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1
GENERAL IMAGE PROCESSOR

Microfiche Appendix: There are 2 microfiche in total,
and 101 frames in total.

FIELD OF THE INVENTION

The present invention relates to an image processor and
more particularly to a high speed, reusable image processor
capable of performing many image processing operations.

BACKGROUND OF THE INVENTION

Image processing is usually performed by a host
computer, with all the arithmetic operations normally done
in software. However, as the demand on throughput
increases, it is usually necessary to process an image using
special-purpose image processors. These image processors
typically incorporate hardware that accelerates arithmetic
operations, thereby increasing the throughput. It is also
usually desirable or necessary for these image processors to
be able to perform many kinds of image processing
operations, including compositing, color space conversion,
image transformation, convolution, halftoning and so on.

One method of implementing hardware for general image
processing is by implementing various sub-blocks within the
image processor, each of which is capable of performing one
of the functionalities required. However, this method
requires a lot of hardware and hence can be very expensive
to implement. Hardware implemented by this method also
cannot be configured to perform image processing opera-
tions other than those that are specified originally.

Another method of implementing hardware for general
image processing is to implement a data path that is able to
perform some basic functionalities, and control logic that
can perform a predetermined sequence of operations on the
image to achieve the desired image processing function.
This method, however, is usually too slow when the demand
on the throughput is high. Hardware implemented by this
method also cannot be configured to perform other image
processing operations.

Both methods described above also usually require a very
complicated design to perform the required image process-
ing operations. Hence usually the cost of designing such an
image processor is large. Therefore, a need clearly exists for
an image processor capable of performing many image
processing operations that is able to overcome one or more
of the disadvantages of conventional devices.

SUMMARY OF THE INVENTION

In accordance with a first aspect of the invention, there is
provided an apparatus for performing image processing
operations on data objects, the apparatus including:

data source circuitry for providing a stream of the data
objects;

a plurality of operand source circuits for providing
streams of operand objects, or providing operand objects in
response to an address presented;

instruction circuitry for selecting an image processing
operation, and enabling or disabling a plurality of options in
the image processing operation;

a configuration register for storing the image processing
operation and options;

a register file for storing information necessary for per-
forming the image processing operation;

decoding circuit connected to the configuration register
for decoding the image processing operation and options;
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a control signal register connected to the decoding circuit
for storing the output of the decoding circuit;

input interface circuitry, connected to the control signal
register, the register file, the data source circuit and the
plurality of the operand source circuitry, for:

(a) accepting, storing and rearranging the data objects from
the data source circuit, and the operand objects from the
operand source circuit, in accordance with the output of
the control signal register,

(b) generating addresses for the operand objects, in accor-
dance with the output of the control signals register and
the register file, and

(c) updating the information in the register file to reflect a
current status of the image processing operation;
processing circuitry, connected to the input interface

circuit, the register file, and the control signal register, for
performing arithmetic operations on the output of the input
interface circuit in accordance with the output of the control
signals register and the register file to produce processed
data objects; and

data destination circuitry connected to the processing
circuitry for receiving the processed data objects.

Preferably, the processing circuit further includes: a plu-
rality of identical channel processing circuits for performing
the arithmetic operations on part of the output of the input
interface circuit in accordance with the output of the control
signal register and the register file; and flow control circuitry
connected to the plurality of the channel processing circuit
for controlling a flow of the data objects in the channel
processing circuit by outputting enable signals in accordance
with the output of the control signal register.

Optionally, the channel processing circuit further
includes: a plurality of identical arithmetic units connected
to the flow control circuit for performing the arithmetic
operations on the data objects in accordance with the output
of the control signal register; combining circuit, connected
to the flow control circuit and the arithmetic units, for adding
the outputs of a plurality of the arithmetic units and the
register file in accordance with the output of the control
signal register and the register file; first post-processing
circuit, connected to the combining circuit and the flow
control circuit, for rounding an output of the combining
circuit, finding the absolute value of the rounded output, and
clamping of the absolute value in accordance with the output
of the control signal register; second post-processing circuit,
connected to a selected plurality of arithmetic units and the
first post-processing circuit, for selecting between the out-
puts of the arithmetic units and the first post-processing
circuit and clamping the selected output, if necessary, in
accordance with the output of the control signal register; and
routing logic, connected to a plurality of the arithmetic units,
the combining circuit and the first post-processing circuit,
for routing selected outputs of a plurality of the arithmetic
units and the first post-processing circuit to selected inputs
of a plurality of the arithmetic units and the combining
circuit. Optionally, the number of the channel processing
circuits in the processing circuit is four.

In accordance with a second aspect of the invention, there
is provided an apparatus for performing compositing
between two streams of pixels and a stream of attenuation
values, the apparatus including:

data source circuitry for providing a first one of the
streams of pixels;

first operand source circuitry for providing a second one
of the streams of pixels;

second operand source circuitry for providing the stream
of attenuation values;
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an instruction circuit for enabling or disabling a plurality
of options in compositing operations;

a configuration register for storing a compositing opera-
tion and the options of the instruction circuit;

register file for storing information necessary for perform-
ing compositing operations;

a decoding circuit connected to the configuration register
for decoding the options and the compositing operation;

a control signal register connected to the decoding circuit
for storing the output of the decoding circuit;

an input interface circuit, connected to the control signal
register, the register file, the data source circuit, the first
operand source circuit and the second operand source
circuit, for:

(a) accepting, storing and rearranging pixels from the data
source circuit and the first operand source circuit, and
attenuation values from the second operand source circuit
in accordance with an output of the control signal register,

(b) generating a stream of data objects to replace the second
stream of pixels from the first operand source in accor-
dance with the output of the control signal register and the
register file, and

(c) updating the information in the register file to reflect a
current status of the compositing operation;
processing circuitry, connected to the input interface

circuit, the register file, and the control signal register, for
performing arithmetic operations on an output of the input
interface circuit in accordance with the output of the control
signal register and the register file to produce composited
pixels; and data destination circuit connected to the process-
ing circuit for receiving the composited pixels.

In accordance with a third aspect of the invention, there
is provided an apparatus for performing general color space
conversion on streams of interval values, fraction values,
and colour table values, the apparatus including:

a data source circuit for providing the interval and fraction
values;

operand source circuitry for providing the color table
values in response to the interval values presented;

instruction circuitry for enabling or disabling a plurality
of options for general color space conversion;

a configuration register for storing instruction circuit;

decoding circuitry connected to the configuration register
for decoding the instruction circuit;

a control signal register connected to the decoding circuit
for storing the output of the decoding circuit;

input interface circuitry, connected to the control signal
register, the data source circuit, and the operand source
circuit, for:

(a) accepting, storing, rearranging and outputting the inter-
val values and the fraction values from the data source
circuit in accordance with the output of the control signal
register, and

(b) fetching the color table values from the operand source
circuit using the interval value as an address, and storing,
rearranging and outputting the color table values in accor-
dance with the output of the control signal register;
processing circuitry, connected to the input interface
circuit and the control signal register, for performing
arithmetic operations on the output of the input interface
circuit in accordance with the output of the control signal
register to produce a result color; and
data destination circuitry connected to the processing

circuit for receiving the result color.

In accordance with a fourth aspect of the invention, there
is provided an apparatus for applying an affine image
transformation on a source image, the apparatus including:
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data source circuitry for providing a kernel descriptor and
weights of a weighting function;

first operand source circuit for providing index table
values from a index table of the source image in response to
an index table address presented; second operand source
circuit for providing at least one pixel of the source image
in response to a pixel address presented;

an instruction circuit for enabling or disabling a plurality
of options of the affine image transformation;

a configuration register for storing instruction circuit;

decoding circuitry connected to the configuration register
for decoding the instruction circuit;

a control signal register connected to the decoding circuit
for storing an output of the decoding circuit;

a register file for storing information necessary for per-
forming the affine image transformation;

input interface circuitry connected to the control signal
register, the register file, the data source circuit, and the
operand source circuit for:

(a) accepting and storing the kernel descriptor and the
weights of the weighting function from the data source
circuit in accordance with the output of the control signal
register,

(b) generating coordinates of pixels to be fetched from the
source image in accordance to the kernel descriptor and
outputs of the register file and the control signal register,

(c) calculating index table addresses from coordinates and
the output of the register file,

(d) fetching index table entries from the first operand source
circuit,

(e) calculating a pixel address from the index table entry and
the coordinates,

(f) fetching at least one of pixels from the second operand
circuit, and storing and rearranging the pixels in accor-
dance with the output of the control signals register;
processing circuitry, connected to the input interface
circuit, the register file and the control signal register, for
performing a plurality of arithmetic operations on the
output of the input interface circuit in accordance with the
output of the control signal register to produce a result
pixel; and
data destination circuitry connected to the processing

circuit for receiving the result pixel.

In accordance with a fifth aspect of the invention, there is
provided an apparatus for applying a convolution using a
convolution matrix to a source image, the apparatus includ-
ing:

data source circuitry for providing a kernel descriptor and
coefficients of the convolution matrix;

first operand source circuitry for providing index table
values from an index table of the source image in response
to an index table address presented;

second operand source circuitry for providing pixels of
the source image in response to a pixel address presented;

an instruction circuit for enabling or disabling a plurality
of options in convolution;

a configuration register for storing the instruction circuit;
decoding circuit connected to the configuration register for
decoding the instruction circuit;

a control signal register connected to the decoding circuit
for storing the output of the decoding circuit;

a register file for storing information necessary for per-
forming an affine image transformation;
an input interface circuit, connected to the control signal
register, the register file, the data source circuit, and the
operand source circuit, for:

(a) accepting and storing the kernel descriptor and the
weights of a weighting function from the data source
circuit in accordance with the output of the control signal
register,
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(b) generating coordinates of pixels to be fetched from the
image in accordance to the kernel descriptor and outputs
of the register file and the control signal register,

(c) calculating index table addresses from the coordinates
and the output of the register file,

(d) fetching index table entry from the first operand source
circuit,

(e) calculating pixel address from the index table entry and
the coordinates,

(f) fetching a plurality of pixels from the second operand
circuit, and storing and rearranging the pixels in accor-
dance with the output of the control signals register;
processing circuitry, connected to the input interface
circuit, the register file and the control signal register, for
performing arithmetic operation on the output of the input
interface circuit in accordance with the output of the
control signal register to produce a result pixel; and
data destination circuitry connected to the processing

circuit for receiving the result pixel.

In accordance with a sixth aspect of the invention, there
is provided an apparatus for performing a linear colour space
conversion on a stream of source data objects with a
conversion matrix, the apparatus including:

data source circuitry for providing the source data objects;

operand source circuitry for providing a plurality of
coefficients of the conversion matrix in response to a line
number presented;

instruction circuitry for enabling or disabling a plurality
of options in linear color space conversion;

a configuration register for storing the instruction circuit;

decoding circuitry connected to the configuration register
for decoding the instruction circuit;

a control signal register connected to the decoding circuit
for storing the output of the decoding circuit;

an input interface circuit, connected to the control signal
register, the data source circuit, and the operand source
circuit, for:

(a) accepting, storing and outputting the source data objects
from the data source circuit in accordance with the output
of the control signals register,

(b) generating the line number to fetch a plurality of the
coefficients from operand source circuit in accordance to
the control signal register, and

(c) storing, rearranging and outputting the coefficients in
accordance with the output of the control signals register;
processing circuitry, connected to the input interface

circuit and the control signal register, for performing a

plurality of arithmetic operations on the output of the input

interface circuit in accordance with the output of the control
signal register to produce a result data object; and

data destination circuitry connected to the processing
circuit for receiving the result data object.

In the following detailed description, the reader’s atten-
tion is directed, in particular, to FIGS. 129 to 140 and their
associated description without intending to detract from the
disclosure of the remainder of the description.
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BRIEF DESCRIPTION OF THE DRAWINGS

Notwithstanding any other forms which may fall within
the scope of the present invention, preferred forms of the
invention will now be described, by way of example only,
with reference to the accompanying drawings:

FIG. 1 illustrates the operation of a raster image
co-processor within a host computer environment;

FIG. 2 illustrates the raster image co-processor of FIG. 1
in further detail;

FIG. 3 illustrates the memory map of the raster image
CO-Processor;
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FIG. 4 shows the relationship between a CPU, instruction
queue, instruction operands and results in shared memory,
and a co-processor;

FIG. 5 shows the relationship between an instruction
generator, memory manager, queue manager and
CO-Processor;

FIG. 6 shows the operation of the graphics co-processor
reading instructions for execution from the pending instruc-
tion queue and placing them on the completed instruction
queue;

FIG. 7 shows a fixed length circular buffer implementa-
tion of the instruction queue, indicating the need to wait
when the buffer fills:

FIG. 8 illustrates to instruction execution streams as
utilized by the co-processor;

FIG. 9 illustrates an instruction execution flow chart;

FIG. 10 illustrates the standard instruction word format
utilized by the co-processor;

FIG. 11 illustrates the instruction word fields of a standard
instruction;

FIG. 12 illustrates the data word fields of a standard
instruction;

FIG. 13 illustrates schematically the instruction controller
of FIG. 2;

FIG. 14 illustrates the execution controller of FIG. 13 in
more detail;

FIG. 15 illustrates a state transition diagram of the instruc-
tion controller;

FIG. 16 illustrates the instruction decoder of FIG. 13;

FIG. 17 illustrates the instruction sequencer of FIG. 16 in
more detail;

FIG. 18 illustrates a transition diagram for the ID
sequencer of FIG. 16;

FIG. 19 illustrates schematically the prefetch buffer con-
troller of FIG. 13 in more detail;

FIG. 20 illustrates the standard form of register storage
and module interaction as utilized in the co-processor;

FIG. 21 illustrates the format of control bus transactions
as utilized in the co-processor;

FIG. 22 illustrates the data flow through a portion of the
CO-Processor;

FIGS. 23-29 illustrate various examples of data reformat-
ting as utilized in the co-processor;

FIGS. 30 and 31 illustrate the format conversions carried
out by the co-processor;

FIG. 32 illustrates the process of input data transforma-
tion as carried out in the co-processor;

FIGS. 33-41 illustrate various further data transforma-
tions as carried out by the co-processor;

FIG. 42 illustrates various internal to output data trans-
formations carried out by the co-processor;

FIGS. 43—47 illustrate various further example data trans-
formations carried out by the co-processor;

FIG. 48 illustrates various fields utilized by internal
registers to determine what data transformations should be
carried out;

FIG. 49 depicts a block diagram of a graphics subsystem
that uses data normalization.;

FIG. 50 illustrates a circuit diagram of a data normaliza-
tion apparatus;

FIG. 51 illustrates the pixel processing carried out for
compositing operations;
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FIG. 52 illustrates the instruction word format for com-
positing operations;

FIG. 53 illustrates the data word format for compositing
operations;

FIG. 54 illustrates the instruction word format for tiling
operations;

FIG. 55 illustrates the operation of a tiling instruction on
an image;

FIG. 56 illustrates the process of utilization of interval and
fractional tables to re-map color gamuts;

FIG. 57 illustrates the form of storage of interval and
fractional tables within the MUYV buffer of the co-processor;

FIG. 58 illustrates the process of color conversion utilis-
ing interpolation as carried out in the co-processor;

FIG. 59 illustrates the refinements to the rest of the color
conversion process at gamut edges as carried out by the
CO-Processor;

FIG. 60 illustrates the process of color space conversion
for one output color as implemented in the co-processor;

FIG. 61 illustrates the memory storage within a cache of
the co-processor when utilising single color output color
space conversion;

FIG. 62 illustrates the methodology utilized for multiple
color space conversion;

FIG. 63 illustrates the process of address re-mapping for
the cache when utilized during the process of multiple color
space conversion;

FIG. 64 illustrates the instruction word format for color
space conversion instructions;

FIG. 65 illustrates a method of multiple color conversion;

FIG. 66 and 67 illustrate the formation of MCU’s during
the process of JPEG conversion as carried out in the
CO-Processor;

FIG. 68 illustrates the structure of the JPEG coder of the
CO-Processor;

FIG. 69 illustrates the quantizer portion of FIG. 68 in
more detail;

FIG. 70 illustrates the Huffman coder of FIG. 68 in more
detail;

FIGS. 71 and 72 illustrate the Huffman coder and decoder
in more detail,

FIGS. 73-75 illustrate the process of cutting and limiting
of JPEG data as utilized in the co-processor;

FIG. 76 illustrates the instruction word format for JPEG
instructions;

FIG. 77 shows a block diagram of a typical discrete cosine
transform apparatus (prior art);

FIG. 78 illustrates an arithmetic data path of a prior art
DCT apparatus;

FIG. 79 shows a block diagram of a DCT apparatus
utilized in the co-processor;

FIG. 80 depicts a block diagram of the arithmetic circuit
of FIG. 79 in more detail,;

FIG. 81 illustrates an arithmetic data path of the DCT
apparatus of FIG. 79;

FIG. 82 presents a representational stream of Huffman-
encoded data units interleaved with not encoded bit fields,
both byte aligned and not, as in JPEG format;

FIG. 83 illustrates the overall architecture of a Huffman
decoder of JPEG data of FIG. 84 in more detail,;

FIG. 84 illustrates the overall architecture of the Huffman
decoder of JPEG data;
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FIG. 85 illustrates data processing in the stripper block
which removes byte aligned not encoded bit fields from the
input data. Examples of the coding of tags corresponding to
the data outputted by the stripper are also shown;

FIG. 86 shows the organization and the data flow in the
data preshifter;

FIG. 87 shows control logic for the decoder of FIG. 81;

FIG. 88 shows the organization and the data flow in the
marker preshifter;

FIG. 89 shows a block diagram of a combinatorial unit
decoding Huffman encoded values in JPEG context;

FIG. 90 illustrates the concept of a padding zone and a
block diagram of the decoder of padding bits;

FIG. 91 shows an example of a format of data outputted
by the decoder, the format being used in the co-processor;

FIG. 92 illustrates methodology utilized in image trans-
formation instructions;

FIG. 93 illustrates the instruction word format for image
transformation instructions;

FIGS. 94 and 95 illustrate the format of an image trans-
formation kernal as utilized in the co-processor;

FIG. 96 illustrates the process of utilising an index table
for image transformations as utilized in the co-processor;

FIG. 97 illustrates the data field format for instructions
utilising transformations and convolutions;

FIG. 98 illustrates the process of interpretation of the bp
field of instruction words;

FIG. 99 illustrates the process of convolution as utilized
in the co-processor;

FIG. 100 illustrates the instruction word format for con-
volution instructions as utilized in the co-processor;

FIG. 101 illustrates the instruction word format for matrix
multiplication as utilized in the co-processor;

FIGS. 102-105 illustrates the process utilized for hierar-
chial image manipulation as utilized in the co-processor;

FIG. 106 illustrates the instruction word coding for hier-
archial image instructions;

FIG. 107 illustrates the instruction word coding for flow
control instructions as illustrated in the co-processor;

FIG. 108 illustrates the pixel organizer in more detail;

FIG. 109 illustrates the operand fetch unit of the pixel
organizer in more detail;

FIGS. 110-114 illustrate various storage formats as uti-
lized by the co-processor;

FIG. 115 illustrates the MUV address generator of the
pixel organizer of the co-processor in more detail;

FIG. 116 is a block diagram of a multiple value (MUV)
buffer utilized in the co-processor;

FIG. 117 illustrates a structure of the encoder of FIG. 116;

FIG. 118 illustrates a structure of the decoder of FIG. 116;

FIG. 119 illustrates a structure of an address generator of
FIG. 116 for generating read addresses when in JPEG mode
(pixel decomposition);

FIG. 120 illustrates a structure of an address generator of
FIG. 116 for generating read addresses when in JPEG mode
(pixel reconstruction);

FIG. 121 illustrates an organization of memory modules
comprising the storage device of FIG. 116;

FIG. 122 illustrates a structure of a circuit that multiplexes
read addresses to memory modules;

FIG. 123 illustrates a representation of how lookup table
entries are stored in the buffer operating in a single lookup
table mode;
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FIG. 124 illustrates a representation of how lookup table
entries are stored in the buffer operating in a multiple lookup
table mode:

FIG. 125 illustrates a representation of how pixels are
stored in the buffer operating in JPEG mode (pixel
decomposition);

FIG. 126 illustrate a representation of how single color
data blocks are retrieved from the buffer operating in JPEG
mode (pixel reconstruction);

FIG. 127 illustrates the structure of the result organizer of
the co-processor in more detail;

FIG. 128 illustrates the structure of the operand organizers
of the co-processor in more detail;

FIG. 129 is a block diagram of a computer architecture for
the main data path unit utilized in the co-processor;

FIG. 130 is a block diagram of a input interface for
accepting, storing and rearranging input data objects for
further processing:

FIG. 131 is a block diagram of a image data processor for
performing arithmetic operations on incoming data objects:

FIG. 132 is a block diagram of a color channel processor
for performing arithmetic operations on one channel of the
incoming data objects;

FIG. 133 is a block diagram of a multifunction block in
a color channel processor;

FIG. 134 illustrates a block diagram for compositing
operations;

FIG. 135 shows an inverse transform of the scanline;

FIG. 136 shows a block diagram of the steps required to
calculate the value for a designation pixel;

FIG. 137 illustrates a block diagram of the image trans-
formation engine;

FIG. 138 illustrates the two formats of kernel descrip-
tions;

FIG. 139 shows the definition and interpretation of a bp
field;

FIG. 140 shows a block diagram of multiplier-adders that
perform matrix multiplication;

FIG. 141 illustrates the control, address and data flow of
the cache and cache controller of the co-processor;

FIG. 142 illustrates the memory organization of the cache;

FIG. 143 illustrates the address format for the cache
controller of the co-processor;

FIG. 144 is a block diagram of a multifunction block in
a color channel processor;

FIG. 145 illustrates the input interface switch of the
co-processor in more FIG. 144 illustrates, a block diagram
of the cache and cache controller;

FIG. 146 illustrates a four-port dynamic local memory
controller of the co-processor showing the main address and
data paths;

FIG. 147 illustrates a state machine diagram for the
controller of FIG. 146;

FIG. 148 is a pseudo code listing detailing the function of
the arbitrator of FIG. 146;

FIG. 149 depicts the structure of the requester priority bits
and the terminology used in FIG. 146.

FIG. 150 illustrates the external interface controller of the
co-processor in more detail;

FIGS. 151-154 illustrate the process of virtual to/from
physical address mapping as utilized by the co-processor;

FIG. 155 illustrates the IBus receiver unit of FIG. 150 in
more detail;
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FIG. 156 illustrates the RBus receiver unit of FIG. 2 in
more detail;

FIG. 157 illustrates the memory management unit of FIG.
150 in more detail;

FIG. 158 illustrates the peripheral interface controller of
FIG. 2 in more detail.
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DESCRIPTION OF THE PREFERRED AND
OTHER EMBODIMENTS

In the preferred embodiment, a substantial advantage is
gained in hardware rasterization by means of utilization of
two independent instruction streams by a hardware accel-
erator. Hence, while the first instruction stream can be
preparing a current page for printing, a subsequent instruc-
tion stream can be preparing the next page for printing. A
high utilization of hardware resources is available especially
where the hardware accelerator is able to work at a speed
substantially faster than the speed of the output device.

The preferred embodiment describes an arrangement util-
ising two instruction streams. However, arrangements hav-
ing further instruction streams can be provided where the
hardware trade-offs dictate that substantial advantages can
be obtained through the utilization of further streams.

The utilization of two streams allows the hardware
resources of the raster image co-processor to be kept fully
engaged in preparing subsequent pages or bands, strips, etc.,
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depending on the output printing device while a present
page, band, etc is being forwarded to a print device.
General Arrangement of Plural Stream Architecture

In FIG. 1 there is schematically illustrated a computer
hardware arrangement 201 which constitutes the preferred
embodiment. The arrangement 201 includes a standard host
computer system which takes the form of a host CPU 202
interconnected to its own memory store (RAM) 203 via a
bridge 204. The host computer system provides all the
normal facilities of a computer system including operating
systems programs, applications, display of information, etc.
The host computer system is connected to a standard PCI
bus 206 via a PCI bus interface 207. The PCI standard is a
well known industry standard and most computer systems
sold today, particularly those running Microsoft Windows
(trade mark) operating systems, normally come equipped
with a PCI bus 206. The PCI bus 206 allows the arrangement
201 to be expanded by means of the addition of one or more
PCI cards, eg. 209, each of which contain a further PCI bus
interface 210 and other devices 211 and local memory 212
for utilization in the arrangement 201.

In the preferred embodiment, there is provided a raster
image accelerator card 220 to assist in the speeding up of
graphical operations expressed in a page description lan-
guage. The raster image accelerator card 220 (also having a
PCI bus interface 221) is designed to operate in a loosely
coupled, shared memory manner with the host CPU 202 in
the same manner as other PCI cards 209. It is possible to add
further image accelerator cards 220 to the host computer
system as required. The raster image accelerator card is
designed to accelerate those operations that form the bulk of
the execution complexity in raster image processing opera-
tions. These can include:

(2) Composition

(b) Generalized Color Space Conversion

(¢) JPEG compression and decompression

(d) Huffman, run length and predictive coding and decoding
(e) Hierarchial image (Trade Mark) decompression

(f) Generalized affine image transformations

(g) Small kernel convolutions

(h) Matrix multiplication

(i) Halftoning

(j) Bulk arithmetic and memory copy operations

The raster image accelerator card 220 further includes its
own local memory 223 connected to a raster image
co-processor 224 which operates the raster image accelera-
tor card 220 generally under instruction from the host CPU
202. The co-processor 224 is preferably constructed as an
Application Specific Integrated Circuit (ASIC) chip. The
raster image co-processor 224 includes the ability to control
at least one printer device 226 as required via a peripheral
interface 225. The image accelerator card 220 may also
control any input/output device, including scanners.
Additionally, there is provided on the accelerator card 220 a
generic external interface 227 connected with the raster
image co-processor 224 for its monitoring and testing.

In operation, the host CPU 202 sends, via PCI bus 206, a
series of instructions and data for the creation of images by
the raster image co-processor 224. The data can be stored in
the local memory 223 in addition to a cache 230 in the raster
image co-processor 224 or in registers 229 also located in
the co-processor 224.

Turning now to FIG. 2, there is illustrated, in more detail,
the raster image co-processor 224. The co-processor 224 is
responsible for the acceleration of the aforementioned
operations and consists of a number of components gener-
ally under the control of an instruction controller 23S5.
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Turning first to the co-processor’s communication with the
outside world, there is provided a local memory controller
236 for communications with the local memory 223 of FIG.
1. A peripheral interface controller 237 is also provided for
the communication with printer devices utilising standard
formats such as the Centronics interface standard format or
other video interface formats. The peripheral interface con-
troller 237 is interconnected with the local memory control-
ler 236. Both the local memory controller 236 and the
external interface controller 238 are connected with an input
interface switch 252 which is in turn connected to the
instruction controller 235. The input interface switch 252 is
also connected to a pixel organizer 246 and a data cache
controller 240. The input interface switch 252 is provided
for switching data from the external interface controller 238
and local memory controller 236 to the instruction controller
235, the data cache controller 240 and the pixel organizer
246 as required.

For communications with the PCI bus 206 of FIG. 1 the
external interface controller 238 is provided in the raster
image co-processor 224 and is connected to the instruction
controller 235. There is also provided a miscellaneous
module 239 which is also connected to the instruction
controller 235 and which deals with interactions with the
co-processor 224 for purposes of test diagnostics and the
provision of clocking and global signals.

The data cache 230 operates under the control of the data
cache controller 240 with which it is interconnected. The
data cache 230 is utilized in various ways, primarily to store
recently used values that are likely to be subsequently
utilized by the co-processor 224. The aforementioned accel-
eration operations are carried out on plural streams of data
primarily by a JPEG coder/decoder 241 and a main data path
unit 242. The units 241, 242 are connected in parallel
arrangement to all of the pixel organizer 246 and two
operand organizers 247, 248. The processed streams from
units 241, 242 are forwarded to a results organizer 249 for
processing and reformatting where required. Often, it is
desirable to store intermediate results close at hand. To this
end, in addition to the data cache 230, a multi-used value
buffer 250 is provided, interconnected between the pixel
organizer 246 and the result organizer 249, for the storage of
intermediate data. The result organizer 249 outputs to the
external interface controller 238, the local memory control-
ler 236 and the peripheral interface controller 237 as
required.

As indicated by broken lines in FIG. 2, a further (third)
data path unit 243 can, if required be connected “in parallel”
with the two other data paths in the form of JPEG coder/
decoder 241 and the main data path unit 242. The extension
to 4 or more data paths is achieved in the same way.
Although the paths are “parallel” connected, they do not
operate in parallel. Instead only one path at a time operates.

The overall ASIC design of FIG. 2 has been developed in
the following manner. Firstly, in printing pages it is neces-
sary that there not be even small or transient artefacts. This
is because whilst in video signal creation for example, such
small errors if present may not be apparent to the human eye
(and hence be unobservable), in printing any small artefact
appears permanently on the printed page and can sometimes
be glaringly obvious. Further, any delay in the signal reach-
ing the printer can be equally disastrous resulting in white,
unprinted areas on a page as the page continues to move
through the printer. It is therefore necessary to provide
results of very high quality, very quickly and this is best
achieved by a hardware rather than a software solution.

Secondly, if one lists all the various operational steps
(algorithms) required to be carried out for the printing
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process and provides an equivalent item of hardware for
each step, the total amount of hardware becomes enormous
and prohibitively expensive. Also the speed at which the
hardware can operate is substantially limited by the rate at
which the data necessary for, and produced by, the calcula-
tions can be fetched and despatched respectively. That is,
there is a speed limitation produced by the limited band-
width of the interfaces.

However, overall ASIC design is based upon a surprising
realization that if the enormous amount of hardware is
represented schematically then various parts of the total
hardware required can be identified as being (a) duplicated
and (b) not operating all the time. This is particularly the
case in respect of the overhead involved in presenting the
data prior to its calculation.

Therefore various steps were taken to reach the desired
state of reducing the amount of hardware whilst keeping all
parts of the hardware as active as possible. The first step was
the realization that in image manipulation often repetitive
calculations of the same basic type were required to be
carried out. Thus if the data were streamed in some way, a
calculating unit could be configured to carry out a specific
type of calculation, a long stream of data processed and then
the calculating unit could be reconfigured for the next type
of calculation step required. If the data streams were rea-
sonably long, then the time required for reconfiguration
would be negligible compared to the total calculation time
and thus throughput would be enhanced.

In addition, the provision of plural data processing paths
means that in the event that one path is being reconfigured
whilst the other path is being used, then there is substantially
no loss of calculating time due to the necessary reconfigu-
ration. This applies where the main data path unit 242 carries
out a more general calculation and the other data path(s)
carry out more specialized calculation such as JPEC coding
and decoding as in unit 241 or, if additional unit 243 is
provided, it can provide entropy and/or Huffman coding/
decoding.

Further, whilst the calculations were proceeding, the
fetching and presenting of data to the calculating unit can be
proceeding. This process can be further speeded up, and
hardware resources better utilized, if the various types of
data are standardized or normalized in some way. Thus the
total overhead involved in fetching and despatching data can
be reduced.

Importantly, as noted previously, the co-processor 224
operates under the control of host CPU 202 (FIG. 1). In this
respect, the instruction controller 235 is responsible for the
overall control of the co-processor 224. The instruction
controller 235 operates the co-processor 224 by means of
utilising a control bus 231, hereinafter known as the CBus.
The CBus 231 is connected to each of the modules 236-250
inclusive to set registers (231 of FIG. 1) within each module
so as to achieve overall operation of the co-processor 224.
In order not to overly complicate FIG. 2, the interconnection
of the control bus 231 to each of the modules 236-250 is
omitted from FIG. 2.

Turning now to FIG. 3, there is illustrated a schematic
layout 260 of the available module registers. The layout 260
includes registers 261 dedicated to the overall control of the
co-processor 224 and its instruction controller 235. The
co-processor modules 236-250 include similar registers
262.

Host/Co-processor Queuing

With the above architecture in mind, it is clear that there
is a need to adequately provide for cooperation between the
host processor 202 and the image co-processor 224.

Patent Owner Monterey Research, LLC
Ex. 2002, 0144



US 6,289,138 B1

15

However, the solution to this problem is general and not
restricted to the specific above described architecture and
therefore will be described hereafter with reference to a
more general computing hardware environment.

Modern computer systems typically require some method
of memory management to provide for dynamic memory
allocation. In the case of a system with one or more
co-processors, some method is necessary to synchronize
between the dynamic allocation of memory and the use of
that memory by a co-processor.

Typically a computer hardware configuration has both a
CPU and a specialized co-processor, each sharing a bank of
memory. In such a system, the CPU is the only entity in the
system capable of allocating memory dynamically. Once
allocated by the CPU for use by the co-processor, this
memory can be used freely by the co-processor until it is no
longer required, at which point it is available to be freed by
the CPU. This implies that some form of synchronization is
necessary between the CPU and the co-processor in order to
ensure that the memory is released only after the
co-processor is finished using it. There are several possible
solutions to this problem but each has undesirable perfor-
mance implications.

The use of statically allocated memory avoids the need for
synchronization, but prevents the system from adjusting its
memory resource usage dynamically. Similarly, having the
CPU block and wait until the co-processor has finished
performing each operation is possible, but this substantially
reduces parallelism and hence reduces overall system per-
formance. The use of interrupts to indicate completion of
operations by the co-processor is also possible but imposes
significant processing overhead if co-processor throughput
is very high.

In addition to the need for high performance, such a
system also has to deal with dynamic memory shortages
gracefully. Most computer systems allow a wide range of
memory size configurations. It is important that those sys-
tems with large amounts of memory available make full use
of their available resources to maximize performance. Simi-
larly those systems with minimal memory size configura-
tions should still perform adequately to be useable and, at
the very least, should degrade gracefully in the face of a
memory shortage.

To overcome these problems, a synchronization mecha-
nism is necessary which will maximize system performance
while also allowing co-processor memory usage to adjust
dynamically to both the capacity of the system and the
complexity of the operation being performed.

In general, the preferred arrangement for synchronising
the (host) CPU and the co-processor is illustrated in FIG. 4
where the reference numerals used are those already utilized
in the previous description of FIG. 1.

Thus in FIG. 108, the CPU 202 is responsible for all
memory management in the system. It allocates memory
203 both for its own uses, and for use by the co-processor
224. The co-processor 224 has its own graphics-specific
instruction set, and is capable of executing instructions 1022
from the memory 203 which is shared with the host pro-
cessor 202. Each of these instructions can also write results
1024 back to the shared memory 203, and can read operands
1023 from the memory 203 as well. The amount of memory
203 required to store operands 1023 and results 1024 of
co-processor instructions varies according to the complexity
and type of the particular operation.

The CPU 202 is also responsible for generating the
instructions 1022 executed by the co-processor 224. To
maximize the degree of parallelism between the CPU 202
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and the co-processor 224, instructions generated by the CPU
202 are queued as indicated at 1022 for execution by the
co-processor 224. Each instruction in the queue 1022 can
reference operands 1023 and results 1024 in the shared
memory 203, which has been allocated by the host CPU 202
for use by the co-processor 224.

The method utilizes an interconnected instruction genera-
tor 1030, memory manager 1031 and queue manager 1032,
as shown in FIG. 5. All these modules execute in a single
process on the host CPU 202.

Instructions for execution by the co-processor 224 are
generated by the instruction generator 1030, which uses the
services of the memory manager 1031 to allocate space for
the operands 1023 and results 1024 of the instructions being
generated. The instruction generator 1030 also uses the
services of the queue manager 1032 to queue the instructions
for execution by the co-processor 224.

Once cach instruction has been executed by the
co-processor 224, the CPU 202 can free the memory which
was allocated by the memory manager 1031 for use by the
operands of that instruction. The result of one instruction can
also become an operand for a subsequent instruction, after
which its memory can also be freed by the CPU. Rather than
fielding an interrupt, and freeing such memory as soon as the
co-processor 224 has finished with it, the system frees the
resources needed by each instruction via a cleanup function
which runs at some stage after the co-processor 224 has
completed the instruction. The exact time at which these
cleanups occur depends on the interaction between the
memory manager 1031 and the queue manager 1032, and
allows the system to adapt dynamically according to the
amount of system memory available and the amount of
memory required by each co-processor instruction.

FIG. 6 schematically illustrates the implementation of the
co-processor instruction queue 1022. Instructions are
inserted into a pending instruction queue 1040 by the host
CPU 202, and are read by the co-processor 224 for execu-
tion. After execution by the co-processor 224, the instruc-
tions remain on a cleanup queue 1041, so that the CPU 202
can release the resources that the instructions required after
the co-processor 224 has finished executing them.

The instruction queue 1022 itself can be implemented as
a fixed or dynamically sized circular buffer. The instruction
queue 1022 decouples the generation of instructions by the
CPU 202 from their execution by the co-processor 224.

Operand and result memory for each instruction is allo-
cated by the memory manager 1031 (FIG. 5) in response to
requests from the instruction generator 1030 during instruc-
tion generation. It is the allocation of this memory for newly
generated instructions which triggers the interaction
between the memory manager 1031 and the queue manager
1032 described below, and allows the system to adapt
automatically to the amount of memory available and the
complexity of the instructions involved.

The instruction queue manager 1032 is capable of waiting
for the co-processor 224 to complete the execution of any
given instruction which has been generated by the instruc-
tion generator 1030. However, by providing a sufficiently
large instruction queue 1022 and sufficient memory 203 for
allocation by the memory manager 1031, it becomes pos-
sible to avoid having to wait for the co-processor 224 at all,
or at least until the very end of the entire instruction
sequence, which can be several minutes on a very large job.
However, peak memory usage can easily exceed the
memory available, and at this point the interaction between
the queue manager 1032 and the memory manager 1031
comes into play.
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The instruction queue manager 1032 can be instructed at
any time to “cleanup” the completed instructions by releas-
ing the memory that was dynamically allocated for them. If
the memory manager 1031 detects that available memory is
either running low or is exhausted, its first recourse is to
instruct the queue manager 1032 to perform such a cleanup
in an attempt to release some memory which is no longer in
use by the co-processor 224. This can allow the memory
manager 1031 to satisfy a request from the instruction
generator 1030 for memory required by a newly generated
instruction, without the CPU 202 needing to wait for, or
synchronize with, the co-processor 224.

If such a request made by the memory manager 1031 for
the queue manager 1032 to cleanup completed instructions
does not release adequate memory to satisfy the instruction
generator’s new request, the memory manager 1031 can
request that the queue manager 1032 wait for a fraction, say
half, of the outstanding instructions on the pending instruc-
tion queue 1040 to complete. This will cause the CPU 202
processing to block until some of the co-processor 224
instructions have been completed, at which point their
operands can be freed, which can release sufficient memory
to satisfy the request. Waiting for only a fraction of the
outstanding instructions ensures that the co-processor 224 is
kept busy by maintaining at least some instructions in its
pending instruction queue 1040. In many cases the cleanup
from the fraction of the pending instruction queue 1040 that
the CPU 202 waits for, releases sufficient memory for the
memory manager 1031 to satisfy the request from the
instruction generator 1030.

In the unlikely event that waiting for the co-processor 224
to complete execution of, say, half of the pending instruc-
tions does not release sufficient memory to satisfy the
request, then the final recourse of the memory manager 1031
is to wait until all pending co-processor instructions have
completed. This should release sufficient resources to satisty
the request of the instruction generator 1030, except in the
case of extremely large and complex jobs which exceed the
system’s present memory capacity altogether.

By the above described interaction between the memory
manager 1031 and the queue manager 1032, the system
effectively tunes itself to maximize throughput for the given
amount of memory 203 available to the system. More
memory results in less need for synchronization and hence
greater throughput. Less memory requires the CPU 202 to
wait more often for the co-processor 224 to finish using the
scarce memory 203, thereby yielding a system which still
functions with minimal memory available, but at a lower
performance.

The steps taken by the memory manager 1031 when
attempting to satisty a request from the instruction generator
1030 are summarized below. Each step is tried in sequence,
after which the memory manager 1031 checks to see if
sufficient memory 203 has been made available to satisfy the
request. If so, it stops because the request can be satisfied;
otherwize it proceeds to the next step in a more aggressive
attempt to satisfy the request:

1. Attempt to satisfy the request with the memory 203
already available.

2. Cleanup all completed instructions.

3. Wait for a fraction of the pending instructions.

4. Wait for all the remaining pending instructions.

Other options can also be used in the attempt to satisfy the
request, such as waiting for different fractions (such as
one-third or two-thirds) of the pending instructions, or
waiting for specific instructions which are known to be using
large amounts of memory.
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Turning now to FIG. 7, in addition to the interaction
between the memory manager 1031 and the queue manager
1032, the queue manager 1032 can also initiate a synchro-
nization with the co-processor 224 in the case where space
in a fixed-length instruction queue buffer 1050 is exhausted.
Such a situation is depicted in FIG. 7. In FIG. 7 the pending
instructions queue 1040 is ten instructions in length. The
latest instruction to be added to the queue 1040 has the
highest occupied number. Thus where space is exhausted the
latest instruction is located at position 9. The next instruction
to be input to the co-processor 224 is waiting at position
Zero.

In such a case of exhausted space.. the queue manager
1032 will also wait for, say, half the pending instructions to
be completed by the co-processor 224. This delay normally
allows sufficient space in the instruction queue 1040 to be
freed for new instructions to be inserted by the queue
manager 1032.

The method used by the queue manager 1032 when
scheduling new instructions is as follows:

1. Test to see if sufficient space is available in the instruction
queue 1040.

2 If sufficient space is not available, wait for the
co-processor to complete some predetermined number or
fraction of instructions.

3. Add the new instructions to the queue.

The method used by the queue manager 1032 when asked
to wait for a given instruction is as follows:

1. Wait until the co-processor 224 indicates that the instruc-
tion is complete.

2. While there are instructions completed which are not yet
cleaned up, clean up the next completed instruction in the
queue.

The method used by the instruction generator 1030 when
issuing new instructions is as follows:

1. Request sufficient memory for the instruction operands
1023 from the memory manger 1031.

2. Generate the instructions to be submitted.

3. Submit the co-processor instructions to the queue man-
ager 1032 for execution.

The following is an example of pseudo code of the above
decision making processes.

MEMORY MANAGER
ALLOCATE__MEMORY

BEGIN
IF sufficient memory is NOT available to satisfy request
THEN
Clean up all completed instructions.
ENDIF
IF sufficient memory is still NOT available to satisfy request
THEN
CALL WAIT_FOR_INSTRUCTION for half the pending
instructions.
ENDIF
IF sufficient memory is still NOT available to satisfy request
THEN
RETURN with an error.
ENDIF
RETURN the allocated memory
END

QUEUE MANAGER
SCHEDULE__INSTRUCTION
BEGIN
IF sufficient space is NOT available in the instruction queue
THEN
WAIT for the co-processor to complete some predetermined
number of instructions.
ENDIF
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-continued
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TABLE 1-continued

Add the new instructions to the queue.
END
WAIT_FOR_INSTRUCTION(i)
BEGIN
WAIT until the co-processor indicates that instruction
iis complete.
WHILE there are instructions completed which are not yet cleaned
up
DO
IF the next completed instruction has a cleanup function
THEN
CALL the cleanup function
ENDIF
REMOVE the completed instruction from the queue
DONE
END
INSTRUCTION GENERATOR
GENERATE__INSTRUCTIONS
BEGIN
CALL ALLOCATE__MEMORY to allocate sufficient memory for
the instructions operands from the memory manager.
GENERATE the instructions to be submitted.
CALL SCHEDULE__INSTRUCTION submit the co-processor
instructions to the queue manager for execution.
END

Register Description of Co-processor

As explained above in relation to FIGS. 1 and 3, the
co-processor 224 maintains various registers 261 for the
execution of each instruction stream.

Referring to each of the modules of FIG. 2, Table 1 sets
out the name, type and description of each of the registers
utilized by the co-processor 224 while Appendix B sets out
the structure of each field of each register.

TABLE 1

Register Description

NAME TYPE DESCRIPTION
External Interface Controller Registers

eic_ cfg Config2  Configuration

eic_ stat Status Status

eic_err_int Interrupt  Error and Interrupt Status

eic_err_int_en Config2  Error and Interrupt Enable

eic_ test Config2 Test modes

eic_gen_ob Config2  Generic bus programmable output bits

eic_high addr  Configl Dual address cycle offset

eic_wtlb_v Control2  Virtual address and operation bits for TLB
Invalidate»rite

eic__wtlb_p Config2  Physical address and control bits for TLB
Write

eic_mmu v Status Most recent MMU virtual address
translated, and current LRU location.

eic_mmu v Status Most recent page table physical address
fetched by #MMU.

eic_ip_addr Status Physical address for most recent IBus
access to the PCI Bus.

eic__rp_addr Status Physical address for most recent RBus
access to the PCI Bus.

eic_ig addr Status Address for most recent IBus access to the
Generic Bus.

eic_rg_data Status Address for most recent RBus access to

the Generic Bus.
Local Memory Controller Registers

Imi_ cfg Control2  General configuration register
Imi_sts Status General status register
Imi_err_int Interrupt  Error and interrupt status register
Imi_err_int_en Control2  Error and interrupt enable register
Imi_ dcfg Control2  DRAM configuration register
Imi__mode Control2  SDRAM mode register
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Register Description

NAME TYPE DESCRIPTION
Peripheral Interface Controller Registers
pic_cfg Config2  Configuration
pic_stat Status Status
pic_err_int Interrupt  Interrupt/Error Status
pic_err_int_en Config2  Interrupt/Error Enable
pic_abus_ cfg Control2  Configuration and control for ABus
pic_abus_addr  Configl Start address for ABus transfer
pic_cent_cfg Control2  Configuration and control for Centronics
pic_cent_dir Config2  Centronics pin direct control register
pic_reverse_cfg Control2  Configuration and control for reverse
(input) data transfers
pic__timerQ Configl Initial data timer value
pic_timerl Configl Subsequent data timer value
Miscellaneous Module Registers
mm__cfg Config2  Configuration Register
mm__stat Status Status Register
mm__err_int Interrupt  Error and Interrupt Register
mm_err_int_en Config2  Error and Interrupt Masks
mm__gefg Config2  Global Configuration Register
mm_ diag Config Diagnostic Configuration Register
mm__grst Config Global Reset Register
mm__gerr Config2  Global Error Register
mm__gexp Config2  Global Exception Register
mm_ gint Config2  Global Interrupt Register
mm__active Status Global Active signals
Instruction Controller Registers
ic_cfg Config2  Configuration Register
ic_ stat Status/ Status Register
Interrupt
ic_err_int Interrupt  Error and Interrupt Register (write to clear
error and interrupt)
ic_err_int_en  Config2  Error and Interrupt Enable Register
ic_ipa Controll A stream Instruction Pointer
ic_tda Configl A stream Todo Register
ic__fna Controll A stream Finished Register
ic_inta Configl A stream Interrupt Register
ic_loa Status A stream Last Overlapped Instruction
Sequence number
ic_ipb Controll B stream Instruction Pointer
ic__tdb Configl B stream Todo Register
ic__fnb Controll B stream Finished Register
ic_intb Configl B stream Interrupt Register
ic_lob Status B stream Last Overlapped Instruction
Sequence number
ic__sema Status A stream Semaphore
ic_ semb Status B stream Semaphore
Data Cache Controller Registers
dee__cfgl Config2 ~ DCC configuration 1 register
dec__stat Status state machine status bits
dee__err_int Status DCC error status register
dcc_err_int_en Controll ~ DCC error interrupt enable bits
dee_cfg2 Control2  DCC configuration 2 register
dece__addr Configl Base address register for special address
modes.
dec_Iv0 Controll  “valid” bit status for lines 0 to 31
dec_Ivl Controll  “valid” bit status for lines 32 to 63
dec_1v2 Controll  “valid” bit status for lines 64 to 95
dec_1v3 Controll  “valid” bit status for lines 96 to 127
dce__raddrb Status Operand Organizer B request address
decc__raddre Status Operand Organizer C request address
dee__test Controll ~ DCC test register
Pixel Organizer Registers
po_cfg Config2  Configuration Register
po__stat Status Status Register
po__err__int Interrupt  Error/Interrupt Status Register
po_err_int_en  Config2  Error/Interrupt Enable Register
po__dmr Config2  Data Manipulation Register
po__subst Config2  Substitution Value Register
po__cdp Status Current Data Pointer
po_len Controll  Length Register
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TABLE 1-continued
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TABLE 1-continued

Register Description

Register Description

NAME TYPE DESCRIPTION NAME TYPE DESCRIPTION
o__said Controll  Start Address or Immediate Data Input Interface Switch Registers
p P g
po_idr Control2  Image Dimensions Register
po_muv_valid  Control2 MUV valid bits iis_ cfg Config2  Configuration Register
po_muv Configl Base address of MUV RAM iis__stat Status Status Register
Operand Organizer B Registers 10 iis_err int Interrupt  Interrupt/Error Status Register
iis_err_int_en  Config2  Interrupt/Error Enable Register
oob__cfg Config2  Configuration Register iis_ic_ addr Status Input address from IC
oob__stat Status Status Register iis__doc__addr Status Input address from DCC
oob__err__int Interrupt  Error/Interrupt Register iis__po__addr Status Input address from PO
oob_err_int_en Config2  Error/Interrupt Enable Register iis__burst Status Burst Length from PO, DCC & IC
oob__dmr Config2  Data Manipulation Register 15 iis_base_addr Configl Base address of co-processor memory
oob__subst Config2  Substitution Value Register object in host memory map.
oob__cdp Status Current Data Pointer iis__test Configl ~ Test mode register
oob__len Controll  Input Length Register
oob__said Controll ~ Operand Start Address . .
oob_tile Controll  Tiling length/offset Register The more notable ones of these registers include:
Operand Organizer C Registers 5o () Instruction Pointer Registers (ic_ipa and ic_ipb). This
) ) air of registers each contains the virtual address of the
f Config2 Confj, R P &
ooc_cig OniE onfiguration Register currently executing instruction. Instructions are fetched
ooc__stat Status Status Register . -
0oc_err_int Interrapt  Error/Interrupt Register from aspendmg virtual addresses and executed. Jump
ooc_err_int_en Config2  Error/Interrupt Enable Register instruction can be used to transfer control across non-
ooc__dmr Config2  Data Manipulation Register p contiguous virtual addresses. Associated with each
0oc_subst Config2  Substitution Value Register 2 instruction is a 32 bit sequence number which increments
ooc_cdp Status Current Data Pointer by one per instruction. The sequence numbers are used by
ooc__len Controll  Input Length Register both th 324 and by the h CPU 202
ooc__said Controll ~ Operand Start Address oth the .CO-PI‘OCGSS(.)I‘ an . y the host . to
ooc_tile Controll  Tiling length/offset Register schhromze ms}ructlor} generation .and executhn. )
JPEG Coder Register (b) Finished Registers (ic_fna and ic_fnb). This pair of
] ] 30 registers each contains a sequence number counting com-
je_cfg Config2  configuration pleted instructions.
je_stat Status status . . . . . .
je_err_int Interrupt  error and interrupt status register (C) Todo Regls,ter (lcftda and lcftdb)' This palI: of registers
jc_err_int_en  Config2  error and interrupt enable register cach contains a sequence number counting queued
je_rsi Configl ~ restart interval instructions.
je_decode gontfoﬁ deC_SdSIOf iuffent instruction 35 (d) Interrupt Register (ic_inta and ic_intb). This pair of
je_res ontro resiaual value . . .
jc_table_sel Control2  table selection from decoded instruction reglster s each contains a sequence number at which to
Main Data Path Register Interrupt. . . .
(e) Interrupt Status Registers (ic_stat.a_ primed and
mgp—Cfg Config2  configuration ic_stat.b_ primed). This pair of registers each contains a
- dgfzt:;t - Isgfgrlrsup . zﬁgjmterrum 40 primed bit which is a flag enabling the interrupt following
mdp_err_int_en Config?  error/interrupt enable a match of the .Interrupt a.nd Finished Regis.ters. This bit
mdp_test Config2  test modes appears alongside other interrupt enable bits and other
mdp_op1 Control2  current operation 1 status/configuration information in the Interrupt Status
mdp__op2 Control2  current operation 2 . .
(ic__stat) register.
mdp__por Controll  offset for plus operator R . .
mdp__bi Controll  blend start/offset to index table entry 45 (f) Reglster Access Semaphores (1Cfsema and 1Cfsemb)~
mdp_bm Controll  blend end or number of rows and columns The host CPU 202 must obtain this semaphore before
in matrix, binary places, and number of attempting register accesses to the co-processor 224 that
levels in halftoning requires atomicity, ie. more than one register write. An
mdp__len Controll  Length of blend to produce q, Y, 1€. - e g . y
Result Organizer Register register accesses not requiring atomicity can be performed
50  at any time. A side effect of the host CPU 202 obtaining
ro_cfg Config2  Configuration Register this semaphore is that co-processor execution pauses once
T0__ stat Status Status Register h 1 . . . h 1 d. Th
. . the currently executing istruction has completed. €
ro__err_int Interrupt  Error/Interrupt Register . L. .
ro_err_int en  Config2  Error/Interrupt Enable Register Register ACCG.SS Semaphore. 1s anlemented as one bit of
ro__dmr Config2  Data Manipulation Register the configuration/status register of the co-processor 224.
ro—sngt Configl  Substitution Value Register 55 These registers are stored in the Instruction Controllers
ro—ep Staws - Current Data Pointer own register area. As noted previously, each sub-module
ro_len Status Output Length Register X .
fo_sa Configl  Start Address of the co-processor has its own set of configuration and
ro_idr Configl ~ Image Dimensions Register status registers. These registers are set in the course of
ro_vbase Configl  co-processor Virtual Base Address regular instruction execution. All of these registers appear
ro_cut Configl Output Cut Register : : : : L
S 60  in the register map and many are modified implicitly as
ro_ Imt Configl Output Length Limit N ! . o
PCIBus Configuration Space alias part of 1nstruct19n execution. These are all visible to the
host via the register map.
A read only copy of PCI configuration Format of Plural Streams
. space registers 0x0 to OxD and OxF As noted previously, the co-processor 224, in order to
pci__external__cfg  Status 32-bit field downloaded at reset from an T . . ) A
external serial ROM. Has no influence on 65 Mmaximize the utilization of its resources and to provide for

coprocessor operation.

rapid output on any external peripheral device, executes one
of two independent instruction streams. Typically, one
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instruction stream is associated with a current output page
required by an output device in a timely manner, while the
second instruction stream utilizes the modules of the
co-processor 224 when the other instruction stream is dor-
mant. Clearly, the overriding imperatives are to provide the
required output data in a timely manner whilst simulta-
neously attempting to maximize the use of resources for the
preparation of subsequent pages, bands, etc. The
co-processor 224 is therefore designed to execute two com-
pletely independent but identically implemented instruction
streams (hereafter termed A and B). The instructions are
preferably generated by software running on the host CPU
202 (FIG. 1) and forwarded to the raster image acceleration
card 220 for execution by the co-processor 224. One of the
instruction streams (stream A) operates at a higher priority
than the other instruction stream (stream B) during normal
operation. The stream or queue of instructions is written into
a buffer or list of buffers within the host RAM 203 (FIG. 1)
by the host CPU 202. The buffers are allocated at start-up
time and locked into the physical memory of the host 203 for
the duration of the application. Each instruction is preferably
stored in the virtual memory environment of the host RAM
203 and the raster image co-processor 224 utilizes a virtual
to physical address translation scheme to determine a cor-
responding physical address with the in-host RAM 203 for
the location of a next instruction. These instructions may
alternatively be stored in the co-processors 224 local
memory.

Turning now to FIG. 8, there is illustrated the format of
two instruction streams A and B 270, 271 which are stored
within the host RAM 203. The format of each of the streams
A and B is substantially identical.

Briefly, the execution model for the co-processor 224
consists of:

Two virtual streams of instructions, the A stream and the
B stream.

In general only one instruction is executed at a time.

Either stream can have priority, or priority can be by way
of “round robin”.

Either stream can be “locked” in, ie. guaranteed to be
executed regardless of stream priorities or availability
of instructions on the other stream.

Either stream can be empty.
Either stream can be disabled.

Either stream can contain instructions that can be
“overlapped”, ie. execution of the instruction can be
overlapped with that of the following instruction if the
following instruction is not also “overlapped”.

Each instruction has a “unique” 32 bit incrementing
sequence number.

Each instruction can be coded to cause an interrupt, and/or
a pause in instruction execution.

Instructions can be speculatively prefetched to minimize

the impact of external interface latency.

The instruction controller 235 is responsible for imple-
menting the co-processor’s instruction execution model
maintaining overall executive control of the co-processor
224 and fetching instructions from the host RAM 203 when
required. On a per instruction basis, the instruction control-
ler 235 carries out the instruction decoding and configures
the various registers within the modules via CBus 231 to
force the corresponding modules to carry-out that instruc-
tion.

Turning now to FIG. 9, there is illustrated a simplified
form of the instruction execution cycle carried out by the
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instructions controller 235. The instruction execution cycle
consists of four main stages 276-279. The first stage 276 is
to determine if an instruction is pending on any instruction
stream. If this is the case, an instruction is fetched 277,
decoded and executed 278 by means of updating registers
279.

Determine Current Active Stream

In implementing the first stage 276, there are two steps
which must be taken:

1. Determine whether an instruction is pending; and

2. Decide which stream of instructions should be fetched
next.
In determining whether instructions are pending the fol-

lowing possible conditions must be examined:

1. whether the instruction controller is enabled;

2. whether the instruction controller is paused due to an
internal error or interrupt;

3. whether there is any external error condition pending;

4. whether either of the A or B streams are locked;

5. whether either stream sequence numbering is enabled;
and

6. whether either stream contains a pending instruction.
The following pseudo code describes the algorithm for

determining whether an instruction is pending in accordance

with the above rules. This algorithm can be hardware

implemented via a state transition machine within the

instruction controller 235 in known manner:

if not error and enabled and not bypassed and not self test mode
if A stream locked and not paused
if A stream enabled and (A stream
sequencing disabled or instruction on A stream)
instruction pending
else
no instruction pending
end if
else
if B stream locked and not paused
if B stream enabled and (B stream
sequencing disabled or instruction on B stream)
instruction pending
else
no instruction pending
end if
/* no stream is locked */
if (A stream enabled and not paused and (A
stream sequencing disabled or instruction on A stream))
or (B stream enabled and not paused and
(B stream sequencing disabled or instruction on B stream))
instruction pending

else

else
no instruction pending
end if
end if
else /* interface controller not enabled */
no instruction pending
end if

If no instruction is found pending, then the instruction
controller 235 will “spin” or idle until a pending instruction
is found.

To determine which stream is “active”, and which stream
is executed next, the following possible conditions are
examined:

1. whether either stream is locked;

2. what priority is given to the A and B streams and what the
last instruction stream was;

3. whether either stream is enabled; and

4. whether either stream contains a pending instruction.

Patent Owner Monterey Research, LLC
Ex. 2002, 0149



US 6,289,138 B1

25

The following pseudo code implemented by the instruc-
tion controller describes how to determine the next active
instruction stream:

if A stream locked
next stream is A
else if B stream locked
next stream is B
else  /* no stream is locked */
if (A stream enabled and (A stream sequencing disabled or
instruction on A stream)) and not (B stream enabled and (B stream
sequencing disabled or instruction on B stream))
next stream is A
else if (B stream enabled and (B stream sequencing disabled or
instruction on B stream)) and not (A stream enabled and (A stream
sequencing disabled or instruction on A stream))

next stream is B
else  /* both stream have instruction */

if pri = 0 /* A high, B low */
next stream is A

else if pri = 1 /* A low, B high */
next stream is B

else if pri = 2 or 3 /* round robin */
if last stream is A

next stream is B

else
next stream is A
end if
end if
end if
end if

As the conditions can be constantly changing, all condi-
tions must be determined together atomically.
Fetch Instruction of Current Active Stream

After the next active instruction stream is determined, the
Instruction Controller 235 fetches the instruction using the
address in the corresponding instruction pointer register
(ic_ipa or ic__ipb). However, the Instruction Controller 235
does not fetch an instruction if a valid instruction already
exists in a prefetch buffer stored within the instruction
controller 235.

A valid instruction is in the prefetch buffer if:

1. the prefetch buffer is valid; and
2. the instruction in the prefetch buffer is from the same
stream as the currently active stream.

The wvalidity of the contents of the prefetch buffer is
indicated by a prefetch bit in the ic_ stat register, which is set
on a successful instruction prefetch. Any external write to
any of the registers of the instruction controller 235 causes
the contents of the prefetch buffer to be invalidated.
Decode and Execute Instruction

Once an instruction has been fetched and accepted the
instruction controller 235 decodes it and configures the
registers 229 of the co-processor 224 to execute the instruc-
tion.

The instruction format utilized by the raster image
co-processor 224 differs from traditional processor instruc-
tion sets in that the instruction generation must be carried out
instruction by instruction by the host CPU 202 and as such
is a direct overhead for the host. Further, the instructions
should be as small as possible as they must be stored in host
RAM 203 and transferred over the PCI bus 206 of FIG. 1 to
the co-processor 224. Preferably, the co-processor 224 can
be set up for operation with only one instruction. As much
flexibility as possible should be maintained by the instruc-
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tion set to maximize the scope of any future changes.
Further, preferably any instruction executed by the
co-processor 224 applies to a long stream of operand data to
thereby achieve best performance. The co-processor 224
employs an instruction decoding philosophy designed to
facilitate simple and fast decoding for “typical instructions”
yet still enable the host system to apply a finer control over
the operation of the co-processor 224 for “atypical” opera-
tions.

Turning now to FIG. 10, there is illustrated the format of
a single instruction 280 which comprizes eight words each
of 32 bits. Each instruction includes an instruction word or
opcode 281, and an operand or result type data word 282
setting out the format of the operands. The addresses
283-28S5 of three operands A, B and C are also provided, in
addition to a result address 286. Further, an arca 287 is
provided for use by the host CPU 202 for storing informa-
tion relevant to the instruction.

The structure 290 of an instruction opcode 281 of an
instruction is illustrated in FIG. 11. The instruction opcode
is 32 bits long and includes a major opcode 291, a minor
opcode 292, an interrupt (I) bit 293, a partial decode (Pd) bit
294, a register length (R) bit 295, a lock (L) bit 296 and a
length 297. A description of the fields in the instruction word
290 is as provided by the following table.

TABLE 2

Opcode Description

Field Description

major opcode [3..0] Instruction category

: Reserved

: General Colour Space Conversion
JPEG Compression and Decompression
: Matrix Multiplication

Image Convolutions

Image Transformations

: Data Coding

: Halftone

: Hierarchial image decompression

9: Memory Copy

10: Internal Register and Memory Access
11: Instruction Flow Control

12: Compositing

13: Compositing

14: Reserved

15: Reserved

o N N =)

minor opcode Instruction detail. The coding of this field is
[7..0] dependent on the major opcode.
I 1 = Interrupt and pause when competed,

0 = Don’t interrupt and pause when completed
pd Partial Decode
1 = use the “partial decode” mechanism.
0 = Don’t use the “partial decode” mechanism
R 1 = length of instruction is specified by the Pixel
Organizer’s input length register (po__len)
0 = length of instruction is specified by the opcode
length field.
L 1 = this instruction stream (A or B) is “locked”
for the next instruction.
0 = this instruction stream (A or B) is not
“locked” in for the next instruction.
length [15..0] number of data items to read or generate

By way of discussion of the various fields of an opcode,
by setting the I-bit field 293, the instruction can be coded
such that instruction execution sets an interrupt and pause on
completion of that instruction. This interrupt is called an
“instruction completed interrupt”. The partial decode bit 294
provides for a partial decode mechanism such that when the
bit is set and also enabled in the ic_ cfg register, the various
modules can be micro coded prior to the execution of the
instruction in a manner which will be explained in more

Patent Owner Monterey Research, LLC
Ex. 2002, 0150



US 6,289,138 B1

27

detail hereinafter. The lock bit 296 can be utilized for
operations which require more than one instruction to set up.
This can involve setting various registers prior to an instruc-
tion and provides the ability to “lock™ in the current instruc-
tion stream for the next instruction. When the L-bit 296 is
set, once an instruction is completed, the next instruction is
fetched from the same stream. The length field 297 has a
natural definition for each instruction and is defined in terms
of the number of “input data items” or the number of “output
data items” as required. The length field 297 is only 16 bits
long. For instructions operating on a stream of input data
items greater than 64,000 items the R-bit 295 can be set, in
which case the input length is taken from a po__len register
within the pixel organizer 246 of FIG. 2. This register is set
immediately before such an instruction.

Returning to FIG. 10, the number of operands 283-286
required for a given instruction varies somewhat depending
on the type of instruction utilized. The following table sets
out the number of operands and length definition for each
instruction type:

TABLE 3

Operand Types
Instruction # of
Class Length defined by  operands
Compositing input pixels 3
General Color Space Conversion input pixels 2
JPEG decompression/compression input bytes 2
other decompression/compression input bytes 2
Image Transformations and output  bytes 2
Convolutions
Matrix Multiplication input pixels 2
Halftoning input pixels, bytes 2
Memory Copying input pixels, bytes 1
Hierarchial Image Decompression input pixels, bytes 1 or 2
Flow Control fixed fixed 2
Internal Access Instructions fixed fixed 4

Turning now to FIG. 12, there is illustrated, firstly, the
data word format 300 of the data word or operand descriptor
282 of FIG. 10 for three operand instructions and, secondly,
the data word format 301 for two operand instructions. The
details of the encoding of the operand descriptors are
provided in the following table:

TABLE 4

Operand Descriptors

Field Description

what 0 = instruction specific mode:
This indicates that the remaining fields of the descriptor will be
interpreted in line with the major opcode. Instruction specific
modes supported are:
major opcode = 0-11: Reserved
major opcode = 12-13: (Compositing): Implies that Operand C
is a bitmap attenuation. The occ__dmr register will be set
appropriately, with the cc = 1 and normalize = 0
major opcode = 14-15: Reserved
1 = sequential addressing
2 =tile addressing
3 = constant data
L 0 = not long: immediate data
1 = long: pointer to data
if internal format:
0 = pixels
1 = unpacked bytes
2 = packed bytes
3 = other
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TABLE 4-continued

Operand Descriptors

Field Description

S 0 = set up Data Manipulation Register as appropriate for this
operand
1 = use the Data Manipulation Register as is

C 0 = not cacheable

1 = cacheable
Note: In general a performance gain will be achieved if an
operand is specified as cacheable. Even operands displaying low
levels of referencing locality (such as sequential data) still
benefit from being cached - as it allows data to be burst
transferred to the host processor and is more efficient.

P external format:
0 = unpacked bytes
1 = packed stream

bo[2:0] bit offset. Specifies the offset within a byte of the start of bitwize
data.
R 0 = Operand C does not describe a register to set.

1 = Operand C describes a register to set.
This bit is only relevant for instructions with less than three
operands.

With reference to the above table, it should be noted that,
firstly, in respect of the constant data addressing mode, the
co-processor 224 is set up to fetch, or otherwize calculate,
one internal data item, and use this item for the length of the
instruction for that operand. In the tile addressing mode, the
co-processor 224 is set up to cycle through a small set of data
producing a “tiling effect”. When the L-bit of an operand
descriptor is zero then the data is immediate, ie. the data
items appear literally in the operand word.

Returning again to FIG. 10, each of the operand and result
words 283-286 contains either the value of the operand
itself or a 32-bit virtual address to the start of the operand or
result where data is to be found or stored.

The instruction controller 235 of FIG. 2 proceeds to
decode the instruction in two stages. It first checks to see
whether the major opcode of the instruction is valid, raising
an error if the major opcode 291 (FIG. 11) is invalid. Next,
the instruction is executed by the instruction controller 235
by means of setting the various registers via CBus 231 to
reflect the operation specified by the instruction. Some
instructions can require no registers to be set.

The registers for each module can be classified into types
based on their behavior. Firstly, there is the status register
type which is “read only” by other modules and “read/write”
by the module including the register. Next, a first type of
configuration register, hereinafter called “configl”, is “read/
write” externally by the modules and “read only” by the
module including the register. These registers are normally
used for holding larger type configuration information, such
as address values. A second type of configuration register,
herein known as “config2”, is readable and writable by any
module but is read only by the module including the register.
This type of register is utilized where bit by bit addressing
of the register is required.

A number of control type registers are provided. A first
type, hereinafter known as “controll” registers, is readable
and writable by all modules (including the module which
includes the register). The controll registers are utilized for
holding large control information such as address values.
Analogously, there is further provided a second type of
control register, hereinafter known as “control2”, which can
be set on a bit by bit basis.

A final type of register known as an interrupt register has
bits within the register which are settable to 1 by the module
including the register and resettable to zero externally by
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writing a “1” to the bit that has been set. This type of register

is utilized for dealing with the interrupts/errors flagged by

each of the modules.

Each of the modules of the co-processor 224 sets a
c_ active line on the CBus 231 when it is busy executing an
instruction. The instruction controller 235 can then deter-
mine when instructions have been completed by “OR-ing”
the c__ active lines coming from each of the modules over the
CBus 231. The local memory controller module 236 and the
peripheral interface controller module 237 are able to
execute overlapped instructions and include a
¢_background line which is activated when they are execut-
ing an overlapped instruction. The overlapped instructions
are “local DMA?” instructions transferring data between the
local memory interface and the peripheral interface.

The execution cycle for an overlapped local DMA instruc-
tion is slightly different from the execution cycle of other
instructions. If an overlapped instruction is encountered for
execution, the instruction controller 235 checks whether
there is already an overlapped instruction executing. If there
is, or overlapping is disabled, the instruction controller 235
waits for that instruction to finish before proceeding with
execution of that instruction. If there is not, and overlapping
is enabled, the instruction controller 235 immediately
decodes the overlapped instruction and configures the
peripheral interface controller 237 and local memory con-
troller 236 to carry out the instruction. After the register
configuration is completed, the instruction controller 235
then goes on to update its registers (including finished
register, status register, instruction pointer, etc.) without
waiting for the instruction to “complete™ in the conventional
sense. At this moment, if the finished sequence number
equals the interrupt sequence number, ‘the overlapped
instruction completed’ interrupt is primed rather than raising
the interrupt immediately. The ‘overlapped instruction com-
pleted’ interrupt is raized when the overlapped instruction
has fully completed.

Once the instruction has been decoded, the instruction
controller attempts to prefetch the next instruction while the
current instruction is executing. Most instructions take con-
siderably longer to execute than they will to fetch and
decode. The instruction controller 235 prefetches an instruc-
tion if all of the following conditions are met:

1. the currently executing instruction is not set to interrupt
and pause;

2. the currently executing instruction is not a jump instruc-
tion;

3. the next instruction stream is prefetch-enabled; and

4. there is another instruction pending.

If the instruction controller 235 determines that prefetch-
ing is possible it requests the next instruction, places it in a
prefetch buffer and then validates the buffer. At this point
there is nothing more for the instruction controller 235 to do
until the currently executing instruction has completed. The
instruction controller 235 determines the completion of an
instruction by examining the ¢_ active and c¢_ background
lines associated with the CBus 231.

Update Registers of Instruction Controller
Upon completion of an instruction, the instruction con-

troller 235 updates its registers to reflect the new state. This

must be done atomically to avoid problems with synchro-
nising with possible external accesses. This atomic update
process involves:

1. Obtaining the appropriate Register Access Semaphore. If
the semaphore is taken by an agent external to the
Instruction Controller 235, the instruction execution cycle
waits at this point for the semaphore to be released before
proceeding.
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2. Updating the appropriate registers. The instruction pointer
(ic_ipa or ic_ipb) is incremented by the size of an
instruction, unless the instruction was a successful jump,
in which case the target value of the jump is loaded into
the instruction pointer.

The finished register (ic_fna or ic_ fnb), is then incre-
mented if sequence numbering is enabled.

The status register (ic__stat) is also updated appropriately
to reflect the new state. This includes setting the pause bits
if necessary. The Instruction Controller 235 pauses if an
interrupt has occurred and pausing is enabled for that
interrupt or if any error has occurred. Pausing is imple-
mented by setting the instruction stream pause bits in the
status register (a_pause or b_pause bits in ic_stat). To
resume instruction execution, these bits should be reset to 0.
3. Asserting a ¢__end signal on the CBus 231 for one clock

cycle, which indicates to other modules in the

co-processor 224 that an instruction has been completed.

4. Raising an interrupt if required. An interrupt is raized if:

a. “Sequence number completed” interrupt occurs. That is, if
the finished register (ic_ fna or ic_ fnb) sequence number
is the same as interrupt sequence number. Then this
interrupt is primed, sequence numbering is enabled, and
the interrupt occurs; or

b. the just completed instruction was coded to interrupt on
completion, then this mechanism is enabled.

Semantics of the Register Access Semaphore
The Register Access Semaphore is a mechanism that

provides atomic accesses to multiple instruction controller

registers. The registers that can require atomic access are as
follows:

1. Instruction pointer register (ic_ipa and ic_ipb)

2. Todo registers (ic_tda and ic_ tdb)

3. Finished registers (ic__fna and ic_ fnb)

4. Interrupt registers (ic_inta and ic_ intb)

5. The pause bits in the configuration register (ic_cfg)
External agents can read all registers safely at any time.

External agents are able to write any registers at any time,

however to ensure that the Instruction Controller 235 does

not update values in these registers, the external agent must
first obtain the Register Access Semaphore. The Instruction

Controller does not attempt to update any values in the

abovementioned registers if the Register Access Semaphore

is claimed externally. The instruction controller 235 updates
all of the above mentioned registers in one clock cycle to
ensure atomicity.

As mentioned above, unless the mechanism is disabled,
each instruction has associated with it a 32 bit “sequence
number”. Instruction sequence numbers increment wrapping
through from OxFFFFFFFF to 0x00000000.

When an external write is made into one of the Interrupt
Registers (ic__inta or ic__intb), the instruction controller 235
immediately makes the following comparisons and updates:
1. If the interrupt sequence number (ie. the value in the

Interrupt Register) is “greater” (in a modulo sense) than
the finished sequence number (ie. the value in the Fin-
ished Register) of the same stream, the instruction con-
troller primes the “sequence number completed” interrupt
mechanism by setting the “sequence number completed”
primed bit (a__primed or b__primed bit in ic_ stat) in the
status register.

2. If the interrupt sequence number is not “greater” than the
finished sequence number, but there is an overlapped
instruction in progress in that stream and the interrupt
sequence number equals the last overlapped instruction
sequence number (ie. the value in the ic_loa or ic_lob
register), then the instruction controller primes the “over-
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lapped instruction sequence number completed” interrupt

mechanism by setting the a ol _primed or b_ ol primed

bits in the ic_ stat register.

3. If the interrupt sequence number is not “greater” than the
finished sequence number, and there is an overlapped
instruction in progress in that stream, but the interrupt
sequence number does not equal the last overlapped
instruction sequence number, then the interrupt sequence
number represents a finished instruction, and no interrupt
mechanism is primed.

4. If the interrupt sequence number is not “greater” than the
finished sequence number, and there is no overlapped
instruction in progress in that stream, then the interrupt
sequence number must represent a finished instruction,
and no interrupt mechanism is primed.

External agents can set any of the interrupt primed bits
(bits a__primed, a_ ol_primed, b__primed or b__ol__primed)
in the status register to activate or de-activate this interrupt
mechanism independently.

Instruction Controller
Turning now to FIG. 13, there is illustrated the instruction

controller 235 in more detail. The instruction controller 235

includes an execution controller 305 which implements the

instruction execution cycle as well as maintaining overall
executive control of the co-processor 224. The functions of
the execution controller 305 include maintaining overall
executive control of the instruction controller 235, deter-
mining instructing sequencing, instigating instruction fetch-
ing and prefetching, initiating instructing decoding and
updating the instruction controller registers. The instruction
controller further includes an instruction decoder 306. The
instruction decoder 306 accepts instructions from a prefetch
buffer controller 307 and decodes them according the afore-
mentioned description. The instruction decoder 306 is
responsible for configuring registers in the other
co-processor modules to execute the instruction. The
prefetch buffer controller 307 manages the reading and
writing to a prefetch buffer within the prefetch buffer con-
troller and manages the interfacing between the instruction
decoder 306 and the input interface switch 252 (FIG. 2). The
prefetch buffer controller 307 is also responsible for man-
aging the updating of the two instruction pointer registers

(ic__ipa and ic__ipb). Access to the CBus 231 (FIG. 2) by the

instruction controller 235, the miscellancous module 239

(FIG. 2) and the external interface controller 238 (FIG. 2) is

controlled by a “CBus” arbitrator 308 which arbitrates

between the three modules’ request for access. The requests
are transferred by means of a control bus (CBus) 231 to the
register units of the various modules.

Turning now to FIG. 14, there is illustrated the execution
controller 305 of FIG. 13 in more detail. As noted
previously, the execution controller is responsible for imple-
menting the instruction execution cycle 275 of FIG. 9 and,
in particular, is responsible for:

1. Determining which instruction stream the next instruction
is to come from;

2. Initiating fetching of that instruction:

3. Signalling the instruction decoder to decode the instruc-
tion as residing in the prefetch buffer;

4. Determining and initiating any prefetching of the next
instruction;

5. Determining instruction completion: and

6. Updating the registers after the instruction has completed.
The execution controller includes a large core state

machine 310 hereinafter known as “the central brain” which

implements the overall instruction execution cycle. Turning
to FIG. 185, there is illustrated the state machine diagram for
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the central brain 310 implementing the instruction execution
cycle as aforementioned. Returning to FIG. 14, the execu-
tion controller includes an instruction prefetch logic unit
311. This unit is responsible for determining whether there
is an outstanding instruction to be executed and which
instruction stream the instruction belongs to. The start 312
and prefetch 313 states of the transition diagram of FIG. 15
utilize this information in obtaining instructions. A register
management unit 317 of FIG. 14 is responsible for moni-
toring the register access semaphores on both instruction
streams and updating all necessary registers in each module.
The register management unit 317 is also responsible for
comparing the finished register (ic_fna or ic_ fnb) with the
interrupt register (ic_inta or ic_intb) to determine if a
“sequence number completed” interrupt is due. The register
management unit 317 is also responsible for interrupt prim-
ing. An overlapped instructions unit 318 is responsible for
managing the finishing off of an overlapped instruction
through management of the appropriate status bits in the
ic_ stat register. The execution controller also includes a
decoder interface unit 319 for interfacing between the cen-
tral brain 310 and the instruction decoder 306 of FIG. 13.

Turning now to FIG. 16, there is illustrated the instruction
decoder 306 in more detail. The instruction decoder is
responsible for configuring the co-processor to execute the
instructions residing in the prefetch buffer. The instruction
decoder 306 includes an instruction decoder sequencer 321
which comprizes one large state machines broken down into
many smaller state machines. The instruction sequencer 321
communicates with a CBus dispatcher 312 which is respon-
sible for setting the registers within each module. The
instruction decoder sequencer 321 also communicates rel-
evant information to the execution controller such as instruc-
tion validity and instruction overlap conditions. The instruc-
tion validity check being to check that the instruction opcode
is not one of the reserved opcodes.

Turning now to FIG. 17, there is illustrated, in more
detail, the instruction dispatch sequencer 321 of FIG. 16.
The instruction dispatch sequencer 321 includes a overall
sequencing control state machine 324 and a series of per
module configuration sequencer state machines, eg. 325,
326. One per module configuration sequencer state machine
is provided for each module to be configured. Collectively
the state machines implement the co-processor’s micropro-
gramming of the modules. The state machines, eg. 325,
instruct the CBus dispatcher to utilize the global CBus to set
various registers so as to configure the various modules for
processing. A side effect of writing to particular registers is
that the instruction execution commences. Instruction
execution typically takes much longer than the time it takes
for the sequencer 321 to configure the co-processor registers
for execution. In appendix A, attached to the present
specification, there is disclosed the microprogramming
operations performed by the instruction sequencer of the
co-processor in addition to the form of set up by the
instruction sequencer 321.

In practice, the Instruction Decode Sequencer 321 does
not configure all of the modules within the co-processor for
every instruction. The table below shows the ordering of
module configuration for each class of instruction with the
module configured including the pixel organizer 246 (PO),
the data cache controller 240 (DCC), the operand organizer
B 247 (OOB), the operand organizer C 248 (OOC), main
data path 242 (MDP), results organizer 249 (RO), and JPEG
encoder 241 (JC). Some of the modules are never configured
during the course of instruction decoding. These modules
are the External Interface Controller 238 (EIC), the Local
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Memory Controller 236 (LMC), the Instruction Controller
235 itself (IC), the Input Interface Switch 252 (IIS) and the
Miscellaneous Module (MM).

TABLE 5

Module Setup Order

Instruction Module Configuration Sequence
Class Sequence ID
Compositing PO, DCC, OOB, OOC, MDP, RO 1
CsC PO, DCC, OOB, OOC, MDP, RO 2
JPEG coding PO, DCC, OOB, 0OOC, IC, RO 3
Data coding PO, DCC, OOB, 0OOC, IC, RO 3
Transformations and PO, DCC, OOB, OOC, MDP, RO 2
Convolutions

Matrix Multiplication PO, DCC, OOB, OOC, MDP, RO 2
Halftoning PO, DCC, OOB, MDP, RO 4
General memory copy PO, IC, RO 8
Peripheral DMA PIC 5
Hierarchial Image - PO, DCC, OOB, OOC, MDP, RO 6

Horizontal Interpolation
Hierarchial Image -
others

Internal access

others

PO, DCC, OOB, OOC, MDP, RO 4

-

RO, RO, RO, RO

Turning now to FIG. 17, each of the module configuration
sequencers, eg. 325 is responsible for carrying out the
required register access operations to configure the particu-
lar module. The overall sequencing control state machine
324 is responsible for overall operation of the module
configuration sequencer in the aforementioned order.

Referring now to FIG. 18, there is illustrated 330 the state
transition diagram for the overall sequencing control unit
which basically activates the relevant module configuration
sequencer in accordance with the above table. Each of the
modules configuration sequencers is responsible for control-
ling the CBus dispatcher to alter register details in order to
set the various registers in operation of the modules.

Turning now to FIG. 19, there is illustrated the prefetch
buffer controller 307 of FIG. 13 in more detail. The prefetch
buffer controller consists of a prefetch buffer 335 for the
storage of a single co-processor instruction (six times 32 bit
words). The prefetch buffer includes one write port con-
trolled by a IBus sequencer 336 and one read port which
provides data to the instruction decoder, execution controller
and the instruction controller CBus interface. The IBus
sequencer 336 is responsible for observing bus protocols in
the connection of the prefetch buffer 335 to the input
interface switch. An address manager unit 337 is also
provided which deals with address generation for instruction
fetching. The address manager unit 337 performs the func-
tions of selecting one of ic__ipa oric_ipb to place on the bus
to the input interface switch, incrementing one of ic__ipa or
ic_ipb based on which stream the last instructions was
fetched from and channelling jump target addresses back to
the ic_ipa and ic_ipb register. A PBC controller 339
maintains overall control of the prefetched buffer controller
307.

Description of a Modules Local Register File

As illustrated in FIG. 13, each module, including the
instruction controller module itself, has an internal set of
registers 304 as previously defined in addition to a CBus
interface controller 303 as illustrated in FIG. 20 and which
is responsible for receiving CBus requests and updating
internal registers in light of those requests. The module is
controlled by writing registers 304 within the module via a
CBus interface 302. A CBus arbitrator 308 (FIG. 13) is
responsible for determining which module of the instruction

10

15

20

25

30

35

40

45

50

55

60

65

34

controller 235, the external interface controller or the mis-
cellaneous module is able to control the CBus 309 for acting
as a master of the CBus and for the writing or reading of
registers.

FIG. 20, illustrates, in more detail, the standard structure
of a CBus interface 303 as utilized by each of the modules.
The standard CBus interface 303 accepts read and write
requests from the CBus 302 and includes a register file 304
which is utilized 341 and updated on 341 by the various
submodules within a module. Further, control lines 344 are
provided for the updating of any submodule memory areas
including reading of the memory areas. The standard CBus
interface 303 acts as a destination on the CBus, accepting
read and write requests for the register 304 and memory
objects inside other submodules.

A “c_reset” signal 345 sets every register inside the
Standard CBus interface 103 to their default states.
However, “c_reset” will not reset the state machine that
controls the handshaking of signals between itself and the
CBus Master, so even if “c__reset” is asserted in the middle
of a CBus transaction, the transaction will still finish, with
undefined effects. The “c_int” 347, “c_exp” 348 and
“c_err” 349 signals are generated from the content of a
modules err_int and err__int_en registers by the following
equations:
¢9)

c_err =

error[i] AND err_mask|i]

error[i] not reserved

c_inr= int errupt[i] AND int_mask [i] @

int errupt [i] not reserved

2

[i] not reserved

c_exp= exception[i] AND exp__mask[i] )

The signals “c_ sdata inp” 345 and “c_ svalid_in” are
data and valid signals from the previous module in a daisy
chain of modules. The signals “c_sdata out” and
“c_svalid_out” 350 are data and valid signals going to the
next module in the daisy chain.

The functionality of the Standard CBus interface 303
includes:

1. register read/write handling

2. memory area read/write handling
3. test mode read/write handling

4. submodule observe/update handling
Register Read/Write Handling

The Standard CBus Interface 303 accepts register read/
write and bit set requests that appears on the CBus. There are
two types of CBus instructions that Standard CBus Interface
handles:

1. Type A

Type A operations allow other modules to read or write 1,
2, 3, or 4 bytes into any register inside Standard CBus
Interface 303. For write operations, the data cycle occurs in
the clock cycle immediately after the instruction cycle. Note
that the type field for register write and read are “1000” and
“1001” respectively. The Standard CBus Interface 303
decodes the instruction to check whether the instruction is
addressed to the module, and whether it is a read or write
operation. For read operation, the Standard CBus Interface
303 uses the “reg” field of the CBus transaction to select
which register output is to put into the “c_sdata” bus 350.
For write operations, the Standard CBus Interface 303 uses
the “reg” and “byte” fields to write the data into the selected
register. After read operation is completed, the Standard
CBus Interface returns the data and asserts “c__svalid” 350
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at the same time. After write operations are completed, the
Standard CBus Interface 303 asserts “c_svalid” 350 to
acknowledge.

2. Type C

Type C operations allow other modules to write one or
more bits in one of the bytes in one of the registers.
Instruction and data are packed into one word.

The Standard CBus Interface 303 decodes the instruction
to check whether the instruction is addressed to the module.
It also decodes “reg”, “byte” and “enable” fields to generate
the required enable signals. It also latches the data field of
the instruction, and distributes it to all four bytes of a word
so the required bit(s) are written in every enabled bit(s) in
every enabled byte(s). No acknowledgment is required for
this operation.

Memory Area Read/Write Handling

The Standard CBus Interface 303 accepts memory read
and memory write requests that appears on the CBus. While
accepting a memory read/write request, the Standard CBus
Interface 303 checks whether the request is addressed to the
module. Then, by decoding the address field in the
instruction, the Standard CBus Interface generates the
appropriate address and address strobe signals 344 to the
submodule which a memory read/write operation is
addressed to. For write operations the Standard CBus Inter-
face also passes on the byte enable signals from the instruc-
tion to the submodules.

The operation of the standard CBus interface 303 is
controlled by a read/write controller 352 which decodes the
type field of a CBus instruction from the CBus 302 and
generates the appropriate enable signals to the register file
304 and output selector 353 so that the data is latched on the
next cycle into the register file 304 or forwarded to other
submodules 344. If the CBus instruction is a register read
operation, the read/write controller 352 enables the output
selector 353 to select the correct register output going onto
the “c__sdata bus” 345. If the instruction is a register write
operation, the read/write controller 352 enables the register
file 304 to select the data in the next cycle. If the instruction
is a memory area read or write, then the read/write controller
352 generates the appropriate signals 344 to control those
memory areas under a modules control. The register file 304
contains four parts, being a register select decoder 355, an
output selector 353, interrupt 356, error 357 and exception
358 generators, unmasked error generator 359 and the
register components 360 which make up the registers of that
particular module. The register select decoder 355 decodes
the signal “ref_en” (register file enable), “write” and “reg”
from the read/write controller 352 and generates the register
enable signals for enabling the particular register of interest.
The output selector 353 selects the correct register data to be
output on ¢_sdata out lines 350 for register read operations
according to the signal “reg” output from the read/write
controller 352.

The exception generators 356-359 generate an output
error signal, eg. 347-349, 362 when an error is detected on
their inputs. The formula for calculating each output error is
as aforementioned.

The register components 360 can be defined to be of a
number of types in accordance with requirements as previ-
ously discussed when describing the structure of the register
set with reference to Table 5.

CBus Structure

As noted previously, the CBus (control bus) is responsible
for the overall control of each module by way transferring
information for the setting of registers within each module’s
standard CBus interface. It still be evident from the descrip-
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tion of the standard CBus interface that the CBus serves two

main purposes:

1. It is the control bus that drives each of the modules.

2. It is the access bus for RAMs, FIFOs and status infor-
mation contained within each of the modules.

The CBus uses an instruction-address-data protocol to
control modules by the setting configuration registers within
the modules. In general, registers will be set on a per
instruction basis but can be modified at any time. The CBus
gathers status and other information, and accesses RAM and
FIFO data from the various modules by requesting data.

The CBus is driven on a transaction by transaction basis
either by:

1. the Instruction Controller 235 (FIG. 2) when executing
instructions,

2. the External Interface Controller 238 (FIG. 2) when
performing a target (slave) mode bus operation, or

3. an external device if the External CBus Interface is so
configured.

In each of these cases, the driving module is considered
to be the source module of the CBus, and all other modules
possible destinations. Arbitration on this bus is carried out
by the Instruction Controller.

The following table sets out one form of CBus signal
definitions suitable for use with the preferred embodiment:

TABLE 6

CBus Signal Definition

Name Type Definition

c_iad[31:0] source instruction-address-data

c_ valid source CBus instruction valid

c__sdata[31:0] destination status/read data

c_ svalid destination status/read data valid

c__reset[15:0] source reset lines to each
module

c_active[15:0] destination active lines from each
module

c_background[15:0]  destination background active lines
from each module

c_int[15:0] destination interrupt lines from each
module

c_errorf15:0] destination error lines from each
module

c_reql, c_req2 EIC, external ~ bus control request

c_gntl, c_gnt2 IC bus control grant
c_end IC end of instruction
clk global clock

A CBus c_ iad signal contains the addressing data and is
driven by the controller in two distinct cycles:

1. Instruction cycles (¢_ valid high) where the CBus instruc-
tion and an address is driven onto ¢__iad; and

2. Data cycles (c__valid low) where data is driven onto ¢ iad
(write operations) or ¢_ sdata (read operations).

In the case of a write operation, the data associated with
an instruction is placed on the ¢ iad bus in the cycle directly
following the instruction cycle. In the case of a read
operation, the target module of the read operation drives the
c_sdata signal until the data cycle completes.

Turning now to FIG. 21, the bus includes a 32 bit
instruction-address-data field which can be one of three
types 370-372:

1. Type A operations (370) are used to read and write
registers and the per-module data areas within the
co-processor. These operations can be generated by the
external interface controller 238 performing target mode
PCI cycles, by the instruction controller 231 configuring
the co-processor for an instruction, and by the External
CBus Interface.
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For these operations, the data cycle occurs in the clock
cycle immediately following the instruction cycle. The data
cycle is acknowledged by the designation module using the
c_ svalid signal.

2. Type B operations (371) are used for diagnostic purposes
to access any local memory and to generate cycles on the
Generic Interface. These operations will be generated by
the External Interface Controller performing target mode
PCI cycles and by the External CBus Interface. The data
cycle can follow at any time after the instruction cycle.
The data cycle is acknowledged by the destination module
using the c¢_ svalid signal.

3. Type C operations (372) are used to set individual bits
within a module’s registers. These operations will be
generated by the instruction controller 231 configuring the
co-processor’s for an instruction and by the External
CBus Interface. There is no data cycle associated with a
Type C operation, data is encoded in the instruction cycle.
The type field of each instruction encodes the relevant

CBus transaction type in accordance with the following

table:

TABLE 7

CBus Transaction Types
c_iad.type instruction
value transaction type format type
0000 no-op A, B, C
0001 reserved
0010 peripheral interface write B
0011 peripheral interface read B
0100 generic bus write B
0101 generic bus read B
0110 local memory write B
0111 local memory read B
1000 register write A
1001 register read A
1010 module memory write A
1011 module memory read A
1100 test mode write A
1101 test mode read A
1110 bit set C
1111 reserved

The byte field is utilized for enabling bits within a register
to be set. The module field sets out the particular module to
which an instruction on the CBus is addressed. The register
field sets out which of the registers within a module is to be
updated. The address field is utilized for addressing memory
portions where an operation is desired on those memory
portions and can be utilized for addressing RAMs, FIFOs,
etc. The enable field enables selected bits within a selected
byte when a bit set instruction is utilized. The data field
contains the bit wize data of the bits to be written to the byte
selected for update.

As noted previously, the CBus includes a ¢_ active line
for each module, which is asserted when ever a module has
outstanding activity pending. The instruction controller uti-
lizes these signals to determine when an instruction has
completed. Further, the CBus contains a ¢_ background line
for each module that can operate in a background mode in
addition to any preset, error and interrupt lines, one for each
module, for resetting, detecting errors and interrupts.
Co-processor Data Types and Data Manipulation

Returning now to FIG. 2, in order to substantially simplify
the operation of the co-processor unit 224, and in particular
the operation of the major computational units within the
co-processor being the JPEG coder 241 and the main data
path 242, the co-processor utilizes a data model that differ-
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entiates between external formats and internal formats. The
external data formats are the formats of data as it appears on
the co-processor’s external interfaces such as the local
memory interface or the PCI bus. Conversely, the internal
data formats are the formats which appear between the main
functional modules of the co-processor 224. This is illus-
trated schematically in FIG. 22 which shows the various
input and output formats. The input external format 381 is
the format which is input to the pixel organizer 246, the
operand organizer B 247 and the operand organizer C 248.
These organizers are responsible for reformatting the input
external format data into any of a number of input internal
formats 382, which may be inputted to the JPEG coder unit
241 and the main data path unit 242. These two functional
units output data in any of a number of output internal
formats 383, which are converted by the results organizer
249 to any of a number of required output formats 304.

In the embodiment shown, the external data formats can
be divided into three types. The first type is a “packed
stream” of data which consists of a contiguous stream of
data having up to four channels per data quantum, with each
channel consisting of one, two, four, eight or sixteen bit
samples. This packed stream can typically represent pixels,
data to be turned into pixels, or a stream of packed bits. The
co-processor is designed to utilize little endian byte address-
ing and big endian bit addressing within a byte. In FIG. 23,
there is illustrated a first example 386 of the packed stream
format. It is assumed that each object 387 is made up of three
channels being channel 0, channel 1 and channel 2, with two
bits per channel. The layout of data for this format is as
indicated 388. In a next example 390 of FIG. 24, a four
channel object 395 having eight bits per channel is illus-
trated 396 with each data object taking up a 32 bit word. In
a third example 395 of FIG. 25, one channel objects 396 are
illustrated which each take up eight bits per channel starting
at a bit address 397. Naturally, the actual width and number
of channels of data will vary depending upon the particular
application involved.

A second type of external data format is the “unpacked
byte stream” which consists of a sequence of 32 bit words,
exactly one byte within each word being valid. An example
of this format is shown in FIG. 26 and designated 399, in
which a single byte 400 is utilized within each word.

A further external data format is represented by the
objects classified as an “other” format. Typically, these data
objects are large table-type data representing information
such as colour space conversion tables. Huffman coding
tables and the like.

The co-processor utilizes four different internal data
types. A first type is known as a “packed bytes” format
which comprizes 32 bit words, each consisting of four active
bytes, except perhaps for a final 32 bit word. In FIG. 27,
there is illustrated one particular example 402 of the packed
byte format with 4 bytes per word.

The next data type, illustrated with reference to FIG. 28,
is “pixel” format and comprises 32 bit words 403, consisting
of four active byte channels. This pixel format is interpreted
as four channel data.

A next internal data type illustrated with reference to FIG.
29 is an “unpacked byte” format, in which each word
consists of one active byte channel 405 and three inactive
byte channels, the active byte channel being the least sig-
nificant byte.

All other internal data objects are classified by the “other”
data format.

Input data in a given external format is converted to the
appropriate internal format. FIG. 30 illustrates the possible
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conversions carried out by the various organizers from an
external format 410 to an internal format 411. Similarly,
FIG. 31 illustrates the conversions carried out by the results
organizer 249 in the conversion from internal formats 412 to
external formats 413.

The circuitry to enable the following conversions to take
place are described in greater detail below.

Turning firstly to the conversion of input data external
formats to internal formats, in FIG. 32 there is shown the
methodology utilized by the various organizers in the con-
version process. Starting initially with the external other
format 416, this is merely passed through the various
organizers unchanged. Next, the external unpacked byte
format 417 undergoes unpacked normalization 418 to pro-
duce a format 419 known as internally unpacked bytes. The
process of unpacked normalization 418 involves discarding
the three inactive bytes from an externally unpacked byte
stream. The process of unpacked normalization is illustrated
in FIG. 33 wherein the input data 417 having four byte
channels wherein only one byte channel is valid results in
the output format 419 which merely comprizes the bytes
themselves.

Turning again to FIG. 32, the process of packed normal-
ization 421 involves translating each component object in an
externally packed stream 422 into a byte stream 423. If each
component of a channel is less than a byte in size then the
samples are interpolated up to eight bit values. For example,
when translating four bit quantities to byte quantities, the
four bit quantity OxN is translated to the byte value OxNN.
Objects larger than one byte are truncated. The input object
sizes supported on the stream 422 are 1, 2, 4, 8 and 16 bit
sizes, although again these may be different depending upon
the total width of the data objects and words in any particular
system to which the invention is applied.

Turning now to FIG. 34, there is illustrated one form of
packed normalization 421 on input data 422 which is in the
form of 3 channel objects with two bits per channel (as per
the data format 386 of FIG. 23). The output data comprizes
a byte channel format 423 with each channel “interpolated
up” where necessary to comprize an eight bit sample.

Returning to FIG. 32, the pixel streams are then subjected
to either a pack operation 425, an unpacked operation 426 or
a component selection operation 427.

In FIG. 35 there is shown an example of the packed
operation 425 which simply involves discarding the inactive
byte channel and producing a byte stream, packed up with
four active bytes per word. Hence, a single valid byte stream
430 is compressed into a format 431 having four active bytes
per word. The unpacking operation 426 involves almost the
reverse of the packing operation with the unpacked bytes
being placed in the least significant byte of a word. This is
illustrated in FIG. 36 wherein a packed byte stream 433 is
unpacked to produce result 434.

The process of component selection 427 is illustrated in
FIG. 37 and involves selecting N components from an input
stream, where N is the number of input channels per
quantum. The unpacking process can be utilized to produce
“prototype pixels” eg. 437, with the pixel channels filled
from the least significant byte. Turning to FIG. 38, there is
illustrated an example of component selection 440 wherein
input data in the form 436 is transformed by the component
selection unit 427 to produce prototype pixel format 437.

After component selection, a process of component sub-
stitution 440 (FIG. 32) can be utilized. The component
substitution process 440 is illustrated in FIG. 38 and com-
prizes replacing selected components with a constant data
value stored within an internal data register 441 to produce,
as an example, output components 242.
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Returning again to FIG. 32, the output of stages 425, 426
and 440 is subjected to a lane swapping process 444. The
lane swapping process, as illustrated in FIG. 39, involves a
byte-wize multiplexing of any lane to any other lane, includ-
ing the replication of a first lane onto a second lane. The
particular example illustrated in FIG. 39 includes the
replacement of channel 3 with channel 1 and the replication
of channel 3 to channels 2 and channel 1.

Returning again to FIG. 32, after the lane swapping step
444 the data stream can be optionally stored in the multi-
used value RAM 250 before being read back and subjected
to a replication process 446.

The replication process 446 simply replicates the data
object whatever it may be. In FIG. 40, there is illustrated a
process of replication 446 as applied to pixel data. In this
case, the replication factor is one.

In FIG. 41, there is illustrated a similar example of the
process of replication applied to packed byte data.

In FIG. 42, there is illustrated the process utilized by the
result organizer 249 for transferral of data in an output
internal format 383 to an output external format 384. This
process includes equivalent steps 424, 425, 426 and 440 to
the conversion process described in FIG. 32. Additionally,
the process 450 includes the steps of component deselection
451, denormalization 452, byte addressing 453 and write
masking 454. The component deselection process 451, as
illustrated in FIG. 43, is basically the inverse operation of
the component selection process 427 of FIG. 37 and
involves the discarding of unwanted data. For example, in
FIG. 43, only 3 valid channels of the input are taken and
packed into data items 456.

The denormalization process 452 is illustrated with ref-
erence to FIG. 44 and is loosely the inverse operation of the
packed normalization process 421 of FIG. 34. The denor-
malization process involves the translation of each object or
data item, previously treated as a byte, to a non-byte value.

The byte addressing process 453 of FIG. 42 deals with
any byte wize reorganization that is necessary to deal with
byte addressing issues. For an externally unpacked byte
output stream, the least two significant bits of the stream’s
address correspond to the active stream. The byte addressing
step 453 is responsible for re-mapping the output stream
from one byte channel to another when external unpacked
bytes are utilized (FIG. 45). Where an externally packed
stream is utilized (FIG. 46), the byte addressing module 453
remaps the start address of the output stream as illustrated.

The write masks process 454 of FIG. 42 is illustrated in
FIG. 47 and is used to mask off a particular channel eg. 460
of a packed stream which is not to be written out.

The details of the input and output data type conversion
to be applied are specified by the contents of the correspond-
ing Data Manipulation Registers:

The Pixel Organizer Data Manipulation Register (po__

dmr)

The Operand Organizer B and Operand Organizer C Data

Manipulation Registers (oob__dmr, ooc_ dmr);

The Result Organizer Data Manipulation Register (ro__

dmr);

Each of the Data Manipulation Registers can be set up for
an instruction in one of two ways:

1. They can be explicitly set using any of the standard
methods for writing to the co-processor’s registers imme-
diately prior to the execution of the instruction; or

2. They can be set up by the co-processor itself to reflect a
current instruction.

During the instruction decoding process, the co-processor
examines the contents of the Instruction Word and the Data
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Word of the instruction to determine, amongst other things,
how to set up the various Data Manipulation Registers. Not
all combinations of the instruction and operands make sense.
Several instructions have implied formats for some oper-

42

TABLE 8-continued

Data Manipulation Register Format

ands. Instructions that are coded with inconsistent operands 5 Field Description
may complete without error, although any data so generated - — -
s i P (Q0 e . bo Bit Offset: represents the starting bit address for objects
is “undefined”. If the ‘S’ bit of the corresponding Data : s X
n ) . h smaller than a byte. Bit addressing is big endian.
Descriptor is 0, the co-processor sets the Data Manipulation P External Format:
Register to reflect the current instruction. 0 = unpacked bytes
The format of the Data Manipulation Registers is illus- 10 " 11 = Paclk;d stream
trated in FIG. 48. The following table sets out the format of ! Onf?iielsormat'
the various bits within the registers as illustrated in FIG. 48: 1 = unpacked bytes
2 = packed bytes
TABLE 8 3 = other
15 ¢cc Channel count:
: : : For the Input Organizers this defines the number of
Data Manipulation Register Format put g
a1 Yo lipralon Seavel oM normalized input bytes collected to form each internal data
Field Descripti word during component selection. For the Output Organizer
1e coenpron this defines the number of valid bytes from the internal data
1s3 Lane Swap for byte 3 (most significant byte) word that. will be sued to construct output data.
1s2 Lane swap for byte 2 20 0 = 4 active channels
1s1 Lane swap for byte 1 1 =1 active channels
1s0 Lane swap for byte 0 2 =2 active channels
suben Substitution Enables 3=3 active channels
1 = substitute data from Internal Data Register for this byte L Immediate dat.a: .
0 = do not substitute data from Internal Data Register for this 0 = not long: immediate data
byte 1 = long: pointer to data
replicate  Replication Count 25 what addr.essing r.node: .
Indicates the number of additional data items to generate. 0 = instruction specific mode
wrmask  Write Masks 1 = sequential addressing
0 = write out corresponding byte channel 2 = tile addressing
1 = do not write out corresponding byte channel 3 = constant data. ie, one item of internal data is produced,
cmsb Choose most significant bits and this item is used repetitively.
0 = choose least significant bits of a byte when performing 30
denormalization (useful for halftoning operations) . .
1 = choose most significant bits of a byte when performing A plurahty of internal and external data types may be
denormalization (useful as inverse of input normalization) utilized with each instruction. All operand, results and
normalize Normalization factor: represents the number of bits to be . . .. . .
translated to a byte: instruction type combinations are potentially valid, although
0 = 1 bit data objects 35 typically only a subset of those combinations will lead to
1 =2 bit data objects meaningful results. Particular operand and result data types
2 = 4 bit data objects . . . .
3 = 8 bit data objects that are expected for each instruction are detailed below in
4 = 16 bit data objects a first table (Table 9) summarising the expected data types
for external and internal formats:
TABLE 9
Expected Data Types
Operand A Operand B Operand C Result
(Pixel (Operand (Operand (Result
Instruction Organizer)  Organizer B) Organizer C)  Organizer)
Compositing ps px ps px(T)  ps ub px ps
bl(B) ub ub ub
const
GCSC ps ift mesc  mcsc mcsc mesc
ift SCSC ScCsC scsc SCSC
® ® ® ®
JPEG comp. ps pb et et(B) et(B) et(B) ub ps
us B)
JPEG decomp ps pb fdt fdt fdt fdt pb ps
sdt  sdt (B) sdt (B) sdt ub
®) ®)
Data coding ps px et et et et px ps
ub pb fdt  fdt fdt fdt pb ub
ub sdt  sdt (B) sdt (B) sdt ub
®) ®)
Transformations skd  skd it (B) it (B it®B it(B) px ps
and Convolutions Ikd  1kd ub
Matrix ps px mm mm mm mm(B) px ps
Multiplication ub ® ® B) ub
Halftoning ps px ps px — — px ps
ub pb ub pb pb ub
ub ub ub
Hierarchial Image: ps px — — — — px ps
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TABLE 9-continued

44

Expected Data Types

Operand A Operand B Operand C Result
(Pixel (Operand (Operand (Result
Instruction Organizer)  Organizer B) Organizer C)  Organizer)
horizontal ub pb pb ub
interpolation ub ub
Hierarchial Image: ps px ps px — — px ps
vertical interpolation ub pb ub pb pb ub
and residual merging ub ub ub
General Memory ps px — — — — pPX ps
Copy ub pb pb ub
ub ub

Peripheral DMA
Internal Access

Flow Control

The symbols utilized in the above table are as follows:

TABLE 10

Symbol Explanation

Symbol Explanation

ps packed stream

pb packed bytes

ub unpacked bytes

px pixels

bl blend

const constant

mesc 4 output channel

scsc 1 output channel color conversion table
ift Interval and Fraction tables
et JPEG encoding table

fdt fast JPEG decoding table
sdt slow JPEG decoding table
skd short kernel descriptor

Ikd long kernel descriptor

mm matrix coefficient table

it image table

(B) this organizer in bypass mode for this operation
(D operand may tile

— no data flows via this operand

Data Normalization Circuit

Referring to FIG. 49, there is shown a computer graphics
processor having three main functional blocks: a data nor-
malizer 1062 which may be implemented in each of the pixel
organizer 246 and operand organizers B and C 247, 248, a
central graphics engine in the form of the main data path 242
or JPEG units 241 and a programming agent 1064, in the
form of an instruction controller 235. The operation of the
data normalizer 1062 and the central graphics engine 1064
is determined by an instruction stream 1066 that is provided
to the programming agent 1064. For each instruction, the
programming agent 1064 performs a decoding function and
outputs internal control signals 1067 and 1068 to the other
blocks in the system. For each input data word 1069, the
normalizer 1062 will format the data according to the
current instruction and pass the result to the central graphics
engine 1063, where further processing is performed.

The data normalizer represents, in a simplified form, the
pixel organizer and the operand organizers B and C. Each of
these organizers implements the data normalization
circuitry, thereby enabling appropriate normalization of the
input data prior to it passing to the central graphics engine
in the form of the JPEG coder or the main data path.

The central graphics engine 1063 operates on data that is
in a standard format, which in this case is 32-bit pixels. The
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normalizer is thus responsible for converting its input data to
a 32-bit pixel format. The input data words 1069 to the
normalizer are also 32 bits wide, but may take the form of
either packed components or unpacked bytes. A packed
component input stream consists of consecutive data objects
within a data word, the data objects being 1.2,4.8 or 16 bits
wide. By contrast, an unpacked byte input stream consists of
32-bit words of which only one 8-bit byte is valid.
Furthermore, the pixel data 11 produced by the normalizer
may consist of 1,2,3 or 4 valid channels, where a channel is
defined as being 8 bits wide.

Turning now to FIG. 50, there is illustrated in greater
detail a particular hardware implementation of the data
normalizer 1062. The data normalization unit 1062 is com-
posed of the following circuits: a First-In-First-Out buffer
(FIFO) 1073, a 32-bit input register (REG1) 1074, a 32-bit
output register (REG2) 1076, normalization multiplexors
1075 and a control unit 1076. Each input data word 1069 is
stored in the FIFO 1073 and is subsequently latched into
REG1 1074, where it remains until all its input bits have
been converted into the desired output format. The normal-
ization multiplexors 1075 consist of 32 combinatorial
switches that produce pixels to be latched into REG2 by
selecting bits from the value in REG1 1074 and the current
output of the FIFO 1073. Thus the normalization multiplex-
ors 1075 receive two 32-bit input words 1077, 1078, denoted
as x[63 . ..32] and x[31 ... 0].

It has been found that such a method improves the overall
throughput of the apparatus, especially when the FIFO
contains at least two valid data words during the course of
an instruction. This is typically due to the way in which data
words originally fetched from memory. In some cases, a
desired data word or object may be spread across or
“wrapped” into a pair of adjacent input data words in the
FIFO buffer. By using an additional input register 1074, the
normalization multiplexers can reassemble a complete input
data word using components from adjacent data words in the
FIFO buffer, thereby avoiding need for additional storage or
bit-stripping operations prior to the main data manipulation
stages. This arrangement is particularly advantageous where
multiple data words of a similar type are inputted to the
normalizer.

The control unit generates enable signals REG1__EN 20
and REG2_EN[3 ... 0] 1081 for updating REG1 1074 and
REG2 1076, respectively, as well as signals to control the
FIFO 1073 and normalization multiplexors 1075.

The programming agent 1064 in FIG. 49 provides the
following configuration signals for the data normalizer
1062: a FIFO__WR 4 signal, a normalization factor n[2 . . .
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0], a bit offset b[2 . . . 0], a channel count ¢[1 . .. 0] and an
external format (E). Input data is written into the FIFO 1073
by asserting the FIFO_ WR signal 1085 for each clock cycle
that valid data is present. The FIFO asserts a fifo  full status
flag 1086 when there is no space available. Given 32-bit
input data, the external format signal is used to determine
whether the input is in the format of a packed stream (when
E=1) or consists of unpacked bytes (when E=0). For the case
when E=1, the normalization factor encodes the size of each
component of a packed stream, namely: n=0 denotes 1-bit
wide components, n=1 denotes 2 bits per component, n=2
denotes 4 bits per component, n=3 denotes 8-bit wide
components and n>3 denotes 16-bit wide components. The
channel count encodes the maximum number of consecutive
input objects to format per clock cycle in order to produce
pixels with the desired number of valid bytes. In particular,
c=1 yields pixels with only the least significant byte valid,
c=2 denotes least significant 2 bytes valid, c=3 denotes least
significant 3 bytes valid and ¢=0 denotes all 4 bytes valid.

When a packed stream consists of components that are
less than 8 bits wide, the bit offset determines the position
in x[31 . . . 0], the value stored in REG1, from which to
begin processing data. Assuming a bit offset relative to the
most significant bit of the first input byte, the method for
producing an output data byte y[7 . . . 0] is described by the
following set of equations:

where n = 0:

ylil =x[7-b], where 0 <=i<=7
where n = 1:

ylil =x[7-b], where i=13,57

ylil =x[6-b], where i=0,2,4,6
where n = 2:

y[3] =x{7-b]

y[2] ==x[6-b]

y[1] ==x[5-b]

y[0] =x{4-b]

yl71 =331

ylel =321

yI51 =311

yl41 =0l

where n = 3:

ylil =x[i], where 0 <=i<=7

where n > 3:
y[7.0] =x[15.8]

Corresponding equations may be used to generate output
data bytes y[15 . . . 8], y[23 ... 16] and y[31 . . . 24].

The above method may be generalized to produce an
output array of any length by taking each component of the
input stream and replicating it as many times as necessary to
generate output objects of standard width. In addition, the
order of processing each input component may be defined as
little-endian or big-endian. The above example deals with
big-endian component ordering since processing always
begins from the most significant bit of an input byte.
Little-endian ordering requires redefinition of the bit offset
to be relative to the least significant bit of an input byte. In
situations where the input component width exceeds the
standard output width, output components are generated by
truncating each input component, typically by removing a
suitable number of the least significant bits. In the above set
of equations, truncation of 16-bit input components to form
8-bit wide standard output is performed by selecting the
most significant byte of each 16-bit data object.

The control unit of FIG. 50 performs the decoding of
n[2...0]and ¢[1 ... 0], and uses the result along with
b[2 . .. 0] and E to provide the select signals for the
normalization multiplexors and the enable signals for REG1
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and REG2. Since the FIFO may become empty during the
course of an instruction, the control unit also contains
counters that record the current bit position, in_ bit[4 . .. 0],
in REG 1 from which to select input data, and the current
byte, out_byte[1 . . . 0], in REG2 to begin writing output
data. The control unit detects when it has completed pro-
cessing each input word by comparing the value of in_ bit
[4 ... 0] to the position of the final object in REG1, and
initiates a FIFO read operation by asserting the FIFO__ RD
signal for one clock cycle when the FIFO is not empty. The
signals fifo__empty and fifo_ full denote the FIFO status
flags, such that fifo_ empty=1 when the FIFO contains no
valid data, and fifo_ full=1 when the FIFO is full. In the
same clock cycle that FIFO__RD is asserted, REG1 EN is
asserted so that new data are captured into REG1. There are
4 enable signals for REG2, one for each byte in the output
register. The control unit calculates REG2_EN[3 ... 0] by
taking the minimum of the following 3 values: the decoded
version of ¢[1 . . . 0], the number of valid components
remaining to be processed in REG1, and the number of
unused channels in REG2. When E=0 there is only one valid
component in REG1. A complete output word is available
when the number of channels that have been filled in REG2
is equal to the decoded version of ¢[1 . . . 0].

In a particularly preferred embodiment of the invention,
the circuit area occupied by the apparatus in FIG. 50 can be
substantially reduced by applying a truncation function to
the bit offset parameter, such that only a restricted set of
offsets are used by the control unit and normalization
multiplexors. The offset truncation depends upon the nor-
malization factor and operates according to the following
equation:

b_truncl2 . .. 0]=0, where n>=3
=b[2 ... 0], where n=0
=b[2 ... 1] & “07, where n=1

=b[2] & “00”, where n=2

(Note that “&” denotes bitwize concatenaion).

The above method allows each of the normalization
multiplexors, denoted in FIG. 50 by MUX0, MUX1 . . .
MUX31, to be reduced from 32-to-1 in size when no
truncation is applied, to be a maximum size of 20-to-1 with
bit offset truncation. The size reduction in turn leads to an
improvement in circuit speed.

It can be seen from the foregoing that the preferred
embodiment provides an efficient circuit for the transforma-
tion of data into one of a few normalized forms.

Image Processing Operations of Accelerator Card

Returning again to FIG. 2 and Table 2, as noted
previously, the instruction controller 235 “executes™ instruc-
tions which result in actions being performed by the
co-processor 224. The instructions executed include a num-
ber of instructions for the performance of useful functions
by the main data path unit 242. A first of these useful
instructions is compositing.

Compositing

Referring now to FIG. 51, there is illustrated the com-
positing model implemented by the main data path unit 242.
The compositing model 462 generally has three input
sources of data and the output data or sink 463. The input
sources can firstly include pixel data 464 from the same
destination within the memory as the output 463 is to be
written to. The instruction operands 465 can be utilized as a
data source which includes the color and opacity informa-
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tion. The color and opacity can be either flat, a blend, pixels
or tiled. The flat or blend is generated by the blend generator
467, as it is quicker to generate them internally than to fetch
via input/output. Additionally, the input data can include
attenuation data 466 which attenuates the operand data 4685.
The attenuation can be flat, bit map or a byte map.

As noted previously, pixel data normally consists of four
channels with each channel being one byte wide. The
opacity channel is considered to be the byte of highest
address. For an introduction to the operation and usefulness
of compositing operations, reference is made to the standard
texts including the seminal paper by Thomas Porter and Tom
Duff “Compositing Digital Images” in Computer Graphics,
Volume 18, Number 3, July 1984.

The co-processor can utilize pre-multiplied data. Pre-
multiplication can consist of pre-multiplying each of the
colored channels by the opacity channel. Hence, two
optional pre-multiplication units 468, 469 are provided for
pre-multiplying the opacity channel 470, 471 by the colored
data to form, where required, pre-multiplied outputs 472,
473. A compositing unit 475 implements a composite of its
two inputs in accordance with the current instruction data.
The compositing operators are illustrated in Table 11 below:

TABLE 11

Compositing Operations

Operator Definition
(8eoto) OVer (beosbo) (3co+beo(1-80):20+Do(1-20))
(8eosto) 10 (Boosbo) (acoBoacbo)

(8coo) OUL (beoby)
(acoro) atop (Beosbo)
(8corto) X0t (beosbo)

(8eoso) Plus (beosby)

(3co(1-bo)26(1-b,))
(acobo+boo(1-20)b5)
(aco(1-Do)+beo(1-a5),86(1-bo ) +bo(1-
a,))

(WC(aeo#be=1(as+bo=
255)/255)+1(clamp(ag+by)—

255)/255 clamp(a +b,))

(8c0s8o) loadzero (bey,b,,) ©,0

(acerd) loade (begsby) (beorao)
(acerdo) 10ado (beosbo) (@cosbo)
(acerd) loadco (beosby) (beosbo)

The nomenclature (a.,, a,) refers to a pre-multiplied pixel
of color a, and opacity a,. R is an offset value and “wc” is
a wrapping/clamping operator whose operation is explained
below. It should be noted that the reverse operation of each
operator in the above table is also implemented by a com-
posting unit 4785.

A clamp/wrapping unit 476 is provided to clamp or wrap
data around the limit values 0—255. Further, the data can be
subjected to an optional “unpre-multiplication” 477 restor-
ing the original pixel values as required. Finally, output data
463 is produced for return to the memory.

In FIG. 52, there is illustrated the form of an instruction
word directed to the main data path unit for composting
operations. When the X field in the major op-code is 1, this
indicates a plus operator is to be applied in accordance with
the aforementioned table. When this field is 0, another
instruction apart from the plus operator is to be applied. The
P, field determines whether or not to pre-multiply the first
data stream 464 (FIG. 51). The P,, field determines whether
or not to pre-multiply the second data stream 465. The P,
field determines whether or not to “unpremultiply” the result
utilising unit 477. The C field determines whether to wrap or
clamp, overflow or underflow in the range 0-255. The
“com-code” field determines which operator is to be applied.
The plus operator optionally utilizes an offset register
(mdp__por). This offset is subtracted from the result of the
plus operation before wrapping or clamping is applied. For
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plus operators, the com-code field is interpreted as a per

channel enablement of the offset register.

The standard instruction word encoding 280 of FIG. 10
previously discussed is altered for composting operands. As
the output data destination is the same as the source, operand
A will always be the same operand as the result word so
operand A can be utilized in conjunction with operand B to
describe at greater length the operand B. As with other
instructions, the A descriptor within the instructions still
describes the format of the input and the R descriptor defines
the format of the output.

Turning now to FIG. 53, there is illustrated in a first
example 470, the instruction word format of a blend instruc-
tion. Ablend is defined to have a start 471 and end value 472
for each channel. Similarly, in FIG. 54 there is illustrated
475 the format of a tile instruction which is defined by a tile
address 476 a start offset 477, a length 478. All tile addresses
and dimensions are specified in bytes. Tiling is applied in a
modular fashion and, in FIG. 55, there is shown the inter-
pretation of the fields 476478 of FIG. 54. The tile address
476 denotes the start address in memory of the tile. A tile
start offset 477 designates the first byte to be utilized as a
start of the tile. The tile length 478 designates the total length
of the tile for wrap around.

Returning to FIG. 51, every color component and opacity
can be attenuated by an attenuation value 466. The attenu-
ation value can be supplied in one of three ways:

1. Software can specify a flat attenuation by placing the
attenuation factor in the operand C word of the instruc-
tion.

2. Abit map attenuation where 1 means fully on and 0 means
fully off can be utilized with software specifying the
address of the bit map in the operand C word of the
instruction.

3. Alternatively, a byte map attenuation can be provided
again with the address of the byte map in operand C.
Since the attenuation is interpreted as an unsigned integer

from 0-255, the pre-multiplied color channel is multiplied

by the attenuation factor by effectively calculating:

C,u=C.xA[255

Where A is the attenuation and C, is the pre-multiplied
color channel.

Color Space Conversion Instructions

Returning again to FIG. 2 and Table 2, the main data path
unit 242 and data cache 230 are also primarily responsible
for color conversion. The color space conversion involves
the conversion of a pixel stream in a first color space format,
for example suitable for RGB color display, to a second
color space format, for example suitable for CYM or CYMK
printing. The color space conversion is designed to work for
all color spaces and can be used for any function from at
least one to one or more dimensions.

The instruction controller 235 configures, via the Cbus
231, the main data path unit 242, the data cache controller
240, the input interface switch 252, the pixel organizer 246,
the MUV buffer 250, the operand organizer B 247, the
operand organizer C 248 and the result organizer 249 to
operate in the color conversion mode. In this mode, an input
image consisting of a plurality of lines of pixels is supplied,
one line of pixels after another, to the main data path unit
242 as a stream of pixels. The main data path unit 242 (FIG.
2) receives the stream of pixels from the input interface
switch 252 via the pixel organizer 246 for color space
conversion processing one pixel at a time. In addition,
interval and fractional tables are pre-loaded into the MUV
buffer 250 and color conversion tables are loaded into the
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data cache 230. The main data path unit 242 accesses these
tables via the operand organizers B and C, and converts
these pixels, for example from the RGB color space to the
CYM or CYMK color space and supplies the converted
pixels to the result organizer 249. The main data path unit
242, the data cache 230, the data controller 240 and the other
abovementioned devices are able to operate in either of the
following two modes under control of the instruction con-
troller 235; a Single Output General Color Space (SOGCS)
Conversion mode or a Multiple Output General Color Space
(MOGCS) Conversion Mode. For more details on the data
cache controller 240 and data cache 230, reference is made
to the section entitled Data Cache Controller and Cache
240, 230 (FIG. 2).

Accurate color space conversion can be a highly non-
linear process. For example, color space conversion of a
RGB pixel to a single primary color component (e.g. cyan)
of the CYMK color space is theoretically linear, however in
practice non-linearities are introduced typically by the out-
put device which is used to display the colour components
of the pixel. Similarly for the color space conversion of the
RGB pixel to the other primary color components (yellow,
magenta or black) of the CYMK color space. Consequently
a non-linear colour space conversion is typically used to
compensate for the non-linearities introduced on each colour
component. The highly non-linear nature of the color con-
version process requires either a complex transfer function
to be implemented or a look-up table to be utilized. Given
an input color space of, for example, 24 bit ROB pixels, a
look-up table mapping each of these pixels to a single 8 bit
primary color component of the CYMK color space (i.e.
cyan) would require over 16 megabytes. Similarly, a look-up
table simultaneously mapping the 24 bit RGB pixels to all
four 8 bit primary color components of the CYMK color
space would require over 64 megabytes, which is obviously
excessive. Instead, the main data path 242 (FIG. 2) uses a
look-up table stored in the data cache 230 having sparsely
located output color values corresponding to points in the
input color space and interpolates between the output color
values to obtain an intermediate output.

a. Single Output General Color Space (SOGCS) Conversion
Mode

In both the single and multiple output color conversion
modes (SOGCS) and (MOGCS), the RGB color space is
comprized of 24 bit pixels having 8 bit red, green and blue
color components. Each of the RGB dimensions of the RGB
color space is divided into 15 intervals with the length of
each interval having a substantially inverse proportionality
to the non-linear behavior of the transfer function between
the RGB to CYMK color space of the printer. That is, where
the transfer function has a highly non-linear behavior the
interval size is reduced and where the transfer function has
a more linear behavior, the size of the interval is increased.
Preferably, the color space of each output printer is accu-
rately measured to determine those non-linear portions of its
transfer function. However, the transfer function can be
approximated or modelled based on know-how or measured
characteristics of a type printer (e.g.: ink-jet). For each color
channel of an input pixel, the color component value defines
a position within one of the 15 intervals. Two tables are used
by the main data path unit 242 to determine which interval
a particular input color component value lies within and also
to determine a fraction along the interval in which a par-
ticular input color component value lies. Of course, different
tables may be used for output printers having different
transfer functions.

As noted previously, each of the RGB dimensions is
divided into 15 intervals. In this way the RGB color space
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forms a 3-dimensional lattice of intervals and the input
pixels at the ends of the intervals form sparsely located
points in the input color space. Further, only the output color
values of the output color space corresponding to the end-
points of the intervals are stored in look-up tables. Hence, an
output color value of an input color pixel can be calculated
by determining the output color values corresponding to the
endpoints of the intervals within which the input pixel lies
and interpolating such output color values utilising the
fractional values. This technique reduces the need for large
memory storage.

Turning now to FIG. 56, there is illustrated 480 an
example of determining for a particular input RGB color
pixel, the corresponding interval and fractional values. The
conversion process relies upon the utilization of an interval
table 482 and a fractional table 483 for each 8 bit input color
channel of the 24 bit input pixel. The 8 bit input color
component 481, shown in a binary form in FIG. 56 having
the example decimal number 4, is utilized as a look-up to
each of the interval and fractional tables. Hence, the number
of entries in each table is 256. The interval table 482
provides a 4 bit output defining one of the intervals num-
bered 0 to 14 into which the input color component value
481 falls. Similarly, the fractional table 483 indicates the
fraction within an interval that the input color value com-
ponent 481 falls. The fractional table stores 8 bit values in
the range of 0 to 255 which are interpreted as a fraction of
256. Hence, for an input color value component 481 having
a binary equivalent to the decimal value 4, this value is
utilized to look-up the interval table 482 to produce an
output value of 0. The input value 4 is also utilized to
look-up the fractional table 483 to produce an output value
of 160 which designates the fraction 1%%2ss. As can be seen
from the interval and fractional tables 482 and 483, the
interval lengths are not equal. As noted previously, the
length of the intervals are chosen according to the non-linear
behavior of the transfer function.

As mentioned above, the separate interval and fractional
tables are utilized for each of the RGB color components
resulting in three interval outputs and three fractional out-
puts. Each of the interval and fractional tables for each color
component are loaded in the MUV buffer 250 (FIG. 2) and
accessed by the main data path unit 242 when required. The
arrangement of the MUV buffer 250 for the color conversion
process is as shown in FIG. 57. The MUV buffer 250 (FIG.
57) is divided into three areas 488, 489 and 490, one area for
each color component. Each area e.g. 488 is further divided
into a 4 bit interval table and a 8 bit fractional table. A 12 bit
output 492 is retrieved by the main data path unit 242 from
the MUV buffer 250 for each input color channel. In the
example given above of a single input color component
having a decimal value 4, the 12 bit output will be
000001010000.

Turning now to FIG. 58, there is illustrated an example of
the interpolation process. The interpolation process consists
primarily of interpolation from one three dimensional space
500, for example RGB color space to an alternative color
space, for example CMY or CMYK. The pixels PO to P7
form sparsely located points in the RGB input color space
and having corresponding output color values CV(P0) to
CV(P7) in the output color space. The output color compo-
nent value corresponding to the input pixel Pi falling
between the pixels PO to P7 is determined by; firstly,
determining the endpoints PO, P1, . . . , P7 of the intervals
surrounding the input pixel Pi; secondly, determining the
fractional components frac_r, frac__gand frac_b; and lastly
interpolating between the output color values CV(P0) to
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CV(P7) corresponding to the endpoints PO to P7 using the
fractional components.

The interpolation process includes a one dimensional
interpolation in the red (R) direction to calculate the values
temp 11, temp 12, temp 13, temp 14 in accordance with the
following equations:

temp 11=CV(PO)+frac_r (CV(P1)-CV(PO))
temp 12=CV(P2)+frac_r (CV(P3)-CV(P2))
temp 13=CV(P4)+frac_r (CV(P5)-CV(P4))
temp 14=CV(P6)+frac_r (CV(PT)-CV(P6))

Next, the interpolation process includes the calculation of a
further one dimensional interpolation in the green (G) direc-
tion utilising the following equations to calculate the values
temp 21 and temp 22:

temp 21=temp 11+frac_g (temp 12—temp 11)
temp 22=temp 13+frac__g (temp 14—temp 13)

Finally, the final dimension interpolation in the blue (B)
direction is carried out to calculate a final color output value
in accordance with the following equation.

final=temp 21+frag b (temp 22-temp 21)

Unfortunately, it is often the case that the input and output
gamut may not match. In this respect, the output gamut may
be more restricted that the input gamut and in this case, it is
often necessary to clamp the gamut at the extremes. This
often produces unwanted artefacts when converting using
the boundary gamut colors. An example of how this problem
can occur will now be explained with reference to FIG. 59,
which represents a one dimensional mapping of input gamut
values to output gamut values. It is assumed that output
values are defined for the input values at points 510 and 511.
However, if the greatest output value is clamped at the point
512 then the point 511 must have an output value of this
magnitude. Hence, when interpolating between the two
points 510 and 511, the line 515 forms the interpolation line
and the input point 516 produces a corresponding output
value 517. However, this may not be the best color mapping,
especially where, without the gamut limitations, the output
value would have been at the point 518. The interpolation
line between 510 and 518 would produce an output value of
519 for the input point 516. The difference between the two
output values 517 and 519 can often lead to unsightly
artefacts, particularly when printing edge of gamut colors.
To overcome this problem, the main data path unit can
optionally calculate in an expanded output color space and
then scale and clamp to the appropriate range utilising the
following formula:

0if x=63

out=2(x-64) if (64=x=191) €]

255 if (192=x)

Returning now to FIG. 58, it will be evident that the
interpolation process can either be carried out in the SOCGS
conversion mode which converts RGB pixels to a single
output color component (for example, cyan) or the MOGCS
mode which converts RGB pixels to all the output color
components simultaneously. Where color conversion is to be
carried out for each pixel in an image, many millions of
pixels may have to be independently color converted.
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Hence, in order for high speed operation, it is desirable to be
able to rapidly locate the 8 values (P0—P7) around a par-
ticular input value.

As noted previously with respect to FIG. 57, the main data
path unit 242 retrieves for each color input channel, a 12 bit
output consisting of a 4 bit interval part and a 8 bit fractional
part. The main data path unit 242 concatenates these 4 bit
interval parts of the red, green and blue color channels to
form a single 12 bit address (I, L5, 1), as shown in FIG. 60
as 520.

FIG. 60 shows a data flow diagram illustrating the manner
in which a single output color component 563 is obtained in
response to the single 12 bit address 520. The 12 bit address
520 is first fed to an address generator of the data cache
controller 240, such as the generator 1881 (shown in FIG.
141) which generates 8 different 9 bit line and byte addresses
521 for memory banks (B, B, , . .. B;). The data cache 230
(FIG. 2) is divided into 8 independent memory banks 522
which can be independently addressed by the respective 8
line and byte addresses. The 12 bit address 520 is mapped by
the address generator into the 8 line and byte addresses in
accordance with the following table:

TABLE 12

Address Composition for SOGCS Mode

Bit [8:6] Bit [5:3] Bit [2:0]
Bank 7 R[3:1] G[3:1] B[3:1]
Bank 6  R[3:1] G[3:1] B[3:1+B[0]
Bank 5 R[3:1] G[3:1]+G[0] B[3:1]
Bank 4  R[3:1] G[3:1]+G[0] B[3:1+B[0]
Bank 3 R[3:1]+R[0] G[3:1] B[3:1]
Bank2  R[3:1]+R[0] G[3:1] B[3:1+B[0]
Bank1  R[3:1]+R[0] G[3:1]+G[0] B[3:1]
Bank 0  R[3:1]+R[0] G[3:1]+G[0] B[3:1+B[0]

where BIT[8:6], BIT[5:3] and BIT[2:0] represent the
sixth to eighth bits, the third to fifth bits and the zero to
second bits of the 9 bit bank addresses respectively; and

where R[3:1], G[3:1] and B[3:1] represent the first to third
bits of the 4 bit intervals I, I; and I of the 12 bit address
520 respectively.

Reference is made to memory bank 5 of Table 12 for a
more detailed explanation of the 12 bit to 9 bit mapping. In
this particular case, the bits 1 to 3 of the 4 bit red interval Ir
of the 12 bit address 520 are mapped to bits 6 to 8 of the 9
bit address BS; bits 1 to 3 and bit 0 of the 4 bit green interval
I, are summed and then mapped to bits 3 to 5 of the 9 bit
address BS; and bits 1 to 3 of the 4 bit blue interval I, are
mapped to bits 0 to 2 of the 9 bit address BS.

Each of the 8 different line and byte addresses 521 is
utilized to address a respective memory bank 522 which
consists of 512x8 bit entries, and the corresponding 8 bit
output color component 523 is latched for each of the
memory banks 522. As a consequence of this addressing
method, the output color values of CV(P0) to CV(P7)
corresponding to the endpoints PO to P7 may be located at
different positions in the memory banks. For example, a 12
bit address of 0000 0000 0000 will result in the same bank
address for each bank, ie 000 000 000. However a 12 bit
address of 0000 0000 0001 will result in different bank
addresses, ie a bank address of 000 000 000 for banks 7, 5.
3 and 1 and a bank address of 000 000 001 for banks 6, 4,
2 and 0. It is in this way the eight single output color values
CV(P0)-CV(P7) surrounding a particular input pixel value
are simultaneously retrieved from respective memory banks
and duplication of output color values in the memory banks
can be avoided.
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Turning now to FIG. 61, there is illustrated the structure
of a single memory bank of the data cache 230 when utilized
in the single color conversion mode. Each memory bank
consists of 128 line entries 531 which are 32 bits long and
comprize 4x8 bit memories 533-536. The top 7 bits of the
memory address 521 are utilized to determine the corre-
sponding row of data within the memory address to latch
542 as the memory bank output. The bottom two bits are a
byte address and are utilized as an input to multiplexer 543
to determine which of the 4x8 bit entries should be chosen
544 for output. One data item is output for each of the 8
memory banks per clock cycle for return to the main data
path unit 242. Hence, the data cache controller receives a 12
bit byte address from the operand organizer 248 (FIG. 2) and
outputs in return to the operand organizers 247, 248, the 8
output color values for interpolation calculation by the main
data path unit 242.

Returning to FIG. 60, the interpolation equations are
implemented by the main data path unit 242 (FIG. 2) in three
stages. In the main data path unit, a first stage of multiplier
and adder units eg. 550 which take as input the relevant color
values output by the corresponding memory banks eg. 522
in addition to the red fractional component 551 and calculate
the 4 output values in accordance with stage 1 of the
abovementioned equations. The outputs eg. 553, 554 of this
stage are fed to a next stage unit 556 which utilizes the
frac_g input 557 to calculate an output 558 in accordance
with the aforementioned equation for stage 2 of the inter-
polation process. Finally, the output 558 in addition to other
outputs eg. 559 of this stage are utilized 560 in addition to
the frac_ b input 562 to calculate a final output color 563 in
accordance with the aforementioned equations.

The process illustrated in FIG. 60 is implemented in a
pipelined manner so as to ensure maximum overall through-
put. Further, the method of FIG. 60 is utilized when a single
output color component 563 is required. For example, the
method of FIG. 60 can be utilized to first produce the cyan
color components of an output image followed by the
magenta, yellow and black components of an output image
reloading the cache tables between passes. This is particu-
larly suitable for a four-pass printing process which requires
each of the output colors as part of separate pass.

b. Multiple Output General Color Space Mode

The co-processor 224 operates in the MOGCS mode in a
substantially similar manner to the SOCGS mode, with a
number of notable exceptions. In the MOGCS mode, the
main data path unit 242, the data cache controller 240 and
data cache of FIG. 2 co-operate to produce multiple color
outputs simultaneously with four primary colors compo-
nents being output simultaneously. This would require the
data cache 230 to be four times larger in size. However, in
the MOGCS mode of operation, in order to save storage
space, the data cache controller 240 stores only one quarter
of all the output color values of the output color space. The
remaining output color values of the output color space are
stored in a low speed external memory and are retrieved as
required. This particular apparatus and method is based upon
the surprising revelation that the implementation of sparsely
located color conversion tables in a cache system have an
extremely low miss rate. This is based on the insight there
is a low deviation in color values from one pixel to the next
in most color images. In addition, there is a high probability
the sparsely located output color values will be the same for
neighboring pixels.

Turning now to FIG. 62 there will now be described the
method carried out by the co-processor to implement multi-
channel cached color conversion. Each input pixel is broken
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into its color components and a corresponding interval table
value (FIG. 56) is determined as previously described result-
ing in the three 4 bit intervals Ir, Ig, Ib denoted 570. The
combined 12 bit number 570 is utilized in conjunction with
the aforementioned table 12 to again derive eight 9-bit
addresses. The addresses eg. 572 are then re-mapped as will
be discussed below with reference to FIG. 63, and then are
utilized to look up a corresponding memory bank 573 to
produce four colour output channels 574. The memory bank
573 stores 128x32 bit entries out of a total possible 512x32
bit entries. The memory bank 573 forms part of the data
cache 230 (FIG. 2) and is utilized as a cache as will now be
described with reference to FIG. 63.

Turning to FIG. 63, the 9 bit bank input 578 is re-mapped
as 579 so as to anti-alias memory patterns by re-ordering the
bits 580-582 as illustrated. This reduces the likelihood of
neighboring pixel values aliasing to the same cache ele-
ments.

The reorganized memory address 579 is then utilized as
an address into the corresponding memory bank eg. 585
which comprizes 128 entries each of 32 bits. The 7 bit line
address is utilized to access the memory 585 resulting in the
corresponding output being latched 586 for each of the
memory banks. Each memory bank, eg 585 has an associ-
ated tag memory which comprizes 128 entries each of 2 bits.
The 7 bit line address is also utilized to access the corre-
sponding tag in tag memory 587. The two most significant
bits of the address 579 are compared with the corresponding
tag in tag memory 587 to determine if the relevant output
color value is stored in the cache. These two most significant
bits of the 9 bit address correspond to the most significant
bits of the red and green data intervals (see Table 12). Thus
in the MOGCS mode the RGB input color space is effec-
tively divided into quadrants along the red and green dimen-
sions where the two most significant bits of the 9 bit address
designates the quadrant of the RGB input color space. Hence
the output color values are effectively divided into four
quadrants each designated by a two bit tag. Consequently the
output color values for each tag value for a particular line are
highly spaced apart in the output color space, enabling
anti-aligning of memory patterns.

Where the two bit tags do not match a cache miss is
recorded by the data cache controller and the corresponding
required memory read is initiated by the data cache control-
ler with the cache look up process being stalled until all
values for that line corresponding to that two bit tag entry are
read from an external memory and stored in the cache. This
involves the reading of the relevant line of the color con-
version table stored in the external memory. The process 575
of FIG. 63 is carried out for each of the memory banks eg.
573 of FIG. 62 resulting, depending on the cache contents,
in a time interval elapsing before the results eg. 586 are
output from each corresponding memory bank. Each of the
eight 32 bit sets of data 586 are then forwarded to the main
data path unit (242) which carries out the aforementioned
interpolation process (FIG. 62) in three stages 590-592 to
each of the colored channels simultaneously and in a pipe-
lined manner so as to produce four color outputs 595 for
sending to a printer device.

Experiments have shown that the caching mechanism as
described with reference to FIGS. 62 and 63 can be advan-
tageously utilized as typical images have a cache miss-rate
on average requiring between 0.01 and 0.03 cache line
fetches per pixel. The utilization of the caching mechanism
therefore leads to substantially reduced requirements, in the
typical case, for memory accesses outside of the data cache.

The instruction encoding for both color space conversion
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modes (FIG. 10) utilized by the co-processor has the fol-
lowing structure:

TABLE 12A

Instruction Encoding for Color Space Conversion

Operand Description Internal Format External Format

Operand A source pixels pixels packed stream

Operand B multi output channel  other multi channel csc
color conversion tables tables

Operand C  Interval and Fraction — I&F table format
Tables

Result pixels pixels packed stream
bytes unpacked bytes unpacked bytes,

packed stream

The instruction field encoding for color space conversion
instruction is illustrated in FIG. 64 with the following minor
opcode encoding for the color conversion instructions.

TABLE 13

Minor Opcode Encoding for Color Conversion Instructions

Field Description

trans[3:0] 0 = do not apply translation and clamping step to
corresponding output value on this channel

M 0 = single channel color table format

1 = multi channel color table format

FIG. 65 shows a method of converting a stream of RGB
pixels into CYMK color values according to the MOGCS
mode. In step S, a stream of 24 bit RGB pixels are received
by the pixel organiser 246 (FIG. 2). In step S,, the pixel
organiser 246 determines the 4 bit interval values and the 8
bit fractional values of each input pixel from lookup tables,
in the manner previously discussed with respect to FIGS. 56
and 57. The interval and fractional values of the input pixel
designate which intervals and fractions along the intervals in
which the input pixel lies. In step S5, the main data path unit
242 concatenates the 4 bit intervals of the red, green and blue
color components of the input pixel to form a 12 bit address
word and supplies this 12 bit address word to the data cache
controller 240 (FIG. 2). In step S,, the data cache controller
240 converts this 12 bit address word into 8 different 9 bit
addresses, in the manner previously discussed with respect
to Table 12 and FIG. 62. These 8 different addresses desig-
nate the location of the 8 output color values CV(P0)-CV
(P7) in the respective memory banks 573 (FIG. 62) of the
data cache 230 (FIG. 2). In step S, the data cache controller
240 (FIG. 2) remaps the 8 different 9 bit addresses in the
manner described previously with respect to FIG. 63. In this
way, the most significant bit of the red and green 4 bit
intervals are mapped to the two most significant bits of the
9 bit addresses.

In step S, the data cache controller 240 then compares the
two most significant bits of the 9 bit addresses with respec-
tive 2 bit tags in memory 587 (FIG. 63). If the 2 bit tag does
not correspond to the two most significant bits of the 9 bit
addresses, then the output color values CV(P0)-CV(P7) do
not exist in the cache memory 230. Hence, in step S, all the
output color values corresponding to the 2 bit tag entry for
that line are read from external memory into the data cache
230. If the 2 bit tag corresponds to these two most significant
bits of the 9 bit addresses, then the data cache controller 240
retrieves in step Sy the eight output color values CV(P0)
—CV(P7) in the manner discussed previously with respect to
FIG. 62. In this way, the eight output color values CV(P0)
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—CV(P7) surrounding the input pixel are retrieved by the
main data path unit 242 from the data cache 230. In step S,
the main data path unit 242 interpolates the output color
values CV(P0)-CV(P7) utilising the fractional values deter-
mined in step S, and outputs the interpolated output color
values.

It will be evident to the man skilled in the art, that the
storage space of the data cache storage may be reduced
further by dividing the RGB color space and the correspond-
ing output color values into more than four quadrants, for
example 32 blocks. In the latter case, the data cache can have
the capacity of storing only a Y52 block of output color
values.

It will also be evident to the man skilled in the art, that the
data caching arrangement utilized in the MOGCS mode can
also be used in a single output general conversion mode.
Hence, in the latter mode the storage space of the data cache
can also be reduced.

JPEG Coding/Decoding

It is well known that a large number of advantages can be
obtained from storing images in a compressed format espe-
cially in relation to the saving of memory and the speed of
transferring images from one place to another. Various
popular standards have arizen for image compression. One
very popular standard is the JPEG standard and for a full
discussion of the implementation of this standard reference
is made to the well known text JPEG: Still Image Data
Compression Standard by Pennebaker and Mitchell pub-
lished 1993 by Van Nostrand Reinhold. The co-processor
224 utilizes a subset of the JPEG standard in the storage of
images. The JPEG standard has the advantage that large
factor compression can be gained with the retention of
substantial image quality. Of course, other standards for
storing compressed images could be utilized. The JPEG
standard is well-known to those skilled in the art, and the
various JPEG alternative implementations readily available
in the marketplace from manufacturers including JPEG core
products for incorporation into ASICS.

The co-processor 224 implements JPEG compression and
decompression of images consisting of 1, 3 or 4 color
components. One-color-component images may be meshed
or unmeshed. That is, a single-color-component can be
extracted from meshed data or extracted from unmeshed
data. An example of meshed data is three-color components
per pixel datum (i.e., RGB per pixel datum), and an example
of unmeshed data is where each color component for an
image is stored separately such that each color component
can be processed separately. For three color component
images the co-processor 224 utilizes one pixel per word,
assuming the three color channels to be encoded in the
lowest three bytes.

The JPEG standard decomposes an image into small two
dimensional units called minimum coded units (MCU).
Each minimal coded unit is processed separately. The JPEG
coder 241 (FIG. 2) is able to deal with MCU’s which are 16
pixels wide and 8 pixels high for down sampled images or
MCU’s which are 8 pixels wide and 8 pixels high for images
that are not to be down sampled.

Turning now to FIG. 66, there is illustrated the method
utilized for down sampling three component images.

The original pixel data 600 is stored in the MUV buffer
250 (FIG. 2) in a pixel form wherein each pixel 601
comprizes Y, U and V components of the YUV color space.
This data is first converted into a MCU unit which comprizes
four data blocks 601-604. The data blocks comprize the
various color components, with the Y component being
directly sampled 601, 602 and the U and V components
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being sub-sampled in the particular example of FIG. 13 to
form blocks 603, 604. Two forms of sub-sampling are
implemented by the co-processor 224, including direct sam-
pling where no filtering is applied and odd pixel data is
retained while even pixel data is discarded. Alternatively,
filtering of the U and V components can occur with aver-
aging of adjacent values taking place.

An alternative form of JPEG sub-sampling is four color
channel sub-sampling as illustrated in FIG. 67. In this form
of sub-sampling, pixel data blocks of 16x8 pixels 610 each
have four components 611 including an opacity component
(0) in addition to the usual Y, U, V components. This pixel
data 410 is sub-sampled in a similar manner to that depicted
in FIG. 66

However, in this case, the opacity channel is utilized to
form data blocks 612, 613.

Turning now to FIG. 68, there is illustrated the JPEG
coder 241 of FIG. 2 in more detail. The JPEG encoder/
decoder 241 is utilized for both JPEG encoding and decod-
ing. The encoding process receives block data via bus 620
from the pixel organizer 246 (FIG. 2). The block data is
stored within the MUV buffer 250 which is utilized as a
block staging area. The JPEG encoding process is broken
down into a number of well defined stages. These stages
include:

1. taking a discrete cosine transform (DCT) via DCT unit
621,

2. quantising the DCT output 622;

3. placing the quantized DCT co-efficients in a zig zag order,
also carried out by quantizer unit 622;

4. predictively encoding the DC DCT coefficients and run
length encoding the AC DCT co-efficients carried out by
co-efficient coder 623; and

5. variable length encoding the output of the coefficients
coder stage, carried out by Huffman coder unit 624. The
output is fed via multiplexer 625 and Rbus 626 to the
result organizer 629 (FIG. 2).

The JPEG decoding process is the inverse of JPEG
encoding with the order of operations reversed. Hence, the
JPEG decoding process comprizes the steps of inputting on
Bus 620 a JPEG block of compressed data. The compressed
data is transferred via Bus 630 to the Huffman coder unit 624
which Huffman decodes data into DC differences and AC
run lengths. Next, the data is forwarded to the co-efficients
coder 623 which decodes the AC and DC coefficients and
puts them into their natural order. Next, the quantizer unit
622 dequantizes the DC co-efficients by multiplying them by
a corresponding quantization value. Finally, the DCT unit
621 applies an inverse discrete cosine transform to restore
the original data which is then transferred via Bus 631 to the
multiplexer 625 for output via Bus 626 to the Result
Organizer. The JPEG coder 241 operates in the usual manner
via standard CBus interface 632 which contains the registers
set by the instructions controller in order to begin operation
of the JPEG coder. Further, both the quantizer unit 622 and
the Huffman coder 624 require certain tables which are
loaded in the data cache 230 as required. The table data is
accessed via an OBus interface unit 634 which connects to
the operand organizer B unit 247 (FIG. 2) which in turn
interacts with the data cache controller 240.

The DCT unit 621 implements forward and inverse dis-
crete cosine transforms on pixel data. Although many dif-
ferent types of DCT transforming implementations are
known and discussed in the Still Image Data Compression
Standard (ibid), the DCT 621 implements a high speed form
of transform more fully discussed in the section herein
entitled A Fast DCT Apparatus, which may implement a
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DCT transform operation in accordance with the article
entitled A Fast DCT—SQ Scheme for Images by Arai et. al.,
published in The Transactions of the IEICE, Vol E71, No.
11, November 1988 at page 1095.

The quantizer 622 implements quantization and dequan-
tization of DCT components and operates via fetching
relevant values from corresponding tables stored in the data
cache via the OBus interface unit 634. During quantization,
the incoming data stream is divided by values read from
quantization tables stored in the data cache. The division is
implemented as a fixed point multiply. During
dequantization, the data stream is multiplied by values kept
in the dequantization table.

Turning to FIG. 69, there is illustrated the dequantizer 622
in more detail. The quantizer 622 includes a DCT interface
640 responsible for passing data to and receiving data from
the DCT module 621 via a local Bus. During quantization,
the quantizer 622 receives two DCT co-efficients per clock
cycle. These values are written to one of the quantizers
internal buffers 641, 642. The buffers 641, 642 are dual
ported buffers used to buffer incoming data. During
quantization, co-efficient data from the DCT sub-module
621 is placed into one of the buffers 641, 642. Once the
buffer is full, the data is read from the buffer in a zig zag
order and multiplied by multiplier 643 with the quantization
values received via OBus interface unit 634. The output is
forwarded to the co-efficient coder 623 (FIG. 68) via
co-efficient coder interface 645. While this is happening, the
next block of coefficients is being written to the other buffer.
During JPEG decompression, the quantizer module dequan-
tizes decoded DCT coefficients by multiplying them by
values stored in the table. As the quantization and dequan-
tization operations are mutually exclusive, the multiplier
643 is utilized during quantization and dequantization. The
position of the co-efficient within the block of 8x8 values is
used as the index into the dequantization table.

As with quantization, the two buffers 641, 642 are utilized
to buffer incoming co-efficient data from the co-efficient
coder 623 (FIG. 68). The data is multiplied with its quan-
tization value and written into the buffers in reverse zig zag
order. Once full, the dequantized coefficients are read out of
the utilized buffer in natural order, two at a time, and passed
via DCT interface 640 to the DCT sub-module 621 (FIG.
68). Hence the coefficients coder interface module 645 is
responsible for interfacing to the co-efficients coder and
passes data and receives data from the coder via a local Bus.
This module also reads data from buffers in zig zag order
during compression and writes data to the buffers in reverse
zig zag order during decompression. Both the DCT interface
module 640 and the CC interface module 645 are able to
read and write from buffers 641, 642. Hence, address and
control multiplexer 647 is provided to select which buffer
each of these interfaces is interacting with under the control
of a control module 648, which comprizes a state machine
for controlling all the various modules in the quantizer. The
multiplier 643 can be a 16x8, 2’s complement multiplier
which multiplies DCT coefficients by quantization table
values.

Turning again to FIG. 68, the co-efficient coder 623
performs the functions of:

(a) predictive encoding/decoding of DC coefficients in JPEG
mode; and

(b) run length encoding/decoding of AC coefficients in JPEG
mode.

Preferably, the co-efficient coder 623 is also able to be
utilized for predictive encoding/decoding of pixels and
memory copy operations as required independently of JPEG
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mode operation. The co-efficient coder 623 implements
predictive and run length encoding and decoding of DC and
AC coefficients as specified in the Pink Book. A standard
implementation of predictive encoding and predictive
decoding in addition to JPEG AC co-efficients run lengthing
encoding and decoding as specified in the JPEG standard is
implemented.

The Huffman coder 624 is responsible for Huffman
encoding and decoding of the JPEG data train. In Huffman
encoding mode, the run length encoded data is received from
the co-efficients coder 623 and utilized to produce a Huff-
man stream of packed bytes. Alternatively, or in addition, in
Huffman decoding, the Huffman stream is read from the
PBus interface 620 in the form of packed bytes and the
Huffman decoded coefficients are presented to the
co-cfficient coder module 623. The Huffman coder 624
utilizes Huffman tables stored in the data cache and accessed
via OBus interface 634. Alternatively, the Huffman table can
be hardwired for maximum speed.

When utilising the data cache for Huffman coding, the
eight banks of the data store data tables as follows with the
various tables being described in further hereinafter.

TABLE 14

Huffman and Quantization Tables as stored in Data Cache

Bank Description

0 This bank hold the 256, 16 bit entries of a EHUFCO_DC__1
EHUFCO table. The least significant bit of the index chooses
between the two 16 bit items in the 32 bit word. All 128 lines
of this bank of memory are used.

1 This bank holds the 256, 16 bit entries of a EHUFCO_DC_2
table. The least significant bit of the index chooses between the
two 16 bit items in the 32 bit word. All 128 lines of this bank
of memory are used.

2 This bank holds the 256, 16 bit entries of a EHUFCO__AC__1
table. The least significant bit of the index chooses between the
two 16 bit items in the 32 bit word. All 128 lines of this bank of
memory are used.

3 This bank holds the 256, 16 bit entries of a EHUFCO_AC_2
table. The least significant bit of the index chooses between the
two 16 bit items in the 32 bit word. All 128 lines of this bank
of memory are used.

4 This bank holds the 256, 4 bit entires of a EHUFSI_DC__1 or
EHUFSI table, as well as the 256, 4 bit entires of a
EHUFSI_DC_2 table. All 128 lines of this bank of memory are
used.

5 This bank holds the 256, 4 bit entries of a EHUFSI_AC_1

table, as well as the 256, 4 bit entries of a EHUFSI_AC_2

table. All 128 lines of this bank of memory are used.

Not used

7 This banks holds the 128, 24 bit entries of the quantization
table. It occupies the least significant 3 bytes of all 128 lines of
this bank of memory.

[N

Turning now to FIG. 70, the Huffman coder 624 consists
primarily of two independent blocks being an encoder 660
and a decoder 661. Both blocks 660,661 sharc the same
OBus interface via a multiplexer module 662. Each block
has its own input and output with only one block active at
a time, depending on the function performed by the JPEG
encoder.

a. Encoding

During encoding in JPEG mode, Huffman tables are used
to assign codes of varying lengths (up to 16 bits per code)
to the DC difference values and to the AC run-length values,
which are passed to the HC submodule from the CC sub-
module. These tables have to be preloaded into the data
cache before the start of the operation. The variable length
code words are then concatenated with the additional bits for
DC and AC co-efficients (also passed from the CC
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submodule, then packed into bytes. A X'00 byte is stuffed in
if an X'FF byte is obtained as a result of packing. If there is
a need for an RST,, marker it is inserted. This may require
byte padding with “1” bits of the last Huffman code and X'00
byte stuffing if the padded byte results in X'FF. The need for
an RST,, marker is signalled by the CC submodule. The HC
submodule inserts the EOI marker at the end of image,
signalled by the “final” signal on the PBus-CC slave inter-
face. The insertion procedure of the EOI marker requires
similar packing, padding and stuffing operations as for RST,,
markers. The output stream is finally passed as packed bytes
to the Result Organizer 249 for writing to external memory.

In non-JPEG mode data is passed to the encoder from the
CC submodule (PBus-CC slave interface) as unpacked
bytes. Each byte is separately encoded using tables pre-
loaded into the cache (similarly to JPEG mode), the variable
length symbols are then assembled back into packed bytes
and passed to the Results Organizer 249. The very last byte
in the output stream is padded with 1°s.

b. Decoding

Two decoding algorithms are implemented: fast (real
time) and slow (versatile). The fast algorithm works only in
JPEG mode, the versatile one works both in JPEG and
non-JPEG modes.

The fast JPEG Huffman decoding algorithm maps Huft-
man symbols to either DC difference values or AC run-
length values. It is specifically tuned for JPEG and assumes
that the example Huffman tables (K3, K4, K5 and K6) were
used during compression. The same tables are hard wired in
to the algorithm allowing decompression without references
to the cache memory. This decoding style is intended to be
used when decompressing images to be printed where
certain data rates need to be guaranteed. The data rate for the
HC submodule decompressing a band (a block between
RST,, markers) is almost one DC/AC co-efficient per clock
cycle. One clock cycle delay between the HC submodule
and CC sub-module may happen for each X'00 stuff byte
being removed from the data stream, however this is
strongly data dependent.

The Huffman decoder operates in a faster mode for the
extraction of one Huffman symbol per clock cycle. The fast
Huffman decoder is described in the section herein entitled
Decoder of Variable Length Codes.

Additionally, the Huffman decoder 661 also implements a
heap-based slow decoding algorithm and has a structure 670
as illustrated in FIG. 71.

For a JPEG encoded stream, the STRIPPER 671 removes
the X'00 stuff bytes, the X'FF fill bytes and RST,, markers,
passing Huffman symbols with concatenated additional bits
to the SHIFTER 672. This stage is bypassed for Huffman-
only coded streams.

The first step in decoding a Huffman symbol is to look up
the 256 entries HUFVAL table stored in the cache address-
ing it with the first 8 bits of the Huffman data stream. If this
yields a value (and the true length of the corresponding
Huffman symbol), the value is passed on to the OUTPUT
FORMATTER 676, and the length of the symbol and the
number of the additional bits for the decoded value are fed
back to the SHIFTER 672 enabling it to pass the relevant
additional bits to the OUTPUT FORMATTER 676 and align
the new front of the Huffman stream presented to the
decoding unit 673. The number of the additional bits is a
function of the decoded value. If the first look up does not
result in a decoded value, which means that the Huffman
symbol is longer than 8 bits, the heap address is calculated
and successive heap (located in the cache, too) accesses are
performed following the algorithm until a match is found or
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an “illegal Huffman symbol” condition met. A match results
in identical behavior as in case of the first match and “illegal
Huffman symbol” generates an interrupt condition.

The algorithm for heap-based decoding algorithm is as s

follows:

loop until end of image

set symbol length N to 8

get first 8 bits of the input stream into INDEX

fetch HUFVAL(INDEX)

if HUFVAL(INDEX) == 00xx 0000 111 -- (ILL)
signal “illegal Huffman symbol”
exit

elsif HUFVAL(INDEX) == 1nnn ecee ecce -- (HIT)
pass nnn bits to eeee eeee as the value
pass symbol length N = decimal (nnn)/*000
as symbol length 8%/
adjust the input stream
break

set N =9
if 9th bit of the input stream == 0
increment HEAPINDEX
fi
fetch VALUE = HEAP (HEAPINDEX) -- (code for 9th bit)
loop
if VALUE == 0001 0000 1111 -- (ILL)
signal “illegal Huffman symbol”
exit
elsif VALUE == 1000 ecee ceee
pass eeee ecee as the value
pass symbol length N
adjust the input stream
break

if Nth bit of the input stream ==
increment HEAPINDEX
fi
fetch VALUE = HEAP (HEAPINDEX)
pool
pool

The STRIPPER 671 removes any X'00 stuff bytes, X'FF
fill bytes and RST,, markers from the incoming JPEG 671
coded stream and passes “clean” Huffman symbols with
concatenated additional bits to the shifter 672. There are no
additional bits in Huffman-only encoding, so in this mode
the passed stream consists of Huffman symbols only.

The shifter 672 block has a 16 bit output register in which
it presents the next Huffman symbol to the decoding unit 673
(bitstream running from MSB to LSB). Often the symbol is
shorter than 16 bits, but it is up to the decoding unit 673 to
decide how many bits are currently being analysed. The
shifter 672 receives a feedback 678 from the decoding unit
673, namely the length of the current symbol and the length
of the following additional bits for the current symbol (in
JPEG mode), which allows for a shift and proper alignment
of the beginning of the next symbol in the shifter 672.

The decoding unit 673 implements the core of the heap
based algorithm and interfaces to the data cache via the
OBus 674. It incorporates a Data Cache fetch block, lookup
value comparator, symbol length counter, heap index adder
and a decoder of the number of the additional bits (the
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decoding is based on the decoded value). The fetch address
is interpreted as follows:

TABLE 15

Fetch Address

Field (bits) Description

[32:25] Index into dequantization tables.
[24:19] Not used.

[18:9] Index into the heap.

[8:0] Index into Huffman decode table.

The OUTPUT FORMATTER block 676 packs decoded
8-bit values (standalone Huffman mode), or packs 24-bit
value+additional bits+RST,, marker information (JPEG
mode) into 32-bit words. The additional bits are passed to
the OUTPUT FORMATTER 676 by the shifter 672 after the
decoding unit 673 decides on the start position of the
additional bits for the current symbol. The OUTPUT FOR-
MATTER 673 also implements a 2 deep FIFO buffer using
a one word delay for prediction of the final value word.
During the decoding process, it may happen that the shifter
672 (either fast or slow) tries to decode the trailing padding
bits at the end of the input bitstream. This situation is
normally detected by the shifter and instead of asserting the
“illegal symbol” interrupt, it asserts a “force final” signal.
Active “force final” signal forces the OUTPUT FORMAT-
TER 676 to signal the last but one decoded word as “final”
(this word is still present in the FIFO) and discard the very
last word which does not belong to the decoded stream.

The Huffman encoder 660 of FIG. 70 is illustrated in FIG.
72 in more detail. The Huffman encoder 660 maps byte data
into Huffman symbols via look up tables and includes a
encoding unit 681, a shifter 682 and a OUTPUT FORMAT-
TER 683 with the lookup tables being accessed from the
cache.

Each submitted value 685 is coded by the encoding unit
681 using coding tables stored in the data cache. One access
to the cache 230 is needed to encode a symbol, although
each value being encoded requires two tables, one that
contains the corresponding code and the other that contains
the code length. During JPEG compression, a separate set of
tables is needed for AC and DC coefficients. If subsampling
is performed, separate tables are required for subsampled
and non subsampled components. For non-JPEG
compression, only two tables (code and size) are needed.
The code is then handled by the shifter 682 which assembles
the outgoing stream on bit level. The Shifter 682 also
performs RST,, and EOI markers insertion which implies
byte padding, if necessary. Bytes of data are then passed to
the OUTPUT FORMATTER 683 which does stuffing (with
X'00 bytes), filling with X'FF bytes, also the FF bytes
leading the marker codes and formatting to packed bytes. In
the non-JPEG mode, only formatting of packed bytes is
required.

Insertion of X'FF bytes is handled by the shifter 682,
which means that the output formatter 683 needs to tell
which bytes passed from the shifter 682 represent markers,
in order to insert an X'FF byte before. This is done by having
a register of tags which correspond to bytes in the shifter
682. Each marker, which must be on byte boundaries
anyway, is tagged by the shifter 682 during marker insertion.
The packer 683 does not insert stuff bytes after the X“FF”
bytes preceding the markers. The tags are shifted synchro-
nously with the main shift register.
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The Huffman encoder uses four or eight tables during
JPEG compression, and two tables for straight Huffman
encoding. The tables utilized are as follows:

64

TABLE 17-continued

Bank Address for Huffman and Quantization Tables

TABLE 16 5 Bank Description
Tables Used by the Huffman Encoder 5 This bank holds the 512, least significant 8 bits of the 12 bit
entires of the AC Huffman decode table. The least

Name Size  Description significant two bits of the index chooses between the four,

byte items in the 32 bit word. All 128 lines of this bank of

EHUFSI 256  Huffman code sizes. Used during straight 10 memory are used.

Huffman encoding. Uses the coded value as 6 This bank holds the most significant 4 bits of both the DC
an index. and AC Huffman decode tables. The least significant 2 bits

EHUFCO 256  Huffman code values used during straight of each index chooses between the 4 respective nibbles within
Huffman encoding. Uses the coded value as each word.
an index. ) 7 This bank holds the 128, 24 bit entires of the quantization

EHUFSI_DC_ 1 16 Huffman codes sizes used to code DC co- 15 table. It occupies the least significant 3 bytes of all 128 lines
efficients during JPEG compression. Uses of this bank of memory.
magnitude category as the index.

EHUFCO_DC_1 16 Huffman code values used to code DC co-
efﬁc“”_rtltz duntng JPEG Corr_lpéess%n' gsfes Prior to each JPEG instruction being executed by the
magnitude category as an 1ndex. Use or . . .
subsampled blocks, ..IPEG (?oder 24.1 (FIG 2) the.approprlate image width value

EHUFSI_DC_2 16  Huffman code sizes used to code DC co- 20 in the image dimensions register (PO_IDR) or (RO_IDR)
efficients during JPEG compression. Uses must be set. As with other instructions, the length of the
magnitude category as an index. Used for instruction refers to the number of input data items to be
subsampled blocks. d. This includ ddine d d f

EHUFCO_DC_2 16 Huffman code sizes used to code DC co- processcd. IS. mclu .es any pa Ing data and accounts for
efficients during JPEG compression. Uses any sub-sampling options utilized and for the number of
magnitude category as an index. Used for 25 color channels used.
subsampled blocks. . . .

EHUFSI_AC_1 256  Huffman code sizes used to code AC co- AH 1nstruct1.0.n.s lssue(.i by the CO-processor 224 may
efficients during JPEG compression. Uses utilize two facilities for limiting the amount of output data
magnitude category and run-length as an produced. These facilities are most usefull for instructions
index. : :

EHUFCO_AC_1 256  Huffman code sizes used to code AC co- 30 Where .thel mpuﬁ andhoutput da(tia SIZ?S a.re nn(i; the same fll nd
efficients during JPEG compression. Uses 1n particular where the output. ata s1ze 1S unknown, such as
magnitude category and run-length as an for JPEG coding and decoding. The facilities determine
index. ) whether the output data is written out or merely discarded

EHUFSL_AC_2 256 Huffman code sizes used to code AC co- with everything else being as if the instruction was properly
efficients during JPEG compression for d. By default. th faciliti 1y disabled
subsampled components. Uses magnitude 35 processed. by delaull, these .aCI 1Lies are norma y. 1§a ¢
category and run-length as an index. and can be enabled by enabling the appropriate bits in the

EHUFCO_AC_2 256  Huffman code sizes used to code AC co- RO__CFG register. JPEG instructions however, include spe-
efficients during JPEG compression for cific option for setting these bits. Preferably, when utilising
subsampled components. Uses magnitude IPEG . h 224 ides faciliti
category and run-length as an index. compression, the co-processor provides facilities

0 for “cutting” and “limiting” of output data.
) Turning to FIG. 73, there is now described the process of

Table Indexing cutting and limiting. An input image 690 may be of a certain

Huffman tables are stored locally by the co-processor data height 691 and a certain width 692. Often, only a portion of
cache 230. The data cache 230 is organized as a 128 line, the image is of interest with other portions being irrelevant
direct mapped cache, where each line comprizes 8 words. 45 for the purposes of printing out. However, the JPEG encod-

Each of the words in a cache line are separately addressable, ing system deals with 8x8 blocks of pixels. It may be the

and the Huffman decoder uses this feature to simultaneously case that, firstly, the image width is not an exact multiple of

access multiple tables. Because the tables are small (<=256 8 and additionally, the section of interest comprising MCU
entries), the 32 bit address field of the OBus can carry 695 does not fit across exact boundaries. An output cut

indexes into multiple tables. 50 register, RO cut specifies the number of output bytes at 696

As noted previously in JPEG slow decoding mode, the at the begin.nir}g of t.he output data stream to discard. quther,
data cache is utilized for storing various Huffman tables. The an output limit register, RO_LMT SPeC1ﬁ?S the maximum
format of the data cache is as follows: number of output bytes to be produced. This count includes

any bytes that do not get written to memory as a result of the
TABLE 17 55 cut register. Heqce, itis pos§ible to target a final output byte
698 beyond which no data is to be outputted.
Bank Address for Huffman and Quantization Tables There are two particular cases where the cut and limited

Bank  Description functionality of the JPEG decodf?r is cons%dered to be

extremely useful. The first case, as illustrated in FIG. 74, is

Oto3  These banks hold the 1024, 16 bit entries of the heap. 6o the extraction or decompression of a sub-section 700 of one

least significant index bit selects between the two 16 bit . .
; ; strip 701 of a decompressed image. The second useful case
words in each bank. All 128 lines of the four banks of T ) ) N
memory are used. is illustrated in FIG. 75 wherein the extraction or decom-
4 This bank holds the 512, least significant 8 bits of the 12 bit pression of a number of complete strips (eg. 711, 712 and
entries of the DC Huffman decode table. The least 713) is required from an overall image 714.
significant two bits of the index chooses between the four, ) ) )
65  The instruction format and field encoding for JPEG

byte items in the 32 bit word. All 128 line of this bank of
memory are used.

instructions is as illustrated in FIG. 76. The minor opcode
fields are interpreted as follows:
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TABLE 18
Instruction Word - Minor Opcode Fields
Field Description
D 0 = encode(compress)
1 = decode(decompress)
M 0 = single color channel
1 = multi channel
4 0 = three channel
1 = four channel
S 0 = do not use a sub/up sampling regime
1 = use a subsampling regime
H 0 = use fast Huffman coding
1 = use general purpose Huffman coding
C 0 = do not use cut register
1 = use cut register
T 0 = do not truncate on output
1 = truncate on output
F 0 = do not low pass filter before subsampling

1 = low pass filter before subsampling

Data Coding Instructions

Preferably, the co-processor 224 provides for the ability to
utilize portions of the JPEG coder 241 of FIG. 2 in other
ways. For example, Huffman coding is utilized for both
JPEG and many other methods of compression. Preferably,
there is provided data coding instructions for manipulating
the Huffman coding unit only for hierarchial image decom-
pression. Further, the run length coder and decoder and the
predictive coder can also be separately utilized with similar
instructions.

A Fast DCT Apparatus

Conventionally, a discrete cosine transform (DCT) appa-
ratus as shown in FIG. 77 performs a full two-dimensional
(2-D) transformation of a block of 8x8 pixels by first
performing a 1-D DCT on the rows of the 8x8 pixel block.
It then performs another 1-D DCT on the columns of the 8x8
pixel block. Such an apparatus typically consists of an input
circuit 1096, an arithmetic circuit 1104, a control circuit
1098, a transpose memory circuit 1090, and an output circuit
1092.

The input circuit 1096 accepts 8-bit pixels from the 8x8
block. The input circuit 1096 is coupled by intermediate
multiplexers 1100, 1102 to the arithmetic circuit 1004. The
arithmetic circuit 1104 performs mathematical operations on
either a complete row or column of the 8x8 block. The
control circuit 1098 controls all the other circuits, and thus
implements the DCT algorithm. The output of the arithmetic
circuit is coupled to the transpose memory 1090, register
1095 and output circuit 1092. The transpose memory is in
turn connected to multiplexer 1100, which provides output
to the next multiplexer 1102. The multiplexer 1102 also
receives input from the register 1094. The transpose circuit
1090 accepts 8x8 block data in rows and produces that data
in columns. The output circuit 1092 provides the coefficients
of the DCT performed on a 8x8 block of pixel data.

In a typical DCT apparatus, it is the speed of the arith-
metic circuit 1104 that basically determines the overall
speed of the apparatus, since the arithmetic circuit 1104 is
the most complex.

The arithmetic circuit 1104 of FIG. 77 is typically imple-
mented by breaking the arithmetic process down into several
stages as described hereinafter with reference to FIG. 78. A
single circuit is then built that implements each of these
stages 1114, 1148, 1152, 1156 using a pool of common
resources, such as adders and multipliers. Such a circuit
1104 is mainly disadvantageous due to it being slower than
optimal, because a single, common circuit is used to imple-
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ment the various stages of circuit 1104. This includes a
storage means used to store intermediate results. Since the
time allocated for the clock cycle of such a circuit must be
greater or equal to the time of the slowest stage of the circuit,
the overall time is potentially longer than the sum of all the
stages.

FIG. 78 depicts a typical arithmetic data path, in accor-
dance with the apparatus of FIG. 77, as part of a DCT with
four stages. The drawing does not reflect the actual
implementation, but instead reflects the functionality. Each
of the four stages 1144, 1148, 1152, and 1156 is imple-
mented using a single, reconfigurable circuit. It is reconfig-
ured on a cycle-by-cycle basis to implement each of the four
arithmetic stages 1144, 1148, 1152, and 1156 of the 1-D
DCT. In this circuit, each of the four stages 1144, 1148,
1152, and 1156 uses pool of common resources (e.g. adders
and multipliers) and thus minimises hardware.

However, the disadvantage of this circuit is that it is
slower than optimal. The four stages 1144, 1148, 1152, and
1156 are each implemented from the same pool of adders
and multipliers. The period of the clock is therefore deter-
mined by the speed of the slowest stage, which in this
example is 20 ns (for block 1144). Adding in the delay (2 ns
each) of the input and output multiplexers 1146 and 1154
and the delay (3 ns) of the flip-flop 1150, the total time is 27
ns. Thus, the fastest this DCT implementation can run at is
27 ns.

Pipelined DCT implementations are also well known. The
drawback with such implementations is that they require
large amounts of hardware to implement. Whilst the present
invention does not offer the same performance in terms of
throughput, it offers an extremely good performance/size
compromise, and good speed advantages over most of the
current DCT implementations.

FIG. 79 shows a block diagram of the preferred form of
discrete cosine transform unit utilized in the JPEG coder 241
(FIG. 2) where pixel data is inputted to an input circuit 1126
which captures an entire row of 8-bit pixel data. The
transpose memory 1118 converts row formatted data into
column formatted data for the second pass of the two
dimensional discrete cosine transform algorithm. Data from
the input circuit 1126 and the transpose memory 1118 is
multiplexed by multiplexer 1124, with the output data from
multiplexer 1124 presented to the arithmetic circuit 1122.
Results data from the arithmetic circuit 1122 is presented to
the output circuit 1120 after the second pass of the process.
The control circuit 1116 controls the flow of data through the
discrete cosine transform apparatus.

During the first pass of the discrete cosine transform
process row data from the image to be transformed, or
transformed image coefficients to be transformed back to
pixel data is presented to the input circuit 1126. During this
first pass, the multiplexer 1124 is configured by the control
circuit 1116 to pass data from the input circuit 1126 to the
arithmetic circuit 1122.

Turning to FIG. 80, there is shown the structure of the
arithmetic circuit 1122 in more detail. In the case of per-
forming a forward discrete cosine transform, the results from
the forward circuit 1138 which is utilized to calculate the
forward discrete cosine transform is selected via the multi-
plexer 1142, which is configured in this way by the control
circuit 1116. When an inverse discrete cosine transform is to
be performed, the output from the inverse circuit 1140 is
selected via the multiplexer 1142, as controlled by the
control circuit 1126. During the first pass, after each row
vector has been processed by the arithmetic circuit 1122
(configured in the appropriate way by control circuit 1116),
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that vector is written into the transpose memory 1118. Once
all eight row vectors in an 8x8 block have been processed
and written into the transpose memory 1118, the second pass
of the discrete cosine transform begins.

During the second pass of either the forward or inverse
discrete cosine transforms, column ordered vectors are read
from the transpose memory 1118 and presented to the
arithmetic circuit 1122 via the multiplexer 1124. During this
second pass, the multiplexer 1124 is configured by the
control circuit to ignore data from the input circuit 1136 and
pass column vector data from the transpose memory 1118 to
the arithmetic circuit 1122. The multiplexer 1142 in the
arithmetic circuit 1122 is configured by the control circuit
1116 to pass results data from the inverse circuit 1140 to the
output of the arithmetic circuit 1122. When results from the
arithmetic circuit 1122 are available, they are captured by
the output circuit 1120 under direction from the control
circuit 1116 to be outputted sometime later.

The arithmetic circuit 1122 is completely combinatorial,
in that is there are no storage elements in the circuit storing
intermediate results. The control circuit 1116 knows how
long it takes for data to flow from the input circuit 1136,
through the multiplexer 1124 and through the arithmetic
circuit 1122, and so knows exactly when to capture the
results vector from the outputs of the arithmetic circuit 1122
into the output circuit 1120. The advantage of having no
intermediate stages in the arithmetic circuit 1122 is that no
time is wasted getting data in and out of intermediate storage
elements, but also the total time taken for data to flow
through the arithmetic circuit 1122 is equal to the sum of all
the internal stages and not N times the delay of the longest
stage (as with conventional discrete cosine transform
implementations), where N is the number of stages in the
arithmetic circuit.

Referring to FIG. 81, the total time delay is simply the
sum of the four stage 1158, 1160, 1162, 1164, which is 20
ns+10 ns+12 ns+15 ns=57 ns, which is faster that the circuit
depicted in FIG. 78. The advantage of this circuit is that it
provides an opportunity to reduce the overall system’s clock
period. Assuming that four clock cycles are allocated to
getting a result from the circuit depicted in FIG. 81, the
fastest run time for the entire DCT system would be 57/4 ns
(14.25 ns), which is a significant improvement over the
circuit in FIG. 78 which only allows for a DCT clock period
of substantially 27 ns.

An examplary implementation of the present DCT appa-
ratus might, but not necessarily, use the DCT algorithm
proposed in the paper to The Transactions of the IEICE, Vol.
E 71. No. 11, November 1988, entitled A Fast DCT-SQ
Scheme for Images at page 1095 by Yukihiro Arai, Takeshi
Agui and Masayuki Nakajima. By implementing this algo-
rithm in hardware, it can then easily be placed in the current
DCT apparatus in the arithmetic circuit 1122. Likewize,
other DCT algorithms may be implemented in hardware in
place of arithmetic circuit 1122.

Huffman Decoder

The aspects of the following embodiment relate to a
method and apparatus for variable-length codes interleaved
with variable length bit fields. In particular, the embodi-
ments of the invention provide efficient and fast, single stage
(clock cycle) decoding of variable-length coded data in
which byte aligned and not variable length encoded data is
removed from the encoded data stream in a separate pre-
processing block. Further, information about positions of the
removed byte-aligned data is passed to the output of the
decoder in a way which is synchronous with the data being
decoded. In addition, it provides fast detection and removal
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of not byte-aligned and not variable length encoded bit fields
that are still present in the pre-processed input data.

The preferred embodiment of the present invention pref-
erably provides for a fast Huffman decoder capable of
decoding a JPEG encoded data at a rate of one Huffman
symbol per clock cycle between marker codes. This is
accomplished by means of separation and removal of byte
aligned and not Huffman encoded marker headers, marker
codes and stuff bytes from the input data first in a separate
pre-processing block. After the byte aligned data is removed,
the input data is passed to a combinatorial data-shifting
block, which provides continuous and contiguous filling up
of the data decode register that consequently presents data to
a decoding unit. Positions of markers removed from the
original input data stream are passed on to a marker shifting
block, which provides shifting of marker position bits syn-
chronously with the input data being shifted in the data
shifting block.

The decoding unit provides combinatorial decoding of the
encoded bit field presented to its input by the data decode
register. The bit field is of a fixed length of n bits. The output
of the decoding unit provides the decoded value (v) and the
actual length (m) of the input code, where m is less than or
equal to n. It also provides the length (a) of a variable length
bit field, where (a) is greater than or equal to 0. The
variable-length bit field is not Huffman encoded and follows
immediately the Huffman code. The n-long bit field pre-
sented to the input of the decoding unit may be longer than
or equal to the actual code. The decoding unit determines the
actual length of the code (m) and passes it together with the
length of the additional bits (a) to a control block. The
control block calculates a shift value (a+m) driving the data
and marker shifting blocks to shift the input data for the next
decoding cycle.

The apparatus of the invention can comprise any combi-
natorial decoding unit, including ROM, RAM, PLA or
anything else based as long as it provides a decoded value,
the actual length of the input code, and the length of the
following not Huffman encoded bit field within a given time
frame.

In the illustrated embodiment, the decoding unit outputs
predictively encoded DC difference values and AC run-
length values as defined in JPEG standard. The not Huffman
encoded bit fields, which are extracted from the input data
simultaneously with decoded values, represent additional
bits determining the value of the DC and AC coefficients as
defined in JPEG standard. Another kind of not Huffman
encoded bit fields, which are removed from the data present
in the data decode register, are padding bits as defined in
JPEG standard that precede byte-aligned markers in the
original input data stream. These bits are detected by the
control block by checking the contents of a padding zone of
the data register. The padding zone comprises up to k most
significant bits of the data register and is indicated by the
presence of a marker bit within k most significant bits of the
marker register, position of said marker bit limiting the
length of the padding zone. If all the bits in the padding zone
are identical (and equal to is in case of JPEG standard), they
are considered as padding bits and are removed from the
data register accordingly without being decoded. The con-
tents of the data and marker registers are then adjusted for
the next decoding cycle.

The exemplary apparatus comprises an output block that
handles formatting of the outputted data according to the
requirements of the preferred embodiment of the invention.
It outputs the decoded values together with the correspond-
ing not variable length encoded bit fields, such as additional
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bits in JPEG, and a signal indicating position of any inputted
byte aligned and not encoded bit fields, such as markers in
JPEG, with respect to the decoded values.

Data being decoded by the JPEG coder 241 (FIG. 2) is
JPEG compatible and comprizes variable length Huffman
encoded codes interleaved with variable length not encoded
bit fields called “additional bits”, variable length not
encoded bit fields called “padding bits” and fixed length,
byte aligned and not encoded bit fields called “markers”,
“stuff bytes” and “fill bytes”. FIG. 82 shows a representative
example of input data.

The overall structure and the data flow in the Huffman
decoder of the JPEG coder 241 is presented in FIG. 83 and
FIG. 84, where FIG. 83 illustrates the architecture of the
Huffman decoder of the JPEG data in more detail. The
stripper 1171 removes marker codes (code FFXX, , XX
being non zero), fill bytes (code FF,,_.) and stuff bytes (code
00, following code FF, ), that is all byte aligned com-
ponents of the input data, which are presented to the stripper
as 32 bit words. The most significant bit of the first word to
be processed is the head of the input bit stream. In the
stripper 1171, the byte aligned bit fields are removed from
each input data word before the actual decoding of Huffman
codes takes place in the downstream parts of the decoder.

The input data arrives at the stripper’s 1171 input as 32-bit
words, one word per clock cycle. Numbering of the input
bytes 1211 from O to 3 is shown in FIG. 85. If a byte of a
number (i) is removed because it is a fill byte, a stuff byte
or belongs to a marker, the remaining bytes of numbers (i-1)
down to O are shifted to the left on the output of the stripper
1171 and take numbers (i) down to 1. Byte 0 becoming a
“don’t care” byte. Validity of bytes outputted by the stripper
1171 is also coded by means of separate output tags 1212 as
shown in FIG. 85. The bytes which are not removed by the
stripper 1171 are left aligned on the stripper’s output. Each
byte on the output has a corresponding tag indicating if the
corresponding byte is valid (i.e. passed on by the stripper
1171), or invalid (i.e. removed by the stripper 1171) or valid
and following a removed marker. The tags 1212 control
loading of the data bytes into the data register 1182 through
the data shifter and loading of marker positions into the
marker register 1183 through the marker shifter. The same
scheme applies if more than one byte is removed from the
input word: all the remaining valid bytes are shifted to the
left and the corresponding output tags indicate validity of the
output bytes. FIG. 85 provides examples 1213 of output
bytes and output tags for various example combinations of
input bytes.

Returning to FIG. 83, the role of the preshifter and
postshifter blocks 1172, 1173, 1180, 1181 is to assure
loading of the data into the corresponding data register 1182
and marker register 1183 in a contiguous way whenever
there is enough room in the data register and the marker
register. The data shifter and the marker shifter blocks,
which consist of the respective pre- and postshifters, are
identical and identically controlled. The difference is that
while the data shifter handles data passed by the stripper
1171, the marker shifter handles the tags only and its role is
to pass marker positions to the output of the decoder in a way
synchronous with the decoded Huffman values. The outputs
of the postshifters 1180, 1181 feed directly to the respective
registers 1182, 1183, as shown in FIG. 83.

In the data preshifter 1172, as also shown in FIG. 86, data
arriving from the stripper 1171 is firstly extended to 64 bits
by appending 32 zeroes to the least significant bit 1251.
Then the extended data is shifted in a 64 bit wide barrel
shifter 1252 to the right by a number of bits currently present

10

15

20

25

30

35

40

45

50

55

60

65

70

in the data register 1182. This number is provided by the
control logic 1185 which keeps track of how many valid bits
are there in the data 1182 and marker 1183 registers. The
barrel shifter 1252 then presents 64 bits to the multiplexer
block 1253, which consists of 64 2x1 elementary multiplex-
ers 1254. Each elementary 2x1 multiplexer 1254 takes as
inputs one bit from the barrel shifter 1252 and one bit from
the data register 1182. It passes the data register bit to the
output when this bit is still valid in the data register.
Otherwize, it passes the barrel shifter’s 1252 bit to the
output. The control signals to all the elementary multiplexers
1254 are decoded from a control block’s shift control 1
signals as shown in FIG. 86, which are also shown in FIG.
87 as preshifter control bits 0 . . . § of register 1223. The
outputs of the elementary multiplexers 1254 drive a barrel
shifter 1255. It shifts left by the number of bits provided on
a 5 bit control signal shift control 2 as shown in FIG. 86.
These bits represent the number of bits consumed from the
data resister 1182 by the decoding of the current data, which
can be either the length of the currently decoded Huffman
code plus the number of the following additional bits, or the
number of padding bits to be removed if padding bits are
currently being detected, or zero if the number of valid data
bits in the data register 1182 is less then the number of bits
to be removed. In this way, the data appearing on the output
of barrel shifter 1255 contains new data to be loaded into the
data register 1182 after a single decoding cycle. The contents
of the data register 1182 changes in such a way that the
leading (most significant) bits are shifted out of the register
as being decoded, and 0, 8, 16, 24 or 32 bits from the stripper
1171 are added to the contents of the data register 1182. If
there are not enough bits in the data register 1182 to decode
them, data from the stripper 1171, if available, is still loaded
in the current cycle. If there is no data available from the
stripper 1171 in the current cycle, the decoded bits from the
data resister 1182 are still removed if there is a sufficient
amount of them, otherwize the content of the data register
1182 does not change.

The marker preshifter 1173, postshifter 1181 and the
marker register 1183 are units identical to the data preshifter
1172, data postshifter 1180 and the data register 1182,
respectively. The data flow inside units 1173, 1181 and 1183
and among them is also identical as the data flow among
units 1172, 1180 and 1182. The same control signals are
provided to both sets of units by the control unit 1185. The
difference is only in the type of data on the inputs of the
marker preshifter 1173 and data preshifter 1172, as well as
in how the contents of the marker register 1183 and the data
register 1182 are used. As shown in FIG. 88, tags 1261 from
the stripper 1171 come as eight bit words, which provide two
bits for each corresponding byte of data going to the data
register 1182. According to the coding scheme shown in
FIG. 85, an individual two bit tag indicating valid and
following a marker byte has 1 on the most significant
position. Only this most significant position of each of the
four tags delivered by the stripper 1171 simultaneously is
driven to the input 1262 of the marker preshifter 1173. In this
way, on the input to the marker preshifter there may be bits
set to 1 indicating positions of the first encoded data bits
following markers. At the same time, they mark the posi-
tions of the first encoded data bits in the data register 1182
which follow a marker. This synchronous behavior of the
marker position bits in the marker register 1183 and the data
bits in the data register 1182 is used in the control block 1185
for detection and removal of padding bits, as well as for
passing marker positions to the output of the decoder in a
way synchronous with the decoded data. As mentioned, the
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two preshifters (data 1172 and marker 1173), postshifters
(data 1180 and marker 1181) and registers (data 1182 and
marker 1183) get the same control signals which facilitates
fully parallel and synchronous operation.

The decoding unit 1184, also shown in FIG. 89 gets the
sixteen most significant bits of the data register 1182 which
are driven to a combinatorial decoding unit 1184 for extrac-
tion of a decoded Huffman value, the length of the present
input code being decoded and the length of the additional
bits following immediately the input code (which is a
function of the decoded value). The length of the additional
bits is known after the corresponding preceding Huffman
symbol is decoded, so is the starting position of the next
Huffman symbol. This effectively requires, if speed of one
value decoded per clock cycle is to be maintained, that
decoding of a Huffman value is done in a combinatorial
block. Preferably, the decoding unit comprizes four PLA
style decoding tables hardwired as a combinatorial block
taking a 16-bit token on input from the data register 1182
and producing a Huffman value (8 bits), the length of the
corresponding Huffman-encoded symbol (4 bits) and the
length of the additional bits (4 bits) as illustrated in FIG. 89.

Removal of padding bits takes place during the actual
decoding when a sequence of padding bits is detected in the
data register 1182 by a decoder of padding bits which is part
of the control unit 1185. The decoder of padding bits
operates as shown in FIG. 90. Eight most significant bits of
the marker register 1183, 1242 are monitored for presence of
a marker position bit. If a marker position bit is detected, all
the bits in the data register 1182, 1241 which correspond to,
that is have the same positions as, the bits preceding the
marker bit in the marker register 1242 are recognized as
belonging to a current padding zone. The content of the
current padding zone is checked by the detector of padding
bits 1243 for 1’s. If all the bits in the current padding zone
are 1°s, they are recognized as padding bits and are removed
from the data register. Removal is done by means of shifting
of the contents of the data register 1182, 1241 (and at the
same time the marker register 1183, 1242) to the left using
the respective shifters 1172, 1173, 1180, 1181 in one clock
cycle, as in normal decode mode with the difference that no
decoded value is outputted. If not all the bits in the current
padding zone are 1°s, a normal decode cycle is performed
rather than a padding bits removal cycle. Detection of
padding bits takes place each cycle as described, in case
there are some padding bits in the data register 1182 to be
removed.

The control unit 1185 is shown in detail in FIG. 87. The
central part of the control unit is the register 1223 holding
the current number of valid bits in the data register 1182. The
number of valid bits in the marker register 1183 is always
equal to the number of valid bits in the data register 1182.
The control unit preforms three functions. Firstly, it calcu-
lates a new number of bits in the data register 1182 to be
stored in the register 1223. Secondly, it determines control
signals for the shifters 1172, 1173, 1180, 1181, 1186, 1187
decoding unit 1184, and the output formatter 1188. Finally,
it detects padding bits in the data register 1182, as described
above.

The new number of bits in the data register 1182 (new__
nob) is calculated as the current number of bits in the data
register 1182 (nob) plus the number of bits (nos) available
for loading from the stripper 1171 in the current cycle, less
the number of bits (nor) removed from the data register 1182
in the current cycle, which is either a decode cycle or a
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padding bits removal cycle. The new number of bits is
calculated as follows:

new__nob=nob+nos—-nor

The respective arithmetic operations are done in adder
1221 and subtractor 1222. It should be noted that (nos) can
be 0 if there is no data available from the stripper 1171 in the
current cycle. Also, (nor) can be 0 if there is no decoding
done in the current cycle because of shortage of bits in the
data register 1182, which means there are less bits in the data
register than the sum of the current code length and the
following additional bits length as delivered by the control
unit 1185. The value (new_ nob) may exceed 64 and block
1224 checks for this condition. In such a case, the stripper
1171 is stalled and no new data is loaded. Multiplexer 1233
is used for zeroing the number of bits to be loaded from the
stripper 1171. A corresponding signal for stalling the stripper
1171 is not shown. Signal “padding cycle” driven by
decoder 1231 controls multiplexer 1234 to select either the
number of padding bits or the number of decoded bits (that
is the length of code bits plus additional bits) as number of
bits to be removed (nor). If the number of the decoded bits
is greater than the number (nob) of the bits in the data
register, which is checked in comparator 1228, the effective
number of bits to shift as provided for multiplexer 1234 is
set to zero by a complex NAND gate 1230. As a result, (nor)
is set to zero and no bits are removed from the data register.
The output of multiplexer 1234 is also used to control
postshifters 1182 and 1183. The width of the data register
1182 must be chosen in a way preventing a deadlock
situation. This means that at any time either there needs to
be room in the data register to accommodate the maximum
number of bits available from the stripper 1171 or sufficient
number of valid bits to be removed as a result of a decode
or a padding of bits removed cycle.

Calculation of the number of bits to be removed in a
decode cycle is performed by adder 1226. Its operands come
from the combinatorial decoding unit 1184. As the code
length of 16 bits is coded as “0000” by the decoding unit,
“or__reduce” logic 1225 provides encoding of “0000” into
“100007, yielding a correct unsigned operand. This operand
together with the output of subtractor 1227 provide control
signals to the output formatting shifters 1186 and 1187.

Block 1229 is used for detection of EOI (End Of Image)
marker position. The EOI marker itself is removed by the
stripper 1171, but there can be some padding bits which are
the very last bits of the data and which used to precede the
EOI marker before its removal in the stripper 1171. The
comparator 1229 checks if the number of bits in the data
register 1182, stored in register 1223 is less than eight. If it
is, and there is no more data to come from the stripper 1171
(that is the data register 1182 holds all the remaining bits for
of the data unit being decoded), the remaining bits define the
size of the padding zone before the removed EOI marker.
Further handling of the padding zone and possible removal
of padding bits is identical to the procedure applied in case
of padding bits before RST markers, which has been
described before.

Barrel shifters 1186, 1187 and output formatter 1188 play
a support role and depending on the embodiment may have
a different implementation or may not be implemented at all.
Control signals to them come from the control unit 1185, as
described above. The ab_reshifter (additional bits
preshifter) 1186 takes 32 bits from the data register as input
and shifts them to the left by the length of the Huffman code
being presently decoded. In this way, all the additional bits
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following the code being presently decoded appear left
aligned on the output of the barrel shifter 1186 which is also
the input to the barrel shifter 1187. The ab_ postshifter
(additional bits postshifter) 1187 adjusts the position of the
additional bits from left aligned to right aligned in an 11 bit
field, as used in the output format of the data and shown in
FIG. 91. The additional bits field extends from bit 8 to bit 18
in the output word format 1196 and some of the most
significant bits may be invalid, depending on the actual
number of the additional bits. This number in encoded on
bits 0 to 3 of 1196, as specified by the JPEG standard. If a
different format of the output data is adopted, the barrel
shifters 1186 and 1187 and their functionality may change
accordingly.

The output formatter block 1188 packs the decoded
values, which in JPEG standard are DC and AC coefficients,
(1196, bits 0 to 7) and a DC coefficient indicator (1196, bit
19) passed by the control unit 1185 together with the
additional bits (1196, bits 8 to 18) passed by the
ab__postshifter 1187 and the marker position bit (1196, bit
23) from the marker register 1183 into words according to
the format presented in FIG. 91. The output formatter 1188
also handles any particular requirements as to the output
interface of the decoder. The implementation of the output
formatter is normally expected to change if the output
interface changes as a result of different requirements. The
foregoing described Huffman decoder provides a highly
effective form of decoding providing a high speed decoding
operation.

Image Transformation Instructions

These instructions implement general affine transforma-
tions of source images. The operation to construct a portion
of a transformed image falls generally into two broad areas.
These include firstly working out which parts of the source
image are relevant to constructing the current output scan-
line and, if necessary, decompressing them. The second step
normally comprizes necessary sub-sampling and/or interpo-
lation to construct the output image on a pixel by pixel basis.

Turning to FIG. 92, there is illustrated a flow chart of the
steps required 720 to calculate the value of a destination
pixel assuming that the appropriate sections of the source
image have been decompressed. Firstly, the relevant sub-
sampling, if present, must be taken into account 721. Next,
two processes are normally implemented, one involving
interpolation 722 and the other being sub-sampling. Nor-
mally interpolation and sub-sampling are alternative steps,
however in some circumstances interpolation and sub-
sampling may be used together. In the interpolation process,
the first step is to find the four surrounding pixels 722, then
determine if pre-multiplication is required 723, before per-
forming bilinear interpolation 724. The bilinear interpola-
tion step 724 is often computationally intensive and limits
the operation of the image transformation process. The final
step in calculating a destination pixel value is to add together
the possibly bilinear interpolated sub-samples from the
source image. The added together pixel values can be
accumulated 727 in different possible ways to produce
destination image pixels of 728.

The instruction word encodine for image transformation
instructions is as illustrated in FIG. 93 with the following
interpretation being placed on the minor opcode fields.
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TABLE 19

Instruction Word - Minor Opcode Fields

Field Description

S 0 = bi-linear interpolation is used on the four
surrounding source image pixels to determine the
actually sampled value
1 = sampled value is snapped to the closest source
image pixel value

off{ 3:0] 0 = do not apply the offset register (mdp__por) to the
corresponding channel
1 = apply the offset register (mdp__por) to the
corresponding channel

P 0 = do not pre-multiply source image pixels
1 = pre-multiply source image pixels

C 0 = do not clamp output values
1 = clamp output underflows to 0x00 and overflows to
0xFF

A 0 = do not take absolute value of output values

1 = take absolute value of output values before
wrapping or clamping

The instruction operand and result fields are interpreted as
follows:

TABLE 20

Instruction Operand and Results Word

Internal External
Operand Description Format Format
Operand A kernel descriptor — short or long kernel
descriptor table
Operand B Source Image other image table format
Pixels
Operand C unused — —
Result pixels pixles packed stream

unpacked bytes

Operand A points to a data structure known as a “kernel
descriptor” that describes all the information required to
define the actual transformation. This data structure has one
of two formats (as defined by the L bit in the A descriptor).
FIG. 94 illustrates the long form of kernel descriptor coding
and FIG. 95 illustrates the short form of encoding. The
kernel descriptor describes:

1. Source image start co-ordinates 730 (unsigned fixed
point, 24.24 resolution). Location (0,0) is at the top left
of the image.

2. Horizontal 731 and vertical 732 (sub-sample) deltas
(2’s complement fixed point, 24.24. resolution)

3. A 3 bit bp field 733 defining the location of the binary
point within the fixed point matrix coefficients as
described hereinafter.

4. Accumulation matrix coefficients 735 (if present).
These are of “variable” point resolution of 20 binary
places (2’s complement), with the location of the
binary point implicitly specified by the bp field.

5. An rl field 736 that indicates the remaining number of
words in the kernel descriptor. This value is equal to the
number of rows times the number of columns minus 1.

The kernel co-efficients in the descriptor are listed row by
row, with elements of alternate rows listed in reverse
direction, thereby forming a zig zag pattern.

Turning now to FIG. 96, the operand B consists of a
pointer to an index table indexing into scan lines of a source
image. The structure of the index table is as illustrated in
FIG. 96, with the operand B 740 pointing to an index table
741 which in turn points to scan lines (eg. 742) of the
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required source image pixels. Typically, the index table and
the source image pixels are cacheable and possibly located
in the local memory. The operand C stores the horizontal and
vertical sub-sample rate. The horizontal and vertical sub-
sample rates are defined by the dimensions of the sub-
sample weight matrix which are specified if the C descriptor
is present. The dimensions of the matrix r and ¢ are encoded
in the data word of the image transformation instruction as
illustrated in FIG. 97.

Channel N of a resultant pixel P[N] is calculated in
accordance with the following equation:

plnl = (Loffset[n] -mdppor - 0000) + Z Z Wy -S(x + rAx, y + cAy)[n]

Internally, the accumulated value is kept to 36 binary
places per channel. The location of the binary point within
this field is specified by the BP field. The BP field indicates
the number of leading bits in the accumulated result to
discard. The 36 bit accumulated value is treated as a signed
2’s compliment number and is clamped or wrapped as
specified. In FIG. 98, there is illustrated an example of the
interpretation of the BP field in co-efficient encoding.

3.17.9 Convolution Instructions

Convolutions, as applied to rendering images, involves
applying a two dimensional convolution kernel to a source
image to produce a resultant image. Convolving is normally
used for such matters as edge sharpening or indeed any
image filter. Convolutions are implemented by the
co-processor 224 in a similar manner to image transforma-
tions with the difference being that, in the case of transfor-
mations the kernel is translated by the width of the kernel for
each output pixel, in the case of convolutions, the kernel is
moved by one source pixel for each output pixel.

If a source image has values S(x,y) and a nxm convolu-
tion kernel has values C(x,y), then the nth channel of the
convolution H[n] of S and C is given by:

H(x, y)n] = (Loffserln] -mdp,,,, : 0000) + Z Z SGe+i,y+ j)-Cl, Hlnl
i

where ie[0,c] and je[0,r].

The interpretation of the offset value, the resolution of
intermediate results and the interpretation of the bp field are
the same as for Image Transformation instructions.

In FIG. 99, there is illustrated an example of how a
convolution kernel 750 is applied to a source image 751 to
produce a resultant image 752. Source image address gen-
eration and output pixel calculations are performed in a
similar manner to that for image transformation instructions.
The instruction operands take a similar form to image
transformations. In FIG. 100, there is illustrated the instruc-
tion word encoding for convolution instructions with the
following interpretation being applied to the various fields.

TABLE 21
Instruction Word
Field Description
S 0 = bi-linear interpolation is used on the four surrounding

source image pixels to determine the actually sampled value
1 = sampled value is snapped to the closest source image pixel
value
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TABLE 21-continued

Instruction Word

Field Description

C 0 = do not clamp resultant vector values
1 = clamp result vector values: underflow to 0x00, overflow to
0xFF

P 0 = do not pre-multiply input pixels
1 = pre multiply input pixels

A 0 = do not take absolute value of output values
1 = take absolute value of output values before wrapping or
clamping

off[3:0] 0 = do not apply the offset register to this channel

1 = apply the offset register to this channel

Matrix Multiplication

Matrix multiplication is utilized for many things includ-
ing being utilized for color space conversion where an affine
relationship exists between two color spaces. Matrix multi-
plication is defined by the following equation:

rX
ry bio
rZ

Yo

The matrix multiplication instruction operands and results
have the following format:

TABLE 22

Instruction Operand and Results Word

Internal External
Operand Description Format Format
Operand A source image pixels pixels packed stream
Operand B matrix co-efficients other image table format
Operand C  unused — —
Result pixels pixels packed stream,

unpacked bytes

The instruction word encoding for matrix multiplication
instructions as illustrated in FIG. 101 with the following
table summarising the minor opcode fields.

TABLE 23

Instruction Word

Field Description

0 = do not clamp resultant vector values.

1 = clamp resultant vector values: underflow to 0x00,
overflow to OxFF

P 0 = do not pre-multiply input pixels

1 = pre-multiply input pixels

A 0 = do not take absolute value of output values
1 = take absolute value of output values before wrapping or
clamping

Halftoning

The co-processor 224 implements a multi-level dither for
halftoning. Anything from 2 to 255 is a meaningful number
of halftone levels. Data to be halftoned can be either bytes
(ie. umneshed or one channel from meshed data) or pixels
(ie. meshed) as long as the screen is correspondingly meshed
or umneshed. Up to four output channels (or four bytes from
the same channel) can be produced per clock, either packed
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bits (for bi-level halftoning) or codes (for more than two
output levels) which are either packed together in bytes or
unpacked in one code per bye.

The output half-toned value is calculated using the fol-
lowing formula:

(px(1-1)+d)/255

Where p is the pixel value (0=p=255), 1 is the number
of levels (2£1=1=255) and d is the dither matrix value
(0=d=254). The operand encoding is as follows:

TABLE 24
Instruction Operand and Results Word
Internal External
Operand Description Format Format
Operand A source image pixels packed stream
pixels
source image packed bytes, packed stream
bytes unpacked bytes
Operand B dither matrix co-  pixels, packed packed stream,
efficients bytes, unpacked unpacked bytes
bytes
Operand C  unused — —
Result halftone codes pixels, packed bytes packed stream,

unpacked bytes unpacked bytes

In the instruction word encoding, the minor op code
specifies a number of halftone levels. The operand B encod-
ing is for the halftone screen and is encoded in the same way
as a compositing tile.

Hierarchial Image Format Decompression

Hierarchial image format decompression involves several
stages. These stages include horizontal interpolation, verti-
cal interpolation, Huffman decoding and residual merging.
Each phase is a separate instruction. In the Huffman decod-
ing step, the residual values to be added to the interpolated
values from the interpolation steps are Huffman coded.
Hence, the JPEG decoder is utilized for Huffman decoding.

In FIG. 102, there is illustrated the process of horizontal
interpolation. The output stream 761 consists of twice as
much data as the input stream 762 with the last data value
763 being replicated 764. FIG. 103 illustrates horizontal
interpolation by a factor of 4.

In the second phase of hierarchial image format
decompression, rows of pixels are up sampled by a factor of
two or four vertically by linear interpolation. During this
phase, one row of pixels is on operand A and the other row
is on operand B.

When vertically interpolating, either by a factor of two or
four, the output data stream contains the same number of
pixels as each input stream. In FIG. 104, there is illustrated
an example of vertical interpolation wherein two input data
streams 770, 771 are utilized to produce a first output stream
772 having a factor of two interpolation or a second output
stream 773 having a factor of 4 interpolation. In the case of
pixel interpolation, interpolation occurs separately on each
of the four channels of four channel pixels.

The residual merging process involves the bytewize addi-
tion of two streams of data. The first stream (operand A) is
a stream of base values and the second stream (operand B)
is a stream of residual values.

In FIG. 105, there is illustrated two input streams 780, 781
and a corresponding output stream 782 for utilising the
process of residual merging.

In FIG. 106 there is illustrated the instruction word
encoding for hierarchial image format instructions with the
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following table providing the relevant details of the minor
op code fields.

TABLE 25

Instruction Word - Minor Opcode Fields

Field Description
R 0 = interpolation
1 = residual merging
\% 0 = horizontal interpolation
1 = vertical interpolation
F 0 = interpolate by a factor of 2
1 = interpolate by a factor of 4
C 0 = do not clamp resultant values

1 = clamp resultant values: underflow to 0x00, overflow
to OxFF

Memory Copy Instructions

These instructions are divided into two specifically dis-
jointed groups.

a. General Purpose Data Movement Instructions

These instructions utilize the normal data flow path
through the co-processor 224, comprising the input interface
module, input interface switch 252, pixel organizer 246,
JPEG coder 241, result organizer 249 and then the output
interface module. In this case, the JPEG coder module sends
data straight through without applying any operation.

Other instructions include data manipulation operations
including:

packing and unpacking sub-byte values (such as bits, two

bit values and four bit values) to a byte

packing and unpacking bytes within a word
aligning

meshing and unmeshing

byte lane swapping and duplicating
memory clearing

replicating values

The data manipulation operation is carried out by a
combination of the pixel organizer (on input) and the result
organizer (on output). In many cases, these instructions can
be combined with other instructions.

b. Local DMA Instructions

No data manipulation takes place. As seen in FIG. 2 data
transfer occurs (in either direction) between the Local
Memory 236 and the Peripheral Interface 237.

These instructions are the only ones for which execution
can be overlapped with some other instruction. A maximum
of one of these instructions can execute simultaneously with
a “non overlapped” instruction.

In memory copy instructions, operand A represents the
data to be copied and the result operand represents the target
address of the memory copy instructions. For general pur-
pose memory copy instructions, the particular data manipu-
lation operation is specified by the operand B for input and
operand C for output operand words.

Flow Control Instructions

The flow control instructions are a family of instructions
that provide control over various aspect of the instruction
execution model as described with reference to FIG. 9. The
flow control instructions include both conditional and
unconditional jumps enabling the movement from one vir-
tual address to another when executing a stream of instruc-
tions. A conditional jump instruction is determined by taking
a co-processor or register, masking off any relevant fields
and comparing it to given value. This provides for reason-
able generality of instructions. Further, flow control instruc-
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tions include wait instructions which are typically used to
synchronize between overlapped and non-overlapped
instructions or as part of micro-programming.

In FIG. 107, there is illustrated instruction when encoding
for flow control instructions with the minor opcodes being
interpreted as follows:

TABLE 26

Instruction Word - Minor Opcode Fields

Field Description
type 00 = jump
01 = wait
C 0 = unconditional jump
1 = condition jump
S 0 = use Operand B as Condition Register and
Operand C as Condition mask
1 = any interrupt condition set
N 0 = jump if condition is true
1 = dont jump if condition is true
(0] 0 = wait on non-overlapped instruction to finish

1 = wait on overlapped instruction to finish

In respect of Jump Instructions, the operand A word
specified the target address of the jump instruction. If the S
bit of the Minor Opcode is set to 0, then operand B specified
a co-processor register to use as the source of the condition.
The value of the operand B descriptor specifies the address
of the register, and the value of the operand B word defines
a value to compare the contents of the register against. The
operand C word specifies a bitwize mask to apply to the
result. That is, the Jump Instruction’s condition is true of the
bitwize operation:

(((register__value xor Operand B) and Operand C)=0x00000000)

Further instructions are also provided for accessing reg-
isters for providing full control at the micro programmed
level.

Modules of the Accelerator Card

Turning again to FIG. 2, there will now be provided
further separate description of the various modules.
Pixel Organizer

The pixel organizer 246 addresses and buffers data
streams from the input interface switch 252. The input data
is stored in the pixel organizer’s internal memory or buffered
to the MUYV buffer 250. Any necessary data manipulation is
performed upon the input stream before it is delivered to the
main data path 242 or JPEG coder 241 as required. The
operating modes of the pixel organizer are configurable by
the usual CBus interface. The pixel organizer 246 operates
in one of five modes, as specified by a PO__CFG control
register. These modes include:

(2) Idle Mode—where the pixel organizer 246 is not

performing any operations.

(b) Sequential Mode—when input data is stored in an
internal FIFO and the pixel organizer 246 sends out
requests for data to the input interface switch 252,
generating 32 bit addresses for this data.

(¢) Color Space Conversion Mode—when the pixel orga-
nizer buffers pixels for color space conversion. In
addition, requests are made for interval and fractional
values stored in the MUV buffer 250.

(d) JPEG Compression Mode—when the pixel organizer
246 utilizes the MUYV buffer to buffer image data in the
form of MCU’s.

(e) Convolution and Image Transformation Mode—when
the pixel organizer 246 stores matrix co-efficients in the
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MUYV buffer 250 and passes them, as necessary, to the
main data path 242.

The MUYV buffer 250 is therefore utilized by the pixel
organizer 246 for both main data path 242 and JPEG coder
241 operations. During color space conversion, the MUV
RAM 250 stores the interval and fractional tables and they
are accessed as 36 bits of data (four color channels)x(4 bit
interval values and 8 bit fractional values). For image
transformation and convolution, the MUV RAM 250 stores
matrix coefficients and related configuration data. The
co-cfficient matrix is limited to 16 rowsx16 columns with
each co-efficient being at a maximum 20 bits wide. Only one
coefficient per clock cycle is required from the MUV RAM
250. In addition to coefficient data, control information such
as binary point, source start coordinates and sub-sample
deltas must be passed to the main data path 242. This control
information is fetched by the pixel organizer 246 before any
of the matrix coefficients are fetched.

During JPEG compression, the MUV buffer 250 is uti-
lized by the pixel organizer 246 to double buffer MCU’s.
Preferably, the technique of double buffering is employed to
increase the performance of JPEG compression. One half of
the MUV RAM 250 is written to using data from the input
interface switch 252 while the other half is read by the pixel
organizer to obtain data to send to the JPEG coder 241. The
pixel organizer 246 is also responsible for performing hori-
zontal sub-sampling of color components where required
and to pad MCU’s where an input image does not have a size
equal to an exact integral number of MCUs.

The pixel organizer 246 is also responsible for formatting
input data including byte lane swapping, normalization, byte
substitution, byte packing and unpacking and replication
operations as hereinbefore discussed with reference to FIG.
32 of the accompanying drawings. The operations are car-
ried out as required by setting the pixel organizers registers.

Turning now to FIG. 108, there is shown the pixel
organizer 246 in more detail. The pixel organizer 246
operates under the control of its own set of registers con-
tained within a CBus interface controller 801 which is
interconnected to the instruction controller 235 via the
global CBus. The pixel organizer 246 includes an operand
fetch unit 802 responsible for generating requests from the
input interface switch 252 for operand data needed by the
pixel organizer 246. The start address for operand data is
given by the PO__SAID register which must be set imme-
diately before execution. The PO__SAID register may also
hold immediate data, as specified by the L bit in the
PO__ DMR register. The current address pointer in stored in
the PO__CDP register and is incremented by the burst length
of any input interface switch request. When data is fetched
into the MUV RAM 250, the current offset for data is
concatenated with a base address for the MUV RAM 250 as
given by the PL_ MUYV register.

A FIFO 803 is utilized to buffer sequential input data
fetched by the operand fetch unit 802. The data manipulation
unit 804 is responsible for implementing for implementing
the various manipulations as described with reference to
FIG. 32. The output of the data manipulation unit is passed
to the MUYV address generator 805 which is responsible for
passing data to the MUV RAM 250, main data path 242 or
JPEG coder 241 in accordance with configuration registers.
A pixel organizer control unit 806 is a state machine that
generates the required control signals for all the sub-
modules in the pixel organizer 246. Included in these signals
are those for controlling communication on the various Bus
interfaces. The pixel organizer control unit outputs diagnos-
tic information as required to the miscellaneous module 239
according to its status register settings.
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Turning now to FIG. 109, there is illustrated the operand
fetch unit 802 of FIG. 108 in more detail. The operand fetch
unit 802 includes an Instruction Bus address generator
(IAG) 810 which contains a state machine for generating
requests to fetch operand data. These requests are sent to a
request arbiter 811 which arbitrates between requests from
the address generator 810 and those from the MUV address
generator 805 (FIG. 108) and sends the winning requests to
the input (MAG) interface switch 252. The request arbiter
811 contains a state machine to handle requests. It monitors
the state of the FIFO via FIFO count unit 814 to decide when
it should dispatch the next request. A byte enable generator
812 takes information on the IAG 810 and generates byte
enable patterns 816 specifying the valid bytes within each
operand data word returned by the input interface switch
252. The byte enabled pattern is stored along with the
associated operand data in the FIFO. The request arbiter 811
handles MAG requests before IAG requests when both
requests arrive at the same time.

Returning to FIG. 108, the MUV address generator 805
operates in a number of different modes. A first of these
modes is the JPEG (compression) mode. In this mode, input
data for JPEG compression is supplied by the data manipu-
lation units 804 with the MUYV buffer 250 being utilized as
a double buffer. The MUV RAM 250 address generator 805
is responsible for generating the right addresses to the MUV
buffer to store incoming data processed by the data manipu-
lation unit 804. The MAG 805 is also responsible for
generating read addresses to retrieve color component data
from the stored pixels to form 8x8 blocks for JPEG com-
pression. The MAG 805 is also responsible for dealing with
the situation when a MCU lies partially on the image. In
FIG. 110, there is illustrated an example of a padding
operation carried out by the MAG 805.

For normal pixel data, the MAG 805 stores the four color
components at the same address within the MUV RAM 250
in four 8 bit rams. To facilitate retrieval of data from the
same color channel simultaneously, the MCU data is barrel
shifted to the left before it is stored in the MUV RAM 250.
The number of bytes the data is shifted to the left is
determined by the lowest two bits of the write address. For
example, in FIG. 111 there is illustrated the data organization
within the MUV RAM 250 for 32 bit pixel data when no
sub-sampling is needed. Sub-sampling of input data maybe
selected for three or four channel interleaved JPEG mode. In
multichannel JPEG compression mode with subsampling
operating, the MAG 805 (FIG. 108) performs the sub-
sampling before the 32 bit data is stored in the MUV RAM
250 for optimal JPEG coder performance. For the first four
incoming pixels, only the first and fourth channels stored in
the MUV RAM 250 contains useful data. The data in the
second and third channel is sub-sampled and stored in a
register inside the pixel organizer 246. For the next four
incoming pixels, the second and third channel are filled with
sub-sampled data. In FIG. 112, there is illustrated an
example of MCU data organization for multi-channel sub-
sampling mode. The MAG treats all single channel
unpacked data exactly the same as multi-channel pixel data.
An example of single channel packed data as read from the
MUV RAM is illustrated in FIG. 113.

While the writing process is storing an incoming MCU
into the MUV RAM, the reading process is reading 8x8
blocks out of the MUV RAM. In general, the blocks are
generated by the MAG 805 by reading the data for each
channel sequentially, four coefficients at the time. For pixel
data and unpacked input data, the stored data is organized as
illustrated in FIG. 111. Therefore, to compose one 8x8 block
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of non-sampled pixel data, the reading process reads data
diagonally from the MUV RAM. An example of this process
is illustrated in FIG. 114, which shows the reading sequence
for four channel data, the form of storage in the MUV RAM
250 assisting to read multiple values for the same channel
simultaneously.

When operating in color conversion mode, the MUV
RAM 250 is used as a cache to hold the interval and
fractional values and the MAG 805 operates as a cache
controller. The MUV RAM 250 caches values for three color
channels with each color channel containing 256 pairs of
four bit interval and fractional values. For each pixel output
via the DMU, the MAG 805 is utilized to get the values from
the MUV RAM 250. Where the value is not available, the
MAG 805 generates a memory read request to fetch the
missing interval and fractional values. Instead of fetching
one entry in each request, multiple entries are fetched
simultaneously for better utilization of bandwidth.

For image transformation and convolution, the MUV
RAM 250 stores the matrix co-efficients for the MDP. The
MAG cycles through all the matrix co-efficient stored in the
MUYV RAM 250. At the start of an image transformation and
convolution instruction, the MAG 805 generates a request to
the operand fetch unit to fetch the kernal description
“header” (FIG. 94) and the first matrix co-efficient in a burst
request.

Turning now to FIG. 115, there is illustrated the MUV
address generator (MAG) 805 of FIG. 108 in more detail.
The MAG 805 includes an [Bus request module 820 which
multiplexers IBus requests generated by an image transfor-
mation controller (ITX) 821 and a color space conversion
(CSC) controller 822. The requests are sent to the operand
fetch unit which services the request. The pixel organizer
246 is only operated either in image transformation or color
space conversion mode. Hence, there is no arbitration
required between the two controllers 821, 822. The 1Bus
request module 820 derives the information for generating a
request to the operand fetch unit including the burst address
and burst length from the relevant pixel organizer registers.

AJPEG controller 824 is utilized when operating in JPEG
mode and comprizes two state machines being a JPEG write
controller and a JPEG read controller. The two controllers
operate simultaneously and synchronize with each other
through the use of internal registers.

In a JPEG compression operation, the DMU outputs the
MCU data which is stored into the MUV RAM. The JPEG
Write Controller is responsible for horizontal padding and
control of pixel subsampling, while the JPEG Read Con-
troller is responsible for vertical padding. Horizontal pad-
ding is achieved by stalling the DMU output, and vertical
padding is achieved by reading the previously read 8x8
block line.

The JPEG Write Controller keeps track of the position of
the current MCU and DMU output pixel on the source
image, and uses this information to decide when the DMU
has to be stalled for horizontal padding. When a MCU has
been written into the MUV RAM 250, the JPEG Write
Controller sets/resets a set of internal registers which indi-
cates the MCU is on the right edge of the image, or is at the
bottom edge of the image. The JPEG Read Controller then
uses the content of these registers to decide if it is required
to perform vertical padding, and if it has read the last MCU
on the image.

The JPEG Write Controller keeps track of DMU output
data, and stores the DMU output data into the MUV RAM
250.

The controller uses a set of registers to record the current
position of the input pixel. This information is used to
perform horizontally padding by stalling the DMU output.
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When a complete MCU has been written into the MUV
RAM 250, the controller writes the MCU information into
JPEG-RW-IPC registers which is later used by the JPEG
Read Controller.

The controller enters the SLEEP state after the last MCU
has been written into the MUV RAM 250. The controller
stays in this state until the current instruction completes.

The JPEG Read Controller read the 8x8 blocks from the
MCUs stored in the MUV RAM 250. For multi-channel
pixels, the controller reads the MCU several times, each
time extracting a different byte from each pixel stored in the
MUV RAM.

The controller detects if it needs to perform vertical
padding using the information provided by the JPEG-RW-
IPC. Vertical padding is achieved by re-reading the last
8-bytes read from the MUV RAM 250.

The Image Transformation Controller 821 is responsible
for reading the kernel discriptor from the IBus and passes the
kernel header to the MDP 242, and cycles through the matrix
co-efficients as many times as specified in the po.len register.
All data output by the PO 246 in an image transformation
and Convolution instruction are fetched directly from the
IBus and not passed through the DMU.

The top eight bits of the first matrix coefficient fetched
immediately after the kernel header contains the number of
remaining matrix coefficients to be fetched.

The kernel header is passed to the MDP directly without
modifications, whilst the matrix co-efficients are sign
extended before they are passed to the MDP.

The pixel sub-sampler 825 comprizes two identical chan-
nel sub-samplers, each operating on a byte from the input
word. When the relevant configuration register is not
asserted, the pixel sub-sampler copies its input to its output.
When the configuration register is asserted, the sub-sampler
sub-samples the input data either by taking the average or by
decimation.

An MUV multiplexer module 826 selects the MUV read
and write signals from the currently active controller. Inter-
nal multiplexers are used to select the read addresses output
via the various controllers that utilize the MUV RAM 250.
An MUV RAM write address is held in an 8 bit register in
an MUV multiplexer module. The controllers utilising the
MUV RAM 250, load the write address register in addition
to providing control for determining a next MUV RAM
address.

A MUYV valid access module 827 is utilized by the color
space conversion controller to determine if the interval and
fractional values for a current pixel output by the data
manipulation unit is available in the MUV RAM 250. When
one or more color channels are missing, the MUV valid
access module 827 passes the relevant address to the IBus
request module 820 for loading in burst mode, interval and
fractional values. Upon servicing a cache miss, the MUV
valid access module 827 sets internal validity bits which
map the set of interval and fractional values fetched so far.

A replicate module 829 replicates the incoming data, the
number of times as specified by an internal pixel register.
The input stream is stalled while the replication module is
replicating the current input word. A PBus interface module
630 is utilized to re-time the output signals of the pixel
organizer 246 to the main data path 242 and JPEG coder 241
and vice versa. Finally, a MAG controller 831 generates
signals for initiating and shutting down the various sub-
modules. It also performs multiplexing of incoming PBus
signals from the main data path 242 and JPEG coder 241.
MUYV Buffer

Returning to FIG. 2, it will be evident from the foregoing
discussion that the pixel organizer 246 interacts with the
MUYV buffer 250.
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The reconfigurable MUV buffer 250 is able to support a
number of operating modes including the single lookup table
mode (mode0), multiple lookup table mode (model), and
JPEG mode (mode2). A different type of data object is stored
in the buffer in each mode. For instance, the data objects that
are stored in the buffer can be data words, values of a
multiplicity of lookup tables, single channel data and mul-
tiple channel pixel data. In general, the data objects can have
different sizes. Furthermore, the data objects stored in the
reconfigurable MUV buffer 250 can be accessed in substan-
tially different ways which is dependent on the operating
mode of the buffer.

To facilitate the different methods needed to store and
retrieve different types of data objects, the data objects are
often encoded before they are stored. The coding scheme
applied to a data object is determined by the size of the data
object, the format that the data objects are to be presented,
how the data objects are retrieved from the buffer, and also
the organization of the memory modules that comprize the
buffer.

FIG. 116 is a block diagram of the components used to
implement the reconfigurable MUV buffer 250. The recon-
figurable MUV buffer 250 comprizes an encoder 1290, a
storage device 1293, a decoder 1291, and a read address and
rotate signal generator 1292. When a data object arrives
from an input data stream 1295, the data object may be
encoded into an internal data format and placed on the
encoded input data stream 1296 by the encoder 1290. The
encoded data object is stored in the storage device 1293.

When decoding previously stored data objects, an
encoded data object is read out of the storage device via
encoded output data stream 1297. The encoded data object
in the encoded output data stream 1297 is decoded by a
decoder 1291. The decoded data object is then presented at
the output data stream 1298.

The write addresses 1305 to the storage device 1293 are
provided by the MAG 805 (FIG. 108). The read addresses
1299, 1300 and 1301 are also provided by the MAG 805
(FIG. 108), and translated and multiplexed to the storage
device 1293 by the Read Address and Rotate Signal Gen-
erator 1292, which also generates input and output rotate
control signals 1303 and 1304 to the encoder and decoder
respectively. The write enable signals 1306 and 1307 are
provided by an external source. An operating mode signal
1302, which is provided by means of the controller 801
(FIG. 108), is connected to the encoder 1290, the decoder
1291, the Read Address and Rotate Signal Generator 1292,
and the storage device 1293. An increment signal 1308
increments internal counter(s) in the read address and rotate
signal generator and may be utilized in JPEG mode (mode2).

Preferably, when the reconfigurable MUV buffer 250 is
operating in the single lookup table mode (mode0), the
buffer behaves substantially like a single memory module.
Data objects may be stored into and retrieved from the buffer
in substantially the same way used to access memory
modules.

When the reconfigurable MUYV buffer 250 is operating in
the multiple lookup table mode (mode 1), the buffer 250 is
divided into a plurality of tables with up to three lookup
tables may be stored in the storage device 1293. The lookup
tables may be accessed separately and simultaneously. For
instance, in one example, interval and fraction values are
stored in the storage device 1293 in the multiple lookup table
mode, and the tables are indexed utilizing the lower three
bytes of the input data stream 1295. Each of the three bytes
are issued to access a separate lookup table stored in the
storage device 1293.
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When an image undergoes JPEG compression, the image
is converted into an encoded data stream. The pixels are
retrieved in the form of MCUs from the original image. The
MCUs are read from left to right, and top to bottom from the
image. Each MCU is decomposed into a number of single
component 8x8 blocks. The number of 8x8 blocks that can
be extracted from a MCU depends on several factors includ-
ing: the number of color components in the source pixels,
and for a multiple channel JPEG mode, whether subsam-
pling is needed. The 8x8 blocks are then subjected to
forward DCT (FDCT), quantization, and entropy encoding.
In the case of JPEG decompression, the encoded data are
read sequentially from a data stream. The data stream
undergoes entropy decoding, dequantization and inverse
DCT (IDCT). The output of the IDCT operation are 8x8
blocks. A number of single component 8x8 blocks are
combined to reconstruct a MCU. As with JPEG
compression, the number of single component 8x8 blocks
are dependent on the same factors mentioned above. The
reconfigurable MUYV buffer 250 may be used in the process
to decompose MCUs into a multiplicity of single component
8x8 blocks, to reconstruct MCUs from a multiplicity of
single component 8x8 blocks.

When the reconfigurable MUV buffer 250 is operating in
JPEG mode (mode2), the input data stream 1295 to the
buffer 250 comprizes pixels for a JPEG compression
operation, or single component data in a JPEG decompres-
sion operation. The output data stream 1298 of the buffer
250 comprizes single channel data blocks for a JPEG
compression operation, or pixel data in a JPEG decompres-
sion operation. In this example, for a JPEG compression
operation, an input pixel may comprize up to four channels
denoted Y, U, V and O. When the required number of pixels
have been accumulated in the buffer to form a complete
pixel block, the extraction of single component data blocks
can commence. Each single component data block com-
prizes data from the like channel of each pixel stored in the
buffer. Thus in this example, up to four single component
data blocks may be extracted from one pixel data block. In
this embodiment, when the reconfigurable MUV buffer 250
is operating in the JPEG mode (mode2) for JPEG
compression, a multiplicity of Minimum Coded Units
(MCUs) each containing 64 single or 64 multiple channel
pixels may be stored in the buffer, and a multiplicity of
64-byte long single channel component data blocks are
extracted from each MCU stored in the buffer. In this
embodiment, for the buffer 1289 operating in the JPEG
mode (mode2) for a JPEG decompression operations, the
output data stream contains output pixels that have up to four
components Y, U, V and O. When the required number of
complete single component data blocks have been written
into the buffer, the extraction of pixel data may commence.
Abyte from up to four single component block correspond-
ing to different color components are retrieved to form an
output pixel.

FIG. 117 illustrates the encoder 1290 of FIG. 116 in more
detail. For the pixel block decomposition mode only, each
input data object is encoded using a byte-wize rotation
before it is stored into the storage device 1293 (FIG. 129).
The amount of rotation is specified by the input rotate
control signal 1303. As the pixel data has a maximum of four
bytes in this example, a 32-bit 4-to-1 multiplexer 1320 and
output 1325 is used to select one of the four possible rotated
versions of the input pixel. For example, if the four bytes in
a pixel are labelled (3,2,1,0), the four possible rotated
versions of this pixel are (3,2,1,0), (0,3,2,1), (1,0,3,2) and
(2,1,0,3). The four encoded bytes are output 1296 for storage
in the storage device.
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When the buffer is placed in an operating mode other than
the JPEG mode (mode2), for example, single lookup table
mode (mode0) and multiple lookup table mode (model),
byte-wize rotation may not be necessary and may not be
performed on the input data objects. The input data object is
prevented from being rotated in the latter cases by overrid-
ing the input rotate control signal with a no-operation value.
This value 1323 can be zero. A 2-to-1 multiplexer 1321
produces control signals 1326 by selecting between the input
rotate control signal 1303 and the no-operation value 1323.
The current operating mode 1302 is compared with the value
assigned to the pixel block decomposition mode to produce
the multiplexer select signal 1322. The 4-to-1 multiplexer
1320, which is controlled by signal 1326 selects one of the
four rotated version of the input data object on the input data
stream 1325, and produces an encoded input data object on
the encoded input data stream 1326.

FIG. 118 illustrates a schematic of a combinatorial circuit
which implements the decoder 1291 for the decoding of the
encoded output data stream 1297. The decoder 1321 oper-
ates in a substantially similar manner to the encoder. The
decoder only operates on the data when the data buffer is in
the JPEG mode (mode2). The lower 32-bit of an encoded
output data object in the encoded output data stream 1297 is
passed to the decoder. The data is decoded using a byte-wize
rotation with an opposite sense of rotation to the rotation
performed by the encoder 1290. A 32-bit 4-to-1 multiplexer
1330 is used to select one of the four possible rotated version
of the encoded data. For example, if the four bytes in an
input pixel are labelled (3,2,1,0), the four possible rotated
version of this pixel are (3,2,1,0), (2,1,0,3), (1,0,3,2) and
(0,3,2,1). The output rotate control signal 1304 is utilized
only when the buffer is in a pixel block decomposition
mode, and when overridden by a no-operation value in other
operating modes. The no-operation value utilized 1333 is
zero. A 2-to-1 multiplexer 1331 produces signal 1334 by
selecting selects between the output rotate control signal
1304 and the no-operation value 1333. The current operating
mode 1302 is compared with the value assigned to the pixel
block decomposition mode to produce the multiplexer select
signal 1332. The 4-to-1 multiplexer 1330, which is con-
trolled by signal 1334, selects one of the four rotated version
of the encoded output data object on the encoded output data
stream 1297, and produces an output data object on the
output data stream 1298.

Returning to FIG. 116, the method of internal read address
generation used by the circuit is selected by the operating
mode 1302 of the reconfigurable MUV buffer 250. For the
single lookup table mode (mode0) and multiple lookup table
mode (model), the read addresses are provided by the MAG
805 (FIG. 108) in the form of external read addresses 1299,
1300, and 1301. For the single lookup table mode (mode0),
the memory modules 1380, 1381, 1382, 1383, 1384 and
1385 (FIG. 121) of the storage device 1293 operate together.
The read address and the write address supplied to the
memory modules 1380 to 1385 (FIG. 121) are substantially
the same. Hence the storage device 1293 only needs the
external circuits to supply one read address and one write
address, and uses internal logic to multiplex these addresses
to the memory modules 1380 to 1385 (FIG. 121). For
mode0, the read address is supplied by the external read
address 1299 (FIG. 116) and is multiplexed to the internal
read address 1348 (FIG. 121) without substantial changes.
The external read addresses 1300 and 1301 (FIG. 116), and
the internal read addresses 1349, 1350 and 1351 (FIG. 121),
are not used in mode(. The write address is supplied by the
external write address 1305 (FIG. 116), and is connected to
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the write address of each memory module 1380 to 1385
(FIG. 121) without substantial modification.

In this example, a design that provides three lookup tables
in the multiple lookup table mode (mode 1) is presented. The
encoded input data is written simultaneously into all
memory modules 1380 to 1385 (FIG. 121), while the three
tables are accessed independently, and thus require one
index to each of the three tables. Three indices, that is, read
addresses to the memory modules 1380 to 1385 (FIG. 121),
are supplied to the storage device 1293. These read
addresses are multiplexed to the appropriate memory mod-
ules 1380 to 1385 using internal logic. In substantially the
same manner as in the single lookup table mode, the write
address supplied externally is connected to the write address
of each of the memory modules 1380 to 1385 without
substantial modifications. Hence, for the multiple lookup
table mode (mode 1), the external read addresses 1299, 1300
and 1311 are multiplexed to internal read addresses 1348,
1349 and 1350 respectively. The internal read address 1351
is not used in mode 1. The method of generating the internal
read addresses need in the JPEG mode (mode 2) is different
to the method described above.

FIG. 119 illustrates a schematic of a combinatorial circuit
which implements the read address and rotate control signals
generation circuit 1292 (FIG. 116), for the reconfigurable
data buffer operating in the JPEG mode (mode 2) for JPEG
compression. In the JPEG mode (mode 2), the generator
1292 uses the output of a component block counter 1340 and
the output of a data byte counter 1341 to compute the
internal read addresses to the memory modules comprising
the storage device 1293. The component block counter 1340
gives the number of component blocks extracted from a
pixel data block, which is stored in the storage device. The
number of like components extracted from the pixel data
block is given by multiplying the output of the data byte
counter 1341 by four. In this embodiment, an internal read
address 1348, 1349, 1350 or 1351 for the pixel data block
decomposition mode is computed as follows. The output of
the component block counter is used to generate an offset
value 1343, 1344, 1345, 1346 or 1347, and the output of the
data byte counter 1341 is used to generate a base read
address 1354. The offset value 1343 is added 1358 to the
base read address 1354 and the sum is an internal read
address 1348 (or 1349, 1350 or 1351). The offset values for
the memory modules are in general different for simulta-
neous read operations performed on multiple memory
modules, but the offset value to each memory module is in
general substantially the same during the extraction of one
component data block. The base addresses 1354 used to
compute the four internal read addresses in the pixel data
block decomposition mode are substantially the same. The
increment signal 1308 is used as the component byte counter
increment signal. The counter is incremented after every
successful read operation has been performed. A component
block counter increment signal 1356 is used to increment the
component block counter 1340, after a complete single
component data block has been retrieved from the buffer.

The output rotate control signal 1304 (FIG. 116) is
derived from the output of the component block counter, and
the output of the data byte counter, in substantially similar
manner to the generation of an internal read address. The
output of the component block counter is used to compute a
rotation offset 1347. The output rotate control signal 1304 is
given by the lowest two bits of the sum of the base read
address 1354 and the rotation offset 1355. The input rotate
control signal 1303 is simply given by the lowest two bytes
of the external write addresses 1305 in this example of the
address and rotate control signals generator.
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FIG. 120 shows another example of the address generator
1292 for reassembling multiple channel pixel data from
single component data stored in the reconfigurable MUV
buffer 250. In this case, the buffer is operating in the JPEG
(mode2) for JPEG decompression operation. In this case,
single component data blocks are stored in the buffer, and
pixel data blocks are retrieved from the buffer. In this
example, the write address to the memory modules are
provided by the external write address 1305 without sub-
stantial changes. The single component blocks are stored in
contiguous memory locations. The input rotate control sig-
nal 1303 in this example is simply set to the lowest two bits
of the write address. A pixel counter 1360 is used to keep
track of the number of pixels extracted from the single
component blocks stored in the buffer. The output of the
pixel counter is used to generate the read addresses 1348,
1349, 1350 and 1351, and the output rotate control signal
1304. The read addresses are in general different for each
memory module that comprize the storage device 1293. In
this example, a read address comprizes two parts, a single
component block index 1362, 1363, 1364 or 1365, and a
byte index 1361. An offset is added to bit 3 and 4 of the
output of the pixel counter to calculate the single component
block index for a particular block. The offsets 1366, 1367,
1368 and 1369 are in general different for each read address.
Bit 2 to bit 0 of the output of the pixel counter are used as
the byte index 1361 of a read address. A read address is the
result of the concatenation of a single component block
index 1362, 1363, 1364 or 1365 and a byte index 1361, as
illustrated in FIG. 120. In this example, the output rotate
control signal 1304 is generated using bit 4 and bit 3 of the
output of the pixel counter without substantial change. The
increment signal 1308 is used as the pixel counter increment
signal to increment the pixel counter 1360. The pixel counter
1360 is incremented after a pixel has been successfully
retrieved from the buffer.

FIG. 121 illustrates an example of a structure of the
storage device 1293. The storage device 1293 can comprize
three 4-bit wide memory modules 1383, 1384 and 1385, and
three 8-bit wide memory modules 1380, 1381 and 1382. The
memory modules can be combined together to store 36-bit
words in the single lookup table mode (mode0), 3x12-bit
words in the multiple lookup table mode (model), and 32-bit
pixels or 4x8-bit single component data in JPEG mode
(mode2). Typically each memory module is associated with
a different part of the encoded input and output data streams
(1296 and 1297). For example, memory module 1380 has its
data input port connected to bit 0 to bit 7 of the encoded
input data stream 1296, and its data output port connected to
bit 0 to bit 7 of the encoded output data stream 1297. In this
example, the write addresses to all the memory modules are
connected together, and share substantially the same value.
In contrast, the read addresses 1386, 1387, 1388, 1389, 1390
and 1391 to the memory modules of the example illustrated
in FIG. 121 are supplied by the read address generator 1292,
and are in general different. In the example, a common write
enable signal is used to provide the write enable signals to
all three 8-bit memory modules, and a second common write
enable signal is used to provide the write enable signals to
all three 4-bit memory modules.

FIG. 122 illustrates a schematic of a combinatorial circuit
used for generating read addresses 1386, 1387, 1388, 1389,
1390 and 1391 for accessing to the memory modules con-
tained in a storage device 1293. Each encoded input data
object is broken up into parts, and each part is stored into a
separate memory module in the storage device. Hence,
typically the write addresses to all memory modules for all
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operating modes are substantially the same and thus sub-
stantially no logic is required to compute the write address
to the memory modules. The read addresses in this example,
on the other hand, are typically different for different
operations, and are also different to each memory module
within each operating mode. All bytes in the output data
stream 1298 of the reconfigurable MUV buffer 250 must
contain single component data extracted from the pixel data
stored in the buffer in the JPEG mode (mode2) for JPEG
compression, or pixel data extracted from the single com-
ponent data blocks stored in the buffer in the JPEG mode for
JPEG decomposition. The requirements on the output data
stream are achieved by providing four read addresses 1348,
1349, 1350 and 1351 to the buffer. In the multiple lookup
table mode (model), up to three lookup tables are stored in
the buffer, and thus only up to three read addresses 1348,
1349 and 1350 are needed to index the three lookup tables.
The read addresses to all memory modules are substantially
the same in the single lookup table mode (mode0), and only
read address 248 is used in this mode. The example con-
troller circuit shown in FIG. 122 uses the operating mode
signals to the buffer, and up to four read addresses, to
compute the read address 1386-1391 to each of the six
memory modules comprising the storage device 1293. The
read address generator 1292 takes, as its inputs, the external
read addresses 1299, which comprizes external address
buses 1348, 1349, 1350 and 1351, and generates the internal
read addresses 1386, 1387, 1388, 1389, 1390 and 1391 to the
memory modules that comprize the storage device 1293. No
manipulation on the external write addresses 1305 is
required in the operation of this example.

FIG. 123 illustrates a representation of an example of how
20-bit matrix coefficients may be stored in the buffer 250
when the buffer 250 is operating in single lookup table mode
(mode0). In this example, typically no encoding is applied
on the data objects stored in the cache when the data objects
are written into the reconfigurable MUV buffer. The matrix
coefficients are stored in the 8-bit memory modules 1380,
1381 and 1382. Bit 7 to bit 0 of the matrix coefficient are
stored in memory module 1380, bit 15 to bit 8 of the matrix
coefficient are stored in memory module 1381, and bit 19 to
bit 16 of the matrix coefficient are stored in the lower 4 bits
of memory module 1382. The data objects stored in the
buffer may be retrieved as many times as required for the
rest of the instruction. The write and read addresses to all
memory modules involved in the single lookup table mode
are substantially the same.

FIG. 124 illustrates a representation of how the table
entries are stored in the buffer in the multiple lookup table
mode (model). In this example, up to three lookup tables
may be stored in the buffer, and each lookup table entry
comprizes a 4-bit interval value and an 8-bit fraction value.
Typically the interval values are stored in the 4-bit memory
modules, and the fraction values are stored in the 8-bit
memory modules. The three lookup tables 1410, 1411 and
1412 are stored in the memory banks 1380 and 1383, 1381
and 1384, 1382 and 1385 in the example. The separate write
enable control signals 1306 and 1307 (FIG. 121) allow the
interval values to be written into the storage device 1293
without affecting the fraction values already stored in the
storage device. In substantially the same manner, the frac-
tion values may be written into storage device without
affecting the interval values already stored in the storage
device.

FIG. 125 illustrates a representation of how pixel data is
stored in the reconfigurable MUYV buffer 250 when the JPEG
mode (mode2) for decomposing pixel data blocks into single

10

20

25

30

40

45

60

90

component data blocks. The storage device 1293 is orga-
nized as four 8-bit memory banks, which comprizes the
memory modules 1380, 1381, 1382, 1383 and 1384, with
1383 and 1384 used together to operate substantially in the
same manner as an 8-bit memory module. Memory module
1385 is not used in the JPEG mode (mode2). A 32-bit
encoded pixel is broken up into four bytes, and each is stored
into a different 8-bit memory module.

FIG. 126 illustrates a representation of how the single
component data blocks are stored in the storage device 1293
in single component mode. The storage device 1293 is
organized as four 8-bit memory banks, which comprizes the
memory modules 1380, 1381, 1382, 1383 and 1384, with
1383 and 1384 used together to operate substantially in the
same manner as an 8-bit memory module. A single compo-
nent block in this example comprizes 64 bytes. A different
amount of byte rotation can be applied to each single
component block when it is written into the buffer. A 32-bit
encoded pixel data is retrieved by reading from the different
single component data block stored in the buffer.

For further details on the organization of the data within
the MUYV buffer 250 reference is made herein to the section
entitled Pixel Organizer.

This preferred embodiment has shown that a reconfig-
urable data buffer may be used to handle data involved in
different instructions. A reconfigurable data buffer that pro-
vides three operating modes has been disclosed. Different
address generation techniques may be needed in each oper-
ating mode of the buffer. The single look-up table mode
(mode0) may be used to store matrix coefficients in the
buffer for an image transformation operation. The multiple
look-up table mode (model) may be used to store a multi-
plicity of interval and fraction lookup tables in the buffer in
a multiple channel color space conversion (CSC) operation.
The JPEG mode (mode2) may be used either to decompose
MCU data into single component 8x8 blocks, or to recon-
struct MCU data from single-component 8x8 blocks, in
JPEG compression and decompression operation respec-
tively.

Result Organizer

The MUYV buffer 250 is also utilized by the result orga-
nizer 249. The result organizer 249 buffers and formats the
data stream from either the main data path 242 or the JPEG
coder 241. The result organizer 249 also is responsible for
data packing and unpacking, denormalization, byte lane
swapping and realignment of result data as previously
discussed with reference to FIG. 42. Additionally the result
organizer 249 transmits its results to the external interface
controller 238, the local memory controller 236, and the
peripheral interface controller 237 as required.

When operating in JPEG decompression mode, the results
organizer 249 utilizes the MUV RAM 250 to double buffer
image data produced by the JPEG coder 241. Double
buffering increases the performance of the JPEG decom-
pression by allowing data from the JPEG coder 241 to be
written to one half of the MUV RAM 250 while at the same
time image data presently in the other half of the MUV RAM
250 is output to a desired destination.

The 1, 3 and 4 channel image data is passed to the result
organizer 249 during JPEG decompression in a form of 8x8
blocks with each block consisting of 8 bit components from
the same channel. The result organizer stores these blocks in
the MUV RAM 250 in the order provided and then, for
multi-channel interleaved images, meshing of the channels
in performed when reading data from the MUV RAM 250.
For example, in a three channel JPEG compression based on
Y, U, V color space, the JPEG coder 241 outputs three 8x8

Patent Owner Monterey Research, LLC

Ex. 2002, 0182



US 6,289,138 B1

91

blocks, the first consisting of Y components, the second
made of the U components and the third made up of the V
components. Meshing is accomplished by taking one com-
ponent from each block and constructing the pixel in the
form of (YUVX) where X represents an unused channel.
Byte swapping may be applied to each output to swap the
channels as desired. The result organizer 249 must also do
any required sub-sampling to reconstruct chroma-data from
decompressed output. This can involve replicating each
program channel to produce and an one.

Turning to FIG. 127, there is illustrated the result orga-
nizer 249 of FIG. 2 in more detail. The result organizer 249
is based around the usual standard CBus interface 840 which
includes a register file of registers to be set for operation of
the result organizer 249. The operation of the result orga-
nizer 249 is similar to that of the pixel organizer 246,
however the reverse data manipulation operations take
place. A data manipulation unit 842 performs byte lane
swapping, component substitution, component deselection
and denormalization operations on data provided by the
MUYV address generator (MAG) 805. The operations carried
out are those previously described with reference to FIG. 42
and operate in accordance with various fields set in internal
registers. The FIFO queue 843 provides buffering of output
data before it is output via RBus control unit 844.

The RBus control unit 844 is composed of an address
decoder and state machines for address generation. The
address for the destination module is stored in an internal
register in addition to data on the number of output bytes
required. Further, an internal RO__CUT register specifies
how many output bytes to discard before sending a byte
stream on the output bus. Additionally, a RO__LMT register
specifies the maximum number of data items to be output
with subsequent data bytes after the output limit being
ignored. The MAG 805 generates addresses for the MUV
RAM 250 during JPEG decompression. The MUV RAM
250 is utilized to double buffer output from the JPEG
decoder. The MAG 805 performs any appropriate meshing
of components in the MUV RAM 250 in accordance with an
internal configuration register and outputs single channel,
three channel or four channel interleaved pixels. The data
obtained from the MUV RAM 250 is then passed through
the data manipulation unit 842, since byte lane swapping
may need to be applied before pixel data is sent to the
appropriate destination. When the results organizer 249 is
not configured for JPEG mode, the MAG 805 simply
forwards data from the PBus receiver 845 straight through to
the data manipulation unit 842.

Operand Organizers B and C

Returning again to FIG. 2, the two identical operand
organizers 247, 248 perform the function of buffering data
from the data cache control 240 and forwarding the data to
the JPEG coder 241 or the main data path 242. The operand
organizers 247, 248 are operated in a number of modes:

(a) Idle mode wherein the operand organizer only
responds to CBus requests.

(b) Immediate mode when the data of the current instruc-
tion is stored in an internal register of the operand
organizer.

(¢) Sequential mode wherein the operator organizer gen-
erates sequential addresses and requests data from the
data cache controller 240 whenever its input buffer
requires filling.

Anumber of modes of operation of the main data path 242
require at least one of the operand organizers 247, 248 to
operate in sequential mode. These modes include compos-
iting wherein operand organizer B 247 is required to buffer
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pixels which are to be composited with another image.
Operand organizer C 248 is used for compositing operations
for attenuation of values for each data channel. In halftoning
mode, operand organizer B 247 buffers 8 bit matrix coeffi-
cients and in hierarchial image format decompression mode
the operand organizer B 247 buffers data for both vertical
interpolation and residual merging instructions.

(d) In constant mode, an operand organizer B constructs
a single internal data word and replicates this word a
number of times as given by an internal register.

(e) In tiling mode an operand organizer B buffers data that
comprizes a pixel tile.

(f) In random mode the operand organizer forwards
addresses from the MDP 242 or JPEG coder 241
directly to the data cache controller. These addresses
are utilized to index the data cache 230.

An internal length register specifies the number of items
to be generated by individual operand organizers 247, 248
when operated in sequential/titling/constant mode. Each
operand organizer 247, 248 keeps account of the number of
data items processed so far and stops when the count reaches
the value specified in its internal register. Each operand
organizer is further responsible for formatting input data via
byte lane swapping, component substitution, packed/
unpacked and normalization functions. The desired opera-
tions are configured utilising internal registers. Further, each
operand organizer 247, 248 may also be configured to
constrict data items.

Turning now to FIG. 128, there is illustrated the structure
of operand organizers (247, 248) in more detail. The operand
organizer 247, 248 includes the usual standard CBus inter-
face and registers 850 responsible for the overall control of
the operand organizer. Further, an OBus control unit 851 is
provided for connection to the data cache controller 240 and
is responsible for performing address generation for
sequential/tile/constant modes, generating control signals to
enable communications on the OBus interface to each
operand organizer 247, 248 and controlling data manipula-
tion unit operations such as normalization and replication,
that require the state to be saved from previous clock cycles
of the input stream. When an operand organizer 247, 248 is
operating in sequential or tiling mode, the OBus control unit
851 sends requests for data to the data cache controller 240,
the addresses being determined by internal registers.

Each operand organizer further contains a 36 bit wide
FIFO buffer 852 used to buffer data from the data cache
controller 240 in various modes of operation.

Adata manipulation unit 853 performs the same functions
as the corresponding data manipulation unit 804 of the pixel
organizer 246.

A main data path JPEG coder interface 854 multiplexer
address and data to and from the main data path and JPEG
coder modules 242, 241 in normal operating mode. The
MDP/IC interface 854 passes input data from the data
manipulation units 853 to the main data path and in the
process may be configured to replicate this data. When
operating in color conversion mode, the units 851, 854 are
bypassed in order to ensure high speed access to the data
cache controller 240 and the color conversion tables.
Main Data Path Unit

The aspects of the following embodiment relate to an
image processor providing a low cost computer architecture
capable of performing a number of image processing opera-
tions at high speed. Still further, the image processor secks
to provide a flexible computer architecture capable of being
configured to perform image processing operations that are
not originally specified. The image processor also seeks to
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provide a computer architecture having a large amount of
identical logic, which simplifies the design process and
lowers the cost of designing such an architecture.

The computer architecture comprises a control register
block, a decoding block, a data object processor, and flow
control logic. The control register block stores all the
relevant information about the image processing operation.
The decoding block decodes the information into configu-
ration signals, which configure an input data object inter-
face. The input data object interface accepts and stores data
objects from outside, and distributes these data objects to the
data object processor. For some image processing
operations, the input data object interface may also generate
addresses for data objects, so that the source of these data
objects can provide the correct data objects. The data object
processor performs arithmetic operations on the data objects
received. The flow control logic controls the flow of data
objects within the data object processing logic.

More particularly, the data object processor can comprise
a number of identical data object sub-processors, each of
which processes part of an incoming data object. The data
object sub-processor includes a number of identical multi-
functional arithmetic units that perform arithmetic opera-
tions on these parts of data objects, post processing logic that
processes the outgoing data objects, and multiplexer logic
that connects the multifunctional arithmetic units and the
post-processing unit together. The multifunctional arith-
metic units contain storage for parts of the calculated data
objects. The storage is enabled or disabled by the flow
control logic. The multifunctional arithmetic units and mul-
tiplexer logic are configured by the configuration signals
generated by the decoding logic.

Furthermore, the configuration signals from the decoding
logic can be overridden by an external programming agent.
Through this mechanism any multifunctional blocks and
multiplexer logic can be individually configured by an
external programming agent, allowing it to configure the
image processor to perform image processing operations
that are not specified beforehand. These and other aspects of
the embodiments of the invention are described in greater
detail hereinafter.

Returning to FIG. 2, as noted previously the main data
path unit 242 performs all data manipulation operations and
instructions other than JPEG data coding. These instructions
include compositing, color space conversion, image
transformations, convolution, matrix multiplication,
halftoning, memory copying and hierarchial image format
decompression. The main data path 242 receives pixel and
operand data from the pixel organizer 246, and operand
organizers 247, 248 and feeds the resultant output to the
result organizer 249.

FIG. 129 illustrates a block diagram of the main data path
unit 242. The main data path unit 242 is a general image
processor and includes input interface 1460, image data
processor 1462, instruction word register 1464, instruction
word decoder 1468, control signal register 1470, register file
1472, and a ROM 1475.

The instruction controller 235 transfers instruction words
to the instruction word register 1464 via bus 1454. Each
instruction word contains information such as the kind of
image processing operation to be executed, and flags to
enable or disable various options in that image processing
operation. The instruction word is then transferred to the
instruction word decoder 1468 via bus 1465. Instruction
controller 235 can then indicate to the instruction word
decoder 1468 to decode the instruction word. Upon receiv-
ing that indication, the instruction decoder 1468 decodes the
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instruction word into control signals. These control signals
are then transferred via bus 1469 to the control signal
register 1470. The output of the control signal register is then
connected to the input interface 1460 and image data pro-
cessor 1462 via bus 1471.

To add further flexibility to the main data path unit 242,
the instruction controller 235 can also write into the control
signal register 1470. This allows anyone who is familiar
with the structure of the main data path unit 242 to micro-
configure the main data path unit 242 so that the main data
path unit 242 will execute image processing operations that
are not be described by any instruction word.

In cases when all the necessary information to perform the
desired image processing operation does not fit into the
instruction word, the instruction controller 235 can write all
the other information necessary to perform the desired
image processing operation into some of the selected reg-
isters in register file 1472. The information is then trans-
ferred to the input interface 1460 and the image data
processor 1462 via bus 1473. For some image processing
operations, the input interface 1460 may update the contents
of selected registers in the register file 1472 to reflect the
current status of the main data path unit 242. This feature
helps the instruction controller 235 to find out what the
problem is when there is a problem in executing an image
processing operation.

Once the decoding of the instruction word is finished,
and/or the control signal register is loaded with the desired
control signals, the instruction controller 235 can indicate to
the main data path unit 242 to start performing the desired
image processing operation. Once that indication is
received, the input interface 1460 begins to accept data
objects coming from bus 1451. Depending on the kind of
image processing operation performed, the input interface
1460 may also begins to accept operand data coming from
operand bus 1452 and/or operand bus 1453, or generates
addresses for operand data and receive operand data from
operand bus 1452 and/or operand bus 1453. The input
interface 1460 then stores and rearranges the incoming data
in accordance with the output of the control signal register
1470. The input interface 1460 also generates coordinates to
be fetched via buses 1452 and 1453 when calculating such
functions as affine image transformation operations and
convolution.

The image data processor 1462 performs the major arith-
metic operations on the rearranged data objects from the
input interface 1460. The image processor 1462 can: inter-
polate between two data objects with a provided interpola-
tion factor; multiply two data objects and divide the product
by 255; multiply and add two data objects in general; round
off fraction parts of a data object which may have various
resolutions; clamp overflow of a data object to some maxi-
mum value and underflow of a data object to some minimum
value; and perform scaling and clamping on a data object.
The control signals on bus 1471 control which of the above
arithmetic operations are performed on the data objects, and
the order of the operations.

A ROM 1475 contains the dividends of 255/x, where x is
from 0 to 255, rounded in 8.8 format. The ROM 1475 is
connected to the input interface 1460 and the image data
processor 1462 via bus 1476. The ROM 1475 is used to
generate blends of short lengths and multiply one data object
by 255 and dividing the product by another data object.

Preferably, the number of operand buses eg 1452 is
limited to 2, which is sufficient for most image processing
operations.

FIG. 130 illustrates the input interface 1460 in further
detail. Input interface 1460 includes data object interface
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unit 1480, operand interface units 1482 and 1484, address
generation state machine 1486, blend generation state
machine 1488, matrix multiplication state machine 1490,
interpolation state machine 1490, data synchronizer 1500,
arithmetic unit 1496, miscellancous register 1498, and data
distribution logic 1505.

Data object interface unit 1480 and operand interface
units 1482 and 1484 are responsible to receive data objects
and operands from outside. These interface units 1482, 1484
are all configured by control signals from control bus 15185.
These interface units 1482, 1484 have data registers within
them to contain the data objects/operands that they have just
received, and they all produce a VALID signal which is
asserted when the data within the data register is valid. The
outputs of the data registers in these interface units 1482,
1484 are connected to data bus 1505. The VALID signals of
these interface units 1482, 1484 are connected to flow bus
1510. When configured to fetch operands, operand interface
units 1482 and 1484 accept addresses from arithmetic unit
1496, matrix multiplication state machine 1490 and/or the
output of data register in data object interface unit 1480, and
select amongst them the required address in accordance with
the control signals from control bus 1515. In some cases, the
data registers in operand interface units 1482 and 1484 can
be configured to store data from the output of data register
in data object interface unit 1480 or arithmetic unit 1496,
especially when they are not needed to accept and store data
from outside.

Address generation state machine 1486 is responsible for
controlling arithmetic unit 1496 so that it calculates the next
coordinates to be accessed in the source image in affine
image transformation operations and convolution opera-
tions.

The address generation state machine 1486 waits for
START signal on control bus 1515 to be set. When the
START signal on control bus 1515 is set, address generation
state machine 1486 then de-asserts the STALL signal to data
object interface unit 1480, and waits for data objects to
arrive. It also sets a counter to be the number of data objects
in a kernel descriptor that address generation state machine
1486 needs to fetch. The output of the counter is decoded to
become enable signals for data registers in operand interface
units 1482 and 1484 and miscellaneous register 1498. When
the VALID signal from data object interface unit 1480 is
asserted, address generation state machine 1486 decrements
the counter, so the next piece of data object is latched into
a different register.

When the counter reaches zero, address generation state
machine 1486 tells operand interface unit 1482 to start
fetching index table values and pixels from operand inter-
face unit 1484. Also, it loads two counters, one with the
number of rows, another with the number of columns. At
every clock edge, when it is not paused by STALL signals
from the operand interface unit 1482 or others, the counters
are decremented to give the remaining rows and columns,
and the arithmetic unit 1496 calculates the next coordinates
to be fetched from. When both counters have reached zero,
the counters reload themselves with the number of rows and
columns again, and arithmetic unit 1496 is configured to find
the top left hand corner of the next matrix.

If interpolation is used to determine the true value of a
pixel, address generation state machine 1486 decrements the
number of rows and columns after every second clock cycle.
This is implemented using a 1-bit counter, with the output
used as the enable of the row and column counter. After the
matrix is traversed around once, the state machine sends a
signal to decrement the count in the length counter. When
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the counter reaches 1, and the final index table address is
sent to the operand interface unit 1482, the state machine
asserts a final signal, and resets the start bit.

Blend generation state machine 1488 is responsible for
controlling arithmetic unit 1496 to generate a sequence of
numbers from 0 to 255 for the length of a blend. This
sequence of numbers is then used as the interpolation factor
to interpolate between the blend start value and blend end
value.

Blend generation state machine 1488 determines which
mode it should run in (jump mode or step mode). If the blend
length is less than or equal to 256, then jump mode is used,
otherwize step mode is used.

The blend generation state machine 1488 calculates the
following and puts them in registers (reg0, regl, reg2). If a
blend ramp is in step mode for a predetermined length, then
latch 511-length in reg0 (24 bits), 512-2*length in reg 1 (24
bits), and end-start in reg 2 (4x9 bits). If the ramp is in jump
mode, then latch 0 into reg0, 255/(length-1) into regl, and
end-start into reg2 (4x9 bits).

In step mode, the following operations are performed for
every cycle:

If reg0=>0, then add reg0 with reg 1 and store the result in
reg0. Another incrementor can also be enabled so its output
is incremented by 1. If rego<=0, then add reg0 with 510 and
store the result in reg0). Incrementor is not incremented. The
output of the incrementor is the ramp value.

In jump mode, the following is done for every cycle: Add
reg0 with regl. The Adder output is 24 bits, in fixed point
format of 16.8. Store the adder output in reg0. If the first bit
of fraction result is 1, then increment the integer part.

The least 8 bits of the integer part of the incrementor is the
ramp value. The ramp value, the output of reg2, and the
blend start value is then fed into the image data processor
1462 to produce the ramp.

Matrix multiplication state machine 1490 is responsible
for performing linear color space conversion on input data
objects using a conversion matrix. The conversion matrix is
of the dimension 4x5. The first four columns multiply with
the 4 channels in the data object, while the last column
contains constant coefficients to be added to the sum of
products. When the START signal from control bus 1515 is
asserted, matrix multiplication state machine does the fol-
lowing:

1) It generates line numbers to fetch constant coefficients
of the conversion matrix from buses 1482 and 1484. It
also enables miscellaneous register 1498 to store these
constant coefficients.

2) It contains a 1-bit flipflop, which generates a line
number which is used as an address to fetch half of
matrix from buses 1482 and 1484. It also generates a
“MAT _SEL” signal that selects which half of the data
object to be multiplied with that half of matrix.

3) It finishes when there is no data objects coming from
data object interface unit 1480.

Interpolation state machine 1494 is responsible for per-
forming horizontal interpolation of data objects. During
horizontal interpolation, main data path unit 242 accepts a
stream of data objects from bus 1451, and interpolates
between adjacent data objects to output a stream of data
objects which is twice or 4 times as long as the original
stream. Since the data objects can be packed bytes or pixels,
interpolation state machine 1494 operates differently in each
case to maximize the throughput. Interpolation state
machine 1494 does the following:

1) It generates INT__SEL signal to data distribution logic

1503 to rearrange the incoming data objects so that the
right pair of data objects are interpolated.
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2) It generates interpolation factors to interpolate between
adjacent pairs of data objects.

3) It generates a STALL signal to stop data object inter-
face unit 1480 from accepting more data objects. This
is necessary as the output stream is longer than the
input stream. The STALL signal goes to flow bus 1510.

Arithmetic unit 1496 contains circuitry for performing
arithmetic calculations.

It is configured by control signals on control bus 15185. It
is used by two instructions only: affine image transformation
and convolution, and blend generation in compositing.

In affine image transformation and convolution, arith-
metic unit 1496 is responsible for:

1) Calculating the next x and y coordinates. To calculate
x coordinates arithmetic unit 1496 uses an adder/
subtractor to add/subtract the x part of horizontal and
vertical delta to/from the current x coordinate. To
calculate the y coordinates arithmetic unit 1498 uses an
adder/subtractor to add/subtract the y part of the hori-
zontal or vertical delta to/from the current y coordinate.

2) Adding the y coordinate to the index table offset to
calculate the index table address. This sum is also
incremented by 4 to find the next index table entry,
when interpolation is used to find true value of a pixel.

3) Adding the x coordinate to the index table entry to find
the address of the pixel.

4) Subtract 1 from the length count.

In blend generation, arithmetic unit 1496 does the fol-

lowing:

1) In step mode, one of the ramp adders is used to
calculate an internal variable in the ramp generation
algorithm, while the other adder is used to increment
the ramp value when the internal variable is greater
than 0.

2) In jump mode, only one of the adders is required to add
the jump value to the current ramp value.

3) Round off fractions occur in jump mode.

4) Subtract start of blend from end of blend at the
beginning of ramp generation.

5) Subtract one from the length count.

Miscellaneous register 1498 provides extra storage space
apart from the data registers in data object interface unit
1480 and operand interface units 1482 and 1484. It is usually
used to store internal variables or as a buffer of past data
objects from data object interface unit 1480. It is configured
by control signals on control bus 15185.

Data synchronizer 1500 is configured by control signals
on control bus 1515. It provides STALL signals to data
object interface unit 1480 and operand interface units 1482
and 1484 so that if one of the interface units receives a piece
of data object others have not, that interface unit is stalled
until all the other interface units have received their pieces
of data.

Data distribution logic 1505 rearranges data objects from
data bus 1510 and register file 1472 via bus 1530 in
accordance with control signals on control bus 1515, includ-
ing a MAT _SEL signal from matrix multiplication state
machine 1490 and a INT_SEL signal from interpolation
state machine 1494. The rearranged data is outputed onto
bus 1461.

FIG. 131 illustrates image data processor 1462 of FIG.
129 in further detail. Image data processor 1462 includes a
pipeline controller 1540, and a number of color channel
processors 1545, 1550, 1555 and 1560. All color channel
processors accept inputs from bus 1565, which is driven by
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the input interface 1460 (FIG. 131). All color channel
processors and pipeline controller 1540 are configured by
control signals from control signal register 1470 via bus
1472. All the color channel processors also accept inputs
from register file 1472 and ROM 1475 of FIG. 129 via bus
1580. The outputs of all the color channel processors and
pipeline controller are grouped together to form bus 1570,
which forms the output 1455 of image data processor 1462.

Pipeline controller 1540 controls the flow of data objects
within all the color channel processors by enabling and
disabling registers within all the color channel processors.
Within pipeline controller 1540 there is a pipeline of regis-
ters. The shape and depth of the pipeline is configured by the
control signals from bus 1471, and the pipeline in pipeline
controller 1540 has the same shape as the pipeline in the
color channel processors. The Pipeline controller accepts
VALID signals from bus 1565. For each pipeline stage
within pipeline controller 1540, if the incoming VALID
signal is asserted and the pipeline stage is not stalled, then
the pipeline stage asserts the register enable signals to all
color channel processors, and latch the incoming VALID
signal. The output of the latch then a VALID signal going to
the next pipeline stage. In this way the movement of data
objects in the pipeline is simulated and controlled, without
storage of any data.

Color channel processors 1545, 1550, 1555 and 1560
perform the main arithmetic operations on incoming data
objects, with each of them responsible for one of the
channels of the output data object. In the preferred embodi-
ment the number of color channel processors is limited to 4,
since most pixel data objects have a maximum of 4 channels.

One of the color channel processors processes the opacity
channel of a pixel. There is additional circuitry (not shown
in FIG. 131), connected to the control bus 1471, which
transforms the control signals from the control bus 1471 so
that the color channel processor processes the opacity chan-
nel correctly, as for some image processing operations the
operations on the opacity channel is slightly different from
the operations on the color channels.

FIG. 132 illustrates color channel processor 1545, 1550,
1555 or 1560 (generally denoted by 1600 in FIG. 132) in
further detail. Each color channel processor 1545, 1550,
1555 or 1560 includes processing block A 1610, processing
block B 1615, big adder 1620, fraction rounder 1625,
clamp-or-wrapper 1630, and output multiplexer 1635. The
color channel processor 1600 accepts control signals from
control signal register 1470 via bus 1602, enable signals
from pipeline controller 1540 via bus 1604, information
from register file 1472 via bus 1605, data objects from other
color channel processor via bus 1603, and data objects from
input interface 1460 via bus 1601.

Processing block A 1610 performs some arithmetic opera-
tions on the data objects from bus 1601, and produces
partially computed data objects on bus 1611. The following
illustrates what processing block A 1610 does for designated
image processing operations.

In compositing, processing block A 1610 pre-multiplies
data objects from data object bus 1451 with opacity, inter-
polates between a blend start value and a blend end value
with an interpolation factor from input interface 1460 in
FIG. 129, pre-multiplies operands from operand bus 1452 in
FIG. 129 or multiplies blend color by opacity, and attenuates
multiplication on pre-multiplied operand or blend color data.

In general color space conversion, the processing block A
1610 interpolates between 4 color table values using two
fraction values from bus 1451 in FIG. 129.

In affine image transformation and convolution, the pro-
cessing block A 1610 pre-multiplies the color of the source
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pixel by opacity, and interpolates between pixels on the
same row using the fraction part of current x-coordinate.

In linear color space conversion, the processing block A
1610 pre-multiplies color of the source pixel by opacity, and
multiplies pre-multiplied color data with conversion matrix
coefficients.

In horizontal interpolation and vertical interpolation, the
processing block A 1610 interpolates between two data
objects.

In residual merging, the processing block A 1610 adds
two data objects.

Processing block A 1610 includes a number of multifunc-
tion blocks 1640 and processing block A glue logic 1645.
The multifunction blocks 1640 are configured by control
signals, and may perform any one of the following func-
tions:

add/subtract two data objects;

passing one data object;

interpolate between two data objects with a interpolation

factor;

pre-multiply a color with an opacity;

multiply two data objects, and then add a third data object

to the product; and

add/subtract two data objects, and then pre-multiply the

sum/difference with an opacity.

The registers within the multifunction blocks 1640 are
enabled or disabled by enable signals from bus 1604 gen-
erated by pipelined controller 1540 in FIG. 131. Processing
block A glue logic 1645 accepts data objects from bus 1601
and data objects from bus 1603, and the outputs of some of
the multifunction blocks 1640, and routes them to inputs of
other selected multifunction blocks 1640. Processing block
A glue logic 1645 is also configured by control signals from
bus 1602.

Processing block B 1615 performs arithmetic operations
on the data objects from bus 1601, and partially computed
data objects from bus 1611, to produce partially computed
data objects on bus 1616. The following description illus-
trates what processing block B 1615 does for designated
image processing operations.

In compositing (with non-plus operators), the processing
block B 1615 multiplies pre-processed data objects from
data object bus 1451 and operands from operand bus 1452
with compositing multiplicands from bus 1603, and multi-
plies clamped/wrapped data objects by output of the ROM,
which is 255/opacity in 8.8 format.

In compositing with plus operator, the processing block B
1615 adds two pre-processed data objects. In the opacity
channel, it also subtracts 255 from the sum, multiplies an
offset with the difference, and divides the product by 255.

In general color space conversion, the processing block B
1615 interpolates between 4 color table values using 2 of the
fraction values from bus 1451, and interpolates between
partially interpolated color value from processing block A
1610 and the result of the previous interpolation using the
remaining fraction value.

In affine image transformation and convolution, the pro-
cessing block B 1615 interpolates between partially inter-
polated pixels using the fraction part of current y-coordinate,
and multiplies interpolated pixels with coefficients in a
sub-sample weight matrix.

In linear color space conversion, the processing block B
1615 pre-multiplies the color of the source pixel by opacity,
and multiplies pre-multiplied color with conversion matrix
coefficients.

Processing block B 1615 again includes a number of
multifunction blocks and processing block B glue logic
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1650. The multifunction blocks are exactly the same as those
in processing block A 1610, but the processing block B glue
logic 1650 accepts data objects from buses 1601, 1603,
1611, 1631 and the outputs of selected multifunction blocks
and routes them to the inputs of selected multifunction
blocks. Processing block B glue logic 1650 is also config-
ured by control signals from bus 1602.

Big adder 1620 is responsible for combining some of the
partial results from processing block A 1610 and processing
block B 1615. It accepts inputs from input interface 1460 via
bus 1601, processing block A 1610 via bus 1611, processing
block B 1615 via bus 1616, and register file 1472 via bus
1605, and it produces the combined result on bus 1621. It is
also configured by control signals on bus 1602.

For various image processing operations, big adder 1620
may be configured differently. The following description
illustrates its operation during designated image processing
operations.

In compositing with non-plus operators, the big adder
1620 adds two partial products from processing block B
1615 together.

In compositing with plus operator, the big adder 1620
subtracts the sum of pre-processed data objects with offset
from the opacity channel, if an offset enable is on.

In affine image transformation/convolution, the big adder
1620 accumulates the products from processing block B
1615.

In linear color space conversion, in the first cycle, the big
adder adds the two matrix coefficients/data object products
and the constant coefficient together. In the second cycle, it
adds the sum of last cycle with another two matrix
coefficients/data object products together.

Fraction rounder 1625 accepts input from the big adder
1620 via bus 1621 and rounds off the fraction part of the
output. The number of bits representing the fraction part is
described by a BP signal on bus 1605 from register file 1472.
The following table shows how the BP signal is interpreted.
The rounded output is provided on bus 1626.

TABLE 27

Fraction Table

bp field Meaning

Bottom 26 bits are fractions.
Bottom 24 bits are fractions.
Bottom 22 bits are fractions.
Bottom 20 bits are fractions.
Bottom 18 bits are fractions.
Bottom 16 bits are fractions.
Bottom 14 bits are fractions.
Bottom 12 bits are fractions.

~ N B W= O

As well as rounding off fraction, fraction rounder 1625
also does two things:

1) determines whether the rounded result is negative; and

2) determines whether the absolute value of the rounded

result is greater than 255.

Clamp-or-wrapper 1630 accepts inputs from fraction
rounder 1625 via bus 1626 and does the following in the
order described:

finds the absolute value of the rounded result, if such

option is enabled; and

clamps any underflow of the data object to the minimum

value of the data object, and any overflow of the data
object to the maximum value of the data object.

Output multiplexer 1635 selects the final output from the
output of processing block B on bus 1616 and the output of
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clamp-or-wrapper on bus 1631. It also performs some final
processing on the data object. The following description
illustrates its operation for designated image processing
operations.

In compositing with non-plus operators and un-pre-
multiplication, the multiplexer 1635 combines some of the
outputs of processing block B 1615 to form the un-pre-
multiplied data object.

In compositing with non-plus operator and no un-pre-
multiplication, the multiplexer 1635 passes on the output of
clamp-or-wrapper 1630.

In compositing with plus operator, the multiplexer 1635
combines some of the outputs of processing block B 1630 to
form resultant data object.

In general color space conversion, the multiplexer 1635
applies the translate-and-clamp function on the output data
object.

In other operations, the multiplexer 1635 passes on the
output of clamp-or-wrapper 1630.

FIG. 133 illustrates a single multifunction block (e.g.
1640) in further detail. Multifunction block 1640 includes
mode detector 1710, two addition operand logic units 1660
and 1670, 3 multiplexing logic units 1680, 1685 and 1690,
a 2-input adder 1675, a 2-input multiplier with 2 addends
1695, and register 1705.

Mode detector 1710 accepts one input from control signal
register 1470, in FIG. 129 the MODE signal 1711, and two
inputs from input interface 1460, in FIG. 129 SUB signal
1712 and SWAP signal 1713. Mode detector 1710 decodes
these signals into control signals going to addition operand
logic units 1660 and 1670, and multiplexing logic units
1680, 1685 and 1690, and these control signals configure
multifunction block 1640 to perform various operations.
There are 8 modes in multifunction block 1640:

1) Add/sub mode: adds or subtract input 1655 to/from
input 1665, in accordance with the SUB signal 1712.
Also, the inputs can be swapped in accordance with the
SWAP signal 693.

2) Bypass mode: bypass input 1655 to output.

3) Interpolate mode: interpolates between inputs 1655 and
1665 using input 1675 as the interpolation factor.
Inputs 1655 and 1665 can be swapped in accordance
with the SWAP signal 1713.

4) Pre-multiply mode: multiplies input 1655 with input
1675 and divide it by 255. The output of the INC
register 1708 tells the next stage whether to increment
the result of this stage in bus 1707 to obtain the correct
result.

5) Multiply mode: multiplies input 1655 with 1675.

6) Add/subtract-and-pre-multiply mode: adds/subtracts
input 1665 to/from input 1655, multiplies the sum/
difference with input 1675, and then divide the product
by 255. The output of the INC register 1708 tells the
next stage whether to increment the result of this stage
in bus 1707 to obtain the correct result.

Addition operand logic units 1660 and 1670 find one’s
complement of the input on demand, so that the adder can
do subtraction as well. Adder 1675 adds the outputs of
addition operand logic 1660 and 1670 in buses 1662 and
1672 together, and outputs the sum in bus 1677.

Multiplexing logic 1680, 1685 and 1690 select suitable
multiplicands and addends to implement, a desired function.
They are all configured by control signals on bus 1714 from
mode detector 1710.

Multiplier with two addends 1695 multiplies input from
bus 1677 with input from bus 1682, then adds the products
to the sum of inputs from buses 1687 and 1692.
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Adder 1700 adds the least significant 8 bits of the output
of multiplier 1695 with the most significant 8 bits of the
output of multiplier 1695. The carryout of adder 1700 is
latched in INC register 1701. INC register 1701 is enabled
by signal 1702. Register 1705 stores the product from
multiplier 1695. It is also enabled by signal 1702.

FIG. 134 illustrates a block diagram for the compositing
operations. The compositing operation accepts three input
streams of data:

1) The accumulated pixel data, which is derived from the
same location as the result is stored to in this accumu-
lator model.

2) A compositing operand—which consists of color and
opacity. The color and opacity can both be either flat,
a blend, pixels or tiled.

3) Attenuation—which attenuates the operand data. The
attenuation can be flat, a bit map or a byte map.

Pixel data typically consists of four channels. Three of
these channels make up the color of the pixel. The remaining
channel is the opacity of the pixel. Pixel data can be
pre-multiplied or normal. When pixel data is pre-multiplied,
each of the color channels are multiplied with the opacity.
Since equations for compositing operators are simple with
pre-multiplied pixels, usually pixel data is pre-multiplied
before it 1s composited with another pixel.

The compositing operators implemented in the preferred
embodiments are shown in Table 1. Each operator works on
pre-multiplied data. (a.,, a,) refers to a pre-multiplied pixel
of color a, and opacity a, r is the “offset” value and wce() is
the wrapping/clamping operator the reverse operator of each
of the over, in, out, atop operators in Table 1 is also
implemented, and the compositing model has the accumu-
lator on the left.

Composite block 1760 in FIG. 134 comprizes three color
sub-blocks and a opacity sub-block. Each color sub-block
operates on one color channel, and opacity channel of the
input pixels to obtain the color of the output pixel. The
following pseudo code shows how this is done.

PIXEL Composite( IN colorA, colorB: PIXEL;
IN opacityA, opacityB: PIXEL;

IN comp__op: COMPOSITE__ OPERATOR

PIXEL result;

IF comp__op is rover, rin rout ratop THEN
swap colorA and colorB;
swap opacityA and opacityB;

END IF;

IF comp-op is over or rover or loado or plus THEN
X=1;

ELSE IF comp_op is in or rin or atop or ratop THEN
X = opacityB;

ELSE IF comp-op is out or rout or xor THEN
X = not(opacityB);

ELSE IF comp-op is loadzero or loadc or loadco THEN
X=0

END IF;

IF comp-op is over or rover or atop or ratop or xor THEN
Y = not(opacitya);

ELSE IF comp_ op is plus or loadc or loadco THEN
Y = not(opacitya);

ELSE IF comp__op is plus or loadc or loadco THEN
Y=1;

ELSE IF comp-op is in or rin or out or rout or loadzero or
loado THEN
Y=0

END IF;

result = colorA * X + colorB *Y;

RETURN result;

The above pseudo code is different for the opacity sub-
block, since the operators ‘loade’ and ‘loado’ have different
meaning in the opacity channel.
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Block 1765 in FIG. 134 is responsible for clamping or
wrapping the output of block 1760. When block 1765 is
configured to clamp, it forces all values less than the
minimum allowable value to the minimum allowed value,
and all values more than the maximum allowed value to the
maximum allowed value. If block 1765 is configured to
wrap, it calculates the following equation:

((x-min) mod (max-min))+min,

whereby min and max are the minimum and maximum
allowed value of the color respectively. Preferably the
minimum value for a color is 0, and the maximum value is
255.

Block 1770 in FIG. 134 is responsible for un-pre-
multiplying the result from block 1765. It un-pre-multiplies
a pixel by multiplying the pre-multiplied color value with
255/0, where o is the opacity after composition. The value
255/0 is obtained from a ROM inside the compositing
engine. The value stored in the ROM is in the format of 8.8
and the rest of the fraction is rounded. The result of
multiplication is stored in the format of 16.8. The result
would be rounded to 8 bits to produce the un-pre-multiplied
pixel.

Blend generator 1721 generates a blend of a specified
length with specified start and end values. Blend generation
is done in two stages:

1) ramp generation, and

2) interpolation

In ramp generation, the compositing engine generates a
linearly increasing number sequence from O to 255 over the
length of the instruction. There are two modes in ramp
generation: the “jump” mode, when the length is less than or
equal to 255, and the “step” mode when the length is greater
than 255. The mode is determined by examining the 24 most
significant bits of the length. In the jump mode, the ramp
value increases by at least one in every clock period. In the
step mode, the ramp value increases by at most one in every
clock period.

In the jump mode, the compositing engine uses the ROM
to find out the step value 255/(length-1), in 8.8 format. This
value is then added to a 16-bit accumulator. The output of
the accumulator is rounded to 8 bits to form the number
sequence. In the step mode, the compositing engine uses an
algorithm similar to Bresenham’s line drawing algorithm, as
described by the following pseudo code.

Void linedraw (

{

length: INTEGER

d =511 - length;

inctE = 510;

inctNE = 512 — 2*length;
ramp - 0;

for (i=0; i(length; i+ +)

if d (= 0 then
d += incrE;
else {
d += incrNE;
ramp+ +;

}
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After that, the following equation is calculated to generate
the blend from the ramp.

Blend=((end-start)xramp/255)+start

The division by 255 is rounded. The above equation
requires 2 adders and a block that “pre-multiplies” (end-
start) by ramp for each channel.

Another image processing operation that the main data
path unit 242 is able to perform is general color space
conversion. Generalized Color Space Conversion (GCSC)
uses piecewize tri-linear interpolation to find out the output
color value. Preferably, conversion is from a three dimen-
sional input space to one or four dimensional output space.

In some cases, there is a problem with the accuracy of
tri-linear interpolation at the edges of the color gamut. This
problem is most noticeable in printing devices that have high
sensitivity near an edge of the gamut. To overcome this
problem, GCSC can optionally be calculated in an expanded
output color space and then scaled and clamped to the
appropriate range using the formula in equation:

0 if x(63
our = 2(x —64) if (64(x(191)
255 if (192(x)

Yet other image processing operations that the preferred
embodiment is able to perform are image transformation and
convolution. In image transformation, the source image is
scaled, rotated, or skewed to form the destination image. In
convolution, the source image pixels are sampled with a
convolution matrix to provide the destination image. To
construct a scanline in the destination image, the following
steps are required:

1) Perform an inverse transform of the scanline in the
destination image back to the source image as illus-
trated in FIG. 135. This tells what pixels in the source
image are needed to construct that scanline in the
destination image.

2) Decompress the necessary portions of the source
image.

3) Inverse-transform the starting x and y coordinates,
horizontal and vertical subsampling distances in the
destination image back to source image.

4) Pass all these information to the processing units which
performs the necessary sub-sampling and/or interpola-
tion to construct the output image pixel by pixel.

The calculations to work out which parts of the source
image are relevant, sub-sampling frequencies to use, etc, are
performed by the host application. Sub-sampling,
interpolation, and writing the pixels into the destination
image memory are done by the preferred embodiments.

FIG. 136 shows a block diagram of the steps required to
calculate the value for a destination pixel. In general, the
computation-intensive part is the bi-linear interpolation. The
block diagram in FIG. 136 assumes that all the necessary
source image pixels are available.

The final step in calculating a destination pixel is to add
together all the possibly bi-linearly interpolated sub-samples
from the source image. These values are given different
weights.

FIG. 137 illustrates a block diagram of the image trans-
formation engine that can be derived from suitable settings
within the main data path unit 242. Image transformation
engine 1830 includes address generator 1831, pre-multiplier
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1832, interpolator 1833, accumulator 1834, and logic for
rounding, clamping and finding absolute value 1835.

Address generator 1831 is responsible for generating x
and y coordinates of the source image which are needed to
construct a destination pixel. It also generates addresses to
obtain index offsets from an input index table 1815 and
pixels from image 1810. Before address generator 1831
begins generating x and y coordinates in the source image,
it reads in a kernel descriptor. These are two formats of
kernel descriptors. They are shown in FIG. 138. The kernel
descriptor describes:

1) Source image start coordinates (unsigned fixed point,
24.24 resolution). Location (0,0) is at the top left of the
image.

2) Horizontal and vertical sub-sample deltas (2’s comple-
ment fixed point, 24.24 resolution).

3) a 3 bit bp field defining the location of the binary point
within the fixed point matrix coefficients. The definition
and interpretation of the bp field is shown in FIG. 150.

4) Accumulation matrix coefficients. These are of “vari-
able” point resolution of 20 binary places (2’s
complement), with the location of the binary point
implicitly specified by the bp field.

5) an 1l field that indicates the remaining number of words
in the kernel descriptor. This value is equal to the
number of rows times the number of columns minus 1.

For the short kernel descriptor, apart from the integer part
of start x coordinate, the other parameters are assumed to
have the following values:

starting X coordinate fraction <-0,

starting y coordinate <—0,

horizontal delta <-1.0,

vertical delta<-1.0.

After address generator 1831 is configured, it calculates
the current coordinates. It does this in two different ways,
depending on the dimensions of the subsample matrix. If the
dimensions of the subsample matrix are 1x1, address gen-
erator 1831 adds the horizontal delta to the current coordi-
nates until it has generated enough coordinates.

If the dimensions of the subsample matrix are not 1x1,
address generator 1831 adds the horizontal delta to the
current coordinates until one row of the matrix is finished.
After that, address generator 1831 adds the vertical delta to
the current coordinates to find the coordinates on the next
row. After that, address generator 1831 subtracts the hori-
zontal delta from the current coordinates to find the next
coordinates, until one more row is finished. After that,
address generator 1831 adds the vertical delta to the current
coordinates and the procedure is repeated again. Top dia-
gram in FIG. 150 illustrates this method of accessing the
matrix. Using this scheme, the matrix is traversed in a
zig-zag way, and fewer registers are required since the
current X and y coordinates are calculated using the above
method, the accumulation matrix coefficients must be listed
in the kernel descriptor in the same order.

After generating the current coordinates, the address
generator 1831 adds the y coordinate to the index table base
address to get the address to the index table. (In case when
source pixels are interpolated, address generator 1831 needs
to obtain the next index table entry as well.) The index table
base address should point to the index table entry for y+0.
After obtaining the index offset from the index table, the
address generator 1831 adds that to the x coordinate. The
sum is used to get 1 pixel from the source image (or 2 if
source pixels are interpolated). In case when source pixels
are interpolated, the address generator 1831 adds the x
coordinates to the next index offset, and two more pixels are
obtained.
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Convolution uses a similar method to generate coordi-
nates to image transformation. The only difference is that in
convolution, the start coordinates of the matrix for the next
output pixel is one horizontal delta away from the starting
coordinates of the matrix for the previous pixel. In image
transformation, the starting coordinates of the matrix for the
next pixel is one horizontal delta away from the coordinates
of the top right pixel in the matrix for the previous output
pixel.

The middle diagrams in FIG. 139 illustrates this differ-
ence.

Pre-multiplier 1832 multiplies the color channels with the
opacity channel of the pixel if required.

Interpolator 1832 interpolates between source pixels to
find the true color of the pixel required. It gets two pixels
from the source image memory at all times. Then it inter-
polates between those two pixels using the fraction part of
the current x coordinate and puts the result in a register. After
that, it obtains the two pixels on the next row from the source
image memory. Then it interpolates between those two
pixels using the same x fraction. After that, interpolator 1833
uses the fraction part of the current y coordinate to interpo-
late between this interpolated result and the last interpolated
result.

Accumulator 1834 does two things:

1) it multiplies the matrix coefficients with the pixel, and

2) it accumulates the product above until the whole matrix

is traversed. Then it outputs a value to the next stage.

Preferably the accumulator 1834 can be initialized with O
or a special value on a channel-by-channel basis.

Block 1835 rounds the output of accumulator 1834, then
clamps any underflows or overflows to the maximum and
minimum values if required, and finds the absolute value of
the output if required. The location of the binary point within
the output of the accumulator is specified by the bp field in
the kernel descriptor. The bp field indicates the number of
leading bits in the accumulated result to discard. This is
shown in the bottom diagram of FIG. 139. Note that the
accumulated value is treated as a signed two’s complement
number.

Yet another image processing operation that the main data
path unit 242 can perform is matrix multiplication. Matrix
Multiplication is used for color space conversion where an
affine relationship exists between the two spaces. This is
distinct from General Color Space Conversion (based on
tri-linear interpolation).

The result of Matrix Multiplication is defined by the
following equation:

Y [bos bot baz bus bua]
Pyl | bue by bz bz by “
ro | | bre b1 baz brs boa %
o bso b31 bsp b3z b3a 5

255

where 1; is the result pixel and a, is the A operand pixel.
Matrix must be 5 columns by 4 rows.

FIG. 140 illustrates a block diagram of the multiplier-
adders that perform the matrix multiplication in the main
data path unit 242. It includes multipliers to multiply the
matrix coefficients with the pixel channels, adders to add the
products together, and logic to clamp and find the absolute
value of the output if required.

The complete matrix multiplication takes 2 clock cycles
to complete. At each cycle the multiplexers are configured
differently to select the right data for the multipliers and
adders.
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At cycle 0, the least significant 2 bytes of the pixel are
selected by the multiplexers 1851, 1852. They then multiply
the coefficients on the left 2 columns of the matrix, i.e. the
matrix coefficients on line O in the cache. The results of the
multiplication, and the constant term in the matrix, are then
added together and stored.

At cycle 1, the more significant 2 bytes of the pixel are
selected by the top multiplexers. They then multiply the
coefficients on the right 2 columns of the matrix.

The result of the multiplication is then added 1854 to the
result of the last cycle. The sum of the adder is then rounded
1855 to 8 bits.

The ‘operand logic’ 1856 rearranges the outputs of the
multipliers to form four of the inputs of the adder 1854. It
rearranges the outputs of the multipliers so that they can be
added together to form the true product of the 24-bit
coefficient and 8-bit pixel component.

The ‘AC (Absolute value-clamp/wrap) logic’ 1855 firstly
rounds off the bottom 12 bits of the adder output. It then
finds the absolute value of the rounded result if it is set to do
so. After that it clamps or wraps the result according to how
it is set up. If the ‘AC logic’ is set to clamp, it forces all
values less than O to 0 and all values more than 255 to 255.
If the ‘AC logic’ is set to wrap, the lower 8 bits of the integer
part is passed to the output.

Apart from the image processing operations above, the
main data path unit 242 can be configured to perform other
operations.

The foregoing description provides a computer architec-
ture that is capable of performing various image processing
operations at high speed, while the cost is reduced by design
reuse. The computer architecture described is also highly
flexible, allowing any external programming agent with
intimate knowledge of the architecture to configure it to
perform image processing operations that were not initially
expected. Also, as the core of the design mainly comprizes
a number of those multifunction blocks, the design effort is
reduced significantly.

Data Cache Controller and Cache

The data cache controller 240 maintains a four-kilobyte
read data cache 230 within the coprocessor 224. The data
cache 230 is arranged as a direct mapped RAM cache, where
any one of a group of lines of the same length in external
memory can be mapped directly to the same line of the same
length in cache memory 230 (FIG. 2). This line in cache
memory is commonly referred to as a cache-line. The cache
memory comprizes a multiple number of such cache-lines.

The data cache controller 240 services data requests from
the two operand organizers 247, 248. It first checks to see if
the data is resident in cache 230. If not, data will be fetched
from external memory. The data cache controller 240 has a
programmable address generator, which enables the data
cache controller 240 to operate in a number of different
addressing modes. There are also special addressing modes
where the address of the data requested is generated by the
data cache controller 240. The modes can also involve
supplying up to eight words (256 bits) of data to the operand
organizers 247, 248 simultaneously.

The cache RAM is organized as 8 separately addressable
memory banks. This is needed for some of the special
addressing modes where data from each bank (which is
addressed by a different line address) is retrieved and packed
into 256 bits. This arrangement also allows up to eight
32-bits requests to be serviced simultaneously if they come
from different banks.

10

15

20

25

30

35

40

45

50

55

60

65

108

The cache operates in the following modes, which will be
discussed in more detail later. Preferably, it is possible to
automatically fill the entire cache if this is desired.

1. Normal Mode

2. Single Output General Color Space Conversion Mode

3. Multiple Output General Color Space Conversion
Mode

. JPEG Encoding Mode

. Slow JPEG Decoding Mode

. Matrix Multiplication Mode

. Disabled Mode

8. Invalidate Mode

FIG. 141 shows the address, data and control flow of the
data cache controller 240 and data cache 230 shown in FIG.
2.

The data cache 230, consists of a direct mapped cache of
the type previously discussed. The data cache controller 240,
consists of a tag memory 1872 having a tag entry for each
cache-line, which tag entry comprizes the most significant
part of the external memory address that the cache-line is
currently mapped to. There is also a line valid status memory
1873 to indicate whether the current cache-line is valid. All
cache-lines are initially invalid.

The data cache controller 240 can service data requests
from operand organizer B 247 (FIG. 2) and operand orga-
nizer C 248 (FIG. 2) simultaneously via the operand bus
interface 1875. In operation, one or both of the operand
organizers 247 or 248 (FIG. 2), supplies an index 1874 and
asserts a data request signal 1876. The address generator
1881 generates one or more complete external addresses
1877 in response to the index 1874. A cache controller 1878
determines if the requested data is present in cache 230 by
checking the tag memory 1872 entries for the tag addresses
of the generated addresses 1877 and checking the line valid
status memory 1873 for the validity of the relevant cache-
line(s). If the requested data is present in cache memory 230,
an acknowledgment signal 1879 is supplied to the relevant
operand organizer 247 or 248 together with the requested
data 1880. If the requested data is not present in the cache
230, the requested data 1870 is fetched from external
memory, via an input bus interface 1871 and the input
interface switch 252 (FIG. 2). The data 1870 is fetched by
asserting a request signal 1882 and supplying the generated
address(es) 1877 of the requested data 1870. An acknowl-
edgement signal 1883 and the requested data 1870 are then
sent to the cache controller 1878 and the cache memory 230
respectively. The relevant cache-line(s) of the cache memory
230 are then updated with the new data 1870. The tag
addresses of the new cache-line(s) are also written into tag
memory 1872, and the line valid status 1873 for the new
cache-line(s) are asserted. An acknowledgment signal 1879
is then sent to the relevant operand organizer 247 or 248
(FIG. 2) together with the data 1870.

Turning now to FIG. 142, which shows the memory
organization of the data cache 230. The data cache 230 is
arranged as a direct mapped cache with 128 cache-lines
C0, ..., C127 and a cache-line length of 32 bytes. The cache
RAM consists of 8 separately addressable memory banks
BO, ..., B7,each having 128 bank-lines of 32 bits, with each
cache-line Ci consisting of the corresponding 8 bank-lines
BOi, . . ., B7i of the 8 memory banks BO, . . . B7.

The composition of the generated complete external
memory address is shown in FIG. 143. The generated
address is a 32-bit word having a 20-bit tag address, a 7-bit
line address, a 3-bit bank address and a 2-bit byte address.
The 20-bit tag address is used for comparing the tag address
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with the tag stored in the tag memory 1872. The 7-bit line
address is used for addressing the relevant cache-line in the
cache memory 1870. The 3-bit bank address is used for
addressing the relevant bank of the memory banks of the
cache memory 1870. The 2-bit byte address is used for
addressing the relevant byte in the 32-bit bank line.

Turning now to FIG. 144, which shows a block diagram
of the data cache controller 240 and data cache 230 arrange-
ment. In this arrangement, a 128 by 256 bit RAM makes up
the cache memory 230, and as noted previously is organized
as 8 separately addressable memory banks of 128 by 32 bits.
This RAM has a common write enable port (write), a
common write address port (write_addr) and a common
write data port (write data). The RAM also has a read enable
port (read), eight read address ports (read__addr) and eight
read data output ports (read__data). A write enable signal is
generated by the cache controller block 1878 for supply to
the common write enable port (write) for simultaneously
enabling writing to all of the memory banks of the cache
memory 230. When required, the data cache 230 is updated
by one or more lines of data from external memory via the
common write data port (write_data). A line of data is
written utilizing the 8:1 multiplexer MUX supplying the line
address to the write address port (write_addr). The 8:1
multiplexer MUX selects the line address from the generated
external addresses under the control of the data cache
controller (addr_select). A read enable signal is generated
by the cache controller block 1878 for supply to the common
read port (read) for simultaneously enabling reading of all
the memory banks of cache memory 230. In this way, eight
different bank-lines of data can be simultaneously read from
eight read data ports (read data) in response to respective
line addresses supplied on the eight read address ports
(read__addr) of the memory banks of the cache memory 230.

Each bank of the cache memory 230 has its own pro-
grammable address generator 1881. This allows eight dif-
ferent locations to be simultaneously accessed from the
respective eight banks of memory. Each address generator
1881 has a decc-mode input for setting the mode of operation
of the address generator 1881, an index-packet input, a
base-address input and an address output. The modes of
operation of the programmable address generator 1881
include

(2) Random access mode where a signal on the dcc-mode

input sets each address generator 1881 to the random
access mode and complete external memory address
(es) are supplied on the index-packet input(s) and
outputted on the address output of one or more of the
address generators 1881; and

(b) JPEG encoding and decoding, color space conversion,

and matrix multiplication modes, where a signal on the
dce-mode input sets each address generator 1881 to the
appropriate mode. In these modes, each address gen-
erator 1881 receives an index on the index-packet input
and generates an index address. The index addresses
are then added to a fixed base address supplied on the
base-address input resulting in a complete external
memory address which is then outputted on the address
output. Depending upon the mode of operation, the
address generators are able to generate up to eight
different complete external memory addresses.

The eight address generators 1881 consist of eight differ-
ent combinational logic circuits each having as their inputs;
a base-address, a dcc-mode and an index and each having a
complete external memory address as an output.

A base-address register 1885 stores the current base
address that is combined with the index packet and a
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dee-mode register 1888 stores the current operational mode
(dcc-mode) of the data cache controller 240.

The tag memory 1872 comprizes one block of 128 by 20
bit, multi-port RAM. This RAM has one write port (update-
line-addr), one write enable port (write), eight read ports
(readOline-addr, . . . . , read7line-addr) and eight read output
ports (tag0_data, . . ., tag7 data). This enables eight
simultaneous lookups on the ports (readOline-addr, . . .,
read7line-addr) by the cight address generators 1881 to
determine, for each line address of the one or more gener-
ated memory addresses, the tag addresses currently stored
for those lines. The current tag addresses for those lines are
outputted on the ports (tag0-data, . . . tag7-data) to the tag
comparator 1886. When required, a tag write signal is
generated by the cache controller block 1878 for supply to
the write port (write) of the tag memory 1872 to enable
writing to the tag memory 1872 on the port (update-line-
addr).

A 128-bit line valid memory 1873 contains the line valid
status for each cache-line of the cache memory 230. This is
128 by 1 bit memory with one write port (update-line-addr),
one write enable port (update), eight read ports (readOline-
addr, . . ., read7line-addr) and eight read output ports
(linevalido, . . ., linevalid7). In a similar manner to the tag
memory, this allows eight simultaneous lookups on the ports
(readOline-addr, . . . , read7line-addr) by the eight address
generators 1881 to determine, for each line address of the
one or more generated memory addresses, the line valid
status bits currently stored for those lines. The current line
valid bits for those lines are outputted on the ports
(linevalid0, . . ., linevalid7) to the tag comparator 1886.
When required, a write signal is generated by the cache
controller block 1878 for supply to the write port (update) of
the line valid status memory 1873 to enable writing to the
line valid status memory 1873 on the port (update-line-
addr).

The tag comparator block 1886 consists of eight identical
tag comparators having; tag data inputs for respectively
receiving the tag addresses currently stored in tag memory
1872 at those lines accessed by the line addresses of the
currently generated complete external addresses, tag addr
inputs for respectively receiving the tag addresses of the
currently generated complete external memory addresses, a
dee__input for receiving the current operational mode signal
(dcc_mode) for setting the parts of the tag addresses to be
compared, and a line_ valid input for receiving the line valid
status bits currently stored in the line valid status memory
1873 at those lines accessed by the line addresses of the
currently generated complete external memory addresses.
The comparator block 1886 has eight hit outputs for each of
the eight address generators 1881. A hit signal is asserted
when the tag address of the generated complete external
memory address matches the contents of the tag memory
1872 at the location accessed by the line address of the
generated complete external memory address, and the line
valid status bit 1873 for that line is asserted. In this particular
embodiment, the data structures stored in external memory
are small, and hence the most significant bits of the tag
addresses are the same. Thus it is preferable to compare only
those least significant bits of the tag addresses which may
vary. This is achieved by the current operational mode signal
(dcc_mode) setting the tag comparator 1886 for comparing
those least significant bits of the tag addresses which may
vary.

The cache controller 1878 accepts a request (proc_req)
1876 from the operand B 247 or operand C 248 and
acknowledges (proc__ack) 1879 this request if the data is
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available in cache memory 230. Depending on the mode of
operation, up to eight differently addressed data items may
be requested, one from each of the eight banks of cache
memory 230. The requested data is available in cache
memory 230 when the tag comparator 1886 asserts a hit for
that line of memory. The cache controller 1878 in response
to the asserted hit signal (hit0, . . . , hit7) generates a read
enable signal on the port (cache_read) for enabling reading
of those cache-lines for which the hit signal has been
asserted. When a request (proc_req) 1876 is asserted, but
not the hit signal (hit0, . . . , hit7), a generated request
(ext_req) 1890 is sent to the external memory together with
the complete external memory address for that cache-line of
data. This cache-line is written into the eight banks of cache
memory 230 via the input (ext_data) when it is available
from the external memory. When this happens, the tag
information is also written into the tag memory 1886 at that
line address, and the line status bit 1873 for that line
asserted.

Data from the eight banks of cache memory 230 is then
outputted through a series of multiplexers in a data organizer
1892, so that data is positioned in a predetermined manner
in an output data packet 1894. In one operational mode, the
data organizer 1892 is able to select and output eight 8-bit
words from the respective eight 32-bit words outputted from
the eight memory banks by utilising the current operational
mode signal (dec_mode) and the byte addresses (byte
addr) of the current generated complete external memory
addresses. In another operational mode, the data organizer
1892 directly outputs the eight 32-bit words outputted from
the eight memory banks. As noted previously, the data
organizer arranges this data in a predetermined manner for
output.

A request would comprize the following steps:

1) The processing unit requests a packet of data by

supplying an address to the processing unit interface of
the cache controller 1878;

2) Each of the eight address generator units 1881 then
generate a separate address for each block of cache
memory depending on the mode of operation;

3) The Tag portion of each of the generated addresses is
then compared to the Tag address stored in the four
blocks of triple-port Tag memory 1886 and addressed
by each of the corresponding line part of the eight
generated addresses;

4) If they match, and the line valid status 1873 for that line
is also asserted, the data requested for that block of
memory is deemed to be resident in the said cache
memory 230;

5) Data that is not resident is fetched via the external bus
1890 and all eight blocks of the cache memory 230 are
updated with that line of data from external memory.
The Tag address of the new data is then written to the
Tag memory 1886 at the said line address, and the line
valid status 1873 for that line asserted;

6) When all requested data items are resident in cache
memory 230, it is presented to the processing unit in a
predetermined packet format.

As previously noted, all the modules (FIG. 2) of the
coproccessor 224 include a standard cBus interface 303
(FIG. 20). For more details on the standard cBus interface
registers for the data cache controller 240 and cache 230,
reference is made to pages B42 to B46 of Appendix B. The
settings in these registers control the operation of the data
controller 240. For the sake of simplicity only two of these
registers are shown in FIG. 153, ie. base_address and
dcc__mode.
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Once the data cache controller 240 and data cache 230 are
enabled, the data cache controller intially operates in the
normal mode with all cache lines invalid. At the end of an
instruction, the data cache controller 240 and cache 230
always reverts to the normal mode of operation. In all of the
following modes except the “Invalidate” mode, there is an
“Auto-fill and validate” option. By setting a bit in the
dec__cfg2 register, it is possible to fill the entire cache
starting at the address stored in the base_ address register.
During this operation, the data requests from the operand
organizers B and C 247,248 are locked out until the opera-
tion is complete. The cache is validated at the end of this
operation.

a. Normal Cache Mode

In this mode, the two operand organizers supply the
complete external memory addresses of the data requested.
The address generator 1881 outputs the complete external
memory addresses which are then checked independently
using the internal tag memory 1872 to see that if the data
requested is resident in the memory cache 230. If both
requested data items are not in cache 230, data will be
requested from the input interface switch 252. Round Robin
scheduling will be implemented to service persistent simul-
taneous requests.

For simultaneous requests, if one of the data items is
resident in cache, it will be placed on the least significant 32
bits of each requestor’s data bus. The other data will be
requested externally via the input interface switch.

b. The Single Output General Color Space Conversion
Mode

In this mode, the request comes from operand organizer B
in the form of a 12-bit byte address. The requested data items
are 8-bit color output values as previously discussed with
reference to FIG. 60. The 12-bit address is fed to the
index packet inputs of the address generators 1881 and the
eight address generators 1881 generate eight different 32-bit
complete external memory addresses of the format shown in
FIG. 96. The bank, line and byte addresses of the generated
complete addresses are determined in accordance with Table
12 and FIG. 61. The external memory address is interpreted
as eight 9-bit line and byte addresses, which are used to
address a byte from each of the eight banks of RAM. The
cache is accessed to obtain the eight byte values from each
bank which are returned to the operand organizers for
subsequent interpolation by the main data path 242 in
accordance with the principles previously discussed with
reference to FIG. 60. As the single output color value table
is able to fit entirely within the cache memory 230, it is
preferable to load the entire single output color value table
within the cache memory 230 prior to enabling the single
color conversion mode.

c. Multiple Output General Color Space Conversion
Mode

In this mode, a 12-bit word address is received from
operand organizer B 247. The requested data items are 32-bit
color output values as previously discussed with reference to
FIG. 62. The 12-bit address is fed to the index packet
inputs of the address generators 1881 and the eight address
generators 1881 generate eight different 32-bit complete
external memory addresses of the format shown in FIG. 96.
The line and tag addresses of the complete external memory
addresses are determined in accordance with table 12 and
FIG. 63. The completed external memory address is inter-
preted as eight 9-bit addresses with the 9-bit address being
decomposed into a 7-bit line address and a 2-bit tag address
as discussed previously with reference to FIG. 63. Upon the
tag address not being found, the cache stalls while the
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appropriate data is loaded from the input interface switch
252 (FIG. 2). Upon the data being available, the output data
is returned to the operand organizers.

d. JPEG Encoding Mode

In this mode, the necessary tables for JPEG encoding and
other operational sub-sets are stored in each bank of cache
RAM. The storage of tables being previously described in
the previous discussion of the JPEG encoding mode (Tables
14 and 16).

e. Slow JPEG Decoding Mode

In this mode, the data is organized in accordance with
Table 17.

f. Matrix Multiplication Mode

In this mode, the cache is utilized to access 256 byte lines
of data.

g. Disabled Mode

In this mode, all requests are passed through to the input
interface switch 252.

h. Invalidate Mode

In this mode, the contents of the entire cache are invali-
dated by clearing all the line valid status bits.

Input Interface Switch

Returning again to FIG. 2, the input interface switch 252
performs the function of arbitrating data requests from the
pixel organizer 246, the data cache controller 240 and the
instruction controller 235. Further, the input interface switch
252 transmits addresses and data as required to the external
interface controller 238 and local memory controller 236.

The input interface switch 252 stores in one of its con-
figuration register the base address or the memory object in
the host memory map. This is a virtual address that must be
aligned on a page boundary, hence 20 address bits are
required. For each request made by the pixel organizer, data
cache controller, instruction controller, the input interface
switch 252 first subtracts the co-processor’s base address
bits from the most significant 6 bits of the start address of the
data. If the result is negative, or the most significant 6 bits
of the result are non-zero, this indicates that the desired
destination is the PCI bus.

If the most significant 6 bits of the result are zero, this
indicates that the data maps to a co-processor’s memory
location. The input interface switch 252 then needs to check
the next 3 bits to determine if the co-processor’s location is
legal or not.

The legal co-processor’s locations that may act as a
source of data are:

1) 16 Mbytes occupied by the Generic interface, begin-
ning at an offset of 0x01000000 from the
co-processor’s base address.

2) 32 Mbytes occupied by the local memory controller
(LMO), starting at an offset of 0x02000000 from the
base address of the co-processor’s memory object.

Requests that map to an illegal co-processor’s location are
flagged as errors by the Input Interface Switch.

The PCI bus is the source of data corresponding to any
addresses that map outside of the range occupied by the
co-processor’s memory object. An i-source signal is used by
the input interface switch to indicate to the EIC whether
requested data is to originate from the PCI bus or the
Generic interface.

After the address decoding process, legal requests are
routed to the appropriate [Bus interface when the bus is free.
The EIC or LMC is busy with a data transaction to the input
interface switch when they have their i-ack signal asserted.
However, the input interface switch does not keep a count
for the number of incoming words, and so must monitor the
i-oe signal, controlled by the pixel organizer, instruction

10

15

20

25

30

35

40

45

50

55

60

65

114

controller or data cache controller, in order to determine
when the current data transaction has completed.

The input interface switch 252 must arbitrate between
three modules: the pixel organizer, data cache controller and
instruction controller. All of these modules are able to
request data simultaneously, but not all requests can be
instantly met since there are only two physical resources.
The arbitration scheme used by the input interface switch is
priority-based and programmable. Control bits within a
configuration register of the input interface switch specify
the relative priorities of the instruction controller, data cache
controller and pixel organizer. A request from the module
with the lower priority is granted when neither of the other
two modules are requesting access to the same resource as
it is. Assigning the same priority to at least two of the
requesters results in the use of a round robin scheme to
deduce the new winners.

As immediate access to a resource may not be possible,
the input interface switch needs to store the address, burst
length and whether to prefetch data provided by each
requester. For any given resource, the arbitration process
only needs to determine a new winner when there is not an
IBus transaction in progress.

Turning to FIG. 1485, there is illustrated the instruction
interface switch 252 in more detail. The switch 252 includes
the standard CBus interface and register file 8§60 in addition
to two IBus transceivers 861 and 862 between an address
decoder 863 and arbiter 864.

The address decoder 863 performs address decoding
operations for requests received from the pixel organizer,
data cache controller and instruction controller. The address
decoder 863 checks the address is a legal one and performs
any address re-mapping required. The arbiter 864 decides
which request to pass from one IBus transceiver 661 to a
second IBus transceiver 862. Preferably, the priority system
is programmable.

The IBus transceivers 861, 862 contain all the necessary
multiplexing/demultiplexing and tristate buffering to enable
communication over the various interfaces to the input
interface switch.

Local Memory Controller

Returning again to FIG. 2, the local memory controller
236 is responsible for all aspects of controlling the local
memory and handling access requests between the local
memory and modules within the co-processor. The local
memory controller 236 responds to write requests from the
result organizer 249 and read requests from the input inter-
face switch 252. Additionally, it also responds to both read
and write requests from the peripheral interface controller
237 and the usual global CBus input. The local memory
controller utilizes a programmable priority system and fur-
ther utilizes FIFO buffers to maximize throughput.

In the present invention, a multi-port burst dynamic
memory controller is utilized in addition to using First-In-
First-Out (FIFO) buffers to de-couple the ports from a
memory array.

FIG. 146 depicts a block diagram of a four-port burst
dynamic memory controller according to a first embodiment
of the present invention. The circuit includes two write ports
(A 1944 and B 1946) and two read ports (C 1948 and D
1950) that require access to a memory array 1910. The data
paths from the two write ports pass through separate FIFOs
1920, 1922 and to the memory array 1910 via a multiplexer
1912, while the data paths of the read ports 1948, 1950 pass
from the memory array 1910 via separate FIFOs 1936, 1938.
A central controller 1932 coordinates all port accesses as
well as driving all the control signals necessary to interface
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to the dynamic memory 1910. A refresh counter 1934
determines when dynamic memory refresh cycles for the
memory array 1910 are required and coordinates these with
the controller 1932.

Preferably, the data is read from and written to the
memory array 1910 at twice the rate that data is transferred
from the write ports 1944, 1946 to the FIFOs 1920, 1922 or
from the FIFOs 1936, 1938 to the read ports 1948, 1950.
This results in as little time as possible being taken up doing
transfers to or from the memory array 1910 (which is the
bottleneck of any memory system) relative to the time taken
to transfer data through the write and read ports 1944, 1946,
1948, 1950.

Data is written into the memory array 1910 via either one
of the write ports 1944, 1946. The circuits connected to the
write ports 1944, 1946 sce only a FIFO 1920, 1922 which
are initially empty. Data transfers through the write ports
1944, 1946 proceed unimpeded until the FIFO 1920, 1922 is
filled, or the burst is ended. When data is first written into the
FIFO 1920, 1922, the controller 1932 arbitrates with the
other ports for the DRAM access. When access is granted,
data is read out of the FIFO 1920, 1922 at the higher rate and
written into the memory array 1910. A burst write cycle to
DRAM 1910 is only initiated when a preset number of data
words have been stored in the FIFO 1920, 1922, or when the
burst from the write port ends. In either case, the burst to
DRAM 1910 proceeds when granted and continue until the
FIFO 1920, 1922 is emptied, or there is a cycle request from
a higher priority port. In either event, data continues to be
written into the FIFO 1920, 1922 from the write port without
hindrance, until the FIFO is filled, or until the burst ends and
a new burst is started. In the latter case, the new burst cannot
proceed until the previous burst has been emptied from the
FIFO 1920, 1922 and written to the DRAM 1910. In the
former case, data transfers recommences as soon as the first
word is read out of the FIFO 1920, 1922 and written to
DRAM 1910. Due to the higher rate of data transfers out of
the FIFO 1920, 1922, it is only possible for the write port
1944, 1946 to stall if the controller 1832 is interrupted with
cycle requests from the other ports. Any interruption to the
data transfers from the write ports 1944, 1946 to the FIFOs
1920, 1922 is preferably kept to a minimum.

The read ports 1948, 1950 operate in a converse fashion.
When a read port 1948, 1950 initiates a read request, a
DRAM cycle is immediately requested. When granted, the
memory array 1910 is read and data is written into the
corresponding FIFO 1936, 1938. As soon as the first data
word is written into the FIFO 1936, 1938, it is available for
read-out by the read port 1948, 1950. Thus there is an initial
delay in obtaining the first datum word but after that there is
a high likelihood that there are no further delays in retrieving
the successive data words. DRAM reads will be terminated
when a higher priority DRAM request is received, or if the
read FIFO 1936, 1938 becomes full, or when the read port
1948, 1950 requires no more data. Once the read has been
terminated in this way, it is not restarted until there is room
in the FIFO 1936, 1938 for a preset number of data words.
Once the read port terminates the cycle, any data remaining
in the FIFO 1936, 1938 is discarded.

In order to keep DRAM control overheads to a minimum,
rearbitration for the DRAM access is restricted so that bursts
cannot be interrupted until a preset number of data words
have been transferred (or until the corresponding write FIFO
1920, 1922 is emptied, or read FIFO 1936, 1938 is filled).

Each of the access ports 1944, 1946, 1948, 1950 has an
associated burst start address which is latched in a counter
1942 at the start of the burst. This counter holds the current
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address for transactions on that port so that, should the
transfer be interrupted, it can be resumed at any time at the
correct memory address. Only the address for the currently
active DRAM cycle is selected by multiplexer 1940 and
passed on to the row address counter 1916 and column
address counter 1918. The low order N bits of address are
inputted to the column counter 1918 while the higher order
address bits are inputted to the row counter 1916. Multi-
plexer 1914 outputs row addresses from the row counter
1916 to the memory array 1910 during the row address time
of the DRAM and passes column addresses from the column
counter 1918 during column address time of the DRAM.
The row address counter 1916 and the column address
counter 1918 are loaded at the start of any burst to the
memory array DRAM 1910. This is true both at the start of
a port cycle and at the continuation of an interrupted burst.
The column address counter 1918 is incremented after each
transfer to memory has taken place while the row address
counter 1916 is incremented when the column address
counter 1918 rolls over to a count of zero. When the latter
happens, the burst must be terminated and restarted at the
new row address.

In the preferred embodiment it is assumed that memory
array 1910 comprizes 4x8 bit byte lines making up a 32 bits
per word. Further there is associated with each write port
1944, 1946 a set of four byte write enable signals 1950, 1952
which individually allow data to be written to each 8-bit
portion of each 32-bit data word in the memory array 1910.
Since it is possible to arbitrarily mask the writing of data to
any byte within each word that is written to the memory
array 1910, it is necessary to store the write enable infor-
mation along with each data word in corresponding FIFOs
1926, 1928. These FIFOs 1926, 1928 are controlled by the
same signals that control the write FIFOs 1920, 1922 but are
only 4 bits wide instead of the 32 bits required for the write
data in FIFOs 1920, 1922. In like fashion, multiplexer 1930
is controlled in the same manner as the multiplexer 1912.
The selected byte write enables are inputted to the controller
1932 which uses the information to selectively enable or
disable writing to the addressed word in the memory array
1910 in synchronization with the write data being inputted
to the memory array 1910 by way of multiplexer 1912.

The arrangement of FIG. 146 operates under the control
of the controller 1932. FIG. 147 is a state machine diagram
depicting the detail of operation of the controller 1932 of
FIG. 146. After power up and at the completion of reset the
state machine is forced into state IDLE 100 in which all
DRAM control signals are driven inactive (high) and mul-
tiplexer 1914 drives row addresses to the DRAM array 1910.
When a refresh or cycle request is detected, the transition is
made to state RASDEL1 1962. On the next clock edge the
transition to state RASDEL2 1964 is made. On the next
clock edge, if the cycle request and refresh have gone away,
the state machine returns to state IDLE 1900, otherwize,
when the DRAM tRP (RAS precharge timing constraint)
period has been satisfied, the transition to state RASON
1966 is made at which time the row address strobe signal,
RAS, is asserted low. After tRCD (RAS to CAS delay timing
constraint) has been satisfied, the transition to state COL
1968 is made, in which the multiplexer 1914 is switched
over to select column addresses for inputting to the DRAM
array 1910. On the next clock edge the transition to state
CASON 1970 is made and the DRAM column address
strobe (CAS) signal is driven active low. Once the tCAS
(CAS active timing constraint) has been satisfied, the tran-
sition to state CASOFF 1972 is made in which the DRAM
column address strobe (CAS) is driven inactive high once
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again. At this point, if further data words are to be trans-
ferred and a higher priority cycle request or refresh is not
pending or if it is too soon to rearbitrate anyway, and once
the tCP (CAS precharge timing constraint) has been
satisfied, the transition back to state CASON 1970 will be
made in which the DRAM column address strobe (CAS) is
driven active low again. If no further data words are to be
transferred, or if rearbitrating is taking place and a higher
priority cycle request or refresh is pending, then the transi-
tion is made to state RASOFF 1974 instead, providing tRAS
(RAS active timing constraint) and tCP (CAS precharge
timing constraint) are both satisfied. In this state the DRAM
row address strobe (RAS) signal is driven inactive high. On
the next clock edge the state machine returns to state IDLE
1860 ready to start the next cycle.

When in state RASDEL2 1964 and a refresh request is
detected, the transition will be made to state RCASON 1980
once tRP (RAS precharge timing constraint) has been sat-
isfied. In this state DRAM column address strobe is driven
active low to start a DRAM CAS before RAS refresh cycle.
On the next clock edge the transition to state RRASON 1978
is made in which DRAM row address strobe (RAS) is driven
active low. When tCAS (CAS active timing constraint) has
been met, the transition to state RCASOFF 1976 will be
made in which DRAM column address strobe (CAS) is
driven inactive high. Once tRAS (RAS active timing
constraint) has been met, the transition to state RASOFF
1974 is made in which DRAM row address strobe (RAS) is
driven inactive high effectively ending the refresh cycle. The
state machine then continues as above for a normal DRAM
cycle, making the transition back to state IDLE 1960.

The refresh counter 1934 of FIG. 146 is simply a counter
that produces refresh request signals at a fixed rate of once
per 15 microseconds, or other rate as determined by the
particular DRAM manufacturer’s requirements. When a
refresh request is asserted, it remains asserted until acknowl-
edged by the state machine of FIG. 147. This acknowledge-
ment is made when the state machine enters state RCASON
1980 and remains asserted until the state machine detects the
refresh request has been de-asserted.

In FIG. 148, there is set out in pseudo code form, the
operation of the arbitrator 1924 of FIG. 146. It illustrates the
method of determining which of four cycle requesters is
granted access to the memory array 1910, and also a
mechanism for modifying the cycle requester priorities in
order to maintain a fair access regime. The symbols used in
this code are explained in FIG. 149.

Each requester has 4 bits associated with it that represent
that requester’s priority. The two high order bits are preset
to an overall priority by way of configuration values set in
a general configuration register. The two low order bits of
priority are held in a 2-bit counter that is updated by the
arbitrator 24. When determining the victor in an arbitration,
the arbitrator 1924 simply compares the 4-bit values of each
of the requesters and grants access to the requester with the
highest value. When a requester is granted a cycle its low
order 2-bit priority count value is cleared to zero, while all
other requesters with identical high order 2-bit priority
values and whose low order 2-bit priority is less than the
victor’s low order 2-bit priority have their low order 2-bit
priority counts incremented by one. This has the effect of
making a requester that has just been granted access to the
memory array 1910 the lowest priority among requesters
with the same priority high order 2-bit value. The priority
low order 2-bit value of other requesters with priority high
order 2-bit value different to that of the winning requester
are not affected. The high order two bits of priority deter-
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mine the overall priority of a requester while the low order
two bits instil a fair arbitration scheme among requesters
with identical high order priority. This scheme allows a
number of arbitration schemes to be implemented ranging
from hard-wired fixed priority (high order two bits of each
requester unique) through part rotating and part hard-wired
(some high order 2-bit priorities different to others, but not
all) to strictly fair and rotating (all priority high order 2-bit
fields the same).

FIG. 149 depicts the structure of the priority bits associ-
ated with each requester and how the bits are utilized. It also
defines the symbols used in FIG. 148.

In the preferred embodiment, the various FIFOs 1920,
1922, 1938 and 1936 are 32 bits wide and 32 words deep.
This particular depth provides a good compromise between
efficiency and circuit area consumed. However, the depth
may be altered, with a corresponding change in
performance, to suit the needs of any particular application.

Also, the four port arrangement shown is merely a pre-
ferred embodiment. Even the provision of a single FIFO
buffer between the memory array and either a read or write
port will provide some benefits. However, the use of mul-
tiple read and write ports provides the greatest potential
speed increase.

Miscellaneous Module

The miscellaneous module 239 provides clock generation
and selection for the operation of the co-processor 224, reset
synchronization, multiplexing of error and interrupt signals
by routing of internal diagnostic signals to external pins as
required, interfacing between the internal and external form
of the CBus and multiplexing of internal and generic Bus
signals onto a generic/external CBus output pins. Of course,
the operation of the miscellaneous module 239 varies in
accordance with clocking requirements and implementation
details depending on the ASIC technology utilized.
External Interface Controller

The following described apsects of the invention relate to
a method and an apparatus for providing virtual memory in
a host computer system having a co-processor that shares the
virtual memory. The embodiments of the invention seek to
provide a co-processor able to operate in a virtual memory
mode in conjunction with the host processor.

In particular, the co-processor is able to operate in a
virtual memory mode of the host processor. The
co-processor includes a virtual-memory-to-physical-
memory mapping device that is able to interrogate the host
processor’s virtual memory tables, so as to map instruction
addresses produced by the co-processor into corresponding
physical addresses in the host processor’s memory.
Preferably, the virtual-memory-to-physical-memory map-
ping device forms part of a computer graphics co-processor
for the production of graphical images. The co-processor
may include a large number of modules able to form various
complex operations on images. The mapping device is
responsible for the interaction between the co-processor and
the host processor.

The external interface controller (EIC) 238 provides the
co-processors interface to the PCI Bus and to a generic Bus.
It also provides memory management to translate between
the co-processor’s internal virtual address space and the host
system physical address space. The external interface con-
troller 238 acts as a master on the PCI Bus when reading the
data from the host memory in response to a request from the
input interface switch 252 and when writing data to host
memory in response to a request from the result organizer
249. The PCI Bus access is implemented in accordance the
well known standard with “PCI Local Bus specification,
draft 2.1”, PCI special interest group, 1994.
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The external interface controller 238 arbitrates between
simultaneous requests for PCI transactions from the input
interface switch 252 and the result organizer 249. The
arbitration is preferably configurable. The types of requests
received include transactions for reading less than one cache
line of the host co-processor at a time, reading between one
and two cache lines of the host and reading two or more
cache lines of the host. Unlimited length write transactions
are also implemented by the external interface controller
238. Further, the external interface controller 238 optionally
also performs prefetching of data.

The construction of the external interface controller 238
includes a memory management unit which provides virtual
to physical address mapping of host memory accesses for all
of the co-processor’s internal modules. This mapping is
completely transparent to the module requesting the access.
When the external interface controller 238 receives a request
for host memory access, it initiates a memory management
unit operation to translate the requested address. Where the
memory management unit is unable to translate the address,
in some cases this results in one or more PCI Bus transaction
to complete the address translation. This means that the
memory management unit itself can be another source of
transaction requests on the PCI Bus. If a requested burst
from the input interface switch 252 or results organizer 249
crosses the boundary of a virtual page, the external interface
controller 238 automatically generates a memory manage-
ment unit operation to correctly map all virtual addresses.

The memory management unit (MMU) (915 of FIG. 150)
is based around a 16 entry translation look aside buffer
(TLB). The TLB acts as a cache of virtual to physical
address mappings. The following operations are possible on
the TLB:

1) Compare: A virtual address is presented, and the TLB
returns either the corresponding physical address, or a
TLB miss signal (if no valid entry matches the address).

2) Replace: A new virtual-to-physical mapping is written
into the TLB, replacing an existing entry or an invalid
entry.

3) Invalidate: A virtual address is presented; if it matches
a TLB entry, that entry is marked invalid.

4) Invalidate All. All TLB entries are marked invalid.

5) Read: A TLB entry’s virtual or physical address is read,

based on a four bit address. Used for testing only.

6) Write: A TLB entry’s virtual and physical address is

written, based on a four bit address.

Entries within the TLB have the format shown in FIG.
151. Each valid entry consists of a 20-bit virtual address 670,
a 20-bit physical address 671, and a flag which indicates
whether the corresponding physical page is writable. The
entries allow for page sizes as small as 4 kB. A register in
the MMU can be used to mask off up to 10 bits of the
addresses used in the comparison. This allows the TLB to
support pages up to 4 MB. As there is only one mask
register, all TLB entries refer to pages of the same size.

The TLB uses a “least-recently-used” (LRU) replacement
algorithm. A new entry is written over the entry which has
the longest elapsed time since it was last written or matched
in a comparison operation. This applies only if there are no
invalid entries; if these exist, they are written to before any
valid entries are overwritten.

FIG. 152 shows the flow of a successtul TLB compare
operation. The incoming virtual address 880 is divided into
3 parts 881-883. The lower 12 bits 881 are always part of the
offset inside a page and so are passed directly on to the
corresponding physical address bits 885. The next 10 bits
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882 are either part of the offset, or part of the page number,
depending on the page size, as set by the mask bits. A zero
in the mask register 887 indicates that the bit is part of the
page offset, and should not be used for TLB comparisons.
The 10 address bits are logically “ANDED” with the 10
mask bits to give the lower 10 bits of the virtual page number
889 for TLB lookups. The upper 10 bits 883 of the virtual
address are used directly as the upper 10 bits of the virtual
page number 889.

The 20-bit virtual page number thus generated is driven
into the TLB. If it matches one of the entries, the TLB
returns the corresponding physical page number 872, and
the number of the matched location. The physical address
873 is generated from the physical page number using the
mask register 887 again. The top 10 bits of physical page
number 872 are used directly as the top 10 bits of the
physical address 873. The next 10 bits of physical address
872 are chosen 875 from either the physical page number (if
the corresponding mask bit is 1), or the virtual address (if the
mask bit is 0). The lower 12 bits 885 of physical address
come directly from the virtual address.

Finally, following a match, the LRU buffer 876 is updated
to reflect the use of the matched address.

A TLB miss occurs when the input interface switch 252
or the results organizer 249 requests an access to a virtual
address which is not in the TLB 872. In this case, the MMU
must fetch the required virtual-to-physical translation from
the page table in host memory 203 and write it into the TLB
before proceeding with the requested access.

The page table is a hash table in the hosts main memory.
Each page table entry consists of two 32-bit words, with the
format shown in FIG. 153. The second word comprizes the
upper 20 bits for the physical address and the lower 12 bits
are reserved. The upper 20 bits of the corresponding virtual
address are provided in the first word. The lower 12 bits
include a valid (V) bit and writable (W) or a “read-only” bit,
with the remaining 10 bits being reserved.

The page table entry contains essentially the same infor-
mation as the TLB entry. Further flags in the page table are
reserved. The page table itself may be, and typically is,
distributed over multiple pages in main memory 203, which
in general are contiguous in virtual space but not physical
space.

The MMU contains a set of 16 page table pointers, setup
by software, each of which is a 20-bit pointer to a 4 kB
memory region containing part of the page table. This means
the co-processor 224 supports a page table 64 kB in size,
which holds 8 k page mappings. For systems with a 4 kB
page size, this means a maximum of 32 MB of mapped
virtual address space. Preferably, the page table pointers
always reference a 4 kB memory region, regardless of the
page size used in the TLB.

The operation of the MMU following a TLB miss is
shown 690 in FIG. 154, as follows:

1. Execute the hash function 892 on the virtual page
number 891 that missed in the TLB, to produce a 13-bit
index into the page table.

2. Use the top 4 bits 894 of the page table index 894, 896
to select a page table pointer 895.

3. Generate the physical address 890 of the required page
table entry, by concatenating the 20-bit page table
pointer 895 with the lower 9 bits of the page table index
896, setting the bottom 3 bits to 000 (since page table
entries occupy 8 bytes in host memory).

4. Read 8 bytes from host memory, starting at the page
table entry physical address 898.

5. When the 8-byte page table entry 900 is returned over
the PCI bus, the virtual page number is compared to the
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original virtual page number that caused the TLLB miss,
provided that the VALID bit is set to 1. If it does not
match, the next page table entry is fetched
(incrementing the physical address by 8 bytes) using
the process described above. This continues until a
page table entry with a matching virtual page number
is found, or an invalid page table entry is found. If an
invalid page table entry is found, a page fault error is
signalled and processing stops.

6. When a page table entry with a matching virtual page
number is found, the complete entry is written into the
TLB using the replace operation. The new entry is
placed in the TLB location pointed to by the LRU
buffer 876.

The TLB compare operation is then retried, and will
succeed, and the originally requested host memory access
can proceed. The LRU buffer 876 is updated when the new
entry is written into the TLB.

The hash function 892 implemented in the EIC 238 uses
the following equation on the 20 bits of virtual page number

(vpn):
index=((vpn>>S;) XOR (vpn>>S,)XOR(vpn>>S;)) & Ox1fff;

where s, s, and S; are independently programmable shift
amounts (positive or negative), each of which can take
on four values.

If the linear search through the page table crosses a 4 kB
boundary, the MMU automatically selects the next page
table pointer to continue the search at the correct physical
memory location. This includes wrapping around from the
end of the page table to the start. The page table always
contains at least one invalid (null) entry, so that the search
always terminates.

Whenever the software replaces a page in host memory,
it must add a page table entry for the new virtual page, and
remove the entry corresponding to the page that has been
replaced. It must also make sure that the old page table entry
is not cached in the TLB on the co-processor 224. This is
achieved by performing a TLB invalidation cycle in the
MMU.

An invalidation cycle is performed via a register write to
the MMU, specifying the virtual page number to be
invalidated, along with a bit that causes the invalidation
operation to be done. This register write may be performed
directly by the software, or via an instruction interpreted by
the Instruction Decoder. An invalidation operation is per-
formed on the TLB for the supplied virtual page number. If
it matches a TLB entry, that entry is marked invalid, and the
LRU table updated so that the invalidated location is used
for the next replace operation.

A pending invalidate operation has priority over any
pending TLB compares. When the invalidate operation has
completed, the MMU clears the invalidate bit, to signal that
it can process another invalidation.

If the MMU fails to find a valid page table entry for a
requested virtual address, this is termed a page fault. The
MMU signals an error, and stores the virtual address that
caused the fault in a software accessible register. The MMU
goes to an idle state and waits until this error is cleared.
When the interrupt is cleared, the MMU resumes from the
next requested transaction.

A page fault is also signalled if a write operation is
attempted to a page that is (not marked writable) marked
read only.

The external interface controller (EIC) 238 can service
transaction requests from the input interface switch 252 and
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the result organizer 249 that are addressed to the Generic
bus. Each of the requesting modules indicates whether the
current request is for the Generic Bus or the PCI bus. Apart
from using common buses to communicate with the input
interface switch 252 and the results organizer 249, the EIC’s
operation for Generic bus requests is entirely separate from
its operation for PCI requests. The EIC 238 can also service
CBus transaction types that address the Generic bus space
directly.

FIG. 150 shows the structure of the external interface
controller 238. The IBus requests pass through a multiplexer
910, which directs the requests to the appropriate internal
module, based on the destination of the request (PCI or
Generic Bus). Requests to the Generic bus pass on to the
generic bus controller 911, which also has RBus and CBus
interfaces. Generic bus and PCI bus requests on the RBus
use different control signals, so no multiplexer is required on
this bus.

IBus requests directed to the PCI bus are handled by an
[Bus Driver (IBD) 912. Similarly, an RBus Receiver (RBR)
914 handles the RBus requests to PCI. Each of the IBD 912
and RBR 914 drive virtual addresses to the memory man-
agement unit (MMU) 915, which provides physical
addresses in return. The IBD, RBR and MMU can each
request PCI transactions, which are generated and controlled
by the PCI master mode controller (PMC) 917. The IBD and
the MMU request only PCI read transactions, while the RBR
requests only PCI write transactions.

A separate PCI Target Mode Controller (PTC) 918
handles all PCI transactions addressed to the co-processor as
a target. This drives CBus master mode signals to the
instruction controller, allowing it to access all other mod-
ules. The PTC passes returned CBus data to be driven to the
PCI bus via the PMC, so that control of the PCI data bus pins
comes from a single source.

CBus transactions addressed to EIC registers and module
memory are dealt with by a standard CBus interface 7. All
submodules receive some bits from control registers, and
return some bits to status registers, which are located inside
the standard CBus interface.

Parity generation and checking for PCI bus transactions is
handled by the parity generate and check (PGC) module
921, which operates under the control of the PMC and PTC.
Generated parity is driven onto the PCI bus, as are parity
error signals. The results of parity checking are also sent to
the configuration registers section of the PTC for error
reporting.

FIG. 155 illustrates the structure of the IBus driver 912 of
FIG. 150. Incoming [Bus address and control signals are
latched 930 at the start of a cycle. An or-gate 931 detects the
start of the cycle and generates a start signal to control logic
932. The top address bits of the latch 930, which form the
virtual page number, are loaded into a counter 935. The
virtual page number is passed to the MMU 915 (FIG. 150)
which returns a physical page number which is latched 936.

The physical page number and the lower virtual address
bits are recombined according to the mask 937 and form the
address 938 for PCI requests to the PMC 717 (FIG. 102).
The burst count for the cycle is also loaded into a counter
939. Prefetch operations use another counter 941 and an
address latch and compare circuit 943.

Data returned from the PMC is loaded into a FIFO 944,
along with a marker which indicates whether the data is part
of a prefetch. As data becomes available at the front of the
FIFO 944, it is clocked out by the read logic via synchro-
nization latches 945,946. The read logic 946 also generates
the IBus acknowledge signal.
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A central control block 932, including state machines,
controls the sequencing of all of the address and data
elements, and the interface to the PMC.

The virtual page number counter 935 is loaded at the start
of an IBus transaction with the page number bits from the
IBus address. The top 10 bit of this 20-bit counter always
come from the incoming address. For the lower 10 bits, each
bit is loaded from the incoming address if the corresponding
mask bit 937 is set to 1; otherwize, the counter bit is set to
1. The 20-bit value is forwarded to the MMU interface.

In normal operation the virtual page number is not used
after the initial address translation. However, if the IBD
detects that the burst has crossed a page boundary, the virtual
page counter is incremented, and another translation is
performed. Since the low order bits that are not part of the
virtual page number are set to 1 when the counter is loaded,
a simple increment on the entire 20-bit value always causes
the actual page number field to increment. The mask bits 937
are used again after an increment to set up the counter for
any subsequent increments.

The physical address is latched 936 whenever the MMU
returns a valid physical page number after translation. The
mask bits are used to correctly combine the returned physi-
cal page number with the original virtual address bits.

The physical address counter 938 is loaded from the
physical address latch 936. It is incremented each time a
word is returned from the PMC. The count is monitored as
it increments, to determine whether the transaction is about
to cross a page boundary. The mask bits are used to
determine which bits of the counter should be used for the
comparison. When the counter detects that there are two or
less words remaining in the page, it signals the control logic
932, which the terminates the current PCI request after two
more data transfers, and requests a new address translation
if required. The counter is reloaded after the new address
translation, and PCI requests resumed.

The burst counter 939 is a 6-bit down counter which is
loaded with the IBus burst value at the beginning of a
transaction. It is decremented every time a word is returned
from the PMC. When the counter value is two or less, it
signals to the control logic 932, which can then terminate the
PCI transaction correctly with two more data transfers
(unless prefetching is enabled).

The prefetch address register 943 is loaded with the
physical address of the first word of any prefetch. When the
subsequent IBus transaction starts, and the prefetch counter
indicates that at least one word was successfully prefetched,
the first physical address of the transaction is compared to
the value in the prefetch address latch. If it matched, the
prefetch data is used to satisfy the IBus transaction, and any
PCI transaction requests start at the address after the last
prefetched word.

The prefetch counter 941 is a four bit counter which is
incremented whenever a word is returned by the PMC
during a prefetch operation, up to a maximum count equal
to the depth of the input FIFO. When the subsequent IBus
transaction matches the prefetch address, the prefetch count
is added to the address counter, and subtracted from the burst
counter, so that PCI requests can start at the required
location. Alternatively, if the IBus transaction only requires
some of the prefetched data, the requested burst length is
subtracted from the prefetch count, and added to the latched
prefetch address, and the remaining prefetch data is retained
to satisty further requests.

The Data FIFO 944 is a 8 word by 33 bit asynchronous
fall through FIFO. Data from the PMC is written into the
FIFO, along with a bit indicating whether the data is part of
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a prefetch. Data from the front of the FIFO is read out and
driven onto the IBus as soon as it becomes available. The
logic that generates the data read signals operates synchro-
nously to clk, and generates the IBus acknowledge output. If
the transaction is to be satisfied using prefetched data,
signals from the control logic tell the read logic how many
words of prefetched data should be read out of the FIFO.

FIG. 156 illustrates the structure of the RBus Receiver
914 of FIG. 150. Control is split between two state machines
950, 951. The Write state machine 951 controls the interface
to the RBus. The input address 752 is latched at the start of
an RBus burst. Each data word of the burst is written in a
FIFO 754, along with its byte enables. If the FIFO 954
become full r-ready is deasserted by the write logic 951 to
prevent the results organiser from attempting to write any
more words.

The write logic 951 notifies the main state machine 950 of
the start of an RBus burst via a resynchronized start signal
to prevent the results organizer from trying to write any
more words. The top address bits, which form the virtual
page number, are loaded into a counter 957. The virtual page
number is passed to the MMU, which returns a physical
page number 958. The physical page number and the lower
bits of the virtual address are recombined according to the
mask, and loaded into a counter 960, to provide the address
for PCI requests to the PMC. Data and byte enables for each
word of the PCI request are clocked out of the FIFO 954 by
the main control logic 950, which also handles all PMCM
interface control signals. The main state machine indicates
that it is active via a busy signal, which is resynchronized
and returned to the write state machine.

The write state machine 951 detects the end of an RBus
burst using r-final. It stops loading data into the FIFO 954,
and signals the main state machine that the RBus burst has
finished. The main state machine continues the PCI requests
until the Data FIFO has been emptied. It then deasserts busy,
allowing the write state machine to start the next RBus burst.

Returning to FIG. 150, the memory management unit 915
is responsible for translating virtual page numbers into
physical page numbers for the IBus driver (IBD) 912 and the
RBus receiver (IBR) 914. Turning to FIG. 157, there is
illustrated the memory management unit in further detail. A
16 entry translation lookaside buffer (TLB) 970 takes its
inputs from, and drives its outputs to, the TLB address logic
971. The TLB control logic 972, which contains a state
machine, receives a request, buffered in the TLB address
logic, from the RBR or IBD. It selects the source of the
inputs, and selects the operation to be performed by the
TLB. Valid TLB operations are compare, invalidate, invali-
date all, write and read. Sources of TLB input addresses are
the IBD and RBR interfaces (for compare operations), the
page table entry buffer 974 (for TLB miss services) or
registers within the TLB address logic. The TLB returns the
status of each operation to the TLB control logic. Physical
page numbers from successful compare operations are
driven back to the IBD and RBR. The TLB maintains a
record of its least recently used (LRU) location, which is
available to the TLLB address logic for use as a location for
write operations.

When a compare operations fails, the TLB control logic
972 signals the page table access control logic 976 to start
a PCI request. The page table address generator 977 gener-
ates the PCI address based on the virtual page number, using
its internal page table pointer registers. Data returned from
the PCI request is latched in the page table entry buffer 974.
When a page table entry that matches the required virtual
address is found, the physical page number is driven to the
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TLB address logic 977 and the page table access control
logic 976 signals that the page table access is complete. The
TLB control logic 972 then writes the new entry into the
TLB, and retries the compare operation.

Register signals to and from the SCI are resynchronized
980 in both directions. The signals go to and from all other
submodules. A module memory interface 981 decodes
access from the Standard CBus Interface to the TLB and
page table pointer memory elements. TLB access are read
only, and use the TLB control logic to obtain the data. The
page table pointers are read/write, and are accessed directly
by the module memory interface. These paths also contain
synchronization circuits.

Peripheral Interface Controller

Turning now to FIG. 158, there is illustrated one form of
peripheral interface controller (PIC) 237 of FIG. 2 in more
detail. The PIC 237 works in one of a number of modes to
transfer data to or from an external peripheral device. The
basic modes are:

1) Video output mode. In this mode, data is transferred to

a peripheral under the control of an external video
clock and clock/data enables. The PIC 237 drives
output clock and clock enable signs with the required
timing with respect to the output data.

2) Video input mode. In this mode, data is transferred
from a peripheral under the control of an external video
clock and data enable.

3) Centronics mode. This mode transfers data to and from
the peripheral according to the standard protocol
defined in IEEE 1284 standard.

The PIC 237 decouples the protocol of the external
interface from the internal data sources or destination in
accordance with requirements. Internal data sources write
data into a single stream of output data, which is then
transferred to the external peripheral according to the
selected mode. Similarly, all data from an external periph-
eral is written into a single input data stream, which is
available to satisfy a requested transaction to either of the
possible internal data destinations.

There are three possible sources of output data: the LMC
236 (which uses the ABus), the RO 249 (which uses the
RBus), and the global CBus. The PIC 237 responds to
transactions from these data sources one at a time—a
complete transaction is completed from one source before
another source is considered. In general, only one source of
data should be active at any time. If more than one source
is active, they are served with the following priority—CBus,
then ABus, then RBus.

As usual, the module operates under the control of the
standard CBus interface 990 which includes the PIC’s
internal registers.

Further, a CBus data interface 992 is provided for access-
ing and controlling peripheral devices via the co-processor
224. An ABus interface 991 is also provided for handling
memory interactions with the local memory controller. Both
the ABus interface 991 and CBus data interface 992 in
addition to the result organizer 249 send data to an output
data path 993 which includes a byte—wide FIFO. Access to
the output data path is controlled by an arbiter which keeps
track of which source has priority or ownership of the output
stream. The output data path in turn interfaces with a video
output controller 994 and centronics control 997 depending
on which of these is enabled. Each of the modules 994, 997
reads one byte at a time from the output data path’s internal
FIFO. The centronics controller 997 implements the cen-
tronics data interfacing standard for controlling peripheral
devices. The video output controller includes logic to control
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output pads according to the desired video output protocols.
Similarly, a video input controller 998 includes logic to
control any implemented video input standard. The video
input controller 998 outputs to an input data path unit 999
which again comprizes a byte wide input FIFO with data
being written into the FIFO asynchronously, one byte at a
time, by either the video input controller 998 or centronics
controller 997.

A data timer 996 contains various counters utilized to
monitor the current state of FIFO’s within output data paths
993 and input data path 999.

It can be seen from the foregoing that the co-processor can
be utilized to execute dual streams of instructions for the
creation of multiple images or multiple portions of a single
image simultaneously. Hence, a primary instruction stream
can be utilized to derive an output image for a current page
while a secondary instruction stream can be utilized, during
those times when the primary instruction stream is idle, to
begin the rendering of a subsequent page. Hence, in a
standard mode of operation, the image for a current page is
rendered and then compressed utilising the JPEG coder 241.
When it is required to print out the image, the co-processor
241 decompresses the JPEG encoded image, again utilising
the JPEG coder 241. During those idle times when no further
portions of the JPEG decoded image are required by an
output device, instructions can be carried out for the com-
positing of a subsequent page or band. This process gener-
ally accelerates the rate at which images are produced due to
the overlap operating of the co-processor. In particular, the
co-processor 224 can be utilized to substantial benefit in the
speeding up of image processing operations for printing out
by a printer attached to the co-processor such that rendering
speeds will be substantially increased.

It will be evident from the foregoing that discussion of the
preferred embodiment refers to only one form of implemen-
tation of the invention and modifications, obvious to those
skilled in the art, can be made thereto without departing
from the scope of the invention.

The claims defining the invention are as follows:

1. An apparatus for performing image processing opera-
tions on data objects, said apparatus including:

data source means for providing a stream of said data
objects;

a plurality of operand source means for providing streams
of operand objects, or providing operand objects in
response to an address presented;

instruction means for selecting an image processing
operation, and enabling or disabling a plurality of
options in said image processing operation;

a configuration register for storing said image processing
operation and options;

a register file for storing information necessary for per-
forming said image processing operation;

decoding means connected to said configuration register
for decoding said image processing operation and
options;

a control signal register connected to said decoding means
for storing the output of said decoding means;

input interface means, connected to said control signal
register, said register file, said data source means and
said plurality of said operand source means, for:

(a) accepting, storing and rearranging said data objects
from said data source means, and said operand
objects from said operand source means, in accor-
dance with the output of said control signal register,

(b) generating addresses for said operand objects, in
accordance with the output of said control signals
register and said register file, and
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(¢) updating said information in said register file to
reflect a current status of the image processing
operation;

processing means, connected to said input interface
means, said register file, and said control signal
register, for performing arithmetic operations on the
output of said input interface means in accordance with
the output of said control signals register and said
register file to produce processed data objects; and

data destination means connected to said processing
means for receiving said processed data objects.
2. The apparatus according to claim 1, wherein said
processing means further includes:

a plurality of identical channel processing means for
performing said arithmetic operations on part of the
output of said input interface means in accordance with
the output of said control signal register and said
register file; and

flow control means connected to said plurality of said
channel processing means for controlling a flow of said
data objects in said channel processing means by
outputting enable signals in accordance with the output
of said control signal register.
3. The apparatus according to claim 2, wherein said
channel processing means further includes:

a plurality of identical arithmetic units connected to said
flow control means for performing said arithmetic
operations on said data objects in accordance with the
output of said control signal register;

combining means, connected to said flow control means
and said arithmetic units, for adding the outputs of a
plurality of said arithmetic units and said register file in
accordance with the output of said control signal reg-
ister and said register file;

first post-processing means, connected to said combining
means and said flow control means, for rounding an
output of said combining means, finding the absolute
value of said rounded output, and clamping of said
absolute value in accordance with the output of said
control signal register;

second post-processing means, connected to a selected
plurality of arithmetic units and said first post-
processing means, for selecting between the outputs of
said arithmetic units and said first post-processing
means and clamping the selected output, if necessary,
in accordance with the output of said control signal
register; and

routing logic, connected to a plurality of said arithmetic

units, said combining means and said first post-
processing means, for routing selected outputs of a
plurality of said arithmetic units and said first post-
processing means to selected inputs of a plurality of
said arithmetic units and said combining means.

4. The apparatus according to any one of claims 1 to 3,
further comprising a read-only memory (ROM) containing
dividends of 255/x, where x is an integer ranging from 0 to
255.

5. The apparatus according to claim 2, wherein the
number of said channel processing means in the processing
means is four.

6. An apparatus for performing compositing between two
streams of pixels and a stream of attenuation values, said
apparatus including:

data source means for providing a first one of said streams
of pixels;
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first operand source means for providing a second one of

said streams of pixels;

second operand source means for providing said stream of

attenuation values;

instruction means for enabling or disabling a plurality of

options in compositing operations;

a configuration register for storing a compositing opera-

tion and said options of said instruction means;

register file for storing information necessary for perform-
ing compositing operations;

decoding means connected to said configuration register

for decoding said options and said compositing opera-

tion;

a control signal register connected to said decoding means

for storing the output of said decoding means;

input interface means, connected to said control signal

register, said register file, said data source means, said

first operand source means and said second operand
source means, for:

(a) accepting, storing and rearranging pixels from said
data source means and said first operand source
means, and attenuation values from said second
operand source means in accordance with an output
of said control signal register,

(b) generating a stream of data objects to replace the
second stream of pixels from said first operand
source in accordance with the output of said control
signal register and said register file, and

(¢) updating said information in said register file to
reflect a current status of the compositing operation;

processing means, connected to said input interface

means, said register file, and said control signal
register, for performing arithmetic operations on an
output of said input interface means in accordance with
the output of said control signal register and said
register file to produce composited pixels; and

data destination means connected to said processing

means for receiving said composited pixels.

7. The apparatus according to claim 6, wherein the pixels
from said data source means and said first operand source
means are made up of four channels, where three of the four
channels represent a color of each pixel and the remaining
channel represents an opacity of each pixel.

8. The apparatus according to claim 7, wherein said
options in the compositing operations include:

multiplying each of said color channels in a pixel from

said data source with an opacity of that pixel;

multiplying each of the color channels in the pixel from
said first operand source with an opacity of the pixel;

specifying whether the stream of pixels from said first
operand source is replaced by streams of data objects
generated by said input interface means;

specifying which compositing operator is used;

specifying whether the output of said processing means is

clamped or wrapped; and

dividing each of the color channels in the composited

pixel in said processing means with opacity of the

composited pixel if such an option is enabled.

9. The apparatus according to claim 8, wherein the
information in said register file includes:

offsets for a plus operator on the four channels;

start values of a blend on the four channels;

end values of the blend on the four channels; and

a length of said stream of pixels from said data source

means.
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10. The apparatus according to claim 9, wherein said
stream of data objects generated by said input interface
means is a sequence of integers from 0 to 255 for the length
of the stream of pixels from said data source means.
11. The apparatus according to claim 10, wherein the
arithmetic operations performed by said processing means
include:
multiplying each of the color channels in the pixel from
said data source with an opacity of the pixel to produce
a first pre-multiplied pixel, if such option is enabled;

interpolating between a start value of the blend and an end
value of the blend with said stream of data objects
generated by said input interface means, if such option
is enabled;
multiplying each of the color channels in the pixel from
said first operand source or the blend from said inter-
polating with an opacity of the pixel or the blend to
produce a second pre-multiplied pixel, if such option is
enabled;
multiplying said attenuation value with said second pre-
multiplied pixel to produce an attenuated pixel;

performing one of the following compositing operators on
said first pre-multiplied pixel and said attenuated pixel
to produce the composited pixel;

Operator Definition

(aco,a0) over (bco,bo)
(aco,a0) in (beo,bo)
(aco,a0) out (bco,bo)
(aco,a0) atop (bco,bo)
(aco,a0) xor (bco,bo)
(aco,a0) plus (bco,bo)

(aco + beo(l-ao), ao+bo(1-a0))

(acobo, aobo)

(aco(1-bo), ao(1-bo))

(acobo+bco(1-a0), bo)
((aco(1-bo)+bco(1-a0), ao(1-bo)+bo(1-a0))
(we(aco+beo-r(ao+bo-255)/25 5) +
r(clamp(ao+bo)-255)/255, clamp(ao+bo))

(aco,a0) loadzero (bco,bo)  (0,0)

(aco,a0) loade (bco,bo) (bco, ao)
(aco,a0) loado (beo,bo) (aco, bo)
(aco,a0) loadco (bco,bo) (beo, bo)

where (aco,a0) refers to said first pre-multiplied pixel of
colour ac, opacity ao, r is said offset value for the plus
operator, and wc() is the wrapping/clamping operator; divid-
ing each of the color channels in the composited pixel in said
processing means with an opacity of the composited pixel.
12. An apparatus for performing general color space
conversion on streams of interval values, fraction values,
and colour table values, said apparatus including:
data source means for providing said interval and fraction
values; operand source means for providing said color
table values in response to said interval values pre-
sented;
instruction means for enabling or disabling a plurality of
options for general color space conversion;
a configuration register for storing instruction means;
decoding means connected to said configuration register
for decoding said instruction means;
a control signal register connected to said decoding means
for storing the output of said decoding means;
input interface means, connected to said control signal
register, said data source means, and said operand
source means, for:

(a) accepting, storing, rearranging and outputting said
interval values and said fraction values from said
data source means in accordance with the output of
said control signal register, and

(b) fetching said color table values from said operand
source means using said interval value as an address,
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and storing, rearranging and outputting said color
table values in accordance with the output of said
control signal register;

processing means, connected to said input interface
means and said control signal register, for performing
arithmetic operations on the output of said input inter-
face means in accordance with the output of said
control signal register to produce a result color; and

data destination means connected to said processing

means for receiving the result color.

13. The apparatus according to claim 12, wherein the
options for a general color space conversion operation
include specifying whether to apply a translation and clamp-
ing operation to said result color.

14. The apparatus according to claim 13, wherein said
translation and clamping operation is calculated using the
formula:

0, if x <63,
out= 2(x —64), if 64 <x <191,
255, if 192 <x.

15. The apparatus according to claim 14, wherein said
arithmetic operation performed in said processing means is
a tri-linear interpolation of said color table values with said
fraction values.

16. An apparatus for applying an affine image transfor-
mation on a source image, said apparatus including:

data source means for providing a kernel descriptor and
weights of a weighting function;

first operand source means for providing index table
values from a index table of said source image in
response to an index table address presented;

second operand source means for providing at least one
pixel of said source image in response to a pixel address
presented;

an instruction means for enabling or disabling a plurality
of options of said affine image transformation;

a configuration register for storing instruction means;

decoding means connected to said configuration register
for decoding said instruction means;

a control signal register connected to said decoding means
for storing an output of said decoding means;

a register file for storing information necessary for per-
forming said affine image transformation;

input interface means connected to said control signal
register, said register file, said data source means, and
said operand source means for:

(a) accepting and storing said kernel descriptor and said
weights of said weighting function from said data
source means in accordance with the output of said
control signal register,

(b) generating coordinates of pixels to be fetched from
said source image in accordance to said Kkernel
descriptor and outputs of said register file and said
control signal register,

(c) calculating index table addresses from coordinates
and the output of said register file,

(d) fetching index table entries from said first operand
source means,

(e) calculating a pixel address from said index table
entry and said coordinates,

(f) fetching at least one of pixels from said second
operand means, and storing and rearranging said
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pixels in accordance with the output of said control
signals register;

processing means, connected to said input interface

means, said register file and said control signal register,
for performing a plurality of arithmetic operations on
the output of said input interface means in accordance
with the output of said control signal register to pro-
duce a result pixel; and

data destination means connected to said processing

means for receiving the result pixel.

17. The apparatus according to claim 16, wherein the
kernel descriptor has two forms including a long kernel
descriptor and a short kernel descriptor.

18. The apparatus according to claim 17, wherein:

the long kernel descriptor includes:

source image start co-ordinates,
a source image horizontal delta,
a source image vertical delta, and
binary points to truncate; and
the short kernel descriptor includes:
an integer part of source image start x-coordinate, and
binary point to truncate;

with the fraction part of said source image start

x-coordinate assumed to be zero, said source image
horizontal delta assumed to be 1 in the direction of the
x-axis, and said source image vertical delta assumed to
be 1 in the direction of the y-axis.

19. The apparatus according to claim 18, wherein:

said source image start co-ordinates are unsigned fixed

point numbers with 24.24 resolution; and

said source image horizontal delta and said source image

vertical delta are 2°s complement fixed point numbers
with 24.24 resolution.

20. The apparatus according to claim 16, wherein the
pixels in said source image include four channels, where
three of the four channels represent a color of the pixel and
the remaining channel represents an opacity of the pixel.

21. The apparatus according to claim 20, wherein the
options of the affine image transformation include:

bi-linearly interpolating four surrounding source image

pixels to determine an actually sampled value, or said
sampled value is snapped to a closest source image
pixel value;

specifying whether an offset is applied on any one of the

said four channels;

specifying whether to multiply each of the color channels

in said pixel from said source image with an opacity of
said pixel from said source image;

specifying whether to clamp output values; and

specifying whether to take an absolute value of output

values before wrapping or clamping.

22. The apparatus according to claim 21, wherein said
plurality of arithmetic operations include:

multiplying each of the color channels in said plurality of

pixels from said source image with an opacity of the
pixel to produce a first pre-multiplied pixel, if such
option is enabled;

bi-linearly interpolating the four surrounding source

image pixels to determine the actually sampled value,
if such option is enabled, otherwise the pixel fetched
from said source image is taken as the actually sampled
value;

applying a weighting function on a plurality of said

actually sampled values to determine the internal result
pixel;
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rounding off the fraction part of an internal result pixel in

accordance to said binary points to truncate in said

kernel descriptor; and

taking the absolute value of said internal result pixel and

clamping it, if such options are enabled.

23. The apparatus according to claim 22, wherein said
weighting function is applied by adding together a two-
dimensional array of sub-sample pixels in said source image
and said offset, with each pixel given a different weight.

24. The apparatus according to claim 23, wherein said
weights in the weighting functions are signed numbers.

25. The apparatus according to claim 23, wherein said
information necessary for performing said affine image
transformation includes:

a number of rows and columns in said two-dimensional

array of sub-samples;

a base address of said index table of said source image;

an offset to be applied in said weighting function; and

a number of result pixels to produce.

26. An apparatus for applying a convolution using a
convolution matrix to a source image, said apparatus includ-
ing:

data source means for providing a kernel descriptor and

coefficients of said convolution matrix;

first operand source means for providing index table

values from an index table of said source image in

response to an index table address presented;

second operand source means for providing pixels of said

source image in response to a pixel address presented;

an instruction means for enabling or disabling a plurality
of options in convolution;

a configuration register for storing said instruction means;

decoding means connected to said configuration register

for decoding said instruction means;

a control signal register connected to said decoding means

for storing the output of said decoding means;

a register file for storing information necessary for per-

forming an affine image transformation;

an input interface means, connected to said control signal

register, said register file, said data source means, and

said operand source means, for:

(a) accepting and storing said kernel descriptor and said
weights of a weighting function from said data
source means in accordance with the output of said
control signal register,

(b) generating coordinates of pixels to be fetched from
said image in accordance to said kernel descriptor
and outputs of said register file and said control
signal register,

(c) calculating index table addresses from said coordi-
nates and the output of said register file,

(d) fetching index table entry from said first operand
source means,

(e) calculating pixel address from said index table entry
and said coordinates,

(f) fetching a plurality of pixels from said second
operand means, and storing and rearranging said
pixels in accordance with the output of said control
signals register;

processing means, connected to said input interface

means, said register file and said control signal register,
for performing arithmetic operation on the output of
said input interface means in accordance with the
output of said control signal register to produce a result
pixel; and
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data destination means connected to said processing

means for receiving the result pixel.

27. The apparatus according to claim 26, wherein the
kernel descriptor has two forms including a long kernel
descriptor and a short kernel descriptor. 5

28. The apparatus according to claim 27, wherein:

the long kernel descriptor includes:

source image start co-ordinates,
source image horizontal delta,
source image vertical delta, and
binary points to truncate;

10

and the short kernel descriptor includes:
integer part of source image start x-coordinate, and
binary point to truncate;

with the fraction part of the source image start !
x-coordinate assumed to be zero, the source image
horizontal delta assumed to be 1 in the direction of the
x-axis, and the source image vertical delta assumed to
be 1 in the direction of the y-axis.

29. The apparatus according to claim 28, wherein:

said source image start co-ordinates are unsigned fixed

point numbers with 24.24 resolution, and

said source image horizontal delta and said source image

vertical delta are 2°s complement fixed point numbers
with 24.24 resolution.

30. The apparatus according to claim 26, wherein the
pixels in said source image include four channels, three of
the four channels representing a color of the pixel and the
remaining channel representing an opacity of the pixel.

31. The apparatus according to claim 30, wherein the
options for said convolution include:

25

30

bi-linearly interpolating four surrounding source image
pixels to determine an actually sampled value, or the
sampled value is snapped to a closest source image
pixel value;

35

specifying whether to apply the offset on any one of the
said four channels;

specifying whether to multiply each of the color channels
in said pixel from said image with an opacity of said
pixel from said image;

N
o

specifying whether to clamp output values; and
specifying whether to take absolute value of output values
before wrapping or clamping.
32. The apparatus according to claim 31, wherein said
plurality of arithmetic operations include:

45

multiplying each of the color channels in said plurality of
pixels from said source image with an opacity of the
pixel to produce a first pre-multiplied pixel, if such
option is enabled;

bi-linearly interpolating the four surrounding source
image pixels to determine the actually sampled value,
if such option is enabled, otherwise the pixel fetched
from said source image is taken as the actually sampled
value;

w
w

applying a weighting function on a plurality of said
actually sampled values to determine an internal result
pixel; 60
rounding off the fraction part of said internal result pixel
in accordance to said binary points to truncate in said

kernel descriptor; and
taking an absolute value of said internal result pixel and
clamping it, if such options are enabled.
33. The apparatus according to claim 32, wherein said
weighting function is applied by adding together a two-

134

dimensional array of sub-sample pixels in said source image
and said offset, with each pixel given a different weight.

34. The apparatus according to claim 31, wherein said
weights in the weighting functions are signed numbers.

35. The apparatus according to claim 32, wherein said
information necessary for performing said affine image
transformation includes:

a number of rows and columns in said two-dimensional

array of sub-samples;

a base address of said index table of said source image;

an offset to be applied in said weighting function; and

a number of result pixels to produce.

36. An apparatus for performing a linear colour space
conversion on a stream of source data objects with a
conversion matrix, said apparatus including:

data source means for providing said source data objects;

operand source means for providing a plurality of coef-

ficients of said conversion matrix in response to a line
number presented;

instruction means for enabling or disabling a plurality of

options in linear color space conversion;

a configuration register for storing said instruction means;

decoding means connected to said configuration register

for decoding said instruction means;

a control signal register connected to said decoding means

for storing the output of said decoding means;

input interface means, connected to said control signal

register, said data source means, and said operand

source means, for:

(a) accepting, storing and outputting said source data
objects from said data source means in accordance
with the output of said control signals register,

(b) generating said line number to fetch a plurality of
said coefficients from operand source means in
accordance to said control signal register, and

(c) storing, rearranging and outputting said coefficients
in accordance with the output of said control signals
register;

processing means, connected to said input interface

means and said control signal register, for performing

a plurality of arithmetic operations on the output of said

input interface means in accordance with the output of

said control signal register to produce a result data
object; and

data destination means connected to said processing

means for receiving the result data object.

37. The apparatus according to claim 36, wherein:

said conversion matrix has 4 rows and 5 columns,

said data objects and said result data objects are pixels

with 4 channels, three of the four channels representing

the color of the pixel and the remaining channel rep-
resenting the opacity of the pixel, and

said linear color space conversion is defined by:

rx boo Dot bop Doz boa
ay
Ty bio bt bip bz bia
= a |
Iy bro by baz b3 bag ‘
aO
wo | Lbsy bax bss by b
30 bsi bsz bss baall

where r; is the result pixel and a; is the A operand pixel.

38. The apparatus according to claim 37, wherein the
coefficients of said conversion matrix are signed fixed point
number with 12.12 resolution.
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39. The apparatus according to claim 38 wherein said
plurality of options in said linear color space conversion
include:

whether to multiply each of the color channels in said

pixel from said data source means with an opacity of 35

said pixel;

whether to clamp said result data objects to a predeter-
mined minimum value overflow when they underflow,
and to a predetermined maximum value when they
oveerflow; and

whether to take absolute value of said result data object

before wrapping or clamping.

40. The apparatus according to claim 39, wherein said
arithmetic operations performed in said processing means
include:

multiplying each of the color channels in the pixel from

said data source with an opacity of the pixel to produce
first pre-multiplied pixel, if such option is enabled;

10
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multiplying two of the channels with two of the columns
of said conversion matrix to produce first and second
internal products;

adding said first and second internal products and the last
column of said conversion matrix to form first internal
sum;

multiplying the remaining two channels with the remain-
ing two columns of said conversion matrix to produce
third and fourth internal products;

adding said third and fourth internal products to said first
internal sum to produce internal result;

rounding off the fraction part of said internal result; and
taking absolute value and clamping the rounded inter-
nal result if such options are enabled.
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Drawings,
Sheet 52, Fig. 68, “huffman” should read -- Huffman --.

Column 4
Line 4, “a” should read -- an --.

Column 8
Line 33, “FIG. 66 and 67” should read -- FIGS. 66 and 67 --.

Column 10

Line 7, "illustrate" should read -- illustrates --.

Line 47, "is a block diagram of a multifunction block in a color channel processor;"
should read -- illustrates a block diagram of the cache and cache controller; --.

Line 50, "in more FIG. 144 illustrates, a block diagram of the cache and cache
controller" should be deleted.

Column 13
Line 55, "artefacts" should read -- artifacts --.
Line 58, "artefact" should read -- artifact --.

Column 14
Line 44, "despatching" should read -- dispatching --.

Column 19
Table 1, "Invalidate>>rite" should read -- Invalidate/Write --.
Table 1, "#MMU." should read -- MMU. --.

Column 29
Line 35, "raized" should read -- raised --.

Column 30
Line 19, "raized" should read -- raised --.

Column 31
Line 33, "according" should read -- according to --.

Column 32
Line 28, "comprizes" should read -- comprises --.
Line 39, "a" should read -- an --.
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UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,289,138 B1

DATED

: September 11, 2001

INVENTOR(S) : Dominic Yip et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is

hereby corrected as shown below:

Column 34
Line 36, ""c_sdata.inp" should read -- "c_sdata_in" --.

Column 35
Line 65, "way" should read -- way of --.
Line 67, "still" should read -- will --.

Column 36
Line 51, "c iad" should read -- ¢_iad --.

Column 37
Line 52, "wize" should read -- wise --.

Column 38
Line 51, "comprizes" should read -- comprises --.

Column 39

Line 37, "comprizes" should read -- comprises --.
Line 39, "comprize" should read -- comprise --.
Line 64, "comprizes" should read -- comprises --.

Column 40
Line 4, "byte-wize" should read -- byte-wise --.
Line 37, "byte wize" should read -- byte-wise --.

Column 42
Line 38, "summarising" should read -- summarizing --.

Column 46
Line 41, "bitwize" should read -- bit-wise --.

Column 47

Table 11, "(Wc(acotbeo-1(ag+b,-" should read -- (we(ago-beo-1(ag+bo- --.

Line 28, "ROB" should read -- RGB --.

Column 49
Line 44, "comprized" should read -- comprised --.

Column 52
Line 59, "ie" should read -- i.e., --.
Line 61, "ie" should read -- i.e., --.
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It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 54
Line 21, "comprizes" should read -- comprises --.
Line 25, "comprizes" should read -- comprises --.

Column 55
Line 33, "organiser" should read -- organizer --.
Line 34, "organiser" should read -- organizer --.

Column 56

Line 63, "comprizes" should read -- comprises --.
Line 64, "comprizes" should read -- comprises --.
Line 65, "comprize" should read -- comprise --.

Column 57
Line 28, "quantising" should read -- quantizing --.
Line 40, "comprizes" should read -- comprises --.

Column 58
Line 54, "comprizes" should read -- comprises --.

Column 63
Line 44, "compizes" should read -- comprises --.
Table 17, "least" should read -- The least --.

Column 64
Line 49, "RO" should read -- RO_ --.

Column 67
Line 53, "Likewize," should read -- Likewise, --.

Column 68
Line 58, "is" should read -- 1s --.

Column 70
Line 10, "Otherwize," should read -- Otherwise, --.

Column 72
Line 64, "ab_reshifter" should read -- ab_preshifter --.
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It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 73
Line 41, "comprizes" should read -- comprises --.
Line 65, "encodine" should read -- encoding --.

Column 75
Line 25, "3.17.9" should be deleted.

Column 77
Line 9, “(2 =1 =1 =255)” should read -- (2 < 1 =255) --.
Line 59, “bytewize” should read -- byte-wise --.

Column 79

Table 26, "dont" should read -- do not --.
Line 29, "bitwize" should read -- bit-wise --.
Line 31, "bitwize" should read -- bit-wise --.

Column 80
Line 47, "in" (first occurrence) should read -- is --.
Line 55, "for implementing" (first occurrence) should be deleted.

Column 83
Line 7, "read" should read -- reads --.

Column 84
Line 19, "comprize" should read -- comprise --.
Line 23, "comprizes" should read -- comprises

Column 85

Line 31, "comprize" should read -- comprise --.
Line 35, "comprize" should read -- comprise --.
Line 57, "byte-wize" should read -- byte-wise --.

Column 86
Line 4, "byte-wize" should read -- byte-wise --.
Line 25, "byte-wize" should read -- byte-wise --.

Column 88

Line 19, "comprize" should read -- comprise --.
Line 20, "comprizes" should read -- comprises
Line 38, "comprize" should read -- comprise --.
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It is certified that error appears in the above-identified patent and that said Letters Patent is

hereby corrected as shown below:

Column 89
Line 26, "comprizes" should read -- comprises --.
Line 29, "comprize" should read -- comprise --.

Column 90
Line 2, "comprizes" should read -- comprises --.
Line 65, "in" should read -- is --.

Column 91
Line 10, "and an one" should read -- another one --.

Column 92
Line 51, "path JPEG" should read -- path/JPEG --.

Column 94

Line 11, "not be" should read -- not to be --.
Line 12, "be" should be deleted.

Line 34, "begins" should read -- begin --.

Column 101
Line 34, "subtract” should read -- subtract --.

Column 102

Line 42, "rin root ratop" should read -- rin, root, ratop --.

Column 104
Line 12, “piecewize” should read -- piecewise --.
Line 25,“ 0 it x (63
out = 2(x-64) if(64(x(191) should read
255 if (192(x)”

- 0 if x <63
out = 2(x-64) i (64 < x < 191)
255  if (192 < x) -

Column 110
Line 3, “comprizes” should read -- comprises --.

Column 111
Line 33, “comprize” should read -- comprise --.
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UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 6,289,138 B1 Page 6 of 6
DATED : September 11, 2001
INVENTOR(S) : Dominic Yip et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 116
Line 24, “comprizes” should read -- comprises --.
Line 55, “otherwize” should read -- otherwise --.

Column 121
Line 25, “sy, S5, and S3” should read -- S1, S», and S5 --.

Column 124
Line 15, “organiser” should read -- organizer --.

Column 126
Line 5, “comprizes” should read -- comprises --; and “byte wide” should read
-- byte-wise --.

Signed and Sealed this

First Day of April, 2003

JAMES E. ROGAN
Director of the United States Patent and Trademark Office
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