

(10) Patent No.:

(45) Date of Patent:

US006377865B1

(12) United States Patent

Edelsbrunner et al.

(54) METHODS OF GENERATING THREE-DIMENSIONAL DIGITAL MODELS OF **OBJECTS BY WRAPPING POINT CLOUD** DATA POINTS

- (75) Inventors: Herbert Edelsbrunner; Ping Fu, both of Chapel Hill, NC (US)
- Assignee: Raindrop Geomagic, Inc., Research (73)Triangle Park, NC (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 09/248,587
- (22) Filed: Feb. 11, 1999

Related U.S. Application Data

- (60)Provisional application No. 60/074,415, filed on Feb. 11, 1998
- (51) Int. Cl.⁷ G06F 19/00
- U.S. Cl. 700/98; 703/2; 345/419 (52)
- (58) Field of Search 700/98, 97, 117, 700/118, 119, 120, 182; 345/419, 420; 703/2

(56)**References Cited**

DOCKF

U.S. PATENT DOCUMENTS

4,719,585 A	4 *	1/1988	Cline et al 345/424
5,214,752 A	4	5/1993	Meshkat et al 395/123
5,278,948 A	4	1/1994	Luken, Jr 395/123
5,357,599 A	4	10/1994	Luken 395/134
5,440,674 A	4	8/1995	Park 395/123
5,506,785 A	4	4/1996	Blank et al 364/468
5,537,519 A	4	7/1996	Vossler et al 398/120
5,552,992 A	4	9/1996	Hunter 364/468.25
5,555,356 A	4	9/1996	Scheibl 395/134
5,600,060 A	4 *	2/1997	Grant 73/147
5,617,322 A	4 *	4/1997	Yokota 700/98
5,668,894 A	4	9/1997	Hamano et al 382/242
5,760,783 A	4	6/1998	Migdal et al 345/473
5,768,156 A	4	6/1998	Tautges et al 364/578
			-

622-INPUT: SIMPLEX $\boldsymbol{\tau}$ 624 FOR EVERY PROPER COFACE υ OF τ DO 626 628 THERE IS FLOW FROM υ TO τ OUTPUT: EQUIVOCAL 630 -FOR EVERY PROPER FACE σ of τ do 632 634 NO THERE IS FLOW YES FROM τ TO σ OUTPUT: CONFIDENT 636 OUTPUT: CENTERED

5,850,229 A * 12/1998 Edelsbrunner et al. 345/473 2/1999 Migdal et al. 359/216 5,870,220 A 5,886,702 A * 3/1999 Migdal et al. 345/423

US 6,377,865 B1

Apr. 23, 2002

(List continued on next page.)

OTHER PUBLICATIONS

"Computing Dirichlet tessallations,"A Bowyer; The Computer Journal, vol. 24, No. 2, pp. 162-166, 1981: Heyden & Son Ltd. 1981.

"Optimal Surface Reconstuction From Planar Contours," Fuchs, et al.; Copyright 1977, Association for Computing Machinery, Inc., Communications, vol. 20, pp. 693-702; Oct. 1977, ACM, Box 12105, Church Street Station, New York, NY 11249.

"Geometric Structures for Three-Dimensional Shape Representation," Boissonnat; ACM Transactions on Graphics, vol. 3, No. 4, pp. 267-286, Oct. 1984.

"Shape Reconstruction From Planar Cross Sections," Boissonnat; Computer Vision, Graphics and Image Processing 44; pp. 1-29; 1988.

"Construction of Three-Dimensional Delaunay Triangulations Using Local Transformations," Joe; Computer Aided Geometric Design 8,;1991; pp. 123-142; Elsevier Science Publishers B.V. (North-Holland).

(List continued on next page.)

Primary Examiner-William Grant

Assistant Examiner-Zoila Cabrera

(74) Attorney, Agent, or Firm-Myers Bigel Sibley & & Sajovec

ABSTRACT (57)

A method of automatic conversion of a physical object into a three-dimensional digital model. The method acquires a set of measured data points on the surface of a physical model. From the measured data points, the method reconstructs a digital model of the physical object using a Delaunay complex of the points, a flow streuture of the simplicies in the Delaunay complex and retracting the Delaunay complex into a digital model of the physical object using the flow structure. The method then outputs the digital model of the physical object.

30 Claims, 19 Drawing Sheets

Find authenticated court documents without watermarks at docketalarm.com.

U.S. PATENT DOCUMENTS

5,903,458	Α		5/1999	Stewart et al 364/468.04
5,923,573	Α		7/1999	Hatanaka 364/578
5,929,860	Α		7/1999	Hoppe 345/419
5,936,869	Α	*	8/1999	Sakaguchi et al 703/1
5,945,996	Α		8/1999	Migdal et al 345/420
5,963,209	Α		10/1999	Hoppe 345/419
5,966,133	Α		10/1999	Hoppe 345/420
5,966,140	Α		10/1999	Popovic et al 345/441
5,966,141	Α		10/1999	Ito et al 345/473
5,991,437	Α		11/1999	Migdal et al 382/154
5,995,650	Α		11/1999	Migdal et al 345/154
6,044,170	Α		3/2000	Migdal et al 382/154
6,046,744	Α		4/2000	Hoppe 345/419
6,064,771	Α		5/2000	Migdal et al 382/232
6,100,893	Α	*	8/2000	Ensz et al 345/420
6,108,006	Α	*	8/2000	Hoppe 345/423
6,133,921	Α	*	10/2000	Turkiyyah et al 345/420
6,176,427	B1	*	1/2001	Antognini et al 235/454
6,205,243	B1		3/2001	Migdal et al 382/154
6,208,347	B1	*	3/2001	Migdal et al 345/419
6,266,062	B1	*	7/2001	Rivara 345/419
6,278,457	B 1	*	8/2001	Bernardini et al 345/420

OTHER PUBLICATIONS

"Surface Reconstruction From Unorganized Points," Hoppe et al.; Computer Graphics 26; Jul. 1992; pp. 71–78.

"Surfaces From Contours," Meyers et al.; ACM Transactions on Graphic;, vol. 11; No. 3; Jul. 1992; pp. 228–258. "Closed Object Boundaries From Scattered Points," Remco Coenraad Veltkamp; Proefschrift Rotterdam,;Netherlands; IBSBN 90–9005424–3; 1991; pp. 1–149.

"Mesh Optimization,"Hoppe et al.; Computer Graphics Proceedings, Annual Conference Series, 1993; pp. 19–26.

"Incremental Topological Flipping Works For Regular Triangulations," Eldelsbrunner et al.; Algorithmica, 1996; Springer–Verlag New York Inc.; pp. 223–241. "Three–Dimensional Alpha Shapes," Edlesbrunner et al.;

"Three–Dimensional Alpha Shapes," Edlesbrunner et al.; ACM Transactions on Graphics; vol. 13; No. 1; Jan. 1994; pp. 43–72.

"Piecewise Smooth Surface Reconstruction," Hoppe et al.; Computer Graphics Proceedings, Annual Conference Series 1994; pp. 295–302.

"Smooth Spline Surfaces Over Irregular Meshes," Loop; Computer Graphics Proceedings, Annual Conference Series 1994,; pp. 303–310.

"C-Surface Splines," Peters; Society for Industrial and Applied Mathematics; 1995,;vol. 32; No. 2; pp. 645–666. "Modeling With Cubic A-Patches," Bajaj et al.; ACM Transactions on Graphics, vol. 14, No. 2, Apr. 1995; pp. 103–133.

"Automatic Reconstruction Of Surfaces And Scalar Fields From 3D Scans," Bajaj et al.; ACM–0–89791–701–4/95/ 008; Computer Graphics Proceedings, Annual Conference Series 1995; pp. 109–118.

"Piecewise–Linear Interpolation Between Polygonal Slices," Barequet et al.; Computer Vision and Image Understanding, vol. 63, No. 2, Mar. 1996; pp. 251–272.

DOCKE.

RM

"A Volumetric Method For Building Complex Models From Range Images," Curless et al.; Computer Graphics Processdings, Annual Conference Series, Aug. 1996; pp. 303–312. "Automatic Reconstruction Of B–Spline Surfaces Of Arbitrary Topological Type," Eck et al.; Computer Graphics Proceedings, Annual Conference Series, Aug., 1996; pp. 325–334.

"Fitting Smooth Surfaces To Dense Polygon Meshes," Krishnamurthy et al.; Computer Graphics Proceedings, Annual Conference Series, Aug. 1996; pp. 313–324.

Clarkson et al., "Four Results on Randomized Incremental Constructions," Lecture Notes in Computer Science, 9th Symposium on Theoretical Aspects of Computer Science, Cachan, France, Feb. 1992 Proceedings, pp. 463–474.

Dey et al., "Topology Preserving Edge Contraction," Publications De L'Institut Mathematique, vol. 66, No. 80, 1999, pp. 23–45.

Eck et al., "Automatic Reconstruction of B–Spline Surfaces of Arbitrary Topological Type," Computer Graphics Proceedings, Annual Conference Series, SIGGRAPH 96, New Orleans, LA, Aug. 4–9, 1996, pp. 325–334.

Edelsbrunner, et al., "Simulation of Simplicity: A Technique to Cope with Degenerate Cases in Geometric Algorithms," ACM Transactions on Graphics, vol. 9, No. 1, Jan. 1990, pp. 66–104.

Edelsbrunner, H., "An Acyclicity Theorem for Cell Complexes in *d* Dimension,"Combinatorica, vol. 10, No. 3, 1990, pp. 251–260.

Garland et al., "Surface Simplification Using Quadric Error Metrics," Computer Graphics Proceedings (SIGGRAPH), 1997, pp.209–216.

Hagen et al, "Variational Design with Boundary Conditions and Parameter Optimized Surface Fitting," Geometric Modeling: Theory and Practice, Springer–Verlag, 1997, pp. 3–13.

Hsu et al., "Minimizing the Squared Mean Curvature Integral for Surfaces in Space Forms," Experimental Math, vol. 1, 1992, pp. 191–207.

Lee et al., MAPS: Multiresolution Adaptive Parameterization of Surfaces, Computer Graphics Proceedings (SIG-GRAPH), 1998, pp. 95–104.

Lodha et al., "Scattered Data Techniques for Surfaces," no date, 42 pages.

Nakamoto Atsuhiro, "Diagonal Transformations and Cycle Parities of Quadrangulations on Surfaces," Journal of Combinatorial Theory, Series B 67, 1996, pp. 202–211.

Nakamoto, Atsuhiro, "Diagonal Transformations in Quadrangulations of Surfaces," Journal of Graph Theory, vol. 21, No. 3, 1996, pp. 289–299.

Yang et al., "Segmentation of measured point data using a parametric quadric surface approximation," Computer–Aided Design 31, 1999, pp. 449–457.

* cited by examiner

DOCKET ALARM Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

DOCKET A L A R M Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

