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INTRODUCTION

More than 40 different DNA polymerases, including some
putative DNA polymerase sequences deduced from nucleotide
sequence data, have recently been reported (1-39). The amino
acid sequences of these DNA polymerases have been aligned and
partial homologous regions identified by many investigators
(2-4,9,10,12-25,27-36,42-51). Based on the segmental
amino acid sequence similarities, DNA polymerases have been
classified into two major groups; E. coli DNA polymerase I-Type
and eukaryotic DNA polymerase ca-Type (14,44,47,48,51), or
family A DNA polymerases and family B DNA polymerases
(4,9,50). As the number of DNA polymerase sequences
increases, the classification of DNA polymerases becomes
increasingly ambiguous. For example, DNA polymerase delta
of yeast was shown to have amino acid sequence similarity to
the a-Type DNA polymerases (17). It has become necessary to
establish a unified classification of DNA polymerases. Here we
propose to classify DNA polymerases into families A, B, and
C (Figure 1: A, B, and C), according to the amino acid sequence
homologies with E. coli DNA polymerases I, II, and III,
respectively. As new and different prokaryotic and eukaryotic
DNA polymerases are identified, the number of families can
easily be expanded by using additional letters of the alphabet (i.e.,
D, E, etc.).
The bacterium E. coli (strain K12) contains three distinct DNA

polymerases I, II, and HI (52). E. coli DNA polymerase I, the
first DNA polymerase discovered, is specified by the polA gene
(52). E. coli DNA polymerase II, encoded by the polB gene,
was recently sequenced and found to be identical to the dinA
gene, a DNA damage inducible gene whose expression is
regulated by the SOS system in E. coli (8,53). Amino acid
sequence alignment shows that E. coli DNA polymerase II has
significant homology with family B (a-Type) DNA polymerases
(8,53,54).

E. coli DNA polymerase IH is a multisubunit enzyme encoded
by various dna genes (55); the DNA polymerizing a-subunit
encoded by the polC (dnaE) gene (56) and the 3'- 5' exonuclease
performing e-subunit encoded by the dnaQ gene (57). The a-
subunit of E. coli DNA polymerase III exhibits an extensive
homology with the corresponding a-subunit of Salmonella
typhimurium DNA polymerase m (35); and both show significant
homology to Bacillus subtilis DNA polymerase HI, a single-
polypeptide encoded by the polC gene (36).

In summary, family A DNA polymerases are named for their
homology to the product of the polA gene encoding E. coli DNA
polymerase I; family B DNA polymerases are named for their

homology to the product of the polB gene encoding E. coli DNA
polymerase 11; and family C DNA polymerases are named for
their homology to the product of the polC gene encoding E. coli
DNA polymerase HI.
The eukaryotic DNA polymerase (3, the smallest known DNA

polymerase, does not have homology with those of any of the
DNA polymerase families described above. Instead, DNA
polymerase (3 has homology with terminal transferases (37). This
,B group we will call family X (Figure ID). The classification
and original reference(s) for the amino acid sequences of each
DNA polymerase are shown in Table 1.

All of the family A DNA polymerases, except for yeast
mitochondrial DNA polymerase I, are prokaryotic and are very
sensitive to dideoxynucleotide inhibitors, and therefore are useful
enzymes for DNA sequencing by the chain-termination method
(58). The family A DNA polymerases are resistant to aphidicolin.
The family B DNA polymerases are quite extensive in number
and variety. Most of the family B DNA polymerases, if not all,
are sensitive to aphidicolin and relatively resistant to
dideoxynucleotide inhibitors. Most of the family B DNA
polymerases, except for pAI2 (33) and yeast DNA polymerase
II (16), contain the highly conserved amino acid sequence motif
YGDTD, which has been suggested to form part of the dNTP
binding site. Amino acid substitutions in this conserved sequence
resulted in defects in the DNA polymerase activity without
affecting the 3'- 5' exonuclease activity (59,60,61). The family
C DNA polymerases are major bacterial replicative DNA
polymerases which do not have appreciable homology with those
of family A and B DNA polymerases. B. subtilis DNA
polymerase Im is a single polypeptide that is highly sensitive to
hydroxyphenylazouracil (62). It is anticipated that the number
of sequenced family C DNA polymerases will increase rapidly,
since all of the aerobic bacteria may contain a member of this
family of DNA polymerases.

SEQUENCE ALIGNMENT

The 37 complete DNA polymerase sequences and 3 complete
terminal deoxynucleotidyltransferase (TDT) sequences are listed
in 4 groups; the family A DNA polymerases, the family B DNA
polymerases, the family C DNA polymerases, and family X DNA
polymerases (including TDTs). In order to limit the space needed
for the alignment, we omitted DNA polymerase sequences that
are very similar to the prototype DNA polymerase. The DNA
polymerases not shown include: herpes virus type-2 (63),
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adenovius Wpe-S (64), bacteriophage T3 (65), and bacteriophage
PZA (66).

ACCURACY OF SEQUENCE DATA

Whenever a sequence ambiguity existed in a published sequence,

we contacted the authors to obtain the updated sequence

information. We found a few publisd amino acid sequences
differ at one or more positions from their GenBank/EMBL entry.
Again, we have communicated with the primary author to confirm
the correct sequences.
The multiple alignment of the amino acid sequences was

obained by a series of pairwise aligments combined and adjusted
by eye into larger and larger subsets of similar sequences. The
process of combining and adjusting by eye was aided by modified
versions of the MOTIF program (67) and the ALIGN program

(68). The GAP and BESTFIT programs, from UWGCG
(University of Wisconsin Genetic Computer Group) (69), initay
generated the pairwise alignments, adjusted for maximum

alignment that allowed for a considerable number of gaps. We
then compressed these alignments by eye to give a more

contiguous alignment. The alignment of the sequences for optimal
similarity is straightforward in the areas of relatively conserved
strucure, but is much more arbitary in the more varied sequence
areas. The alignment of the varied areas should therefore be
regarded as less than optimal in view of the difficulties concerned
with multiple alignments in these areas.

Finally, we invite fiuther correction from readers, and welcome
suggested revisions and altemative alignments.
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Classification of DNA polymerases

A. Family A DNA po e

1. Bacteral DNA p ase References

a) cca DNA poiynmrasc I (1)
b) S&Wwcccusp_m cniae DNA polymerase I (2)
c) Themr aquadcu DNA polymerase I (3)

2. Bacteriophage DNA pomerases

a) TS DNA polymerase (4)
b) 17 DNA polymerase (5)
c) Spo2 DNA polymerase (6)

3. Mltocho l DNA p merase

Yeast mitochondrial DNA polymerase (MIPI) (7)

B. Family B DNA pom

1. Bacterial DNA pobm

E- ci DNA polymerase II

2. Bacteriophage DNA polymera

a) PRDI DNA polymerase5
b) #29 DNA p merase
c) M2 DNA polymerase
d) T4 DNA p rase

3. Ekarysodc DNA polymeaes

a) Human DNA polymerase alpha
b) Yeast DNA polymerase I
c) Yeast DNA polmeras II
d) Yeast DNA poymerase HI (delta)
e) Yeast DNA polymerase Rev3

4. Viral DNA polymases

a) Herpes-1 DNA polymerase
b) Human cytomeplovirus DNA polymerase
c) Epstein-Barr virus DNA polymerase
d) Variceila-Zoster virus DNA polymerase
e) Fowlpox virus DNA polymerase
f) Vaccinia virus DNA polymerase
g) Autographa californica nuclear

polyedrosis virus (AcMNPV) DNA polymerase
h) Adenovrus-2 DNA polymerase
i) Adenovirus-7 DNA polymerasel
j) Adenovirus-12 DNA polymerase*

S. Eukaryotic linear DNA plasmid encoded DNA polymerases

a) S-1 maize mitochondrial DNA polymerase
b) Kkqyvw es lacdis plasmid pGKLI DNA polymerase
c) Kyveryces lacts plasmid pGKI2 DNA polymerase
d) Claicep pwpura plasmid pCLKU DNA polymerase
e) Ascobolu unmeu plasmid pAI2 DNA polymerase

C Family C DNA polymerases

Bacterial replicative DNA polymerases

a) E coi DNA polymerase III a subunit
b) Sabnonel yphmwiwu DNA polymerase III a subunit
c) Bacius subi DNA polymerase I

D. Family X DNA p a

a) Rat DNA polymerase ^
b) Human DNA polymerase 8
c) Human terminal deaxynucleotidyltransferase (TdT)
d) Bovine terminal deaoynucleotidyltransferase (TdT)
e) Mouse terminal deoxynud1eotiltransferase (dT)

(8)

(9,10)
(11)
(12)
(13)

(14)
(15)
(16)
(17)
(18)

(19)
(20)
(21)
(22)
(23)
(24)

(25)
(26)
(27)
(28)

(29)
(30)
(31)
(32)
(33)

(34)
(35)
(36)

(37)
(38,39)
(40)
(41)
(41)

Table 1. The main families and subclassifications of DNA polymerases. Those
DNA polymerases marked with a star (*) are protein-primed DNA polymerases.
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