US006122010A

United States Patent [(11] Patent Number: 6,122,010
Emelko (45] Date of Patent: *Sep. 19, 2000
[54] TELEVISION SIGNAL DATA TRANSMISSION 4910750 3/1990 FiSHET wecerrcerrrmmrmmremsissssssessessenss 375/19
SYSTEM 4,920,503 4/1990 Cook 348/552
4,958,230 9/1990 Jonnalagadda et al. 348/21

= . z i . 4,969,041 11/1990 O’Grady et al. ...overnverienene. 348/473
[75] Inventor: Glenn A. Emelko, Willoughby, Ohio 5,(]1)43125 5/1991 Pocock !rc[o i

) .) 5,063,446 11/1991 Gibson 348/484
[73] Assignee: Vidicast Ltd., Mentor, Ohio 5,075,773 12/1991 Pullen et al. . 348/432
5,177,604 1/1993 Martinez ... 348/13

[*] Notice: This patent issued on a continued pros- 5,191,330 3/1993 Fisher et al. .. 341/56
ecution application filed under 37 CFR 5200822 4/1993 Bronfin et al. - 348/460

1.53(d), and is subject to the twenty year 5.243.423 9/1993 Delean et al 7 _3;4"8-“’4?3

tent . lerm provisions of 35 U.SC. 5,251,301 10/1993 Cook .oeeviiercvenrnrniniseennn:. 395/200.76

pale P 5327237 7/1994 Gerdes et al. ... 348/476

154(a)(2)- 5387041 2/1995 Montgomery et al. . 348/473

5410360 4/1995 Montgomery 348/473

[21] Appl. No.: 08/898,314 5452000 9/1995 Citta 348/470
5,629958 5/1997 Willming .. w 375/295

[22] Filed: Jul. 22, 1997 5,686,966 11/1997 De La Cierva, Sr. . 348/461
5,767,896 6/1998 Nemirofsky 348/13

Related U.S. Application Data 58903.231 [5/1999 BMeEIKDionossimmmissmsinuensscmsasinn 341/56

FOREIGN PATENT DOCUMENTS
[63] Continuation-in-part of application No. 08/767.371, Dec.

16, 1996. 0490 504 A2 6/1992 FEuropean Pat. Off. HO4L 25/49
= WO 96/26607 8/1996 European Pat. Off. . HO4N 7/03
[51] Int. ClL HO4N 7/08 7310645 2/1975 Netherlands . . HO4L 25/48
o2 B B &4 e ——— 348/461; 348/465; 348/473; WO 94/09578 4/1994 Sweden ...cocccvivcrrvcnnnenns HO4L. 7/027
375/295; 341/56 PCTAT96/
/ 0(3 O WIPO s .’I .
[58] Field of Search ... 348/461, 463, 00032 (5R990, “WIED. e HAN 7103
348/465, 467, 473, 723, 17, 21; 375/295, OTHER PUBLICATIONS
340, 341; 341/56, 57; HO4N 7/08 ; 5
! ; Harlow W. Neu, Some Techniques of Pulse Code Modula-
5 sfererices Ci tion, Bulletin Schweizerischen Elektrotechnischen Vereins,
(5] Referencos Citad vol. 51, No. 20, Oct. 8, 1960, pp. 978-985.
U.S. PATENT DOCUMENTS Primary Examiner—John K. Peng
3,634,855 1/1972 MIller .cvivensrinssssrssinassssssssns 340/347 Assistant Examiner—Jean W, Désir
3,743,767 7/1973 Bitzer et al. .. 348/463 Attorney, Agent, or Firm—Arter & Hadden LLP
3,927,250 12/1975 Rainger 348/467 _
3.984.624 10/1976 Waggener ... 348/473 [57] ABSTRACT
4183054 1/1980 Patisaul et al. .oocooriiniiieniiniiieans 348/6)))
4367488 1/1983 Leventer et al. ..cocvevevvicninns 348/467 Asystem for high-speed data transmission using a lelevision
4,484,328 11/1984 Schlafly ... 370/294 signal to communicate encoded data. A multi-level encoding
4,538,174 8/1985 Gargini el al. .. 34877 method is employed whereby raw data values are converted
4.556,973 12/1985 Uemura 370/490 into one of a plurality of voltage levels. The encoding

4,626,913 12/1986 Gurumurthy .
4,665,431 5/1987 Cooper
4,750,036 6/1988 Martinez
4,789,895 12/1988 Mustafa et al. ..
4,800,428 1/1989 Johanndeiter et al.
4,805,020 2/1989 Greenberg ...
4,807,031 2/1989 Broughton et al.

- i:gji?; method allows for improved data transfer rates, conservation

348/12 of bandwidth, and self-synchronization for decoding. Mock
348/464 timing data signals are generated to comply with television
... 348/468 signal standards, such as NTSC, SECAM, PAL and HDTV.
v 348/460
..................... 348/460 53 Claims, 20 Drawing Sheets

EVERY STATE HAS 4
POSSIBLE STATES TO
TRANSITION TO.
ENCODING THE
VALUES 0. |. 2. AND
3100, O1. 10. 1)

Roku EX1023
U.S. Patent No. 9,911,325

U.S. Patent Sep. 19, 2000 Sheet 1 of 20 6,122,010

ENCODE 1

26 24
Fi g.]
ENCODE 0 TRt
LEVEL B 30
ENCODE 0 /
ENCODE 1
ENCODE 2
ENCODE 1
ENCODE 1
ENCODE 0
ENCODE 0
ENCODE 2
ENCODE 2

Fig. i

U.S. Patent Sep. 19, 2000 Sheet 2 of 20 6,122,010

QUTPUT
LEVEL B

EVERY STATE HAS 4
POSSIBLE STATES TO
TRANSITION TO.

ENCODING THE
VALUES 0, 1. 2. AND
3 (00. O1. 10. I1)

6,122,010

Sheet 3 of 20

Sep. 19, 2000

U.S. Patent

. 13AT1
“1Nd1N0

JWIL

0l

]

10

10

10

11

0l

0l

0

00

00

10

01

I

I

01

00

:yIvd 114

. ANVA
" INdNI

0S

v
=4
—J
—
=3

13ATT
1nd1no

U.S. Patent

60

Sep. 19, 2000

FIRST = TRUE

y
READ INPUT

3

Y

VALUE

IS
INPUT < LAST
VA%UE

IF INPUT VALUE =0
THEN
OUTPUT LEVEL=A
AND LAST=0

_S'![]

y

IF INPUT VALUE =1
THEN
OUTPUT LEVEL=B
AND LAST =1

_872

|

[F INPUT VALUE =2
THEN
QUTPUT LEVEL=C
AND LAST=2

—S'M

[F INPUT VALUE =3
THEN
OUTPUT LEVEL=1D
AND LAST=3

_876

5-90

Sheet 4 of 20

\562
j64

66

NO

Fig. 5

\

802_

IF INPUT VALUE =0
THEN
OUTPUT LEVEL=8
AND LAST =]

|

822—

[F INPUT VALUE =1
THEN
OUTPUT LEVEL=C
AND LAST=2

:

84

IF INPUT VALUE =2
THEN
OUTPUT LEVEL=1D
AND LAST=3

BBL

[F INPUT VALUE =3
THEN
OUTPUT LEVEL=E
AND LAST=4

FIRST= FALSE

J

A

6,122,010

U.S. Patent Sep. 19, 2000 Sheet 5 of 20 6,122,010

100

102
FIRST = TRUE IS

Y
READ OUTPUT =

VALUE

!

IF QUTPUT LEVEL=A
THEN
INPUT VALUE=0

'

IF OUTPUT LEVEL=8B
THEN
A INPUT VALUE =1

S
B

v
IF OUTPUT LEVEL=C _S
S
S

THEN
INPUT VALUE =2

i

IF OUTPUT LEVEL=0

124 THEN
STORE)
INPUT _{ INPUT VALUE =3

VALUE l
T IF OUTPUT LEVEL=E

lee THEN
FIRST= FALSE f INPUT VALUE =4

T 116

LAST = INPUT VALUE 12
Liag 0

118
IF INPUT VALUE >LAST _§
THEN
INPUT VALUE = INPUT VALUE —1

Fig. 9)

6,122,010

Sheet 6 of 20

Sep. 19, 2000

U.S. Patent

2 by

. T3
* 1NdLNO

Il

11

00

00

:d41vd 118

., ANTVA
* 1INdNI

INIL
<

v
— 8
—3J 13A31
1NdLNO
=

—J

6,122,010

Sheet 7 of 20

Sep. 19, 2000

U.S. Patent

6 b1y
v1v0 — N3LYIANOD V1V
0300330 «—— 01 le——— ¥ling f——— W0 f—— 03000N3
0L 90TV 90 VNV
951 — vo1 — 251 — "
051
g ‘brg
vIv0 ¥3L43AND) Y1VO
03000N3 «<——— 90NV fe——d J1301 e | y3jing fe——— 0300ININN
90 TVNY 01 11910 | VLVO | 9NIOOINI
— 0300JN3 — —
9] vel o€

/of

U.S. Patent Sep. 19, 2000 Sheet 8 of 20 6,122,010

J I_' J

ACTIVE
VIOEO
PERIOD
Se. 44 us
A

HORTZONTAL
BLANKING

| e] MR TP
1. 12 us

HORTZONTAL
SYNC

PULSE
I 4.77 us i

. =

|
HORIZONTAL

RE TRACE

TRIGGERED Fig. 10
BY SYNC

(1l us MIN)

—J

IR

e

VERTICAL ACTIVE VERTICAL| [{] | VERTACAL
RE TRACE vioeo | |SRigES | [BLANKING S
TRIGGERED |- PERIOD (2 55y | [INTERVAL Sk
BY SYNC 241.5 LINES A 21 LINES] (f |33 %2he

(1.3 ms MIN) / /
3 /

J Fig. 11

6,122,010

Sheet 9 of 20

Sep. 19, 2000

U.S. Patent

21 b1y
012
o_mN ele 21z~
3 Sng_0d 3 N8 79 4 002
A A
snivis | | vivo SnLvis [| vivo
80€
D E Y gia-r] 0418
Y1v0d yivo
SNLYLS 9300330 SIS wvY
1IN [—> 1IN
i} N
z 0102 WL1910) gnon \42: 0
VIV
02€ 03009N3 03009N3 0ce
\
¥31¥3ANO) ANTO3N ¥3LYIANO)
S0LVITLISO == ™y ™ [T | SNOILYINTHHOD VO[T | SeYiisD
vog 90e — 02— y02 —
/43A /
mcm.\ ¥300030/33A1303Y ¥3000N3/43L L THSNVAL C e

6,122,010

Sheet 10 of 20

Sep. 19, 2000

U.S. Patent

vpl b1
NJV18 NVHL | Qp- NOILVZIVND3 ONV

43N0V (00000000) 0 (00000 | “ygis " 1yans zaon | © VIS

Xve [o (00000010) ¥9 (01002 | ¥NV18 "L¥3A/ Z¥OH | 2 3LVIS

ATH 02 | 02 (00000110) 96 (110)€ I01/¥ 133 | € 3VIS

ITH OF | O (00000001) 821 (001)¥ g 13A3T v VIS

ATHN 09 | 09 (00000101) 091 (101)S 3 T3A3T S 31VIS

LTHM 08| 08 (0000001 1) 261 (011)9 0 T3ATT 9 31VIS

LIHN | 001 (00000111) b22 (1)L 3 13A31 L 3WVIS

31 (13437 | (0d01d02d0E0rd0Sd09dnL A0 | SAFALALY, | NOLLVHERINT 1 3uvis
AWIdSIO | 31 | YLvO 03000N3 W1I9I0 | Syijo070 gsw 43009N3 43000N3
[378v1
el by
335 15-S35TNd INAS TVINOZINOH-111
NolLvoag O3S ¥ SISTNG INAS WITLEIA NI SNOTLYENIS
e J3STS "061-S3SINd_INAS TYOTL¥3A-11
[33576 "2-S35Id ONIZIWND3- 1
, _—
FLTHA 001 IWIL SIHL ON1¥NO —55"
DR 1 - .
Xav18 o.ﬁ. I -3570d TWIILYIA — g2l
—%
e _ ..mm -
NVHL OF-— =
L PP M | [\ Sy
11 I 11 1 111
H¥0d H¥0d
AL LNO¥ 3

6,122,010

Sheet 11 of 20

Sep. 19, 2000

U.S. Patent

gyl big
() JWIL
00v1 oom. 0001 008 009 00y omm 0 0
{] __ | : ||
0S
| L] I
i, O .< -
TYNIIS ISIN 40
S3SYHd ¥N04 L1SYId 001
0S1
§ 002
FA;ﬁWL 0Se

1= Lann
VIS YIS
ONODIS 1SHI4

ENCODED DIGITAL DATA VALUES

U.S. Patent

Sep. 19, 2000

Sheet 12 of 20

1340

1320

1300

1280

L
=
—_—
]
=
S
[V]
O —
%2} pa—
[= <
—
L
= I_-—1=
—— "
[——— —
L——]
—_ -
———— — :
= —————y ‘=F
—
-
— |
— ————————aam
e T
\ == e
o [] o o
I.?') o u o uw
[3¥] cu

ENCODED DIGITAL DATA VALUES

1260

6,122,010

TIME (us)
Fig. 14C

U.S. Patent Sep. 19, 2000 Sheet 13 of 20 6,122,010

w
o
ouJ
o — w—
=S < =
— =
2 — =1 | _
Swi—r
= — =1 | _
:l--'l—__l ™
= E—— 1 =
= PTY p— =
== e —=
—l =
—— — I
Ol =_1_ | -
pam Y | ot G =
=""—n , &
— | =
— | . =
| S— o T
— _mw
= :._,‘———1-—- ~ .
(=] — —_—lad
p ot - Lo N=8 = 9:’
= = == -
S="1T =
= N=5
— —
=" =
—wa | | m
S~ = B
o
I
(9¥]
uw
O
: cu
o o o o o o
Tg] o (Tp] o Tp]
(V] (9 0]

ENCODED DIGITAL DATA VALUES

U.S. Patent Sep. 19, 2000 Sheet 14 of 20 6,122,010
9 b
232
/“
230
Fig. 15A START. GENERATE NTSC ’)’- =
SYNC/BLANKING
WAVEFORM CONTINUOUSLY :
(D 4 \
COLLECT DATA TO BE
SENT 0 FIF0 " &
236 238
SET OUTPUT |_4
10 ZERO
A
/’_842 240
ARE WE IN
N | SET OUTBUT | YES 7\ \KING OR APPROACHING
10 Tvo BLANKING ?
IS THE s
YES [No qurpur
FIFO ?EHPTY EHENBES =
A .
248
READ ONE BYTE |S
FROM FIFO
r— 22 -) “\\
250
1 o e%e REPEAT ONCE FOR
ENCODING | _NO EACH PAIR OF BITS IN
DO?ﬁlg BYTE 8 BIT DATA BYTE. IS THERE

A BIT PAIR TO ENCODE
?

MATCH TO FIG.15B

6,122,010

Sheet 15 of 20

Sep. 19, 2000

U.S. Patent

gol by
s ormamo) (s oranano) [nass ol naimo | [Nassowindino) [XIS 0L Lndino)
135 '€ 40 INWA Y 135 € 0 NVAY R 135 '€ 40 INVA Y 15 CH0INMAY N | 135 €0 WAy
SVH 31vd 116 SIHL 1) \svk ¥ivd 118 SIHL 31f | (SVH ¥Ivd 118 SIHL 41) (SVH ¥Ivd 118 SIHL 31} | |SVH ¥1Vd 118 SIHL JI
prge—" pege’ | pog2— gz | posz—
oL) [xsodnan)| (xsoiindino) xisorindino)| AL oL Indino |
135 "2 40 VA Y 135 2 40 VA ¥ 135 ‘2 40 VA ¥ 135 2 40 VA ¥ 135 ‘2 40 3NVA ¥
SVH ¥Ivd 118 SIHL 31 (SVH M1V 118 SIHL 41) [|SVH ¥IVd 118 SIHL J1) |SVH ¥IVd 118 SIHL 41) | |SYH ¥IVd 118 SIHI JIj

SV ¥IVd 118 SIHL 1)

|SVH ¥1vd 118 SIHL 41

|SVH ¥1vd 118 SIH 31

|SVH d1vd 116 SIHL 31

g2 | e | 2092 snge | 2952

s oL a0) [@osormaino Y| (C asorindino) [3mdorindio)| [¥nos ol Lndino |
135 ‘1 40 WA ¥ 135 T 40 INVA ¥ 135 T 40 INVA Y 135 T 40 VA ¥ 135 ‘1 40 VAV

(VA ¥1vd 11 SIHL J1) \SWH u1vd 116 SIHL 31) | (SVH ¥1vd 116 SIWL 31) |SVH ¥IVd 118 SIHL 41f | (SVH ¥Ivd 118 SIHL JI]
oo e | w0 | dgs2- w52

oL am) 3mmrorindino Y| (wionandio) wosorindino)| (331 0L 1ndIn0 |
135 '0 40 3NVA ¥ 135 '0 40 VA ¥ 135 ‘0 40 INWA ¥ 135 ‘0 40 INVA 135 ‘0 40 VA Y

|SVH ¥1¥d 118 SIHL 1]

g2
XIS

¥9e

0292
N

¢9e

009¢ /

09¢

¢ 1NdLN0

085 P
I3HL

8¢

0952 o

NIA3S 30
0ML "O¥3Z

95¢e

T

VIVO ISV
SYA LVHA
¥Se

T

=i

VG1 914 0l

HILVN

U.S. Patent Sep. 19, 2000 Sheet 16 of 20 6,122,010

300

—\ / DETECT PRESENCE i

OF ENCODED SIGNAL

e
BREAK TNPUT STGNAL INTO| 334
RANGES. ¥ITH CODES FOR

/ LEVEL A THRU LEVEL €

A

336

WALT FOR A
LITILE BIT

338> YES Fig. I6A

Z 340
START OUR TIMING
CHAIN FOR DECODING

| e

SET LAST LEVEL
10 A

L o

)

WAIT UNTIL THE LAST THREE
HISTORICAL SAMPLES MATCH
A THE PRESENT SAMPLE

348

ARE NE
AT A DIFFERENT
LEVEL ?

MATCH TO FIC.16B

U.S. Patent

Sep. 19, 2000

Sheet 17 of 20

MATCH TO FIG.16A

6,122,010

: 350
WHAT WAS \S
3 \lﬂ?LEVEL >
356 [358 360] 362] 364
[S S ¥ S S S
\ LEVEL A / \ LEVEL B / \ LEVEL C / \ LEVEL D ’ \ LEVEL E ’
r (355& (358& (3500 (353(1 & (3540
[F THIS LEVEL IF THIS LEVEL IF THIS LEVEL [F THIS LEVEL [F THIS LEVEL
IS B. DECODE A] |IS A. DECODE A IS A. DECODE A} |[IS A. DECODE A IS A. DECODE A
BIT PAIR OF 00y |BIT PAIR OF 00 BIT PAIR OF 00§ |BIT PAIR OF 00 BIT-PAIR OF 00
AND STORE IT. AND STORE IT. AND STORE IT. AND STORE IT. AND STORE IT.
) (356b v (353b | (350b , (352b ! (354b
[F THIS LEVEL IF THIS LEVEL [F THIS LEVEL [F THIS LEVEL [F THIS LEVEL
IS C, DECODE A} |IS C. DECODE A IS B, DECODE A] |IS B, DECODE A IS B. DECODE A
BIT PAIR OF 01 |BIT PAIR OF 01 BIT PAIR OF 01| |BIT PAIR OF 01 BIT PAIR OF 0l
AND STORE IT. AND STORE IT. AND STORE [T. AND STORE [T AND STORE IT.
,(3560 (3580 3 (360C (3620 Y (3E4C
[F THIS LEVEL IF THIS LEVEL [F THIS LEVEL IF THIS LEVEL [F THIS LEVEL
IS D. DECODE A] |IS D. DECODE A IS D, DECODE A} |IS C. DECODE A [S C. DECODE A
BIT PAIR OF 10| (BIT PAIR OF 10 BIT PAIR OF 10§ |BIT PAIR OF 10 BIT PAIR OF 10
AND STORE IT. AND STORE IT. AND STORE IT. AND STORE IT. AND STORE IT.
(356d (35Bd { (360(1 : (362(] . (354d
IF THIS LEVEL [F THIS LEVEL IF THIS LEVEL [F THIS LEVEL [F THIS LEVEL
IS B. DECODE Ef |IS E. DECODE A IS E, DECODE A} |IS E. DECODE A IS D. DECODE A
BIT PAIR OF 11} |BIT PAIR OF 11 BIT PAIR OF 11| |BIT PAIR OF 11 BIT PAIR OF 11
AND STORE IT. AND STORE IT. AND STORE IT. AND STORE IT. AND STORE IT.
L L))
366 /-358

HAVE WE

SELECT THE NEXT BIT

COMPLETED A BYTE
(GOT FOUR PAIRS)

PAIR ON THE QUTPUT

BYTE
3?0\
STORE THE BYTE IN THE .
FIFO, RESET T0 FIRST PAIR F iqg. 16B
OF NEXT DECODED BYTE

U.S. Patent Sep. 19, 2000 Sheet 18 of 20 6,122,010
TABLE 2:
ORIGINAL DIFITAL INPUT
el || e | | SEE | e
He INFORMAT[ON I L N b
224 | LEVEL E STATE 7 | >218 AND <255 | 4 (100)
192 | LEVEL D STATE 6 | >184 AND<218 | 3 (011)
160 | LEVEL C STATE S | >150 AND<184 | 2 (010)
128 LEVEL B STATE 4 | >116 AND <150 1 (001)
9 | LEVEL A/IDLE | STATE 3 | <116 0 (000)
64 | BLANKING STATE 2
0 | SyncH/wa. STATE 2

Fig. 17

6,122,010

Sheet 19 of 20

Sep. 19, 2000

U.S. Patent

TABLE 3:

inde

~ m~m ™ ™ ~™ ~m ™ L |
(TR =] o o o o o o o
a= = = = = = - =
O e e —d — el — [S | —d
L O~~~ —-—0000O000O0—~—00—-0000000CO0 —~00 —
v
%
mUUOGI]UUIIOUIIIIU.U.I.....UUI]_UUD.UI.....U.U.I....O.UI.I]]
*

ﬁUUUOUUlllIDDUDOD]IIIUDDU llllll OO0 0O 0O ™ v v et =t =
—

*
o

tE00 —-——00 —-——0000 —-——00—=—0000——00—~—0000——00 ——00

.nonou.]IIIUDDUUUIIIIUDUOUO.‘III1000000111100

[3¥)

o
= —— COO0OCO0OO0O0OOCOOODOOOAOO OO —m m— m— m— — o —
=
N 00D OO0O00O0O00O0OOOOD O m = i et e e e e e
e
o

l

MOODDUOOOOOUIU]UIOIU llllllllllll OmO—0O —0O — 0O

0000000000DUUDDUODDDOOODDUUOUUOIUIDIUIDI

Fig. 18

6,122,010

Sheet 20 of 20

Sep. 19, 2000

U.S. Patent

by
(M) WL 6l Ol . .
00 02 00 'S 00 ‘0l 00 'S 000
: i EEa e e e e e e e >+0 0
S SNV IGH —= \,ﬁ
2€
INASH — o
] e s
@ 00 P o 0 o @ .
V WV Y OV Y VY, 35108 \ o T08
d ’ / \— NY0J3AVA Ly B
VLVO 907TVNY 1 o1 32
9 8 g 8 g 8 g 4 . g 2o
ao Lo L[ooron] | 00 _8_[(00) (00) og1 FOSI =&
J)) I I
ST - (10) el Tl o
0 g B
(on pe2 | 812 uo
0414 0 3 . Pmmmwm
| 031401)
$357Nd () - 952 =
ILTUN Lus 4315193y NI
\ 0340LS 3NTVA 882
02€
l» .
W0 40 420 4I0 400

6,122,010

1

TELEVISION SIGNAL DATA TRANSMISSION
SYSTEM

RELATED APPLICATIONS

The present application is a continuation-in-part (CIP) of
co-pending U.S. application Ser. No.08/767,371 filed Dec.
16, 1996.

FIELD OF THE INVENTION

The present invention relates to the field of high-speed
data transmission, and more particularly, to a system for
providing high-speed data transmission using a television
signal.

BACKGROUND OF THE INVENTION

There has been a failure in the field of data transmission
systems to recognize the potential of a television signal, and
in particular, the large bandwidth available using a television
signal. At present, methods of encoding data into a television
signal have been restricted to relatively low bandwidth and
inefficient use of the television signal medium. The reason
for this appears to be that the data encoding methods in use
were designed more than twenty-five years ago, and the
bandwidth required for the original purpose is relatively low.
For instance, these methods were designed to allow a
television signal to carry closed-captioning and/or teletext
information. The data rate needed for carrying this informa-
tion is extremely low, and though the bit rate of the data
transmission was fairly high (e.g., 4.5 million bits per
second in bursts), the overall bandwidth utilization of the
television signal generally does not exceed 45,000 bits per
second, Moreover, the data encoding methods used for
captioning and teletext are fairly rudimentary. In this regard,
these methods divide a signal line of a television picture up
into a number of time slices, and then impress digital
information into the slots as a series of black or white spots,
representing the digital values of zero and one. The data
bytes are encoded into changing voltages (i.e., black and
white spots), and decoded back into bytes by using a
commonly available electronic device, such as UART
(Universal Asynchronous Receiver Transmitter) or an ACIA
(Asynchronous Communications Interface Adapter). One
limitation of this “binary coding” scheme is that it limits the
data transmission rate. In order to achieve greater transmis-
sion rates, data has been encoded into complex wavelorms,
such as tones, which are then phase, [requency, and ampli-
tude modulated in order to carry the information. For
instance, this method is used in data modems for use in
longer distance high-speed communications. Other forms of
encoding for high-speed data transmission include RF
(Radio Frequency) modulation, networks such as Ethernet
or Arenel, QAM (Quadrature Amplitude Modulation), ASK
(Amplitude Shift Keying), PSK (Phase Shift Keying), FSK
(Frequency Shift Keying), TCM (Trellis Coded Modulation)
and QPSK (Quadrature Phase Shift Keying). All of the
foregoing methods encode data on to waveforms for
transmission, which is the next step beyond raw digital data.

In order to derive further benefits from the use of the
television signal as a transmission medium, it would be
advantageous to encode multiple data bits in parallel as
discreet levels into the television image.

The “information highway™ of the future relies on high-
speed data transmission to distribute image, sound and video
to multiple access points worldwide. Currently, the distri-
bution bottleneck is the data rate (defined in bits per second)

10

15

30

35

40

45

50

60

65

2

capabilities of the communications medium in use. For
example, one minute of compressed digital video data may
be represented by approximately ten megabytes of data.
Currently available communications mediums include voice
grade modems, leased line modems, ISDN services, fiber-
optic or high-speed land-line links, radio modems and
satellite data links.

Prior art approaches to achieving higher data transmission
rates have typically involved trying to compress the data or
to pack more bits per basic transmission unit (baud) within
the same channel bandwidth. For example, a 9.6 Kbps
modem for use on standard two-wire telephone lines oper-
ates within the 3 Khz bandwidth available. To reach 9.6
Kbps, it may use a basic baud rate of 2400 baud, and encode
4 bits per baud. The “baud” defines a number of transitions
made on the base carrier each second, and the number of bits
per baud multiplied by the baud rate provides a number of
bits per second (bps).

Another aspect of the present invention is directed to the
encoding of digital data. Prior art data encoding methods for
encoding digital information have used two voltage levels,
where each voltage level represents a single bit. In this
respect, a first voltage level represents a digital value “0,”
while a second voltage level represents a digital value “1.”
As a result, a sel of eight of these voltage levels is needed
to encode one byte of digital data. Data bytes are encoded
into changing voltages and decoded back into bytes. This is
typically done by using a UART or an ACIA. UARTs
convert parallel data (usually eight-bit words) to a serial data
stream for transmission over a single wire cable and likewise
convert a received serial bit stream to parallel words. The
serial data stream is comprised of a signal having two
voltage levels, one representing a digital “0,” the other
representing a digital “1.”

In many cases, the data rate achievable by UARTs and
ACIAs is insuflicient for the desired application. In order to
achieve greater data rates for high-speed communications,
data has been encoded into complex waveforms such as
tones, which are then phase, frequency and amplitude modu-
lated. As mentioned above, data has been encoded using RF,
QAM, ASK, PSK, FSK, TCM and QPSK. All of the
foregoing methods encode data into AC waveforms for
transmission.

The present invention provides a novel system for trans-
mitting and receiving digital data using a conventional
television signal for data transfer. In a preferred embodiment
of the present invention an encoding system is used which
overcomes the data transfer rate limitations of the prior art
encoding systems, and provides a system for encoding
multiple data bits in parallel as transitions between discrete
levels.

SUMMARY OF THE INVENTION

In accordance with a preferred embodiment of the present
invention, there is provided a television signal data trans-
mission system having a transmitter for encoding digital
data and a mock television signal, and a receiver for decod-
ing the encoded digital data and the mock television signal.

It is an object of the present invention to provide a data
transmission system which uses a conventional television
signal to transmit encoded digital data at very high data
transmission rates.

It is another object of the present invention to provide a
data transmission system which encodes mock television
signals to comply with government standards for regular
broadcast television signals.

6,122,010

3

It is another object of the present invention to provide a
data transmission system which uses a multi-level encoding
system to further increase the data transmission rate.

It is another object of the present invention to provide a
data transmission system which uses a television signal as a
high-speed data transmission medium.

It is still another object of the present invention to provide
a data transmission system which uses the active video
portion of the television signal to transmit data.

It is still another object of the present invention to provide
a data transmission system which significantly reduces the
data transmission time and cost.

It is yet another object of the present invention to provide
a data transmission system which uses standard, readily
available television transmission and receiving devices.

It is yet another object of the present invention to provide
a data transmission system which provides greater band-
width at lower cost.

These and other objects will become apparent from the
following description of a preferred embodiment taken
together with the accompanying drawings and appended
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The above-mentioned and other features and objects of
the invention and the manner of attaining them will become
more apparent and the invention will be best understood by
reference to the following description of an embodiment of
the invention taken in conjunction with the accompanying
drawings and appended claims, wherein:

FIG. 1 is a state diagram for encoding two different input
values into three output levels, according to a preferred
embodiment of the present invention;

FIG. 2 is a state diagram for encoding three different input
values into four output levels, according to a preferred
embodiment of the present invention;

FIG. 3 is a state diagram for encoding four different input
values into five output levels, according to a preferred
embodiment of the present invention;

FIG. 4 is a timing diagram illustrating the encoding of
four different input values according to the state diagram
shown in FIG. 3;

FIG. 5 is a flow chart illustrating a preferred embodiment
of the algorithm for encoding the input values according to
the state diagram shown in FIG. 3;

FIG. 6 is a low chart illusirating a preferred embodiment
of the algorithm for decoding output levels into input values;

FIG. 7 is a timing diagram illustrating the encoding of
four different input values;

FIG. 8 is a block diagram of the hardware arrangement for
implementing the encoding algorithm of the present inven-
tion;

FIG. 9 is a block diagram of the hardware arrangement for
implementing the decoding algorithm of the present inven-
tion;

FIG. 10 is a horizontal timing pictorial for an NTSC
compatible television signal;

FIG. 11 is a vertical timing pictorial for an NTSC com-
patible television signal;

FIG. 12 is a block diagram of the television signal data
transmission system, according to a preferred embodiment
of the present invention;

FIG. 13 is an NTSC television signal waveform for a
black and white television transmission;

15

30

35

40

45

50

60

65

4

FIG. 14A is a table showing the states of the encoder state
machine and corresponding outputs of the encoder;

FIG. 14B is a timing diagram showing the digital encoded
data for the first four phases of an NTSC signal and the first
two scan lines of the active video phase;

FIG. 14C is a timing diagram showing the digital encoded
data for the first scan line shown in FIG. 14B;

FIG. 14D is a timing diagram showing the digital encoded
data for a portion of the first scan line shown in FIG. 14C;

FIGS. 15A and 15B provide a diagram illustrating the
control unit logic for encoding data;

FIGS. 16A and 16B provide a diagram illustrating the
control unit logic for decoding data;

FIG. 17 is a table showing the outputs of the decoder state
machine and corresponding inputs;

FIG. 18 is a table showing the outputs for various signal
generated by the control unit logic for decoding data; and

FIG. 19 is a timing diagram showing the outputs of the
decoder.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

In a preferred embodiment of the present invention, a
novel system for encoding N input values into at least N+1
output levels is used. This novel encoding system is
described in detail below. However, it should be appreciated
that other suitable encoding systems may be used with the
present invention to yield similar results In a preferred
embodiment of the novel encoding system each output level
is represented by a different voltage. However, each output
level may also be represented by a different frequency,
phase, or amplitude. Referring now to the drawings wherein
the showings are for the purpose of illustrating a preferred
embodiment of the invention only, and not for the purpose
of limiting same, FIG. 1 shows a state diagram 20 illustrat-
ing the transition between states for encoding two different
input values (i.c., “0” and “17) into three output levels (i.e.,
output levels A, B and C), according to a preferred embodi-
ment of the present invention. For instance, beginning at
state 22 (output level A), if the next input value is a “0,” the
system transitions to state 24 (output level B). In contrast, if
the next input value is a “1,” the system transitions to state
26 (output level C). The system will transition from one state
1o one of the other two remaining states as each consecutive
input value is encoded. Importantly, it should be noted that
no two consecutive input values will be encoded as the same
output level.

FIG. 2 shows a state diagram 30 illustrating the transition
between states for encoding three input values (i.e., “0,” “1”
and “27) into four output levels (i.e., output levels A, B, C
and D), according to a preferred embodiment of the present
invention.

FIG. 3 shows a state diagram 40 illustrating the transition
is between states for the encoding of four input values (i.e.,
“07, “17, “2” and 3", into five output levels (i.e., output
levels A, B, C, D and E), according to a preferred embodi-
ment of the present invention. It should be appreciated that
since there are four input values, each input value may
represent a bit pair (i.c., “00,” “01,” “10,” and “117).

Therefore, each output level will represent two bits, rather
than one bit, as in conventional encoding systems.
Moreover, where N different input values are encoded into
at least N+1 output levels, each input value can represent
log,(N) bits. As a result of using a single input value to
represent a plurality of bits, higher data transfer rates are

6,122,010

5

achievable, and bandwidth can be conserved. It should be
appreciated that while in a preferred embodiment of the
present invention the input values encode base 2 data (i.c.,
log(N) bits) the input values may also encode base X data.
Therefore, the input values may represent values 0 through
X-1 in base X with the encoded output having at least X
different output levels. It should also be understood that
there may be more than N+1 output levels and transitions
thereof for encoding N different input values. This allows for
simplified implementation of various error detection and
correction methods.

A detailed description of the present invention as applied
to the encoding of four input values into five output levels,
will now be described with reference to FIGS. 4 and 5. FIG.
4 provides a timing diagram 50 which shows the transition
of the output levels as each input value is encoded. It should
be appreciated that in the embodiment shown in FIG. 4, each
input value represents a bit pair. For the purpose of
illustration, input value “0” represents bit pair “01,” input
value “1” represents bit pair “01,” input value “2” represents
bit pair “10” and input value “3" represents bit pair “11.” As
can be seen from FIG. 4, each consecutive output level will
be different. Each output level A thru E is a discrete voltage
level. For instance, output levels A thru E may correspond to
voltages in the range of 0 to 5 volts. The input values shown
in FIG. 4 are encoded into output levels A thru E according
to the algorithm shown in flow chart 60 of FIG. 5. Beginning
with step 62, a FIRST flag is set to TRUE. This will indicate
that this is the first input value to be encoded. At step 64, an
input value will be read in. Next, at step 66, it is determined
whether the input value is the first input value to be encoded,
by determining the status of the FIRST flag. If the input
value is the first input value to be encoded, a first set of rules
(steps 70-76) will be applied. If the input value is not the
first input value to be encoded, it will be determined whether
a second set of rules (steps 80-86) should be applied, as will
be discussed below. For instance, in FIG. 4, the first input
value is a “0"” (corresponding to bit pair “07). Accordingly,
the conditions exist for applying the first set of rules. In
particular, step 70 will be executed. In this respect, the
output level will be set to A and the LAST variable will be
set 1o *0.” The LAST variable is used as the reference value
to determine the appropriate set of rules to be applied
following the first input value, as will be described below in
connection with step 68.

It should be understood that only one of the steps 70-76
will be valid when applying the first set of rules.
Accordingly, step 90 will follow step 70. Step 90 sets the
FIRST flag to FALSE for the subsequent input values. The
algorithm then returns to step 64 to read in the next input
value. In FIG. 4, the next consecutive input value is a “1.”
Since the FIRST flag is now set to FALSE, the algorithm
will proceed from step 66 to step 68. At step 68, it is
determined whether the input value is less than the LAST
variable. This step determines whether the first set of rules

(steps 70-76) should be applied or whether the second set of s

rules (steps 80-86) should be applied. In the present
example, the input value of “1” is greater than the LAST
variable, which has been previously set to “0” at step 70.
Therefore, the algorithm will apply the second set of rules
(steps 80-86). Since the input value is “1,” step 82 will be
executed. Step 82 sets the output level to C and the LAST
variable to 2. The algorithm then proceeds to step 90 and
returns again to step 64 for reading in the next consecutive
input value. The algorithm will continue in this manner until
all of the input values have been encoded as output levels.

With reference to FIG. 4, it should be appreciated that the
output level of the preceding encoded input value will

15

30

35

40

45

50

60

65

6

determine the output level for the next consecutive encoded
input value. In particular, the next consecutive input value
will be encoded as one of the four remaining output levels.
As a result, when two consecutive input values are the same,
such as the consecutive 3’s following the first three input
values in FIG. 4, each of the 3’s will be encoded as different
output levels. In the case of the first “3,” the output level is
E, whereas the second 3 is encoded as output level D. Since
no consecutive output level will be the same, the output
levels will transition lor each consecutive encoded input
value.

Referring now to FIG. 6, there is shown a {low chart 100
which illustrates an algorithm for decoding output levels
back into input values, according to a preferred embodiment
of the present invention. Beginning with step 102, the FIRST
flag is set to TRUE indicating that this is the first output level
to be decoded. At step 104, the output level is read in. For
steps 106114, an input value is determined based upon the
output level read in. However, in some cases this input value
will be modified, as will be explained below in connection
with step 118. Therefore, the decoded input value will be
determined based upon a set of rules determined by both the
current output level and one or more prior output levels. If
the output level is the first output level read in (i.c., FIRST=
TRUE), then the input value is not modified. In this respect,
the algorithm will proceed from step 116 to step 120 where
the LAST variable will be set the input value 5. It should be
appreciated that the LAST variable is used to det if an input
value needs to be modified, as will be explained in connec-
tion with step 118. Proceeding next to step 122, the FIRST
flag is set to FALSE for reading subsequent output levels. At
step 124, the input value is stored. The algorithm now
returns to step 104, to read in the next consecutive output
level. After evaluating the output level at steps 106-114, if
the FIRST flag is no longer true (step 116), the algorithm
proceeds to step 118. At step 118, it is determined whether
the input value (obtained at one of the steps 106-114) is
greater than the LAST variable If so, the input value is
modified by decrementing it by one. If the input value is not
greater than the LAST variable, then the input value is not
modified. The algorithm then proceeds to step 120, where
the LAST variable is set equal to the present input value, and
step 122, At step 124, the input value is stored. The algo-
rithm then returns to step 104 to read in the next consecutive
output level. The algorithm will continue in this manner
until all of the output levels have been decoded back to the
original input values.

As noted above, each consecutive output level in the
encoded waveform will be different, and thus necessitate a
transition. As a result, the decoding system will not require
an external clocking signal to synchronize with the encoded
waveform. In this regard, the decoding system is self-
synchronizing with the encoded waveform by using the
transition of each consecutive output level as the indicator
that a new output level has been received for decoding.
Thus, the decoder can be easily synchronized with an
encoded waveform having a variable transmission speed.

It should be understood that while FIGS. 4-6 show the
implementation of only five output levels, the number of
output levels may be significantly greater. As a result, the
number of different input values may also be significantly
greater. By increasing the number of output levels and input
values, the number of bits represented by each input value
can also be increased. Accordingly, as noted above, the
present invention can be used to substantially increase the
data transfer rate and conserve bandwidth.

It should also be appreciated that FIGS. 46 illustrate
fixed timing relationship between one output level and the

6,122,010

7

next solely the purpose of illustrating the present invention.
In this regard, the time scale itsell is completely arbitrary,
and the time required to transition from one output level to
another is also completely arbitrary. Accordingly, it should
be understood that the present invention can maximize the
use of available bandwidth by varying the timing relation-
ship from one transition to another For example, in a
bandwidth limited transmission medium, a change from one
output level to a nearby output level, such as from A to B,
will stabilize quickly, whereas a change from one output
level to a distant output level, such as from A to E, will take
longer to stabilize. Therefore, small changes can be trans-
mitted more quickly. FIG. 7 provides a timing diagram 160
which shows the timing where stabilization of the transitions
varies depending upon the relative difference between con-
secutive output levels. As can be seen from the diagram, the
time for a single level change (e.g., A to B) takes approxi-
malely half the time needed for a change of two levels (e.g.,
B to D).

It should be appreciated that large changes between
consecutive output levels may generate significant noise,
and thus require increased bandwidth. As a result, it might
be necessary in some cases 1o limit the changes between
consecutive output levels to the nearest 50 percent of the
available output levels. Therefore, there may be more than
N+1 output levels for encoding N input values. For instance,
an encoder having ten output levels might produce a step of
one of four levels per each transition, encoding two bits at
a time, but reducing the needed bandwidth of the channel.

Referring now to FIG. 8, there is shown a block diagram
of a hardware arrangement 130 for encoding input values
into output level transitions. Arrangement 130 is generally
comprised of a buffer 132, encoding logic 134, and a
digital-to-analog converter 136. In a preferred embodiment
of the present invention, buffer 132 is a FIFO chip for
buffering the received data. For instance, buffer 132 may
take the form of a Cyprus Semiconductor CY7C464. Encod-
ing logic 134 is programmed to implement the algorithm in
the manner as described in connection with FIG. 5. In a
preferred embodiment of the present invention, encoding
logic 134 takes the form of an EPLD device, as the Altera
EPM7128ELC. Digital-to-analog converter 136 may take
the form of an 8-bit video DAC, such as the TDA8702 from
Philips Components.

Arrangement 130 operates in the following manner.
Unencoded data is stored in buffer 132. The unencoded data
are input values which may represent one or more bits.
Encoding logic 134 reads out the unencoded data and
encodes it into output levels transitions which are sent Lo
digital-to-analog converter 136. It should be appreciated that
the analog coded data may be transmitted using a variety of
different mediums, including a television signal. For
instance, encoded data may be transmitted during the active
video portion of the television signal. Accordingly, large

quantities of data can be quickly and conveniently trans- s

ferred.

Referring now to FIG. 7, there is shown a block diagram
of hardware arrangement 150 for decoding output levels
transitions into input values. Arrangement 150 is generally
comprised of an analog-to-digital converter 152, a buffer
154 and decoding logic 156. Analog-to-digital converter 152
is preferably an 8-bit video ADC, such as the TDARTO8B
from Philips Components. In a preferred embodiment of the
present invention, buffer 154 is a FIFO chip for buffering
than digital data. For instance, buffer 154 may take the form
of a Cyprus Semiconductor CY7C464. Decoding logic 156
is programmed to implement the algorithm in the manner as

15

30

35

40

45

50

60

65

8

described in connection with FIG. 6. In a preferred embodi-
ment of the present invention, decoding logic 156 takes the
form of an EPLD device, such as the Altera EPM7128ELC.

Arrangement 150 operates in the following manner.
Analog-to-digital converter 152 receives the encoded output
levels and converts them to digital data, Buffer 154 stores
the digital data. Decoding logic 156 reads out the digital data
from buffer 154 and decodes the encoded output level
transitions into input values. These input values in turn may
be converted to one or more bits.

It should be appreciated that arrangements 130 and 150,
as described above, are provided solely for the purpose of
illustrating a preferred embodiment of the present invention
and that numerous other arrangements are suitable as well.

As indicated above, digital data encoded as analog coded
data may be transmitted using a variety of different
mediums, including a television signal. In this regard,
encoded data may be transmitted during the active video
portion of a television signal, thus allowing for extremely
high data transfer rates. A data transmission system includ-
ing a system for encoding the digital data as encoded analog
data and transmitting the encoded analog data as a mock
television signal compatible with the NTSC standard, and a
system for receiving the encoded analog data as a mock
television signal compatible with the NTSC standard and
decoding the encoded analog data to retrieve the original
digital data, will now be described in detail. It should be
appreciated that while the present invention is described
with reference to a “television signal” (which includes VHF
and UHF FM RF signals, cable TV signals, satellite TV
signals, microwave TV signals and closed-circuit TV
signals), the present invention is also applicable to other
radio frequencies.

Reference is first made to FIGS. 10 and 11, which
respectfully illustrate horizontal and vertical timing for an
NTSC-compatible television signal. It should be appreciated
that while the present invention will be described with
reference 1o an NTSC-compatible television signal, the
present invention may be modified for use with other
television signal standards, including PAL, SECAM, HDTYV,
as well as proprietary television signals. As is well known,
the NTSC specification calls for interlace scanning. A scan-
ning pattern has 262.5 lines per field and two ficlds per
frame. Therefore, each frame has 525 lines, which forms one
complete image. Moreover, the scanning rate is 15,750 lines
per second (i.e., 63.55 usec per line), thus providing 30
frames per second (i.c., 60 fields per second). It should be
understood that the value 15,750 lines per second and 60
fields per second are approximate values. The actual values
are dependent upon whether a color or black & white
television signal standard is being used. In a preferred
embodiment of the present invention frequencies for a color
signal are used, thus there are 15734.265 scan lines per
second and 59.94 fields per second. However, approximate
values are used herein for the purpose of describing the
present invention.

To prevent horizontal retrace lines from being observed
on the screen as the electron beam scans horizontally across
the screen to begin a tracing a new line, a horizontal
blanking pulse is applied to the video signal, the leading
edge of which precedes the leading edge of a horizontal
synchronizing pulse. Accordingly, a horizontal blanking
interval of 11.122 wsec is established, during which a
horizontal synchronizing pulse lasting 4.77 usec is gener-
ated. Since the horizontal blanking period is 11.122 usec
(including the 4.77 wsec for the horizontal synchronizing

6,122,010

9

pulse) and there are 63.555 usec per line, this leaves 52.433
usec for an active video period per line, during which visual
information is displayed (FIG. 10).

Similarly, to prevent vertical retrace lines [rom being
observed on the screen as the electron beam scans vertically
across the screen to begin tracing another field, a vertical
blanking pulse is applied to the video signal (FIG. 11).
Accordingly, a vertical blanking interval of 21 lines (i.e.,
1.334 millisec) is established, during which a vertical syn-
chronizing pulse (0.381 millisec) and equalizing pulses (2.3
usec each) are generated. Since the vertical blanking period
is 21 lines or 1.333 millisec (including the 0.381 millisec for
the vertical synchronizing pulse and the 2.3 usec for equal-
izing pulses), this leaves only 241.5 lines (15.33 millisec) for
an active video period per field, (FIG. 11). Of course, some
of this active video period per field will be unavailable for
displaying information due to the horizontal blanking inter-
val described above.

The NTSC standard waveform is divided into five phases:
pre-equalization, serration, post-equalization, subphase and
“video active”™. The first four phases occur during the
vertical blanking interval, while the “video active” phase
occurs during the active video period and the horizontal
blanking interval.

In a preferred embodiment of the present invention the
active video period of the television signal is used to
transmit encoded digital data. At the same time, “mock”
blanking, synchronizing, and equalizing pulses are gener-
ated to comply with the NTSC standard. However, it should
be appreciated that the present invention is suitably modified
to also transmit encoded digital data during horizontal and
vertical blanking intervals, since in actuality the present
invention makes no use of the signals generated during these
intervals. The “mock” signals are generated solely to comply
with the requirements of the NTSC standard.

Referring now to FIG. 12, there is shown a block diagram
of television signal data transmission system 200. Data
transmission system 200 is generally comprised of a
transmitter/encoder 202, a receiver 302, general purpose
computer systems 210 and 310, and a communications
medium 190. Transmitter/encoder 202 includes an oscillator
204, a digital-to-analog (D/A) converter 206, a control unit
220 and a FIFO (First-In-First-Out) memory 208. Oscillator
204 provides a clock signal to both D/A converter 206 and
control unit 220. Oscillator 204 takes the form of a suitable
high speed crystal oscillator of approximately 25 MHz (e.g.,
25.175 Mhz) or other suitable frequency. D/A converter 206
receives encoded data in a digital form from control unit
220, and converts it to corresponding analog data. In a
preferred embodiment of the present invention D/A con-
verter 206 takes the form of an 8-bit video D/A converter,
such as the TDA8702 from Philips Components. Control
unit 220 performs the operations necessary lo encode data,
as will be described in detail below. Control unit 220

communicates with FIFO (first-in-first-out) memory 208 53

and with computer system 210 (via PC bus 212). In this
regard, control unit 220 receives status data from FIFO 208
and sends/receives data to/from FIFO 208. FIFO 208 stores
the raw data to be encoded. Control unit 220 also send status
data to computer system 210 and sends/receives data to/from
computer system 210. In a preferred embodiment of the
present invention, control unit 220 takes the form of a
suitable logic device, such as an EPLD, PAL, GAL, PLD,
FPGA, ASIC or CPU. For purposes of illustrating a pre-
ferred embodiment of the present invention control unit 220
takes the form of an Altera EPM7128ELC EPLD.
Importantly, the EPLD provides for parallel logic, which

15

30

35

40

45

50

60

65

10

allows for simultancous operations. In a preferred embodi-
ment of the present invention FIFO 208 takes the form of a
Cyprus Semiconductor CY7C464.

It should be appreciated that a preferred embodiment of
transmitter/encoder 202 does not include a standard 3.58
MHz color reference oscillator. In this regard, a “mock”
black & white signal is generated, in order to attain higher
bandwidth available for encoding data.

Receiver/decoder 302 includes an oscillator 304, an
analog-to-digital (D/A) converter 306, a control unit 320 and
a FIFO (First-In-First-Out) memory 308. Oscillator 304
provides a clock signal to both D/A converter 306 and
control unit 320. Oscillator 304 takes the form of a suitable
high speed crystal oscillator of approximately 25 MHz (e.g.,
25.175 Mhz), or other suitable frequency. A/D converter 306
receives encoded data in a digital form from control unit
320, and converls it to corresponding analog data. In a
preferred embodiment of the present invention A/D con-
verter 306 takes the form of an 8-bit video A/D converter,
such as the TDA8708B from Philips Components. Control
unit 320 performs the operations necessary to decode data,
as will be described in detail below. Control unit 320
communicates with FIFO 308 and with computer system
310 (via PC bus 312). In this regard, control unit 320
receives status data from FIFO 308 and sends/receives data
to/from FIFO 308. FIFO 308 stores the decoded data.
Control unit 320 also send status data to computer system
310 and sends/receives data to/from computer system 310.
In a preferred embodiment of the present invention, control
unit 320 takes the form of a suitable logic device, such as an
EPLD, PAL, GAL, PLD, FPGA, ASIC or CPU. For pur-
poses of illustrating a preferred embodiment of the present
invention control unit 320 takes the form of an Altera
EPM7128ELC EPLD. As noted above, the EPLD provides
for parallel logic, which allows for simultaneous operations.
In a preferred embodiment of the present invention FIFO
308 takes the form of a Cyprus Semiconductor CY7C464.

In a preferred embodiment of the present invention,
computer systems 210 and 310 take the form of an 80x86 or
Pentium based personal computer (PC). However, computer
systems 210, 310 are not limited to personal computers, and
may take other forms, including a SUN Sparc station,
Silicon Graphics Workstation, and a set-top satellite
receiver. It should be appreciated that in a preferred embodi-
ment of the present invention transmitter/encoder 202 and
receiver/decoder 302 take the form of plug-in PC boards
which respectively interface with PC buses 212, 312 of
computer systems 210, 310.

Communications medium 190 may take the form of any
medium suitable for transmission of television signals,
including a cable system, a satellite system, a microwave
system, a closed-circuit system, or an over-the-air broadcast
system.

Data transmission system 200 operates in the following
manner, Computer system 210 sends raw data (digital) to
control unit 220. In turn, control unit 220 stores the raw data
in FIFO 208. Simultancous with this operation, control unit
220 reads raw data from FIFO 208 and encodes the raw data
as parl of an encoded NTSC compatible television signal, as
will be described in detail below. The encoded data, which
is still in digital form, is fed to D/A converter 206 for
conversion to analog form. The analog encoded data is then
transmitted via communications medium 190 to receiver
302. A/D converter 306 receives the analog encoded data
and converts it to digital form. In turn, control unit 320
stores the encoded data in FIFO 302. Simultaneous with this

6,122,010

11

operation, control unit 320 reads the encoded data from
FIFO 308 and decodes the data to obtain the original raw
data, as will be described in detail below. Control unit 320
sends the decoded data to computer system 310. The
decoded data may be displayed by computer system 310 on
a monilor, in a case where the decoded data represents visual
data.

It should be understood that the foregoing hardware
configuration is described solely for the purpose of illus-
trating a preferred embodiment of the present invention, and
that numerous other hardware configurations are also suit-
able for carrying out the present invention.

The encoding operation performed by control unit 220
will now be described in detail. It should be understood that
the encoding operation will be described with reference to
the encoding of four input values (i.e., 0, 1, 2, and 3) into five
output levels (i.e., output levels A, B, C, D and E), according
to the system of encoding described in detail above. Each
input value represents a respective bit pair (i.e., 00, 01, 10,
11). Accordingly, a byte (8 bits) of data is defined by a set
of four input values. The specific system of encoding, and
the number of input values and output levels are exemplary,
and are thus provided solely for the purpose of illustrating a
preferred embodiment of the present invention, and not for
limiting same.

As a part ol the encoding operations, control unit 220
performs basically two sets of operations. The first set of
operations is to encode the appropriate NTSC signals [or the
first four phases of the NTSC television signal, namely,
pre-equalization, serration, post-equalization, and subphase.
These first four phases include the vertical blanking pulse,
equalizing pulses and vertical svnchronizing pulses. The
second operation is to encode the appropriate NTSC signals
for the fifth phase (i.c., “video active” phase) of the NTSC
television signal. The “active video” phase includes the
horizontal blanking pulses, horizontal synchronizing pulses,
as well as the encoded bit pairs.

It should be appreciated that the NTSC television signal
waveform has a range of voltages that corresponds to
different degrees of brightness. Referring now to FIG. 13,
there is shown an NTSC television signal waveform for a
black and white transmission. The “picture information”
ranges from “black™ (IRE level 0) to “white” (IRE level
100). The picture information will correspond to the
encoded bit pairs. The wvertical blanking pulses, vertical
synchronizing pulses, equalizing pulses, horizontal blanking
pulses, and horizontal synchronizing pulses range from
“black™ (IRE level 0) to “blacker than black™ (IRE level
—40). A digital output value is assigned to each required
output voltage level. The voltage range from white to
“blacker than black™ has been considered and an appropri-
ately spaced digital output value has been assigned thereto.
In this respect, a digital output value of 0 is assigned to
“blacker than black™ and subsequent digital output values
are assigned al appropriate increments.

15

30

35

40

45

50

12

The state of the encoder state machine and corresponding
outputs are shown in the TABLE 1 of FIG. 14A. Control unit
220 presents digital encoded data to D/A converter 206,
which in turn converts the digital encoded data to analog
encoded data. The digital encoded data is an 8-bit binary
number. The 3 most significant bits (MSB) of the 8-bit
binary number will vary depending upon the encoded output
information. The remaining five bits of the digital encoded
data are fixed to zero. As a consequence, the possible values
for the digital encoded data are 0, 32, 64, 96, 128, 160, 192
and 224, where each value corresponds to different encoded
output information. Digital encoded data values 224,192,
160,128 and 96 correspond respectively to output levels E,
D, C, B and A/Idle. It should be understood that “idle” refers
1o a pause in the transmission of data. Digital encoded data
value 64 indicates horizontal and vertical blanking pulses,
while digital encoded data value 0 indicates horizontal and
vertical synchronizing pulses, as well as equalization pulses.
Digital encoded data value 32 is unused because no encoded
information requires a voltage level between the voltage
level corresponding to digital encoded data values 64 and 0.
Moreover, there is a need to preserve the difference in
voltage levels between the levels for blanking and synchro-
nizing in order to comply with the NTSC standard.

Referring now to FIG. 14B, there is shown a timing
diagram showing the encoded digital data for the first four
phases of the NTSC signal (which includes vertical blanking
pulses, vertical synchronizing pulses and equalizing pulses)
and the first two scan lines of an active video phase. The
encoded digital data shown in FIG. 14B is input to the
digital-to-analog converter. As can be scen, the digital
encoded data for the first four phases of the NTSC signal
will toggle between 64 and 0. As noted above, the digital
encoded data value of 32 is skipped in order to preserve the
appropriate difference in voltage for the vertical blanking
pulses, vertical synchronizing pulses and equalizing pulses,
according to the NTSC standard. FIG. 14C provides a more
detailed view of the digital encoded data for the first scan
line, shown in FIG. 14B. FIG. 14D shows a portion of the
first scan line shown in FIG. 14C. This timing diagram
shows transitions between the levels A thru E for encoding
bit pairs. In this regard, the first transition of the scan line is
from level A to level B, which encodes bit pair “00.” The
next transition from level B to level E encodes bit pair “11.7
Four transitions encodes a byte of data. It should be appre-
ciated that according to a preferred embodiment of the
present invention, the bit pairs are encoded in the order of
least significant bit pair to most significant bit pair.
Therefore, in the example shown in FIG. 14D, the first byte
of data is actually “00 00 11 00" or 12 (base 10).

For the first set of operations, the EPLD (i.c., control unit
220) is programmed as a slate machine to generate digital
representations of the appropriate NTSC waveform signals
for the first four phases of the NTSC signal, as discussed
above. The control logic for carrying out this first set of
operations is a part of the EPLD program code listing set
forth below:

Funection description

This macro function takes as inputs a clock and an active low reset signal and generates a digital
representation of the NTSC control signals CSYNC, HD, VD, FIELD, BURST and BLANK. These signals
may then be used to control video imaging or display equipment. To implement a complete NTSC pattern
the macro function has a 5-state machine with the following states: PRE-EQUALIZATION,
EQUALIZATION POST_EQUALIZATION, SUB_PHASE and VIDEO__ACTIVE. During each of these
distinet states the outputs are generated according to a different set of rules, and the AHDL state machine

controls this output generation.

6,122,010
13 14

-continued

It should be noted that 910 was the old line length, based on a 14.318 Mhz oscillator. The horizontal
frequency was 15734.26373626 Hz, which is the standard for NTSC. The present embodiment uses

a 25.175 Mhz oscillator, and a line length of 1600. The horizontal frequency will be 15734.375 He (up by 7
ppm). The horizontal state machine trigger points are scaled by 160191 counts,

Each horizontal line contains 1600 (was 910) pixels, and the NTSC macro function treats each line as a
pair of half-lines. Accordingly, the HONT_ROLL_OVER is set to 798(was 453) (one less than the half line
max count of 799 (was 454) which when multiplied by two gives a total of 1600 (was 910) pixels).

The constant VCNT_ROLL_OVER is set to 525 representing the 525 lines per screen as specified in
standard NTSC format. Because the format provides for interlacing, each screen contains two frames,
each of which has 262.5 lines. Since non-integer counters are very hard to control, the system counts to
525 halflines and then repeats this count sequence for the second frame. The two frames are offset by
one-half line, so when their analog video data is taken together it forms a complete picture.

For more detailed information on NTSC pattern generation reference is made to the NTSC standards, or
textbook on video applications,

EEEER LI X TR EET RN EEED EEXXXXEEER e R L Rt Rt e L b e e e e et ks e e e L L R B ettt g
PATTERN CONSTANTS SECTION

Constants shown for phase conditions (e.g.: START _PRE_EQ) are decoded off the vertical counter.
State transitions are based on the line that is currently being decoded. The values are shown as binary
numbers (denoted by the BUxxxx" format), and represent the gray-code values corresponding to the
decimal values shown to the right of each line in a comment.

Constants for the J and K inputs (e.g.: HD_J) are also gray-code values, with the corresponding decimal
value shown in a comment. These constants are compared with the horizontal counter to make pulses in
the output signals.

The constants with names that begin with “START™ are starting points for the corresponding named NTSC
phase. For this model we assume that the NTSC standard has 5 phases “pre-equalization (PRE-EQ),
serration (SERRA), post-equalization (POST_EQ), sub-phase (SUB_PH) and video-active (VID_ACT).
They each start at defined vertical lines, and these are set by the first five constants below. Since they are
decoding a gray-coded counter, the equivalent decimal value is shown (e.g., video active starts on the
20th line in the scan).

CONSTANT START_PRE_EQ =B“0000000000™; % line 0 De0" %

CONSTANT START_SERRA =B“00000001017; % line 3 D6" %

CONSTANT START_POST_EQ =B“0000001010"; % line 6 D“12" %

CONSTANT START_SUB_PH =B“0000011011"; % line 9 D“18" %

CONSTANT START _VID_ACT =B“0000111100"; % line 20 D=40" %

CONSTANT ONE__LINE_LEFT =B*1100001010"; % line 524%

These constants define the transitions on the various NTSC output signals during the 5 phases of the
NTSC standard. in each case the constant shown represents a value that is compared to the horizontal
pixel counter. in the case of the CSYNC signal the output depends on the current phase, so there are 5
constants given to completely specify the operation. HD, BLANK and BURST all behave the same in all 5
of states, so only one constant pair is given. Note that there is always a “J” and a “K" constant given.
This is because of the output pulses on all the output signals must be turned on and then turned off again
at specific horizontal count values, The “J" is routed to the J input of a JK fipflop (and hence will assert
the output when true) and the “K” is routed to the K input to a JK flipflop (and hence will deassert the
output when true).

By setting the value of CSYNC_PRE_EQ_J to the gray-code equivalent of decimal 36, the CSYNC signal
will be asserted at the 36th horizontal count. By setting CSYNC_PRE_EQ_K equal to the gray-code
equivalent to decimal 1 CSYNC will be deasserted al the first horizontal count. During the pre-
equalization phase there are 6 “halflines” (as defined by the constant START_SERRA being sel to the
gray-code equivalent of decimal 6) so the CSYNC signal will make 6 pulses during pre-equalization
phases. For this reason, the falling edge at the 1st point in a horizontal scan ends the high-level signal for
the previous line. Since CSYNC is an active low signal, this makes a pulse that lasts from the 1st to the
36th count on the horizontal scan, and then repeats for a total of 6 lines.

The active-low CSYNC signal would look like this during the pre-equalization phase. The first (falling)
edge would occur when the horizontal counter is equal to the gray-code equivalent of 1" and the second
(rising) edge would occur when the horizontal counter is equal to the gray-code equivalent of “36”, Note
that these edges should technically occur at “0™ and “357, but to avoid synchronization problems with the
boundary between the two frames in the interlaced screen format, they are all offset one.

All of the conditional phase and counter value testing is done in the “WHEN pre__eq” statement in the state
machine CASE statement block. Corresponding WHEN statements are provided for all of the 5 NTSC
phases, and in each WHEN statement there are definitions for each of the & output signals during each of
those states.

CONSTANT CSYNC_PRE_EQ_J =B*0000100000™; % D®"63" Was 36%

CONSTANT CSYNC_PRE_EQ_K =B*0000000001™; % D17 %

CONSTANT CSYNC_SERRA_J =B“1111111000™; % D687 Was 391%

CONSTANT CSYNC_SERRA_K =B“0000000001™; % D17 %

CONSTANT CSYNC_POST_EQ_J =B*0000100000"; % D“63" Was 36%

CONSTANT CSYNC_POST_EQ_K =B*0000000001"; % D=1 %

CONSTANT CSYNC_SUB_PH_J =B*0001000100™; % D*120" Was 68%

CONSTANT CSYNC_SUB_PH_K =B*0000000001"; % D*1" %

CONSTANT CSYNC_VID_ACT_J =B*0001000100"; % D*120" Was 68%

CONSTANT CSYNC_VID_ACT_K =B*0000000001"; % D*1” G

CONSTANT HD__J =B“0011110000"; % D*160" Was 91%

CONSTANT HD_K =B“0000000001™; % D17 %
CONSTANT BLANK_J =B*01100010007; % D"2717 Was 154%
CONSTANT BLANK_K =B*0000000001™; % D"17 %
CONSTANT BURST _J =B*0010110001; % D"222" Was 126%
CONSTANT BURST_K =B*0011000110"; % D*132" Was 75%

e

6,122,010
15 16

-continued

COUNTER CONSTANTS SECTION

These constants specify rollover and terminal count values. 453 is the end of the first halfline. Halflines
are used to accommodate the interlacing scheme specified by NTSC. By using halflines it is possible to
use an integer value to count the lines per screen. If full-lines were used then it would be necessary to
count 262.5 (a half line) and then switch frames. That is a very unpleasant task, counting in non-integer
mode using digital logic.

The VONT value of 525 is the end of the first frame in the two frame interlaced model. These values may
be changed to match other video display formats.

CONSTANT HCNT_ZERO =B~00000000007; % % D“0" for start value %
CONSTANT HCNT_ROLL_OVER =B*1010010001"; % D*798" for hhalf Was 453%
CONSTANT VCNT_ROLL_OVER =B-“1100001010"; % D 5247 %
CONSTANT VONT_HALF_LINE =B“1100001011"; % D“525” for testing. %
CONSTANT VONT_HALF_LINEZ =B“1100001010™; % D“524” for testing. %
SUBDESIGN dvsvle

(

a[15..0] : INPUT: -- Address inputs from PC BUS

ior : INPUT: == 1/O Read input from PC BUS

iow : INPUT; -- 1/O Write input from PC BUS

aen : INPUT: -- Address Enable input from PC BUS

wO2bf : OUTPUT: -- write to address 0x02bf output (write to FIFO)

d[7..0] : BIDIR: -- Data bus [/O lines from PC BUS

pafe : INPUT; -- Full flag status from FIFO

corf : INPUT; -- Empty flag status from FIFO

hf : INPUT} -- Half full flag status from FIFO

sw7..0] : OUTPUT, -- Write data lines to FIFO

irq_pin : OUTPUT: -- Programmable [RQ pin from PC BUS

dreq__pin : INPUT; - Programmable DREQ pin from PC BUS DMA REQUEST
dack__pin : OUTPUT; - Programmable DACK pin from PC BUS DMA
ACKNOWLEDGE

pin_do[7..0] : OUTPUT: -- Encoded output to video DAC

ck25 : INPUT: -- 25.175 Mhz master system clock

fr: OUTPUT: -- Read signal to FIFO

f]7..0] : INPUT: -- Read data lines from FIFO

reset: INPUT: -- PC BUS reset signal

)]

VARIABLE

%

line_ decode is a state machine used to control the NTSC waveforms. The outputs csyne, hsyne,

vsyne, field__ff, blank and burst are all created using JK flipflops.

%
csyne, % NTSC output signals %
--hd,
vd,
--fld,
blank: NODE;
---burst : NODE:
line_ decode: MACHINE
OF BITS (ql2..0]
WITH STATES (__power_up ,
—pre_eq,
_serma,
__post_eq ,
_sub_ph ,
_wid_act
5
gelk 3 NODE: 9% Global clock node %
arst E NODE; % Global reset node %
csync_ff E JKFF; % Composite Sync signal %
--hd_ff H JKFF; % Unneeded in this design %
vd_ff ¥ JKFF; % Vertical deflection signal %
--fld_ff - JKFF; % Unneeded in this design %
blank_ff z JKFF; % Blanking signal %
-—burst_ff i JKFF; % Unneeded in this design %
pwr_up £ NODE:
cnt__reset + NODE:
%
Counter variables. Eleven bits for lines per screen (10 in the counter, and line _ff as the terminal
bit), and ten bits for pixels per line (9 in the counter and h_odd as the terminal bit).
)
v[9..0] % TFF; % Vertical counter bits %
h[9..0] £ TFF; % Horizontal counter bits %
line[- TFF: % First/second halfline_ff %
h_odd £ TFF; % Odd horizontal bit %
field _ff ¢ TFF; % Oddfeven field _ff indicator %
vent_reset NODE; % Terminal/reset condition %
hent__reset NODE; % Terminal/reset condition %
r02be : NODE; -- Read from address Ox02be (status request)
d[7..0] : NODE; -- Data bus inputs

tri_d[7..0]: TRI ; == Data bus tri-state outputs

6,122,010
17 18

-continued

swl[7..0] : DFFE;

pin_do7 : DFFE;
signal.

ent[11..0] : DFFE;

valid : DFFE;

fr: DFFE;

data00 ;: NODE;

dataDl : NODE;

datal0 : NODE;

datall : NODE;

dataend : DFFE;

dataend] : DFFE;
SM__dvsv100: MACHINE

- Qutputs to FIFO
- Outputs to DAC, the other 5 bils are always 0, so the 224

- Internal counters; this is an & bit and a 4 bit

- combined, The low 4 bits count from 0 to 9 and then

- reset Lo O again; the high 4 bits count from 0 to 132

- and then hold while we wait for blanking to come around
-- again. This allows 132 transitions per line: each one is

-- .3972us long, giving us an active video time of 52.433us.
== The other 11.122us is blanking and sync, giving us 63.555us
=~ total time per scan line.

-- decade count

- and the high 2 bits are used to track which bit pair we are
- sending.

-- this indicates that we are sending a valid byte.

-- this is the data frame sync

-- these are for encoding bit pairs

-~ this indicates that we are done sending a byte.
== 1 clock delayed signal of dataend.

OF BITS (do7_bit do6_bit dos_ bit)

WITH STATES (
zero = H*0",
two = H“2",
four = H*4™,
five = H"5",
six = H*6",
seven = H*7");
BEGIN
DEFAULTS
dataendl = GND;
fr = VCC;
END DEFAULTS;
gelk = GLOBAL(ck(25)
grst = lresel;

- state (), when in sync
-- state 2, when in blanking too.

-~ Normally not end of data frame
- fr is low true, normally not frame start

M - Gilobal 25.175Mhz clock
- Global reset (low true) signal

%
Set up flipflop and state machine clocks and clears
%
line__decode.clk = gclk:
line_decode.reset = grst;
vl Jelk = pelk;
h[Jelk = pelk;
h_odd.clk = gelk:
field_ff.clk = gelk:
line__flclk = gelk:
vd__fr.elk = gelk:
-~ hd_flelk = gelk:
esyne_fl.elk = gelk:
-~ fld__ffelk = gelk:
blank ff.clk = gelk:
== burst_ff.clk = gelk;
Define State Transitions
CASE (line__decode) IS
WHEN__power_up ==
pwI_up = NCG;
cnl__reset = VvCG;
csync ffj = vee;
- hd_ff = VO
vd_ffk = VvCC;
- fid_fk = VG
blank_ffk = VCC;
- burst__ff.j = VCC;
line__decode = pre_eq;
WHEN_pre_eq =>
csyne_ffj = (h]]== CSYNC_PRE_EQ_J);
csyne_fLk = (h] J== CSYNC_PRE_EQ_K):
vd Lk - Voo
- hd_fEj = ((h[] == HD_T) & !line_ff & !field_ff)
== # ((h]] ==HD_J) & !line_{f & field_ff);
- hd_ffk = ((h]] == HD_K) & !line__ff & !field _ff)
e # ((b]] ==HD_K) & !line_ff & field M)
- fid_fik = VCC;
blank_ffk = VCC;
e burst__ff.j = VCC,

6,122,010
19 20

-continued

%

Ed

WHEN_serra

WHEN_post_g

IF (v[] == START _SERRA) THEN
line__decode = __serra;

END IF:

csyne_ffj] =
csync_ffk =
hd_ffj =

[}

hd_fEk

vd_ffk
fid_f
blank_ff.k
burst__{f.j =

=3

(h]] == CSYNC_SERRA_I):

(b] == CSYNC_SERRA_K);

((h[]==HD_J) & !line_ff & field f)

((h[]==HD_J) & tline_ff & field_ff):
(]] == HD_K) & !line_f & !field_ff)

((b[] == HD_K) & !line_f & field_f);
vee,

VoG
Voo
Vo

IF (v[] == START_POST_EQ) THEN
line_decode =_post_eq;

END IF;

csyne_flj =
csyne_ftk =

hd_ffj =

-5

h[] == CSYNC_POST_EQ_I;
b[] == CSYNC_POST_EQ_K:
((h[] == HD_J) & !line__ff & !field_ff)

#((h]] == HD_J) & line_f & field_f);
= ((h]==HD_K) & !linc_ff & !ficld_ff)
#((h] 1==HD_K) & ine_f & ficld_ff);

hd_ffk
vd_ffk =
fld_ftj =
blank_fik =
burst__ff. -

VeC;
vee;
VCC;
VCe;

IF (v] == START _SUB_ PH)THEN
line_decode = _sub_ ph;

ENDIF;

WHEN_sub__ph

csync_fEj
csyne_fLk
hd_ffj

hd_ffk

L I I o |

vd_fEj

Ad_ffj
burst__{f.j
burst_ Lk

blank_ff.k

Eo B |

IF (v[] == START
line__decode =_vid__act;

END [F:
WHEN_ vid_act
csyne_ffj =
#
csync_ftk =
#
hd__ff.j
hd_ 'k
vd_ffj =
Ad_ffj =
burst__{f.j
burst__ff.k
blank_ff.j =
#
blank_ffk =
#
#
#

Lo |

B |

==
((h[] == CSYNC_SUB_PH_J) & !line_f & !ficld_ff)
((h[]== CSYNC_SUB_PH_J) & !line_ff & field ff);
{(h]] == CSYNC_SUB_PH_K) & !line_ff & !ficld_ff)
((h]] == CSYNC_SUB_PH_K) & !line_ff & field_ff);
((h[1==HD_J) & !line__ff& !field_fF)
((h[1==HD_J) & line_ff & field_ff);
((h[] == HD_K) & line_ff & !field_ff)
((h[] == HD_K) & lline_ff & field_ff);
= VCC;
. VOC;
((h[] == BURST_J) & lline_ff & tfield_ff)
((h[] == BURST_J) & lline_ff & field _ff);
((h[] == BURST_K) & !line_ff & !field_ff)
((h[]== BURST_K) & !line_ff & field_ff):
VCC;
*_VID_ACT) THEN

=2
((h[] == CSYNC_VID_ACT _J) & !line_ff & !field_ff)
((h[] == CSYNC_VID_ACT_1I) & lline_ff & field_ff);
((h]] == CSYNC_VID_ACT_K) & !Nine_ff & !ield_ff)
((h[] == CSYNC_VID_ACT_K) & line_f & field_ff);
((h[] ==HD_T) & !line_ff & field__f)
((h]] == HD_J) & line_ f & field_f);
((h[] ==HD_K) & lline_ ff & !field)
((h[] == HD_K) & !line_ ¥ & field ff);
NCC;
VvCG;
((h[] == BURST_J) & !line_ff & !field_ff)
((h[1 == BURST_J) & lline_ff & field_ff);
((h[] == BURST_K) & !line_ ff & !field fT)
((h[] == BURST_K) & !line_ ff & field f);
((h[] == BLANE_J) & !line_ff & !field_ff)
((h]] == BLANK_J) & !line_ff & field_ff);
((h[] == BLANK_K) & !line_ff & !field_ff)
((h]] == BLANEK_K) & !line_ff & field_f)
(v[] == START_PRE_EQ);
((v[] == ONE_LINE__LEFT) & !field_ff);

IF(v[| == START_PRE_ EQ)THEN
line__decode =_pre__eq:

END IF;

END CASE;

Establish the output connections

csyne

csync_ff:

6,122,010

~continued
-~ hd - hd__ff;
vd - vd__ff;
- fd - fid_ff;
- burst = burst__ff;
blank = blank_ff & csync_ff; % low true blank__ff & csync_ff %
%
Equations for line_ff and field_f. When the horizontal counter is in the first half of the scanline the
line__ff output will be low. A high indicates that the counter is in the second half of the scanline.
To make an efficient circuit the vertical counter uses line_ff as the terminal bit. The field_ff is use
to track the current field. During odd files (1st physical field) the field _f output will be low. During
even fields it will be high.
%
line__ff - (h[] == HCNT_ROLL_OVER);
field ff - (v[] == VCNT_ROLL_OVER & h|] == HCNT_ROLL_OVER);
%
GREYCODE equations. Each bit toggles when previous bits are 10..0 and the odd bit is 1.
%

IF{!field__ff) THEN

vl= (((v]] line__ff) == B=X1000000001") & !vent_reset # vent_reset & v9,
((v[] line_ff) == B“XX100000001") & !vent_reset # vent__reset & v8,
((v]). line_ff) == B*XXX10000001™) & !vent_reset # venl_reset & v7,
((v] . line_ff) == B*XXXX1000001") & !vent_reset # vent__reset & v6,
(V] 1, line_ff) == B*XXXXX100001") & !vent_resct # vent__reset & v5,
((v[1, line__ff) == B*XXXXXX10001") & !vent_reset # vent__reset & v4,
(v 1, line_ff) == B30000X1001™) & !vent_reset # vent__reset & v3,
(v 1, line_ff) == B300000XN101") & !vent__reset # vent__reset & v2,
((v[1, line__ff) == B*XXXXXXXXX11") & !vent__reset # vent__reset & v1,
((v[1, line_ff) == B*XXXXXIXXXX0") & lvent__reset # vent_reset & v0

]
& (h]] == HCNT_ROLL_OVER);

ELSE

vl = (((v[1 Hline_f) == BX1000000001™") & !vent_reset # vent__reset & v9,
((v[1. !line__f) == B=XX100000001") & !vent_reset # vent_reset & v8,
((v[1. !line_ff) == B*XXX10000001") & !vent_reset # vent_reset & v7,
((v[1, MNine__ff) == B“XXXX1000001") & !vent__reset # vent__reset & v6,
(v 1, Mine__ff) == B*XXXXX100001") & !vcnt_reset # vent_reset & v5,
((v[T Mline__f) == B*XXXXXX10001™) & !vent _reset # vent__reset & v4,
(v 1 ine__ff) == BXXXXXXX10017) & !vent__reset # vent__reset & v3,
((v] . tine__ff) == B*XXXXXXXX101") & !vent_reset # vent__reset & v2,
((v[1, Hine__ff) == B“XXXXXXXXX117) & !vent__reset # vent_reset & v1,
((v[1 tHine__ff) == B=3200000XX0™) & !vent__reset # vent__reset & v0

)
& (h[] == HONT_ROLL_OVER),

END IF;

vent__reset = (v] == VCNT_ROLL_OVER # cnt__reset);

h_odd = h_odd # tpwr_up;

b]= (((h[]. h_odd) == B*X1000000001") & !hent_reset # hent_reset & hO,
((h[]. h_odd) == B“XX100000001") & thent_reset # hent__reset & h8,
((h[1. h_odd) == B“XXX10000001") & thent_reset # hent__reset & h7,
((h[], h_odd) == B*XXXX1000001") & thcnt_reset # hent__reset & h6,
((h[1, h_odd) == B*XXXXX100001") & !hent_reset # hent_reset & hS,
((h[] h_odd) == B-XXXXXX10001") & thent _reset # hent_reset & hd,
((h[1, h_odd) == B“XXXXXXX1001") & 'hent__reset # hent_reset & h3,
((h[]. h_odd) == B-XXXXXXXX101") & thent_reset # hent_reset & h2,
((h[], h_odd) == B=X3XNXXXXH11") & thent__reset # hent__reset & hi,
((h[]. h_odd) == B"XXXXXXXXXX0") & thent_reset # hent_reset & h0

hent_reset = (h[] == HCNT_ROLL_OVER) # pwr__up # cnt__reset;

SM__dvsv100.reset = grsi;
pin_do5 = do5_bit & csync; -- output goes to 0 during csync
pin_do6 = do6_bit & csync; -- otherwise tracks the state machine

pin_

_doT7 = do7_bit & csync:

SM_dvsv100.clk = ck25;
CASE (SM_dvsv100) IS

WHEN two => -- state two -- blanking
IF (blank) THEN -- blank is low true, when high . . .
SM__dvsv100 = three; ==, .. to state 3 (rest)
ELSE
SM_dvsv100 = two; ==, . . otherwise hold here.
END IF;
WHEN three =>
IF (data00) THEN - from three, 00 maps to four
SM_dvsv100 = four;
ELSIF (data01) THEN - .« . 01 maps to five
SM_dvsv100 = five;
ELSIF (datal() THEN - ... 10 maps to six
SM__dvsv100 = six;
ELSIF (datall) THEN = ... 11 maps to seven
SM_dvsv100 = seven:
ELSIF (!blank) THEN -- when blanking goes low goto ...

6,122,010

23 24
-continued
SM__dvsv100 = two; - .. .slale 2
ELSE
SM__dvsv100 = three: -- hold in three if no events
END IF;
WHEN four =>

IF (dataD0) THEN
SM__dvsv100 = three;
ELSIF (data01) THEN
SM_dvsv100 = five:
ELSIF (datal0) THEN
SM__dvsv100 = six;
ELSIF (datall) THEN
SM_dvsv100 = seven;
ELSIF (dataend) THEN
SM__dvsv100 = three;
ELSE
SM__dvsv100 = four;
END IF;
WHEN five =>
IF (data00) THEN
SM__dvsv100 = three:
ELSIF (data01) THEN
SM_dwvsv100 = four;
ELSIF (datal0) THEN
SM_dvsv100 = six;
ELSIF (datall) THEN
SM__dvsv100 = seven;
ELSIF (dataend) THEN
SM_dvsv100 = three;
ELSE
SM_dvsv100 = five:
END IF;
WHEN six =>
IF (data00) THEN
SM_dvsv100 = three;
ELSIF (data01) THEN
SM__dvsv100 = four;
ELSIF (datal0) THEN
SM_dvsv100 = five:
ELSIF (data1l) THEN
SM__dvsv100 = seven;
ELSIF (dataend) THEN
SM_dvsv100 = three;
ELSE
SM_dvsv100 = six;
END IF;
WHEN seven =>
IF (data00) THEN
SM__dvsv100 = three:
ELSIF (data01) THEN
SM__dvsv100 = four;
ELSIF (datal0) THEN
SM__dvsv100 = five:
ELSIF (datal1) THEN
SM__dvsv100 = six;
ELSIF (dataend) THEN
SM__dvsv100 = three;
ELSE
SM__dvsv100 = seven;
END IF;
WHEN OTHERS =>
IF (VCC) THEN
SM_dvsv100 = two;
END [IF:
END CASE;
dack_in = VCC;
irg_pin = VCC;
r02be = fall & 'al0 & a9 & !a8 &
a7 & !a6 & a5 & a4 &
a3 & a2 & al & a0 & liow & laen ;
wO2bf = !all & !al0 & a9 & !la8 &
a7 & !ab & a5 & a4 &
a3 & a2 & al & ad & liow & laen;
d[7..0] = tri_d[7..0]out;

tri_d[7..0].0e = 02be;

tri_d[7..0}in = (hfblank,eorf,pafe,vd,0,0,0);
swl7.0)clk = ck25;

sw|7.0}d =d[7..0];

entf] .clk = ck25;

-- from four, 00 maps to three
= ... 01 maps to five
= ... 10 maps to six
== ... 11 maps to seven

-- dataend returns to three

-- hold in four if no events

-- from five, 00 maps to three
= ... 01 maps to four
- ... 10 maps to six
+«« 11 maps to seven

-- dataend returns to three

-- hold in five if no events

-- from six, 00 maps to three
- ... 01 maps to four
-~ ... 10 maps to five
= ... 11 maps to seven

-- dataend returns to three

-- hold in six if no events

- from seven, 00 maps lo three

- ... 01 maps to four
- ... 10 maps to five
~ ... 11 maps to six

-- dataend returns to three

-- hold in seven if no events

-- catch all for initialization

-- not presently used
-- not presently used

-- read from 02beh

- write o 02bfh

- data during read

-- data during write

6,122,010

25

26

-continued

if !blank then
ent[11..9] = 0;
else
if ent[3..0]==9 then
ent[3..0]=0;
if cnt[11..4]1=132 then
ent[11..4] = ent[11..4] +1;
else
ent[11.4] = 132;
end if:
else
if ent[11..4]!=132 then
ent[3..0] = ent[3..0]+1;
ent[11..4] = ent[11..4};
else
eni[11..0] = ent[11..0];
end if;
end if;
end if:
frclk = ck25;
if blank & eorf & (cnt[11..6]!=33) & (cn(]5..0]==0) &
H(v[] == VONT_HALF_LINE2) & !field_ff) &
([] == VONT_HALF_LINE) then
fr = GND; -
end if;
symc[5..0])clk = ck25;
dataend.clk = ck25;
dataendl.clk = ck25;
if(!blank # teorf) & (cnt[5..0]==0) then -

-- prevent data during
== half lines in field
initiate frame signal

if sync or no data

dataend] = VCC; -- end frame signal

end if;
dataend = dataend1; -
if 1fr # (syme|] !=0) then -
if syme[3..0]==9 then -
syme[3.0]=0;
symel5.4]= syme|5..4]+1; -
else
syme[3.0] = syme{ 3.0+1;
syme|5..4] = syme]5..4];

count symbols

end if;
else
syme]5..0] =0;

end if;

valid.clk = ck25;

valid.d = !fr # ((symc[5..4]!=0) & (symc[3..0]==0)); -- sync states

pin_do[4.0] = (0.0,0,0,0); - low 5 A/D bits

pin_do[7..5].clk =ck25;

datal0 = Isymc3 & !symcd & !f] & 10 & valid # - 00 in 1st pair
Isymc3 & symed & 3 & 1f2 & valid# - 00 in 2nd pair
symeS & lsymed & !5 & !4 & valid # -~ 00 in 3rd pair
symeS & symed & 7 & !fe & valid; - 00 in 4th pair

dataDl = lsymeS & lsymed &] & 0 & valid # - 01 in 1st pair
lsymes & symed & 3 & 2 & valid # -- 01 in 2nd pair
symeS & lsymcd & 15 & f4 & valid # - 01 in 3rd pair
symeS & symed & 17 & £6 & valid: == 01 in 4th pair

datal(= lsymeS & !symcd & {1 & !0 & valid # - 10 in 1st pair
lsymeS & symed & £3 & 12 & valid # - 10 in 2nd pair
symeS & lsymed & 5 & !f4 & valid# - 10 in 3ed pair
symes & symed & (7 & !f6 & valid: - 10 in 4th pair

datall = IsymeS & lsymed & f1 & 0 valid # - 11 in 1st pair
fsymeS & syme4 & £3 & 2 & valid # == 11 in 2nd pair
symeS &lsymed & 5 & 4 & valid # - 11 in 3rd pair
symeS & symed & 7 & 6 & valid; - 11 in 4th pair

END:

1 clock delayed

low 4 are decade

high 2 are bit pair

- while in blanking, ent] J=0

-- low 4 bits are decade counter

-~ high 8 bits max out at 132

The steps for programming the EPLD to generate digital
representations of these NTSC waveform signals is well
known to those skilled in the art, and thus will not be
described in further detail herein. For further details regard-
ing the programming of the EPLD to carry out the first set
of operations reference is made to the Application Notes
available from Altera Corporation, which are incorporated
herein by reference.

In a preferred embodiment of the present invention oscil-
lators 204 provides a master clock signal to control unit 220
at a frequency of 25.175 Mhz. This provides a faster data

60

65

transfer rate than the typical NTSC clocking frequency of
14.318 Mhz, while still complying with the NTSC standard.
Since the master clock frequency is 25.175 Mhz and the
active video period is 52.433 usec per line, there are 1320
clock pulses per line. The EPLD is programmed to have a
pair of counters. The first counter is a 12 bit counter, where
the 4 lowest bits form a decade counter. Accordingly, the
first counter counts 10 clock pulses 132 times (for a total of
1320 clock pulses). On every 10th clock pulse a transition
occurs. 132 transitions oceur [or each horizontal line. When
the first counter reaches a full count of 1320, the first counter

6,122,010

27

will hold while waiting for the horizontal blanking interval
to finish. Because there are 132 transitions per line, 132
different output levels can be encoded on each line.
Moreover, since the active video period is 52.433 usec per
line, the period of each transition is 0.3972 usec.

The second counter is a 6 bit counter, where the 4 lowest
bits form a decade counter. Accordingly, the second counter
counts 10 clock pulses 4 times (for a total of 40 clock
pulses). Since a transition occurs every 10 clock pulses, a
new pair of bits is encoded to an output level every 10 clock
pulses. As a result, every 40 clock pulses indicates the
encoding of 8 bits (1 byte) of data.

Referring again to FIG. 14A, control unit 220 (EPLD) is
programmed (o operate as a state machine to generate the
appropriate signals for the horizontal blanking interval and
for encoding the data bits. In this regard, the state machine
has states 7, 6, 5, 4, 3, and 2. The highest three bits of the
digital encoded data (i.e., the MSB digital encoded data), is
determined by “ANDing” the state with a csync outpul,
which is low (i.e., “zero”) during the horizontal synchro-
nizing pulse. As a result, state machine “state 2" generates
an MSB digital encoded data output of 2 for horizontal
blanking, and an MSB digital encoded data output of 0 for
horizontal synchronizing. State machine states 3 through
state 7 generates a respective MSB digital encoded data
output of 3 through 7. As indicated above, the digital
encoded data (8 bits) is fed as an input to D/A converter 206.
The output of D/A converter 206 is transmitted to receiver/
decoder 302 via communications medium 190.

It should be appreciated that the state machine is suitably
modified to have a different state corresponding to each and
every type of encoded output information, rather than have
state 2 correspond to both horizontal blanking and horizontal
synchronizing. Moreover, it should be noted that state 3
(which generates an MSB digit encoded data output of 3)
also corresponds to an idle condition, wherein the transfer of
data has been paused.

Referring now to FIGS. 15A and 15B, there is shown a
flow diagram 230 illustrating the EPLD control unit logic for
encoding data. Flow diagram 230 describes the operations of
the state machine in EPLD control unit 220 for encoding
data. It should be kept in mind that the EPLD performs
multiple logic operations simultancously, and thus the flow
diagram should not be interpreted as defining a series
sequential operations, but rather as an aid to understanding
the underlying logic operations performed by the EPLD.

Beginning with step 232, the encoding operations start by
continuously generating the digital encoded data for the first
four phases of the NTSC waveform (including vertical
blanking pulses, vertical synchronizing pulses and equaliz-
ing pulses), as described above. Next, the raw data is sent to
FIFO 208 (step 234). The term “raw data” refers to unen-
coded data, which in the illustrated embodiment is a bit pair.

If it is time for a horizontal sync pulse the MSB digital 53

encoded data is set to zero (step 238). If it is not time for a
horizontal synchronizing pulse, we determine if we are in a
horizontal blanking interval or approaching a horizontal
blanking interval (step 240), If it is time for a horizontal
blanking pulse the MSB digit encoded data is set to two (step
242). If it is not time for a horizontal blanking interval, then
we are ready 1o encode “raw data.” If the FIFO is empty
(step 244), the MSB digital encoded data output remains
unchanged (step 246), whereas if the FIFO is not empty, a
byte of raw data is read from the FIFO for encoding (step
248). For each pair of bits in the 8-bit raw data byte it is
determined what was the last MSB digital encoded data

15

30

35

40

45

50

60

65

28

output (steps 250 and 254). Depending upon the last MSB
digital encoded data output, one of steps 256, 258, 260, 262
or 264 is followed. The encoding of the current raw data bit
pair is then performed by evaluating the bit pair with the
logic of steps 256a-256d, 258q-258d, 260a-2604d,
262a-262d, or 264a-2644. It should be appreciated that this
encoding scheme is the same as encoding scheme described
in detail above. Once a complete 8 bit raw data byte has been
encoded the logic continues to step 252.

The foregoing system for encoding the raw data provides
a substantially high data transfer rate. As discussed above,
the NTSC television signal waveform has a scanning rate of
15,750 lines per second. Accordingly, there are 63.55 usec
per line. At a clock speed of 25.175 Mhz, there are 1600
clock pulses (i.e., counts) per line. Only 1320 clock pulses
are available for transferring data, when accounting for the
horizontal blanking interval. 2 bits of raw data are encoded
every 10 clock pulses, therefore 264 bits (i.e., 33 bytes) of
raw data are encoded every scan line. As indicated above,
there are 24 1.5 scan lines available per field, for transferring
raw data (accounting for the wvertical blanking period).
Accordingly, 483 scan lines are available per frame for
transferring raw data. It then follows that there are 15,939
bytes per frame and 478,170 bytes per second (i.e., 3,825,
360 bits per second) It should be appreciated that the data
transfer rate can be further increased by modifying the clock
speed and/or encoding the raw data into a greater number of
levels, as discussed above.

The decoding operations performed by EPLD control unit
320 of receiver/decoder 302 will now be described in detail
with reference to FIGS.16A-19. FIGS. 16A and 16B show
a flow diagram 330 which illustrates the logic of the decod-
ing operations performed by EPLD control unit 320. First,
the presence of an encoded signal is detected (step 332). In
this regard, AID converter 306 converts analog encoded data
to digital encoded input data. Next, it is determined what
level the digital encoded input data is in. The evaluation of
ranges is necessary due to noise, interference and converter
tolerances, which effect the conversion of analog encoded
data back to the original digital encoded data output by the
transmitter/encoder 202. The range into which the digital
encoded input data falls is used to determine the state of the
encoder EPLD control unit 220 and the corresponding
encoded input information. Each digital encoded input data
range has a corresponding input pattern and encoded input
information level.

If the digital encoded input data is at a level indicative of
a vertical blanking interval or horizontal blanking interval,
there is no data to decode (steps 336 and 338). In this regard,
the data received by receiver/decoder 302 is ignored, since
the signal corresponding to the vertical and horizontal
blanking interval are generated merely to comply with the
NTSC standard.

If the digital encoded input data is at a level above the
level corresponding to the vertical and horizontal blanking
intervals, then a decoding procedure is initiated. In this
regard, counters are set for decoding, and the “last level” is
sct to A (steps 336, 340 and 342). The counters are used to
sample consecutive encoded digital input data and establish
a stable value. To this end, previous and current digital
encoded input data samples are averaged and stored (step
346). The ranges of the last four averages are compared, and
if the ranges are all the same and correspond to a level
different from the level of the last set of four matches (step
348), then a four-bit counter is preset to 16. The counter is
then subsequently decremented, while more comparisons
are performed. When the counter has decremented to 12, it

6,122,010

29

is determined that the input data has stabilized. This accept-
able digital encoded input data is decoded according to steps
350-366. The decoding logic is repeated (step 368) to
decode the bit pairs. Once a byte of data has been decoded,
the byte is stored in the FIFO (step 370). It should be
appreciated that the decoding scheme implemented in FIGS.
16A and 168 are the same as the decoding scheme described
in detail above. It should be noted that step 348 determines
a change in the digital encoded input data has occurred.
Where no change occurs, no new encoded data has been
received for decoding.

Referring now to FIG. 17, TABLE 2 shows the corre-
spondence between the original digital encoded data, the
encoded input information, the encoder state, the digital
encoded input data range, and the input pattern.

n

30

It should be appreciated that A/ID converter 306 includes
an automatic gain control circuit (AGC) in order properly
convert (i.e., scale) the input analog data levels to the
appropriate digital input data values. In this regard, A/D
converter 306 receives gate A and gate B pulses from control
unit 320. The decoded horizontal synchronizing pulse and
horizontal blanking pulse are used by the AGC. In particular,
the synchronizing pulse is used to set a zero reference, while
the blanking pulse (following the synchronizing pulse) is
used to adjust the gain. The foregoing procedure lor setting
the AGC is well known to those skilled in the art, and
therefore will not be described in further detail herein.

The control logic of the decoder control unit will now be
described in further detail with reference to the EPLD
program code listing set forth below:

SECTION 1.

--CONSTANT LD=48;
levels

CONSTANT L2=116;
CONSTANT L3=150;
CONSTANT L4=184;
CONSTANT L5=218;
CONSTANT L6=255;

--Definitions, defaults, variables, global clock and reset signals.

SUBDESIGN dvsv2b
(

unused)

a[11..0]: INPUT:
--irg__pin : OUTPUT:
--dreq__pin : INPUT}
--dack_pin : OUTPUT:
sm0__pin : OUTPUT;
sml_pin : OUTPUT
sm2__pin : OUTPUT:
aen: INPUT;

1or: INPUT;

iow: INPUT;

d[7..0] : BIDIR;
pafe: INPUT:

eorf ; INPUT:

hf : INPUT;
ad[7..0] : INPUT:
sw[7..0] : OUTPUT;
f[7 0] : INPUT;

ck25 : INPUT;

reset : INPUT;
circuit

circuit

fifo_ w : OUTPUT:
r02bf : OUTPUT:

tiebackl : INPUT:
tieback2 : OUTPUT:

)

VARIABLE
fifo_r : SOFT:
a/b)

r02be : SOFT:
wi2bc : SOFT;
d[7..0] : NODE;
tri_d[7.0] : TRE:
symto[3..0] : dife;
eni[11..0] : dffe;
in[2..0] : dife;
ind[2..0] : dffe;
res[1..0] : dffe;
ala[7..3] : dffe;
alb[7..3] : dffe:
al[7..3] : dife;
ald[7..3] : dffe;
raw__mode: dife;
raw__cnif 1..0] : dffe;
all : dffe;

-- Low 12 address lines
-~ irg/dreq/dack: implement later

-- State machine output pins (debug)

-- address enable

- 1/ read signal

- 1jO write signal

-- data bus

== FIFO full flag

-= FIFO empty flag

- FIFO half full flag

- DAC input (analog data in)

-- FIFO write pins (FIFO input port)
== FIFO read pins (FIFO outpul port)
-- 25.175Mhz master system clock
-- resel from PCBUS

-- FIFO write signal

-- read signal from 02bd (it was 02bf)
needs global change

== loopback if using EPM7096 part

-- fifo read signal

-- read FIFO status signal
== write (used to go into RAW mode)
- Data bus inputs
-- Data bus tristate output
-- Symbol timeout counter
-- counter for blanking timeout
-- input code 000 thru 100 (binary)
-- delayed code 000 thru 100 (binary)
-- result bit pair 00 thru 11 (binary)
-- Above level 37 pipeline stage A
-- Above level 3-7 pipeline stage B
-- Above level 3~7 pipeline stage C
-- Above level 3-7 pipeline stage D
-- raw mode flag
-- counter until we exit raw mode
-- Above level 0 (not sync)

6,122,010
1 32

-continued
all : dife; -- Above level 1 (not blanking)
swl7..0]: dife; -- FIFO write bits
arst : NODE; -- Global reset node
gelk : NODE; -- global clock node
gatea : jkife; -- gale a to DAC for AGC
gateb : jkife; -- gale b to DAC (see DAC app notes)
nad[7..0] : dife; -- delayed ad input
nnad[8..0] : dife; -- average of AD and AND (filter)
strobe : dife; -- strobe data write
strobel : dffe; -- delayed strobe date write

SM__dvsv200: MACHINE
OF BITS (sm[7..0])
WITH STATES (zero, one, two, three, four, five, six, seven);
BEGIN
DEFAULTS
swi.clk = VCC; -- no data by default
swl.dk = VCC;
swlclk = VCC
swi.clk = VCC;

swa.clk = VCC;

swi.clk = VCC;

swo.clk = VCC;

swiclk = VCC;

fifo_ w = VCC; -- wait for write to be sensible

blnk.j = GND; -- manage blanking signal

blnk.k = GND;

gatea,j = GND; -- control gatea/b signals

gatea.k = GND

gateb.j = GND;

gateb.k = GND;

maw__mode.clrn = VCC; -- leave raw mode alone
END DEFAULTS:

gelk = GLOBAL(ck25): -- global clock

arst = lresel: -- global low-true reset signal
- fifo_w.clk = gelk:

tieback2 = tichackl & GND; -- keep the pins occupied
tic

SM__dvsv200.clk = gelk: -- State machine is syncronous

SM_dvsv200.reset = grst: -- and reset on power up
happy

sml_pin = GND;
sm2_pin = GNI;

SECTION 2.

-~ if we're in raw mode. SW should track AD so that we write raw data to FIFO
-- otherwise we pair "em up, cause we send a pair of bits at a time.

swi.d = resO & !raw_mode # ad) & raw_mode:

swl.d = resl & !raw_mode # adl & raw__mode:

sw2.d = resD & !raw_mode # ad2 & raw_ mode;

swi.d = res] & !raw_mode # ad3 & raw__mode;

swd.d = res0 & !raw_mode # add & raw_mode;

swid = resl & !raw_mode # ad5 & raw_mode;

swo.d = res0 & !raw_mode # ad6 & raw__mode;

swil.d = res] & !raw_mode # ad7 & raw__mode;

SECTION 3.

-- when symto] 3..0] gets down to 12, the state machine clocks the
-- current res1/res0 pair into the approriate output pair based on the
-- state of the machine (sw7/sw6, sw5/sw4, sw3/sw2, swl/sw0), and then
-- trips to the next state. If, within states 3, 4, or 5, symto[3..0]
-- gets down to 0, we reset the state machine to state 2. Once we've hit
-- state 6, we have a valid byte ready to write to the fifo, so on the next
-- tick we will signal the fifo_ w line, and then reset the machine to state 2.
- Raw mode is unimportant to normal operation.
CASE (SM_dvsv200) IS
one
IF lraw_mode THEN

SM__dvsv200 = two;

ELSE

raw_cnt]]=0;

SM__dvsv200 = one;

END IF;

2
sw{7..0]= ad[7..0];
sw7..0)clk = gelk:
fifo_w = gelk: -- count counts & write data
IF !blnk & cnt[11..0}==0 THEN

33

6,122,010
34

-continued

raw_cnt| | =raw_ent]]+ 13
IF raw_cnif J==3 THEN
raw__mode.clm = GND;
END IF;

END IF;

IF lraw__modeTHEN
SM__dwvsv200 two;

ELSE
SM_dvsv200 = one;

END IF;

-- when we're out of counts

- reset raw mode

-- when done, resume decode

SECTION 4.

WHEN two =>
IF (symto[3..0j==12) THEN
swi.clk = GND;
swl.clk = GND;
SM__dvsv200 = three;
mode
SM_dvsv200 = zero;
ELSE
otherwise
END IF;
WHEN three =>
IF (symto[3..0]==12) THEN
sw2.clk = GND;
swi.clk = GND;
SM__dvsv200 = four;
ELSIF symto[3..0]!=0 THEN
SM__dvsv200 = three;
ELSE
wo
END IF;
WHEN four =>
IF (symtof3..0]==12) THEN
swi.clk = GND;
swi.clk = GND;
SM_dvsv200 = five;
ELSIF symto[3..0]!=0 THEN
SM_dvsv200 = four;
ELSE
two
END IF;
WHEN five =>
IF (symto[3..0]==12) THEN
swh.clk = GND;
swi.clk = GND:
SM_dvsv200 = six;
ELSIF symto [3..0]!=0 THEN
SM_dvsv200 = five;
ELSE
two
END IF;
WHEN six =>
IF (VCC) THEN
SM_dvsv200 = seven;
END TIF;
WHEN seven =>
IF (VCC) THEN
fifo__w = GND;
SM_dvsv200 = two;
END IF;
END CASE:

-- if we get to 12, good data
-- clock in bits 0 & 1

-- g0 lo state three

-- if we get to 12, good data
- clock in bits 2 & 3

-- go to state four
-- if no timeout
-- hold current state

-- if we get to 12, good data
-- clock in bits 4 & 5

-- go to state five
== if no timeout
-- hold current state

-- if we get to 12, good data
-- clock in bits 6 & 7

-- g0 o state six

== if no timeout
-- hold current state

-- go to state seven

-- generate write pulse
-- go o state two

SECTION 5.

-- When strobe 1 goes low, we set symto [3..0] counter to 14. On each
-- successive clock, it counts down 1 count, toward 0.

strobel
symto] 3.0 14;
elsif symto[3..0]!=0 then
symio[3..0] = symtof3..0]-1;
else
symio[3..0)= 0;
end if}

- if time left, count down

-- hold at 0 until stribel

SECTION 6.

-- Here are address decodes for fifo__r r02bc and wO2be, to give access

6,122,010
35 36

-continued

-- to this device within the PC address space.
2bec.in = lall & !al0 & a9 & !a8 &

a7 & !a8 & a5 & ad &

a3 & a2 & lal & laD & lior & laen;
wO2be.in =!all & !al0 & a9 & !a8 &

a7 & lab & a5 & ad &

a3 & a2 & lal & !a0 & liow & laen;
fifo_r="!all & !al0 & a9 & !a8 &

a7 &lab &aS & ad &

a3 & a2 & !al & a0 & lior & laen;
r02bf = !fifo_r:

SECTION 7.

-- Raw mode is unimportant to normal operation.
raw__mode.clk = gclk; -- handle raw mode
raw_cnt| Jelk = gelk;

raw__mode = d7;

raw_mode.ena = wi2bc;

SECTION 8.

-- On a sample by sample basis (at 25.175Mhz), compute the sum of the
-- current analog input ad[7..0] and the previous analog input nad[7..0]
-- and put the result into nnad[8..0] for later use. Also clock the current
-- analog input ad[7..0] into nad[7..0] to set it up for the next cycle.
nad[7..0]).clk = gelk:

nnad[8..0].clk = gelk;

nad[7..0] = ad[7..0];

nnad[8..0] = (0,nad[7..0]+(0,ad[7..0]);

SECTION 9.

-- Data bus IO functions, read produces status flags, write can set modes.
d[7..0] = tri[7..0].out;

tri_d[7..0].0e = 2bc # fifo_r;
tri_d[7..0}in = (hf & 2bc # £7 & fifo_r,
f6 & fifo_r,

eorf & 02bc # £5 & fifo_r,
pafe & r02bc # f4 & fifo_r,
f3 & fifo_r,
f2 & fifo_r,
f1 & fifo_r,
0 & fifo_r);

SECTION 10.

- Watch ad7, ad6, and ad5: if any one is non-zero, set all), the above

-- level 0 flag. Also compare ad[7..0) with LI-1 (79), and if it is greater

-- then set all, the above level 1 flag. These fAlags are based on the raw

-- ADC data, and are used to synchronize the counter cnt[11..0] as well as
-- the gatea and gateb signals, which are fed back to the ADC for automatic
-- gain and level control.

al0.clk = gelk;

all.clk = gelk;

all =ad7 # ad6 # adS;

all = ad[7.0] > L1-1;

-~ al2 = nnad[8..1] > L1-1;

SECTION 11.

-- Every time we compute a sum, we then range compare the result of that
-- sum (as an average; we drop the low bit) to determine which of 5 levels
-- it represents. The signal ala3 indicates that we are below 12, which

- would correspond to the encoder being in state 3 (or lower). Signal alad
-- indicates that the encoder state was 4, ala5, ala6, and ala7 mean states
-- 5, 6, and 7 in the data stream. alb[7..3] is set to what ala[7..3] was

-- last clock, and alc[7..3) was two clocks ago, and ald[7..3] was three

-- ago in time.

ala[7..3].clk = gelk:

alb[7..3).clk = gelk;

ale[7..3].clk = gelk;

ald[7..3].clk = gelk;

ald[7..3] = alc[7..3]:

alc[7..3] = alb[7..3]:

alb[7..3] = ala[7..3]:

ala3 = (nnad[8..1] < 1L.2);

ala4 = (nnad[8..1] >= 1L.2-1) & (nnad[8..1]< L3);

ala$ = (nnad[8..1] >= 1L3-1) & (nnad[8..1]< L4);

6,122,010
37

-continued

alab = (nnad[8..1] >= L4-1) & (nnad[8..1]< L5);
ala7 = (nnad[8..1] >= 1L5-1) & (nnad[8..1]< L6&);
bit[2..0].clk = gelk;
Of.clk = gelk:
== bit[2.0]clk = gelk;

SECTION 12.

-- If the current, last, 2nd last, and 3rd last levels all agree, we decode
-- this into a bit pattern, where al[a..d]3 means 0 (000 binary), al[a..d]4
-- - means 1 (D01 binary), al[a..d}5 means 2 (010 binary), al[a..d]6 means 3
-- - (011 binary) and al[a..d]? means 4 (100 binary) into the input pattern
-- in[2..0]. If we don’t have four in a row the same, we keep the input
-- pattern from changing. Also, when we do change, ind[2..0] will have the
-= previous pattern for 1 clock.
if ala? & alb7 & alc? & ald7 then
in[2.0] = 4;
elsif ala6 & alb6 & alct & aldb then
in[2..0] = 3;
elsif ala5 & alb5 & alcS & ald5 then
in[2..0] = 2;
elsif ala4 & alb4 & alc4 & ald4 then
in[2.0] = 1;
elsif ala3 & alb3 & alc3 & ald3 then
in[2..0] = 0;
else
in[2..9] = in[2..0}
end if;
in[2..0)clk = gelk;
ind[2..0)clk = gelk;
ind[2..0] = in[2..0}

SECTION 13.

-- The following section implements the decoder
res[1..0]elk = gelk;
res) = in0 & res0 & resl #
in & linl & resl #
in0 & linl & resO #
tin0 & inl & !resl #
in2:
res]l m inl & resl #
in0 & inl #
in2;
strobe.clk = gelk;
strobel.clk = gelk;
strobe = (indD & lin0 & inl & !in2 & resO & !resl) §
((ind0 & inD & linl & lin2 & lresl) #
(lind0 & tinO & linl & !in2 & tresO & !resl) #
(ind0 & in0 & inl & lin2 & resl)#
(lind0 & lin0 & inl & lin2 & !resD & res1) #
(ind2 & in2 & resO & res1));
strobel = strobe:

SECTION 14.

-- The bink signal is set when both al0 is [alse and cnt[11..0]>1023, which
-- means that at least 40.675us (1024 clocks at 25.175Mhz) has passed since
-- the last time it was reset. As this becomes set, ent[11..0] is reset to
-- 0 and begins to count upward again. With blnk now true, we wail until
-~ ent11..0] reaches 240, or 9.533us, and then we reset blnk and set the
-- counter cnt[11..0] back to 0. We then again wait until we’ve counted to
-- at least 1024, and when we see al0 go false, we start over.
ent[11..0]clk = gelk;
blnk.clk = gelk;

if blnk then - if we're in blanking.
if ent[11..0]==240 then -- if we count 240 clocks (9.53us) then
bink.k = VCC; -- leave blanking and reset count
ent[11.0}= 0;
else -- otherwise we didn’t reach 9.53us, so
blank
end if: -- otherwise we're not in blanking, so
else
if 1al0 & (cnt10 # cntll) then -- if it looks like sync, and at least
passed . . .
blnk.j = VCC; -- enter blanking and reset count
entf11..0)= 0;
else

ent11..0] = ent[11..0] + 1; -- otherwise keep waiting, for a while

38

6,122,010

39

-continued

end if;
end if;

SECTION 15,

-- When ¢nt[11..0] reaches 4 and blnk is true, we set gatea true, It remains
-~ this way until ent[11..0] reaches 56, and we set gatea false. Note that

-- we reset both in and out of blanking, though the second reset is

-- unnecessary, it reduces the logic. So gatea will be true for 52 counts

-- (2.066us) starting 4 counts (159ns) after we reach the sync level (when
-- al0 is false).

gatea.clk = gelk;

gateb.clk = gelk;

blank
gatea,j = VCC; -- enable gate-a for TDAST08
elsif cnt[11..0]==36 then -- else if we gel to 56 counts (2.22us)
gateak = VCC; -- disable gate-a (on 52 counts, 2.06us)
end if;

SECTION 16.

-- Similarly, when cnt[11..0] reaches 176 and al0 is true and all is false

-- (we are at blanking level), we set gateb true. When cnt[11..0] reaches 228

-- or when al0 goes false, we set gateb false. This will produce a 52 count
-- (2.066us) signal starting 176 counts (6.991us) after we reach the sync
-- level (when al0 is false) or will truncate it in the case that we return

sync).
<blank
gateb,j = VCC; -- enable gate-b for TDAST08
elsif cnt[11..0]==228 # !al0 then -- else if we get to 228 counts (9.06us)
gateb.k = VCC; -- disable gate-b (on 52 counts, 2.06us)
end if;
END;

Referring first to SECTION 8, on a sample by sample
basis (i.e., a 25.175 Mhz sampling rate), the sum of the
current analog input ad[7..0] and the previous analog input
nad[7..0] is computed and put into nnad[8..0] for later use.
The current analog input ad[7..0] is clocked into nad[7..0] to
sel it up for the next cyele.

AL SECTION 10 ad7, ad6, and ad5 (the three highest bits
of the analog input) are watched. If any one is non-zero, set
al0, the above level 0 (LO) flag. The current analog input
ad[7..0] is compared with L1-1 (79), and if it is greater then
set all, the above level 1 (L1) flag. These flags are based on
the raw ADC data, and are used to synchronize the counter
cnt[11..0] as well as the gatea and gateb signals, which are
fed back to the ADC for automatic gain and level control.

With reference to SECTION 14, the blnk signal is set
when both al0 is false (i.e., NOT above 1.0) and cnt[11..0]
>1023, which means that at least 40.675 us (1024 clocks at
25.175 Mhz) has passed since the last time it was reset. As
the bink signal is set, ent[11..0] is reset to 0 and begins to
count upward again. With bink now true, the system waits
until ent[11..0] reaches 240, or 9.533 us, and then bink is
reset and counter cnl[1..0] is set back to The system then

wails again until counter cnt[11..0] has counted to at least <

1024, and when al0 goes false, the bink signal is set again.

Turning now to SECTION 15, when cnt[11..0] reaches 4
and bink is true, gatea is sel true. It remains this way until
cnt[11..0] reaches 56, and then gatea is set false. Note that
reset oceurs both in and out of blanking. While the second
reset is unnecessary, it reduces the logic. gatea is true for 52
counts (2.066 us) starting 4 counts (159 ns) after we reach
the sync level (i.e., when al0 is false).

Similarly, in SECTION 16, when cnt[11..0] reaches 176
and al0O is true (not at sync level) and all is false (at
blanking level), we set gateb true. When cnt[11..0] reaches
228 or when al0 goes false (at sync level), we set gateb

35

40

45

50

60

65

false. This will produce a 52 count (2.066 us) signal starting
176 counts (6.991 us) after we reach the sync level (i.e.,
when al0 is false) or will truncate it in the case that we
return to sync level (such as during the equalization pulses
in the vertical sync).

Referring now to SECTION 11, every time the sum of the
previous analog input (nad[7..0]) and the current analog
input (ad[7..0]) is computed, the result of that sum is
averaged (i.e., by dropping the low bit of the sum), and the
average is range compared to determine which of 5 levels
(L2, 13, L4, LS5, and L6) it represents. The signal ala3
indicates that we are below 1.2, which would correspond to
the encoder being in state 3 (or lower). Signal alad indicates
that the encoder state was 4, while ala5, ala6, and ala7 mean
states 5, 6, and 7 in the data stream. alb[7..3] is set to what
ala[7..3] was last clock, and alc[7..3] was two clocks ago,
and ald[7..3] was three ago in time. As a result, a history of
levels (or encoder states) is generated.

Turning now to SECTION 12, if the current, last, 2nd last,
and 3rd last levels (i.e., encoder states) all agree, the data is
decoded into a bit pattern, where al[a..d]3 means 0 (000
binary), alfa..d]4 means 1 (001 binary), alla..d]5 means 2
(010 binary), al[a..d]6 means 3 (011 binary) and al[a..d]7
means 4 (100 binary) into the input pattern in[2..0]. If four
consecutive levels (iL.e. encoder states) are not the same, the
input pattern is prevented from changing. Also, when there
is a change in the input pattern, ind[2..0] will have the
previous pattern for 1 clock eycle.

SECTION 13 implements the decoder, which is best
understood by reference to TABLE 3, set forth in FIG. 18.
The labels *res0 and *resl indicate what the “next” values
should be. When the signal strobe is shown as “0” in the
above table, a strobe is generated. As can be seen, there is
no strobe when the input pattern in[2..0] and the delayed
pattern ind[2..0] are the same (indicated with [no]). The

6,122,010

41

signal strobel is the same as strobe, 1 clock delayed. It
should be appreciated that if the previous pattern in ind[2..0]
is looked up using the current output res[1..0] and the current
pattern in[2..0], the next output *res[1..0] is obtained (which
is the decoded data).

Referring now to SECTION 5, when strobel goes low,
symto[3..0] counter is set to 14. On each successive clock,
it counts down 1 count, toward 0.

With regard to SECTION 2 and SECTION 4, when
symto[3..0] gets down to 12, the state machine clocks the
current resl/res0 pair into the appropriate output pair based
on the current state of the machine (sw/sw, sw/sw, sw/sw,
sw/sw), and then trips to the next state. If, within states 3, 4,
or 5, symto[3..0] gets down to 0 (timeout), the state machine
is reset to state 2. Once state 6 has been reached, we have a
valid byte ready to write to the FIFO, so on the next tick the
fifo w line is signaled, and the state machine is reset to state
2. It should be appreciated that when symto[3..0] gets down
to 12 and the encoder state remains the same (i.¢., the same
input level), then good data has been obtained.

SECTION 6 provides address decodes for fifo_r, r02bc
and wO02bc, to give access to this device within the PC
address space.

SECTION 9 is directed to data bus /O [unctions where
read produces status flags, and write can set modes.

SECTION 3 and SECTION 7 are directed to a raw mode,
which is unimportant to normal operation.

SECTION 1 is directed to definitions, defaults, variables,
global clock and reset signals.

Referring now to FIG. 19 there is shown a timing diagram
showing the digital encoded input data (in analog form) and
other decoder data, as will be described below. The analog
data waveform is the waveform input to the analog-to-digital
converter of the receiver/decoder. The analog data wave-
form shown in FIG. 19 includes the HSYNC (horizontal
sync) and HBLANK (horizontal blanking) transitions, fol-
lowed by noise. The transition from level A to level B marks
the beginning of the encoded bit pairs. The level A to level
B transition decodes to bit pair “00.” The transition from
level B to level A decodes to bit pair “00,” and so on. As
noted above in connection with the encoding procedure, the
bit pairs are received in the order of least significant bit pair
to most significant bit pair. Accordingly, the first byte of
decoded data in the example shown in FIG. 19 is *00 00 00
007 (00hex/0 base ten) and the second byte of decoded data
in the example shown in FIG. 19 is “00 00 00 01" (01hex/1
base ten). The subsequent bytes of data are 03hex and 04hex.

The corresponding decoder states are shown below the
analog data waveform. State 2 is waiting for the first pair of
data bits; transition from state 2 to 3 is clocking-in of the first
pair of data bits to 8-bit temporary storage register SW
(explained in detail below); state 3 is waiting for the second
pair of data bits; transition from state 3 to state 4 is the

clocking-in of the second pair of data bits to register SW; s

state 4 is waiting lor the third pair of data bits; transition
from state 4 to state 5 is the clocking-in of the third pair of
data bils to register SW; state 5 1s waiting for the fourth pair
of data bits; and transition from state 5 to state 6 is the
clocking-in of the fourth pair of data bits to register SW (thus
completing a byte of data). Transition from state 6 to state
7 is a write pulse enable where the data stored in register SW
is written to the FIFO. Transition from state 7 to state 2 is
a write pulse disable.

FIG. 19 also shows the value stored in 8-bit register SW,
which temporarily stores the decoded data bit pairs before
they are written to the FIFO as a byte of data. The 8-bit

15

30

35

40

45

50

60

65

42

register SW stores the bit pairs in their proper order as they
are decoded. In this regard, the first decoded bit pair of a byte
is stored as the least significant bit pair, while the last
decoded bit pair of a byte is stored as the most significant bit
pair. Once a full byte has been decoded and stored in register
SW, the contents of register SW are written to the FIFO.
Thereafter, new decoded bit pairs are wrilten to register SW,
However, it should be understood that the contents of
register SW are not cleared, but rather, the new decoded data
bit pairs will overwrite the old data bit pairs. Therefore, the
value stored in register SW will not reflect the proper
decoded data byte until all four bit pairs have been clocked-
in to register SW. The hex values above the write pulses
(FIG. 10) indicate the value stored in register SW at the time
the data is written to the FIFO.

It should be appreciated from FIG. 19, that the decoder
interprets any level below 116 as level A. In this regard, the
decoder, according to a preferred embodiment does not
generale decoded data during horizontal (and vertical)
blanking intervals. The decoder only uses the horizontal
synchronizing pulse and horizontal blanking pulse for cali-
brating the analog-to-digital converter (i.e., DC restoration).
These and the other timing signal pulses are generated by the
encoder to provide a “mock” NTSC-compatible signal.
Therefore, it should be appreciated that the present invention
can be modified to “skip” selected horizontal synchronizing
and blanking pulses, and instead transmit (during the hori-
zontal blanking interval) encoded data (i.c., encoded bit
pairs). For example, if the horizontal synchronizing and
blanking pulse are skipped every other scan line, then an
additional 11 gsec of time becomes available on each scan
line to transmit encoded data, This provides an increased
data transfer rate of approximately 400,000 bps (with 5
encoding levels). Moreover, the present invention can be
modified to transmit encoded data (i.e. encoded bit pairs)
during the period dedicated to the vertical blanking interval.
Substituting encoded data for the equalization, vertical sync
and vertical blanking pulses, will yield an additional 21 lines
of data, 60 times a second. This allows for 1260 linesx34
bytes per line, or 41580 more bytes per second. Accordingly,
a 332,640 bps increase 1s possible when using just 5 encod-
ing levels. In addition, by starting to encode data earlier in
the horizontal blanking interval period (at least 2 us of
blanking is needed for the AGC) may net as high as a 20
more bits per scan line. This allows for a 315,000 bps
increase maximum for a 5 level encoding scheme. It should
be understood that the present invention is suitable for the
foregoing modifications because it does not rely upon the
timing signals of the horizontal and vertical blanking inter-
vals for synchronization. Instead, the encoding scheme of
the present invention has an inherent self-synchronizing
characteristic, as discussed in detail above.

It should also be appreciated that the present invention
allows for the transmission of video data encoded at
approximately 1 million bits per second across the system at
4 million bits per second. Accordingly, video data can be
sent “faster than real time.” For instance, 2 hours of video
data can be sent from point A to point B in ¥ hour. By using
a broadcasting medium, 2 hours of video data can be sent
broadcast to points Bl through BN in a total of % hour.
Moreover, it is contemplated that the present invention can
be optimized to provide a data transfer rate in excess of 30
million bps, while complying with the NTSC standard.

As can be appreciated from the foregoing description the
present invention dramatically shortens the time needed to
transmil electronic data, including databases, digital video
and digitized images. As indicated above, the data may be

6,122,010

43

transmitted via wired or wireless transmission mediums.
Since the encoding scheme of the present invention forms an
integral part of the transmission medium itself, the trans-
mission time is substantially reduced, just as if the data had
first been farther compressed before transmission. It should
be appreciated that the present invention may be imple-
mented using a unidirectional transmission mode, or a
bi-directional transmission mode with symmetrical or non-
symmetrical data rates in the return path. Moreover, the
return path may be via many means and is not limited to the
same means as the initial transmission.

It should be appreciated that the present invention has
myriad applications, including downloading of on-demand
movies, Internet data transfer, tele-medicine (i.e., transfer of
high-resolution medical images), and the like. Any applica-
tion requiring the transfer of large quantities of data in a
short period of time would be particularly well suited for use
in connection with the present invention.

The foregoing description is a specific embodiment of the
present invention. It should be appreciated that this embodi-
ment is described for purposes of illustration only, and that
numerous alterations and modifications may be practiced by
those skilled in the art without departing from the spirit and
scope of the invention. It is intended that all such modifi-
cations and alterations be included insofar as they come
within the scope of the invention as claimed or the equiva-
lents thereof.

What is claimed is:

1. A data transmission system for transmilling data via a
television signal, the system comprising:

transmitting means adapted for transmitting the television

signal, comprising:
(a) encoding means adapted for receiving raw data and
generating digital encoded data indicative of the raw
data, wherein said encoding means includes:
means for establishing at least N+1 output levels,
cach transition in said output level representing an
encoded input value indicative of raw data; and

means for receiving a plurality of input values to be
encoded, wherein said input values may be one of
N different values, and

means for transitioning from one of said at least N+1
output levels to another of said at least N+1 output
levels for each successively received input value,
wherein each and every successive output level is
different, regardless of the successively received
input value, said transitioning output levels form-
ing the digital encoded data; and

(b) first conversion means adapted for converting the
digital encoded data to analog encoded data, said
analog encoded data forming a portion of the tele-
vision signal; and

receiving means adapted for receiving the television

signal, comprising;

(a) second conversion means adapted for converting the
analog encoded data to digital encoded data, and

(b) decoding means adapted for converting the digital
encoded data to raw data.

2. A data transmission system according to claim 1,
wherein said encoding means generates digital encoded
timing data indicative of timing signal data and said first
conversion means converls the digital encoded timing data
to analog encoded timing data, wherein said analog encoded
timing data forms a timing signal portion of the television
signal; and

said second conversion means converts the analog

encoded timing data to digital encoded timing data, and

n

30

35

40

60

65

44

said decoding means converts the digital encoded tim-
ing data to timing signal data.

3. A data transmission system according to claim 1,
wherein said transmitting means further comprises first
storage means for storing raw data.

4. A data transmission system according to claim 1,
wherein said receiving means further comprises second
storage means for storing raw data.

5. A data transmission system according to claim 1,
wherein said digital encoded data is transferred between said
transmitting means and said receiving means using a tele-
vision signal communications medium.

6. A data transmission system according to claim 1,
wherein each said different input value represents log,(N)
bits.

7. A data transmission system according to claim 1,
wherein each said N different input value represent one of
the values O through N in base N+1.

8. A data transmission system according to claim 1,
wherein said decoding means includes means for decoding
cach of said output levels into an input value according to a
set of rules determined by both the output level currently
being decoded and one or more output levels previously
decoded.

9. A data transmission system according to claim 1,
wherein said decoding means includes:

means for establishing a plurality of input data ranges,

cach said input data range associated with an input
pattern corresponding to the raw data; and

means for comparing said digital encoded data to said

plurality of input data ranges.
10. A data transmission system according to claim 1,
wherein said television signal is compatible with at least one
of the following television waveform standards: NTSC,
SECAM, PAL and HDTV.
11. A data transmission system according to claim 1,
wherein the frequency of transitions between output levels
varies in accordance with the relative difference between
successive output levels.
12. A data transmission system according to claim 5,
wherein said television signal communications medium
includes at least one of: over-the-air broadcast transmission,
cable television transmission, satellite television
transmission, microwave television transmission and
closed-circuit television transmission.
13. A data transmission system according to claim 9,
wherein said decoding means further includes means for
averaging one or more successive items of said digital
encoded data, and means for comparing the averaged digital
encoded data to said plurality of input data ranges.
14. A data transmission system according to claim 2,
wherein said encoding means includes:
means for establishing at least N+1 output levels, each
transition in said output level representing an encoded
input value indicative of timing signal data; and

means for receiving a plurality of input values o be
encoded, wherein said input values may be one of N
different values.

15. A data transmission system according to claim 2,
wherein said timing signal data includes timing data asso-
ciated with a horizontal blanking interval and a vertical
blanking interval.

16. A data transmission system according to claim 11,
wherein said transmitting means further comprises:

means for transitioning from one of said at least N+1

output levels to another of said at least N+1 output

6,122,010

45

levels for each successively received input value, said

output levels forming the digital encoded timing data.

17. A data transmission system according to claim 16,
wherein said decoding means includes means for decoding
cach of said output levels into an input value according to a
set of rules determined by both the output level currently
being decoded and one or more output levels previously
decoded.

18. A method for communicating data via a television
signal, the method comprising:

encoding raw data values to form digital encoded data

indicative of the raw data values, said step of encoding

includes;

(a) receiving a plurality of raw data values o be
encoded, wherein each said raw data value may be
one of N different raw data values, and

(b) establishing at least N+1 output levels, each tran-
sition in said output level representing an encoded
raw data value;

converting the digital encoded data to analog encoded

data;

transmitting the analog encoded data in a portion of the

television signal, wherein said step of transmitting
includes transitioning from one of said at least N+1
output levels to another of said at least N+1 output
levels for each successively received raw data value,
wherein each and every successive outpul level is
different, regardless of the successively received raw
data value, said transitioning output levels forming the
digital encoded data;

receiving the analog encoded data, and converting the

analog encoded data to digital encoded data; and

decoding the digital encoded data to form the raw data
values.

19. A method according to claim 18, wherein said method
further includes the steps of:

encoding timing signal data to form digital encoded

timing data indicative of the timing signal data;

converting the digital encoded timing data to analog
encoded timing data, wherein said analog encoded
timing data is transmitted in a timing signal portion of
the television signal;

converting the analog encoded timing data to digital

encoded timing signal data; and

decoding the digital encoded timing data to form the

timing signal data.

20. A method according to claim 18, wherein the step of
transmitting the analog encoded data includes transferring
the analog encoded data between a transmitling means and
a receiving means using a television signal communications
medium.

21. A method according to claim 18, wherein each of said
N different raw data values represent log,(N) bits.

22. A method according to claim 18, wherein each said N

different raw data values represent one of the values 0 s

through N in base N+1.
23. A method according to claim 18, wherein said step of
decoding includes:
decoding each of said output levels into an input value
according to a set of rules determined by both the
output level currently being decoded and one or more
output levels previously decoded.
24. A method according to claim 18, wherein said step of
decoding includes:
establishing a plurality of input data ranges, each said
input data range associated with an input pattern cor-
responding to the raw data; and

15

30

35

40

45

50

60

65

46

comparing said digital encoded data to said plurality of

input data ranges.
25. A method according to claim 18, wherein said tele-
vision signal is compatible with at least one of the following
television waveform standards: NTSC, SECAM, PAL and
HDTV.
26. A method according to claim 19, wherein the fre-
quency of transitions between output levels varies in accor-
dance with the relative difference between successive output
levels.
27. A method according to claim 20, wherein said tele-
vision signal communications medium includes at least one
of: over-the-air broadcast transmission, cable television
transmission, microwave lelevision transmission, closed-
circuit television transmission, and satellite television trans-
mission.
28. A method according to claim 24, wherein said step of
decoding fixer includes the step of averaging one or more
successive items of said digital encoded data and comparing
the averaged digital encoded data to said plurality of input
data ranges.
29. A method according to claim 19, wherein said timing
signal data includes timing data associated with a horizontal
blanking interval and a vertical blanking interval.
30. A data transmission system for transmitting data via a
television signal, the system comprising:
transmitting means adapted for encoding raw digital input
data into encoded data and generating a mock NTSC
television signal having the encoded data embedded
therein, said transmitting means including means for
transitioning from one of at least N+1 output levels to
another of at least N+1 output levels for each succes-
sively received raw digital input data, wherein each and
every successive output level is different, said transi-
tioning output levels forming the encoded data; and

receiving means adapted for receiving the mock NTSC
television signal and decoding the encoded data to form
the raw digital input data.

31. A data transmission system according to claim 30,
wherein said transmitting means encodes raw digital input
data at a rate equal to or greater than 1 million bits per
second (bps).

32. A data transmission system according to claim 30,
wherein said transmitting means includes a broadcast trans-
milter.

33. A data transmission system according to claim 30,
wherein said receiving means includes a plurality of televi-
sion signal receiving devices.

34. A data transmission system for transmitting data via a
radio frequency (RE) signal, the system comprising:

transmitting means adapted for transmitting the RF signal,

including:

encoding means adapted for receiving raw data values
and generating digital encoded data indicative of the
raw data values, wherein said encoding means
includes:

(a) means for receiving a plurality of raw data values
to be encoded, wherein said raw data values may
be one of N different values,

(b) means for establishing at least N+1 output levels
having a corresponding digital encoded data
value, each transition in said output level repre-
senting a raw data value, and

(¢) means for transitioning from one of said at least
N+1 output levels to another of said at least N+1
output levels for each successively received raw
data value, wherein each and every successive

6,122,010

47

output level is different, said transitioning output
levels forming the digital encoded data; and
analog conversion means adapted for converting the
digital encoded data to analog encoded data.

35. A data transmission system according to claim 34,
wherein said system further comprises:

receiving means adapted for receiving the RF signal,

including:

digital conversion means adapted for converting the
analog encoded data to digital encoded data; and

decoding means adapted for converting the digital
encoded data to raw data.

36. A data transmission system according to claim 35,
wherein said RF signal is a television signal.

37. A data transmission system according to claim 36,
wherein said television signal is at least one of an over-the-
air broadcast television signal, a cable television signal, a
microwave television signal, a closed-circuit television sig-
nal and a satellite television signal.

38. A data transmission system according to claim 36,
wherein said television signal includes an active video
portion for displaying video information, wherein said ana-
log encoded data forms a part of the active video portion.

39. A data transmission system according to claim 36,

wherein said television signal includes a timing signal 2

portion for providing receiver timing signals, wherein said
analog encoded data forms a part of the timing signal
portion.

40. A data transmission system according to claim 36,
wherein said television signal is compatible with at least one
of the following television waveform standards: NTSC,
SECAM PAL, and HDTV.

41. A method for transmitting data via a radio frequency
(RF) signal, the method comprising:

receiving a plurality of raw data values to be encoded into

digital encoded data values, wherein said raw data
values may be one of N different values;
establishing at least N+1 output levels having a corre-
sponding digital encoded data value, each transition in
said output level representing a raw data value; and

converting the digital encoded data to analog encoded
data forming at least a portion of a transmitted RF
signal, wherein said analog encoded data includes data
transitioning from one of said at least N+1 output levels
to another of said at least N+1 output levels for each
successively received raw data value, wherein each and
every successive outpul level is dilferent.

42. A method according to claim 41, wherein said method
further comprises:

receiving the transmitted RF signal;

converting said analog encoded data to digital encoded

data values; and

converting the digital encoded data values to raw data.

43. A method according to claim 41, wherein said RF s

signal is a television signal.
44. A data transmission system for transmitting data via a
television signal, the system comprising:
a transmitter adapted for transmitting the television
signal, comprising:

(a) an encoder adapted for receiving raw data value and
generating digital encoded data indicative of the raw
data, said encoder generating digital encoded data
transitioning from one of at least N+1 output levels
to another of said at least N+1 output levels for each
successively received raw data value, wherein each
and every successive output level is different, and

15

30

35

40

45

60

65

48

(b) a first converter adapted for converting the digital
encoded data to analog encoded data, said analog
encoded data forming a portion of the television
signal; and

a receiver adapted for receiving the television signal,

comprising:

(a) a second converter adapted for converting the
analog encoded data to digital encoded data, and

(b) a decoder adapted for converting the digital
encoded data to raw data.

45. A data transmission system for transmitting data via a
radio [requency (RF) signal, the system comprising:

a transmitter adapted for transmitting the RF signal,

including:

an encoder adapted for receiving raw data values and
generating digital encoded data indicative of the raw
data values, wherein said encoder includes:

(a) means for receiving a plurality of raw data values
to be encoded, wherein said raw data values may
be one of N different values,

(b) means for establishing at least N+1 output levels
corresponding to digital encoded data, each tran-
sition in said output level representing a raw data
value, and

(c¢) means for transitioning from one of said at least
N+1 output levels to another of said at least N+1
output levels for each successively received raw
data value, wherein each and every successive
output level is different, said transitioning output
levels forming the digital encoded data; and

a digital-to-analog converter for converting the digital
encoded data to analog encoded data.

46. Adata communication system for communicating data
via a lelevision signal, the data communication system
comprising;

input means for receiving a plurality of input data values

representative of raw data, each said input data value

having one of N different values; and

encoding means for generating digital encoded data rep-

resentative of said input data values, said encoding

means (ransitioning [rom one of at least N+1 output
levels to another of said at least N+1 output levels in
respeclive correspondence with each successively
received input data value, wherein each and every
successive output level is different, regardless of the
successively received input data value, said transition-
ing output levels forming digital encoded data; and

first conversion means adapted for converting the digital
encoded data to analog encoded data, said analog
encoded data forming a portion of the television signal;
and

receiving means adapted for receiving the felevision

signal, comprising:

second conversion means adapted for converting the
analog encoded data to digital encoded data, and
decoding means adapted for converting the digital
encoded data to said plurality of input data values.

47. A data communication system according to claim 46,
wherein said encoding means gencrates digital encoded
timing data indicative of timing signal data, said digital
encoded timing data is converted by said first conversion
means to analog encoded timing data, which forms a timing
signal portion of said television signal.

48. A data communication system according to claim 46,
wherein said digital encoded data is transferred between said
second conversion means and said decoding means via a
television signal communications medium.

6,122,010

49

49. A data communication system according to claim 46,
wherein the time between initiation of successive transitions
between output levels varies in accordance with the relative
difference between consecutive output levels.

50. A method of high-speed data communications via a
television signal, the method comprising:

receiving a plurality of input data values representative of

raw data, each said input data value having one of N
different values;
generating digital encoded data representative of said
input data values by transitioning from one of at least
N+1 output levels to another of said at least N+1 output
levels in respective correspondence with each succes-
sively received input data value, wherein each and
every successive output level is different, regardless of
the successively received input data value, said transi-
tioning output levels forming digital encoded data; and

converting the digital encoded data to analog encoded
data, wherein said analog encoded data forms at least a
portion of the television signal, and transmitting the
television signal via a television communication
medium.

15

50

51. A method of high-speed data communications accord-
ing to claim 50, wherein said method further comprises the
steps of:

receiving said transmitted television signal;

converting the analog encoded data to digital encoded

data; and

decoding said digital encoded data to said input data

values.

52. A method of high-speed data communications accord-
ing to claim 50, wherein said method further comprises the
step of generating digital encoded timing data indicative of
timing signal data, wherein said digital encoded timing
signal data is converted to analog encoded timing signal data
which forms a timing signal portion of said television signal.

53. Amethod of high-speed data communications accord-
ing to claim 50, wherein the time between initiation of
successive transitions between output levels varies in accor-
dance with the relative difference between consecutive out-
put levels.

