
A Mobility-Aware File System for Partially
Connected Operation

Dane Dwyer Vaduvur Bharghavan

Coordinated Science Laboratory
Univers i ty of Illinois at U r b a n a - C h a m p a i g n

(d w y e r , b h a r g h a v) @crhc. u i u c . edu

A b s t r a c t

The advent of affordable off-the-shelf wide-
area wireless networking solutions for portable
computers will result in partial (or intermittent)
connectivity becoming the common networking
mode for mobile users. This paper presents the
design of PFS, a mobility-aware file system spe-
cially designed for partially connected operation.

PFS supports the extreme modes of full con-
nection and disconnection gracefully, but unlike
other mobile file systems, it also provides an in-
terrace for mobility-aware applications to direct
the file system in its caching and consistency de-
cisions in order to fully exploit intermittent con-
nectivity. Using PFS, it is possible for an appli-
cation to maintain consistency on only the criti-
cal portions of its data files. Since PFS provides
adaptation at the file system level, even unaware
applications can 'act' mobile-aware as a result of
the transparent adaptation provided by PFS.

1 I n t r o d u c t i o n

Due to the increasing number of commercially
available local and wide area wireless network-
ing technologies (e.g. Ardis, RAM, CDPD, Met-
ricom, RangeLan2, Wavelan), mobility and net-
work connectivity are no longer mutually exclu-
sive. Since we expect partial (or intermittent)
connectivity at bandwidths anywhere from Kbps

to Mbps to be the most common networking
mode, there is a critical need for efficient da ta
access mechanisms over variable quality of ser-
vice networks [1].

A mobility-aware network file system is an im-
por tant component of any mobile computing en-
vironment. Since the storage capacity of most
portable computers is much less than the typical
file server (or even desktop computer for that
matter) , there will always be some subset of a
user's files present on the portable. Hand copy-
ing of files between the portable and server leads
to inconsistencies and inefficiency when impor-
taut files are missing during disconnection. Also,
since the portable spends a lot of t ime on the
road, files may be lost due to breakdown or even
theft. Having access to remote files while on the
road, as long as it is done in an efficient manner,
is a great convenience for the mobile user.

State-of-the-art mobile file systems typically
assume two extreme modes of operat ion -
full network connection to a high bandwidth
wired network (when the portable is docked
to a network access point), or disconnec-
tion [4][6][11][13]. When in fully connected
mode, the file system hoards (or predictively
caches) files which the user needs during discon-
nected operation. When disconnected, the file
system reads from, and writes to, the hoarded
copy of the file. Two problems arise as a con-
sequence: (a) a critical file may not have been
hoarded and may stall the work of the user in

24

Adobe - Exhibit 1017, page 24f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

disconnected mode, and (b) files may be inconsis-
tent upon reconnection due to concurrent writes
to the hoarded copy and the backbone file system
copy. Neither of these problems can be prevented
(or even solved satisfactorily) because commu-
nication is precluded when disconnected. Given
that wireless wide area communication is becom-
ing possible from almost anywhere, the imposi-
tion of disconnection as the common untethered
mode will be artificial. While recent work has
recognized the possible benefits of partial con-
nection [5][7][9][10][12], there exists no file sys-
tem which provides application-directed adapta-
tion to support partial connectivity as the com-
mon mode of operation.

This paper describes the design and implemen-
tation of the PRAYER [1] file system (PFS), a
mobility-aware file system which optimizes for
partial connectivity, and provides a generic inter-
face for application-directed adaptation to vary-
ing network quality of service (QoS). The advan-
tages of providing generic support for adaptation
in the file system are:

• T ransparency f o r u n a w a r e appl icat ions -

Since the file system handles the adaptation
on behalf of the application, it can provide
mechanisms for mobility support that are
transparent to the application.

• T ransparency o f c o n s i s t e n c y m e c h a n i s m s -

In PFS, applications provide the consistency
pol icy to the file system. The mechanisms
used to enforce the policy are completely
transparent to the application.

• R e u s e - The traditional approach of writ-
ing 'mobility-aware' applications can be ex-
pensive, since each application has its own
special adaptation routines (although one
could argue for adaptation libraries, but
these have limitations, too). For applica-
tions which primarily operate on data files,
a mobility-aware file system, with simple di-
rection from the application, can provide a
fine-grained caching and consistency proto-
col tailored to each application.

/ . f
~ . ~ ~I: Distributed File

~ / ~ ~ System server

PFS Server
Distributed File System client

Figure 1: Network Model for PFS.

Two disadvantages of providing adaptation
support within the file system are increased com-
plexity and limitations on the types of adapta-
tion possible. In the case of mobile users, the
performance of the remote file system is most af-
fected by the speed with which data can be sent
across the wireless link. Additional computation
on the server and client sides can usually be done
for free if it means less data will be transferred
over a slow link.

Clearly, there is only so much a file system
can know about the data files it stores. Because
of this, the file system cannot provide the opti-
mum adaptation for all types of applications. In
these cases, specialized mobility-aware applica-
tions should be used. However, we feel that a
wide range of applications could make exclusive
use of the file system for their adaptation needs.

In Section 2, we describe our overall mobile
computing model, and the role of the file system
in this model. Section 3 describes the techniques
used by PFS to support adaptation, Section 4
gives a few examples of how PFS can be used
to minimize wireless network traffic, and in Sec-
tion 5 we give some concluding remarks.

2 M o d e l

Figure 1 shows the networking model for PFS.
The significant entities are the portable com-

25

Adobe - Exhibit 1017, page 25f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

puter (PFS client), the home 1 computer (PFS
server), and the file server. We use NFS as
the backbone network file system, but any dis-
t r ibuted file system could be used. The home
computer mounts its shared directories from the
file server. The portable computer then caches
files from the home computer. Irrespective of the
network file system on the backbone, the goal
of PFS is to keep files consistent between the
home and the portable. This model is consider-
ably different from contemporary disconnected
file system models (e.g. Coda or Disconnected
AFS), where the portable client interacts directly
with the server. We have a three tier model,
with client-server interactions between the server
and the home, and between the home and the
portable. This means PFS can support any num-
ber of different backbone file systems, but also
precludes end-to-end consistency control. The
extra level of indirection enables us to implement
efficient application and QoS-dependent adap-
tive caching and consistency policies, resulting in
potentially major time and cost savings during
partial connection, while incurring a tolerable
overhead during full connection. It also restricts
the problem of concurrent read/write access be-
tween clients and the backbone file system. The
three tier model with an intermediate node for
data filtering is an increasingly common tech-
nique for providing resource adaptation [3][8].

Based on the above model, PFS provides the
following services to applications:

Support for a wide range of connectiv-
ity. Hoarding for disconnected operation,
and variable-granularity caching and consis-
tency for low-bandwidth operation.

Intelligent use of wireless bandwidth. The
necessary or modified port ions of an ap-
plications files are transparently transferred
across the wireless network.

1The 'home ' computer is basically a machine which
is designated as the mobile user 's PFS server (e.g. the
mobile users desktop workstat ion).

Support/or application-directed caching and
consistency policy. PFS provides an inter-
face for applications to impose a structure
on their files, and then require the file sys-
tem to keep parts of the file (records or
certain fields of all records) consistent with
the backbone file system. Depending on the
available network quality of service and cost
of network access, the application may dy-
namically change its consistency policy (e.g.
move from whole-file consistency to consis-
tency of critical fields in each record).

One key element of any mobile computing en-
vironment which supports dynamic adaptat ion
to varying QoS networks is recognizing when to
adapt. PFS relies on the existence of an un-
derlying system for notification of QoS changes.
When an application using PFS is notified of a
QoS change, it can decide whether to modify its
current caching and consistency policies.

In the next section we describe how PFS
takes advantage of the three tier model to
provide variable-granularity caching and consis-
tency control to applications.

3 Design of PFS

A block diagram of PFS is shown in Figure 2.
The entire system has been designed to oper-
ate as an application, rather than as part of
the system kernel. The PFS client listens for
remote read and write requests from applica-
tions at a well known Unix domain socket, and
forwards them to the PFS server based on the
level of file consistency desired by the applica-
tion, and the current connectivity of the mobile
user. Reads and writes are then cached within
the mobile user's local file system. This makes
PFS very portable to Unix like operating sys-
tems, and portable with slight modifications to
Windows 95 (no Unix domain sockets). A de-
tailed explanation of PFS is beyond the scope of
this paper, but can be found in [2].

26

Adobe - Exhibit 1017, page 26f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

~ - ~ L o a a l ~ ~ ' ~ L o a a l ~
File System i) ~ _ ~ S y s t e m s

PFS C l i e n t - - - - ~ P F S Server-~

Figure 2: Block diagram of PFS.

Adaptat ion support in PFS comes in two
forms - low-level (at the level of individual reads
and writes), and high-level (whole-file and record
level consistency control). The PFS client and
server provide support for low-level adaptation,
and special consistency control processes at the
client and server handle the high-level adapta-
tion using the low-level capabilities of PFS.

3.1 L o w - L e v e l A d a p t a t i o n S u p p o r t

To support adaptation to varying network
quality of service, PFS provides two I /O func-
tions - p r e a d () , and p w r i t e () . As can be seen
in Tables 1 and 2, these two functions have two
arguments in addition to those found in ordinary
r e a d () and w r i t e () system calls.

The lvl argument allows the application to
specify the importance of network access on an
individual read or write basis. For reads, this can
be READ_CONSISTENT, or READ_LOCAL.
Consistent reads are always sent to the server,
and local reads are always taken from the lo-
cal file cache. For writes, the consistency level

Table 1: The functionality of p r e a d () .

pread(fd , buf, len, Ivl, fb)

Operation:
The p read () call reads fen bytes from file
descriptor fd into buffer bur. The Ivl option
specifies the consistency level of the read
operation. For consistent reads, the fb pa-
rameter specifies the fallback behavior to
use when the server cannot be reached.

Level -- R E A D _ C O N S I S T E N T
Fallback Behavior:

ABORT: If unable to reach server, return
an error.

BLOCK: Block until server can again be
reached.

LOCAL: If unable to reach server, read
from local copy and return.

Level = R E A D _ L O C A L :
Read from the local copy and return.

can be WRITE_THROUGH, WRITE_BACK, or
WRITE_LOCAL. Write-through operations go
directly to the server, write-back operations pass
through an outgoing queue, and local writes just
go directly to the cache.

The fb argument specifies what PFS should
do in the event the server cannot be reached
when necessary. This fallback behavior gives an
application the ability to trade file consistency
for performance during intermittent connectiv-
ity. Not every application needs every byte of
data in their files to be accessible. In most in-
stances, using the previously cached data is good
enough.

To support access to remote files by applica-
tions which are unaware of PFS, we have built
a shared library which maps ordinary r e a d ()
and w r i t e () system calls into equivalent calls
to pread () and p w r i t e () . The default values
for consistency level and fallback behavior are
specified using environment variables, and the
library is force loaded at run time using the

27

Adobe - Exhibit 1017, page 27f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

LD_PRELOAD capability present on most Unix
operating systems.

3 .2 H i g h - L e v e l A d a p t a t i o n S u p p o r t

Sitting on top of the PFS client and server
processes are the consistency manager (CM)
and the consistency checker (CC) respectively.
These two processes work together to support
file hoarding and application-directed partial
file consistency through the p c o n s i s t e n c y () [2]
call. Table 3 details the functionalitY of
pconsistency().

Table 2: The functionality of p w r i t e () .

p w r i t e (f d , bur, len, Ivl, fb)
O p e r a t i o n :

The p w r i t e () call writes len bytes from
buffer bur to file descriptor fd. The lvl op-
tion specifies the consistency level of the
write operation. For consistent writes, the
fb parameter specifies the fallback behavior
to use when the server cannot be reached.

L e v e l - - W R I T E _ T H R O U G H

F a l l b a c k B e h a v i o r :
ABORT: Write to server or fail. If re-

mote write succeeds, write to lo-
cal cache and return.

BLOCK: Block until able to write to
server. If remote write succeeds,
write to local cache and return.

LOCAL: Write to server. Regardless of
results of remote write, write to
local cache and return.

L e v e l -- W R I T E _ B A C K :
Write to the cache copy, queue write for
sending to server, and return.

L e v e l -- W R I T E _ L O C A L :
Write to the cache copy and return.

The consistency management features of PFS
make use of da ta file semantics to support fine
grained caching and consistency. File format

"templates" are used to describe the s t ructure
of an application's data files. A template can
define fixed length records and fields by specify-
ing record and field lengths in bytes. For variable
length records, templates can specify record and
field boundaries using simple string matching to-
kens, or complex regular expressions. The reader
is referred to [2] for a more detailed description
of templates.

Using this structure, it is possible for the con-
sistency manager and checker to maintain con-
sistency on only the blocks or fields of an appli-
cation's critical data files, thus saving commu-
nication bandwidth and improving performance
over slow wireless links.

3.3 C o n f l i c t D e t e c t i o n a n d R e s o l u t i o n

When files cached on the portable are mod-
ified, the file system can either send updates
to the server immediately (for wri te- through re-
quests), or make the changes locally. When files
are shared, there is the possibility for two com-
pletely different versions of the same file to exist
- one on the portable, and one on the server.
PFS will always detect this kind of wr i te /wr i te
conflict and report it. PFS takes the position
that the server copy is always 'right, ' and will
only notify the PFS client side of the conflict.

Currently PFS does not resolve conflicts.
However, we envisage a more intelligent future
design which will not only detect, but also re-
solve conflicts, based on an approach similar to
Bayou [14].

In the next section, we give several examples
of how PFS Can be used to exploit partial con-
nectivity over low-bandwidth wireless links.

4 Using PFS for Adaptation

In this section we present a few examples of
how PFS can make use of da ta file semantics
to provide adaptat ion during periods of limited
network connectivity.

28

Adobe - Exhibit 1017, page 28f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

