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‘sesine of the angle @ between these vectors. Table 5.1 summarizes thefirst four
ders of aberrations using both vector and algebraic expressions. The fourth-order

=mms are often called the primary aberrations. The ten sixth-order terms can be
ided into two groups. The first group (first six terms) can be considered as an

“smprovementupontheprimary aberrationsby their increased field dependence, and
= second group (last four terms) represents new wavefront deformation forms.

re 5.1 showsthe shape (aperture dependenceonly) of the zero, second,fourth,
d the new wavefront shapesof the sixth-orderaberrations.
In Table 5.1 the piston terms represent a uniform phase change across the

‘perture that does not degrade the image quality. Physically piston terms represent
time delay or advancein the time of arrival of the wavefront as it propagates
om the object to the exit pupil. The second-order term magnification represents a

ange of magnification and the focus term represents a changein the axial location
the image. The coefficients for magnification and focus are set to zero given

at Gaussian and Newtonian optics accurately predict the size and location of an
‘mage. However,a focusterm is usually added to minimizeaberrationsorto select

observation plane other than the ideal imageplane. In addition, the change of
2enification and focus with respectto the wavelength are knownasthe transverse

d longitudinal chromatic aberrations respectively.

5.5 Determination of the wavefront deformation

when rays of light do not pass through an ideal image point, the wavefront must
deformed. The wavefront deformation is measured with the aid of a reference

sere. The reference sphere for a given field point passes through the on-axis exit
oil point and its center coincides with the ideal image. As shownin Figure 5.3
wavefront deformation multiplied by the index of refraction is the optical path

etween the wavefront and the reference sphere measured alongtheray.
By convention the wavefront deformation is negative if the wavefrontlags the

“ference sphere and positive if it leads the reference sphere. The units of the
svefront deformation are linear dimensions of millimeters, micrometers, etc.

Sowever, often the wavefront deformationis divided by the wavelength oflight A,
d then the deformation is expressed in waves. The reference sphere is centeredat

pint Vy, H inthe imageplane. Note thatthe tip of the aperture vector defines where
= ray intersects the exit pupil plane. In this mannerthe aperture vector designates
= samepupil pointforall field points. This definition eventually makeseasier the

ssiculation of sixth-order coefficients that are coordinate-system dependent.

5.6 Parity of the aberrations

he aberrationscan beclassified as even or odd aberrations. For example, spherical
aberration,astigmatism,field curvature, and the chromatic change of focusare even
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74 The wave aberrationfunction

aberrations. Coma,distortion, and the chromatic change of magnification are odd
aberrations. The parity is found by observation of the algebraic powerparity of
the field and aperture vectors in the aberration coefficients. The odd aberrations
have the important property that they cancel, or tend to cancel, in a system that

has symmetry aboutthe stop. That is, each half of the system contributes the same
amountof aberration but with opposite algebraic sign. In contrast, in a symmetrical
system the even aberrations from each half of the system add,rather than cancel.

5.7 Note on the choice of coordinates

The aberration theory developed in this book uses polar coordinates with the field
vector H serving as a reference to define the polar angle @ and the aperture vector
p. Given the system’s axial symmetry,inherently only three variables are necessary,
|\H |, ||, and cos(#), and eventually this leads to many simplifications. The other
obvious choice is the use of Cartesian coordinates, which for historical reasons,

previous works on wave aberration theory, and simplicity, are little used in the

present treatment.

5.8 Summary

In this chapter we have introducedthe aberration function as a polynomial depend-
ing on the field and aperture of the system. The terms in the aberration function
representaberrationsas a wavefront deformation with respect to a reference sphere.
The aberration coefficients provide the maximum amplitude of the deformation as
an optical path. The aberration function provides a wealth of insight into the nature

of an optical system andits aberrations. Symmetry considerations are important in
developing the aberration function.

Exercises

5.1. Using symmetry considerations, explain why the sine of the angle between

the field and aperture vector does not appearin the aberration function.
5.2. Determine the aberration function up to fourth order of a system that has two

orthogonal planes of symmetry. The intersection of these planes defines the
optical axis. Use the unit vector i to specify the direction of one of the planes
of symmetry, andthefield H and aperture p vectors.
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