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CHAPTER 3

Many ofthe laws ofphysics involve not only algebraic relationships
among quantities, but geometrical relationships as well. For example, picture a

spinning top that rotates rapidly about its axis, while the axis ofrotation itself rotates
slowly about the vertical. This geometrical relationship is complicated to represent by

algebraic equations. However, if we use vectors to represent the physical

variables. a single equation is sufiicient to explain the behavior. Vectors permit such

economy ofexpression in a great variety ofphysical laws. Sometimes the vectorform
ofa physical law permits us to see relationships or symmetries that would otherwise

be obscured by a cumbersome algebraic equation.

In this chapter we explore some ofthe properties and uses ofvectors and we introduce the
mathematical operations that involve vectors In the process you will learn thatfamiliar

symbolsfrom arithmetic, such as +, —, and X, have diflerent meanings
when applied to vectors.

 

3-1 VECTORS AND SCALARS 

., A change ofposition ofa particle is called a displacement. 1
If a particle moves from position A to position B (Fig. la),

we can represent its displacement by drawing a line from
A to B. The direction of displacement can be shown by

putting an arrowhead at B indicating that the displace-
ment was from A to B. The path of the particle need not

necessarily be a straight line from A to B; the arrow repre-

sents only the net efl‘ect of the motion, not the actual
motion.

In Fig. lb, for example, we plot an actual path followed
by a particle from A to B. The path is not the same as the

displacement AB. If we were to take snapshots of the

particle when it was at A and, later, when it was at some

intermediate position P, we could obtain the displace-

ment vector AP, representing the net effect of the motion

during this interval, even though we would not know the
actual path taken between these points. Furthermore, a

displacement such as A’B’ (Fig. la), which is parallel to
AB, similarly directed, and equal in length to AB, repre-
sents the same change in position as AB. We make no
distinction between these two displacements. A displace-

ment is therefore characterized by a length and a direc-
tion.

 

 

(a) (b) (C) 
 

Figure 1 Displacement vectors. (a) Vectors AB and A’B’ are
identical, since they have the same length and point in the
same direction. (b) The actual path of the particle in moving
from A to B may be the curve shown; the displacement is the
vector AB. At the intermediate point P, the displacement is
the vector AP. (c) After displacement AB, the particle under-
goes another displacement BC. The net efi‘ect of the two dis-
placements is the vector AC.

In a similar way, we can represent a subsequent dis-

placement from B to C (Fig. 1c). The net effect ofthe two

displacements is the same as a displacement from A to C.

We speak then of AC as the sum or resultant of the dis-
placements AB and BC. Notice that this sum is not an
algebraic sum and that a number alone cannot uniquely

specify it.

37
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38 Chapter3 Vectors

Quantities that behave like displacements are called
vectors. (The word vector means carrier in Latin. Biolo-

gists use the term vector to mean an insect, animal, or

other agent that carries a cause of disease from one orga-
nism to another.) Vectors, then, are quantities that have

both magnitude and direction and that follow certain

mles of combination, which we describe below. The dis-

placement vector is a convenient prototype. Some other

physical quantities that are represented by vectors are

force, velocity, acceleration, electric field, and magnetic

field. Many of the laws of physics can be expressed in

compact form by using vectors, and derivations involving
these laws are ofien greatly simplified if we do so.

Quantities that can be specified completely by a num-

berand unit and that therefore have magnitude only are
called scalars. Some physical quantities that are scalars

are mass, length, time, density, energy, and temperature.

Scalars can be manipulated by the rules of ordinary
algebra.

 

3-2 ADDING VECTORS:

GRAPHICAL METHOD 

To represent a vector on a diagram we draw an arrow. We

choose the length of the arrow to be proportional to the

magnitude of the vector (that is, we choose a scale), and
we choose the direction ofthe arrow to be the direction of

the vector, with the arrowhead giving the sense of the

direction. For example, a displacement of 42 m in a

northeast direction would be represented on a scale of

1 cm per 10 m by an arrow 4.2 cm long, drawn at an angle

of45 ° above a line pointing east with the arrowhead at the

top right extreme (Fig. 2). A vector is usually represented

in printing by a boldface symbol such as d. In handwriting

we usually put an arrow_.above the symbol to denote a
vector quantity, such as d.

45"\

\ E

Figure 2 The vector 1! represents a displacement of magni-
tude 42 m (on a scale in which 10 m = 1 cm) in a direction
45° north of east.

Figure 3 The vector sum it + b = 9. Compare with Fig. lc. I

Often we are interested only in the magnitude (or

length) of the vector and not in its direction. The magni-

tude of d is sometimes written as |d|; more frequently we

represent the magnitude alone by the italic letter symbol

d. The boldface symbol is meant to signify both properties

of the vector, magnitude and direction. When handwrit-

ten, the magnitude of the vector is represented by the

symbol without the arrow.

Consider now Fig. 3 in which we have redrawn and

relabeled the vectors of Fig. 1c. The relation among these
vectors can be written

a+b=s. (1)

The rules to be followed in performing this vector addi-

tion graphically are these: (1) On a diagram drawn to scale

lay out the vector 11 with its proper direction in the coordi-

nate system. (2) Draw b to the same scale with its tail at the

head ofa, making sure that b has its own proper direction

(generally different from the direction of a). (3) Draw a
line from the tail of a to the head of b to construct the

vector sum s. If the vectors were representing displace-
ments, then s would be a displacement equivalent in

length and direction to the successive displacements a and
b. This procedure can be generalized to obtain the sum of
any number of vectors.

Since vectors differ from ordinary numbers, we expect

different rules for their manipulation. The symbol “+” in

Eq. 1 has a meaning different from its meaning in arith-
metic or scalar algebra. It tells us to carry out a different
set of operations.

By careful inspection of Fig. 4 we can deduce two im-

portant properties of vector addition:

a + b = b + a (commutative law) (2)
and

d + (e + f) = (d + e) + f (associative law). (3)

 
Figure 4 (a) The commutative law for vector addition,
which states that a + h = b + a. (b) The associative law, which
statesthatd+(e+f)=(d+e)+f.

|PR2020-O1192

Apple EX105O Page 10

 



IPR2020-01192 
Apple EX1050 Page 11

 
 

Figure 5 The vector difference I - b a a + (— b).

These laws assert that it makes no difference in what order

or in what grouping we add vectors; the sum is the same.
In this respect, vector addition and scalar addition follow
the same rules.

By inspection ofFig. 4b, you will see how the graphical
method is used to find the sum of more than two vectors,

in this case (I + e + f. Each succeeding vector is placed
with its tail at the head of the previous one. The vector

representing the sum is then drawn from the tail of the
first vector to the head of the last one.

The operation of subtraction can be included in our

vector algebra by defining the negative of a vector to be

another vector ofequal magnitude but opposite direction.
Then

a—b=a+(-b) (4)

as shown in Fig. 5. Here — b means a vector with the same

magnitude as b but pointing in the opposite direction. It
follows from Eq. 4 that a - a = a + (-a) = 0.

Remember that, although we have used displacements

to illustrate these operations, the rules apply to all vector

quantities, such as velocities and forces.

 

3-3 COMPONENTS OF VECTORS 

Even though we defined vector addition with the graphi-

cal method, it is not very useful for vectors in three di-
mensions. Often it is even inconvenient for the two-di-

mensional case. Another way of adding vectors is the

analytical method, involving the resolution of a vector

into components with respect to a particular coordinate
system.

Figure 6a shows a vector a whose tail has been placed at

the origin of a rectangular coordinate system. If we draw

perpendicular lines from the head of a to the axes, the

quantitiesg, and ay so formed are called the (Cartesian)
\ components of the vector 3. The process is called resolving
a vector into its components. The vector u is completely
and uniquely specified by these components; given ax and

(1,, we could immediately reconstruct the vector a.
The components of a vector can be positive, negative,

or zero. Figure 6b shows a vector b that has b, < 0 and

b,>o.

Section 3-3 Components of Vector: 39

 
 

Figure 6 (a) The vector a has component a, in the x direc-

tion and component a, in the y direction. (b) The vector b has
a negative x component.

The components ax and a, in Fig. 6a are readily found
from

a, = a cos d) and a, = a sin (I), (5)

where (15 is the angle that the vector it makes with the
positive xaxis, measured counterclockwise from this axis.

As shown in Fig. 6, the algebraic signs ofthe components

of a vector depend on the quadrant in which the angle (1)

lies. For example, when ()5 is between 90° and 180°, as in

Fig. 6b, the vector always has a negative x component and
a positive y component. The components of a vector be-

have like scalar quantities because, in any particular coor-

dinate system, only a number with an algebraic sign is
needed to specify them.

Once a vector is resolved into its components, the com-

ponents themselves can be used to specify the vector.

Instead of the two numbers a (magnitude of the vector)

and (1) (direction of the vector relative to the x axis), we

now have the two numbers ax and a,.. We can pass back
and forth between the description of a vector in terms of

its components (ax and ay) and the equivalent description
in terms of magnitude and direction (a and (15). To obtain

a and (b from a, and (1,, we note from Fig. 6a that

a=¢ai+a§ 5"" ‘ “A (6“)
and

tan d) = ay/ax. (6b)

The quadrant in which d) lies is determined from the signs

of a, and ay.
In three dimensions the process works similarly: just

draw perpendicular lines from the tip of the vector to the

three coordinate axes x, y, and 2. Figure 7 shows one way
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40 Chapter3 Vectors

 
Figure 7 A vector u in three dimensions with components

0,, a” and a,. The x and y components are conveniently
found by first drawing the xy projection of a. The angle 6 be-
tween 3 and the z axis is called théjwlaWeFThe angle d)
in the xy plane between theprojection of a and the x axis is
called thea‘zirnuthal angle. The azimuthal angle ¢> has the
same meaning here as it does in Fig. 6.

this is ofien drawn to make the components easier to

recognize; the component (sometimes called a projection)

ofa in the xy plane is first drawn, and then from its tip we

can find the individual components a, and ay. We would
obtain exactly the same x and ycomponents ifwe worked

directly with the vector it instead ofwith its xy projection,

but the drawing would not be as clear. From the geometry

ofFig. 7, we can deduce the components ofthe vector :1 to
be

{a,=asin0<>os¢, a,=asin65ind>, and
l a, = 0 cos 0. 7 (7)

When resolving a vector into components it is some-

times useful to introduce a vector ofunit length in a given
direction. Often it is convenient to draw unit vectors

along the particular coordinate axes chosen. In the rectan-

gular coordinate system the special symbols i, j, and k are
usually used for unit vectors in the positive x, y, and 2

directions, respectively (see Fig. 8). In handwritten nota-
tion, unit vectors are often indicated with a circumflex or

“hat," such as i, j, and ii.
Note that i, j, and k need not be located at the origin.

Like all vectors, they can be translated anywhere in the
coordinate space as long as their directions with respect to

the coordinate axes are not changed.
In general, a vector u in a three-dimensional coordinate

system can be written in terms of its components and the

unit vectors as (\V H (g tt .

a = axi + ayj + azk, ‘ (8a)

or in two dimensions as

a = a,i + ayj. . (8b)

  

 
Figure 8 The unit vectors i, j, and k are used to specify the
positive x, y, and z axes, respectively. Each vector is dimen-
sionless and has a length of unity.

The vector relation Eq. 8b is equivalent to the scalar rela-

tions ofEq. 6. Each equation relates the vector (a, ora and

4)) to its components (a, and (1,). Sometimes we call

quantities such as axi and ayj in Eq. 8b the vector compo
nents of a. Figure 9 shows the vectors a and b of Fig. 6

drawn in terms of their vector components. Many physi-

cal problems involving vectors can be simplified by re-

placing a vector by its vector components. That is, the

I

 
 

Figure 9 The vector components of a and b. In any ph)’Sical
situation that involves vectors, we get the same outcome
whether we use the vector itself, such as a, or its two vector

components, axi and ayj. The effect of the single vector a is
equivalent to the net effect of the two vectors axi and ayj.
When we have replaced a vector with its vector components,

it is helpful to draw a double line through the original vector,
as shown; this helps us to remember not to consider the origl'
nal vector any more.
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action of a quantity represented as a vector can be re-

placed by the actions of its vector components. When

necessary, we refer explicitly to vector components, while
the word component alone continues to refer to the scalar

quantities a, and 61,.

Other Coordinate Systems (Optional)
Many other varieties of coordinate systems may be appropriate
for analyzing certain physical situations. For example, the two-

dimensional xy coordinate system may be changed in either of
two ways: (1) by moving the origin to another location in the xy

plane, which is called a translation of the coordinate system, or
(2) by pivoting the xy axes about the fixed origin, which is a
rotation ofthe coordinate system. In both ofthese operations we
keep the vector fixed and move the coordinate axes. Figure 10

shows the effect of these two changes. In the case shown in Fig.
10a, the components are unchanged, but in the case shown in

Fig. 10b, the components do change.
When the physical situation we are analyzing has certain sym-

metries, it may be advantageous to choose a different coordinate
system for resolving a vector into its components. For instance,
we might choose the radial and tangential directions of plane
polar coordinates, shown in Fig. l 1. In this case, we find the
components on the coordinate axesjust as we did in the ordinary
xyz system: we draw a perpendicular from the tip ofthe vector to
each coordinate axis.

 
 

Figure 10 (a) The origin 0 of the coordinate system of Fig.
(St: has been moved or translated to the new position 0’. The
x and y components of a are identical to the x’ and y’ compo
nents. (b) The x and y axes have been rotated through the
angle [3. The x’ and y’ components are different from the x
and y components (note that the y’ component is now smaller
than the x' component, while in Fig. 6a the y component was

greater than the x component), but the vector a is unchanged.

By what angle should we rotate the coordinate axes to make
the y’ component zero?

Section 3-4 Adding Vectors: Component Method 4]

 
 
 

 
 

 
Tangential /direction /

/ a
\  

Radial
direction
(r axis) 
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Figure l] The vector in is resolved into its radial and tangen-
tial components. These components will have important ap-
plications when we consider circular motion in Chapters 4
and l l.

The three-dimensional extensions of Fig. 1 1 (spherical polar
or cylindrical polar coordinates) in many important cases are far
superior to Cartesian coordinate systems for the analysis ofphys-
ical problems. For example, the gravitational force exerted by

the Earth on distant objects has the symmetry ofa sphere, and
thus its properties are most simply described in spherical polar
coordinates. The magnetic force exerted by a long straight
current—carrying wire has the symmetry of a cylinder and is
therefore most simply described in cylindrical polar coordi-
nates. I

 

3-4 ADDING VECTORS:

COMPONENT METHOD 

Now that we have shown how to resolve vectors into their

components, we can consider the addition of vectors by
an analytic method.

Let s be the sum of the vectors a and b, or

s=a+b. (9)

If two vectors, such as s and a + b, are to be equal, they

must have the same magnitude and must point in the

same direction. This can only happen iftheir correspond-

ing components are equal. We stress this important con-
clusion:

2* Two vectors are equal to each other only iftheir corre-
sponding components are equal.

For the vectors of Eq. 9, we can write

sxi + syj = axi + ayj + bxi + b,j
= (a, + bx)i + (a, + b,)j. (10)

Equating the x components on both sides ofEq. 10 gives

x=ax+bx, (11a)
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42 Chapter} Vectors

and equating the y components gives

sy=ay+b_,.. (llb)

These two algebraic equations. taken together. are equiva-
lent to the single vector relation of Eq. 9.

Instead of specifying the components ofs. we can give
its length and direction:

3 = 0.1+ 5}. = ital- + bx)2 + (ay + 1),)2 (12a)
and

=§£=_)._La'+b' ,‘l‘w‘
tanqS 3x flx'l'bx" . (121))

Here is the rule for adding vectors by this method.

(1) Resolve each vector into its components, keeping
track ofthe algebraic sign ofeach component. (2) Add the

components for each coordinate axis, taking the algebraic
sign into account. (3) The sums so obtained are the com-

ponents of the sum vector. Once we know the compo-
nents of the sum vector, we can easily reconstruct that
vector in space.

The advantage of the method of breaking up vectors
into components, rather than adding directly with the use
ofsuitable trigonometric relations, is that we always deal
with right triangles and thus simplify the calculations.

In adding vectors by the component method, the choice
ofcoordinate axes determines how simple the process will
be. Sometimes the components ofthe vectors with respect
to a particular set ofaxes are known at the start, so that the

choice of axes is obvious. Other times a judicious choice

of axes can greatly simplify the job of resolution of the
vectors into components. For example, the axes can be
oriented so that at least one ofthe vectors lies parallel to an

axis; the components of that vector along the other axes
will then be zero.

 

Sample Problem I An airplane travels 209 km on a straight
course making an angle of22.5 ° east ofdue north. How far north
and how far east did the plane travel from its starting point?

Solution We choose the positive x direction to be cast and the
positive y direction to be nonh. Next, we draw a displacement
vector (Fig. 12) from the origin (starting point), making an angle
of 22.5” with the y axis (north) inclined along the positive x
direction (east). The length of the vector represents a magnitude
of 209 km. If we call this vector d, then (I, gives the distance
traveled east of the starting point and (I, gives the distance trav-
eled north of the starting point. We have

(I) - 90.0” — 22.5" = 67.5“.

so that (see Eqs. 5)

d d, - dcos (b - (209 km) (cos 67.5”) -= 80.0 km.an

d,- dsin (b - (209 km) (sin 67.5‘) = I93 km.

We have used Cartesian components in this sample problem,
even though the Earth's surface is curved and therefore non-

Cartesian. For example. a plane starting on the equator and
flying northeast will eventually be due nonh ofits starting point.

'e

 
Figure l2 Sample Problem 1.

which could never occur in a flat coordinate system. Similarly,
two planes starting at different points on the equator and flying
due north at the same speed along parallel paths will eventually
collide at the north pole. This also would be impossible in a flat
coordinate system. If we restrict our calculations to distances
that are small with respect to the radius of the Earth (6400 km),
we can safely use Cartesian coordinates for analyzing displace-
ments on the Earth’s surface.

Sample Problem 2 An automobile travels due east on a level
road for 32 km. It then turns due north at an intersection and

travels 47 km before stopping. Find the resultant displacement
of the car.

Solution We choose a coordinate system fixed with respect to
the Earth, with the positive x direction pointing east and the
positive ydirection pointing north. The two successive displace-
ments, at and b, are then drawn as shown in Fig. 1 3. The resultant
displacement s is obtained from s = a + b. Since b has no x

component and a has no y component, we obtain (see Eqs. 11)

sx=ax+bx=32km+0=32km,

sy=ay+by=0+47 km=47km.

 
 

Figure 13 Sample Problem 2.
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