are preferably controlled by the MAC interface 3914 in operation with the MAC 3918 in the computer 3916. This is represented by the distributed control arrow 3940 in FIG. 39. Such control includes setting the frequency, data rate, whether receiving or transmitting, and other communication characteristics/modes that will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. In embodiments, control signals are sent over the corresponding wireless medium and received by the antenna 3904, and sent to the MAC 3918.

FIG. 42 illustrates an example implementation of the WLAN interface/modem 3902. It is noted that in this implementation example, the MAC interface 3914 is located on a different board. FIG. 62 is an example motherboard corresponding to FIG. 42. FIG.

63 is an example bill-of-materials (BOM) list for the motherboard of FIG. 62. This and other implementations are provided herein for example purposes only. Other implementations will be apparent to persons skilled in the relevant art(s), and the invention is directed to such other implementations.

FIG. 102 illustrates an alternate example PCMCIA test bed assembly for a WLAN interface/modem 3902 according to an embodiment of the invention. In this embodiment, the baseband processor 10202 is separate from the MAC interface 3914.

In some applications, it is desired to separate the receive path and the transmit path. FIG. 43 illustrates an example receive implementation, and FIG. 44 illustrates an example transmit implementation.

7.2 Receiver

Example embodiments and implementations of the IQ receiver 3906 will be discussed as follows. The example embodiments and implementations include multi-phase embodiments that are useful for reducing or eliminating unwanted DC offsets and circuit re-radiation. The invention is not limited to these example receiver embodiments. Other receiver embodiments will be understood by those skilled in the relevant arts based on the discussion given herein. These other embodiments are within the scope and spirit of the present invention.

7.2.1 IQ Receiver

An example embodiment of the receiver 3906 is shown in FIG. 67A. Referring to FIG. 67A, the UFD module 4002A (FIG. 40) is configured so that the UFT module 4004A is coupled to a storage module 6704A. The UFT module 4004A is a controlled switch 6702A that is controlled by the control signal 3920A. The storage module 6704A is a capacitor 6706A. However, other storage modules could be used including an inductor, as will be understood by those skilled in the relevant arts. Likewise, the UFD module 4002B (FIG. 40) is configured so that the UFT module 4004B is coupled to a
storage module 6704B. The UFT module 4004B is a controlled switch 6702B that is controlled by the control signal 3920B. The storage module 6704B is a capacitor 6706B. However, other storage modules could be used including an inductor, as will be understood by those skilled in the relevant arts. The operation of the receiver 3906 is discussed as follows.

The 90 degree splitter 4001 receives the received signal 3924 from the LNA/PA module 3904. The 90 degree splitter 4001 divides the signal 3924 into an I signal 4006A and a Q signal 4006B.

The UFD module 4002A receives the I signal 4006A and down-converts the I signal 4006A using the control signal 3920A to a lower frequency signal I 3926. More specifically, the controlled switch 6702A samples the I signal 4006A according to the control signal 3920A, transferring charge (or energy) to the storage module 6704A. The charge stored during successive samples of the I signal 4006A, results in the downconverted signal I signal 3926. Likewise, UFD module 4002B receives the Q signal 4006B and down-converts the Q signal 4006B using the control signal 3920B to a lower frequency signal Q 3928. More specifically, the controlled switch 6702B samples the Q signal 4006B according to the control signal 3920B, resulting in charge (or energy) that is stored in the storage module 6704B. The charge stored during successive samples of the I signal 4006A, results in the down-converted signal Q signal 3928.

Down-conversion utilizing a UFD module (also called an aliasing module) is further described in the above referenced applications, such as "Method and System for Down-converting Electromagnetic Signals," Ser. No. 09/176,022, now U.S. Patent No. 6,061,551. As discussed in the ' 551 patent, the control signals 3920A,B can be configured as a plurality of pulses that are established to improve energy transfer from the signals 4006A,B to the down-converted signals 3926 and 3928 , respectively. In other words, the pulse widths of the control signals 3920 can be adjusted to increase and/or optimize the energy transfer from the signals 4006 to the down-converted output signals 3926 and 3938 , respectively. Additionally, matched filter principles can be implemented to shape the sampling pulses of the control signal 3920, and therefore further improve energy transfer to the down-converted output signal 3106. Matched filter principle and energy transfer
are further described in the above referenced applications, such as U.S. patent application titled, "Method and System for Down-Converting an Electromagnetic Signal, Transforms For Same, and Aperture Relationships", Ser. No. 09/550,644, filed on April 14, 2000.

The configuration of the UFT based receiver 3906 is flexible. In FIG. 67A, the controlled switches 6702 are in a series configuration relative to the signals 4006 . Alternatively, FIG 67B illustrates the controlled switches 6702 in a shunt configuration so that the switches 6702 shunt the signals 4006 to ground.

Additionally in FIGs. 67A-B, the 90 degree phase shift between the I and Q channels is realized with the 90 degree splitter 4001. Alternatively, FIG. 68A illustrates a receiver 6806 in series configuration, where the 90 degree phase shift is realized by shifting the control signal 3920B by 90 degrees relative to the control signal 3920A. More specifically, the 90 degree shifter 6804 is added to shift the control signal 3920B by 90 degrees relative to the control signal 3920A. As such, the splitter 6802 is an in-phase (i.e. 0 degree) signal splitter. FIG. 68B illustrates an embodiment of the receiver 3906 of the receiver 3906 in a shunt configuration with 90 degree delays on the control signal.

Furthermore, the configuration of the controlled switch 6702 is also flexible. More specifically, the controlled switches 6702 can be implemented in many different ways, including transistor switches. FIG. 69A illustrates the UFT modules 6702 in a series configuration and implemented as FETs 6902, where the gate of each FET 6902 is controlled by the respective control signal 3920. As such, the FET 6902 samples the respective signal 4006, according to the respective control signal 3920. FIG. 69B illustrates the shunt configuration.

7.2.2 Multi-Phase IQ Receiver

FIG. 70A illustrates an exemplary I/Q modulation receiver 7000, according to an embodiment of the present invention. I/Q modulation receiver 7000 has additional advantages of reducing or eliminating unwanted DC offsets and circuit re-radiation. As will be apparent, the IQ receiver 7000 can be described as a multi-phase receiver to those skilled in the arts.

I/Q modulation receiver 7000 comprises a first UFD module 7002, a first optional filter 7004, a second UFD module 7006, a second optional filter 7008, a third UFD module 7010, a third optional filter 7012, a fourth UFD module 7014, a fourth filter 7016, an optional LNA 7018, a first differential amplifier 7020, a second differential amplifier 7022, and an antenna 7072.

I/Q modulation receiver 7000 receives, down-converts, and demodulates a I/Q modulated RF input signal 7082 to an I baseband output signal 7084, and a Q baseband output signal 7086. I/Q modulated RF input signal 7082 comprises a first information signal and a second information signal that are I/Q modulated onto an RF carrier signal. I baseband output signal 7084 comprises the first baseband information signal. Q baseband output signal 7086 comprises the second baseband information signal.

Antenna 7072 receives I/Q modulated RF input signal 7082. I/Q modulated RF input signal 7082 is output by antenna 7072 and received by optional LNA 7018. When present, LNA 7018 amplifies I/Q modulated RF input signal 7082, and outputs amplified I/Q signal 7088.

First UFD module 7002 receives amplified I/Q signal 7088. First UFD module 7002 down-converts the I-phase signal portion of amplified input I/Q signal 7088 according to an I control signal 7090. First UFD module 7002 outputs an I output signal 7098.

In an embodiment, first UFD module 7002 comprises a first storage module 7024, a first UFT module 7026, and a first voltage reference 7028. In an embodiment, a switch contained within first UFT module 7026 opens and closes as a function of I control signal 7090. As a result of the opening and closing of this switch, which respectively couples and de-couples first storage module 7024 to and from first voltage reference 7028, a down-converted signal, referred to as I output signal 7098, results. First voltage reference 7028 may be any reference voltage, and is preferably ground. I output signal 7098 is stored by first storage module 7024.

In an embodiment, first storage module 7024 comprises a first capacitor 7074. In addition to storing I output signal 7098, first capacitor 7074 reduces or prevents a DC offset voltage resulting from charge injection from appearing on I output signal 7098.

I output signal 7098 is received by optional first filter 7004. When present, first filter 7004 is in some embodiments a high pass filter to at least filter I output signal 7098 to remove any carrier signal "bleed through". In a preferred embodiment, when present, first filter 7004 comprises a first resistor 7030, a first filter capacitor 7032, and a first filter voltage reference 7034. Preferably, first resistor 7030 is coupled between I output signal 7098 and a filtered I output signal 7007, and first filter capacitor 7032 is coupled between filtered I output signal 7007 and first filter voltage reference 7034. Alternately, first filter 7004 may comprise any other applicable filter configuration as would be understood by persons skilled in the relevant art(s). First filter 7004 outputs filtered I output signal 7007.

Second UFD module 7006 receives amplified I/Q signal 7088. Second UFD module 7006 down-converts the inverted I-phase signal portion of amplified input I/Q signal 7088 according to an inverted I control signal 7092. Second UFD module 7006 outputs an inverted I output signal 7001.

In an embodiment, second UFD module 7006 comprises a second storage module 7036, a second UFT module 7038, and a second voltage reference 7040. In an embodiment, a switch contained within second UFT module 7038 opens and closes as a function of inverted I control signal 7092. As a result of the opening and closing of this switch, which respectively couples and de-couples second storage module 7036 to and from second voltage reference 7040, a down-converted signal, referred to as inverted I output signal 7001, results. Second voltage reference 7040 may be any reference voltage, and is preferably ground. Inverted I output signal 7001 is stored by second storage module 7036.

In an embodiment, second storage module 7036 comprises a second capacitor 7076. In addition to storing inverted I output signal 7001, second capacitor 7076 reduces or prevents a DC offset voltage resulting from charge injection from appearing on inverted I output signal 7001.

Inverted I output signal 7001 is received by optional second filter 7008. When present, second filter 7008 is a high pass filter to at least filter inverted I output signal 7001 to remove any carrier signal "bleed through". In a preferred embodiment, when present, second filter 7008 comprises a second resistor 7042, a second filter capacitor

7044, and a second filter voltage reference 7046. Preferably, second resistor 7042 is coupled between inverted I output signal 7001 and a filtered inverted I output signal 7009, and second filter capacitor 7044 is coupled between filtered inverted I output signal 7009 and second filter voltage reference 7046. Alternately, second filter 7008 may comprise any other applicable filter configuration as would be understood by persons skilled in the relevant art(s). Second filter 7008 outputs filtered inverted I output signal 7009.

First differential amplifier 7020 receives filtered I output signal 7007 at its noninverting input and receives filtered inverted I output signal 7009 at its inverting input. First differential amplifier 7020 subtracts filtered inverted I output signal 7009 from filtered I output signal 7007, amplifies the result, and outputs I baseband output signal 7084. Because filtered inverted I output signal 7009 is substantially equal to an inverted version of filtered I output signal 7007, I baseband output signal 7084 is substantially equal to filtered I output signal 7009, with its amplitude doubled. Furthermore, filtered I output signal 7007 and filtered inverted I output signal 7009 may comprise substantially equal noise and DC offset contributions from prior down-conversion circuitry, including first UFD module 7002 and second UFD module 7006, respectively. When first differential amplifier 7020 subtracts filtered inverted I output signal 7009 from filtered I output signal 7007, these noise and DC offset contributions substantially cancel each other.

Third UFD module 7010 receives amplified I/Q signal 7088. Third UFD module 7010 down-converts the Q-phase signal portion of amplified input I/Q signal 7088 according to an Q control signal 7094. Third UFD module 7010 outputs an Q output signal 7003.

In an embodiment, third UFD module 7010 comprises a third storage module 7048, a third UFT module 7050, and a third voltage reference 7052. In an embodiment, a switch contained within third UFT module 7050 opens and closes as a function of Q control signal 7094. As a result of the opening and closing of this switch, which respectively couples and de-couples third storage module 7048 to and from third voltage reference 7052, a down-converted signal, referred to as Q output signal 7003, results.

Third voltage reference 7052 may be any reference voltage, and is preferably ground. Q output signal 7003 is stored by third storage module 7048.

In an embodiment, third storage module 7048 comprises a third capacitor 7078. In addition to storing Q output signal 7003, third capacitor 7078 reduces or prevents a DC offset voltage resulting from charge injection from appearing on Q output signal 7003.

Q output signal 7003 is received by optional third filter 7012. When present, in an embodiment, third filter 7012 is a high pass filter to at least filter Q output signal 7003 to remove any carrier signal "bleed through". In an embodiment, when present, third filter 7012 comprises a third resistor 7054, a third filter capacitor 7056, and a third filter voltage reference 7058. Preferably, third resistor 7054 is coupled between Q output signal 7003 and a filtered Q output signal 7011, and third filter capacitor 7056 is coupled between filtered Q output signal 7011 and third filter voltage reference 7058. Alternately, third filter 7012 may comprise any other applicable filter configuration as would be understood by persons skilled in the relevant art(s). Third filter 7012 outputs filtered \mathbf{Q} output signal 7011.

Fourth UFD module 7014 receives amplified I/Q signal 7088. Fourth UFD module 7014 down-converts the inverted Q-phase signal portion of amplified input I/Q signal 7088 according to an inverted Q control signal 7096. Fourth UFD module 7014 outputs an inverted Q output signal 7005.

In an embodiment, fourth UFD module 7014 comprises a fourth storage module 7060, a fourth UFT module 7062, and a fourth voltage reference 7064. In an embodiment, a switch contained within fourth UFT module 7062 opens and closes as a function of inverted Q control signal 7096. As a result of the opening and closing of this switch, which respectively couples and de-couples fourth storage module 7060 to and from fourth voltage reference 7064, a down-converted signal, referred to as inverted \mathbf{Q} output signal 7005, results. Fourth voltage reference 7064 may be any reference voltage, and is preferably ground. Inverted Q output signal 7005 is stored by fourth storage module 7060.

In an embodiment, fourth storage module 7060 comprises a fourth capacitor 7080. In addition to storing inverted Q output signal 7005, fourth capacitor 7080 reduces or
prevents a DC offset voltage resulting from charge injection from appearing on inverted Q output signal 7005.

Inverted Q output signal 7005 is received by optional fourth filter 7016. When present, fourth filter 7016 is a high pass filter to at least filter inverted Q output signal 7005 to remove any carrier signal "bleed through". In a preferred embodiment, when present, fourth filter 7016 comprises a fourth resistor 7066, a fourth filter capacitor 7068, and a fourth filter voltage reference 7070. Preferably, fourth resistor 7066 is coupled between inverted Q output signal 7005 and a filtered inverted Q output signal 7013, and fourth filter capacitor 7068 is coupled between filtered inverted Q output signal 7013 and fourth filter voltage reference 7070. Alternately, fourth filter 7016 may comprise any other applicable filter configuration as would be understood by persons skilled in the relevant art(s). Fourth filter 7016 outputs filtered inverted Q output signal 7013.

Second differential amplifier 7022 receives filtered Q output signal 7011 at its noninverting input and receives filtered inverted Q output signal 7013 at its inverting input. Second differential amplifier 7022 subtracts filtered inverted Q output signal 7013 from filtered Q output signal 7011, amplifies the result, and outputs Q baseband output signal 7086. Because filtered inverted Q output signal 7013 is substantially equal to an inverted version of filtered Q output signal 7011, Q baseband output signal 7086 is substantially equal to filtered Q output signal 7013, with its amplitude doubled. Furthermore, filtered Q output signal 7011 and filtered inverted Q output signal 7013 may comprise substantially equal noise and DC offset contributions of the same polarity from prior down-conversion circuitry, including third UFD module 7010 and fourth UFD module 7014 , respectively. When second differential amplifier 7022 subtracts filtered inverted Q output signal 7013 from filtered Q output signal 7011, these noise and DC offset contributions substantially cancel each other.

Additional embodiments relating to addressing DC offset and re-radiation concerns, applicable to the present invention, are described in co-pending Patent Application No. 09/526,041, entitled "DC Offset, Re-radiation, and I/Q Solutions Using Universal Frequency Translation Technology," Attorney Docket No. 1744.0880000, which is herein incorporated by reference in its entirety.

7.2.2.1 Example 1 Q Modulation Control Signal Generator Embodiments

FIG. 70B illustrates an exemplary block diagram for I/Q modulation control signal generator 7023, according to an embodiment of the present invention. I/Q modulation control signal generator 7023 generates I control signal 7090, inverted I control signal 7092, Q control signal 7094, and inverted Q control signal 7096 used by I/Q modulation receiver 7000 of FIG. 70A. I control signal 7090 and inverted I control signal 7092 operate to down-convert the I-phase portion of an input I/Q modulated RF signal. Q control signal 7094 and inverted Q control signal 7096 act to down-convert the Q-phase portion of the input I/Q modulated RF signal. Furthermore, I/Q modulation control signal generator 7023 has the advantage of generating control signals in a manner such that resulting collective circuit re-radiation is radiated at one or more frequencies outside of the frequency range of interest. For instance, potential circuit re-radiation is radiated at a frequency substantially greater than that of the input RF carrier signal frequency.

I/Q modulation control signal generator 7023 comprises a local oscillator 7025, a first divide-by-two module 7027, a 180 degree phase shifter 7029, a second divide-bytwo module 7031, a first pulse generator 7033, a second pulse generator 7035, a third pulse generator 7037, and a fourth pulse generator 7039.

Local oscillator 7025 outputs an oscillating signal 7015. FIG. 70C shows an exemplary oscillating signal 7015.

First divide-by-two module 7027 receives oscillating signal 7015, divides oscillating signal 7015 by two, and outputs a half frequency LO signal 7017 and a half frequency inverted LO signal 7041. FIG. 70C shows an exemplary half frequency LO signal 7017. Half frequency inverted LO signal 7041 is an inverted version of half frequency LO signal 7017. First divide-by-two module 7027 may be implemented in circuit logic, hardware, software, or any combination thereof, as would be known by persons skilled in the relevant art(s).

180 degree phase shifter 7029 receives oscillating signal 7015 , shifts the phase of oscillating signal 7015 by 180 degrees, and outputs phase shifted LO signal 7019. 180 degree phase shifter 7029 may be implemented in circuit logic, hardware, software, or any combination thereof, as would be known by persons skilled in the relevant art(s). In alternative embodiments, other amounts of phase shift may be used.

Second divide-by two module 7031 receives phase shifted LO signal 7019, divides phase shifted LO signal 7019 by two, and outputs a half frequency phase shifted LO signal 7021 and a half frequency inverted phase shifted LO signal 7043. FIG. 70C shows an exemplary half frequency phase shifted LO signal 7021. Half frequency inverted phase shifted LO signal 7043 is an inverted version of half frequency phase shifted LO signal 7021. Second divide-by-two module 7031 may be implemented in circuit logic, hardware, software, or any combination thereof, as would be known by persons skilled in the relevant art(s).

First pulse generator 7033 receives half frequency LO signal 7017, generates an output pulse whenever a rising edge is received on half frequency LO signal 7017, and outputs I control signal 7090. FIG. 70C shows an exemplary I control signal 7090.

Second pulse generator 7035 receives half frequency inverted LO signal 7041, generates an output pulse whenever a rising edge is received on half frequency inverted LO signal 7041, and outputs inverted I control signal 7092. FIG. 70C shows an exemplary inverted I control signal 7092.

Third pulse generator 7037 receives half frequency phase shifted LO signal 7021, generates an output pulse whenever a rising edge is received on half frequency phase shifted LO signal 7021, and outputs Q control signal 7094. FIG. 70C shows an exemplary Q control signal 7094.

Fourth pulse generator 7039 receives half frequency inverted phase shifted LO signal 7043, generates an output pulse whenever a rising edge is received on half frequency inverted phase shifted LO signal 7043, and outputs inverted Q control signal 7096. FIG. 70C shows an exemplary inverted Q control signal 7096.

In an embodiment, control signals 7090, 7021, 7041 and 7043 include pulses having a width equal to one-half of a period of I/Q modulated RF input signal 7082. The
invention, however, is not limited to these pulse widths, and control signals 7090, 7021, 7041 , and 7043 may comprise pulse widths of any fraction of, or multiple and fraction of, a period of I/Q modulated RF input signal 7082.

First, second, third, and fourth pulse generators 7033, 7035, 7037, and 7039 may be implemented in circuit logic, hardware, software, or any combination thereof, as would be known by persons skilled in the relevant art(s).

As shown in FIG. 70C, in an embodiment, control signals 7090, 7021, 7041, and 7043 comprise pulses that are non-overlapping in other embodiments the pulses may overlap. Furthermore, in this example, pulses appear on these signals in the following order: I control signal 7090, Q control signal 7094, inverted I control signal 7092, and inverted Q control signal 7096. Potential circuit re-radiation from I/Q modulation receiver 7000 may comprise frequency components from a combination of these control signals.

For example, FIG. 70D shows an overlay of pulses from I control signal 7090, Q control signal 7094, inverted I control signal 7092, and inverted Q control signal 7096. When pulses from these control signals leak through first, second, third, and/or fourth UFD modules 7002, 7006, 7010, and 7014 to antenna 7072 (shown in FIG. 70A), they may be radiated from I/Q modulation receiver 7000, with a combined waveform that appears to have a primary frequency equal to four times the frequency of any single one of control signals 7090, 7021, 7041, and 7043. FIG. 70 shows an example combined control signal 7045.

FIG. 70D also shows an example I/Q modulation RF input signal 7082 overlaid upon control signals 7090, 7094, 7092, and 7096. As shown in FIG. 70D, pulses on I control signal 7090 overlay and act to down-convert a positive I-phase portion of I/Q modulation RF input signal 7082. Pulses on inverted I control signal 7092 overlay and act to down-convert a negative I-phase portion of I/Q modulation RF input signal 7082. Pulses on Q control signal 7094 overlay and act to down-convert a rising Q-phase portion of I/Q modulation RF input signal 7082. Pulses on inverted Q control signal 7096 overlay and act to down-convert a falling Q-phase portion of I/Q modulation RF input signal 7082.

As FIG. 70D further shows in this example, the frequency ratio between the combination of control signals 7090, 7021, 7041, and 7043 and I/Q modulation RF input signal 7082 is approximately $4: 3$. Because the frequency of the potentially re-radiated signal, i.e., combined control signal 7045, is substantially different from that of the signal being down-converted, i.e., I/Q modulation RF input signal 7082, it does not interfere with signal down-conversion as it is out of the frequency band of interest, and hence may be filtered out. In this manner, I/Q modulation receiver 7000 reduces problems due to circuit re-radiation. As will be understood by persons skilled in the relevant art(s) from the teachings herein, frequency ratios other than $4: 3$ may be implemented to achieve similar reduction of problems of circuit re-radiation.

It should be understood that the above control signal generator circuit example is provided for illustrative purposes only. The invention is not limited to these embodiments. Alternative embodiments (including equivalents, extensions, variations, deviations, etc., of the embodiments described herein) for I/Q modulation control signal generator 7023 will be apparent to persons skilled in the relevant art(s) from the teachings herein, and are within the scope of the present invention.

FIG. 70S illustrates the receiver 7000, where the UFT modules 7028, 7038, 7050, and 7062 are configured with FETs 7099a-d.

Additional embodiments relating to addressing DC offset and re-radiation concerns, applicable to the present invention, are described in co-pending patent application no. 09/526, 041, entitled "DC Offset, Re-radiation, and I/Q Solutions Using Universal Frequency Translation Technology," which is herein incorporated by reference in its entirety.

7.2.2.2 Implementation of Multi-phase IQ Modulation Receiver Embodiment with Exemplary Waveforms

FIG. 70E illustrates a more detailed example circuit implementation of I/Q modulation receiver 7000, according to an embodiment of the present invention. FIGS.
$70 \mathrm{~F}-\mathrm{P}$ show example waveforms related to an example implementation of I/Q modulation receiver 7000 of FIG. 70E.

FIGS. 70F and 70G show first and second input data signals 7047 and 7049 to be I/Q modulated with a RF carrier signal frequency as the I-phase and Q-phase information signals, respectively.

FIGS. 70I and 70J show the signals of FIG. 70F and 70G after modulation with a RF carrier signal frequency, respectively, as I-modulated signal 7051 and Q-modulated signal 7053.

FIG. 70 H shows an I/Q modulation RF input signal 7082 formed from Imodulated signal 7051 and Q-modulated signal 7053 of FIGS. 70 I and 70J, respectively.

FIG. 700 shows an overlaid view of filtered I output signal 7007 and filtered inverted I output signal 7009.

FIG. 70P shows an overlaid view of filtered Q output signal 7011 and filtered inverted Q output signal 7013.

FIGS. 70K and 70L show I baseband output signal 7084 and Q baseband output signal 7086, respectfully. A data transition 7055 is indicated in both I baseband output signal 7084 and Q baseband output signal 7086. The corresponding data transition 7055 is indicated in I-modulated signal 7051 of FIG. 70I, Q-modulated signal 7053 of FIG. 70J, and I/Q modulation RF input signal 7082 of FIG. 70 H .

FIGS. 70M and 70N show I baseband output signal 7084 and Q baseband output signal 7086 over a wider time interval.

7.2.2.3 Example Single Channel Receiver Embodiment

FIG. 70Q illustrates an example single channel receiver 7091, corresponding to either the I or Q channel of I/Q modulation receiver 7000, according to an embodiment of the present invention. Single channel receiver 7091 can down-convert an input RF signal 7097 modulated according to AM, PM, FM, and other modulation schemes. Refer to section 7.2.1 above for further description on the operation of single channel receiver
7091. In other words, the single channel receiver 7091 is a one channel of the IQ receiver 7000 that was discussed in section 7.2.1.

7.2.2.4 Alternative Example I/Q Modulation Receiver Embodiment

FIG. 70R illustrates an exemplary I/Q modulation receiver 7089, according to an embodiment of the present invention. I/Q modulation receiver 7089 receives, downconverts, and demodulates an I/Q modulated RF input signal 7082 to an I baseband output signal 7084, and a Q baseband output signal 7086. I/Q modulation receiver 7089 has additional advantages of reducing or eliminating unwanted DC offsets and circuit reradiation, in a similar fashion to that of I / Q modulation receiver 7000 described above.

7.3 Transmitter

Example embodiments and implementations of the IQ transmitter 3910 will be discussed as follows. The example embodiments and implementations include multi-phase embodiments that are useful for reducing or eliminating unwanted DC offsets that can result in unwanted carrier insertion.

7.3.1 Universal Transmitter with 2 UFT Modules

FIG. 71A illustrates a transmitter 7102 according to embodiments of the present invention. Transmitter 7102 includes a balanced modulator/up-converter 7104, a control signal generator 7142, an optional filter 7106, and an optional amplifier 7108. Transmitter 7102 up-converts a baseband signal 7110 to produce an output signal 7140 that is conditioned for wireless or wire line transmission. In doing so, the balanced modulator 7104 receives the baseband signal 7110 and samples the baseband signal in a differential and balanced fashion to generate a harmonically rich signal 7138. The harmonically rich signal 7138 includes multiple harmonic images, where each image contains the baseband
information in the baseband signal 7110. The optional bandpass filter 7106 may be included to select a harmonic of interest (or a subset of harmonics) in the signal 7138 for transmission. The optional amplifier 7108 may be included to amplify the selected harmonic prior to transmission. The universal transmitter is further described at a high level by the flowchart 8400 that is shown in FIG. 84. A more detailed structural and operational description of the balanced modulator follows thereafter.

Referring to flowchart 8400 , in step 8402 , the balanced modulator 7104 receives the baseband signal 7110 .

In step 8404, the balanced modulator 7104 samples the baseband signal in a differential and balanced fashion according to a first and second control signals that are phase shifted with respect to each other. The resulting harmonically rich signal 7138 includes multiple harmonic images that repeat at harmonics of the sampling frequency, where each image contains the necessary amplitude and frequency information to reconstruct the baseband signal 7110 .

In embodiments of the invention, the control signals include pulses having pulse widths (or apertures) that are established to improve energy transfer to a desired harmonic of the harmonically rich signal 7138. In further embodiments of the invention, DC offset voltages are minimized between sampling modules as indicated in step 8406 , thereby minimizing carrier insertion in the harmonic images of the harmonically rich signal 7138.

In step 8408, the optional bandpass filter 7106 selects the desired harmonic of interest (or a subset of harmonics) in from the harmonically rich signal 7138 for transmission.

In step 8410, the optional amplifier 7108 amplifies the selected harmonic(s) prior to transmission.

In step 8412, the selected harmonic(s) is transmitted over a communications medium.

7.3.1.1 Balanced Modulator Detailed Description

Referring to the example embodiment shown in FIG. 71A, the balanced modulator 7104 includes the following components: a buffer/inverter 7112; summer amplifiers 7118, 7119; UFT modules 7124 and 7128 having controlled switches 7148 and 7150 , respectively; an inductor 7126; a blocking capacitor 7136; and a DC terminal 7111. As stated above, the balanced modulator 7104 differentially samples the baseband signal 7110 to generate a harmonically rich signal 7138. More specifically, the UFT modules 7124 and 7128 sample the baseband signal in differential fashion according to control signals 7123 and 7127 , respectively. A DC reference voltage 7113 is applied to terminal 7111 and is uniformly distributed to the UFT modules 7124 and 7128. The distributed DC voltage 7113 prevents any DC offset voltages from developing between the UFT modules, which can lead to carrier insertion in the harmonically rich signal 7138. The operation of the balanced modulator 7104 is discussed in greater detail with reference to flowchart 8500 (FIG. 85), as follows.

In step 8402, the buffer/inverter 7112 receives the input baseband signal 7110 and generates input signal 7114 and inverted input signal 7116. Input signal 7114 is substantially similar to signal 7110, and inverted signal 7116 is an inverted version of signal 7114. As such, the buffer/inverter 7112 converts the (single-ended) baseband signal 7110 into differential input signals 7114 and 7116 that will be sampled by the UFT modules. Buffer/inverter 7112 can be implemented using known operational amplifier (op amp) circuits, as will be understood by those skilled in the arts, although the invention is not limited to this example.

In step 8504, the summer amplifier 7118 sums the DC reference voltage 7113 applied to terminal 7111 with the input signal 7114 , to generate a combined signal 7120. Likewise, the summer amplifier 7119 sums the DC reference voltage 7113 with the inverted input signal 7116 to generate a combined signal 7122. Summer amplifiers 7118 and 7119 can be implemented using known op amp summer circuits, and can be designed to have a specified gain or attenuation, including unity gain, although the invention is not
limited to this example. The DC reference voltage 7113 is also distributed to the outputs of both UFT modules 7124 and 7128 through the inductor 7126 as is shown.

In step 8506, the control signal generator 7142 generates control signals 7123 and 7127 that are shown by way of example in FIG. 72B and FIG. 72C, respectively. As illustrated, both control signals 7123 and 7127 have the same period T_{S} as a master clock signal 7145 (FIG.72A), but have a pulse width (or aperture) of T_{A}. In the example, control signal 7123 triggers on the rising pulse edge of the master clock signal 7145, and control signal 7127 triggers on the falling pulse edge of the master clock signal 7145. Therefore, control signals 7123 and 7127 are shifted in time by 180 degrees relative to each other. In embodiments of invention, the master clock signal 7145 (and therefore the control signals 7123 and 7127) have a frequency that is a sub-harmonic of the desired output signal 7140. The invention is not limited to the example of FIGs. 72A-72C.

In one embodiment, the control signal generator 7142 includes an oscillator 7146 , pulse generators 7144a and 7144b, and an inverter 7147 as shown. In operation, the oscillator 7146 generates the master clock signal 7145, which is illustrated in FIG. 72A as a periodic square wave having pulses with a period of T_{s}. Other clock signals could be used including but not limited to sinusoidal waves, as will be understood by those skilled in the arts. Pulse generator 7144 a receives the master clock signal 7145 and triggers on the rising pulse edge, to generate the control signal 7123. Inverter 7147 inverts the clock signal 7145 to generate an inverted clock signal 7143 . The pulse generator 7144 b receives the inverted clock signal 7143 and triggers on the rising pulse edge (which is the falling edge of clock signal 7145), to generate the control signal 7127.

FIG 89A-E illustrate example embodiments for the pulse generator 7144. FIG. 89A illustrates a pulse generator 8902 . The pulse generator 8902 generates pulses 8908 having pulse width T_{A} from an input signal 8904. Example input signals 8904 and pulses 8908 are depicted in FIGs 89B and 89C, respectively. The input signal 8904 can be any type of periodic signal, including, but not limited to, a sinusoid, a square wave, a sawtooth wave etc. The pulse width (or aperture) T_{A} of the pulses 8908 is determined by delay 8906 of the pulse generator 8902. The pulse generator 8902 also includes an optional inverter 8910, which is optionally added for polarity considerations as understood
by those skilled in the arts. The example logic and implementation shown for the pulse generator 8902 is provided for illustrative purposes only, and is not limiting. The actual logic employed can take many forms. Additional examples of pulse generation logic are shown in FIGs. 89D and 89E. FIG. 89D illustrates a rising edge pulse generator 8912 that triggers on the rising edge of input signal 8904. FIG. 89E illustrates a falling edge pulse generator 8916 that triggers on the falling edge of the input signal 8904.

In step 8508, the UFT module 7124 samples the combined signal 7120 according to the control signal 7123 to generate harmonically rich signal 7130. More specifically, the switch 7148 closes during the pulse widths T_{A} of the control signal 7123 to sample the combined signal 7120 resulting in the harmonically rich signal 7130. FIG. 71B illustrates an exemplary frequency spectrum for the harmonically rich signal 7130 having harmonic images $7152 \mathrm{a}-\mathrm{n}$. The images 7152 repeat at harmonics of the sampling frequency $1 / \mathrm{T}_{\mathrm{s}}$, at infinitum, where each image 7152 contains the necessary amplitude, frequency, and phase information to reconstruct the baseband signal 7110. As discussed further below, the relative amplitude of the frequency images is generally a function of the harmonic number and the pulse width T_{A}. As such, the relative amplitude of a particular harmonic 7152 can be increased (or decreased) by adjusting the pulse width T_{A} of the control signal 7123. In general, shorter pulse widths of T_{A} shift more energy into the higher frequency harmonics, and longer pulse widths of T_{A} shift energy into the lower frequency harmonics. The generation of harmonically rich signals by sampling an input signal according to a controlled aperture have been described earlier in this application in the section titled, "Frequency Up-conversion Using Universal Frequency Translation", and is illustrated by FIGs. 3-6. A more detailed discussion of frequency up-conversion using a switch with a controlled sampling aperture is discussed in the co-pending patent application titled, "Method and System for Frequency Up-Conversion," Ser. No./09/176,154, field on October 21, 1998, and incorporated herein by reference.

In step 8510, the UFT module 7128 samples the combined signal 7122 according to the control signal 7127 to generate harmonically rich signal 7134. More specifically, the switch 7150 closes during the pulse widths T_{A} of the control signal 7127 to sample the combined signal 7122 resulting in the harmonically rich signal 7134. The harmonically
rich signal 7134 includes multiple frequency images of baseband signal 7110 that repeat at harmonics of the sampling frequency $\left(1 / \mathrm{T}_{\mathrm{s}}\right)$, similar to that for the harmonically rich signal 7130. However, the images in the signal 7134 are phase-shifted compared to those in signal 7130 because of the inversion of signal 7116 compared to signal 7114 , and because of the relative phase shift between the control signals 7123 and 7127.

In step 8512, the node 7132 sums the harmonically rich signals 7130 and 7134 to generate harmonically rich signal 7133. FIG. 71C illustrates an exemplary frequency spectrum for the harmonically rich signal 7133 that has multiple images 7154a-n that repeat at harmonics of the sampling frequency $1 / \mathrm{T}_{\mathrm{s}}$. Each image 7154 includes the necessary amplitude, frequency and phase information to reconstruct the baseband signal 7110. The capacitor 7136 operates as a DC blocking capacitor and substantially passes the harmonics in the harmonically rich signal 7133 to generate harmonically rich signal 7138 at the output of the modulator 7104.

In step 8408, the optional filter 7106 can be used to select a desired harmonic image for transmission. This is represented for example by a passband 7156 that selects the harmonic image 7154c for transmission in FIG. 71C.

An advantage of the modulator 7104 is that it is fully balanced, which substantially minimizes (or eliminates) any DC voltage offset between the two UFT modules 7124 and 7128. DC offset is minimized because the reference voltage 7113 contributes a consistent DC component to the input signals 7120 and 7122 through the summing amplifiers 7118 and 7119 , respectively. Furthermore, the reference voltage 7113 is also directly coupled to the outputs of the UFT modules 7124 and 7128 through the inductor 7126 and the node 7132. The result of controlling the DC offset between the UFT modules is that carrier insertion is minimized in the harmonic images of the harmonically rich signal 7138. As discussed above, carrier insertion is substantially wasted energy because the information for a modulated signal is carried in the sidebands of the modulated signal and not in the carrier. Therefore, it is often desirable to minimize the energy at the carrier frequency by controlling the relative DC offset.

7.3.1.2 Balanced Modulator Example Signal Diagrams and Mathematical Description

In order to further describe the invention, FIGs.72D-72I illustrate various example signal diagrams (vs. time) that are representative of the invention. These signal diagrams are meant for example purposes only and are not meant to be limiting. FIG. 72D illustrates a signal 7202 that is representative of the input baseband signal 7110 (FIG. 71A). FIG. 72 E illustrates a step function 7204 that is an expanded portion of the signal 7202 from time t_{0} to t_{1}, and represents signal 7114 at the output of the buffer/inverter 7112 . Similarly, FIG. 72F illustrates a signal 7206 that is an inverted version of the signal 7204, and represents the signal 7116 at the inverted output of buffer/inverter 7112. For analysis purposes, a step function is a good approximation for a portion of a single bit of data (for the baseband signal 7110) because the clock rates of the control signals 7123 and 7127 are significantly higher than the data rates of the baseband signal 7110. For example, if the data rate is in the KHz frequency range, then the clock rate will preferably be in MHZ frequency range in order to generate an output signal in the Ghz frequency range.

Still referring to FIGs. 72D-I, FIG. 72G illustrates a signal 7208 that an example of the harmonically rich signal 7130 when the step function 7204 is sampled according to the control signal 7123 in FIG. 72B. The signal 7208 includes positive pulses 7209 as referenced to the DC voltage 7113. Likewise, FIG. 72H illustrates a signal 7210 that is an example of the harmonically rich signal 7134 when the step function 7206 is sampled according to the control signal 7127. The signal 7210 includes negative pulses 7211 as referenced to the DC voltage 7113 , which are time-shifted relative the positive pulses 7209 in signal 7208.

Still referring to FIGs. 72D-I, the FIG. 72I illustrates a signal 7212 that is the combination of signal 7208 (FIG. 72G) and the signal 7210 (FIG. 72H), and is an example of the harmonically rich signal 7133 at the output of the summing node 7132. As illustrated, the signal 7212 spends approximately as much time above the DC reference voltage 7113 as below the DC reference voltage 7113 over a limited time period. For example, over a time period 7214, the energy in the positive pulses 7209a-b is canceled
out by the energy in the negative pulses 7211a-b. This is indicative of minimal (or zero) DC offset between the UFT modules 7124 and 7128, which results in minimal carrier insertion during the sampling process.

Still referring to FIG. 72I, the time axis of the signal 7212 can be phased in such a manner to represent the waveform as an odd function. For such an arrangement, the Fourier series is readily calculated to obtain:

$$
I_{c}(t)=\sum_{n=1}^{\infty}\left(\frac{4 \sin \left(\frac{n \pi T_{A}}{T_{s}}\right) \cdot \sin \left(\frac{n \pi}{2}\right)}{n \pi}\right) \cdot \sin \left(\frac{2 n \pi t}{T_{s}}\right) \quad \text { Equation } 1 .
$$

$$
\text { where: } \quad \begin{array}{ll}
\mathrm{T}_{\mathrm{S}}=\text { period of the master clock } 7145 \\
& \mathrm{~T}_{\mathrm{A}}=\text { pulse width of the control signals } 7123 \text { and } 7127 \\
\mathrm{n}=\text { harmonic number }
\end{array}
$$

As shown by Equation 1, the relative amplitude of the frequency images is generally a function of the harmonic number n, and the ratio of T_{A} / T_{S}. As indicated, the T_{A} / T_{s} ratio represents the ratio of the pulse width of the control signals relative to the period of the sub-harmonic master clock. The T_{A} / T_{S} ratio can be optimized in order to maximize the amplitude of the frequency image at a given harmonic. For example, if a passband waveform is desired to be created at 5 x the frequency of the sub-harmonic clock, then a baseline power for that harmonic extraction may be calculated for the fifth harmonic ($\mathrm{n}=5$) as:

$$
I_{c}(t)=\left(\frac{4 \sin \left(\frac{5 \pi T_{A}}{T_{s}}\right)}{5 \pi}\right) \cdot \sin \left(5 \omega_{s}\right) \quad \quad \text { Equation } 2
$$

As shown by Equation 2, $I_{C}(t)$ for the fifth harmonic is a sinusoidal function having an amplitude that is proportional to the $\sin \left(5 \pi T_{A} / T_{S}\right)$. The signal amplitude can be maximized by setting $T_{A}=\left(1 / 10 \cdot T_{S}\right)$ so that $\sin \left(5 \pi T_{A} / T_{S}\right)=\sin (\pi / 2)=1$. Doing so results in the equation:

$$
\left.I_{c}(t)\right|_{n=5}=\frac{4}{5 \pi}\left(\sin \left(5 \omega_{s} t\right)\right)
$$

Equation 3.

This component is a frequency at 5 x of the sampling frequency of sub-harmonic clock, and can be extracted from the Fourier series via a bandpass filter (such as bandpass filter 7106) that is centered around $5 \mathrm{f}_{\mathrm{s}}$. The extracted frequency component can then be optionally amplified by the amplifier 7108 prior to transmission on a wireless or wire-line communications channel or channels.

Equation 3 can be extended to reflect the inclusion of a message signal as illustrated by equation 4 below:

$$
\left.m(t) \cdot I_{c}(t)\right|_{\theta=\theta(t)} ^{n=5}=\frac{4 \cdot m(t)}{5 \pi}\left(\sin \left(5 \omega_{s} t+5 \theta(t)\right)\right) \quad \text { Equation } 4 .
$$

Equation 4 illustrates that a message signal can be carried in harmonically rich signals 7133 such that both amplitude and phase can be modulated. In other words, $m(t)$ is modulated for amplitude and $\theta(t)$ is modulated for phase. In such cases, it should be noted that $\theta(\mathrm{t})$ is augmented modulo n while the amplitude modulation $m(t)$ is simply scaled.

Therefore, complex waveforms may be reconstructed from their Fourier series with multiple aperture UFT combinations.

As discussed above, the signal amplitude for the 5 th harmonic was maximized by setting the sampling aperture width $T_{A}=1 / 10 T_{S}$, where T_{S} is the period of the master clock signal. This can be restated and generalized as setting $T_{A}=1 / 2$ the period (or π radians) at the harmonic of interest. In other words, the signal amplitude of any harmonic n can be maximized by sampling the input waveform with a sampling aperture of $\mathrm{T}_{\mathrm{A}}=1 / 2$ the period of the harmonic of interest (n). Based on this discussion, it is apparent that varying the aperture changes the harmonic and amplitude content of the output waveform. For example, if the sub-harmonic clock has a frequency of 200 MHZ , then the fifth harmonic is at 1 Ghz . The amplitude of the fifth harmonic is maximized by setting the aperture width $T_{A}=500$ picoseconds, which equates to $1 / 2$ the period (or π radians) at 1 Ghz.

FIG. 72J depicts a frequency plot 7216 that graphically illustrates the effect of varying the sampling aperture of the control signals on the harmonically rich signal 7133 given a 200 MHZ harmonic clock. The frequency plot 7216 compares two frequency spectrums 7218 and 7220 for different control signal apertures given a 200 MHZ clock. More specifically, the frequency spectrum 7218 is an example spectrum for signal 7133 given the 200 MHZ clock with the aperture $\mathrm{T}_{\mathrm{A}}=500 \mathrm{psec}$ (where 500 psec is π radians at the 5 th harmonic of 1 GHz). Similarly, the frequency spectrum 7220 is an example spectrum for signal 7133 given a 200 MHZ clock that is a square wave (so $\mathrm{T}_{\mathrm{A}}=5000$ psec). The spectrum 7218 includes multiple harmonics 7218a-I, and the frequency spectrum 7220 includes multiple harmonics $7220 \mathrm{a}-\mathrm{e}$. [It is noted that spectrum 7220 includes only the odd harmonics as predicted by Fourier analysis for a square wave.] At 1 Ghz (which is the 5 th harmonic), the signal amplitude of the two frequency spectrums 7218 e and 7220 c are approximately equal. However, at 200 MHZ , the frequency spectrum 7218a has a much lower amplitude than the frequency spectrum 7220a, and therefore the frequency spectrum 7218 is more efficient than the frequency spectrum 7220 , assuming the desired harmonic is the 5th harmonic. In other words, assuming 1 Ghz
is the desired harmonic, the frequency spectrum 7218 wastes less energy at the 200 MHZ fundamental than does the frequency spectrum 7218.

7.3.1.3 Balanced Modulator Having a Shunt Configuration

FIG. 79A illustrates a universal transmitter 7900 that is a second embodiment of a universal transmitter having two balanced UFT modules in a shunt configuration. (In contrast, the balanced modulator 7104 can be described as having a series configuration based on the orientation of the UFT modules.) Transmitter 7900 includes a balanced modulator 7901, the control signal generator 7142, the optional bandpass filter 7106, and the optional amplifier 7108. The transmitter 7900 up-converts a baseband signal 7902 to produce an output signal 7936 that is conditioned for wireless or wire line transmission. In doing so, the balanced modulator 7901 receives the baseband signal 7902 and shunts the baseband signal to ground in a differential and balanced fashion to generate a harmonically rich signal 7934. The harmonically rich signal 7934 includes multiple harmonic images, where each image contains the baseband information in the baseband signal 7902. In other words, each harmonic image includes the necessary amplitude, frequency, and phase information to reconstruct the baseband signal 7902. The optional bandpass filter 7106 may be included to select a harmonic of interest (or a subset of harmonics) in the signal 7934 for transmission. The optional amplifier 7108 may be included to amplify the selected harmonic prior to transmission, resulting in the output signal 7936.

The balanced modulator 7901 includes the following components: a buffer/inverter 7904; optional impedances 7910, 7912; UFT modules 7916 and 7922 having controlled switches 7918 and 7924, respectively; blocking capacitors 7928 and 7930; and a terminal 7920 that is tied to ground. As stated above, the balanced modulator 7901 differentially shunts the baseband signal 7902 to ground, resulting in a harmonically rich signal 7934. More specifically, the UFT modules 7916 and 7922 alternately shunts the baseband signal to terminal 7920 according to control signals 7123 and 7127, respectively. Terminal 7920
is tied to ground and prevents any DC offset voltages from developing between the UFT modules 7916 and 7922. As described above, a DC offset voltage can lead to undesired carrier insertion. The operation of the balanced modulator 7901 is described in greater detail according to the flowchart 8600 (FIG. 86) as follows.

In step 8402, the buffer/inverter 7904 receives the input baseband signal 7902 and generates I signal 7906 and inverted I signal 7908. I signal 7906 is substantially similar to the baseband signal 7902, and the inverted I signal 7908 is an inverted version of signal 7902. As such, the buffer/inverter 7904 converts the (single-ended) baseband signal 7902 into differential signals 7906 and 7908 that are sampled by the UFT modules. Buffer/inverter 7904 can be implemented using known operational amplifier (op amp) circuits, as will be understood by those skilled in the arts, although the invention is not limited to this example.

In step 8604, the control signal generator 7142 generates control signals 7123 and 7127 from the master clock signal 7145. Examples of the master clock signal 7145, control signal 7123, and control signal 7127 are shown in FIGs. 72A-C, respectively. As illustrated, both control signals 7123 and 7127 have the same period T_{S} as a master clock signal 7145, but have a pulse width (or aperture) of T_{A}. Control signal 7123 triggers on the rising pulse edge of the master clock signal 7145, and control signal 7127 triggers on the falling pulse edge of the master clock signal 7145. Therefore, control signals 7123 and 7127 are shifted in time by 180 degrees relative to each other. A specific embodiment of the control signal generator 7142 is illustrated in FIG. 71A , and was discussed in detail above.

In step 8606, the UFT module 7916 shunts the signal 7906 to ground according to the control signal 7123 , to generate a harmonically rich signal 7914. More specifically, the switch 7918 closes and shorts the signal 7906 to ground (at terminal 7920) during the aperture width T_{A} of the control signal 7123, to generate the harmonically rich signal 7914. FIG. 79B illustrates an exemplary frequency spectrum for the harmonically rich signal 7918 having harmonic images 7950a-n. The images 7950 repeat at harmonics of the sampling frequency $1 / \mathrm{T}_{\mathrm{s}}$, at infinitum, where each image 7950 contains the necessary amplitude, frequency, and phase information to reconstruct the baseband signal 7902. The
generation of harmonically rich signals by sampling an input signal according to a controlled aperture have been described earlier in this application in the section titled, "Frequency Up-conversion Using Universal Frequency Translation", and is illustrated by FIGs. 3-6. A more detailed discussion of frequency up-conversion using a switch with a controlled sampling aperture is discussed in the co-pending patent application titled, "Method and System for Frequency Up-Conversion," Ser. No./09/176,154, field on October 21, 1998, and incorporated herein by reference.

The relative amplitude of the frequency images 7950 are generally a function of the harmonic number and the pulse width T_{A}. As such, the relative amplitude of a particular harmonic 7950 can be increased (or decreased) by adjusting the pulse width T_{A} of the control signal 7123. In general, shorter pulse widths of T_{A} shift more energy into the higher frequency harmonics, and longer pulse widths of T_{A} shift energy into the lower frequency harmonics, as described by equations 1-4 above. Additionally, the relative amplitude of a particular harmonic 7950 can also be adjusted by adding/tuning an optional impedance 7910. Impedance 7910 operates as a filter that emphasizes a particular harmonic in the harmonically rich signal 7914.

In step 8608, the UFT module 7922 shunts the inverted signal 7908 to ground according to the control signal 7127, to generate a harmonically rich signal 7926. More specifically, the switch 7924 closes during the pulse widths T_{A} and shorts the inverted I signal 7908 to ground (at terminal 7920), to generate the harmonically rich signal 7926. At any given time, only one of input signals 7906 or 7908 is shorted to ground because the pulses in the control signals 7123 and 7127 are phase shifted with respect to each other, as shown in FIGs. 72B and 72C.

The harmonically rich signal 7926 includes multiple frequency images of baseband signal 7902 that repeat at harmonics of the sampling frequency $\left(1 / T_{\mathrm{S}}\right)$, similar to that for the harmonically rich signal 7914. However, the images in the signal 7926 are phaseshifted compared to those in signal 7914 because of the inversion of the signal 7908 compared to the signal 7906, and because of the relative phase shift between the control signals 7123 and 7127. The optional impedance 7912 can be included to emphasis a particular harmonic of interest, and is similar to the impedance 7910 above.

In step 8610, the node 7932 sums the harmonically rich signals 7914 and 7926 to generate the harmonically rich signal 7934. The capacitors 7928 and 7930 operate as blocking capacitors that substantially pass the respective harmonically rich signals 7914 and 7926 to the node 7932. (The capacitor values may be chosen to substantially block baseband frequency components as well.) FIG. 79C illustrates an exemplary frequency spectrum for the harmonically rich signal 7934 that has multiple images 7952a-n that repeat at harmonics of the sampling frequency $1 / T_{\mathrm{s}}$. Each image 7952 includes the necessary amplitude, frequency, and phase information to reconstruct the baseband signal 7902. The optional filter 7106 can be used to select the harmonic image of interest for transmission. This is represented by a passband 7956 that selects the harmonic image 7932c for transmission.

An advantage of the modulator 7901 is that it is fully balanced, which substantially minimizes (or eliminates) any DC voltage offset between the two UFT modules 7912 and 7914. DC offset is minimized because the UFT modules 7916 and 7922 are both connected to ground at terminal 7920. The result of controlling the DC offset between the UFT modules is that carrier insertion is minimized in the harmonic images of the harmonically rich signal 7934. As discussed above, carrier insertion is substantially wasted energy because the information for a modulated signal is carried in the sidebands of the modulated signal and not in the carrier. Therefore, it is often desirable to minimize the energy at the carrier frequency by controlling the relative DC offset.

7.3.1.4 Balanced Modulator FET Configuration

As described above, the balanced modulators 7104 and 7901 utilize two balanced UFT modules to sample the input baseband signals to generate harmonically rich signals that contain the up-converted baseband information. More specifically, the UFT modules include controlled switches that sample the baseband signal in a balanced and differential fashion. FIGs. 71D and 79D illustrate embodiments of the controlled switch in the UFT module.

FIG. 71D illustrates an example embodiment of the modulator 7104 (FIG. 71B) where the controlled switches in the UFT modules are field effect transistors (FET). More specifically, the controlled switches 7148 and 7128 are embodied as FET 7158 and FET 7160 , respectively. The FET 7158 and 7160 are oriented so that their gates are controlled by the control signals 7123 and 7127, so that the control signals control the FET conductance. For the FET 7158, the combined baseband signal 7120 is received at the source of the FET 7158 and is sampled according to the control signal 7123 to produce the harmonically rich signal 7130 at the drain of the FET 7158. Likewise, the combined baseband signal 7122 is received at the source of the FET 7160 and is sampled according to the control signal 7127 to produce the harmonically rich signal 7134 at the drain of FET 7160. The source and drain orientation that is illustrated is not limiting, as the source and drains can be switched for most FETs. In other words, the combined baseband signal can be received at the drain of the FETs, and the harmonically rich signals can be taken from the source of the FETs, as will be understood by those skilled in the relevant arts.

FIG. 79D illustrates an embodiment of the modulator 7900 (FIG. 79A) where the controlled switches in the UFT modules are field effect transistors (FET). More specifically, the controlled switches 7918 and 7924 are embodied as FET 7936 and FET 7938, respectively. The FETs 7936 and 7938 are oriented so that their gates are controlled by the control signals 7123 and 7127 , respectively, so that the control signals determine FET conductance. For the FET 7936, the baseband signal 7906 is received at the source of the FET 7936 and shunted to ground according to the control signal 7123, to produce the harmonically rich signal 7914. Likewise, the baseband signal 7908 is received at the source of the FET 7938 and is shunted to grounding according to the control signal 7127, to produce the harmonically rich signal 7926. The source and drain orientation that is illustrated is not limiting, as the source and drains can be switched for most FETs, as will be understood by those skilled in the relevant arts.

7.3.1.5 Universal Transmitter Configured for Carrier Insertion

As discussed above, the transmitters 7102 and 7900 have a balanced configuration that substantially eliminates any DC offset and results in minimal carrier insertion in the output signal 7140. Minimal carrier insertion is generally desired for most applications because the carrier signal carries no information and reduces the overall transmitter efficiency. However, some applications require the received signal to have sufficient carrier energy for the receiver to extract the carrier for coherent demodulation. In support thereof, the present invention can be configured to provide the necessary carrier insertion by implementing a DC offset between the two sampling UFT modules.

FIG. 73A illustrates a transmitter 7302 that up-converts a baseband signal 7306 to an output signal 7322 having carrier insertion. As is shown, the transmitter 7302 is similar to the transmitter 7102 (FIG. 71A) with the exception that the upconverter/modulator 7304 is configured to accept two DC references voltages. In contrast, modulator 7104 was configured to accept only one DC reference voltage. More specifically, the modulator 7304 includes a terminal 7309 to accept a DC reference voltage 7308, and a terminal 7313 to accept a DC reference voltage 7314. Vr 7308 appears at the UFT module 7124 though summer amplifier 7118 and the inductor 7310 . $\operatorname{Vr} 7314$ appears at UFT module 7128 through the summer amplifier 7119 and the inductor 7316. Capacitors 7312 and 7318 operate as blocking capacitors. If Vr 7308 is different from Vr 7314 then a DC offset voltage will be exist between UFT module 7124 and UFT module 7128, which will be up-converted at the carrier frequency in the harmonically rich signal 7320. More specifically, each harmonic image in the harmonically rich signal 7320 will include a carrier signal as depicted in FIG. 73B.

FIG. 73B illustrates an exemplary frequency spectrum for the harmonically rich signal 7320 that has multiple harmonic images $7324 a-n$. In addition to carrying the baseband information in the sidebands, each harmonic image 7324 also includes a carrier signal 7326 that exists at respective harmonic of the sampling frequency $1 / \mathrm{T}_{\mathrm{s}}$. The amplitude of the carrier signal increases with increasing DC offset voltage. Therefore, as
the difference between $\operatorname{Vr} 7308$ and $\operatorname{Vr} 7314$ widens, the amplitude of each carrier signal 7326 increases. Likewise, as the difference between Vr 7308 and Vr 7314 shrinks, the amplitude of each carrier signal 7326 shrinks. As with transmitter 7302, the optional bandpass filter 7106 can be included to select a desired harmonic image for transmission. This is represented by passband 7328 in FIG. 73B.

7.3.2 Universal Transmitter In I Q Configuration:

As described above, the balanced modulators 7104 and 7901 up-convert a baseband signal to a harmonically rich signal having multiple harmonic images of the baseband information. By combining two balanced modulators, IQ configurations can be formed for up-converting I and Q baseband signals. In doing so, either the (series type) balanced modulator 7104 or the (shunt type) balanced modulator 7901 can be utilized. IQ modulators having both series and shunt configurations are described below.

7.3.2.1 IQ Transmitter Using Series-Type Balanced Modulator

FIG. 74 illustrates an IQ transmitter 7420 with an in-phase (I) and quadrature (Q) configuration according to embodiments of the invention. The transmitter 7420 includes an IQ balanced modulator 7410, an optional filter 7414, and an optional amplifier 7416. The transmitter 7420 is useful for transmitting complex I Q waveforms and does so in a balanced manner to control DC offset and carrier insertion. In doing so, the modulator 7410 receives an I baseband signal 7402 and a Q baseband signal 7404 and up-converts these signals to generate a combined harmonically rich signal 7412. The harmonically rich signal 7412 includes multiple harmonics images, where each image contains the baseband information in the I signal 7402 and the Q signal 7404. The optional bandpass filter 7414 may be included to select a harmonic of interest (or subset of harmonics) from the signal 7412 for transmission. The optional amplifier 7416 may be included to amplify the selected harmonic prior to transmission, to generate the IQ output signal 7418.

As stated above, the balanced IQ modulator 7410 up-converts the I baseband signal 7402 and the Q baseband signal 7404 in a balanced manner to generate the combined harmonically rich signal 7412 that carriers the I and Q baseband information. To do so, the modulator 7410 utilizes two balanced modulators 7104 from FIG. 71A, a signal combiner 7408, and a DC terminal 7407. The operation of the balanced modulator 7410 and other circuits in the transmitter is described according to the flowchart 8700 in FIG. 87, as follows.

In step 8702, the IQ modulator 7410 receives the I baseband signal 7402 and the Q baseband signal 7404.

In step 8704, the I balanced modulator 7104a samples the I baseband signal 7402 in a differential fashion using the control signals 7123 and 7127 to generate a harmonically rich signal 7411a. The harmonically rich signal 7411a contains multiple harmonic images of the I baseband information, similar to the harmonically rich signal 7130 in FIG. 71B.

In step 8706, the balanced modulator 7104b samples the Q baseband signal 7404 in a differential fashion using control signals 7123 and 7127 to generate harmonically rich signal 7411 b , where the harmonically rich signal 7411 b contains multiple harmonic images of the Q baseband signal 7404. The operation of the balanced modulator 7104 and the generation of harmonically rich signals was fully described above and illustrated in FIGs. $71 \mathrm{~A}-\mathrm{C}$, to which the reader is referred for further details.

In step 8708, the DC terminal 7407 receives a DC voltage 7406 that is distributed to both modulators 7104a and 7104b. The DC voltage 7406 is distributed to both the input and output of both UFT modules 7124 and 7128 in each modulator 7104. This minimizes (or prevents) DC offset voltages from developing between the four UFT modules, and thereby minimizes or prevents any carrier insertion during the sampling steps 8704 and 8706 .

In step 8710, the 90 degree signal combiner 7408 combines the harmonically rich signals 7411 a and 7411 b to generate IQ harmonically rich signal 7412. This is further illustrated in FIGs. 75A-C. FIG. 75A depicts an exemplary frequency spectrum for the harmonically rich signal 7411 a having harmonic images 7502a-n. The images 7502 repeat at harmonics of the sampling frequency $1 / \mathrm{T}_{\mathrm{s}}$, where each image 7502 contains the
necessary amplitude and frequency information to reconstruct the I baseband signal 7402. Likewise, FIG. 75B depicts an exemplary frequency spectrum for the harmonically rich signal 7411 b having harmonic images 7504a-n. The harmonic images 7504a-n also repeat at harmonics of the sampling frequency $1 / \mathrm{T}_{\mathrm{S}}$, where each image 7504 contains the necessary amplitude, frequency, and phase information to reconstruct the Q baseband signal 7404. FIG.75C illustrates an exemplary frequency spectrum for the combined harmonically rich signal 7412 having images 7506. Each image 7506 carries the I baseband information and the Q baseband information from the corresponding images 7502 and 7504, respectively, without substantially increasing the frequency bandwidth occupied by each harmonic 7506. This can occur because the signal combiner 7408 phase shifts the Q signal 7411 b by 90 degrees relative to the I signal 7411a. The result is that the images 7502a-n and 7504a-n effectively share the signal bandwidth do to their orthogonal relationship. For example, the images 7502a and 7504a effectively share the frequency spectrum that is represented by the image 7506 a .

In step 8712, the optional filter 7414 can be included to select a harmonic of interest, as represented by the passband 7508 selecting the image 7506 c in FIG. 75 c .

In step 8714, the optional amplifier 7416 can be included to amplify the harmonic (or harmonics) of interest prior to transmission.

In step 8716, the selected harmonic (or harmonics) is transmitted over a communications medium.

FIG. 76A illustrates a transmitter 7608 that is a second embodiment for an I Q transmitter having a balanced configuration. Transmitter 7608 is similar to the transmitter 7420 except that the 90 degree phase shift between the I and Q channels is achieved by phase shifting the control signals instead of using a 90 degree signal combiner to combine the harmonically rich signals. More specifically, delays 7604a and 7604b delay the control signals 7123 and 7127 for the Q channel modulator 7104 b by 90 degrees relative the control signals for the I channel modulator 7104a. As a result, the Q modulator 7104b samples the Q baseband signal 7404 with 90 degree delay relative to the sampling of the I baseband signal 7402 by the I channel modulator 7104a. Therefore, the Q harmonically rich signal 7411 b is phase shifted by 90 degrees relative to the I harmonically rich signal.

Since the phase shift is achieved using the control signals, an in-phase signal combiner 7606 combines the harmonically rich signals 7411 a and 7411 b , to generate the harmonically rich signal 7412.

FIG. 76B illustrates a transmitter 7618 that is similar to transmitter 7608 in FIG. 76A. The difference being that the transmitter 7618 has a modulator 7620 that utilizes a summing node 7622 to sum the signals 7411a and 7411 b instead of the in-phase signal combiner 7606 that is used in modulator 7602 of transmitter 7608.

FIG. 90A-90D illustrate various detailed circuit implementations of the transmitter 7420 in FIG. 74. These circuit implementations are meant for example purposes only, and are not meant to be limiting.

FIG. 90A illustrates I input circuitry 9002a and Q input circuitry 9002b that receive the I and Q input signals 7402 and 7404, respectively.

FIG. 90B illustrates the I channel circuitry 9006 that processes an I data 9004a from the I input circuit 9002a.

FIG. 90C illustrates the Q channel circuitry 9008 that processes the Q data 9004 b from the Q input circuit 9002 b .

FIG. 90D illustrates the output combiner circuit 9012 that combines the I channel data 9007 and the Q channel data 9010 to generate the output signal 7418 .

7.3.2.2 IQ Transmitter Using Shunt-Type Balanced Modulator

FIG. 80 illustrates an IQ transmitter 8000 that is another IQ transmitter embodiment according to the present invention. The transmitter 8000 includes an IQ balanced modulator 8001, an optional filter 8012, and an optional amplifier 8014. During operation, the modulator 8001 up-converts an I baseband signal 8002 and a Q baseband signal 8004 to generate a combined harmonically rich signal 8011. The harmonically rich signal 8011 includes multiple harmonics images, where each image contains the baseband information in the I signal 8002 and the Q signal 8004. The optional bandpass filter 8012 may be included to select a harmonic of interest (or subset of harmonics) from the harmonically rich signal 8011 for transmission. The optional amplifier 8014 may be
included to amplify the selected harmonic prior to transmission, to generate the IQ output signal 8016.

The IQ modulator 8001 includes two shunt balanced modulators 7901 from FIG. 79A, and a 90 degree signal combiner 8010 as shown. The operation of the IQ modulator 8001 is described in reference to the flowchart 8800 (FIG. 88), as follows. The order of the steps in flowchart 8800 is not limiting.

In step 8802, the balanced modulator 8001 receives the I baseband signal 8002 and the Q baseband signal 8004.

In step 8804, the balanced modulator 7901a differentially shunts the I baseband signal 8002 to ground according the control signals 7123 and 7127 , to generate a harmonically rich signal 8006. More specifically, the UFT modules 7916a and 7922a alternately shunt the I baseband signal 8002 and an inverted version of the I baseband signal 8002 to ground according to the control signals 7123 and 7127, respectively. The operation of the balanced modulator 7901 and the generation of harmonically rich signals was fully described above and is illustrated in FIGs. 79A-C, to which the reader is referred for further details. As such, the harmonically rich signal 8006 contains multiple harmonic images of the I baseband information as described above.

In step 8806, the balanced modulator 7901b differentially shunts the Q baseband signal 8004 to ground according to control signals 7123 and 7127 , to generate harmonically rich signal 8008. More specifically, the UFT modules 7916b and 7922b alternately shunt the Q baseband signal 8004 and an inverted version of the Q baseband signal 8004 to ground, according to the control signals 7123 and 7127, respectively. As such, the harmonically rich signal 8008 contains multiple harmonic images that contain the Q baseband information.

In step 8808, the 90 degree signal combiner 8010 combines the harmonically rich signals 8006 and 8008 to generate IQ harmonically rich signal 8011. This is further illustrated in FIGs. 81A-C. FIG. 81A depicts an exemplary frequency spectrum for the harmonically rich signal 8006 having harmonic images 8102a-n. The harmonic images 8102 repeat at harmonics of the sampling frequency $1 / T_{s}$, where each image 8102 contains the necessary amplitude, frequency, and phase information to reconstruct the I baseband
signal 8002. Likewise, FIG. 81B depicts an exemplary frequency spectrum for the harmonically rich signal 8008 having harmonic images 8104a-n. The harmonic images 8104a-n also repeat at harmonics of the sampling frequency $1 / T_{S}$, where each image 8104 contains the necessary amplitude, frequency, and phase information to reconstruct the Q baseband signal 8004. FIG.81C illustrates an exemplary frequency spectrum for the IQ harmonically rich signal 8011 having images 8106a-n. Each image 8106 carries the I baseband information and the Q baseband information from the corresponding images 8102 and 8104 , respectively, without substantially increasing the frequency bandwidth occupied by each image 8106 . This can occur because the signal combiner 8010 phase shifts the Q signal 8008 by 90 degrees relative to the I signal 8006.

In step 8810, the optional filter 8012 may be included to select a harmonic of interest, as represented by the passband 8108 selecting the image 8106 c in FIG. 81C.

In step 8812 , the optional amplifier 8014 can be included to amplify the selected harmonic image 8106 prior to transmission.

In step 8814, the selected harmonic (or harmonics) is transmitted over a communications medium.

FIG. 82 illustrates a transmitter 8200 that is another embodiment for an IQ transmitter having a balanced configuration. Transmitter 8200 is similar to the transmitter 8000 except that the 90 degree phase shift between the I and Q channels is achieved by phase shifting the control signals instead of using a 90 degree signal combiner to combine the harmonically rich signals. More specifically, delays $8204 a$ and $8204 b$ delay the control signals 7123 and 7127 for the Q channel modulator 7901b by 90 degrees relative the control signals for the I channel modulator 7901a. As a result, the Q modulator 7901b samples the Q baseband signal 8004 with a 90 degree delay relative to the sampling of the I baseband signal 8002 by the I channel modulator 7901a. Therefore, the Q harmonically rich signal 8008 is phase shifted by 90 degrees relative to the I harmonically rich signal 8006. Since the phase shift is achieved using the control signals, an in-phase signal combiner 8206 combines the harmonically rich signals 8006 and 8008 , to generate the harmonically rich signal 8011.

FIG. 83 illustrates a transmitter 8300 that is similar to transmitter 8200 in FIG. 82. The difference being that the transmitter 8300 has a balanced modulator 8302 that utilizes a summing node 8304 to sum the I harmonically rich signal 8006 and the Q harmonically rich signal 8008 instead of the in-phase signal combiner 8206 that is used in the modulator 8202 of transmitter 8200 . The 90 degree phase shift between the I and Q channels is implemented by delaying the Q clock signals using 90 degree delays 8204 , as shown.

7.3.2.3 IQ Transmitters Configured for Carrier Insertion

The transmitters 7420 (FIG. 74) and 7608 (FIG. 76A) have a balanced configuration that substantially eliminates any DC offset and results in minimal carrier insertion in the IQ output signal 7418. Minimal carrier insertion is generally desired for most applications because the carrier signal carries no information and reduces the overall transmitter efficiency. However, some applications require the received signal to have sufficient carrier energy for the receiver to extract the carrier for coherent demodulation. In support thereof, FIG. 77 illustrates a transmitter 7702 to provide any necessary carrier insertion by implementing a DC offset between the two sets of sampling UFT modules.

Transmitter 7702 is similar to the transmitter 7420 with the exception that a modulator 7704 in transmitter 7702 is configured to accept two DC reference voltages so that the I channel modulator 7104a can be biased separately from the Q channel modulator 7104 b . More specifically, modulator 7704 includes a terminal 7706 to accept a DC voltage reference 7707, and a terminal 7708 to accept a $D C$ voltage reference 7709. Voltage 7707 biases the UFT modules $7124 a$ and $7128 a$ in the I channel modulator 7104a. Likewise, voltage 7709 biases the UFT modules 7124 b and 7128 b in the Q channel modulator 7104 b . When voltage 7707 is different from voltage 7709 , then a DC offset will appear between the I channel modulator 7104 a and the Q channel modulator 7104b, which results in carrier insertion in the IQ harmonically rich signal 7412. The relative amplitude of the carrier frequency energy increases in proportion to the amount of DC offset.

FIG. 78 illustrates a transmitter 7802 that is a second embodiment of an IQ transmitter having two DC terminals to cause DC offset, and therefore carrier insertion. Transmitter 7802 is similar to transmitter 7702 except that the 90 degree phase shift between the I and Q channels is achieved by phase shifting the control signals, similar to that done in transmitter 7608. More specifically, delays 7804a and 7804b phase shift the control signals 7123 and 7127 for the Q channel modulator 7104 b relative to those of the I channel modulator 7104a. As a result, the Q modulator 7104 b samples the Q baseband signal 7404 with 90 degree delay relative to the sampling of the I baseband signal 7402 by the I channel modulator 7104a. Therefore, the Q harmonically rich signal 741 lb is phase shifted by 90 degrees relative to the I harmonically rich signal 7411a, which are combined by the in-phase combiner 7806.

7.4 Transceiver Embodiments

Referring to FIG. 39, in embodiments the receiver 3906, transmitter 3910, and LNA/PA 3904 are configured as a transceiver, such as but not limited to transceiver 9100, that is shown in FIG. 91.

Referring to FIG. 91, the transceiver 9100 includes a diplexer 9108, the IQ receiver 7000, and the IQ transmitter 8000 . Transceiver 9100 up-converts an I baseband signal 9114 and a Q baseband signal 9116 using the IQ transmitter 8000 (FIG. 80) to generate an IQ RF output signal 9106. A detailed description of the IQ transmitter 8000 is included for example in section 7.3.2.2, to which the reader is referred for further details. Additionally, the transceiver 9100 also down-converts a received RF signal 9104 using the IQ Receiver 7000, resulting in I baseband output signal 9110 and a Q baseband output signal 9112 . A detailed description of the IQ receiver 7000 is included in section 7.2.2, to which the reader is referred for further details.

7.5 Demodulator/Modulator Facilitation Module

An example demodulator/modulator facilitation module 3912 is shown in FIGS. 47 and 48. A corresponding BOM list is shown in FIGS. 49A and 49B.

An alternate example demodulator/modulator facilitation module 3912 is shown in FIGS. 50 and 51. A corresponding BOM list is shown in FIGS. 52A and 52B.

FIG. 52C illustrates an exemplary demodulator/modulator facilitation module 5201. Facilitation module 5201 includes the following: de-spread module 5204, spread module 5206, de-modulator 5210, and modulator 5212.

For receive, the de-spread module 5204 de-spreads received spread signals 3926 and 3928 using a spreading code 5202. Separate spreading codes can be used for the I and Q channels as will be understood by those skilled in the arts. The demodulator 5210 uses a signal 5208 to demodulate the de-spread received signals from the de-spread module 5204, to generate the I baseband signal 3930a and the Q baseband signal 3932a.

For transmit, the modulator 5212 modulates the I baseband signal 3930 b and the Q baseband signal 3932b using a modulation signal 5208. The resulting modulated signals are then spread by the spread module 5206, to generate I spread signal 3942 and Q spread signal 3944.

In embodiments, the modulation scheme that is utilized is differential binary phase shift keying (DBPSK) or differential quadrature phase shift keying (DQPSK), and is compliant with the various versions of IEEE 802.11. Other modulation schemes could be utilized besides DBPSK or DQPSK, as will understood by those skilled in arts based on the discussion herein.

In embodiments, the spreading code 5202 is a Barker spreading code, and is compliant with the various versions of IEEE 802.11. More specifically, in embodiments, an 11-bit Barker word is utilized for spreading/de-spreading. Other spreading codes could be utilized as will be understood by those skilled in the arts based on the discussion herein.

7.6 MAC Interface

An example MAC interface 3914 is shown in FIG. 45. A corresponding BOM list is shown in FIGS. 46A and 46B.

In embodiments, the MAC 3918 and MAC interface 3914 supply the functionality required to provide a reliable delivery mechanism for user data over noisy, and unreliable wireless media. This is done this while also providing advanced LAN services, equal to or beyond those of existing wired LANs.

The first functionality of the MAC is to provide a reliable data delivery service to users of the MAC. Through a frame exchange protocol at the MAC level, the MAC significantly improves on the reliability of data delivery services over wireless media, as compared to earlier WLANs. More specifically, the MAC implements a frame exchange protocol to allow the source of a frame to determine when the frame has been successfully received at the destination. This frame exchange protocol adds some overhead beyond that of other MAC protocols, like IEEE 802.3, because it is not sufficient to simply transmit a frame and expect that the destination has received it correctly on the wireless media. In addition, it cannot be expected that every station in the WLAN is able to communicate with every other station in the WLAN. If the source does not receive this acknowledgment, then the source will attempt to transmit the frame again. This retransmission of frame by the source effectively reduces the effective error rate of the medium at the cost of additional bandwidth consumption.

The minimal MAC frame exchange protocol consists of two frames, a frame sent from the source to the destination and an acknowledgment from the destination that the frame was received correctly. The frame and its acknowledgment are an atomic unit of the MAC protocol. As such, they cannot be interrupted by the transmission from any other station. Additionally, a second set of frames may be added to the minimal MAC frame exchange. The two added frames are a request to send frame and a clear to send frame. The source sends a request to send to the destination. The destination returns a clear to send to the source. Each of these frames contains information that allows other stations receiving them to be notified of the upcoming frame transmission, and therefore to delay
any transmission their own. The request to send and clear frames serve to announce to all stations in the neighborhood of both the source and the destination about the pending transmission from the source to the destination. When the source receives the clear to send from the destination, the real frame that the source wants delivered to the destination is sent. If the frame is correctly received at the destination, then the destination will return an acknowledgment. completing the frame exchange protocol. While this four way frame exchange protocol is a required function of the MAC, it may be disabled by an attribute in the management information base.

The second functionality of the MAC is to fairly control access to the shared wireless medium. It performs this function through two different access mechanisms: the basic access mechanism, call the distribution coordination system function, and a centrally controlled access mechanism, called the point coordination function.

The basic access mechanism is a carrier sense multiple access with collision avoidance (CSMA/CA) with binary exponential backoff.. This access mechanism is similar to that used for IEEE 802.3, with some variations. CSMA/CA is a "listen before talk" (LBT) access mechanism. In this type of access mechanism, a station will listen to the medium before beginning a transmission. If the medium is already carrying a transmission, then the station that listening will not begin its own transmission. More specifically, if a listening station detects an existing transmission in progress, the listening station enters a transmit deferral period determined by the binary exponential backoff algorithm. The binary exponential backoff mechanism chooses a random number which represents the amount of time that must elapse while there are not any transmission. In other words, the medium is idle before the listening station may attempt to begin its transmission again. The MAC may also implement a network allocation vector (NAV). The NAV is the value that indicates to a station that amount of time that remains before a medium becomes available. The NAV is kept current through duration values that are transmitted in all frames. By examining the NAV, a station may avoid transmitting, even when the medium does not appear to be carrying a transmission in the physical sense.

The centrally controlled access mechanism uses a poll and response protocol to eliminate the possibility of contention for the medium. This access mechanism is called
the point coordination function (PCF). A point coordinator (PC) controls the PCF. The PC is always located in an AP. Generally, the PCF operates by stations requesting that the PC register them on a polling list, and the PC then regularly polls the stations for traffic while also delivering traffic to the stations. With proper planning, the PCF is able to deliver near isochronous service to the stations on the polling list.

The third function of the MAC is to protect the data that it delivers. Because it is difficult to contain wireless WLAN signals to a particular physical area, the MAC provides a privacy service, called Wired Equivalent Privacy (WEP), which encrypts the data sent over the wireless medium. The level of encryption chosen approximates the level of protection data might have on a wireless LAN in a building with controlled access that prevents physically connecting to the LAN without authorization.

7.7 Control Signal Generator - Synthesizer

In an embodiment, the control signal generator 3908 is preferably implemented using a synthesizer. An example synthesizer is shown in FIG. 55. A corresponding BOM list is shown in FIGS. 56A and 56B.

$7.8 L N A / P A$

An example LNA/PA 3904 is shown in FIGS. 64 and 65. A corresponding BOM list is shown in FIG. 66.

Additionally, FIG. 93 illustrates a LNA/PA module 9301 that is another embodiment of the LNA/PA 3904. LNA/PA module 9301 includes a switch 9302, a LNA 9304, and a PA 9306. The switch 9302 connects either the LNA 9304 or the PA 9306 to the antenna 3903, as shown. The switch 9302 can be controlled by an on -board processor that is not shown.

8.0 802.11 Physical Layer Configurations

The 802.11 WLAN standard specifies two RF physical layers: frequency hopped spread spectrum (FHSS) and direct sequence spread spectrum (DSSS). The invention is not limited to these specific examples. Both DSSS and FHSS support 1 Mbps and 2 Mbps data rates and operate in the $2.400-2.835 \mathrm{GHz}$ band for wireless communications in accordance to FCC part 15 and ESTI-300 rules. Additionally, 802.11 has added an 11 Mbps standard that operates at 5 GHz and utilizes OFDM modulation.

TheDSSS configuration supports the 1 MBPS data rate utilizing differential binary phase shift keying (DBPSK) modulation, and supports 2 MBPS utilizing differential quadrature phase shift keying modulation. In embodiments, an 11-bit Barker word is used as the spreading sequence that is utilized by the stations in the 802.11 network. A Barker word has a relatively short sequence, and is known to have very good correlation properties, and includes the following sequence: $+1,-1,+1,+1,-1,+1,+1,+1,-1,-1,-1$. The Barker word used for 802.11 is not to be confused with the spreading codes used for code division multiple access (CDMA) and global positioning system (GPS). CDMA and GPS use orthogonal spreading codes, which allow multiple users to operate on the same channel frequency. Generally, CDMA codes have longer sequences and have richer correlation properties.

During transmission, the 11-bit barker word is exclusive-ored (EX-OR) with each of the information bits using a modulo-2 adder, as illustrated by modulo-2 adder 9202 in FIG. 92 . Referring to FIG. 92, the11-bit (at 11 MBPS) Barker word is applied to a modulo-2 adder together with each one (at 1 MBPS) of the information bits (in the PPDU data). The Ex-OR function combines both signals by performing a modulo-2 addition of each information bit with each Barker bit (or chip). The output of the modulo-2 adder results in a signal with a data rate that is 10 x higher than the information rate. The result in the frequency domain signal is a signal that is spread over a wider bandwidth at a reduced RF power level. At the receiver, the DSSS signal is convolved with an 11-bit Barker word and correlated. As shown in FIG. 92, the correlation recovers the information bits at the transmitted information rate, and the undesired interfering in-band
signals are spread out-of-band. The spreading and despreading of narrowband to wideband signal is commonly referred to as processing gain and is measured in decibels (dB). Processing gain is the ratio of DSSS signal rate information rate. In embodiments, the minimum requirement for processing gain is 10 dB .

The second RF physical layer that is specified by the IEEE 802.11 standard is frequency hopping spread spectrum (FHSS). A set of hop sequences is defined in IEEE 802.11 for use in the 2.4 GHz frequency band. The channels are evenly spaced across the band over a span of 83.5 MHz . During the development of IEEE 802.11, the hop sequences listed in the standard were pre-approved for operation in North America, Europe, and Japan. In North America and Europe (excluding Spain and France), the required number of hop channels is 79. The number of hopped channels for Spain and France is 23 and 35 , respectively. In Japan, the required number of hopped channels is 23 . The hopped center channels are spaced uniformly across the 2.4 GHz frequency band occupying a bandwidth of 1 MHz . In North America and Europe (excluding Spain and France), the hopped channels operate from 2.402 GHz to 2.480 GHz . In Japan, the hopped channels operate from 2.447 GHz to 2.473 GHz . The modulation scheme called out for FHSS by 802.11 is 2-level Gaussian Phase Shift Keying (GFSK) for the 1 MBps data rate, and 4-level GFSK for the 2 MBps data rate.

In addition to DSSS and FHSS RF layer standards, the IEEE 802.11 Executive Committee approved two projects for higher rate physical layer extensions. The first extension, IEEE 802.11a defines requirements for a physical layer operating in the 5.0 GHz frequency band, and data rates ranging from 6 MBps to 54 MBps . This 802.11 a draft standard is based on Orthogonal Frequency Division Multiplexing (OFDM) and uses 48 carriers as a phase reference (so coherent), with 20 MHZ spacing between the channels. The second extension, IEEE 802.11b, defines a set of physical layer specifications operating in the 2.4 GHz ISM frequency band. This 802.1 lb utilizes complementary code keying (CCK), and extends the data rate up to 5.5 Mbps and 11 Mbps .

The transmitter and receiver circuits described herein can be operated in all of the WLAN physical layer embodiments described herein, including the DSSS and FHSS embodiments described herein. However, the present invention is not limited to being
operated in WLAN physical layer embodiments that were described herein, as the invention could be configured in other physical layer embodiments.

Figure 94 illustrates a block diagram of an IEEE 802.11 DSSS radio transceiver 9400 using UFT Zero IF technology. DSSS transceiver 9400 includes: antenna 9402, switch 9404, amplifiers 9406 and 9408, transceivers 9410, baseband processor 9412, MAC 9414, bus interface unit 9416, and PCMCIA connector 9418. The DSSS transceiver 9400 includes an IQ receiver 7000 and an IQ transmitter 8000, which are described herein. UFT technology interfaces directly to the baseband processor 9412 of the physical layer. In the receive path, the IQ receiver 7000 transforms a 2.4 GHz RF signal-of-interest into I/Q analog baseband signals in a single step and passes the signals to the baseband processor 9412, where the baseband processor is then responsible for de-spreading and demodulating the signal. In embodiments, the IQ receiver 7000 includes all of the circuitry necessary for accommodating AGC, baseband filtering and baseband amplification. In the transmit path, the transmitter 8000 transforms the I/Q analog baseband signals to a 2.4 GHz RF carrier directly in a single step. The signal conversion clock is derived from a single synthesized local oscillator (LO) 9420. The selection of the clock frequency is determined by choosing a sub-harmonic of the carrier frequency. For example, a 5th harmonic of 490 MHZ was used, which corresponds to a RF channel frequency of 2.450 GHz . Using UFT technology simplifies the requirements and complexity of the synthesizer design.

9. Appendix

The attached Appendix contained in FIGS. 95A-C, 96-161, which forms part of this patent application, includes schematics of an integrated circuit (IC) implementation example of the present invention. This example embodiment is provided solely for illustrative purposes, and is not limiting. Other embodiments will be apparent to persons skilled in the relevant art(s) based on the teachings herein. FIG. 95A illustrates a schematic for a WLAN modulator/demodulator IC according to embodiments of the invention. FIGs. 95B and 95C illustrate an expanded view of the circuit in FIG. 95A. FIGs. 96-161
further illustrate detailed circuit schematics of the WLAN modulator/demodulator integrated circuit.

10. Conclusions

Example implementations of the systems and components of the invention have been described herein. As noted elsewhere, these example implementations have been described for illustrative purposes only, and are not limiting. Other implementation embodiments are possible and covered by the invention, such as but not limited to software and software/hardware implementations of the systems and components of the invention. Such implementation embodiments will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein.

While various application embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.

What Is Claimed Is:

A wireless modem apparatus, comprising:
a balanced transmitter for up-converting a baseband signal, including, an inverter, to receive said baseband signal and generate an inverted baseband signal;
a first controlled switch, coupled to a non-inverting output of said inverter, said first controlled switch to sample said baseband signal according to a first control signal, resulting in a first harmonically rich signal;
a second controlled switch, coupled to an inverting output of said inverter, said second controlled switch to sample said inverted baseband signal according to a second control signal, resulting in a second harmonically rich signal; and
a combiner, coupled to an output of said first controlled switch and an output of said second controlled switch, said combiner to combine said first harmonically rich signal and said second harmonically rich signal, resulting in a third harmonically rich signal.
2. The apparatus of claim 1 , wherein said second control signal is phase shifted with respect to said first control signal.
3. The apparatus of claim 1, wherein said second control signal is phase shifted by 180 degrees with respect to said first control signal.
4. The apparatus of claim 1, wherein said first control signal and said second control signal each comprise a plurality of pulses having an associated pulse width T_{A} that operates to improve energy transfer to a desired harmonic image in said harmonically rich signal.
5. The apparatus of claim 4 , wherein said pulse width T_{A} is approximately $1 / 2$ of a period of said desired harmonic.
6. The apparatus of claim 1, further comprising a filter attached to an output of said combiner, wherein said filter selects a desired harmonic from said third harmonically rich signal.
7. The apparatus of claim 1 , further comprising:
a balanced receiver, coupled to said balanced modulator, said receiver including, a first universal frequency down-conversion module to down-convert an input signal, wherein said first universal frequency down-conversion module downconverts said input signal according to a third control signal and outputs a first downconverted signal;
a second universal frequency down-conversion module to down-convert said input signal, wherein said second universal frequency down-conversion module down-converts said input signal according to a fourth control signal and outputs a second down-converted signal; and
a subtractor module that subtracts said second down-converted signal from said first down-converted signal and outputs a down-converted signal.
8. The apparatus of claim 7, wherein said fourth control signal is delayed relative to said third control signal by $.5+n$ cycles of said input signal, wherein n may be any integer greater than or equal to 1 .
9. The apparatus of claim 7, wherein said first universal frequency down-conversion module under-samples said input signal according to said third control signal, and said second universal frequency down-conversion module under-samples said input signal according to said fourth control signal.
10. The apparatus of claim 7, wherein said third and said fourth control signals each comprise a train of pulses having pulse widths that are established to improve energy transfer from said input signal to said first and said second down-converted signals, respectively.
11. The apparatus of claim 10, wherein said train of pulses have a pulse width that is approximately a fraction of a period of said input signal.
12. The apparatus of claim 10, wherein said train of pulses have pulse width that is approximately multiple periods and a fraction of a period of said input signal.
13. The apparatus of claim 10, wherein said first and said second universal frequency down-conversion modules each comprise a switch and a storage element.
14. The apparatus of claim 13, wherein said storage element comprises a capacitor that reduces a DC offset voltage in said first down-converted signal and said second downconverted signal.
15. The apparatus of claim 7, wherein said subtractor module comprises a differential amplifier.
16. The apparatus of claim 7 , further comprising an antenna coupled to said balanced transmitter and said balanced receiver.
17. The apparatus of claim 16, further comprising a switch, said switch connecting either said transmitter or said receiver to said antenna.
18. The apparatus of claim 7, further comprising a baseband processor coupled to said transmitter and said receiver.
19. The apparatus of claim 7, further comprising a media access controller (MAC) coupled to said transmitter and said receiver.
20. The apparatus of claim 19, wherein said MAC comprises a means for controlling accessing to a WLAN medium.
21. The apparatus of claim 20, wherein said means for controlling includes carrier sense multiple access with collision avoidance (CSMA/CA).
22. The apparatus of claim 7, further comprising a demodulator/modulator facilitation module coupled to said transmitter and receiver.
23. The apparatus of claim 22 , wherein said demodulator/modulator facilitation module comprises a means for modulating said baseband signal using differential binary phase shift keying (DBPSK).
24. The apparatus of claim 22, wherein said demodulator/modulator facilitation module comprises a means for de-modulating said down-converted signal using differential binary phase shift keying (DBPSK).
25. The apparatus of claim 22, wherein said demodulator/modulator facilitation module comprises a means for spreading said baseband signal.
26. The apparatus of claim 25 , wherein said means for spreading comprises a means for spreading said baseband signal using a Barker code.
27. The apparatus of claim 22, wherein said demodulator/modulator facilitation module comprises a means for de-spreading said down-converted signal.
28. The apparatus of claim 27, wherein said means for de-spreading comprises a means for de-spreading said down-converted signal using a Barker code.
29. The apparatus of claim 1, wherein said apparatus is an infrastructure device.
30. The apparatus of claim 1, wherein said apparatus is a client device.
31. The apparatus of claim 1, wherein said first controlled switch shunts said baseband signal to a reference potential according to said first control signal, and wherein said second controlled switch shunts said inverted baseband signal to said reference potential according to said second control signal.
32. A method of transmitting a baseband signal over a wireless LAN, comprising the steps of:
(1) spreading the baseband signal using a spreading code, resulting in a spread baseband signal; and
(2) differentially sampling the spread baseband signal according to a first control signal and a second control signal resulting in a plurality of harmonic images that are each representative of the baseband signal, wherein said first and second control signals have pulse widths that improve energy transfer to a desired harmonic image of said plurality of harmonics.
33. The method of claim 32, further comprising the step of:
(3) modulating the baseband signal using phase shift keying prior to step (1).
34. The method of claim 32, further comprising the steps of:
(3) determining availability of a WLAN medium; and
(4) transmitting said desired harmonic over said WLAN medium if said medium is available.
35. The method of claim 34, wherein step (3) comprises the step of determining availability of said WLAN medium using carrier sense multiple access (CSMA) protocol.
36. The method of claim 32, wherein said step (2) comprises the step of:
(a) converting said baseband signal into a differential baseband signal having a first differential baseband component and a second differential baseband component;
(b) sampling said first differential component according to said first control signal to generate a first harmonically rich signal, and sampling said second differential component according to said second control signal to generate a second harmonically rich signal, wherein said second control signal is phase shifted relative to said first control signal; and
(c) combining said first harmonically rich signal and said second harmonically rich signal to generate said harmonic images.
37. The method of claim 32 , further comprising the step of:
(3) minimizing DC offset voltages between sampling modules during step (2), and thereby minimizing carrier insertion in said harmonic images.
38. The method of claim 32 , wherein said pulse widths are approximately $1 / 2$ of a period of said desired harmonic.
36. In a wireless LAN device, a method of down-converting a received RF signal, comprising the steps of:
down-converting said received RF signal according to a first control signal and a second control signal, resulting in a down-converted signal, wherein said second control signal is delayed relative to said first control signal by $.5+\mathrm{n}$ cycles of said received RF signal, wherein n may be any integer greater than or equal to 1 ;
de-spreading said down-converted signal using a spreading code, resulting in a despread signal; and
de-modulating said de-spread signal, resulting in a de-modulated signal;
wherein said first and said second control signals each comprise a train of pulses having pulse widths that are established to improve energy transfer from said received RF signal to said down-converted signal.
40. The method of claim 39, wherein said pulse widths are approximately $1 / 2$ of a period of said received RF signal.

Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including MultiPhase Embodiments and Circuit Implementations

Abstract

Abstract

Frequency translation and applications of the same are described herein, including RF modem and wireless local area network (WLAN) applications. In embodiments, the WLAN invention includes an antenna, an LNA/PA module, a receiver, a transmitter, a control signal generator, a demodulation/modulation facilitation module, and a MAC interface. The WLAN receiver includes at least one universal frequency translation module that frequency down-converts a received EM signal. In embodiments, the UFT based receiver is configured in a multi-phase embodiment to reduce or eliminate re-radiation that is caused by DC offset. The WLAN transmitter includes at least one universal frequency translation module that frequency up-converts a baseband signal in preparation for transmission over the wireless LAN. In embodiments, the UFT based transmitter is configured in a differential and multi-phase embodiment to reduce carrier insertion and spectral growth.

A278-54.wpd

FIG. IA

$$
F I 6.1 B
$$

m

Page 112 of 1284

FIG. IC

na

FI6. $2 A$
in

Page 115 of 1284

力＂ロリ

$\stackrel{7}{-7}$

;
$\stackrel{7}{0}$
E

$$
F I G .7
$$

m

$$
F I G .12
$$

m

FIG. 13

FIE. SF
M

FIG. 17

1802								
	Time Node	t-1 (rising edge of ϕ_{s})		t-1 (rising edge of ϕ_{2})		$\begin{aligned} & \mathrm{t} \\ & \left(\begin{array}{c} \text { rising edge } \\ \text { of } \left.\phi_{1}\right) \end{array}\right. \end{aligned}$	$\begin{aligned} & \mathrm{t} \\ & \text { (fising edge } \\ & \text { of } \phi_{2} \text {) } \end{aligned}$	$t+1$ (rising edge of ϕ_{1})
				VI	1808	$\mathrm{VI}_{1} \quad 1816$	$\mathrm{VI}_{\mathrm{t}} \quad 1826$	$\mathrm{VI}_{\mathrm{t}+1} \quad 1838$
	1902	V_{t-1}	1804				$\mathrm{Vl}_{1} \quad 1828$	$\mathrm{VI}_{\mathrm{t}} \quad 1840$
	1904	-		VI_{t-1}	1810	$V_{t-1} \quad 1818$	$V_{t} \quad$	
				VO_{4-1}	1812	$\mathrm{VO}_{\mathrm{t}} 1820$	$V O_{t}=1830$	$\mathrm{VO}_{t+1} \quad 1842$
	1966	VO_{t-1}	1806					
	1908	-		VO_{t-1}	1814	$\mathrm{VO}_{t-1} 1822$	VO_{t} 1832-	$\mathrm{VO}_{t} 1844$
E			1807	-		$\mathrm{VO}_{t-1} 1824$	$\mathrm{VO}_{t-1} 1834$	$\mathrm{VO}_{\mathrm{t}} 1846$
	1910					-	$\mathrm{VO}_{\mathrm{t}-1} 1836$	$\mathrm{VO}_{\mathrm{t}-1} 1848$
	1912	-			1815			$\mathrm{VI}_{t}-1850$
	1918	-		-		-	-	$\begin{aligned} & 0.1 * \mathrm{VO}_{t} \\ & 0.8 * \mathrm{VO}_{t-1} \end{aligned}$

FIG. 18
m

Page 136 of 1284
$\forall 0 f \cdot b 1 \pm$

FIG. $20 B$

FIG. 20 C

FIG. 200

Fig. 20E

FIG. $20 F$

vinuoan

97 •פ1

k_{9092}

Z/PSA'Z0-s066

$$
{ }^{3302}
$$

FI6.33

$$
3502
$$

Page 161 of 1284

FI6. 38

кјuо әл！əэәу

涪
201417

$5 h \cdot 9 I$

$\forall 97.9$ It

FI6. 49 A

Bill Of Materials

FI6.52A

$\sqrt{37}$	2	R66,R37	49.9	ERJ3EKF49R9	Panasonic
8	6	R40,R68,R78,R79,R80,R89	1 K	ERJ3EKF1001	Panasonic
39	2	R42,R71	62	ERJ3GSYJ620	Panasonic
40	2	R43,R72	162	ERJ3EKF6810	Panasonic
41	2	R44,R73	49.9	ERJ3EKF1001	Panasonic
42	2	R77,R48	33	ERJ3GSYJ330	Panasonic
43	4	R81,R82,R85,R87	2K	ERJ3EKF2001	Panasonic
44	1	R83	0	ERJGSYORO0	Panasonic
45	1	R84	1.1 K	ERJ3EKF2001	Panasonic
46	1	R88	15K	ERJ3EKF1502	Panasonic
47	1	R90	10K	ERJ3EKF1002	Panasonic
48	2	R91,R92	100	ERJ3EKF1000	Panasonic
49	6	R164,R165,R166,R167,R168,	TBD		
		R169			
50	2	R170,R172	OPEN		
51	6	TP1,TP2,TP3,TP4,TP5,TP6	TP-105-01-00		
52	2	U42,U6	NC7S04M5		National Semiconductor
53	1	U7	AD8032AR	AD8032AR	Analog Devices
54	1	U8	AD1582	AD1582	Analog Devices
55	1	U9	AD605AR	AD605AR	Analog Devices
56	1	U43	TK11235AMTL	TK11235AMTL	Toko
\%			$556,5$	20	

N

ES'9IJ

Page1

FI6. 54

995.9II

00' 7 In

z $\ddagger 0$ Z

Page1

Bill Of Materials

fem:	Quantity	Reference	Part	Part Number	Manufacturer
\%					
1.	21	C3,C6,C8,C10,C14,C38,C44,	0.1uF	GRM39X7R104K016	Murata
		C46,C51,C71,C72,C77,C78,			
		C79,C84,C85,C86,C93,C95,			
:		C96,C98			
2	6	C5,C7,C15,C43,C52,C75	22pF	GRM39COG220J050	Murata
3	5	C9,C16,C45,C53,C89	1uF	GRM40Y5V105Z016	Murata
4	8	C11,C23,C25,C47,C61,C63,	1000pF	GRM39X7R102K050	Murata
		C80,C87			
5	2	C58,C21	1pF	GRM39COG010B50V	Mucata
6	2	C82,C33	4.7uF	T491A475K006AS	KEMET
7	2	C59,C35	0 ohm	GRM39COG×00050V	Murata
8	1	C73	470pF	GRM39COG471J050	Murata
9	1	C83	1uF	T491A105M016AS	Kemet
10	3	C90,C91,C92	100pF	ECU-V1H101JCV	
11	2	C94,C97	0.01uF	GRM39X7R103K016	Murata
12	1	FL1	MDR642E	MDR642E	Soshin
13	1	JP1	Shunt	69190-402	BERG
14	1	JP2	69190-403	69190-403	BERG
15	4	J7,J8,J9, J10	82MMCX-50-0-1	82MMCX-50-0-1	Suhner
16	1	L10	22 nH	LL1608-F22NK	Coilcraft
17	1	L12	BLM11A121S	BLM11A121S	Murata
18	1	L13	330nH	LL2012-FR33K	
19	10	R5,R6,R12,R13,R32,R33,	10K	ERJ3EKF1002	Panasonic
		R39,R40,R95,R100			
20	2	R34,R7	6.04 K	ERJ3EKF6041	Panasonic
21	4	R8,R10,R35,R37	1K	3224W-1-102	Bourns
22	4	R9,R36,R90,R103	2K	ERJ3EKF2001	Panasonic
23	2	R38,R11	1.5K	ERJ3EKF1501	Panasonic
24	3	R56,R94,R99	0 ohm	ERJ3GSY0R00	Panasonic
25	1	$R 59$	51	ERJ3GSYJ510	Panasonic
26	7	R60,R61,R62,R84,R85,R86,	0	ERJ3GSYOR00	Panasonic
		R87			
27	6	R63,R64,R66,R69,R70,R72	1K	ERJ3EKF1001	Panasonic
28	2	R71,R65	1.1K	ERJ3EKF1101	Panasonic
29	2	R80,R79	RESISTOR		
30	3	R81,R82,R83	R		
31	4	R88,R91,R96,R101	1.33K	ERJ3EKF1331	Panasonic
32	2	R102,R89	4.02 K	ERJ3EKF4021	Panasonic
33	2	R92,R97	499	ERJ3EKF4990	Panasonic
34	19	TP1,TP2,TP3,TP4,TP5,TP6,	TP-105-01-00		

FIb.bA

FI6. blb

h9 9 - t

Page 199 of 1284

FIG. $7 \in B$

Local oscillator Signal 7015

Half Frequency 20 Signal: 7017
Phase Skiffedio
Signal 7019

Half Ficquericy
Phase shifter Lo
Signal 7021

I. Control Signal 709 D
Inverted I Control Signal $70^{\circ} 92$
Q Control Signal 7094
Inverted Q Control
Signal 7096
Signal 7096
Combined control
Signal 7045

FIG. 70 C

FIG. $70 Q$

page 213 of 1284

$$
\pi \varepsilon ル
$$

-

$$
K \quad T_{5} \rightarrow 1
$$

Fig. 72 A

FIG. $72 B$

FIG .72C

$F_{I G 1721}$

FIE. 72 E

FIG. 726

.Page 219 of 1284

'Page 223 of 1284 .
$8 \longdiv { 8 . 9 I _ { J } }$

-

Page 225 of 1284 .

Páge 226 of 1284

$\cdots \cdot$. Page 227 of 1284

Page 230 of 1284

Page 231 of 1284

Page 233 of 1284

FIG. 84

$$
F_{I G .88}
$$

17038.
年

$:$

FIG. $89 D$
8916

B. falling -edge purse generator

$$
\text { FIG. } 89 E
$$

FIG. 95 C

i

$$
-\quad=
$$

hll $\log _{f}$

fis 126

OE/ DIJ

n
n
n
n

\qquad

H^{n}
$\frac{\pi}{\infty}$

bhl 9I-

ISSUE SLIP STAPLE AREA (for additional cross references)

INDEX OF CLAIMS

APPLICATION	
	David
	Mimhat
	Robers
	Wirel
山	implen

,	\checkmark	Rejected
1	$=$ Allowed
*	-	(Through numeral)... Canceled
	\div Restricted

Claim		Date							
	51	$\div 0$							
	52	1							
	53								
	54								
	55								
	56								
	57								
	58.								
	59								
	60								
	61								
	62								
	63								
	64								
	65								
66	6.								
67	7								
68	8								
69	9								
70	0								
7	1								
72		$\sqrt{ }$							
53	3	N							
74		N							
75		N							
76		N							
5	$2 \frac{1}{2}$	$1=$							
78									
79									
80									
81									
82									
83									
84									
85									
86									
87									
88									
89									
90									
91									
92									
93									
94									
95									
96									
97									
98									
99									
100									

BEST AVAILABLE COPY

If more than 150 claims or 10 actions staple additional sheet here

Rogert Greene Sterne EDWARD J. KESSLER JORGE A. GOLDSTEIN SAMUEL L. FOX DAVID K.S. CORNWELL Robert w. Esmond Tracy-Gene G. Durkin Michele A. Cimbala Michael E. Ray ROEERT E. SOKOHL ERIC K. Steffe Michael Q. LeE

Sterne, Kessler, Goldstein \& Fox p.l.l.c.
ATTORNEYS AT LAW
IIOO NEW YORK AVENUE, N.W., SUITE 600 WASHINGTON, D.C. 2OOOS-3934
www.skgf.com
PHONE: (202) 371-2600 FACSIMILE: (2O2) 371-2540

STEVEN R. LUDWIG	HEIDI L. KRAUS
JOHN M. COVERT*	JEFFREY R. KURIN
LINDAE ALCORN	RAYMOND MILLIEN
RAZE. FLESHNER	PATRICK D. O'BRIEN
ROEERT C. MILLONIG	LAWRENCE B. BUGAISKY
MICHAELV. MESSINGER	CRYSTAL D. SAYLES*.
JUDITH U. KIM	EDWARD W. YEE
TIMOTHY J. SHEA, JR.	ALBERT L. FERRO
DONALD R. MCPHAIL	DONALO R. BANOWIT
PATRICKE. GARRETT	PETERA. JACKMAN
STEPHEN G. WHITESIDE	MOLLYA. MCCALL
JEFFREY T. HELVEY.	TERESA U. MEDLER

JOHN M. COVERT* LINDAE ALCORN Raz e. fleshner Robert C. Millonig Michael V. Messinger JUDITH U. KIM TIMOTHY J. SHEA, JR PATRICK E. GARRETT Stephen G. Whiteside Jeffrey t. Helvey*

JEFFREY R KURIN RAYMOND Millien Patrick D. O'Brien LAWRENCE B. BUGAISKY Crystal D. Sayles* Edward W. Yee Aleert L. Ferro' DONALD R. BanOwit eter A. Jackman TERESA U. MEDLER
 KRISTINK VIOOVICH KENDRICK P. PATTERSON DONALD J. FEATHERSTONE Grant E. Reed VINCENT L. CAPUANO John A. Harroun* Matthew M. Catlett* Nathan K. Kelley albert J. Fasulo if * W. BRIAN EDGE*

Karen R. Markowicz*"
SUZANNE E. ZISKA** BRIAN J. DEL Buono** ANIAN J. DEL BUONO ANDREA J. KAMAGE NANCY J. LEITH** TARJA H. NAUKKARINEN**

- bar other than D.C
-*REGIStERED Patent agents

August 4, 2000

Re: U.S. Non-Provisional Utility Patent Application under 37 C.F.R. § 1.53(b) Appl. No. To be assigned; Filed: August 4, 2000
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit Implementations
Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Jr., Gregory S. Rawlins, and Michael W. Rawlins
Our Ref: $\quad 1744.0630003$
Sir:

The following documents are forwarded herewith for appropriate action by the U.S. Patent and Trademark Office:

1. USPTO Utility Patent Application Transmittal Form PTO/SB/05;
2. U.S. Utility Patent Application entitled:

Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit Implementations
and naming as inventors:
David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Jr., Gregory S. Rawlins, and Michael W. Rawlins

Commissioner for Patents
August 4, 2000
Page 2
the application comprising:
a. specification containing:
i. $\quad \underline{98}$ pages of description prior to the claims;
ii. $\quad 7$ pages of claims ($\underline{40}$ claims);
iii. a one (1) page abstract;
b. Two-hundred and eight (208) sheets of drawings: (Figures $1 \mathrm{~A}-\mathrm{D}$ 2A, 2B. 3-14, 15A-F, 16-19, 20A, 20A-1, 20B-F, 21, 22A-F, 23A, 24A-J, 25-45, 46A, 46B, 47, 48, 49A, 49B, 50, 51, 52A-C, 53-55, $56 \mathrm{~A}, 56 \mathrm{~B}, 57-60,61 \mathrm{~A}, 61 \mathrm{~B}, 62-66,67 \mathrm{~A}, 67 \mathrm{~B}, 68 \mathrm{~A}, 68 \mathrm{~B}, 69 \mathrm{~A}$, 69B, 70A-S, $71 \mathrm{~A}-\mathrm{D}, 72 \mathrm{~A}-\mathrm{J}, 73 \mathrm{~A}, 73 \mathrm{~B}, 74,75 \mathrm{~A}-\mathrm{C}, 76 \mathrm{~A}, 76 \mathrm{~B}, 77$, 78, 79A-D, 80, 81A-C, 82-88, 89A-E, 90A-D, 91-94, 95A-C, 96161);
3. 37 C.F.R. § 1.136(a)(3) Authorization to Treat a Reply As Incorporating An Extension of Time (in duplicate); and
4. Two (2) return postcards.

It is respectfully requested that, of the two attached postcards, one be stamped with the filing date of these documents and returned to our courier, and the other, prepaid postcard, be stamped with the filing date and unofficial application number and returned as soon as possible.

This patent application is being submitted under 37 C.F.R. § 1.53(b) without Declaration and without filing fee.

Commissioner for Patents
August 4, 2000
Page 3
This application claims priority to U.S. Provisional Application No. 60/147,129, filed August 4, 1999; U.S. Application No. 09/525,615, filed on March 14, 2000; and U.S.
Application No. 09/526,041, filed on March 14, 2000.
Respectfully submitted,

In re application of:
Sorrells et al.
Appl. No. To be assigned
Filed: August 4, 2000
For: Wireless Local Area Network
(WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit Implementations

Art Unit: To be assigned Examiner: To be assigned

Atty. Docket: 1744.0630003

Authorization To Treat A Reply As Incorporating An Extension Of Time Under 37 C.F.R. § 1.136(a)(3)

Commissioner for Patents
Washington, D.C. 20231
Sir:
The U.S. Patent and Trademark Office is hereby authorized to treat any concurrent or future reply that requires a petition for an extension of time under this paragraph for its timely submission, as incorporating a petition for extension of time for the appropriate length of time. The U.S. Patent and Trademark Office is hereby authorized to charge all required extension of time fees to our Deposit Account No. 19-0036, if such fees are not otherwise provided for in such reply. A duplicate copy of this authorization is enclosed.

Respectfully submitted,

1100 New York Avenue, N.W.
Suite 600
Washington, D.C. 20005-3934
(202) 371-2600
0630003.aut

FIG. IA

FIG. IC
un

FI6. 1D
nn

Universal Frequency
Translation (UFT) module 2027

FIG. $\mathcal{L A}$

$$
\begin{aligned}
& \text { SIGNAL } 608
\end{aligned}
$$

$\stackrel{7}{-7}$

$\stackrel{4}{4}$ \boxed{n}

\cdots
\bar{N}
$\bar{\sigma}\left\{\begin{array}{l}\square \\ \square\end{array}\right.$

$\stackrel{7}{\square}$
$\frac{7}{9}$
$\stackrel{\sigma}{F}$

$$
\text { FI6. } 9
$$

FIG. II

FIG. 12
m

w

FT 6.14
M

Page 345 of 1284

n

\rightarrow

FIE. SF
,

FIG. Ib

FIG. 17

FIG. 18

$\forall 0 f$ rbl

m

i

,

97 '⿹1.

LZ '⿹IJ

FI6.33

FI6. 34

Page 375 of 1284

$$
F=6.38
$$

be.9I子

Kiuo әی！əəəy
20415

Bill Of Materials

FIb. 52 A

1

$\underbrace{n}_{\frac{\pi}{n}}$

ES.9IJ

Page 1

FIG. 54

$\varepsilon 090$＇\％s＇XG＇b＇JOIS！SOX	Y＇${ }^{\prime}$	EIV	b	1ε
8090 \％\％s＇XEL＇JOIS！SEy	HEL	2by	1	0ε
	00ع	OLV	1	62
E090＇\％s＇W40 SL＇Jolsisoy	GL	AH＇6y	17	82
E090＇\％s＇XZ＇Jolsisey	YZ	8प	b	$L 2$
ع090 \％\％＇wuo ob＇Jols！say	01	by	b	92
	16		S	92
NoN＇jojsjsued 1	029838	10	1	切
5080 \％\％O1＇HUZ8＇Jolonpul	Huz8	¢17	b	$\varepsilon 2$
ع090＇pseg elpueg	SLてレV1．W78	てレフ＇レレ7＇0レ7＇67＇97＇ャา	9	22
Jodunt w40 ojaz	W40	$\varepsilon 7$	1	12
9080 \％\％O1＇HU81＇Jolonpul	Hu8t	17	\square	02
Joloouvos yy	XOWWZ8	$9 \Gamma^{\prime} \mathrm{S}$ ¢	2	61
	S－1－80－701－MS1	$\varepsilon d \Gamma$	\downarrow	81
OSO＇XOSO＇＇ZXS mos 1enp＇sopear	O－y－ZO－SOL－HS 1.5	Zdr	1	46
	O－g－20－01．HSLd	ldr	\downarrow	91
ع090＇W40 odez＇jolsispy	แ400	L18＇beכ＇918	द2	Sb
	snL＇t	Lてつ＇ャてつ＇をてつ	ε	$\stackrel{\rightharpoonup}{1}$
8090＇1＇＇j！wejas＇joljoedes	dNO		b	ε
ع090＇⿹OJ＇\％01＇jdzz＇oturejes＇Joljodej	joてて	810＇020	2	21
ع090 \％\％01＇3d00L ${ }^{\circ}$＇गumeseo＇jol！jedes	」doolp	910	\downarrow	11
ع090＇905＇\％＇zaz＇oumejas＇jolljedes	ydzb	S15	b	Ob
E090＇8LX＇\％OL＇adoosl＇juweras＇jolloedes	－ 5000 sb	จ10	b	6
	300001		¢	8
	－ 08.9	215	\downarrow	L
	3dE＇$¢$	110	b	9
E090＇SOJ \％\％s＇ydozz＇oumejos＇jolprdes	－dozz	90	b	
8090＇ yLX ＇\％ol＇3n10＇＇गueses＇jolpedes	4n10	Lレつ＇8つ＇ャつ	ε	¢
	$3 \mathrm{sb} \mathrm{c}^{\circ}$	20＇6てつ	2	ε
	－doot		9	
Joloesen＇opola	L2¢93－19入89	18	$\underline{1}$	1
uoliduoseg	ved	ojuesejey	K10	แอ1

1 $\left[\begin{array}{l}\vdots \\ \vdots \\ \vdots\end{array}\right.$ －

 ${ }^{.5}$ Cdad

Z 50 て

Page1
Bill Of Materials

Ttam	Quantity	Reference	Part	Part Number	Manufacturer
\%					
1	21.	C3,C6,C8,C10,C14,C38,C44,	0.1uF	GRM39X7R104K016	Murata
		C46,C51,C71,C72,C77,C78,			
		C79,C84,C85,C86,C93,C95,			
		C96,C98			
2	6	C5,C7,C15,C43,C52,C75	22pF	GRM39COG220J050	Murata
3	5	C9,C16,C45,C53,C89	1uF	GRM40Y5V105Z016	Murata
4	8	C11,C23,C25,C47,C61,C63,	1000pF	GRM39X7R102K050	Murata
		C80,C87			
5	2	C58,C21	1 pF	GRM39COG010B50V	Mucata
6	2	C82,C33	4.7uF	T491A475K006AS	KEMET
7	2	C59,C35	0 ohm	GRM39COGx00x50V	Murata
8	1	C73	470pF	GRM39COG471J050	Murata
9	1	C83	1 uF	T491A105M016AS	Kemet
10	3	C90,C91,C92	100pF	ECU-V1H101JCV	
11	2	C94,C97	0.01uF	GRM39X7R103K016	Murata
12	1	FL1	MDR642E	MDR642E	Soshin
13	1	JP1	Shunt	69190-402	BERG
14	1	JP2	69190-403	69190-403	BERG
15	4	J7,J8,J9,J10	82MMCX-50-0-1	82MMCX-50-0-1	Suhner
16	1	L10	22nH	LL1608-F22NK	Coilcraft
17	1	L12	BLM11A121S	BLM11A121S	Murata
18	1	L13	330 nH	LL2012-FR33K	
19	10	R5,R6,R12,R13,R32,R33,	10K	ERJ3EKF1002	Panasonic
		R39,R40,R95,R100			
20	2	R34,R7	6.04K	ERJ3EKF6041	Panasonic
21	4	R8,R10,R35,R37	1K	3224W-1-102	Boums
22	4	R9,R36,R90,R103	2K	ERJ3EKF2001	Panasonic
23	2	R38,R11	1.5K	ERJ3EKF1501	Panasonic
24	3	R56,R94,1099	0 ohm	ERJ3GSY0R00	Panasonic
25	1	R59	51	ERJ3GSYJ510	Panasonic
26	7	R60,R61,R62,R84,R85,R86,	0	ERJ3GSYOR00	Panasonic
		R87			
27	6	R63,R64,R66,R69,R70,R72	1K	ERJ3EKF1001	Panasonic
28	2	R71.R65	1.1K	ERJ3EKF1101	Panasonic
29	2	R80,R79	RESISTOR		
30	3	R81,R82,R83	R		
31	4	R88,R91,R96,R101	1.33K	ERJ3EKF1331	Panasonic
32	2	R102,R89	4.02K	ERJ3EKF4021	Panasonic
33	2	R92,R97	499	ERJ3EKF4990	Panasonic
34	19	TP1,TP2,TP3,TP4,TP5,TP6,	TP-105-01-00		

FI6. MA

FIG.blb

52

Bill Of Materials						
Item	Qty	Reference	Part	Description	Part Numb	nd
1	4	C1,C6, C7, C10	1uF	Cap, 1uF, +80-20\%, 0805		
2	6	C2,C3,C4,C8,C11,C12	100pF	Cap, 100pF, 5\%, COG, 0603	ECU-V1H101JCV	Murata
3	2	C5, С9	14F	Cap, 1uF, $+80-20 \%$, Y5V, 0603	ECU-V1H101JCV	Panasonic
4	3	C13,C14,C19	22uF	Cap, Tant, 22uF, 20\%, 20 V	T491D226M020AS	Murata
5	4	C15,C16,C17,C18	4.7uF	Cap, Tant, 4.7uF, 20\%, 20 V	T491C475M020AS	Kemet
6	2	JP2;JP6	HEADER 7X2	Receptacle, $7 \times 2 \mathrm{pin}, .050$	SFMC-107-L1-S-D	Samtek
7	9	$\begin{aligned} & \text { JP4, J4, J5, J6, J7, JP9, J9, } \\ & \text { J10, JP11 } \end{aligned}$	CON3	Header, 3pin, .100"	69190-403	Berg
8	1	JP7	HEADER 10X2	Receptacle, 10x2pin, . 050	SFMC-110-L1-S-D	Samtek
9	1	JP8	HEADER 5X2	Receptacle, 5×2 in, 050	SFMC-105-L1-S-D	Samtek
10	1	J2	EHT-1-10-01-S-D	Header, ribbon, 10x2pin, 2mm	EHT-1-10-01-S-D	Samtek
11	3	J8, J11, J12	82MMCX-50-0-1	Connector, RF	82MMCX-50-0-1	Suhner
12	2	L3,L1	Ferrite Bead	Femite Bead, 0805	BLM21A121S	Murata
13	2	L4, L2	330 nH	Ind, 330nH, 10\%, 0805	LL2012-FR33K	Toko
14	1	R1	DNP	Res, 0603		Panasonic
15	2	R9,R2	91	Res, 91 Ohm, 5\%, 0603	ERJ-3GSYJ910	Panasonic
16	2	R7,R3	240	Res, 240 Ohm, 5\%, 0603	ERJ-3GSYJ241	Panasonic
17	4	R4,R5,R10,R11	82	Res, 82 Ohm, 5\%, 0603	ERJ-3GSYJ820	Panasonic
18	2	R8,R6	5K	Var Res, 5K, 10\%	3296W001502	Boums
19	10	$\begin{aligned} & \text { R12, R13, R14, R15, R18, } \\ & \text { R17, R18, R19, R20, R21 } \\ & \hline \end{aligned}$	180	Res, 180 Ohm, 5\%, 0603	ERJ-3GSYJ181	Panasonic
20	10	R22, R23, R24, R25, R26, R27, R28, R29, R30, R31	390	Res, 390 Ohm, 5\%, 0603	ERJ-3GSYJ391	Panasonic
21	2	U5,U1	UPG1678	IC, RF Buffer	UPG1678GV	NEC
22	2	U4, U2	LM317	IC, Voltage Regulator	LM317T	National
23	1	U3	ADP-2-10-75	RF Splitter	ADP-2-10-75	MiniClircuits
24	1	U6	DS3862	$1 C_{1}$ Buffer	DS3862WM	National
25	1			Batco	STE500.641.023	

8*e

人 \qquad
ER 7X2

n. 9 9士d

FIG. $7 \cup B$

Halt Frojuency 20
Stgnal 7oi 7
Phose Sutfodio
Signal 7019
Half Ficquenicy
Phese shifed 100
Signal 7021.

I.Control Siqnal 709 D
Inverted I Control Signal 70.92
Q Control Signal 7094
Inverted Q Contol Signal 7096
Combinced Control Signcl 7045

FIG. 70 C

.......":

\because
\because
\vdots
\vdots
\because
\because
\because
\because
\because
\because
\because
\because
\because
\ddots
\because
\ddots

, " โ əБ

$\overline{\text { [2L'9IJ }}$

 ! \cdot

$\therefore \therefore \cdot-$ Page ${ }^{1} 441$ of 1284 .

2\＆6し

$$
F I G .84
$$

FI6. 85

$$
F_{I G .} 86
$$

$\forall 68: 9 I$
-10.conuI
4058.

$$
\begin{aligned}
& \text { 筞 }
\end{aligned}
$$ -

$$
\cdot
$$

FIG. 890
8916
x

B. falling -edge pulse generator

FIG. $89 E$

$9203-7$

Zb 9If

FIG. 95 C

Lb 97d

201031

\cdots
211 9I」

Plage 484 of 1284

hil ${ }^{\circ} \mathrm{OI} \mathrm{J}$

\cdot
$=$

।

(h) '9It

hht 理d

0

OS ${ }^{\circ}{ }^{2}$.J.

SSI ${ }^{\text {PI }}$ I

BS1 כIJ

The structure and operation of embodiments of the UFT module, and various applications of the same are described in detail in the following sections.

Further features and advantages of the invention, as well as the structure and operation of various embodiments of the invention, are described in detail below with reference to the accompanying drawings. The drawing in which an element first appears is typically indicated by the leftmost character(s) and/or digit(s) in the corresponding reference number.

Brief Description of the Figures

The present invention will be described with reference to the accompanying drawings, wherein:

FIG. 1A is a block diagram of a universal frequency translation (UFT) module according to an embodiment of the invention;

FIG. 1B is a more detailed diagram of a universal frequency translation (UFT) module according to an embodiment of the invention;

FIG. 1C illustrates a UFT module used in a universal frequency down-conversion (UFD) module according to an embodiment of the invention;

FIG. 1D illustrates a UFT module used in a universal frequency up-conversion (UFU) module according to an embodiment of the invention;

FIG. 2A-2B illustrate block diagrams of universal frequency translation (UFT) modules according to an embodiment of the invention;

FIG. 3 is a block diagram of a universal frequency up-conversion (UFU) module according to an embodiment of the invention;

FIG. 4 is a more detailed diagram of a universal frequency up-conversion (UFU) module according to an embodiment of the invention;

FIG. 5 is a block diagram of a universal frequency up-conversion (UFU) module according to an alternative embodiment of the invention;

FIGS. 6A-6I illustrate example waveforms used to describe the operation of the UFU module;

FIG. 7 illustrates a UFT module used in a receiver according to an embodiment of the invention;

FIG. 8 illustrates a UFT module used in a transmitter according to an embodiment of the invention;

FIG. 9 illustrates an environment comprising a transmitter and a receiver, each of which may be implemented using a UFT module of the invention;

FIG. 10 illustrates a transceiver according to an embodiment of the invention;
FIG. 11 illustrates a transceiver according to an alternative embodiment of the invention;

FIG. 12 illustrates an environment comprising a transmitter and a receiver, each of which may be implemented using enhanced signal reception (ESR) components of the invention;

FIG. 13 illustrates a UFT module used in a unified down-conversion and filtering (UDF) module according to an embodiment of the invention;

FIG. 14 illustrates an example receiver implemented using a UDF module according to an embodiment of the invention;

FIGS. 15A-15F illustrate example applications of the UDF module according to embodiments of the invention;

FIG. 16 illustrates an environment comprising a transmitter and a receiver, each of which may be implemented using enhanced signal reception (ESR) components of the invention, wherein the receiver may be further implemented using one or more UFD modules of the invention;

FIG. 17 illustrates a unified down-converting and filtering (UDF) module according to an embodiment of the invention;

FIG. 18 is a table of example values at nodes in the UDF module of FIG. 19;
FIG. 19 is a detailed diagram of an example UDF module according to an embodiment of the invention; ${ }^{\prime}$

FIGS. 20A and 20A-1 are example aliasing modules according to embodiments of the invention;

FIGS. 20B-20F are example waveforms used to describe the operation of the aliasing modules of FIGS. 20A and 20A-1;

FIG. 21 illustrates an enhanced signal reception system according to an embodiment of the invention;

FIGS. 22A-22F are example waveforms used to describe the system of FIG. 21;
FIG. 23A illustrates an example transmitter in an enhanced signal reception system according to an embodiment of the invention;

FIGS. 23B and 23C are example waveforms used to further describe the enhanced signal reception system according to an embodiment of the invention;

FIG. 23D illustrates another example transmitter in an enhanced signal reception system according to an embodiment of the invention;

FIGS. 23E and 23F are example waveforms used to further describe the enhanced signal reception system according to an embodiment of the invention;

FIG. 24A illustrates an example receiver in an enhanced signal reception system according to an embodiment of the invention;

FIGS. 24B-24J are example waveforms used to further describe the enhanced signal reception system according to an embodiment of the invention;

FIG. 25 illustrates a block diagram of an example computer network;
FIG. 26 illustrates a block diagram of an example computer network;
FIG. 27 illustrates a block diagram of an example wireless interface;
FIG. 28 illustrates an example heterodyne implementation of the wireless interface illustrated in FIG. 27;

FIG. 29 illustrates an example in-phase/quadrature-phase (I/Q) heterodyne implementation of the interface illustrated in FIG. 27;

FIG. 30 illustrates an example high level block diagram of the interface illustrated in FIG. 27, in accordance with the present invention;

FIG. 31 illustrates a example block diagram of the interface illustrated in FIG. 29, in accordance with the invention;

FIG. 32 illustrates an example I/Q implementation of the interface illustrated in FIG.31;

FIGS. 33-38 illustrate example environments encompassed by the invention;
FIG. 39 illustrates a block diagram of a WLAN interface according to an embodiment of the invention;

FIG. 40 illustrates a WLAN receiver according to an embodiment of the invention;
FIG. 41 illustrates a WLAN transmitter according to an embodiment of the invention;

FIGS. 42-44 are example implementations of a WLAN interface;
FIGS. 45, 46A, and 46B relate to an example MAC interface for an example WLAN interface embodiment;

FIGS. 47, 48, 49A, and 49B relate to an example demodulator/modulator facilitation module for an example WLAN interface embodiment;

FIGS. $50,51,52 \mathrm{~A}, 52 \mathrm{~B}$, and 52 C relate to an example alternate demodulator/modulator facilitation module for an example WLAN interface embodiment;

FIGS. 53 and 54 relate to an example receiver for an example WLAN interface embodiment;

FIGS. 55, 56A, and 56B relate to an example synthesizer for an example WLAN interface embodiment;

FIGS. 57, 58, 59, 60, 61A, and 61B relate to an example transmitter for an example WLAN interface embodiment;

FIGS. 62 and 63 relate to an example motherboard for an example WLAN interface embodiment;

FIGS. 64-66 relate to example LNAs for an example WLAN interface embodiment;

FIGS. 67A-B illustrate IQ receivers having UFT modules in a series and shunt configurations, according to embodiments of the invention;

FIGS. 68A-B illustrate IQ receivers having UFT modules with delayed control signals for quadrature implementation, according to embodiments of the present invention;

FIGS. 69A-B illustrate IQ receivers having FET implementations, according to embodiments of the invention;

FIG. 70A illustrates an IQ receiver having shunt UFT modules according to embodiments of the invention;

FIG. 70B illustrates control signal generator embodiments for receiver 7000 according to embodiments of the invention;

FIGS. 70C-D illustrate various control signal waveforms according to embodiments of the invention;

FIG. 70E illustrates an example IQ modulation receiver embodiment according to embodiments of the invention;

FIGS. 70F-P illustrate example waveforms that are representative of the IQ receiver in FIG. 70E;

FIGS. 70Q-R illustrate single channel receiver embodiments according to embodiments of the invention;

FIG. 70S illustrates a FET configuration of an IQ receiver embodiment according to embodiments of the invention;

FIG. 71 A illustrate a balanced transmitter 7102, according to an embodiment of the present invention;

FIGs. 71B-C illustrate example waveforms that are associated with the balanced transmitter 7102, according to an embodiment of the present invention;

FIG. 71D illustrates example FET configurations of the balanced transmitter 7102, according to embodiments of the present invention;

FIGs.72A-I illustrate various example timing diagrams that are associated with the transmitter 7102, according to embodiments of the present invention;

FIG. 72J illustrates an example frequency spectrum that is associated with a modulator 7104, according to embodiments of the present invention;

FIG. 73A illustrate a transmitter 7302 that is configured for carrier insertion, according to embodiments of the present invention;

FIG. 73B illustrates example signals associated with the transmitter 7302, according to embodiments of the invention;

FIG. 74 illustrates an IQ balanced transmitter 7420, according to embodiments of the present invention;

FIGs. 75A-C illustrate various example signal diagrams associated with the balanced transmitter 7420 in FIG. 74;

FIG. 76A illustrates an IQ balanced transmitter 7608 according to embodiments of the invention;

FIG. 76B illustrates an IQ balanced modulator 7618 according to embodiments of the invention;

FIG. 77 illustrates an IQ balanced modulator 7702 configured for carrier insertion according to embodiments of the invention;

FIG. 78 illustrates an IQ balanced modulator 7802 configured for carrier insertion according to embodiments of the invention;

FIG. 79A illustrate a transmitter 7900, according to embodiments of the present invention;

FIGs. 79B-C illustrate various frequency spectrums that are associated with the transmitter 7900;

FIG. 79D illustrates a FET configuration for the transmitter 7900, according to embodiments of the present invention;

FIG. 80 illustrates an IQ transmitter 8000, according to embodiments of the present invention;

FIGs. 81 A-C illustrate various frequency spectrums that are associated with the IQ transmitter 8000, according to embodiments of the present invention;

FIG. 82 illustrates an IQ transmitter 8200 , according to embodiments of the present invention;

FIG. 83 illustrates an IQ transmitter 8300, according to embodiments of the invention;

FIG. 84 illustrates a flowchart 8400 that is associated with the transmitter 7102 in the FIG. 71 A , according to embodiments of the invention;

FIG. 85 illustrates a flowchart 8500 that further defines the flowchart 8400 in the FIG. 84, and is associated with the transmitter 7102 according to embodiments of the invention;

FIG. 86 illustrates a flowchart 8600 that is associated with the transmitter 7900 and further defines the flowchart 8400 in the FIG. 84, according to embodiments of the invention;

FIG. 87 illustrates a flowchart 8700, that is associated with the transmitter 7420 in the FIG. 74, according to embodiments of the invention;

FIG. 88 illustrates a flowchart 8800 that is associated with the transmitter 8000, according to embodiments of the invention;

FIG. 89A illustrate a pulse generator according to embodiments of the invention;
FIGS. 89B-C illustrate various example signal diagrams associated with the pulse generator in FIG. 89A, according to embodiments of the invention;

FIG. 89D-E illustrate various example pulse generators according to embodiments of the present invention;

FIGS. 90A-D illustrates various implementation circuits for the modulator 7410, according to embodiments of the present invention;

FIG. 91 illustrates an IQ transceiver 9100 according to embodiments of the present invention;

FIG. 92 illustrates direct sequence spread spectrum according to embodiments of the present invention;

FIG. 93 illustrates the LNA/PA module 3904 according to embodiments of the present invention;

FIG. 94 illustrates a WLAN device 9400, according to embodiments of the invention of the present invention; and

FIGs. 95A-C, and FIGs. 96-161 illustrate schematics for an integrated circuit implementation example of the present invention.

Detailed Description of the Preferred Embodiments

Table of Contents

1. Universal Frequency Translation
2. Frequency Down-Conversion
3. Frequency Up-Conversion
4. Enhanced Signal Reception
5. Unified Down-Conversion and Filtering
6. Example Application Embodiments of the Invention

6.1 Data Communication

6.1.1 Example Implementations: Interfaces, Wireless Modems, Wireless LANs, etc.
6.1.2 Example Modifications
6.2 Other Example Applications
7.0 Example WLAN Implementation Embodiments
7.1 Architecture
7.2 Receiver
7.2.1 IQ Receiver
7.2.2 Multi-Phase IQ Receiver
7.2.2.1Example I/Q Modulation Control Signal Generator Embodiments
7.2.2.2 Implementation of Multi-phase I/Q Modulation Receiver Embodiment with Exemplary Waveforms
7.2.2.3 Example Single Channel Receiver Embodiment
7.2.2.4 Alternative Example I/Q Modulation Receiver Embodiment
7.3 Transmitter
7.3.1 Universal Transmitter with 2 UFT Modules
7.3.1.1 Balanced Modulator Detailed Description
7.4 Transceiver Embodiments
7.5 Demodulator/Modulator Facilitation Module
7.6 MAC Interface
7.7 Control Signal Generator - Synthesizer
7.8 LNA/PA
8.0 802.11 Physical Layer Configurations
9.0 Appendix
10.0 Conclusion

1. Universal Frequency Translation

The present invention is related to frequency translation, and applications of same. Such applications include, but are not limited to, frequency down-conversion, frequency up-conversion, enhanced signal reception, unified down-conversion and filtering, and combinations and applications of same.

FIG. 1 A illustrates a universal frequency translation (UFT) module 102 according to embodiments of the invention. (The UFT module is also sometimes called a universal frequency translator, or a universal translator.)

As indicated by the example of FIG. 1A, some embodiments of the UFT module 102 include three ports (nodes), designated in FIG. 1A as Port 1, Port 2, and Port 3. Other UFT embodiments include other than three ports.

Generally, the UFT module 102 (perhaps in combination with other components) operates to generate an output signal from an input signal, where the frequency of the output signal differs from the frequency of the input signal. In other words, the UFT module 102 (and perhaps other components) operates to generate the output signal from the input signal by translating the frequency (and perhaps other characteristics) of the input signal to the frequency (and perhaps other characteristics) of the output signal.

An example embodiment of the UFT module 103 is generally illustrated in FIG. 1B. Generally, the UFT module 103 includes a switch 106 controlled by a control signal 108. The switch 106 is said to be a controlled switch.

As noted above, some UFT embodiments include other than three ports. For example, and without limitation, FIG. 2 illustrates an example UFT module 202. The example UFT module 202 includes a diode 204 having two ports, designated as Port 1 and Port $2 / 3$. This embodiment does not include a third port, as indicated by the dotted line around the "Port 3" label.

The UFT module is a very powerful and flexible device. Its flexibility is illustrated, in part, by the wide range of applications in which it can be used. Its power is illustrated, in part, by the usefulness and performance of such applications.

6-14-

For example, a UFT module 115 can be used in a universal frequency downconversion (UFD) module 114, an example of which is shown in FIG. 1C. In this capacity, the UFT module 115 frequency down-converts an input signal to an output signal.

As another example, as shown in FIG. ID, a UFT module 117 can be used in a universal frequency up-conversion (UFU) module 116. In this capacity, the UFT module 117 frequency up-converts an input signal to an output signal.

These and other applications of the UFT module are described below. Additional applications of the UFT module will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. In some applications, the UFT module is a required component. In other applications, the UFT module is an optional component.

2. Frequency Down-Conversion

The present invention is directed to systems and methods of universal frequency down-conversion, and applications of same.

In particular, the following discussion describes down-converting using a Universal Frequency Translation Module. The down-conversion of an EM signal by aliasing the EM signal at an aliasing rate is fully described in co-pending U.S. Patent Application entitled "Method and System for Down-Converting Electromagnetic Signals," Ser. No. 09/176,022, filed October 21, 1998, issued as U.S. Patent No. 6,061,551 on May 9, 2000, the full disclosure of which is incorporated herein by reference. A relevant portion of the above mentioned patent application is summarized below to describe down-converting an input signal to produce a down-converted signal that exists at a lower frequency or a baseband signal.

FIG. 20A illustrates an aliasing module 2000 (also called a universal frequency down-conversion module) for down-conversion using a universal frequency translation (UFT) module 2002 which down-converts an EM input signal 2004. In particular embodiments, aliasing module 2000 includes a switch 2008 and a capacitor 2010. The electronic alignment of the circuit components is flexible. That is, in one implementation,
the switch 2008 is in series with input signal 2004 and capacitor 2010 is shunted to ground (although it may be other than ground in configurations such as differential mode). In a second implementation (see FIG. 20A-1), the capacitor 2010 is in series with the input signal 2004 and the switch 2008 is shunted to ground (although it may be other than ground in configurations such as differential mode). Aliasing module 2000 with UFT module 2002 can be easily tailored to down-convert a wide variety of electromagnetic signals using aliasing frequencies that are well below the frequencies of the EM input signal 2004.

In one implementation, aliasing module 2000 down-converts the input signal 2004 to an intermediate frequency (IF) signal. In another implementation, the aliasing module 2000 down-converts the input signal 2004 to a demodulated baseband signal. In yet another implementation, the input signal 2004 is a frequency modulated (FM) signal, and the aliasing module 2000 down-converts it to a non-FM signal, such as a phase modulated (PM) signal or an amplitude modulated (AM) signal. Each of the above implementations is described below.

In an embodiment, the control signal 2006 includes a train of pulses that repeat at an aliasing rate that is equal to, or less than, twice the frequency of the input signal 2004. In this embodiment, the control signal 2006 is referred to herein as an aliasing signal because it is below the Nyquist rate for the frequency of the input signal 2004. Preferably, the frequency of control signal 2006 is much less than the input signal 2004.

A train of pulses 2018 as shown in FIG. 20D controls the switch 2008 to alias the input signal 2004 with the control signal 2006 to generate a down-converted output signal 2012. More specifically, in an embodiment, switch 2008 closes on a first edge of each pulse 2020 of FIG. 20D and opens on a second edge of each pulse. When the switch 2008 is closed, the input signal 2004 is coupled to the capacitor 2010, and charge is transferred from the input signal to the capacitor 2010. The charge stored during successive pulses forms down-converted output signal 2012.

Exemplary waveforms are shown in FIGS. 20B-20F.
FIG. 20B illustrates an analog amplitude modulated (AM) carrier signal 2014 that is an example of input signal 2004. For illustrative purposes, in FIG. 20C, an analog AM
carrier signal portion 2016 illustrates a portion of the analog AM carrier signal 2014 on an expanded time scale. The analog AM carrier signal portion 2016 illustrates the analog AM carrier signal 2014 from time t_{0} to time t_{1}.

FIG. 20D illustrates an exemplary aliasing signal 2018 that is an example of control signal 2006. Aliasing signal 2018 is on approximately the same time scale as the analog AM carrier signal portion 2016. In the example shown in FIG. 20D, the aliasing signal 2018 includes a train of pulses 2020 having negligible apertures that tend towards zero (the invention is not limited to this embodiment, as discussed below). The pulse aperture may also be referred to as the pulse width as will be understood by those skilled in the art(s). The pulses 2020 repeat at an aliasing rate, or pulse repetition rate of aliasing signal 2018. The aliasing rate is determined as described below, and further described in co-pending U.S. Patent Application entitled "Method and System for Down-converting Electromagnetic Signals," Application No. 09/176,022, Attorney Docket Number 1744.0010000, issued as U.S. Patent No. 6,061,551 on May 9, 2000.

As noted above, the train of pulses 2020 (i.e., control signal 2006) control the switch 2008 to alias the analog AM carrier signal 2016 (i.e., input signal 2004) at the aliasing rate of the aliasing signal 2018. Specifically, in this embodiment, the switch 2008 closes on a first edge of each pulse and opens on a second edge of each pulse. When the switch 2008 is closed, input signal 2004 is coupled to the capacitor 2010, and charge is transferred from the input signal 2004 to the capacitor 2010. The charge transferred during a pulse is referred to herein as an under-sample. Exemplary under-samples 2022 form down-converted signal portion 2024 (FIG. 20E) that corresponds to the analog AM carrier signal portion 2016 (FIG. 20C) and the train of pulses 2020 (FIG. 20D). The charge stored during successive under-samples of AM carrier signal 2014 form the downconverted signal 2024 (FIG. 20E) that is an example of down-converted output signal 2012 (FIG. 20A). In FIG. 20F, a demodulated baseband signal 2026 represents the demodulated baseband signal 2024 after filtering on a compressed time scale. As illustrated, down-converted signal 2026 has substantially the same "amplitude envelope" as AM carrier signal 2014. Therefore, FIGS. 20B-20F illustrate down-conversion of AM carrier signal 2014.

The waveforms shown in FIGS. 20B-20F are discussed herein for illustrative purposes only, and are not limiting. Additional exemplary time domain and frequency domain drawings, and exemplary methods and systems of the invention relating thereto, are disclosed in co-pending U.S. Patent Application entitled "Method and System for Down-converting Electromagnetic Signals," Application No.09/176,022, Attorney Docket Number 1744.0010000, issued as U.S. Patent No. 6,061,551 on May 9, 2000.

The aliasing rate of control signal 2006 determines whether the input signal 2004 is down-converted to an IF signal, down-converted to a demodulated baseband signal, or down-converted from an FM signal to a PM or an AM signal. Generally, relationships between the input signal 2004, the aliasing rate of the control signal 2006, and the downconverted output signal 2012 are illustrated below:
(Freq. of input signal 2004) $=n \bullet($ Freq. of control signal 2006) \pm
(Freq. of down-converted output signal 2012)

For the examples contained herein, only the " + " condition will be discussed. The value of n represents a harmonic or sub-harmonic of input signal 2004 (e.g., $n=0.5,1,2,3$, . . .).

When the aliasing rate of control signal 2006 is off-set from the frequency of input signal 2004, or off-set from a harmonic or sub-harmonic thereof, input signal 2004 is down-converted to an IF signal. This is because the under-sampling pulses occur at different phases of subsequent cycles of input signal 2004. As a result, the under-samples form a lower frequency oscillating pattern. If the input signal 2004 includes lower frequency changes, such as amplitude, frequency, phase, etc., or any combination thereof, the charge stored during associated under-samples reflects the lower frequency changes, resulting in similar changes on the down-converted IF signal. For example, to downconvert a 901 MHZ input signal to a 1 MHZ IF signal, the frequency of the control signal 2006 would be calculated as follows:

$$
\left(\text { Freq }_{\text {input }}-\text { Freq }_{\text {IF }}\right) / n=\text { Freq }_{\text {control }}
$$

$$
(901 \mathrm{MHZ}-1 \mathrm{MHZ}) / n \quad=900 / n
$$

For $n=0.5,1,2,3,4$, etc., the frequency of the control signal 2006 would be substantially equal to $1.8 \mathrm{GHz}, 900 \mathrm{MHZ}, 450 \mathrm{MHZ}, 300 \mathrm{MHZ}, 225 \mathrm{MHZ}$, etc.

Exemplary time domain and frequency domain drawings, illustrating down- conversion of analog and digital AM, PM and FM signals to IF signals, and exemplary methods and systems thereof, are disclosed in co-pending U.S. Patent Application entitled "Method and System for Down-converting Electromagnetic Signals," Application No. 09/176,022, Attorney Docket Number 1744.0010000, issued as U.S. Patent No. $6,061,551$ on May 9, 2000.

Alternatively, when the aliasing rate of the control signal 2006 is substantially equal to the frequency of the input signal 2004, or substantially equal to a harmonic or sub-harmonic thereof, input signal 2004 is directly down-converted to a demodulated baseband signal. This is because, without modulation, the under-sampling pulses occur at the same point of subsequent cycles of the input signal 2004. As a result, the undersamples form a constant output baseband signal. If the input signal 2004 includes lower frequency changes, such as amplitude, frequency, phase, etc., or any combination thereof, the charge stored during associated under-samples reflects the lower frequency changes, resulting in similar changes on the demodulated baseband signal. For example, to directly down-convert a 900 MHZ input signal to a demodulated baseband signal (i.e., zero IF), the frequency of the control signal 2006 would be calculated as follows:

$$
\begin{gathered}
\left(\text { Freq }_{\text {input }}-\text { Freq }_{\text {IF }}\right) / n=\text { Freq }_{\text {control }} \\
(900 \mathrm{MHZ}-0 \mathrm{MHZ}) / n \quad=900 \mathrm{MHZ} / n
\end{gathered}
$$

For $n=0.5,1,2,3,4$, etc., the frequency of the control signal 2006 should be substantially equal to $1.8 \mathrm{GHz}, 900 \mathrm{MHZ}, 450 \mathrm{MHZ}, 300 \mathrm{MHZ}, 225 \mathrm{MHZ}$, etc.

Exemplary time domain and frequency domain drawings, illustrating direct downconversion of analog and digital AM and PM signals to demodulated baseband signals, and exemplary methods and systems thereof, are disclosed in the co-pending U.S. Patent

Application entitled "Method and System for Down-converting Electromagnetic Signals," Application No. 09/176,022, issued as U.S. Patent No. 6,061,551 on May 9, 2000.

Alternatively, to down-convert an input FM signal to a non-FM signal, a frequency within the FM bandwidth must be down-converted to baseband (i.e., zero IF). As an example, to down-convert a frequency shift keying (FSK) signal (a sub-set of FM) to a phase shift keying (PSK) signal (a subset of PM), the mid-point between a lower frequency F_{1} and an upper frequency F_{2} (that is, $\left[\left(F_{1}+F_{2}\right) \div 2\right]$) of the FSK signal is down-converted to zero IF. For example, to down-convert an FSK signal having F_{1} equal to 899 MHZ and F_{2} equal to 901 MHZ , to a PSK signal, the aliasing rate of the control signal 2006 would be calculated as follows:

$$
\begin{aligned}
\text { Frequency of the input } & =\left(\mathrm{F}_{1}+\mathrm{F}_{2}\right) \div 2 \\
& =(899 \mathrm{MHZ}+901 \mathrm{MHZ}) \div 2 \\
& =900 \mathrm{MHZ}
\end{aligned}
$$

Frequency of the down-converted signal $=0$ (i.e., baseband)

$$
\begin{aligned}
& \left(\text { Freq }_{\text {input }}-\text { Freq }_{\text {IF }}\right) / n=\text { Freq }_{\text {control }} \\
& (900 \mathrm{MHZ}-0 \mathrm{MHZ}) / n \quad=900 \mathrm{MHZ} / n
\end{aligned}
$$

For $n=0.5,1,2,3$, etc., the frequency of the control signal 2006 should be substantially equal to $1.8 \mathrm{GHz}, 900 \mathrm{MHZ}, 450 \mathrm{MHZ}, 300 \mathrm{MHZ}, 225 \mathrm{MHZ}$, etc. The frequency of the down-converted PSK signal is substantially equal to one half the difference between the lower frequency F_{1} and the upper frequency F_{2}.

As another example, to down-convert a FSK signal to an amplitude shift keying (ASK) signal (a subset of AM), either the lower frequency F_{1} or the upper frequency F_{2} of the FSK signal is down-converted to zero IF. For example, to down-convert an FSK signal having F_{1} equal to 900 MHZ and F_{2} equal to 901 MHZ , to an ASK signal, the aliasing rate of the control signal 2006 should be substantially equal to:

$$
\begin{aligned}
& (900 \mathrm{MHZ}-0 \mathrm{MHZ}) / \mathrm{n}=900 \mathrm{MHZ} / n \text {, or } \\
& (901 \mathrm{MHZ}-0 \mathrm{MHZ}) / \mathrm{n}=901 \mathrm{MHZ} / n .
\end{aligned}
$$

For the former case of $900 \mathrm{MHZ} / n$, and for $n=0.5,1,2,3,4$, etc., the frequency of the control signal 2006 should be substantially equal to $1.8 \mathrm{GHz}, 900 \mathrm{MHZ}, 450 \mathrm{MHZ}, 300$ MHZ, 225 MHZ , etc. For the latter case of $901 \mathrm{MHZ} / n$, and for $n=0.5,1,2,3,4$, etc., the frequency of the control signal 2006 should be substantially equal to $1.802 \mathrm{GHz}, 901$ $\mathrm{MHZ}, 450.5 \mathrm{MHZ}, 300.333 \mathrm{MHZ}, 225.25 \mathrm{MHZ}$, etc. The frequency of the downconverted AM signal is substantially equal to the difference between the lower frequency F_{1} and the upper frequency F_{2} (i.e., 1 MHZ).

Exemplary time domain and frequency domain drawings, illustrating downconversion of FM signals to non-FM signals, and exemplary methods and systems thereof, are disclosed in the co-pending U.S. Patent Application entitled "Method and System for Down-converting Electromagnetic Signals," Application No. 09/176,022, issued as U.S. Patent No. 6,061,551 on May 9, 2000.

In an embodiment, the pulses of the control signal 2006 have negligible apertures that tend towards zero. This makes the UFT module 2002 a high input impedance device. This configuration is useful for situations where minimal disturbance of the input signal may be desired.

In another embodiment, the pulses of the control signal 2006 have non-negligible apertures that tend away from zero. This makes the UFT module 2002 a lower input impedance device. This allows the lower input impedance of the UFT module 2002 to be substantially matched with a source impedance of the input signal 2004. This also improves the energy transfer from the input signal 2004 to the down-converted output signal 2012, and hence the efficiency and signal to noise (s / n) ratio of UFT module 2002.

Exemplary systems and methods for generating and optimizing the control signal 2006, and for otherwise improving energy transfer and s / n ratio, are disclosed in the copending U.S. Patent Application entitled "Method and System for Down-converting Electromagnetic Signals," Application No. 09/176,022, issued as U.S. Patent No. $6,061,551$ on May 9, 2000.

3. Frequency Up-Conversion

The present invention is directed to systems and methods of frequency upconversion, and applications of same.

An example frequency up-conversion system 300 is illustrated in FIG. 3. The frequency up-conversion system 300 is now described.

An input signal 302 (designated as "Control Signal" in FIG. 3) is accepted by a switch module 304. For purposes of example only, assume that the input signal 302 is a FM input signal 606, an example of which is shown in FIG. 6C. FM input signal 606 may have been generated by modulating information signal 602 onto oscillating signal 604 (FIGS. 6A and 6B). It should be understood that the invention is not limited to this embodiment. The information signal 602 can be analog, digital, or any combination thereof, and any modulation scheme can be used.

The output of switch module 304 is a harmonically rich signal 306, shown for example in FIG. 6D as a harmonically rich signal 608. The harmonically rich signal 608 has a continuous and periodic waveform.

FIG. 6 E is an expanded view of two sections of harmonically rich signal 608 , section 610 and section 612. The harmonically rich signal 608 may be a rectangular wave, such as a square wave or a pulse (although, the invention is not limited to this embodiment). For ease of discussion, the term "rectangular waveform" is used to refer to waveforms that are substantially rectangular. In a similar manner, the term "square wave" refers to those waveforms that are substantially square and it is not the intent of the present invention that a perfect square wave be generated or needed.

Harmonically rich signal 608 is comprised of a plurality of sinusoidal waves whose frequencies are integer multiples of the fundamental frequency of the waveform of the harmonically rich signal 608. These sinusoidal waves are referred to as the harmonics of the underlying waveform, and the fundamental frequency is referred to as the first harmonic. FIG. 6F and FIG. 6G show separately the sinusoidal components making up the first, third, and fifth harmonics of section 610 and section 612. (Note that in theory there may be an infinite number of harmonics; in this example, because harmonically rich
signal 608 is shown as a square wave, there are only odd harmonics). Three harmonics are shown simultaneously (but not summed) in FIG. 6H.

The relative amplitudes of the harmonics are generally a function of the relative widths of the pulses of harmonically rich signal 306 and the period of the fundamental frequency, and can be determined by doing a Fourier analysis of harmonically rich signal 306. According to an embodiment of the invention, the input signal 606 may be shaped to ensure that the amplitude of the desired harmonic is sufficient for its intended use (e.g., transmission).

A filter 308 filters out any undesired frequencies (harmonics), and outputs an electromagnetic (EM) signal at the desired harmonic frequency or frequencies as an output signal 310 , shown for example as a filtered output signal 614 in FIG. 6I.

FIG. 4 illustrates an example universal frequency up-conversion (UFU) module 401. The UFU module 401 includes an example switch module 304, which comprises a bias signal 402, a resistor or impedance 404, a universal frequency translator (UFT) 450, and a ground 408. The UFT 450 includes a switch 406. The input signal 302 (designated as "Control Signal" in FIG. 4) controls the switch 406 in the UFT 450, and causes it to close and open. Harmonically rich signal 306 is generated at a node 405 located between the resistor or impedance 404 and the switch 406.

Also in FIG. 4, it can be seen that an example filter 308 is comprised of a capacitor 410 and an inductor 412 shunted to a ground 414. The filter is designed to filter out the undesired harmonics of harmonically rich signal 306.

The invention is not limited to the UFU embodiment shown in FIG. 4.
For example, in an alternate embodiment shown in FIG. 5, an unshaped input signal 501 is routed to a pulse shaping module 502. The pulse shaping module 502 modifies the unshaped input signal 501 to generate a (modified) input signal 302 (designated as the "Control Signal" in FIG. 5). The input signal 302 is routed to the switch module 304, which operates in the manner described above. Also, the filter 308 of FIG. 5 operates in the manner described above.

The purpose of the pulse shaping module 502 is to define the pulse width of the input signal 302. Recall that the input signal 302 controls the opening and closing of the
switch 406 in switch module 304. During such operation, the pulse width of the input signal 302 establishes the pulse width of the harmonically rich signal 306. As stated above, the relative amplitudes of the harmonics of the harmonically rich signal 306 are a function of at least the pulse width of the harmonically rich signal 306. As such, the pulse width of the input signal 302 contributes to setting the relative amplitudes of the harmonics of harmonically rich signal 306.

Further details of up-conversion as described in this section are presented in pending U.S. application "Method and System for Frequency Up-Conversion," Ser. No. 09/176, 154, filed October 21, 1998, incorporated herein by reference in its entirety.

4. Enhanced Signal Reception

The present invention is directed to systems and methods of enhanced signal reception (ESR), and applications of same.

Referring to FIG. 21, transmitter 2104 accepts a modulating baseband signal 2102 and generates (transmitted) redundant spectrums 2106a-n, which are sent over communications medium 2108. Receiver 2112 recovers a demodulated baseband signal 2114 from (received) redundant spectrums 2110a-n. Demodulated baseband signal 2114 is representative of the modulating baseband signal 2102 , where the level of similarity between the modulating baseband signal 2114 and the modulating baseband signal 2102 is application dependent.

Modulating baseband signal 2102 is preferably any information signal desired for transmission and/or reception. An example modulating baseband signal 2202 is illustrated in FIG. 22A, and has an associated modulating baseband spectrum 2204 and image spectrum 2203 that are illustrated in FIG. 22B. Modulating baseband signal 2202 is illustrated as an analog signal in FIG. 22a, but could also be a digital signal, or combination thereof. Modulating baseband signal 2202 could be a voltage (or current) characterization of any number of real world occurrences, including for example and without limitation, the voltage (or current) representation for a voice signal.

Each transmitted redundant spectrum 2106a-n contains the necessary information to substantially reconstruct the modulating baseband signal 2102. In other words, each redundant spectrum 2106a-n contains the necessary amplitude, phase, and frequency information to reconstruct the modulating baseband signal 2102.

FIG. 22C illustrates example transmitted redundant spectrums 2206b-d. Transmitted redundant spectrums 2206b-d are illustrated to contain three redundant spectrums for illustration purposes only. Any number of redundant spectrums could be generated and transmitted as will be explained in following discussions.

Transmitted redundant spectrums $2206 b-d$ are centered at f_{1}, with a frequency spacing f_{2} between adjacent spectrums. Frequencies f_{1} and f_{2} are dynamically adjustable in real-time as will be shown below. FIG. 22D illustrates an alternate embodiment, where redundant spectrums 2208c, d are centered on unmodulated oscillating signal 2209 at f_{1} (Hz). Oscillating signal 2209 may be suppressed if desired using, for example, phasing techniques or filtering techniques. Transmitted redundant spectrums are preferably above baseband frequencies as is represented by break 2205 in the frequency axis of FIGS. 22C and 22D.

Received redundant spectrums 2110a-n are substantially similar to transmitted redundant spectrums 2106a-n, except for the changes introduced by the communications medium 2108. Such changes can include but are not limited to signal attenuation, and signal interference. FIG. 22E illustrates example received redundant spectrums 2210b-d. Received redundant spectrums 2210 b -d are substantially similar to transmitted redundant spectrums 2206b-d, except that redundant spectrum 2210 c includes an undesired jamming signal spectrum 2211 in order to illustrate some advantages of the present invention. Jamming signal spectrum 2211 is a frequency spectrum associated with a jamming signal. For purposes of this invention, a "jamming signal" refers to any unwanted signal, regardless of origin, that may interfere with the proper reception and reconstruction of an intended signal. Furthermore, the jamming signal is not limited to tones as depicted by spectrum 2211, and can have any spectral shape, as will be understood by those skilled in the art(s).

As stated above, demodulated baseband signal 2114 is extracted from one or more of received redundant spectrums $2210 \mathrm{~b}-\mathrm{d}$. FIG. 22 F illustrates example demodulated baseband signal 2212 that is, in this example, substantially similar to modulating baseband signal 2202 (FIG. 22A); where in practice, the degree of similarity is application dependent.

An advantage of the present invention should now be apparent. The recovery of modulating baseband signal 2202 can be accomplished by receiver 2112 in spite of the fact that high strength jamming signal(s) (e.g. jamming signal spectrum 2211) exist on the communications medium. The intended baseband signal can be recovered because multiple redundant spectrums are transmitted, where each redundant spectrum carries the necessary information to reconstruct the baseband signal. At the destination, the redundant spectrums are isolated from each other so that the baseband signal can be recovered even if one or more of the redundant spectrums are corrupted by a jamming signal.

Transmitter 2104 will now be explored in greater detail. FIG. 23A illustrates transmitter 2301, which is one embodiment of transmitter 2104 that generates redundant spectrums configured similar to redundant spectrums 2206b-d. Transmitter 2301 includes generator 2303, optional spectrum processing module 2304, and optional medium interface module 2320. Generator 2303 includes: first oscillator 2302, second oscillator 2309, first stage modulator 2306, and second stage modulator 2310.

Transmitter 2301 operates as follows. First oscillator 2302 and second oscillator 2309 generate a first oscillating signal 2305 and second oscillating signal 2312, respectively. First stage modulator 2306 modulates first oscillating signal 2305 with modulating basebằnd signal 2202, resulting in modulated signal 2308. First stage modulator 2306 may implement any type of modulation including but not limited to: amplitude modulation, frequency modulation, phase modulation, combinations thereof, or any other type of modulation. Second stage modulator 2310 modulates modulated signal 2308 with second oscillating signal 2312 , resulting in multiple redundant spectrums 2206a-n shown in FIG. 23B. Second stage modulator 2310 is preferably a phase modulator, or a frequency modulator, although other types of modulation may be implemented including but not limited to amplitude modulation. Each redundant spectrum

2206a-n contains the necessary amplitude, phase, and frequency information to substantially reconstruct the modulating baseband signal 2202.

Redundant spectrums 2206a-n are substantially centered around f_{1}, which is the characteristic frequency of first oscillating signal 2305. Also, each redundant spectrum 2206a-n (except for 2206c) is offset from f_{1} by approximately a multiple of $f_{2}(\mathrm{~Hz})$, where f_{2} is the frequency of the second oscillating signal 2312. Thus, each redundant spectrum 2206a-n is offset from an adjacent redundant spectrum by $f_{2}(H z)$. This allows the spacing between adjacent redundant spectrums to be adjusted (or tuned) by changing f_{2} that is associated with second oscillator 2309. Adjusting the spacing between adjacent redundant spectrums allows for dynamic real-time tuning of the bandwidth occupied by redundant spectrums 2206a-n.

In one embodiment, the number of redundant spectrums 2206a-n generated by transmitter 2301 is arbitrary and may be unlimited as indicated by the "a-n" designation for redundant spectrums 2206a-n. However, a typical communications medium will have a physical and/or administrative limitations (i.e. FCC regulations) that restrict the number of redundant spectrums that can be practically transmitted over the communications medium. Also, there may be other reasons to limit the number of redundant spectrums transmitted. Therefore, preferably, the transmitter 2301 will include an optional spectrum processing module 2304 to process the redundant spectrums 2206a-n prior to transmission over communications medium 2108.

In one embodiment, spectrum processing module 2304 includes a filter with a passband 2207 (FIG. 23C) to select redundant spectrums 2206b-d for transmission. This will substantially limit the frequency bandwidth occupied by the redundant spectrums to the passband 2207. In one embodiment, spectrum processing module 2304 also up converts redundant spectrums and/or amplifies redundant spectrums prior to transmission over the communications medium 2108. Finally, medium interface module 2320 transmits redundant spectrums over the communications medium 2108. In one embodiment, communications medium 2108 is an over-the-air link and medium interface module 2320 is an antenna. Other embodiments for communications medium 2108 and medium interface module 2320 will be understood based on the teachings contained herein.

FIG. 23D illustrates transmitter 2321, which is one embodiment of transmitter 2104 that generates redundant spectrums configured similar to redundant spectrums $2208 \mathrm{c}-\mathrm{d}$ and unmodulated spectrum 2209. Transmitter 2321 includes generator 2311, spectrum processing module 2304, and (optional) medium interface module 2320. Generator 2311 includes: first oscillator 2302, second oscillator 2309, first stage modulator 2306, and second stage modulator 2310.

As shown in FIG. 23D, many of the components in transmitter 2321 are similar to those in transmitter 2301. However, in this embodiment, modulating baseband signal 2202 modulates second oscillating signal 2312. Transmitter 2321 operates as follows. First stage modulator 2306 modulates second oscillating signal 2312 with modulating baseband signal 2202, resulting in modulated signal 2322. As described earlier, first stage modulator 2306 can effect any type of modulation including but not limited to: amplitude modulation frequency modulation, combinations thereof, or any other type of modulation. Second stage modulator 2310 modulates first oscillating signal 2304 with modulated signal 2322, resulting in redundant spectrums 2208a-n, as shown in FIG. 23E. Second stage modulator 2310 is preferably a phase or frequency modulator, although other modulators could used including but not limited to an amplitude modulator.

Redundant spectrums 2208a-n are centered on unmodulated spectrum 2209 (at $f_{1} \mathrm{~Hz}$), and adjacent spectrums are separated by $f_{2} \mathrm{~Hz}$. The number of redundant spectrums 2208a-n generated by generator 2311 is arbitrary and unlimited, similar to spectrums 2206a-n discussed above. Therefore, optional spectrum processing module 2304 may also include a filter with passband 2325 to select, for example, spectrums 2208 c, d for transmission over communications medium 2108. In addition, optional spectrum processing module 2304 may also include a filter (such as a bandstop filter) to attenuate unmodulated spectrum 2209. Alternatively, unmodulated spectrum 2209 may be attenuated by using phasing techniques during redundant spectrum generation. Finally, (optional) medium interface module 2320 transmits redundant spectrums 2208 c , d over communications medium 2108.

Receiver 2112 will now be explored in greater detail to illustrate recovery of a demodulated baseband signal from received redundant spectrums. FIG. 24A illustrates
receiver 2430, which is one embodiment of receiver 2112. Receiver 2430 includes optional medium interface module 2402 , down-converter 2404 , spectrum isolation module 2408, and data extraction module 2414. Spectrum isolation module 2408 includes filters 2410 a-c. Data extraction module 2414 includes demodulators 2416a-c, error check modules 2420a-c, and arbitration module 2424. Receiver 2430 will be discussed in relation to the signal diagrams in FIGS. 24B-24J.

In one embodiment, optional medium interface module 2402 receives redundant spectrums 2210b-d (FIG. 22E, and FIG. 24B). Each redundant spectrum 2210b-d includes the necessary amplitude, phase, and frequency information to substantially reconstruct the modulating baseband signal used to generated the redundant spectrums. However, in the present example, spectrum 2210c also contains jamming signal 2211, which may interfere with the recovery of a baseband signal from spectrum 2210 c . Downconverter 2404 down-converts received redundant spectrums 2210b-d to lower intermediate frequencies, resulting in redundant spectrums 2406a-c (FIG. 24C). Jamming signal 2211 is also down-converted to jamming signal 2407, as it is contained within redundant spectrum 2406b. Spectrum isolation module 2408 includes filters 2410a-c that isolate redundant spectrums 2406a-c from each other (FIGS. 24D-24F, respectively). Demodulators 2416a-c independently demodulate spectrums 2406a-c, resulting in demodulated baseband signals $2418 \mathrm{a}-\mathrm{c}$, respectively (FIGS. 24G-24I). Error check modules 2420a-c analyze demodulate baseband signal 2418a-c to detect any errors. In one embodiment, each error check module 2420a-c sets an error flag 2422a-c whenever an error is detected in a demodulated baseband signal. Arbitration module 2424 accepts the demodulated baseband signals and associated error flags, and selects a substantially errorfree demodulated baseband signal (FIG. 24J). In one embodiment, the substantially errorfree demodulated baseband signal will be substantially similar to the modulating baseband signal used to generate the received redundant spectrums, where the degree of similarity is application dependent.

Referring to FIGS. 24G-I, arbitration module 2424 will select either demodulated baseband signal 2418a or 2418c, because error check module 2420 b will set the error flag 2422 b that is associated with demodulated baseband signal 2418 b .

The error detection schemes implemented by the error detection modules include but are not limited to: cyclic redundancy check (CRC) and parity check for digital signals, and various error detections schemes for analog signal.

Further details of enhanced signal reception as described in this section are presented in pending U.S. application "Method and System for Ensuring Reception of a Communications Signal," Ser. No. 09/176,415, filed October 21, 1998, issued as U.S. Patent No. 6,061,555 on May 9, 2000.

5. Unified Down-Conversion and Filtering

The present invention is directed to systems and methods of unified downconversion and filtering (UDF), and applications of same.

In particular, the present invention includes a unified down-converting and filtering (UDF) module that performs frequency selectivity and frequency translation in a unified (i.e., integrated) manner. By operating in this manner, the invention achieves high frequency selectivity prior to frequency translation (the invention is not limited to this embodiment). The invention achieves high frequency selectivity at substantially any frequency, including but not limited to RF (radio frequency) and greater frequencies. It should be understood that the invention is not limited to this example of RF and greater frequencies. The invention is intended, adapted, and capable of working with lower than radio frequencies.

FIG. 17 is a conceptual block diagram of a UDF module 1702 according to an embodiment of the present invention. The UDF module 1702 performs at least frequency translation and frequency selectivity.

The effect achieved by the UDF module 1702 is to perform the frequency selectivity operation prior to the performance of the frequency translation operation. Thus, the UDF module 1702 effectively performs input filtering.

According to embodiments of the present invention, such input filtering involves a relatively narrow bandwidth. For example, such input filtering may represent channel select filtering, where the filter bandwidth may be, for example, 50 KHz to 150 KHz . It
should be understood, however, that the invention is not limited to these frequencies. The invention is intended, adapted, and capable of achieving filter bandwidths of less than and greater than these values.

In embodiments of the invention, input signals 1704 received by the UDF module 1702 are at radio frequencies. The UDF module 1702 effectively operates to input filter these RF input signals 1704. Specifically, in these embodiments, the UDF module 1702 effectively performs input, channel select filtering of the RF input signal 1704. Accordingly, the invention achieves high selectivity at high frequencies.

The UDF module 1702 effectively performs various types of filtering, including but not limited to bandpass filtering, low pass filtering, high pass filtering, notch filtering, all pass filtering, band stop filtering, etc., and combinations thereof.

Conceptually, the UDF module 1702 includes a frequency translator 1708. The frequency translator 1708 conceptually represents that portion of the UDF module 1702 that performs frequency translation (down conversion).

The UDF module 1702 also conceptually includes an apparent input filter 1706 (also sometimes called an input filtering emulator). Conceptually, the apparent input filter 1706 represents that portion of the UDF module 1702 that performs input filtering.

In practice, the input filtering operation performed by the UDF module 1702 is integrated with the frequency translation operation. The input filtering operation can be viewed as being performed concurrently with the frequency translation operation. This is a reason why the input filter 1706 is herein referred to as an "apparent" input filter 1706.

The UDF module 1702 of the present invention includes a number of advantages. For example, high selectivity at high frequencies is realizable using the UDF module 1702. This feature of the invention is evident by the high Q factors that are attainable. For example, and without limitation, the UDF module 1702 can be designed with a filter center frequency f_{C} on the order of 900 MHZ , and a filter bandwidth on the order of 50 KHz . This represents a Q of 18,000 (Q is equal to the center frequency divided by the bandwidth).

It should be understood that the invention is not limited to filters with high \mathbf{Q} factors. The filters contemplated by the present invention may have lesser or greater Qs,
depending on the application, design, and/or implementation. Also, the scope of the invention includes filters where Q factor as discussed herein is not applicable.

The invention exhibits additional advantages. For example, the filtering center frequency f_{C} of the UDF module 1702 can be electrically adjusted, either statically or dynamically.

Also, the UDF module 1702 can be designed to amplify input signals.
Further, the UDF module 1702 can be implemented without large resistors, capacitors, or inductors. Also, the UDF module 1702 does not require that tight tolerances be maintained on the values of its individual components, i.e., its resistors, capacitors, inductors, etc. As a result, the architecture of the UDF module 1702 is friendly to integrated circuit design techniques and processes.

The features and advantages exhibited by the UDF module 1702 are achieved at least in part by adopting a new technological paradigm with respect to frequency selectivity and translation. Specifically, according to the present invention, the UDF module 1702 performs the frequency selectivity operation and the frequency translation operation as a single, unified (integrated) operation. According to the invention, operations relating to frequency translation also contribute to the performance of frequency selectivity, and vice versa.

According to embodiments of the present invention, the UDF module generates an output signal from an input signal using samples/instances of the input signal and samples/instances of the output signal.

More particularly, first, the input signal is under-sampled. This input sample includes information (such as amplitude, phase, etc.) representative of the input signal existing at the time the sample was taken.

As described further below, the effect of repetitively performing this step is to translate the frequency (that is, down-convert) of the input signal to a desired lower frequency, such as an intermediate frequency (IF) or baseband.

Next, the input sample is held (that is, delayed).

Then, one or more delayed input samples (some of which may have been scaled) are combined with one or more delayed instances of the output signal (some of which may have been scaled) to generate a current instance of the output signal.

Thus, according to a preferred embodiment of the invention, the output signal is generated from prior samples/instances of the input signal and/or the output signal. (It is noted that, in some embodiments of the invention, current samples/instances of the input signal and/or the output signal may be used to generate current instances of the output signal.). By operating in this manner, the UDF module preferably performs input filtering and frequency down-conversion in a unified manner.

FIG. 19 illustrates an example implementation of the unified down-converting and filtering (UDF) module 1922. The UDF module 1922 performs the frequency translation operation and the frequency selectivity operation in an integrated, unified manner as described above, and as further described below.

In the example of FIG. 19, the frequency selectivity operation performed by the UDF module 1922 comprises a band-pass filtering operation according to EQ. 1, below, which is an example representation of a band-pass filtering transfer function.

$$
\begin{equation*}
\mathrm{VO}=\alpha_{1} \mathrm{z}^{-1} \mathrm{VI}-\beta_{1} \mathrm{z}^{-1} \mathrm{VO}-\beta_{0} \mathrm{z}^{-2} \mathrm{VO} \tag{EQ. 1}
\end{equation*}
$$

It should be noted, however, that the invention is not limited to band-pass filtering. Instead, the invention effectively performs various types of filtering, including but not limited to bandpass filtering, low pass filtering, high pass filtering, notch filtering, all pass filtering, band stop filtering, etc., and combinations thereof. As will be appreciated, there are many representations of any given filter type. The invention is applicable to these filter representations. Thus, EQ. 1 is referred to herein for illustrative purposes only, and is not limiting.

The UDF module 1922 includes a down-convert and delay module 1924, first and second delay modules 1928 and 1930, first and second scaling modules 1932 and 1934, an output sample and hold module 1936, and an (optional) output smoothing module
1938. Other embodiments of the UDF module will have these components in different configurations, and/or a subset of these components, and/or additional components. For example, and without limitation, in the configuration shown in FIG. 19, the output smoothing module 1938 is optional.

As further described below, in the example of FIG. 19, the down-convert and delay module 1924 and the first and second delay modules 1928 and 1930 include switches that are controlled by a clock having two phases, ϕ_{1} and $\phi_{2} . \phi_{1}$ and ϕ_{2} preferably have the same frequency, and are non-overlapping (alternatively, a plurality such as two clock signals having these characteristics could be used). As used herein, the term "non-overlapping" is defined as two or more signals where only one of the signals is active at any given time. In some embodiments, signals are "active" when they are high. In other embodiments, signals are active when they are low.

Preferably, each of these switches closes on a rising edge of ϕ_{1} or ϕ_{2}, and opens on the next corresponding falling edge of ϕ_{1} or ϕ_{2}. However, the invention is not limited to this example. As will be apparent to persons skilled in the relevant art(s), other clock conventions can be used to control the switches.

In the example of FIG. 19, it is assumed that α_{1} is equal to one. Thus, the output of the down-convert and delay module 1924 is not scaled. As evident from the embodiments described above, however, the invention is not limited to this example.

The example UDF module 1922 has a filter center frequency of 900.2 MHZ and a filter bandwidth of 570 KHz . The pass band of the UDF module 1922 is on the order of 899.915 MHZ to 900.485 MHZ . The Q factor of the UDF module 1922 is approximately 1879 (i.e., 900.2 MHZ divided by 570 KHz).

The operation of the UDF module 1922 shall now be described with reference to a Table 1802 (FIG. 18) that indicates example values at nodes in the UDF module 1922 at a number of consecutive time increments. It is assumed in Table 1802 that the UDF module 1922 begins operating at time t-1. As indicated below, the UDF module 1922 reaches steady state a few time units after operation begins. The number of time units necessary for a given UDF module to reach steady state depends on the configuration of
the UDF module, and will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein.

At the rising edge of ϕ_{1} at time $t-1$, a switch 1950 in the down-convert and delay module 1924 closes. This allows a capacitor 1952 to charge to the current value of an input signal, $\mathrm{VI}_{\mathrm{t}-1}$, such that node 1902 is at $\mathrm{VI}_{\mathrm{t}-1}$. This is indicated by cell 1804 in FIG. 18. In effect, the combination of the switch 1950 and the capacitor 1952 in the down-convert and delay module 1924 operates to translate the frequency of the input signal VI to a desired lower frequency, such as IF or baseband. Thus, the value stored in the capacitor 1952 represents an instance of a down-converted image of the input signal VI.

The manner in which the down-convert and delay module 1924 performs frequency down-conversion is further described elsewhere in this application, and is additionally described in pending U.S. application "Method and System for DownConverting Electromagnetic Signals," Ser. No. 09/176,022, filed October 21, 1998, issued as U.S. Patent No. $6,061,551$ on May 9, 2000, which is herein incorporated by reference in its entirety.

Also at the rising edge of ϕ_{1} at time $\mathrm{t}-1$, a switch 1958 in the first delay module 1928 closes, allowing a capacitor 1960 to charge to $\mathrm{VO}_{\mathrm{t}-1}$, such that node 1906 is at $\mathrm{VO}_{\mathrm{t}-1}$. This is indicated by cell 1806 in Table 1802. (In practice, $\mathrm{VO}_{\mathrm{t}-1}$ is undefined at this point. However, for ease of understanding, $\mathrm{VO}_{\mathrm{t}-1}$ shall continue to be used for purposes of explanation.)

Also at the rising edge of ϕ_{1} at time $t-1$, a switch 1966 in the second delay module 1930 closes, allowing a capacitor 1968 to charge to a value stored in a capacitor 1964. At this time, however, the value in capacitor 1964 is undefined, so the value in capacitor 1968 is undefined. This is indicated by cell 1807 in table 1802.

At the rising edge of ϕ_{2} at time $t-1$, a switch 1954 in the down-convert and delay module 1924 closes, allowing a capacitor 1956 to charge to the level of the capacitor 1952. Accordingly, the capacitor 1956 charges to $\mathrm{VI}_{\mathrm{t}-1}$, such that node 1904 is at $\mathrm{VI}_{\mathrm{t}-1}$. This is indicated by cell 1810 in Table 1802.

The UDF module 1922 may optionally include a unity gain module 1990A between capacitors 1952 and 1956. The unity gain module 1990A operates as a current source to enable capacitor 1956 to charge without draining the charge from capacitor 1952. For a similar reason, the UDF module 1922 may include other unity gain modules 1990B-1990G. It should be understood that, for many embodiments and applications of the invention, these unity gain modules 1990A-1990G are optional. The structure and operation of the unity gain modules 1990 will be apparent to persons skilled in the relevant art(s).

Also at the rising edge of ϕ_{2} at time $t-1$, a switch 1962 in the first delay module 1928 closes, allowing a capacitor 1964 to charge to the level of the capacitor 1960. Accordingly, the capacitor 1964 charges to $\mathrm{VO}_{\mathrm{t}-1}$, such that node 1908 is at $\mathrm{VO}_{\mathrm{t}-1}$. This is indicated by cell 1814 in Table 1802.

Also at the rising edge of ϕ_{2} at time $t-1$, a switch 1970 in the second delay module 1930 closes, allowing a capacitor 1972 to charge to a value stored in a capacitor 1968. At this time, however, the value in capacitor 1968 is undefined, so the value in capacitor 1972 is undefined. This is indicated by cell 1815 in table 1802.

At time t, at the rising edge of ϕ_{1}, the switch 1950 in the down-convert and delay module 1924 closes. This allows the capacitor 1952 to charge to VI_{1}, such that node 1902 is at VI_{t}. This is indicated in cell 1816 of Table 1802.

Also at the rising edge of ϕ_{1} at time t, the switch 1958 in the first delay module 1928 closes, thereby allowing the capacitor 1960 to charge to VO $_{\mathbf{t}}$. Accordingly, node 1906 is at $\mathrm{VO}_{\mathbf{t}}$. This is indicated in cell 1820 in Table 1802.

Further at the rising edge of ϕ_{1} at time t, the switch 1966 in the second delay module 1930 closes, allowing a capacitor 1968 to charge to the level of the capacitor 1964. Therefore, the capacitor 1968 charges to $\mathrm{VO}_{\mathrm{t}-1}$, such that node 1910 is at $\mathrm{VO}_{\mathrm{t}-1}$. This is indicated by cell 1824 in Table 1802.

At the rising edge of ϕ_{2} at time t, the switch 1954 in the down-convert and delay module 1924 closes, allowing the capacitor 1956 to charge to the level of the capacitor 1952. Accordingly, the capacitor 1956 charges to $\mathrm{VI}_{\mathfrak{t}}$, such that node 1904 is at $\mathrm{VI}_{\mathbf{t}}$. This is indicated by cell 1828 in Table 1802.

Also at the rising edge of ϕ_{2} at time t, the switch 1962 in the first delay module 1928 closes, allowing the capacitor 1964 to charge to the level in the capacitor 1960. Therefore, the capacitor 1964 charges to VO_{t}, such that node 1908 is at $\mathrm{VO}_{\mathbf{t}}$. This is indicated by cell 1832 in Table 1802.

Further at the rising edge of ϕ_{2} at time t, the switch 1970 in the second delay module 1930 closes, allowing the capacitor 1972 in the second delay module 1930 to charge to the level of the capacitor 1968 in the second delay module 1930. Therefore, the capacitor 1972 charges to $\mathrm{VO}_{\mathrm{t}-1}$, such that node 1912 is at $\mathrm{VO}_{\mathrm{t}-1}$. This is indicated in cell 1836 of FIG. 18. delay module 1924 closes, allowing the capacitor 1952 to charge to $\mathrm{VI}_{\mathrm{t}+1}$. Therefore, node 1902 is at $\mathrm{VI}_{\mathrm{t}+1}$, as indicated by cell 1838 of Table 1802.

Also at the rising edge of ϕ_{1} at time $t+1$, the switch 1958 in the first delay module 1928 closes, allowing the capacitor 1960 to charge to $\mathrm{VO}_{\mathrm{t}+1}$. Accordingly, node 1906 is at $\mathrm{VO}_{\mathrm{t}+1}$, as indicated by cell 1842 in Table 1802.

Further at the rising edge of ϕ_{1} at time $t+1$, the switch 1966 in the second delay module 1930 closes, allowing the capacitor 1968 to charge to the level of the capacitor 1964. Accordingly, the capacitor 1968 charges to VO_{1}, as indicated by cell 1846 of Table 1802.

In the example of FIG. 19, the first scaling module 1932 scales the value at node 1908 (i.e., the output of the first delay module 1928) by a scaling factor of -0.1 . Accordingly, the value present at node 1914 at time $t+1$ is $-0.1 * \mathrm{VO}_{\mathrm{t}}$. Similarly, the second scaling module 1934 scales the value present at node 1912 (i.e., the output of the second scaling module 1930) by a scaling factor of -0.8 . Accordingly, the value present at node 1916 is $-0.8 * \mathrm{VO}_{\mathrm{t}-1}$ at time $\mathrm{t}+1$.

At time $\mathrm{t}+1$, the values at the inputs of the summer 1926 are: VI_{t} at node 1904, $-0.1 * \mathrm{VO}_{\mathrm{t}}$ at node 1914 , and $-0.8 * \mathrm{VO}_{\mathrm{t}-1}$ at node 1916 (in the example of FIG. 19, the values at nodes 1914 and 1916 are summed by a second summer 1925, and this sum is presented to the summer 1926). Accordingly, at time $t+1$, the summer generates a signal equal to $\mathrm{VI}_{\mathrm{t}}-0.1 * \mathrm{VO}_{\mathrm{t}}-0.8 * \mathrm{VO}_{\mathrm{t}-\mathrm{I}}$.

At the rising edge of ϕ_{1} at time $t+1$, a switch 1991 in the output sample and hold module 1936 closes, thereby allowing a capacitor 1992 to charge to $\mathrm{VO}_{\mathrm{t}+1}$. Accordingly, the capacitor 1992 charges to VO_{t+1}, which is equal to the sum generated by the adder 1926. As just noted, this value is equal to: $\mathrm{VI}_{\mathrm{t}}-0.1 * \mathrm{VO}_{\mathrm{t}}-0.8 * \mathrm{VO}_{\mathrm{t}-1}$. This is indicated in cell 1850 of Table 1802. This value is presented to the optional output smoothing module 1938, which smooths the signal to thereby generate the instance of the output signal VO_{t+1}. It is apparent from inspection that this value of $\mathrm{VO}_{\mathrm{t}+1}$ is consistent with the band pass filter transfer function of EQ .1.

Further details of unified down-conversion and filtering as described in this section are presented in pending U.S. application "Integrated Frequency Translation And Selectivity," Ser. No. 09/175,966, filed October 21, 1998, issued as U.S. Patent No. 6,049,706 on April 11, 2000, incorporated herein by reference in its entirety.

6. Example Application Embodiments of the Invention

As noted above, the UFT module of the present invention is a very powerful and flexible device. Its flexibility is illustrated, in part, by the wide range of applications in which it can be used. Its power is illustrated, in part, by the usefulness and performance of such applications.

Example applications of the UFT module were described above. In particular, frequency down-conversion, frequency up-conversion, enhanced signal reception, and unified down-conversion and filtering applications of the UFT module were summarized above, and are further described below. These applications of the UFT module are discussed herein for illustrative purposes. The invention is not limited to these example applications. Additional applications of the UFT module will be apparent to persons skilled in the relevant art(s), based on the teachings contained herein.

For example, the present invention can be used in applications that involve frequency down-conversion. This is shown in FIG. 1C, for example, where an example UFT module 115 is used in a down-conversion module 114. In this capacity, the UFT module 115 frequency down-converts an input signal to an output signal. This is also
shown in FIG. 7, for example, where an example UFT module 706 is part of a downconversion module 704, which is part of a receiver 702.

The present invention can be used in applications that involve frequency upconversion. This is shown in FIG. 1D, for example, where an example UFT module 117 is used in a frequency up-conversion module 116. In this capacity, the UFT module 117 frequency up-converts an input signal to an output signal. This is also shown in FIG. 8, for example, where an example UFT module 806 is part of up-conversion module 804, which is part of a transmitter 802.

The present invention can be used in environments having one or more transmitters 902 and one or more receivers 906, as illustrated in FIG. 9. In such environments, one or more of the transmitters 902 may be implemented using a UFT module, as shown for example in FIG. 8. Also, one or more of the receivers 906 may be implemented using a UFT module, as shown for example in FIG. 7.

The invention can be used to implement a transceiver. An example transceiver 1002 is illustrated in FIG. 10. The transceiver 1002 includes a transmitter 1004 and a receiver 1008. Either the transmitter 1004 or the receiver 1008 can be implemented using a UFT module. Alternatively, the transmitter 1004 can be implemented using a UFT module 1006, and the receiver 1008 can be implemented using a UFT module 1010. This embodiment is shown in FIG. 10.

Another transceiver embodiment according to the invention is shown in FIG. 11. In this transceiver 1102_{2}, the transmitter 1104 and the receiver 1108 are implemented using a single UFT module 1106. In other words, the transmitter 1104 and the receiver 1108 share a UFT module 1106.

As described elsewhere in this application, the invention is directed to methods and systems for enhanced signal reception (ESR). Various ESR embodiments include an ESR module (transmit) in a transmitter 1202, and an ESR module (receive) in a receiver 1210. An example ESR embodiment configured in this manner is illustrated in FIG. 12.

The ESR module (transmit) 1204 includes a frequency up-conversion module 1206. Some embodiments of this frequency up-conversion module 1206 may be implemented using a UFT module, such as that shown in FIG. 1D.

The ESR module (receive) 1212 includes a frequency down-conversion module 1214. Some embodiments of this frequency down-conversion module 1214 may be implemented using a UFT module, such as that shown in FIG. 1C.

As described elsewhere in this application, the invention is directed to methods and systems for unified down-conversion and filtering (UDF). An example unified downconversion and filtering module 1302 is illustrated in FIG. 13. The unified downconversion and filtering module 1302 includes a frequency down-conversion module 1304 and a filtering module 1306. According to the invention, the frequency down-conversion module 1304 and the filtering module 1306 are implemented using a UFT module 1308, as indicated in FIG. 13.

Unified down-conversion and filtering according to the invention is useful in applications involving filtering and/or frequency down-conversion. This is depicted, for example, in FIGS. 15A-15F. FIGS. 15A-15C indicate that unified down-conversion and filtering according to the invention is useful in applications where filtering precedes, follows, or both precedes and follows frequency down-conversion. FIG. 15D indicates that a unified down-conversion and filtering module 1524 according to the invention can be utilized as a filter 1522 (i.e., where the extent of frequency down-conversion by the down-converter in the unified down-conversion and filtering module 1524 is minimized). FIG. 15E indicates that a unified down-conversion and filtering module 1528 according to the invention can be utilized as a down-converter 1526 (i.e., where the filter in the unified down-conversion and filtering module 1528 passes substantially all frequencies). FIG. 15F illustrates that the unified down-conversion and filtering module 1532 can be used as an amplifier. It is noted that one or more UDF modules can be used in applications that involve at least one or more of filtering, frequency translation, and amplification.

For example, receivers, which typically perform filtering, down-conversion, and filtering operations, can be implemented using one or more unified down-conversion and filtering modules. This is illustrated, for example, in FIG. 14.

The methods and systems of unified down-conversion and filtering of the invention have many other applications. For example, as discussed herein, the enhanced signal
reception (ESR) module (receive) operates to down-convert a signal containing a plurality of spectrums. The ESR module (receive) also operates to isolate the spectrums in the down-converted signal, where such isolation is implemented via filtering in some embodiments. According to embodiments of the invention, the ESR module (receive) is implemented using one or more unified down-conversion and filtering (UDF) modules. This is illustrated, for example, in FIG. 16. In the example of FIG. 16, one or more of the UDF modules $1610,1612,1614$ operates to down-convert a received signal. The UDF modules $1610,1612,1614$ also operate to filter the down-converted signal so as to isolate the spectrum(s) contained therein. As noted above, the UDF modules 1610, 1612, 1614 are implemented using the universal frequency translation (UFT) modules of the invention.

The invention is not limited to the applications of the UFT module described above. For example, and without limitation, subsets of the applications (methods and/or structures) described herein (and others that would be apparent to persons skilled in the relevant art(s) based on the herein teachings) can be associated to form useful combinations.

For example, transmitters and receivers are two applications of the UFT module. FIG. 10 illustrates a transceiver 1002 that is formed by combining these two applications of the UFT module, i.e., by combining a transmitter 1004 with a receiver 1008.

Also, ESR (enhanced signal reception) and unified down-conversion and filtering are two other applications of the UFT module. FIG. 16 illustrates an example where ESR and unified down-conversion and filtering are combined to form a modified enhanced signal reception system.

The invention is not limited to the example applications of the UFT module discussed herein. Also, the invention is not limited to the example combinations of applications of the UFT module discussed herein. These examples were provided for illustrative purposes only, and are not limiting. Other applications and combinations of such applications will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Such applications and combinations include, for example and without limitation, applications/combinations comprising and/or involving one or more of: (1) frequency translation; (2) frequency down-conversion; (3) frequency up-conversion;
(4) receiving; (5) transmitting; (6) filtering; and/or (7) signal transmission and reception in environments containing potentially jamming signals.

Additional example applications are described below.

6.1 Data Communication

The invention is directed to data communication among data processing devices. For example, and without limitation, the invention is directed to computer networks such as, for example, local area networks (LANs), wide area networks (WANs), including wireless LANs (WLANs) and wireless WANs, modulator/demodulators (modems), including wireless modems, etc.

FIG. 25 illustrates an example environment 2502 wherein computers 2504, 2512, and 2526 communicate with one another via a computer network 2534 . It is noted that the invention is not limited to computers, but encompasses any data processing and/or communications device or other device where communications with external devices is desired. Also, the invention includes but si not limited to WLAN client (also called mobile terminals, and/or stations) and infrastructure devices (also called access points). In the example of FIG. 25, computer 2504 is communicating with the network 2534 via a wired link, whereas computers 2512 and 2526 are communicating with the network 2534 via wireless links.

In the teachings contained herein, for illustrative purposes, a link may be designated as being a wired link or a wireless link. Such designations are for example purposes only, and are not limiting. A link designated as being wireless may alternatively be wired. Similarly, a link designated as being wired may alternatively be wireless. This is applicable throughout the entire application.

The computers 2504, 2512 and 2526 each include an interface 2506, 2514, and 2528 , respectively, for communicating with the network 2534 . The interfaces 2506,2514, and 2528 include transmitters 2508,2516 , and 2530 respectively. Also, the interfaces 2506, 2514 and 2528 include receivers 2510,2518 , and 2532 respectively. In embodiments of the invention, the transmitters 2508, 2516 and 2530 are implemented
using UFT modules for performing frequency up-conversion operations (see, for example, FIG. 8). In embodiments, the receivers 2510, 2518 and 2532 are implemented using UFT modules for performing frequency down-conversion operations (see, for example, FIG. 7).

As noted above, the computers 2512 and 2526 interact with the network 2534 via wireless links. In embodiments of the invention, the interfaces 2514,2528 in computers 2512, 2526 represent modulator/demodulators (modems).

In embodiments, the network 2534 includes an interface or modem 2520 for communicating with the modems 2514, 2528 in the computers 2512,2526 . In embodiments, the interface 2520 includes a transmitter 2522, and a receiver 2524. Either or both of the transmitter 2522, and the receiver 2524 are implemented using UFT modules for performing frequency translation operations (see, for example, FIGS. 7 and 8).

In alternative embodiments, one or more of the interfaces $2506,2514,2520$, and 2528 are implemented using transceivers that employ one or more UFT modules for performing frequency translation operations (see, for example, FIGS. 10 and 11).

FIG. 26 illustrates another example data communication embodiment 2602. Each of a plurality of computers 2604, 2612, 2614 and 2616 includes an interface, such as an interface 2606 shown in the computer 2604. It should be understood that the other computers 2612, 2614, 2616 also include an interface such as an interface 2606. The computers 2604, 2612, 2614 and 2616 communicate with each other via interfaces 2606 and wireless or wired links, thereby collectively representing a data communication network.

The interfaces 2606 may represent any computer interface or port, such as but not limited to a high speed internal interface, a wireless serial port, a wireless PS2 port, a wireless USB port, PCMCIA port, etc.

The interface 2606 includes a transmitter 2608 and a receiver 2610. In embodiments of the invention, either or both of the transmitter 2608 and the receiver 2610 are implemented using UFT modules for frequency up-conversion and downconversion (see, for example, FIGS. 7 and 8). Alternatively, the interfaces 2806 can be
implemented using a transceiver having one or more UFT modules for performing frequency translation operations (see, for example, FIGS. 10 and 11).

FIGS. 33-38 illustrate other scenarios envisioned and encompassed by the invention. FIG. 33 illustrates a data processing environment 3302 wherein a wired network, such as an Ethernet network 3304, is linked to another network, such as a WLAN 3306, via a wireless link 3308. The wireless link 3308 is established via interfaces 3310, 3312 which are preferably implemented using universal frequency translation modules.

FIGS 35-38 illustrate that the present invention supports WLANs that are located in one or more buildings or over any defined geographical area, as shown in FIGs. 35-38.

The invention includes multiple networks linked together. The invention also envisions wireless networks conforming to any known or custom standard or specification. This is shown in FIG. 34, for example, where any combination of WLANs conforming to any WLAN standard or configuration, such as IEEE 802.11 and Bluetooth (or other relatively short range communication specification or standard), any WAN cellular or telephone standard or specification, any type of radio links, any custom standard or specification, etc., or combination thereof, can be implemented using the universal frequency translation technology described herein. Also, any combination of these networks may be coupled together, as illustrated in FIG. 34.

The invention supports WLANs that are located in one or multiple buildings, as shown in FIGS. 35 and 36. The invention also supports WLANs that are located in an area including and external to one or more buildings, as shown in FIG. 37. In fact, the invention is directed to networks that cover any defined geographical area, as shown in FIG. 38. In the embodiments described above, wireless links are preferably established using WLAN interfaces as described herein.

More generally, the invention is directed to WLAN client devices and WLAN infrastructure devices. "WLAN Client Devices" refers to, for example, any data processing and/or communication devices in which wired or wireless communication functionality is desired, such as but not limited to computers, personal data assistants (PDAs), automatic identification data collection devices (such as bar code
scanners/readers, electronic article surveillance readers, and radio frequency identification readers), telephones, network devices, etc., and combinations thereof. "WLAN Infrastructure Devices" refers to, for example, Access Points and other devices used to provide the ability for WLAN Client Devices (as well as potentially other devices) to connect to wired and/or wireless networks and/or to provide the network functionality of a WLAN. "WLAN" refers to, for example, a Wireless Local Area Network that is implemented according to and that operates within WLAN standards and/or specifications, such as but not limited to IEEE 802.11, IEEE 802.11a, IEEE 802.11b, HomeRF, Proxim Range LAN, Proxim Range LAN2, Symbol Spectrum 1, Symbol Spectrum 24 as it existed prior to adoption of IEEE 802.11, HiperLAN1, or HiperLAN2. WLAN client devices and/or WLAN infrastructure devices may operate in a multi-mode capacity. For example, a device may include WLAN and WAN functionality. Another device may include WLAN and short range communication (such as but not limited to Blue Tooth) functionality. Another device may include WLAN and WAN and short range communication functionality. It is noted that the above definitions and examples are provided for illustrative purposes, and are not limiting. Equivalents to that described above will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein.
6.1.1. Example Implementations: Interfaces, Wireless Modems, Wireless LANs, etc.

The present invention is now described as implemented in an interface, such as a wireless modem or other device (such as client or infrastructure device), which can be utilized to implement or interact with a wireless local area network (WLAN) or wireless wide area network (WWAN), for example. In an embodiment, the present invention is implemented in a WLAN to support IEEE WLAN Standard 802.11, but this embodiment is mentioned for illustrative purposes only. The invention is not limited to this standard.

Conventional wireless modems are described in, for example, U.S. Patent 5,764,693, titled, "Wireless Radio Modem with Minimal Inter-Device RF Interference,"
incorporated herein by reference in its entirety. The present invention replaces a substantial portion of conventional wireless modems with one or more universal frequency translators (UFTs). The resultant improved wireless modem consumes less power that conventional wireless modems and is easier and less expensive to design and build. A wireless modem in accordance with the present invention can be implemented in a PCMCIA card or within a main housing of a computer, for example.

FIG. 27 illustrates an example block diagram of a computer system 2710 , which can be wirelessly coupled to a LAN, as illustrated in FIGS. 25 and 26. The computer system 2710 includes an interface 2714 and an antenna 2712. The interface 2714 includes a transmitter module 2716 that receives information from a digital signal processor (DSP) 2720, and modulates and up-converts the information for transmission from the antenna 2712. The interface 2714 also includes a receiver module 2718 that receives modulated carrier signals via the antenna 2712. The receiver module 2718 down-converts and demodulates the modulated carrier signals to baseband information, and provides the baseband information to the DSP 2720. The DSP 2720 can include a central processing unit (CPU) and other components of the computer 2712. Conventionally, the interface 2714 is implemented with heterodyne components.

FIG. 28 illustrates an example interface 2810 implemented with heterodyne components. The interface 2810 includes a transmitter module 2812 and a receiver module 2824. The receiver module 2824 includes an RF section 2830 , one or more IF sections 2828, a demodulator section 2826, an optional analog to digital (A/D) converter 2834, and a frequency generator/synthesizer 2832 . The transmitter module 2812 includes an optional digital to analog (D/A) converter 2822, a modulator \section 2818, one or more IF sections 2816, an RF section 2814, and a frequency generator/synthesizer 2820. Operation of the interface 2810 will be apparent to one skilled in the relevant art(s), based on the description herein.

FIG. 29 illustrates an example in-phase/quadrature-phase (I/Q) interface 2910 implemented with heterodyne components. I/Q implementations allow two channels of information to be communicated on a carrier signal and thus can be utilized to increase data transmission.

The interface 2910 includes a transmitter module 2912 and a receiver module 2934. The receiver module 2934 includes an RF section 2936, one or more IF sections 2938, an I/Q demodulator section 2940, an optional A/D converter 2944, and a frequency generator/synthesizer 2942. The I/Q demodulator section 2940 includes a signal splitter 2946, mixers 2948, and a phase shifter 2950. The signal splitter 2946 provides a received signal to the mixers 2948°. The phase shifter 2950 operates the mixers 2948 ninety degrees out of phase with one another to generate I and Q information channels 2952 and 2954, respectively, which are provided to a DSP 2956 through the optional A/D converter 2944.

The transmitter module 2912 includes an optional D/A converter 2922, an I/Q modulator section 2918, one or more IF sections 2916, an RF section 2914, and a frequency generator/synthesizer 2920. The I/Q modulator section 2918 includes mixers 2924, a phase shifter 2926, and a signal combiner 2928. The phase shifter 2926 operates the mixers 2924 ninety degrees out of phase with one another to generate I and Q modulated information signals 2930 and 2932, respectively, which are combined by the signal combiner 2928. The IF section(s) 2916 and RF section 2914 up-convert the combined I and Q modulated information signals 2930 and 2932 to RF for transmission by the antenna, in a manner well known in the relevant art(s).

Heterodyne implementations, such as those illustrated in FIGS. 28 and 29, are expensive and difficult to design, manufacture and tune. In accordance with the present invention, therefore, the interface 2714 (FIG. 27) is preferably implemented with one or more universal frequency translation (UFT) modules, such as the UFT module 102 (FIG. 1A). Thus previously described benefits of the present invention are obtained in wireless modems, WLANs, etc.

FIG. 30 illustrates an example block diagram embodiment of the interface 2714 that is associated with a computer or any other data processing and/or communications device. In FIG. 30, the receiver module 2718 includes a universal frequency downconverter (UFD) module 3014 and an optional analog to digital (A/D) converter 3016, which converts an analog output from the UFD 3014 to a digital format for the DSP 2720. The transmitter module 2716 includes an optional modulator 3012 and a universal
frequency up-converter (UFU) module 3010. The optional modulator 3012 can be a variety of types of modulators, including conventional modulators. Alternatively, the UFU module 3010 includes modulator functionality. The example implementation of FIG. 30 operates substantially as described above and in co-pending U.S. Patent Applications titled, "Method and System for Down-Converting Electromagnetic Signals," Ser. No. 09/176,022, filed October 21, 1998, issued as U.S. Patent No. 6,061,551 on May 9, 2000, and "Method and System for Frequency Up-Conversion," Ser. No. 09/176,154, filed October 21, 1998, issued as U.S. Patent No. 6,091,940 on July 18, 2000, as well as other cited documents.

FIG. 31 illustrates an example implementation of the interface 2714 illustrated in FIG. 30, wherein the receiver UFD 3014 includes a UFT module 3112, and the transmitter UFU 3010 includes a universal frequency translation (UFT) module 3110. This example implementation operates substantially as described above and in co-pending U.S. Patent Applications titled, "Method and System for Down-Converting Electromagnetic Signals," Ser. No. 09/176,022, filed October 21, 1998, issued as U.S. Patent No. 6,061,551 on May 9, 2000, and "Method and System for Frequency Up-Conversion," Ser. No. 09/176, 154, filed October 21, 1998, "Method and System for Frequency Up-Conversion," Ser. No. 09/176, 154, filed October 21, 1998, issued as U.S. Patent No. 6,091,940 on July 18, 2000, as well as other cited documents.

FIG. 32 illustrates an example I/Q implementation of the interface module 2710. Other I/Q implementations are also contemplated and are within the scope of the present invention.

In the example of FIG. 32, the receiver UFD module 3014 includes a signal divider 3228 that provides a received I/Q modulated carrier signal 3230 between a third UFT module 3224 and a fourth UFT module 3226. A phase shifter 3232, illustrated here as a 90 degree phase shifter, controls the third and fourth UFT modules 3224 and 3226 to operate 90 degrees out of phase with one another. As a result, the third and fourth UFT modules 3224 and 3226 down-convert and demodulate the received I/Q modulated carrier signal 3230, and output I and Q channels 3234 and 3236 , respectively, which are provided to the DSP 2720 through the optional A/D converter 3016.

In the example of FIG. 32, the transmitter UFU module 3010 includes first and second UFT modules 3212 and 3214 and a phase shifter 3210 , which is illustrated here as a 90 degree phase shifter. The phase shifter 3210 receives a lower frequency modulated carrier signal 3238 from the modulator 3012. The phase shifter 3210 controls the first and second UFT modules 3212 and 3214 to operate 90 degrees out of phase with one another. The first and second UFT modules 3212 and 3214 up-convert the lower frequency modulated carrier signal 3238 , which are output as higher frequency modulated I and Q carrier channels 3218 and 3220 , respectively. A signal combiner 3216 combines the higher frequency modulated I and Q carrier channels 3218 and 3220 into a single higher frequency modulated I/Q carrier signal 3222 for transmitting by the antenna 2712.

The example implementations of the interfaces described above, and variations thereof, can also be used to implement network interfaces, such as the network interface 2520 illustrated in FIG. 25.

6.1.2. Example Modifications

The RF modem applications, WLAN applications, etc., described herein, can be modified by incorporating one or more of the enhanced signal reception (ESR) techniques described herein. Use of ESR embodiments with the network embodiments described herein will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein.

The RF modem applications, WLAN applications, etc., described herein can be enhanced by incorporating one or more of the unified down-conversion and filtering (UDF) techniques described herein. Use of UDF embodiments with the network embodiments described herein will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein.

6.2. Other Example Applications

The application embodiments described above are provided for purposes of illustration. These applications and embodiments are not intended to limit the invention. Alternate and additional applications and embodiments, differing slightly or substantially from those described herein, will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. For example, such alternate and additional applications and embodiments include combinations of those described above. Such combinations will be apparent to persons skilled in the relevant art(s) based on the herein teachings.

7.0. Example WLAN Implementation Embodiments

7.1 Architecture

FIG. 39 is a block diagram of a WLAN interface 3902 (also referred to as a WLAN modem herein) according to an embodiment of the invention. The WLAN interface/modem 3902 includes an antenna 3904, a low noise amplifier or power amplifier (LNA/PA) 3904, a receiver 3906, a transmitter 3910, a control signal generator 3908, a demodulator/modulator facilitation module 3912, and a media access controller (MAC) interface 3914. Other embodiments may include different elements. The MAC interface 3914 couples the WLAN interface/modem 3902 to a computer 3916 or other data processing device. The computer 3916 preferably includes a MAC 3918.

The WLAN interface/modem 3902 represents a transmit and receive application that utilizes the universal frequency translation technology described herein. It also represents a zero IF (or direct-to-data) WLAN architecture.

The WLAN interface/modem 3902 also represents a vector modulator and a vector demodulator using the universal frequency translation(UFT) technology described herein. Use of the UFT technology enhances the flexibility of the WLAN application (i.e., makes it universal).

In the embodiment shown in FIG. 39, the WLAN interface/modem 3902 is compliant with WLAN standard IEEE 802.11. However, the invention is not limited to this standard. The invention is applicable to any communication standard or specification, as will be appreciated by persons skilled in the relevant art(s) based on the teachings contained herein. Any modifications to the invention to operate with other standards or specifications will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein.

In the embodiment shown in FIG. 39, the WLAN interface/modem 3902 provides half duplex communication. However, the invention is not limited to this communication mode. The invention is applicable and directed to other communication modes, as will be appreciated by persons skilled in the relevant art(s) based on the teachings contained herein.

In the embodiment shown in FIG. 39, the modulation/demodulation performed by the WLAN interface/modem 3902 is preferably direct sequence spread spectrum QPSK (quadrature phase shift keying) with differential encoding. However, the invention is not limited to this modulation/demodulation mode. The invention is applicable and directed to other modulation and demodulation modes, such as but not limited to those described herein, as well as frequency hopping according to IEEE 802.11, OFDM (orthogonal frequency division multiplexing), as well as others. These modulation/demodulation modes will be appreciated by persons skilled in the relevant art(s) based on the teachings contained herein.

The operation of the WLAN interface/modem 3902 when receiving shall now be described.

Signals 3922 received by the antenna 3903 are amplified by the LNA/PA 3904. The amplified signals 3924 are down-converted and demodulated by the receiver 3906. The receiver 3906 outputs I signal 3926 and Q signal 3928.

FIG. 40 illustrates an example receiver 3906 according to an embodiment of the invention. It is noted that the receiver 3906 shown in FIG. 40 represents a vector modulator. The "receiving" function performed by the WLAN interface/modem 3902 can
be considered to be all processing performed by the WLAN interface/modem 3902 from the LNA/PA 3904 to generation of baseband information.

Signal 3924 is split by a 90 degree splitter 4001 to produce an I signal 4006A and Q signal 4006B that are preferably 90 degrees apart in phase. I and Q signals 4006A, 4006B are down-converted by UFD (universal frequency down-conversion) modules 4002A, 4002B. The UDF modules 4002A, 4002B output down-converted I and Q signals 3926, 3928. The UFD modules 4002A, 4002B each includes at least one UFT (universal frequency translation) module 4004A. UFD and UFT modules are described above. An example implementation of the receiver 3906 (vector demodulator) is shown in FIG. 53. An example BOM list for the receiver 3906 of FIG. 53 is shown in FIG. 54.

The demodulator/modulator facilitation module 3912 receives the I and Q signals 3926, 3928. The demodulator/modulator facilitation module 3912 amplifies and filters the I and Q signals 3926,3928 . The demodulator/modulator facilitation module 3912 also performs automatic gain control (AGC) functions. The AGC function is coupled with the universal frequency translation technology described herein. The demodulator/modulator facilitation module 3912 outputs processed I and Q signals 3930, 3932.

The MAC interface 3914 receives the processed I and Q signals 3930, 3932. The MAC interface 3914 preferably includes a baseband processor. The MAC interface 3914 preferably performs functions such as combining the I and Q signals 3930, 3932, and arranging the data according to the protocol/file formal being used. Other functions performed by the MAC interface 3914 and the baseband processor contained therein will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. The MAC interface 3914 outputs the baseband information signal, which is received and processed by the computer 3916 in an implementation and application specific manner.

In the example embodiment of FIG. 39, the demodulation function is distributed among the receiver 3906, the demodulator/modulator facilitation module 3912, and a baseband processor contained in the MAC interface 3914. The functions collectively performed by these components include, but are not limited to, despreading the information, differentially decoding the information, tracking the carrier phase,
descrambling, recreating the data clock, and combining the I and Q signals. The invention is not limited to this arrangement. These demodulation-type functions can be centralized in a single component, or distributed in other ways.

The operation of the WLAN interface/modem 3902 when transmitting shall now be described.

A baseband information signal 3936 is received by the MAC interface 3914 from the computer 3916. The MAC interface 3914 preferably performs functions such as splitting the baseband information signal to form I and Q signals 3930, 3932, and arranging the data according to the protocol/file formal being used. Other functions performed by the MAC interface 3914 and the baseband processor contained therein will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein.

The demodulator/modulator facilitation module 3912 filters and amplifies the I and Q signals 3930, 3932. The demodulator/modulator facilitation module 3912 outputs processed I and Q signals 3942, 3944. Preferably, at least some filtering and/or amplifying components in the demodulator/modulator facilitation module 3912 are used for both the transmit and receive paths.

The transmitter 3910 up-converts the processed I and Q signals 3942, 3944, and combines the up-converted I and Q signals. This up-converted/combined signal is amplified by the LNA/PA 3904, and then transmitted via the antenna 3904.

FIG. 41 illustrates an example transmitter 3910 according to an embodiment of the invention. The device in FIG. 41 can also be called a vector modulator. In an embodiment, the "transmit" function performed by the WLAN interface/modem 3902 can be considered to be all processing performed by the WLAN interface/modem 3902 from receipt of baseband information through the LNA/PA 3904. An example implementation of the transmitter 3910 (vector modulator) is shown in FIGS. 57-60. The data conditioning interfaces 5802 in FIG. 58 effectively pre-process the I and Q signals 3942, 3944 before being received by the UFU modules 4102 . An example BOM list for the transmitter 3910 of FIGS. 57-60 is shown in FIGS. 61A and 61B.

I and Q signals 3942, 3944 are received by UFU (universal frequency upconversion) modules 4102A, 4102B. The UFU modules 4102A, 4102B each includes at least one UFT module 4104A, 4104B. The UFU modules 4102A, 4102B up-convert I and Q signals 3942 , 3944. The UFU modules 4102A, 4102B output up-converted I and Q signals 4106,4108 . The 90 degree combiner 4110 effectively phase shifts either the I signal 4106 or the Q signal 4108 by 90 degrees, and then combines the phase shifted signal with the unshifted signal to generate a combined, up-converted I/Q signal 3946.

In the example embodiment of FIG. 39, the modulation function is distributed among the transmitter 3910, the demodulator/modulator facilitation module 3912, and a baseband processor contained in the MAC interface 3914. The functions collectively performed by these components include, but are not limited to, differentially encoding data, splitting the baseband information signal into I and Q signals, scrambling data, and data spreading. The invention is not limited to this arrangement. These modulation-type functions can be centralized in a single component, or distributed in other ways.

An example implementation of the transmitter 3910 (vector modulator) is shown in FIGS. 57-60. The data conditioning interfaces 5802 in FIG. 58 effectively pre-process the I and Q signals 3942, 3944 before being received by the UFU modules 4102. An example BOM list for the transmitter 3910 of FIGS. 57-60 is shown in FIGS. 61A and 61B.

The components in the WLAN interface/modem 3902 are preferably controlled by the MAC interface 3914 in operation with the MAC 3918 in the computer 3916. This is represented by the distributed control arrow 3940 in FIG. 39. Such control includes setting the frequency, data rate, whether receiving or transmitting, and other communication characteristics/modes that will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. In embodiments, control signals are sent over the corresponding wireless medium and received by the antenna 3904, and sent to the MAC 3918.

FIG. 42 illustrates an example implementation of the WLAN interface/modem 3902. It is noted that in this implementation example, the MAC interface 3914 is located on a different board. FIG. 62 is an example motherboard corresponding to FIG. 42. FIG.

63 is an example bill-of-materials (BOM) list for the motherboard of FIG. 62. This and other implementations are provided herein for example purposes only. Other implementations will be apparent to persons skilled in the relevant art(s), and the invention is directed to such other implementations.

FIG. 102 illustrates an alternate example PCMCIA test bed assembly for a WLAN interface/modem 3902 according to an embodiment of the invention. In this embodiment, the baseband processor 10202 is separate from the MAC interface 3914.

In some applications, it is desired to separate the receive path and the transmit path. FIG. 43 illustrates an example receive implementation, and FIG. 44 illustrates an example transmit implementation.

7.2 Receiver

Example embodiments and implementations of the IQ receiver 3906 will be discussed as follows. The example embodiments and implementations include multi-phase embodiments that are useful for reducing or eliminating unwanted DC offsets and circuit re-radiation. The invention is not limited to these example receiver embodiments. Other receiver embodiments will be understood by those skilled in the relevant arts based on the discussion given herein. These other embodiments are within the scope and spirit of the present invention.

7.2.1 IQ Receiver

An example embodiment of the receiver 3906 is shown in FIG. 67A. Referring to FIG. 67A, the UFD module 4002A (FIG. 40) is configured so that the UFT module 4004A is coupled to a storage module 6704A. The UFT module 4004A is a controlled switch 6702A that is controlled by the control signal 3920A. The storage module 6704A is a capacitor 6706A. However, other storage modules could be used including an inductor, as will be understood by those skilled in the relevant arts. Likewise, the UFD module 4002B (FIG. 40) is configured so that the UFT module 4004B is coupled to a
storage module 6704B. The UFT module 4004B is a controlled switch 6702B that is controlled by the control signal 3920B. The storage module 6704B is a capacitor 6706B. However, other storage modules could be used including an inductor, as will be understood by those skilled in the relevant arts. The operation of the receiver 3906 is discussed as follows.

The 90 degree splitter 4001 receives the received signal 3924 from the LNA/PA module 3904. The 90 degree splitter 4001 divides the signal 3924 into an I signal 4006A and a Q signal 4006B.

The UFD module 4002A receives the I signal 4006A and down-converts the I signal 4006A using the control signal 3920A to a lower frequency signal I 3926. More specifically, the controlled switch 6702A samples the I signal 4006A according to the control signal 3920A, transferring charge (or energy) to the storage module 6704A. The charge stored during successive samples of the I signal 4006A, results in the downconverted signal I signal 3926. Likewise, UFD module 4002B receives the Q signal 4006B and down-converts the Q signal 4006B using the control signal 3920B to a lower frequency signal Q 3928. More specifically, the controlled switch 6702B samples the Q signal 4006B according to the control signal 3920B, resulting in charge (or energy) that is stored in the storage module 6704B. The charge stored during successive samples of the I signal 4006A, results in the down-converted signal Q signal 3928.

Down-conversion utilizing a UFD module (also called an aliasing module) is further described in the above referenced applications, such as "Method and System for Down-converting Electromagnetic Signals," Ser. No. 09/176,022, now U.S. Patent No. $6,061,551$. As discussed in the ' 551 patent, the control signals 3920A,B can be configured as a plurality of pulses that are established to improve energy transfer from the signals 4006A,B to the down-converted signals 3926 and 3928 , respectively. In other words, the pulse widths of the control signals 3920 can be adjusted to increase and/or optimize the energy transfer from the signals 4006 to the down-converted output signals 3926 and 3938, respectively. Additionally, matched filter principles can be implemented to shape the sampling pulses of the control signal 3920, and therefore further improve energy transfer to the down-converted output signal 3106. Matched filter principle and energy transfer
are further described in the above referenced applications, such as U.S. patent application titled, "Method and System for Down-Converting an Electromagnetic Signal, Transforms For Same, and Aperture Relationships", Ser. No. 09/550,644, filed on April 14, 2000.

The configuration of the UFT based receiver 3906 is flexible. In FIG. 67A, the controlled switches 6702 are in a series configuration relative to the signals 4006. Alternatively, FIG 67B illustrates the controlled switches 6702 in a shunt configuration so that the switches 6702 shunt the signals 4006 to ground.

Additionally in FIGs. 67A-B, the 90 degree phase shift between the I and Q channels is realized with the 90 degree splitter 4001 . Alternatively, FIG. 68A illustrates a receiver 6806 in series configuration, where the 90 degree phase shift is realized by shifting the control signal 3920B by 90 degrees relative to the control signal 3920A. More specifically, the 90 degree shifter 6804 is added to shift the control signal 3920B by 90 degrees relative to the control signal 3920A. As such, the splitter 6802 is an in-phase (i.e. 0 degree) signal splitter. FIG. 68B illustrates an embodiment of the receiver 3906 of the receiver 3906 in a shunt configuration with 90 degree delays on the control signal.

Furthermore, the configuration of the controlled switch 6702 is also flexible. More specifically, the controlled switches 6702 can be implemented in many different ways, including transistor switches. FIG. 69A illustrates the UFT modules 6702 in a series configuration and implemented as FETs 6902, where the gate of each FET 6902 is controlled by the respective control signal 3920. As such, the FET 6902 samples the respective signal 4006, according to the respective control signal 3920. FIG. 69B illustrates the shunt configuration.

7.2.2 Multi-Phase IQ Receiver

FIG. 70A illustrates an exemplary I/Q modulation receiver 7000, according to an embodiment of the present invention. I/Q modulation receiver 7000 has additional advantages of reducing or eliminating unwanted DC offsets and circuit re-radiation. As will be apparent, the IQ receiver 7000 can be described as a multi-phase receiver to those skilled in the arts.

I/Q modulation receiver 7000 comprises a first UFD module 7002, a first optional filter 7004, a second UFD module 7006, a second optional filter 7008, a third UFD module 7010, a third optional filter 7012, a fourth UFD module 7014, a fourth filter 7016, an optional LNA 7018, a first differential amplifier 7020, a second differential amplifier 7022, and an antenna 7072.

I/Q modulation receiver 7000 receives, down-converts, and demodulates a I/Q modulated RF input signal 7082 to an I baseband output signal 7084, and a Q baseband output signal 7086. I/Q modulated RF input signal 7082 comprises a first information signal and a second information signal that are I/Q modulated onto an RF carrier signal. I baseband output signal 7084 comprises the first baseband information signal. Q baseband output signal 7086 comprises the second baseband information signal.

Antenna 7072 receives I/Q modulated RF input signal 7082. I/Q modulated RF input signal 7082 is output by antenna 7072 and received by optional LNA 7018. When present, LNA 7018 amplifies I/Q modulated RF input signal 7082, and outputs amplified I/Q signal 7088.

First UFD module 7002 receives amplified I/Q signal 7088. First UFD module 7002 down-converts the I-phase signal portion of amplified input I/Q signal 7088 according to an I control signal 7090. First UFD module 7002 outputs an I output signal 7098.

In an embodiment, first UFD module 7002 comprises a first storage module 7024, a first UFT module 7026, and a first voltage reference 7028. In an embodiment, a switch contained within first UFT module 7026 opens and closes as a function of I control signal 7090. As a result of the opening and closing of this switch, which respectively couples and de-couples first storage module 7024 to and from first voltage reference 7028, a down-converted signal, referred to as I output signal 7098, results. First voltage reference 7028 may be any reference voltage, and is preferably ground. I output signal 7098 is stored by first storage module 7024.

In an embodiment, first storage module 7024 comprises a first capacitor 7074. In addition to storing I output signal 7098, first capacitor 7074 reduces or prevents a DC offset voltage resulting from charge injection from appearing on I output signal 7098.

I output signal 7098 is received by optional first filter 7004. When present, first filter 7004 is in some embodiments a high pass filter to at least filter I output signal 7098 to remove any carrier signal "bleed through". In a preferred embodiment, when present, first filter 7004 comprises a first resistor 7030, a first filter capacitor 7032, and a first filter voltage reference 7034. Preferably, first resistor 7030 is coupled between I output signal 7098 and a filtered I output signal 7007, and first filter capacitor 7032 is coupled between filtered I output signal 7007 and first filter voltage reference 7034. Alternately, first filter 7004 may comprise any other applicable filter configuration as would be understood by persons skilled in the relevant art(s). First filter 7004 outputs filtered I output signal 7007.

Second UFD module 7006 receives amplified I/Q signal 7088. Second UFD module 7006 down-converts the inverted I-phase signal portion of amplified input I/Q signal 7088 according to an inverted I control signal 7092. Second UFD module 7006 outputs an inverted I output signal 7001.

In an embodiment, second UFD module 7006 comprises a second storage module 7036, a second UFT module 7038, and a second voltage reference 7040. In an embodiment, a switch contained within second UFT module 7038 opens and closes as a function of inverted I control signal 7092. As a result of the opening and closing of this switch, which respectively couples and de-couples second storage module 7036 to and from second voltage reference 7040, a down-converted signal, referred to as inverted I output signal 7001, results. Second voltage reference 7040 may be any reference voltage, and is preferably ground. Inverted I output signal 7001 is stored by second storage module 7036.

In an embodiment, second storage module 7036 comprises a second capacitor 7076. In addition to storing inverted I output signal 7001, second capacitor 7076 reduces or prevents a DC offset voltage resulting from charge injection from appearing on inverted I output signal 7001.

Inverted I output signal 7001 is received by optional second filter 7008. When present, second filter 7008 is a high pass filter to at least filter inverted I output signal 7001 to remove any carrier signal "bleed through". In a preferred embodiment, when present, second filter 7008 comprises a second resistor 7042, a second filter capacitor

7044, and a second filter voltage reference 7046. Preferably, second resistor 7042 is coupled between inverted I output signal 7001 and a filtered inverted I output signal 7009, and second filter capacitor 7044 is coupled between filtered inverted I output signal 7009 and second filter voltage reference 7046. Alternately, second filter 7008 may comprise any other applicable filter configuration as would be understood by persons skilled in the relevant art(s). Second filter 7008 outputs filtered inverted I output signal 7009.

First differential amplifier 7020 receives filtered I output signal 7007 at its noninverting input and receives filtered inverted I output signal 7009 at its inverting input. First differential amplifier 7020 subtracts filtered inverted I output signal 7009 from filtered I output signal 7007, amplifies the result, and outputs I baseband output signal 7084. Because filtered inverted I output signal 7009 is substantially equal to an inverted version of filtered I output signal 7007, I baseband output signal 7084 is substantially equal to filtered I output signal 7009, with its amplitude doubled. Furthermore, filtered I output signal 7007 and filtered inverted I output signal 7009 may comprise substantially equal noise and DC offset contributions from prior down-conversion circuitry, including first UFD module 7002 and second UFD module 7006, respectively. When first differential amplifier 7020 subtracts filtered inverted I output signal 7009 from filtered I output signal 7007, these noise and DC offset contributions substantially cancel each other.

Third UFD module 7010 receives amplified I/Q signal 7088. Third UFD module 7010 down-converts the Q-phase signal portion of amplified input I/Q signal 7088 according to an \mathbf{Q} control signal 7094. Third UFD module 7010 outputs an \mathbf{Q} output signal 7003.

In an embodiment, third UFD module 7010 comprises a third storage module 7048, a third UFT module 7050, and a third voltage reference 7052. In an embodiment, a switch contained within third UFT module 7050 opens and closes as a function of \mathbf{Q} control signal 7094. As a result of the opening and closing of this switch, which respectively couples and de-couples third storage module 7048 to and from third voltage reference 7052, a down-converted signal, referred to as Q output signal 7003, results.

Third voltage reference 7052 may be any reference voltage, and is preferably ground. \mathbf{Q} output signal 7003 is stored by third storage module 7048.

In an embodiment, third storage module 7048 comprises a third capacitor 7078. In addition to storing Q output signal 7003, third capacitor 7078 reduces or prevents a DC offset voltage resulting from charge injection from appearing on Q output signal 7003.

Q output signal 7003 is received by optional third filter 7012. When present, in an embodiment, third filter 7012 is a high pass filter to at least filter \mathbf{Q} output signal 7003 to remove any carrier signal "bleed through". In an embodiment, when present, third filter 7012 comprises a third resistor 7054, a third filter capacitor 7056, and a third filter voltage reference 7058. Preferably, third resistor 7054 is coupled between Q output signal 7003 and a filtered Q output signal 7011, and third filter capacitor 7056 is coupled between filtered Q output signal 7011 and third filter voltage reference 7058. Alternately, third filter 7012 may comprise any other applicable filter configuration as would be understood by persons skilled in the relevant art(s). Third filter 7012 outputs filtered \mathbf{Q} output signal 7011.

Fourth UFD module 7014 receives amplified I/Q signal 7088. Fourth UFD module 7014 down-converts the inverted Q-phase signal portion of amplified input I/Q signal 7088 according to an inverted Q control signal 7096. Fourth UFD module 7014 outputs an inverted Q output signal 7005.

In an embodiment, fourth UFD module 7014 comprises a fourth storage module 7060, a fourth UFT module 7062, and a fourth voltage reference 7064. In an embodiment, a switch contained within fourth UFT module 7062 opens and closes as a function of inverted Q control signal 7096. As a result of the opening and closing of this switch, which respectively couples and de-couples fourth storage module 7060 to and from fourth voltage reference 7064, a down-converted signal, referred to as inverted \mathbf{Q} output signal 7005, results. Fourth voltage reference 7064 may be any reference voltage, and is preferably ground. Inverted Q output signal 7005 is stored by fourth storage module 7060.

In an embodiment, fourth storage module 7060 comprises a fourth capacitor 7080. In addition to storing inverted Q output signal 7005, fourth capacitor 7080 reduces or
prevents a DC offset voltage resulting from charge injection from appearing on inverted Q output signal 7005.

Inverted Q output signal 7005 is received by optional fourth filter 7016. When present, fourth filter 7016 is a high pass filter to at least filter inverted Q output signal 7005 to remove any carrier signal "bleed through". In a preferred embodiment, when present, fourth filter 7016 comprises a fourth resistor 7066, a fourth filter capacitor 7068, and a fourth filter voltage reference 7070. Preferably, fourth resistor 7066 is coupled between inverted Q output signal 7005 and a filtered inverted Q output signal 7013, and fourth filter capacitor 7068 is coupled between filtered inverted Q output signal 7013 and fourth filter voltage reference 7070. Alternately, fourth filter 7016 may comprise any other applicable filter configuration as would be understood by persons skilled in the relevant art(s). Fourth filter 7016 outputs filtered inverted Q output signal 7013.

Second differential amplifier 7022 receives filtered Q output signal 7011 at its noninverting input and receives filtered inverted Q output signal 7013 at its inverting input. Second differential amplifier 7022 subtracts filtered inverted Q output signal 7013 from filtered Q output signal 7011, amplifies the result, and outputs Q baseband output signal 7086. Because filtered inverted Q output signal 7013 is substantially equal to an inverted version of filtered Q output signal 7.011 , Q baseband output signal 7086 is substantially equal to filtered Q output signal 7013, with its amplitude doubled. Furthermore, filtered Q output signal 7011 and filtered inverted Q output signal 7013 may comprise substantially equal noise and DC offset contributions of the same polarity from prior down-conversion circuitry, including third UFD module 7010 and fourth UFD module 7014, respectively. When second differential amplifier 7022 subtracts filtered inverted Q output signal 7013 from filtered Q output signal 7011, these noise and DC offset contributions substantially cancel each other.

Additional embodiments relating to addressing DC offset and re-radiation concerns, applicable to the present invention, are described in co-pending Patent Application No. 09/526,041, entitled "DC Offset, Re-radiation, and V/Q Solutions Using Universal Frequency Translation Technology," Attorney Docket No. 1744.0880000, which is herein incorporated by reference in its entirety.

7.2.2.1 Example LQ Modulation Control Signal Generator Embodiments

 generator 7023, according to an embodiment of the present invention. I/Q modulation control signal generator 7023 generates I control signal 7090, inverted I control signal 7092, Q control signal 7094, and inverted Q control signal 7096 used by I/Q modulation receiver 7000 of FIG. 70A. I control signal 7090 and inverted I control signal 7092 operate to down-convert the I-phase portion of an input I/Q modulated RF signal. Q control signal 7094 and inverted Q control signal 7096 act to down-convert the Q-phase portion of the input I/Q modulated RF signal. Furthermore, I/Q modulation control signal generator 7023 has the advantage of generating control signals in a manner such that resulting collective circuit re-radiation is radiated at one or more frequencies outside of the frequency range of interest. For instance, potential circuit re-radiation is radiated at a frequency substantially greater than that of the input RF carrier signal frequency.I/Q modulation control signal generator 7023 comprises a local oscillator 7025, a first divide-by-two module 7027, a 180 degree phase shifter 7029, a second divide-bytwo module 7031, a first pulse generator 7033, a second pulse generator 7035, a third pulse generator 7037, and a fourth pulse generator 7039.

Local oscillator 7025 outputs an oscillating signal 7015. FIG. 70C shows an exemplary oscillating signal 7015.

First divide-by-two module 7027 receives oscillating signal 7015, divides oscillating signal 7015 by two, and outputs a half frequency LO signal 7017 and a half frequency inverted LO signal 7041. FIG. 70C shows an exemplary half frequency LO signal 7017. Half frequency inverted LO signal 7041 is an inverted version of half frequency LO signal 7017. First divide-by-two module 7027 may be implemented in circuit logic, hardware, software, or any combination thereof, as would be known by persons skilled in the relevant art(s).

180 degree phase shifter 7029 receives oscillating signal 7015, shifts the phase of oscillating signal 7015 by 180 degrees, and outputs phase shifted LO signal 7019. 180 degree phase shifter 7029 may be implemented in circuit logic, hardware, software, or any combination thereof, as would be known by persons skilled in the relevant art(s). In alternative embodiments, other amounts of phase shift may be used.

Second divide-by two module 7031 receives phase shifted LO signal 7019, divides phase shifted LO signal 7019 by two, and outputs a half frequency phase shifted LO signal 7021 and a half frequency inverted phase shifted LO signal 7043. FIG. 70C shows an exemplary half frequency phase shifted LO signal 7021. Half frequency inverted phase shifted LO signal 7043 is an inverted version of half frequency phase shifted LO signal 7021. Second divide-by-two module 7031 may be implemented in circuit logic, hardware, software, or any combination thereof, as would be known by persons skilled in the relevant art(s).

First pulse generator 7033 receives half frequency LO signal 7017, generates an output pulse whenever a rising edge is received on half frequency LO signal 7017, and outputs I control signal 7090. FIG. 70C shows an exemplary I control signal 7090.

Second pulse generator 7035 receives half frequency inverted LO signal 7041, generates an output pulse whenever a rising edge is received on half frequency inverted LO signal 7041, and outputs inverted I control signal 7092. FIG. 70C shows an exemplary inverted I control signal 7092.

Third pulse generator 7037 receives half frequency phase shifted LO signal 7021, generates an output pulse whenever a rising edge is received on half frequency phase shifted LO signal 7021, and outputs Q control signal 7094. FIG. 70C shows an exemplary Q control signal 7094.

Fourth pulse generator 7039 receives half frequency inverted phase shifted LO signal 7043, generates an output pulse whenever a rising edge is received on half frequency inverted phase shifted LO signal 7043, and outputs inverted Q control signal 7096. FIG. 70C shows an exemplary inverted Q control signal 7096.

In an embodiment, control signals 7090, 7021, 7041 and 7043 include pulses having a width equal to one-half of a period of I/Q modulated RF input signal 7082. The
invention, however, is not limited to these pulse widths, and control signals 7090, 7021, 7041, and 7043 may comprise pulse widths of any fraction of, or multiple and fraction of, a period of I/Q modulated RF input signal 7082.

First, second, third, and fourth pulse generators 7033, 7035, 7037, and 7039 may be implemented in circuit logic, hardware, software,-or any combination thereof, as would be known by persons skilled in the relevant art(s).

As shown in FIG. 70C, in an embodiment, control signals 7090, 7021, 7041, and 7043 comprise pulses that are non-overlapping in other embodiments the pulses may overlap. Furthermore, in this example, pulses appear on these signals in the following order: I control signal 7090, Q control signal 7094, inverted I control signal 7092, and inverted Q control signal 7096. Potential circuit re-radiation from I/Q modulation receiver 7000 may comprise frequency components from a combination of these control signals.

For example, FIG. 70D shows an overlay of pulses from I control signal 7090, Q control signal 7094, inverted I control signal 7092, and inverted Q control signal 7096. When pulses from these control signals leak through first, second, third, and/or fourth UFD modules 7002, 7006, 7010, and 7014 to antenna 7072 (shown in FIG. 70A), they may be radiated from I/Q modulation receiver 7000, with a combined waveform that appears to have a primary frequency equal to four times the frequency of any single one of control signals 7090, 7021, 7041, and 7043. FIG. 70 shows an example combined control signal 7045.

FIG. 70D also shows an example I/Q modulation RF input signal 7082 overlaid upon control signals 7090, 7094, 7092, and 7096. As shown in FIG. 70D, pulses on I control signal 7090 overlay and act to down-convert a positive I-phase portion of I/Q modulation RF input signal 7082. Pulses on inverted I control signal 7092 overlay and act to down-convert a negative I-phase portion of I/Q modulation RF input signal 7082. Pulses on Q control signal 7094 overlay and act to down-convert a rising Q-phase portion of I/Q modulation RF input signal 7082. Pulses on inverted Q control signal 7096 overlay and act to down-convert a falling Q-phase portion of I/Q modulation RF input signal 7082.

As FIG. 70D further shows in this example, the frequency ratio between the combination of control signals 7090, 7021, 7041, and 7043 and I/Q modulation RF input signal 7082 is approximately $4: 3$. Because the frequency of the potentially re-radiated signal, i.e., combined control signal 7045, is substantially different from that of the signal being down-converted, i.e., I/Q modulation RF input signal 7082, it does not interfere with signal down-conversion as it is out of the frequency band of interest, and hence may be filtered out. In this manner, I/Q modulation receiver 7000 reduces problems due to circuit re-radiation. As will be understood by persons skilled in the relevant art(s) from the teachings herein, frequency ratios other than $4: 3$ may be implemented to achieve similar reduction of problems of circuit re-radiation.

It should be understood that the above control signal generator circuit example is provided for illustrative purposes only. The invention is not limited to these embodiments. Alternative embodiments (including equivalents, extensions, variations, deviations, etc., of the embodiments described herein) for I/Q modulation control signal generator 7023 will be apparent to persons skilled in the relevant art(s) from the teachings herein, and are within the scope of the present invention.

FIG. 70S illustrates the receiver 7000, where the UFT modules 7028, 7038, 7050, and 7062 are configured with FETs 7099a-d.

Additional embodiments relating to addressing DC offset and re-radiation concerns, applicable to the present invention, are described in co-pending patent application no. 09/526, 041, entitled "DC Offset, Re-radiation, and I/Q Solutions Using Universal Frequency Translation Technology," which is herein incorporated by reference in its entirety.

7.2.2.2 Implementation of Multi-phase \boldsymbol{L} Q Modulation Receiver Embodiment with Exemplary Waveforms

FIG. 70E illustrates a more detailed example circuit implementation of I/Q modulation receiver 7000, according to an embodiment of the present invention. FIGS.

70F-P show example waveforms related to an example implementation of I Q modulation receiver 7000 of FIG. 70E.

FIGS. 70F and 70G show first and second input data signals 7047 and 7049 to be I/Q modulated with a RF carrier signal frequency as the I-phase and Q-phase information signals, respectively.

FIGS. 70I and 70J show the signals of FIG. 70F and 70G after modulation with a RF carrier signal frequency, respectively, as I-modulated signal 7051 and Q-modulated signal 7053.

FIG. 70 H shows an I/Q modulation RF input signal 7082 formed from Imodulated signal 7051 and Q-modulated signal 7053 of FIGS. 70 I and 70J, respectively.

FIG. 700 shows an overlaid view of filtered I output signal 7007 and filtered inverted I output signal 7009.

FIG. 70P shows an overlaid view of filtered Q output signal 7011 and filtered inverted Q output signal 7013.

FIGS. 70K and 70L show I baseband output signal 7084 and Q baseband output signal 7086, respectfully. A data transition 7055 is indicated in both I baseband output signal 7084 and Q baseband output signal 7086. The corresponding data transition 7055 is indicated in I-modulated signal 7051 of FIG. 70I, Q-modulated signal 7053 of FIG. 70J, and I/Q modulation RF input signal 7082 of FIG. 70 H .

FIGS. 70M and 70N show I baseband output signal 7084 and Q baseband output signal 7086 over a wider time interval.

7.2.2.3 Example Single Channel Receiver Embodiment

FIG. 70Q illustrates an example single channel receiver 7091, corresponding to either the I or Q channel of I/Q modulation receiver 7000, according to an embodiment of the present invention. Single channel receiver 7091 can down-convert an input RF signal 7097 modulated according to AM, PM, FM, and other modulation schemes. Refer. to section 7.2.1 above for further description on the operation of single channel receiver
7091. In other words, the single channel receiver 7091 is a one channel of the IQ receiver 7000 that was discussed in section 7.2.1.

7.2.2.4 \quad Alternative Example LQ Modulation Receiver Embodiment

FIG. 70R illustrates an exemplary I/Q modulation receiver 7089, according to an embodiment of the present invention. I/Q modulation receiver 7089 receives, downconverts, and demodulates an I/Q modulated RF input signal 7082 to an I baseband output signal 7084, and a Q baseband output signal 7086. I/Q modulation receiver 7089 has additional advantages of reducing or eliminating unwanted DC offsets and circuit reradiation, in a similar fashion to that of I / Q modulation receiver 7000 described above.

7.3 Transmitter

Example embodiments and implementations of the IQ transmitter 3910 will be discussed as follows. The example embodiments and implementations include multi-phase embodiments that are useful for reducing or eliminating unwanted DC offsets that can result in unwanted carrier insertion.

7.3.1 Universal Transmitter with 2 UFT Modules

FIG. 71A illustrates a transmitter 7102 according to embodiments of the present invention. Transmitter 7102 includes a balanced modulator/up-converter 7104, a control signal generator 7142 , an optional filter 7106, and an optional amplifier 7108. Transmitter 7102 up-converts a baseband signal 7110 to produce an output signal 7140 that is conditioned for wireless or wire line transmission. In doing so, the balanced modulator 7104 receives the baseband signal 7110 and samples the baseband signal in a differential and balanced fashion to generate a harmonically rich signal 7138. The harmonically rich signal 7138 includes multiple harmonic images, where each image contains the baseband
information in the baseband signal 7110. The optional bandpass filter 7106 may be included to select a harmonic of interest (or a subset of harmonics) in the signal 7138 for transmission. The optional amplifier 7108 may be included to amplify the selected harmonic prior to transmission. The universal transmitter is further described at a high level by the flowchart 8400 that is shown in FIG. 84. A more detailed structural and operational description of the balanced modulator follows thereafter.

Referring to flowchart 8400, in step 8402, the balanced modulator 7104 receives the baseband signal 7110.

In step 8404, the balanced modulator 7104 samples the baseband signal in a differential and balanced fashion according to a first and second control signals that are phase shifted with respect to each other. The resulting harmonically rich signal 7138 includes multiple harmonic images that repeat at harmonics of the sampling frequency, where each image contains the necessary amplitude and frequency information to reconstruct the baseband signal 7110 .

In embodiments of the invention, the control signals include pulses having pulse widths (or apertures) that are established to improve energy transfer to a desired harmonic of the harmonically rich signal 7138. In further embodiments of the invention, DC offset voltages are minimized between sampling modules as indicated in step 8406, thereby minimizing carrier insertion in the harmonic images of the harmonically rich signal 7138.

In step 8408, the optional bandpass filter 7106 selects the desired harmonic of interest (or a subset of harmonics) in from the harmonically rich signal 7138 for transmission.

In step 8410, the optional amplifier 7108 amplifies the selected harmonic(s) prior to transmission.

In step 8412, the selected harmonic(s) is transmitted over a communications medium.

7.3.1.1 Balanced Modulator Detailed Description

Referring to the example embodiment shown in FIG. 71 A , the balanced modulator 7104 includes the following components: a buffer/inverter 7112; summer amplifiers 7118 , 7119; UFT modules 7124 and 7128 having controlled switches 7148 and 7150 , respectively; an inductor 7126; a blocking capacitor 7136; and a DC terminal 7111. As stated above, the balanced modulator 7104 differentially samples the baseband signal 7110 to generate a harmonically rich signal 7138. More specifically, the UFT modules 7124 and 7128 sample the baseband signal in differential fashion according to control signals 7123 and 7127, respectively. A DC reference voltage 7113 is applied to terminal 7111 and is uniformly distributed to the UFT modules 7124 and 7128. The distributed DC voltage 7113 prevents any DC offset voltages from developing between the UFT modules, which can lead to carrier insertion in the harmonically rich signal 7138. The operation of the balanced modulator 7104 is discussed in greater detail with reference to flowchart 8500 (FIG. 85), as follows.

In step 8402, the buffer/inverter 7112 receives the input baseband signal 7110 and generates input signal 7114 and inverted input signal 7116. Input signal 7114 is substantially similar to signal 7110 , and inverted signal 7116 is an inverted version of signal 7114. As such, the buffer/inverter 7112 converts the (single-ended) baseband signal 7110 into differential input signals 7114 and 7116 that will be sampled by the UFT modules. Buffer/inverter 7112 can be implemented using known operational amplifier (op amp).circuits, as will be understood by those skilled in the arts, although the invention is not limited to this example.

In step 8504, the summer amplifier 7118 sums the DC reference voltage 7113 applied to terminal 7111 with the input signal 7114 , to generate a combined signal 7120 . Likewise, the summer amplifier 7119 sums the DC reference voltage 7113 with the inverted input signal 7116 to generate a combined signal 7122. Summer amplifiers 7118 and 7119 can be implemented using known op amp summer circuits, and can be designed to have a specified gain or attenuation, including unity gain, although the invention is not
limited to this example. The DC reference voltage 7113 is also distributed to the outputs of both UFT modules 7124 and 7128 through the inductor 7126 as is shown.

In step 8506, the control signal generator 7142 generates control signals 7123 and 7127 that are shown by way of example in FIG. 72B and FIG. 72C, respectively. As illustrated, both control signals 7123 and 7127 have the same period T_{s} as a master clock signal 7145 (FIG.72A), but have a pulse width (or aperture) of T_{A}. In the example, control signal 7123 triggers on the rising pulse edge of the master clock signal 7145, and control signal 7127 triggers on the falling pulse edge of the master clock signal 7145. Therefore, control signals 7123 and 7127 are shifted in time by 180 degrees relative to each other. In embodiments of invention, the master clock signal 7145 (and therefore the control signals 7123 and 7127) have a frequency that is a sub-harmonic of the desired output signal 7140. The invention is not limited to the example of FIGs. 72A-72C.

In one embodiment, the control signal generator 7142 includes an oscillator 7146, pulse generators 7144a and 7144b, and an inverter 7147 as shown. In operation, the oscillator 7146 generates the master clock signal 7145, which is illustrated in FIG. 72A as a periodic square wave having pulses with a period of T_{s}. Other clock signals could be used including but not limited to sinusoidal waves, as will be understood by those skilled in the arts. Pulse generator 7144 a receives the master clock signal 7145 and triggers on the rising pulse edge, to generate the control signal 7123. Inverter 7147 inverts the clock signal 7145 to generate an inverted clock signal 7143 . The pulse generator 7144 b receives the inverted clock signal 7143 and triggers on the rising pulse edge (which is the falling edge of clock signal 7145), to generate the control signal 7127.

FIG 89A-E illustrate example embodiments for the pulse generator 7144. FIG. 89A illustrates a pulse generator 8902 . The pulse generator 8902 generates pulses 8908 having pulse width T_{A} from an input signal 8904. Example input signals 8904 and pulses 8908 are depicted in FIGs 89B and 89C, respectively. The input signal 8904 can be any type of periodic signal, including, but not limited to, a sinusoid, a square wave, a sawtooth wave etc. The pulse width (or aperture) T_{A} of the pulses 8908 is determined by delay 8906 of the pulse generator 8902 . The pulse generator 8902 also includes an optional inverter 8910, which is optionally added for polarity considerations as understood
by those skilled in the arts. The example logic and implementation shown for the pulse generator 8902 is provided for illustrative purposes only, and is not limiting. The actual logic employed can take many forms. Additional examples of pulse generation logic are shown in FIGs. 89D and 89E. FIG. 89D illustrates a rising edge pulse generator 8912 that triggers on the rising edge of input signal 8904. FIG. 89E illustrates a falling edge pulse generator 8916 that triggers on the falling edge of the input signal 8904.

In step 8508, the UFT module 7124 samples the combined signal 7120 according to the control signal 7123 to generate harmonically rich signal 7130. More specifically, the switch 7148 closes during the pulse widths T_{A} of the control signal 7123 to sample the combined signal 7120 resulting in the harmonically rich signal 7130. FIG. 71B illustrates an exemplary frequency spectrum for the harmonically rich signal 7130 having harmonic images $7152 \mathrm{a}-\mathrm{n}$. The images 7152 repeat at harmonics of the sampling frequency $1 / \mathrm{T}_{\mathrm{s}}$, at infinitum, where each image 7152 contains the necessary amplitude, frequency, and phase information to reconstruct the baseband signal 7110. As discussed further below, the relative amplitude of the frequency images is generally a function of the harmonic number and the pulse width T_{A}. As such, the relative amplitude of a particular harmonic 7152 can be increased (or decreased) by adjusting the pulse width T_{A} of the control signal 7123. In general, shorter pulse widths of T_{A} shift more energy into the higher frequency harmonics, and longer pulse widths of T_{A} shift energy into the lower frequency harmonics. The generation of harmonically rich signals by sampling an input signal according to a controlled aperture have been described earlier in this application in the section titled, "Frequency Up-conversion Using Universal Frequency Translation", and is illustrated by FIGs. 3-6. A more detailed discussion of frequency up-conversion using a switch with a controlled sampling aperture is discussed in the co-pending patent application titled, "Method and System for Frequency Up-Conversion," Ser. No./09/176,154, field on October 21, 1998, and incorporated herein by reference.

In step 8510, the UFT module 7128 samples the combined signal 7122 according to the control signal 7127 to generate harmonically rich signal 7134. More specifically, the switch 7150 closes during the pulse widths T_{A} of the control signal 7127 to sample the combined signal 7122 resulting in the harmonically rich signal 7134. The harmonically
rich signal 7134 includes multiple frequency images of baseband signal 7110 that repeat at harmonics of the sampling frequency $\left(1 / \mathrm{T}_{\mathrm{s}}\right)$, similar to that for the harmonically rich signal 7130. However, the images in the signal 7134 are phase-shifted compared to those in signal 7130 because of the inversion of signal 7116 compared to signal 7114, and because of the relative phase shift between the control signals 7123 and 7127 .

In step 8512 , the node 7132 sums the harmonically rich signals 7130 and 7134 to generate harmonically rich signal 7133. FIG. 71C illustrates an exemplary frequency spectrum for the harmonically rich signal 7133 that has multiple images 7154a-n that repeat at harmonics of the sampling frequency $1 / T_{s}$. Each image 7154 includes the necessary amplitude, frequency and phase information to reconstruct the baseband signal 7110. The capacitor 7136 operates as a DC blocking capacitor and substantially passes the harmonics in the harmonically rich signal 7133 to generate harmonically rich signal 7138 at the output of the modulator 7104.

In step 8408, the optional filter 7106 can be used to select a desired harmonic image for transmission. This is represented for example by a passband 7156 that selects the harmonic image 7154c for transmission in FIG. 71C.

An advantage of the modulator 7104 is that it is fully balanced, which substantially minimizes (or eliminates) any DC voltage offset between the two UFT modules 7124 and 7128. DC offset is minimized because the reference voltage 7113 contributes a consistent DC component to the input signals 7120 and 7122 through the summing amplifiers 7118 and 7119 , respectively. Furthermore, the reference voltage 7113 is also directly coupled to the outputs of the UFT modules 7124 and 7128 through the inductor 7126 and the node 7132. The result of controlling the DC offset between the UFT modules is that carrier insertion is minimized in the harmonic images of the harmonically rich signal 7138. As discussed above, carrier insertion is substantially wasted energy because the information for a modulated signal is carried in the sidebands of the modulated signal and not in the carrier. Therefore, it is often desirable to minimize the energy at the carrier frequency by controlling the relative DC offset.

7.3.1.2 Balanced Modulator Example Signal Diagrams and Mathematical Description

 are meant for example purposes only and are not meant to be limiting. FIG. 72D illustrates a signal 7202 that is representative of the input baseband signal 7110 (FIG. 71A). FIG. 72 E illustrates a step function 7204 that is an expanded portion of the signal 7202 from time t_{0} to t_{1}, and represents signal 7114 at the output of the buffer/inverter 7112 . Similarly, FIG. 72F illustrates a signal 7206 that is an inverted version of the signal 7204, and represents the signal 7116 at the inverted output of buffer/inverter 7112. For analysis purposes, a step function is a good approximation for a portion of a single bit of data (for the baseband signal 7110) because the clock rates of the control signals 7123 and 7127 are significantly higher than the data rates of the baseband signal 7110. For example, if the data rate is in the KHz frequency range, then the clock rate will preferably be in MHZ frequency range in order to generate an output signal in the Ghz frequency range.Still referring to FIGs. 72D-I, FIG. 72G illustrates a signal 7208 that an example of the harmonically rich signal 7130 when the step function 7204 is sampled according to the control signal 7123 in FIG. 72B. The signal 7208 includes positive pulses 7209 as referenced to the DC voltage 7113. Likewise, FIG. 72H illustrates a signal 7210 that is an example of the harmonically rich signal 7134 when the step function 7206 is sampled according to the control signal 7127. The signal 7210 includes negative pulses 7211 as referenced to the DC voltage 7113 , which are time-shifted relative the positive pulses 7209 in signal 7208.

Still referring to FIGs. 72D-I, the FIG. 72I illustrates a signal 7212 that is the combination of signal 7208 (FIG. 72G) and the signal 7210 (FIG. 72H), and is an example of the harmonically rich signal 7133 at the output of the summing node 7132. As illustrated, the signal 7212 spends approximately as much time above the DC reference voltage 7113 as below the DC reference voltage 7113 over a limited time period. For example, over a time period 7214, the energy in the positive pulses $7209 \mathrm{a}-\mathrm{b}$ is canceled
out by the energy in the negative pulses $7211 \mathrm{a}-\mathrm{b}$. This is indicative of minimal (or zero) DC offset between the UFT modules 7124 and 7128, which results in minimal carrier insertion during the sampling process.

Still referring to FIG. 72I, the time axis of the signal 7212 can be phased in such a manner to represent the waveform as an odd function. For such an arrangement, the Fourier series is readily calculated to obtain:

$$
I_{c}(t)=\sum_{n=1}^{\infty}\left(\frac{4 \sin \left(\frac{n \pi T_{A}}{T_{s}}\right) \cdot \sin \left(\frac{n \pi}{2}\right)}{n \pi}\right) \cdot \sin \left(\frac{2 n \pi t}{T_{s}}\right) \quad \text { Equation } 1
$$

where: $\quad T_{S}=$ period of the master clock 7145 $\mathrm{T}_{\mathrm{A}}=$ pulse width of the control signals 7123 and 7127 $\mathrm{n}=$ harmonic number

As shown by Equation 1, the relative amplitude of the frequency images is generally a function of the harmonic number n, and the ratio of T_{A} / T_{S}. As indicated, the $\mathrm{T}_{A} / \mathrm{T}_{\mathrm{S}}$ ratio represents the ratio of the pulse width of the control signals relative to the period of the sub-harmonic master clock. The T_{A} / T_{S} ratio can be optimized in order to maximize the amplitude of the frequency image at a given harmonic. For example, if a passband waveform is desired to be created at $5 x$ the frequency of the sub-harmonic clock, then a baseline power for that harmonic extraction may be calculated for the fifth harmonic ($\mathrm{n}=5$) as:

$$
I_{c}(t)=\left(\frac{4 \sin \left(\frac{5 \pi T_{A}}{T_{s}}\right)}{5 \pi}\right) \cdot \sin \left(5 \omega_{s} t\right)
$$

Equation 2.

As shown by Equation 2, $I_{C}(t)$ for the fifth harmonic is a sinusoidal function having an amplitude that is proportional to the $\sin \left(5 \pi T_{A} / T_{S}\right)$. The signal amplitude can be maximized by setting $T_{A}=\left(1 / 10 \cdot T_{S}\right)$ so that $\sin \left(5 \pi T_{A} / T_{S}\right)=\sin (\pi / 2)=1$. Doing so results in the equation:

$$
\left.I_{c}(t)\right|_{n=5}=\frac{4}{5 \pi}\left(\sin \left(5 \omega_{s} t\right)\right)
$$

Equation 3.

This component is a frequency at $5 x$ of the sampling frequency of sub-harmonic clock, and can be extracted from the Fourier series via a bandpass filter (such as bandpass filter 7106) that is centered around $5 \mathrm{f}_{\mathrm{s}}$. The extracted frequency component can then be optionally amplified by the amplifier 7108 prior to transmission on a wireless or wire-line communications channel or channels.

Equation 3 can be extended to reflect the inclusion of a message signal as illustrated by equation 4 below:

$$
\left.m(t) \cdot I_{c}(t)\right|_{\substack{n=5 \\ \theta=\theta(t)}}=\frac{4 \cdot m(t)}{5 \pi}\left(\sin \left(5 \omega_{s} t+5 \theta(t)\right)\right) \quad \text { Equation } 4 .
$$

Equation 4 illustrates that a message signal can be carried in harmonically rich signals 7133 such that both amplitude and phase can be modulated. In other words, $m(t)$ is modulated for amplitude and $\theta(t)$ is modulated for phase. In such cases, it should be noted that $\theta(t)$ is augmented modulo n while the amplitude modulation $m(t)$ is simply scaled.

Therefore, complex waveforms may be reconstructed from their Fourier series with multiple aperture UFT combinations.

As discussed above, the signal amplitude for the 5 th harmonic was maximized by setting the sampling aperture width $T_{A}=1 / 10 T_{S}$, where T_{S} is the period of the master clock signal. This can be restated and generalized as setting $T_{A}=1 / 2$ the period (or π radians) at the harmonic of interest. In other words, the signal amplitude of any harmonic n can be maximized by sampling the input waveform with a sampling aperture of $T_{A}=1 / 2$ the period of the harmonic of interest (n). Based on this discussion, it is apparent that varying the aperture changes the harmonic and amplitude content of the output waveform. For example, if the sub-harmonic clock has a frequency of 200 MHZ , then the fifth harmonic is at 1 Ghz . The amplitude of the fifth harmonic is maximized by setting the aperture width $T_{A}=500$ picoseconds, which equates to $1 / 2$ the period (or π radians) at 1 Ghz.

FIG. 72J depicts a frequency plot 7216 that graphically illustrates the effect of varying the sampling aperture of the control signals on the harmonically rich signal 7133 given a 200 MHZ harmonic clock. The frequency plot 7216 compares two frequency spectrums 7218 and 7220 for different control signal apertures given a 200 MHZ clock. More specifically, the frequency spectrum 7218 is an example spectrum for signal 7133 given the 200 MHZ clock with the aperture $\mathrm{T}_{\mathrm{A}}=500 \mathrm{psec}$ (where 500 psec is π radians at the 5 th harmonic of 1 GHz). Similarly, the frequency spectrum 7220 is an example spectrum for signal 7133 given a 200 MHZ clock that is a square wave (so $\mathrm{T}_{\mathrm{A}}=5000$ psec). The spectrum 7218 includes multiple harmonics 7218a-I, and the frequency spectrum 7220 includes multiple harmonics $7220 \mathrm{a}-\mathrm{e}$. [It is noted that spectrum 7220 includes only the odd harmonics as predicted by Fourier analysis for a square wave.] At 1 Ghz (which is the 5th harmonic), the signal amplitude of the two frequency spectrums 7218 e and 7220 c are approximately equal. However, at 200 MHZ , the frequency spectrum 7218a has a much lower amplitude than the frequency spectrum 7220a, and therefore the frequency spectrum 7218 is more efficient than the frequency spectrum 7220 , assuming the desired harmonic is the 5 th harmonic. In other words, assuming 1 Ghz
is the desired harmonic, the frequency spectrum 7218 wastes less energy at the 200 MHZ fundamental than does the frequency spectrum 7218 .

7.3.1.3 Balanced Modulator Having a Shunt Configuration

FIG. 79A illustrates a universal transmitter 7900 that is a second embodiment of a universal transmitter having two balanced UFT modules in a shunt configuration. (In contrast, the balanced modulator 7104 can be described as having a series configuration based on the orientation of the UFT modules.) Transmitter 7900 includes a balanced modulator 7901, the control signal generator 7142, the optional bandpass filter 7106, and the optional amplifier 7108. The transmitter 7900 up-converts a baseband signal 7902 to produce an output signal 7936 that is conditioned for wireless or wire line transmission. In doing so, the balanced modulator 7901 receives the baseband signal 7902 and shunts the baseband signal to ground in a differential and balanced fashion to generate a harmonically rich signal 7934. The harmonically rich signal 7934 includes multiple harmonic images, where each image contains the baseband information in the baseband signal 7902. In other words, each harmonic image includes the necessary amplitude, frequency, and phase information to reconstruct the baseband signal 7902. The optional bandpass filter 7106 may be included to select a harmonic of interest (or a subset of harmonics) in the signal 7934 for transmission. The optional amplifier 7108 may be included to amplify the selected harmonic prior to transmission, resulting in the output signal 7936.

The balanced modulator 7901 includes the following components: a buffer/inverter 7904; optional impedances 7910, 7912; UFT modules 7916 and 7922 having controlled switches 7918 and 7924, respectively; blocking capacitors 7928 and 7930; and a terminal 7920 that is tied to ground. As stated above, the balanced modulator 7901 differentially shunts the baseband signal 7902 to ground, resulting in a harmonically rich signal 7934. More specifically, the UFT modules 7916 and 7922 alternately shunts the baseband signal to terminal 7920 according to control signals 7123 and 7127 , respectively. Terminal 7920
is tied to ground and prevents any DC offset voltages from developing between the UFT modules 7916 and 7922. As described above, a DC offset voltage can lead to undesired carrier insertion. The operation of the balanced modulator 7901 is described in greater detail according to the flowchart 8600 (FIG. 86) as follows.

In step 8402, the buffer/inverter 7904 receives the input baseband signal 7902 and generates I signal 7906 and inverted I signal 7908. I signal 7906 is substantially similar to the baseband signal 7902, and the inverted I signal 7908 is an inverted version of signal 7902. As such, the buffer/inverter 7904 converts the (single-ended) baseband signal 7902 into differential signals 7906 and 7908 that are sampled by the UFT modules. Buffer/inverter 7904 can be implemented using known operational amplifier (op amp) circuits, as will be understood by those skilled in the arts, although the invention is not limited to this example.

In step 8604, the control signal generator 7142 generates control signals 7123 and 7127 from the master clock signal 7145. Examples of the master clock signal 7145, control signal 7123, and control signal 7127 are shown in FIGs. 72A-C, respectively. As illustrated, both control signals 7123 and 7127 have the same period T_{s} as a master clock signal 7145, but have a pulse width (or aperture) of T_{A}. Control signal 7123 triggers on the rising pulse edge of the master clock signal 7145, and control signal 7127 triggers on the falling pulse edge of the master clock signal 7145. Therefore, control signals 7123 and 7127 are shifted in time by 180 degrees relative to each other. A specific embodiment of the control signal generator 7142 is illustrated in FIG. 71A , and was discussed in detail above.

In step 8606, the UFT module 7916 shunts the signal 7906 to ground according to the control signal 7123, to generate a harmonically rich signal 7914. More specifically, the switch 7918 closes and shorts the signal 7906 to ground (at terminal 7920) during the aperture width T_{A} of the control signal 7123, to generate the harmonically rich signal 7914. FIG. 79B illustrates an exemplary frequency spectrum for the harmonically rich signal 7918 having harmonic images 7950a-n. The images 7950 repeat at harmonics of the sampling frequency $1 / T_{s}$, at infinitum, where each image 7950 contains the necessary amplitude, frequency, and phase information to reconstruct the baseband signal 7902. The
generation of harmonically rich signals by sampling an input signal according to a controlled aperture have been described earlier in this application in the section titled, "Frequency Up-conversion Using Universal Frequency Translation", and is illustrated by FIGs. 3-6. A more detailed discussion of frequency up-conversion using a switch with a controlled sampling aperture is discussed in the co-pending patent application titled, "Method and System for Frequency Up-Conversion," Ser. No./09/176,154, field on October 21, 1998, and incorporated herein by reference.

The relative amplitude of the frequency images 7950 are generally a function of the harmonic number and the pulse width T_{A}. As such, the relative amplitude of a particular harmonic 7950 can be increased (or decreased) by adjusting the pulse width T_{A} of the control signal 7123. In general, shorter pulse widths of T_{A} shift more energy into the higher frequency harmonics, and longer pulse widths of T_{A} shift energy into the lower frequency harmonics, as described by equations 1-4 above. Additionally, the relative amplitude of a particular harmonic 7950 can also be adjusted by adding/tuning an optional impedance 7910. Impedance 7910 operates as a filter that emphasizes a particular harmonic in the harmonically rich signal 7914.

In step 8608, the UFT module 7922 shunts the inverted signal 7908 to ground according to the control signal 7127, to generate a harmonically rich signal 7926. More specifically, the switch 7924 closes during the pulse widths T_{A} and shorts the inverted I signal 7908 to ground (at terminal 7920), to generate the harmonically rich signal 7926. At any given time, only one of input signals 7906 or 7908 is shorted to ground because the pulses in the control signals 7123 and 7127 are phase shifted with respect to each other, as shown in FIGs. 72B and 72C.

The harmonically rich signal 7926 includes multiple frequency images of baseband signal 7902 that repeat at harmonics of the sampling frequency $\left(1 / T_{S}\right)$, similar to that for the harmonically rich signal 7914. However, the images in the signal 7926 are phaseshifted compared to those in signal 7914 because of the inversion of the signal 7908 compared to the signal 7906, and because of the relative phase shift between the control signals 7123 and 7127. The optional impedance 7912 can be included to emphasis a particular harmonic of interest, and is similar to the impedance 7910 above.

In step 8610, the node 7932 sums the harmonically rich signals 7914 and 7926 to generate the harmonically rich signal 7934. The capacitors 7928 and 7930 operate as blocking capacitors that substantially pass the respective harmonically rich signals 7914 and 7926 to the node 7932. (The capacitor values may be chosen to substantially block baseband frequency components as well.) FIG. 79C illustrates an exemplary frequency spectrum for the harmonically rich signal 7934 that has multiple images 7952a-n that repeat at harmonics of the sampling frequency $1 / T_{s}$. Each image 7952 includes the necessary amplitude, frequency, and phase information to reconstruct the baseband signal 7902. The optional filter 7106 can be used to select the harmonic image of interest for transmission. This is represented by a passband 7956 that selects the harmonic image 7932c for transmission.

An advantage of the modulator 7901 is that it is fully balanced, which substantially minimizes (or eliminates) any DC voltage offset between the two UFT modules 7912 and 7914. DC offset is minimized because the UFT modules 7916 and 7922 are both connected to ground at terminal 7920. The result of controlling the DC offset between the UFT modules is that carrier insertion is minimized in the harmonic images of the harmonically rich signal 7934. As discussed above, carrier insertion is substantially wasted energy because the information for a modulated signal is carried in the sidebands of the modulated signal and not in the carrier. Therefore, it is often desirable to minimize the energy at the carrier frequency by controlling the relative DC offset.

7.3.1.4 Balanced Modulator FET Configuration

As described above, the balanced modulators 7104 and 7901 utilize two balanced UFT modules to sample the input baseband signals to generate harmonically rich signals that contain the up-converted baseband information. More specifically, the UFT modules include controlled switches that sample the baseband signal in a balanced and differential fashion. FIGs. 71D and 79D illustrate embodiments of the controlled switch in the UFT module.

FIG. 71D illustrates an example embodiment of the modulator 7104 (FIG. 71B) where the controlled switches in the UFT modules are field effect transistors (FET). More specifically, the controlled switches 7148 and 7128 are embodied as FET 7158 and FET 7160 , respectively. The FET 7158 and 7160 are oriented so that their gates are controlled by the control signals 7123 and 7127 , so that the control signals control the FET conductance. For the FET 7158, the combined baseband signal 7120 is received at the source of the FET 7158 and is sampled according to the control signal 7123 to produce the harmonically rich signal 7130 at the drain of the FET 7158. Likewise, the combined baseband signal 7122 is received at the source of the FET 7160 and is sampled according to the control signal 7127 to produce the harmonically rich signal 7134 at the drain of FET 7160. The source and drain orientation that is illustrated is not limiting, as the source and drains can be switched for most FETs. In other words, the combined baseband signal can be received at the drain of the FETs, and the harmonically rich signals can be taken from the source of the FETs, as will be understood by those skilled in the relevant arts.

FIG. 79D illustrates an embodiment of the modulator 7900 (FIG. 79A) where the controlled switches in the UFT modules are field effect transistors (FET). More specifically, the controlled switches 7918 and 7924 are embodied as FET 7936 and FET 7938 , respectively. The FETs 7936 and 7938 are oriented so that their gates are controlled by the control signals 7123 and 7127 , respectively, so that the control signals determine FET conductance. For the FET 7936, the baseband signal 7906 is received at the source of the FET 7936 and shunted to ground according to the control signal 7123, to produce the harmonically rich signal 7914. Likewise, the baseband signal 7908 is received at the source of the FET 7938 and is shunted to grounding according to the control signal 7127, to produce the harmonically rich signal 7926. The source and drain orientation that is illustrated is not limiting, as the source and drains can be switched for most FETs, as will be understood by those skilled in the relevant arts.

7.3.1.5 Universal Transmitter Configured for Carrier Insertion

As discussed above, the transmitters 7102 and 7900 have a balanced configuration that substantially eliminates any DC offset and results in minimal carrier insertion in the output signal 7140. Minimal carrier insertion is generally desired for most applications because the carrier signal carries no information and reduces the overall transmitter efficiency. However, some applications require the received signal to have sufficient carrier energy for the receiver to extract the carrier for coherent demodulation. In support thereof, the present invention can be configured to provide the necessary carrier insertion by implementing a DC offset between the two sampling UFT modules.

FIG. 73A illustrates a transmitter 7302 that up-converts a baseband signal 7306 to an output signal 7322 having carrier insertion. As is shown, the transmitter 7302 is similar to the transmitter 7102 (FIG. 71A) with the exception that the upconverter/modulator 7304 is configured to accept two DC references voltages. In contrast, modulator 7104 was configured to accept only one DC reference voltage. More specifically, the modulator 7304 includes a terminal 7309 to accept a DC reference voltage 7308, and a terminal 7313 to accept a DC reference voltage 7314 . Vr 7308 appears at the UFT module 7124 though summer amplifier 7118 and the inductor 7310 . Vr 7314 appears at UFT module 7128 through the summer amplifier 7119 and the inductor 7316 . Capacitors 7312 and 7318 operate as blocking capacitors. If Vr 7308 is different from Vr 7314 then a DC offset voltage will be exist between UFT module 7124 and UFT module 7128, which will be up-converted at the carrier frequency in the harmonically rich signal 7320. More specifically, each harmonic image in the harmonically rich signal 7320 will include a carrier signal as depicted in FIG. 73B.

FIG. 73B illustrates an exemplary frequency spectrum for the harmonically rich signal 7320 that has multiple harmonic images 7324a-n. In addition to carrying the baseband information in the sidebands, each harmonic image 7324 also includes a carrier signal 7326 that exists at respective harmonic of the sampling frequency $1 / T_{\mathrm{s}}$. The amplitude of the carrier signal increases with increasing DC offset voltage. Therefore, as
the difference between Vr 7308 and Vr 7314 widens, the amplitude of each carrier signal 7326 increases. Likewise, as the difference between Vr 7308 and Vr 7314 shrinks, the amplitude of each carrier signal 7326 shrinks. As with transmitter 7302, the optional bandpass filter 7106 can be included to select a desired harmonic image for transmission. This is represented by passband 7328 in FIG. 73B.

7.3.2 Universal Transmitter In IQ Configuration:

As described above, the balanced modulators 7104 and 7901 up-convert a baseband signal to a harmonically rich signal having multiple harmonic images of the baseband information. By combining two balanced modulators, IQ configurations can be formed for up-converting I and Q baseband signals. In doing so, either the (series type) balanced modulator 7104 or the (shunt type) balanced modulator 7901 can be utilized. IQ modulators having both series and shunt configurations are described below.

7.3.2.1 IQ Transmitter Using Series-Type Balanced Modulator

FIG. 74 illustrates an IQ transmitter 7420 with an in-phase (I) and quadrature (Q) configuration according to embodiments of the invention. The transmitter 7420 includes an IQ balanced modulator 7410, an optional filter 7414, and an optional amplifier 7416. The transmitter 7420 is useful for transmitting complex I Q waveforms and does so in a balanced manner to control DC offset and carrier insertion. In doing so, the modulator 7410 receives an I baseband signal 7402 and a Q baseband signal 7404 and up-converts these signals to generate a combined harmonically rich signal 7412. The harmonically rich signal 7412 includes multiple harmonics images, where each image contains the baseband information in the I signal 7402 and the Q signal 7404. The optional bandpass filter 7414 may be included to select a harmonic of interest (or subset of harmonics) from the signal 7412 for transmission. The optional amplifier 7416 may be included to amplify the selected harmonic prior to transmission, to generate the IQ output signal 7418.

As stated above, the balanced IQ modulator 7410 up-converts the I baseband signal 7402 and the Q baseband signal 7404 in a balanced manner to generate the combined harmonically rich signal 7412 that carriers the I and Q baseband information. To do so, the modulator 7410 utilizes two balanced modulators 7104 from FIG. 71A, a signal combiner 7408, and a DC terminal 7407. The operation of the balanced modulator 7410 and other circuits in the transmitter is described according to the flowchart 8700 in FIG. 87, as follows.

In step 8702, the IQ modulator 7410 receives the I baseband signal 7402 and the Q baseband signal 7404.

In step 8704, the I balanced modulator 7104a samples the I baseband signal 7402 in a differential fashion using the control signals 7123 and 7127 to generate a harmonically rich signal 7411 a . The harmonically rich signal 7411a contains multiple harmonic images of the I baseband information, similar to the harmonically rich signal 7130 in FIG. 71B.

In step 8706, the balanced modulator 7104b samples the Q baseband signal 7404 in a differential fashion using control signals 7123 and 7127 to generate harmonically rich signal 741 lb , where the harmonically rich signal 741 lb contains multiple harmonic images of the Q baseband signal 7404. The operation of the balanced modulator 7104 and the generation of harmonically rich signals was fully described above and illustrated in FIGs. $71 \mathrm{~A}-\mathrm{C}$, to which the reader is referred for further details.

In step 8708, the DC terminal 7407 receives a DC voltage 7406 that is distributed to both modulators 7104a and 7104b. The DC voltage 7406 is distributed to both the input and output of both UFT modules 7124 and 7128 in each modulator 7104. This minimizes (or prevents) DC offset voltages from developing between the four UFT modules, and thereby minimizes or prevents any carrier insertion during the sampling steps 8704 and 8706.

In step 8710, the 90 degree signal combiner 7408 combines the harmonically rich signals 7411 a and 741 lb to generate IQ harmonically rich signal 7412. This is further illustrated in FIGs. 75A-C. FIG. 75A depicts an exemplary frequency spectrum for the harmonically rich signal 741 la having harmónic images $7502 \mathrm{a}-\mathrm{n}$. The images 7502 repeat at harmonics of the sampling frequency $1 / T_{s}$, where each image 7502 contains the
necessary amplitude and frequency information to reconstruct the I baseband signal 7402. Likewise, FIG. 75B depicts an exemplary frequency spectrum for the harmonically rich signal 741 lb having harmonic images 7504a-n. The harmonic images 7504a-n also repeat at harmonics of the sampling frequency $1 / \mathrm{T}_{\mathrm{s}}$, where each image 7504 contains the necessary amplitude, frequency, and phase information to reconstruct the Q baseband signal 7404. FIG.75C illustrates an exemplary frequency spectrum for the combined harmonically rich signal 7412 having images 7506. Each image 7506 carries the I baseband information and the Q baseband information from the corresponding images 7502 and 7504, respectively, without substantially increasing the frequency bandwidth occupied by each harmonic 7506 . This can occur because the signal combiner 7408 phase shifts the Q signal 741 lb by 90 degrees relative to the I signal 7411 a . The result is that the images 7502a-n and 7504a-n effectively share the signal bandwidth do to their orthogonal relationship. For example, the images 7502a and 7504a effectively share the frequency spectrum that is represented by the image 7506 a .

In step 8712, the optional filter 7414 can be included to select a harmonic of interest, as represented by the passband 7508 selecting the image 7506c in FIG. 75c.

In step 8714, the optional amplifier 7416 can be included to amplify the harmonic (or harmonics) of interest prior to transmission.

In step 8716, the selected harmonic (or harmonics) is transmitted over a communications medium.

FIG. 76A illustrates a transmitter 7608 that is a second embodiment for an I Q transmitter having a balanced configuration. Transmitter 7608 is similar to the transmitter 7420 except that the 90 degree phase shift between the I and Q channels is achieved by phase shifting the control signals instead of using a 90 degree signal combiner to combine the harmonically rich signals. More specifically, delays 7604a and 7604b delay the control signals 7123 and 7127 for the Q channel modulator 7104 b by 90 degrees relative the control signals for the I channel modulator 7104a. As a result, the Q modulator 7104b samples the Q baseband signal 7404 with 90 degree delay relative to the sampling of the I baseband signal 7402 by the I channel modulator 7104a. Therefore, the Q harmonically rich signal 7411 b is phase shifted by 90 degrees relative to the I harmonically rich signal.

Since the phase shift is achieved using the control signals, an in-phase signal combiner 7606 combines the harmonically rich signals 7411 a and 7411 b , to generate the harmonically rich signal 7412 .

FIG. 76B illustrates a transmitter 7618 that is similar to transmitter 7608 in FIG. 76A. The difference being that the transmitter 7618 has a modulator 7620 that utilizes a summing node 7622 to sum the signals 7411 a and 7411 b instead of the in-phase signal combiner 7606 that is used in modulator 7602 of transmitter 7608.

FIG. 90A-90D illustrate various detailed circuit implementations of the transmitter 7420 in FIG. 74. These circuit implementations are meant for example purposes only, and are not meant to be limiting.

FIG. 90A illustrates I input circuitry 9002a and Q input circuitry 9002b that receive the I and Q input signals 7402 and 7404 , respectively.

FIG. 90B illustrates the I channel circuitry 9006 that processes an I data 9004a from the I input circuit 9002a.

FIG. 90C illustrates the Q channel circuitry 9008 that processes the Q data 9004 b from the Q input circuit 9002 b .

FIG. 90D illustrates the output combiner circuit 9012 that combines the I channel data 9007 and the Q channel data 9010 to generate the output signal 7418.

7.3.2.2 IQ Transmitter Using Shunt-Type Balanced Modulator

FIG. 80 illustrates an IQ transmitter 8000 that is another IQ transmitter embodiment according to the present invention. The transmitter 8000 includes an IQ balanced modulator 8001, an optional filter 8012, and an optional amplifier 8014. During operation, the modulator 8001 up-converts an I baseband signal 8002 and a Q baseband signal 8004 to generate a combined harmonically rich signal 8011. The harmonically rich signal 8011 includes multiple harmonics images, where each image contains the baseband information in the I signal 8002 and the Q signal 8004. The optional bandpass filter 8012 may be included to select a harmonic of interest (or subset of harmonics) from the harmonically rich signal 8011 for transmission. The optional amplifier 8014 may be
included to amplify the selected harmonic prior to transmission, to generate the IQ output signal 8016.

The IQ modulator 8001 includes two shunt balanced modulators 7901 from FIG. 79 A , and a 90 degree signal combiner 8010 as shown. The operation of the IQ modulator 8001 is described in reference to the flowchart 8800 (FIG. 88), as follows. The order of the steps in flowchart 8800 is not limiting.

In step 8802, the balanced modulator 8001 receives the I baseband signal 8002 and the Q baseband signal 8004.

In step 8804, the balanced modulator 7901a differentially shunts the I baseband signal 8002 to ground according the control signals 7123 and 7127 , to generate a harmonically rich signal 8006. More specifically, the UFT modules 7916a and 7922a alternately shunt the I baseband signal 8002 and an inverted version of the I baseband signal 8002 to ground according to the control signals 7123 and 7127 , respectively. The operation of the balanced modulator 7901 and the generation of harmonically rich signals was fully described above and is illustrated in FIGs. 79A-C, to which the reader is referred for further details. As such, the harmonically rich signal 8006 contains multiple harmonic images of the I baseband information as described above.

In step 8806, the balanced modulator 7901b differentially shunts the Q baseband signal 8004 to ground according to control signals 7123 and 7127, to generate harmonically rich signal 8008. More specifically; the UFT modules 7916b and 7922b alternately shunt the Q baseband signal 8004 and an inverted version of the Q baseband signal 8004 to ground, according to the control signals 7123 and 7127, respectively. As such, the harmonically rich signal 8008 contains multiple harmonic images that contain the Q baseband information.

In step 8808, the 90 degree signal combiner 8010 combines the harmonically rich signals 8006 and 8008 to generate IQ harmonically rich signal 8011. This is further illustrated in FIGs. 81A-C. FIG. 81A depicts an exemplary frequency spectrum for the harmonically rich signal 8006 having harmonic images 8102a-n. The harmonic images 8102 repeat at harmonics of the sampling frequency $1 / T_{S}$, where each image 8102 contains the necessary amplitude, frequency, and phase information to reconstruct the I baseband
signal 8002. Likewise, FIG. 81B depicts an exemplary frequency spectrum for the harmonically rich signal 8008 having harmonic images 8104a-n. The harmonic images 8104a-n also repeat at harmonics of the sampling frequency $1 / T_{s}$, where each image 8104 contains the necessary amplitude, frequency, and phase information to reconstruct the Q baseband signal 8004. FIG.81C illustrates an exemplary frequency spectrum for the IQ harmonically rich signal 8011 having images 8106a-n. Each image 8106 carries the I baseband information and the Q baseband information from the corresponding images 8102 and 8104 , respectively, without substantially increasing the frequency bandwidth occupied by each image 8106. This can occur because the signal combiner 8010 phase shifts the Q signal 8008 by 90 degrees relative to the I signal 8006.

In step 8810, the optional filter 8012 may be included to select a harmonic of interest, as represented by the passband 8108 selecting the image 8106 c in FIG. 81C.

In step 8812 , the optional amplifier 8014 can be included to amplify the selected harmonic image 8106 prior to transmission.

In step 8814, the selected harmonic (or harmonics) is transmitted over a communications medium.

FIG. 82 illustrates a transmitter 8200 that is another embodiment for an IQ transmitter having a balanced configuration. Transmitter 8200 is similar to the transmitter 8000 except that the 90 degree phase shift between the I and Q channels is achieved by phase shifting the control signals instead of using a 90 degree signal combiner to combine the harmonically rich signals: More specifically, delays 8204a and 8204b delay the control signals 7123 and 7127 for the Q channel modulator 7901 b by 90 degrees relative the control signals for the I channel modulator 7901a. As a result, the Q modulator 7901b samples the Q baseband signal 8004 with a 90 degree delay relative to the sampling of the I baseband signal 8002 by the I channel modulator 7901a. Therefore, the Q harmonically rich signal 8008 is phase shifted by 90 degrees relative to the I harmonically rich signal 8006. Since the phase shift is achieved using the control signals, an in-phase signal combiner 8206 combines the harmonically rich signals 8006 and 8008 , to generate the harmonically rich signal 8011.

FIG. 83 illustrates a transmitter 8300 that is similar to transmitter 8200 in FIG. 82. The difference being that the transmitter 8300 has a balanced modulator 8302 that utilizes a summing node 8304 to sum the I harmonically rich signal 8006 and the Q harmonically rich signal 8008 instead of the in-phase signal combiner 8206 that is used in the modulator 8202 of transmitter 8200 . The 90 degree phase shift between the I and Q channels is implemented by delaying the Q clock signals using 90 degree delays 8204 , as shown.

7.3.2.3 IQ Transmitters Configured for Carrier Insertion

The transmitters 7420 (FIG. 74) and 7608 (FIG. 76A) have a balanced configuration that substantially eliminates any DC offset and results in minimal carrier insertion in the IQ output signal 7418. Minimal carrier insertion is generally desired for most applications because the carrier signal carries no information and reduces the overall transmitter efficiency. However, some applications require the received signal to have sufficient carrier energy for the receiver to extract the carrier for coherent demodulation. In support thereof, FIG. 77 illustrates a transmitter 7702 to provide any necessary carrier insertion by implementing a DC offset between the two sets of sampling UFT modules.

Transmitter 7702 is similar to the transmitter 7420 with the exception that a modulator 7704 in transmitter 7702 is configured to accept two DC reference voltages so that the I channel modulator 7104a can be biased separately from the Q channel modulator 7104b. More specifically, modulator 7704 includes a terminal 7706 to accept a DC voltage reference 7707, and a terminal 7708 to accept a DC voltage reference 7709. Voltage 7707 biases the UFT modules 7124a and 7128a in the I channel modulator 7104a. Likewise, voltage 7709 biases the UFT modules 7124 b and 7128 b in the Q channel modulator 7104 b . When voltage 7707 is different from voltage 7709 , then a DC offset will appear between the I channel modulator 7104a and the Q channel modulator 7104b, which results in carrier insertion in the IQ harmonically rich signal 7412. The relative amplitude of the carrier frequency energy increases in proportion to the amount of DC offset.

FIG. 78 illustrates a transmitter 7802 that is a second embodiment of an IQ transmitter having two DC terminals to cause DC offset, and therefore carrier insertion. Transmitter 7802 is similar to transmitter 7702 except that the 90 degree phase shift between the I and Q channels is achieved by phase shifting the control signals, similar to that done in transmitter 7608. More specifically, delays 7804a and 7804b phase shift the control signals 7123 and 7127 for the Q channel modulator $7104 b$ relative to those of the I channel modulator 7104a. As a result, the Q modulator 7104 b samples the Q baseband signal 7404 with 90 degree delay relative to the sampling of the I baseband signal 7402 by the I channel modulator 7104a. Therefore, the Q harmonically rich signal 7411 b is phase shifted by 90 degrees relative to the I harmonically rich signal 7411a, which are combined by the in-phase combiner 7806 .

7.4 Transceiver Embodiments

Referring to FIG. 39, in embodiments the receiver 3906, transmitter 3910, and LNA/PA 3904 are configured as a transceiver, such as but not limited to transceiver 9100, that is shown in FIG. 91.

Referring to FIG. 91, the transceiver 9100 includes a diplexer 9108, the IQ receiver 7000, and the IQ transmitter 8000 . Transceiver 9100 up-converts an I baseband signal 9114 and a Q baseband signal 9116 using the IQ transmitter 8000 (FIG. 80) to generate an IQ RF output signal 9106. A detailed description of the IQ transmitter 8000 is included for example in section 7.3.2.2, to which the reader is referred for further details. Additionally, the transceiver 9100 also down-converts a received RF signal 9104 using the IQ Receiver 7000, resulting in I baseband output signal 9110 and a Q baseband output signal 9112. A detailed description of the IQ receiver 7000 is included in section 7.2.2, to which the reader is referred for further details.

7.5 Demodulator/Modulator Facilitation Module

An example demodulator/modulator facilitation module 3912 is shown in FIGS. 47 and 48. A corresponding BOM list is shown in FIGS. 49A and 49B.

An alternate example demodulator/modulator facilitation module 3912 is shown in FIGS. 50 and 51. A corresponding BOM list is shown in FIGS. 52A and 52B.

FIG. 52C illustrates an exemplary demodulator/modulator facilitation module 5201. Facilitation module 5201 includes the following: de-spread module 5204, spread module 5206, de-modulator 5210, and modulator 5212.

For receive, the de-spread module 5204 de-spreads received spread signals 3926 and 3928 using a spreading code 5202. Separate spreading codes can be used for the I and Q channels as will be understood by those skilled in the arts. The demodulator 5210 uses a signal 5208 to demodulate the de-spread received signals from the de-spread module 5204, to generate the I baseband signal 3930a and the Q baseband signal 3932a.

For transmit, the modulator 5212 modulates the I baseband signal 3930b and the Q baseband signal 3932b using a modulation signal 5208. The resulting modulated signals are then spread by the spread module 5206, to generate I spread signal 3942 and Q spread signal 3944.

In embodiments, the modulation scheme that is utilized is differential binary phase shift keying (DBPSK) or differential quadrature phase shift keying (DQPSK), and is compliant with the various versions of IEEE 802.11. Other modulation schemes could be utilized besides DBPSK or DQPSK, as will understood by those skilled in arts based on the discussion herein.

In embodiments, the spreading code 5202 is a Barker spreading code, and is compliant with the various versions of IEEE 802.11. More specifically, in embodiments, an 11-bit Barker word is utilized for spreading/de-spreading. Other spreading codes could be utilized as will be understood by those skilled in the arts based on the discussion herein.

7．6 MAC Interface

An example MAC interface 3914 is shown in FIG．45．A corresponding BOM list is shown in FIGS．46A and 46B．

In embodiments，the MAC 3918 and MAC interface 3914 supply the functionality required to provide a reliable delivery mechanism for user data over noisy，and unreliable wireless media．This is done this while also providing advanced LAN services，equal to or beyond those of existing wired LANs．

The first functionality of the MAC is to provide a reliable data delivery service to users of the MAC．Through a frame exchange protocol at the MAC level，the MAC significantly improves on the reliability of data delivery services over wireless media，as compared to earlier WLANs．More specifically，the MAC implements a frame exchange protocol to allow the source of a frame to determine when the frame has been successfully received at the destination．This frame exchange protocol adds some overhead beyond that of other MAC protocols，like IEEE 802．3，because it is not sufficient to simply transmit a frame and expect that the destination has received it correctly on the wireless media．In addition，it cannot be expected that every station in the WLAN is able to communicate with every other station in the WLAN．If the source does not receive this acknowledgment，then the source will attempt to transmit the frame again．This retransmission of frame by the source effectively reduces the effective error rate of the medium at the cost of additional bandwidth consumption．

The minimal MAC frame exchange protocol consists of two frames，a frame sent from the source to the destination and an acknowledgment from the destination that the frame was received correctly．The frame and its acknowledgment are an atomic unit of the MAC protocol．As such，they cannot be interrupted by the transmission from any other station．Additionally，a second set of frames may be added to the minimal MAC frame exchange．The two added frames are a request to send frame and a clear to send frame． The source sends a request to send to the destination．The destination returns a clear to send to the source．Each of these frames contains information that allows other stations receiving them to be notified of the upcoming frame transmission，and therefore to delay
any transmission their own. The request to send and clear frames serve to announce to all stations in the neighborhood of both the source and the destination about the pending transmission from the source to the destination. When the source receives the clear to send from the destination, the real frame that the source wants delivered to the destination is sent. If the frame is correctly received at the destination, then the destination will return an acknowledgment. completing the frame exchange protocol. While this four way frame exchange protocol is a required function of the MAC, it may be disabled by an attribute in the management information base.

The second functionality of the MAC is to fairly control access to the shared wireless medium. It performs this function through two different access mechanisms: the basic access mechanism, call the distribution coordination system function, and a centrally controlled access mechanism, called the point coordination function.

The basic access mechanism is a carrier sense multiple access with collision avoidance (CSMA/CA) with binary exponential backoff. This access mechanism is similar to that used for IEEE 802.3, with some variations. CSMA/CA is a "listen before talk" (LBT) access mechanism. In this type of access mechanism, a station will listen to the medium before beginning a transmission. If the medium is already carrying a transmission, then the station that listening will not begin its own transmission. More specifically, if a listening station detects an existing transmission in progress, the listening station enters a transmit deferral period determined by the binary exponential backoff algorithm. The binary exponential backoff mechanism chooses a random number which represents the amount of time that must elapse while there are not any transmission. In other words, the medium is idle before the listening station may attempt to begin its transmission again. The MAC may also implement a network allocation vector (NAV). The NAV is the value that indicates to a station that amount of time that remains before a medium becomes available. The NAV is kept current through duration values that are transmitted in all frames. By examining the NAV, a station may avoid transmitting, even when the medium does not appear to be carrying a transmission in the physical sense.

The centrally controlled access mechanism uses a poll and response protocol to eliminate the possibility of contention for the medium. This access mechanism is called
the point coordination function (PCF). A point coordinator (PC) controls the PCF. The PC is always located in an AP. Generally, the PCF operates by stations requesting that the PC register them on a polling list, and the PC then regularly polls the stations for traffic while also delivering traffic to the stations. With proper planning, the PCF is able to deliver near isochronous service to the stations on the polling list.

The third function of the MAC is to protect the data that it delivers. Because it is difficult to contain wireless WLAN signals to a particular physical area, the MAC provides a privacy service, called Wired Equivalent Privacy (WEP), which encrypts the data sent over the wireless medium. The level of encryption chosen approximates the level of protection data might have on a wireless LAN in a building with controlled access that prevents physically connecting to the LAN without authorization.

7.7 Control Signal Generator - Synthesizer

In an embodiment, the control signal generator 3908 is preferably implemented using a synthesizer. An example synthesizer is shown in FIG. 55. A corresponding BOM list is shown in FIGS. 56A and 56B.

$7.8 L N A / P A$

An example LNA/PA 3904 is shown in FIGS. 64 and 65. A corresponding BOM list is shown in FIG. 66.

Additionally, FIG. 93 illustrates a LNA/PA module 9301 that is another embodiment of the LNA/PA 3904. LNA/PA module 9301 includes a switch 9302, a LNA 9304, and a PA 9306. The switch 9302 connects either the LNA 9304 or the PA 9306 to the antenna 3903, as shown. The switch 9302 can be controlled by an on -board processor that is not shown.

8.0 802.11 Physical Layer Configurations

The 802.11 WLAN standard specifies two RF physical layers: frequency hopped spread spectrum (FHSS) and direct sequence spread spectrum (DSSS). The invention is not limited to these specific examples. Both DSSS and FHSS support 1 Mbps and 2 Mbps data rates and operate in the $2.400-2.835 \mathrm{GHz}$ band for wireless communications in accordance to FCC part 15 and ESTI- 300 rules. Additionally, 802.11 has added an 11 Mbps standard that operates at 5 GHz and utilizes OFDM modulation.

The DSSS configuration supports the 1 MBPS data rate utilizing differential binary phase shift keying (DBPSK) modulation, and supports 2 MBPS utilizing differential quadrature phase shift keying modulation. In embodiments, an 11-bit Barker word is used as the spreading sequence that is utilized by the stations in the 802.11 network. A Barker word has a relatively short sequence, and is known to have very good correlation properties, and includes the following sequence: $+1,-1,+1,+1,-1,+1,+1,+1,-1,-1,-1$. The Barker word used for 802.11 is not to be confused with the spreading codes used for code division multiple access (CDMA) and global positioning system (GPS). CDMA and GPS use orthogonal spreading codes, which allow multiple users to operate on the same channel frequency. Generally, CDMA codes have longer sequences and have richer correlation properties.

During transmission, the 11-bit barker word is exclusive-ored (EX-OR) with each of the information bits using a modulo-2 adder, as illustrated by modulo-2 adder 9202 in FIG. 92 . Referring to FIG. 92, the11-bit (at 11 MBPS) Barker word is applied to a modulo-2 adder together with each one (at 1 MBPS) of the information bits (in the PPDU data). The Ex-OR function combines both signals by performing a modulo-2 addition of each information bit with each Barker bit (or chip). The output of the modulo-2 adder results in a signal with a data rate that is $10 x$ higher than the information rate. The result in the frequency domain signal is a signal that is spread over a wider bandwidth at a reduced RF power level. At the receiver, the DSSS signal is convolved with an 11-bit Barker word and correlated. As shown in FIG. 92, the correlation recovers the information bits at the transmitted information rate, and the undesired interfering in-band
signals are spread out-of-band. The spreading and despreading of narrowband to wideband signal is commonly referred to as processing gain and is measured in decibels (dB). Processing gain is the ratio of DSSS signal rate information rate. In embodiments, the minimum requirement for processing gain is 10 dB .

The second RF physical layer that is specified by the IEEE 802.11 standard is frequency hopping spread spectrum (FHSS). A set of hop sequences is defined in IEEE 802.11 for use in the 2.4 GHz frequency band. The channels are evenly spaced across the band over a span of 83.5 MHz . During the development of IEEE 802.11 , the hop sequences listed in the standard were pre-approved for operation in North America, Europe, and Japan. In North America and Europe (excluding Spain and France), the required number of hop channels is 79 . The number of hopped channels for Spain and France is 23 and 35, respectively. In Japan, the required number of hopped channels is 23. The hopped center channels are spaced uniformly across the 2.4 GHz frequency band occupying a bandwidth of 1 MHz . In North America and Europe (excluding Spain and France), the hopped channels operate from 2.402 GHz to 2.480 GHz . In Japan, the hopped channels operate from 2.447 GHz to 2.473 GHz . The modulation scheme called out for FHSS by 802.11 is 2-level Gaussian Phase Shift Keying (GFSK) for the 1 MBps data rate, and 4-level GFSK for the 2 MBps data rate.

In addition to DSSS and FHSS RF layer standards, the IEEE 802.11 Executive Committee approved two projects for higher rate physical layer extensions. The first extension, IEEE 802.11a defines requirements for a physical layer operating in the 5.0 GHz frequency band, and data rates ranging from 6 MBps to 54 MBps . This 802.11 a draft standard is based on Orthogonal Frequency Division Multiplexing (OFDM) and uses 48 carriers as a phase reference (so coherent), with 20 MHZ spacing between the channels. The second extension, IEEE 802.11b, defines a set of physical layer specifications operating in the 2.4 GHz ISM frequency band. This 802.11 b utilizes complementary code keying (CCK), and extends the data rate up to 5.5 Mbps and 11 Mbps .

The transmitter and receiver circuits described herein can be operated in all of the WLAN physical layer embodiments described herein, including the DSSS and FHSS embodiments described herein. However, the present invention is not limited to being
operated in WLAN physical layer embodiments that were described herein, as the invention could be configured in other physical layer embodiments.

Figure 94 illustrates a block diagram of an IEEE 802.11 DSSS radio transceiver 9400 using UFT Zero IF technology. DSSS transceiver 9400 includes: antenna 9402, switch 9404, amplifiers 9406 and 9408, transceivers 9410, baseband processor 9412, MAC 9414, bus interface unit 9416, and PCMCIA connector 9418. The DSSS transceiver 9400 includes an IQ receiver 7000 and an IQ transmitter 8000, which are described herein. UFT technology interfaces directly to the baseband processor 9412 of the physical layer. In the receive path, the IQ receiver 7000 transforms a 2.4 GHz RF signal-of-interest into I/Q analog baseband signals in a single step and passes the signals to the baseband processor 9412, where the baseband processor is then responsible for de-spreading and demodulating the signal. In embodiments, the IQ receiver 7000 includes all of the circuitry necessary for accommodating AGC, baseband filtering and baseband amplification. In the transmit path, the transmitter 8000 transforms the I/Q analog baseband signals to a 2.4 GHz RF carrier directly in a single step. The signal conversion clock is derived from a single synthesized local oscillator (LO) 9420. The selection of the clock frequency is determined by choosing a sub-harmonic of the carrier frequency. For example, a 5th harmonic of 490 MHZ was used, which corresponds to a RF channel frequency of 2.450 GHz . Using UFT technology simplifies the requirements and complexity of the synthesizer design.

9. Appendix

The attached Appendix contained in FIGS. 95A-C, 96-161, which forms part of this patent application, includes schematics of an integrated circuit (IC) implementation example of the present invention. This example embodiment is provided solely for illustrative purposes, and is not limiting. Other embodiments will be apparent to persons skilled in the relevant art(s) based on the teachings herein. FIG. 95A illustrates a schematic for a WLAN modulator/demodulator IC according to embodiments of the invention. FIGs. 95B and 95C illustrate an expanded view of the circuit in FIG. 95A. FIGs. 96-161
further illustrate detailed circuit schematics of the WLAN modulator/demodulator integrated circuit.

10. Conclusions

Example implementations of the systems and components of the invention have been described herein. As noted elsewhere, these example implementations have been described for illustrative purposes only, and are not limiting. Other implementation embodiments are possible and covered by the invention, such as but not limited to software and software/hardware implementations of the systems and components of the invention. Such implementation embodiments will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein.

While various application embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.

What Is Claimed Is:

A wireless modem apparatus, comprisint:
a balanced transmitter for up-converting a baseband signal, including,
an inverter, to receive said baseband signal and generate an inverted baseband signal;
a first controlled switch, coupled to a non-inverting output of said inverter, said first controlled switch to sample said baseband signal according to a first control signal, resulting in a first harmonically rich signal;
a second controlled switch, coupled to an inverting output of said inverter, said second controlled switch yo sample said inverted baseband signal according to a second control signal, resulting in a seeond harmonically rich signal; and
a combiner, coupled t ϕ an output of said first controlled switch and an output of said second controlled switch, said combiner to combine said first harmonically rich signal and said second harmonically rich signal, resulting in a third harmonically rich signal.
2. The apparatus of claim 1 wherein said second control signal is phase shifted with
respect to said first control signal respect to said first control signal.
3. The apparatus of clain 1 , wherein said second control signal is phase shifted by 180 degrees with respect to paid first control signal.
4. The apparatus of claim 1, wherein said first control signal and said second control signal each(comprise a plurality of pulses having an associated pulse width T_{A} that operates to inprove energy transfer to a desired harmonic image in said harmonically rich signal.
5. The apparatus-of clain 4 , wherein said pulse width T_{A} is approximately $1 / 2$ of a period of said desired harmonic.
6. The apparatus of claim 1, further comprising a filter attâched to an output of said combiner, wherein said filter selects a desired harmonic from said third harmonically rich signal.
7. The apparatus of claim 1, further comprising:
a balanced receiver, coupled to said balanced modulator, said receiver including,
a first universal fréquency down-conversion module to down-convert an input signal, wherein said first universal frequency down-conversion module downconverts said input signal according to a third confrol signal and outputs a first downconverted signal;
a second universal frequency down-conversion module to down-convert said input signal, wherein saiă second universal frequency down-conversion module down-converts said input signal according to a/fourth control signal and outputs a second down-converted signal; and
a subtractor module that subfracts said second down-converted signal from said first down-converted signal and outphts a down-converted signal.
8. The apparatus of claim 7, wherein said fourth control signal is delayed relative to said third control signal by $.5+\mathrm{n}$ cycles of said input signal, wherein n may be any integer greater than or equal to 1 .
9. The apparatus of claim 7, wherein said first universal frequency down-conversion module under-samples said inpyt signal according to said third control signal, and said second universal frequency down-conversion module under-samples said input signal according to said fourth contfol signal.
10. The apparatus of claim 7, wherein said third and said fourth control signals each comprise a train of pulses having pulse widths that are established to improve energy transfer from said input signal to said first and said second down-converted signals, respectively.
11. The apparatus of claim 10, wherein said train of pulses have a pulse width that is approximately a fraction of a period of said input signal.
12. The apparatus of claim 10 , wherein said train of pulses have pulse width that is approximately multiple periods and a fraction of a period of said input signal. down-conversion modules each comprise a switch and a storage element.
14. The apparatus of claim 13, wherein said storage element comprises a capacitor that reduces a DC offset voltage in said first down-converted signal and said second downconverted signal.
15. The apparatus of claim 7, wherein said subtractor module comprises a differential amplifier.
16. The apparatus of claim 7, further comprising an antenna coupled to said balanced transmitter and said balanced receiver.
17. The apparatus of claim 16, further comprising a switch, said switch connecting either said transmitter or said receiver to said antenna.
18. The apparatus of claim 7 , further comprising a baseband processor coupled to said transmitter and said receiver.
19. The apparatus of claim 7, further comprising a media access controller (MAC) coupled to said transmitter and said receiver.
20. The apparatus of claim 19, wherein said MAC Comprises a means for controlling accessing to a WLAN medium.
21. The apparatus of claim 20, wherein said means for controlling includes carrier sense multiple access with collision avoidance (C\$MA/CA).
22. The apparatus of claim 7 , further comprising a demodulator/modulator facilitation
module coupled to said transmitter aqd receiver. module coupled to said transmitter and receiver.
23. The apparatus of ctaim 22, wherein said demodulator/modulator facilitation module comprises a means for modulating said baseband signal using differential binary phase shift keying (DBPSK).
24. The apparatus of claim 22, wherein said demodulator/modulator facilitation module comprises a means for de-modulating said down-converted signal using differential binary phase shift keying (DBPSK).
25. The apparatus of claim 22, wherein said demodulator/modulator facilitation module comprises a means for spreading said baseband signal.
26. The apparatus of claim 25 , wherein said means for spreading comprises a means for spreading said baseband/signal using a Barker code.
27. The apparatus of claim 22, wherein said demodulator/modulator facilitation module comprises a means for de-spreading said down-converted signal.
28. The apparatus of claim 27, wherein said means for de-spreading comprises a means for de-spreading said down-converted signal using a Barker code.
29. The apparatus of claim 1, wherein said apparatus is an infrastructure device.
30. The apparatus of claim 1 , wherein said apparatus is a client device.
31. The apparatus of claim 1, wherein said first controlled switch shunts said baseband signal to a reference potential according to said/first control signal, and wherein said second controlled switch shunts said inverted baseband signal to said reference potential according to said second control signal

A method of transmitting a baseband signal over a wireless LAN, comprising the steps of:
(1) spreading the baseband signd using a spreading code, resulting in a spread baseband signal; and
(2) differentially sampling the spread baseband signal according to a first control signal and a secend control signal resulting in a plurality of harmonic images that are each representative of the basebahd signal, wherein said first and second control signals have pyrse widths that improve/energy transfer to a desired harmonic image of said plurality of harmonics.
33. The method of claim 32, further comprising the step of:
(3) modulating the baseband signal using phase shift keying prior to step (1).
34. The method of claim 32, further comprising the steps of:
(3) determining availability of a WLAN medium; and
(4) transmitting said desired harmonic over said WLAN medium if said medium is available.
35. The method of claim 34, wherein step (3) ofomprises the step of determining availability of said WLAN medium using carrier sense multiple access (CSMA) protocol. 36. The method of claim 32 , wherein said step (2) comprises the step of:
(a) converting said baseband signal into a differential baseband signal having a first differential baseband conponent and a s¢cond differential baseband component;
(b) sampling said fifst differential component according to said first control signal to generate a first harmonicaky rich signal, and sampling said second differential component according to said second fontrolsignal to generate a second harmonically rich signal, wherein said second-control signal is phase shifted relative to said first control signal; and
(c) combining said first harmonically rich signal and said second harmonically rich signal to generate said harmonic images.
37. The method of claim 32, furfher comprising the step of:
(3) minimizing DC offset voltages between sampling modules during step (2), and thereby minimizing carrier insertion in said harmonic images.
38. The method of claim 32, wherein said pulse widths are approximately $1 / 2$ of a period of said desired harmonic.

In a wireless LAN device, a method of down-converting a received RF signal, comprising the steps of:
down-conderting said received RF signal according to a first control signal and a second control signal, requlting in a down-converted signal, wherein said second control signal is delayed relative ty said first control signal by $.5+\mathrm{n}$ cycles of said received RF signal, wherein n may be any integer greater than or equal to 1 ;
de-spreadipg said down-converted signal using a spreading code, resulting in a despread signal; and
de-modulating said de-spread signal, resulting in a de-modulated signal; wherein said first and said second control signals each comprise a train of pulses having pulse widths that are established to improve energy transfer from said received RF signal to said down-converted signal.
40. The method of claim 39 wherein said pulse widths are approximately $1 / 2$ of a period of said received RF signal.

Bib Data Sheet

United States Patent and Trademark Office
COMMISSIONER FOR PATENTS United States Patent and Trademark Office Washington, D.C. 20231 www.uspto.gov

APPLICATION NUMBER	FILING/RECEIPT DATE	FIRST NAMED APPLICANT	ATTORNEY DOCKET NUMBER
$09 / 632,856$	$08 / 04 / 2000$	David F. Sorrells	1744.0630003

Sterne Kessler Goldstein \& Fox P L L C
Suite 6001100 New York Avenue N W
Washington, DC 20005-3934

FORMALITIES LETTER
||
OC000000005428327

Date Mailed: 09/26/2000

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION

FILED UNDER 37 CFR 1.53(b)
Filing Date Granted
An application number and filing date have been accorded to this application. The item(s) indicated below, however, are missing. Applicant is given TWO MONTHS from the date of this Notice within which to file all required items and pay any fees required below to avoid abandonment. Extensions of time may be obtained by filing a petition accompanied by the extension fee under the provisions of 37 CFR 1.136(a).

- The statutory basic filing fee is missing. Applicant must submit $\$ 690$ to complete the basic filing fee and/or file a small entity statement claiming such status (37 CFR 1.27).
- Total additional claim fee(s) for this application is $\$ 360$.
- $\$ 360$ for 20 total claims over 20.
- The oath or declaration is missing.

A properly signed oath or declaration in compliance with 37 CFR 1.63, identifying the application by the above Application Number and Filing Date, is required.

- To avoid abandonment, a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1.16(e) of $\$ 130$ for a non-small entity, must be submitted with the missing items identified in this letter.
- The balance due by applicant is $\mathbf{\$ 1 1 8 0}$.

A copy of this notice MUST be returned with the reply.
-

2. XPayment Enclosed: Check Credit card Money Order Other* *Charge any deficiencies or credit any overpayments in the fees or fee calculations of Parts 1, 2 and 3 below to Deposit Account No. 19-0036.					
FEE CALCULATION					
1. BASIC FILING FEE					
Large Fee Code	Entity Fee (\$)	Small Fee Code	Entity Fee (\$)	Fee Description	Fee Paid
101	710	201	355	Utility filing fee	\$710.00
106	320	206	160	Design filing fee	
107	490	207	245	Plant filing fee	
108	710	208	355	Reissue filing fee	
114	150	214	75	Provisional filing fe	

SUBTOTAL (1) (\$) 710.00

| SUBTOTAL (1) | (\$) 710.00 |
| :--- | :--- | :--- | :--- | :--- |

※ or number previous/y paid, if greater; For Reissues, see above

3. ADDITIONAL FEES					
Large	Entity	Small	Entity		
Fee Code	Fee (\$)	Fee Code	Fee (\$)	Fee Description	Fee paid
105	130	205	65	Surcharge - late filing fee or oath	130.00
127	50	227	25	Surcharge - late provisional filing fee or cover sheet	
139	130	139	130	Non-English specification	
147	2,520	147	2,520	For filing a request for ex parte reexamination	
112	920**	112	920*	Requesting publication of SIR prior to Examiner action	
113	1,840*	113	1,840*	Requesting publication of SIR after Examiner action	
115	110	215	55	Extension for reply within first month	
116	390	216	195	Extension for reply within second month	
117	890	217	445	Extension for reply within third month	
118	1,390	218	695	Extension for reply within fourth month	
128	1,890	228	945	Extension for reply within fifth month	
119	310	219	155	Notice of Appeal	
120	310	220	155	Filing a brief in support of an appeal	
121	270	221	135	Request for oral hearing	
138	1,510	138	1,510	Petition to institute a public use proceeding	
140	110	240	55	Petition to revive - unavoidable	
141	1,240	241	620	Petition to revive - unintentional	
142	1,240	242	620	Utility issue fee (or reissue)	
143	440	243	220	Design issue fee	
144	600	244	300	Plant issue fee	
122	130	122	130	Petitions to the Commissioner	
123	130	123	130	Petitions related to provisional applications	
126	180	126	180	Submission of Information Disclosure Stmt	
581	40	481	40	Recording each patent assignment per property (times number of properties)	
146	710	246	355	Filing a submission after final rejection (37 CFR 1.129(a))	
149	710	249	355	For each additional invention to be examined (37 CFR 1.129(b))	
179	710	279	355	Request for Continued Examination (RCE)	
169	900	169	900	Request for expedited examination of a design application	
Other fee (s	(specify) :				

Page 639 of 1284 WARNING: Information on this form may become public. Credit card information should not

APPLICATION NUMBER	FILING/RECEIPT DATE	FIRST NAMED APPLICANT	ATTORNEY DOCKET NUMBER
$09 / 632,856$	$08 / 04 / 2000$	David F. Sorrells	1744.0630003

Sterne Kessler Goldstein \& Fox P L L C Suite 6001100 New York Avenue N W Washington, DC 20005-3934

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL AFPLICATION

FILED UNDER 37 CFR 1.53(b)

Filing Date Granted

An application number and filing date have been accorded to this application. The item(s) indicated below, however, are missing. Applicant is given TWO MONTHS from the date of this Notice within which to file all required items and pay any fees required below to avoid abandonment. Extensions of time may be obtained by filing a petition accompanied by the extension fee under the provisions of 37 CFR 1.136(a).

- The statutory basic filing fee is missing. Applicant must submit $\$ 690$ to complete the basic filing fee and/or file a small entity statement claiming such status (37 CFR.1.27).
- Total additional claim fee(s) for this application is $\$ 360$.
- $\$ 360$ for 20 total claims over 20.
- The oath or declaration is missing. A properly signed oath or declaration in compliance with 37 CFR 1.63, identifying the application by the above Application Number and Filing Date, is required.
- To avoid abandonment, a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1.16(e) of $\$ 130$ for a non-small entity, must be submitted with the missing items identified in this letter.
- The balance due by applicant is $\mathbf{\$ 1 8 0}$.

Declaration for Patent Application

As a below named inventor, I hereby declare that:
My residence, post office address and citizenship are as stated below next to my name.
I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter that is claimed and for which a patent is sought on the invention entitled Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase
Embodiments and Circuit Implementations, the specification of which is attached hereto unless the following box is checked:
$\otimes \quad$ was filed on August 4, 2000;
as United States Application Number or PCT International Application Number 09/632,856; and was amended on \qquad (if applicable).

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information that is material to patentability as defined in 37 C.F.R. § 1.56.
I hereby claim foreign priority benefits under 35 U.S.C. § $119(\mathrm{a})$-(d) or $\S 365(\mathrm{~b})$ of any foreign application(s) for patent or inventor's certificate, or $\S 365(\mathrm{a})$ of any PCT international application, which designated at least one country other than the United States listed below, and have also identified below any foreign application for patent or inventor's certificate, or PCT international application having a filing date before that of the application on which priority is claimed.

Prior Foreign Application(s)			Priority Claimed	
			$\square \mathrm{Yes}$	\square No
(Application No.)	(Country)	(Day/Month/Year Filed)		
			$\square \mathrm{Yes}$	\square No
(Application No.)	(Country)	(Day/Month/Year Filed)		

I hereby claim the benefit under 35 U.S.C. § 119(e) of any United States provisional application(s) listed below.

60/147,129
(Application No.)

August 4, 1999
(Filing Date)
(Application No.)
(Filing Date)
I hereby claim the benefit under 35 U.S.C. § 120 of any United States application(s), or under § 365(c) of any PCT international application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT international application in the manner provided by the first paragraph of 35 U.S.C. § 112 , I acknowledge the duty to disclose information that is material to patentability as defined in 37 C.F.R. § 1.56 that became available between the filing date of the prior application and the national or PCT international filing date of this application.

09/525,615
(Application No.)
09/526,041
(Application No.)

March 14,2000
(Filing Date)
March 14, 2000
(Filing Date)

Pending
(Status - patented, pending, abandoned)
Pending
(Status - patented, pending, abandoned)

Send Correspondence to:

STERNE, KESSLER, GOLDSTEIN \& FOX P.L.L.C.
1100 New York Avenue, N.W.
Suite 600
Washington, D.C. 20005-3934

Direct Telephone Calls to:
(202) 371-2600

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

| Full name of sole or first inventor
 David F. Sorrells |
| :--- | :--- |
| Signature of sole or first inventor |
| Residence
 Middleburg, Florida |
| Citizenship
 U.S.A. |
| Full name of second inventor
 Michael J. Bultman |
| Signature of second inventor |
| Residence |
| Jacksonville, Florida |

| Full name of third inventor |
| :---: | :---: |
| Robert W. Cook |

ParkerVision, Inc. , a corporation of Jacksonville, FL, having a principal place of business at 8493 Baymeadows Way, Jacksonville, FL 32256 , is assignee of the entire right, title and interest for the United States of America (as defined in 35 U.S.C. § 100), by reason of an Assignment to the Assignee executed on
(1) $10-5-00$
(2) $10-5-00$
(3) $10-5-00$
(4) $10-a-00$,
(5) $10-5-00$
(6) $10-6-00$
(7) $10-5-00$, of an invention known as Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit Implementations (Attorney Docket No. $1744.0630003 / \mathrm{MOL} / \mathrm{JTH}$), which is disclosed and claimed in a patent application of the same title by the inventors (1) David F. Sorrells, (2) Michael J. Bultman, (3) Robert W. Cook, (4) Richard C. Looke, (5) Charley D. Moses, Jr., (6) Gregory S. Rawlins, (7) Michael W. Rawlins, (said application filed on August 4, 2000 at the U.S. Patent and Trademark Office, having Application Number 09/632,856).

The Assignee hereby appoints the following U.S. attorneys to prosecute this application and any continuation, divisional, continuation-in-part, or reissue application thereof, and to transact all business in the U.S. Patent and Trademark Office connected therewith: Robert Greene Sterne, Esq., Reg. No. 28,912; Edward J. Kessler, Esq., Reg. No. 25,688; Jorge A. Goldstein, Esq., Reg. No. 29,021; Samuel L. Fox, Esq., Reg. No. 30,353; David K.S. Cornwell, Esq., Reg. No. 31,944; Robert W. Esmond, Esq., Reg. No. 32,893; Tracy-Gene G. Durkin, Esq., Reg. No. 32,831; Michele A. Cimbala, Esq., Reg. No. 33,851; Michael B. Ray, Esq., Reg. No. 33,997; Robert E. Sokohl, Esq., Reg. No. 36,013; Eric K. Steffe, Esq., Reg. No. 36,688, Michael Q. Lee, Esq., Reg. No. 35,239; Steven R. Ludwig, Esq., Reg. No. 36,203; John M. Covert, Esq., Reg. No. 38,759; and Linda E. Alcorn, Esq., Reg. No. 39,588. The Assignee hereby grants said attorneys the power to insert on this Power of Attorney any further identification that may be necessary or desirable in order to comply with the rules of the U.S. Patent and Trademark Office.

Send correspondence to:

Sterne, Kessler, Goldstein \& Fox p.l.L.C.
1100 New York Avenue, N.W.
Suite 600
Washington, D.C. 20005-3934
U.S.A.

Direct phone calls to 202-371-2600.

BY: Jeffrey L. Parker
TITLE: Chairman and Chief Executive Officer
DATE:
$10-12-00$
©2000,
Sterne, Kessler, Goldstein \& Fox p.l.L.C. P:IUSERSISWILLIAMUTH Folder (New) 17444.06300031 poa
s. skiment

Certificate Under 37 C.F.R. § 3.73(b)

Applicant: \qquad Sorrells et al.

Application No.: 09/632,856 Filed/Issue Date: August 4, 2000

Entitled: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit Implementations

ParkerVision, Inc. \qquad , a corporation \qquad
(Name of Assignee)
(Type of Assignee, e.g., corporation, partnership, university, govemment agency,etc.)
states that it is:

1. [X] the assignee of the entire right, title, and interest, or
2. [] an assignee of an undivided part interest
in the patent application/patent identified above by virtue of either:
A. [X] An Assignment from the inventor(s) of the patent application/patent identified above. The assignment was recorded in the Patent and Trademark Office at Reel \qquad Frame \qquad , or for which a copy thereof is attached.
OR
B. [] A chain of title from the inventor(s) of the patent application/patent identified above to the current assignee as shown below:
3. From: \qquad To: \qquad
The document was recorded in the Patent and Trademark Office at Reel \qquad , Frame \qquad or for which a copy thereof is attached.
4. From: \qquad To: \qquad
The document was recorded in the Patent and Trademark Office at Reel \qquad , Frame \qquad , or for which a copy thereof is attached.
5. From: \qquad To: \qquad The document was recorded in the Patent and Trademark Office at Reel \qquad Frame \qquad or for which a copy thereof is attached.
[] Additional documents in the chain of title are listed on a supplemental sheet.
[X] Copies of assignments or other documents in the chain of title are attached.
[NOTE: A separate copy (i.e., the original assignment document or a true copy of the original document) must be submitted to Assignment Division in accordance with 37 CFR Part 3, if the assignment is to be recorded in the records of the PTO. See MPEP 302-302.8]

The undersigned (whose title is supplied below) is empowered to act on behalf of the assignee.

Date:
$10-12-00$
Name: Jeffrey L. Parker
Title: Chairman and Chief Executive Officer

P:IUSERSISWILLIAMNTH Folder (New) 11744.0630003 l cent 3 SKGF Rev.3/3/00 mac

Abstract

ASSIGNMENT

In consideration of the sum of One Dollar ($\$ 1.00$) or equivalent and other good and valuable consideration paid to each of the undersigned inventors:(1) David F. Sorrells, (2) Michael J. Bultman, (3) Robert W. Cook, (4) Richard C. Looke, (5) Charley D. Moses, Jr., (6) Gregory S. Rawlins, (7) Michael W. Rawlins, the undersigned inventor(s) hereby sell(s) and assigns to ParkerVision, Inc. (the Assignee) his/her entire right, title and interest, including the right to sue for past infringement and to collect for all past, present and future damages:

check applicable box(es) \otimes for the United States of America (as defined in 35 U.S.C. § 100), \triangle and throughout the world,
(a) in the invention known as Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit Implementations for which application for patent in the United States of America has been executed by the undersigned on (1) $10-5 \cdot 00$, (2) $10-5-00$, (3) $10-5-00$, (4) $10-9-00$, (5) $10-5-00$, (6) $10-6 \cdot 00$ (7) $10-5-00$ (also known as United States Application No. 09/632,856, filed August 4, 2000, in any and all applications thereon, in any and all Letters Patent(s) therefor, and
(b) in any and all applications that claim the benefit of the patent application listed above in part (a), including continuing applications, reissues, extensions, renewals and reexaminations of the patent application or Letters Patent therefor listed above in part (a), to the full extent of the term or terms for which Letters Patents issue, and
(c) in any and all inventions described in the patent application listed above in part (a), and in any and all forms of intellectual and industrial property protection derivable from such patent application, and that are derivable from any and all continuing applications, reissues, extensions, renewals and reexaminations of such patent application, including, without limitation, patents, applications, utility models, inventor's certificates, and designs together with the right to file applications therefor; and including the right to claim the same priority rights from any previously filed applications under the International Agreement for the Protection of Industrial Property, or any other international agreement, or the domestic laws of the country in which any such application is filed, as may be applicable;
all such rights, title and interest to be held and enjoyed by the above-named Assignee, its successors, legal representatives and assigns to the same extent as all such rights, title and interest would have been held and enjoyed by the Assignor had this assignment and sale not been made.

The undersigned inventor(s) agree(s) to execute all papers necessary in connection with the application(s) and any continuing (continuation, divisional, or continuation-in-part), reissue, reexamination or corresponding application(s) thereof and also to execute separate assignments in connection with such application(s) as the Assignee may deem necessary or expedient.

The undersigned inventor(s) agree(s) to execute all papers necessary in connection with any interference or patentenforcement action (judicial or otherwise) related to the application(s) or any continuing (continuation, divisional, or continuation-in-part), reissue or reexamination application(s) thereof and to cooperate with the Assignee in every way possible in obtaining evidence and going forward with such interference or patent enforcement action.

The undersigned inventor(s) hereby represent(s) that he/she has full right to convey the entire interest herein assigned, and that he/she has not executed, and will not execute, any agreement in conflict therewith.

The undersigned inventors) hereby grants) Robert Greene Sterne, Esquire, Registration No. 28,912; Edward J. Kessler, Esquire, Registration No. 25,688; Jorge A. Goldstein, Esquire, Registration No. 29,021; Samuel L. Fox, Esquire, Registration No. 30,353; David K.S. Compel, Esquire, Registration No. 31,944; Robert W. Esmond, Esquire, Registration No. 32,893; Tracy-Gene G. Durkin, Esquire, Registration No. 32,831; Michele A. Cimbala, Esquire, Registration No. 33,851; Michael B. Ray, Esquire, Registration No. 33,997; Robert E. Sokohl, Esquire, Registration No. 36,013; Eric K. Steffe, Esquire, Registration No. 36,688; Michael Q. Lee, Esquire, Registration No. 35,239; Steven R. Ludwig, Esquire, Registration No. 36,203; John M. Covert, Esquire, Registration No. 38,759; and Linda E. Alcorn, Esquire, Registration No. 39,588; all of Sterne, Kessler, Goldstein \& Fox p.l.L.C., 1100 New York Avenue, N.W., Suite 600, Washington, D.C. 20005-3934, power to insert in this assignment any further identification that may be necessary or desirable in order to comply with the rules of the United States Patent and Trademark Office for recordation of this document.

IN WITNESS WHEREOF, executed by the undersigned inventors) on the date opposite his/her name.

Date:

Signature of Inventor:

Date:
 Signature of Inventor:

Date: $10 / 05 / 00$

Robert W. Cook

Date:
 Signature of Inventor:

Date:

Date: \qquad Signature of Inventor:
Gregory S. Rawlings

Date: \qquad Signature of Inventor:

Michael W. Rawlings

The undersigned inventor (s) hereby grants) Robert Greene Stere, Esquire, Registration No. 28,912; Edward J. Kessler, Esquire, Registration No. 25,688; Jorge A. Goldstein, Esquire, Registration No. 29,021; Samuel L. Fox, Esquire, Registration No. 30,353; David K.S. Cornwell, Esquire, Registration No. 31,944; Robert W. Esmond, Esquire, Registration No. 32,893; Tracy-Gene G. Durkin, Esquire, Registration No. 32,831; Michele A. Cimbala, Esquire, Registration No. 33,851; Michael B. Ray, Esquire, Registration No. 33,997; Robert E. Sokohl, Esquire, Registration No. 36,013; Eric K. Steffe, Esquire, Registration No. 36,688; Michael Q. Lee, Esquire, Registration No. 35,239; Steven R. Ludwig, Esquire, Registration No. 36,203; John M. Covert, Esquire, Registration No. 38,759; and Linda E. Alcor, Esquire, Registration No. 39,S88; all of Sterne, Kessler, Goldstein \& FoX p.l.l.c., 1100 New York Avenue, N.W., Suite 600, Washington, D.C. 20005-3934, power to insert in this assignment any further identification that may be necessary or desirable in order to comply with the rules of the United States Patent and Trademark Office for recordation of this document.

IN WITNESS WHEREOF, executed by the undersigned inventors) on the date opposite his/her name.
Date: \qquad Signature of Inventor: David F. Sorrells
Date: \qquad Signature of Inventor:
Michael J. Bultman
Date: \qquad Signature of Inventor:

> Robert W. Cook
Date: \qquad Signature of Inventor:
\qquad
Date: \qquad Signature of Inventor:
Date:
 Signature of Inventor.
\qquad
Date:
 Signature of inventor.

Sterne, Kessler, Goldstein \&c Fox p.l.l.c.c. 1100 NEW YORK AVENUE, N.W., SUITE 600

 WASHINGTON, D.C. 20005-3934www.skgficom
WWW.skgf.com
PHONE: (202) 371-2600 FACSIMILE: (202) 371-2540

```
Robert Greene Sterne
EDWARD J. KESSLER
EDWARD J. KESSLER
JORGE A. GOLO
SAMUEL L. FOX
ROBERT W. ESMOND
Tracy-GENE G. Durkin
Michele A. Cimbala
MichaEl b. Ray
Robert E. Sokohl
ROBERT E. SOKOH
Eric K. Steffe
 JOHN M. COVERT* LINDA E. ALCORN RAZ E. FLESHNER ROBERT C. MILLONIG MICHAEL V. MESSINGER JUDITH U. KIM
TIMOTHY J. SHEA, JR. DONALO R. MCPHAIL Patrick E. Garrett STEPHEN G. WHITESIDE Jeffrey t. Helvey*

Heid: L. Kraus JEFFREY R. KURIN JEFFREY R. KURIN
RAYMOND MILLIEN RAYMOND MILLIEN
PATRICK D. O'BRIEN Lawrence b. Bugalsky Crystal D. Sayles* Eowaro w. yee Albert L. Ferro* DONALD R. BANOWIT peter a. Jackman PETER A. JACKMAN
MOLLY A. MCCALL Molly A. McCall
TERESA U. MEDLER

Jeffrey S. Weaver KRISTIN K. VIOOVICH KENDRICK P. PATTERSON DONALDJ. FEATHERSTONE Grant E. reed vincent l. Capuano John A. Harroun* Matthew M. Catlett* Nathan K. Kelley* albert J. Fasulo II * W. BRIAN EDGE*

January 8, 2001

KAREN R. MARKOWICZ** SUZANNE E. ZISKA** BRIAN J. DEL BUONO** BRIAN J. DEL BUONO* ANDREA J. KAMAG
NANCY J. LEITH** NANCY J. LEITH**
TARJA H. NAUKKARINEN* TARJA H. NAUKKARINEN**
*bar other than d.c.
*REgistered patent agents


Commissioner for Patents
Washington, D.C. 20231

\section*{Attn: Office of Initial Patent Examination Customer Service Center}

Re: U.S. Utility Patent Application
Appl. No. 09/632,856; Filed: August 4, 2000
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit Implementations
Inventors: Sorrells et al.
Our Ref: 1744.0630003/MQL/JTH
Sir:

Transmitted herewith for appropriate action are the following documents:
1. Request for Corrected Official Filing Receipt;
2. A photocopy of the Official Filing Receipt, with corrections indicated in "red ink"; and
3. Return postcard.

It is respectfully requested that the attached postcard be stamped with the date of filing of these documents, and that it be returned to our courier. In the event that extensions of time are necessary to prevent abandonment of this patent application, then such extensions of time are hereby petitioned.

Commissioner for Patents
January 8, 2001
Page 2

The U.S. Patent and Trademark Office is hereby authorized to charge any fee deficiency, or credit any overpayment, to our Deposit Account No. 19-0036. A duplicate copy of this letter is enclosed.

Respectfully submitted,


Attorney for Applicants
Registration No. 35,239
JTH/slw
Enclosures

P:IUSERSISWILLIAMUTTH Folder (New) 11744.0630003 lcorrect.ptoits

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

In re application of:
Sorrells et al.
Appl. No. 09/632,856
Filed: August 4, 2000


For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase
Embodiments and Circuit Implementations

Art Unit: 2745
Examiner: To be Assigned
Atty. Docket: 1744.0630003/MQL/JTH

MAR 272001
Technology Center 2600

\section*{Request for Corrected Official Filing Receipt}

Commissioner for Patents
Washington, D.C. 20231

Attn: Office of Initial Patent Examination
Customer Service Center

Sir:
Applicants hereby request that a corrected Official Filing Receipt be issued and sent to the undersigned representative. Specifically, the following corrections to the Official Filing Receipt are requested:

In the Continuing Data section, after "08/04/1999, " insert --, 09/525,615 03/14/2000, and 09/526,041 03/14/2000.--

In support of the above request, a photocopy of the instant Official Filing Receipt is enclosed with the corrections noted in red. It is requested that a corrected Official Filing Receipt be issued, and sent to the undersigned at the earliest possible time.

Date.


1100 New York Avenue, N.W.
Suite 600
Washington, D.C. 20005-3934
(202) 371-2600
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline APPLICATION NUMBER & FILING DATE & GRP ART UNIT & FIL FEE REC'D & ATTY.DOCKET.NO & DRAWINGS & TOT CLAIMS & IND CLAIMS \\
\hline \(09 / 632,856\) & \(08 / 04 / 2000\) & 2745 & 1200 & 1744.0630003 & 208 & 40 & 3
\end{tabular}

Sterne Kessler Goldstein \& Fox P L L C
Suite 6001100 New York Avenue N W
FILING RECEIPT

Washington, DC 20005-3934


Date Mailed: 12/11/2000

Receipt is acknowledged of this nonprovisional Patent Application. It will be considered in its order and you will be notified as to the results of the examination. Be sure to provide the U.S. APPLICATION NUMBER, FILING DATE, NAME OF APPLICANT, and TITLE OF INVENTION when inquiring about this application. Fees transmitted by check or draft are subject to collection. Please verify the accuracy of the data presented on this receipt. If an error is noted on this Filing Receipt, please write to the Office of Initial Patent Examination's Customer Service Center. Please provide a copy of this Filing Receipt with the changes noted thereon. If you received a "Notice to File Missing Parts" for this application, please submit any corrections to this Filing Receipt with your reply to the Notice. When the PTO processes the reply to the Notice, the PTO will generate another Filing Receipt incorporating the requested corrections (if appropriate).

\section*{Applicant(s) \\ David F. Sorrells, Middleburg; FL. \\ Michael J. Bultman, Jacksonville, FL; Robert W. Cook, Switzerland, FL; Richard C. Looke, Jacksonville, FL ; Charley D. Moses JR., Jacksonville, FL; Gregory S. Rawlins, Lake Mary, FL; Michael W. Rawlins, Lake Mary, FL ; \\ Continuing Data as Claimed by Applicant \\ }

Title
Wireless local area network (WLAN) using universal frequency translation technology including multi-phase embodiments and circuit implementations

Preliminary Class
455
RECEIVED
MAR 272001
Tectrology Centar 2600

\section*{LICENSE FOR FOREIGN FILING UNDER}

\section*{Title 35, United States Code, Section 184 Title 37, Code of Federal Regulations, 5.11 \& 5.15}

\section*{GRANTED}

The applicant has been granted a license under 35 U.S.C. 184, if the phrase "IF REQUIRED, FOREIGN FILING LICENSE GRANTED" followed by a date appears on this form. Such licenses are issued in all applications where the conditions for issuance of a license have been met, regardless of whether or not a license may be required as set forth in 37 CRF 5.15. The scope and limitations of this license are set forth in 37 CFR 5.15 (a) unless an earlier license has been issued under 37 CFR 5.15 (b). The license is subject to revocation upon written notification. The date indicated is the effective date of the license, unless an earlier license of similar scope has been granted under 37 CFR 5.13 or 5.14 .

This license is to be retained by the licensee and may be used at any time on or after the effective date thereof unless it is revoked. This license is automatically transferred to any related applications(s) filed under 36 CFR 1.53 (d). This license is not retroactive.

The grant of a license does not in any way lessen the responsibility of a licensee for the security of the subject matter as imposed by any Government contract or the provisions of existing laws relating to espionage and the national security or the export of technical data. Licensees should apprise themselves of current regulations especially with respect to certain countries, of other agencies, particularly the Office of Defense Trade Controls, Department of State (with respect to Arms, Munitions and Implements of War (22 CFR 121-128); the Office of Export Administration, Department of Commerce (15 CFR 370.10 (j)); the Office of Foreign Assets Control, Department of Treasury ( 31 CFR Parts \(500+\) ) and the Department of Energy.

\section*{NOT GRANTED}

No license under 35 U.S.C. 184 has been granted at this time, if the phrase "IF REQUIRED, FOREIGN FILING LICENSE GRANTED" DOES NOT appear on this form. Applicant may still petition for a license under 37 CFR 5.12, if a license is desired before the expiration of 6 months from the filing date of the application. If 6 months has lapsed from the filing date of this application and the licensee has not received any indication of a secrecy order under 35 U.S.C. 181, the licensee may foreign file the application pursuant to 37 CFR 5.15(b).

\section*{PLEASE NOTE the following information about the Filing Receipt:}
- The articles such as "a," "an" and "the" are not included as the first words in the title of an application. They are considered to be unnecessary to the understanding of the title:
- The words "new," "improved," "improvements in" or "relating to" are not included as first words in the title of an application because a patent application, by nature, is a new idea or improvement.
- The title may be truncated if it consists of more than 600 characters (letters and spaces combined).
- The docket number allows a maximum of 25 characters.
- If your application was submitted under 37 CFR 1.10 , your filing date should be the "date in" found on the Express Mail label. If there is a discrepancy, you should submit a request for a corrected Filing Receipt along with a copy of the Express Mail label showing the "date in."
- The title is recorded in sentence case.

Any corrections that may need to be done to your Filing Receipt should be directed to:

> Assistant Commissioner for Patents
> Office of Initial Patent Examination
> Customer Service Center
> Washington, DC 20231

\section*{Unted States Patent and Trademark Uffice}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
SERIAL NUMBER \\
\(09 / 632,856\)
\end{tabular} & \begin{tabular}{c} 
FILING DATE \\
\(08 / 04 / 2000\) \\
RULE
\end{tabular} & CLASS & GROUP ART UNIT & \begin{tabular}{c} 
ATTORNEY \\
DOCKET NO. \\
2745
\end{tabular} \\
\hline
\end{tabular}

\section*{APPLCANTS}

David F. Sorrells, Middleburg, FL ;
Michael J. Bultman, Jacksonville, FL ;
Robert W. Cook, Switzerland, FL ;
Richard C. Looke, Jacksonville, FL ;
Charley D. Moses JR., Jacksonville, FL ;
Gregory S. Rawlins, Lake Mary, FL;
Michael W. Rawlins, Lake Mary, FL;

CONTINUING DATA *************************
THIS APPLN CLAIMS BENEFIT OF 60/147,129 08/04/1999
WHICH IS A CON OF 09/525,615 03/14/2000

IF REQUIRED, FOREIGN FILING LICENSE
GRANTED ** 09/26/2000

\section*{in}


\section*{ADDRESS}

Sterne Kessler Goldstein \& Fox P L L C
Suite 6001100 New York Avenue N W
Washington ,DC 20005-3934
TITLE
Wireless local area network (WLAN) using universal frequency translation technology including multi-phase embodiments and circuit implementations
\begin{tabular}{|c|c|c|}
\hline \multirow{6}{*}{\[
\begin{gathered}
\text { FILING FEE } \\
\text { RECEIVED } \\
1200
\end{gathered}
\]} & \multirow{6}{*}{\begin{tabular}{l}
FEES: Authority has been given in Paper \\
No. \(\qquad\) to charge/credit DEPOSIT ACCOUNT \\
No. \(\qquad\) for following:
\end{tabular}} & \(\square_{\text {All Fees }}\) \\
\hline & & 1.16 Fees ( Filing) \\
\hline & & \(\qquad\) time ) \\
\hline & & 1.18 Fees ( Issue ) \\
\hline & & \(\square\) Other \\
\hline & & \(\square_{\text {Credit }}\) \\
\hline
\end{tabular}


Sterne, Kessler, Goldstein \& Fox p.l.l.c.

IIOO NEW YORK AVENUE, N.W. • WASHINGTON, D.C. 20005-3934
PHONE: (2O2) 371-2600 • FACSIMILE: (202) 371-2540 • www.skgf.com

LAWRENCE B. BUGAISKY CRYSTAL D. SAYLES EDWARD W. YEE ALEERT L. FERRO* DONALD R. BANOWIT PETER A. JACKMAN Molly A. McCall Teresa U. Medler JEFFREY S. WEAVER KRISTIN K. VIDOVICH KENDRICK P. PATTERSON KENDRICK P. PATTERSON DONALDJ. FEATHERSTONE GRANT E. REED

Vincent L. CAPUANO JOHN A. HARROUN* ALBERT J. FASULO II* Eldora Ellison Floyd* W. RUSSELL SWINDELL THOMAS C. FIALA Brian J. Del buono" Virgil L. BEASton* RYAN J. STAMPER* KAREN R. MARKOWICZ** SUZANNE E. ZISKA** ANDREA J. KAMAGE** ANDREA J. KAMAG

June 6, 2001

ElizABETH J. HAANES* MARK P. TERRY** JOSEPH M. CONRAD, H1** DOUGlas M. Wilson** Reginald D. Lucas** ANN E. SUMMERFIELD** CYNTHIA M. BOUCHEZ** Helene C. Carlson* BRUCE E. CHALKER** DUSTIN T. JOHNSON** MATTHEW 」 DOWD**

\section*{WRITER'S DIRECT NUMBER:}
(202) 371-2674

INTERNET ADDRESS:
MLEE@SKGF.COM

Commissioner for Patents
Washington, D.C. 20231

Re: U.S. Utility Patent Application
Appl. No. 09/632,856; Filed: August 4, 2000


For: Wireless Local Area Network (WLAN) Using Universal Freginency Translation Technology Including Multi-Phase Embodimentis and Circuit Implementations
Inventors: Sorrells et al.
Our Ref: 1744.0630003/MQL/JTH

Sir:
Transmitted herewith for appropriate action are the following documents:
1. Preliminary Amendment; and
2. Return postcard.

It is respectfully requested that the attached postcard be stamped with the date of filing of these documents, and that it be returned to our courier. In the event that extensions of time are necessary to prevent abandonment of this patent application, then such extensions of time are hereby petitioned.

Commissioner for Patents
June 6, 2001
Page 2

The U.S. Patent and Trademark Office is hereby authorized to charge any fee deficiency, or credit any overpayment, to our Deposit Account No.'19-0036. A duplicate copy of this letter is enclosed.


JTH/slw
Enclosures

P:IUSERSISWILLIAMUTH Folder (New) 1744.0630003 ไamend.ptoltr


\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}


Filed: August 4, 2000
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit Implementations

Art Unit: 2634
Examiner: TBD
Atty Docket: 1744.0630003

\section*{Preliminary Amendment}

\section*{Assistant Commissioner of Patents}


Washington, D.C. 20231

Sir:
Prior to Examination of the captioned application, Applicants submit the following Preliminary Amendment.

It is not believed that extensions of time or fees for net addition of claims are required, beyond those which may otherwise be provided for in documents accompanying this paper. However, in the event that additional extensions of time are necessary to allow consideration of this paper, then such extensions of time are hereby petitioned under 37 CFR § 1.136(a), and any fees required therefore (including fees for net addition of claims) are hereby authorized to be charged to our Deposit Account No. 19-0036.

Kindly enter the following amendments:

\section*{In the Specification:}

On page 1 , lines \(12-15\), replace with the following:

This application claims the benefit of U.S. Provisional Application No.60/147,129, filed on August 4, 1999; and this application is a continuation-in-part of U.S. Application No. \(09 / 525,615\), filed on March 14, 2000; and this application is a continuation-in-part of U.S. Application No. 09/526,041, filed on March 14, 2000, all of which are incorporated herein by reference in their entireties.

\section*{In the Claims:}

Please cancel claims 4-5,10-12, 38, and 40.
Please amend claims 13, 32, and 39 as follows:
13. (Once Amended) The apparatus of claim 7, wherein said first and said second universal frequency down-conversion modules each comprise a switch and a storage element.
32. (Once Amended) A method of transmitting a baseband signal over a wireless LAN, comprising the steps of:
(1) spreading the baseband signal using a spreading code, resulting in a spread baseband signal; and
(2) differentially sampling the spread baseband signal according to a first control signal and a second control signal resulting in a plurality of harmonic images that are each representative of the baseband signal, wherein said first and second control signals have pulse widths.
39. (Once Amended) In a wireless LAN device, a method of down-converting a received RF signal, comprising the steps of:
down-converting said received RF signal according to a first control signal and a second control signal, resulting in a down-converted signal, wherein said second control signal is delayed relative to said first control signal by \(.5+\mathrm{n}\) cycles of said received RF signal, wherein n may be any integer greater than or equal to 1 ;

Sorrells et al.
Appl: 09/632,856
de-spreading said down-converted signal using a spreading code, resulting in a de-spread signal; and
de-modulating said de-spread signal, resulting in a de-modulated signal; wherein said first and said second control signals each comprise a train of pulses having pulse widths.

\section*{Remarks}

Claims 1-3, 6-9, 13-37, and 39 are pending in this application. By the foregoing amendment, Applicants seek to cancel claims 4-5, 10-12, 38, and 40, and amend claims 13, 32, and 39. Furthermore, the specification has been amended to correct the priority claim. These changes are believed to be fully supported by the specification and are not believed to introduce new matter. Thus, it is respectfully requested that the amendments be entered by the Examiner. The Examiner is invited to telephone the undersigned representative if it is believe that an interview might be useful for any reason.

Date:


1100 New York Avenue, N.W.
Washington, D.C. 20005-3934 (202) 371-2600

P103-74.wpd

\section*{Version with markings to show changes made}

\section*{In the Specification:}

Page 1, lines 12-15:
This application claims the benefit of [the following:] U.S. Provisional Application No.60/147,129, filed on August 4, 1999; and this application is a continuation-in-part of U.S. Application No. 09/525,615, filed on March 14, 2000; and this application is a continuation-inpart of U.S. Application No. 09/526,041, filed on March 14, 2000, all of which are incorporated herein by reference in their entireties.

\section*{In the Claims:}
13. (Once Amended) The apparatus of claim [10] 7, wherein said first and said second universal frequency down-conversion modules each comprise a switch and a storage element.
32. (Once Amended) A method of transmitting a baseband signal over a wireless LAN, comprising the steps of:
(1) spreading the baseband signal using a spreading code, resulting in a spread baseband signal; and
(2) differentially sampling the spread baseband signal according to a first control signal and a second control signal resulting in a plurality of harmonic images that are each representative of the baseband signal, wherein said first and second control signals have pulse widths [that improve energy transfer to a desired harmonic image of said plurality of harmonics].
39. In a wireless LAN device, a method of down-converting a received RF signal, comprising the steps of:
down-converting said received RF signal according to a first control signal and a second control signal, resulting in a down-converted signal, wherein said second control signal is delayed

Sorrells et al.
Appl: 09/632,856
relative to said first control signal by \(.5+\mathrm{n}\) cycles of said received \(R F\) signal, wherein n may be any integer greater than or equal to 1 ;
de-spreading said down-converted signal using a spreading code, resulting in a de-spread signal; and
de-modulating said de-spread signal, resulting in a de-modulated signal;
wherein said first and said second control signals each comprise a train of pulses having pulse widths [that are established to improve energy transfer from said received RF signal to said down-converted signal].

Claims 4-5,10-12, 38, and 40 have been canceled.

IN THE LINTED STATES PATENT AND TRADEMARK OFFICE

In re application of:
David F. SORRELLS et al.
Appl. No. 09/632;856
Filed: August 4, 2000
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit Implementations

Confirmation No.: 2377
Art Unit: 2634
Examiner: Chin, Stephen
Atty. Docket: 1744.0630004
RECEIVED
JUN 1 - 2003
Technology Center 2600

\section*{Second Preliminary Amendment Under 37 C.F.R. § 1.115 in the Revised Format of the Pre-OG Notice Dated January 31, 2003}

Commissioner for Patents
PO Box 1450
Alexandria, VA 22313-1450
Sir:
In advance of prosecution, Applicants submit the following amendments and remarks.
This Second Preliminary Amendment is provided in the format approved in the pre-OG Notice dated January 31, 2003, entitled, "Amendments In A Revised Format Now Permitted," and in the following format:
(A) Each section begins on a separate sheet;
(B) Starting on a separate sheet, amendments to the specification by presenting replacement paragraphs marked up to show changes made;
(C) Starting on a separate sheet, a complete listing of all of the claims:
- in ascending order;
- with status identifiers; and
- with markings in the currently amended claims;
(D) Starting on a separate sheet, the Remarks.

It is not believed that extensions of time or fees for net addition of claims are required beyond those that may otherwise be provided for in documents accompanying this paper. However, if additional extensions of time are necessary to prevent abandonment of this application, then such extensions of time are hereby petitioned under 37 C.F.R. § 1.136(a), and any fees required therefor (including fees for net addition of claims) are hereby authorized to be charged to our Deposit Account No. 19-0036.

\section*{Amendments to the Claims}

Please cancel claims 1́-3, '́-9, 13-3' 37 and 39.

Please add the following new claims:
41. A wireless modem apparatus, comprising:
a balanced receiver for frequency down-converting an input signal including, a first frequency down-conversion module to down-convert the input signal, wherein said first frequency down-conversion module down-converts said input signal according to a first control signal and outputs a first down-converted signal;
a second frequency down-conversion module to down-convert said input signal, wherein said second frequency down-conversion module down-converts said input signal according to a second control signal and outputs a second down-converted signal; and a subtractor module that subtracts said second down-converted signal from said first down-converted signal and outputs a down-converted signal.
42. The apparatus of claim 41, wherein said second control signal is delayed relative to said first control signal by \((.5+\mathrm{n})\) cycles of said input signal, wherein n is an integer greater than or equal to 1 .
43. The apparatus of claim 41, wherein said first frequency down-conversion module under-samples said input signal according to said first control signal, and said
second frequency down-conversion module under-samples said input signal according to said second control signal.
44. The apparatus of claim 41, wherein said first and said second frequency down-conversion modules each comprise a switch and a storage element.
45. The apparatus of claim 44, wherein said storage elements comprises a capacitor that reduces a DC offset voltage in said first down-converted signal and said second down-converted signal.
46. The apparatus of claim 41, wherein said subtractor module comprises a differential amplifier.
47. The apparatus of claim 41, further comprising:
a balanced transmitter for up-converting a baseband signal and coupled to said balanced receiver, including,
an inverter, to receive said baseband signal and generate an inverted baseband signal;
a first controlled switch, coupled to a non-inverting output of said inverter, said first controlled switch to sample said baseband signal according to a third control signal, resulting in a first harmonically rich signal;
a second controlled switch, coupled to an inverting output of said inverter, said second controlled switch to sample said inverted baseband signal according to a fourth control signal, resulting in a second harmonically rich signal; and
a combiner, coupled to an output of said first controlled switch and an output of said second controlled switch, said combiner to combine said first harmonically rich signal and said second harmonically rich signal, resulting in a third harmonically rich signal.
48. The apparatus of claim 47, wherein said fourth control signal is phase shifted with respect to said third control signal.
49. The apparatus of claim 47, wherein said fourth control signal is phase shifted by 180 degrees with respect to said third control signal.
50. The apparatus of claim 47, further comprising a filter coupled to an output of said combiner, wherein said filter outputs a desired harmonic from said third harmonically rich signal.
51. The apparatus of claim 47, wherein said apparatus is an infrastructure device.
52. The apparatus of claim 47, wherein said apparatus is a client device.
53. The apparatus of claim 47, wherein said third controlled switch shunts said baseband signal to a reference potential according to said first control signal, and wherein
said fourth controlled switch shunts said inverted baseband signal to said reference potential according to said second control signal.
54. The apparatus of claim 47, further comprising an antenna coupled to said balanced transmitter and said balanced receiver.
55. The apparatus of claim 54, further comprising a switch, said switch selectively connecting said transmitter or said receiver to said antenna.
56. The apparatus of claim 47, further comprising a baseband processor coupled to said transmitter and said receiver.
57. The apparatus of claim 47, further comprising a media access controller (MAC) coupled to said transmitter and said receiver.
58. The apparatus of claim 57, wherein said MAC comprises a means for controlling accessing to a WLAN medium.
59. The apparatus of claim 58, wherein said means for controlling includes carrier sense multiple access with collision avoidance (CSMA/CA).
60. The apparatus of claim 47, further comprising a demodulator/modulator facilitation module coupled to said transmitter and receiver.
61. The apparatus of claim 60, wherein said demodulator/modulator facilitation module comprises a means for modulating said baseband signal using differential binary phase shift keying (DBPSK).
62. The apparatus of claim 60 , wherein said demodulator/modulator facilitation module comprises a means for de-modulating said down-converted signal using differential binary phase shift keying (DBPSK).
63. The apparatus of claim 60 , wherein said demodulator/modulator facilitation module comprises a means for spreading said baseband signal.
64. The apparatus of claim 63, wherein said means for spreading comprises a means for spreading said baseband signal using a Barker code.
65. The apparatus of claim 60 , wherein said demodulator/modulator facilitation module comprises a means for de-spreading said down-converted signal.
66. The apparatus of claim 65, wherein said means for de-spreading comprises a means for de-spreading said down-converted signal using a Barker code.
67. The apparatus of claim 60 , wherein said demodulator/modulator facilitation module comprises a means for modulating said baseband signal using Gaussian phase shift keying (GFSK).
68. The apparatus of claim 60 , wherein said demodulator/modulator facilitation module comprises a means for de-modulating said down converted signal using Gaussian phase shift keying (GFSK).
69. The apparatus of claim 60, wherein said demodulator/modulator facilitation module comprises a means for modulating said baseband signal using Orthogonal Frequency Division Multiplexing (OFDM).
70. The apparatus of claim 60, wherein said demodulator/modulator facilitation module comprises a means for de-modulating said down converted signal using Orthogonal Frequency Division Multiplexing (OFDM).
71. The apparatus of claim 60, wherein said demodulator/modulator facilitation module comprises a means for modulating said baseband signal using Complimentary Code Keying (CCK).
72. The apparatus of claim 60, wherein said demodulator/modulator facilitation module comprises a means for de-modulating said down converted signal using Complimentary Code Keying (CCK).
73. A method of receiving a wireless LAN signal, comprising:
(1) splitting the wireless LAN signal into I and Q components;
(2) down-converting said I signal component and said Q signal component;
(3) de-spreading said down-converted \(I\) and \(Q\) signals using a spreading code;

(4) differentially demodulating information encoded in said I and Q signals;
(5) sending said demodulated information in said I and \(Q\) signals to a Media Access Controller (MAC) Interface wherein said I and Q signals are de-scrambled and combined to a single output signal.
74. The method of claim 73, wherein separate spreading codes are used for the I and Q signal components in step (3).
75. The method of claim 73, wherein step (4) comprises using Binary Phase Shift Keying (BPSK) to demodulate said I and Q signals.
76. The method of claim 73, wherein step (4) comprises using Quadrature Phase Shift Keying (QPSK) to demodulate said I and Q signals.
77. In a wireless LAN device, a method of down-converting a received RF signal, comprising:
down-converting said received RF signal according to a first control signal and a second control signal, resulting in a down-converted signal, wherein said second control
signal is delayed relative to said first control signal by \((.5+\mathrm{n})\) cycles of said received RF signal, wherein n is an integer greater than or equal to 1 ;
de-spreading said down-converted signal using a spreading code, resulting in a despread signal; and de-modulating said de-spread signal, resulting in a de-modulated signal.

\section*{Remarks}

Upon entry of the foregoing amendment, claims 41-77 are pending in the application, with 41,73 and 77 being the independent claims. Claims 1-3, 6-9, 13-37 and 39 are sought to be cancelled without prejudice to or disclaimer of the subject matter therein. New claims 41-77 are sought to be added. These changes are believed to introduce no new matter, and their entry is respectfully requested.

\section*{Conclusion}

Prompt and favorable consideration of this Preliminary Amendment is respectfully requested. Applicants believe the present application is in condition for allowance. If the Examiner believes, for any reason, that personal communication will expedite prosecution of this application, the Examiner is invited to telephone the undersigned at the number provided.


Date: June 9,2003
1100 New York Avenue, N.W. Washington, D.C. 20005-3934 (202) 371-2600
\begin{tabular}{|c|c|c|c|c|}
\hline APPLICATION NO. & FILING DATE & FIRST NAMED INVENTOR & ATTORNEY DOCKET NO. & CONFIRMATION NO. \\
\hline \multirow[t]{2}{*}{09/632,856} & 08/04/2000 & David F. Sorrells & 1744.0630003 & - 2377 \\
\hline & \(7590 \cdot 12 / 01\) & : & \multicolumn{2}{|c|}{EXAMINER} \\
\hline \multicolumn{3}{|l|}{Sterne Kessler Goldstein \& Fox P L L C} & \multicolumn{2}{|c|}{KIM, KEVIN} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Suite 6001100 New York Avenue N W}} & & \\
\hline & & & ART UNIT & PAPER NUMBER \\
\hline & & & DATE MAILED: 2634 & \[
9
\] \\
\hline
\end{tabular}

Please find below and/or attached an Office communication concerning this application or proceeding.


\section*{A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 1 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.}
- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after \(S \mathbb{X}\) (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty ( 30 ) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. \(\$ 133\) ).
- Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR \(1.704(b)\).

\section*{Status}
1) \(\boxtimes\) Responsive to communication(s) filed on 04 August 2000 .

2a) \(\square\) This action is FINAL. \(2 b\) This action is non-final.
3) \(\square\) Since this application is in condition for allowance except for formal matters, prosecution as to the ments is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.

\section*{Disposition of Claims}
4) Claim(s) \(41-77\) is/are pending in the application.

4a) Of the above claim(s) \(\qquad\) is/are withdrawn from consideration.
5) \(\square\) Claim(s) \(\qquad\) is/are allowed.
6) \(\square\) Claim(s) \(\qquad\) is/are rejected.
7) \(\square\) Claim(s) \(\qquad\) is/are objected to.
8) Claim(s) \(\underline{41-77}\) are subject to restriction and/or election requirement.

\section*{Application Papers}
9) \(\square\) The specification is objected to by the Examiner.
10) \(\square\) The drawing(s) filed on \(\qquad\) is/are: a) \(\square\) accepted or b) \(\square\) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
11) \(\square\) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

\section*{Priority under 35 U.S.C. §§ 119 and 120}
12) \(\square\) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119 (a)-(d) or (f).
a) \(\square\) All b) \(\square\) Some * c) \(\square\) None of:
1. \(\square\) Certified copies of the priority documents have been received.
2. \(\square\) Certified copies of the priority documents have been received in Application No. \(\qquad\) .
3. \(\square\) Copies of the certified copies of the prionty documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).
* See the attached detailed Office action for a list of the certified copies not received.
13) \(\square\) Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(e) (to a provisional application) since a specific reference was included in the first sentence of the specification or in an Application Data Sheet. 37 CFR 1.78.
a) The translation of the foreign language provisional application has been received.
14) \(\square\) Acknowledgment is made of a claim for domestic priority under 35 U.S.C. \(\S \S 120\) and/or 121 since a specific reference was included in the first sentence of the specification or in an Application Data Sheet. 37 CFR 1.78.

\section*{Attachment(s)}
\begin{tabular}{ll} 
1) \(\square\) & Notice of References Cited (PTO-892) \\
2) \(\square\) & Notice of Draftsperson's Patent Drawing Review (PTO-948) \\
3) \(\square\) & Information Disclosure Statement(s) (PTO-1449) Paper No(s)
\end{tabular}
\(\qquad\) .
4) \(\qquad\) Interview Summary (PTO-413) Paper No(s)
5) \(\square\) Notice of Informal Patent Application (PTO-152)
6) \(\square\) Other:

\section*{DETAILED ACTION}

\section*{Election/Restrictions}
1. Restriction to one of the following inventions is required under 35 U.S.C. 121:
I. Claims 41-72, 77, drawn to a wireless modem, classified in class 455, subclass 313.
II. Claim 73-76, drawn to a spread spectrum demodulation, classified in class 375, subclass 147 .

The inventions are distinct, each from the other because of the following reasons:
2. Inventions I and II are unrelated. Inventions are unrelated if it can be shown that they are not disclosed as capable of use together and they have different modes of operation, different functions, or different effects (MPEP § 806.04, MPEP § 808.01). In the instant case the different inventions. The wireless mode comprising frequency downconverters is not discloses as capable of use together with the spread spectrum demodulator. The two inventions operate differently since the former use (parallel) frequency down converters and the latter employs a dispreading operation.
3. Because these inventions are distinct for the reasons given above and have acquired a separate status in the art as shown by their different classification, restriction for examination purposes as indicated is proper.
4. A telephone call was made to Mr. Michael Lee on November 5, 2003 to request an oral election to the above restriction requirement, but did not result in an election being made.

Applicant is advised that the reply to this requirement to be complete must include an election of the invention to be examined even though the requirement be traversed (37 CFR 1.143).
5. Applicant is reminded that upon the cancellation of claims to a non-elected invention, the inventorship must be amended in compliance with 37 CFR 1.48(b) if one or more of the currently named inventors is no longer an inventor of at least one claim remaining in the application. Any amendment of inventorship must be accompanied by a request under 37 CFR 1.48(b) and by the fee required under 37 CFR 1.17(i).

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Kevin Y Kim whose telephone number is 703-305-4082. The examiner can normally be reached on 8AM --5PM M-F.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Stephen Chin can be reached on 703-305-4714. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9314.

Any inquiry of a general nature or relating to the status of this application or proceeding should be directed to the receptionist whose telephone number is 703-305-3900.
kvk


\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

In re application of:
Sorrells et al.
Appl. No. 09/632,856
Filed: August 4, 2000
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit Implementation

Confirmation No. 2377
Art Unit: 2634
Examiner: Kevin Kim
Atty. Docket: 1744.0630003

\section*{Reply To Restriction Requirement}

Commissioner for Patents
Washington, D.C. 20231
Sir:
In reply to the Office Action mailed December 1, 2003, requesting an election of a single disclosed invention for prosecution in the above-referenced patent application, Applicants hereby submit the following Reply to the Restriction Requirement.

Applicants elect to prosecute Invention I, represented by claims 41-72, and 77. This election is made without prejudice to, or disclaimer of, the other claims, species or inventions disclosed. Applicants respectfully request reconsideration and withdrawal of the Restriction Requirement, and consideration of all the pending claims.

It is not believed that extensions of time or fees for net addition of claims are required beyond those that may otherwise be provided for in documents accompanying this paper. However, if additional extensions of time are necessary to prevent abandonment of this application, then such extensions of time are hereby petitioned under 37 C.F.R. § \(1.136(\mathrm{a})\), and any fees required therefore (including fees for net
addition of claims) are hereby authorized to be charged to our Deposit Account No. 19-0036.

If the Examiner believes, for any reason, that a personal communication will expedite prosecution of this application, the Examiner is invited to telephone the undersigned at the number provided.

Respectfully submitted,


Date: \(12(30) 03\)
1100 New York Avenue, N.W. Suite 600
Washington, D.C. 20005-3934 (202) 371-2600

D:WRPORTBLISKGF_DC1UHELVEYI214221_1.DOC SKGF rev 1/26/01 mac


Sir:
Transmitted herewith for appropriate action are the following documents:
1. Reply to Restriction Requirement; and
2. Return postcard.

It is respectfully requested that the attached postcard be stamped with the date of filing of these documents, and that it be returned to our courier. In the event that extensions of time are necessary to prevent abandonment of this patent application, then such extensions of time are hereby petitioned.
\(\stackrel{\square}{-}\)

\section*{Commissioner for Patents}

December 30, 2003
Page 2
The U.S. Patent and Trademark Office is hereby authorized to charge any fee deficiency, or credit any overpayment, to our Deposit Account No. 19-0036.


\footnotetext{
MQL/TH/agj
SKGFDCIL214271.1
}
\begin{tabular}{|c|c|c|c|c|}
\hline Number & Hits & Search Text & DB & Time stamp \\
\hline - & 32346 & subtractor & \begin{tabular}{l}
USPAT; \\
EPO; JPO; \\
DERWENT; \\
IBM TDB
\end{tabular} & \[
\begin{aligned}
& \text { 2004/03/11 } \\
& 12: 03
\end{aligned}
\] \\
\hline - & 37 & "differental amplifier" & \begin{tabular}{l}
USPĀT; \\
EPO; JPO; \\
DERWENT; \\
IBM TDB
\end{tabular} & \[
\begin{aligned}
& 2004 / 03 / 11 \\
& 12: 04
\end{aligned}
\] \\
\hline - & 67405 & "differential amplifier" & \begin{tabular}{l}
USPĀT; \\
EPO; JPO; \\
DERWENT; \\
IBM TDB
\end{tabular} & \[
\begin{aligned}
& 2004 / 03 / 11 \\
& 12: 04
\end{aligned}
\] \\
\hline - & 282 & subtractor with "differential amplifier" & USPAT; EPO; JPO; DERWENT; IBM_TDB & \[
\begin{aligned}
& 2004 / 03 / 11 \\
& 12: 04
\end{aligned}
\] \\
\hline - & 137 & subtractor near3 "differential amplifier" & \begin{tabular}{l}
USPĀT; \\
EPO; JPO; DERWENT; \\
IBM TDB
\end{tabular} & \[
\begin{aligned}
& 2004 / 03 / 11 \\
& 12: 04
\end{aligned}
\] \\
\hline
\end{tabular}


Please find below and/or attached an Office communication concerning this application or proceeding.


\title{
DETAILED ACTION
}

\section*{Election/Restrictions}
1. Applicant's election without traverse of Group I in Paper No. 10 is acknowledged.

\section*{Claim Rejections - 35 USC § 102}
2. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -
(e) the invention was described in (1) an application for patent, published under section 122(b), by another filed in the United States before the invention by the applicant for patent or (2) a patent granted on an application for patent by another filed in the United States before the invention by the applicant for patent, except that an international application filed under the treaty defined in section 351(a) shall have the effects for purposes of this subsection of an application filed in the United States only if the international application designated the United States and was published under Article 21(2) of such treaty in the English language.
3. Claims 41 is rejected under 35 U.S.C. 102(e) as being anticipated by Sanielevici et al (US \(6,018,553)\).

Referring to Fig.2, Sanielevici et al discloses a balanced receiver, comprising
"a first frequency down-conversion module" (201) for down-converting an input signal according to a first control signal ( \(5 \mathrm{KHz}, 0 \mathrm{DEG}\) ),
"a second frequency down-conversion module" (204) for down-converting the input signal according to a second control signal ( \(5 \mathrm{KHz},-90 \mathrm{DEG}\) ) and
"a subtractor module" (213) that subtracts the down-converted signal of the " second frequency down-conversion module" (204) from the down-converted signal of the "first frequency down-conversion module" (201).

\section*{Claim Rejections - 35 USC § 103}
4. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
5. This application currently names joint inventors. In considering patentability of the claims under 35 U.S.C. 103(a), the examiner presumes that the subject matter of the various claims was commonly owned at the time any inventions covered therein were made absent any evidence to the contrary. Applicant is advised of the obligation under 37 CFR 1.56 to point out the inventor and invention dates of each claim that was not commonly owned at the time a later invention was made in order for the examiner to consider the applicability of 35 U.S.C. 103(c) and potential 35 U.S.C. 102(e), (f) or (g) prior art under 35 U.S.C. 103(a).
6. Claim 46 is rejected under 35 U.S.C. 103(a) as being unpatentable over Sanielevici et al (US 6,018,553) in view of Nash (US 6,317,589).

Sanielevici et al disclose all the subject matter claimed except for the subtractor being a differential amplifier. Nash teaches that a subtractor is typically a differential amplifier. Col.4, lines 45-46. Thus, it would have been obvious to one skilled in the art at the time the invention was made to implement the function unit of the subtractor (213) with a differential amplifier as taught by Nash.

\section*{Allowable Subject Matter}

Art Unit: 2634
7. Claims 42-45, 47-72 are objected to as being dependent upon a rejected base claim, but would be allowable if rewritten in independent form including all of the limitations of the base claim and any intervening claims.
8. Claim 77 is allowed.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Kevin Y Kim whose telephone number is 703-305-4082. The examiner can normally be reached on 8AM --5PM M-F.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Stephen Chin can be reached on 703-305-4714. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).
kvk
\begin{tabular}{|l|l|l|l|}
\hline \multirow{3}{*}{ Notice of References Cited } & \begin{tabular}{l} 
Application/Control No. \\
\(09 / 632,856\)
\end{tabular} & \begin{tabular}{l} 
Applicant(s)/Patent Under \\
Reexamination \\
SORRELLS ET AL.
\end{tabular} \\
\cline { 3 - 4 } & \begin{tabular}{l} 
Examiner \\
Kevin Y Kim
\end{tabular} & \begin{tabular}{l} 
Art Unit \\
2634
\end{tabular} & Page 1 of 1 \\
\hline
\end{tabular}
U.S. PATENT DOCUMENTS
\begin{tabular}{|c|c|l|l|l|c|}
\hline\(*\) & & \begin{tabular}{c} 
Document Number \\
Country Code-Number-Kind Code
\end{tabular} & \begin{tabular}{c} 
Date \\
MM-YYYY
\end{tabular} & Name & Classification \\
\hline & A & US-6,018,553 & \(01-2000\) & Sanielevici et al. & \(375 / 334\) \\
\hline & B & US-6,317,589 & \(11-2001\) & Nash, Adrian Philip & \(455 / 245.2\) \\
\hline & C & US- & & & \\
\hline & D & US- & & & \\
\hline & E & US- & & & \\
\hline & F & US- & & & \\
\hline & G & US- & & \\
\hline & H & US- & & & \\
\hline & I & US- & & \\
\hline & J & US- & & & \\
\hline & K & US- & & & \\
\hline & L & US- & & & \\
\hline & M & US- & & & \\
\hline
\end{tabular}

FOREIGN PATENT DOCUMENTS
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline\(*\) & & \begin{tabular}{c} 
Document Number \\
Country Code-Number-Kind Code
\end{tabular} & \begin{tabular}{c} 
Date \\
MM-YYYY
\end{tabular} & Country & Name & Classification \\
\hline & N & & & & & \\
\hline & O & & & & & \\
\hline & P & & & & & \\
\hline & Q & & & & & \\
\hline & R & & & & \\
\hline & S & & & & \\
\hline & T & & & & \\
\hline
\end{tabular}

NON-PATENT DOCUMENTS
\begin{tabular}{|l|l|l|}
\hline\(\star\) & & Include as applicable: Author, Tite Date, Publisher, Edition or Volume, Pertinent Pages) \\
\hline & \(U\) & \\
\hline & \(\vee\) & \\
\hline & \(W\) & \\
\hline & \(X\) & \\
\hline
\end{tabular}
"A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a).)
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.

In re application of:
Sorrells et al.
Appl. No.: 09/632,856
Filed: August 4, 2000

\title{
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit Implementation
}

Confirmation No.: 2377
Art Unit: 2634
Examiner: Kim, Kevin
Atty. Docket: 1744.0630003

\section*{Amendment and Reply Under 37 C.F.R. § 1.111}

Commissioner for Patents
PO Box 1450
Alexandria, VA 22313-1450

AUG 032004
Technology Center 2600

Sir:
In reply to the Office Action dated March 30, 2004, Applicants submit the following Amendment and Remarks. This Amendment is provided in the following format:
(A) Each section begins on a separate sheet;
(B) Starting on a separate sheet, a complete listing of all of the claims:
- in ascending order;
- with status identifiers; and
- with markings in the currently amended claims;
(C) Starting on a separate sheet, the Remarks.

It is not believed that extensions of time or fees for net addition of claims are required beyond those that may otherwise be provided for in documents accompanying this paper. However, if additional extensions of time are necessary to prevent abandonment of this application, then such extensions of time are hereby petitioned
under 37 C.F.R. § 1.136(a), and any fees required therefore (including fees for net addition of claims) are hereby authorized to be charged to our Deposit Account No. 19-0036.

\section*{Amendments to the Claims}

This listing of claims will replace all prior versions, and listings of claims in the application.

1-41. (canceled).
42. (currently amended) A wireless modem apparatus, comprising: a receiver for frequency down-converting an input signal including,
a first frequency down-conversion module to down-convert the input signal, wherein said first frequency down-conversion module down-converts said input signal according to a first control signal and outputs a first down-converted signal;
a second frequency down-conversion module to down-convert said input signal, wherein said second frequency down-conversion module down-converts said input signal according to a second control signal and outputs a second down-converted signal; and
a subtractor module that subtracts said second down-converted signal from said first down-converted signal and outputs a down-converted signal;

The apparatus of elaim 41, wherein said second control signal is delayed relative to said first control signal by \((.5+n)\) cycles of said input signal, wherein \(n\) is an integer greater than or equal to 1 .
43. (currently amended) A wireless modem apparatus, comprising:
a receiver for frequency down-converting an input signal including,
a first frequency down-conversion module to down-convert the input signal, wherein said first frequency down-conversion module down-converts said input signal according to a first control signal and outputs a first down-converted signal;
a second frequency down-conversion module to down-convert said input signal, wherein said second frequency down-conversion module down-converts said input signal according to a second control signal and outputs a second down-converted signal; and
a subtractor module that subtracts said second down-converted signal from said first down-converted signal and outputs a down-converted signal;

The apparatus-of elaim 41, wherein said first frequency down-conversion module under-samples said input signal according to said first control signal, and said second frequency down-conversion module under-samples said input signal according to said second control signal.
44. (currently amended) A wireless modem apparatus, comprising: a receiver for frequency down-converting an input signal including, a first frequency down-conversion module to down-convert the input signal, wherein said first frequency down-conversion module down-converts said input signal according to a first control signal and outputs a first down-converted signal;
a second frequency down-conversion module to down-convert said input signal, wherein said second frequency down-conversion module down-converts said input signal according to a second control signal and outputs a second down-converted signal; and
a subtractor module that subtracts said second down-converted signal from said first down-converted signal and outputs a down-converted signal;

The apparatus of elaim 41, wherein said first and said second frequency down-conversion modules each comprise a switch and a storage element.
45. (previously presented) The apparatus of claim 44, wherein said storage elements comprises a capacitor that reduces a DC offset voltage in said first down-converted signal and said second down-converted signal.
46. (currently amended) The apparatus of claim 42 [[41]], wherein said subtractor module comprises a differential amplifier.
47. (currently amended) A wireless modem apparatus, comprising:
a receiver for frequency down-converting an input signal including,
a first frequency down-conversion module to down-convert the input signal, wherein said first frequency down-conversion module down-converts said input signal according to a first control signal and outputs a first down-converted signal;
a second frequency down-conversion module to down-convert said input signal, wherein said second frequency down-conversion module down-converts said input signal according to a second control signal and outputs a second down-converted signal;
a subtractor module that subtracts said second down-converted signal from said first down-converted signal and outputs a down-converted signal;

The-apparatus of claim 41, further comprising:
a [balanced] transmitter for up-converting a baseband signal and coupled to said [balanced] receiver, including,
an inverter, to receive said baseband signal and generate an inverted baseband signal;
a first controlled switch, coupled to a non-inverting output of said inverter, said first controlled switch to sample said baseband signal according to a third control signal, resulting in a first harmonically rich signal;
a second controlled switch, coupled to an inverting output of said inverter, said second controlled switch to sample said inverted baseband signal according to a fourth control signal, resulting in a second harmonically rich signal; and
a combiner, coupled to an output of said first controlled switch and an output of said second controlled switch, said combiner to combine said first harmonically rich signal and said second harmonically rich signal, resulting in a third harmonically rich signal.
48. (previously presented) The apparatus of claim 47, wherein said fourth control signal is phase shifted with respect to said third control signal.
49. (previously presented) The apparatus of claim 47, wherein said fourth control signal is phase shifted by 180 degrees with respect to said third control signal.
50. (previously presented) The apparatus of claim 47, further comprising a filter coupled to an output of said combiner, wherein said filter outputs a desired harmonic from said third harmonically rich signal.
51. (previously presented) The apparatus of claim 47, wherein said apparatus is an infrastructure device.
52. (previously presented) The apparatus of claim 47, wherein said apparatus is a client device.
53. (currently amended) The apparatus of claim 47, wherein said thire first controlled switch shunts said baseband signal to a reference potential according to said first third control signal, and wherein said feurth second controlled switch shunts said inverted baseband signal to said reference potential according to said secend fourth control signal.
54. (previously presented) The apparatus of claim 47, further comprising an antenna coupled to said balanced transmitter and said balanced receiver.
55. (previously presented) The apparatus of claim 54, further comprising a switch, said switch selectively connecting said transmitter or said receiver to said antenna.
56. (previously presented) The apparatus of claim 47, further comprising a baseband processor coupled to said transmitter and said receiver.
57. (previously presented) The apparatus of claim 47, further comprising a media access controller (MAC) coupled to said transmitter and said receiver.
58. (previously presented) The apparatus of claim 57, wherein said MAC comprises a means for controlling accessing to a WLAN medium.
59. (previously presented) The apparatus of claim 58, wherein said means for controlling includes carrier sense multiple access with collision avoidance (CSMA/CA).
60. (previously presented) The apparatus of claim 47, further comprising a demodulator/modulator facilitation module coupled to said transmitter and receiver.
61. (previously presented) The apparatus of claim 60, wherein said demodulator/modulator facilitation module comprises a means for modulating said baseband signal using differential binary phase shift keying (DBPSK).
62. (previously presented) The apparatus of claim 60, wherein said demodulator/modulator facilitation module comprises a means for de-modulating said down-converted signal using differential binary phase shift keying (DBPSK).
63. (previously presented) The apparatus of claim 60 , wherein said demodulator/modulator facilitation module comprises a means for spreading said baseband signal.
64. (previously presented) The apparatus of claim 63, wherein said means for spreading comprises a means for spreading said baseband signal using a Barker code.
65. (previously presented) The apparatus of claim 60, wherein said demodulator/modulator facilitation module comprises a means for de-spreading said down-converted signal.
66. (previously presented) The apparatus of claim 65, wherein said means for de-spreading comprises a means for de-spreading said down-converted signal using a Barker code.
67. (previously presented) The apparatus of claim 60, wherein said demodulator/modulator facilitation module comprises a means for modulating said baseband signal using Gaussian phase shift keying (GFSK).
68. (previously presented) The apparatus of claim 60, wherein said demodulator/modulator facilitation module comprises a means for de-modulating said down converted signal using Gaussian phase shift keying (GFSK).
69. (previously presented) The apparatus of claim 60, wherein said demodulator/modulator facilitation module comprises a means for modulating said baseband signal using Orthogonal Frequency Division Multiplexing (OFDM).
70. (previously presented) The apparatus of claim 60, wherein said demodulator/modulator facilitation module comprises a means for de-modulating said down converted signal using Orthogonal Frequency Division Multiplexing (OFDM).
71. (previously presented) The apparatus of claim 60, wherein said demodulator/modulator facilitation module comprises a means for modulating said baseband signal using Complimentary Code Keying (CCK).
72. (previously presented) The apparatus of claim 60 , wherein said demodulator/modulator facilitation module comprises a means for de-modulating said down converted signal using Complimentary Code Keying (CCK).
73. (withdrawn) A method of receiving a wireless LAN signal, comprising:
(1) splitting the wireless LAN signal into I and Q components;
(2) down-converting said I signal component and said \(Q\) signal component;
(3) de-spreading said down-converted I and \(Q\) signals using a spreading code;
(4) differentially demodulating information encoded in said I and Q signals; combined to a single output signal.
74. (withdrawn) The method of claim 73, wherein separate spreading codes are used for the I and Q signal components in step (3).
75. (withdrawn) The method of claim 73, wherein step (4) comprises using Binary Phase Shift Keying (BPSK) to demodulate said I and Q signals.
76. (withdrawn) The method of claim 73, wherein step (4) comprises using Quadrature Phase Shift Keying (QPSK) to demodulate said I and Q signals.
77. (previously presented) In a wireless LAN device, a method of down-converting a received RF signal, comprising:
down-converting said received RF signal according to a first control signal and a second control signal, resulting in a down-converted signal, wherein said second control signal is delayed relative to said first control signal by \((.5+n)\) cycles of said received RF signal, wherein n is an integer greater than or equal to 1 ;
de-spreading said down-converted signal using a spreading code, resulting in a de-spread signal; and
de-modulating said de-spread signal, resulting in a de-modulated signal.

\section*{Remarks}

Upon entry of the foregoing amendment, claims 42-77 are pending in the application, with claims 42-44, 47, and 77 being the independent claims. Claims 73-76 have been previously withdrawn from consideration. By the foregoing amendment, claims 42-44 and 46-47, and 53 are currently amended, and claim 41 is canceled without prejudice to or disclaimer of the subject matter therein. These changes are believed to introduce no new matter, and their entry is respectfully requested. Based on the above amendment and the following remarks, Applicants respectfully request that the Examiner reconsider all outstanding objections and rejections and that they be withdrawn.

\section*{Rejections under 35 U.S.C. §§ 102 and 103}

The Office Action indicates that claim 41 is rejected under 35 U.S.C. § 102(e) as being unpatentable over U.S. patent number 6,018,553 to Sanielevici (hereinafter "Sanielevici"). Further, the Office Action indicates that claim 46 is rejected under 35 U.S.C. § 103(a) as being unpatentable over Sanielevici. Claims 42-45 and 47-72 are indicated to be allowable over the cited art if rewritten in independent form. Claim 77 is allowed.

Claims 42-44 and 47 have been re-written in independent form to include the features of claim 41. Claim 41 has been canceled. Independent claims 42, 43, 44 and 47 have been further amended to delete the word "balanced," to more distinctly claim the invention. Accordingly, independent claims 42-44 and 47 and their respective dependent claims are allowable over the cited art. Claim 46 has been amended to depend from
claim 42. Therefore, Applicants request that the rejections under 35 U.S.C. §§ 102 and 103 be removed and that these claims be passed to allowance.

\section*{Conclusion}

All of the stated grounds of objection and rejection have been properly traversed, accommodated, or rendered moot. Applicants therefore respectfully request that the Examiner reconsider all presently outstanding objections and rejections and that they be withdrawn. Applicants believe that a full and complete reply has been made to the outstanding Office Action and, as such, the present application is in condition for allowance. If the Examiner believes, for any reason, that personal communication will expedite prosecution of this application, the Examiner is invited to telephone the undersigned at the number provided.

Prompt and favorable consideration of this Amendment and Reply is respectfully requested.


Mrchael Q. Lee
Attorney for Applicants
Registration No. 35,239
 Joseph S. Ostroff Frank R. Cottingham Christine M. Lhulief
Rae Lynn Prengaman Jane Shershenovich* George S. Bardmesser Daniel A. Klein Jason D. Eisenberg
Michael D. Specht Andrea J. Kamage Tracy L. Muller* John J. Figueroa Tier S. Cotton Jessica L. Parezo
Timothy A. Doyle*
Gaby L. Longsworth*
Nicole D. Dretar
Ted J. Ebersole
Jyoti C. yer*
Registered Patent, Agents-
Karen R. Markowia
Nancy J. Leith
Helene C. Carson
Matthew J. Dow
Aaron L. Schwartz
Katrina Y. Pei Quack
Bryan L. Skelton
Robert A. Schwartzman
Teresa A. Colella
lefter S. Lundgren
Victoria S. Rutherford

July 27, 2004

\section*{RECEIVED.}

Commissioner for Patents
PO Box 1450
Alexandria, VA 22313-1450

Art Unit 2634

Re: U.S. Utility Patent Application
Appl. No. 09/632,856; Filed: August 4, 2000
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit Implementation
Inventors: Sorrells et al.
Our Ref: \(\quad 1744.0630003\)
Sir:
Transmitted herewith for appropriate action are the following documents:
1. Fee Transmittal (Form PTO/SB/17);
2. Petition for Extension of Time Under 37 C.F.R. § 1.136(a)(1);
3. Amendment and Reply Under 37 C.F.R. § 1.111;
4. Return postcard; and
5. PTO-2038 Credit Card Payment Form for \(\$ 282.00\) to cover:
\(\$ 172.00\) for additional claims fee; and
\(\$ 110.00\) for extension of time fees.
It is respectfully requested that the attached postcard be stamped with the date of filing of these documents, and that it be returned to our courier. In the event that extensions of time are necessary to prevent abandonment of this patent application, then such extensions of time are hereby petitioned.

Commissioner for Patents
July 27, 2004
Page 2
The U.S. Patent and Trademark Office is hereby authorized to charge any fee deficiency, or credit any overpayment, to our Deposit Account No. 19-0036.




WARNETA A
be included on this form Provide credit card information and authorization on PTO-2038.
This collection of information is required by 37 CFR 1.17 and 1.27 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is govemed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

In re application of:
Sorrells et al.
Appl. No.: 09/632,856
Filed: August 4, 2000

\title{
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit Implementation
}

Confirmation No.: 2377
Art Unit: 2634
Examiner: Kim, Kevin
Atty. Docket: 1744.0630003

\title{
RECEIVED \\ AUG 032004 \\ Technology Center 2600
}

Petition for Extension of Time Under 37 C.F.R. § 1.136(a)(1)

Commissioner for Patents
PO Box 1450
Alexandria, VA 22313-1450
Sir:
It is hereby requested that the period for replying to the outstanding Office Action be extended one (1) month from June 30, 2004 to July 30, 2004 by the filing of this Petition and fee payment.

The petition fee (37 C.F.R. § 1.17 (a)) is believed to be \(\$ \underline{10.00}\) for a one (1) month for a large entity. Fee payment is provided in our accompanying PTO-2038 Credit Card Payment Form. However, if extensions of time under 37 C.F.R. § 1.136 other than those provided herewith are required to prevent abandonment of the present patent application, then such extensions of time are hereby petitioned.

The U.S. Patent and Trademark Office is hereby authorized to charge any fee deficiency, or credit any overpayment, to our Deposit Account No. 19-0036.

Date: July 27,2004
1100 New York Avenue, N.W. Washington, D.C. 20005-3934 (202) 371-2600 MQLJTH/JP/ag 288072 I.DOC



\title{
NOTICE OF ALLOWANCE AND FEE(S) DUE
}

\author{
7590 09/10/2004 \\ Sterne Kessler Goldstein \& Fox P L L C \\ Suite 6001100 New York Avenue N W \\ Washington, DC 20005-3934
}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ EXAMINER } \\
\hline \multicolumn{2}{|c|}{ KIM, KEVIN } \\
\hline ART UNIT & PAPER NUMBER \\
\hline 2634 & \\
\hline
\end{tabular}

DATE MAILED: 09/10/2004
\begin{tabular}{|c|c|c|c|c|}
\hline APPLICATION NO. & FILING DATE & FIRST NAMED INVENTOR & ATTORNEY DOCKET NO. & CONFIRMATION NO. \\
\hline \(09 / 632,856\) & \(08 / 04 / 2000\) & David F. Sorrells & I7444.0630003 \\
\hline
\end{tabular}

TITLE OF INVENTION: WIRELESS LOCAL AREA NETWORK (WLAN) USING UNIVERSAL FREQUENCY TRANSLATION TECHNOLOGY INCLUDING MULTI-PHASE EMBODIMENTS AND CIRCUIT IMPLEMENTATIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline APPLN. TYPE & SMALL ENTITY & ISSUE FEE & PUBLICATION FEE & TOTAL FEE(S) DUE & DATE DUE \\
\hline nonprovisional & NO & \(\$ 1330\) & \(\$ 0\) & \(\$ 1330\)
\end{tabular}

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT. PROSECUTION ON THE MERITS IS CLOSED. THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS. THIS APPLICATION IS SUBJECT TO WITHDRAWAL FROM ISSUE AT THE INITIATIVE OF THE OFFICE OR UPON PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308.

THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHIN THREE MONTHS FROM THE MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORY PERIOD CANNOT BE EXTENDED. SEE 35 U.S.C. 151. THE ISSUE FEE DUE INDICATED ABOVE REFLECTS A CREDIT FOR ANY PREVIOUSLY PAID ISSUE FEE APPLIED IN THIS APPLICATION. THE PTOL-85B (OR AN EQUIVALENT) MUST BE RETURNED WITHIN THIS PERIOD EVEN IF NO FEE IS DUE OR THE APPLICATION WILL BE REGARDED AS ABANDONED.

\section*{HOW TO REPLY TO THIS NOTICE:}
I. Review the SMALL ENTITY status shown above.

If the SMALL ENTITY is shown as YES, verify your current SMALL ENTITY status:
A. If the status is the same, pay the TOTAL FEE(S) DUE shown above.
B. If the status above is to be removed, check box 5 b on Part B Fee(s) Transmittal and pay the PUBLICATION FEE (if required) and twice the amount of the ISSUE FEE shown above, or

If the SMALL ENTITY is shown as NO:
A. Pay TOTAL FEE(S) DUE shown above, or
B. If applicant claimed SMALL ENTITY status before, or is now claiming SMALL ENTITY status, check box 5a on Part B - Fee(s) Transmittal and pay the PUBLICATION FEE (if required) and \(1 / 2\) the ISSUE FEE shown above.
II. PART B - FEE(S) TRANSMITTAL should be completed and returned to the United States Patent and Trademark Office (USPTO) with your ISSUE FEE and PUBLICATION FEE (if required). Even if the fee(s) have already been paid, Part B - Fee(s) Transmittal should be completed and returned. If you are charging the fee(s) to your deposit account, section " \(4 b^{\prime \prime}\) of Part B - Fee(s) Transmittal should be completed and an extra copy of the form should be submitted.
III. All communications regarding this application must give the application number. Please direct all communications prior to issuance to Mail Stop ISSUE FEE unless advised to the contrary.

IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of maintenance fees. It is patentee's responsibility to ensure timely payment of maintenance fees when due.

\section*{PART B - FEE(S) TRANSMITTAL}

\section*{Complete and send this form, together with applicable fee(s), to: Mail \\ Mail Stop ISSUE FEE \\ Commissioner for Patents \\ P.O. Box 1450 \\ Alexandria, Virginia 22313-1450 \\ or Fax \\ (703) 746-4000}

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications.

CURRENT CORRESPONDENCE ADDRESS (Note: Use Block 1 for any change of address)
\(7590 \quad 09 / 10 / 2004\)
Sterne Kessler Goldstein \& Fox P L L C
Suite 6001100 New York Avenue N W
Washington, DC 20005-3934

Note: A certificate of mailing can only be used for domestic mailings of the Fee(s) Transmittal. This certificate cannot be used for any other accompanying papers. Each additional paper, such as an assignment or formal drawing, must have its own certificate of mailing or transmission.

\section*{Certificate of Mailing or Transmission}

I hereby certify that this Fee(s) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope addressed to the Mail Stop ISSUE FEE address above, or being facsimile transmitted to the USPTO (703) 746-4000, on the date indicated below.
\begin{tabular}{|rr|}
\hline & (Depositor's name) \\
\hline (Signature) \\
\hline (Date) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline APPLICATION NO. & FILING DATE & FIRST NAMED INVENTOR & ATTORNEY DOCKET NO. & CONFIRMATION NO. \\
\hline \(09 / 632,856\) & \(08 / 04 / 2000\) & David F. Sorrells & 1744.0630003
\end{tabular}

TITLE OF INVENTION: WIRELESS LOCAL AREA NETWORK (WLAN) USING UNIVERSAL FREQUENCY TRANSLATION TECHNOLOGY INCLUDING MULTI-PHASE EMBODIMENTS AND CIRCUIT IMPLEMENTATIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline APPLN. TYPE & SMALL ENTITY & ISSUE FEE & PUBLICATION FEE & TOTAL FEE(S) DUE & DATE DUE \\
\hline nonprovisional & NO & \$1330 & \$0 & \$1330 & I2/10/2004 \\
\hline \multicolumn{2}{|c|}{EXAMINER} & ART UNIT & CLASS-SUBCLASS & & \\
\hline \multicolumn{2}{|c|}{KIM, KEVIN} & 2634 & 375.222000 & & \\
\hline \multicolumn{3}{|l|}{1. Change of correspondence address or indication of "Fee Address" (37 CFR 1.363).
Change of correspondence address (or Change of Correspondence Address form PTO/SB/l22) attached.
"Fee Address" indication (or "Fee Address" Indication form PTO/SB/47; Rev 03-02 or more recent) attached. Use of a Customer Number is required.} & \begin{tabular}{l}
2. For printing on the patent front page, list \\
(1) the names of up to 3 registered patent attomeys or agents OR, alternatively, \\
(2) the name of a single firm (having as a member a registered attorney or agent) and the names of up to 2 registered patent attomeys or agents. If no name is listed, no name will be printed.
\end{tabular} & \begin{tabular}{l}
torneys \(\qquad\) \\
mber a \\
2 up to name is
\end{tabular} & \\
\hline
\end{tabular}
3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment.
(A) NAME OF ASSIGNEE
(B) RESIDENCE: (CITY and STATE OR COUNTRY)

Please check the appropriate assignee category or categories (will not be printed on the patent): \(\square\) Individual \(\square\) Corporation or other private group entity \(\quad \square\) Government
4a. The following fee(s) are enclosed:
Issue Fee
Publication Fee (No small entity discount permitted)
Advance Order - \# of Copies

4b. Payment of \(\mathrm{Fee}(\mathrm{s})\) :
\(\square\) A check in the amount of the fee(s) is enclosed.
Payment by credit card. Form PTO-2038 is attached.
\(\square\) Advance Order - \# of Copies
\(\square\) The Director is hereby authorized by charge the required fee(s), or credit any overpayment, to Deposit Account Number (enclose an extra copy of this form).
5. Change in Entity Status (from status indicated above)
\(\square\) a. Applicant claims SMALL ENTITY status. See 37 CFR 1.27.
b. Applicant is no longer claiming SMALL ENTITY status. See 37 CFR \(1.27(\mathrm{~g})(2)\).

The Director of the USPTO is requested to apply the Issue Fee and Publication Fee (if any) or to re-apply any previously paid issue fee to the application identified above. NOTE: The Issue Fee and Publication Fee (if required) will not be accepted from anyone other than the applicant; a registered attomey or agent; or the assignee or other party in interest as shown by the records of the United States Patent and Trademark Office.

Authorized Signature
Typed or printed name

Date

Registration No

This collection of information is required by 37 CFR 1.311. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, prepaning, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO'THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450 , Alexandria, Virginia 22313-1450.
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.
\begin{tabular}{|c|c|c|c|c|}
\hline APPLICATION NO. & FILING DATE & FIRST NAMED INVENTOR & ATTORNEY DOCKET NO. & CONFIRMATION NO. \\
\hline \multirow[t]{2}{*}{09/632,856} & 08/04/2000 & David F. Sorrells & 1744.0630003 & 2377 \\
\hline & 7590 09/10 & & \multicolumn{2}{|c|}{EXAMINER} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Sterne Kessler Goldstein \& Fox P L L Suite 6001100 New York Avenue N W Washington, DC 20005-3934}} & & \multicolumn{2}{|c|}{KIM, KEVIN} \\
\hline & & & ART UNIT & PAPER NUMBER \\
\hline & & & 2634 & \\
\hline
\end{tabular}

\section*{Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)}
(application filed on or after May 29, 2000)
The Patent Term Adjustment to date is 737 day(s). If the issue fee is paid on the date that is three months after the mailing date of this notice and the patent issues on the Tuesday before the date that is 28 weeks (six and a half months) after the mailing date of this notice, the Patent Term Adjustment will be 737 day(s).

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (703) 305-1383. Questions relating to issue and publication fee payments should be directed to the Customer Service Center of the Office of Patent Publication at (703) 305-8283.


\section*{Notice of Fee Increase on October 1, 2004}

If a reply to a "Notice of Allowance and Fee(s) Due" is filed in the Office on or after October 1, 2004, then the amount due will be higher than that set forth in the "Notice of Allowance and Fee(s) Due" because some fees will increase effective October 1, 2004. See Revision of Patent Fees for Fiscal Year 2005; Final Rule, 69 Fed. Reg. 52604, 52606 (May 10, 2004).

The current fee schedule is accessible from WEB site (http://www.uspto.gov/main/howtofees.htm).
If the fee paid is the amount shown on the "Notice of Allowance and Fee(s) Due" but not the correct amount in view of the fee increase, a "Notice of Pay Balance of Issue Fee" will be mailed to applicant. In order to avoid processing delays associated with mailing of a "Notice of Pay Balance of Issue Fee," if the response to the Notice of Allowance is to be filed on or after October 1, 2004 (or mailed with a certificate of mailing on or after October 1, 2004), the issue fee paid should be the fee that is required at the time the fee is paid. See Manual of Patent Examining Procedure (MPEP), Section 1306 (Eighth Edition, Rev. 2, May 2004). If the issue fee was previously paid, and the response to the "Notice of Allowance and Fee(s) Due" includes a request to apply a previously-paid issue fee to the issue fee now due, then the difference between the issue fee amount at the time the response is filed and the previously-paid issue fee should be paid. See MPEP Section 1308.01.

Effective October 1, 2004, 37 CFR 1.18 is amended by revising paragraphs (a) through (c) to read as set forth below.
Section 1.18 Patent post allowance (including issue) fees.
(a) Issue fee for issuing each original or reissue patent, except a design or plant patent:

By a small entity (Sec. 1.27(a)). \(\$ 685.00\)
By other than a small entity......................... \(\$ 1,370.00\)
(b) Issue fee for issuing a design patent:

By a small entity (Sec. 1.27(a))...................... \(\$ 245.00\)
By other than a small entity............................ \(\$ 490.00\)
(c) Issue fee for issuing a plant patent:

By a small entity (Sec. 1.27(a)). \(\$ 330.00\)
By other than a small entity \$660.00

Questions relating to issue and publication fee payments should be directed to the Customer Service Center of the Office of Patent Publication at (703) 305-8283.

\section*{Notice of Allowability}
\begin{tabular}{|l|l|l|}
\hline Application No. & \multicolumn{2}{|l|}{ Applicant(s) } \\
09/632,856 & SORRELLS ET AL. \\
\hline Examiner & Art Unit & \\
Kevin Y Kim & 2634 & \\
\hline
\end{tabular}
-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address-All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included herewith (or previously mailed), a Notice of Allowance (PTOL-85) or other appropriate communication will be mailed in due course. THIS NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT RIGHTS. This application is subject to withdrawal from issue at the initiative of the Office or upon petition by the applicant. See 37 CFR 1.313 and MPEP 1308.
1. \(\boxtimes\) This communication is responsive to amendment filed on 07-27-2004.
2. \(\triangle\) The allowed claim(s) is/are 42-72,77 renumbered as 1-32.
3. \(\boxtimes\) The drawings filed on 08-04-2004 are accepted by the Examiner.
4.Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a)
All
b) \(\square\) Some
c) \(\square\)None of theCertified copies of the priority documents have been received.
2.Certified copies of the priority documents have been received in Application No. \(\qquad\) .Copies of the certified copies of the priority documents have been received in this national stage application from the International Bureau (PCT Rule 17.2(a)).
* Certified copies not received: \(\qquad\) .

Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file a reply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application.

\section*{THIS THREE-MONTH PERIOD IS NOT EXTENDABLE.}
5. \(\square\) A SUBSTITUTE OATH OR DECLARATION must be submitted. Note the attached EXAMINER'S AMENDMENT or NOTICE OF INFORMAL PATENT APPLICATION (PTO-152) which gives reason(s) why the oath or declaration is deficient.
6. \(\square\) CORRECTED DRAWINGS ( as "replacement sheets") must be submitted.
(a)including changes required by the Notice of Draftsperson's Patent Drawing Review (PTO-948) attached
1) \(\square\) \(\square\) hereto or 2) \(\qquad\) to Paper No./Mail Date \(\qquad\) _.
(b)including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No./Mail Date \(\qquad\) —.
Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121 (d).
7. \(\square\) DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.

\section*{Attachment(s)}Notice of References Cited (PTO-892) Notice of Draftperson's Patent Drawing Review (PTO-948)
3. \(\square\) Information Disclosure Statements (PTO-1449 or PTO/SB/08), Paper No./Mail Date
4. \(\square\) Examiner's Comment Regarding Requirement for Deposit of Biological Material
5.Notice of Informal Patent Application (PTO-152)
6.Interview Summary (PTO-413), Paper No./Mail Date \(\qquad\) .
7. \(\boxtimes\) Examiner's Amendment/Comment
8. Examiner's Statement of Reasons for Allowance
9.Other \(\qquad\) _.

Art Unit: 2634

\section*{EXAMINER'S AMENDMENT}
1. An examiner's amendment to the record appears below. Should the changes and/or additions be unacceptable to applicant, an amendment may be filed as provided by 37 CFR 1.312. To ensure consideration of such an amendment, it MUST be submitted no later than the payment of the issue fee.

Authorization for this examiner's amendment was given in a telephone interview with Mr. Jeffrey Helvey (Reg. \# 44757) on September 7, 2004.

The application has been amended as follows:

In claim 54, on line 2, delete "balanced" before "transmitter" and delete "balanced" before "receiver"

In claim 67, on line 3, change "GFSK" to -GPSK-
In claim 68, on line 3, change "GFSK" to -GPSK-

Cancel claims 73-76.
End of Examiner's amendment.
2. This application is in condition for allowance except for the presence of claims 73-76 to an invention non-elected without traverse. Accordingly, claims 73-76 have been cancelled.

\section*{REASONS FOR ALLOWANCE}
3. The following is an examiner's statement of reasons for allowance: No prior art has been found to disclose or suggest a frequency down converter that down converts a received input signal in accordance with two control signals that are delayed relative to each other by \((.5+\mathrm{n})\) cycles of the input signal, wherein n is an integer greater than or equal to 1 .

Any comments considered necessary by applicant must be submitted no later than the payment of the issue fee and, to avoid processing delays, should preferably accompany the issue fee. Such submissions should be clearly labeled "Comments on Statement of Reasons for Allowance."

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Kevin Y Kim whose telephone number is 703-305-4082. The examiner can normally be reached on 8AM --5PM M-F.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Stephen Chin can be reached on 703-305-4714. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Application/Control Number: 09/632,856
Art Unit: 2634
kvk


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{ISSUE CLASSIFICATION} \\
\hline \multicolumn{4}{|c|}{ORIGINAL} & & \multicolumn{8}{|c|}{cross meferences（} \\
\hline & class & & subclass & class & \multicolumn{8}{|c|}{SUBCLASS IONE SUBCLASS PER BLOCK）} \\
\hline & 375 & & 222 & 375 & 328 & & & & & & & \\
\hline \multicolumn{4}{|r|}{international classifcation} & 455 & 137. & & & & & & & \\
\hline H & \(\bigcirc\) & 1. & 5／16 & & & & & & & & & \\
\hline & & & I & & & & & & & & & \\
\hline & & & I & & & & & & & & & \\
\hline & & & 1 & & & & & & & & & \\
\hline & & & I！ & & \multicolumn{5}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Chiet Mi J＝ \\
CHIEHM FAN PRIMARY EXAMINER．Q \(171 \% 4\) \\
（Primary Examiner） \\
（Date）
\end{tabular}}} & & & \\
\hline \multicolumn{5}{|c|}{\begin{tabular}{l}
Kevin Kim 09／07／2004 \\
（Assistant Examiner），（Date）
\end{tabular}} & & & & & & \multicolumn{3}{|l|}{Total Claims Allowed 32} \\
\hline \multicolumn{5}{|l|}{} & & & & & & \multicolumn{2}{|l|}{Print Claim（s）
\(\boxed{2} / 月\)} &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{X claims renumbered in the same order as presented by applicant} & \multicolumn{3}{|l|}{\(\square\) CPA} & \multicolumn{3}{|l|}{\(\square\) T．D．} & \multicolumn{2}{|l|}{\(\square\) R． 1.47} \\
\hline \[
\begin{aligned}
& \overline{\bar{x}} \\
& \dot{\underline{\underline{V}}}
\end{aligned}
\] &  & & \[
\begin{aligned}
& \overline{\widetilde{T}} \\
& \stackrel{\rightharpoonup}{\underline{T}}
\end{aligned}
\] & \[
\begin{aligned}
& \overline{\bar{W}} \\
& \text { 푼 } \\
& \text { ( }
\end{aligned}
\] &  & \[
\begin{aligned}
& \overline{\bar{I}} \\
& \text { ī }
\end{aligned}
\] & \[
\begin{aligned}
& \overline{\overline{0}} \\
& \text { 든 } \\
& \text { 응 }
\end{aligned}
\] & & \[
\stackrel{\bar{W}}{i \underline{E}}
\] &  &  & \[
\begin{aligned}
& \overline{\text { IN }} \\
& \text { īِ }
\end{aligned}
\] & \[
\begin{aligned}
& \overline{0} \\
& \frac{\bar{W}}{\overline{0}}
\end{aligned}
\] &  & \[
\begin{aligned}
& \overline{\bar{x}} \\
& \text { ī̄ }
\end{aligned}
\] & \[
\begin{aligned}
& \overline{\widetilde{0}} \\
& \stackrel{\bar{O}}{\bar{O}}
\end{aligned}
\] & & 京 & － \\
\hline & 1 & & & 31 & & & 61 & & & 91 & & & 121 & & & 151 & & & 181 \\
\hline & 2 & & & 32 & & & 62 & & & 92 & & & 122 & & & 152 & & & 182 \\
\hline & 3 & & & 33 & & & 63 & & & 93 & & & 123 & & & 153 & & & 183 \\
\hline & 4 & & & 34 & & & 64 & & & 94 & & & 124 & & & 154 & & & 184 \\
\hline & 5 & & & 35 & & & 65 & & & 95 & & & 125 & & & 155 & & & 185 \\
\hline & 6 & & & 36 & & & 66 & & & 96 & & & 126 & & & 156 & & & 186 \\
\hline & 7 & & & 37 & & & 67 & & & 97 & & & 127 & & & 157 & & & 187 \\
\hline & 8 & & & 38 & & & 68 & & & 98 & & & 128 & & & 158 & & & 188 \\
\hline & 9 & & & 39 & & & 69 & & & 99 & & & 129 & & & 159 & & & 189 \\
\hline & 10 & & & 40 & & & 70 & & & 100 & & & 130 & & & 160 & & & 190 \\
\hline & 11 & & & 41 & & & 71 & & & 101 & & & 131 & & & 161 & & & 191 \\
\hline & 12 & & & 42 & & & 72 & & & 102 & & & 132 & & & 162 & & & 192 \\
\hline & 13 & & & 43 & & & 73 & & & 103 & & & 133 & & & 163 & & & 193 \\
\hline & 14 & & & 44 & & & 74 & & & 104 & & & 134 & & & 164 & & & 194 \\
\hline & 15 & & & 45 & & & 75 & & & 105 & & & 135 & & & 165 & & & 195 \\
\hline & 16 & & & 46 & & & 76 & & & 106 & & & 136 & & & 166 & & & 196 \\
\hline & 17 & & & 47 & － & & 77 & & & 107 & & & 137 & & & 167 & & & 197 \\
\hline & 18 & & & 48 & & & 78 & & & 108 & & & 138 & & & 168 & & & 198 \\
\hline & 19 & & & 49 & & & 79 & & & 109 & & & 139 & & & 169 & & & 199 \\
\hline & 20 & & & 50 & & & 80 & & & 110 & & & 140 & & & 170 & & & 200 \\
\hline & 21 & & & 51 & & & 81 & & & 111 & & & 141 & & & 171 & & & 201 \\
\hline & 22 & & & 52 & & & 82 & & & 112 & & & 142 & & & 172 & & & 202 \\
\hline & 23 & & & 53 & & & 83 & \(\cdots\) & & 113 & & & 143 & & & 173 & ＊ & & 203 \\
\hline & 24 & & & 54 & \％ & & 84 & \(\cdots\) & & 114 & & & 144 & & & 174 & & & 204 \\
\hline & 25 & & & 55 & & & 85 & ＋ & & 115 & & & 145 & & & 175 & & & 205 \\
\hline & 26 & & & 56 & & & 86 & & & 116 & & & 146 & & & 176 & & & 206 \\
\hline & 27 & & & 57 & & & 87 & & & 117 & & & 147 & & & 177 & & & 207 \\
\hline & 28 & & & 58 & － & & 88 & & & 118 & & & 148 & ＋\(<\) & & 178 & & & 208 \\
\hline & 29 & \[
\because E
\] & & 59 & & & 89 & & & 119 & & & 149 & \％ & & 179 & & & 209 \\
\hline & 30 & \％ & & 60 & ＋ & & 90 & & & 120 & \(\pm\) & & 150 & ＋ & & 180 & 世世 & & 210 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Search Notes & \begin{tabular}{l}
Application No. \\
09/632,856
\end{tabular} & \multicolumn{2}{|l|}{Applicant(s) SORRELLS ET AL.} \\
\hline  & \begin{tabular}{l}
Examiner \\
Kevin Y Kim
\end{tabular} & \begin{tabular}{l}
Art Unit \\
2634
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{SEARCHED} \\
\hline Class & Subclass & Date & Examiner \\
\hline 375 & \[
\begin{aligned}
& 222 \\
& 328
\end{aligned}
\] & \[
8 / 21 / 04
\] & / Cin \\
\hline 455 & 131 & 7 & \\
\hline & 137 & ) & \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ INTERFERENCE SEARCHED } \\
\hline Class & Subclass & Date & Examiner \\
\hline 375 & 222 & \(8 / 21 / 04\) & \(/\) hai \\
\hline & 328 & & \\
\hline & & & \\
\hline & & \\
\hline
\end{tabular}

Sorrells et al
Appl. No.: 09/632,856
Filed: August 4, 2000
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit Implementations

Confirmation No.: 2377
Art Unit: 2634
Examiner: Kevin Y. Kim
Atty. Docket: 1744.0630003

\section*{Amendment Under 37 C.F.R. § 1.312}

Mail Stop Issue Fee

Commissioner for Patents
PO Box 1450
Alexandria, VA 22313-1450
Sir:
Submitted herein is an Amendment Under 37 C.F.R. § 1.312. As payment of the issue fee has not yet been made or is filed herewith, Applicants respectfully submit that filing under 37 C.F.R. § 1.312 is proper. (M.P.E.P. § 714.16.)

It is believed that extensions of time are not required beyond those that may otherwise be provided for in documents accompanying this Amendment. However, if additional extensions of time are necessary to prevent abandonment of this application, then such extensions of time are hereby petitioned under 37 C.F.R. § 1.136(a), and any fees required therefor are hereby authorized to be charged to our Deposit Account No. 19-0036.

This Amendment is provided in the following format:
(A) Each section begins on a separate sheet;
(B) Starting on a separate sheet, amendments to the specification by presenting replacement paragraphs marked up to show changes made;
(C) Starting on a separate sheet, a complete listing of all of the claims:
- in ascending order;
- with status identifiers; and
- with markings in the currently amended claims;
(D) Starting on a separate sheet, the Remarks.

\section*{Amendments to the Specification:}

On page 7 , line 9 , please amend the paragraph as follows:
FIGs. 42-44 are example implementations of a WLAN interface; FIG. 42 includes FIGs. 42A and 42B and should be referred to for all references to FIG. 42 in the specification. FIG. 43 includes FIGs. 43A and 43B and should be referred to for all references to FIG. 43 in the specification. FIG. 44 includes FIGs. 44A and 44B and should be referred to for all references to FIG. 44 in the specification.

On page 7, line 10, please amend the paragraph as follows:
FIGS. 45, 46A, and 46B and 46C relate to an example MAC interface for an example WLAN interface embodiment;

On page 7, line, 12, please amend the specification as follows:
FIGS. 47, 48, 49A, and 49B and 49C relate to an example demodulator/modulator facilitation module for an example WLAN interface embodiment; FIG. 47 includes FIGs. 47A-D and should be referred to for all references to FIG. 47 in the specification. FIG. 48 includes FIGs. 48A-B and should be referred to for all references to FIG. 47 in the specification.

On page 7 , line 14 , please amend the specification as follows:
FIGS. \(50,51,52 \mathrm{~A}, 52 \mathrm{~B}\), and 52 C relate to an example alternate demodulator/modulator facilitation module for an example WLAN interface embodiment; FIG. 50 includes FIGs. 50A-D and should be referred to for all references to FIG. 50 in the specification. FIG. 51 includes FIGs. \(51 \mathrm{~A}-\mathrm{B}\) and should be referred to
for all references to FIG. 51 in the specification. FIG. 52B includes FIG. 52B-1 and should be referred to for all references to FIG. 52B in the specification.

On page 7, line 16, please amend the specification as follows:
FIGS. 53 and 54 relate to an example receiver for an example WLAN interface embodiment; FIG. 53 includes FIGs. 53A-C and should be referred to for all references to FIG. 53 in the specification.

On page 7 , line 18, please amend the specification as follows:
FIGS. 55, 56A, and 56B relate to an example synthesizer for an example WLAN interface embodiment; FIG. 55 includes FIGs. \(55 \mathrm{~A}-\mathrm{C}\) and should be referred to for all references to FIG. 55 in the specification.

On page 7, line 20, please amend the specification as follows:
FIGS. 57, 58, 59, 60, 61A, and 61B relate to an example transmitter for an example WLAN interface embodiment; FIG. 57 includes FIGs. 57A-D and should be referred to for all references to FIG. 57 in the specification. FIG. 60 includes FIGs. 60AD and should be referred to for all references to FIG. 60 in the specification.

On page 7, lines 22, please amend the specification as follows:
FIGS. 62 and 63 relate to an example motherboard for an example WLAN interface embodiment; FIG. 62 includes FIGs. 62A-I and should be referred to for all references to FIG. 62 in the specification.

On page 7, lines 24-25, please amend the specification as follows:
FIGS. 64-66 relate to example LNAs for an example WLAN interface embodiment; FIG. 64 includes FIGs. 64A-C and should be referred to for all references to FIG. 64 in the specification. FIG. 65 includes FIGs. \(65 \mathrm{~A}-\mathrm{E}\) and should be referred to for all references to FIG. 65 in the specification. FIG. 66 includes FIGs. 66A-B and should be referred to for all references to FIG. 66 in the specification.

On page 8 , line 3, please amend the specification as follows:
FIG. 70A illustrates an IQ receiver having shunt UFT modules according to embodiments of the invention; FIG. 70A includes FIGs. 70A-1 and should be referred to for all references to FIG. 70A in the specification.

On page 8, line 9, please amend the specification as follows:
FIG. 70E illustrates an example IQ modulation receiver embodiment according to embodiments of the invention; FIG. 70E includes FIG. 70E1 and FIG. 70E2 and should be referred to for all references to FIG. 70E in the specification.

On page 8 , line 15 , please amend the specification as follows:
FIG. 70S illustrates a FET configuration of an IQ receiver embodiment according to embodiments of the invention; FIG. 70S includes FIGs. 70S-1 and should be referred to for all references to FIG. 70 S in the specification.

On page 10 , line 16 , please amend the specification as follows:

Sorrells et al. Appl. No. 09/632,856

FIGS. 90A-D illustrate[[s]] various implementation circuits for the modulator 7410, according to embodiments of the present invention; FIG. 90B includes FIGs. 90B1, 90B-2, 90B-3, and 90B-4 and should be referred to for all references to FIG. 90B in the specification. FIG. 90 C includes FIGs. \(90 \mathrm{C}-1,90 \mathrm{C}-2,90 \mathrm{C}-3\), and \(90 \mathrm{C}-4\) and should be referred to for all references to FIG. 90 C in the specification.

On page 10, line 26 , please amend the specification as follows:
FIGs. 95A-C, and FIGs. 96-161 illustrate schematics for an integrated circuit implementation example of the present invention. FIG. 97 includes FIGs. 97A-D and should be referred to for all references to FIG. 97 in the specification. FIG 105 includes FIGs. 105A-D, \(105 \mathrm{E} 1-\mathrm{E} 2\), and \(105 \mathrm{~F}-\mathrm{V}\), and should be referred to for all references to FIG. 105 in the specification. FIG. 106 includes FIGs. 106A-F and should be referred to for all references to FIG. 106 in the specification. FIG. 107 includes FIGs. 107A-D and should be referred to for all references to FIG. 107 in the specification. FIG. 109 includes FIGs. 109A-D and should be referred to for all references to FIG. 109 in the specification. FIG. 110 includes FIGs. 110A-D and should be referred to for all references to FIG. 110 in the specification. FIG. 112 includes FIGs. 112A-D and should be referred to for all references to FIG. 112 in the specification. FIG. 113 includes FIGs. 113A-F and should be referred to for all references to FIG. 113 in the specification. FIG. 115 includes FIGs. 115A-F and should be referred to for all references to FIG. 115 in the specification. FIG. 118 includes FIGs. 118A-D and should be referred to for all references to FIG. 118 in the specification. FIG. 123 includes FIGs. 123A-H and should be referred to for all references to FIG. 123 in the specification. FIG. 125 includes FIGs. \(125 \mathrm{~A}-\mathrm{H}\) and should be referred to for all references to FIG. 125 in the specification. FIG.

Sorrells et al. Appl. No. 09/632,856

126 includes FIGs. 126A-H and should be referred to for all references to FIG. 126 in the specification. FIG. 127 includes FIGs. 127A-D and should be referred to for all references to FIG. 127 in the specification. FIG. 150 includes FIGs. 150A-H and should be referred to for all references to FIG. 150 in the specification. FIG. 159 includes FIGs. 159A-D and should be referred to for all references to FIG. 159 in the specification. FIG. 160 includes FIGs. 160A-D and should be referred to for all references to FIG. 160 in the specification.

\section*{Remarks}

Formal drawings are filed herewith. Due to the detailed nature of the drawings, some of the drawings (as filed) were divided into multiple sheets to comply with the formal drawing requirements. Note that any added sheets are labeled as "New Sheets" on the formal drawings. Accordingly, the "Brief Description of the Figures" section of the specification has been amended herein so as to be consistent with the formal drawings. None of the amendments add new matter or change the scope of the claims.

Accordingly, Applicants respectfully request that this Amendment be entered.

Respectfully submitted,
Sterne, Kessler, Goldstein \& Fox p.l.l.c.


Jeffrey T. Helve Attorney for Applicants
Registration No. 44,757

Date: \(12 / 10 / 04\)
1100 New York Avenue, N.W.
Washington, D.C. 20005-3934
(202) 371-2600

JTH/agj
SKGFIDCI299742.1




December 10, 2004


Mail Stop Issue Fee
Commissioner for Patents
PO Box 1450
Alexandria, VA 22313-1450
Re: Allowed U.S. Utility Patent Application
Appl. No. 09/632,856; Filed: August 4, 2000
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit Implementations
Inventors: Sorrells et al.
Our Ref: 1744.0630003
Sir:
In response to the Notice of Allowance and Issue Fee Due dated September 10, 2004, the following documents are forwarded for appropriate action by the U.S. Patent and Trademark Office:
1. Issue Fee Transmittal (Form PTOL-85B);
2. Fee Transmittal (Form PTO/SB/17);
3. Amendment Under 37 C.F.R. § 1.312
4. Submission of Drawings;
5. \(\quad \underline{349}\) sheets of Drawings, approval of which is respectfully requested;
6. Return postcard; and
7. PTO-2038 Credit Card Payment Form for \(\$ 1,403.00\) to cover:
\$1,400.00 Issue Fee; and
\(\$ \quad 3.00\) Advance copies of patent.
It is respectfully requested that the attached postcard be stamped with the date of filing of these documents, and that it be returned to our courier.

Commissioner for Patents
December 10, 2004
Page 2
The U.S. Patent and Trademark Office is hereby authorized to charge any fee deficiency, or credit any overpayment, to our Deposit Account No. 19-0036. If extensions of time under 37 C.F.R. § 1.136 other than those otherwise provided for herewith are required to prevent abandonment of the present patent application, then such extensions of time are hereby petitioned, and any fees therefor are hereby authorized to be charged to our Deposit Account No. .19-0036.

Respectfully submitted,
Sterne, Kessler, Goldstein \& Fox p.L.L.C.

Ofl Helver
Jeffrey T. Helvey
Attorney for Applicants
Registration No. 44,757

\section*{Enclosures}

> JTH/agj
> 335548_1.DOC

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:
Sorrells et al.
Appl. No.: 09/632,856
Filed: August 4, 2000
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase
Embodiments and Circuit Implementations

Confirmation No.: 2377
Art Unit: 2634
Examiner: Kim, Kevin
Atty. Docket: 1744.0630003

\section*{Submission of Drawings}

Commissioner for Patents
PO Box 1450
Alexandria, VA 22313-1450
Sir:
Submitted herewith are three-hundred forty-nine (349) sheets of drawings with Figures 1A, 1B, 1C, 1D, 2A, 2B, 3, 4, 5, 6A, 6B, 6C, 6D, 6E, 6F, 6G, 6H, 6I, 7, 8, 9, 10, \(11,12,13,14,15 \mathrm{~A}, 15 \mathrm{~B}, 15 \mathrm{C}, 15 \mathrm{D}, 15 \mathrm{E}, 15 \mathrm{~F}, 16,17,18,19,20 \mathrm{~A}, 20 \mathrm{~A}-1,20 \mathrm{~B}, 20 \mathrm{C}\), 20D, 20E, 20F, 21, 22A, 22B, 22C, 22D, 22E, 22F, 23A, 23B, 23C, 23D, 23E, 23F, 24A 24B, 24C, 24D, 24E, 24F, 24G, 24H, 24I, 24J, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, \(36,37,38,39,40,41,42 \mathrm{~A}, 42 \mathrm{~B}, 43 \mathrm{~A}, 43 \mathrm{~B}, 44 \mathrm{~A}, 44 \mathrm{~B}, 45,46 \mathrm{~A}, 46 \mathrm{~B}, 46 \mathrm{C}, 47,47 \mathrm{~A}\), \(47 \mathrm{~B}, 47 \mathrm{C}, 47 \mathrm{D}, 48 \mathrm{~A}, 48 \mathrm{~B}, 49 \mathrm{~A}, 49 \mathrm{~B}, 49 \mathrm{C}, 50,50 \mathrm{~A}, 50 \mathrm{~B}, 50 \mathrm{C}, 50 \mathrm{D}, 51 \mathrm{~A}, 51 \mathrm{~B}, 52 \mathrm{~A}\), \(52 \mathrm{~B}, 52 \mathrm{~B}-1,52 \mathrm{C}, 53,53 \mathrm{~A}, 53 \mathrm{~B}, 53 \mathrm{C}, 54,55,55 \mathrm{~A}, 55 \mathrm{~B}, 55 \mathrm{C}, 56 \mathrm{~A}, 56 \mathrm{~B}, 57,57 \mathrm{~A}, 57 \mathrm{~B}\), \(57 \mathrm{C}, 57 \mathrm{D}, 58,59,60,60 \mathrm{~A}, 60 \mathrm{~B}, 60 \mathrm{C}, 60 \mathrm{D}, 61 \mathrm{~A}, 61 \mathrm{~B}, 62,62 \mathrm{~A}, 62 \mathrm{~B}, 62 \mathrm{C}, 62 \mathrm{D}, 62 \mathrm{E}\), \(62 \mathrm{~F}, 62 \mathrm{G}, 62 \mathrm{H}, 62 \mathrm{I}, 63,64,64 \mathrm{~A}, 64 \mathrm{~B}, 64 \mathrm{C}, 65,65 \mathrm{~A}, 65 \mathrm{~B}, 65 \mathrm{C}, 65 \mathrm{D}, 65 \mathrm{E}, 66 \mathrm{~A}, 66 \mathrm{~B}\), \(67 \mathrm{~A}, 67 \mathrm{~B}, 68 \mathrm{~A}, 68 \mathrm{~B}, 69 \mathrm{~A}, 69 \mathrm{~B}, 70 \mathrm{~A}, 70 \mathrm{~A}-1,70 \mathrm{~B}, 70 \mathrm{C}, 70 \mathrm{D}, 70 \mathrm{E} 1,70 \mathrm{E} 2,70 \mathrm{~F}, 70 \mathrm{G}\), \(70 \mathrm{H}, 70 \mathrm{I}, 70 \mathrm{~J}, 70 \mathrm{~K}, 70 \mathrm{~L}, 70 \mathrm{M}, 70 \mathrm{~N}, 70 \mathrm{O}, 70 \mathrm{P}, 70 \mathrm{Q}, 70 \mathrm{R}, 70 \mathrm{~S}, 70 \mathrm{~S}-1,71 \mathrm{~A}, 71 \mathrm{~B}, 71 \mathrm{C}\), \(71 \mathrm{D}, 72 \mathrm{~A}, 72 \mathrm{~B}, 72 \mathrm{C}, 72 \mathrm{D}, 72 \mathrm{E}, 72 \mathrm{~F}, 72 \mathrm{G}, 72 \mathrm{H}, 72 \mathrm{I}, 72 \mathrm{~J}, 73 \mathrm{~A}, 73 \mathrm{~B}, 74,75 \mathrm{~A}, 75 \mathrm{~B}, 75 \mathrm{C}\), 76A, 76B, 77, 78, 79A, 79B, 79C, 79D, 80, 81A, 81B, 81C, 82, 83, 84, 85, 86, 87, 88, 89A, 89B, \(89 \mathrm{C}, 89 \mathrm{D}, 89 \mathrm{E}, 90 \mathrm{~A}, 90 \mathrm{~B}, 90 \mathrm{~B}-1,90 \mathrm{~B}-2,90 \mathrm{~B}-3,90 \mathrm{~B}-4,90 \mathrm{C}, 90 \mathrm{C}-1,90 \mathrm{C}-2\), 90C-3, \(90 \mathrm{C}-4,90 \mathrm{D}, 91,92,93,94,95 \mathrm{~A}, 95 \mathrm{~B}, 95 \mathrm{C}, 96,97 \mathrm{~A}, 97 \mathrm{~B}, 97 \mathrm{C}, 97 \mathrm{D}, 98,99,100\), \(101,102,103,104,105,105 \mathrm{~A}, 105 \mathrm{~B}, 105 \mathrm{C}, 105 \mathrm{D}, 105 \mathrm{E}-1,105 \mathrm{E}-2,105 \mathrm{~F}, 105 \mathrm{G}, 105 \mathrm{H}\), \(105 \mathrm{I}, 105 \mathrm{~J}, 105 \mathrm{~K}, 105 \mathrm{~L}, 105 \mathrm{M}, 105 \mathrm{~N}, 105 \mathrm{O}, 105 \mathrm{P}, 105 \mathrm{Q}, 105 \mathrm{R}, 105 \mathrm{~S}, 105 \mathrm{~T}, 105 \mathrm{U}\), \(105 \mathrm{~V}, 106 \mathrm{~A}, 106 \mathrm{~B}, 106 \mathrm{C}, 106 \mathrm{D}, 106 \mathrm{E}, 106 \mathrm{~F}, 107 \mathrm{~A}, 107 \mathrm{~B}, 107 \mathrm{C}, 107 \mathrm{D}, 108,109 \mathrm{~A}\), \(109 \mathrm{~B}, 109 \mathrm{C}, 109 \mathrm{D}, 110 \mathrm{~A}, 110 \mathrm{~B}, 110 \mathrm{C}, 110 \mathrm{D}, 111,112 \mathrm{~A}, 112 \mathrm{~B}, 112 \mathrm{C}, 112 \mathrm{D}, 113 \mathrm{~A}\), \(113 \mathrm{~B}, 113 \mathrm{C} .113 \mathrm{D}, 113 \mathrm{E}, 113 \mathrm{~F}, 114,115 \mathrm{~A}, 115 \mathrm{~B}, 115 \mathrm{C}, 115 \mathrm{D}, 115 \mathrm{E}, 115 \mathrm{~F}, 116,117\), \(118 \mathrm{~A}, 118 \mathrm{~B}, 118 \mathrm{C}, 118 \mathrm{D}, 119,120,121,122,123 \mathrm{~A}, 123 \mathrm{~B}, 123 \mathrm{C}, 123 \mathrm{D}, 123 \mathrm{E}, 123 \mathrm{~F}\), \(123 \mathrm{G}, 123 \mathrm{H}, 124,125 \mathrm{~A}, 125 \mathrm{~B}, 125 \mathrm{C}, 125 \mathrm{D}, 125 \mathrm{E}, 125 \mathrm{~F}, 125 \mathrm{G}, 125 \mathrm{H}, 126 \mathrm{~A}, 126 \mathrm{~B}\),
\(126 \mathrm{C}, 126 \mathrm{D}, 126 \mathrm{E}, 126 \mathrm{~F}, 126 \mathrm{G}, 126 \mathrm{H}, 127 \mathrm{~A}, 127 \mathrm{~B}, 127 \mathrm{C}, 127 \mathrm{D}, 128,129,130,131\), \(132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149\), \(150 \mathrm{~A}, 150 \mathrm{~B}, 150 \mathrm{C}, 150 \mathrm{D}, 150 \mathrm{E}, 150 \mathrm{~F}, 150 \mathrm{G}, 150 \mathrm{H}, 151,152,153,154,155,156,157\), \(158,159 \mathrm{~A}, 159 \mathrm{~B}, 159 \mathrm{C}, 159 \mathrm{D}, 160 \mathrm{~A}, 160 \mathrm{~B}, 160 \mathrm{C}, 160 \mathrm{D}, 161\), corresponding to the above-captioned application. Identification of the drawings is provided in accordance with 37 C.F.R. § 1.84(c). Acknowledgment of the receipt, approval, and entry of these drawings into this application is respectfully requested.

It is not believed that an extension of time is required, other than any already provided herewith. However, if an extension of time is needed to prevent abandonment of the application, then such extension of time is hereby petitioned. The U.S. Patent and Trademark Office is hereby authorized to charge any fee deficiency, or credit any overpayment, to our Deposit Account No. 19-0036.

Respectfully submitted,
Sterne, Kessler, Goldstein \& Fox p.l.L.c.


Jeffrey T. Helve
Attorney for Applicants
Registration No. 44,757

\({ }^{\prime}\) Replacement Shēèt
Sheet 1 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003 ; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Usin
Universal Frequency Translation Technoling
Including Multi-Phase Embodiments and Cincuit


FIG.1B


nventors: Sorrells et al
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit




\(\underbrace{}_{\text {SEE FIG.6.E }}\)

209 TVNOIS
NOILVWYOJNI
OSCILLATING
SIGNAL 604

FREQUENCY MODULATED INPUT SIGNAL 606





Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit


FIG. 8


FIG. 9


TRANSCEIVER 1102


FIG. 11
RECEIVER 1210
FIG. 12


FIG. 13


FIG. 14


FIG.15A


FIG.15B



FIG.15D


FIG.15E


FIG.15F


FIG. 17
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
NODE \\
TIME
\end{tabular} & \multicolumn{2}{|l|}{\begin{tabular}{l}
t-1 \\
(RISING EDGE \\
OF \(\phi_{1}\) )
\end{tabular}} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { t-1 } \\
& (\text { RISING EDCE } \\
& \text { OF } \phi_{2} \text { ) }
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& t \\
& (\text { RIING EDGE } \\
& \left.0 \mathrm{~F} \phi_{1}\right)
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& t \\
& (\text { RIIING EDGE } \\
& \left.0 \mathrm{OF}_{2}\right)
\end{aligned}
\]} & \[
\begin{aligned}
& t+1 \\
& (\text { RISING EDGE } \\
& \text { OF } \left.\phi_{1}\right)
\end{aligned}
\] \\
\hline 1902 & \(V l_{t-1}\) & & \(V_{t-1}\) & 1808 & \(V_{t}\) & 1816 & \(V_{t}\) & 1826 & \(V l_{t+1} \quad 1838\) \\
\hline 1904 & - & & \(V_{t-1}\) & 1810 & \(V_{t-1}\) & 1818 & \(v_{t}\) & 1828 & \(V_{t} \quad 1840\) \\
\hline 1906 & \(\mathrm{VO}_{t-1}\) & 1806 & \(V O_{t-1}\) & 1812 & \(\mathrm{VO}_{t}\) & 1820 & \(V 0_{t}\) & 1830 & \(V 0_{t+1} \underline{1842}\) \\
\hline 1908 & - & & \(V O_{t-1}\) & 1814 & \(\mathrm{VO}_{t-1}\) & \(\underline{1822}\) & \(\mathrm{VO}_{t}\) & 1832 & \(\mathrm{VO}_{t} \quad 1844\) \\
\hline 1910 & - & 1807 & - & & \(\mathrm{VO}_{t-1}\) & 1824 & \(V_{0}{ }_{t-1}\) & \(\underline{1834}\) & \(\mathrm{VO}_{t} \underline{1846}\) \\
\hline 1912 & - & & & 1815 & - & & \(v 0_{t-1}\) & \(\underline{1836}\) & \(V 0_{t-1} 1848\) \\
\hline 1918 & - & & - & & - & & - & & \[
\begin{aligned}
& V_{t^{-}} \quad \frac{1850}{} \\
& 0.1 * V O_{f} \\
& 0.8 * V O_{t-1}
\end{aligned}
\] \\
\hline
\end{tabular}
FIG. 18

For: Wireless Leal Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit
UDF MODULE 1922
(BAND PASS)
OUTPUT SMOOTHING MODULE 1938
(OPTIONAL)
1966 MODULE 1930 1990F
 OUTPUT SAMPLE
AND HOLD MODULE 1936



\section*{(v)}


FIG.20A

Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit

FIG.20A-1

Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using


FIG.20E

FIG.20F

Sheet 22 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit

            Including Multi-Phase Embodiments and Circuit


FIG.22B


For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


FIG.23A

Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit



FIG.23C




FIG.24C



Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit



Replacement Sheet
Sheet 34 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit

                    Inventors: Sorrells et al.
                    TeI. No.: 202-371-2600

For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit



Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using

FIG. 30

Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology IncIuding Multi-Phase Embodiments and Circuit




FIG. 34

RēplacèmentSheè
Sheet 42 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


FIG. 35


FIG. 36


FIG. 38

\(\qquad\)


FIG. 40

TRANSMITTER 3910
(VECTOR MODULATOR)


FIG. 41


FIG.42A



New Sheet
Sheet 49 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit



\begin{tabular}{|c|c|c|c|c|c|}
\hline Item & Quantity & Reference & Part Description & Part Number & Manufacturer \\
\hline 1 & 1 & \(\mathrm{Cl23}\) & 10uF CAP 6032, TANTALLM, 20\% & TAJT106K010R & KEMET \\
\hline 2 & 3 & C263, C273, C275, C282 & \[
\begin{aligned}
& \text { 4.7uF CAP } \\
& \text { 6032, TANTALUM, } 20 \%
\end{aligned}
\] & T491A475M006AS & KEMET \\
\hline 3 & 25 & C120, C125, C126, C127, C128, C136, C137, C138, C139, C140, C141, C142, C143, C144, C145, C147, C148, C149, C264, C272, C274, C279, C280, C281, C283 & 0.1UF CAP 0603, X7R, \(10 \%\) & GRM39X7R104K050AD & MURATA \\
\hline 4 & 3 & C146, C269, C276 & . 01 uF CAP 0603, X7R, \(10 \%\) & CRM39X7R103K050AD & MURATA \\
\hline 5 & 5 & \[
\begin{aligned}
& \mathrm{C} 124, \mathrm{C} 132, \mathrm{C} 133, \mathrm{C} 271, \\
& \text { C278 }
\end{aligned}
\] & 100pF CAP 0603, X7R, \(10 \%\) & GRM39COC101K050AD & MURATA \\
\hline 6 & 1 & C129 & 47PF CAP 0603, X7R, \(10 \%\) & GRM39COG470J100AD & MURATA \\
\hline 7 & 2 & C270, 2277 & 27pF CAP 0603, X7R, \(10 \%\) & GRM39COC270K050AD & MURATA \\
\hline 8 & 1 & C130 & 22pF CAP 0603, X7R, \(10 \%\) & CRM39COC220K050AD & MURATA \\
\hline 9 & 1 & C131 & 10pF CAP 0603, X7R, \(10 \%\) & GUR39COC 1000050AD & MURATA \\
\hline 10 & 1 & DS1 & LED GREEN & 597-3311-420 & DIALIGHT \\
\hline 11 & 1 & DS2 & LED YELLOW & 597-3401-420 & DIALIGHT \\
\hline 12 & 1 & DS3 & LED RED & 597-3111-420 & DIALIGHT \\
\hline 13 & 6 & JP12, JP13, JP14, JP15, JP16, JP17 & CONNECTOR HEADER 2PIN & 2MS-19-33-01 & SPECIALITY ELECTRONICS \\
\hline 14 & 1 & JP11 & CONNECTOR HEADER 4PIN & 100/NH/TMISQ/W. \(100 / 4\) & BLKCON \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 15 & 7 & \[
\begin{aligned}
& \mathrm{J} 16, ~ \sqrt{2} 0, ~ \sqrt{21}, ~ J 22, ~ J 23, ~ J 24, ~ \\
& \mathrm{~J} 25
\end{aligned}
\] & CONNECTOR 82MCX & 82MCX-50-0-1 & HUBER/SHUNER \\
\hline 16 & 1 & J18 & CONNECTOR HEADER 10 & TMS-110-01-G-S & SAMTEC \\
\hline 17 & 1 & J19 & CONNECTOR WITH EJECTOR & EHT-1-10-01-S-D & SAMTEC \\
\hline 18 & 1 & P1 & CONNECTOR 34X2PCMCIA & DICML-68S-SPC-M08 & ITT CANON \\
\hline 19 & 7 & \[
\begin{aligned}
& \text { L59, L60, L61, L63, L64, L65, } \\
& \text { L66 }
\end{aligned}
\] & FERRITE BEAD & BLM11A121S & MURATA \\
\hline \multicolumn{6}{|l|}{20} \\
\hline 21 & 1 & R112 & 10M, RESISTOR,0603,5\% & & \\
\hline 22 & 1 & R114 & 390K, RESISTOR,0603,5\% & ERJ-36SYJ394V & PANASONIC \\
\hline 23 & 1 & R105 & 100K, RESISTOR,0603,5\% & ERJ-36SYJ104V & PANASONIC \\
\hline 24 & 4 & R106, R107,R108, R111 & 15K, RESISTOR, 0603,5\% & ERJ-36SYJ153V & PANASONIC \\
\hline 25 & 1 & R116 & 9.1K, RESISTOR, 0603,5\% & ERJ-3GSYJ912V & PANASONIC \\
\hline 26 & 1 & R115 & 8.2K, RESISTOR, 0603,5\% & ERJ-3GSY 8822 V & PANASONIC \\
\hline 27 & 1 & R113 & 3.9K, RESISTOR, 0603,5\% & ERJ-3CSYJ392V & PANASONIC \\
\hline 28 & 1 & R101 & 750, RESISTOR, 0630,5\% & ERJ-36SYJ751V & PANASONIC \\
\hline 29 & 1 & R110 & 560, RESISTOR, 0603,5\% & ERJ-36SY 5661 V & PANASONIC \\
\hline 30 & 2 & R99, R100 & 330, RESISTOR, 0603,5\% & ERJ-36SYJ331V & PANASONIC \\
\hline 31 & 1 & R119 & 50, RESISTOR, 0603,5\% & ERJ-36SYJ500V & PANASONIC \\
\hline 32 & 2 & R128, R129 & 10, RESISTOR, 0603,5\% & ERJ-3GSYJ100V & PANASONIC \\
\hline \multirow[t]{2}{*}{33} & \multirow[t]{2}{*}{8} & R102, R103, R104, R109, & \multirow[t]{2}{*}{0, RESISTOR, 0603,5\%} & RMT32Z1 J000ZT & ERJ KOA \\
\hline & & R117, R118, R120, R127, & & 3GSYJOOOV & PANASONIC \\
\hline 34 & 6 & R121, R122, R123, R124, R125, R126 & TBD, RESISTOR, 0603,5\% & R & PANASONIC \\
\hline \multirow[t]{3}{*}{35
36} & 1 & \multirow[t]{2}{*}{U10} & \multirow[t]{2}{*}{SRAM} & KM622560LTG-5L & SAMSUNG \\
\hline & & & & M5M5256CVP-55LL & MITSUBUSHI \\
\hline & 1 & U12 & MAC & AM79C930 & AMD \\
\hline
\end{tabular}

Sheet 55 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit


    Including Multi-Phase Embodiments and Circuit


FIG. 47
\(\square\)


TO FIG.47C


Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit




Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit



\begin{tabular}{|c|l|l|l|l|l|}
\hline 49 & 6 & TP1, TP2,TP3,TP4,TP5, TP6 & TP-105-01-00 & & \\
\hline 50 & 2 & U42,U6 & NC7504M5 & NC750415 & NATIONAL SEMICONDUCTOR \\
\hline 51 & 1 & \(U 7\) & AD8052AR & AD8052AR & ANALOG DEVICES \\
\hline 52 & 1 & \(U 8\) & AD1582 & AD1582 & ANALOG DEVICES \\
\hline 53 & 1 & U9 & AD605AR & AD605AR & ANALOG DEVICES \\
\hline 54 & 1 & U43 & TK11235AMTL & TK11235BM & TOKO \\
\hline 55 & 1 & & BOARD & \(8500.541 .003 . V 13.01\) & \\
\hline
\end{tabular}

Replacement Sheet
Sheet 66 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003 ; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


FIG. 50






FIG.52A
\begin{tabular}{|c|c|c|c|c|c|}
\hline TEM & QTY & REFERENCE & PART & PART NUMBER & MANUFACTURER \\
\hline 1 & 3 & C3, C52, 555 & 4.7uF & T491A475K006AS & KEMET \\
\hline 2 & 26 & C51,C54, C57, C58, C60, 661 , & 0.14 F & GRM39Y5V104Z016 & MURATA \\
\hline & & C67, \(668, \mathrm{C69}\), , \(77, \mathrm{C} 79, \mathrm{C80}\), & & & \\
\hline & & C81, 883, C89, C90, C91, 1111 , & & & \\
\hline & & C112, C113, \(1114, \mathrm{C} 115, \mathrm{C} 116\), & & & \\
\hline & & C117, C118, C119 & & & \\
\hline 3 & 8 & C56, C59, C78, C82, C99, 101 , & 0.01uF & CRM39X7R103K050 & MURATA \\
\hline & & C103, \({ }^{\text {C104 }}\) & & & \\
\hline 4 & 10 & C62,C63, C66, C72,C73, 884, & 1uf & GRM40Y5V105Z016 & MURATA \\
\hline & & C85, C88, С94, C95 & & & \\
\hline 5 & 4 & C64, С75, 886, , 97 & 120pF & GRM39COC 121J050 & MURATA \\
\hline 6 & 2 & C87, 665 & 180pF & GRM39COC 181J050 & MURATA \\
\hline 7 & 2 & C70,C92 & 390pF & GR139COC391J050 & MURATA \\
\hline 8 & 2 & C71,C93 & 470pF & GRM39CO6471J050 & MURATA \\
\hline 9 & 2 & C96, \(\mathrm{C74}\) & 82pF & GR139COC820J050 & MURATA \\
\hline 10 & 5 & C100,C102,C105,C106,C107 & 100pF & GRM39COG101K050 & MURATA \\
\hline 11 & 1 & C108 & 1uF & & \\
\hline 12 & 1 & C110 & 4.7uF & & \\
\hline 13 & 2 & 03,01 & BAW56WT1 & BAW56WT1 & MOTOROLA \\
\hline 14 & 2 & 04,02 & BAV70LT1 & BAV70LT1 & MOTOROLA \\
\hline 15 & 2 & JP2, JP1 & HEADER 7X2 & & \\
\hline 16 & 6 & \(\mathrm{J1}, \mathrm{~J} 3, \sqrt{5}, \mathrm{J7}, \mathrm{J10}, \mathrm{d11}\) & 82MCX & 142-0701-231 & JOHNSON \\
\hline 17 & 1 & J9 & 82MCX & 82MCX-50-0-1 & SUHNER \\
\hline 18 & 1 & L1 & BLM11A121S & BLM11A121S & MURATA \\
\hline 19 & 2 & L28, L23 & 2.2uH & LQ621N2R2K10 & MURATA \\
\hline 20 & 2 & L24,L29 & 1 UH & LQG21N1ROK 10 & MURATA \\
\hline 21 & 2 & L30, L25 & 680nH & LQ621NR68K10 & MURATA \\
\hline 22 & 2 & L26,L31 & 1.8uH & LQG21N1R8K10 & MURATA \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 23 & 2 & L27,L32 & 390nH & LCO21NR39K10 & MURATA \\
\hline 24 & 4 & Q1,05,010, Q14 & SD404CY & SD404CY & CALOGIC \\
\hline 25 & 4 & Q2,04, 012, Q13 & BFM505 & BFM505 & PHILIPS \\
\hline 26 & 4 & 03, 07,011, Q16 & S0213 & S0213 & CALOGIC \\
\hline 27 & 2 & Q17,08 & BFR520 & BFR505 & PHILIPS \\
\hline 28 & 5 & R19,R20,R21,R171, R173 & 0 & & \\
\hline 29 & 8 & R23, R26, R34,R45, R52,R57, & 33K & ERJJCSY333 & PANASONIC \\
\hline & & R63, R74 & & & \\
\hline 30 & 4 & R24,R27,R53,R58 & 475 & ERJJEKF4750 & PANASONIC \\
\hline 31 & 6 & R25,R28,R47,R54,R59,R76 & 402 & ERJJEKF4020 & PANASONIC \\
\hline 32 & 4 & R29,R30,R55,R56 & 221 & ERF3EKF2210 & PANASONIC \\
\hline 33 & 2 & R32,R61 & 200 & ERJ3CSYJ201 & PANASONIC \\
\hline 34 & 2 & R33,R62 & 33.2 K & ERJJGSYJ333 & PANASONIC \\
\hline 35 & 4 & R35,R46, R64,R75 & 68.1 & ERJJEKF68R1 & PANASONIC \\
\hline 36 & 2 & R36,R65 & 200 & ERJJEKF2000 & PANASONIC \\
\hline 37 & 2 & R66,R37 & 49.9 & ERJJEKF49R9 & PANASONIC \\
\hline 38 & 6 & R40,R68,R78,R79,R80,R89 & 1 K & ERJJEKF1001 & PANASONIC \\
\hline 39 & 2 & R42,R71 & 62 & ERJ3GSYJ620 & PANASONIC \\
\hline 40 & 2 & R43, R72 & 162 & ERJJEKF6810 & PANASONIC \\
\hline 41 & 2 & R44, R73 & 49.9 & ERJJEKF 1001 & PANASONIC \\
\hline 42 & 2 & R77,R48 & 33 & ERJ3GSYJ330 & PANASONIC \\
\hline 43 & 4 & R81,R82,R85,R87 & 2 K & ERJ3EKF2001 & PANASONIC \\
\hline 44 & 1 & R83 & 0 & ERJGSYOROO & PANASONIC \\
\hline 45 & 1 & R84 & 1.1 K & ERJ3EKF2001 & PANASONIC \\
\hline 46 & 1 & R88 & 15 K & ERJJEKF1502 & PANASONIC \\
\hline 47 & 1 & R90 & 10K & ERU3EKF 1002 & PANASONIC \\
\hline 48 & 2 & R91,R92 & 100 & ERJJEKF1000 & PANASONIC \\
\hline 49 & 6 & R164,R165,R166,R167,R168, & TBD & & \\
\hline & & \multicolumn{2}{|l|}{R169} & & \\
\hline 50 & 2 & R170,R172 & OPEN & & \\
\hline
\end{tabular}

New Shèet
Sheet 75 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


FIG.52B-1

Replacement Sheet
Sheet 76 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit




New Sheet
Sheet 79 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit
\[
\begin{aligned}
& 3 \\
& \frac{3}{4}
\end{aligned}
\]
FIG.53C


Sheet 81 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit


FIG. 55

New Sheet
Sheet 82 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit

    Tel. No.: 202-371-2600
    For: Wireless Local Area Network (WLAN) Using
        Universal Frequency Translation Technology
                Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


FIG.55B


FIG.55C
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ITEM & & REFERENCE & PART & DESCRIPTION & PART NUMBER & MANUFACT. \\
\hline 1 & 1 & CR1 & BBY51-¢6327 & DIOEE, VARACTOR & BBY51-66327 & SIEMENS \\
\hline 2 & 6 & C1, C3, C5, C7, C9, C10 & 100pF & CAPACITOR, CERAMIC, 100pF, 10\%, COG, 0603 & CRM39COC101K050 & MURATA \\
\hline 3 & 2 & C29,C2 & 0.14 F & CAPACITOR, CERAMIC, . 1 UF, 10\%, X7R,0603 & GRM39X7R104K016AD & MVRATA \\
\hline 4 & 3 & C4, \(88, \mathrm{C} 17\) & . 014 F & CAPACITOR, CERAMIC, . 01 UF, 10\%, X7R, 0603 & GRM39X7R103K050 & MURATA \\
\hline 5 & 1 & C6 & 220pF & CAPACITOR, CERAMIC, 220pF, 5\%, COG, 0603 & GRM39COC221J025 & MURATA \\
\hline 6 & 1 & C11 & 3.3pF & CAPACITOR, CERAMIC, 3.3 PF , \(5 \%\), COG, 0603 & GRM39COC3R3B100V & MURATA \\
\hline 7 & 1 & C12 & 6.8pF & CAPACITOR, CERAMIC, \(6.8 p \mathrm{~F},+/\)-.25pF, COG, 0603 & GRN39COC6R8C100V & MURATA \\
\hline 8 & & C13,C35,C36,C37 & 1000pF & CAPACITOR, CERAMIC, 1000pF, 10\%, X7R, 0603 & CRM39X7R102K016 & MURATA \\
\hline 9 & 1 & C14 & 1500pF & CAPACITOR, CERAMIC, 1500Pf, 10\%, X7R,0603 & GRM39X7R152K016 & MURATA \\
\hline 10 & 1 & C15 & 12 pF & CAPACITOR, CERAMIC, 12pF, 5\%, C06, 0603 & GRM39COG120J050 & MRATA \\
\hline 11 & 1 & C16 & 4700pF & CAPACITOR, CERAMIC, 4700pF, 10\%, 0603 & GRM39X7R472K016 & MURATA \\
\hline 12 & 2 & C20,C18 & 22pF & CAPACITOR, CERAMIC, 22pF, 10\%, COG, 0603 & GRM36C06220K050 & MURATA \\
\hline 13 & 4 & C22, C32,C33, C34 & DNP & CAPACITOR, CERAMIC, , , , 0603 & & MURATA \\
\hline 14 & 3 & C23, \(24, \mathrm{C} 27\) & 4.7uF & CAPACITOR, TANTALMM, 4.7uF, 10\%,3216 & T491A475K006AS & KEMET \\
\hline 15 & 3 & R16,C31,R17 & 0 OHM & RESISTOR, ZERO OHM, 0603 & ERJJCSYOROO & PANASONIC \\
\hline 16 & 1 & JP1 & FTSH-110-02-F-D & HEADER, OUAL ROW 10X2, \(050 \times \mathrm{X} .050\) & FTSH-110-02-F-D & SAMTEC \\
\hline 17 & 1 & JP2 & FTSH-105-02-F-D & HEADER, DUAL ROW 5X2, . 050 X .050 & FTSH-105-02-F-D & SAMTEC \\
\hline 18 & 1 & JP3 & TSW-104-08-T-S & HEADER, SINGLE ROW 4 PIN, . \(100^{\prime \prime}\) & TSW-104-08-T-S & BERC \\
\hline 19 & 2 & J5, \(\mathrm{J}^{\text {6 }}\) & 82IMCX & RF CONNECTOR & 82MCX-50-0-1 & SUHNER \\
\hline 20 & 1 & L1 & 18 nH & INOUCTOR, 18nH, 10\%, 0805 & 0805CS-180XJBC & COILCRAFT \\
\hline 21 & 1 & L3 & 0 OHM & ZERO OHM JUMPER & RM732IJT & KOA \\
\hline 22 & 6 & L4,L6,L9,L10,L11,L12 & BLM1 1A121S & FERRITE BEAD, 0603 & BLM11A121S & MURATA \\
\hline 23 & 1 & L14 & 82nH & INOUCTOR, 82nH, 10\%,0805 & LL2012-F82NK & TOKO \\
\hline 24 & 1 & Q1 & BFR520 & TRANSISTOR, NPN & BFR520 & PHILIPS \\
\hline 25 & 5 & R1,R2,R3,R11,R30 & 1 K & RESISTOR, 1K,5\%, 0603 & ERF3CSYJ102 & PANASONIC \\
\hline 26 & 1 & R4 & 10 & RESISTOR, 10 OHM, 5\%,0603 & ERJJSSYJIRO & PANASONIC \\
\hline
\end{tabular}

रeplacement Sheêt
Sheet 86 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Inventors \(1744.0630003 ;\) Group Unit: 2634
Tel. No.: 202-371 et al.
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
-- Including Multi-Phase Embodiments and Circuit
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 27 & 1 & R8 & 2K & RESISTOR, 2K,5\%,0603 & ERJ3GSYJ202 & PANASONIC \\
\hline 28 & 1 & R9 & 75 & RESISTOR, 75 OHM, 5\%,0603 & ERJ3GSYJ750 & PANASONIC \\
\hline 29 & 1 & R10 & 3300 & RESISTOR, 3.3K, \(5 \%, 0603\) & ERJ36SYJ332 & PANASONIC \\
\hline 30 & 1 & R12 & 13K & RESISTOR, 13K,5\%,0603 & ERJ3GSYJ133 & PANASONIC \\
\hline 31 & 1 & R13 & 1.5K & RESISTOR, 1.5K, \(5 \%, 0603\) & ERJ3GSYJ152 & PANASONIC \\
\hline 32 & 1 & R14 & 220 & RESISTOR, 220 OHM, 5\%,0603 & ERJ3GSYJ221 & PANASONIC \\
\hline 33 & 1 & R15 & DNP & RESISTOR, ZERO OHM, 0603 & ERJ3CSYOROO & PANASONIC \\
\hline 34 & 2 & R18,R19 & DNP & RESISTOR, 91 OHM, 5\%,0603 & ERJ3GSYJ910 & PANASONIC \\
\hline 35 & 1 & R36 & TBD & RESISTOR, ZERO OHM, 0603 & ERJ3GSYOROO & PANASONIC \\
\hline 36 & 1 & R37 & DNP & RESISTOR, , ,0603 & & PANASONIC \\
\hline 37 & 1 & TP1 & TEST POINT & & & \\
\hline 38 & 1 & U1 & PE3282A & IC, SYNTHESIZER & PE3282A & PEREGRINE \\
\hline 39 & 1 & U2 & CXO-3M-10N-40MHz & XTAL OSC, 40MHz & CXO-3M-10N-40MHZ A/1 & STATEK \\
\hline 40 & 1 & U4 & TK11233AMTL & VOLTAGE REGULATOR, 3.5V & TK11235BM & TOKO \\
\hline 41 & 1 & U5 & 74125 & IC,BUFFER & MC74LCX125DT & MOTOROLA \\
\hline 42 & 1 & U6 & UPC1678GV & IC, RF AMPLIFIER & UPC16786V & NEC \\
\hline 43 & 1 & & STB500.641.008 V03.00 & BOARD & & \\
\hline
\end{tabular}

FIG.56B

Keplacement Sheet
Sheet 87 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003 ; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit
\begin{tabular}{|c|c|}
\hline ¢ & ¢ \\
\hline \[
\begin{aligned}
& \text { K } \\
& \substack{\text { Neju }}
\end{aligned}
\] & - \\
\hline
\end{tabular}

FIG. 57


New sheet
Sheet 90 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
IncIuding Multi-Phase Embodiments and Circuit






FIG. 60

New Sheët
Sheet 95 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit

\section*{TO FIG.60B}




FIG.60A


FIG.60B


FIG.60C

New Shēet
Sheet 98 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
TeI. No.: 202-37I-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency TransIation Technology
Including Multi-Phase Embodiments and Circuit
TP11


FROM FIG.6OC

FIG.60D

\begin{tabular}{|c|c|c|c|c|c|}
\hline ITEM & QTY & REFERENCE & PART & PART NUMBER & MANUFACTURER \\
\hline 1 & 21 & C3, C6, C8, C10, C14, C38, C44, & 0.1 uF & GRM39X7R104K016 & MURATA \\
\hline & & C46, С51, 771, C72, C77, C78, & & & \\
\hline & & C79, С84, C85, С86, C93, C95, & & & \\
\hline & & C96, 998 & & & \\
\hline 2 & 6 & C5, С7, С15, С43, C52, 75 & 22pF & GRM39COC220J050 & MURATA \\
\hline 3 & 5 & C9, С16,C45, C53, 289 & 1uF & GRM40Y5V1052016 & MURATA \\
\hline 4 & 8 & C11, C23, C25, C47, C61, 663 & 1000pF & GRM39X7R102K050 & MURATA \\
\hline & & C80, 887 & & & \\
\hline 5 & 2 & C58, 21 & 1pF & GRM39COC010B50V & MURATA \\
\hline 6 & 2 & C82,C33 & 4.7uF & T491A475K006AS & KEMET \\
\hline 7 & 2 & C59, C35 & 0 ohm & GRM39COCxxxx50V & MURATA \\
\hline 8 & 1 & C73 & 470pF & GRM39COC471J050 & MURATA \\
\hline 9 & 1 & C83 & 1uF & T491A105M016AS & KEMET \\
\hline 10 & 3 & C90, C91, C92 & 100pF & ECULV1H101JCV & \\
\hline 11 & 2 & C94,C97 & 0.01uF & GRM39X7R103K016 & MURATA \\
\hline 12 & 1 & FL1 & MDR642E & MDR642E & SOSHIN \\
\hline 13 & 1 & JP1 & Shunt & 69190-402 & BERG \\
\hline 14 & 1 & JP2 & 69190-403 & 69190-403 & BERG \\
\hline 15 & 4 & J7, \(18, \mathrm{Jg}, \mathrm{J10}\) & 82MMCX-50-0-1 & 82MMCX-50-0-1 & SUHNER \\
\hline 16 & 1 & L10 & 22nH & LL 1608-F22NK & COILCRAFT \\
\hline 17 & 1 & L12 & BLM11A121S & BLM11A121S & MURATA \\
\hline 18 & 1 & L13 & 330nH & LL2012-FR33K & \\
\hline 19 & 10 & R5, R6, R12,R13, R32, R33, & 10K & ERJ3EKF 1002 & PANASONIC \\
\hline & & R39,R40,R95,R100 & & & \\
\hline 20 & 2 & R34,R7 & 6.04K & ERJJEKF6041 & PANASONIC \\
\hline 21 & 4 & R8,R10,R35,R37 & 1K & 3224W-1-102 & BOUMS \\
\hline 22 & 4 & R9, R36,R90,R103 & 2K & ERJ3EKF2001 & PANASONIC \\
\hline 23 & 2 & R38,R11 & 1.5 K & ERJ3EKF1501 & PANASONIC \\
\hline 24 & 3 & R56,R94, R99 & 0 ohm & ERJ3GSYOROO & PANASONIC \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 25 & 1 & R59 & 51 & ERJ3GSYJ510 & PANASONIC \\
\hline 26 & 7 & R60, R61, R62,R84, R85,R86, & 0 & ERJ3GSYOROO & PANASONIC \\
\hline & & R87 & & & \\
\hline 27 & 6 & R63,R64,R66,R69,R70,R72 & 1 K & ERJ3EKF 1001 & PANASONIC \\
\hline 28 & 2 & R71,R65 & 1.1K & ERJ3EKF1101 & PANASONIC \\
\hline 29 & 2 & R80, R79 & RESISTOR & & \\
\hline 30 & 3 & R81, R82,R83 & R & & \\
\hline 31 & 4 & R88,R91,R96,R101 & 1.33K & ERJ3EKF1331 & PANASONIC \\
\hline 32 & 2 & R102,R89 & 4.02K & ERJ3EKF4021 & PANASONIC \\
\hline 33 & 2 & R92,R97 & 499 & ERJ3EKF4990 & PANASONIC \\
\hline 34 & 19 & TP1, TP2, TP3, TP4, TP5, TP6, & TP-105-01-00 & & \\
\hline & & TP8, TP9, TP11, TP12, TP13, & & & \\
\hline & & TP14, TP15, TP16, TP18, TP19, & & & \\
\hline & & TP20, TP21,TP22 & & & \\
\hline 35 & 3 & U1, U6, U19 & AD8052AR & AD8052AR & ANALOC DEVICES \\
\hline 36 & 2 & U7, U2 & D20_V11 & 02D_V11 & PARKER VISION \\
\hline 37 & 1 & 011 & MAAM22010 & MAAM22010 & MACOM \\
\hline 38 & 1 & U12 & \(1 \times 603\) & \(1 \times 603\) & ANAREN \\
\hline 39 & 1 & U14 & AD1582 & AD1582 & ANALOC DEVICES \\
\hline 40 & 1 & U15 & UPG1678 & UPG1678GV & NEC \\
\hline 41 & 1 & U16 & ADP-2-10-75 & ADP-2-10-75 & MINI-CIRCUITS \\
\hline 42 & 1 & & BOARD & 8500.641.021 & V05.10 \\
\hline
\end{tabular}

FIG.61B
\begin{tabular}{|c|c|}
\hline FIG.62A & FIG.62B \\
\hline FIG.62C & FIG.62D \\
\hline FIG.62E & FIG.62F \\
\hline FIG.62G & FIG.62H \\
\hline FIG.62I & \\
\hline
\end{tabular}

FIG. 62
Tel. No.: 202-371-2600

For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit

-New Sheét
Sheet 103 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


FIG.62B



Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology


FIG.62D


New Sheet
Sheet 107 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003 ; Group Unit: 2634
lnventors: Sorrells et al.
Tel No. 202 271 2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit


New sneet
Sheet 108 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003 ; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology
n. Including Multi-Phase Embodiments and Circuit


    Including Multi-Phase Embodiments and Circuit


FIG.62I
\begin{tabular}{|c|c|c|c|c|c|}
\hline & QTM REFERENCE & PART & DESCRIPTION & PART NUMBER & VENDOR \\
\hline 1 & 4 C1, C6, C7, C10 & 14 F & Cop, 1uF, +80-20\%,0805 & CRM40Y5V105Z016AD & MURATA \\
\hline 2 & \(6 \mathrm{C2,C3,C4}, \mathrm{C8}, \mathrm{C11}, \mathrm{Cl2}\) & 100pF & Cap, 100pF, 5\%, COG, 0603 & ECL-V1H101JCV & PANASONIC \\
\hline 3 & 2 C5, C9 & .14F & Cop, . 1uF, +80-20\%, Y5V, 0603 & & MURATA \\
\hline 4 & \(3.1313, C 14, C 19\) & 22uF & Cap, Tant, 22uF, 20\%, 20 V & T4910226MO20AS & KEMET \\
\hline 5 & 4 C15,C16,C17, C18 & 4.7uF & Cop, Tant, 4.7uF, 20\%, 20V & T491C475M020AS & KEMET \\
\hline 6 & 2 JP2, JP6 & HEADER 7X2 & Receptacle, \(7 \times 2\) pin, . 050 & SFMC-107-L1-S-D & SAMTEK \\
\hline \multirow[t]{2}{*}{7} & \(9 \mathrm{JP4}, ~ \sqrt{4}, ~ \sqrt{ } 5, ~ \sqrt{6}, ~ J 7, ~ J P 9, ~ J 9, ~\) & CON3 & Header, 3pin, .100' \({ }^{\prime \prime}\) & 69190-403 & BERG \\
\hline & J10, JP11 & & & & \\
\hline 8 & JP7 & HEADER 10X2 & Receptacle, 10X2pin, . 050 & SFMC-110-L1-S-D & SAMTEK \\
\hline 9 & 1 JP8 & HEADER 5X2 & Receptocle, 5X2pin, . 050 & SFMC-105-L1-S-D & SAMTEK \\
\hline 101 & 1 J2 & EHT-1-10-01-S-D & Header, ribbon, 10X2pin, 2 mm & EHT-1-10-01-S-D & SAMTEK \\
\hline 11 & 3 J8, J11, J12 & 82MACX-50-0-1 & Connector, RF & 82MCX-50-0-1 & SUHNER \\
\hline 122 & 2 L3,L1 & Ferrite Beod & Ferrite Beod, 0805 & BLM21A121S & MURATA \\
\hline 132 & 2 L4,L2 & 330nH & Ind, 330nH, 10\%, 0805 & LL2012-FR33K & TOKO \\
\hline 14. & 1 R1 & DNP & Res, 0603 & & PANASONIC \\
\hline 152 & 2 R9,R2 & 91 & Res, \(910 \mathrm{hn}, 5 \%, 0603\) & ERJ-3CSYJ910 & PANASONIC \\
\hline 162 & 2 R7,R3 & 240 & Res, 240 Ohm, 5\%, 0603 & ERJ-3CSYJ241 & PANASONIC \\
\hline 174 & 4 R4,R5,R10,R11 & 82 & Res, \(82 \mathrm{Ohm}, 5 \%\), 0603 & ERJ-3CSY J820 & PANASONIC \\
\hline 182 & 2 R8,R6 & 5 K & Var Res, 5K, 10\% & 3296W001502 & BOMMS \\
\hline \multirow[t]{2}{*}{19} & 10 R12, R13, R14, R15, R16, & 180 & Res, 180 Ohm, 5\%, 0603 & ERJ-3CSYJ181 & PANASONIC \\
\hline & R17, R18, R19, R20, R21 & & & & \\
\hline \multirow[t]{2}{*}{20} & 10 R22, R23, R24, R25, R26, & 390 & Res, 390 Ohm, 5\%, 0603 & ERJ-36SYJ391 & PANASONIC \\
\hline & R27, R28, R29, R30, R31 & & & & \\
\hline 212 & 2 U5,U1 & UPG1678 & IC, RF Buffer & UPG1678GV & NEC \\
\hline \multirow[t]{2}{*}{\begin{tabular}{|l|}
\hline 22 \\
\hline 23 \\
\hline 2 \\
\hline
\end{tabular}} & 2 U4,U2 & LM317 & IC, Voltage Regulotor & LM317T & NATIONAL \\
\hline & 1 U3 & ADP-2-10-75 & RF Splitter & ADP-2-10-75 & MINICIRCUITS \\
\hline \multirow[t]{2}{*}{\begin{tabular}{|l|}
24 \\
\hline 25 \\
\hline
\end{tabular}} & 1 U6 & DS3862 & IC, Buffer & DS3862MM & NATIONAL \\
\hline & & & BOARD & ST8500.641.023VOL & \\
\hline
\end{tabular}

For: Wireless Local Area Network (WLAN) Using
    Universal Frequency Translation Technology
    Including Multi-Phase Embodiments and Circuit


FIG. 64




кeptacement snee
Sheet 116 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit


FIG. 65

Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit

\(\stackrel{7}{4}\)

Sheet 118 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
nventors: Sorrells et al.
Tel. No. 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit

FIG.65B


FIG.65D

FIG.65E
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ITEM & QTY & REFERENCE & PART & MANUFACT. & PART DESCRIPTION & PART NUMBER \\
\hline 1 & 24 & C1,C2, C3, C5, C6, C17, C18, & 0.1uF & MURATA & .1UF, 0603, X7R, 20\%, 16V & GRM39X7R104M016 \\
\hline & & C19, C20, C28, C35, C36,C37, & & & & \\
\hline & & C38,C40, C41, C44, C48, C55, & & & & \\
\hline & & C56,C57, 559, C60, 662 & & & & \\
\hline 2 & 1 & C4 & 330pF & MURATA & 330pF ,0603, COG, 10\%,50 & GRM39COC331K050 \\
\hline 3 & 2 & C10,C7 & 22pF & MURATA & 22pF, 0603, COG, 10\%,50 & GRM30COC220K050 \\
\hline 4 & 4 & C8,C9, C23, C24 & 470pF & MURATA & 470pF ,0603, COG, 10\%,50 & GRM39C06471K050 \\
\hline 5 & 6 & C11,C13, C25,C26, 27 7, C46 & 10pF & MURATA & 10pF, 0603, COG, 10\%, 50 & GRM39COG100K050 \\
\hline 6 & 1 & C12 & 8pF & MURATA & 8pF, 0603,COG, 10\%, 50 & GRM39CO6080K050 \\
\hline 7 & 8 & C15,C16, C21,C22,C50,C54 & 100pF & MURATA & 100pF ,0603,COC, 10\%,50 & GRM39COG101K050 \\
\hline & & C58,C61 & & & & \\
\hline 8 & 3 & C39, C43, C47 & 4.7uF & PANASONIC & 4.7UF TANTALUM, 16 V & ECS-T1CY475R \\
\hline 9 & 1 & C52 & 33pF & MURATA & 330pF,0603, COG, 10\%,50 & GRM3CO6330K050 \\
\hline 10 & 2 & FL1, FL2 & MDR642E & SOSHIN & 2.4-2.5 CHz BPF & MDR642E \\
\hline 11 & 1 & JP1 & HEADER 7X2 & SAMTEC & DUAL ROW, 7 PINS PER ROW & FTSH-107-01-F-D \\
\hline 12 & 3 & J1, \({ }^{1} 2, \sqrt{ }\) 3 & 82MMCX-50-0-1 & SUHNER & RF CONNECTOR & 82MMCX-50-0-1 \\
\hline 13 & 6 & J4, \(35, ~ \mathrm{J6}, \mathrm{J7}, ~ \mathrm{J9}, \mathrm{J10}\) & CON3 & BERG & 3 PIN HEADER W RETENTIVE LEG & 69190-403H \\
\hline 14 & 2 & L10,L1 & BLM21A601R & MURATA & 600 OHMS@100MHz,500mA FERRITE BEAD & BLM21A601R \\
\hline 15 & 4 & L2,L3,L5, L6 & 22nH & COILCRAFT & 22nH,0805CS (2012),5\% & 0805CS-220X-BC \\
\hline 16 & 9 & L7,L8,L9,L11, L12,L13,L14, & BLM11A121S & MURATA & RF BEAD & BLM11A121S \\
\hline & & L15,L16 & & & & \\
\hline 17 & 4 & Q1, Q2, Q3, Q4 & NDS336P & NATIONAL & P-CHANNEL FET & NDS336P \\
\hline 18 & 12 & R1,R2, R5, R6, R7, RG, R11, & R & PANASONIC & & \\
\hline & & R13,R16,R17,R18,R19 & & & & \\
\hline 19 & 2 & R3, R4 & 100 & PANASONIC & 0603, 100,5\%, 1/16W & ERJ-3GSY-J-101 \\
\hline 20 & 5 & R10,R12,R15,R20,R21 & 4.7K & PANASONIC & 0603,4.7K,5\%,1/16W & ERJ-3GSY-J-472 \\
\hline
\end{tabular}
Nêw Sheèt
Sheet 123 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003 ; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 21 & 1 & R14 & 3.6K & PANASONIC & 0603,3.6K,5\%, 1/16W & ERJ-3GSY-J-362 \\
\hline 22 & 1 & T1 & \multicolumn{2}{|l|}{80 OHM, L= 100 MIL , W=20 MIL} & 80 OHM, L= \(100 \mathrm{MIL}, \mathrm{K}=20 \mathrm{MIL}\) & \\
\hline 23 & 1 & T2 & \multicolumn{2}{|l|}{50 OHM, L= 100 MIL , W= \(=54 \mathrm{MIL}\)} & 50 OHM, L= \(100 \mathrm{MIL}, \mathrm{W}=54 \mathrm{MIL}\) & \\
\hline 24 & 1 & T3 & \multicolumn{2}{|l|}{102 OHM, L=220 MIL, W=10 MIL} & 102 OHM, L=220 MIL, \(\mathrm{K}=10 \mathrm{MIL}\) & \\
\hline 25 & 1 & T4 & \multicolumn{2}{|l|}{67 OHM, L=200 MIL, W=30.7 MIL} & 67 OHM, L= \(200 \mathrm{MIL}, \mathrm{W}=30.7 \mathrm{MIL}\) & \\
\hline 26 & 1 & T5 & \multicolumn{2}{|l|}{100 OHM, L=200 MIL, WE=10.7MIL} & 100 OHM, L= \(200 \mathrm{MIL}, \mathrm{W}=10.7 \mathrm{MIL}\) & \\
\hline 27 & 4 & U2, U3, U6, U7 & MAAM22010 & MACOM & 2.4-2.5 GHz LNA & MAAM22010 \\
\hline 28 & 1 & U4 & UPG152TA & NEC & RF SWITCH & UPG152TA \\
\hline 29 & 5 & U11, U12, U16, U18, U19 & NC7S04M5 & NATIONAL & INVERTER & NC7S04M5 \\
\hline 30 & 1 & 014 & TKN11230B & TOKO & VOLTAGE REGULATOR & TK11230B \\
\hline 31 & 1 & 017 & RF2128P & RFMD & MEDIUM POWER LINEAR AMPLIFIER & RF2128P \\
\hline 32 & 1 & & & & BOARD & B500.641.024 VOL \\
\hline
\end{tabular}
FIG.66B

FIG.67A

Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit


FIG.67B

Replacement Shēē
Sheet 126 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circui
FIG.68A



FIG.68B

Replacement Sheet
Sheet 128 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003 ; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit




FIG.70A

FROM FIG.70A


Dkt No. 1744.0630003 ; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit

FIG.70B

LOCAL OSCILLATOR SIGNAL 7015

HALF FREQUENCY LO SIGNAL 7017

PHASE SHIFTED LO SIGNAL 7019

HALF FREQUENCY PHASE SHIFTED LO SIGNAL 7021

I CONTROL SIGNAL 7090

INVERTED I CONTROL SIGNAL 7092

Q CONTROL SIGNAL 7094

INVERTED Q CONTROL SIGNAL 7096

COMBINED CONTROL SIGNAL 7045



FIG.70C
        Including Multi-Phase Embodiments and Circuit
(A) IQDEMOD PULSE RELATIONSHIPS TO INPUT RF CARRIER

FIG.70D


Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit


Keplacement Sheet
Sheet 137 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit








FIG.70S-1

Tel. No.: 202-371-2600
For: Wireless Local Area Network (WíAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit



Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
For: Wireless Local Area Network (WLAN) Using
Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Enbodiments and Circuit



FIG.72A


FIG.72B
7127


FIG.72C


FIG.72D


FIG.72E

Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit


FIG.72F


FIG.72G


FIG.72H


FIG.72I
eplacement sneet
Sheet 149 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology
SQUARE WAVE FREQUENCY \(=200 \mathrm{Mhz}\)
APERTURE \(=500 \mathrm{ps}\)
FUNDAMENTAL \(C L O C K=200 \mathrm{Mhz}\left(5^{\text {th }}\right.\) SUBHARMONIC \()\)

FIG.72J

Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
lnventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit

FIG.73B

Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
- Including Multi-Phase Embodiments and Circuit



Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


FIG.76A


Replacement Shee

Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


Replacement Sheet
Sheet 157 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003 ; Group Unit: 2634
Inventors: Sorrells et al.
TeI. No.: 202-37I-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit \(\qquad\)


Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrélls et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-37I-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit




Replacement Sheet
Sheet 164 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit



FIG. 84


FIG. 85


FIG. 86


\section*{FIG. 87}


\section*{FIG. 88}

Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
        Universal Frequency Translation Technology
        Including Multi-Phase Embodiments and Circuit
FIG.89B
FIG.89C


FALLING EDGE PULSE GENERATOR
FIG.89E


Inventors: Sorrells et al.
, Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit


FIG.90B

New Sneet
Sheet 174 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


New Sheet
Sheet 175 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
_ . Including Multi-Phase Embodiments and Circuit


T0 FIG.90B-4

- New Sneet

Sheet 177 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003 ; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


\(\sim \quad-\)



FIG.90C

New sneet
Sheet 179 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003 . Grow
Dkt No. 1744.0630003 ; Group Unit: 2634
Inventors: Sorrells et al
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit



Sheet 182 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology


Replacement Shee
Sheet 183 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit *





\section*{TRANSMITER BASEBAND SIGNAL ATER SPREADNG}

TRANSMITTER BASEBAND SIGNAL BEFORE SIGNAL SPREADNG

FIG. 92


FIG. 93



Replacement Sheet
Sheet 189 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sòrrells et al.
TeI. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit


FIG.95B


FIG.95C

Replacemeñ Sheet
Sheet 191 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel No: \(202371-2600\)
Ter: Wireless Local Area Network (WLAN) Using
Wreless Local Area Nranslation Technology
Including Multi-Phase Embodiments and Circuit


Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


FIG.97A
        Including Multi-Phase Embodiments and Circuit


FIG.97B

Sheet 194 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit



Replacement Sheét
Sheet 196 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


FIG. 98

FIG. 99

Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit


Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit




Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003 ; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
- Including Multi-Phase Embodiments and Circuit


New Sneet
Sheet 204 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003 ; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit



Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
.. Including Multi-Phase Embodiments and Circuit



FIG.105D

New Sheet
Sheet 208 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


FIG.105E-1

\section*{New Sheet}

Sheet 209 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-37 I-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


FIG.105E-2




FIG.105H
inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


FIG.105I

FIG.105J

FIG:105K
FIG.105L


        Including Multi-Phase Embodiments and Circuit


FIG. 1050


\section*{New Sheet}

Sheet 221 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003 ; Group Unit: 2634
Inventors: Sorrells et al
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
- Including Multi-Phase Embodiments and Circuit

FIG. 1050
Tel. No.: 202-371-2600

For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit


FIG.105R


FIG.105S
- Nēw Sheet

Sheet 224 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. i744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit



FIG.105U


FIG.105V




FIG.106D




Keplacement Sheet
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
... Including Multi-Phase Embodiments and Circuit


\({ }^{-}\)New Sheet

Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
. Including Multi-Phase Embodiments and Circuit


New Sheet \(\cdots\)
Sheet 236 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology
.. Including Multi-Phase Embodiments and Circuit



керtacement sneet
Sheet 238 of 349 856; Filed: Aug 4, 2000
Dkt No. 1744.0630003 ; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


FIG.109A

New sneet
Sheet 239 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel No. 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit

    Tel. No.: 202-371-2600
    For: .Wireless Local Area Network (WLAN) Using
                Universal Frequency Translation Technology
                    Including Multi-Phase Embodiments and Circuit


FIG.109C



\(-\overline{N e w}\) Sheet \({ }^{-1}\)
Sheet 244 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology




1284
Page 978 of 1284



\section*{New Sheet}

Sheet 248 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
lnventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
lncluding Multi-Phase Embodiments and Circuit ............................
\(\stackrel{\sim}{\stackrel{\infty}{N}}\)


Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology

- Replacement Shee

Sheet 251 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


New Sheet
Sheet 252 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit



Nëw Shéet
Sheet 254 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Inventors: Sorrells et al.
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


Nww Sheet \({ }^{-}\)
Sheet 255 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology



Page 989 of 1284

Sheet 257 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


FIG. 114

Replāc̄ement Sheet
Sheet 258 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology
\(\therefore \quad \therefore \quad\) Including Multi-Phase Embodiments and Circuit


FIG. 115 A

Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit

FIG.115B




\(\therefore \quad\) Keplacement Sheet
Sheet 264 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit




FIG.118A

Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


New Sheet
Sheet 268 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit



Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003 ; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


FIG. 119


Replacement Sheet
Sheet 272 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al
TeI. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


Replacement Shee
Sheet 273 of 349
, Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit .


Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency TransIation Technology
IncIuding Multi-Phase Embodiments and Circuit


New Sheet
Sheet 275 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit \(\qquad\)


FIG.123B


Page 1009 of 1284

New Sheet
Sheet 277 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
lnventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology ... Including Multi-Phase Embodiments and Circuit


Page 1010 of 1284



Page 1012 of 1284

New Sheet
Sheet 280 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


Page 1013 of 1284
\(\qquad\)


Replācement Sheét
Sheet 282 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
(... . Including Multi-Phase Embodiments and Circuit


FIG. 124

Replacement Sheet
Sheet 283 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


Page 1016 of 1284
-- New Sheet
Sheet 284 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using

\section*{Unjversal Frequency Translation Technology}

Including Multi-Phase Embodiments and Circuit


New Sheet
Sheet 286 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


New Sheet
Sheet 287 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


Page 1020 of 1284


Page 1021 of 1284

Nèw Sheet
Sheet 289 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


FIG.125G
        Including Multi-Phase Embodiments and Circuit



Page 1024 of 1284

New Sheet
Sheet 292 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003 ; Group Unit: 2634
Inventors: Sorrells et al
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


Page 1025 of 1284



Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology
.. Including Multi-Phase Embodiments and Circuit


Page 1028 of 1284
-New Sheet
Sheet 296 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
| Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit


Page 1029 of 1284

Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Inventors. Son-371 2600
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit


FIG.126G

Inventors: Sorrells et al.
Tel. No.: 202-371-2600
Fer: Wireless Local Area Network (WLAN) Using
For: Wireless Local Area Network (Whan Tey Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit
\(\qquad\)


Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit


New Sheet
Sheet 301 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using , . Including Multi-Phase Embodiments and Circuit






Replacement Sheet
Sheet 306 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit


FIG. 131


Sheet 308 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


Replacement Shee
Sheet 310 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


FIG. 136

Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
        Universal Frequency Translation Technology
        Including Multi-Phase Embodiments and Circuit :!


FIG. 137

Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit


For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit


Rēplacement Sheet
Sheet 316 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


FIG. 141


FIG. 142

\section*{Replacement Shee}

Sheet 318 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003 ; Group Unit: 2634
Inventors: Sorrells et al.
Tel No. Sorrels et al
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


FIG. 143

\(\qquad\)


Keplacement Shee
Sheet 321 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


FIG. 146


FIG. 147

Sheet 323 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit

FIG. 148

Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit


                    Including Multi-Phase Embodiments and Circuit


Sheet 327 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
i Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
. Including Multi-Phase Embodiments and Circuit


New Sheet
Sheet 328 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


New Sheet
Sheet 329 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit \(\qquad\)


Page 1062 of 1284

Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit

Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
    Universal Frequency Translation Technology
___ Including Multi-Phase Embodiments and Circuit


FIG.150G

New Sheet
Sheet 332 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit

nventors: Sorrells et al
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit



Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


Replacement Sheet
Sheet 336 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit.... .


Replacement Sheet
Sheet 337 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit

Replacement Shee
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit \(\qquad\)

FIG. 156


Tel. No.: 202-37I-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
- Including Multi-Phase Embodiments and Circuit


Replacement Sheet
Sheet 341 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003 ; Group Unit: 2634
Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit





Replacement Sheèt

Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology
lncluding Multi-Phase Embodiments and Circuit



Page 1079 of 1284

New Sheet
Sheet 347 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
lnventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


Appl. No. 09/632,856; Filed: Aug 4, 2000 Dkt No. 1744.0630003; Group Unit: 2634 Inventors: Sorrells et al.
Tel. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


Replacement'Sheét
Sheet 349 of 349
Appl. No. 09/632,856; Filed: Aug 4, 2000
Dkt No. 1744.0630003; Group Unit: 2634
Inventors: Sorrells et al.
TeI. No.: 202-371-2600
For: Wireless Local Area Network (WLAN) Using
Universal Frequency Translation Technology
Including Multi-Phase Embodiments and Circuit


PART B - FEE (S) TRANSMITTAL
Mail Stop ISS
NE
or Fax (703) 746-4000
INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications.

CURRENT CORRESPONDENCE ADDRESS (Note: Use Block 1 for any change of address)

\section*{\(7590 \quad 09 / 10 / 2004\)}

Sterne Kessler Goldstein \& Fox P LL C Suite 6001100 New York Avenue NW Washington, DC 20005-3934

\section*{12/13/2004 EAREEAY2 0000015809632856}
1400.00 DP 3.000 F

Note: A certificate of mailing can only be used for domestic mailings of the Fees) Transmittal. This certificate cannot be used for any other accompanying papers. Each additional paper, such as an assignment or formal drawing, must have its own certificate of mailing or transmission.

\section*{Certificate of Mailing or Transmission}

1 hereby certify that this Fees) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope addressed to the Mail Stop ISSUE FEE address above, or being facsimile transmitted to the USPTO (703) 746-4000, on the date indicated below.
\begin{tabular}{|rr|}
\hline & (Depositors name) \\
\hline & (Signature) \\
\hline & (Date) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline APPLICATION NO. & FILING DATE & FIRST NAMED INVENTOR & ATTORNEY DOCKET NO. & CONFIRMATION NO. \\
\hline \(09 / 632,856\) & \(08 / 04 / 2000\) & David F. Sorrells & 1744.0630003 \\
\hline
\end{tabular}

TITLE OF INVENTION: WIRELESS LOCAL AREA NETWORK (FLAN) USING UNIVERSAL FREQUENCY TRANSLATION TECHNOLOGY INCLUDING MULTI-PHASE EMBODIMENTS AND CIRCUIT IMPLEMENTATIONS

3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment.
(A) NAME OF ASSIGNEE
(B) RESIDENCE: (CITY and STATE OR COUNTRY)
ParkerVision, Inc.
Jacksonville, Florida

Please check the appropriate assignee category or categories (will not be printed on the patent) : \(\square\) Individual \(\quad\) Corporation or other private group entity \(\quad \square\) Government

4a. The following fees) are enclosed:
4b. Payment of Fee (s):
Issue Fee
Publication Fee (No small entity discount permitted)
Advance Order - \# of Copies 1
\(\square\) A check in the amount of the fee (s) is enclosed.
Payment by credit card. Form PTO-2038 is attached.
Y The Director is hereby authorized by charge the required fee (s), or credit any overpayment, to Deposit Account Number _19-0036__ (enclose an extra copy of this form).
5. Change in Entity Status (from status indicated above)
a. Applicant claims SMALL ENTITY status. See 37 CFR 1.27.
b. Applicant is no longer claiming SMALL ENTITY status. See 37 CF 1.27 (g)(2).

The Director of the USPTO is requested to apply the Issue Fee and Publication Fee (if any) or to re-apply any previously paid issue fee to the application identified above.
NOTE: The Issue Fee and Publication Fee (if required) will not be accepted from anyone other than the applicant; a registered attorney or agent; or the assignee or other party in interest as shown by the records of the United States Patent and Trademark Office.
or printed name \(\qquad\) Jeffrey T. Helvey
Date

Registration No. 44,757

This collection of information is required by 37 CFR 1.311 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandra, Virginia 223 13-1450. DO NOT SEND FEES OR COMPLETED FORMS TO'THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450 , Alexandria, Virginia 22313-1450.
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.
\begin{tabular}{|l|l|}
\hline Application Number & \(09 / 632,856\) \\
\hline Filing Date & August 4, 2000 \\
\hline First Named Inventor & David F. Sorrells \\
\hline Examiner Name & Kim, Kevin \\
\hline Art Unit & \(\mathbf{2 6 3 4}\) \\
\hline Attorney Docket No. & \(\mathbf{1 7 4 4 . 0 6 3 0 0 0 3}\) \\
\hline
\end{tabular}


\section*{3. ADDITIONAL FEES \\ Large Entity , Small Entity}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Fee } \\
& \text { Foe } \\
& \text { Code }
\end{aligned}
\] & \[
\left\lvert\, \begin{array}{ll}
\text { Fee } & \text { Fee } \\
\text { Code } & (\$)
\end{array}\right.
\] & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} & Fee-Pald \\
\hline 1051130 & 205165 & & - late filing fee or oath & & \\
\hline 105250 & \(2052 \quad 25\) & \multicolumn{3}{|l|}{Surcharge - late provisional filing fee or cover sheet} & \\
\hline 1053130 & \multirow[t]{2}{*}{\[
\begin{array}{rr}
1053 & 130 \\
1812 & 2,520
\end{array}
\]} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Non-English specification \\
For filing a request for ex parte reexamination
\end{tabular}}} & \\
\hline 1812 2,520 & & & & & \\
\hline 1804 920* & \multicolumn{4}{|l|}{1804 920* Requesting publication of SIR prior to Examiner action} & \\
\hline 1805 1,840* & 1805 1.840* & \multicolumn{3}{|l|}{Requesting publication of SIR after Examiner action} & \\
\hline 1251110 & 225155 & \multicolumn{3}{|l|}{Extension for reply within first month} & \\
\hline 1252430 & 2252215 & \multicolumn{3}{|l|}{Extension for reply within second month} & \\
\hline 1253 980 & 2253490 & \multicolumn{3}{|l|}{Extension for reply within third month} & \\
\hline 12541.530 & 2254765 & \multicolumn{3}{|l|}{Extension for reply within fourth month} & \\
\hline 1255 2,080 & 2255 1,040 & \multicolumn{3}{|l|}{Extension for reply within fifth month} & \\
\hline 1401340 & 2401170 & \multicolumn{3}{|l|}{Notice of Appeal} & \\
\hline 1402340 & 2402170 & \multicolumn{3}{|l|}{Filing a brief in support of an appeal} & \\
\hline 1403300 & 2403150 & \multicolumn{3}{|l|}{Request for oral hearing} & \\
\hline 1451 1,510 & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{1451 1,510 Petition to institute a public use proceeding}} & \\
\hline 1452110 & & & & & \\
\hline 1453 1,370 & 2453685 & \multicolumn{3}{|l|}{Petition to revive - unintentional} & \\
\hline 1501 1,370 & \multirow[t]{2}{*}{\(\begin{array}{cc}2501 & 68 \\ 2502 & 24\end{array}\)} & \multicolumn{3}{|l|}{Utility issue fee (or reissue)} & \$1,400.00 \\
\hline 1502490 & & \multicolumn{3}{|l|}{5 Design issue fee} & \\
\hline 1503660 & \(2503 \quad 330\) & \multicolumn{3}{|l|}{30 Plant issue fee} & \\
\hline \(1460 \quad 130\) & 1460130 & \multicolumn{3}{|l|}{Petitions to the Commissioner} & \\
\hline 180750 & 180750 & \multicolumn{3}{|l|}{Processing fee under 37 CFR 1.17(q)} & \\
\hline 1806180 & \multicolumn{4}{|l|}{1806180 Submission of Information Disclosure Stmt} & \\
\hline 802140 & \multicolumn{4}{|l|}{802140 Recording each patent assignment per property (times number of properties)} & \\
\hline 1809790 & \multicolumn{4}{|l|}{\(2809395 \begin{gathered}\text { Filing a submission after final rejection } \\ \text { (37 CFR 1.129(a)) }\end{gathered}\)} & \\
\hline 1810790 & \multicolumn{4}{|l|}{2810395 For each additional invention to be examined (37 CFR \(1.129(b)\) )} & \\
\hline 1801790 & \multicolumn{4}{|l|}{2801395 Request for Continued Examination (RCE)} & \\
\hline 1802900 & \multicolumn{4}{|l|}{1802900 Request for expedited examination of a design application} & \\
\hline \multicolumn{5}{|l|}{Other fee (specify) Advance copies of patent.} & \$3.00 \\
\hline \multicolumn{3}{|l|}{*Reduced by Basic Filing Fee Paid} & SUBTOTAL (3) & (\$) & 1,403.00 \\
\hline
\end{tabular}


WARNING: Information on this form may become public. Credit card Information should not be included on thls form. Provide credit card information and authorization on PTO-2038.
This collection of information is required by 37 CFR 1.17 and 1:27. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is govemed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

\section*{ARTIFACT SHEET}

Enter artifact number below. Artifact number is application number + artifact type code (see list below) + sequential letter (A, B, C ...). The first artifact folder for an artifact type receives the letter A, the second B, etc.. Examples: \(59123456 \mathrm{PA}, 59123456 \mathrm{~PB}, 59123456 \mathrm{ZA}, 59123456 \mathrm{ZB}\)

Indicate quantity of a single type of artifact received but not scanned. Create individual artifact folder/box and artifact number for each Artifact Type.

\(\mathrm{CD}(\mathrm{s})\) containing: computer program listing Doc Code: Computer pages of specification and/or sequence listing and/or table Doc Code: Artifact content unspecified or combined Doc Code: Artifact

Stapled Sets) Color Documents or B/W Photographs
Doc Code: Artifact Artifact Type Code: C


Microfilm (s)
Doc Code: Artifact Artifact Type Code: F
\(\square\) Video tape (s)
Doc Code: Artifact Artifact Type Code: V


Model (s)
Doc Code: Artifact Artifact Type Code: M


Bound Documents)
Doc Code: Artifact Artifact Type Code: B


Confidential Information Disclosure Statement or Other Documents marked Proprietary, Trade Secrets, Subject to Protective Order, Material Submitted under MPEP 724.02, etc.

Doc Code: Artifact Artifact Type Code X


Other, description:
Doc Code: Artifact Artifact Type Code: Z

\section*{Please forward to Group Art Unit 2634}

\section*{Amended Compact Discs}

EXAMINER NOTE: THIS PAPER IS AN INTERNAL WORKSHEET ONLY. DO NOT ENCLOSE WITH ANY COMMUNICATION TO THE APPLICANT. ITS PURPOSE IS ONLY THAT OF AN AID IN HIGHLIGHTING A PARTICULAR PROBLEM IN A COMPACT DISC.

THE ATTACHED CD (COPY 1) HAS BEEN REVIEWED BY OIPE FOR COMPLIANCE WITH 37 CAR \(1.52(\mathrm{E})\). Please match this CD with the application listed below.

Date:
Serial No./Control No. Reviewed By:
The compact discs are readable and acceptable.Copy 1 and Copy 2 of the compact discs are not the same.The compact discs are unreadable.The files on the compact discs are not in ASCII.The compact discs contain at least one virus.


ONE CD SUBMITED - NOT PRosper Subject mater
P.O. Box 1450
P.O. Box 14S0
Alexandra, Virginia 22313-1450
www.uspto.gov
\begin{tabular}{|c|c|c|c|c|}
\hline APPLICATION NO. & FILING DATE & FIRST NAMED INVENTOR & ATTORNEY DOCKET NO. & CONFIRMATION NO. \\
\hline \multirow[t]{2}{*}{09/632,856} & 08/04/2000 & David F. Sorrells & 1744.0630003 & 2377 \\
\hline & 7590 11/16 & & \multicolumn{2}{|c|}{EXAMINER} \\
\hline \multicolumn{2}{|l|}{Sterne Kessler Goldstein \& Fox P L L C} & & \multicolumn{2}{|c|}{KIM, KEVIN} \\
\hline \multicolumn{3}{|l|}{Suite 6001100 New York Avenue N W} & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Washington, DC 20005-3934}} & & ART UNIT & PAPER NUMBER \\
\hline & & & 2634 & \\
\hline
\end{tabular}

Please find below and/or attached an Office communication concerning this application or proceeding.


DATE MAILED:

Please find below and/or attached an Office communication concerning this application or proceeding.

Attachments: Information Disclosure Statements (PTO 1449s)

\section*{Information Disclosure Statement}
1. The information disclosure statement (IDS) submitted on November 12, 2004 was filed after the mailing date of the Notice of Allowability on September 10, 2004. The submission is in compliance with the provisions of 37 CFR 1.97. Accordingly, the information disclosure statement has been considered by the examiner. In addition, the previously submitted IDS on July 25, 2002, June 9, 2003, January 23, 2004, August 19, 2004 has been considered and initialed and dated copies of PTO-1449s are hereby returned to applicant.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Kevin Y. Kim whose telephone number is 571-272-3039. The examiner can normally be reached on 8AM --5PM MF.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Kenneth Vanderpuye can be reached on 571-272-3078. The fax phone number for the organization where this application or proceeding is assigned is \(571-273-8300\).

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).


F KEVIN KIM
PATE TI EVAMBRA
\(\qquad\)


[XRUSH] RESPONSE:

\section*{INITIALS:}

NOTE: This form will be included as part of the official USPTO record, with the Response
document coded as XRUSH.
REV 10/04

United States Patent and Trademark Office

> UNITED STATES DEPARTMENT OF COMMERCE
> UnIted States Patent and Trademark Office
> Address: COMMISSIONER FOR PATENTS P.O. Box 1450
> Alexandria, Virginia 22313-1450 www.uspto.gov


Please find below and/or attached an Office communication concerning this application or proceeding.

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address-All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included herewith (or previously mailed), a Notice of Allowance (PTOL-85) or other appropriate communication will be mailed in due course. THIS NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT RIGHTS. This application is subject to withdrawal from issue at the initiative of the Office or upon petition by the applicant. See 37 CFR 1.313 and MPEP 1308.
1. \(\boxtimes\) This communication is responsive to amendment filed on 7-27-2004.
2. \(\boxtimes\) The allowed claims) is/are 42-71,77 renumbered as 1-32.
3. \(\square\) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a)All
b) \(\square\) Some*
c) \(\square\)None of the:
1. \(\square\) Certified copies of the priority documents have been received.
2. \(\square\) Certified copies of the priority documents have been received in Application No. \(\qquad\) .
3.Copies of the certified copies of the priority documents have been received in this national stage application from the International Bureau (PCT Rule 17.2(a)).
* Certified copies not received: \(\qquad\) _.

Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file a reply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application.
THIS THREE-MONTH PERIOD IS NOT EXTENDABLE.
4.A SUBSTITUTE OATH OR DECLARATION must be submitted. Note the attached EXAMINER'S AMENDMENT or NOTICE OF INFORMAL PATENT APPLICATION (PTO-152) which gives reasons) why the oath or declaration is deficient.
5. \(\square\) CORRECTED DRAWINGS ( as "replacement sheets") must be submitted.
(a)including changes required by the Notice of Draftsperson's Patent Drawing Review (PTO-948) attached 1) \(\square\) hereto or 2) \(\square\) to Paper No./Mail Date \(\qquad\) _.
(b) \(\square\) including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No./Mail Date \(\qquad\) .
Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d).
6.DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.

\section*{Attachment (s)}
1. \(\square\)Notice of References Cited (PTO-892)Notice of Draftperson's Patent Drawing Review (PTO-948)
3. \(\begin{aligned} & \text { Information Disclosure Statements (PTO-1449 or PTO/SB/08), }\end{aligned}\) Paper No./Mail Date
4.
\(\square\) Examiner's Comment \(\overline{\text { Regarding Requirement for Deposit }}\) of Biological Material

5.Notice of Informal Patent Application (PTO-152) ar Biological Material
6.Interview Summary (PTO-413), Paper No./Mail Date \(\qquad\) -.
7.Examiner's Amendment/Comment
8.Examiner's Statement of Reasons for Allowance
9.Other \(\qquad\) .


KEVIN KIA
PATENT EXAQA!AER

\begin{tabular}{|c|c|c|}
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
TRADENE FORM PTO-1449 \\
THIRD SUPPLEMENTAL INFORMATION DISCLOSURE STATEMENT
\end{tabular}} & \multicolumn{2}{|c|}{Page 1 of 6} \\
\hline & \[
\begin{aligned}
& \text { ATTY. DOCKETNO. } \\
& 1744.0630003
\end{aligned}
\] & \[
\begin{aligned}
& \text { APPLICATION NO. } \\
& 09 / 632,856
\end{aligned}
\] \\
\hline & \multicolumn{2}{|l|}{INVENTORS SORRELLS et al.} \\
\hline & FILING DATE August 4, 2000 & \[
\begin{aligned}
& \hline \text { ART UNIT } \\
& 2634 \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { EXAMINER } \\
& \text { INTIAL } \\
& \hline
\end{aligned}
\] & & DOCUMENT NUMBER & DATE & NAME & CLASS & SUB-CLASS & FILING DATE \\
\hline & AA & & & & & & \\
\hline & AB & & & & & & \\
\hline & AC & & - & & & & \\
\hline & AD & & & & & & \\
\hline & AE & & & & & & \\
\hline \({ }^{\prime \prime}\) & AF56 & 6,687,493 B1 & 02/2004 & Sorrells et al. & & & \\
\hline 1 & AG56 & 6,694,128 81 & 02/2004 & Sorrells et al. & & & \\
\hline  & AH56 & 6,031,217 & 02/2000 & Aswell et al. & & & \\
\hline  & Al56 & 5,955,992 & 09/1999 & Shattil & & & \\
\hline
\end{tabular}

FOREIGN PATENT DOCUMENTS
\begin{tabular}{|l|l|l|l|l|l|l|r|}
\hline \begin{tabular}{l} 
EXAMINER \\
INITIAL
\end{tabular} & & OOCUMENT NUMBER & DATE & COUNTRY & CLASS & SUB-CLASS & TRANSLATION \\
\hline & AJ & & & & & & Yes \\
\hline & AK & & & & & & NO \\
\hline & & & & & Yes \\
\hline & AL23 & DE 19648915 A1 & \(06 / 1998\) & DE & & YO \\
\hline & AM & & & & & & Yes \\
\hline
\end{tabular}

OTHER (Including Author, Title, Date, Pertinent Pages, etc.)


EXAMINER: Initial If reference considered, whether or not citation is in conformance with MPEP 609. Draw line through fitation if not in conformance and not considered. Include copy of this form with next communication to Applicant. 300146_1.DOC


EXAMINER: Inillal if reference consldered, whether or not citalion is in conformance with MPEP 609 . Draw line through citation if not in conformance and not considered. Include copy of this form with next communlcation to Applicant. 300146_1.DOC




OTHER (Including Author, Title, Date, Pertinent Pages, etc.)
\begin{tabular}{|l|l|l|l|l|}
\hline & AN & & \\
\hline & AQ & & \\
\hline & AP & & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}


PRINTER RUSH -
(PTO ASSISTANCE)
cav: 2638 Date 184565

Tracking \#:
Week Date:


\section*{[RUSH] RESPONSE:}
\begin{tabular}{l} 
Pages \(68-72\) of IDS have been initialed am e signal \\
\hline \\
INITIALS: \(K\)
\end{tabular}

NOTE: This form will be included as part of the official USPTO record, with the Response document coded as XRUSH.
REV 10/04
\begin{tabular}{|c|c|c|c|c|}
\hline APPLICATION NO. & FILING DATE & FIRST NAMED INVENTOR & ATTORNEY DOCKET NO. & CONFIRMATION NO. \\
\hline \multirow[t]{2}{*}{09/632,856} & 08/04/2000 & David F. Sorrells & 1744.0630003 & 2377 \\
\hline & 02/02/ & & EXAM & \\
\hline \multicolumn{3}{|l|}{Sterne Kessler Goldstein \& Fox P L L C} & \multicolumn{2}{|c|}{KIM, KEVIN} \\
\hline \multicolumn{3}{|l|}{Suite 6001100 New York Avenue N W} & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Washington, DC 20005-3934}} & & ART UNIT & PAPER NUMBER \\
\hline & & & 2634 & \\
\hline
\end{tabular}

Please find below and/or attached an Office communication concerning this application or proceeding.
\begin{tabular}{|l|l|l|l|}
\hline \multirow{3}{*}{ Response to Rule 312 Communication } & \multicolumn{2}{|l|}{\begin{tabular}{l} 
Application No. \\
\\
\end{tabular} \(\operatorname{09/632,856}\)} & \multicolumn{2}{|l|}{\begin{tabular}{l} 
Applicants) \\
SORRELS ET AL.
\end{tabular}} \\
\cline { 2 - 4 } & Examiner \\
& Kevin Y. Kim & Art Unit & \\
\hline
\end{tabular}
-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address -
1. \(\boxtimes\) The amendment filed on 10 December 2004 under 37 CFR 1.312 has been considered, and has been:
a)entered.
b) \(\boxtimes\) entered as directed to matters of form not affecting the scope of the invention.
c) \(\square\) disapproved because the amendment was filed after the payment of the issue fee.

Any amendment filed after the date the issue fee is paid must be accompanied by a petition under 37 CFR 1.313(c)(1) and the required fee to withdraw the application from issue.
d)disapproved. See explanation below.
e)entered in part. See explanation below.
application: 09/632856 Examiner: Kim,K.
gat : 2638
From: AMW/ Location: ide FMFFFD Date: \(2 / 24 / 06\)

\begin{tabular}{l}
\begin{tabular}{ll} 
[RUS HMESSAGE: Please initial or strike each entry on each page of \\
The If- \(-16-2005\) & 1449 document. Specifically, please see page 60 \\
of 76. & \\
\hline \\
\hline & \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{[XRUSH] RESPONSE:}
\(\qquad\)
\begin{tabular}{l}
\hline- \\
\hline\(\square\) \\
\hline \\
\hline
\end{tabular}

NOTE: This form will be included as part of the official USPTO record, with the Response document coded as XRUSH.
REV 10/04


Please find below and/or attached an Office communication concerning this application or proceeding.
\begin{tabular}{|c|l|l|l|}
\hline \multirow{3}{*}{\begin{tabular}{l} 
Supplemental \\
Notice of Allowability
\end{tabular}} & Application No. \\
& \(09 / 632,856\) & Applicants) \\
\cline { 3 - 4 } & Examiner & SORRELS ET AL. \\
& Kevin Y. Kim & Art Unit & \\
\hline
\end{tabular}
-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address-All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included herewith (or previously mailed), a Notice of Allowance (PTOL-85) or other appropriate communication will be mailed in due course. THIS NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT RIGHTS. This application is subject to withdrawal from issue at the initiative of the Office or upon petition by the applicant. See 37 CF 1.313 and MPEP 1308.
1. \(\boxtimes\) This communication is responsive to amendment filed on 7-27-2004.
2. \(\boxtimes\) The allowed claim (s) is/are 42-71,77.
3. \(\square\) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a)All
b) \(\square\) Some*
c) \(\square\) None of the:
1. \(\square\) Certified copies of the priority documents have been received.
2.Certified copies of the priority documents have been received in Application No. \(\qquad\) .
3.Copies of the certified copies of the priority
International Bureau (PCT Rule 17.2(a)).
* Certified copies not received: \(\qquad\) -

Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file a reply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application.
THIS THREE-MONTH PERIOD IS NOT EXTENDABLE.
4. \(\square\) A SUBSTITUTE OATH OR DECLARATION must be submitted. Note the attached EXAMINER'S AMENDMENT or NOTICE OF INFORMAL PATENT APPLICATION (PTO-152) which gives reasons) why the oath or declaration is deficient.
5. \(\square\) CORRECTED DRAWINGS ( as "replacement sheets") must be submitted.
(a) \(\square\) including changes required by the Notice of Draftsperson's Patent Drawing Review ( PTO-948) attached
1) \(\square\) hereto or 2) \(\square\) to Paper No./Mail Date \(\qquad\) -
(b) \(\square\) including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No./Mail Date \(\qquad\) _.
Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheets) should be labeled as such in the header according to 37 CFR 1.121(d).
6.DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.

\section*{Attachment (s)}
1. \(\square\) Notice of References Cited (PTO-892)
2.Notice of Draftperson's Patent Drawing Review (PTO-948)
3. \(\boxtimes\) Information Disclosure Statements (PTO-1449 or PTO/SB/08), Paper No./Mail Date \(\qquad\)
4. \(\square\) Examiner's Comment Regarding Requirement for Deposit of Biological Material
5.Notice of Informal Patent Application (PTO-152)
6.Interview Summary (PTO-413), Paper No./Mail Date \(\qquad\) _.
7.Examiner's Amendment/Comment
8. \(\square\) Examiner's Statement of Reasons for Allowance
9. \(\square\) Other \(\qquad\) .

RENIN KIM PATENT EXAMAPIEA


Page 4 of 4


EXAMINER: Initial If reference considered, whathar or not citation is in conformance with MPEP 609. Draw line through citation if hot in conformance and not consldered. Include copy of this form with nexd communication to Applicant.



Ind REQUEST
Tracking \#: \(\qquad\) Week Date: \(\qquad\)

[RUSHMMESSAGE: Please initial or strike each entry on each page of the \(11-16-20051449\) document. Specifically, please see page 60
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Thank you,
AMU
[XRUSH] RESPONSE: \(\qquad\)
\(\qquad\)
\(\qquad\)
INITIALS
NOTE: This form will be included as part of the official USPTO record, with the Response document coded as XRUSH.
REV 10/04
Page 1106 of 1284
Robert Greene Sterne
JorgeA. Goldstein
David K.S. Cornwell
Robert W. Esmond
Tracy-Gene G. Durkin
Michele A. Cimbala
Michael B. Ray
Rober E. Sokohl
Eric K. Steffe
Michael Q. Lee
John M. Covert
Robert C. Millonig
Donald J. Featherstone
Timothy J. Shea, Jr
Michael V. Messinger
Judith U. Kim
Jeffrey I. Helvey
Eldora L. Ellison


July 10, 2007

\title{
Writer's Direct Number: \\ Art Unit 2611 \\ Commissioner for Patents \\ Attn: Certificate of Correction Branch \\ Re: U.S. Utility Patent \\ Patent No. 7,110,444 B1; Issued: September 19, 2006 \\ For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit Implementations
}


Mark W. Rygiel
Michael R. Malek*
Carla Ji-Eun Kim
boyle A. Siever
Paul A Calvo
Paul A. Calvo
Robert A. Schwartzman
C. Matthew Rozier \({ }^{+}\)

Shameek Ghose
Randall K. Baldwin
Registered Patent Agents
Karen R. Markowiq
Matthew J. Dowd
Julie A. Heider
Mita Mukherjee
Scott M. Woodhouse
Peter A. Socarras

Inventors: Sorrells et al.
Our Ref: 1744.0630003
Sir:
Transmitted herewith for appropriate action are the following documents:
1. Request for Certificate of Correction Under 37 C.F.R. § 1.322;
2. Exhibit A (4 pages of Examiner-initialed PTO-1449 forms); and
3. Form \(\mathrm{PTO} / \mathrm{SB} / 44\) (5 pages).

The above listed documents are being electronically submitted through EFS-Web.
The U.S. Patent and Trademark Office is hereby authorized to charge any fee deficiency, or credit any overpayment, to our Deposit Account No. 19-0036.

Respectfully submitted,
Sterne, Kessler, Goldstein \& Fox p.l.l.c.


Jeffrey T. Helvey
Attorney for Patentees
Registration No. 44,757
JTH/jeg
Enclosures

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

In re patent of:
Sorrells et al.
Patent. No.: 7,110,444 B1
Issued: September 19, 2006

\title{
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit Implementations
}

Confirmation No.: 2377
Art Unit: 2611
Examiner: Kim, Kevin
Atty. Docket: 1744.0630003

\section*{Request for Certificate of Correction Under 37 C.F.R. § 1.322}

Attn: Certificate of Correction Branch

Commissioner for Patents
PO Box 1450
Alexandria, VA 22313-1450
Sir:
It is hereby requested that a Certificate of Correction under 37 C.F.R. \(\S 1.322\) be issued for the above-captioned United States Patent. This Certificate of Correction is being requested due to mistakes which appear in the printed patent. These mistakes were made by the U.S. Patent and Trademark Office.

Specifically, the printed patent contains the following errors for which a Certificate of Correction is respectfully requested:

In Section (56), References Cited, a number of references that were cited and considered are missing. The specific references are those that were listed on pages 15-18 of the Information Disclosure Statement PTO-1449 form, filed December 15, 2004.

Copies of these Examiner-initialed pages are enclosed as Exhibit A for the convenience of the Examiner.

\section*{Remarks}

The above-noted corrections do not involve such changes in the patent as would constitute new matter or would require reexamination.

A completed Form PTO/SB/44 accompanies this request, with the above-noted corrections printed thereon. Accordingly, a Certificate of Correction is believed proper and issuance thereof is respectfully requested.

The Commissioner is hereby authorized to charge any fee deficiency, or credit any overpayment, to our Deposit Account No. 19-0036.

Date: Z/iolon
Respectfully submitted, Sterne, Kessler, Goldstein \& Fox p.l.l.c.
jh Hiluer

Jeffrey T. Helvey
Attorney for Patentees
\(\qquad\)
1100 New York Avenue, N.W. Washington, D.C. 20005-3934 (202) 371-2600

632947_1.DOC

\section*{Exhibit A}


 conformance and not considered. Include copy of this form with next communication to Appllcant.

 conformance and not considered. Include copy of this form with next communlcation to Applicant.


\title{
UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION
}

Page 1 of 5
PATENT NO: \(\quad 7,110,444\) B1
DATED: September 19, 2006
INVENTORS: Sorrells et al.
It is certified that error appears or errors appear in the above-identified patent and that said Letters Patent is hereby corrected as shown below.

\section*{Section (56)}

Under "U.S. Patent Documents", please insert the following citations:
\begin{tabular}{lll}
\(4,870,659\) & \(09 / 1989\) & \\
\(4,871,987\) & \(10 / 989\) & Oishi et al. \\
\(4,885,587\) & \(12 / 989\) & Kawase \\
\(4,885,756\) & \(12 / 989\) & Wiegand et al. \\
\(4,888,557\) & \(12 / 989\) & Fontanes et al. \\
\(4,890,302\) & \(12 / 989\) & Puckette, IV et al. \\
\(4,893,316\) & \(01 / 1990\) & Muilwijk \\
\(4,893,341\) & \(01 / 1990\) & Janc et al. \\
\(4,894,766\) & \(01 / 1990\) & Gehring \\
\(4,896,152\) & \(01 / 1990\) & Tiemann \\
\(4,902,979\) & \(02 / 1990\) & Puckette, IV \\
\(4,908,579\) & \(03 / 1990\) & Tawfik et al. \\
\(4,910,752\) & \(03 / 1990\) & Yester, Jr. et al. \\
\(4,914,405\) & \(04 / 1990\) & Wells \\
\(4,920,510\) & \(04 / 1990\) & Senderowicz et al. \\
\(4,922,452\) & \(05 / 1990\) & Larsen et al. \\
\(4,931,921\) & \(06 / 1990\) & Anderson \\
\(4,944,025\) & \(07 / 1990\) & Gehring et al. \\
\(4,955,079\) & \(09 / 1990\) & Connerney et al. \\
\(4,965,467\) & \(10 / 1990\) & Bilterijst \\
\(4,967,160\) & \(10 / 1990\) & Quievy et al. \\
\(4,970,703\) & \(11 / 1990\) & Hariharan et al. \\
\(4,982,353\) & \(01 / 1991\) & Jacob et al. \\
\(4,984,077\) & \(01 / 1991\) & \\
\(4,995,055\) & \(02 / 1991\) & \\
Uchida \\
Weinberger et al.
\end{tabular}

MAILING ADDRESS OF SENDER (Please do not use customer number below):
1100 New York Avenue, NW
Washington DC 20005-3934
Atty. Dkt. No. 1744.0630003
This collection of information is required by 37 CFR \(1.322,1.323\) and 1.324 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 1.0 hour to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you are required to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Attention Certificate of Corrections Branch, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

\section*{UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION}

PATENT NO: 7,110,444 B1
DATED: \(\quad\) September 19, 2006
INVENTORS: Sorrells et al.
It is certified that error appears or errors appear in the above-identified patent and that said Letters Patent is hereby corrected as shown below.

\section*{Section (56)}

Under "U.S. Patent Documents", please insert the following citations (continued from page 1):
\begin{tabular}{lll}
\(5,003,621\) & \(03 / 1991\) & \\
\(5,005,169\) & \(04 / 1991\) & \\
Gailus \\
\(5,006,810\) & \(04 / 1991\) & \\
\(5,010,585\) & \(04 / 1991\) & \\
Popescer et al. \\
\(5,014,304\) & \(05 / 1991\) & \\
\(5,015,963\) & \(05 / 1991\) & \\
Nicollinini et al. \\
\(5,017,924\) & \(05 / 1991\) & \\
\(5,020,149\) & \(05 / 1991\) & \\
Guiberteau et al. \\
\(5,020,154\) & \(05 / 1991\) & \\
\(5,052,050\) & \(09 / 1991\) & \\
Zierhut \\
\(5,065,409\) & \(11 / 1991\) & \\
Collier et al. \\
Hughes et al.
\end{tabular}

Under "Foreign Patent Documents", please insert the following citations:
JP 6-237276 08/1994
JP 8-23359 01/1996
JP 47-2314 02/1972
JP 58-7903 01/1983
JP 58-133004 08/1983
JP 60-58705 04/1985
JP 4-123614 04/1992
JP 4-127601 04/1992
JP 5-175730 07/1993
JP 5-175734 07/1993

MAILING ADDRESS OF SENDER (Please do not use customer number below):
1100 New York Avenue, NW
Washington DC 20005-3934
Atty. Dkt. No. 1744.0630003
This collection of information is required by 37 CFR \(1.322,1.323\) and 1.324 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 1.0 hour to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you are required to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450 , Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Attention Certificate of Corrections Branch, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

\section*{UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION}

Page \(\underline{3}\) of \(\underline{5}\)
PATENT NO: 7,110,444 B1
DATED: \(\quad\) September 19, 2006
INVENTORS: Sorrells et al.
It is certified that error appears or errors appear in the above-identified patent and that said Letters Patent is hereby corrected as shown below.

\section*{Section (56)}

Under "Foreign Patent Documents", please insert the following citations (continued from page 2):
JP 7-154344 06/1995

JP 7-307620 11/1995
JP 55-66057 05/1980
JP 63-65587 03/1988
JP 63-153691 06/1988
EP 0276130 A2\&A3 07/1988
Under "Other Publications", please insert the following citations:
Karasawa, Y. et al., "A New Prediction Method for Tropospheric Scintillation on Earth-Space Paths,"
IEEE Transactions on Antennas and Propagation, IEEE Antennas and Propagation Society, Vol. 36, No. 11, pp. 1608-1614 (November 1988).
Kirsten, J. and Fleming, J., "Undersampling reduces data-acquisition costs for select applications," EDN, Cahners Publishing, Vol. 35, No. 13, pp. 217-222, 224, 226-228 (June 21, 1990).
Lam, W.K. et al., "Measurement of the Phase Noise Characteristics of an Unlocked Communications Channel Identifier," Proceedings Of the 1993 IEEE International Frequency Control Symposium, IEEE, pp. 283-288 (June 2-4, 1993).
Lam, W.K. et al., "Wideband sounding of 11.6 Ghz transhorizon channel," Electronics Letters, IEE, Vol. 30, No. 9, pp. 738-739 (April 28, 1994).
Larkin, K.G., "Efficient demodulator for bandpass sampled AM signals," Electronics Letters, IEE, Vol. 32, No. 2, pp. 101-102 (January 18, 1996).
Lau, W.H. et al., "Analysis of the Time Variant Structure of Microwave Line-of-sight Multipath
Phenomena," IEEE Global Telecommunications Conference \& Exhibition, IEEE, pp. 1707-1711
(November 28 - December 1, 1988).

MAILING ADDRESS OF SENDER (Please do not use customer number below):
1100 New York Avenue, NW
Washington DC 20005-3934
Atty. Dkt. No. 1744.0630003
This collection of information is required by 37 CFR \(1.322,1.323\) and 1.324 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 1.0 hour to complete, including gathering, preparing, and subrnitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you are required to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Attention Certificate of Corrections Branch, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

\section*{UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION}

Page 4 of \(\underline{5}\)
PATENT NO: \(\quad 7,110,444 \mathrm{~B} 1\)
DATED: September 19, 2006
INVENTORS: Sorrells et al.
It is certified that error appears or errors appear in the above-identified patent and that said Letters Patent is hereby corrected as shown below.

\section*{Section (56)}

Under "Other Publications", please insert the following citations (continued from page 3):
Lau, W.H. et al., "Improved Prony Algorithm to Identify Multipath Components," Electronics Letters, IEE, Vol. 23, No. 20, pp. 1059-1060 (September 24, 1987).
Lesage, P. and Audoin, C., "Effect of Dead-Time on the Estimation of the Two-Sample Variance," IEEE Transactions on Instrumentation and Measurement, IEEE Instrumentation and Measurement Society, Vol. IM-28, No. 1, pp. 6-10 (March 1979).
Liechti, C.A., "Performance of Dual-gate GaAs MESFET's as Gain-Controlled Low-Noise Amplifiers and High-Speed Modulators," IEEE Transactions on Microwave Theory and Techniques, IEEE Microwave Theory and Techniques Society, Vol. MTT-23, No. 6, pp. 461-469 (June 1975).
Linnenbrink, T.E. et al., "A One Gigasample Per Second Transient Recorder," IEEE Transactions on Nuclear Science, IEEE Nuclear and Plasma Sciences Society, Vol. NS-26, No. 4, pp. 4443-4449 (August 1979).

Liou, M.L., "A Tutorial on Computer-Aided Analysis of Switched-Capacitor Circuits," Proceedings of the IEEE, IEEE, Vol. 71, No. 8, pp. 987-1005 (August 1983).
Lo, P. et al., "Coherent Automatic Gain Control," IEE Colloquium on Phase Locked Techniques, IEE, pp. 2/1-2/6 (March 26, 1980).
Lo, P. et al., "Computation of Rain Induced Scintillations on Satellite Down-Links at Microwave
Frequencies," Third International Conference on Antennas and Propagation (ICAP 83), pp. 127-131
(April 12-15, 1983).
Lo, P.S.L.O. et al., "Observations of Amplitude Scintillations on a Low-Elevation Earth-Space Path," Electronics Letters, IEE, Vol. 20, No. 7, pp. 307-308 (March 29, 1984).
Madani, K. and Aithison, C.S., "A 20 Ghz Microwave Sampler," IEEE Transactions on Microwave Theory and Techniques, IEEE Microwave Theory and Techniques Society, Vol. 40, No. 10, pp. 1960-1963 (October 1992).

MAILING ADDRESS OF SENDER (Please do not use customer number below):
1100 New York Avenue, NW
Washington DC 20005-3934
Atty. Dkt. No. 1744.0630003
This collection of information is required by 37 CFR \(1.322,1.323\) and 1.324 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is govemed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 1.0 hour to complete, including gathering, preparing, and subrnitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you are required to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Attention Certificate of Corrections Branch, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

\section*{UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION}

Page \(\underline{5}\) of \(\underline{5}\)
PATENT NO: 7,110,444 B1
DATED: \(\quad\) September 19, 2006
INVENTORS: Sorrells et al.

It is certified that error appears or errors appear in the above-identified patent and that said Letters Patent is hereby corrected as shown below.

\section*{Section (56)}

Under "Other Publications", please insert the following citations (continued from page 4):
Marsland, R.A. et al., " 130 Ghz GaAs monolithic integrated circuit sampling head," Appl. Phys. Lett., American Institute of Physics, Vol. 55, No. 6, pp. 592-594 (August 7, 1989).
Martin, K. and Sedra, A.S., "Switched-Capacitor Building Blocks for Adaptive Systems," IEEE
Transactions on Circuits and Systems, IEEE Circuits and Systems Society, Vol. CAS-28, No. 6, pp. 576584 (June 1981).
Marzano, F.S. and d'Auria, G., "Model-based Prediction of Amplitude Scintillation variance due to ClearAir Tropospheric Turbulence on Earth-Satellite Microwave Links," IEEE Transactions on Antennas and Propagation, IEEE Antennas and Propagation Society, Vol. 46, No. 10, pp. 1506-1518 (October 1998). Matricciani, E., "Prediction of fade durations due to rain in satellite communication systems," Radio Science, American Geophysical Union, Vol. 32, No. 3, pp. 935-941 (May-June 1997).
McQueen, J.G., "The Monitoring of High-Speed Waveforms," Electronic Engineering, Morgan Brothers Limited, Vol. XXIV, No. 296, pp. 436-441 (October 1952).

MAILING ADDRESS OF SENDER (Please do not use customer number below):
1100 New York Avenue, NW
Washington DC 20005-3934
Atty. Dkt. No. 1744.0630003
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Electronic Acknowledgement Receipt} \\
\hline EFS ID: & 1954200 \\
\hline Application Number: & 09632856 \\
\hline International Application Number: & \\
\hline Confirmation Number: & 2377 \\
\hline Title of Invention: & WIRELESS LOCAL AREA NETWORK (WLAN) USING UNIVERSAL FREQUENCY TRANSLATION TECHNOLOGY INCLUDING MULTI-PHASE EMBODIMENTS AND CIRCUIT IMPLEMENTATIONS \\
\hline First Named Inventor/Applicant Name: & David F. Sorrells \\
\hline Correspondence Address: & \begin{tabular}{l}
Sterne Kessler Goldstein \& Fox P L L C \\
Suite 6001100 New York Avenue N W
\end{tabular} \\
\hline Filer: & Jeffrey Thomas Helvey/Jason Geider \\
\hline Filer Authorized By: & Jeffrey Thomas Helvey \\
\hline Attorney Docket Number: & 1744.0630003 \\
\hline Receipt Date: & 10-JUL-2007 \\
\hline Filing Date: & 04-AUG-2000 \\
\hline Time Stamp: & 14:14:58 \\
\hline Application Type: & Utility under 35 USC 111(a) \\
\hline
\end{tabular}

\section*{Payment information:}
\begin{tabular}{|l|l|}
\hline Submitted with Payment & no \\
\hline
\end{tabular}

\section*{File Listing:}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Document Number & Document Description & File Name & File Size(Bytes) /Message Digest & Multi Part /.zip & Pages (if appl.) \\
\hline \multirow{2}{*}{1} & \multirow{2}{*}{Request for Certificate of Correction} & \multirow{2}{*}{17440630003_rcc.pdf} & 575849 & \multirow{2}{*}{no} & \multirow{2}{*}{13} \\
\hline & & & e283174e90fd46d41007193330374541b 0 0054b6 & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multicolumn{3}{|r|}{Total Files Size (in bytes):} & \multicolumn{3}{|c|}{575849} \\
\hline
\end{tabular}

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.


UNITED STATES DEPARTMENT OF COMMERCE
Patent and Trademark Office
ASSISTANT SECRETARY OF COMMERCE AND COMMISSIONER OF PATENTS AND TRADEMARKS
P.O. Box 1450

Alexandria, VA 22313-1450

August 6, 2007

\author{
Sterne Kessler Goldstein \& Fox P L L C \\ Suite 6001100 New York Avenue N W \\ Washington DC 20005-3934 Patent No. : 7,110,444 Bl \\ Inventor(s) : David F. Sorrells, et al. \\ Issued : September 19, 2006 \\ For WIRELESS LOCAL AREA NETWORK \\ (WLAN) USING UNIVERSAL FREQUENCY TRANSLATION TECHNOLOGY INCLUDING MULTI-PHASE EMBODIMENTS AND CIRCUIT IMPLEMENTATIONS \\ Doc. No. 1744.0630003
}

To Whom It May Concern:
The Certificate of Correction issued on \(\qquad\) August 7, 2007 , issued in error, in that error(s) was made in identifying the patent number and/or keying text/corrections, i.e.:

On the second and third page of the issued cofc, in the heading, the page numbering is labeled incorrectly. The label should be displayed on second page as --Page 2 of \(4-\) and on third page as --Page 3 of 4--..

Therefore, a certificate of correction will be issued to correct (supersede) the Certificate of Correction containing error(s), made during preparation of the Certificate of Correction, as noted above.

No further response is required, from applicants (attorney). However, errors discovered by attorney, other than as noted and described above, should be noted on a copy of the Certificate of Correction that was issued in error, accompanied by a signed transmittal letter and submitted directed to this Branch.

Antonio Johnson
(703) 308-9390 ext. 1.11

For Cecelia Newman, Supervisor
Decisions \& Certificates of Correction Branch
(703) 305-8309 / 703-308-9390 ext. 102
cbn

\title{
UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION
}

PATENT NO. \(\quad 7,110,444 \mathrm{Bl}\)
Page 1 of 4
APPLICATION NO. : 09/632856
DATED . : September 19, 2006
INVENTOR(S) : Sorrells et al.
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

\section*{ON TITLE PAGE}

Item (56)
Under "U.S. Patent Documents", please insert the following citations:
4,870,659 09/1989 Oishi et al
4,871,987 10/1989 Kawase
4,885,587 12/1989 Wiegand et al.
4,885,756 12/1989 Fontanes et al.
4,888,557 12/1989 Puckette, IV et al.
4,890,302 12/1989 Muilwijk
4,893,316 01/1990 Janc et al.
4,893,341 01/1990 Gehring
4,894,766 01/1990 De Agro
4,896,152 01/1990 Tiemann
4,902,979 02/1990 Puckette, IV
4,908,579 03/1990 Tawfik et al.
4,910,752 03/1990 Yester, Jr. et al.
4,914,405 04/1990 Wells
4,920,510 04/1990 Senderowicz et al.
4,922,452 05/1990 Larsen et al.
4,931,921 06/1990 Anderson
4,944,025 07/1990 Gehring et al.
4,955,079 09/1990 Connerney et al.
4,965,467 10/1990 Bilterijst
4,967,160 10/1990 Quievy et al.
4,970,703 11/1990 Hariharan et al.
4,982,353 01/1991 Jacob et al.
4,984,077 01/1991 Uchida
4,995,055 02/1991 Weinberger et al.
5,003,621 03/1991. Gailus
5,005,169 04/1991 Bronder et al.
5,006,810 04/1991. Popescu
5,010,585 04/1991 Garcia
5,014,304 \(05 / 1991 \quad\) Nicollini et al.
5,015,963 05/1991 Sutton
5,017,924 05/1991 Guiberteau et al.
5,020,149 05/1991 Hemmie
5,020,154 05/1991 Zierhut
5,052,050 09/1991 Collier et al.
5,065,409 11/1991 Hughes et al.

\title{
UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION
}

PATENT NO. : 7,110,444 B1
Page 2 of APPLICATION NO. : 09/632856
\(\begin{array}{ll}\text { DATED } & \text { : September 19, } 2006 \\ \text { INVENTOR(S) } & \text { : Sorrells et al. }\end{array}\)
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Item (56)
Under "Foreign Patent Documents", please insert the following citations:
JP 6-237276 08/1994
JP 8-23359 0 01/1996
JP 47-2314 02/1972
JP 58-7903 01/1983
JP 58-133004 08/1983
JP 60-58705 04/1985
JP 4-123614 04/1992
JP 4-127601 04/1992
JP 5-175730 07/1993
JP 5-175734 07/1993
JP 7-154344 06/1995
JP 7-307620 11/1995
JP 55-66057 05/1980
JP 63-65587 03/1988
JP 63-153691 06/1988
EP 0276130 A2\&A3 07/1988
Under "Other Publications", please insert the following citations:
Karasawa, Y. et al., "A New Prediction Method for Tropospheric Scintillation on Earth-Space Paths," IEEE Transactions on Antennas and Propagation, IEEE
Antennas and Propagation Society, Vol. 36, No. 11, pp. 1608-1614 (November 1988).

Kirsten, J. and Fleming, J., "Undersampling reduces data-acquisition costs for select applications," \(E D N\), Cahners Publishing, Vol. 35, No. 13, pp. 217-222, 224, 226-228 (June 21, 1990).
Lam, W.K. et al., "Measurement of the Phase Noise Characteristics of an Unlocked Communications Channel Identifier," Proceedings Of the 1993 IEEE International Frequency Control Symposium, IEEE, pp. 283-288 (June 2-4, 1993). Lam, W.K. et al., "Wideband sounding of 11.6 Ghz transhorizon channel," Electronics Letters, IEE, Vol. 30, No. 9, pp. 738-739 (April 28, 1994).
Larkin, K.G, "Efficient demodulator for bandpass sampled AM signals,"
Electronics Letters, IEE, Vol. 32, No. 2, pp. 101-102 (January 18, 1996).
Lau, W.H. et al., "Analysis of the Time Variant Structure of Microwave
Line-of-sight Multipath Phenomena," IEEE Global Telecommunications
Conference \& Exhibition, IEEE, pp. 1707-1711 (November 28 - December 1, 1988).

Lau, W.H. et al., "Improved Prony Algorithm to Identify Multipath Components,"
Electronics Letters, IEE, Vol. 23, No. 20, pp. 1059-1060 (September 24, 1987).

\title{
UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION
}

PATENT NO. : \(7,110,444 \mathrm{Bl}\)
Page 3 of APPLICATION NO. : 09/632856
DATED : September 19, 2006
INVENTOR(S) : Sorrells et al.
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Item (56)
Under "Other Publications", please insert the following citations (cont'd):
Lesage, P. and Audoin, C., "Effect of Dead-Time on the Estimation of the Two-Sample Variance," IEEE Transactions on Instrumentation and Measurement, IEEE Instrumentation and Measurement Society, Vol. IM-28, No. 1, pp. 6-10 (March 1979).
Liechti, C.A., "Performance of Dual-gate GaAs MESFET's as Gain-Controlled Low-Noise Amplifiers and High-Speed Modulators," IEEE Transactions on Microwave Theory and Techniques, IEEE Microwave Theory and Techniques Society, Vol. MTT-23, No. 6, pp. 461-469 (June 1975).
Linnenbrink, T.E. et al., "A One Gigasample Per Second Transient Recorder," IEEE Transactions on Nuclear Science, IEEE Nuclear and Plasma Sciences Society, Vol. NS-26, No, 4, pp. 4443-4449 (August 1979).
Liou, M.L., "A Tutorial on Computer-Aided Analysis of Switched-Capacitor Circuits," Proceedings of the IEEE, IEEE, Vol. 71, No. 8, pp. 987-1005 (August 1983).

Lo, P. et al., "Coherent Automatic Gain Control," IEE Colloquium on Phase Locked Techniques, IEE, pp. 2/1-2/6 (March 26, 1980).
Lo, P. et al., "Computation of Rain Induced Scintillations on Satellite Down-Links at Microwave Frequencies," Third International Conference on Antennas and Propagation (ICAP 83), pp. 127-131 (April 12-15, 1983).
Lo, P.S.L.O. et al., "Observations of Amplitude Scintillations on a Low-Elevation Earth-Space Path," Electronics Letters, IEE, Vol. 20, No. 7, pp. 307-308 (March 29, 1984).
Madani, K. and Aithison, C.S., "A 20 Ghz Microwave Sampler," IEEE
Transactions on Microwave Theory and Techniques, IEEE Microwave.Theory and Techniques Society, Vol. 40, No. 10, pp. 1960-1963 (October 1992).
Marsland, R.A. et al., " 130 Ghz GaAs monolithic integrated circuit sampling head," Appl. Phys. Lett., American Institute of Physics, Vol. 55, No. 6, pp. 592-594 (August 7, 1989).
Martin, K. and Sedra, A.S., "Switched-Capacitor Building Blocks for Adaptive Systems," IEEE Transactions on Circuits and Systems, IEEE Circuits and Systems Society, Vol. CAS-28, No. 6, pp. 576-584 (June 1981).
Marzano, F.S. and d'Auria, G., "Model-based Prediction of Amplitude
Scintillation variance due to Clear-Air Tropospheric Turbulence on Earth-Satellite Microwave Links," IEEE Transactions on Antennas and Propagation, IEEE Antennas and Propagation Society, Vol. 46, No. 10, pp. 1506-1518 (October 1998).

Matricciani, E., "Prediction of fade durations due to rain in satellite communication systems," Radio Science, American Geophysical Union, Vol. 32, No. 3, pp. 935941 (May-June 1997).

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO. : 7,110,444 B1
Page 4 of 4
APPLICATION NO. : 09/632856
DATED : September 19, 2006
INVENTOR(S) : Sorrells et al.
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Section (56)
Under "Other Publications", please insert the following citations (cont'd):
McQueen, J.G., "The Monitoring of High-Speed Waveforms," Electronic Engineering, Morgan Brothers Limited, Vol. XXIV, No. 296, pp. 436-441 (October 1952). rived August 7,2007.




4


\title{
UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION
}

PATENT NO. :7,110,444 B1 Page 1 of 4
APPLICATION NO. : 09/632856
DATED : September 19, 2006
INVENTOR(S) : Sorrells et al.
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

\section*{ON TITLE PAGE}
\begin{tabular}{lll} 
Item (56) & & \\
Under "U.S. Patent Documents", please insert the fo \\
\multicolumn{2}{c}{\(4,870,659\)} & \(09 / 1989\) \\
Oishi et al. \\
\(4,871,987\) & \(10 / 1989\) & Kawase \\
\(4,885,587\) & \(12 / 1989\) & Wiegand et al. \\
\(4,885,756\) & \(12 / 1989\) & Fontanes et al. \\
\(4,888,557\) & \(12 / 1989\) & Puckette, IV et al. \\
\(4,890,302\) & \(12 / 1989\) & Muilwijk \\
\(4,893,316\) & \(01 / 1990\) & Janc et al. \\
\(4,893,341\) & \(01 / 1990\) & Gehring \\
\(4,894,766\) & \(01 / 1990\) & De Agro \\
\(4,896,152\) & \(01 / 1990\) & Tiemann \\
\(4,902,979\) & \(02 / 1990\) & Puckette, IV \\
\(4,908,579\) & \(03 / 1990\) & Tawfik et al. \\
\(4,910,752\) & \(03 / 1990\) & Yester, Jr. et al. \\
\(4,914,405\) & \(04 / 1990\) & Wells \\
\(4,920,510\) & \(04 / 1990\) & Senderowicz et al. \\
\(4,922,452\) & \(05 / 1990\) & Larsen et al. \\
\(4,931,921\) & \(06 / 1990\) & Anderson \\
\(4,944,025\) & \(07 / 1990\) & Gehring et al. \\
\(4,955,079\) & \(09 / 1990\) & Connerney et al. \\
\(4,965,467\) & \(10 / 1990\) & Bilterijst \\
\(4,967,160\) & \(10 / 1990\) & Quievy et al. \\
\(4,970,703\) & \(11 / 1990\) & Hariharan et al. \\
\(4,982,353\) & \(01 / 1991\) & Jacob et al. \\
\(4,984,077\) & \(01 / 1991\) & Uchida \\
\(4,995,055\) & \(02 / 1991\) & Weinberger et al. \\
\(5,003,621\) & \(03 / 1991\) & Gailus \\
\(5,005,169\) & \(04 / 1991\) & Bronder et al. \\
\(5,006,810\) & \(04 / 1991\) & Popescu \\
\(5,010,585\) & \(04 / 1991\) & Garcia \\
\(5,014,304\) & \(05 / 1991\) & Nicollini et al. \\
\(5,015,963\) & \(05 / 1991\) & Sutton \\
\(5,017,924\) & \(05 / 1991\) & Guiberteau et al. \\
\(5,020,149\) & \(05 / 1991\) & Hemmie \\
\(5,020,154\) & \(05 / 1991\) & Zierhut \\
\(5,052,050\) & \(09 / 1991\) & Collier et al. \\
\(5,065,409\) & \(11 / 1991\) & Hughes et al. \\
& &
\end{tabular}

\section*{UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION}

PATENT NO. :7,110,444 B1 Page 2 of 5
APPLICATION NO. : 09/632856
DATED : September 19, 2006
INVENTOR(S) : Sorrells et al.
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Item (56)
Under "Foreign Patent Documents", please insert the following citations:
\begin{tabular}{ll} 
JP 6-237276 & \(08 / 1994\) \\
JP 8-23359 & \(01 / 1996\) \\
JP 47-2314 & \(02 / 1972\) \\
JP 58-7903 & \(01 / 1983\) \\
JP 58-133004 & \(08 / 1983\) \\
JP 60-58705 & \(04 / 1985\) \\
JP 4-123614 & \(04 / 1992\) \\
JP 4-127601 & \(04 / 1992\) \\
JP 5-175730 & \(07 / 1993\) \\
JP 5-175734 & \(07 / 1993\) \\
JP 7-154344 & \(06 / 1995\) \\
JP 7-307620 & \(11 / 1995\) \\
JP 55-66057 & \(05 / 1980\) \\
JP 63-65587 & \(03 / 1988\) \\
JP 63-153691 & \(06 / 1988\) \\
EP 0 276 130 A2 \&A3
\end{tabular}

Under "Other Publications", please insert the following citations:
Karasawa, Y. et al., "A New Prediction Method for Tropospheric Scintillation on
Earth-Space Paths," IEEE Transactions on Antennas and Propagation, IEEE
Antennas and Propagation Society, Vol. 36, No. 11, pp. 1608-1614 (November 1988).

Kirsten, J. and Fleming, J., "Undersampling reduces data-acquisition costs for select applications," \(E D N\), Cahners Publishing, Vol. 35, No. 13, pp. 217-222, 224, 226-228 (June 21, 1990).
Lam, W.K. et al., "Measurement of the Phase Noise Characteristics of an Unlocked Communications Channel Identifier," Proceedings Of the 1993 IEEE
International Frequency Control Symposium, IEEE, pp. 283-288 (June 2-4, 1993).
Lam, W.K. et al., "Wideband sounding of 11.6 Ghz transhorizon channel,"
Electronics Letters, IEE, Vol. 30, No. 9, pp. 738-739 (April 28, 1994).
Larkin, K.G, "Efficient demodulator for bandpass sampled AM signals,"
Electronics Letters, IEE, Vol. 32, No. 2, pp. 101-102 (January 18, 1996).
Lau, W.H. et al., "Analysis of the Time Variant Structure of Microwave
Line-of-sight Multipath Phenomena," IEEE Global Telecommunications
Conference \& Exhibition, IEEE, pp. 1707-1711 (November 28 - December 1, 1988).

Lau, W.H. et al., "Improved Prony Algorithm to Identify Multipath Components," Electronics Letters, IEE, Vol. 23, No. 20, pp. 1059-1060 (September 24, 1987).

\title{
UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION
}

PATENT NO. : 7,110,444 B1
Page 3 of 5
APPLICATION NO. : 09/632856
DATED : September 19, 2006
INVENTOR(S) : Sorrells et al.
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Item (56)
Under "Other Publications", please insert the following citations (cont'd):
Lesage, P. and Audoin, C., "Effect of Dead-Time on the Estimation of the
Two-Sample Variance," IEEE Transactions on Instrumentation and Measurement, IEEE Instrumentation and Measurement Society, Vol. IM-28, No. 1, pp. 6-10 (March 1979).
Liechti, C.A., "Performance of Dual-gate GaAs MESFET's as Gain-Controlled Low-Noise Amplifiers and High-Speed Modulators," IEEE Transactions on Microwave Theory and Techniques, IEEE Microwave Theory and Techniques Society, Vol. MTT-23, No. 6, pp. 461-469 (June 1975).
Linnenbrink, T.E. et al., "A One Gigasample Per Second Transient Recorder," IEEE Transactions on Nuclear Science, IEEE Nuclear and Plasma Sciences Society, Vol. NS-26, No, 4, pp. 4443-4449 (August 1979).
Liou, M.L., "A Tutorial on Computer-Aided Analysis of Switched-Capacitor Circuits," Proceedings of the IEEE, IEEE, Vol. 71, No. 8, pp. 987-1005 (August 1983).

Lo, P. et al., "Coherent Automatic Gain Control," IEE Colloquium on Phase Locked Techniques, IEE, pp. 2/1-2/6 (March 26, 1980).
Lo, P. et al., "Computation of Rain Induced Scintillations on Satellite Down-Links at Microwave Frequencies," Third International Conference on Antennas and Propagation (ICAP 83), pp. 127-131 (April 12-15, 1983).
Lo, P.S.L.O. et al., "Observations of Amplitude Scintillations on a Low-Elevation Earth-Space Path," Electronics Letters, IEE, Vol. 20, No. 7, pp. 307-308 (March 29, 1984).
Madani, K. and Aithison, C.S., "A 20 Ghz Microwave Sampler," IEEE
Transactions on Microwave Theory and Techniques, IEEE Microwave Theory and Techniques Society, Vol. 40, No. 10, pp. 1960-1963 (October 1992).
Marsland, R.A. et al., " 130 Ghz GaAs monolithic integrated circuit sampling head," Appl. Phys. Lett., American Institute of Physics, Vol. 55, No. 6, pp. 592-594 (August 7, 1989).
Martin, K. and Sedra, A.S., "Switched-Capacitor Building Blocks for Adaptive Systems," IEEE Transactions on Circuits and Systems, IEEE Circuits and Systems Society, Vol. CAS-28, No. 6, pp. 576-584 (June 1981).
Marzano, F.S. and d'Auria, G., "Model-based Prediction of Amplitude Scintillation variance due to Clear-Air Tropospheric Turbulence on Earth-Satellite Microwave Links," IEEE Transactions on Antennas and Propagation, IEEE Antennas and Propagation Society, Vol. 46, No. 10, pp. 1506-1518 (October 1998).

Matricciani, E., "Prediction of fade durations due to rain in satellite communication systems," Radio Science, American Geophysical Union, Vol. 32, No. 3, pp. 935941 (May-June 1997).
\begin{tabular}{lll} 
PATENT NO. & \(: 7,110,444 \mathrm{B1}\) & Page 4 of 4 \\
APPLICATION NO. & \(: 09 / 632856\) & \\
DATED & \(:\) September 19,2006 & \\
INVENTOR(S) & \(:\) Sorrells et al. &
\end{tabular}

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Section (56)
Under "Other Publications", please insert the following citations (cont'd):
McQueen, J.G., "The Monitoring of High-Speed Waveforms," Electronic
Engineering, Morgan Brothers Limited, Vol. XXIV, No. 296, pp. 436-441 (October 1952).


JON W. DUDAS
Director of the United States Patent and Trademark Office
\begin{tabular}{lll} 
PATENT NO. & \(: 7,110,444 \mathrm{Bl}\) & Page 1 of 4 \\
APPLICATION NO.. & \(09 / 632856\) & \\
DATED & \(:\) September 19,2006 & \\
INVENTOR(S) & \(:\) Sorrells et al. &
\end{tabular}

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

\section*{ON TITLE PAGE}
```

Item (56)
Under "U.S. Patent Documents", please insert the following citations:
4,870,659 09/1989 Oishi et al
4,871,987 10/1989 Kawase
4,885,587 12/1989 Wiegand et al.
4,885,756 12/1989 Fontanes et al.
4,888,557 12/1989 Puckette, IV et al.
4,890,302 12/1989 Muilwijk
4,893,316 01/1990 Janc et al.
4,893,341 01/1990 Gehring
4,894,766 01/1990 De Agro
4,896,152 01/1990 Tiemann
4,902,979 02/1990 Puckette, IV
4,908,579 03/1990 Tawfik et al.
4,910,752 03/1990 Yester, Jr. et al.
4,914,405 04/1990 Wells
4,920,510 04/1990 Senderowicz et al.
4,922,452 05/1990 Larsen et al.
4,931,921 06/1990 Anderson
4,944,025 07/1990 Gehring et al.
4,955,079 09/1990 Connerney et al.
4,965,467 10/1990 Bilterijst
4,967,160 10/1990 Quievy et al.
4,970,703 11/1990 Hariharan et al.
4,982,353 01/1991 Jacob et al.
4,984,077 01/1991 Uchida
4,995,055 02/1991 Weinberger et al.
5,003,621 03/1991 Gailus
5,005,169 04/1991 Bronder et al.
5,006,810 04/1991 Popescu
5,010,585 04/1991 Garcia
5,014,304 05/1991 Nicollini et al.
5,015,963 05/1991 Sutton
5,017,924 05/1991 Guiberteau et al.
5,020,149 05/1991 Hemmie
5,020,154 05/1991 Zierhut
5,052,050 09/1991 Collier et al.
5,065,409 11/1991 Hughes et al.

```

\title{
UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION
}

PATENT NO. : 7,110,444 Bl
Page 2 of 4
APPLICATION NO. : 09/632856
DATED : September 19, 2006
INVENTOR(S) : Sorrells et al.
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Item (56)
Under "Foreign Patent Documents", please insert the following citations:
\begin{tabular}{ll} 
JP 6-237276 & \(08 / 1994\) \\
JP 8-23359 & \(01 / 1996\) \\
JP 47-2314 & \(02 / 1972\) \\
JP 58-7903 & \(01 / 1983\) \\
JP 58-133004 & \(08 / 1983\) \\
JP 60-58705 & \(04 / 1985\) \\
JP 4-123614 & \(04 / 1992\) \\
JP 4-127601 & \(04 / 1992\) \\
JP 5-175730 & \(07 / 1993\) \\
JP 5-175734 & \(07 / 1993\) \\
JP 7-154344 & \(06 / 1995\) \\
JP 7-307620 & \(11 / 1995\) \\
JP 55-66057 & \(05 / 1980\) \\
JP 63-65587 & \(03 / 1988\) \\
JP 63-153691 & \(06 / 1988\)
\end{tabular}

EP 0276130 A2\&A3 07/1988
Under "Other Publications", please insert the following citations:
Karasawa, Y. et al., "A New Prediction Method for Tropospheric Scintillation on Earth-Space Paths," IEEE Transactions on Antennas and Propagation, IEEE Antennas and Propagation Society, Vol. 36, No. 11, pp. 1608-1614 (November 1988).

Kirsten, J. and Fleming, J., "Undersampling reduces data-acquisition costs for select applications," \(E D N\), Cahners Publishing, Vol. 35, No. 13, pp. 217-222, 224, 226-228 (June 21, 1990).
Lam, W.K. et al., "Measurement of the Phase Noise Characteristics of an Unlocked Communications Channel Identifier," Proceedings Of the 1993 IEEE International Frequency Control Symposium, IEEE, pp. 283-288 (June 2-4, 1993).
Lam, W.K. et al., "Wideband sounding of 11.6 Ghz transhorizon channel," Electronics Letters, IEE, Vol. 30, No. 9, pp. 738-739 (April 28, 1994).
Larkin, K.G, "Efficient demodulator for bandpass sampled AM signals,"
Electronics Letters, IEE, Vol. 32, No. 2, pp. 101-102 (January 18, 1996).
Lau, W.H. et al., "Analysis of the Time Variant Structure of Microwave
Line-of-sight Multipath Phenomena," IEEE Global Telecommunications
Conference \& Exhibition, IEEE, pp. 1707-1711 (November 28 - December 1, 1988).

Lau, W.H. et al., "Improved Prony Algorithm to Identify Multipath Components," Electronics Letters, IEE, Vol. 23, No. 20, pp. 1059-1060 (September 24, 1987).

\title{
UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION
}

PATENT NO. : 7,110,444 B1
Page 3 of 4
APPLICATION NO. : 09/632856
DATED : September 19, 2006
INVENTOR(S) : Sorrells et al.
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Item (56)
Under "Other Publications", please insert the following citations (cont'd):
Lesage, P. and Audoin, C., "Effect of Dead-Time on the Estimation of the Two-Sample Variance," IEEE Transactions on Instrumentation and Measurement, IEEE Instrumentation and Measurement Society, Vol. IM-28, No. 1, pp. 6-10 (March 1979).
Liechti, C.A., "Performance of Dual-gate GaAs MESFET's as Gain-Controlled Low-Noise Amplifiers and High-Speed Modulators," IEEE Transactions on Microwave Theory and Techniques, IEEE Microwave Theory and Techniques Society, Vol. MTT-23, No. 6, pp. 461-469 (June 1975).
Linnenbrink, T.E. et al., "A One Gigasample Per Second Transient Recorder," IEEE Transactions on Nuclear Science, IEEE Nuclear and Plasma Sciences Society, Vol. NS-26, No, 4, pp. 4443-4449 (August 1979).
Liou, M.L., "A Tutorial on Computer-Aided Analysis of Switched-Capacitor Circuits," Proceedings of the IEEE, IEEE, Vol. 71, No. 8, pp. 987-1005 (August 1983).

Lo, P. et al., "Coherent Automatic Gain Control," IEE Colloquium on Phase Locked Techniques, IEE, pp. 2/1-2/6 (March 26, 1980).
Lo, P. et al., "Computation of Rain Induced Scintillations on Satellite Down-Links at Microwave Frequencies," Third International Conference on Antennas and Propagation (ICAP 83), pp. 127-131 (April 12-15, 1983).
Lo, P.S.L.O. et al., "Observations of Amplitude Scintillations on a Low-Elevation Earth-Space Path," Electronics Letters, IEE, Vol. 20, No. 7, pp. 307-308 (March 29, 1984).
Madani, K. and Aithison, C.S., "A 20 Ghz Microwave Sampler," IEEE Transactions on Microwave Theory and Techniques, IEEE Microwave Theory and Techniques Society, Vol. 40, No. 10, pp. 1960-1963 (October 1992).
Marsland, R.A. et al., " 130 Ghz GaAs monolithic integrated circuit sampling head," Appl. Phys. Lett., American Institute of Physics, Vol. 55, No. 6, pp. 592-594 (August 7, 1989).
Martin, K. and Sedra, A.S., "Switched-Capacitor Building Blocks for Adaptive Systems," IEEE Transactions on Circuits and Systems, IEEE Circuits and Systems Society, Vol. CAS-28, No. 6, pp. 576-584 (June 1981).
Marzano, F.S. and d'Auria, G., "Model-based Prediction of Amplitude
Scintillation variance due to Clear-Air Tropospheric Turbulence on Earth-Satellite Microwave Links," IEEE Transactions on Antennas and Propagation, IEEE Antennas and Propagation Society, Vol. 46, No. 10, pp. 1506-1518 (October 1998).

Matricciani, E., "Prediction of fade durations due to rain in satellite communication systems," Radio Science, American Geophysical Union, Vol. 32, No. 3, pp. 935941 (May-June 1997).

PATENT NO. : 7,110,444 B1
Page 4 of 4
APPLICATION NO. : 09/632856
DATED : September 19, 2006
INVENTOR(S) : Sorrells et al.
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Section (56)
Under "Other Publications", please insert the following citations (cont'd): McQueen, J.G., "The Monitoring of High-Speed Waveforms," Electronic Engineering, Morgan Brothers Limited, Vol. XXIV, No. 296, pp. 436-441 (October 1952).

This certificate supersedes Certificate of Correction issued August 7, 2007.
Signed and Sealed this
Twenty-eighth Day of August, 2007


JON W. DUDAS
Director of the United States Patent and Trademark Office

\section*{POWER OF ATTORNEY TO PROSECUTE APPLICATIONS BEFORE THE USPTO}

I hereby revoke all previous powers of attorney given in the application identified in the attached statement under 37 CFR 3.73 (b).
I hereby appoint:
Practitioners associated with the Customer Number;


OR
Practitioner(s) named below (if more than ten patent practilloners are to be named, then a customer number must be used):

as attorney(s) or agent(s) to represent the undersigned before the United States Patent and Trademark Office (USPTO) in connection with any and all patent applications assigned only to the undersigned according to the USPTO assignment records or assignment documents attached to this form in accordance with 37 CFR 3.73 (b).
Please change the correspondence address for the application identified in the attached statement under 37 CFR 3.73 (b) to:

The address associaled with Customer Number:
22913
OR
\begin{tabular}{|c|c|c|c|}
\hline \(\square\) Firm or Individual Name & & & \\
\hline Address & & & \\
\hline City & State & & Z'ip \\
\hline Country & \multicolumn{3}{|l|}{} \\
\hline Telephone & & \multicolumn{2}{|l|}{Email} \\
\hline
\end{tabular}

Assignee Name and Address:

A copy of this form, together with a statement under 37 CFR 3.73(b) (Form PTO/SB/96 or equivalent) is required to be filed in each application In which this form is used. The statement under 37 CFR 3.73(b) may be completed by one of the practitioners appointed in this form if the appointed practitioner is authorized to act on behalf of the assignee, and must identify the application in which this Power of Attorney is to be filed.


This collection of information is required by 37 CFR 1.31, 1.32 and 1.33. The information is requlred to obtain or retain a benefit by the publio which la to file (and by the USPTO to process) an application. Confldentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14 . This collection is estimated to take 3 minutes to complete, including gathering, prepaning, and submiting the completed application form to the USPTO. Time will vary depending upon tha individuat case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, shoul be ser SEND FEES OR COMPLETED U.S. Patent and Trademark Office,
FORMS TO THIS ADDRESS. SEND TO: Commlssioner for Patents, P.O. Box 1450, Alexandrla, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

\section*{STATEMENT UNDER 37 CFR 3.73ib)}

\section*{ApplicantPatent Owner: David F. Sorrells, et al.}

Application No./Patent No.: 7110444

\section*{Titled: Wireless Local Area Network (WLAN) using Universal Frequency Translation Technology including Multi-Phase Embodiments and Circuit Implementations}

\section*{ParkerVision, Inc}
(Name of Assignee)
(Type of Assignee, e.g., corporation, partnership, university, government agency, etc.
states that it is:
i. X the assignee of the entire right, title, and interest in;
2. \(\square\) an assignee of less than the entire right, title, and interest in (The extent (by percentage) of its ownership interest is \(\qquad\) \%); or
3. \(\square\) the assignee of an undivided interest in the entirety of (a complete assignment from one of the joint inventors was made) the patent applibation/patent dentified above, by virtue of either:
A. \(X\) An assigment from the inventors) of the patent appicaton/patent identifed above. The assignment was recorded in the United States Patent and Trademark Office at Ree 011238 copy therefore is athached.
OR
B. \(\square\) A chan of title from the inventor(s), of the patent application/patent identified above, to the current assignee as follows:

1 From:
To:
The document was recorded in the United States Patent and Trademark Office at Reel \(\qquad\) . Frame \(\qquad\) or for which a copy thereof is attached.
2. From:

To: \(\qquad\)
The document was recorded in the United States Patent and Trademark Office at
Reel \(\qquad\) : Frame \(\qquad\) or for which a copy thereof is attached.
3. From: \(\qquad\) To:

The document was recorded in the United States Patent and Trademark Office at Reel \(\qquad\) : Frame \(\qquad\) or for which a copy thereof is attached.

\section*{\(\square\) Additional documents in the chain of title are listed on a supplemental sheet(s)}

As recuired by 37 CFR 3.730\()(1)(0)\), he documentry evidence of the chain of tite from the original owner to the assignee was. or conourenty is being, submited for recordation pursuant to 37 CFR 311.
[NOTE: A separate copy (ie., a the copy of he orginal assignment document(s)) must be submited to Assignment Division in accordance with 37 CFR Part 3 , to record the assignment in the records of the USPTO. See MPEP 302.08 )
The undersignsed (whase tifte is suoplied below) :s authorized to act on behalk of the assignee.


\section*{Attorney of Record}

Printed or Typed Name
This collection of information is required by 37 CFR 3.73 (b). The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1,14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U S Department of Commerce, F.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

\section*{"FEE ADDRESS" INDICATION FORM}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Address to: \\
Mail Stop M Correspondence Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450
\end{tabular} & \begin{tabular}{ll} 
& Fax to: \\
. OR & \(571-273-6500\)
\end{tabular} \\
\hline INSTRUCTIONS: The issue only an address represented fee purposes (hereafter, fee maintenance fees should be When to check the first box to check the second box be in which case a completed \(R\) & been paid for application(s) listed on Number can be established as the ee address should be established when fferent address than the corresponden have a Customer Number to represe ave no Customer Number representing stomer Number (PTO/SB/125) must be ee the Manual of Patent Examining P \\
\hline
\end{tabular}

For the following listed application(s), please recognize as the "Fee Address" under the provisions of 37 CFR 1.363 the address associated with:

\section*{\(\checkmark\) Customer Number: \\ 22913}

\section*{OR}
\(\square\) The attached Request for Customer Number (PTO/SB/125) form.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
PATENT NUMBER \\
(if known)
\end{tabular} & APPLICATION NUMBER \\
\hline 7110444 & \\
\hline
\end{tabular}

Completed by (check one):
Applicanthyentor

Attorney or Agent of record 28651
(Reg. No.)
Assignee of record of the entire interest. See 37 CFR 3.71.
Statement under 37 CFR 3.73(b) is enclosed.
(Form PTO/SB/96)
Assignee recorded at Reel \(\qquad\) Frame


Rick D. Nydegger
Typed or printed name


NOTE: Signatures of all the inventors or assignees of record of the entire interest or their representative(s) are required. Submit multiple forms if more that one signature is required, see below*.

\section*{\(\square\) * Total of}
forms are submitted.
This collection of information is required by 37 CFR 1.363 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This colle ction is estima ted to take 5 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Depar tment of Commerce, P.O. Box 1450, Alex andria, VA 22313-1450. DO NOT SEND COMPLETE D FORMS TO THIS A DDRESS. SEND TO: Mail Stop M Correspondence, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Electronic Acknowledgement Receipt} \\
\hline EFS ID: & 12346875 \\
\hline Application Number: & 09632856 \\
\hline International Application Number: & \\
\hline Confirmation Number: & 2377 \\
\hline Title of Invention: & WIRELESS LOCAL AREA NETWORK (WLAN) USING UNIVERSAL FREQUENCY TRANSLATION TECHNOLOGY INCLUDING MULTI-PHASE EMBODIMENTS AND CIRCUIT IMPLEMENTATIONS \\
\hline First Named Inventor/Applicant Name: & David F. Sorrells \\
\hline Correspondence Address: & \begin{tabular}{l}
Sterne Kessler Goldstein \& Fox P LLC \\
Suite 6001100 New York Avenue NW
\end{tabular} \\
\hline Filer: & Rick D. Nydegger/Caitlyn Ellis \\
\hline Filer Authorized By: & Rick D. Nydegger \\
\hline Attorney Docket Number: & 1744.0630003 \\
\hline Receipt Date: & 20-MAR-2012 \\
\hline Filing Date: & 04-AUG-2000 \\
\hline Time Stamp: & 14:40:57 \\
\hline Application Type: & Utility under 35 USC 111(a) \\
\hline
\end{tabular}

\section*{Payment information:}
\begin{tabular}{|l|l}
\hline Submitted with Payment & no
\end{tabular}

File Listing:


United States Patent and Trademark Office
UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS
P. Box 1450
whwandria, Virginia 22313-1450
APPLICATION NUMBER
09/632,856
FILING OR 371(C) DATE
FIRST NAMED APPLICANT
ATTY. DOCKET NO./TITLE
CONFIRMATION NO. 2377
22913
POA ACCEPTANCE LETTER
Workman Nydegger
1000 Eagle Gate Tower
60 East South Temple
Salt Lake City, UT 84111
Date Mailed: 03/22/2012

\section*{NOTICE OF ACCEPTANCE OF POWER OF ATTORNEY}

This is in response to the Power of Attorney filed 03/20/2012.
The Power of Attorney in this application is accepted. Correspondence in this application will be mailed to the above address as provided by 37 CFR 1.33.
/dtvernon/

Office of Data Management, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101

United States Patent and Trademark Office
NITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS
P. Box 1450

Awwandria, Yirginia 22313-1450


\section*{NOTICE REGARDING CHANGE OF POWER OF ATTORNEY}

This is in response to the Power of Attorney filed 03/20/2012.
- The Power of Attorney to you in this application has been revoked by the assignee who has intervened as provided by 37 CFR 3.71. Future correspondence will be mailed to the new address of record(37 CFR 1.33).
/dtvernon/

Office of Data Management, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101


December 15, 2004

\section*{Re: U.S. Utility Patent Application \(V\)}

Application No. 09/632,856; Filed: August 4, 2000
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit Implementations
Inventors: Sorrells et al.
Our Ref: \(\quad 1744.0630003\)
Sir:
Transmitted herewith for appropriate action are the following documents:
1. Resubmission of Information Disclosure Statements;
2. Copy of Information Disclosure Statement with cited references (as required by USPTO rules at the time of filing) filed on July 25, 2002;
3. Copy of Supplemental Information Disclosure Statement with cited references (as required by USPTO rules at the time of filing) filed on June 9, 2003;
4. Copy of Second Supplemental Information Disclosure Statement with cited references (as required by USPTO rules at the time of filing) filed on January 23, 2004;
5. Copy of Third Supplemental Information Disclosure Statement with cited references (as required by USPTO rules at the time of filing) filed on August 19, 2004;

Commissioner for Patents
December 15, 2004
Page 2
6. Copy of Fourth Supplemental Information Disclosure Statement with cited references (as required by USPTO rules at the time of filing) filed on November 12, 2004;
7. A compact Disc labeled "SternelB" in PDF format;
8. A compact Disc labeled "Sterne2B" in PDF format;
9. A compact Disc labeled "Disc 3" in PDF format; and
10. Return postcard.

It is respectfully requested that the attached postcard be stamped with the date of filing of these documents, and that it be returned to our courier. In the event that extensions of time are necessary to prevent abandonment of this patent application, then such extensions of time are hereby petitioned.

The U.S. Patent and Trademark Office is hereby authorized to charge any fee deficiency, or credit any overpayment, to our Deposit Account No. 19-0036.

Respectfully submitted,
Sterne, Kessler, Goldstein \& Fox p.l.L.C.


Jeffrey T. Helvey
Attorney for Applicants
Registration No. 44,757

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

In re application of:
Sorrells et al.
Application No.: 09/632,856
Filed: August 4, 2000
For: Wireless Local Area Network (WLAN) Using Universal
Frequency Translation Technology Including Multi-Phase Embodiments and Circuit Implementations

Confirmation No.: 2377
Art Unit: 2634
Examiner: Kim, Kevin
Atty. Docket: 1744.0630003

\section*{Resubmission of Information Disclosure Statements}

\author{
Attn: Mail Stop Issue Fee
}

Commissioner for Patents
PO Box 1450
Alexandria, VA 22313-1450

Sir:
During prosecution of the subject application, Applicants timely filed an Information Disclosure Statement and Supplemental Information Disclosure Statements on July 25, 2002, June 9, 2003, January 23, 2004, August 19, 2004 and November 12, 2004. However, at the time of Allowance, Applicants had not yet received back the Examiner-initialed PTO-1449 forms indicating that the references were considered. Applicants hereby resubmit the Information Disclosure Statement and Supplemental Information Disclosure Statements, as they were filed on July 25, 2002, June 9, 2003, January 23, 2004, August 19, 2004 and November 12, 2004, so that the Examiner can consider the references and return the initialed PTO-1449 forms. Copies of the references which were provided with the aforementioned filings (as required by
applicable PTO rules at the time of filing) are hereby also re-submitted for the convenience of the Examiner.

It is respectfully requested that the Examiner initial and return a copy of the enclosed PTO-1449s, and indicate in the official file wrapper of this patent application that the documents listed have been considered.

The U.S. Patent and Trademark Office is hereby authorized to charge any fee deficiency, or credit any overpayment, to our Deposit Account No. 19-0036.

Date: \(\qquad\)
Respectfully submitted,
Sterne, Kessler, Goldstein \& Fox p.l.l.c. Fil Welvet
Jeffrey T. Helvey
Attorney for Applicants
Registration No. 44,757

1100 New York Avenue, N.W. Washington, D.C. 20005-3934 (202) 371-2600

JTH/JEG/agj
344027_1.DOC

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

In re application of:
Sorrells et al.
Appl. No. 09/632,856
Filed: August 4, 2000
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit Implementations

Art Unit: 2634
Examiner: Ghayour, M.
Atty. Docket: 1744.0630003

\section*{Information Disclosure Statement}

Commissioner for Patents
Washington, D.C. 20231
Sir:
Listed on accompanying Form PTO-1449 are documents that may be considered material to the examination of this application, in compliance with the duty of disclosure requirements of 37 C.F.R. \(\S \S 1.56,1.97\) and 1.98.

In addition to providing hard copies of the documents as required by applicable rules (see box 6 below), Applicants herewith provide two Compact Discs labeled "Sterne 1B" and "Sterne2B" having stored thereon searchable electronic copies (in PDF format) of the documents listed on the PTO-1449. More specifically, the "Sterne1B" CD contains electronic copies of documents AA1-AR1, AA2-AR2, AA3-AR3, AA4-AR4, AA5-AR5, AA6-AR6, AA7-AR7, AA8-AR8, AA9-AR9, AA10-AR10, AA11-AR11, AA12-AR12, AA13-AL13, AN13-AR13, AA14-AI14, AN14-AR14, AA 15-AI15, AN15-AR15, AA16AI16, AN16-AR16, AA17-AI17, AN17-AR17, AA18-AI18, AN18-AR18, AA19-AI19, AN19-AR19, AA20-AI20, AN20-AR20, AA21-AI21, AN21-AR21, AA22-AI22, AN22AR22, AA23-AI23, AN23-AR23, AA24-AI24, AN24-AR24, AA25-AI25, AN25-AR25,

AA26-AI26, AN26-AR26, AA27-AI27, AN27-AR27, AA28-AI28, AN28-AR28, AA29AI29, AN29-AR29, AA30-AI30, AN30-AR30, AA31-AI31, AN31-AR31, AA32-AI32, AN32-AR32, AA33-AI33, AN33-AR33, AA34-AI34, AN34-AR34, AA35-AI35, AN35AR35, AA36-AI36, AN36-AR36, AA37-AI37, AN37-AR37, AA38-AI38, AN38-AR38, AA39-AI39 and AN39-AR39, and the "Sterne2B" CD contains electronic copies of documents AA40-AI40, AA41-AI41, AA42-AI42, AA43-AI43, AA44-AI44, AA45-AI45, AA46-AB46, AM10, AJ11-AM11, AJ12-AM12, AJ13-AL13, AP50-AR50 and AN51AP51. Documents AC46-AI46, AA47-AI47, AA48-AI48, AA49-AD49, AM13, AJ14AM14, AJ15-AM15, AJ16-AM16, AJ17-AM17, AJ18-AM18, AJ19, AK19, AQ51, AR51, AN52-AR52, AN53-AR53, AN54-AR54, AN55-AR55 and AN56 have not yet been scanned. The file names on the CDs correspond to the identifiers on the PTO-1449. It is noted that the CDs are being provided in addition to hard copies of the documents for the convenience of the Examiner.

Applicants have listed publication dates on the attached PTO-1449 based on information presently available to the undersigned. However, the listed publication dates should not be construed as an admission that the information was actually published on the date indicated.

Applicants reserve the right to establish the patentability of the claimed invention over any of the information provided herewith, and/or to prove that this information may not be prior art, and/or to prove that this information may not be enabling for the teachings purportedly offered.

Applicants provide the following comments regarding the documents:

Documents AD1, AL1, AO1, AC2, AF2, AG2, AI2, AC5, AG5, AB6, AF7, AI7, AB8, AF8, AG9, AK9, AO9, AO11, AA12, AE14, AN14, AB15, AE15, AH15, AO15, AF16, AD18, AG18, AB20, AC20, AQ20, AA22, AH22, AI23, AC24, AF26, AC30, AH31, AC32, AA33, AR33, AH34, AP35 and AO48 were included with Petitions to Make Special pleadings in co-owned related U.S. Patent Nos. 6,061,551, 6,061,555, 6,049,706 and 6,091,940.

Documents AM4, AH6, AL7, AJ9, AM9, AC17, AA20, AG20, AG21, AA24, AD24, AG24, AI31, AA32, AG34, AD36 and AQ37 were cited in searches performed at Applicants' request by the European Patent Office's Searching Authority in the abovereferenced co-owned related patents.

Documents AA6, AD6, AO6, AE7, AE8, AA11, AE11, AH11, AI12, AB13, AD13, AH13, AC14, AG14, AE16, AB17, AF19, AD20, AN21, AG23, AH27, AI27, AI28, AH29, AG30, AD37, AR40, AO49 and AQ49 were suggested or identified by potential licensees.

Documents AH5, AH17, AD21, AB34, AE34, AB36, AI36 and AI38 were cited by the Examiner in the above-referenced co-owned related patents.

Documents AR21, AN22-AR22, AN23-23, AN24-AR24, AN25-AR25, AN26AR26, AN27-AR27, AN28-AR28, AN29-AR29, AN30-AR30, AN31-AR31, AN32-AR32 and AN33-AP33 are press releases issued by assignee ParkerVision, Inc.

Documents AP6-AR6 and AN7-AP7 are copies of Declarations (including Exhibits) made by Messrs. Bultman, Cook, Holtz, Looke, Moses, Parker, and Sorrells, filed in the above-referenced co-owned related patents.

Documents AJ1, AL9, AJ10, AA19, AC25, AB30 and AF32 were cited in search reports in the corresponding foreign applications of the above-referenced co-owned related patents.

Documents AK9, AC17, AD36 and AD40 were listed in a search report issued by the International Searching Authority in PCT application serial number PCT/US00/21359, filed August 4, 2000, entitled "Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology," directed to related subject matter.

Documents AM10, AJ11, AK11 and AE40 were listed in a communication issued by the International Preliminary Examination Authority in PCT application serial number PCT/US00/01108, filed January 19, 2000, entitled "Frequency Translation and Embodiments Thereof Such as the Family Radio Service," directed to related subject matter.

Documents AI7, AJ9, AK9, AG20, AG21, AB30 and AI43 were listed in a written opinion issued by the International Preliminary Examination Authority in PCT application serial number PCT/US00/23923, filed October 18, 1999, entitled "Applications of Frequency Translation," directed to related subject matter.

Documents AA44, AL11, AM11 and AQ50 were listed in a communication issued by the International Searching Authority in PCT application serial number PCT/US00/09911, filed April 14, 2000, entitled "Method And System For Down-converting an Electromagnetic Signal, And Transforms For Same," directed to related subject matter.

Documents AB44 and AC44 were cited by an Examiner in co-pending U.S. Patent Application Serial No. 09/293,342, filed April 16, 1999, entitled "Method and System for Down-Converting Electromagnetic Signals Including Resonant Structures for Enhanced Energy Transfer," directed to related subject matter.

Documents AD44-AI44 and AA45-AD45 were cited by an Examiner in co-pending U.S. Patent Application Serial No. 09/261,129, filed March 3, 1999, entitled "Applications of Universal Frequency Translation," directed to related subject matter.

Documents AE45, AF45, AJ12 and AK12 were listed in a search report issued by the International Searching Authority in PCT application serial number PCT/US00/27555, filed October 6, 2000, entitled "DC Offset, Re-radiation, and I/Q Solutions Using Universal Frequency Translation Technology," directed to related subject matter.

Documents AG45, AH45, AL12 and AM12 were listed in a search report issued by the International Searching Authority in PCT application serial number PCT/US00/34771, filed January 21, 2000, entitled "Phase Comparator Using Undersampling," directed to related subject matter.

Documents AI45, AJ13-AL13 and AB46 were listed in a search report issued by the International Searching Authority in PCT application serial number PCT/US00/27281, filed October 4, 2000, entitled "Frequency Converter and Method," directed to related subject matter.

Document AA46 was cited by an Examiner in co-pending U.S. Patent Application Serial No. 09/293,580, filed April 16, 1999, entitled "Method and System for Frequency UpConversion with a Variety of Transmitted Configurations," directed to related subject matter.

Document AC46 was cited by an Examiner in co-pending U.S. Patent Application Serial No. 09/670,831, filed September 28, 2000, entitled "Universal Frequency Translation, Embodiments Thereof, and a Web Site and Web Pages Directed to Same," directed to related subject matter.

Document AD46 was cited by an Examiner in co-pending U.S. Patent Application Serial No. 09/293,095, filed April 16, 1999, entitled "Method and System for DownConverting an Electromagnetic Signal Having Optimized Switch Structures," directed to related subject matter.

Documents AD35, AE46-AI46 and AA47 were cited by an Examiner in co-pending U.S. Patent Application Serial No. 09/293,342, filed April 16, 1999, entitled "Method and System for Down-Converting Electromagnetic Signals Including Resonant Structures for Enhanced Energy Transfer," directed to related subject matter.

Documents AJ1, AK9-AM9, AG28, AB30, AA32, AN52 and AP55 were cited in an Examination Report in co-pending European Patent Application Serial No. 99954905.8, filed October 18, 1999, entitled "Integrated Frequency Translation and Selectivity with a Variety of Filter Embodiments," directed to related subject matter.

Documents AM13, AJ14, AK14 and AQ51 were cited in an Examination Report in co-pending Japanese Patent Application No. 2000-577,765, filed June 21, 2000, entitled "Method and System for Ensuring Reception of a Communications Signal," directed to related subject matter.

Documents AL14, AM14, AJ15 and AK15 were cited in an Examination Report in co-pending Japanese Patent Application No. 2000-577,761, filed June 20, 2000, entitled "Method and System for Frequency Up-conversion," directed to related subject matter.

Documents AL15, AM15, AJ16-AM16 and AJ17-AM17 were cited in an Examination Report in co-pending Japanese Patent Application No. 2000-577,764, filed June 21, 2000, entitled "Applications of Frequency Translation," directed to related subject matter.

Documents AJ18-AL1 8, AB47, AC47 and AE47-AG47 were cited by an Examiner in co-pending U.S. Patent Application Serial No. 09/489,675, filed January 24, 2000, entitled "Bar Code Scanner Using Universal Frequency Translation Technology for UpConversion and Down-Conversion," directed to related subject matter.

Documents AC24 and AD47 were cited by an Examiner in co-pending U.S. Patent Application Serial No. 09/376,509, filed August 18, 1999, entitled "Method and System for Ensuring Reception of a Communications Signal," directed to related subject matter.

Documents AH47, AI47 and AA48-AE48 are co-owned patents which are directed to related subject matter.

Documents AI43, AH47 and AH48 were cited by an Examiner in co-pending U.S. Patent Application Serial No. 09/293,283, filed April 16, 1999, entitled "Integrated Frequency Translation and Selectivity with a Variety of Filter Embodiments," directed to related subject matter.

Documents AA38 and AG48 were cited by an Examiner in co-pending U.S. Patent Application Serial No. 09/476,091, filed January 3, 2000, entitled "Image-Reject DownConverter and Embodiments Thereof, Such as the Family Radio Service," directed to related subject matter.

Documents AK 19 and AF48 were listed in a search report issued by the International Searching Authority in PCT application serial number PCT/US01/15111, filed October 5, 2001, entitled "Method and Apparatuses Relating to a Universal Platform Module and Enabled by Universal Frequency Translation Technology," directed to related subject matter.

Documents AI48 and AA49 were cited by an Examiner in co-pending U.S. Patent Application Serial No. 09/567,963, filed May 10, 2000, entitled "Frequency Synthesizer Using Universal Frequency Translation Technology," directed to related subject matter.

Document AB49 is a copy of co-pending U.S. Patent Application Serial No. 09/525,615, filed March 14, 2000, entitled "Method, System, and Apparatus for Balanced Frequency Up-Conversion of a Baseband Signal," directed to related subject matter. In the copy provided, the claims are shown as amended on June 6, 2001.

Document AC49 is a copy of co-pending U.S. Patent Application Serial No. 09/632,855, filed August 14, 2000, entitled "Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments," directed to related subject matter. In the copy provided, the claims are shown as amended on June 12, 2001.

Document AD49 is a copy of co-pending U.S. Patent Application Serial No. 09/632,857, filed August 14, 2000, entitled "Wireless Local Area Network (WLAN) Technology and Applications Including Techniques of Universal Frequency Translation," directed to related subject matter. In the copy provided, the claims are shown as amended on June 6, 2001.

It is noted that some of these documents could be classified in more than one of the above categories.

The other documents in the PTO-1449 do not fall within the above categories.
This statement should not be construed as a representation that information more material to the examination of the present patent application does not exist. The Examiner is specifically requested not to rely solely on the material submitted herewith.

Applicants have checked the appropriate boxes below.
\(\boxtimes 1\). This Information Disclosure Statement is being filed before the mailing date of a first Office Action on the merits. No statement or fee is required.
2. This Information Disclosure Statement is being filed more than three months after the U.S. filing date AND after the mailing date of the first Office Action on the merits, but before the mailing date of a Final Rejection or Notice of Allowance.
- a. I hereby state that each item of information contained in this Information

Disclosure Statement was cited in a communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of this Information Disclosure Statement. 37 C.F.R. § 1.97(e)(1).
- b. I hereby state that no item of information in this Information Disclosure Statement was cited in a communication from a foreign patent office in a counterpart foreign application and, to my knowledge after making reasonable inquiry, was known to any individual designated in 37 C.F.R. § 1.56 (c) more than three months prior to the filing of this Information Disclosure Statement. 37 C.F.R. § 1.97(e)(2).
- c. Attached is our check no. \(\qquad\) in the amount of \(\qquad\) in payment of the fee under 37 C.F.R. § 1.17(p).
3. This Information Disclosure Statement is being filed more than three months after the U.S. filing date and after the mailing date of a Final Rejection or Notice of Allowance, but before payment of the Issue Fee. A separate Petition to the Group Director, requesting consideration of this Information Disclosure Statement, is concurrently submitted herewith, along with our Check No.
\(\qquad\) in the amount of \$ \(\qquad\) in payment of the fee under 37 C.F.R. § 1.17(i).

वa. I hereby state that each item of information contained in this Information Disclosure Statement was cited in a communication from a foreign patent office in a counterpart foreign application not more than three
months prior to the filing of this Information Disclosure Statement. 37 C.F.R. § 1.97(e)(1).
ab. I hereby state that no item of information in this Information Disclosure Statement was cited in a communication from a foreign patent office in a counterpart foreign application and, to my knowledge after making reasonable inquiry, was known to any individual designated in 37 C.F.R. § 1.56(c) more than three months prior to the filing of this Information Disclosure Statement. 37 C.F.R. § 1.97(e)(2).
■4. The document(s) was/were cited in a search report by a foreign patent office in a counterpart foreign application. Submission of an English language version of the search report that indicates the degree of relevance found by the foreign office is provided in satisfaction of the requirement for a concise explanation of relevance. 1138 OG 37, 38.
\(\pm 5\). Concise explanations of the relevance of the non-English language documents AJ 1 , AK1, AJ6, AK7, AJ8-AL8, AK11-AM11, AJ12, AM13, AJ14-AM14, AJ15AM15, AJ16-AM16, AJ17-AM17, AJ18-AL18, AQ50 and AQ51 appear below:

Document AJ1 (DE 4237692 C 1 ) appears to be a receiver for a digital radio signal. The corresponding U.S. Patent No. 5,493,721 is enclosed as document AG28 on the attached PTO-1449.

Document AK1 (EP 0035166 A1) appears to describe a digitized receiver. A copy of the English language abstract of document AK1 is enclosed as document AQ8 on the attached PTO-1449.
Document AJ6 (EP 0785635 A1) appears to describe a method and apparatus for frequency diversity transmission using a plurality of uncorrelated carriers. A copy of the English language abstract of document AJ6 is enclosed as document AP8 on the attached PTO-1449.

Document AK7 (FR 2743231 A1) is the corresponding French application of document AJ6 (EP 0785635 A1), which is described above.

Document AJ8 (JP 2-39632) appears to describe a transmitter for frequency diversity. A copy of the English language abstract of document AJ8 is enclosed as document AO8 on the attached PTO-1449.

Document AK8 (JP 2-131629) appears to describe a transmitter-receiver for frequency diversity. A copy of the English language abstract of document AK8 is enclosed as document AN8 on the attached PTO-1449.

Document AL8 (JP 2-276351) appears to describe an FSK demodulating circuit. A copy of the English language abstract of document AL8 is enclosed as document AR7 on the attached PTO-1449.

Document AK11 (FR 2245130) appears to describe a converter. A partial English language translation of document AK11 is enclosed as document AP50 on the attached PTO-1449.

Document AL11 (DE 3541031) appears to describe a method and device for demodulating high-frequency modulated signals. An English translation of document AL1 1 is enclosed as document AR50 on the attached PTO-1449.

Document AM11 (EP 0732 803) appears to describe a procedure and device for demodulation by sampling. An English translation of document AM11 is enclosed as document AN51 on the attached PTO-1449.
Document AJ12 (DE 19735798) appears to describe a transceiver. An English translation of document AJ12 is enclosed as document AP51 on the attached PTO-1449.

Document AM13 (JP 56-114451) appears to describe a system for diversity radio transmission. The corresponding U.S. Patent No. 4,363,132 is enclosed as document AF8 on the attached PTO-1449.
Document AJ14 (JP 8-32556) appears to describe a data transmitter-receiver. A copy of the English language abstract of document AJ14 is enclosed as document AO52 on the attached PTO-1449.

Document AK14 (JP 8-139524) appears to describe a frequency converting circuit and radio communication device. A copy of the English language abstract of document AK14 is enclosed as document AP52 on the attached PTO1449.

Document AL14 (JP 59-144249) appears to describe a pulse signal transmission system. A copy of the English language abstract of document AL14 is enclosed as document AQ52 on the attached PTO-1449.
Document AM14 (JP 63-54002) appears to describe a microwave burst signal generator which incorporates a FET frequency multiplier. A copy of the English language abstract of document AM14 is enclosed as document AR52 on the attached PTO-1449.

Document AJ15 (JP 6-237276) appears to describe a quadrature modulator. A copy of the English language abstract of document AJ 15 is enclosed as document AN53 on the attached PTO-1449.

Document AK 15 (JP 8-23359) appears to describe a digital quadrature modulation device. A copy of the English language abstract of document AK 15 is enclosed as document AO53 on the attached PTO-1449.

Document AL15 (JP 47-2314) appears to describe a demodulator. An English language translation of document AL15 is enclosed as document AP53 on the attached PTO-1449.

Document AM15 (JP 58-7903) appears to describe a switched capacitor modulator. A partial English language translation of document AM15 is enclosed as document AQ53 on the attached PTO-1449.

Document AJ16 (JP 58-133004) appears to describe an amplitude detector. A copy of the English language abstract of document AJ16 is enclosed as document AR53 on the attached PTO-1449.

Document AK 16 (JP 60-58705) appears to describe a frequency converting circuit. A copy of the English language abstract of document AK16 is enclosed as document AN54 on the attached PTO-1449.

Document AL16 (JP 4-123614) appears to describe a level converting circuit. A copy of the English language abstract of document AL16 is enclosed as document AO54 on the attached PTO-1449.

Document AM16 (JP 4-127601) appears to describe a frequency conversion circuit. A copy of the English language abstract of document AM16 is enclosed as document AP54 on the attached PTO-1449.

Document AJ17 (JP 5-175730) appears to describe a time division direct receiver. A copy of the English language abstract of document AJ17 is enclosed as document AQ54 on the attached PTO-1449.

Document AK17 (JP 5-175734) appears to describe an FM demodulator. A copy of the English language abstract of document AK17 is enclosed as document AR54 on the attached PTO-1449.

Document AL17 (JP 7-154344) appears to describe a receiver for receiving modulated carrier signals and an IQ mixer/demodulator using it's receiving constitution. A copy of the English language abstract of document AL17 is enclosed as document AN55 on the attached PTO-1449.

Document AM17 (JP 7-307620) appears to describe a bottom detection circuit. A copy of the English language abstract of document AM17 is enclosed as document AO55 on the attached PTO-1449.

Document AJ18 (JP 55-66057) appears to describe a bar-code detection circuit. A copy of the English language abstract of document AJ18 is enclosed as document AQ55 on the attached PTO-1449.

Document AK18 (JP 63-65587) appears to describe a wireless light pen device. A copy of the English language abstract of document AK18 is enclosed as document AR55 on the attached PTO-1449.

Document AL18 (JP 63-153691) appears to describe a data transfer for a semiconductor data carrier system. A copy of the English language abstract of document AL18 is enclosed as document AN56 on the attached PTO1449.

Document AQ50 (Fest et al.) appears to discuss analog-digital converters. An English translation of document AQ50 is enclosed as document AO51 on the attached PTO-1449.

Document AQ51 (Miki et al.) appears to describe modulation systems. A partial English-language translation of document AQ 51 is enclosed as document AR51 on the attached PTO-1449.
\(\boxtimes\) 6. Copies of documents AM18, AJ19, AK19, AF48-AI48, AA49-AD49 and AP53 are enclosed. Copies of the remaining documents were submitted to the Patent Office in an IDS that complies with 37 C.F.R. § 1.98(a)-(c) in Application

No. 09/525,615, filed March 14, 2000, which is relied upon for an earlier filing date under 35 U.S.C. § 120. Thus, copies of these documents are not attached. 37 C.F.R. § 1.98(d).

It is respectfully requested that the Examiner initial and return a copy of the enclosed PTO-1449, and indicate in the official file wrapper of this patent application that the documents have been considered.

The U.S. Patent and Trademark Office is hereby authorized to charge any fee deficiency, or credit any overpayment, to our Deposit Account No. 19-0036.

Respectfully submitted,


Registration No. 35,239
Date: 7-25-02
1100 New York Avenue, N.W.
Suite 600
Washington, D.C. 20005-3934
(202) 371-2600
::ODMALMHODMALSKGF_DC1;35440;1

Robert Greene Sterne Edward J. Kessler Jorge A. Goldstein David K.S. Cornwel Robert W. Esmond Tracy-Gene G. Durkin Michele A. Cimbala Robert E. Sokoh Eric K. Steffe Michael Q. Le Steven R. Ludwig lohn M. Covert Linda E. Alcorn Robert C. Millonig Lawrence B. Bugaisky Lawrence B. Bugaisky
Donald J. Featherstone Donald J. Featherston Michael V. Messith U. Kim
Judithe Imothy J. Shea, Ir
\begin{tabular}{|c|}
\hline \multirow[t]{19}{*}{Patrick E. Garrett Jeffery T. Helvey* Heidi L. Kraus Crystal D. Sayles Edward W. Yee Albert L. Ferro* Donald R. Banowit Peter A. Jackman Molly A. McCall Teresa U. Medler Jeffrey S. Weaver Kendrick P. Patterson Vincent L. Capuano Alber !. Fasulo !"* Eidora Ellison Floyd W. Russell Swindell Thomas C. Fiala Brian J. Del Buono Virgil Lee Beaston* Reginaid D. Lucas \({ }^{*}\)} \\
\hline \\
\hline
\end{tabular}
Kimberly N. Reddick
Theodore A. Wood
Elizabeth I. Haanes
Bruce E. Chalker
Joseph S. Ostroff
Frank R. Cotingham"
Christine M. Lhulier
Rae Lynn Prengaman*
Jane Shershenovich*
Lawrence J. Carroll*
George S. Bardmesser
Senior Counsel
Samuel L. Fox
Kenneth C. Bass ill

Begistered Patent Agents
Karen R. Markowia
Andrea J. Kamage

July 25, 2002
(202) 371-2674

INTERNET ADDRESS: MLEE@SKGF.COM

\section*{FILE COPY}

Art Unit: 2634
Commissioner for Patents

Re: U.S. Utility Patent Application
Appl. No. 09/632,856; Filed: August 4, 2000
For: Wireless Local Area Network (WLAN) Using Universal Frequency
Translation Technology Including Multi-Phase Embodiments and Circuit Implementations
Inventors: Sorrells et al.
Our Ref: 1744.0630003/MQL/JTH

Sir:

Transmitted herewith for appropriate action are the following documents:
1. Information Disclosure Statement;
2. A list of the cited documents on Forms PTO-1449 (56 pages);
3. A copy of the twelve (12) documents cited on Forms PTO-1449;
4. A compact Disc labeled "Sterne1B" in PDF format;
5. A compact Disc labeled "Sterne2B" in PDF format; and
6. Return postcard.

It is respectfully requested that the attached postcard be stamped with the date of filing of these documents, and that it be returned to our courier. In the event that extensions of time are

Commissioner for Patents
July 25, 2002
Page 2
necessary to prevent abandonment of this patent application, then such extensions of time are hereby petitioned.

The U.S. Patent and Trademark Office is hereby authorized to charge any fee deficiency, or credit any overpayment, to our Deposit Account No. 19-0036.

Respectfully submitted,


JTH/slw
Enclosures

SKGF_DC1:38454.1


For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit Implementations
\& TRABEXIN receipt stamp is placed hereon, the USPTO acknowledges receipt of the following documents:
1. SKGF Cover Letter;
2. Information Disclosure Statement;
3. A list of the cited documents on Forms PTO-1449 (56 pages);
4. A copy of the twelve (12) documents cited on Forms PTO-1449;
5. A compact Disc labeled "Sterne1B" in PDF format;
6. A compact Disc labeled "Sterne2B" in PDF format; and
7. Return postcard.


Art Unit: 2634

\author{
Please Date Stamp And Return To Our Courier
}

SKGF_DCI:38434.1

Sterne, Kessler, Goldstein \& Fox P.L.L.C.
1100 New York Avenue, N.W.
Suite 600
Washington, DC 20005-3934

3

 conformance and not considered. Include copy of this form with next communication to Applicant.
 EXAMINER: aitial if reference considered, whether or not citation is in conformance with MPEP
conformance and not considered. Include copy of this form with next communication to Applicant.

 conformance and not considered. Include copy of this form with next communication to Applicant.
::ODMAMHODMALSKGF_DC1;32468;1

conformance and not considered. Include copy of this form with next communication to Applicant.
::ODAMMAHODMALSKGF_DC1;32468:1
 conformance and not considered. Include copy of this form with next communication to Applicant.
 conformance and not considered. Include copy of this form with next communication to Applicant.

conformance and not considered. Include copy of this form with nis in conformance with MPEP 609. Draw line through citation if not in


Page 9 of 56
 conformance and not considered. Include copy of this form with next communication to Applicant.
:ODMAMH-OOMALSKGF_OC1;32468; 1
\begin{tabular}{|c|c|c|}
\hline \multirow{3}{*}{\begin{tabular}{l}
FORM PTO-1449 \\
INEORMATION DISCLOSURE STATEMENT
\end{tabular}} & \[
\begin{aligned}
& \text { ATTY. DOCKET NO. } \\
& 1744.0630003 \\
& \hline
\end{aligned}
\] & APPLICATION NO. 09/632,856 \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
APPLICANT \\
Sorrells et al.
\end{tabular}} \\
\hline & \begin{tabular}{l}
FILING DATE \\
August 4, 2000
\end{tabular} & \[
\begin{aligned}
& \text { GROUP } \\
& 2634
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{U.S. PATENT DOCUMENTS}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline EXAMINER INITIAL & & DOCUMENT NUMBER & DATE & NAME & CLASS & SUBCLASS & FILING DATE \\
\hline & AA10 & 4,504,803 & 03/1985 & Lee et al. & 332 & 31 R & \\
\hline & AB10 & 4,517,519 & 05/1985 & Mukaiyama & 329 & 126 & \\
\hline & AC10 & 4,517,520 & 05/1985 & Ogawa & 329 & 145 & \\
\hline & AD10 & 4,518,935 & 05/1985 & van Roermund & 333 & 173 & \\
\hline & AE10 & 4,521,892 & 06/1985 & Vance et al. & 375 & 88 & \\
\hline & AF10 & 4,563,773 & 07/1986 & Dixon, Jr. et al. & 455 & 327 & \\
\hline & AG10 & 4,577,157 & 03/1986 & Reed & 329 & 50 & \\
\hline & AH10 & 4,583,239 & 04/1986 & Vance & 375 & 94 & \\
\hline & Al10 & 4,591,736 & 05/1986 & Hirao ot al. & 307 & 267 & \\
\hline
\end{tabular}

FOREIGN PATENT DOCUMENTS
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline \begin{tabular}{l} 
EXAMINER \\
INITIAL
\end{tabular} & & DOCUMENT NUMBER & DATE & COUNTRY & CLASS & \begin{tabular}{l} 
SUB- \\
CLASS
\end{tabular} & TRANSLATION \\
\hline & AJ10 & WO 97/38490 A1 & \(10 / 1997\) & PCT & H03K & \(7 / 00\) & N/A \\
\hline & AK10 & WO 98/00953 A1 & \(01 / 1998\) & PCT & H04L & \(27 / 26\) & N/A \\
\hline & AL10 & WO 98/24201 A1 & \(06 / 1998\) & PCT & H04H & \(1 / 00\) & N/A \\
\hline & AM10 & EP 0 099 265 A1 & \(01 / 1984\) & EP & H03D & \(3 / 04\) & N/A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & AN & 10 & Fukahori, K., "A CMOS Narrow-Band Signaling Filter with Q Reduction," IEEE Joumal of Solid-State Circuits, IEEE, Vol. SC-19, No. 6, pp. 926-932 (December 1984). \\
\hline & AO & 10 & Fukuchi, H. and Otsu, Y., "Available time statistics of rain attenuation on earth-space path," IEE Proceedings-H: Microwaves, Antennas and Propagation, IEE, Vol. 135, Pt. H. No. 6, pp. 387-390 (December 1988). \\
\hline & AP & 10 & Gibbins, C.J. and Chadha, R., "Millimetre-wave propagation through hydrocarbon flame," IEE Proceedings, IEE, Vol. 134, Pt. H, No. 2 , pp. 169-173 (April 1987). \\
\hline & AQ & 10 & Gilchrist, B. et al., "Sampling hikes performance of frequency synthesizers," Microwaves \& RF, Hayden Publishing, Vol. 23, No. 1, pp. 93-94 and 110 (January 1984). \\
\hline & AR & 10 & Gossard, E.E., "Clear weather meteorological effects on propagation at frequencies above 1 Ghz ," Radio Science, American Geophysical Union, Vol. 16, No. 5, pp. 589-608 (September - October 1981). \\
\hline \multicolumn{3}{|l|}{EXAMINER} & DATE CONSIDERED \\
\hline \multicolumn{4}{|l|}{EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to Applicant.} \\
\hline
\end{tabular} conformance and not considered. Include copy of this form with next communication to Applicant.
::ООМАММНООММІІКळF_DC 1:3246:;
 conformance and not considered. Include copy of this form with next communication to Applicant.
 conformance and not considered. Include copy of this form with next communication to Applicant.
:ODMAMHCOMALSKGF_DC 1 :32468:1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & \[
\begin{aligned}
& \text { AT } \\
& 17
\end{aligned}
\] & \[
\begin{aligned}
& \text { TY. DOCKET NO. } \\
& 44.0630003 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { APP } \\
& 09 /
\end{aligned}
\] & \[
\begin{aligned}
& \text { CATION } \\
& 2,856 \\
& \hline
\end{aligned}
\] & \\
\hline & MATIO & DI &  & TEM & & & \[
\begin{aligned}
& \text { PLICANT } \\
& \text { rrells et al. }
\end{aligned}
\] & & & \\
\hline & & & & & & & \begin{tabular}{l}
ING DATE \\
gust 4, 2000
\end{tabular} & GRO & & \\
\hline & & & & & U.S. & PATENT & DOCUMENTS & & & \\
\hline EXAMINER INITIAL & & & CUMENT BER & DA & & NAME & & CLASS & SUBCLASS & FILING DATE \\
\hline & AA13 & & 7,969 & 04/1 & & Steel & et al. & 375 & 67 & \\
\hline & AB13 & & 3,858 & 05/1 & & Evera & & 330 & 10 & \\
\hline & AC13 & & 5,463 & 05/1 & & Lu & & 358 & 23 & \\
\hline & AD13 & & 1,468 & 06/1 & & Agost & & 328 & 133 & \\
\hline & AE13 & & 7,538 & 07/1 & & Zink & & 381 & 7 & \\
\hline & AF13 & & 8,187 & 08/1 & & Marsh & & 370 & 69.1 & \\
\hline & AG13 & & 9,612 & 09/1 & & Tama & koshi et al. & 328 & 167 & \\
\hline & AH13 & & 5,463 & 11/1 & & Janc & et al. & 375 & 1 & \\
\hline & Al13 & & 1,584 & 12/1 & & Greive & enkamp, Jr. & 364 & 525 & \\
\hline & & & & & FOREIG & PATE & NT DOCUMENTS & & & \\
\hline EXAMINER INITIAL & & & CUMENT & BER & DATE & & COUNTRY & CLASS & SUBCLASS & TRANSLATION \\
\hline & AJ13 & & 817369 & & 01/1998 & & EP & H03D & 7100 & N/A \\
\hline & AK13 & WO & 91/18445 & & 11/1991 & & PCT & H03D & 7/18 & N/A \\
\hline & AL13 & & 99/23755 & & 05/1999 & & PCT & H03D & 7/16 & N/A \\
\hline & AM13 & & 6-114451 & & 09/1981 & & JP & H04B & \(7 / 02\) & No \\
\hline & & & & R & uding Auther & or, Tit & le, Date, Pertinent & & & \\
\hline & AN & 13 & Hospital Vol. VII, & 2-23 & ruments for 1904). & Record & ing and Observing & ying Phen & ena," Sci & e Abstracts, IEE, \\
\hline & AO & 13 & Howard Detection Australia & \begin{tabular}{l}
and \\
In \\
115-
\end{tabular} & wansson, itution of 21 (Septem &  & modulating High F Australia Vibration 20, 1990). & sonance Conferenc & nals for Institution & ing Fault Engineers, \\
\hline & AP & 13 & \begin{tabular}{l}
Hu, X., \\
Science \\
64 (1995)
\end{tabular} & ched of & Current Sa ectrical and & le-an & d-Hold Amplifier for ter Engineering, & ulation, T oronto, & is for Ma Dissertation & of Applied Services, pp. 1- \\
\hline & AQ & 13 & Hung, H Sampling & et \(a\) tem. & "Characte EEE MTT & ation Diges & of Microwave Integr . IEEE, pp. 507-51 & Using An & ptical Ph & Locking and \\
\hline & AR & 13 & Hurst, P. Transact 1991) &  & the Frequ cuits and Sy & cy Re tems, & sponse of Switched IEEE Circuits and & Filters by ciety, Vol & \begin{tabular}{l}
uniform \\
No. 1, p
\end{tabular} & \begin{tabular}{l}
pling." IEEE \\
2-19 (January
\end{tabular} \\
\hline \multicolumn{2}{|l|}{EXAMINER} & & & & & & & \multicolumn{3}{|l|}{DATE CONSIDERED} \\
\hline \multicolumn{11}{|l|}{EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to Applicant.} \\
\hline
\end{tabular}

Page 14 of 56
 conformance and not considered. Include copy of this form with next communication to Applicant.


Page 15 of 56

:ODMAWHOOMALSKGF_DC1:32498:1
 conformance and not considered. Include copy of this form with next communication to Applicant.

Page 17 of 56


Page 18 of 56
 conformance and not considered. Include copy of this form with next communication to Applicant.

Page 19 of 56
 conformance and not considered. Include copy of this form with next communication to Applicant.

Page 20 of 56

conformance and not considered. Include copy of this form with next communication to Applicant.
::OOMAWHOOMAISKGF_DC1;32466;1

Page 21 of 56
 conformance and not considered. Include copy of this form with next communication to Applicant.
:ODMAWIHODMASKKG_DC1:32460:1



conformance and not considered. Include copy of this form with next communication to Applicant.
:ООМАМННODMAISKGF_DC1;32466;1


Page 26 of 56

 conformance and not considered. Include copy of this form with next communication to Applicant.
:OOMAMHOODMASKOF_DC1:32486:1
 ::ODMAWHODMASKGF_DC1;32468:1
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{3}{*}{FORM PTO-1449
INFORMATION DISCLOSURE STATEMENT} & \[
\begin{aligned}
& \text { ATTY. DOCKET NO. } \\
& 1744.0630003 \\
& \hline
\end{aligned}
\] & APPLICATION NO. 09/632,856 \\
\hline & \begin{tabular}{l}
APPLICANT \\
Sorrells et al.
\end{tabular} & \\
\hline & \begin{tabular}{l}
FILING DATE \\
August 4, 2000
\end{tabular} & \[
\begin{aligned}
& \text { GROUP } \\
& 2634
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{U.S. PATENT DOCUMENTS}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline \begin{tabular}{l} 
EXAMINER \\
INITIAL
\end{tabular} & & \begin{tabular}{l} 
DOCUMENT \\
NUMBER
\end{tabular} & DATE & NAME & CLASS & \begin{tabular}{l} 
SUB- \\
CLASS
\end{tabular} & FILING DATE \\
\hline & AA29 & \(5,495,500\) & \(02 / 1996\) & Jovanovich \(\theta\) t al. & 375 & 206 \\
\hline & AB29 & \(5,499,267\) & \(03 / 1996\) & Ohe et al. & 375 & 206 \\
\hline & AC29 & \(5,500,758\) & \(03 / 1996\) & Thompson et al. & \\
\hline & AD29 & \(5,517,688\) & \(05 / 1996\) & Fajen et al. & 359 & 189 & \\
\hline & AE29 & \(5,519,890\) & \(05 / 1996\) & Pinckley & 455 & 333 & \\
\hline & AF29 & \(5,523,719\) & \(06 / 1996\) & Longo et al. & 455 & 307 & \\
\hline & AG29 & \(5,523,726\) & \(06 / 1996\) & Kroeger \(\theta t\) al. & 327 & 557 & \\
\hline & AH29 & \(5,523,760\) & \(06 / 1996\) & McEwan & 332 & 103 & \\
\hline & Al29 & \(5,539,770\) & \(07 / 1996\) & Ishigaki & 342 & 89 & \\
\hline & & & 375 & 206 & \\
\hline
\end{tabular}

FOREIGN PATENT DOCUMENTS
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline \begin{tabular}{l} 
EXAMINER \\
INITIAL
\end{tabular} & & DOCUMENT NUMBER & DATE & COUNTRY & CLASS & \begin{tabular}{l} 
SUB- \\
CLASS
\end{tabular} & TRANSLATION \\
\hline & AJ29 & & & & & & \begin{tabular}{c} 
Yes \\
No
\end{tabular} \\
\hline & AK29 & & & & & & \begin{tabular}{c} 
Yes \\
No
\end{tabular} \\
\hline & AL29 & & & & & \begin{tabular}{c} 
Yes \\
No
\end{tabular} \\
\hline & & & & & & \begin{tabular}{c} 
Yes \\
No
\end{tabular} \\
\hline
\end{tabular}

OTHER (Including Author, Title, Date, Pertinent Pages, etc.)
\begin{tabular}{|c|c|c|c|}
\hline & AN & \(\underline{29}\) & Press Release, "Parkervision, Inc. Announces First Quarter Financial Results," Parkervision Marketing and Manufacturing Headquarters, 3 Pages (April 29, 1997). \\
\hline & AO & \(\underline{29}\) & Press Release, "NEC and Parkervision Make Distance Learning Closer," NEC America, 2 Pages (June 18, 1997). \\
\hline & AP & \(\underline{29}\) & Press Release, "Parkervision Supplies JPL with Robotic Cameras, Cameraman Shot Director for Mars Mission," Parkervision Marketing and Manufacturing Headquarters, 2 pages (July 8, 1997). \\
\hline & AQ & \(\underline{29}\) & Press Release, "ParkerVision and IBM Join Forces to Create Wireless Computer Peripherals," Parkervision Marketing and Manufacturing Headquarters, 2 Pages (July 23, 1997). \\
\hline & AR & \(\underline{29}\) & Press Release, "ParkerVision, Inc. Announces Second Quarter and Six Months Financial Results," Parkervision Marketing and Manufacturing Headquarters, 3 Pages (July 31, 1997). \\
\hline \multicolumn{3}{|l|}{EXAMINER} & DATE CONSIDERED \\
\hline \multicolumn{4}{|l|}{EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to Applicant.} \\
\hline
\end{tabular} conformance and not considered. Include copy of this form with next communication to Applicant.
:ODMАWHODMAISKGF_DC1:32460:1
 conformance and not considered. Include copy of this form with next communication to Applicant.
оомиМнНоомАІІКGF_DC1:32486;1

Page 31 of 56



conformance and not considered. Include copy of this form with next communication to Applicant.
::ODAAMHODMALSKGF_OC1;32468:1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\multirow{3}{*}{FORM PTO-1449
INFORMATION DISCLOSURE STATEMENT}} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { ATTY. DOCKET NO. } \\
& 1744.0630003
\end{aligned}
\]} & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { APPLICATION NO. } \\
& 09 / 632,856
\end{aligned}
\]} \\
\hline & & & & & \multicolumn{5}{|l|}{\begin{tabular}{l}
APPLICANT \\
Sorrells et al.
\end{tabular}} \\
\hline & & & & & \multicolumn{2}{|l|}{\begin{tabular}{l}
FILING DATE \\
August 4, 2000
\end{tabular}} & GRO & & \\
\hline \multicolumn{10}{|c|}{U.S. PATENT DOCUMENTS} \\
\hline EXAMINER INITIAL & & DOCUMENT NUMBER & \multicolumn{2}{|l|}{DATE} & \multicolumn{2}{|l|}{NAME} & CLASS & SUBCLASS & FILING DATE \\
\hline & AA33 & 5,680,078 & \multicolumn{2}{|l|}{10/1997} & \multicolumn{2}{|l|}{Ariie} & 332 & 178 & \\
\hline & AB33 & 5,680,418 & \multicolumn{2}{|l|}{10/1997} & \multicolumn{2}{|l|}{Croft et al.} & 375 & 346 & \\
\hline & AC33 & 5,689,413 & \multicolumn{2}{|l|}{11/1997} & \multicolumn{2}{|l|}{Jaramillo et al.} & 363 & 146 & \\
\hline & AD33 & 5,699,006 & 12/1 & & \multicolumn{2}{|l|}{Zele et al.} & 327 & 341 & \\
\hline & AE33 & 5,705,955 & \multicolumn{2}{|l|}{01/1998} & \multicolumn{2}{|l|}{Freeburg et al.} & 331 & 14 & \\
\hline & AF33 & 5,710,998 & \multicolumn{2}{|l|}{01/1998} & \multicolumn{2}{|l|}{Opas} & 455 & 324 & \\
\hline & AG33 & 5,714,910 & 02/1 & & Skocz & zen et al. & 331 & 3 & \\
\hline & AH33 & 5,715,281 & \multicolumn{2}{|l|}{02/1998} & \multicolumn{2}{|l|}{Bly et al.} & 375 & 344 & \\
\hline & Al33 & 5,721,514 & \multicolumn{2}{|l|}{02/1998} & \multicolumn{2}{|l|}{Crockett et al.} & 331 & 3 & \\
\hline \multicolumn{10}{|c|}{FOREIGN PATENT DOCUMENTS} \\
\hline EXAMINER INITIAL & & \multicolumn{2}{|l|}{DOCUMENT NUMBER} & \multicolumn{2}{|l|}{DATE} & COUNTRY & CLASS & \[
\begin{aligned}
& \text { SUB- } \\
& \text { CLASS }
\end{aligned}
\] & TRANSLATION \\
\hline & A.J33 & & & & & & & & \[
\begin{aligned}
& \text { Yes } \\
& \text { No }
\end{aligned}
\] \\
\hline & AK33 & & & & & & & & Yes No \\
\hline & AL33 & & & & & & & & \[
\begin{aligned}
& \text { Yes } \\
& \text { No }
\end{aligned}
\] \\
\hline & AM33 & & & & & & & & Yes No \\
\hline
\end{tabular}

OTHER (Including Author, Title, Date, Pertinent Pages, etc.)
\begin{tabular}{|c|c|c|c|}
\hline & AN & 33 & Press Release, "Parkervision Adds Two New Directors," Parkervision Marketing and Manufacturing Headquarters, 2 Pages (March 5, 1999). \\
\hline & AO & 33 & Press Release, "Parkervision Announces Fourth Quarter and Year End Financial Results," Parkervision Marketing and Manufacturing Headquarters, 3 Pages (March 5, 1999). \\
\hline & AP & 33 & Press Release, "Joint Marketing Agreement Offers New Automated Production Solution," Parkervision Marketing and Manufacturing Headquarters, 2 Pages (April 13, 1999). \\
\hline & AQ & 33 & "Project COST 205: Scintillations in Earth-satellite links," Alta Frequenza: Scientific Review in Electronics, AEI, Vol. LIV, No. 3, pp. 209-211 (May-June, 1985). \\
\hline & AR & 33 & Razavi, B., RF Microelectronics, Prentice-Hall, pp. 147-149 (1998). \\
\hline \multicolumn{4}{|l|}{EXAMINER} \\
\hline
\end{tabular}

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to Applicant.

 conformance and not considered. Include copy of this form with next communication to Applicant.
::COMAMHOOMALSKGF_DC 1:32486:1

:СООМАМНСоММАІІКGF_DC1:32488:1

Page 36 of 56
 conformance and not considered. Include copy of this form with next communication to Applicant.
:ООМАМНООМАІККGF_DC1:32408;1



conformance and not considered. Include copy of this form with next communication to Applicant.
:OOMAWHOOMAISKGF_DC1;32468;1
 conformance and not considered. Include copy of this form with next communication to Applicant.



Page 42 of 56
 conformance and not considered. Include copy of this form with next communication to Applicant.
:ОDМАМННСОМАІККGF_DC1:32486;1
 conformance and not considered. Include copy of this form with next communication to Applicant.
 conformance and not considered. Include copy of this form with next communication to Applicant.

 conformance and not considered. Include copy of this form with next communication to Applicant.
 conformance and not considered. Include copy of this form with next communication to Applicant.
оомашнооМАіІкөF_OC1;32466;1

Page 47 of 56

 conformance and not considered. Include copy of this form with next communication to Applicant.

 conformance and not considered. Include copy of this form with next communication to Applicant.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & \[
\begin{aligned}
& \text { ATTY. DOCKET NO. } \\
& 1744.0630003 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { APP } \\
& 09 /
\end{aligned}
\] & \[
\begin{aligned}
& \text { CATION } \\
& 2,856 \\
& \hline
\end{aligned}
\] & \\
\hline & matio & ORM &  & M & & \begin{tabular}{l}
APPLICANT \\
Sorrells et al.
\end{tabular} & & & \\
\hline & & & & & & \begin{tabular}{l}
FILING DATE \\
August 4, 2000
\end{tabular} & \[
\begin{aligned}
& \text { GRO } \\
& 263 \\
& \hline
\end{aligned}
\] & & \\
\hline & & & & & & PATENT DOCUMENTS & & & \\
\hline EXAMINER INITIAL & & & UMENT BER & DAT & & NAME & CLASS & SUBCLASS & FILING DATE \\
\hline & AA50 & & & & & & & & \\
\hline & AB50 & & & & & & & & \\
\hline & AC50 & & & & & & & & \\
\hline & AD50 & & & & & & & & \\
\hline & AE50 & & & & & & & & \\
\hline & AF50 & & & & & & & & \\
\hline & AG50 & & & & & & & & \\
\hline & AH50 & & & & & & & & \\
\hline & Al50 & & & & & & & & \\
\hline & & & & & FORE & PATENT DOCUMENTS & & & \\
\hline EXAMINER INITIAL & & & UMENT & ER & DATE & COUNTRY & CLASS & SUBCLASS & TRANSLATION \\
\hline & AJ50 & & & & & & & & \[
\begin{aligned}
& \text { Yes } \\
& \text { No }
\end{aligned}
\] \\
\hline & AK50 & & & & & & & & Yes
No \\
\hline & AL50 & & & & & & & & Yes
No \\
\hline & AM50 & & & & & & & & Yes
No \\
\hline & & & & R (In & luding & or, Title, Date, Pertinen & etc.) & & \\
\hline & AN & 50 & Worthm & ., "C & nvergen & Again," RF Design, Prim & 2 (March 19 & & \\
\hline & AO & \(\underline{50}\) & Young, IEEE Jo &  & ges, D d-State & MOS Switched-Capacitor uits, IEEE, Vol. SC-14, & \[
\begin{aligned}
& \text { ampled-Data } \\
& 020-1033 \text { (D }
\end{aligned}
\] & rect-Form ember 19 & cursive Filters," \\
\hline & AP & 50 & Translat & Spe & fication & Claims of FR Patent No. & 3 pages. & & \\
\hline & AQ & \(\underline{50}\) & Fest, Je 54, pp. & erre, (Dec & e Conv mber 1 & seur A/N Revolutionne L & ur Radio," Elo & ronique, & (Publisher), No. \\
\hline & AR & 50 & Translation & DE & atent No. & 41031 A1, 22 pages. & & & \\
\hline \multicolumn{7}{|l|}{EXAMINER} & \multicolumn{3}{|l|}{DATE CONSIDERED} \\
\hline \multicolumn{10}{|l|}{EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to Applicant.} \\
\hline
\end{tabular} conformance and not considered. Include copy of this form with next communication to Applicant.
 conformance and not considered. Include copy of this form with next communication to Applicant.
 conformance and not considered. Include copy of this form with next communication to Applicant.
 conformance and not considered. Include copy of this form with next communication to Applicant.


EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in保 ::OOMAMHODMALSKGF_DC1;32468;1



EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609
conformance and not considered. Include copy of this form with next communication to Applicant.
:ODMAWHODMAISKGF_DC1;32468;1



Edward J. Kessler Edward J. Kessler Jorge A. Goldstein
David K.S. Cornwell Oavid K.S. Cornwell
Rober W. Esmond Tracy-Gene G. Durkin Tracy-Gene G. Durkin
Michele A. Cimbala Michael B. Ray Michael B. Ray
Robert E. Sokohl Roben E. Soko
Eric K. Stefte Eric K. Stette
Michael Q. Lee Steven R. Ludwig
John M. Covert
Linda E. Alcorn
Robert C. Millonig
Lawrence B. Bugaisky Donald 1. Featherstone
Michael V. Messinger Michael V. Messinger


Judith U. Kim Timothy I. Shea, If.
Patrick E. Garrett Heidi L. Kraus Heidi L. Kraus
Edward W. Yee Albert L. Ferro Donald R. Banowit Donald R. Banowit
Peter A. Jackman Peter A. Jackman
Molly A. McCall Molly A. MCCall
Teresa U. Medler Teresa U. Medler
Jeffrey S . Weaver Jeftrey S. Weaver
Kendrick P. Patterson Vincent L. Capuano Albert J. Fasulo II* Eldora Ellison Floy Thomas C. Fiala Brian J. Del Buono Virgil Lee Beaston*

June 9, 2003


Kimberly N. Reddick Theodore A. Wood Elizabeth I. Haanes Bruce E. ChalkeI
Joseph S. OstroH Joseph S. OstroH
Frank R. Cotringham Frank R. Cotringham
Christine M. Lhulier Christine M. Lhulier
Rae Lynn Prengaman Rae Lymn Prengaman
Jane Shershenovich* Jane Shershenovich* George 5. Bardmesse George S. Bardmes Rodney G. Maze Rodney G. Maze Michael A. Specht Andrea J. Kamage Tracy L. Muller Jon E. Wright \({ }^{*}\)
Mary B. Tung
Nancy L. Leith
Ann E. Summerfield
Helene C. Carlson
Helene C. Carlson
Gaby L. Longsworth
Mathew I. Dowd
Matthew J. Dowd
Aaron L. Schwart
Aaron L. Schwartz
Angelique G. Uy
Angelique G .
Mary 8 . Tung
Katrina Y. Pei
Bryan L. Skelton
Robert A. Schwartzman
John J. Figueroa
Timothy A. Dove
Jennifer R. Mahalingappa

Teresa A. Colella

Commissioner for Patents
PO Box 1450
Group Art Unit 2634
Alexandria, VA 22313-1450
Re: U.S. Utility Patent Application
Appl. No. 09/632,856; Filed: August 4, 2000
For: Wireless Local Area Network (WLAN) Using Universal Frequency
Translation Technology Including Multi-Phase Embodiments and Circuit Implementations
Inventors: David F. SORRELLS et al.
Our Ref: 1744.0630003
Sir:

Transmitted herewith for appropriate action are the following documents:
1. Second Preliminary Amendment Under 37 C.F.R. § 1.115 in the Revised Format of the Pre-OG Notice Dated January 31, 2003;
2. Supplemental Information Disclosure Statement;
3. A listing of the cited documents on Form PTO-1449 (4 pages);
4. Copies of the cited documents (AE49-AI49; AL19-AM19; AO56-AR56; AA50AI50; AJ20-AM20; AN57-AQ57; AA51-AF51; AJ21-AM21; AJ22); and
5. One (1) return postcard.

It is respectfully requested that the attached postcard be stamped with the date of filing of these documents, and that it be returned to our courier. In the event that extensions of time are necessary to prevent abandonment of this patent application, then such extensions of time are hereby petitioned.

Commissioner for Patents
June 9, 2003
Page 2

The U.S. Patent and Trademark Office is hereby authorized to charge any fee deficiency, or credit any overpayment, to our Deposit Account No. 19-0036.

Respectfully submitted,


Enclosures
:ODMALMHODMAISKGF_DC1;138439;1

\begin{tabular}{|c|c|c|c|c|}
\hline Robert Greene Sterne & Judith U. Kim & Theodore A. Wood & Aric W. Ledford* & \\
\hline Edward J. Kessler & Timothy I. Shea, If. & Elizabeth J. Haanes & Registered Patent Agens & Eric D. Hayes \\
\hline Jorge A. Goldstein & Patrick E. Garrett & Joseph S. Ostrofi & Registered Patent Agents* & \\
\hline David K.S. Cornwell & Heidd L. Kraus & Frank R. Cottingham & Karen R. Markowicz & \\
\hline Robert W. Esmond & Edward W. Yee & Christine M. Lhulier & Nancy J. Leith & Of counsel \\
\hline Tracy-Gene G. Durkin & Albert L. Ferro* & Rae Lym Prengaman & Helene C. Carlson & Kenneth C. Bass III \\
\hline Michele A. Cimbala & Donald R. Banowit & Jane Shershenovich* & Gaby L. Longsworth & Evan R. Smith \\
\hline Michael B. Ray & Peter A. Jackman & Lawrence I. Carroll* & Maby L. Longsworth
M. Dowd & \\
\hline Robert E. Sokohl & Molly A. McCall & George S. Bardmesser & Aaron L. Schwantz & *Admitted only in Maryland \\
\hline Eric K. Steffe & Teresa U. Medler & DanielA. Klein* & Aaron L. Schwarzz & - Admitted only in Virginia \\
\hline Michael Q. Lee & Jeffrey S. Weaver & Jason D. Eisenberg & Mary B. Tung & - Practice Limited to \\
\hline Steven R. Ludwig & Kendrick P. Patterson & Michael D. Specht & Katrina Y. Pei Quach & Federal Agencies \\
\hline John M. Covert & Vincent L. Capuano & Andrea J. Kamage & Bryan L. Skelton & \\
\hline Linda E. Alcorn & Eidora Ellison Floyd & Tracy L. Muller \({ }^{\text {a }}\) & Robert A. Schwantzman & \\
\hline Robert C. Millonig & Thomas C. Fiala & LuAnne M. Yusicek \({ }^{+}\) & Timothy A, Doyle & \\
\hline Lawrence B. Bugaisky & Brian J. Del Buono & John J. Figueroa & Jennifer R. Mahalingappa & \\
\hline Donald J. Featherstone & Vigill Lee Beaston & Ann E. Summerfield & Teresa A. Colella & \\
\hline Michael V. Messinger & Kimberly N. Reddick & Tiera S. Coston* & Jeffrey 5 . Lundgren & \\
\hline
\end{tabular}

January 23, 2004
WRITER'S DIRECT NUMBER:
(202) 772-8674

INTERNET ADDRESS: MLEE@SKGF.COM

Commissioner for Patents
PO Box 1450
Alexandria, VA 22313-1450
Art Unit 2634

Re: U.S. Utility Patent Application
Appl. No. 09/632,856; Filed: August 4, 2000
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit Implementation
Inventors: Sorrells et al.
Our Ref: 1744.0630003
Sir:
Transmitted herewith for appropriate action are the following documents:
1. Second Supplemental Information Disclosure Statement;
2. A list of the cited documents on Forms PTO-1449 (6 pages);
3. A compact Disc labeled "Disc 3" in PDF format (which contains electronic copies of the cited documents);
4. Copies of cited documents: AA56, AB56, AC56, AD56, AE56, AN59; and
5. Return postcard.

It is respectfully requested that the attached postcard be stamped with the date of filing of these documents, and that it be returned to our courier. In the event that extensions of time are necessary to prevent abandonment of this patent application, then such extensions of time are hereby petitioned.

Commissioner for Patents
January 23, 2004
Page 2
The U.S. Patent and Trademark Office is hereby authorized to charge any fee deficiency, or credit any overpayment, to our Deposit Account No. 19-0036.


\footnotetext{
MQU/TTH/agj SKGFIDCIV222608. 1
}

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:
David F. SORRELLS et al.
Appl. No. 09/632,856
Filed: August 4, 2000

Confirmation No.: 2377
Art Unit: 2634
Examiner: Chin, Stephen
Atty. Docket: 1744.0630003

For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit Implementations

\section*{Supplemental Information Disclosure Statement}

Commissioner for Patents
Washington, D.C. 20231
Sir:
Listed on accompanying Form PTO-1449 are documents that may be considered material to the examination of this application, in compliance with the duty of disclosure requirements of 37 C.F.R. §§ 1.56, 1.97 and 1.98. The reference numbering on the accompanying Form PTO-1449 for this Supplemental Information Disclosure Statement is a continuation of the numbering in Applicants' Information Disclosure Statement filed on July 25, 2002 in connection with the above-captioned application.

Applicants have listed publication dates on the attached PTO-1449 based on information presently available to the undersigned. However, the listed publication dates should not be construed as an admission that the information was actually published on the date indicated.

Applicants reserve the right to establish the patentability of the claimed invention over any of the information provided herewith, and/or to prove that this information may
not be prior art, and/or to prove that this information may not be enabling for the teachings purportedly offered.

Applicants provide the following comments regarding the documents:
Document AE49 is a co-owned patent which is directed to related subject matter.
Document AF49 was cited in an Office Action in co-pending U.S. Patent Application Serial No. 09/489,675, filed January 24, 2000, entitled "Bar Code Scanner Using Universal Frequency Translation Technology for Up-Conversion and DownConversion," directed to related subject matter. Also cited in said Office Action was U.S. Patent No. 6,091,940, which was cited in Applicants' Information Disclosure Statement filed on July 25, 2002 in connection with the above-captioned application.

Documents AG49-AI49 and AA50-AC50 were cited in an Office Action in copending U.S. Patent Application Serial No. 09/476,092, filed January 3, 2000, entitled "Analog Zero IF FM Decoder and Embodiments Thereof, Such as the Family Radio Service," directed to related subject matter.

Documents AL19, AM19 and AD50 were cited in an International Search Report in PCT Appl. No. PCT/US01/08969, filed March 22, 2001, entitled, "Integrated Frequency Translation and Selectivity with a Gain Control Functionality, and Applications Thereof," directed to related subject matter. Also cited in said Search Report were U.S. Patent Nos. 4,888,557 and 5,801,654 and PCT Publication Nos. WO 96/02977 and WO 96/39750, which were cited in Applicants' Information Disclosure Statement filed on July 25, 2002 in connection with the above-captioned application.

Document AJ20 was cited in an Office Action in co-pending Japanese Patent Application Serial No. 2000-577,764, filed June 21, 2000, entitled "Applications of

Universal Frequency Translation,". Also cited in said Office Action was Japanese Patent Publication No. 58-133004, which was cited in Applicants' Information Disclosure Statement filed on July 25, 2002 in connection with the above-captioned application.

Documents AK20, AL20, AJ21, AK21, AL21, AP56 and AQ56 were cited in an International Search Report in PCT Appl. No. PCT/US01/12086, filed April 13, 2001, entitled, "Frequency Converter," directed to related subject matter. Also cited in said International Search Report was U.S. Patent No. \(5,844,449\), which was cited in Applicants' Information Disclosure Statement filed on July 25, 2002 in connection with the above-captioned application.

Document AE50 was cited in an Office Action in co-pending U.S. Patent Application Serial No. 09/376,509, filed August 18, 1999, entitled "Method and System for Ensuring Reception of a Communications Signal," directed to related subject matter.

Documents AM21 and AJ22 were cited in an Official Notice of Rejection in copending Japanese Patent Application No. 2000-577,765, filed June 21, 2000, entitled "Method and System for Ensuring Reception of a Communications Signal," directed to related subject matter. Also cited in said Rejection were Japanese Patent Publication Nos. 56-114451, 8-32556 and 8-139524, which were cited in Applicants' Information Disclosure Statement filed on July 25, 2002 in connection with the above-captioned application.

Documents AF50-AH50, AA51, AC51 and AF51 were cited in and Office Action in co-pending U.S. Patent Application Serial No. 09/476,330, filed January 3, 2000, entitled "Multi-Mode, Multi-Band Communication System," directed to related subject matter.

Document AI50 was cited in an Office Action in co-pending U.S. Patent Application Serial No. 09/567,963, filed May 10, 2000, entitled "Frequency Synthesizer Using Universal Frequency Translation Technology," directed to related subject matter.

Documents AB51, AD51 and AE51 were cited in an Office Action in co-pending U.S. Patent Appl. No. 09/526,041, filed March 14, 2000, entitled, "DC Offset, Re-radiation, and I/Q Solutions Using Universal Frequency Translation Technology," directed to related subject matter.

The other documents in the PTO-1449 do not fall within the above categories.
It is noted that some of these documents could be classified in more than one of the above categories.

This statement should not be construed as a representation that information more material to the examination of the present patent application does not exist. The Examiner is specifically requested not to rely solely on the material submitted herewith.

Applicants have checked the appropriate boxes below.
\(\otimes 1\). This Information Disclosure Statement is being filed before the mailing of a first Office Action. No statement or fee is required.
- 2. This Information Disclosure Statement is being filed more than three months after the U.S. filing date AND after the mailing date of the first Office Action on the merits, but before the mailing date of a Final Rejection or Notice of Allowance.
- a. I hereby state that each item of information contained in this Information Disclosure Statement was cited in a communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of this Information Disclosure Statement. 37 C.F.R. § 1.97(e)(1).
- b. I hereby state that no item of information in this Information Disclosure Statement was cited in a communication from a foreign patent office in a counterpart foreign application and, to my knowledge after making reasonable inquiry, was known to any individual designated in 37 C.F.R. § 1.56(c) more than three months prior to the filing of this Information Disclosure Statement. 37 C.F.R. § 1.97(e)(2).
- c. Attached is our Check No. 32067 in the amount of \$ \(\qquad\) in payment of the fee under 37 C.F.R. § 1.17(p).
- 3. This Information Disclosure Statement is being filed more than three months after the U.S. filing date and after the mailing date of a Final Rejection or Notice of Allowance, but before payment of the Issue Fee. A separate Petition to the Group Director, requesting consideration of this Information Disclosure Statement, is concurrently submitted herewith, along with our Check No. \(\qquad\) in the amount of \$ \(\qquad\) in payment of the fee under 37 C.F.R. § 1.17(i).
\(\square\) a. I hereby state that each item of information contained in this Information Disclosure Statement was cited in a communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of this Information Disclosure Statement. 37 C.F.R. § 1.97(e)(1).
b. I hereby state that no item of information in this Information Disclosure Statement was cited in a communication from a foreign patent office in a counterpart foreign application and, to my knowledge after making reasonable inquiry, was known to any individual designated in 37 C.F.R. § 1.56(c) more than three months prior to the filing of this Information Disclosure Statement. 37 C.F.R. § 1.97(e)(2).
4. The document(s) was/were cited in a search report by a foreign patent office in a counterpart foreign application. Submission of an English language version of the search report that indicates the degree of relevance found
by the foreign office is provided in satisfaction of the requirement for a concise explanation of relevance. 1138 OG 37, 38.
® 5. Concise explanations of the relevance of non-English language documents AJ20AL20, AK21, AM21 and AJ22 appear below:

Document AJ20 (JP 60-130203) appears to describe a frequency converter. A copy of the English language translation of document AJ20 is enclosed as document AO56 on the attached PTO-1449.

Document AK20 (DE 19627640 A1) appears to describe a mixer. Document AK20 is a counterpart German application of U.S. Patent No. 5,680,078, which was cited in Applicants' Information Disclosure Statement filed on July 25,2002 in connection with the above-captioned application.

Document AL20 (EP 0087336 A1) appears to describe a transistorized mixer for microwave transmitters. The granted version of document AL20 is cited as document AM20 (EP 0087336 B1) and contains an Englishlanguage version of the claims.
Document AK21 (FR 2669787 A 1 ) appears to describe a symmetrical super high frequency mixer. A copy of the English-language abstract of document AK21 is enclosed as document AR56 on the attached PTO1449.

Document AM21 (JP 61-30821) appears to describe a squelch device. A copy of the English-language abstract of document AM21 is enclosed as document AP57 on the attached PTO-1449.

Document AJ22 (JP 5-327356) appears to describe a frequency converter. A copy of the English-language abstract of document AJ22 is enclosed as document AQ57 on the attached PTO-1449.
- 6. Copies of the documents were cited by or submitted to the Office in an IDS that complies with 37 C.F.R. § 1.98(a)-(c) in Application No. \(\qquad\) , filed \(\qquad\) , which is relied upon for an earlier filing date under 35 U.S.C. § 120. Thus, copies of these documents are not attached. 37 C.F.R. § 1.98(d).

It is respectfully requested that the Examiner initial and return a copy of the enclosed PTO-1449, and indicate in the official file wrapper of this patent application that the documents have been considered.

The U.S. Patent and Trademark Office is hereby authorized to charge any fee deficiency, or credit any overpayment, to our Deposit Account No. 19-0036.

Respectfully submitted,


Date: June 9, 2003
1100 New York Avenue, N.W. Washington, D.C. 20005-3934 (202) 371-2600
::ODMALMHODMAISKGF_DC1;94511;1

\begin{tabular}{rl} 
Due Date: & None \\
Art Unit: & 2634 \\
Examiner: & Chin, Stephen \\
Docket: & 1744.0630003 \\
Atty: & MQL/JEW
\end{tabular}

Filed: August 4, 2000
Atty: MQL/JEW
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit Implementations
When receipt stamp is placed hereon, the USPTO acknowledges receipt of the following documents:
1. SKGF Cover Letter;
2. Second Preliminary Amendment Under 37 C.F.R. § 1.115 in the Revised Format of the Pre-OG Notice Dated January 31, 2003;
3. Supplemental Information Disclosure Statement;
4. A listing of the cited documents on Form PTO-1449 (4 pages);
5. Copies of the cited documents (AE49-AI49; AL19-AM19; AO56-AR56; AA50-AI50; AJ20-AM20; AN57-AQ57;

AA51-AF51; AJ21-AM21; AJ22); and
6. One (1) return postcard.
::ODMALMHODMAISKGF_DC1;138454;1
Please Date Stamp And Return To Our Courier


\section*{Sterne, Kessler, Goldstein \& Fox P.L.L.C.}

1100 New York Avenue, NW
Washington, DC 20005-3934


OTHER (Including Author, Title, Date, Pertinent Pages, etc.)
\begin{tabular}{|l|l|l|l|l|}
\hline & & & & \\
& AO & \(\underline{56}\) & \begin{tabular}{l} 
Translation of Japanese Patent Publication No. 60-130203, 3 pages (July 11, 1985- Date of publication of \\
application).
\end{tabular} \\
\hline & AP & \(\underline{56}\) & \begin{tabular}{l} 
Razavi, B., "A 900-MHz/1.8-Ghz CMOS Transmitter for Dual-Band Applications," Symposium on VLSI Circuits \\
Digest of Technical Papers, IEEE, pp. 128-131 (1998).
\end{tabular} \\
\hline & AQ & \(\underline{56}\) & \begin{tabular}{l} 
Ritter, G.M., "SDA, A New Solution for Transceivers," 16th European Microwave Conference, Microwave \\
Exhibitions and Publishers, pp. 729-733 (September 8, 1986).
\end{tabular} \\
\hline & AR & \(\underline{56}\) & \begin{tabular}{l} 
DIALOG File 351 (Derwent WPI) English Language Patent Abstract for FR 2 669 787, 1 page (May 29, 1992- \\
Date of publication of application).
\end{tabular} \\
\hline
\end{tabular}

EXAMINER

\section*{DATE CONSIDERED}

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to Applicant.
::ODMAWHODMALSKGF_DC1:P4515;1
 conformance and not considered. Include copy of this form with next communication to Applicant.
:OOMAWMOOMAISKGF_DC1:94515;1

Page 3 of 4

::OOMAWM-ODMAISKGF_DC1;94515;1

Page 4 of 4
\begin{tabular}{|c|c|c|}
\hline \multirow{3}{*}{FORM PTO-1449
SUPPLEMENTAL INFORMATION DISCLOSURE STATEMENT} & \[
\begin{aligned}
& \text { ATTY. DOCKET NO. } \\
& 1744.0630003
\end{aligned}
\] & APPLICATION NO.
\[
09 / 632,856
\] \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
APPLICANT \\
David F. SORRELLS et al.
\end{tabular}} \\
\hline & \begin{tabular}{l}
FILING DATE \\
August 4, 2000
\end{tabular} & \[
\begin{aligned}
& \text { GROUP } \\
& 2634 \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}



EXAMINER
DATE CONSIDERED
EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to Applicant.
::ODMAMIHODMAISKGF_DC1;94515;1

In re application of:
Sorrells et al.
Appl. No. 09/632,856
Filed: August 4, 2000
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including MultiPhase Embodiments and Circuit Implementation

Confirmation No. 2377
Art Unit: 2634
Examiner: Kim, Kevin
Atty. Docket: 1744.0630003

\section*{Second Supplemental Information Disclosure Statement}

Commissioner for Patents
PO Box 1450
Alexandria, VA 22313-1450
Sir:
Listed on accompanying Form PTO-1449 are documents that may be considered material to the examination of this application, in compliance with the duty of disclosure requirements of 37 C.F.R. \(\S 1.56,1.97\) and 1.98 . The numbering on this Second Supplemental Information Disclosure Statement is a continuation of the numbering in Applicants' Supplemental Information Disclosure Statement filed on June 9, 2003 in connection with the above-captioned application.

In addition to providing hard copies of the documents as required by applicable rules (see box 7 below), Applicants herewith provide a Compact Disc labeled "Disc 3" having stored thereon searchable electronic copies (in PDF format) of many of the documents listed on the PTO-1449. More specifically, the CD contains electronic copies of documents AG51-AI51, AA52-AI52, AA53-AI53, AA54-AG54, AK22, AL22, AM22, AJ23, AK23, AR57 and AN58-AR58. In addition, the CD contains electronic copies of
documents AC46-AI46, AA47-AI47, AA48-AI48, AA49, AE49-AI49, AA50-AI50, AA51-AF51, AM13, AJ14-AM14, AJ15-AM15, AJ16-AM16, AJ17-AM17, AJ18AM18, AJ19-AM19, AJ20-AM20, AJ21-AM21, AJ22, AQ51, AR51, AN52-AR52, AN53-AR53, AN54-AR54, AN55-AR55, AN56-AR56 and AN57-AQ57, all of which were cited in previous Information Disclosure Statements. Documents AH54, AI54, AA55-AI55, AA56-AE56 and AN59 have not yet been scanned. The file names on the CD correspond to the identifiers on the PTO-1449s. It is noted that the CD is being provided in addition to hard copies of the documents (as required by applicable rules) for the convenience of the Examiner.

Applicants have listed publication dates on the attached PTO-1449 based on information presently available to the undersigned. However, the listed publication dates should not be construed as an admission that the information was actually published on the date indicated.

Applicants reserve the right to establish the patentability of the claimed invention over any of the information provided herewith, and/or to prove that this information may not be prior art, and/or to prove that this information may not be enabling for the teachings purportedly offered.

Applicants provide the following comments regarding the documents:
Document AH51 was cited in an Office Action in related U.S. Patent Application Serial No. 09/476,092, filed January 3, 2000, entitled "Analog Zero IF FM Decoder and Embodiments Thereof, Such as the Family Radio Service," directed to related subject matter. Also cited in the Office Action were U.S. Patent Nos. 5,600,680 and 5,606,731,
which have already been cited in the present application in the Supplemental Information Disclosure Statement, filed June 9, 2003.

Documents AI51, AA52, AF52, AA55 and AI55 are co-owned patents which are directed to related subject matter.

Documents AB52, AE56, AN58-AP58 and AN59 were cited in Office Actions in related U.S. Patent Appl. No. 09/567,977, filed May 10, 2000, entitled, "Optical Down-converter Using Universal Frequency Translation Technology," directed to related subject matter.

Documents AE52 and AJ23 were cited in an Invitation to Pay Additional Fees in related PCT Appl. No. PCT/US01/43077, filed November 14, 2001, entitled "Method and Apparatus for a Parallel Correlator and Applications Thereof," directed to related subject matter.

Documents AG52-AI52 and AA53 were cited in an Office Action in related U.S. Patent Application No. 09/986,764, filed November 9, 2001, entitled "Method and Apparatus for Reducing DC Offsets in a Communication System," directed to related subject matter.

Documents AB53-AE53 were cited in an International Search Report in related PCT Application No. PCT/US02/35861, filed November 8, 2002, entitled "Method and Apparatus for Reducing DC Offsets in a Communication System," directed to related subject matter.

Documents AF53-AI53 and AA54-AC54 were cited in an Office Action in related U.S. Patent Application No. 09/476,093, filed January 3, 2000, entitled "Family Radio

System with Multi-Mode and Multi-Band Functionality," directed to related subject matter.

Documents AD54-AG54 were cited in an International Search Report in related PCT Application No. PCT/US03/16403, filed May 27, 2003, entitled "Method and Apparatus for DC Offset Removal in a Radio Frequency Communication Channel," directed to related subject matter.

Documents AH54 and AI54 were cited in an Office Action in related U.S. Patent Application No. 09/550,642, filed April 14, 2000, entitled "Method and System for Down-converting an Electromagnetic Signal, and Transforms for Same," directed to related subject matter.

Documents AB55-AF55 were cited in an Office Action in related U.S. Patent Application No. 09/548,923, filed April 13, 2000, entitled "Method and System for Frequency Conversion with Modulation Embodiments," directed to related subject matter. Also cited in the Office Action were U.S. Patent Nos. 6,091,940 and 6,353,735, which have already been cited in the present application in the Information Disclosure Statement, filed July 25, 2002.

Documents AG55 and AH55 were cited in an Office Action in related U.S. Patent Application No. 09/543,867, filed April 5, 2000, entitled "Automated Meter Reader Applications of Universal Frequency Translation," directed to related subject matter.

Documents AA56 and AB56 were cited in an Office Action in related U.S. Patent Application No. 10/317,181, filed December 12, 2002, entitled "Differential Frequency Down-Conversion Using Techniques of Universal Frequency Translation Technology," directed to related subject matter.

Documents AC56 and AD56 were cited in an Office Action in related U.S. Patent Application No. 10/317,165, filed December 12, 2002, entitled "Method and Apparatus for Reducing DC Offsets in Communication Systems Using Universal Frequency Translation Technology," directed to related subject matter.

Documents AK22-AM22, AA52, AB52 and AQ58 were cited in an International Search Report in related PCT Appl. No. PCT/US01/15555, filed May 16, 2001, entitled, "Apparatus, System, and Method for Down-Converting and Up-Converting Electromagnetic Signals," directed to related subject matter. Also cited the International Search Reportwere U.S. Patent Nos. 4,888,557, 5,454,007, 5,640,698 and 5,705,949, and PCT Publication No. WO 96/02977, which have already been cited in the present application in the Information Disclosure Statement, filed July 25, 2002.

Document AK23 was cited in an Office Action in related Japanese Patent Application No. 2000-577,764, filed June 21, 2000, entitled "Applications of Frequency Translation," directed to related subject matter.

The other documents in the PTO-1449 do not fall within the above categories.
This statement should not be construed as a representation that information more material to the examination of the present patent application does not exist. The Examiner is specifically requested not to rely solely on the material submitted herewith.

Applicants have checked the appropriate boxes below.
\(\square\) 1. Statement under 37 C.F.R. 1.704(d). Each item of information contained in this Information Disclosure Statement was cited in a communication from a foreign patent office in a counterpart application and this communication was not received by any individual designated in 37 C.F.R. § 1.56(c) more than thirty days prior to the filing of this information disclosure statement.
m Filing under 37 C.F.R. § 1.97(b). This Information Disclosure Statement is being filed before the mailing date of a first Office Action on the merits. No statement or fee is required.

ㅁ 3. Filing under 37 C.F.R. § 1.97(c). This Information Disclosure Statement is being filed more than three months after the U.S. filing date AND after the mailing date of the first Office Action on the merits, but before the mailing date of a.Final Rejection, or Notice of Allowance, or an action that otherwise closes prosecution in the application.

ㅁa. Statement under 37 C.F.R. § 1.97(e)(1). I hereby state that each item of information contained in this Information Disclosure Statement was first cited in any communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of this Information Disclosure Statement. 37 C.F.R. § 1.97(e)(1).

口b. Statement under 37 C.F.R. § 1.97(e)(2). I hereby state that no item of information in this Information Disclosure Statement was cited in a communication from a foreign patent office in a counterpart foreign application and, to my knowledge after making reasonable inquiry, was known to any individual designated in 37 C.F.R. § 1.56 (c) more than three months prior to the filing of this Information Disclosure Statement. 37 C.F.R. § 1.97(e)(2).
- c. Attached is our PTO-2038 Credit Card Payment Form in the amount of
\(\qquad\) in payment of the fee under 37 C.F.R. § 1.17(p).
-4. Filing under 37 C.F.R. § 1.97(d) This Information Disclosure Statement is being filed more than three months after the U.S. filing date and after the mailing date of a Final Rejection or Notice of Allowance, but before payment of the Issue Fee. Enclosed find our Check No. \(\qquad\) in the amount of \$ \(\qquad\) in payment of the fee under 37 C.F.R. § 1.17(p); in addition:

ㅁ a. Statement under 37 C.F.R. § 1.97(e)(1). I hereby state that each item of information contained in this Information Disclosure Statement
was cited in a communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of this Information Disclosure Statement. 37 C.F.R. § 1.97(e)(1).
- b. Statement under 37 C.F.R. § 1.97(e)(2). I hereby state that no item of information in this Information Disclosure Statement was cited in a communication from a foreign patent office in a counterpart foreign application and, to my knowledge after making reasonable inquiry, was known to any individual designated in 37 C.F.R. § 1.56(c) more than three months prior to the filing of this Information Disclosure Statement. 37 C.F.R. § 1.97(e)(2).
- 5. The document(s) was/were cited in a search report by a foreign patent office in a counterpart foreign application. Submission of an English language version of the search report that indicates the degree of relevance found by the foreign office is provided in satisfaction of the requirement for a concise explanation of relevance. 1138 OG 37, 38.
6. A concise explanation of the relevance of non-English language document AK23 appears below:
Document AK23 (JP 9-36664) appears to describe a frequency conversion circuit. A copy of the English-language abstract of document AK23 is enclosed as document AR58.
7. Copies of documents AA56-AE56 and AN59 are enclosed. Copies of the remaining documents were submitted to the Patent Office in Information Disclosure Statements that comply with 37 C.F.R. § 1.98(a)-(c) in Application No. 09/525,615, filed March 14, 2000, and Appl. No. 09/526,041, filed March 14, 2000, which are both relied upon for an earlier filing date under 35 U.S.C. § 120. Thus, copies of these documents are not attached. 37 C.F.R. § 1.98(d).

It is respectfully requested that the Examiner initial and return a copy of the enclosed PTO-1449, and indicate in the official file wrapper of this patent application that the documents have been considered.

The U.S. Patent and Trademark Office is hereby authorized to charge any fee deficiency, or credit any overpayment, to our Deposit Account No. 19-0036.


1100 New York Avenue, N.W. Washington, D.C. 20005-3934 (202) 371-2600
::ODMAlMHODMAISKGF_DCl;219953;1

\begin{tabular}{|c|c|}
\hline Robert Greene Sterne & mudith U. Kim \\
\hline Edward I. Kessier & Timothy J. Shea, jr. \\
\hline Jorge A. Goldstein & Patrick E. Garrett \\
\hline David K.S. Cornwell & Jeffrey T. Helvey \\
\hline Robert W. Esmond & Heidj L. Kraus \\
\hline Tracy-Gene G. Durkin & Alben L. Ferro* \\
\hline Michele A. Cimbala & Donald R. Banowit \\
\hline Michael B. Ray & Peter A. Jackman \\
\hline Robert E. Sokohl & Teresa U. Medler \\
\hline Eric K. Steffe & Jeffrey S. Weaver \\
\hline Michael Q. Lee & Kendrick P. Patterson \\
\hline Steven R. Ludwig & Vincent L. Capuano \\
\hline John M. Covert & Eldora Ellison Floyd \\
\hline Linda E. Alcorn & Thomas C. Fiala \\
\hline Robert C. Millonig & Brian I. Del Buono \\
\hline Lawrence B. Bugaisky & Virgil Lee Beaston \\
\hline Donald J. Featherstone & Theodore A. Wood \\
\hline Michael V. Messinger & Elizabeth J Haanes \\
\hline
\end{tabular}
Joseph S. Ostroff
Frank R. Cortingham
Christine M. Lhulier
Rae Lynn Prengaman
George S. Bardmesser
Daniel A. Klein*
Jason D. Eisenberg
Michael 0. Specht
Andrea I. Kamage
Tracy L. Mudlert
LuAnne M. DeSantis
Ann E. Summerfield
Tiera S. Coston
Aric W. Ledford*
Kelene C. Carlson
Timothy A. Doyle
Jessica L. Parezo
Gaby L. Longsworth*
\begin{tabular}{|c|c|}
\hline Lori A. Gordon* & Robert H. DeSelms \\
\hline Nicole D. Dretar* & Simon J. Elliott \\
\hline Ted J. Ebersole & Jutie A. Heider \\
\hline Jyoti C. Iyer* & Mita Mukherjee \\
\hline Laura A. Vogel & Scott M. Woodhouse \\
\hline & Michael G. Penn \\
\hline Registered Patent AgentsKaren R. Markowicz & Christopher I. Walsh \\
\hline Nancy J. Leith & \\
\hline Matthew I. Dowd & Of Counsel \\
\hline Aaron L. Schwartz & Kenneth C. Bass III \\
\hline Katrina Yujian Pei Quach & Evan R. Smith \\
\hline Bryan L. Skelton & Marvin C. Guthrie \\
\hline Rober A. Schwartman & \\
\hline Teresa A. Colella & - Admitted only in Maryland \\
\hline Jeffrey S. Lundgren & + Admitted only in Viginia \\
\hline Victoria S. Rutherford & - Practice Limited to \\
\hline Michelle K. Holoubek & Federal Agencies \\
\hline
\end{tabular}

August 19, 2004

Sir:
Transmitted herewith for appropriate action are the following documents:
1. SKGF Cover Letter;
2. Fee Transmittal (Form PTO/SB/17);
3. Third Supplemental Information Disclosure Statement;
4. Form PTO-1449 (6 pages);
5. Return postcard; and
6. PTO-2038 Credit Card Payment Form for \(\$ 180.00\) to cover:
\(\$ \underline{180.00}\) for IDS Late Filing Surcharge.

It is respectfully requested that the attached postcard be stamped with the date of filing of these documents, and that it be returned to our courier. In the event that extensions of time are necessary to prevent abandonment of this patent application, then such extensions of time are hereby petitioned.

Commissioner for Patents
August 19, 2004
Page 2
The U.S. Patent and Trademark Office is hereby authorized to charge any fee deficiency, or credit any overpayment, to our Deposit Account No. 19-0036.

Respectfully submitted,
Sterne, Kessler, Goldstein \& Fox p.l.L.C.


Jeffrey T. Helvey
Attorney for Applicants
Registration No. 44,757


Art Unit: 2634
Examiner: Kim, Kevin
Application No.: 09/632,856
Filed: August 4, 2000
Docket: 1744.0630003
Atty: MQL/JTH
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including MultiPhase Embodiments and Circuit Implementation

When receipt stamp is placed hereon, the USPTO acknowledges receipt of the following documents:
1. SKGF Cover Letter;
2. Second Supplemental Information Disclosure Statement;
3. A list of the cited documents on Forms PTO-1449 (6 pages);
4. A compact Disc labeled "Disc 3" in PDF format (which contains electronic copies of the cited documents);
5. Copies of cited documents: AA56, AB56, AC56, AD56, AE56, AN59; and
6. Return postcard.


Please Date Stamp and Return to Our Courier

Sterne, Kessler, Goldstein \& Fox p.l.l.c.
1100 New York Avenue, NW
Washington, DC 20005-3934

Page 1248 of 1284


EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to Applicant.
 conformance and not considered. Include copy of this form with next communication to Applicant.
::ODMAWMODMALSKGF_DC1;219917;1


EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to Applicant.
:ODMAMHODMAISKGF_DC1:219917:1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & \begin{tabular}{l}
ATTY. DOCKET NO. \\
1744.0630003
\end{tabular} & APP & \[
\begin{aligned}
& \text { ATION } \\
& \hline, 856 \\
& \hline
\end{aligned}
\] & \\
\hline &  & RM PTO-1449 & & & \begin{tabular}{l}
APPLICANTS \\
Sorrells et al.
\end{tabular} & & & \\
\hline & MATIO & DISCLOSURE & TEME & & FILING DATE August 4, 2000 & GRO & & \\
\hline & & & & & ATENT DOCUMENTS & & & \\
\hline EXAMINER INITIAL & & DOCUMENT NUMBER & DAT & & NAME & CLASS & SUBCLASS & FILING DATE \\
\hline & AA54 & 4,115,737 & 09/1 & & Hongu et al. & & & \\
\hline & AB54 & 5,710,992 & 01/1 & & Sawada et al. & & & \\
\hline & AC54 & 5,790,587 & 08/1 & & Smith ot al. & & & \\
\hline & AD54 & 4,740,675 & 04/1 & & Brosnan et al. & & & \\
\hline & AE54 & 5,483,600 & 01/1 & & Werrbach & & & \\
\hline & AF54 & 6,011,435 & 01/2 & & Takeyabu et al. & & & \\
\hline & AG54 & 6,321,073 B1 & 11/2 & & Luz et al. & & & \\
\hline & AH54 & 6,026,286 & 02/2 & & Long & & & \\
\hline & Al54 & 6,178,319 B1 & 01/2 & & Kashima & & & \\
\hline & & & & FOR & PATENT DOCUMENTS & & & \\
\hline EXAMINER INITIAL & & DOCUMENT & ER & DATE & COUNTRY & CLASS & SUBCLASS & TRANSLATION \\
\hline & AJ & & & & & & & \\
\hline & AK & & & & & & & \\
\hline & AL & & & & & & & \\
\hline & AM & & & & & & & \\
\hline & & & R (In & cluding & hor, Title, Date, Pertinen & tc.) & & \\
\hline & AN & & & & & & & \\
\hline & AO & & & & & & & \\
\hline & AP & & & & & & & \\
\hline & \(A Q\) & & & & & & & \\
\hline & AR & & & & & & & \\
\hline \multicolumn{2}{|l|}{EXAMINER} & & & & & \multicolumn{3}{|l|}{DATE CONSIDERED} \\
\hline \multicolumn{9}{|l|}{EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to Applicant.} \\
\hline
\end{tabular}

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to Applicant.
 conformance and not considered. Include copy of this form with next communication to Applicant.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & \[
\begin{aligned}
& \text { ATTY. DOCKET NO } \\
& 1744.0630003
\end{aligned}
\] & APP & \[
\begin{aligned}
& \text { ATION } \\
& \hline, 856 \\
& \hline
\end{aligned}
\] & \\
\hline &  & D SUPPLEME & & & \begin{tabular}{l}
APPLICANTS \\
Sorrells et al.
\end{tabular} & & & \\
\hline & RMATIO & DISCLOSURE & TEME & & FILING DATE August 4, 2000 & GRO & & \\
\hline & & & & & PATENT DOCUMENTS & & & \\
\hline EXAMINER INITIAL & & DOCUMENT NUMBER & DAT & & NAME & CLASS & SUBCLASS & FILING DATE \\
\hline & AA56 & 5,682,099 & 10/1 & & Thompson et al. & & & \\
\hline & AB56 & 6,094,084 & 07/2 & & Abou-Allam et al. & & & \\
\hline & AC56 & 6,067,329 & 05/2 & & Kato et al. & & & \\
\hline & AD56 & 6,516,185 B1 & 02/2 & & MacNally & & & \\
\hline & AE56 & 6,608,647 B1 & 08/2 & & King & & & \\
\hline & AF & & & & & & & \\
\hline & AG & & & & & & & \\
\hline & AH & & & & & & & \\
\hline & AI & & & & & & & \\
\hline & & - & & FOR & PATENT DOCUMENTS & & & \\
\hline EXAMINER INITIAL & & DOCUMENT N & ER & DATE & COUNTRY & CLASS & SUBCLASS & TRANSLATION \\
\hline & AJ & & & & & & & \\
\hline & AK & & & & & & & \\
\hline & AL & & & & & & & \\
\hline & AM & & & & & & & \\
\hline & & & R (In & uding & hor, Title, Date, Pertine & etc.) & & \\
\hline & AN & & & & & & & \\
\hline & AO & & & & & & & \\
\hline & AP & & & & - & & & \\
\hline & AQ & & & & & & & \\
\hline & AR & & & & . & & & \\
\hline EXAMINER & & & & & & \multicolumn{3}{|l|}{DATE CONSIDERED} \\
\hline \multicolumn{9}{|l|}{EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to Applicant.} \\
\hline
\end{tabular} conformance and not considered. Include copy of this form with next communication to Applicant.

In re application of:
SORRELLS et al.
Appl. No.: 09/632,856
Filed: August 4, 2000
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including Multi-Phase Embodiments and Circuit Implementation

Confirmation No.: 2377
Art Unit: 2634
Examiner: Kim, Kevin
Atty. Docket: 1744.0630003

\section*{Third Supplemental Information Disclosure Statement}

Commissioner for Patents
PO Box 1450
Alexandria, VA 22313-1450
Sir:
Listed on accompanying Form PTO-1449 are documents that may be considered material to the examination of this application, in compliance with the duty of disclosure requirements of 37 C.F.R. \(\S 1.56,1.97\) and 1.98 . The numbering on this Third Supplemental Information Disclosure Statement is a continuation of the numbering in Applicants' Second Supplemental Information Disclosure Statement filed on January 23, 2004 in connection with the above-captioned application.

Applicants have listed publication dates on the attached PTO-1449 based on information presently available to the undersigned. However, the listed publication dates should not be construed as an admission that the information was actually published on the date indicated.

Applicants reserve the right to establish the patentability of the claimed invention over any of the information provided herewith, and/or to prove that this information may not be prior art, and/or to prove that this information may not be enabling for the teachings purportedly offered.

Applicants provide the following comments regarding the documents:
Documents AL23, AI56, AA57, AB57, AO59, and AF61 were cited in an Office Action in related U.S. Patent Application No. 09/669,634, filed September 26, 2000, entitled "High Frequency Translator and Method of High Frequency Translation," directed to related subject matter. Also cited in said Office Action were U.S. Patent Nos. \(6,049,706 ; 6,421,534\); and \(6,560,301\), which have already been cited in the present application.

Documents AF56, AG56, AAC7, and AD57 are co-owned patents which are directed to related subject matter.

Documents AF56, AG56, AC57, AD57, and AI59 were cited in a Notice of Allowance in related U.S. Patent Application No. 09/838,387, filed April 20, 2001, entitled "Method and System for Down-Converting and Up-Converting an Electromagnetic Signal, and Transforms for Same," directed to related subject matter. Also cited in said Notice of Allowance were U.S. Patent Nos. 5,937,013; 6,061,551; and \(6,647,250\), which have already been cited in the present application.

Document AH56 was cited in an Office Action in related U.S. Patent Application No. 09/567,977, filed May 10, 2000, entitled "Optical Down-converter Using Universal Frequency Translation Technology," directed to related subject matter.

Documents AE57-AH57 were cited in an Office Action in related U.S. Patent Application No. 09/567,978, filed May 10, 2000, entitled "Carrier and Clock Recovery Using Universal Frequency Translation," directed to related subject matter. Also cited in said Office Action was U.S. Patent No. 5,937,013, which has already been cited in the present application.

Documents AI57 and AA58 were cited in a Notice of Allowance in related U.S. Patent Application No. 10/330,219, filed December 30, 2002, entitled "Methods and Systems for Down-Converting Electromagnetic Signals, and Applications Thereof," directed to related subject matter.

Documents AB58-AI58 and AA59-AD59 were cited in an Office Action in related U.S. Patent Application No. 09/566,188, filed May 5, 2000, entitled "Integrated Frequency Translation and Selectivity with Gain Control Functionality, and Applications Thereof," directed to related subject matter.

Documents AE59-AG59 were cited in an Office Action in related U.S. Patent Application No. 09/569,044, filed May 10, 2000, entitled "Universal Platform Module and Methods and Apparatuses Relating Thereto Enabled by Universal Frequency Translation Technology," directed to related subject matter. Also cited in said Office Action were U.S. Patent Nos. 2,057,613; 2,241,078; 2,283,575; 2,358,152; 2,410,350; \(2,451,430 ; 2,472,798 ; 4,653,117\); and \(5,241,561\), which have already been cited in the present application.

Document AH59 was cited in an Office Action in related U.S. Patent Application No. 10/289,377, filed November 7, 2002, entitled "Method and Apparatus for Reducing DC Offsets in a Communication System," directed to related subject matter. Also cited
in said Office Action were U.S. Pat. Nos. 5,471,665; 5,793,817; and 5,898,912, which have already been cited in the present application.

Documents AA60 and AB60 were cited in an Office Action in related U.S. Patent Application No. 09/525,185, filed March 14, 2000, entitled "Spread Spectrum Applications of Universal Frequency Translation Technology," directed to related subject matter. Also cited in said Office Action were U.S. Patent Nos. 5,339,459; \(5,369,789\); and \(5,937,013\), which have already been cited in the present application.

Documents AC60-AF60 were cited in an Office Action in related U.S. Patent Application No. 09/569,045, filed May 10, 2000, entitled "Methods and Apparatuses Relating to a Universal Platform Module and Enabled by Universal Frequency Translation Technology," directed to related subject matter. Also cited in said Office Action were U.S. Patent Nos. 5,339,459 and 5,557,641, which have already been cited in the present application.

Documents AG60-AI60 were cited in an Office Action in related U.S. Patent Application No. 09/590,955, filed June 9, 2000, entitled "Phase-Shifting Applications of Universal Frequency Translation," directed to related subject matter. Also cited in said Office Action was U.S. Patent No. 5,339,459, which has already been cited in the present application in a previous Information Disclosure Statement.

Documents AA61-AC61 were cited in an Office Action in related U.S. Patent Application No. 09/550,642, filed April 14, 2000, entitled, "Method and System for Down-Converting an Electromagnetic Signal, and Transforms for Same," directed to related subject matter.

Documents AD61 and AE61 were cited in an Office Action in related U.S. Patent Application No. 10/317,165, filed December 12, 2002, entitled, "Method and Apparatus for Reducing DC Offsets in Communication Systems Using Universal Frequency Translation Technology," directed to related subject matter.

The other documents in the PTO-1449 do not fall within the above categories.

It is noted that some of these documents could be classified in more than one of the above categories.

This statement should not be construed as a representation that information more material to the examination of the present patent application does not exist. The Examiner is specifically requested not to rely solely on the material submitted herewith.

Applicants have checked the appropriate boxes below.
1. Statement under 37 C.F.R. 1.704(d). Each item of information contained in this Information Disclosure Statement was cited in a communication from a foreign patent office in a counterpart application and this communication was not received by any individual designated in 37 C.F.R. § 1.56 (c) more than thirty days prior to the filing of this information disclosure statement.2. Filing under 37 C.F.R. \(\S 1.97\) (b). This Information Disclosure Statement is being filed before the mailing date of a first Office Action on the merits. No statement or fee is required.

《 3. Filing under 37 C.F.R. § 1.97(c). This Information Disclosure Statement is being filed more than three months after the U.S. filing date AND after the mailing date of the first Office Action on the merits, but before the mailing date of a Final Rejection, or Notice of Allowance, or an action that otherwise closes prosecution in the application.
\(\square\) a. Statement under 37 C.F.R. § \(1.97(\mathrm{e})(1)\). I hereby state that each item of information contained in this Information Disclosure Statement was first
cited in any communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of this Information Disclosure Statement. 37 C.F.R. § 1.97(e)(1).
b. Statement under 37 C.F.R. § 1.97(e)(2). I hereby state that no item of information in this Information Disclosure Statement was cited in a communication from a foreign patent office in a counterpart foreign application and, to my knowledge after making reasonable inquiry, was known to any individual designated in 37 C.F.R. § 1.56 (c) more than three months prior to the filing of this Information Disclosure Statement. 37 C.F.R. § 1.97(e)(2).
\(\boxtimes\) c. Attached is our PTO-2038 Credit Card Payment Form in the amount of \(\mathbf{\$ 1 8 0 . 0 0}\) in payment of the fee under 37 C.F.R. § 1.17 (p).
4. Filing under 37 C.F.R. § 1.97(d) This Information Disclosure Statement is being filed more than three months after the U.S. filing date and after the mailing date of a Final Rejection or Notice of Allowance, but before payment of the Issue Fee. Enclosed find our PTO-2038 Credit Card Payment Form in the amount of \$ \(\qquad\) in payment of the fee under 37 C.F.R. § 1.17 (p); in addition:a. Statement under 37 C.F.R. § 1.97(e)(1). I hereby state that each item of information contained in this Information Disclosure Statement was cited in a communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of this Information Disclosure Statement. 37 C.F.R. § 1.97(e)(1).
\(\square\) b. Statement under 37 C.F.R. § 1.97(e)(2). I hereby state that no item of information in this Information Disclosure Statement was cited in a communication from a foreign patent office in a counterpart foreign application and, to my knowledge after making reasonable inquiry, was known to any individual designated in 37 C.F.R. § 1.56 (c) more than three months prior to the filing of this Information Disclosure Statement. 37 C.F.R. § 1.97(e)(2).
5. The document(s) was/were cited in a search report by a foreign patent office in a counterpart foreign application. Submission of an English language version of the search report that indicates the degree of relevance found by the foreign office is provided in satisfaction of the requirement for a concise explanation of relevance. 1138 OG 37, 38.
6. A concise explanation of the relevance of the non-English language documents appears below:

Document AL23 (DE 19648915 A1) appears to describe a process of frequency conversion. An English-language translation of document AL23 is enclosed as document AO59.
\(\square\) 7. Copies of the documents are submitted herewith.
8. Copies of the documents were cited by or submitted to the Office in an IDS that complies with 37 C.F.R. § 1.98 (a)-(c) in Application No 09/525,615, filed March 14,2000 , which is relied upon for an earlier filing date under 35 U.S.C. § 120. Thus, copies of these documents are not attached. 37 C.F.R. § 1.98(d).
\(\square\) 9. No copies of U.S. patents and patent application publications cited on the attached Form PTO-1449 are submitted in accordance with 1276 OG 55 because this application was filed after June 30, 2003.
\(\boxtimes 10\). It is expected that the examiner will review the prosecution and cited art in the parent application nos. 09/525,615 and 09/526,041 in accordance with MPEP 2001.06(b), and indicate in the next communication from the office that the art cited in the earlier prosecution history has been reviewed in connection with the present application.

It is respectfully requested that the Examiner initial and return a copy of the enclosed PTO-1449, and indicate in the official file wrapper of this patent application that the documents have been considered.

SORRELLS et al.
Appl. No. 09/632,856
The U.S. Patent and Trademark Office is hereby authorized to charge any fee deficiency, or credit any overpayment, to our Deposit Account No. 19-0036.

Respectfully submitted,
Sterne, Kessler, Goldstein \& Fox p.l.l.c.


Jeffrey T. Helvey
Attorney for Applicants
Registration No. 44,757
Date: \(\quad 8 / 19 / 04\)
1100 New York Avenue, N.W.
Washington, D.C. 20005-3934 (202) 371-2600

300205_1.DOC


Application No.: 09/632,856
Filed: August 4, 2000
For: Wireless Local Area Network (WLAN) Using Universal Frequency Translation Technology Including MultiPhase Embodiments and Circuit Implementation

Due Date: NONE
Art Unit: 2634
Confirmation No.: 2377
Examiner: Kim, Kevin
Docket: 1744.0630003
Atty: JTH

When receipt stamp is placed hereon, the USPTO acknowledges receipt of the following documents:
1. SKGF Cover Letter;
2. Fee Transmittal (Form PTO/SB/17);
3. Third Supplemental Information Disclosure Statement;
4. Form PTO-1449 (6 pages);
5. Return postcard; and
6. PTO-2038 Credit Card Payment Form for \(\$ 180.00\) to cover: \(\$ 180.00\) for IDS Late Filing Surcharge.


Please Date Stamp and Return to Our Courier

Sterne, Kessler, Goldstein \& Fox
1100 New York Avenue, NW
Washington, DC 20005
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{l}{ ATTY. DOCKET NO. } \\
1744.0630003 & \multicolumn{1}{c|}{ APPLICATION NO. } \\
\hline INVENTORS 1 of 6 \\
\hline SORRELLS et al. & \\
\hline FILING DATE & ART UNIT \\
August 4, 2000 & 2634 \\
\hline
\end{tabular}
U.S. PATENT DOCUMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline EXAMINER inITIAL & & DOCUMENT NUMBER & DATE & NAME & CLASS & SUB-CLASS & FILING DATE \\
\hline & AA & & & & & & \\
\hline & AB & & & & & & \\
\hline & AC & & & & & & \\
\hline & AD & & & & & & \\
\hline & AE & & & & & & \\
\hline & AF56 & 6,687,493 B1 & 02/2004 & Sorrells et al. & & & \\
\hline & AG56 & 6,694,128 B1 & 02/2004 & Sorrells et al. & & & \\
\hline & AH56 & 6,031,217 & 02/2000 & Aswell et al. & & & \\
\hline & Al56 & 5,955,992 & 09/1999 & Shattil & & & \\
\hline & & & OREIGN P & ENT DOCUM & & & \\
\hline EXAMINER INITIAL & & DOCUMENT NUMBER & DATE & COUNTRY & CLASS & SUB-CLASS & TRANSLATION \\
\hline & AJ & & & & & & \[
\begin{gathered}
\text { Yes } \\
\text { No } \\
\hline
\end{gathered}
\] \\
\hline & AK & & & & & & \(\begin{array}{r}\text { Yes } \\ \text { No } \\ \hline\end{array}\) \\
\hline & AL23 & DE 19648915 A1 & 06/1998 & DE & & & \[
\begin{array}{r}
\text { Yes } \\
\text { (Doc. AO59) }
\end{array}
\] \\
\hline & AM & & & & & & \(\begin{array}{r}\text { Yes } \\ \text { No } \\ \hline\end{array}\) \\
\hline
\end{tabular}

OTHER (Including Author, Title, Date, Pertinent Pages, etc.)
 300146_1.DOC




 and not considered. Include copy of this form with next communication to Applicant.
300146_1.DOC

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

In re application of:
Sorrells et al.
Appl. No.: 09/632,856
Filed: August 4, 2000
For: Wireless Local Area Network
(WLAN) Using Universal
Frequency Translation
Technology Including Multi-
Phase Embodiments and Circuit
Implementation

Confirmation No.: 2377
Art Unit: 2634
Examiner: Kim, Kevin
Atty. Docket: 1744.0630003

\section*{Fourth Supplemental Information Disclosure Statement}

Commissioner for Patents
PO Box 1450
Alexandria, VA 22313-1450
Sir:
Listed on accompanying Form PTO-1449 are documents that may be considered material to the examination of this application, in compliance with the duty of disclosure requirements of 37 C.F.R. \(\S 1.56,1.97\) and 1.98 . The numbering on this Fourth Supplemental Information Disclosure Statement is a continuation of the numbering in Applicants' Third Supplemental Information Disclosure Statement filed on August 19, 2004 in connection with the above-captioned application.

Applicants have listed publication dates on the attached Form PTO-1449 based on information presently available to the undersigned. However, the listed publication dates should not be construed as an admission that the information was actually published on the date indicated.

Applicants reserve the right to establish the patentability of the claimed invention over any of the information provided herewith, and/or to prove that this information may
not be prior art, and/or to prove that this information may not be enabling for the teachings purportedly offered.

Applicants provide the following comments regarding the documents:

Documents AP59 and AE63 were cited in an Office Action, mailed September 21, 2004, in related U.S. Patent Application No. 09/567,977, filed May 10, 2000, entitled "Optical Down-converter Using Universal Frequency Translation," directed to related subject matter.

Document AG61 was cited in an Office Action, mailed August 17, 2004, in related U.S. Patent Application No. 09/476,093, filed January 3, 2000, entitled "Communication System Method With Multi-Mode and Multi-Band Functionality and Embodiments Thereof, Such as the Family Radio Service," directed to related subject matter.

Documents AH61 and AI61 were cited in a Notice of Allowance, mailed August 18, 2004, in related U.S. Patent Application No. 09/525,615, filed March 14, 2000, entitled "Method, System, and Apparatus for Balanced Frequency Up-conversion of a Baseband Signal and 4-Phase Receiver and Transceiver Embodiments," directed to related subject matter.

Documents AA62-AF62, mailed August 25, 2004, were cited in an Office Action in related U.S. Patent Application No. 10/290,323, filed November 8, 2002, entitled "Method and Apparatus for DC Offset Removal in a Radio Frequency Communication Channel," directed to related subject matter.

Documents AG62-AI62 were cited in an Office Action, mailed September 8, 2004, in related U.S. Patent Application No. 09/632,857, filed August 4, 2000, entitled "Wireless Local Area Network (WLAN) Technology and Applications Including Techniques of Universal Frequency Translation," directed to related subject matter.

Documents AA63-AD63 were cited in an Office Action, mailed September 8, 2004, in related U.S. Patent Application No. 09/986,764, filed November 9, 2001, entitled "Method and Apparatus for Reducing DC Offsets in a Communication System," directed to related subject matter.

Documents AF63-AI63 were cited in a Notice of Allowance, mailed September 27, 2004, in related U.S. Patent Application No. 09/987,193, filed November 13, 2001, entitled "Method and Apparatus for a Parallel Correlator and Applications Thereof," directed to related subject matter.

Document AA64 was cited in an Office Action, mailed September 29, 2004, in related U.S. Patent Application No. 09/632,857, filed August 4, 2000, entitled " Wireless Local Area Network (WLAN) Technology and Applications Including Techniques of Universal Frequency Translation," directed to related subject matter.

This statement should not be construed as a representation that information more material to the examination of the present patent application does not exist. The Examiner is specifically requested not to rely solely on the material submitted herewith.

Applicants have checked the appropriate boxes below.
\(\square\) 1. Statement under 37 C.F.R. 1.704(d). Each item of information contained in this Information Disclosure Statement was cited in a communication from a foreign patent office in a counterpart application and this communication was not
received by any individual designated in 37 C.F.R. § 1.56(c) more than thirty days prior to the filing of this information disclosure statement.
2. Filing under 37 C.F.R. § 1.97 (b). This Information Disclosure Statement is being filed within three months of the date of filing of a national application other than a continued prosecution application (CPA), OR within three months of the date of entry of the national stage as set forth in 37 C.F.R. § 1.491 in an international application, OR before the mailing date of a first Office Action on the merits OR before the mailing of a first Office Action after the filing of a request for continued examination under 37 C.F.R. § 1.114. No statement or fee is required.
3. Filing under 37 C.F.R. § 1.97(c). This Information Disclosure Statement is being filed more than three months after the U.S. filing date AND after the mailing date of the first Office Action on the merits, but before the mailing date of a Final Rejection, or Notice of Allowance, or an action that otherwise closes prosecution in the application.
a. Statement under 37 C.F.R. § 1.97(e)(1). I hereby state that each item of information contained in this Information Disclosure Statement was first cited in any communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of this Information Disclosure Statement. 37 C.F.R. § 1.97(e)(1).
b. Statement under 37 C.F.R. § 1.97(e)(2). I hereby state that no item of information in this Information Disclosure Statement was cited in a communication from a foreign patent office in a counterpart foreign application and, to my knowledge after making reasonable inquiry, was known to any individual designated in 37 C.F.R. § 1.56(c) more than three months prior to the filing of this Information Disclosure Statement. 37 C.F.R. § 1.97(e)(2).
c. Attached is our PTO-2038 Credit Card Payment Form in the amount of
\(\qquad\) in payment of the fee under 37 C.F.R. § 1.17 (p).

【 4. Filing under 37 C.F.R. § 1.97(d) This Information Disclosure Statement is being filed more than three months after the U.S. filing date and after the mailing date of a Final Rejection or Notice of Allowance, but before payment of the Issue Fee. Enclosed find our PTO-2038 Credit Card Payment Form in the amount of \$180.00 in payment of the fee under 37 C.F.R. § 1.17 (p); in addition:
\(\square\) a. Statement under 37 C.F.R. § 1.97(e)(1). I hereby state that each item of information contained in this Information Disclosure Statement was cited in a communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of this Information Disclosure Statement. 37 C.F.R. § 1.97(e)(1).

B b. Statement under 37 C.F.R. § 1.97(e)(2). I hereby state that no item of information in this Information Disclosure Statement was cited in a communication from a foreign patent office in a counterpart foreign application and, to my knowledge after making reasonable inquiry, was known to any individual designated in 37 C.F.R. § 1.56 (c) more than three months prior to the filing of this Information Disclosure Statement. 37 C.F.R. § 1.97(e)(2).
5. The document(s) was/were cited in a search report by a foreign patent office in a counterpart foreign application. Submission of an English language version of the search report that indicates the degree of relevance found by the foreign office is provided in satisfaction of the requirement for a concise explanation of relevance. 1138 OG 37, 38.
6. A concise explanation of the relevance of non-English language documents appears below:
\(\triangle\) 7. A copy of document AP59 is submitted. However, in accordance with 37 C.F.R. \(\S 1.98(\mathrm{a})(2)\), no copies of U.S patents and patent application publications cited on the attached Form PTO-1449 are submitted.8. Copies of the documents were cited by or submitted to the Office in an IDS that complies with 37 C.F.R. § 1.98(a)-(c) in Application No. \(\qquad\) , filed
\(\qquad\) , which is relied upon for an earlier filing date under 35 U.S.C. § 120. Thus, copies of these documents are not attached. 37 C.F.R. § 1.98(d).
\(\square\) 9. It is expected that the examiner will review the prosecution and cited art in the parent application no. \(\qquad\) , filed \(\qquad\) , and indicate in the next communication from the office that the art cited in the earlier prosecution histories have been reviewed in connection with the present application.

It is respectfully requested that the Examiner initial and return a copy of the enclosed Form PTO-1449, and indicate in the official file wrapper of this patent application that the documents have been considered.

The U.S. Patent and Trademark Office is hereby authorized to charge any fee deficiency, or credit any overpayment, to our Deposit Account No. 19-0036.

Respectfully submitted,
Sterne, Kessler, Golddtein \& Fox p.l.L.C.


Attorney for Applicants
Registration No. 44,757
Date: \(11 / 12 / 04\)
1100 New York Avenue, N.W. Washington, D.C. 20005-3934 (202) 371-2600

331640_1.DOC


November 12, 2004

Sir:
Transmitted herewith for appropriate action are the following documents:
1. Fee Transmittal (Form PTO/SB/17);
2. Fourth Supplemental Information Disclosure Statement;
3. Form PTO-1449 (4 pages);
4. Copy of (1) cited document (Document No. AP59);
5. Return postcard; and
6. PTO-2038 Credit Card Payment Form for \(\$ \underline{180.00}\) to cover: \(\$ 180.00\) for submission of an Information Disclosure Statement.

It is respectfully requested that the attached postcard be stamped with the date of filing of these documents, and that it be returned to our courier. In the event that extensions of time are necessary to prevent abandonment of this patent application, then such extensions of time are hereby petitioned.

Commissioner for Patents
November 12, 2004
Page 2
The U.S. Patent and Trademark Office is hereby authorized to charge any fee deficiency, or credit any overpayment, to our Deposit Account No. 19-0036.

Respectfully submitted,
Sterne, Kessler, Goldstein \& Fox p.l.l.c.


Jeffrey T. Helvey
Attorney for Applicants
Registration No. 44,757

Applicants: Sorrells et al.
Application No.: 09/632,856
Filed: August 4, 2000
For: Wireless Local Area Network (WLAN)
For: \(\begin{aligned} & \text { Wireless Local Area Network (WLAN) } \\ & \\ & \\ & \text { Using Universal Frequency Translation }\end{aligned}\) Technology Including Multi-Phase Embodiments and Circuit Implementation
is


Due Date: NONE
Art Unit: 2634
Confirmation No.: 2377
Examiner: Kim, Kevin
Docket: 1744.0630003
Atty: JTH

When receipt stamp is placed hereon, the USPTO acknowledges receipt of the following documents:
1. SKGF Cover Letter;
2. Fee Transmittal (Form PTO/SB/17);
3. Fourth Supplemental Information Disclosure Statement;
4. , Form PTO-1449 (4 pages);
5. Copy of (1) cited document (Document No. AP59);
6. Return postcard; and
7. PTO-2038 Credit Card Payment Form for \(\$ 180.00\) to cover:
\(\$ 180.00\) for submission of an Information Disclosure Statement.


Please Date Stamp and Return to Our Courier

Sterne, Kessler, Goldstein \& Fox
1100 New York Avenue, NW
Washington, DC 20005


EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to Applicant.
330642_1.DOC
 and not considered. Include copy of this form with next communication to Applicant.
330642_1.DOC
 and not considered. Include copy of this form with next communication to Applicant.
330642_1.DOC
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
FORM PTO-1449 \\
FOURTH SUPPLEMENTAL INFORMATION DISCLOSURE STATEMENT
\end{tabular}} & \multicolumn{2}{|l|}{ATTY DOCKETNO Page 4 of 4} \\
\hline & \[
\begin{aligned}
& \text { ATTY. DOCKET NO. } \\
& 1744.0630003
\end{aligned}
\] & APPLICATION NO. 09/632,856 \\
\hline & INVENTORS Sorrells et al. & \\
\hline & FILING DATE August 4, 2000 & \[
\begin{aligned}
& \text { ART UNIT } \\
& 2634
\end{aligned}
\] \\
\hline
\end{tabular}
U.S. PATENT DOCUMENTS
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline \begin{tabular}{l} 
EXAMINER \\
INITIAL
\end{tabular} & & DOCUMENT NUMBER & DATE & NAME & CLASS & SUB-CLASS & FILING DATE \\
\hline & AA64 & \(5,834,979\) & \(11 / 1998\) & Yatsuka & & & \\
\hline & AB & & & & & & \\
\hline & AC & & & & & & \\
\hline & AD & & & & & & \\
\hline & AE & & & & & & \\
\hline & AF & & & & & & \\
\hline & AG & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

FOREIGN PATENT DOCUMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline EXAMINER INITIAL & & DOCUMENT NUMBER & DATE & COUNTRY & CLASS & SUB-CLASS & TRANSLATION \\
\hline & AJ & & & & & & \[
\begin{aligned}
& \text { Yes } \\
& \text { No }
\end{aligned}
\] \\
\hline & AK & & & & & & \[
\begin{aligned}
& \text { Yes } \\
& \text { No }
\end{aligned}
\] \\
\hline & AL & & & & & & \[
\begin{aligned}
& \text { Yes } \\
& \text { No }
\end{aligned}
\] \\
\hline & AM & & & & & & \[
\begin{aligned}
& \text { Yes } \\
& \text { No }
\end{aligned}
\] \\
\hline
\end{tabular}


EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to Applicant.
330642_1.DOC```

