VOLUME ONE PHYSICS
 FOURTH EDITION

ROBERT RESNICK

Professor of Physics
Rensselaer Polytechnic Institute

DAVID HALLIDAY

Professor of Physics, Emeritus
University of Pittsburgh

KENNETH S. KRANE

Professor of Physics
Oregon State University

JOHN WILEY \& SONS, INC.

Acquisitions Editor Clifford Mills
Marketing Manager Catherine Faduska
Production Manager Joe Ford
Production Supervisor Lucille Buonocore
Manufacturing Manager Lorraine Fumoso
Copy Editing Manager Deborah Herbert
Photo Researcher Jennifer Atkins
Photo Research Manager Stella Kupferberg
Illustration John Balbalis
Text Design Karin Gerdes Kincheloe
Cover Design Direction Karin Gerdes Kincheloe
Cover Design Lee Goldstein
Cover Illustration Roy Wiemann

Recognizing the importance of preserving what has been written, it is a policy of John Wiley \& Sons, Inc. to have books of enduring value published in the
United States printed on acid-free paper, and we exert our best efforts to that end.

Copyright © 1960, 1962, 1966, 1978, 1992, by John Wiley \& Sons, Inc.
All rights reserved. Published simultaneously in Canada.
Reproduction or translation of any part of this work beyond that permitted by Sections 107 and 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley \& Sons.

Library of Congress Cataloging-in-Publication Data

Halliday, David, 1916-
Physics / David Halliday, Robert Resnick, Kenneth S. Krane. -- 4th ed. p. cm.

Includes index.
ISBN 0-471-80458-4 (lib. bdg. : v. I)

1. Physics. I. Resnick, Robert, 1923- . II. Krane, Kenneth S.
III. Title.

QC21.2.H355 1992 91-35885
530--dc20
Printed and bound by Von Hoffmann Press, Inc.

IPR2020-01192

Apple EX1050 Page 3

CONTENTS

CHAPTER 1 MEASUREMENT 1
1-1 The Physical Quantities, Standards, and Units 1
1-2 The International System of Units 2
1-3 The Standard of Time 3
1-4 The Standard of Length 4
1-5 The Standard of Mass 7
1-6 Precision and Significant Figures 8
1-7 Dimensional Analysis 9
Questions and Problems 10
CHAPTER 2
MOTION IN ONE DIMENSION 15
2-1 Particle Kinematics 15
2-2 Descriptions of Motion 15
2-3 Average Velocity 17
2-4 Instantaneous Velocity 18
2-5 Accelerated Motion 21
2-6 Motion with Constant Acceleration 23
2-7 Freely Falling Bodies 25
2-8 Galileo and Free Fall (Optional) 26
2-9 Measuring the Free-Fall Acceleration (Optional) 27
Questions and Problems 28
CHAPTER 3 VECTORS 37
3-1 Vectors and Scalars 37
3-2 Adding Vectors: Graphical Method 38
3-3 Components of Vectors 39
3-4 Adding Vectors: Component Method 41
3-5 Multiplication of Vectors 43
3-6 Vector Laws in Physics 46
Questions and Problems 48
CHAPTER 4
MOTION IN TWO AND THREE DIMENSIONS 53
4-1 Position, Velocity, and Acceleration 53
4-2 Motion with Constant Acceleration 55
4-3 Projectile Motion 57
4-4 Uniform Circular Motion 60
4-5 Velocity and Acceleration Vectors in Circular Motion (Optional) 62
4-6 Relative Motion 64
Questions and Problems 67
CHAPTER 5 FORCE AND NEWTON'S LAWS 77
5-1 Classical Mechanics 77
5-2 Newton's First Law 78
5-3 Force 79
5-4 Mass 80
5-5 Newton's Second Law 81
5-6 Newton's Third Law 83
5-7 Units of Force 85
5-8 Weight and Mass 86
5-9 Measuring Forces 87
5-10 Applications of Newton's Laws 88
5-11 More Applications of Newton's Laws 92
Questions and Problems 94
CHAPTER 6
PARTICLE DYNAMICS 103
6-1 Force Laws 103
6-2 Frictional Forces 104
6-3 The Dynamics of Uniform Circular Motion 108
6-4 Equations of Motion: Constant and Nonconstant Forces 111
6-5 Time-Dependent Forces: Analytical Methods 113
6-6 Time-Dependent Forces: Numerical Methods (Optional) 114
6-7 Drag Forces and the Motion of Projectiles 115
6-8 Noninertial Frames and Pseudoforces (Optional) 117
6-9 Limitations of Newton's Laws (Optional) 119
Questions and Problems 121
CHAPTER 7
WORK AND ENERGY 131
7-1 Work Done by a Constant Force 131
7-2 Work Done by a Variable Force: One- Dimensional Case 134
7-3 Work Done by a Variable Force: Two- Dimensional Case (Optional) 137
7-4 Kinetic Energy and the Work-Energy Theorem 138
7-5 Power 140
7-6 Reference Frames (Optional) 141
7-7 Kinetic Energy at High Speed (Optional) 143
Questions and Problems 144
CHAPTER 8
CONSERVATION OF ENERGY 151
8-1 Conservative Forces 151
8-2 Potential Energy 154
8-3 One-Dimensional Conservative Systems 155
8-4 One-Dimensional Conservative Systems: The Complete Solution 158
8-5 Two- and Three-Dimensional Conservative Systems (Optional) 161
8-6 Conservation of Energy in a System of Particles 162
8-7 Mass and Energy (Optional) 165
8-8 Quantization of Energy (Optional) 168
Questions and Problems 169
CHAPTER 9
SYSTEMS OF PARTICLES 179
9-1 Two-Particle Systems 179
9-2 Many-Particle Systems 181
9-3 Center of Mass of Solid Objects 185
9-4 Linear Momentum of a Particle 188
9-5 Linear Momentum of a System of Particles 189
9-6 Conservation of Linear Momentum 189
9-7 Work and Energy in a System of Particles (Optional) 192
9-8 Systems of Variable Mass (Optional) 195
Questions and Problems 199
CHAPTER 10
COLLISIONS 207
10-1 What Is a Collision? 207
10-2 Impulse and Momentum 209
10-3 Conservation of Momentum During Collisions 210
10-4 Collisions in One Dimension 211
10-5 Two-Dimensional Collisions 215
10-6 Center-of-Mass Reference Frame 217
10-7 Spontaneous Decay Processes (Optional) 221
Questions and Problems 222
CHAPTER 11 ROTATIONAL KINEMATICS 231
11-1 Rotational Motion 231
11-2 The Rotational Variables 232
11-3 Rotation with Constant Angular Acceleration 234
11-4 Rotational Quantities as Vectors 235
11-5 Relationships Between Linear and Angular Variables: Scalar Form 237
11-6 Relationships Between Linear and Angular Variables: Vector Form (Optional) 239
Questions and Problems 240
CHAPTER 12
ROTATIONAL DYNAMICS 245
12-1 Rotational Dynamics: An Overview 245
12-2 Kinetic Energy of Rotation and Rotational Inertia 246
12-3 Rotational Inertia of Solid Bodies 249
12-4 Torque Acting on a Particle 251
12-5 Rotational Dynamics of a Rigid Body 253
12-6 Combined Rotational and Translational Motion 257
Questions and Problems 262
CHAPTER 13 ANGULAR MOMENTUM 271
13-1 Angular Momentum of a Particle 271
13-2 Systems of Particles 273
13-3 Angular Momentum and Angular Velocity 275
13-4 Conservation of Angular Momentum 279
13-5 The Spinning Top 284
13-6 Quantization of Angular Momentum (Optional) 285
13-7 Rotational Dynamics: A Review 286
Questions and Problems 287
CHAPTER 14 EQUILIBRIUM OF RIGID BODIES 295
14-1 Conditions of Equilibrium 295
14-2 Center of Gravity 296
14-3 Examples of Equilibrium 298
14-4 Stable, Unstable, and Neutral Equilibrium of Rigid Bodies in a Gravitational Field 303
14-5 Elasticity 304
Questions and Problems 307
CHAPTER 15 OSCILLATIONS 315
15-1 Oscillating Systems 315
15-2 The Simple Harmonic Oscillator 317
15-3 Simple Harmonic Motion 318
15-4 Energy Considerations in Simple Harmonic Motion 320
15-5 Applications of Simple Harmonic Motion 322
15-6 Simple Harmonic Motion and Uniform Circular Motion 326
15-7 Combinations of Harmonic Motions 328
15-8 Damped Harmonic Motion (Optional) 329
15-9 Forced Oscillations and Resonance (Optional) 330
15-10 Two-Body Oscillations (Optional) 332
Questions and Problems 333
CHAPTER 16 GRAVITATION 343
16-1 Gravitation from the Ancients to Kepler 343
16-2 Newton and the Law of Universal Gravitation 344
16-3 The Gravitational Constant G 346
16-4 Gravity Near the Earth's Surface 348
16-5 Gravitational Effect of a Spherical Distribution of Matter (Optional) 350
16-6 Gravitational Potential Energy 352
16-7 The Gravitational Field and Potential (Optional) 355
16-8 The Motions of Planets and Satellites 356
16-9 Universal Gravitation 361
16-10 The General Theory of Relativity (Optional) 363
Questions and Problems 366
CHAPTER 17
FLUID STATICS 377
17-1 Fluids and Solids 377
17-2 Pressure and Density 378
17-3 Variation of Pressure in a Fluid at Rest 380
17-4 Pascal's Principle and Archimedes' Principle 383
17-5 Measurement of Pressure 386
17-6 Surface Tension (Optional) 388
Questions and Problems 390
CHAPTER 18
FLUID DYNAMICS 397
18-1 General Concepts of Fluid Flow 397
18-2 Streamlines and the Equation of Continuity 398
18-3 Bernoulli's Equation 400
18-4 Applications of Bernoulli's Equation and the Equation of Continuity 403
18-5 Fields of Flow (Optional) 405
18-6 Viscosity, Turbulence, and Chaotic Flow (Optional) 407
Questions and Problems 411

x Contents

CHAPTER 19		
19-1	Mechanical Waves	417
19-2	Types of Waves	418
19-3	Traveling Waves	419
19-4	Wave Speed	42
19-5	The Wave Equation (Optional)	42
19-6	Power and Intensity in Wave Motion	42
19-7	The Principle of Superposition	42
19-8	Interference of Waves	430
19-9	Standing Waves	432
19-10	Resonance	436
	Questions and Problems	438
CHAPTER 20		
	UND WAVES	445
20-1	The Speed of Sound	445
	Traveling Longitudinal Waves	447
20-3	Power and Intensity of Sound Waves	449
20-4	Standing Longitudinal Waves	450
20-5	Vibrating Systems and Sources of Sound	453
20-6	Beats	455
20-7	The Doppler Effect	457
	Questions and Problems	460
CHAPTER 21 THE SPECIAL THEORY OF RELATIVITY		
21-1	Troubles with Classical Physics	467
21-2	The Postulates of Special Relativity	469
21-3	Consequences of Einstein's Postulates	470
21-4	The Lorentz Transformation	473
21-5	Measuring the Space-Time Coordinates of an Event	476
21-6	The Transformation of Velocities	476
21-7	Consequences of the Lorentz Transformation	478
21-8	Relativistic Momentum	482
21-9	Relativistic Energy	483
21-10	The Common Sense of Special Relativity	486
	Questions and Problems	487

20-5 Vibrating Systems and Sources of Sound 453
20-6 Beats457
Questions and Problems 460
CHAPTER 22
TEMPERATURE 493
22-1 Macroscopic and Microscopic Descriptions 493
22-2 Temperature and Thermal Equilibrium 494
22-3 Measuring Temperature 495
22-4 The Ideal Gas Temperature Scale 498
22-5 Thermal Expansion 500
Questions and Problems 503
CHAPTER 23
KINETIC THEORY AND THE IDEAL GAS 509
23-1 Macroscopic Properties of a Gas and the Ideal Gas Law 509
23-2 The Ideal Gas: A Model 511
23-3 Kinetic Calculation of the Pressure 512
23-4 Kinetic Interpretation of the Temperature 514
23-5 Work Done on an Ideal Gas 515
23-6 The Internal Energy of an Ideal Gas 519
23-7 Intermolecular Forces (Optional) 521
23-8 The Van der Waals Equation of State (Optional) 522
Questions and Problems 524
CHAPTER 24
STATISTICAL MECHANICS 529
24-1 Statistical Distributions and Mean Values 529
24-2 Mean Free Path 531
24-3 The Distribution of Molecular Speeds 535
24-4 The Distribution of Energies 538
24-5 Brownian Motion 539
24-6 Quantum Statistical Distributions (Optional) 541
Questions and Problems 544
CHAPTER 25
HEAT AND THE FIRST LAW OF THERMODYNAMICS 547
25-1 Heat: Energy in Transit 547
25-2 Heat Capacity and Specific Heat 548
25-3 Heat Capacities of Solids 550
25-4 Heat Capacities of an Ideal Gas 552
25-5 The First Law of Thermodynamics 555
25-6 Applications of the First Law 558
25-7 The Transfer of Heat 561
Questions and Problems 564
CHAPTER 26
ENTROPY AND THE SECOND
LAW OF THERMODYNAMICS 571
26-1 Reversible and Irreversible Processes 571
26-2 Heat Engines and the Second Law 573
26-3 Refrigerators and the Second Law 575
26-4 The Carnot Cycle 576
26-5 The Thermodynamic Temperature Scale 580
26-6 Entropy: Reversible Processes 581
26-7 Entropy: Irreversible Processes 583
26-8 Entropy and the Second Law 585
26-9 Entropy and Probability 586
Questions and Problems 588

APPENDICES

A The International System of Units (SI) A-1
B Some Fundamental Constants of Physics A-3
C Some Astronomical Data A-4
D Properties of the Elements A-5
E Periodic Table of the Elements A-7
F Elementary Particles A-8
G Conversion Factors A-10
H Mathematical Formulas A-14
I Computer Programs A-16
J Nobel Prizes in Physics A-20
ANSWERS TO ODD NUMBERED PROBLEMS A-24
PHOTO CREDITS P-1
INDEX

CHAPTER 3

VECTORS

Many of the laws of physics involve not only algebraic relationships among quantities, but geometrical relationships as well. For example, picture a spinning top that rotates rapidly about its axis, while the axis of rotation itself rotates slowly about the vertical. This geometrical relationship is complicated to represent by algebraic equations. However, if we use vectors to represent the physical variables, a single equation is sufficient to explain the behavior. Vectors permit such economy of expression in a great variety of physical laws. Sometimes the vector form of a physical law permits us to see relationships or symmetries that would otherwise be obscured by a cumbersome algebraic equation.
In this chapter we explore some of the properties and uses of vectors and we introduce the mathematical operations that involve vectors. In the process you will learn that familiar symbols from arithmetic, such as,+- , and \times, have different meanings when applied to vectors.

3-1 VECTORS AND SCALARS

A change of position of a particle is called a displacement. $\$$ If a particle moves from position A to position B (Fig. 1a), we can represent its displacement by drawing a line from A to B. The direction of displacement can be shown by putting an arrowhead at B indicating that the displacement was from A to B. The path of the particle need not necessarily be a straight line from A to B; the arrow represents only the net effect of the motion, not the actual motion.

In Fig. $1 b$, for example, we plot an actual path followed by a particle from A to B. The path is not the same as the displacement $A B$. If we were to take snapshots of the particle when it was at A and, later, when it was at some intermediate position P, we could obtain the displacement vector $A P$, representing the net effect of the motion during this interval, even though we would not know the actual path taken between these points. Furthermore, a displacement such as $A^{\prime} B^{\prime}$ (Fig. 1a), which is parallel to $A B$, similarly directed, and equal in length to $A B$, represents the same change in position as $A B$. We make no distinction between these two displacements. A displacement is therefore characterized by a length and a direction.

Figure 1 Displacement vectors. (a) Vectors $A B$ and $A^{\prime} B^{\prime}$ are identical, since they have the same length and point in the same direction. (b) The actual path of the particle in moving from A to B may be the curve shown; the displacement is the vector $A B$. At the intermediate point P, the displacement is the vector $A P$. (c) After displacement $A B$, the particle undergoes another displacement $B C$. The net effect of the two displacements is the vector $A C$.

In a similar way, we can represent a subsequent displacement from B to C (Fig. 1c). The net effect of the two displacements is the same as a displacement from A to C. We speak then of $A C$ as the sum or resultant of the displacements $A B$ and $B C$. Notice that this sum is not an algebraic sum and that a number alone cannot uniquely specify it.

Quantities that behave like displacements are called vectors. (The word vector means carrier in Latin. Biologists use the term vector to mean an insect, animal, or other agent that carries a cause of disease from one organism to another.) Vectors, then, are quantities that have both magnitude and direction and that follow certain rules of combination, which we describe below. The displacement vector is a convenient prototype. Some other physical quantities that are represented by vectors are force, velocity, acceleration, electric field, and magnetic field. Many of the laws of physics can be expressed in compact form by using vectors, and derivations involving these laws are often greatly simplified if we do so.

Quantities that can be specified completely by a number and unit and that therefore have magnitude only are called scalars. Some physical quantities that are scalars are mass, length, time, density, energy, and temperature. Scalars can be manipulated by the rules of ordinary algebra.

3-2 ADDING VECTORS: GRAPHICAL METHOD

To represent a vector on a diagram we draw an arrow. We choose the length of the arrow to be proportional to the magnitude of the vector (that is, we choose a scale), and we choose the direction of the arrow to be the direction of the vector, with the arrowhead giving the sense of the direction. For example, a displacement of 42 m in a northeast direction would be represented on a scale of 1 cm per 10 m by an arrow 4.2 cm long, drawn at an angle of 45° above a line pointing east with the arrowhead at the top right extreme (Fig. 2). A vector is usually represented in printing by a boldface symbol such as d. In handwriting we usually put an arrow above the symbol to denote a vector quantity, such as $\overrightarrow{\mathrm{d}}$.

Figure 2 The vector d represents a displacement of magnitude 42 m (on a scale in which $10 \mathrm{~m}=1 \mathrm{~cm}$) in a direction 45° north of east.

Figure 3 The vector sum $\mathbf{a}+\mathbf{b}=\mathbf{s}$. Compare with Fig. Ic.

Often we are interested only in the magnitude (or length) of the vector and not in its direction. The magnitude of \mathbf{d} is sometimes written as $|\mathbf{d}|$; more frequently we represent the magnitude alone by the italic letter symbol d. The boldface symbol is meant to signify both properties of the vector, magnitude and direction. When handwritten, the magnitude of the vector is represented by the symbol without the arrow.
Consider now Fig. 3 in which we have redrawn and relabeled the vectors of Fig. 1c. The relation among these vectors can be written

$$
\begin{equation*}
\mathbf{a}+\mathbf{b}=\mathbf{s} \tag{1}
\end{equation*}
$$

The rules to be followed in performing this vector addition graphically are these: (1) On a diagram drawn to scale lay out the vector a with its proper direction in the coordinate system. (2) Draw b to the same scale with its tail at the head of \mathbf{a}, making sure that \mathbf{b} has its own proper direction (generally different from the direction of a). (3) Draw a line from the tail of a to the head of \mathbf{b} to construct the vector sum \mathbf{s}. If the vectors were representing displacements, then \mathbf{s} would be a displacement equivalent in length and direction to the successive displacements a and b. This procedure can be generalized to obtain the sum of any number of vectors.
Since vectors differ from ordinary numbers, we expect different rules for their manipulation. The symbol " + " in Eq. 1 has a meaning different from its meaning in arithmetic or scalar algebra. It tells us to carry out a different set of operations.
By careful inspection of Fig. 4 we can deduce two important properties of vector addition:

$$
\begin{equation*}
\mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a} \quad \text { (commutative law) } \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{d}+(\mathbf{e}+\mathbf{f})=(\mathbf{d}+\mathbf{e})+\mathbf{f} \quad \text { (associative law) } \tag{3}
\end{equation*}
$$

Figure 4 (a) The commutative law for vector addition, which states that $\mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a}$. (b) The associative law, which states that $\mathbf{d}+(\mathbf{e}+\mathbf{f})=(\mathbf{d}+\mathbf{e})+\mathbf{f}$.

Figure 5 The vector difference $\mathbf{a}-\mathbf{b}=\mathbf{a}+(-\mathbf{b})$.

These laws assert that it makes no difference in what order or in what grouping we add vectors; the sum is the same. In this respect, vector addition and scalar addition follow the same rules.

By inspection of Fig. 4b, you will see how the graphical method is used to find the sum of more than two vectors, in this case $\mathbf{d}+\mathbf{e}+\mathbf{f}$. Each succeeding vector is placed with its tail at the head of the previous one. The vector representing the sum is then drawn from the tail of the first vector to the head of the last one.

The operation of subtraction can be included in our vector algebra by defining the negative of a vector to be another vector of equal magnitude but opposite direction. Then

$$
\begin{equation*}
\mathbf{a}-\mathbf{b}=\mathbf{a}+(-\mathbf{b}) \tag{4}
\end{equation*}
$$

as shown in Fig. 5. Here -b means a vector with the same magnitude as \mathbf{b} but pointing in the opposite direction. It follows from Eq. 4 that $\mathbf{a}-\mathbf{a}=\mathbf{a}+(-\mathbf{a})=0$.

Remember that, although we have used displacements to illustrate these operations, the rules apply to all vector quantities, such as velocities and forces.

3-3 COMPONENTS OF VECTORS

Even though we defined vector addition with the graphical method, it is not very useful for vectors in three dimensions. Often it is even inconvenient for the two-dimensional case. Another way of adding vectors is the analytical method, involving the resolution of a vector into components with respect to a particular coordinate system.

Figure $6 a$ shows a vector a whose tail has been placed at the origin of a rectangular coordinate system. If we draw perpendicular lines from the head of a to the axes, the quantities a_{x} and a_{y} so formed are called the (Cartesian) components of the vector a. The process is called resolving a vector into its components. The vector a is completely and uniquely specified by these components; given a_{x} and a_{y}, we could immediately reconstruct the vector a.

The components of a vector can be positive, negative, or zero. Figure $6 b$ shows a vector \mathbf{b} that has $b_{x}<0$ and $b_{y}>0$.

Figure 6 (a) The vector a has component a_{x} in the x direction and component a_{y} in the y direction. (b) The vector \mathbf{b} has a negative x component.

The components a_{x} and a_{y} in Fig. $6 a$ are readily found from

$$
\begin{equation*}
a_{x}=a \cos \phi \quad \text { and } \quad a_{y}=a \sin \phi \tag{5}
\end{equation*}
$$

where ϕ is the angle that the vector a makes with the positive x axis, measured counterclockwise from this axis. As shown in Fig. 6, the algebraic signs of the components of a vector depend on the quadrant in which the angle ϕ lies. For example, when ϕ is between 90° and 180°, as in Fig. $6 b$, the vector always has a negative x component and a positive y component. The components of a vector behave like scalar quantities because, in any particular coordinate system, only a number with an algebraic sign is needed to specify them.

Once a vector is resolved into its components, the components themselves can be used to specify the vector. Instead of the two numbers a (magnitude of the vector) and ϕ (direction of the vector relative to the x axis), we now have the two numbers a_{x} and a_{y}. We can pass back and forth between the description of a vector in terms of its components (a_{x} and a_{y}) and the equivalent description in terms of magnitude and direction (a and ϕ). To obtain a and ϕ from a_{x} and a_{y}, we note from Fig. $6 a$ that

$$
\begin{equation*}
a=\sqrt{a_{x}^{2}+a_{y}^{2}} \quad \vec{a}=\left\langle a_{x}, a_{y}\right\rangle \tag{6a}
\end{equation*}
$$

and

$$
\begin{equation*}
\tan \phi=a_{y} / a_{x} \tag{6b}
\end{equation*}
$$

The quadrant in which ϕ lies is determined from the signs of a_{x} and a_{y}.

In three dimensions the process works similarly: just draw perpendicular lines from the tip of the vector to the three coordinate axes x, y, and z. Figure 7 shows one way

Figure 7 A vector a in three dimensions with components a_{x}, a_{y}, and a_{z}. The x and y components are conveniently found by first drawing the $x y$ projection of a. The angle θ between a and the z axis is called the polar angle. The angle ϕ in the $x y$ plane between the projection of a and the x axis is called the azimuthal angle. The azimuthal angle ϕ has the same meaning here as it does in Fig. 6.
this is often drawn to make the components easier to recognize; the component (sometimes called a projection) of a in the $x y$ plane is first drawn, and then from its tip we can find the individual components a_{x} and a_{y}. We would obtain exactly the same x and y components if we worked directly with the vector a instead of with its $x y$ projection, but the drawing would not be as clear. From the geometry of Fig. 7, we can deduce the components of the vector a to be

$$
\begin{align*}
& a_{x}=a \sin \theta \cos \phi, \quad a_{y}=a \sin \theta \sin \phi, \quad \text { and } \\
& a_{z}=a \cos \theta . \tag{7}
\end{align*}
$$

When resolving a vector into components it is sometimes useful to introduce a vector of unit length in a given direction. Often it is convenient to draw unit vectors along the particular coordinate axes chosen. In the rectangular coordinate system the special symbols \mathbf{i}, \mathbf{j}, and \mathbf{k} are usually used for unit vectors in the positive x, y, and z directions, respectively (see Fig. 8). In handwritten notation, unit vectors are often indicated with a circumflex or "hat," such as $\hat{\mathrm{i}}, \hat{\jmath}$, and $\hat{\mathrm{k}}$.

Note that \mathbf{i}, \mathbf{j}, and \mathbf{k} need not be located at the origin. Like all vectors, they can be translated anywhere in the coordinate space as long as their directions with respect to the coordinate axes are not changed.

In general, a vector a in a three-dimensional coordinate system can be written in terms of its components and the unit vectors as

$$
\begin{align*}
& a=x i+2 j+2 \\
& \mathbf{a}=a_{x} \mathbf{i}+a_{y} \mathbf{j}+a_{z} \mathbf{k} \tag{8a}
\end{align*}
$$

or in two dimensions as

$$
\begin{equation*}
\mathbf{a}=a_{x} \mathbf{i}+a_{y} \mathbf{j} \tag{8b}
\end{equation*}
$$

Figure 8 The unit vectors \mathbf{i}, \mathbf{j}, and \mathbf{k} are used to specify the positive x, y, and z axes, respectively. Each vector is dimensionless and has a length of unity.

The vector relation Eq. $8 b$ is equivalent to the scalar relations of Eq. 6. Each equation relates the vector (\mathbf{a}, or a and ϕ) to its components (a_{x} and a_{y}). Sometimes we call quantities such as $a_{x} \mathbf{i}$ and $a_{y} \mathbf{j}$ in Eq. $8 b$ the vector components of a. Figure 9 shows the vectors \mathbf{a} and \mathbf{b} of Fig. 6 drawn in terms of their vector components. Many physical problems involving vectors can be simplified by replacing a vector by its vector components. That is, the

Figure 9 The vector components of \mathbf{a} and \mathbf{b}. In any physical situation that involves vectors, we get the same outcome whether we use the vector itself, such as a, or its two vector components, $a_{x} \mathbf{i}$ and $a_{y} \mathbf{j}$. The effect of the single vector \mathbf{a} is equivalent to the net effect of the two vectors $a_{x} \mathbf{i}$ and $a_{y} \mathbf{j}$. When we have replaced a vector with its vector components, it is helpful to draw a double line through the original vector, as shown; this helps us to remember not to consider the original vector any more.
action of a quantity represented as a vector can be replaced by the actions of its vector components. When necessary, we refer explicitly to vector components, while the word component alone continues to refer to the scalar quantities a_{x} and a_{y}.

Other Coordinate Systems (Optional)

Many other varieties of coordinate systems may be appropriate for analyzing certain physical situations. For example, the twodimensional $x y$ coordinate system may be changed in either of two ways: (1) by moving the origin to another location in the $x y$ plane, which is called a translation of the coordinate system, or (2) by pivoting the $x y$ axes about the fixed origin, which is a rotation of the coordinate system. In both of these operations we keep the vector fixed and move the coordinate axes. Figure 10 shows the effect of these two changes. In the case shown in Fig. $10 a$, the components are unchanged, but in the case shown in Fig. 10b, the components do change.
When the physical situation we are analyzing has certain symmetries, it may be advantageous to choose a different coordinate system for resolving a vector into its components. For instance, we might choose the radial and tangential directions of plane polar coordinates, shown in Fig. 11. In this case, we find the components on the coordinate axes just as we did in the ordinary $x y z$ system: we draw a perpendicular from the tip of the vector to each coordinate axis.

Figure 10 (a) The origin O of the coordinate system of Fig. $6 a$ has been moved or translated to the new position O^{\prime}. The x and y components of a are identical to the x^{\prime} and y^{\prime} components. (b) The x and y axes have been rotated through the angle β. The x^{\prime} and y^{\prime} components are different from the x and y components (note that the y^{\prime} component is now smaller than the x^{\prime} component, while in Fig. $6 a$ the y component was greater than the x component), but the vector a is unchanged. By what angle should we rotate the coordinate axes to make the y^{\prime} component zero?

Figure 11 The vector a is resolved into its radial and tangential components. These components will have important applications when we consider circular motion in Chapters 4 and 11 .

The three-dimensional extensions of Fig. 11 (spherical polar or cylindrical polar coordinates) in many important cases are far superior to Cartesian coordinate systems for the analysis of physical problems. For example, the gravitational force exerted by the Earth on distant objects has the symmetry of a sphere, and thus its properties are most simply described in spherical polar coordinates. The magnetic force exerted by a long straight current-carrying wire has the symmetry of a cylinder and is therefore most simply described in cylindrical polar coordinates.

3-4 ADDING VECTORS: COMPONENT METHOD

Now that we have shown how to resolve vectors into their components, we can consider the addition of vectors by an analytic method.

Let \mathbf{s} be the sum of the vectors \mathbf{a} and \mathbf{b}, or

$$
\begin{equation*}
\mathbf{s}=\mathbf{a}+\mathbf{b} \tag{9}
\end{equation*}
$$

If two vectors, such as \mathbf{s} and $\mathbf{a}+\mathbf{b}$, are to be equal, they must have the same magnitude and must point in the same direction. This can only happen if their corresponding components are equal. We stress this important conclusion:

* Two vectors are equal to each other only if their corresponding components are equal.

For the vectors of Eq. 9, we can write

$$
\begin{align*}
s_{x} \mathbf{i}+s_{y} \mathbf{j} & =a_{x} \mathbf{i}+a_{y} \mathbf{j}+b_{x} \mathbf{i}+b_{y} \mathbf{j} \\
& =\left(a_{x}+b_{x}\right) \mathbf{i}+\left(a_{y}+b_{y}\right) \mathbf{j} . \tag{10}
\end{align*}
$$

Equating the x components on both sides of Eq. 10 gives

$$
\begin{equation*}
s_{x}=a_{x}+b_{x} \tag{11a}
\end{equation*}
$$

and equating the y components gives

$$
\begin{equation*}
s_{y}=a_{y}+b_{y} . \tag{11b}
\end{equation*}
$$

These two algebraic equations, taken together, are equivalent to the single vector relation of Eq. 9 .

Instead of specifying the components of \mathbf{s}, we can give its length and direction:

$$
\begin{equation*}
s=\sqrt{s_{x}^{2}+s_{y}^{2}}=\sqrt{\left(a_{x}+b_{x}\right)^{2}+\left(a_{y}+b_{y}\right)^{2}} \tag{12a}
\end{equation*}
$$

and

$$
\begin{equation*}
\tan \phi=\frac{s_{y}}{s_{x}}=\frac{a_{y}+b_{y}}{a_{x}+b_{x}} \cdot=\frac{Y_{1}+\bigcup_{2}}{X_{1}+X_{2}} . \tag{12b}
\end{equation*}
$$

Here is the rule for adding vectors by this method. (1) Resolve each vector into its components, keeping track of the algebraic sign of each component. (2) Add the components for each coordinate axis, taking the algebraic sign into account. (3) The sums so obtained are the components of the sum vector. Once we know the components of the sum vector, we can easily reconstruct that vector in space.

The advantage of the method of breaking up vectors into components, rather than adding directly with the use of suitable trigonometric relations, is that we always deal with right triangles and thus simplify the calculations.

In adding vectors by the component method, the choice of coordinate axes determines how simple the process will be. Sometimes the components of the vectors with respect to a particular set of axes are known at the start, so that the choice of axes is obvious. Other times a judicious choice of axes can greatly simplify the job of resolution of the vectors into components. For example, the axes can be oriented so that at least one of the vectors lies parallel to an axis; the components of that vector along the other axes will then be zero.

Sample Problem 1 An airplane travels 209 km on a straight course making an angle of 22.5° east of due north. How far north and how far east did the plane travel from its starting point?

Solution We choose the positive x direction to be east and the positive y direction to be north. Next, we draw a displacement vector (Fig. 12) from the origin (starting point), making an angle of 22.5° with the y axis (north) inclined along the positive x direction (east). The length of the vector represents a magnitude of 209 km . If we call this vector d, then d_{x} gives the distance traveled east of the starting point and d_{y} gives the distance traveled north of the starting point. We have

$$
\phi=90.0^{\circ}-22.5^{\circ}=67.5^{\circ},
$$

so that (see Eqs. 5)

$$
\begin{aligned}
& d_{x}=d \cos \phi=(209 \mathrm{~km})\left(\cos 67.5^{\circ}\right)=80.0 \mathrm{~km}, \\
& d_{y}=d \sin \phi=(209 \mathrm{~km})\left(\sin 67.5^{\circ}\right)=193 \mathrm{~km} .
\end{aligned}
$$

and

We have used Cartesian components in this sample problem, even though the Earth's surface is curved and therefore nonCartesian. For example, a plane starting on the equator and flying northeast will eventually be due north of its starting point,

Figure 12 Sample Problem 1.
which could never occur in a flat coordinate system. Similarly, two planes starting at different points on the equator and flying due north at the same speed along parallel paths will eventually collide at the north pole. This also would be impossible in a flat coordinate system. If we restrict our calculations to distances that are small with respect to the radius of the Earth $(6400 \mathrm{~km})$, we can safely use Cartesian coordinates for analyzing displacements on the Earth's surface.

Sample Problem 2 An automobile travels due east on a level road for 32 km . It then turns due north at an intersection and travels 47 km before stopping. Find the resultant displacement of the car.

Solution We choose a coordinate system fixed with respect to the Earth, with the positive x direction pointing east and the positive y direction pointing north. The two successive displacements, \mathbf{a} and \mathbf{b}, are then drawn as shown in Fig. 13. The resultant displacement \mathbf{s} is obtained from $\mathbf{s}=\mathbf{a}+\mathbf{b}$. Since \mathbf{b} has no x component and a has no y component, we obtain (see Eqs. 11)

$$
\begin{aligned}
& s_{x}=a_{x}+b_{x}=32 \mathrm{~km}+0=32 \mathrm{~km} \\
& s_{y}=a_{y}+b_{y}=0+47 \mathrm{~km}=47 \mathrm{~km} .
\end{aligned}
$$

Figure 13 Sample Problem 2.

