

Small and Thin $\pm 5 g$ iMEMS® Accelerometer

ADXL320

FEATURES

Small and thin

4 mm × 4 mm × 1.45 mm LFCSP package

2 mg resolution at 60 Hz

Wide supply voltage range: 2.4 V to 5.25 V

Low power: 350 μ A at V_s = 2.4 V (typ)

Good zero g bias stability

Good sensitivity accuracy

X-axis and Y-axis aligned to within 0.1° (typ)

BW adjustment with a single capacitor

Single-supply operation

10,000 g shock survival

Compatible with Sn/Pb and Pb-free solder processes

APPLICATIONS

Cost-sensitive motion- and tilt-sensing applications
Smart hand-held devices
Mobile phones
Sports and health-related devices
PC security and PC peripherals

GENERAL DESCRIPTION

The ADXL320 is a low cost, low power, complete dual-axis accelerometer with signal conditioned voltage outputs, which is all on a single monolithic IC. The product measures acceleration with a full-scale range of $\pm 5\,g$ (typical). It can also measure both dynamic acceleration (vibration) and static acceleration (gravity).

The ADXL320's typical noise floor is 250 $\mu g/\sqrt{Hz}$, allowing signals below 2 mg to be resolved in tilt-sensing applications using narrow bandwidths (<60 Hz).

The user selects the bandwidth of the accelerometer using capacitors C_X and C_Y at the $X_{\rm OUT}$ and $Y_{\rm OUT}$ pins. Bandwidths of 0.5 Hz to 2.5 kHz may be selected to suit the application.

The ADXL320 is available in a very thin 4 mm \times 4 mm \times 1.45 mm, 16-lead, plastic LFCSP.

FUNCTIONAL BLOCK DIAGRAM

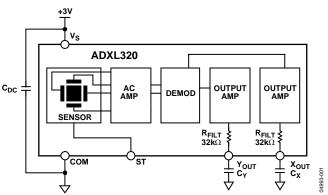


Figure 1.

Rev.0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

unun analas sam

ADXL320

TABLE OF CONTENTS

Specifications	3
°F ••••••••••••••••••••••••••••••••••••	
Absolute Maximum Ratings	4
ESD Caution	4
Pin Configuration and Function Descriptions	5
Typical Performance Characteristics ($V_S = 3.0 \text{ V}$)	7
Theory of Operation	11
Performance	11
Applications	12
Power Supply Decoupling	12

	Setting the Bandwidth Using C_X and C_Y	12
	Self-Test	12
	Design Trade-Offs for Selecting Filter Characteristics: The Noise/BW Trade-Off	12
	Use with Operating Voltages Other than 3 V	13
	Use as a Dual-Axis Tilt Sensor	13
)	Outline Dimensions	14
	Ordering Guide	14

REVISION HISTORY

9/04—Revision 0: Initial Version

SPECIFICATIONS¹

 $T_A = 25$ °C, $V_S = 3$ V, $C_X = C_Y = 0.1 \mu F$, Acceleration = 0 g, unless otherwise noted.

Table 1.

Parameter	Conditions	Min	Тур	Max	Unit
SENSOR INPUT	Each axis				
Measurement Range			±5		g
Nonlinearity	% of full scale		±0.2		%
Package Alignment Error			±1		Degrees
Alignment Error	X sensor to Y sensor		±0.1		Degrees
Cross Axis Sensitivity			±2		%
SENSITIVITY (RATIOMETRIC) ²	Each axis				
Sensitivity at X _{OUT} , Y _{OUT}	$V_S = 3 V$	156	174	192	mV/g
Sensitivity Change due to Temperature ³	$V_S = 3 V$		0.01		%/°C
ZERO g BIAS LEVEL (RATIOMETRIC)	Each axis				
0 g Voltage at Хоит, Yоит	$V_S = 3 V$	1.3	1.5	1.7	V
0 g Offset Versus Temperature			±0.6		m <i>g/</i> °C
NOISE PERFORMANCE					
Noise Density	@ 25°C		250		μ <i>g</i> /√Hz rms
FREQUENCY RESPONSE ⁴					
C _X , C _Y Range ⁵		0.002		10	μF
R _{FILT} Tolerance			32 ± 159	%	kΩ
Sensor Resonant Frequency			5.5		kHz
SELF-TEST ⁶					
Logic Input Low			0.6		V
Logic Input High			2.4		V
ST Input Resistance to Ground			50		kΩ
Output Change at Xout, Yout	Self-test 0 to 1		55		mV
OUTPUT AMPLIFIER					
Output Swing Low	No load		0.3		V
Output Swing High	No load		2.5		V
POWER SUPPLY					
Operating Voltage Range		2.4		5.25	V
Quiescent Supply Current			0.48		mA
Turn-On Time ⁷			20		ms
TEMPERATURE					
Operating Temperature Range		-20		70	°C

 $^{^1}$ All minimum and maximum specifications are guaranteed. Typical specifications are not guaranteed. 2 Sensitivity is essentially ratiometric to V_5 . For $V_5 = 2.7$ V to 3.3 V, sensitivity is 154 mV/V/g to 194 mV/V/g typical.

³ Defined as the output change from ambient-to-maximum temperature or ambient-to-minimum temperature.

⁴ Actual frequency response controlled by user-supplied external capacitor (C_X, C_Y).

⁵ Bandwidth = $1/(2 \times \pi \times 32 \text{ k}\Omega \times \text{C})$. For C_x , C_y = 0.002 μF , bandwidth = 2500 Hz. For C_x , C_y = 10 μF , bandwidth = 0.5 Hz. Minimum/maximum values are not tested.

⁶ Self-test response changes cubically with V_s. ⁷ Larger values of C_x, C_Y increase turn-on time. Turn-on time is approximately $160 \times C_X$ or C_Y + 4 ms, where C_x, C_Y are in μF.

ADXL320

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Acceleration (Any Axis, Unpowered)	10,000 <i>g</i>
Acceleration (Any Axis, Powered)	10,000 <i>g</i>
V_S	−0.3 V to +7.0 V
All Other Pins	(COM – 0.3 V) to
	$(V_S + 0.3 V)$
Output Short-Circuit Duration	
(Any Pin to Common)	Indefinite
Operating Temperature Range	−55°C to +125°C
Storage Temperature	−65°C to +150°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

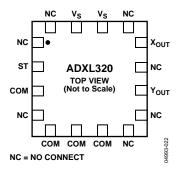


Figure 2. Pin Configuration

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	NC	Do Not Connect
2	ST	Self-Test
3	COM	Common
4	NC	Do Not Connect
5	COM	Common
6	COM	Common
7	COM	Common
8	NC	Do Not Connect
9	NC	Do Not Connect
10	Yout	Y Channel Output
11	NC	Do Not Connect
12	Хоит	X Channel Output
13	NC	Do Not Connect
14	Vs	2.4 V to 5.25 V
15	Vs	2.4 V to 5.25 V
16	NC	Do Not Connect

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

