second edition
.
Principles of Physics

Serway
a text for Scientists \mathcal{E} Engineers

Principles of Physics

SECOND EDITION

Raymond A. Serway
James Madison University

with contributions by
John W. Jewett, Jr.
California State Polytechnic University, Pomona
(1)

SAUNDERS COLLEGE PUBLISHING
 Harcourt Brace College Publishers

Fort Worth Philadelphia San Diego New York Orlando Austin
San Antonio Toronto Montreal London Sydney Tokyo

Copyright © 1998, 1994 by Raymond A. Serway

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Requests for permission to make copies of any part of the work should be mailed to:
Permissions Department, Harcourt Brace \& Company, 6277 Sea Harbor Drive, Orlando, Florida 32887-6777

Publisher: Emily Barrosse
Publisher: John Vondeling
Product Manager: Angus McDonald
Developmental Editor: Susan Dust Pashos
Project Editor: Elizabeth Ahrens
Production Manager: Charlene Catlett Squibb
Art Director and Cover Designer: Carol Bleistine
Cover Credit: Wolf Howling, Aurora Borealis. (C 1997 Michael DeYoung/Alaska Stock)
Frontispiece Credit: David Malin, Anglo-Australian Observatory

Printed in the United States of America

PRINCIPLES OF PHYSICS, Second Edition
0-03-020457-7

Library of Congress Catalog Card Number: 97-65256
$7890123456032 \quad 10987654321$

Contents Overview

An Invitation to Physics 1
1 Introduction and Vectors 3
2 Motion in One Dimension 29
3 Motion in Two Dimensions 54
4 The Laws of Motion 80
5 More Applications of Newton's Laws 108
6 Work and Energy 142
7 Potential Energy and Conservation of Energy 165
8 Momentum and Collisions 194
9 Relativity 227
10 Rotational Motion 262
11 Orbital Motions and the Hydrogen Atom 303
12 Oscillatory Motion 332
13 Wave Motion 360
14 Superposition and Standing Waves 389
15 Fluid Mechanics 415

16 Temperature and the Kinetic Theory of Gases 439
17 Heat and the First Law of Thermodynamics 462
18 Heat Engines, Entropy, and the Second Law of Thermodynamics 493
19 Electric Forces and Electric Fields 521
20 Electric Potential and Capacitance 558
21 Current and Direct Current Circuits 597
22 Magnetism 636
23 Faraday's Law and Inductance 670
24 Electromagnetic Waves 702
25 Reflection and Refraction of Light 730
26 Mirrors and Lenses 756
27 Wave Optics 784
28 Quantum Physics 816
29 Atomic Physics 855
30 Nuclear Physics 890
31 Particle Physics and Cosmology 920
Appendices A. 1
Answers to Odd-Numbered Problems A. 36
Index I. 1

Contents

An Invitation to Physics
1 Introduction and Vectors 3
1.1 Standards of Length, Mass, and Time 4
1.2 Density and Atomic Mass 6
1.3 Dimensional Analysis 8
1.4 Conversion of Units 9
1.5 Order-of-MagnitudCalculations 10
1.6 Significant Figures 11
1.7 Coordinate Systems and Frames of Reference 12
1.8 Problem-Solving Strategy 13
1.9 Vectors and Scalars 14
1.10 Some Properties of Vectors 16
1.11 Components of a Vector and Unit Vectors 18
Summary 23
Conceptual Questions 23
Problems 24
Answers to Conceptual Problems 28
2 Motion in One Dimension 29
2.1 Average Velocity 30
2.2 Instantaneous Velocity 31
2.3 Acceleration 35
2.4 Motion Diagrams 37
2.5 One-Dimensional Motion with Constant Acceleration 39
2.6 Freely Falling Objects 42
Summary 46
Conceptual Questions 47
Problems 48
Answers to Conceptual Problems 53
3 Motion in Two Dimensions 54
3.1 The Displacement, Velocity, and Acceleration Vectors 55
3.2 Two-Dimensional Motion withConstant Acceleration57
3.3 Projectile Motion 60
3.4 Uniform Circular Motion 67
3.5 Tangential and Radial Acceleration 69
Summary 72
Conceptual Questions 72
Problems 73
Answers to Conceptual Problems 79

[^0]
© Yoav Lavy/Phototake

4 The Laws of Motion
 80

4.1 The Concept of Force 81
4.2 Newton's First Law and 83Inertial Frames
4.3 Inertial Mass 85
4.4 Newton's Second Law 86
4.5 The Gravitational Force and Weight 89
4.6 Newton's Third Law 90
4.7 Some Applications of Newton's Laws 93
Summary 100
Conceptual Questions 101
Problems 101
Answers to Conceptual Problems 107
5 More Applications of Newton's Laws 108
5.1 Forces of Friction 108
5.2 Newton's Second Law Applied to Uniform Circular Motion 115
5.3 Nonuniform Circular Motion 120
5.4 Motion in the Presence of Velocity- Dependent Resistive Forces 122
5.5 Numerical Modeling in Particle 126Dynamics
5.6 The Fundamental Forces of Nature 129
5.7 The Gravitational Field 132
Summary 133
Conceptual Questions 134
Problems 134
Answers to Conceptual Problems 141
6 Work and Energy 142
6.1 Work Done by a Constant Force 143
6.2 The Scalar Product of Two Vectors 146
6.3 Work Done by a Varying Force 147
6.4 Kinetic Energy and the Work-KineticEnergy Theorem 152
6.5 Power 157
Summary 159
Conceptual Questions 160
Problems 160
Answers to Conceptual Problems 164Martin Dohrn/ SPL/ Photo Researchers
7 Potential Energy and Conservation of Energy 165
7.1 Potential Energy 166
7.2 Conservative and Nonconservative Forces 167
7.3 Conservative Forces and
Potential Energy 169
7.4 Conservation of Mechanical Energy 171
7.5 Work Done by Nonconservative Forces 175
7.6 Conservation of Energy in General 180
7.7 Gravitational Potential Energy Revisited 181
7.8 Energy Diagrams and Stability of Equilibrium (Optional) 183
Summary 185
Conceptual Questions 186
Problems 186
Answers to Conceptual Problems 193

Richard Megna, Fundamental Photographs, NYC

8 Momentum and Collisions 194

8.1 Linear Momentum and Its Conservation 195

8.2 Impulse and Momentum 199
8.3 Collisions 201
8.4 Elastic and Inelastic Collisions in One Dimension 203
8.5 Two-Dimensional Collisions 206
8.6 The Center of Mass 209
8.7 Motion of a System of Particles 212
8.8 Rocket Propulsion (Optional) 214
Summary 217
Conceptual Questions 218
Problems 219
Answers to Conceptual Problems 225
9 Relativity 227
9.1 The Principle of Newtonian Relativity 228
9.2 The Michelson-Morley Experiment 230
9.3 Einstein's Principle of Relativity 232
9.4 Consequences of Special Relativity 233
9.5 The Lorentz Transformation Equations 243
9.6 Relativistic Momentum and the Relativistic Form of Newton's Laws 247
9.7 Relativistic Energy 248
9.8 Mass as a Measure of Energy 252
9.9 General Relativity (Optional) 254
Summary 257
Conceptual Questions 258
Problems 258
Answers to Conceptual Problems 261
10 Rotational Motion 262
10.1 Angular Velocity and Angular Acceleration 263
10.2 Rotational Kinematics 265
10.3 Relations Between Angular and Linear Quantities 266
10.4 Rotational Kinetic Energy 268
10.5 Torque and the Vector Product 270
10.6 Equilibrium of a Rigid Object 273
10.7 Relation Between Torque and Angular Acceleration 277
10.8 Angular Momentum 278
10.9 Conservation of AngularMomentum281
10.10 Quantization of Angular Momentum (Optional) 284
10.11 Rotation of Rigid Bodies (Optional) 285
Summary 292
Conceptual Questions 294
Problems 294
Answers to Conceptual Problems 301

(C) Ben Rose 1992/The IMAGE Bank

11 Orbital Motions and the Hydrogen Atom 303

11.1 Newton's Universal Law of Gravity Revisited 304
11.2 Kepler's Laws 307
11.3 The Universal Law of Gravity and the Motions of Planets 308
11.4 Energy Considerations in Planetary and Satellite Motion313
11.5 Atomic Spectra and the Bohr Theory of Hydrogen 319
Summary 324
Conceptual Questions 326
Problems 326
Answers to Conceptual Problems 330

Kim Vandiver and Harold Edgerton, Palm Press, Inc.

12 Oscillatory Motion 332

12.1 Simple Harmonic Motion 333
12.2 Motion of a Mass Attached to a Spring 336
12.3 Energy of the Simple Harmonic Oscillator 341
12.4 Motion of a Pendulum 344
12.5 Damped Oscillations (Optional) 348
12.6 Forced Oscillations (Optional) 349

Summary 351
Conceptual Questions 353
Problems 353
Answers to Conceptual Problems 358

13 Wave Motion
 360

13.1 Three Wave Characteristics 361
13.2 Types of Waves 362
13.3 One-Dimensional TranTraveling Waves 363
13.4 Sinusoidal Traveling Waves 365
13.5 Superposition and Interferenceof Waves 370
13.6 The Speed of Transverse Waves on Strings 372
13.7 Reflection and Tof Waves 374
13.8 Energy Transmitted by Sinusoidal376
13.9 Sound Waves 378
13.10 The Doppler Effect 379
Summary 382
Conceptual Questions 383
Problems 384
Answers to Conceptual Problems 388
14 Superposition and Standing Waves 389
14.1 Superposition and Interference of Sinusoidal Waves 390
14.2 Standing Waves 393
14.3 Natural Frequencies in a StretchedString396
14.4 Standing Waves in Air Columns 400
14.5 Beats: Interference in Time(Optional) 404
14.6 Complex Waves (Optional) 406
Summary 408
Conceptual Questions 408
Problems 409
Answers to Conceptual Problems 413

18.5 An Alternative Statement of the Second Law
 502

18.6 Entropy 503
18.7 Entropy Changes in Irreversible Processes 505
18.8 Entropy on a Microscopic Scale 509
18.9 Entropy and Disorder (Optional) 512
Summary 514
Conceptual Questions 515
Problems 516
Answers to Conceptual Problems 519

Tom Mareschel, The IMAGE Bank
19 Electric Forces and Electric Fields 521
19.1 Historical Overview 522
19.2 Properties of Electric Charges 522
19.3 Insulators and Conductors 524
19.4 Coulomb's Law 527
19.5 Electric Fields 529
19.6 Electric Field Lines 535
19.7 Electric Flux 538
19.8 Gauss's Law 541
19.9 Application of Gauss's Law to ChargedInsulators 544
19.10 Conductors in Electrostatic Equilibrium 548
Summary 550
Conceptual Questions 551
Problem 552
Answers to Conceptual Problems 557

© 1968 Fundamental Photographs

20 Electric Potential andCapacitance
 558

20.1 Potential Difference and Electric Potential 559
20.2 Potential Differences in a Uniform Electric Field 561
20.3 Electric Potential and Electric Potential Energy Due to Point Charges 563
20.4 Obtaining \mathbf{E} from the ElectricPotential566
20.5 Electric Potential Due to Continuous
Charge Distributions 568
20.6 Electric Potential of a ChargedConductor571
20.7 Capacitance 573
20.8 Combinations of Capacitors 576
20.9 Energy Stored in a Charged Capacitor 580
20.10 Capacitors with Dielectrics 583
Summary 587
Conceptual Questions 589
Problems 590
Answers to Conceptual Problems 595

21 Current and Direct Current Circuits 597

21.1 Electric Current 598
21.2 Resistance and Ohm's Law 600
21.3 Superconductors 605
21.4 A Model for Electrical Conduction 606
21.5 Electrical Energy and Power 610
21.6 Sources of emf 612
21.7 Resistors in Series and in Parallel 613
21.8 Kirchhoff's Rules and Simple DC Circuits 619
21.9 RC Circuits 622
Summary 626
Conceptual Questions 628
Problems 630
Answers to Conceptual Problems 634

Courtesy of IBM Research
22 Magnetism 636
22.1 Historical Overview: Magnets 637
22.2 The Magnetic Field 638
22.3 Magnetic Force on a Current-Carrying Conductor 643
22.4 Torque on a Current Loop in a Uniform Magnetic Field 645
22.5 The Biot-Savart Law 648
22.6 The Magnetic Force Between Two Parallel Conductors 650
22.7 Ampère's Law 652
22.8 The Magnetic Field of a Solenoid 655
22.9 Magnetism in Matter (Optional) 657
Summary 659
Conceptual Questions 661
Problem 662
Answers to Conceptual Problems 669

Courtesy of Leon Lewandowski
23 Faraday's Law and Inductance 670
23.1 Faraday's Law of Induction 671
23.2 Motional emf 675
23.3 Lenz's Law 679
23.4 Induced emfs and Electric Fields 682
23.5 Self-Inductance 683
23.6 RL Circuits 686
23.7 Energy Stored in a Magnetic Field 689
Summary 694
Conceptual Questions 693
Problems 694
Answers to Conceptual Problems 701
24 Electromagnetic Waves 702
24.1 Displacement Current and the Generalized Ampère's Law 703
24.2 Maxwell's Wonderful Equations 704
24.3 Electromagnetic Waves 705

24.4 Hertz's Discoveries
 709

24.5 The Production of Electromagnetic Waves by an Antenna711
24.6 Energy Carried by Electromagnetic Waves 713
24.7 Momentum and Radiation Pressure 715
24.8 The Spectrum of Electromagnetic

Waves 718
24.9 Polarization 720

Summary 724
Conceptual Questions 725
Problems 725
Answers to Conceptual Problems 729

Peter Aprahamian/Science Photo Libran

25 Reflection and Refraction of Light 730

25.1 The Nature of Light 730
25.2 The Ray Approximation in Geometric Optics 732
25.3 Reflection and Refraction 733
25.4 Dispersion and Prisms 740
25.5 Huygens' Principle 742
25.6 Total Internal Reflection 743

Summary 747
Conceptual Questions 748
Problems 749
Answers to Conceptual Problems 755

Ron Chapple/FPG

26 Mirrors and Lenses 756

26.1 Images Formed by Flat Mirrors 756
26.2 Images Formed by Spherical Mirrors 759
26.3 Images Formed by Refraction 765
26.4 Thin Lenses 768
26.5 Lens Aberrations (Optional) 776

Summary 777
Conceptual Questions 778
Problems 779
Answers to Conceptual Problems 783

© Richard Megna 1990, Fundamental Photographs

Dr. Jeremy Burgess/Science Photo Library

27 Wave Optics 784

27.1 Conditions for Interference 784
27.2 Young's Double-Slit Experiment 785
27.3 Change of Phase Due to Reflection 792
27.4 Interference in Thin Films 794
27.5 Diffraction 797
27.6 Resolution of Single-Slit and Circular Apertures 800
27.7 The Diffraction Grating 804
27.8 Diffraction of X-Rays by Crystals (Optional) 807
Summary 809
Conceptual Questions 810
Problems 811
Answers to Conceptual Problems 815
28 Quantum Physics 816
28.1 Black-Body Radiation and Planck's Theory 817
28.2 The Photoelectric Effect 820
28.3 The Compton Effect 823
28.4 Photons and Electromagnetic Waves 826
28.5 The Wave Properties of Particles 828
28.6 The Double-Slit Experiment Revisited 832
28.7 The Uncertainty Principle 834
28.8 An Interpretation of QuantumMechanics 837
28.9 A Particle in a Box 840
28.10 The Schrödinger Equation 843
28.11 Tunneling Through a Barrier (Optional) 844
Summary 847
Conceptual Questions 848
Problems 849
Answers to Conceptual Problems 853
29 Atomic Physics 855
29.1 Early Models of the Atom 856
29.2 The Hydrogen Atom Revisited 858
29.3 The Spin Magnetic QuantumNumber860
29.4 The Wave Functions forHydrogen861
29.5 The "Other" Quantum Numbers 865
29.6 The Exclusion Principle and the Periodic Table 871
29.7 Atomic Spectra: Visible and X-Ray 876
29.8 Atomic Transitions 879
29.9 Lasers and Holography(Optional)881
Summary 884
Conceptual Questions 885
Problem 886
Answers to Conceptual Problems 889

[^1]
30 Nuclear Physics 890

30.1 Some Properties of Nuclei 891
30.2 Binding Energy 897
30.3 Radioactivity 901
30.4 The Decay Processes 904
30.5 Natural Radioactivity 911
30.6 Nuclear Reactions 911

Summary 912
Conceptual Questions 914
Problems 914
Answers to Conceptual Problems 918

31 Particle Physics and Cosmology 920
31.1 The Fundamental Forces in Nature 921
31.2 Positrons and Other Antiparticles 922
31.3 Mesons and the Beginning of Particle Physics 924
31.4 Classification of Particles 926
31.5 Conservation Laws 928
31.6 Strange Particles and Strangeness 930
31.7 How Are Elementary Particles Produced and Particle Properties Measured? 931
31.8 The Eightfold Way 934
31.9 Quarks 935
31.10 Colored Quarks 939

David Parker/Science Photo Library/Photo Researchers
31.11 Electroweak Theory and the Standard Model 940
31.12 The Cosmic Connection 943
31.13 Problems and Perspectives 948

Summary 949
Conceptual Questions 949
Problems 950
Answers to Conceptual Problems 953

Appendix A Tables A. 1

Table A. 1 Conversion Factors A. 1
Table A. 2 Symbols, Dimensions, and Units of Physical Quantities A. 3
Table A. 3 Table of Selected Atomic Masses A. 4

Appendix B Mathematics
 Review A. 11

B. 1 Scientific Notation A. 11
B. 2 Algebra A. 13
B. 3 Geometry A. 18
B. 4 Trigonometry A. 19
B. 5 Series Expansions A. 22
B. 6 Differential Calculus A. 22
B. 7 Integral Calculus A. 25

Appendix C The Periodic Table A. 30

Appendix D SI Units A. 32
Appendix E Spreadsheet
Problems A. 33
Answers to Odd-Numbered Problems A. 36

Index I. 1

21

Current and Direct Current Circuits

1hus far, our discussion of electrical phenomena has been confined to charges at rest, or electrostatics. We shall now consider situations involving electric charges in motion. The term electric current, or simply current, is used to describe the rate of flow of charge through some region of space. Most practical applications of electricity involve electric currents. For example, the battery of a flashlight supplies current to the filament of the bulb when the switch is turned on. In these common situations, the flow of charge takes place in a conductor, such as a copper wire. It is also possible for currents to exist outside a conductor. For instance, a beam of electrons in a television picture tube constitutes a current.

In this chapter we shall first define current and current density. A microscopic description of current will be given, and some of the factors that contribute to resistance to the flow of charge in conductors will be discussed. Mechanisms responsible for the electrical resistances of various

4 Photograph of a carbon filament incandescent lamp. The resistance of such a lamp is typically 10Ω, but its value changes with temperature. Most modern lightbulbs use tungsten filaments, the resistance of which increases with increasing temperature.
(Courtesy of Central Scientific Co.)

CHAPTER OUTLINE
21.1 Electric Current
21.2 Resistance and Ohm's Law
21.3 Superconductors
21.4 A Model for Electrical

Conduction
21.5 Electrical Energy and Power
21.6 Sources of emf
21.7 Resistors in Series and in Parallel
21.8 Kirchhoff's Rules and Simple DC Circuits
21.9 RC Circuits

Figure 21.1 Charges in motion through an area A. The time rate of flow of charge through the area is defined as the current I. The direction of the current is the direction in which positive charge would flow if free to do so.

Electric current •

The direction of the current ${ }^{\circ}$
materials depend on the materials' compositions and on temperature. A model is used to describe electrical conduction in metals; we shall point A claty.). of the limitations of this model.

This chapter is also concerned with the analysis of some simple circuite elements of which include batteries, resistors, and capacitors in varied complo
tions. The analysis of these circuits is simplified Kirchhoff's rules, which follow from the laws of conservation of energy and conyyy vation of charge. Most of the circuits analyzed are assumed to be in steady which means that the currents are constant in magnitude and direction. We ing
close with a discussion of circuits containing resistors and capacitors, in which current varies with time.

21.1 - ELECTRIC CURRENT

Whenever there is a net flow of charge, a current is said to exist. To define currm more precisely, suppose the charges are moving perpendicular to a surface of A, as in Figure 21.1. (This area could be the cross-sectional area of a If ΔQ is the amount of charge that passes through this area in a time interal 1 the average current, I_{av}, is the ratio of the charge to the time interval:

$$
\begin{equation*}
I_{\mathrm{av}}=\frac{\Delta Q}{\Delta t} \tag{2L.1.|}
\end{equation*}
$$

If the rate at which charge flows varies in time, the current also varies in time. life define the instantaneous current \boldsymbol{I} as the differential limit of the preceding $e^{\text {r }}$ pression:

$$
\begin{equation*}
I \equiv \frac{d Q}{d t} \tag{21.2}
\end{equation*}
$$

The SI unit of current is the ampere (A):

$$
1 \mathrm{~A}=1 \mathrm{C} / \mathrm{s}
$$

That is, 1 A of current is equivalent to 1 C of charge passing through a suffert in 1 s .

When charges flow through a surface as in Figure 21.1, they can be positite negative, or both. It is conventional to give the current the same direction 28 the flow of positive charge. In a common conductor such as copper, the curnell is due to the motion of the negatively charged electrons. Therefore, when we sp dre of current in such a conductor, the direction of the current is opposite the dr rection of flow of electrons. However, if one considers a beam of positived charged protons in an accelerator, the current is in the direction of motion of the protons. In some cases - gases and electrolytes, for example - the current is result of the flow of both positive and negative charges. It is common to refer moving charge (whether it is positive or negative) as a mobile charge carrier. example, the charge carriers in a metal are electrons.

It is instructive to relate current to the motions of the charged partices illustrate this point, consider the current in a conductor of cross-sectional ared
(Fig. 21.2). The volume of an element of the conductor of length Δx is $A \Delta x$. If n represents the number of mobile charge carriers per unit volume, then the number of carriers in the volume element is $n A \Delta x$. Therefore, the charge ΔQ in this element is

$$
\Delta Q=\text { number of carriers } \times \text { charge per carrier }=(n A \Delta x) q
$$

where q is the charge on each carrier. If the carriers move with a speed of v_{d}, the distance they move in the time Δt is $\Delta x=v_{d} \Delta t$. Therefore, we can write ΔQ in the form

$$
\Delta Q=\left(n A v_{d} \Delta t\right) q
$$

If we divide both sides of this equation by Δt, we see that the current in the conductor is

$$
\begin{equation*}
I=\frac{\Delta Q}{\Delta t}=n q v_{d} A \tag{21.4}
\end{equation*}
$$

The speed of the charge carriers, v_{d}, is an average speed called the drift speed. To understand its meaning, consider a conductor in which the charge carriers are free electrons. If the conductor is isolated, these electrons undergo random motion similar to that of gas molecules. When a potential difference is applied across the conductor (say, by means of a battery), an electric field is set up in the conductor, which creates an electric force on the electrons, accelerating them, and hence producing a current. In reality, the electrons do not simply move in straight lines along the conductor. Instead, they undergo repeated collisions with the metal atoms, and the result is a complicated zigzag motion (Fig. 21.3). The energy transferred from the electrons to the metal atoms during collision causes an increase in the vibrational energy of the atoms and a corresponding increase in the temperature of the conductor. However, despite the collisions, the electrons move slowly along be conductor (in a direction opposite \mathbf{E}) with the drift velocity, \mathbf{v}_{d}. One can think of the collisions within a conductor as being an effective internal friction (or drag $f(r e)$ similar to that experienced by the molecules of a liquid flowing through apipe fuffed with steel wool.

The current density J in the conductor is defined to be the current per unit area. Brcause $I=n q v_{d} A$, the current density is

$$
\begin{equation*}
J \equiv \frac{I}{A}=n q v_{d} \tag{21.5}
\end{equation*}
$$

where J has the SI units amperes per square meter. In general, the current density is vector quantity. That is,

$$
\begin{equation*}
\mathbf{J} \equiv n q \mathbf{v}_{d} \tag{21.6}
\end{equation*}
$$

From this definition, we see that the current density vector is in the direction of motion of positive charge carriers and opposite the direction of motion of negative
Charge carriers. Because the drift velocity is proportional to the electric field \mathbf{E} in ne conductor, we conclude that the current density is also proportional to \mathbf{E}.

Figure 21.2 A section of a uniform conductor of cross-sectional area A. The charge carriers move with a speed v_{d}, and the distance they travel in a time Δt is given by $\Delta x=v_{d} \Delta t$. The number of mobile charge carriers in the section of length Δx is given by $n A v_{d} \Delta t$, where n is the number of mobile carriers per unit volume.

Figure 21.3 A schematic representation of the zigzag motion of a charge carrier in a conductor. The changes in direction are due to collisions with atoms in the conductor. Note that the net motion of electrons is opposite the direction of the electric field. The zigzag paths are actually parabolic segments.

- Current density

Thinking Physics 1

Suppose a current-carrying wire has a cross-sectional area that gradually becon smaller along the wire, so that the wire has the shape of a very long cone. How does the drift velocity of electrons vary along the wire?
Reasoning Every portion of the wire is carrying the same amount of current. Thus,, , the cross-sectional area decreases, the drift velocity must increase to maintain the cons. stant value of the current. This increased drift velocity is a result of the electric field lines in the wire being compressed into a smaller area, thus increasing the strengtic of
the field.

Example 21.1 Drift Speed in a Copper Wire

A copper wire of cross-sectional area $3.00 \times 10^{-6} \mathrm{~m}^{2}$ carries a current of 10.0 A . Find the drift speed of the electrons in this wire. The density of copper is $8.95 \mathrm{~g} / \mathrm{cm}^{3}$.
Solution From the periodic table of the elements in Appendix C, we find that the atomic mass of copper is $63.5 \mathrm{~g} / \mathrm{mol}$. Recall that one atomic mass of any substance contains Avogadro's number of atoms, 6.02×10^{23} atoms. Knowing the density of copper enables us to calculate the volume occupied by 63.5 g of copper:

$$
V=\frac{m}{\rho}=\frac{63.5 \mathrm{~g}}{8.95 \mathrm{~g} / \mathrm{cm}^{3}}=7.09 \mathrm{~cm}^{3}
$$

If we now assume that each copper atom contributes one free electron to the body of the material, we have

$$
\begin{aligned}
n & =\frac{6.02 \times 10^{23} \text { electrons }}{7.09 \mathrm{~cm}^{3}} \\
& =8.48 \times 10^{22} \text { electrons } / \mathrm{cm}^{3} \\
& =\left(8.48 \times 10^{22} \frac{\text { electrons }}{\mathrm{cm}^{3}}\right)\left(10^{6} \frac{\mathrm{~cm}^{3}}{\mathrm{~m}^{3}}\right) \\
& =8.48 \times 10^{28} \text { electrons } / \mathrm{m}^{3}
\end{aligned}
$$

From Equation 21.4, we find that the drift speed is

$$
v_{d}=\frac{I}{n q A}
$$

$$
=\frac{10.0 \mathrm{C} / \mathrm{s}}{\left(8.48 \times 10^{28} \mathrm{~m}^{-3}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(3.00 \times 10^{-6} \mathrm{~m}^{2}\right)}
$$

$$
=2.46 \times 10^{-4} \mathrm{~m} / \mathrm{s}
$$

Example 21.1 shows that typical drift speeds are very small. In fact, the dritt speed is much smaller than the average speed between collisions. For instance. electrons traveling with this speed would take about 68 min to travel 1 m ! In riev of this low speed, you might wonder why a light turns on almost instantaneously when a switch is thrown. In a conductor, the electric field that drives the free elec trons travels through the conductor with a speed close to that of light. Thus, when you flip a light switch, the message for the electrons to start moving through the wire (the electric field) reaches them at a speed on the order of $10^{7} \mathrm{~m} / \mathrm{s}$.
EXERCISE 1 If a current of 80.0 mA exists in a metal wire, how many electrons flow pist given cross section of the wire in 10.0 min ? Answer 3.0×10^{20} electrons

21.2 - RESISTANCE AND OHM'S LAW

When a voltage (potential difference) ΔV is applied across the ends of a metallic conductor, as in Figure 21.4, the current in the conductor is found to be prop tional to the applied voltage; that is, $I \propto \Delta V$. If the proportionality is exact, wo whe write $\Delta V=I R$, where the proportionality constant R is called the resistance

Figure 21.4 A uniform conductor of length ℓ and cross-sectional area A. A potential difference $V_{k}-V_{a}$ maintained across the conductor sets up an electric field \mathbf{E} in the conductor, and this field produces a current I that is proportional to the porential difference.

conductor. In fact, we define this resistance as the ratio of the voltage across the conductor to the current it carries:

$$
\begin{equation*}
R \equiv \frac{\Delta V}{I} \tag{21.7}
\end{equation*}
$$

Resistance has the SI units volts per ampere, called ohms ($\boldsymbol{\Omega}$). Thus, if a potential difference of 1 V across a conductor produces a current of 1 A , the resistance of the conductor is 1Ω. For example, if an electrical appliance connected to a $120-\mathrm{V}$ source carries a current of 6 A , its resistance is 20Ω.

It is useful to compare the concepts of electric current, voltage, and resistance with the flow of water in a river. As water flows downhill in a river of constant width and depth, the flow rate (water current) depends on the angle of flow and the effect of rocks, the river bank, and other obstructions. Likewise, electric current in a uniform conductor depends on the applied voltage and the resistance of the cond cor caused by collisions of the electrons with atoms in the conductor.

For many materials, including most metals, experiments show that the resistance is constant over a wide range of applied voltages. This statement is known as Olu's law after Georg Simon Ohm (1787-1854), who was the first to conduct a sysi patic study of electrical resistance.
() m's law is not a fundamental law of nature, but an empirical relationship that valid only for certain materials. Materials that obey Ohm's law, and hence have econstant resistance over a wide range of voltages, are said to be ohmic. Mate Is that do not obey Ohm's law are nonohmic. Ohmic materials have a linear curre :voltage relationship over a large range of applied voltages (Fig. 21.5a). Nonohmi materials have a nonlinear current-voltage relationship (Fig. 21.5b). One

- Resistance

Georg Simon Ohm (1787-1854), (Courtesy of North Wind Picture Archives)

Figure 21.5 (a) The current-voltage curve for an ohmic material. The curve is linear, and the Slope gives the resistance of the conductor. (b) A nonlinear current-voltage curve for a semiconUlucting diode. This device does not obey Ohm's law.

TABLE 21.1 Resistivities and Temperature Coefficients of Resistivity for Various Materials

Material	Resistivity $(\Omega \cdot \mathbf{m})$	Temperature Coefficient $\boldsymbol{\alpha}\left[\left({ }^{\circ} \mathbf{C}\right)^{-1}\right]$
Silver	1.59×10^{-8}	3.8×10^{-3}
Copper	1.7×10^{-8}	3.9×10^{-3}
Gold	2.44×10^{-8}	3.4×10^{-3}
Aluminum	2.82×10^{-8}	3.9×10^{-3}
Tungsten	5.6×10^{-8}	4.5×10^{-3}
Iron	10×10^{-8}	5.0×10^{-3}
Platinum	11×10^{-8}	3.92×10^{-3}
Lead	22×10^{-8}	3.9×10^{-3}
Nichrome	1.50×10^{-6}	0.4×10^{-3}
Carbon	3.5×10^{-5}	-0.5×10^{-3}
Germanium	0.46	-48×10^{-3}
Silicon	640	-75×10^{-3}
Glass	$10^{10}-10^{14}$	-
Hard rubber	$\sim 10^{13}$	-
Sulfur	10^{15}	-
Quartz (fused)	75×10^{16}	-

${ }^{\text {a }}$ All values at $20^{\circ} \mathrm{C}$.
${ }^{\mathrm{b}}$ A nickel-chromium alloy commonly used in heating elements.
common semiconducting device that is nonohmic is the diode. Its resistance is small for currents in one direction (positive ΔV) and large for currents in the reverse direction (negative ΔV). Most modern electronic devices, such as transistors, hare nonlinear current-voltage relationships; their operation depends on the particular ways in which they violate Ohm's law.

We can express Equation 21.7 in the form

$$
\Delta V=I R
$$

where R is understood to be independent of ΔV. We shall use this expression latel in the discussion of electrical circuits. A resistor is a simple circuit element that provides a specified resistance in an electrical circuit. The symbol for a resistor in circuit diagrams is a zigzag line (-MM -).

The resistance of an ohmic conducting wire is found to be proportional to is length and inversely proportional to its cross-sectional area. That is,

$$
R=\rho \frac{\ell}{A}
$$

where the constant of proportionality ρ is called ${ }^{1}$ the resistivity of the materith which has the unit ohm-meter $(\Omega \cdot \mathrm{m})$. To understand this relationship bermerl
${ }^{1}$ The symbol ρ used for resistivity should not be confused with the same symbol used earlier in the the for mass density and charge density.
resistance and resistivity, note that every ohmic material has a characteristic resisature. However, as you can see from Equation 21.7, the resistance of a conductor depends on size and shape as well as on resistivity. Table 21.1 provides a list of resistivities for various materials measured at $20^{\circ} \mathrm{C}$.
The inverse of the resistivity is defined ${ }^{2}$ as the conductivity, $\boldsymbol{\sigma}$. Hence, the resistance of an ohmic conductor can also be expressed in terms of its conductivity as

$$
\begin{equation*}
R=\frac{\ell}{\sigma A} \tag{21.10}
\end{equation*}
$$

where $\sigma(=1 / \rho)$ has the unit $(\Omega \cdot \mathrm{m})^{-1}$.
Equation 21.10 shows that the resistance of a cylindrical conductor is proportional to its length and inversely proportional to its cross-sectional area. This is analogous to the flow of liquid through a pipe. As the length of the pipe is increased, the resistance to liquid flow increases because of a gain in friction between the fluid and the walls of the pipe. As its cross-sectional area is increased, the pipe can transport more fluid in a given time interval, so its resistance drops.

Thinking Physics 2

We have seen that an electric field must exist inside a conductor that carries a current. How is this possible in view of the fact that in electrostatics we co luded that the electric field is zero inside a conductor?
f. soning In the electrostatic case in which charges are stationary, the internal electric fied must be zero because a nonzero field would produce a current (by interacting whin the free electrons in the conductor), which would violate the condition of static
equilibrium. In this chapter we deal with conductors that carry current, a nonelectro-
staic situation. The current arises because of a potential difference applied between
$\dot{u}:$ ends of the conductor, which produces an internal electric field. So there is no
paradox.

CONLEPTUAL PROBLEM 1

Newspaper articles often have statements such as, " 10000 volts of electricity surged through
the victim's body." What is wrong with this statement?

Example 21.2 The Resistance of Nichrome Wire

(a) Calculate the resistance per unit length of a 22 -gauge

Nichrome wire, which has a radius of 0.321 mm .
Solution The cross-sectional area of this wire is

$$
A=\pi r^{2}=\pi\left(0.321 \times 10^{-3} \mathrm{~m}\right)^{2}=3.24 \times 10^{-7} \mathrm{~m}^{2}
$$

The resistivity of Nichrome is $1.5 \times 10^{-6} \Omega \cdot \mathrm{~m}$ (Table 21.1), Thus, we can use Equation 21.9 to find the resistance per unit length:

$$
\frac{R}{\ell}=\frac{\rho}{A}=\frac{1.5 \times 10^{-6} \Omega \cdot \mathrm{~m}}{3.24 \times 10^{-7} \mathrm{~m}^{2}}=4.6 \Omega / \mathrm{m}
$$

(b) If a potential difference of 10 V is maintained across a $1.0-\mathrm{m}$ length of the Nichrome wire, what is the current in the wire?

Solution Because a $1.0-\mathrm{m}$ length of this wire has a resistance of 4.6Ω, Equation 21.7 gives

Again, do not confuse the symbol σ for conductivity with the same symbol used for surface charge
density.

$$
I=\frac{\Delta V}{R}=\frac{10 \mathrm{~V}}{4.6 \Omega}=2.2 \mathrm{~A}
$$

Note from Table 21.1 that the resistivity of Nichrome wire is about 100 times that of copper. Therefore, a copper wire of the same radius would have a resistance per unit length of only $0.052 \Omega / \mathrm{m}$. A $1.0-\mathrm{m}$ length of copper wire of the same radius would carry the same current (2.2 A) with an applied voltage of only 0.11 V .

Because of its high resistivity and its resistance to oxida-
tion, Nichrome is often used for heating elements in topesem
irons, and electric heaters.
EXERCISE 2 What is the resistance of a 6.0 m length of gauge Nichrome wire? How much current does it carry pht connected to a $120-\mathrm{V}$ source Answer 28Ω in the wire assuming that it carries a current of $2.2 \pm$ Answer $6.7 \times 10^{6} \mathrm{~A} / \mathrm{m}^{2} ; 10 \mathrm{~N} / \mathrm{C}$

Variation of ρ with . temperature

Temperature coefficient of \cdot resistivity

Figure 21.6 Resistivity versus temperature for a normal metal, such as copper. The curve is linear over a wide range of temperatures, and ρ increases with increasing temperature. As T approaches absolute zero (insert), the resistivity approaches a finite value ρ_{0}.

Change in Resistivity with Temperature

Resistivity depends on a number of factors, one of which is temperature. For mon metals, resistivity increases approximately linearly with increasing temperature orer a limited temperature range, according to the expression

$$
\rho=\rho_{0}\left[1+\alpha\left(T-T_{0}\right)\right]
$$

where ρ is the resistivity at some temperature T (in degrees Celsius), ρ_{0} is the revio tivity at some reference temperature T_{0} (usually $20^{\circ} \mathrm{C}$), and α is called the temper. ature coefficient of resistivity. From Equation 21.11, we see that α can also be
expressed as

$$
\alpha=\frac{1}{\rho_{0}} \frac{\Delta \rho}{\Delta T}
$$

where $\Delta \rho=\rho-\rho_{0}$ is the change in resistivity in the temperature interval $\Delta T=$ $T-T_{0}$.

The resistivities and temperature coefficients of certain materials are listed in Table 21.1. Note the enormous range in resistivities, from very low values for good conductors, such as copper and silver, to very high values for good insulators, such as glass and rubber. An ideal, or "perfect," conductor would have zero resistivit. and an ideal insulator would have infinite resistivity.

Because resistance is proportional to resistivity according to Equation 21.9, the temperature variation of the resistance can be written

$$
R=R_{0}\left[1+\alpha\left(T-T_{0}\right)\right]
$$

Precise temperature measurements are often made using this property, as shom in Example 21.3.

CONCEPTUAL PROBLEM 2

Aliens with strange powers visit Earth and double every linear dimension of every object 00 the surface of the earth. Does the electrical cord from the wall socket to your floor lamp non have more resistance than before, less resistance, or the same resistance? Does the lightibu filament glow more brightly than before, less brightly, or the same? (Assume the resistiviuic of materials remain the same.)

CONCEPTUAL PROBLEM 3

When incandescent bulbs burn out, they usually do so just after they are switched on. Whit?

Example 21.3 A Platinum Resistance Thermometer

A resistance thermometer, which measures temperature by measuring the change in resistance of a conductor, is made from platinum and has a resistance of 50.0Ω at $20.0^{\circ} \mathrm{C}$. When immersed in a vessel containing melting indium, its resistance increases to 76.8Ω. What is the melting point of indium?

Solution Solving Equation 21.13 for ΔT and obtaining α from Table 21.1, we get

$$
\Delta T=\frac{R-R_{0}}{\alpha R_{0}}=\frac{76.8 \Omega-50.0 \Omega}{\left[3.92 \times 10^{-3}\left({ }^{\circ} \mathrm{C}\right)^{-1}\right](50.0 \Omega)}=137^{\circ} \mathrm{C}
$$

Because $T_{0}=20.0^{\circ} \mathrm{C}$, we find that $T=157^{\circ} \mathrm{C}$.

For several metals, resistivity is nearly proportional to absolute temperature, as shown in Figure 21.6. In reality, however, there is always a nonlinear region at very low temperatures, and the resistivity usually approaches some finite value near absolute zero (see the magnified inset in Fig. 21.6). This residual resistivity near absolute zero is due primarily to collisions of electrons with impurities and to imperfections in the metal. In contrast, the high-temperature resistivity (the linear region) is dominated by collisions of electrons with the metal atoms. We shall describe this process in more detail in Section 21.4.

Semiconductors, such as silicon and germanium, have intermediate resistivity values. Their resistivity generally decreases with increasing temperature, corresponding to a negative temperature coefficient of resistivity (Fig. 21.7). This is due to the increase in the density of charge carriers at the higher temperatures. Because the charge carriers in a semiconductor are often associated with impurity atoms, the resistivity is very sensitive to the type and concentration of such impurities. A thermistor is a semiconducting thermometer that makes use of the large changes in it resistivity with temperature.

EXERCISE 4 If a silver wire has a resistance of 10Ω at $20^{\circ} \mathrm{C}$, what resistance does it have at $40^{\circ} \mathrm{C}$ Neglect any change in length or cross-sectional area due to the change in temperature.

Ans $\quad 10.8 \Omega$

21. - SUPERCONDUCTORS

There is a class of metals and compounds the resistances of which go to zero below certain critical temperatures, T_{c}. These materials are known as superconductors. The resistance-temperature graph for a superconductor follows that of a normal metal at temperatures greater than T_{c} (Fig. 21.8). When the temperature is equal to or less than T_{c}, the resistivity drops suddenly to zero. This phenomenon was discovered by the Dutch physicist Heike Kamerlingh Onnes in 1911 as he worked with mercury, which is a superconductor below 4.2 K . Recent measurements have shown that the resistivities of superconductors below T_{c} are less than $4 \times 10^{-25} \Omega \cdot \mathrm{~m}$, which is around 10^{17} times smaller than the resistivity of copper and considered to be zero in practice.

Today thousands of superconductors are known. Such common metals as aluminum, tin, lead, zinc, and indium are superconductors. Table 21.2 lists the critical temperatures of several superconductors. The value of T_{c} is sensitive to chemical composition, pressure, and crystalline structure. It is interesting to note that copper, silver, and gold, which are excellent conductors, do not exhibit superconductivity.

Figure 21.7 Resistivity versus temperature for a pure semiconductor, such as silicon or germanium.

Figure 21.8 Resistance versus temperature for mercury. The graph follows that of a normal metal above the critical temperature, T_{c}. The resistance drops to zero at the critical temperature, which is 4.2 K for mercury.

TABLE 21.2
Critical Temperatures for Various Superconductors

Material	$\boldsymbol{T}_{C}(\mathbf{K})$
$\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$	92
$\mathrm{Bi}-\mathrm{Sr}-\mathrm{Ca}-\mathrm{Cu}-\mathrm{O}$	105
$\mathrm{Tl}-\mathrm{Ba}-\mathrm{Ca}-\mathrm{Cu}-\mathrm{O}$	125
$\mathrm{HgBa}_{2} \mathrm{Ca}_{2} \mathrm{Cu}_{3} \mathrm{O}_{8}$	134
$\mathrm{Nb}_{3} \mathrm{Ge}^{2}$	23.2
$\mathrm{Nb}_{3} \mathrm{Sn}$	21.05
Nb	9.46
Pb	7.18
Hg	4.15
Sn	3.72
Al	1.19
Zn	0.88

Photograph of a small permanent magnet levitated above a disk of the superconductor $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$, which is at 77 K . This superconductor has zero electric resistance at temperatures below 92 K and expels any applied magnetic field. (Courtesy of IBM Research Laboratory)

One of the truly remarkable features of superconductors is the fact that once a current is set up in them, it persists without any applied voltage (because $R=0$) several years with no apparent decay!

An important recent development in physics that has created much excitement in the scientific community has been the discovery of high-temperature copper. oxide-based superconductors. The excitement began with a 1986 publication by Georg Bednorz and K. Alex Müller, scientists at the IBM Zurich Research Labore. tory in Switzerland, in which they reported evidence for superconductivity at temperature near 30 K in an oxide of barium, lanthanum, and copper. Bednon and Müller were awarded the Nobel Prize in 1987 for their remarkable discoren Shortly thereafter, a new family of compounds was open for investigation, and re search activity in the field of superconductivity proceeded vigorously. In early 1989 groups at the University of Alabama at Huntsville and the University of Houston announced the discovery of superconductivity at about 92 K in an oxide of ytrium, barium, and copper $\left(\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}\right)$. Late in 1987 , teams of scientists from Japan and the United States reported superconductivity at 105 K in an oxide of bismuth, strontium, calcium, and copper. More recently, scientists have reported superconductir ity at temperatures as high as 125 K in an oxide containing thallium. At this point one cannot rule out the possibility of room-temperature superconductivity, and the search for novel superconducting materials continues. It is an important search both for scientific reasons and because practical applications become more probable and widespread as the critical temperature is raised.

An important and useful application is superconducting magnets in which the magnetic field strengths are about ten times greater than those of the best normal electromagnets. Such superconducting magnets are being considered as a means of storing energy. The idea of using superconducting power lines for transmituing power efficiently is also receiving some consideration. Modern superconducting electronic devices consisting of two thin-film superconductors separated by a thin insulator have been constructed. They include magnetometers (a magnetic-fied measuring device) and various microwave devices.

21.4 - A MODEL FOR ELECTRICAL CONDUCTION

The classical model of electrical conduction in metals leads to Ohm's law and shows that resistivity can be related to the motion of electrons in metals.

Consider a conductor as a regular array of atoms containing free electrois (sometimes called conduction electrons). Such electrons are free to move throusf the conductor (as we learned in our discussion of drift speed in Section 21.1) and are approximately equal in number to the atoms. In the absence of an electric fied the free electrons move in random directions with average speeds on the order d $10^{6} \mathrm{~m} / \mathrm{s}$. The situation is similar to the motion of gas molecules confined in a resel In fact, some scientists refer to conduction electrons in a metal as an electron gbab

The conduction electrons are not totally free, because they are confined 10 the interior of the conductor and undergo frequent collisions with the array of atom The collisions are the predominant mechanism for the resistivity of a meal a tliul mal temperatures. Note that there is no current through a conductor in the absel $z^{\circ 0}$. 1 l of an electric field, because the average velocity of the free electrons is $2 \mathrm{ct}^{\circ 0}$.

Figure 21.9 (a) A schematic diagram of the random motion of a charge carrier in a conductor in the absence of an electric field. The drift velocity is zero. (b) The motion of a charge carrier in a conductor in the presence of an electric field. Note that the random motion is modified by the field, and the charge carrier has a drift velocity.
other words, just as many electrons move in one direction as in the opposite direction, on the average, and so there is no net flow of charge.

The situation is modified when an electric field is applied to the metal. In addition to random thermal motion, the free electrons drift slowly in a direction opposite that of the electric field, with an average drift speed of v_{d}, which is much less (typically $10^{-4} \mathrm{~m} / \mathrm{s}$; see Example 21.1) than the average speed between collisions typically $10^{6} \mathrm{~m} / \mathrm{s}$). Figure 21.9 provides a crude depiction of the motion of free lectrons in a conductor. In the absence of an electric field, there is no net displecement after many collisions (Fig. 21.9a). An electric field \mathbf{E} modifies the randen motion and causes the electrons to drift in a direction opposite that of \mathbf{E} (Fig. 1.9b). The slight curvature in the paths in Figure 21.9b results from the accelc ation of the electrons between collisions, caused by the applied field. One mec nical system somewhat analogous to this situation is a ball rolling down a sight inclined plane through an array of closely spaced, fixed pegs (Fig. 21.10). The iall represents a conduction electron, the pegs represent defects in the crystal latici and the component of the gravitational force along the incline represents the eiectric force, $e \mathbf{E}$.

In our model, we shall assume that the excess energy acquired by the electrons in the electric field is lost to the conductor in the collision process. The energy given up to the atoms in the collisions increases the vibrational energy of the atoms, causing the conductor to warm up. The model also assumes that an electron's motion after a collision is independent of its motion before the collision. ${ }^{3}$

We are now in a position to obtain an expression for the drift velocity. When a mobile, charged particle of mass m and charge q is subjected to an electric field

Because the collision process is random, each collision event is independent of what happened earlier. This is analogous to the random process of throwing a die. The probability of rolling a particular number on one throw is independent of the result of the previous throw. On the average, it would take six throws to come up with that number, starting at any arbitrary time.

Figure 21.10 A mechanical system somewhat analogous to the motion of charge carriers in the presence of an electric field. The collisions of the ball with the pegs represent the resistance to the ball's motion down the incline.

> Drift velocity •

Current density •

Conductivity •

Resistivity •
\mathbf{E}, it experiences a force of $q \mathbf{E}$. Because $\mathbf{F}=m \mathbf{a}$, we conclude that the acceleredion
of the particle is

$$
\mathbf{a}=\frac{q \mathbf{E}}{m}
$$

This acceleration, which occurs for only a short time between collisions, enable the electrons to acquire a small drift velocity. If t is the time since the last collision (at $t=0$), and \mathbf{v}_{0} is the initial velocity, then the velocity of the electron after th time t is

$$
\mathbf{v}=\mathbf{v}_{0}+\mathbf{a} t=\mathbf{v}_{0}+\frac{q \mathbf{E}}{m} t
$$

We now take the average value of \mathbf{v} over all possible times t and all posible values of \mathbf{v}_{0}. If the initial velocities are assumed to be randomly distributed in space we see that the average value of \mathbf{v}_{0} is zero. The term $(q E / m) t$ is the velocity adde by the field at the end of one trip between atoms. If the electron starts with zen velocity, the average value of the second term of Equation 21.15 is $(q E / m) \tau$, wher τ is the average time between collisions. Because the average of \mathbf{v} is equal to the drit velocity, we have

$$
\mathbf{v}_{d}=\frac{q \mathbf{E}}{m} \boldsymbol{\tau}
$$

Substituting this result into Equation 21.6, we find that the magnitude of the cur rent density is

$$
\begin{equation*}
J=n q v_{d}=\frac{n q^{2} E}{m} \tau \tag{21.17}
\end{equation*}
$$

Comparing this expression with an alternative form of Equation 21.7, ${ }^{4} \mathrm{~J}=\sigma E$, me obtain the following relationships for the conductivity and resistivity:

$$
\begin{aligned}
& \sigma=\frac{n q^{2} \tau}{m} \\
& \rho=\frac{1}{\sigma}=\frac{m}{n q^{2} \tau}
\end{aligned}
$$

According to this classical model, conductivity and resistivity do not depend on the electric field. This feature is characteristic of a conductor obeying Ohm's ani The model shows that the conductivity can be calculated from a knowledge of the density of the charge carriers, their charge and mass, and the average time benirt
${ }^{4}$ The relation $J=\sigma E$ can be derived as follows: The potential difference across a conductor of lenf is $\Delta V=E \ell$, and, from the definition of resistance, $\Delta V=I R$. Using these relations, together with $E P$, tions 21.5 and 21.10 , we find that the magnitude of the current density is $J=I$ $E \ell / R A=\sigma E$.
collisions, which is related to the average distance between collisions ℓ (the mean free path) and the average thermal speed \bar{v} through the expression ${ }^{5}$

$$
\begin{equation*}
\tau=\frac{\ell}{\bar{v}} \tag{21.20}
\end{equation*}
$$

Example 21.4 Electron Collisions in Copper

(a) Using the data and results from Example 21.1 and the classical model of electron conduction, estimate the average time between collisions for electrons in copper at $20^{\circ} \mathrm{C}$.

Solution From Equation 21.19 we see that

$$
\tau=\frac{m}{n q^{2} \rho}
$$

where $\rho=1.7 \times 10^{-8} \Omega \cdot \mathrm{~m}$ for copper and the carrier densty $n=8.48 \times 10^{28}$ electrons $/ \mathrm{m}^{3}$ for the wire described in
Example 21.1. Substitution of these values into the previous expression gives

$$
\begin{aligned}
\tau & =\frac{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)}{\left(8.48 \times 10^{28} \mathrm{~m}^{-3}\right)\left(1.6 \times 10^{-19} \mathrm{C}\right)^{2}\left(1.7 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)} \\
& =2.5 \times 10^{-14} \mathrm{~s}
\end{aligned}
$$

(b) Assuming the average speed for free electrons in copper to be $1.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$ and using the result from part (a), calculate the mean free path for electrons in copper.

Solution

$$
\ell=\bar{v} \tau=\left(1.6 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)\left(2.5 \times 10^{-14} \mathrm{~s}\right)=4.0 \times 10^{-8} \mathrm{~m}
$$

which is equivalent to 40 nm (compared with atomic spacings of about 0.2 nm). Thus, although the time between collisions is very short, the electrons travel about 200 atomic distances before colliding with an atom.

Whough this classical model of conduction is consistent with Ohm's law, it is
not isfactory for explaining some important phenomena. For example, classical
cale tions for \bar{v} using the ideal-gas model are about a factor of 10 smaller than
the the values. Furthermore, according to Equations 21.19 and 21.20, the temper-
atur variation of the resistivity is predicted to vary as \bar{v}, which, according to an
ideal gas model (Chap. 16, Eq. 16.15), is proportional to \sqrt{T}. This is in disagree-
men with the linear dependence of resistivity with temperature for pure metals
(Fig. ?1.5a). It is possible to account for such observations only by using a quantum
mechanical model, which we shall describe briefly.
tiscording to quantum mechanics, electrons have wave-like properties. If the array of atoms in a conductor is regularly spaced (that is, periodic), the wave-like character of the electrons makes it possible for them to move freely through the conductor, and a collision with an atom is unlikely. For an idealized conductor there would be no collisions, the mean free path would be infinite, and the resistivity Would be zero. Electron waves are scattered only if the atomic arrangement is irregular (not periodic) - for example, as a result of structural defects or impurities. At low temperatures, the resistivity of metals is dominated by scattering caused by collisions between the electrons and impurities. At high temperatures, the resistivity is dominated by scattering caused by collisions between the electrons and the atoms of the conductor, which are continuously displaced as a result of thermal agitation.
The thermal motion of the atoms makes the structure irregular (compared with an
${ }^{\text {atomic array at rest), thereby reducing the electron's mean free path. }}$

Recall that the average speed is the average of the speeds that particles have as a consequence of the
tetiperature of the system of particles (Chap. 16).

Figure 21.11 A circuit consisting of a battery of $\operatorname{emf} \boldsymbol{\varepsilon}$ and resistance R. Positive charge flows in the clockwise direction, from the negative to the positive terminal of the battery. Points a and d are grounded.

This versatile circuit enables the experimenter to examine the properties of circuit elements such as capacitors and resistors and their effects on circuit behavior. (Courtesy of Central Scientific Company)

CONCEPTUAL PROBLEM 4

Why don't the free electrons in a metal fall to the bottom of the metal due to gratin? charges in a conductor are supposed to reside on the surface - why don't the free electen ter all go to the surface?

21.5 - ELECTRICAL ENERGY AND POWER

If a battery is used to establish an electric current in a conductor, there occurs continuous transformation of chemical energy stored in the battery to kinetic ergy of the charge carriers. This kinetic energy is quickly lost as a result of collisions between the charge carriers and the lattice ions, resulting in an increase in the temperature of the conductor. Thus, the chemical energy stored in the batten is continuously transformed into thermal energy.

In order to understand the process of energy transfer in a simple circuit, sider a battery the terminals of which are connected to a resistor R, as shown in Figure 21.11. (Remember that the positive terminal of the battery is always at the higher potential.) Now imagine following a positive quantity of charge $\Delta Q_{\text {around }}$ the circuit from point a through the battery and resistor and back to a. Point ais a reference point that is grounded (the ground symbol is $\overline{=}$), and its potenial is taken to be zero. As the charge moves from a to b through the battery the potential difference of which is ΔV, its electrical potential energy increases by the amount $\Delta Q \Delta V$, and the chemical potential energy in the battery decreases by the same amount. (Recall from Chap. 20 that $\Delta U=q \Delta V$.) However, as the charge more from c to d through the resistor, it loses this electrical potential energy during collisions with atoms in the resistor, thereby producing thermal energy. Note chat if we neglect the resistance of the interconnecting wires, no loss in energy occurs for paths $b c$ and $d a$. When the charge returns to point a, it must have the same potential energy (zero) as it had at the start. ${ }^{6}$

The rate at which the charge ΔQ loses potential energy in going through the resistor is

$$
\frac{\Delta U}{\Delta t}=\frac{\Delta Q}{\Delta t} \Delta V=I \Delta V
$$

where I is the current in the circuit. Of course, the charge regains this energ when it passes through the battery. Because the rate at which the charge losio energy equals the power P dissipated in the resistor, we have

$$
P=I \Delta V
$$

In this case, the power is supplied to a resistor by a battery. However, Equation 21.21 can be used to determine the power transferred from a battery to any derice carrying a current I and having a potential difference ΔV between its terminals.

Using Equation 21.21 and the fact that $\Delta V=I R$ for a resistor, we can expres the power dissipated by the resistor in the alternative forms
${ }^{6}$ Note that when the current reaches its steady-state value, there is no change with time in the tind energy associated with the current.

$$
\begin{equation*}
P=I^{2} R=\frac{(\Delta V)^{2}}{R} \tag{21.22}
\end{equation*}
$$

- Power dissipated by a resistor

The SI unit of power is the watt, introduced in Chapter 6. The power dissipated in a conductor of resistance R is also often referred to as an $I^{2} R$ loss.

As we learned in Chapter 6, Section 6.5, the unit of energy the electric company uses to calculate energy consumption, the kilowatt-hour, is the energy consumed in 1 h at the constant rate of 1 kW . Because $1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}$, we have

$$
\begin{equation*}
1 \mathrm{kWh}=\left(10^{3} \mathrm{~W}\right)(3600 \mathrm{~s})=3.6 \times 10^{6} \mathrm{~J} \tag{21.23}
\end{equation*}
$$

Thinking Physics 3

When is more power being delivered to a lightbulb-just after it is turned on and the glow of the filament is increasing or after it has been on for a few seconds and the glow is steady?

Ressoning Once the switch is closed, the line voltage is applied across the lightbulb.
As the voltage is applied across the cold filament when first turned on, the resistance of the filament is low. Thus, the current is high, and a relatively large amount of power is delivered to the bulb. As the filament warms up, its resistance rises, and the current fall. As a result, the power delivered to the bulb falls. The large current spike at the beginning of operation is the reason that lightbulbs often fail just as they are turned on as noted in Conceptual Problem 3.

T. inking Physics 4

1. lightbulbs A and B are connected across the same potential difference, as in Figure 2. 12. The resistance of A is twice that of B. Which lightbulb dissipates more power? $\$$ i.ch carries the greater current?
oning Because the voltage across each lightbulb is the same, and the power dissifted by a conductor is $P=(\Delta V)^{2} / R$, the conductor with the lower resistance will d. pate more power. In this case, the power dissipated by B is twice that of A and provides twice as much illumination. Furthermore, because $P=I \Delta V$, we see that the curent carried by B is twice that of A.

Figure 21.12 (Thinking Physics 4)

Example 21.5 Electrical Rating of a Lightbulb

A lightbulb is rated at $120 \mathrm{~V} / 75 \mathrm{~W}$, which means its operating voltage is 120 V and it has a power rating of 75.0 W . The bulb is powered by a $120-\mathrm{V}$ direct-current power supply. Find the current in the bulb and its resistance.
Solution Because the power rating of the bulb is 75.0 W and the operating voltage is 120 V , we can use $P=I \Delta V$ to find the current:

$$
I=\frac{P}{\Delta V}=\frac{75.0 \mathrm{~W}}{120 \mathrm{~V}}=0.625 \mathrm{~A}
$$

Using $\Delta V=I R$, the resistance is calculated to be

$$
R=\frac{\Delta V}{I}=\frac{120 \mathrm{~V}}{0.625 \mathrm{~A}}=192 \Omega
$$

EXERCISE 5 What would the resistance be in a lamp rated at 120 V and 100 W ? Answer 144Ω

Example 21.6 The Cost of Operating a Lightbulb

How much does it cost to burn a $100-\mathrm{W}$ lightbulb for 24 h if electricity costs eight cents per kilowatt hour?

Solution Because the energy consumed equals power x time, the amount of energy you must pay for, expressed in kWh , is

$$
\text { Energy }=(0.10 \mathrm{~kW})(24 \mathrm{~h})=2.4 \mathrm{kWh}
$$

If energy is purchased at $8 \&$ per kWh , the cost is

$$
\text { Cost }=(2.4 \mathrm{kWh})(\$ 0.080 / \mathrm{kWh})=\$ 0.19
$$

That is, it costs $19 \Varangle$ to operate the lightbulb for one day. This is a small amount, but when larger and more complex devices are being used, the costs go up rapidly.

Demands on our energy supplies have made it necessary to be aware of the energy requirements of our electric devices. This is true not only because they are becoming more
expensive to operate but also because, with the dwind the coal and oil resources that ultimately supply us whin ed en trical energy, increased awareness of conservation becoon necessary. On every electric appliance is a label that contion the information you need to calculate the power requar often stated directly, as on a lightbulb. In other cases, th amount of current used by the device and the voltageath toin it operates are given. This information and Equation 21 ? are suff

EXERCISE 6 If electricity costs $8 \not{ }^{4}$ per kilowatt hour, inte does it cost to operate an electric oven, which operates a 20.0 A and 220 V , for 5.00 h ? Answer $\$ 1.76$

Figure 21.13 A circuit consisting of a resistor connected to the terminals of a battery.

EXERCISE 7 A $12-\mathrm{V}$ battery is connected to a $60-\Omega$ resistor. Neglecting the intermal rais tance of the battery, calculate the power dissipated in the resistor. Answer 2.4 W

21.6 - SOURCES OF emf

The source that maintains the constant voltage in Figure 21.13 is called "emf."7 Sources of emf are any devices (such as batteries and generators) thatim crease the potential energy of charges circulating in circuits. One can think of source of emf as a charge pump that forces electrons to move in a direction oppoaii the electrostatic field inside the source. The emf, $\boldsymbol{\varepsilon}$, of a source describes the wort done per unit charge, and hence the SI unit of emf is the volt.

Consider the circuit shown in Figure 21.13, consisting of a battery connetare to a resistor. We shall assume that the connecting wires have no resistance. If w neglect the internal resistance of the battery, the potential difference across the battery (the terminal voltage) equals the emf of the battery. However, beause real battery always has some internal resistance, r, the terminal voltage is not equib to the emf. The circuit shown in Figure 21.13 can be described by the circuir din gram in Figure 21.14a. The battery within the dashed rectangle is represenced b a source of emf, $\boldsymbol{\varepsilon}$, in series with the internal resistance r. Now imagine a posiin charge moving from a to b in Figure 21.14a. As the charge passes from the neguin to the positive terminal within the battery, the potential of the charge increase br ε. However, as it moves through the resistance r, its potential decreases br amount $I r$, where I is the current in the circuit. Thus, the terminal volage of battery, $\Delta V=V_{b}-V_{a}$, is ${ }^{8}$
${ }^{7}$ The term was originally an abbreviation for electromotive force, but it is not a force, so the long for discouraged.
${ }^{8}$ The terminal voltage in this case is less than the emf by the amount $I r$. In some situations, the tati $)$) voltage may exceed the emf by the amount $I r$. This happens when the direction of the current i) that of the emf, as when a battery is charged with another source of emf.

$$
\begin{equation*}
\Delta V=\varepsilon-I r \tag{21.24}
\end{equation*}
$$

Note from this expression that $\boldsymbol{\varepsilon}$ is equivalent to the open-circuit voltage-that is, the terminal voltage when the current is zero. Figure 21.14 b is a graphical representation of the changes in potential as the circuit is traversed clockwise. By inspecting Figure 21.14 a , we see that the terminal voltage ΔV must also equal the potential difference across the external resistance R, often called the load resis tance; that is, $\Delta V=I R$. Combining this with Equation 21.24, we see that

$$
\begin{equation*}
\varepsilon=I R+I r \tag{21.25}
\end{equation*}
$$

Solving for the current gives

$$
I=\frac{\varepsilon}{R+r}
$$

This shows that the current in this simple circuit depends on both the resistance external to the battery and the internal resistance. If R is much greater than r, we can neglect r in our analysis. In many circuits we shall ignore this internal resistance.

If we multiply Equation 21.25 by the current I, we get

$$
I \mathcal{E}=I^{2} R+I^{2} r
$$

This equation tells us that the total power output of the source of emf, $I \boldsymbol{\varepsilon}$, is equal to the power that is dissipated in the load resistance, $I^{2} R$, plus power that is dissipated in the internal resistance, $I^{2} r$. Again, if $r \ll R$, most of the power delivered by t be battery is dissipated in the load resistance.

CO EPTUAL PROBLEM 5

Ift energy transferred to a dead battery during charging is E, is the total energy transferred
out the battery to an electrical load during use in which it completely discharges also E ?

CO EEPTUAL PROBLEM 6

If have your headlights on while you start your car, why do they dim while the car is staruig?

CONCEPTUAL PROBLEM 7

Electical devices are often rated with a voltage and a current-for example, 120 volts, 5 amperes. Batteries, however, are only rated with a voltage-for example, 1.5 volts. Why?

EXERCISE 8 A battery with an emf of 12 V and an internal resistance of 0.90Ω is connected across a load resistor R. If the current in the circuit is 1.4 A , what is the value of R ? Answer 7.7Ω

21.7 - RESISTORS IN SERIES AND IN PARALLEL

When two or more resistors are connected together so that they have only one
common point per pair, they are said to be in series. Figure 21.15 shows two resistors
connected in series. Note that the current is the same through the two resistors,

Figure 21.14 (a) Circuit diagram of an $\operatorname{emf} \boldsymbol{\mathcal { E }}$ of internal resistance r connected to an external resistor R. (b) Graphical representation showing how the potential changes as the series circuit in part (a) is traversed clockwise.

- For a series connection of resistors, the current is the same in all the resistors.

(a)

(b)

Figure 21.15 Series connection of two resistors, R_{1} and R_{2}. The current is the same in erd resistor.
because any charge that flows through R_{1} must also flow through R_{2}. Because the potential difference between a and b in Figure 21.15b equals $I R_{1}$ and the potentie difference between b and c equals $I R_{2}$, the potential difference between a and $c i s$

$$
\Delta V=I R_{1}+I R_{2}=I\left(R_{1}+R_{2}\right)
$$

Therefore, we can replace the two resistors in series with a single equivalentre sistance, $R_{\text {eq }}$, the value of which is the sum of the individual resistances:

$$
\begin{equation*}
R_{\text {eq }}=R_{1}+R_{2} \tag{21.26}
\end{equation*}
$$

Equivalent resistance of \cdot several resistors in series

$$
R_{\mathrm{eq}}=R_{1}+R_{2}+R_{3}+\cdots
$$

The resistance $R_{\text {eq }}$ is equivalent to the series combination $R_{1}+R_{2}$ in the sense tive the circuit current is unchanged when $R_{\text {eq }}$ replaces $R_{1}+R_{2}$. The equivalent ir sistance of three or more resistors connected in series is simply

Therefore, the equivalent resistance of a series connection of resistors is alvaly greater than any individual resistance and is the algebraic sum of the indirid ual resistances.

Note that if the filament of one lightbulb in Figure 21.15 were to break, ar "burn out," the circuit would no longer be complete (an open-circuit condiion would exist) and the second bulb would also go out. Some Christmas-tree-lightse (especially older ones) are connected in this way, and the tedious task of determive ing which bulb is burned out is familiar to many people.

In many circuits, fuses are used in series with other circuit elements for sifo purposes. The conductor in the fuse is designed to melt and open the circuit ${ }^{\text {l }}$ some maximum current, the value of which depends on the nature of the cirum If a fuse were not used, excessive currents could damage circuit elements, verther wires, and perhaps cause a fire. In modern home construction, circuit breakers ${ }^{12}$. used in place of fuses. When the current in a circuit exceeds some value (mpid) 15 A), the circuit breaker acts as a switch and opens the circuit.

Now consider two resistors connected in parallel, as shown in Figure 21.16. In this case, the potential differences across the resistors are equal. However, the (anetion) in Figure 21.16b it same. When the current I reaches point a (called a frough R_{2}. If R_{1} is greater than R_{2}, two parts, I_{1} going through R_{1} and I_{2} going must be conserved, the current I then I_{1} is less than I_{2}. Clearly, because charge leaving point b :

$$
I=I_{1}+I_{2}
$$

The potential drops across the resistors must be the same, and applying $I=\Delta V / R$ gives

$$
I=I_{1}+I_{2}=\frac{\Delta V}{R_{1}}+\frac{\Delta V}{R_{2}}=\Delta V\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)=\frac{\Delta V}{R_{\mathrm{eq}}}
$$

From this result, we see that the equivalent resistance of two resistors in parallel is

$$
\begin{equation*}
\frac{1}{R_{\mathrm{eq}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \tag{21.28}
\end{equation*}
$$

This can be rearranged to become

$$
R_{\text {eq }}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

Figure 21.16 Parallel connection of two resistors, R_{1} and R_{2}. The potential difference across R_{1} resistor is the same, and the equivalent resistance of the combination is given by $R_{\text {eq }}=$ $R_{1} R_{2} /\left(R_{1}+R_{2}\right)$.

An extension of this analysis to three or more resistors in parallel fieldes following general expression:

$$
\frac{1}{R_{\text {eq }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\cdots
$$

> Equivalent resistance of several resistors in parallel

Figure 21.17 (Thinking Physics 5)

Figure 21.18 (Thinking Physics 6)

Thinking Physics 5

Predict the relative brightnesses of the four identical bulbs in Figure 21.17. What hap pens if bulb A "burns out," so that it cannot conduct current? What if C burns out? What if D "burns out"?
Reasoning Bulbs A and B are connected in series across the emf of the battery, wheres bulb C is connected by itself across this emf. Thus, the emf is split between bulbos and B. As a result, bulb C will be brighter than bulbs A and B , which should be equall as bright as each other. Bulb D has an equipotential (the vertical wire) conneted across it. Thus, there is no potential difference across D and it does not glow at all II bulb A "burns out," B goes out but C stays lighted. If C "burns out," there is no effect on the other bulbs. If D "burns out," the event is undetectable, because D was nol glowing anyway.

Thinking Physics 6

Figure 21.18 illustrates how a three-way lightbulb is constructed to provide three leeds of light intensity. The socket of the lamp is equipped with a three-way switch fors lecting different light intensities. The bulb contains two filaments. Why are the fils ments connected in parallel? Explain how the two filaments are used to provide thre different light intensities.
Reasoning If the filaments were connected in series and one of them were to burn) out, no current could pass through the bulb, and the bulb would give no illumination regardless of the switch position. However, when the filaments are connected in pie in allel and one of them (say the $75-\mathrm{W}$ filament) burns out, the bulb will still operat. one of the switch positions as current passes through the other (100 W) filanent. three light intensities are made possible by selecting one of three values of filum
resistance, using a single value of 120 V for the applied voltage. The $75-\mathrm{W}$ filament offers one value of resistance, the $100-\mathrm{W}$ filament offers a second value, and the third resistance is obtained by combining the two filaments in parallel. When switch 1 is dosed and switch 2 is opened, current passes only through the 75-W filament. When switch 1 is open and switch 2 is closed, current passes only through the $100-\mathrm{W}$ filament. When both switches are closed, current passes through both filaments, and a total iflumination of 175 W is obtained.

CONCEPTUAL PROBLEM 8

Comecting batteries in series increases the emf. What advantage might there be in connecting them in parallel?

CONCEPTUAL PROBLEM 9

You have a large supply of lightbulbs and a battery. You start with one lightbulb con-
necial to the battery and notice its brightness. You then add one lightbulb at a time, each new bulb being added in series to the previous bulbs. As you add the lightbulbs, what happens to the brightness of the bulbs? To the current through the bulbs? To the power tran fred from the battery? To the lifetime of the battery? To the terminal voltage of the baver Answer the same questions if the lightbulbs are added one by one in parallel with the ne st.

ROBLEM-SOLVING STRATEGY - Resistors

When two or more unequal resistors are connected in series, they carry the same current, but the potential differences across them are not the same. The resistors add directly to give the equivalent resistance of the series combination.
When two or more unequal resistors are connected in parallel, the potential differences across them are the same. Because the current is inversely proportional to the resistance, the currents through them are not the same. The equivalent resistance of a parallel combination of resistors is found through reciprocal addition, and the equivalent resistor is always less than the smallest individual resistor.
3. A complicated circuit consisting of resistors can often be reduced to a simple circuit containing only one resistor. To do so, examine the initial circuit and replace any resistors in series or any in parallel using the procedures outlined in Steps 1 and 2. Draw a sketch of the new circuit after these changes have been made. Examine the new circuit and replace any series or parallel combinations. Continue this process until a single equivalent resistance is found.
4. If the current through or the potential rifference across a resistor in the complicated circuit is to be found, start with the final circuit found in Step 3 and gradually work your way back through the circuits, using $\Delta V=I R$ and the rules of Steps 1 and 2.

Example 21.7 Find the Equivalent Resistance

Four resistors are connected as shown in Figure 21.19a. (a) Find the equivalent resistance between a and c.

Figure 21.19 (Example 21.17) The resistances of the four resistors shown in (a) can be reduced in steps to an equivalent 14Ω resistor.

Solution The circuit can be reduced in steps as shown in Figure 21.19. The $8.0-\Omega$ and $4.0-\Omega$ resistors are in series, and
so the equivalent resistance between a and b is 12Ω 21.26). The $6.0-\Omega$ and $3.0-\Omega$ resistors are in parallel, ind from Equation 21.28 we find that the equivalent respemp to c is 14Ω.
(b) What is the current in each resistor if a potential ference of 42 V is maintained between a and c?

Solution The current I in the $8.0-\Omega$ and 4.0Ω resiston the same because they are in series. Using Equation 21 and the results from part (a), we get

$$
I=\frac{\Delta V_{a c}}{R_{\mathrm{eq}}}=\frac{42 \mathrm{~V}}{14 \Omega}=3.0 \mathrm{~A}
$$

When this current enters the junction at b, it splits. Partofit passes through the $6.0-\Omega$ resistor $\left(I_{1}\right)$ and part goes through the $3.0-\Omega$ resistor $\left(I_{2}\right)$. Because the potential differenceactom these resistors, $\Delta V_{b c}$, is the same (they are in parallel), vesest that $6 I_{1}=3 I_{2}$, or $I_{2}=2 I_{1}$. Using this result and the fact ine $I_{1}+I_{2}=3.0 \mathrm{~A}$, we find that $I_{1}=1.0 \mathrm{~A}$ and $I_{2}=2.0 \mathrm{~A}$. I_{e} could have guessed this from the start by noting that the orr rent through the 3.0Ω resistor has to be twice the cunem through the $6.0-\Omega$ resistor in view of their relative resistance and the fact that the same voltage is applied to each of them

As a final check, note that $\Delta V_{b c}=6 I_{1}=3 I_{2}=6.0 \mathrm{~V}$ and $\Delta V_{a b}=12 I=36 \mathrm{~V}$; therefore, $\Delta V_{a c}=\Delta V_{a b}+\Delta V_{t c}=42 \mathrm{~V}, a$ it must.

Example 21.8 Three Resistors in Parallel

Three resistors are connected in parallel, as in Figure 21.20. A potential difference of 18 V is maintained between points a and b. (a) Find the current in each resistor.

Figure 21.20 (Example 21.8) Three resistors connected in parallel. The voltage across each resistor is 18 V .

Solution The resistors are in parallel, and the potential id ference across each is 18 V . Applying $\Delta V=I R$ to each resic gives

$$
\begin{aligned}
& I_{1}=\frac{\Delta V}{R_{1}}=\frac{18 \mathrm{~V}}{3.0 \Omega}=6.0 \mathrm{~A} \\
& I_{2}=\frac{\Delta V}{R_{2}}=\frac{18 \mathrm{~V}}{6.0 \Omega}=3.0 \mathrm{~A} \\
& I_{3}=\frac{\Delta V}{R_{3}}=\frac{18 \mathrm{~V}}{9.0 \Omega}=2.0 \mathrm{~A}
\end{aligned}
$$

(b) Calculate the power dissipated by each resitor 2 ? the total power dissipated by the three resistors.
Solution Applying $P=I^{2} R$ to each resistor gives
$3.0-\Omega: P_{1}=I_{1}{ }^{2} R_{1}=(6.0 \mathrm{~A})^{2}(3.0 \Omega)=110 \mathrm{~W}$

$$
\begin{aligned}
& \text { 6.0- } \Omega: P_{2}=I_{2}{ }^{2} R_{2}=(3.0 \mathrm{~A})^{2}(6.0 \Omega)=54 \mathrm{~W} \\
& 9.0-\Omega: P_{3}=I_{3}{ }^{2} R_{3}=(2.0 \mathrm{~A})^{2}(9.0 \Omega)=36 \mathrm{~W}
\end{aligned}
$$

This shows that the smallest resistor dissipates the most power because it carries the most current. (Note that you can also use $P=(\Delta V)^{2} / R$ to find the power dissipated by each resistor.) Summing the three quantities gives a total power of 200 W .
(c) Calculate the equivalent resistance of the three resistors. We can use Equation 21.28 to find $R_{\text {eq }}$:

Solution

$$
\begin{aligned}
& \frac{1}{R_{\text {eq }}}=\frac{1}{3.0}+\frac{1}{6.0}+\frac{1}{9.0} \\
& R_{\text {eq }}=\frac{18}{11} \Omega=1.6 \Omega
\end{aligned}
$$

EXERCISE 9 Use $R_{\text {eq }}$ to calculate the total power dissipated in the circuit. Answer 200 W

21.8 - KIRCHHOFF'S RULES AND SIMPLE DC CIRCUITS

As indicated in the preceding section, we can analyze simple circuits using $\Delta V=I R$ and the rules for series and parallel combinations of resistors. However, there are many ways in which resistors can be connected so that the circuits formed cannot be reduced to a single equivalent resistor. The procedure for analyzing such complex circuits is greatly simplified by the use of two simple rules called Kirchhoff's rules:

The sum of the currents entering any junction must equal the sum of the currents leaving that junction. (This rule is often referred to as the junction rule.)
The sum of the potential differences across each element around any closed circuit loop must be zero. (This rule is usually called the loop rule.)
The junction rule is a statement of conservation of charge. Whatever current ent is a given point in a circuit must leave that point, because charge cannot build up disappear at a point. If we apply this rule to the junction in Figure 21.21a, we t

$$
I_{1}=I_{2}+I_{3}
$$

Figure 21.21 b represents a mechanical analog to this situation in which water flows thrugh a branched pipe with no leaks. The flow rate into the pipe equals the total flow rate out of the two branches.

The second rule is equivalent to the law of conservation of energy. A charge that moves around any closed loop in a circuit (the charge starts and ends at the same point) must gain as much energy as it loses if a potential is defined for each point in the circuit. Its energy may decrease in the form of a potential drop, $-I R$, across a resistor or as a result of having the charge move in the reverse direction through an emf. In the latter case, electric potential energy is converted to chemical energy as the battery is charged. In a similar way, electrical energy may be converted to mechanical energy for operating a motor.

As an aid in applying the loop rule, the following points should be noted. They are summarized in Figure 21.22, where it is assumed that movement is from point ${ }^{a}$ toward point b :

- If a resistor is traversed in the direction of the current, the change in potential across the resistor is $-I R$ (Fig. 21.22a).

Figure 21.21 (a) A schematic diagram illustrating Kirchhoff's junction rule. Conservation of charge requires that whatever current enters a junction must leave that junction. Therefore, in this case, $I_{1}=I_{2}+I_{3}$. (b) A mechanical ana\log of the junction rule: The flow out must equal the flow in.
(a)

(b)

(c)

ε
(d)

Figure 21.22 Rules for determining the potential changes across a resistor and a battery, assuming the battery has no internal resistance.

Gustav Robert Kirchhoff (1824-
1887). (Courtesy of North Wind Picture Archives)

- If a resistor is traversed in the direction opposite the current, the chang potential across the resistor is $+I R$ (Figure 21.22b).
- If a source of emf is traversed in the direction of the emf (from - to the terminals), the change in potential is $+\boldsymbol{\varepsilon}$ (Fig. 21.22c).
- If a source of emf is traversed in the direction opposite the emf (fronn + to - on the terminals), the change in potential is $-\varepsilon$ (Fig. 21.22d).
There are limitations on the use of the junction rule and the loop rule. tou may use the junction rule as often as needed so long as each time you write equation, you include in it a current that has not been used in a previous juncion one fewer than the number of junction points in the circuit. The loop rule can be used as often as needed so long as a new circuit element (a resistor or battery) a new current appears in each new equation. In general, the number of indepen. dent equations you need must equal the number of unknowns in order to solve a particular circuit problem.

The following examples illustrate the use of Kirchhoff's rules in analyzing dir cuits. In all cases, it is assumed that the circuits have reached steady-state conditions - that is, the currents in the various branches are constant. If a capacitor is included as an element in one of the branches, it acts as an open circuit: The current in the branch containing the capacitor is zero under steady-state con. ditions.

PROBLEM-SOLVING STRATEGY AND HINTS - Kirchhoff's Rules

1. First, draw the circuit diagram and assign labels to all the known quantities and symbols to all the unknown quantities. You must assign directions to the currents in each part of the circuit. Do not be alarmed if you guess the direction of a current incorrectly; the result will have a negative value, but its magnitude will be correct. Although the assignment of current directions is arbitrary, you must adhere rigorously to the directions you assigned when you apply Kirchhoff's rules.
2. Apply the junction rule (Kirchhoff's first rule) to all but one of the junctions in the circuit; doing so provides independent equations relating the currents. (This step is easy!)
3. Now apply the loop rule (Kirchhoff's second rule) to as many loops in the circuit as are needed to solve for the unknowns. In order to apply this rule, you must correctly identify the change in potential as you cross each element in traversing the closed loop (either clockwise or counterdockwise). Watch out for signs!
4. Solve the equations simultaneously for the unknown quantities. Be careful in your algebraic steps, and check your numerical answers for consistenc\%.

Example 21.9 Applying Kirchhoff's Rules

Find the currents I_{1}, I_{2}, and I_{3} in the circuit shown in Figure 21.23.

Reasoning We choose the directions of the currents as in Figure 21.23. Applying Kirchhoff's first rule to junction c gives
(1) $I_{1}+I_{2}=I_{3}$

There are three loops in the circuit, $a b a d a, b e f(b$, and $a f t h$ (the outer loop). Therefore, we need only two loop equations to determine the unknown currents. The third loop equia

Figure 21.23 (Example 21.9) A circuit containing three loops.
would give no new information. Applying Kirchhoff's second fule to loops $a b c d a$ and $b e f c b$ and traversing these loops in the clockwise direction, we obtain the expressions
(2) Loop $a b c d a: 10 \mathrm{~V}-(6 \Omega) I_{1}-(2 \Omega) I_{3}=0$
(3) Loop befcb: $-(4 \Omega) I_{2}-14 \mathrm{~V}+(6 \Omega) I_{1}-10 \mathrm{~V}=0$
te that in loop befcb, a positive sign is obtained when trarsing the $6-\Omega$ resistor, because the direction of the path is posite the direction of I_{1}. A third loop equation for aefda es $-14=2 I_{3}+4 I_{2}$, which is just the sum of (2) and (3).
ution Expressions (1), (2), and (3) represent three inpendent equations with three unknowns. We can solve the oblem as follows: Substituting (1) into (2) gives

$$
10-6 I_{1}-2\left(I_{1}+I_{2}\right)=0
$$

(4) $10=8 I_{1}+2 I_{2}$

Dividing each term in (3) by 2 and rearranging the equation gives
(5) $-12=-3 I_{1}+2 I_{2}$

Subtracting (5) from (4) eliminates I_{2}, giving

$$
\begin{aligned}
22 & =11 I_{1} \\
I_{1} & =2 \mathrm{~A}
\end{aligned}
$$

Using this value of I_{1} in (5) gives a value for I_{2} :

$$
\begin{aligned}
2 I_{2} & =3 I_{1}-12=3(2)-12=-6 \\
I_{2} & =-3 \mathrm{~A}
\end{aligned}
$$

Finally, $I_{3}=I_{1}+I_{2}=-1 \mathrm{~A}$. Hence, the currents have the values

$$
I_{1}=2 \mathrm{~A} \quad I_{2}=-3 \mathrm{~A} \quad I_{3}=-1 \mathrm{~A}
$$

The fact that I_{2} and I_{3} are both negative indicates only that we chose the wrong direction for these currents. However, the numerical values are correct.

EXERCISE 10 Find the potential difference between points b and c. Answer $V_{b}-V_{c}=2 \mathrm{~V}$

ample 21.10 A Multiloop Circuit

a) Under steady-state conditions, find the unknown currents a the multiloop circuit shown in Figure 21.24.
asoning First note that the capacitor represents an open circuit, and hence there is no current along path ghab under sleady-state conditions. Therefore, $I_{f g}=I_{g b}=I_{b c} \equiv I_{1}$. Labeling the currents as shown in Figure 21.24 and applying Kirchhoff's first rule to junction c, we get
(1) $I_{1}+I_{2}=I_{3}$

Kirchhoff's second rule applied to loops defcd and $c f g b c$ gives
(2) Loop defcd: $4.00 \mathrm{~V}-(3.00 \Omega) I_{2}-(5.00 \Omega) I_{3}=0$
(3) Loop cfgbc: $(3.00 \Omega) I_{2}-(5.00 \Omega) I_{1}+3.00 \mathrm{~V}=0$

Solution From (1) we see that $I_{1}=I_{3}-I_{2}$, which when substituted into (3) gives
(4) $8.00 \mathrm{~V}-(5.00 \Omega) I_{3}+(8.00 \Omega) I_{2}=0$

Figure 21.24 (Example 21.10) A multiloop circuit. Note that Kirchhoff's loop equation can be applied to any closed loop, including one containing the capacitor

Subtracting (4) from (2), we eliminate I_{3} and find

$$
I_{2}=-\frac{4.00}{11.0} \mathrm{~A}=-0.364 \mathrm{~A}
$$

Because I_{2} is negative, we conclude that the direction of I_{2} is from c to f through the 3.00Ω resistor. Using this value of I_{2} in (3) and (1) gives the following values for I_{1} and I_{3} :

$$
I_{1}=1.38 \mathrm{~A} \quad I_{3}=1.02 \mathrm{~A}
$$

Under steady-state conditions, the capacitor represents an open circuit, and so there is no current in the branch ghab.
(b) What is the charge on the capacitor?

Solution We can apply Kirchhoff's second rule to loop ow (or any other loop that contains the capacitor) to find

$$
\begin{aligned}
-8.00 \mathrm{~V}+\Delta V_{c}-3.00 \mathrm{~V} & =0 \\
\Delta V_{c} & =11.0 \mathrm{~V}
\end{aligned}
$$

Because $Q=C \Delta V_{c}$, the charge on the capacitor is

$$
Q=(6.00 \mu \mathrm{~F})(11.0 \mathrm{~V})=66.0 \mu \mathrm{C}
$$

Why is the left side of the capacitor positively charged?
EXERCISE 11 Find the voltage across the capacitor by versing any other loop. Answer 11.0 V capacitor by in

21.9 - RC CIRCUITS

So far we have discussed circuits with constant currents, or so-called steady yte circuits. We shall now consider circuits containing capacitors, in which the cureme may vary in time.

Charging a Capacitor

Consider the series circuit shown in Figure 21.25. Let us assume that the capacin is initially uncharged. There is no current when switch S is open (Fig. 21.25b). the switch is closed at $t=0$, charges begin to flow, setting up a current in the circuir and the capacitor begins to charge (Fig. 21.25c). Note that during the chargine charges do not jump across the plates of the capacitor, because the gap betreet the plates represents an open circuit. Instead, electrons move from the top plaid to the bottom plate only by moving through the resistor, switch, and battery und the capacitor is fully charged. The value of the maximum charge depends on th

(a) A capacitor in series with a resistor, battery, and switch. (b) Circuil dixy representing this system before the switch is closed, $t<0$. (c) Circuit diagram after the sint closed, $t>0$.
emf of the battery. Once the maximum charge is reached, the current in the circuit
rule to the circuit after the switch is closed boosing clockwise aphoff's second around the circuit, we get

$$
\begin{equation*}
\varepsilon-\frac{q}{C}-I R=0 \tag{21.30}
\end{equation*}
$$

where q / C is the potential difference across the capacitor and $I R$ is the potential difference across the resistor. Note that q and I are instantaneous values of the charge and current, respectively, as the capacitor is charged.

We can use Equation 21.30 to find the initial current in the circuit and the maximum charge on the capacitor. At $t=0$, when the switch is closed, the charge on the capacitor is zero, and from Equation 21.30 we find that the initial current in the circuit I_{0} is a maximum and equal to

$$
\begin{equation*}
I_{0}=\frac{\varepsilon}{R} \quad(\text { current at } t=0) \tag{21.31}
\end{equation*}
$$

At this time, the potential difference is entirely across the resistor. Later, when the capacitor is charged to its maximum value Q, charges cease to flow, the current in the circuit is zero, and the potential difference is entirely across the capacitor. Subsituting $I=0$ into Equation 21.30 yields the following expression for Q :

$$
\begin{equation*}
Q=C \mathcal{E} \quad \text { (maximum charge) } \tag{21.32}
\end{equation*}
$$

To d-termine analytical expressions for the time dependence of the charge and current, we must solve Equation 21.30, a single equation containing two variables, qand 1 . In order to do this, let us substitute $I=d q / d t$ and rearrange the equation:

$$
\frac{d q}{d t}=\frac{\varepsilon}{R}-\frac{q}{R C}
$$

An expression for q may be found in the following way. Rearrange the equation by placing terms involving q on the left side and those involving t on the right side. Then integrate both sides:

$$
\begin{aligned}
\frac{d q}{(q-C \boldsymbol{\mathcal { E }})} & =-\frac{1}{R C} d t \\
\int_{0}^{q} \frac{d q}{(q-C \boldsymbol{\varepsilon})} & =-\frac{1}{R C} \int_{0}^{t} d t \\
\ln \left(\frac{q-C \boldsymbol{\varepsilon}}{-C \boldsymbol{\varepsilon}}\right) & =-\frac{t}{R C}
\end{aligned}
$$

From the definition of the natural logarithm, we can write this expression as

$$
\begin{equation*}
q(t)=C \boldsymbol{\mathcal { E }}\left[1-e^{-t / R C}\right]=Q\left[1-e^{-t / R C}\right] \tag{21.33}
\end{equation*}
$$

where e is the base of the natural logarithm and $Q=C \boldsymbol{\mathcal { E }}$ is the maximum charge on the capacitor.

- Maximum charge on the capacitor
- Charge versus time for a capacitor being charged through a resistor

Current versus time •

(a)

(b)

Figure 21.27 (a) A charged capacitor connected to a resistor and a switch, which is open at $t<0$.
(b) After the switch is closed, a nonsteady current is set up in the direction shown and the charge on the capacitor decreases exponentially with time.

Figure 21.26 (a) Plot of capacitor charge versus time for the circuit shown in Figure 21.25 After one time constant, τ, the charge is 63.2% of the maximum value, $C \mathcal{C}$. The charge appproaches its maximum value as t approaches infinity. (b) Plot of current versus time for the for circuit shown in Figure 21.25. The current has its maximum value, $I_{0}=\boldsymbol{\varepsilon} / R$, at $t=0$ and do
cays to zero exponentially as t approaches infinity. After one time constant, τ, the current cays to zero exponentially as t approaches infinity. After one time constant, τ, the current de creases to 36.8% of its initial value.

An expression for the charging current may be found by differentiating Eqio tion 21.33 with respect to time. Using $I=d q / d t$, we obtain

$$
I(t)=\frac{\varepsilon}{R} e^{-t / R C}
$$

[21.34]
where \mathcal{E} / R is the initial current in the circuit.
Plots of charge and current versus time are shown in Figure 21.26. Note the the charge is zero at $t=0$ and approaches the maximum value of $C \mathcal{E}$ as $t \rightarrow x$ (Fig 21.26a). Furthermore, the current has its maximum value of $I_{0}=\boldsymbol{\varepsilon} /$ Rat $t=0$ and decays exponentially to zero as $t \rightarrow \infty$ (Fig. 21.26b). The quantity $R C$, which appen in the exponential of Equations 21.33 and 21.34 , is called the time constant, $\pi, 0$ the circuit. It represents the time it takes the current to decrease to $1 /$ e of io initial value; that is, in the time $\tau, I=e^{-1} I_{0}=0.37 I_{0}$. In a time of $2 \tau, 1=$ $e^{-2} I_{0}=0.135 I_{0}$, and so forth. Likewise, in a time τ the charge increases from z to to $C \mathcal{E}\left[1-e^{-1}\right]=0.63 C \mathcal{E}$.

The following dimensional analysis shows that τ has units of time:

$$
[\tau]=[R C]=\left[\frac{\Delta V}{I} \times \frac{Q}{\Delta V}\right]=\left[\frac{Q}{Q / t}\right]=\mathrm{T}
$$

The energy decrease of the battery during the charging process is $Q 8=$ $C \mathcal{E}^{2}$. After the capacitor is fully charged, the energy stored in it is $\frac{1}{2} \ell \varepsilon=\frac{1}{2}\left(\mathcal{C}^{2}\right.$ which is just half the energy decrease of the battery. It is left to an end-ofechapler problem to show that the remaining half of the energy supplied by the batter goc into thermal energy dissipated in the resistor (Problem 52).

Discharging a Capacitor

Now consider the circuit in Figure 21.27, consisting of a capacitor with an initid charge of Q, a resistor, and a switch. When the switch is open (Fig. 21.27a), thect is a potential difference of Q / C across the capacitor and zero potential differencibe across the resistor, because $I=0$. If the switch is closed at $t=0$, the capacitor beg
to discharge through the resistor. At some time during the discharge, the current in the circuit is I and the charge on the capacitor is q (Fig. 21.27b). From Kirchhoff's second rule, we see that the potential difference across the resistor, $I R$, must equal the potential difference across the capacitor, q / C :

$$
\begin{equation*}
I R=\frac{q}{C} \tag{21.35}
\end{equation*}
$$

However, the current in the circuit must equal the rate of decrease of charge on the capacitor. That is, $I=-d q / d t$, and so Equation 21.35 becomes

$$
\begin{aligned}
-R \frac{d q}{d t} & =\frac{q}{C} \\
\frac{d q}{q} & =-\frac{1}{R C} d t
\end{aligned}
$$

Integrating this expression, using the fact that $q=Q$ at $t=0$, gives

$$
\begin{align*}
\int_{Q}^{q} \frac{d q}{q} & =-\frac{1}{R C} \int_{0}^{t} d t \\
\ln \left(\frac{q}{Q}\right) & =-\frac{t}{R C} \\
q(t) & =Q e^{-t / R C} \tag{21.36}
\end{align*}
$$

Diffrentiating Equation 21.36 with respect to time gives the current as a function of time:

$$
\begin{equation*}
I(t)=-\frac{d q}{d t}=I_{0} e^{-t / R C} \tag{21.37}
\end{equation*}
$$

whe the initial current is $I_{0}=Q / R C$. Thus we see that both the charge on the cap itor and the current decay exponentially at a rate characterized by the time con ant $\tau=R C$.

inking Physics 7

Many automobiles are equipped with windshield wipers that can be used intermittently during a light rainfall. How does the operation of this feature depend on the charging and discharging of a capacitor?
Ressoning The wipers are part of an $R C$ circuit the time constant of which can be varied by selecting different values of R through a multipositioned switch. The brief time that the wipers remain on and the time they are off are determined by the value of the time constant of the circuit.

Example 21.11 Charging a Capacitor in an RC Circuit

An uncharged capacitor and a resistor are connected in series to a battery as in Figure 21.25. If $\varepsilon=12.0 \mathrm{~V}, C=5.00 \mu \mathrm{~F}$, and $R=8.00 \times 10^{5} \Omega$, find the time constant of the circuit,
the maximum charge on the capacitor, the maximum current in the circuit, and the charge and current as a function of time.

- Charge versus time for a discharging capacitor
- Current versus time for a discharging capacitor

626

Solution The time constant of the circuit is $\tau=R C=$ $\left(8.00 \times 10^{5} \Omega\right)\left(5.00 \times 10^{-6} \mathrm{~F}\right)=4.00 \mathrm{~s}$. The maximum charge on the capacitor is $Q=C \varepsilon=(5.00 \times$ $\left.10^{-6} \mathrm{~F}\right)(12.0 \mathrm{~V})=60.0 \mu \mathrm{C}$. The maximum current in the circuit is $I_{0}=\boldsymbol{\varepsilon} / R=(12.0 \mathrm{~V}) /\left(8.00 \times 10^{5} \Omega\right)=15.0 \mu \mathrm{~A}$. Using these values and Equations 21.33 and 21.34, we find

$$
\begin{aligned}
& q(t)=60.0\left[1-e^{-t / 4}\right] \mu \mathrm{C} \\
& I(t)=15.0 e^{-t / 4} \mu \mathrm{~A}
\end{aligned}
$$

EXERCISE 12 Calculate the charge on the capacitor the current in the circuit after one time constant hacitelap ayy
Answer $\quad 37.9 \mu \mathrm{C}, 5.52 \mu \mathrm{~A}$

Example 21.12 Discharging a Capacitor in an RC Circuit

Consider a capacitor C being discharged through a resistor R as in Figure 21.27. (a) After how many time constants is the charge on the capacitor one fourth of its initial value?
Solution The charge on the capacitor varies with time according to Equation 21.36, $q(t)=Q e^{-t / R C}$. To find the time it takes the charge q to drop to one fourth of its initial value, we substitute $q(t)=Q / 4$ into this expression and solve for t :

$$
\begin{aligned}
\frac{1}{4} Q & =Q e^{-t / R C} \\
\frac{1}{4} & =e^{-t / R C}
\end{aligned}
$$

Taking logarithms of both sides, we find

$$
\begin{aligned}
-\ln 4 & =-\frac{t}{R C} \\
t=R C \ln 4 & =1.39 R C
\end{aligned}
$$

(b) The energy stored in the capacitor decreases with time as it discharges. After how many time constants is this stored energy one fourth of its initial value?

Solution Using Equations 20.29 and 21.36 , we can exprete
the energy stored in the capacitor at any time $t_{\text {as }}$

$$
U=\frac{q^{2}}{2 C}=\frac{Q^{2}}{2 C} e^{-2 t / R C}=U_{0} e^{-2 U / R C}
$$

where U_{0} is the initial energy stored in the capacitor. At on part (a), we now set $U=U_{0} / 4$ and solve for t :

$$
\begin{aligned}
\frac{1}{4} U_{0} & =U_{0} e^{-2 t / R C} \\
\frac{1}{4} & =e^{-2 t / R C}
\end{aligned}
$$

Again, taking logarithms of both sides and solving for tgice

$$
t=\frac{1}{2} R C \ln 4=0.693 R C
$$

EXERCISE 13 After how many time constants is the currem in the $R C$ circuit one half of its initial value? Answer $0.693 R C$

SUMMARY

EXERCISE 14 An uncharged capacitor and a resistor are connected in series to a sourre of emf. If $\mathcal{E}=9.0 \mathrm{~V}, C=20 \mu \mathrm{~F}$, and $R=100 \Omega$, find (a) the time constant of the circuit (b) the maximum charge on the capacitor, and (c) the maximum current in the ciruil
Answer
(a) 2.0 ms
(b) $180 \mu \mathrm{C}$
(c) 90 mA

The electric current I in a conductor is defined as

$$
I \equiv \frac{d Q}{d t}
$$

where $d Q$ is the charge that passes through a cross-section of the conductor in the inime did The SI unit of current is the ampere (A); $1 \mathrm{~A}=1 \mathrm{C} / \mathrm{s}$.

The current in a conductor is related to the motion of the charge carriers through whe relationship

$$
I=n q v_{d} A
$$

where n is the density of charge carriers, q is their charge, v_{d} is the drift speed, and A is the cross-sectional area of the conductor.

The current density \boldsymbol{J} in a conductor is defined as the current per unit area:

$$
\begin{equation*}
J \equiv \frac{I}{A}=n q v_{d} \tag{21.5}
\end{equation*}
$$

The resistance \boldsymbol{R} of a conductor is defined as the ratio of the potential difference across the conductor to the current:

$$
\begin{equation*}
R \equiv \frac{\Delta V}{I} \tag{21.7}
\end{equation*}
$$

The SI units of resistance are volts per ampere, defined as ohms (Ω). That is, $1 \Omega=$ $1 \mathrm{~V} / \mathrm{A}$

If the resistance is independent of the applied voltage, the conductor obeys Ohm's law, and conductors that have a constant resistance over a wide range of voltages are said to be ohmic

If a conductor has a uniform cross-sectional area of A and a length of ℓ, its resistance is

$$
\begin{equation*}
R=\rho \frac{\ell}{A} \tag{21.9}
\end{equation*}
$$

where ρ is called the resistivity of the conductor. The inverse of the resistivity is defined as the conductivity, $\boldsymbol{\sigma}$. That is, $\sigma=1 / \rho$.

The resistivity of a conductor varies with temperature in an approximately linear fashion; that is,

$$
\begin{equation*}
\rho=\rho_{0}\left[1+\alpha\left(T-T_{0}\right)\right] \tag{21.11}
\end{equation*}
$$

whe α is the temperature coefficient of resistivity and ρ_{0} is the resistivity at some reference tenserature T_{0}.
n a classical model of electronic conduction in a metal, the electrons are treated as mo ules of a gas. In the absence of an electric field, the average velocity of the electrons is zer. When an electric field is applied, the electrons move (on the average) with a drift vel ity \mathbf{v}_{d}, which is opposite the electric field:

$$
\begin{equation*}
\mathbf{v}_{d}=\frac{q \mathbf{E}}{m} \tau \tag{21.16}
\end{equation*}
$$

whic: τ is the average time between collisions with the atoms of the metal. The resistivity of the waterial according to this model is

$$
\begin{equation*}
\rho=\frac{m}{n q^{2} \tau} \tag{21.19}
\end{equation*}
$$

where n is the number of free electrons per unit volume.
If a potential difference ΔV is maintained across a resistor, the power, or rate at which energy is supplied to the resistor, is

$$
\begin{equation*}
P=I \Delta V \tag{21.21}
\end{equation*}
$$

Because the potential difference across a resistor is $\Delta V=I R$, we can express the power dissipated in a resistor in the form

$$
\begin{equation*}
P=I^{2} R=\frac{(\Delta V)^{2}}{R} \tag{21.22}
\end{equation*}
$$

[^2]The emf of a battery is the voltage across its terminals when the current is zero. Th the emf is equivalent to the open-circuit voltage of the battery.

The equivalent resistance of a set of resistors connected in series is

$$
R_{c q}=R_{1}+R_{2}+R_{3}+\cdots
$$

The equivalent resistance of a set of resistors connected in parallel is given by

$$
\frac{1}{R_{\text {eq }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\cdots
$$ simple rules called Kirchhoff's rules:

1. The sum of the currents entering any junction must equal the sum of the curember leaving that junction.
2. The sum of the potential differences across the elements around any closed-cincie loop must be zero.
The first rule is a statement of conservation of charge; the second rule is equivalenite a statement of conservation of energy.

When a resistor is traversed in the direction of the current, the change in potential, al across the resistor is $-I R$. If a resistor is traversed in the direction opposite the curmen $\Delta V=+I R$.

If a source of emf is traversed in the direction of the emf (negative to positive) the change in potential is $+\boldsymbol{\varepsilon}$. If it is traversed opposite the emf (positive to negative), the chanle in potential is $\boldsymbol{-} \boldsymbol{\varepsilon}$.

If a capacitor is charged with a battery of $\operatorname{emf} \boldsymbol{\mathcal { E }}$ through a resistance R, the charge 00 the capacitor and the current in the circuit vary in time according to the expressions

$$
\begin{aligned}
& q(t)=Q\left[1-e^{-t / R C}\right] \\
& I(t)=\frac{\varepsilon}{R} e^{-t / R C}
\end{aligned}
$$

where $Q=C \mathcal{E}$ is the maximum charge on the capacitor. The product $R C$ is called the time constant of the circuit.

If a charged capacitor is discharged through a resistance R, the charge and curtol decrease exponentially in time according to the expressions

$$
\begin{aligned}
& q(t)=Q e^{-t / R C} \\
& I(t)=I_{0} e^{-t / R C}
\end{aligned}
$$

where $I_{0}=Q / R C$ is the initial current in the circuit and Q is the initial charge on the et pacitor.

CONCEPTUAL QUESTIONS

1. In an analogy between automobile traffic flow and electrical current, what would correspond to the charge Q ? What would correspond to the current I ?
2. What factors affect the resistance of a conductor?
3.

Two wires A and B of circular cross section are made of the same metal and have equal lengths, but the resistance of wire A is three times greater than that of wire B. What is the ratio of their cross-sectional areas? How do their radii compare?
4. Use the atomic theory of matter to explain why the row tance of a material should increase as its temperature creases.
5. Explain how a current can persist in a superconductor thity out any applied voltage.
6. What would happen to the drift velocity of the electrowis a wire and to the current in the wire if the electrons co move freely without resistance through the wire?
arh a metal, why does it
7. If charges flow very slowly through a metal, vin
require several hours for a light to come on when you throw a switch?
8. If you were to design an electric heater using Nichrome wire as the heating element, what parameters of the wire could you vary to meet a specific power output, such as 1000 W ?
9. Car batteries are often rated in ampere-hours. Does this designate the amount of current, power, energy, or charge that can be drawn from the battery?
10. How would you connect resistors so that the equivalent resistance is larger than the individual resistances? Give an example involving two or three resistors.
11. How would you connect resistors so that the equivalent resistance is smaller than the individual resistances? Give an example involving two or three resistors.
12. Why is it possible for a bird to sit on a high-voltage wire -without being electrocuted?
13. A "short circuit" is a circuit containing a path of very low resistance in parallel with some other part of the circuit. Discuss the effect of a short circuit on the portion of the circuit it parallels. Use a lamp with a frayed line cord as an ex ample.
14. A series circuit consists of three identical lamps connected to a battery, as in Figure Q21.14. When the switch S is closed, what happens (a) to the intensities of lamps A and B; (h) to the intensity of lamp C ; (c) to the current in the circul: and (d) to the voltage drop across the three lamps? (c) Does the power dissipated in the circuit increase, dea 15 se , or remain the same?

Figure Q21.14
15. Two lightbulbs both operate from 110 V , but one has a power rating of 25 W and the other of 100 W . Which bulb has the higher resistance? Which bulb carries the greater current?
6. If electrical power is transmitted over long distances, the
resistance of the wires becomes significant. Why? Which
mode of transmission would result in less energy loss-high
Current and low voltage or low current and high voltage?
Discuss.
17. Two sets of Christmas tree lights are available. For set A, when one bulb is removed, the remaining bulbs remain illuminated. For set B, when one bulb is removed, the remaining bulbs do not operate. Explain the difference in wiring for the two sets.
18. Are the two headlights on a car wired in series or in parallel? How can you tell?
19. A ski resort consists of a few chair lifts and several interconnected downhill runs on the side of a mountain, with a lodge at the bottom. The lifts are analogous to batteries and the runs are analogous to resistors. Sketch how two runs can be in series. Sketch how three runs can be in parallel. Sketch a junction of one lift and two runs. One of the skiers is carrying an altimeter. State Kirchhoff's junction rule and Kirchhoff's loop rule for ski resorts.
20. In Figure Q21.20, describe what happens to the lightbulb after the switch is closed. Assume the capacitor has a large capacitance and is initially uncharged, and assume that the light illuminates when connected directly across the battery terminals.

Figure Q21.20
21. Figure Q21.21 shows a series connection of three lamps, all rated at 120 V , with power ratings of $60 \mathrm{~W}, 75 \mathrm{~W}$, and

Figure Q21.21 (Henry Leap and Jim Lehman)

200 W . Why do the intensities of the lamps differ? Which lamp has the greatest resistance? How would their intensities differ if they were connected in parallel?
22. A student claims that a second lightbulb in series is bright than the first, because the first bulb uses up som

PROBLEMS

Section 21.1 Electric Current

1. In a particular cathode ray tube, the measured beam current is $30.0 \mu \mathrm{~A}$. How many electrons strike the tube screen every 40.0 s?
2. A teapot with a surface area of $700 \mathrm{~cm}^{2}$ is to be silver plated. It is attached to the negative electrode of an electrolytic cell containing silver nitrate $\left(\mathrm{Ag}^{+} \mathrm{NO}_{3}{ }^{-}\right)$. If the cell is powered by a $12.0-\mathrm{V}$ battery and has a resistance of 1.80Ω, how long does it take to build up a $0.133-\mathrm{mm}$ layer of silver on the teapot? (Density of silver $=10.5 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$.)
3. Suppose that the current through a conductor decreases exponentially with time according to $I(t)=I_{0} e^{-t / \tau}$, where I_{0} is the initial current (at $t=0$), and τ is a constant having dimensions of time. Consider a fixed observation point within the conductor. (a) How much charge passes this point between $t=0$ and $t=\tau$? (b) How much charge passes this point between $t=0$ and $t=10 \pi$? (c) How much charge passes this point between $t=0$ and $t=\infty$?
4. A Van de Graaff generator produces a beam of $2.00-\mathrm{MeV}$ deuterons, which are heavy hydrogen nuclei containing a proton and a neutron. (a) If the beam current is $10.0 \mu \mathrm{~A}$, how far apart are the deuterons? (b) Is their electrostatic repulsion a factor of beam stability? Explain.
5. An aluminum wire has cross-sectional area $4.00 \times 10^{-6} \mathrm{~m}^{2}$ and carries a current of 5.00 A . Find the drift speed of the electrons in the wire. The density of aluminum is $2.70 \mathrm{~g} / \mathrm{cm}^{3}$. (Assume one electron is supplied by each atom.)

Section 21.2 Resistance and Ohm's Law

6. A lightbulb has a resistance of 240Ω when operating at a voltage of 120 V . What is the current through the lightbulb?
7. A $0.900-\mathrm{V}$ potential difference is maintained across a $1.50-\mathrm{m}$ length of tungsten wire that has a cross-sectional area of $0.600 \mathrm{~mm}^{2}$. What is the current in the wire?
8. Suppose that you wish to fabricate a uniform wire out of 1.00 g of copper. If the wire is to have a resistance of $R=$ 0.500Ω, and all of the copper is to be used, what will be (a) the length and (b) the diameter of this wire?
9. A $12.0-\Omega$ metal wire is cut into three equal pieces that are then connected side by side to form a new wire the length of which is equal to one third the original length. What is the resistance of this new wire?
10. (a) Make an order-ot-magnitude estimate of the reivitenct between the ends of a rubber band. (b) Make an orderer magnitude estimate of the resistance between the heas and "tails" sides of a penny. In each case state what quane ties you take as data and the values you measure or estinn for them. (c) Don't try this at home, but each would current of what order of magnitude if it were comnetere across a $120-\mathrm{V}$ power supply?
11. While traveling through Death Valley on a day when ib temperature is $58.0^{\circ} \mathrm{C}$, Bill Hiker finds that a certain rolte applied to a copper wire produces a current of 1.00 A .8 then travels to Antarctica and applies the same volagel the same wire. What current does he register there if it temperature is $-88.0^{\circ} \mathrm{C}$? Assume no change in the mite shape and size.
12. An aluminum rod has a resistance of 1.234Ω at $20.0^{\circ} \mathrm{C}$ Cet culate the resistance of the rod at $120^{\circ} \mathrm{C}$ by accounting ${ }^{60}$ the changes in both the resistivity and the dimensionsofter rod.
13. A certain lightbulb has a tungsten filament with a resitant of 19.0Ω when cold and 140Ω when hot. Assume thr Equation 21.13 can be used over the large temperaure range involved here, and find the temperature of the fill ment when hot. Assume an initial temperature of $20.0^{\circ} \mathrm{C}$.
14. A carbon wire and a Nichrome wire are connected in sene If the combination has a resistance of $10.0 \mathrm{k} \Omega$ at $0^{\circ} \mathrm{C}$, whil is the resistance of each wire at $0^{\circ} \mathrm{C}$ so that the resistanced the combination does not change with temperature?

Section 21.4 A Model for Electrical Conduction

15. If the drift velocity of free electrons in a copper wird $7.84 \times 10^{-4} \mathrm{~m} / \mathrm{s}$, calculate the electric field in the ductor.
16. If the current carried by a conductor is doubled, what the pens to the (a) charge carrier density? (b) current densio (c) electron drift velocity? (d) average time between ald sions?

Section 21.5 Electrical Energy and Power

17. A toaster is rated at 600 W when connected to source. What current does the toaster carry, and what resistance?
18. I a generator electric installation, a turbine delivers 1500 hp to energy ind current will the generator deliver at and difference of 2000 V ?
is the required resistance of an immersion heater that will increase the temperature of 1.50 kg of water from $10.0^{\circ} \mathrm{C}$ to $50.0^{\circ} \mathrm{C}$ in 10.0 min while operating at 110 V ?
19. What is the required resistance of an immersion heater that will increase the temperature of a mass m of water from T_{1} to T_{2} in a time interval Δt while operating at a voltage ΔV ? 1. Suppose that a voltage surge produces 140 V for a moment. By what percentage will the power output of a $120-\mathrm{V}$, 100-W lightbulb increase assuming its resistance does not change?
20. A coil of Nichrome wire is 25.0 m long. The wire has a diameter of 0.400 mm and is at $20.0^{\circ} \mathrm{C}$. If it carries a current of 0.500 A , what are (a) the electric field intensity in the wire, and (b) the power dissipated in it? (c) If the temperature is increased to $340^{\circ} \mathrm{C}$ and the voltage across the wire remains constant, what is the power dissipated?
21. Batteries are rated in terms of ampere hours (A•h), where a battery that can produce a current of 2.00 A for 3.00 h is rated at $6.00 \mathrm{~A} \cdot \mathrm{~h}$. (a) What is the total energy, in kilowatt hours, stored in a $12.0-\mathrm{V}$ battery rated at $55.0 \mathrm{~A} \cdot \mathrm{~h}$? (b) At $\$ 0.0600$ per kilowatt hour, what is the value of the electricity produced by this battery?

Section 21.6 Sources of emf

24. (a) What is the current in a $5.60-\Omega$ resistor connected to a bettery that has a $0.200-\Omega$ internal resistance if the terminal valuge of the battery is 10.0 V ? (b) What is the emf of the battery?
25. A ttery has an emf of 15.0 V . The terminal voltage of the busery is 11.6 V when it is delivering 20.0 W of power to an external load resistor R. (a) What is the value of R ? What is the internal resistance of the battery?
26. Tw $1.50-\mathrm{V}$ batteries-with their positive terminals in the same direction-are inserted in series into the barrel of a ilashlight. One battery has an internal resistance of 0.255Ω, the other an internal resistance of 0.153Ω. When the switch is closed, a current of 600 mA occurs in the lamp. (a) What is the lamp's resistance? (b) What fraction of the power dissipated is dissipated in the batteries?

Section 21.7 Resistors in Series and in Parallel

27. A television repairperson needs a $100-\Omega$ resistor to repair a malfunctioning set. She is temporarily out of resistors of this value. All she has in her toolbox are a $500-\Omega$ resistor and two $250-\Omega$ resistors. How can the desired resistance be obtained from the resistors on hand?
(a) Find the equivalent resistance between points a and b in Figure P21.28. (b) If a potential difference of 34.0 V is

Figure P21.28
applied between points a and b, calculate the current in each resistor.
29. Consider the circuit shown in Figure P21.29. Find (a) the current in the $20.0-\Omega$ resistor and (b) the potential difference between points a and b.

Figure P21.29
30. A lightbulb marked " 75 W [at] 120 V " is screwed into a socket at one end of a long extension cord in which each of the two conductors has resistance 0.800Ω. The other end of the extension cord is plugged into a $120-\mathrm{V}$ outlet. Draw a circuit diagram and find the actual power of the bulb in this circuit.
31. Three $100-\Omega$ resistors are connected, as shown in Figure P21.31. The maximum power that can safely be dissipated in any one resistor is 25.0 W . (a) What is the maximum voltage that can be applied to the terminals a and b ? (b) For the voltage determined in part (a), what is the power dissipation in each resistor? What is the total power dissipation?

Figure P21.31
32. Four copper wires of equal length are connected in series. Their cross-sectional areas are $1.00 \mathrm{~cm}^{2}, 2.00 \mathrm{~cm}^{2}$,
$3.00 \mathrm{~cm}^{2}$, and $5.00 \mathrm{~cm}^{2}$. If a voltage of 120 V is applied to the arrangement, determine the voltage across the $2.00-\mathrm{cm}^{2}$ wire.

Section 21.8 Kirchhoff's Rules and Simple DC Circuits

(Note: The currents are not necessarily in the directions shown for some circuits.)
33. Determine the current in each branch of the circuit in Figure P21.33.

Figure P21.33
34. In Figure P21.33, show how to add just enough ammeters to measure every different current that is flowing. Show how to add just enough voltmeters to measure the potential difference across each resistor and across each battery.
35. The circuit considered in problem 33 and drawn in Figure P21.33 is connected for two minutes. (a) Find the energy converted by each battery. (b) Find the energy converted by each resistor. (c) Find the total energy converted by the circuit.
36. The ammeter in Figure 21.36 reads 2.00 A. Find I_{1}, I_{2}, and $\boldsymbol{\varepsilon}$.

Figure P21.36
37. Using Kirchhoff's rules, (a) find the current in each
in Figure P21.37. (b) Find the potential differen in Figure P21.37. (b) Find the potential differencece bof
points c and f. Which point is at the higher potention

Figure P21.37

Section $21.9 \quad R C$ Circuits

38. A $2.00 \times 10^{-3} \mu \mathrm{~F}$ capacitor with an initial change $5.10 \mu \mathrm{C}$ is discharged through a $1.30 \mathrm{k} \Omega$ rocic (a) Calculate the current through the resistor $9.00 \mu \mathrm{med}$ the resistor is connected across the terminals of the pacitor. (b) What charge remains on the caperict after $8.00 \mu \mathrm{~s}$? (c) What is the maximum current in the sistor?Consider a series $R C$ circuit (Fig. 21.25) for whith ? $1.00 \mathrm{M} \Omega, C=5.00 \mu \mathrm{~F}$, and $\boldsymbol{\mathcal { E }}=30.0 \mathrm{~V}$. Find (a) the constant of the circuit and (b) the maximum chargeni capacitor after the switch is closed. (c) If the switchisdos at $t=0$, find the current in the resistor 10.0 slater.
39. In the circuit of Figure P21.40, the switch S lias be open for a long time. It is then suddenly closed. Deterié the time constant (a) before the switch is cload (b) after the switch is closed. (c) If the switch is doxed $t=0 \mathrm{~s}$, determine the current through it as a function time.

Figure P21.40
The circuit in Figure P21.41 has been connected ford time. (a) What is the voltage across the capacior? (a) (a) battery is disconnected, how long does it take? to discharge to one tenth of its initial volugce?

Figure P21.41

Additional Problems

42. One lightbulb is marked " 25 W 120 V " and another ${ }^{1} 100 \mathrm{~W} 120 \mathrm{~V}$ " to mean that each converts that respective bower when plugged into a constant $120-\mathrm{V}$ potential difference. (a) Find the resistance of each. (b) In what time will 1.00 C pass through the dim bulb? How is this charge different on its exit versus its entry? (c) In what time will 1.00 J pass through the dim bulb? How is this energy different on its exit versus its entry? (d) Find the cost of running the dim bulb continuously for 30.0 days if the electric company sells its product at $\$ 0.0700$ per kWh . What physical quantity does the electric company sell? What is its price for one SI unit of this quantity?
43. A high-voltage transmission line of diameter 2.00 cm and length 200 km carries a steady current of 1000 A . If the condurtor is a wire made of copper with a free charge density 08.00×10^{28} electrons $/ \mathrm{m}^{3}$, how long does it take one electr in to travel the full length of the cable?
44. A figh-voltage transmission line carries 1000 A starting at 70 kV for a distance of 100 miles. If the resistance in the ". \quad is $0.500 \Omega / \mathrm{mi}$, what is the power loss due to resistive lo es?
45. A opper cable is to be designed to carry a current of ${ }^{30}$ A with a power loss of only $2.00 \mathrm{~W} / \mathrm{m}$. What is the re$q u$ ed radius of the copper cable?
46. Fow 1.50-V AA batteries in series are used to power a transit or radio. If the batteries can move a charge of 240 C betre being depleted, how long will they last if the radio har a resistance of 200Ω ?
47. A battery has emf 9.20 V and internal resistance 1.20Ω.
(a) What resistance across the battery will dissipate heat en-
ergy from it at a rate of 12.8 W ? (b) 21.2 W ?
A $10.0-\mu \mathrm{F}$ capacitor is charged by a $10.0-\mathrm{V}$ battery through a resistance R. The capacitor reaches a potential difference of 4.00 V in a time 3.00 s after charging begins. Find R.
48. An electric heater is rated at 1500 W , a toaster at 750 W ,
and an electric grill at 1000 W . The three appliances are connected to a common 120 -V circuit. (a) How much current does each draw? (b) Is a circuit fused at 25.0 A sufficient in this situation? Explain.
A more general definition of the temperature coefficient of resistivity is

$$
\alpha=\frac{1}{\rho} \frac{d \rho}{d T}
$$

where ρ is the resistivity at temperature T. (a) Assuming that α is constant, show that

$$
\rho=\rho_{0} e^{\alpha\left(T-T_{0}\right)}
$$

where ρ_{0} is the resistivity at temperature T_{0}. (b) Using the series expansion ($e^{x} \approx 1+x ; x \ll 1$), show that the resistivity is given approximately by the expression $\rho=$ $\rho_{0}\left[1+\alpha\left(T-T_{0}\right)\right]$ for $\alpha\left(T-T_{0}\right) \ll 1$.
51. An experiment is conducted to measure the electrical resistivity of Nichrome in the form of wires with different lengths and cross-sectional areas. For one set of measurements, a student uses \#30-gauge wire, which has a cross-sectional area of $7.3 \times 10^{-8} \mathrm{~m}^{2}$. The voltage across the wire and the current in the wire are measured with a voltmeter and ammeter, respectively. For each of the measurements given in the table below taken on wires of three different lengths, calculate the resistance of the wires and the corresponding values of the resistivity. What is the average value of the resistivity, and how does it compare with the value given in Table 21.1?

$\ell(\mathbf{m})$	$\boldsymbol{\Delta V}(\mathbf{V})$	$\boldsymbol{I}(\mathbf{A})$	$\boldsymbol{R}(\boldsymbol{\Omega})$	$\boldsymbol{\rho}(\boldsymbol{\Omega} \cdot \mathbf{m})$
0.54	5.22	0.500		
1.028	5.82	0.276		
1.543	5.94	0.187		

52. A battery is used to charge a capacitor through a resistor, as in Figure 21.25. Show that in the process of charging the capacitor, half of the energy supplied by the battery is dissipated as heat in the resistor and half is stored in the capacitor.
53. A straight cylindrical wire lying along the x axis has length ℓ and diameter d. It is made of a material described by Ohm's law with resistivity ρ. Assume that potential V_{0} is maintained at $x=0$, and $V=0$ at $x=\ell$. In terms of ℓ, d, V_{0}, ρ, and physical constants, derive expressions for: (a) the electric field in the wire; (b) the resistance of the wire; (c) the electric current in the wire; and (d) the current density in the wire. Express vectors in vector notation. (e) Prove that $\mathbf{E}=\rho \mathbf{J}$.

Spreadsheet Problems

S1. Spreadsheet 21.1 calculates the average annual lighting cost per bulb for fluorescent and incandescent bulbs and the average yearly savings realized with fluorescent bulbs. It also graphs the average annual lighting cost per bulb versus the cost of electrical energy. (a) Suppose that a fluorescent bulb costs $\$ 5$, lasts for 5000 h , consumes 40 W of power, but provides the light intensity of a $100-\mathrm{W}$ incandescent bulb. Assume that a $100-\mathrm{W}$ incandescent bulb is on at all times and that energy costs 8.3 cents per kWh . How much does a con-
sumer save each year by switching to fluorescent bulbs? (b) Check with your local electric company for their current rates, and find the cost of bulbs in your area. Would it pay you to switch to fluorescent bulbs? (c) Vary the parameters for bulbs of different wattages and reexamine the annual savings.
S2. The current-voltage characteristic curve for a semiconductor diode as a function of temperature T is given by

$$
I=I_{0}\left(e^{e \Delta V / k_{\mathrm{B}} T}-1\right)
$$

where e is the charge on the electron, k_{B} is Boltzmann's constant, ΔV is the applied voltage, and T is the absolute temperature. Set up a spreadsheet to calculate I and $R=\Delta V / I$ for $\Delta V=0.40 \mathrm{~V}$ to $\Delta V=0.60 \mathrm{~V}$ in increments of 0.05 V . Assume $I_{0}=1.0 \mathrm{nA}$. Plot R versus ΔV for $T=280 \mathrm{~K}, 300 \mathrm{~K}$, and 320 K .
S3. The application of Kirchhoff's rules to a dc circuit leads to a set of n linear equations in n unknowns. It is very tedious to solve these algebraically if $n>3$. The purpose of this problem is to solve for the currents in a moderately complex circuit using matrix operations on a spreadsheet. You can solve equations very easily this way, and you can also readily explore the consequences of changing the values of the circuit parameters. (a) Consider the circuit in Figure S21.3. Assume the four unknown currents are in the directions shown.

- Apply Kirchhoff's rules to get four independent equations for the four unknown currents $I_{i}, i=1,2,3$, and 4.
- Write these equations in matrix form $\mathbf{A I}=\mathbf{B}$, that is,

$$
\sum_{j=1}^{4} A_{i j} I_{j}=B_{i} \quad i=1,2,3,4
$$

The solution is $\mathbf{I}=\mathbf{A}^{-1} \mathbf{B}$, where \mathbf{A}^{-1} is the inverye,
trix of \mathbf{A}.

- Set $R_{1}=2 \Omega, R_{2}=4 \Omega, R_{3}=6 \Omega, R_{4}=8 \Omega_{\text {, }}$
$3 \mathrm{~V}, \varepsilon_{2}=9 \mathrm{~V}$, and $\varepsilon_{3}=12 \mathrm{~V}$.
- Enter the matrix \mathbf{A} into your spreadsheet, onev cell. Use the matrix inversion operation of the spene sheet to calculate \mathbf{A}^{-1}.
- Find the currents by using the matrix multiplicatin eration of the spreadsheet to calculate $I=A^{-1} B$,
(b) Change the sign of ε_{3}, and repeat the calculatio part (a). This is equivalent to changing the polaritu of (c) Set $\boldsymbol{\varepsilon}_{1}=\boldsymbol{\varepsilon}_{2}=0$ and repeat the calculations in pain For these values, the circuit can be solved using sinim series-parallel rules. Compare your results using both no ods. (d) Investigate any other cases of interest. For examet see how the currents change if you vary R_{4}.

Figure S21.3

ANSWERS TO CONCEPTUAL PROBLEMS

1. A voltage is not something that "surges" through a completed circuit. A voltage is a potential difference that is applied across a device or a circuit. What goes through the circuit is current. Thus, it would be more correct to say, "1 ampere of electricity surges through the victim's body." Although this current would have disastrous results on the human body, a value of 1 (ampere) doesn't sound as exciting for a newspaper article as 10000 (volts). Another possibility is to write, " 10000 volts of electricity were applied across the victim's body," which still doesn't sound quite as exciting!
2. The length of the line cord will double in this event. This would tend to increase the resistance of the line cord. But the doubling of the radius of the line cord results in the cross-sectional area increasing by a factor of 4 . This would
reduce the resistance more than the doubling of lengu creases it. The net result is a decrease in resistance. The effect will occur for the lightbulb filament. The lowed is sistance will result in more current flowing througn ament, causing it to glow more brightly.
3. The bulb filaments are cold when the lamp is first silio on, hence they have a lower resistance and draw mort rent than when they are hot. The increased current a
heat the filament and destroy it.
4. The gravitational force pulling the electrons to the of a piece of metal is much smaller than the elecres pulsion pushing the electrons apart. Thus, hey suld uted throughout the metal. The concept of charge on the surface of a metal is true for a metal with charge. The number of free electrons in a piec
the same as the number of positive crystal lattice ions- the metal has zero net charge. The total amount of energy delivered by the battery will be less than E. Recall that a battery can be considered to be an deal, resistanceless battery in series with the internal resistance. When charging, the energy delivered to the battery includes the energy necessary to charge the ideal battery, plus the energy that goes into raising the temperature of the battery due to "joule heating" in the internal resistance. This latter energy is not available during the discharge of the battery, During discharge, part of the reduced available energy again transforms into internal energy in the internal resistance, further reducing the available energy below E.
The starter in the automobile draws a relatively large current from the battery. This large current causes a significant voltage drop across the internal resistance of the battery. As a result, the terminal voltage of the battery is reduced, and the headlights dim accordingly.
An electrical device has a given resistance. Thus, when it is attached to a power source with a known potential difference, a definite current will be drawn. The device can be lakeled with both the voltage and the current. Batteries, howeve, can be applied to a number of devices. Each device will hav a different resistance, so the current from the battery wil sary with the device. As a result, only the voltage of the bartay can be specified.
5. Connecting batteries in parallel does not increase the emf. A high-current device connected to batteries in parallel can draw current from both batteries. Thus, connecting the batteries in parallel does increase the possible current output, and, therefore, the possible power output.
6. As you add more lightbulbs in series, the overall resistance of the circuit is increasing. Thus, the current through the bulbs will decrease. This decrease in current will result in a decrease in power transferred from the battery. As a result, the battery lifetime will increase. The whole string will be dimmer than the original lightbulb. As the current drops, the terminal voltage across the battery will become closer and closer to the battery emf.

As you add more lightbulbs in parallel, the overall resistance of the circuit is decreasing. The current through each bulb remains nearly the same (until the battery starts to get hot). Each new bulb will be nearly as bright as the original lightbulb. The current leaving the battery will increase with the addition of each bulb. This increase in current will result in an increase in power transferred from the battery. As a result, the battery lifetime will decrease. As the current rises, the terminal voltage across the battery will drop further below the battery emf.

ISBN ロ－ロ3－ロ2045？－？

[^0]: David Madison/Tony Stone Images

[^1]: Courtesy of Central Scientific Company

[^2]: The electrical energy supplied to a resistor appears in the form of thermal energy in the
 istor.

