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Figure 11.8  Current-voltage diagram or power-indicator diagram of electric alternating 
currents
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Figure 11.9 Current and voltage in a condenser. I ≡ current, U ≡ voltage, t ≡ time a) Without 
dielectric losses (ideal condition), current and voltage are displaced by the phase angle 
ϕ = °90  or /π 2 ; b) With dielectric loss, the current curve I ´ is delayed by the loss angle δ

If the condenser has losses, when tanδ > 0, a resistive current Ir is formed leading 
to a heating energy rate in the dielectric of

E UIh eff= 1
2

tanδ  (11.27)

where Ieff represents the total current or the magnitude of the vector in Fig. 11.8. 
Using Eq. 11.25 for capacitance leads to

C C R C iC* ’ ’ ’’= − = −1
ω  (11.28)

where C* is the complex capacitance, with C ’ as the real component defined by

C A
dr

’ ’= ε ε0  (11.29)

and C ’’ as the imaginary component described by

C R
A
dr

’’ ’’= =1
0ω

ε ε  (11.30)

Using the relationship in Eq. 11.5 we can write

C C Cr r r
* ’ ’’ *= −( ) =0 0ε iε ε  (11.31)
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498  11 Electrical Properties of Polymers

where ε r* is called the complex dielectric coefficient. According to Eqs. 11.25 and 
11.31, the phase angle difference or dielectric dissipation factor can be defined by

tanδ ε
ε

= =I
I

r

c

r

r

’’
’  (11.32)

If we furthermore consider that electric conductivity is determined by

σ = 1
R

d
A (11.33)

then the imaginary component of the complex dielectric coefficient can be rewritten 
as

ε σ
ωε

ε δr r’’ ’= =
0

tan  (11.34)

Typical ranges for the dielectric dissipation factor of various polymer groups are 
shown in Table 11.2. Figures 11.10 [1] and 11.11 [1] present the dissipation factor
tan δ  as a function of temperature and frequency, respectively.

Table 11.2 Dielectric Dissipation Factor (tan δ ) for Various Polymers

Material tan δ
Non-polar polymers (PS, PE, PTFE) < 0.0005
Polar polymers (PVC and others) 0.001 – 0.02
Thermoset resins filled with glass, paper, cellulose 0.02 – 0.5
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Figure 11.10 Dielectric dissipation factor as a function of temperature for various polymers
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Figure 11.11 Dielectric dissipation factor as a function of frequency for various polymers

11.1.4 Implications of Electrical and Thermal Loss in a Dielectric

The electric losses through wire insulation running high frequency currents must 
be kept as small as possible. Insulators are encountered in transmission lines or in 
high-frequency fields such as the housings of radar antennas. Hence, we would 
select materials that exhibit low electrical losses for these types of applications.
On the other hand, in some cases we want to generate heat at high frequencies. 
Heat sealing of polar polymers at high frequencies is an important technique used 
in the manufacturing of so" PVC sheets, such as the ones encountered in auto-
mobile vinyl seat covers.
To assess whether a material is suitable for either application the loss properties of 
the material must be determined and the actual electrical loss calculated. To do 
this, we can rewrite Eq. 11.27 as

E U Ch = 2ω δtan  (11.35)

or as

E fU d Ch r= 2 2 2
0 0π ε ε δ’ tan  (11.36)

The factor that is dependent on the material and indicates the loss is the loss factor
ε δr’ tan , called ε r’’ in Eq. 11.34. As a rule, the following should be used:
ε δr’ tan < −10 3 for high-frequency insulation applications, and
ε δr’ tan > −10 2 cfor heating applications.
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500  11 Electrical Properties of Polymers

In fact, polyethylene and polystyrene are perfectly suitable as insulators in high-
frequency applications. To measure the necessary properties of the dielectric, the 
standard DIN 53 483 and ASTM D 150 tests are recommended.

 � 11.2 Electric Conductivity

11.2.1 Electric Resistance

The current flow resistance, R, in a plate-shaped sample in a direct voltage field is 
defined by Ohm’s law as

R U
I=  (11.37)

or by

R d
A= 1

σ  (11.38)

where σ  is known as the conductivity and d and A are the sample’s thickness and 
surface area, respectively. The resistance is o"en described as the inverse of the 
conductance, G,

R G= 1  (11.39)

and the conductivity as the inverse of the specific resistance, ρ ,

σ
ρ

= 1
 (11.40)

The simple relationship found in Eq. 11.37–39 is seldom encountered because the 
voltage, U, is rarely steady and usually varies in cyclic fashion between 10-1 to 1011 
Hz [3].
Current flow resistance is called volume conductivity and is measured one minute 
a"er direct voltage has been applied using the DIN 53 482 standard test. The time 
definition is necessary, because the resistance decreases with polarization. For 
some polymers we still do not know the final values of resistance. However, this has 
no practical impact, because we only need relative values for comparison. Figure 
11.12 compares the specific resistance, ρ, of various polymers and shows its 
dependence on temperature. Here, we can see that similar to other polymer proper-
ties, such as the relaxation modulus, the specific resistance not only decreases with 
time but also with temperature.
The surface of polymer parts o"en shows different electric direct-current resist-
ance values than their volume. The main cause of this phenomenon is surface 
contamination (e. g., dust and moisture). We therefore have to measure the surface 
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 11.2 Electric Conductivity 501

resistance using a different technique. One common test is DIN 53 482, which uses 
a contacting sample. Another test o"en used to measure surface resistance is DIN 
53 480. With this technique, the surface resistance is tested between electrodes 
placed on the surface. During the test, a saline solution is dripped on the elec-
trodes causing the surface to become conductive, thus heating up the surface and 
causing the water to evaporate. This leads not only to an increased artificial con-
tamination but also to the decomposition of the polymer surface. If during this 
process conductive derivatives such as carbon form, the conductivity quickly 
increases to eventually create a short circuit. Polymers that develop only small 
traces of conductive derivatives are considered resistant. Such polymers are poly-
ethylene, fluoropolymers, and melamines.
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Figure 11.12  Specific electric resistance of polymers and metals as a function 
of temperature

11.2.2 Physical Causes of Volume Conductivity

Polymers with a homopolar atomic bond, which leads to pairing of electrons, do not 
have free electrons and are not considered to be conductive. Conductive polymers 
in contrast, allow for movement of electrons along the molecular cluster, because 
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