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Approaching direct optimization of as-built lens performance  

James P. McGuire, Jr. and Thomas G. Kuper 

Synopsys Inc., 3280 E. Foothill Blvd., Pasadena, CA, USA 91017 

ABSTRACT 

We describe a method approaching direct optimization of the rms wavefront error of a lens including tolerances.  By 
including the effect of tolerances in the error function, the designer can choose to improve the as-built performance with 
a fixed set of tolerances and/or reduce the cost of production lenses with looser tolerances.  The method relies on the 
speed of differential tolerance analysis and has recently become practical due to the combination of continuing increases 
in computer hardware speed and multiple core processing We illustrate the method’s use on a Cooke triplet, a double 
Gauss, and two plastic mobile phone camera lenses. 

Keywords: Optimization, tolerance analysis, objectives 
 

1.  INTRODUCTION 

Typically, a lens designer will generate a number of potential optical design forms (possibly using global search methods 
such as those introduced in the late 80’s and the early 90’s1-11) and then select the “best” lens form based on the error 
function value and whether the lens looks to be easily manufactured.  The designer will then proceed to assign tolerances 
for manufacturing. This process relies on the skill of the designer to achieve the best results.   

To assist the designer in desensitizing a lens to manufacturing errors, a number of additions to the error function have 
been proposed.  Tiziani and Gray proposed desensitizing the system to axial coma by including a differential variance in 
the wavefront produced by an angular tilt or decenter of the surface 12-13. This method has been implemented in a 
commercial lens design package for many years14.  Several authors have discussed cost-effective manufacturing in terms 
of a local optimum15-17.  More recently, Jeffs has described a desensitization method based on reducing the angles of 
incidence at the lens surfaces and minimizing the optical powers of the individual optical elements18.  Jeff’s method is 
very fast and we have found that a particularly useful variant is to minimize the difference between the angle of the 
incidence and the sine of the angle of incidence.  Aberrations arise from real elements not being paraxial (angles not 
being the same as the sines of the angle) and this metric is often better at capturing the aberration contribution.  All of 
these methods can be effective tools, but they do not correlate directly to the as-built wavefront error. 

Catalan used an analytic, not numeric, approach19.  He derived the sensitivity of a Ritchey Chretien telescope to errors in 
the tilt, decenter, and despace of the secondary mirror based on the construction parameters and then analytically 
optimized the design.  This technique provides great insight, but also requires a lengthy derivation for every new system 
that needs to be desensitized. 

More recently, a few suggestions have been made to desensitize the model by creating a zoom model with various values 
of tolerances.  Fuse used two configurations for every tolerance: one for a perturbation in the positive direction, and one 
for a perturbation in the negative direction20. Fuse’s method requires a very large number of configurations (upwards of 
6 per surface). Rogers used a smaller number of zoom positions and randomly perturbed the parameters for each of these 
surfaces21.  The number of configurations is independent of the number of surfaces and tolerances.  Each zoom position 
is essentially a Monte Carlo realization of an as-built system.  With a sufficient number of Monte Carlo positions, the 
optimizer can work to find tolerance insensitive forms.  The disadvantage of the methods of Fuse and Rogers is slower 
optimization due to the increase in the number of configurations and often to the increase in the number of fields.  A 
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rotationally symmetric system analyzed with three fields must be analyzed over 5 y-fields, if only tolerances that affected 
y-fields are used and must be analyzed over a grid of 5x5 fields, if tolerances that affected both x- and y-fields are used.  

In an earlier method, the author used global optimization to generate many local minimum and then sorted based on their 
predicted as-built performance using CODE V’s fast differential tolerance analysis (the TOR option) 22.  This technique 
allows the designer to sort through hundreds of local minima that can be easily generated in a modern lens design 
program based on the as-built rms wavefront or MTF performance.  However, it does not allow one to directly optimize 
on the as-built performance. 
 
In 2010, two authors independently proposed computing the changes in the wavefront for selected tolerances types using 
Rimmer’s differential ray trace techniques.  Bates used the Tziani and Gray method to include contributions for off-axis 
aberrations due to surface displacements by using selected rays (5 rays for the mobile phone camera that he optimized)23.  
The minimal ray set to compute only one type of manufacturing error made the evaluation very fast, but the 
implementation works for only one type of manufacturing error and the user must carefully select the right ray set.  
Yabe’s technique was more general, adding the square root of the increase of the variance of the wavefront aberration for 
both decenter and curvature errors24.   
 
This paper describes the direct inclusion of the differential tolerance analysis into the error function and thus the direct 
optimization of the as-built wavefront (mean + 2sigma) for all the tolerances types supported by CODE V (decenter, 
curvature, index, thickness, aspheric errors, wedge, tilt, etc.) including the effects of compensators in the alignment 
procedure.  Section 2 briefly outlines the inclusion of the differential tolerance sensitivities into the error function.  
Section 3 discusses the optimization of the as-built performance of example photographic objectives: a simple Cooke 
triplet, a double Gauss lens, and two mobile phone camera lenses.    
 

2.  DIFFERENTIAL TOLERANCE ANALYSIS 

Damped Least Square (DLS) optimizers typically used in lens design software work best when the error function 
comprises many contributions that are affected approximately linearly by the variables.  For example, in the case of spot 
size error functions, the transverse errors for every ray are entered into the error function, not the single number 
describing the RMS of the errors (which carries less information than the set of individual ray errors). Thus, we will 
build an error function that is composed of the contributions from each individual tolerance on the wavefront error 
evaluated using differential tolerance analysis to minimize the computational burden.  
 
The differential tolerance analysis is based on real ray tracing and predicts the effect of the various tolerances on RMS 
wavefront error. It is based on a wavefront differential ray trace12,25  that provides the derivative of the OPD with respect 
to the tolerances. This provides an extremely efficient way to calculate the changes in RMS wavefront error26-27 used in 
the statistical calculations28. 
 
In differential tolerance analysis, grids of rays are traced through the lens as needed. For each ray, the wave aberration 
derivatives are calculated for each perturbation and appropriately summed. The final result is a set of coefficients 
defining a function that describes the expansion of the variance of the wavefront with respect to each of the parameters 
of interest (perturbations).  
 
 Δvariance ൌ ෍ ൫A୧ T୧ଶ ൅ B୧ T୧ ൅ ∑ C୧୨ T୧ T୨N௝ୀଵ ൯ே௜ୀଵ . 

 
 (1) 

where A୧ ,B୧  and C୧୨ are expansion coefficients, and T୧, and T୨ are the tolerance values, and N is the number of tolerances.  C୧୨ is a strictly upper triangular matrix.   This is a simple second order Taylor series expansion. CODE V provides the A୧ , B୧ , and C୧୨ coefficients through the AS_BUILT_ABC macro function (the A୧ and B୧ coefficients are also listed in the 
TOR option output).   
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Once the differential expansion of the wavefront variance is computed, we need a way to include this sensitivity 
information in the error function. As a starting point, consider the square of the wavefront squared plus the mean plus 2σ 
value of the wavefront variance as an as-built error function 
 
ܤܣ  ൌ ሺ ଴ܹଶ൅ μௐ ൅ ௐሻଶߪ2  (2) 
 
where W଴ is the nominal wavefront error, μௐ is the mean of the change in the wavefront variance and ߪௐ is the standard 
deviation of the change in the wavefront variance.  If the system probability distribution is Gaussian (often a good 
approximation due to the central limit theorem), 97.7% of the as-built lenses will have an RMS value that is better than 
the mean plus 2σ. 
 
Equation (2) can be evaluated using the expression derived by Koch for the mean and standard deviation for 
symmetrical, zero mean probability densities  
 
 μௐ ൌ ෍ A୧ ߪ୧ଶே

௜ୀଵ  

 

 (3) 

 
ௐଶߪ  ൌ ෎ ቆܣ௜ଶ ሺ߭ସ୧ െ ୧ସሻߪ ൅ ୧ଶߪ௜ଶܤ ൅ ୧ଶߪ ෍ ௜௝ଶܥ ୨ଶN௝ୀଵߪ ቇே

௜ୀଵ  

 

 (4) 

 
where ߭ସ୧ is the fourth moment of the tolerance probability distribution and ߪ୧ଶ is the variance of the tolerance probability 
distribution28 ( A୧ , B୧ , and C୧୨ are the differential expansion coefficients in (1)).  The resulting expression is not easily 
incorporated into a DLS optimizer, because the resulting expression is not a simple sum of squares of aberrations.  
Therefore, we built a Simplified As-Built (SAB) error function composed of a sum of components that depend on only 
one tolerance 
 
ܤܣܵ  ൌ ෍ Aberration୧ଶே

௜ୀଵ  

 

 (5) 

 
where the square of the aberration for each tolerance is 
 
 Aberration୧ଶ ൌ ଴ܹସ ൅ ௐߪ4 ଴ܹଶN ൅ 2 ଴ܹଶA୧ ୧ଶߪ ൅ ௐA୧ߪ4 ୧ଶߪ ൅ 4A୧ଶሺ߭ସ୧ െ ୧ସሻ൅ߪ  4B୧ଶߪ୧ଶ ൅ ୧ଶߪ4 ෍ C୧୨ଶߪ୨ଶே

௝ୀଵ ൅ A୧ ߪ୧ଶ ෍ A୨ ߪ୨ଶே
௝ୀଵ  

 

 (6) 

 
Note that there are three terms without tolerance subscripts in the above equation: the number of terms, N, the nominal 
wavefront, W଴, and the standard deviation of the wavefront, ߪௐ  (not to be confused with standard deviations of the 
tolerance probability distributions ߪ୧ଶ and ߪ୨ଶ).  The number of tolerances and the nominal wavefront error are constants 
and do not depend on the values of the tolerances.  The standard deviation ߪௐ depends on the individual tolerances, but 
we choose to simplify the calculation of the merit function by computing (4) and taking the square root.  The choice of 
the error function (5) allows the straightforward incorporation of the A୧ , B୧ , and C୧୨ expansion coefficients for each 
tolerance with the minimal loss of information.  The SAB error function is easily added to the existing error functions 
and has proven to be successful in desensitizing a wide range of systems.  
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The designs described in the remainder of this paper utilize the ܵܤܣ error function described above, in conjunction with 
the standard transverse aberration or wavefront error functions.  Because SAB is based on a second order Taylor series 
expansion and has a few simplifications, SAB was not used as a standalone merit function.  Best results were most 
frequently obtained when the relative weighting of the SAB and standard  error functions were the same order of 
magnitude, although the optimum weights varied for each lens (as one might expect).  While the SAB error function can 
reuse the rays traced for the standard error function, computation of the A୧ , B୧ , and C୧୨ coefficients and the increased 
matrix size in the DLS optimization does increase the computational burden.  The designer can improve the speed by 
using only the most sensitive tolerances from the lens.   Because SAB is simplified, and not an exact description of the 
wavefront, it can “push” the optimizer in a useful direction. SAB has often been found to work better as a complement to 
a standard error function, rather than as a standalone error function.   
 
It is important to note that the sensitivity coefficients A୧ , B୧ , and C୧ ୨include the effects of any tolerance compensators in 
the system.  That is, SAB estimates the as-built performance under the condition that the specified compensators are 
used.  The compensators could be as simple as setting focus or could include multiple layers of compensation, for 
instance decentering a lens to correct axial coma, and then readjusting focus. The implementation of this method in 
CODE V allows the user to enter different compensators for different sets of tolerances (through labeling tolerances and 
compensators). This may be used, for example, on a relay system, consisting of two sub-assemblies, each of which is 
built and assembled separately. (Importantly, handling the tolerances in this way prevents the two sub-assemblies from 
“cross-correcting” each other’s aberrations.)  It can also be used to model transverse compensators for coma and air 
space adjustments for spherical aberration, in for example, a microscope.   
 

3.  EXAMPLES 

In general there are two types of design problems: design-to-performance and design-to-cost.  In design to performance, 
we want to find the global minimum for manufacturing cost to meet a particular set of performance requirements.  This 
involves designing the most manufacturable lens for the requirements and then choosing the most appropriate set of 
tolerances and compensators to minimize manufacturing cost of that lens.  In design-to-cost, we want to find the highest 
performing lens for a given set of manufacturing parameters.  In this section we will describe three simple design-to-cost 
examples: a Cooke triplet, a double Gauss lens, and a mobile phone camera lens.  

3.1 Cooke triplet 

The Cooke triplet is a photographic lens designed and patented in 1893 by Dennis Taylor, who was chief engineer of 
T.  Cooke & Sons of York, England29. It consists of two positive singlet elements and one negative singlet element. The 
negative flint element is located in the middle of the positive crown elements, thus maintaining a large amount of 
symmetry.  It has enough effective degrees of freedom (6 radii, 2 air spaces, 3 indices) to affect all the primary 
aberrations (longitudinal color, lateral color, field curvature, astigmatism, coma, and spherical aberration). At the time, 
the Cooke triplet was a major advancement in lens design. It was superseded by later designs in high-end cameras, but is 
still widely used in inexpensive cameras and other applications. 
 
As a first example of the use of this technique, we start with the Cooke1 lens design shipped with CODE V. Table 1 lists 
the specifications.  Figure 1 shows the design locally optimized with a 100 mm focal length constraint and a) transverse 
error function, b) wavefront error function, c) SAB and transverse error function, and d) SAB and wavefront error 
function.  For the SAB optimization, we used the “commercial quality” tolerances in Table 2 and only a focus 
compensator.  All tolerances in the SAB optimization are assumed to have uniform probability distributions.  The 
optimization with transverse aberration error functions resulted in larger, weaker lenses with larger air spaces between 
elements. (There was no length constraint.)   The glasses for the first two elements changed from moderate index crowns 
and flints (n ≈ 1.63) to high index crows and flints (n ≈ 1.73).  The SAB error function led to more “relaxed” designs.  
Figure 2 shows the nominal wavefront aberrations for the four cases.  All designs have large residual chromatic 
aberrations, which the SAB error function cannot fix. (There are not enough degrees of freedom with “normal” glasses to 
correct secondary color and the variations of aberrations with wavelength.) Both SAB designs have larger residual 
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