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28 ' 2 Image formation

 

 
Figure 2.1 A few components of the image formation process: (a) perspective projection; (h) light scattering
when hitting a surfaCe; (c) lens optics; (d) Bayer color filter array.
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2.1 Geometric primitives and transformations 29

Before we can intelligently analyze and manipulate images, we need to establish a vocabulary

for describing the geometry of a Scene. We also need to understand the image formation

process that produced a particular image given a set of lighting conditions, scene geometry,

surface properties, and camera Optics. In this chapter. we present a simplified model of such

an image formalion process. t

Section 2.1 introduces the basic geometric primitives used throughout the book (points,

lines, and planes) and the geometric transformations that project these 3D quantities into 2D

image features (Figure 2.1a). Section 2.2 describes how fighting, surface properties (Fig-

ure 2.1b), and camera optics (Figure 2.1c) interact in order to produce the color values that

fall onto the image sensor. Section 2.3 describes how continuous color images are turned into

discrete digital samples inside the image sensor (Figure 2.1d) and how to avoid (or at least

characterize) sampling deficiencies, such as aliasing.

The material covered in this chapter is but a brief summary of a very rich and deep set of

topics, traditionally covered in a number of separate fields. A more thorough introduction to

the geometry ofpoints, lines, planes, and projections can be found in textbooks on multi—view

geometry (Hartley and Zisserman 2004; Faugeras and Luong 2001) and computer graphics

(Foley, van Dam, Feiner at at. 1995). The image formation (synthesis) process is traditionally

taught as part of a computer graphics curriculum (Foley, van Dam, Feiner er al. 1995; Glass—

ner 1995; Watt 1995; Shirley 2005) but it is also studied in physics-based computer vision

(Wolff, Shafer, and Healey 1992a). The behavior of camera lens systems is studied in optics

(Moller 1988; Hecht 2001; Ray 2002). Two good books on color theory are (Wyszecki and

Stiles 2000; Healey and Shafer 1992), with (Livingstone 2008) providing a more fun and in-

formal introduction to the topic of color perception. Topics relating to sampling and aliasing

are covered in textbooks on signal and image processing (Crane 1997; Jahne 1997; Oppen-

heim and Schafer 1996; Oppenheim, Schafer, and Buck 1999; Pratt 2007; Russ 2007; Burger
and Burge 2008; Gonzales and Woods 2008).

A note to students: If you have already studied computer graphics, you may want to

skim the material in Section 2.], although the sections on projective depth and object—centered

projection near the end of Section 2.1.5 may be new to you. Similarly, physics students (as

well as computer graphics students) will mostly be familiar with Section 2.2. Finally, students

with a good background in image processing will already be familiar with sampling issues

(Section 2.3) as well as some of the material in Chapter 3.

2.1 Geometric primitivesand transformations

In this section, we introduce the basic 2D and 3D primitives used in this textbook, namely

points, lines, and planes. We also describe how 3D features are projected into 2D features.

More detailed descriptions of these topics (along with a gentler and more intuitive introduc—

tion) can be found in textbooks on multiple-view geometry (Hartley and Zisserman 2004;
Faugeras and Luong 2001).

2.1.1 Geometric primitives

Geometric primitives form the basic building blocks used to describe three-dimensional shapes.

In this section, we introduce points, lines, and planes. Later sections of the book discuss
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30 2 Image formation

 
(b)

 
Figure 2.2 (a) 2D line equation and (b) 3D plane equation, expressed in terms of the normal it and distance to
the origin d.

curves (Sections 5.1 and 112), surfaces (Section 12.3), and volumes (Section 12.5).

ZD points. 2D points (pixel coordinates in an image) can be denoted using a pair of values,

as = (a, y) E R2, or alternatively,

3:“) (2.1)a

(As stated in the introduction, we use the (931, $2, . . .) notation to denote column vectors.)

2D points can also be represented using homogeneous coordinates, a = (E, i}, til) 6 792,

where vectors that differ only by scale are considered to be equivalent. 392 = R3 — (0,0,0)
is called the 2D projective space.

A homogeneous vector 55: can be converted back into an inhomogeneous vector :12 by

dividing through by the last element tit, i.e.,

E: = (i,§,1fi) : 13(miyt1) 2 15:5, (2-2)

where i = (a, y, 1) is the augmented vector. Homogeneous points whose last element is if.- =

0 are called ideal points or points at infinity and do not have an equivalent inhomogeneous

rePresentation.

2D lines. 2D lines can also be represented using homogeneous coordinates f = (a, b, c).
The corresponding line equation is

e-f=ae+by+c=0. (2.3)

We can normalize the line equation vector so that! = (fit, fry, ti) 2 (ft, :13) with ”fill = 1. In
this case, it. is the normal vector perpendicular to the line and d is its distance to the origin

(Figure 2.2). (The one exception to this normalization is the line at infinity 3 = (0,0,1),
which includes all (ideal) points at infinity.)

We can also express it as a function of rotation angle 9, ii, = (1%, fig) = (cos 0, sin 6)

(Figure 2.2a). This representation is commonly used in the Hough transform line-finding

algorithm, which is discussed in Section 4.3.2. The combination (Ehd) is also known as

polar coordinates.

When using homogeneous coordinates, we can compute the intersection of two lines as

e = i1 X112, (2.4)
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2.1 Geometric primitives and transformations 31

where x is the cross product operator. Similarly, the line joining two points can be written as

t": 5:, x 37:3. (2.5)

When trying to fit an intersection point to multiple lines or, conversely, a line to multiple

points, least squares techniques (Section 6.1.1 and Appendix A2) can be used, as discussed
in Exercise 2.1.

2D conics. There are other algebraic curves that can be expressed with simple polynomial

homogeneous equations. For example, the conic sections (so called because they arise as the

intersection of a plane and a 3D cone) can be written using a quadric equation

s1" Qi: = o. (2.5)

Quadric equations play useful roles in the study of multi-view geometry and camera calibra-

tion (Hartley and Zisserman 2004; Faugeras and Luong 2001) but are not used extensively in
this book.

3D points. Point coordinates in three dimensions can be written using inhomogeneous co-

ordinates a: = (:c, y, z) E R3 or homogeneous coordinates :i': = (§,§,2,1IJ) 6 733. As before,

it is sometimes useful to denote a 3D point using the augmented vector 5: = (:3, y, z, 1) with
i 2 1.35.

3D planes. 3D planes can also be represented as homogeneous coordinates fit = (a, b, c, d)

with a corresponding plane equation '

:E-fitzax+by+cz+d=0. (2.7)

We can also normalize the plane equation as m = (715, fry, fiz, d.) 2 (fit, d) with ”it“ = 1.
In this case, it. is the normal vector perpendicular to the plane and d is its distance to the

origin (Figure 2.2b). As with the case of 2D lines, the plane at infinity fit = (0,0,0,1),

which contains all the points at infinity, cannot be normalized (i.e., it does not have a unique

normal or a finite distance).

We can express it as a function of two angles (9, 95),

ii = (cos 19 cos <35, sine cos (:5, sin 95), (2.8)

i.e., using spherical coordinates, but these are less commonly used than polar coordinates

since they do not uniformly sample the space of possible normal vectors.

3D lines. Lines in 3D are less elegant than either lines in 2D or planes in 3D. One possible

representation is to use two points on the line, (p, q). Any other point on the line can be

expressed as a linear combination of these two points

r = (1 — 20p + Aq, (2.9)

as shown in Figure 2.3. If we restrict O S A S 1, we get the line segment joining p and q.
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Figure 2.3 31) line equation, r- : (1 — Mp + Ag.

If we use homogeneous coordinates, we can write the line as

F = #15 + Ari. (2.10)

A special case of this is when the second point is at infinity, i.e., ti 2 (CL, rig, dz, 0) : (Ci, 0).
Here, we see that d is the direction of the line. We can then re-write the inhomogeneous 3D

line equation as

r=p+Aai (2.11)

A disadvantage of the endpoint representation for 3D lines is that it has too many degrees

of freedom, i.e., six (three for each endpoint) instead of the four degrees that a 3D line truly

has. However, if we fix the two points on the line to lie in specific planes, we obtain a rep—

resentation with four degrees of freedom. For example, if we are representing nearly vertical

fines, then 2 : 0 and z = 1 form two suitable planes, i.e., the (a, y) coordinates in both

planes provide the four coordinates describing the line. This kind of two—plane parameter-i—

zation is used in the iigkrfieid and Lumigraph image-based rendering systems described in

Chapter 13 to represent the collection of rays seen by a camera as it moves in front of an

object. The two-endpoint representation is also useful for representing line segments, even

when their exact endpoints cannot be seen (only guessed at).

If we wish to represent all possible lines without bias towards any particular orientation,

we can use Pificksr coordinates (Hartley and Zisserrnan 2004, Chapter 2; Faugeras and Luong

2001, Chapter 3). These coordinates are the six independent non-zero entries in the 4 X4 skew

symmetric matrix

L = 156T - 615T, (2.12)

where 15‘ and {f are any two (non-identical) points on the line. This representation has only

four degrees of freedom, since L is homogeneous and also satisfies det(L) = 0, which results

in a quadratic constraint on the Plucker coordinates.

In‘practice, the minimal representatiOn is not essential for most applications. An ade-
quate model of 3D lines can be obtained by estimating their direction (which may be known

ahead of time, e.g., for architecture) and some point within the visible portion of the line

(see Section 7.5.1) or by using the two endpoints, since lines are most often visible as finite

line segments. However, if you are interested in more details about the topic of minimal

line pararneterizations, F'orstner (2005) discusses various ways to infer and model 3D lines in
projective geometry, as well as how to estimate the uncertainty in such fitted models.
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y m0 projectivetranslation
fl

#4 fl
Euclidean affine .

x

Figure 2.4 Basic set of 2D planar transformations.

 

3D quadrics. The 3D analog of a conic section is a quadric surface

for = 0 (2.13)

(Hartley and Zisserman 2004, Chapter 2). Again, while quadric surfaces are useful in the

study of multi-view geometry and can also serve as useful modeling primitives (spheres,

ellipsoids, cylinders), we do not study them in great detail in this book.

2.1.2 2D transformations

Having defined our basic primitives, we can now him our attention to how they can be trans

formed. The simplest transformations occur in the 213 plane and are illustrated in Figure 2.4.

Translation. 2D translations can be written as :c’ = a: + t or

w’=[r t]:r: (2.14)

where I is the {2 x 2) identity matrix or

_, I t _ -

$2M. lie (2.15)
where D is the zero vector. Using a 2 x 3 matrix results in a more compact notation, whereas

using a full-rank 3 x 3 matrix (which can be obtained from the 2 x 3 matrix by appending a

[0T 1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as an appears on both sides, it can always be

replaced with a full homogeneous vector 5:.

Rotation + translation. This transformation is also known as 2D rigid body motion or

the 2D Euclidean transformation (since Euclidean distances are preserved). It can be written
asm’=Ra:+tor

m’=[R fir (2.16)

where _

R: cosfl —sm6 (2.17)5111 6 cos 6

is an orthonormal rotation matrix with RRT = I and IRI = l.
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34 2 Image formation

Scaled rotation. Also known as the similarity transform, this transformation can be ex—

pressed as m“ = stc + t where s is an arbitrary scale factor. It can also be written as

a:=[sR t]s=[: ‘ab Ha (2.18}I!
s.

where we no longer require that a2 + b2 = 1. The similarity transform preserves angles
between Lines.

Affine. The affine transformation is written as as" = Ada, where A is an arbitrary 2 x 3

matrix, i.e.,
a o o _

w: = [ on or 02 ] as. (119)are air G12

Parallel lines remain parallel under affine transformations.

Projective. This transformation, also known as a perspective transform or homogrophy,
operates on homogeneous coordinates

~ 2 fig, (2.20)

where 1:! is an arbitrary 3 x 3 matrix. Note that Iii is homogeneous, i.e., it is only defined

up to a scale, and that two H matrices that differ only by scaledare equivalent. The resulting

homogeneous coordinate :3" must be normalized in order to obtain an inhomogeneous result
9:, i.e.,

93’ _ how '1' hint; + hm d i _ hmm + hliy + his_ an ._ .

haox + h212," + has y hoax + how + 471-22

Perspective transformations preserve straight lines (i.e., they remain straight after the trans-
formation).

(2.21)

Hierarchy 0! 2D transformations. The preceding set of transformations are illustrated

in Figure 2.4 and summarized in Table 2.1. The easiest way to think of them is as a set

of (potentially restricted) 3 x 3 matrices operating on 2D homogeneous coordinate vectors.

Hartley and Zisserrnan (2004) contains a more detailed description of the hierarchy of 2D

planar transformations.

The above transformations form a nested set of groups, i.e., they are c105ed under com—

position and have an inverse that is a member of the same group. (This will be important

later when applying these transformations to images in Section 3.6.) Each (simpler) group is

a subset of the more complex group below it.

Ctr-vectors. While the above transformations can be used to transform points in a 2D

plane, can they also he used directly to transform a line equation? Consider the homogeneous
equationi i:-— D. If we transform a: = Ha: we obtain

.4 a.

is=iHs=(nTifs =t- =0, (2.22)
. 4 ~ —r~
re, 1—— H 1. Thus, the action of a projective transformation on a co--vecror such as a 2D

line or 3D normal can be represented by the transposedinverse of the matrix, whichrs equiv-

alent to the oojfoinr of H, since projective transformation matrices are homogeneous. Jim
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 Transformation Matrix # DoF Preserves Icon

translation [ I I t ]2><3 2 orientation C]

rigid (Euclidean) [ R l t ]2X3 3 lengths O

similarity [ sR I t ]2X3 4 angles 0

affine [ A ]2x3 6 parallelism U

projective [ I? L 3 8 straight lines iX

Table 2.1 Hierarchy of 2D coordinate transformations. Each transformation also preserves the properties listed

in the rows below it, i.e., similarity preserves not only angles but also parallelism and straight lines. The 2 X 3

matrices are extended with a third [0T 1] row to form a full 3 x 3 matrix for homogeneous coordinate transforma-
tions.

Blinn (1998) describes (in Chapters 9 and 10) the ins and outs of notating and manipulating
eo—vectors. '

While the above transformations are the ones we use most extensively, a number of addi—
tional transformations are sometimes used.

Stretchisquash. 'Ihis transformation changes the aspect ratio of an image,
f

m = smart—ta:
!

y = syy+tw

and is a restricted form of an affine transformation. Unfortunately, it does not nest cleanly

with the groups listed in Table 2.1.

Planar surlace flow. This eight-parameter transformation (Horn 1986; Bergen, Anah—

dan, Hanna e: at. 1992; Girod, Greiner, and Niemann 2000),
r 2

a = :10 ole: I ogy E can may

:9" = as —— (34$ + {153; —l— sang —— asxy,

 

  

arises when a planar surface undergoes a small 3D motion. It can thus be thought of as a

small motion approximation to a full homography. Its main attraction is that it is linear in the

motion parameters, at, which are often the quantities being estimated.

Bilinear interpolant. This eight-parameter transform (Wolberg 1990),

a,"r = on + ow + ogy —— nary

y“ = 0.3 + (149.: + 0.53; —— [ct-fry, 
can be used to interpolate the deformation due to the motion of the four corner points of

a square. (In fact, it can interpolate the motion of any four non-collinear points.) While

APPL—1013 / Page 13 of 63
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 Transformation Matrix # DoF Preserves Icon

translation [ I i t ]3x4 3 orientation |:i

rigid (Euclidean) [ R j r. ]3x4 6 lengths O

similarity [ sR I t; h“ 7 angles 0

affine [ A ]3M 12 parallelism E

projective I? i m 15 straight lines a

Table 2.2 Hierarchy of 3D coordinate transformations. Each transformation also preserves the properties listed
in the rows below it, La, similarity preserves not only angles but also parallelism and straight lines. The 3 x 4

matrices are extended with a fourth [0T 1] row to form a full 4 x 4 matrix for homogeneous coordinate transfor—
mations. The mnemonic icons are drawn in 213 but are meant to suggest transformations occurring in a full 3D
cube.

the deformation is linear in the motion parameters, it does not generally preserve straight

lines (only lines parallel to the square axes). However, it is often quite useful, e.g., in the

interpolation of sparse grids using splines (Section 8.3).

2.1.3 3D transformations

The set of three-dimensional coordinate transformations is very similar to that available for

2D transformations and is summarized in Table 2.2. As in 2D, these transformations form a

nested set of goups. Hartley and Zisserman (2004, Section 2.4) give a more detailed descrip-

tion of this hierarchy.

Translation. 3D translations can be written as m" = a: + t or

az’=[r t]fi (2.23)

where I is the (3 x 3) identity matrix and 0 is the zero vector.

Rotation + translation. Also known as 3D rigid body motion or the 3D Euclidean trans-

formation, it can be written as m’ 2 Rs: + t or

m'=[R Hr: (2.24)

where R is a 3 x 3 orthonormal rotation matrix with RRT = I and JR| = 1. Note that
sometimes it is more convenient to describe a rigid motion using

ac’ = R(::c — c) = Re: — RC, (2.25)

where c is the center of rotation (often the camera center).

Compactiy pararneterizing a 3D rotation is a non-trivial task, which we describe in more
detail below.
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2.1 Geometric primitives and transformations 37

Scaled rotation. The 31) similarity transform can be expressed as at“ = sRm + t where

s is an arbitrary scale factor. It can also be written as

3": [ 3R t ]:r:. (2.26)

This transformation preserves angles between lines and planes. ,

Affine. The affine transform is written as :c’ 2 A53, where A is an arbitrary 3 x 4 matrix,

i.e.,
aon I101 Goa ass

93’f = {310 (111 {112 (113 52. (2.27)
320 (121 9:22 0as

Parallel lines and planes remain parallel under affine transformations.

Projective. This transformation, variously known as a 3D perspective transform, homog-

raphy, or collimation, operates on homogeneous coordinates,

a z are, (2.28)

where I?!" is an arbitrary 4 X 4 homogeneous matrix. As in 2D, the resulting homogeneous
coordinate 5' must be normalized in order to obtain an inhomogeneous result as. Perspective

transformations preserve straight lines (i.e., they remain straight after the transformation).

2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-

ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,

e.g., r, y, and z, or :s, y, and r. This is generally a bad idea, as the result depends on the

order in which the transforms are applied. What is worse, it is not always possible to move

smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change

dramatically in response to a small change in rotation.1 For these reasons, we do not even

give the formula for Euler angles in this book—interested readers can look in other textbooks

or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the

rotations are known to be a set of uni-axial transforms, they can always be represented using

an explicit set of rigid transformations.

Axlslangle (exponential twist)

A rotation can be represented by a rotation axis fir, and an angle 9, or equivalently by a 3D

vector to = 9171.. Figure 2.5 shows how we can compute the equivalent rotation. First, we

project the vector 1: onto the axis r“: to obtain

o“ z «are - 1.!) = (as%, (2.29)

1 In robotics, this is sometimes referred to as gimbal lock.
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Figure 2.5 Rotation around an axis ft by an angle 6.

which is the component of 1; that is not afiected by the rotation. Next, we compute the

perpendicular residual of 'o from 11,

vi =v—v" = (I—fifiT 'u. (2.30)

We can rotate this vector by 90° using the cross product,

ox=fixo:[fi]xo, (2.31)

where [fix is the matrix form of the cross product operator with the vector 73. 2 (fix, fig, fiz),

a —a2 a,

[an = a; 0 ea . (2.32)

Note that rotating this vector by another 90° is equivalent to taking the cross product again.

”xx = 15» X 11x = [fifiv = ‘Ul:

andhence
A 2 _

v" —— 'u — 'UJ_ = t: +11,“ = (I+ [n}X)v.

We can now compute the in-plane component of the rotated vector u as

at = cos 3m + sin (ii-ox = (sin 6[fi}x — cos €[fi]i)o.

Putting all these terms together, we obtain the final rotated vector as

uzui +1)“ = (I+sin9[fi.}x +(1—cosa)[a]§)v. (2.33)

We can therefore write the rotation matrix corresponding to a rotation by 6 around an axis fi.
as

ma, 9) = I + sin amp + (1 — cogenafi, (2.34)

which is known as Rodriguez ’5 formula (Ayache 1989).

The product of the axis ti. and angle 9, w = 9r“: = (mm, my, (dz), is a minimal represen-
tation for a 3D rotation. Rotations through common angles such as multiples of 90" can be

represented exactly (and converted to exact matrices) if 8 is stored in degrees. Unfortunately,
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APPL-1013 / Page 17 of 63
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this representation is not unique, since we can always add a multiple of 360° (211' radians) to

9 and get the same rotation matrix. As well, (ii, 3) and (—fi, —6) represent the same rotation.

However, for small rotations (e.g., corrections to rotations), this is an excellent choice.

In particular, for small (infinitesimal or instantaneous) rotations and 6 expressed in radians,

Rodriguez’s formula simplifies to s,

1 an, toy

12(9)) as I + sin 6[fi]x m I + [8171.]>< = Luz 1 ~wx , (2.35)

—toy (4),: 1

which gives a nice linearized relationship between the rotation parameters to and R. We can

also write R(w)o m 'o + w x 1), which is handy when we want to compute the derivative of

Rt! with respect to to,

 0 z —y

21:: = —[o]x = —z 0 a: . (2.36)
y —m 0

Another way to derive a rotation through a finite angle is called the exponential twist

(Murray, Li, and Sastry 1994). A rotation by an angle 6' is equivalent to is rotations through

fl/k. In the limit as it: _+ 00, we obtain

R(a, 9) = :3an + épapp = exp [w]x. (2.37)

If we expand the matrix exponential as a Taylor series (using the identity [iiiKiJr2 = —[fi.]§‘<.
k > 0, and again assarning B is in radians), ~

9 s

exp[w]x = I+S[a]x+3ei+ga1§,+
33 A 92 93 A2

= 1+(9-§+---)[nlx+(§—E+-~)[nlx
= r+sma{a]x+(1—coss)[a}i, (2.38)

which yields the familiar Rodriguez’s formula.

Unit quaternions

The unit quaternion representation is closely related to the anglea’axis representation. A unit

quaternion is a unit length 4—veetor whose components can be written as q 2 (gm, qy, qz, qw)

or q = (r, y, z, to) for short. Unit quaternions live on the unit sphere J|q|| = 1 and antisocial

(opposite sign) quatemions, q and —q, represent the same rotation (Figure 2.6). Other than

this ambiguity (dual covering), the unit quaternion representation of a rotation is unique.
Furthermore, the representation is continuous, i.e., as rotation matrices vary continuously,

one can find a continuous quaternion representation, although the path on the quaternicn

sphere may wrap all the way around before returning to the “origin" go 2 (U, U, 0, 1). For

these and other reasons given below, quaternions are a very popular representation for pose

and for pose interpolation in computer graphics (Shoemake 1985).
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Figure 2.6 Unit quaternions live on the unit sphere ”£1“ = 1. This figure shows a smooth trajectory through the

three quaternions qo, Q1, and (12. The antipodal point to qg, namely -q2, represents the same rotation as Q2.

Quaternions can be derived from the axisfangle representation through the formula

q = (o, it!) = (sin gfi, cos g), (2.39)
where fl and 9 are the rotation axis and angle. Using the trigonometric identities sint? :-

2 sin 3 cos % and (1 — cos 6’) = 2 sin2 %, Rodriguez’s formula can be converted to

me, a) = I + sin Slfilx + (1 - cos snag

= I + 2w[v] x + 2a]; (2.40)

This suggests a quick way to rotate a vector v by a quaternion using a series of cross products,

scalings, and additions. To obtain a formula for R(q) as .a function of (a, y, z, to), recall that

0 —z y —y2 -— 2.2 my mz

[1:]x = z 0 —:s and [MK 2 my —m2 — 32 ya
—y a 0 m2: yz ~$2 — y2

We thus obtain

1 — 2(y2 + 22) 2(my — 2w) 2(wz + yw)

R(q) = 2(xy + 211;) 1 — 2(ch + :53) 2(yz .1 mo) . (2.41)

2(w2 — w) 2(w + W) 1 - 2($2 + y?)

The diagonal terms can be made more symmetrical by replacing l — 2(y2 + zz) with (:32 +

1n2 — yg — 22), etc.

The nicest aspect of unit quaternions is that there is a simple algebra for cemposing rota-

tions expressed as unit quaternjons. Given two quaternions 90 = (no, we) and q1 = (in, 1.91),
the quatemion multiply operator is defined as

Q2 = (10911 = (’00 X '01 + 10091 + with), ”wow: — ’00 "01): (2-42)

with the property that R(q2) = R(qD)R(qi). Note that quaternion multiplication is not

commutative, just as 3D rotations and matrix multiplications are not.
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procedure slerp(qo, (11, oz):

1. qr = til/so = (sum)

2. fits, < Othen qr <— —q,.

3. 6,. = 2tan—1(|[o,.[|/wr)

4- fir : NWT) : “gr/””1"”

9

6. get 2 (sin £211":th £51)

7- return 9’2 = case
  

Algorithm 2.] Spherical linear interpolation (slerp). The axis and total angle are first computed from the quater—

nion ratio. (This computation can be lifted outside an inner loop that generates a set of interpolated position for

animation.) An incremental quaternion is then computed and multiplied by the starting rotation quaternion.

Taking the inverse of a quaternion is easy: Just flip the sign of v or to (but not both!).

(You can verify this has the desired effect of tranSposing the R matrix in (2.41).) Thus, we

can also define quaternion division as

‘12 = 90/91 = Gloéif1 = ('00 X “”1 4‘ “wot-’1 — “wit-’0: —w0w1 *- ‘Uo "01)- (2-43)

This is useful when the incremental rotation betWeen two rotations is desired.

In particular, if we want to determine a rotation that is partway between two given rota-

tions, we can compute the incremental rotation. take a fraction of the angle, and compute the

new rotation. This prOCedure is called spherical linear interpolation or slerp for short (Shoe-

make 1985) and is given in Algorithm 2.1. Note that Shoemake presents two formulas other

than the one given here. The first exponentiates or by alpha before multiplying the original

quatemion.

(12 = 9390: (2-44)

while the second treats the quaternions as 4-vectors on a sphere and uses

_ sin(l — (3):? sin 0:9
9‘2 sino‘ ‘10 + m9]: (245)

where :9 = cos—1(q0 - ‘11) and the dot product is directly between the quaternion 4—vectors.
All of these formulas give comparable results, although care should be taken when go and q1

are close together, which is why I prefer to use an arctangent to establish the rotation angle.

Which rotation representation is better?

The choice of representation for 3D rotations depends partly on the application.

The axislangle representation is minimal, and hence does not require any additional con—

straints on the parameters (no need to re-normalize after each update). If the angle is ex-

pressed in degrees, it is easier to understand the pose (say, 90° twist around m-axis), and also
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easier to express exact rotations. When the angle is in radians, the derivatives of R with

respect to to can easily be computed (2.36).

Quaternions, on the other hand, are better if you want to keep track of a smoothly moving

camera, since there are no discontinuities in the representation. It is also easier to interpolate

between rotations and to chain rigid transformations (Murray, Li, and Sash'y 1994; Bregler

and Mah'k 1998).

My usual preference is to use quatemions, but to update their estimates using an incre-
mental rotation, as described in Section 6.2.2.

2.1.5 3D to 2D projections

Now that we know how to represent 2D and 3D geometric primitives and how to transform

them spatially, we need to specify how 3]) primitives are projected onto the image plane. We

can do this using a linear 3D to 2D projection mahix. The simplest model is orthography,

which requires no division to get the final (inhomogeneous) result. The more commonly used

model is perspective, since this more accurately models the behavior of real cameras.

Orthography and para-perspective

An orthographic projection simply drops the 2 component of the three-dimensional coordi-

nate p to obtain the 2D point or. (In this section, we use p to denote 3D points and a: to denote

2D points.) This can be written as

w = [12x2|0] p. (2.46)

If we are using homogeneous (projective) coordinates, we can write

1000‘

at: 0100 e, (2.47)
0001

Le, we drop the 2: component but keep the to component. Orthography is an approximate

model for long focal length (telephoto) lenses and objects whose depth is shallow relative

to their distance to the camera (Sawhney and Hanson 1991). It is exact only for telecentric

lenses (Baker and Nayar 1999, 2001).

in practice, world coordinates (which may measure dimensions in meters) need to be

scaled to fit onto an image sensor (physically measured in millimeters, but ultimately meaw

sored in pixels). For this reason, scaled orthography is actually more commonly used,

a: = [sfgxglo] p. (2.48)

This model is equivalent to first projecting the world points onto a local fronto-parallel image

plane and then scaling this image using regular perspective projection. The scaling can be the

same for all parts of the scene (Figure 2.7b) or it can be different for objects that are being

modeled independently (Figure 2%). More importantly, the scaling can vary from frame to

frame when estimating structure fipm motiorn, which can better model the scale change that

occurs as an object approaches the camera.

Scaled orthography is a popular model for reconstructing the 3D shape of objects far away

from the camera, since it greatly simplifies certain computations. For example, pose (camera
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(a) 3D View

(6) perspective (f) objectwcentered

Figure 2.7 Commonly used projection models: (a) 3D View of world, (b) orthography, (c) scaled orthography,

(d) para—perspective, (e) perspecljve, (t) object—centered. Each diagram shows a torn—clown View of the projection.

Note how parallel fines on the ground plane and box sides remain parallel in the non-perspective projections.

APPL—1013 / Page 21 of 63



APPL-1013 / Page 22 of 63

44 2 Image formation

orientation) can be estimated using simple least squares (Section 6.2.1). Under orthography,

structure and motion can simultaneously be estimated usingfactorization (singular value de—

composition), as discussed in Section 7.3 {Tomasi and Kanade 1992).

A closely related projection model is para-perspective (Aloirnonos 1990; Poelman and

Kanade 1997). In this model, object points are again first projected onto a local reference
parallel to the image plane. However, rather than being projected orthogonally to this plane,
they are projected parallel to the line of sight to the object center (Figure 23d). This is

followed by the usual projection onto the final image plane, which again amounts to a scaling.

The combination of these two projections is therefore afl‘ine and can be written as

also Got 0-02 Goa

53 = €110 G11 G12 G13 15- (2-49)
0 0 U 1

Note how parallel lines in 3D remain parallel after projection in Figure 2.7b—d. Para~perspectjve

provides a more accurate projection model than scaled orthography, without incurring the

added complexity of per-pixel perspective division, which invalidates traditional factoriza-
tion methods (Poelman and Kanade 1997).

Perspective

The most commonly used projection in computer graphics and computer vision is true 3D

perspective (Figure 2.7e). Here, points are projected onto the image plane by dividing them

by their 2: component. Using inhomogeneous coordinates, this can be written as

m/z

5:32:03): y/z ' (2-50)
1

In homogeneous coordinates, the projection has a simple linear form,

1000

a: 0100 a, (2.51)
0010

i.e., we drop the to component of 10. Thus, after projection, it is not possible to recover the

distance of the 3D point from the image, which makes sense for a 2D imaging sensor.

A form often seen in computer graphics systems is a tonstep projection that first projects
3D coordinates into normalized device coordinates in the range (r, y, z) 6 [—1, —1] X

[—1,1] x [0, 1], and then rescales these coordinates to integer pixel coordinates using a view—

porr transformation (Watt 1995; OpenGL—ARB 1997). The (initial) perspective projection

is then represented using a 4 x 4 matrix

1 0 0 D

.. 0 l 0 U _

m — 0 0 ”zfar /zrange znearzfar/zrange p, (252)
0 0 l 0

where znea, and Zfar are the near and far 2: clipping planes and zrangfi = zfm- — zmm. Note

that the first two rows are actually scaled by the focal length and the aspect ratio so that
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Figure 2.8 Projection of a 3D camera—centered point 336 onto the sensor planes at location p. DC is the camera
center (nodal point), :35 is the 3D origin of the sensor plane coordinate system, and 3,, and 3,, are the pixel spacings.

visible rays are mapped to (r, y, z) E [— 1, —-l]2. The reason for keeping the third row, rather
than dropping it, is that visibility operations, such as z—bufiering, require a depth for every
graphical element that is being rendered.

If we set znem. = 1, 2:5,, —i 00, and switch the sign of the third row, the third element
of the normalized screen vector becomes the inverse depth, i.e., the disparity (Okutorni and
Kanade 1993). This can be quite convenient in many cases since, for cameras moving around
outdoors, the inverse depth to the camera is often a more well—conditioned parameterization
than direct 3E) distance.

While a regular 2D image sensor has no way of measuring distance to a surface point,
range sensors (Section 12.2) and stereo matching algorithms (Chapter 11) can compute such
values. it is then convenient to be able to map from a sensor-based depth or disparity value (1
directly back to a 3D location using the inverse of a 4 X 4 matrix (Section 2.1.5). We can do
this if we represent perspective projection using a full-rank 4 x 4 matrix, as in (2.64).

Camera lntrinsics

Once we have projected a 3D point through an ideal pinhole using a projection matrix, we
must still transform the resulting coordinates according to the pixel sensor spacing and the

relative position of the sensor plane to the origin. Figure 2.8 shows an illustration of the
geometry involved. In this section, we first present a mapping from 2D pixel coordinates to
3D rays using a sensor homography M3, since this is easier to explain in terms of physically
measurable quantities. We then relate these quantities to the more commonly used camera in-
ninsic matrix K, which is used to map 3D camera—centered points pc to 2D pixel coordinates
Eris.

Image sensors return pixel values indexed by integer pixei coordinates (m3, ya), often
with the coordinates starting at the upper-left corner of the image and moving down and to
the right. (This convention is not obeyed by all imaging libraries, but the adjustment for
other coordinate systems is straightforward.) To map pixel centers to 3D coordinates, we first
scale the (2:5, gs) values by the pixel spacings (35, 51,) (sometimes expressed in microns for
solid—state sensors) and then describe the orientation of the sensor array relative to the camera

projection center 06 with an origin es and a 3D rotation R, (Figure 2.8).
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The combined 2D to 3D projection can then be written as

sm 0 0 e
0 s 0 s _

P: I: Re I cs ] 0 0y 0 ya : M5935. (2-53)
- 1

U 0 1 h

The first two columns of the 3 X 3 matrix M5 are the 3D vectors eoz'reSponding to unit steps

in the image pixel array along the res and y, directions, while the third column is the 3D

image array origin cs.

The matrix M5 is parameterized by eight unknowns: the three parameters describing

the rotation R8, the three parameters describing the translation es, and the two scale factors

(33, 3%,). Note that we ignore here the possibility of skew between the two axes on the image

plane, since solid-state manufacturing techniques render this negligible. In practice, unless

we have accurate external knowledge of the sensor spacing or sensor orientation, there are

only seven degrees of freedom, since the distance of the sensor from the origin cannot be

teased apart from the sensor spacing, based on external image measurement alone.

However, estimating a camera model M3 with the required seven degrees of freedom

(i.e., where the first two columns are orthogonal after an appropriate re-scaling) is impractical,

so most practitioners assume a general 3 x 3 homogeneous matrix form.

The relationship between the 3D pixel center 13 and the 3D camera-centered point 336 is

given by an unknown scaling s, p = spa. We can therefore write the complete projection

between pa and a homogeneous version of the pixel address 5:, as

a, = adds—1pc = Kpc. (2.54)

The 3 X 3 matrix K is called the calibration matrix and describes the camera intrinsics (as

opposed to the camera’s orientation in space, which are called the exninsics).

From the above discussion, we see that K has seven degrees of freedom in theory and

eight degrees of freedom (the full dimensionality of a 3 x 3 homogeneous matrix) in practice.

Why, then, do most textbooks on 3D computer vision and multi—view geometry (Faugeras

1993; Hartley and Zisserrnan 2004; Faugeras and Luong 2001) treat K as an upperwu'iangular

matrix with five degrees of freedom?

While this is usually not made explicit in these books, it is because we cannot recover

the full K matrix based on external measurement alone. When calibrating a camera (Chap—

ter 6) based on external 3D points or other measurements {Tsai 1937), we end up estimating

the intrinsic (K) and extrinsic (R,t) camera parameters simultaneously using a series of
measurements,

e,=K[R|t]p,,=Ppw, (2.55)

where pw are known 3D world coordinates and

.P = K [R] t] (2.56)

is known as the camera matrix. Inspecting this equation, we see that we can post-multiply

K by R; and pre-multiply [R|t] by RE", and still end up with a valid calibration. Thus, it

is impossible based on image measurements alone to know the true orientation of the sensor
and the true camera intrinsics.
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Figure 2.9 Simplified camera intrinsics showing the focal length f and the optical center (c3, cg). The image
width and height are W and H.

The choice of an upper—triangular form for K seems to be conventional. Given a full

3 X 4 camera matrix P = K[th], we can compute an upper—triangular K matrix using QR

factorization (Golub and Van Loan 1996). (Netc the unfortunate clash of terminologies: In

matrix algebra textbooks, R represents an upper—triangular (right of the diagonal) matrix; in

computer vision, R is an orthogonal rotation.)

There are several ways to write the upper-triangular form of K. One possibility is

f1 3 cs

K: o fy Cy , (2.57)
0 0 l

which uses independentfocal lengths f3 and fy for the sensor a: and 3; dimensions. The entry

.5 encodes any possible skew between the sensor axes due to the sensor not being mounted

perpendicular to the optical axis and (ex, cg) denotes the optical center expressed in pixel
coordinates. Another possibility is

f 5 c:

K: o of a. . (2.58)
U U 1

where the aspect ratio a has been made explicit and a common focal length f is used.

In practiceyffor many applications an even simpler form can be obtained by setting a = l
ands=0.

f 0 a:

K: n f Cy . (2.59)
U 0 1

Often, setting the origin at roughly the center of the image, e.g., (cm cg) = (W/2, H/2),

where W and H are the image height and width, can result in a perfectly usable camera

model with a single unknown, i.e., the focal length f.

Figure 2.9 shows how these quantities can be visualized as part of a simplified imaging

model. Note that now we have placed the image plane infmnt of the nodal point (projection

center of the lens). The sense of the y axis has also been flipped to get a coordinate system

compatible with the way that most imaging libraries treat the vertical (row) coordinate. Cer—

tain graphics libraries, such as Direct3D, use a left-handed coordinate system, which can lead
to some confusion.
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Figure 2.10 Central projection, showing the relationship between the 3D and 2D coordinates, p and as, as well
as the relationship between the focal length f, image width W, and the field of view 3.

A note on focal lengths

The issue of how to express focal lengths is one that often causes confusion in implementing

computer vision algorithms and discussing their results. This is because the focal length

depends on the units used to measure pixels.

If we number pixel coordinates using integer values, say [0, W) x [0, H), the focal length

f and camera center (cm, cg) in (2.59) can be expressed as pixel values. How do these quan—
tities relate to the more familiar focal lengths used by photographers?

Figure 2.10 illustrates the relationship between the focal length f, the sensor width W,

and the field of view 6, which obey the formula

9 W W a ‘1t — = — = — t. — .an 2 2f or f 2 [ an 2]
For conventional film cameras, W = 35mm, and hence f is also expressed in millimeters.

Since we work with digital images, it is more convenient to express W in pixels so that the

focal length 3" can be used directly in the calibration matrix K as in {2.59).

Another possibility is to scale the pixel coordinates so that they go from [—1, 1) along

the longer image dimension and [—a‘1,a“1) along the shorter axis, where a 2 1 is the

image aspect ratio (as Opposed to the sensor cell aspect ratio introduced earlier). This can be

accomplished using modified normalized device coordinates,

x; = (23:, — W)/S and y; = (2y, — H)/S, where S = mava’V, H). (2.61)

(2.60)

This has the advantage that the focal length f and optical center (cm, Cy) become independent

of the image resolution, which can be useful when using multi-resolution, image-processing

algorithms, such as image pyramids (Section 3.5) .2 The use of 5' instead of W also makes the
focal length the same for landscape (horizontal) and portrait (vertical) pictures, as is the case

in 35mm photography. (In some computer graphics textbooks and systems, normalized device

coordinates go from [—1, 1] x [—1, 1], which requires the use of two different focal lengths

to describe the camera 'mtrinsics (Watt 1995; OpenGL-ARB 1997).) Setting S = W = 2 in

(2.60), we obtain the simpler (unitless) relationship

6
f—1 = tan —. (2.62)2

2 To make the conversion truly accurate after a downsampling step in a pyramid, floating point values of W and
H would have to be maintained since they can become non-integral if they are ever odd at a larger resolution in the
pyramid.
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The conversion between the various focal length representations is straightforward, e.g.,

to go from a unitless f to one expressed in pixels, multiply by W/2, while to convert from an

f expressed in pixels to the equivalent 35mm focal length, multiply by 35/W.

Camera matrix ..

Now that we have shown how to parameterize the calibration matrix K, we can put the

camera intrinsics and extrinsics together to obtain a single 3 x 4 camera man-ix

P=K[th]. (2.63)

It is sometimes preferable to use an invertible 4 x 4 matrix, which can be obtained by not

dropping the last row in the P matrix,

~ K o R t ~

P=[or1][0r 1]=KE, (2.64)
where E is a 3D rigid-body (Euclidean) transformation and ff is the full-rank calibration
matrix. The 4 X 4 camera matrix P can be used to map directly from 3D world coordinates

pm = (aw,yw,zw, 1) to screen coordinates (plus disparity), $5 = (whys, 1,d),

ms ~ 15a... (2.65)

where N indicates equality up to scale. Note that after multiplication by 15, the vector is
divided by the third element of the vector to obtain the normalized form on, = (a, , yrs, 1, cl).

Plane plus parallax (projective depth)

In general, when using the 4 x 4 matrix 15, we have the freedom to remap the last row to
whatever suits our purpose (rather than just being the “stander ” interpretation of disparity as

inverse depth). Let us re-write the last row of 13 as 103 = 53[fig}co], where ”fig“ = 1. We
then have the equation

a 2 %(90 ‘10s + CD), (2.66)
where z = p2 - 361,, = 3",, - (pm — c) is the distance ofpm from the camera center 0 (2.25)

along the optical axis Z (Figure 2.11). Thus, we can interpret d as the projective disparigz

or projective depth of a 3D scene point pm from the reference plane fig ‘ pw + co = U

(Szeliski and Coughlan 1997; Szeliski and Golland 1999; Shade, Gortler, He et at. 1998;

Baker, Szeliski, and Anandan 1998). (The projective depth is also sometimes calledparallax

in reconstruction algorithms that use the term plane plus parallax (Kumar, Anandan, and

Hanna 1994; SaWhney 1994).) Setting fig = 0 and c0 = 1, i.e., putting the reference plane

at infinity, results in the more standard cl = 1/2 version of disparity (Okutomi and Kanade

1993).

Another way to see this is to instert the 13' matrix so that we can map pixels plus disparity

directly back to 3D points,

13w 2 P m. (2.67)

In general, we can choose 13 to have whatever form is convenient, i.e., to sample space us- '
ing an arbitrary projection. This can come in particularly handy when setting up multi-view
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d=G.5 d=0 d=-0.25

 
image plane  

plane

0? = inverse depth d = projective depth

Figure 2.11 Regular disparity (inverse depth) and projective depth (parallax from a reference plane).

stereo reconstruction algorithms, since it allows us to sweep a series of planes (Section 1 1.1.2)

through space with a variable (projective) sampling that best matches the sansed image mo» -

tions (Collins 1996; Szelislci and Golland 1999; Saito and Kanade 1999).

Mapping from one camera to another

What happens when we take two images of a 3D scene from different camera positions or

orientations (Figure 2 12a)? Using the full rank 4 x 4 camera matrix P: KE from (2.64),

We can write the projection from world to screen coordinates as

so ~ KUEpp = 13013. {2.68)

Assuming that we know the z—bnffer or diaparity value do for a pixel in one image, we can

compute the 3D point location 30 using

33 ~ E;if;1:130 (2.69)

and then project it into another image yielding
- -—1

5:1 N K1E1p=K1E1EE1K31$0= P1130 illu—— meu. (2.70)

Unfortunately, we do not usually have access to the depth coordinates of pixels in aregular

photographic image. However, for a planar scene, as discussed above in (2.66), we can

replace the last row of P0 in (2.64) with a general plane equation, 1% - 3p + so that maps

points on the plane to do = 0 values (Figure 2.12b). Thus, if we set do = 0, we can ignore

the last column of M19 in (2.70) and also its last row, since we do not care about the final

z-buffer depth. The mapping equation (2.70) thus reduces to

:3. ~ awe... (2.71)

where fire is a general 3 x 3 homography matrix and £1 and 5:0 are new 2D homogeneous

coordinates (i.e., 3-vectors) (Szeljski 1996}.This justifies the use of the 8-parameter homog-

raphy as a general alignment model for mosaics of planar scenes (Mann and Picard 1994;

Szeliski 1996). -
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p=(X,Y,Z,1)

   
(a) (b)

Figure 2.12 A point is projected into two images: (a) relationship between the 3D point coordinate (X, Y, Z, 1)

and the 2D projected point (:0, y, 1, d); (b) planar homography induced by points all lying on a common plane

fio‘P+Co=0-

The other Special case where we do not need to know depth to perform inter—camera

mapping is when the camera is undergoing pure rotation (Section 9.1.3), i.e., when to = h.
In this case. we can write

e1 ~ KlRlflglKgléo = K1R10K31e0;-- (2.72)

which again can be represented with a 3 x 3 homography. If we assume that the calibration

matrices have known aspect ratios and centers of projection (2.59), this bomography can be

parameterized by the rotation amount and the two unknown focal lengths. This particular
formulation is commonly used in image-stitching applications (Section 9.1.3).

Object-centered projection

When working with long focal length lenses, it often becomes difficult to reliably estimate

the focal length from image measurements alone. This is because the focal length and the

distance to the object are highly correlated and it becomes difficult to tease these two effects

apart. For example, the change in scale of an object viewed through a zoom telephoto lens

can either be due to a zoom change or a motion towards the user. (This effect was put to

dramatic use in some of Alfred Hitchcock’s film Vertigo, where the simultaneous change of

zoom and camera motion produces a disquieting effect.)

This ambiguity becomes clearer if we write out the projection equation corresponding to

the simple calibration matrix K (2.59),

x —— ——. + 2.?3s f Ta _ t2 Cm ( )
1‘9 I t5"—. + 2.74-

:9: T2 1 t2: Cy: ( )

where rm, try, and 1”,, are the three rows of R. If the distance to the object center L, >> le|
(the size of the object), the denominator is approximately tz and the overall scale of the

projected object-depends on the ratio of f to fix. It therefore becomes difficult to disentangle
these two quantities.
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To see this more clearly, let oz = t;1 and s = nzf. We can then re—write the above

equations as
- t

$5 = 3m+ Ca: (235)
1 + 7,3sz ' P

re ' p + to= 5— + r- 2.76
y: 1 + 7?sz 'p Cy ( )

(Szeliski and Kang 1994; Pighin, Hecker, Lischinski er at. 1998). The scale of the projection

.s can be reliably estimated if we are looking at a known object (i.e., the 3D coordinates p

are knowa). The inverse distance 17,, is now mostly decoupled from the estimates of s and

can be estimated from the amount offareshorreniag as the object rotates. Furthermore, as

the lens becomes longer, i.e., the projection model becomes orthographic, there is no need to

replace a perspective imaging model with an orthographic one, since the same equation can

be used, with '02. —> U (as opposed to f and 13,, both going to infinity). This allows us to form

a natural link between orthographic reconstruction techniques such as factorization and their

projectivefperspective counterparts (Section 7.3).

2.1.6 Lens distortions

The above imaging models all assume that cameras obey a linear projection model where

straight lines in the world result in straight lines in the image. (This follows as a natural

consequence of linear matrix operations being applied to homogeneous coordinates.) Unfor—

tunately, many wide—angle lenses have noticeable radial distortion, which manifests itself as

a visible curvature in the projection of straight lines. (See Section 2.2.3 for a more detailed

discussion of lens optics, including chromatic-aberration.) Unless this distortion is taken into

account, it becomes impossible to create highly accurate photorealistic reconstructions. For

example, image mosaics constructed without taking radial distortion into account will often

exhibit blurring due to the nus—registration of corresponding features before pixel blending

(Chapter 9).

Fortunately, compensating for radial distortion is not that difficult in practice. For most

lenses, a simple quartic model of distortion can produce good results. Let (me, ya) be the

pixel coordinates obtained afier perspective division but before scaling by focal length f and

shifting by the Optical center (cm, Cy), i.e.,

Tz'p'l‘tx3,: = —-—
rz‘p‘l‘tz

ry-p+ty= —. 2.77
yr: ”1%”; ( )

The radial distortion model says that coordinates in the observed images are displaced away

(barrel distortion) or towards (pincaskr'on distortion) the image center by an amount propor—

tional to their radial distance (Figure 2.13a—b}.3 The simplest radial distortion models use

lowworder polynomials, e.g.,

£3 = :L'c(l + 517': + Kat-"3)

33c = yc(1 + an"?! + mzrfil, (2.78)

3 Anamorphic lenses, which are widely used in feature film production. do not follow this radial distortion model.
Instead, they can be thought of, to a first approximation, as inducing different vertical and horizontal scelings, i.e..
non—square pixels.
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(a) (b) (C)

Figure 2.13 Radial lens distortions: (a) barrel, (b) pincushion, and (c) fisheye. The fisheye image spans almost
180° from side-to-side.

where r3 = 332 + '93 and ml and tag are called the radial distortion parameters‘l After the
radial distortion step, the final pixel coordinates can be computed using

fa; + Ca

fa; + cg. (2.79)

$5

3}:

A variety of techniques can be used to estimate the radial distortion parameters for a given

lens, as discussed in Section 6.3.5.

Sometimes the above simplified model does not model the true distortions produced by

complex lenses accurately enough (especially at very wide angles). A more complete ana-

lytic model also includes tangential distortions and decentering distortions (Slama 1980), but
these distortions are not covered in this book.

Fisheye lenses (Figure 2.13c) require a model that differs frorn traditional polynomial

models of radial distortion. Fisheye lenses behave, to a first approximation, as east—distance

projectors of angles away from the optical axis (Xiong and Turkowsld 1997), which is the

same as the polar projection described by Equations (9.22—9.24). Xiong and 'Ihrkowski

(1997) describe how this model can be extended with the addition of an extra quadratic cor-

rection in q!) and how the unknown parameters (center of projection, scaling factor 3, etc.)

can be estimated from a set of overlapping fisheye images using a direct (intensity—based)

non—linear minimization algorithm.

For even larger, less regular distortions, a parametric distortion model using splines may

be necessary (Goshtasby 1989). If the lens does not have a single center of projection, it

may become necessary to model the 3D line (as opposed to direction) corresponding to each

pixel separately (Gremban, Thorpe, and Kanade 1988; Champleboux, Lavallée, Sautot er of.

1992; Grossberg and Nayar 2001; Storm and Ramalingarn 2004; Tardif, Sturm, Trudeau et

at. 2009). Some of these techniques are described in more detail in Section 6.3.5, which
discusses how to calibrate lens distortions.

4 Sometimes tliel‘relationship between me and dc is expressed the other way around, i.e., are = 3,0 + m “I"? +
meg). This is convenient if we map image pixels into (warped) rays by dividing through by f. We can then undistort
the rays and have true 3D rays in space.
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Figure 2.14 A simplified model of photometric image formation. Light is emitted by one or more light sources

and is then reflected from an object‘s surface. A portion of this light is directed towards the camera. This simplified

model ignores multiple reflections, which often occur in real-world scenes.

There is one subtle issue associated with the simple radial distortion model that is often

glossed over. We have introduced a non—linearity between the perSpective projection and final

sensor array projection steps. Therefore, we cannot, in general, post-multiply an arbitrary 3 x

3 matrix K with a rotation to put it into upper—triangular form and absorb this into the global

rotation. However, this situation is not as bad as it may at first appear. For many applications,

keeping the simplified diagonal form of (2.59) is still an adequate model. Furthennore, if we

correct radial and other distortions to an accuracy where straight lines are preserved, we have

essentially converted the sensor back into a linear imager and the previous decomposition still

applies.

2.2 Photometric image formation

In modeling the image formation process, we have described how 3D geometric features in

the world are projected into 2D features in an image. However, images are not composed of

2D features. Instead, they are made up of discrete color or intensity values. Where do these

values come from? How do they relate to the lighting in the environment, surface properties

and geometry, camera optics, and sensor properties {Figure 2.14)? In this section, we develop

a set of models to describe these interactions and formulate a generative process of image

formation. A more detailed treatment of these topics can he found in other textbooks on

computer graphics and image synthesis (Glassner 1995; Weyrich, Lawrence, Lensch er al.

2008; Foley, van Dam, Feiner er at. 1995; Watt 1995; Cohen and Wallace 1993; Sillion and

Puecll 1994).

2.2.1 Lighting

Images cannot exist without light. To produce an image, the scene must be illuminated with

one or more light sources. (Certain modalities such as fluorescent microscopy and X-ray
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tomography do not fit this model, but we do not deal with them in this book.) Light sources

can generally be divided into point and area light sources.

A point light source originates at a single location in space (e.g., a small light bulb),

potentially at infinity (e.g., the sun). (Note that for some applications such as modeling soft

shadows (penmnhms), the sun may have to be treated as an area light source.) In addition, to

its location, a point light source has an intenSity and a color Spectrum, i.e., a distribution over

wavelengths LOO. The intensity of a light source falls off with the square of the distance

between the source and the object being lit, because the same light is being spread over a

larger (spherical) area. A light source may also have a directional falioff (dependence), but

we ignore this in our simplified model.

Area light sources are more complicated. A simple area light source such as a fluorescent

ceiling light fixture with a diffuser can be modeled as a finite rectangular area emitting light

equally in all directions (Cohen and Wallace 1993; Sillion and Puech 1994; Glassner 1995).

When the distribution is strongly directional, a four-dimensional lightfield can be used instead

(Ashdovvn 1993).

A more complex light distribution that approximates, say, the incident illumination on an

object sitting in an outdoor courtyard, can often be represented using an environment mop

(Greene 1986) (originally called a reflection map (Blinn and Newell 1976)). This representa—

tion maps incident light directions 1‘: to color values (or wavelengths, A),

Me A). (2.80)

and is equivalent to assuming that all light sources are at infinity. Environment maps can he

represented as a collection of cubical faces (Greene 1986), as a single longitude—latitude map

(Blinn and Nowell 1976), or as the image of a reflecting sphere (Watt 1995). A convenient

way to get a rough model of a real-world environment map is to take an image of a reflective

mirrored sphere and to unwrap this image onto the desired environment map (Debevec 1998).

Watt (1995) gives a nice discussion of environment mapping, including the formulas needed

to map directions to pixels for the three most commonly used representations.

2.2.2 Reflectance and shading

When light hits an object’s surface, it is scattered and reflected (Figure 2.15a). Many different

models have been developed to describe this interaction. In this section, we first describe the

most general form, the bidirectional reflectance distribution function, and then look at some

more specialized models, including the diffuse, specular, and Phong shading models. We also

discuss how these models can be used to compute the global iilnmination corresponding to a
SCBIIB.

The Bidirectional Reflectance Distribution Function (B RDF)

The most general model of light scattering is the bidirectional reflectance distribution fianc-

n'on (BRDF).5 Relative to some local coordinate frame on the surface, the BRDF is a four—

dimensional function that describes how much of each wavelength arriving at an incident

5 Actually. even ,more general models of light transport exist, including some that model spatial variation along
the surface, sub-surface scattering, and atmospheric effects—see Section 12.7.1—(Dorsey. Rushmeier. and Sillion
2007; Weyrich, Lawrence, Lensch et at. 2003).

APPL—1013 / Page 33 of 63



APPL-1013 / Page 34 of 63

56

Figure 2.15

2 Image formation

 
(b)

 
(a) Light scatters when it hits a surface. (b) The bidirectional reflectance distribution function

(BRDF) f (6,5, dag, 6,, 96,—) is parameterined by the angles that the incident, fig, and reflected, or, light ray directions

make with the local surface coordinate frame (aim, dy, ii).

direction ii,- is emitted in a reflected direction 1'}, (Figure 2.] 5b). The function can be written

in terms of the angles of the incident and reflected directions relative to the surface frame as

ff(6il¢i)6T)¢T;A)' (2.81)

The BRDF is reciprocal, i.e., because of the physics of light transport, you can interchange

the roles of 1'},- and 1'3,— and still get the same answer (this is sometimes called Heimholtz

reciprocity).

Most surfaces are isotropic, i.e., there are no preferred directions on the surface as far

as light transport is concerned. (The exceptions are anisotropic surfaces such as brushed

(scratched) aluminum, where the reflectance depends on the light orientation relative to the

direction of the scratches.) For an isotmpic material, we-can simplify the BRDF to

fr(6i16ril¢r — fiéiliA) 01' fr(’fis1€*nfi;)\). (2-82)

since the quantifies 6,, 6,. and 95,. — qfii can be computed from the directions fig, tin and it.

To calculate the amount of light exiting a surface point p in a direction 13,. under a given

fighting condition, we integrate the product of the incoming light-Lani; A) with the BRDF

(some authors call this step a convoturion). Taking into account the foreshortening factor

cos+ 8,, we obtain

Lrwrm) = fL,(ii,;; A)f,.('ii,v, firfi; A) cos+ gédfif, (2.83)
where

005+ 19,; = max((], cos 6,). (2.84)

If the light sources are discrete (a finite number of point light sources), we can replace the
integral with a summation,

Lr(13r;/\) = Z L,(A)f,_(a,-, a, a; A) cos+ 9,. (2.85)

BRDFs for a given surface can be obtained through physical modeling (Torrance and

Sparrow 1967; Cook and Torrance 1982; Glassner 1995), heuristic modeling (Phong 1975), or
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Figure 2.16 This close-up of a statue ShOWS both diffuse (smooth shading) and specular (shiny highlight) reflec-

tion, as well as darkening in the grooves and creases due to reduced light visibility and interreflections. (Photo

courtesy of the Caltech Vision Lab, http:waw.vision.caltech.edufarchive.html.)

through empirical observation (Ward 1992', Westin, Arvo, and Torrance 1992; Dana, van Gin-

neken, Nayar at at. 1999; Dorsey, Rushmeier, and Sillion 200?; Weyrich, Lawrence, Lensch

er oi. 2008).‘S Typical BRDFs can often be split into their dijfirse and specular components,
as described below.

Diffuse reflection

The diffuse component (also known as Lamberttan or matte reflection) scatters light uni-

formly in all directions and is the phenomenon we most normally associate with shading,

e.g., the smooth (non—shiny) variation of intensity with surface normal that is seen when ob-

serving a statue (Figure 2.16). Diffuse reflection also often imparts a strong body color to

the light since it is caused by selective absorption and re—emission of light inside the object’s

material (Shafer 1985; Glassner 1995).

While light is scattered uniformly in all directions, i.e., the BRDF is constant,

fdffig, “it“ 1%; A) = fd(/\), (2.86)

the amount of light depends on the angle between the incident light direction and the surface

normal 19,-. This is because the surface area exposed to a given amount of light becomes larger

at oblique angles, becoming completely self-shadowed as the outgoing surface normal points

away from the light (Figure 2.17a). (Think about how you orient yourself towards the sun or

fireplace to get maximum warmth and how a flashlight projected obliquely against a wall is

less bright than one pointing directly at it.) The shading equation for diffuse reflection can
thus be written as

Lina; A) = Z nomad) cos+ a, = anguna - 711+, (2.37)

‘5 See httptthvww1.cs.columbia.edw'CtWEl’softviarelciirtatiIr for a database of some empirically sampled BRDFS.

APPL—1013 / Page 35 of 63



APPL-1013 / Page 36 of 63

58 2 Image formation

 
(b)

 
Figure 2.17 (a) The diminution of returned light caused by foreshortening depends on 1‘); ‘ in, the cosine of the

angle between the incident light direction in, and the surface normal fr. Cb) Mirror (specular) reflection: The

incident light ray direction in is reflected Onto the specular direction 5,- around the surface normal 1%.

where

[as . a]+ = maxm, a, - a). (2.88)

Specular reflection

The second major component of a typical BRDF is specular (gloss or highlight} reflection,

which depends strongly on the direction of the outgoing light. Consider light reflecting off a

mirrored surface (Figure 2.17b). Incident light rays are reflected in a direction that is rotated

by 180" around the surface normal fr. Using the same notation as in Equations (2.29—2.30),

we can compute the specular reflection direction Q as

§§ = 1.!” — ’U_|_ = (2fi’fiT — I)‘Ui- (2'89)

The amount of light reflected in a given direction ii, thus depends on the angle 6,, =

cos‘1 (1‘)," - as) between the view direction 1’3? and the specular direction a. For example, the

Phong (1975) model uses a power of the cosine of the angle,

£9093; A) = 36500 005*“ 9:, (2-90)

while the Torrance and Sparrow (196'?) micro—facet model uses a Gaussian,

mes; A) = MA) apt—c363) (2.91)

Larger exponents kg (or inverse Gaussian widths cs) correspond to more specular surfaces

with distinct highlights, while smaller exponents better model materials with softer gloss.

Phong shading

Phong (1975) combined the diffuse and specular components of reflection with another term,

which he called the ambient illumination. This term accounts for the fact that objects are

generally illuminated not only by point light sources but also by a general diffuse illumination

corresponding to inter—reflection (e.g., the walls in a room) or distant sources, such as the
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(a)

Figure 2.18 Cross-section through a Phong shading model BRDF for a fixed incident illumination direction:

(a) component values as a function of angle away from surface normal; (b) polar plot. The value of the Phong

exponent ice is indicated by the “Exp" labels and the light source is at an angle of 30° away from the normal.

blue sky. In the Phong model, the ambient term does not depend on surface orientation, but

depends on the color of both the ambient illumination LEO) and the object kaO‘),

foO‘) : ko(A)La()‘)' (2-92)

Putting all of these terms together, We arrive at the Phong shading model,

L..(€-,.; A) = 1c..(,\)L,,(A)+ kgOl) Z Lg()\)[fi¢ - a}+ + k,(A) Z L.;(i.)(sr - are. (2.93)

Figure 2.18 shows a typical set of Phong shading model components as a function of the

angle away from the surface normal (in a plane containing both the fighting direction and the

viewer).

Typically, the ambient and diffuse reflection color distributions £110) and dei) are the

same, since they are both due to sub-surface scattering (body reflection) inside the surface

material (Shafer 1985). The specular reflection distribution ks()\) is often uniform (white),

since it is caused by interface reflections that do not change the light color. (The exception

to this are metallic materials, such as copper, as opposed to the more common dielectric

materials, such as plastics.)

The ambient illumination La()\) often has a different color cast from the direct light

sources L500, e.g., it may be blue for a sunny outdoor scene or yellow for an interior lit

with candles or incandescent lights. (The presence of ambient sky illumination in shadowed

areas is what often causes shadows to appear bluer than the corresponding lit portions of a

scene). Note also that the diffuse component of the Phong model (or of any shading model)

depends on the angle of the incoming light source fig, while the specular component depends

on the relative angle between the viewer 13,. and the specular reflection direction 37,: (which

itself depends on the incoming light direction 13,: and the surface normal fit).

The Phong shading model has been superseded in terms of physical accuracy by a number

of more recently developed models in computer graphics, including the model developed by

Cook and Torrance (1982) based on the original micro-facet model of Torrance and Sparrow

(1967). Until recently, most computer graphics hardware implemented the Phong model but

the recent advent of programmable pixel shaders makes the use of more complex models
feasible.
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(C) (61)

Figure 6.1 Geometric alignment and calibration: (a) geometric alignment of 2D images for stitching (Szeliski

and Shum 1997) © 1997 ACM; (b) a two—dimensional calibration target (Zhang 2000) © 2000 IEEE; (c) cal-

ibration from vanishing points; (d) scene with easy-to-find lines and vanishing directions (Criminisi, Reid, and

Zisserman 2000} © 2000 Springer.
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Figure 6.2 Basic set of 2D planar transformations

Once we have extracted features from images, the next stage in many vision algorithms is

to match these features across different images (Section 4.1.3). An important component of

this matching is to verify whether the set of matching features is geometrically consistent,

e.g., whether the feature displacements can be described by a simple 2D or 3D geometric

transformation. The computed motions can then be used in other applications such as image

stitching (Chapter 9) or augmented reality (Section 6.2.3).

In this chapter, we look at the topic of geometric image registration, i.e., the computation

of 2D and 3D transformations that map features in one image to another (Section 6.1). One

special case of this problem is pose estimation, which is determining a camera’s position

relative to a known 3D object or scene (Section 6.2). Another case is the computation of a

camera’s intrinsic caiibration, which consists of the internal parameters such as focal length

and radial distortion (Section 6.3). In Chapter 7, we look at the related probiems of how

to estimate 313 point structure from 2D matches (triangulation) and how to simultaneously

estimate 3D geometry and camera motion (structure from motion).

6.1 2D and 3D feature-based alignment

Feature~based alignment is the problem of estimating the motion between two or more sets

of matched 2D or 3D points. In this section, we restrict Ourselves to global parametric trans—

formations, such as those described in Section 2.1.2 and shown in Table 2.1 and Figure 6.2,

or higher order transformation for curved surfaces (Shashua and Toelg 1997; Can, Stewart,

Roysam et at. 2002). Applications to non—rigid or elastic deformations (Bookstein [989;

Szeliski and Lavallée 1996; Torresani, Henzmann, and Bregler 2008) are examined in Sec-
tions 8.3 and 12.6.4.

6.1.1 20 alignment using least squares

Given a set of matched feature points {(a:,;, 332)} and a planar parametric transformationI of
the form

a = nap), (6.1)

1 For examples of non~planar parametric models, such as quadrics, see the work of Shashua and Toelg (1997);
Shashua and Wexler (2001).
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 Transform Matrix Parameters p Jacobian J

1 0 t3 1 0

translation 0 1 ty (32: ta) 1

Ca —89 is 0 —391L‘ ~ Cay

Euclidean 39 .23 fig (is: tit? 9) 1 can: — say

1 + a —b :1. 1 0 a; _y

similarity b 1 .5. a ty (ix: tyi 0". b) (] 1 y 3:

1 -l- (100 (£01 tr 1 0 ‘1 y 0 U

affine {110 1+ (11] lg (it. fly, 900iafllialflta'11) 0 1 g 0 3; y

1 + hog hot hoe

3110 1 + h11 htz

projective hm ’121 1 (hm. hm, - - - , hm) (see Section 6.1.3)

Table 6.1 Jacobians of the 2D coordinate transformations 93’ = flange) shown in Table 2.1, where we have

re-parameterized the motions so that they are identity for p = 0.

how can we produce the best estimate of the motion parameters p? The usual way to do this

is to use least squares, i.e., to minimize the sum of squared residuals

ELS : Z ll'l'ill2 = Z “flampl — sizing, (6.2)

where

7'71 = new) — a; = a; — a; {6.3)

is the residual between the measured location (is: and its corresponding current predicted

location 5:: = f(a:,:; p). {See Appendix A.2 for more on least squares and Appendix B.2 for
a statistical justification.)

Many of the motion models presented in Section 2.1.2 and Table 2.1, i.e., translation,

similarity. and affine, have a linear relationship between the amount of motion Are 2 93" — a:

and the unknown parameters p,

A9: = as“ H a: = J(:c)p, (6-4)

where J = (9f/6p is the Jacobian of the transformation f with respect to the motion param-

eters 3) (see Table 6.1). In this case, a simple linear regression (linear least squares problem)
can be formulated as

ELLs = Enamels—Ami“? (6.5)

TZJT($1)J(:B.I)—]p 239T ZJWmJAmi
= pTAp — 210% + c. (6.7)

+ Z Ilene-II2 (6.6)   
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The minimum can be found by solving the symmetric positive definite (SPD) system of nor-

mal equations:

Ap = b, (6.8)

where

A = Z JT(m.-}J(a:,-} (6.9)

is called the Hessian and b = Z: JT{$§)A$1;. For the case of pure translation, the result-

ing equations have a particularly simple form, i.e., the translation is the average translation

between corresponding points or, equivalently. the translation of the point centroids.

Uncertainty weighting. The above least squares formulation assumes that all feature

points are matched with the same accuracy. This is often not the case, since certain points

may fall into more textured regions than others. If we associate a scalar variance estimate of

with each correspondence, we can minimize the weighted least squares problem instead,3

13st 2 2 052%”? (6.10)i

As shown in Section 8.1.3. a covariance estimate for patch-based matching can be obtained

by multiplying the inverse of the patch Hessian A,- (8.5 S) with the per-pixel noise covariance

of; (8.44). Weighting each squared residual by its inverse covariance 2,71 = erngg- (which
is called the information matrix), we obtain

ECWLS : Z llriilgf] Z ZTgwEEITg = ZflgngflAi’f‘g. (6.11)

6.1.2 Application: Panography

One of the simplest {and most fun) applications of image alignment is a special form of image

stitching called panagraphy. In a panograph, images are translated and optionally rotated and

scaled before being blended with simple averaging {Figure 6.3). This process mimics the

photographic collages created by artist David Hockney, although his compositions use an

opaque overlay model, being created out of regular photographs.

In most of the examples seen on the Web, the images are aligned by hand for best artistic

effect.4 However, it is also possible to use feature matching and alignment techniques to

perform the registration automatically (Nomura, Zhang, and Nayar 200?; Zelnik—Manor and
Perona 2007’}.

Consider a simple translational model. We want all the corresponding features in different

images to line up as best as possible. Let tj be the location of the jth image coordinate frame

in the global composite frame and an;- be the location of the ith matched feature in the jth

image. In order to align the images, we wish to minimize the least squares error

Ems = 2 “(ti + ma) - mallzi (6-12)
:5 

2 For poorly conditioned problems, il is better lo use QR decomposition on the set of linear equations J(map =
Ana; instead of the normal equations (Bjfirck 1996', Golub and Van Loan [996). However. such conditions rarely
arise in image registration.

3 Problems where each measurement can have a different variance or certainty are called heremi'cedastir: models.

‘ http:J'i'www.flickr.comfgroupstpanographyi’.
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Figure 6.3 A simple panograph consisting of three images automatically aligned with a translational model and

then averaged together.

where 93,: is the consensus (average) position of feature 2' in the global coordinate frame.

(An alternative approach is to register each pair of overlapping images separately and then

compute a consensus location for each frame—see Exercise 6.2.)

The above least squares problem is indeterminate (you can add a constant offset to all the

frame and point locations t3- and 93,-). To fix this, either pick one frame as being at the origin

or add a constraint to make the average frame offsets be 0.

The formulas for adding rotation and scale transformations are straightforward and are

left as an exercise [Exercise 6.2). See if you can create some collages that you would be

happy to share with others on the Web.

6.1.3 Iterative algorithms

While linear least squares is the simplest method for estimating parameters, most problems in

computer vision do not have a simple linear relationship between the measurements and the

unknowns. In this case, the resulting problem is called non-linear least squares or non—tinge?!"

regression.

Consider, for example. the problem of estimating a rigid Euclidean 2D transformation

(translation plus rotation) between two sets of points. If we parameterize this transformation

by the translation amount (ti, ty) and the rotation angle 9, as in Table 2.1, the Jacobian of

this transformation, given in Table 6.], depends on the current value of 6. Notice how in

Table 6.1, we have re-parameterized the motion matrices so that they are always the identity

at the origin p = 0, which makes it easier to initialize the motion parameters.

To minimize the non-linear least squares problem, we iteratively find an update Ap to the

current parameter estimate 3) by minimizing

Emmi» = leftmt;p+APJ-millz (6.13)

E?
Z IIJtmapMp— nllg (6.14)

APPL—1013 / Page 43 of 63



APPL-1013 / Page 44 of 63

 

6.1 2D and 3D feature-based alignment

= of l: JTJ A10 — 2m)?"'3.   Z flaws] + Z [[an (6.15)
= ApTAAp — 2&pr + c, {6.16)

where the “Hessian”5 A is the same as Equation (6.9} and the right hand side vector

b = Z JT(a:.;)r'1- (6.17)

is now a Jacobian—weighted sum of residual vectors. This makes intuitive senSe, as the pa—

rameters are pulled in the direction of the prediction error with a strength proportional to the
Jacobian.

Once A and b have been computed, we solve for A}; using

(A + Adiag(A))Ap = b, (6.18)

and update the parameter vector p «— p + Ag) accordingly. The parameter A is an addi—

tional damping parameter used to ensure that the system takes a “downhill” step in energy

(squared error) and is an essential component of the Levenberg—Marquardt algorithm (de-

scribed in more detail in Appendix A.3_). In many applications, it can be set to 0 if the system

is successfully converging.

For the case of our 2D translation+rotation, we end up with a 3 X 3 set of normal equations

in the unknowns (fitméty, 66). An initial guess for (rm, tame?) can be obtained by fitting a

four—parameter similarity transform in (tm,ty,c,s') and then setting 6 : tan—‘(s/c). An
alternative approach is to estimate the translation parameters using the centroids of the 2D

points and to then estimate the rotation angle using polar coordinates (Exercise 6.3).

For the other 2D motion models, the derivatives in Table 6.1 are all fairly straightforward,

except for the projective 2D motion (homography), which arises in image-stitching applica-

tions (Chapter 9}. These equations can be re—written from (2.21) in their new parametric form
as

r_ (1+Jlloo)$+h01y+hog hloiE-l— (1+I111)y+h.12a- and l = 6.19
ftggiti-l-hmy-l—l y hgo$+h21y+1 ( )

The Jacobian is therefore

_ r , _ r

J = 3_f = i a: y 1 0 O 0 refs; 33’?) ‘ (6.20)
330 D U 0 0 a: y 1 —y as —y y

where D = b.2933 + hgly + 1 is the denominator in (6.19), which depends on the current

parameter settings (as do a," and y’).

An initial guess for the eight unknowns {hour hm, . . . , tit-21} can be obtained by multiply-

ing both sides of the equations in (6.19) through by the denominator. which yields the linear

set of equations,

A A A hon
:c’ — a: :s y 1 0 U 0 —a."a: —.-r:’y

r _ y =
6.21

UDOxyl—gjr’a' —§'y ( )
I121

5 The ”Hessian" A is not the true Hessian (second derivative} of the non—linear least squares problem (6.13).
Instead, it is the approximate Hessian. which neglects second (and higher) order derivatives of flora; p + Ap).

 

279

APPL—1013 / Page 44 of 63



APPL-1013 / Page 45 of 63

 

280
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However, this is not optimal from a statistical point of view, since the denominator D, which

was used to multiply each equation, can vary quite a bit from point to point.6

One way to compensate for this is to reweight each equation by the inverse of the current

estimate of the denominator, D,

A, «r

iii—“TJZLV y 1 0 00 fax flay : . (6.22)D y — y D 0 0 0 a: y 1 : '
12.21

While this may at first seem to be the exact same set of equations as (6.21), because least

squares is being used to solve the over—determined set of equations, the weightings do matter

and produce a different set of normal equations that performs better in practice.

The most principled way to do the estimation, however, is to directly minimize the squared

residual equations (6.13) using the Gauss—Newton approximation, i.e., performing a first-

order Taylor series expansion in p, as shown in (6.14), which yields the set of equations

2:2“—

he

While these look similar to (6.22), they differ in two important respects. First, the left hand

side consists ofunweighted prediction errors rather than point displacements and the solution

vector is a perturbation to the parameter vector p. Second, the quantities inside J involve

predicted feature locations (fi’ , 3?) instead of sensed feature locations (f, 33’). Both of these

differences are subtle and yet they lead to an algorithm that, when combined with proper

checking for downhill steps (as in the Levenberg—Marquardt algorithm), will converge to a

local minimum. Note that iterating Equations (6.22) is not guaranteed to converge, since it is

not minimizing a well-defined energy function.

Ahao
" 1 as y 1 D D 0 —:E’:c —:E’y: — : . .2" i D [ 0 U I} a: y 1 —fi’.’t: —fl’y ' (6 3}

Ahz]

0:31fir

Equation (6.23) is analogous to the additive algorithm for direct intensity-based regis—

tration (Section 8.2), since the change to the full transformation is being computed. If we

prepend an incremental homography to the current homography instead, i.e., we use a com—

positional algorithm (described in Section 8.2), we get D = 1 (since 13 = 0) and the above

formula simplifies to

2 A(loo
{Ef_3; _ a: y 1 U 0 O —3 —3y .i I y i _ i 0 0 0 a: y 1 H3339 _y2 : a (6.24)

Ah21

where we have replaced (5,“, g?) with (at, y) for conciseness. (Notice how this results in the
same Jacobian as (8.63).)

 

5 Hartley and Zissemian (2004) call this strategy of forming linear equations from rational equations the direct
linear tronsfonn, but that term is more commonly associated with pose estimation (Section 6.2). Note also that our
definition of the hi3- parameters differs from that used in their book. since we define it“ to be the difierence from
unity and we do not leave hgz as a free parameter, which means that we cannot handle certain extreme homographies.
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6.1.4 Robust least squares and RANSAC

While regular least squares is the method of choice for measurements where the noise follows

a normal (Gaussian) distribution, more robust versions of least squares are required when

there are outliers among the correspondences (as there almost always are). In this case, it is

preferable to use an M-estimator (Huber 1981; Hampe], Ronchetti, Rousseeuw et ai. 1986;

Black and Rangaraj an 1996; Stewart 1999), which involves applying a robust penalty function

p(r) to the residuals

Emma = Zpfllrtll) (6.25)

instead of squaring them.

We can take the derivative of this function with respect to p and set it to 0,

Zw{llrill)8uriil : Z ¢(llrill)TT% _ 03 (6.26)
  

310 , llrill ‘ 610 _

where 1,120") = p’ (r) is the derivative of p and is called the influencefimctian. If we introduce

a weighrfanctian, w(r) = @(i'flr', we observe thatfinding the stationary point of (6.25) using

(6.26) is equivalent to minimizing the iteratively reweighted least squares (IRLS) problem

EIRLS = Ewillrilllllfillza (6-27)

where the w(||r.,-||) play the same local weighting role as 0:2 in (6.10). The IRLS algo-

rithm alternates between computing the influence functions tu(||r',-||) and solving the result—

ing weighted least squares problem (with fixed in values). Other incremental robust least

squares algorithms can be found in the work of Sawhney and Ayer (1996); Black and Anan-

dan (1996); Black and Rangaraj an (1996); Baker, Gross, Ishikawa er al. (2003) and textbooks

and tutorials on robust statistics (Huber 1981; Hampel, Ronchetti, Rousseeuw et al. 1986;

Rousseeuw and Leroy 1987; Stewart 1999).

While M~estimators can definitely help reduce the influence of outliers, in some cases,

starting with too many outliers will prevent IRLS (or other gradient descent algorithms) from

converging to the global optimum. A better approach is often to find a starting set of inlier

correspondences, i.e., points that are consistent with a dominant motion estimate.7

Two widely used approaches to this problem are called RANdom SAmple Consensus, or

RANSAC for short (Fischlcr and Bolles 1981), and least median ofsquares (LMS) (Roussecuw

1984). Both techniques start by selecting (at random) a subset of is correspondences, which is

then used to compute an initial estimate for p. The residuals of the full set of correspondences

are then computed as

r,- = sum; p) - 53;, (6.28)

where 5%; are the estimated (mapped) locations and i: are the sensed (detected) feature point
locations.

The RANSAC technique then counts the number of irriiers that are within 6 of their pre—

dicted location, i.e., whose ||r',-|| S e. (The e value is application dependent but is often

around 1—3 pixels.) Least median of squares finds the median value of the ||'r',-||2 values. The

7 For pixel—based alignment methods (Section 8.1.1), hierarchical (coarse-to—fine) techniques are oflcn used to
lock onto die dominant rmtian in a scene.
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k p S

3 0.5 35

6 0.6 97

6 0.5 293

Table 6.2 Number of trials 5' to attain a 99% probability of success (Stewart 1999).

random selection process is repeated 5' times and the sample set with the largest number of

iniiers (or with the smallest median residual) is kept as the final solution. Either the initial

parameter guess 3:: or the full set of computed inliers is then passed on to the next data fitting

stage.

When the number of measurements is quite large, it may be preferable to only score a

subset of the measurements in an initial round that selects the most plausible hypotheses for

additional scoring and selection. This modification of RANSAC, which can significantly

speed up its performance, is called Preemptive MNSAC (Nistér 2003). In another variant

on RANSAC called PROSAC (PROgressive SAmple Consensus), random samples are ini-

tially added from the most “confident” matches, thereby speeding up the process of finding a

(statistically) likely good set of iniiers (Chum and Matas 2005).

To ensure that the random sampling has a good chance of finding a true set of inliers. a

sufficient number of trials .5' must be tried. Let p be the probability that any given correspon-

dence is valid and P be the total probability of success after 8 trials. The likelihood in one

trial that all is random samples are inliers is 39". Therefore, the likelihood that S such trials
will all fail is

1— P = (1 — mg (6.29)

and the required minimum number of trials is

_ log(1 — P)

_ 10s(1 —p’”‘)'

Stewart (I999) gives examples of the required number of trials S to attain a 99% proba—

bility of success. As you can see from Table 6.2, the number oftrials grows quickly with the

number of sample points used. This provides a strong incentive to use the minimum number

of sample points is possible for any given trial, which is how RANSAC is normally used in

practice.

8 (6.30)

Uncertainty modeling

In addition to robustly computing a good alignment, some applications require the compu-

tation of uncertainty (see Appendix 36). For linear problems, this estimate can be obtained

by inverting the Hessian matrix (6.9) and multiplying it by the feature position noise (ifthese

have not already been used to weight the individual measurements, as in Equations (6.10)

and 6.11)). In statistics, the Hessian, which is the inverse covariance, is sometimes called the

(Fisher) infomarr‘rm mom’x {Appendix B. 1 . 1).

When the problem involves non—linear least squares, the inverse of the Hessian matrix

provides the Cramer—Rao lower bound on the covariance matrix, i.e., it provides the minimum
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amount of covariance in a given solution. which can actually have a wider spread (“longer

tails”) if the energy flattens out away from the local minimum where the optimal solution is
found.

6.1.5 3D alignment

Instead of aligning 2D sets of image features, many computer vision applications require the

alignment of 3D points. In the case where the 3D transformations are linear in the motion

parameters, e.g., for translation, similarity, and affine, regular least squares (6.5) can be used.

The case of rigid (Euclidean) motion,

E333 = 2 Has; — Rx,- — t||2, (6.31)

which arises more frequently and is often called the absolute orientation problem (Horn

1987), requires slightly different techniques. If only scalar weightings are being used (as

opposed to full 3D per—point anisotropic covariance estimates), the weighted centroids of the

two point clouds c and {2’ can be used to estimate the translation t = c’ — Ros We are then

left with the problem of estimating the rotation between two sets of points {5%,- = as,- — c}

and {citi- = as: — c’} that are both centered at the origin.

One commonly used technique is called the orthogonal Procmsres algorithm (Golub and

Van Loan 1996, p. 601) and involves computing the singular value decomposition (SVD) of
the 3 X 3 correlation matrix

C = 2 as?" = UEVT. (6.32)

The rotation matrix is then obtained as R = UVT. (Verify this for yourself when 2i:I 2 R52.)

Another technique is the absolute orientation algorithm (Horn 198'?) for estimating the

unit quaternion corresponding to the rotation matrix R, which involves forming a 4 x 4 matrix

from fire entries in C and then finding the eigenvector associated with its largest positive

eigenvalue.

Lorusso, Eggert, and Fisher (1995) experimentally compare these two techniques to two

additional techniques proposed in the literature, but find that the difference in accuracy is

negligible (well below the effects of measurement noise).

In situations where these closed-form algorithms are not applicable, e.g., when full 3D

covariances are being used or when the 3D alignment is part of some larger optimization, the

incremental rotation update introduced in Section 2.1.4 (2.35—2.36), which is parameterized

by an instantaneous rotation vector to, can be used (See Section 9.1.3 for an application to

image stitching.)

In some situations, e.g., when merging range data maps, the correspondence between

data points is not known a priori. In this case, iterative algorithms that start by matching

nearby points and then update the most likely correspondence can be used (Besl and MC Kay

1992; Zhang 1994; Szeliski and Lavallée 1996: Gold, Rangarajan, Lu er of. 1998; David,

DeMenthon, Duraiswami et at. 2004; Li and Hartley 2007; Enqvist, Josephson, and Kahl

2009). These techniques are discussed in more detail in Section 12.2.1.

3 When full covariances are used. they are transformed by the rotation and so a closed—form solution for transla-
tion is not possible.
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6.2 Pose estimation

A particular inatance of feature-based alignment, which occurs very often, is estimating an

object’s 3D pose from a set of 2D point projections. This pose estimation problem is also

known as extrimic calibration, as opposed to the intrinsic calibration of internal camera pa—

rameters such as focal length, which we discuss in Section 6.3. The problem of recovering

pose from three correspondences, which is the minimal amount of information necessary,

is known as the perspective-3-point-probiem (P3P), with extensions to larger numbers of

points collectively known as PnP (Haralick, Lee, Ottenberg et at. 1994; Quan and Lao 1999;

Moreno—Noguer, Lepetit, and Fua 200?).

In this section, we look at some of the techniques that have been developed to solve such

problems, starting with the direct iinear transform (DLT), which recovers a 3 x 4 camera ma-

trix, followed by other “linear" algorithms, and then looking at statistically optimal iterative

algorithms.

6.2.1 Linear algorithms

The simplest way to recover the pose of the camera is to form a set of linear equations analo—

gous to those used for 2D motion estimation (6.19) from the camera matrix form of perspec-

tive projection (2.55~2.S6),

Xi Yr- i151' = Poo +2001 P022 +1003 (6.33)
PaoXt P21}? Paszt l P23

X— Y— .r-
yi = 1010 t+P11 3+p127'i +1013] (6.34)

PaoXt. pQIYi 39223:? + P23

 
 

   
where (ohm) are the measured 2D feature locations and (X,,Y,-, 2,) are the known 3D

feature locations (Figure 6.4}. As with (6.21), this system of equations can be solved in a

linear fashion for the unknowns in the camera matrix P by multiplying the denominator on

both sides of the equation.9 The resulting algorithm is called the direct tittettt‘ transfonn

(DLT) and is commonly attributed to Sutherland (19%). (For a more in-depth discussion,

refer to the work of Hartley and Zisserman (2004).) In order to compute the 12 (or 11)

unknowns in P, at least six correspondences between 3D and 2D locations must be known.

As with the case of estimating homographies (6.21—6.23), more accurate results for the

entries in P can be obtained by directly minimizing the set of Equations (6.33—6.34) using

non-linear least squares with a small number of iterations.

Once the entries in P have been recovered, it is possible to recover both the intrinsic

calibration matrix K and the rigid transformation (R, t) by observing from Equation (2.56)
that

P = K[th]. {6.35)

Since K is by convention upper-triangular (see the discussion in Section 2.1.5), both K and

R can be obtained from the front 3 x 3 sub—matrix of P using RQ factorization (Golub and

Van Loan 1996).”) 

9 Because P is unknown up to a scale, we can either fix one of the entries, e.g., p23 = l, or find the smallest
singular vector of the set of linear equations.

to Note the unfortunate clash of terminologies: In matrix algebra textbooks, R represents an upper—triangular
matrix; in computer vision, R is an orthogonal rotation.
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Pf z (X?! n12}? WI)

 
Figure 6.4 Pose estimation by the direct linear transform and by measuring visual angles and distances between

pairs of points.

In most applications, however, we have some prior knowledge about the intrinsic calin

bration matrix K, e.g., that the pixels are square, the skew is very small, and the optical

center is near the center of the image (2.5?—2.59). Such constraints can be incorporated into

a non-linear minimization of the parameters in K and (R, t), as described in Section 6.2.2.

In the case where the camera is already calibrated, i.e., the matrix K is known (Sec-

tion 6.3), we can perform pose estimation using as few as three points (Fischler and Bolles

1981; Haralick, Lee, Ottenberg et at. 1994; Quan and Lan 1999). The basic observation that

these linear PnP (per-Spective 91-point) algorithms employ is that the visual angle between any

pair of 2D points zin- and 533- must be the same as the angle between their corresponding 3D

points Pr and 393- (Figure 6.4).
Given a set ofcorresponding 2D and 3D points {(da, , p,)}, where the 5:,- are unit directions

obtained by transforming 2D pixel measurements :12, to unit norm 3D directions :33, through

the inverse calibration matrix K,

e.- mac-13.): K‘lme/IIK‘lm-sll. (6.36)

the unknowns are the distances d,- from the camera origin c to the 313 points 30,-, where

Pr = (iris + C (6.37)

(Figure 6.4]. The cosine law for triangle A(c, 10,, 13,-) gives us

f,,—(d,, arj) = a3 + at? — 2a,d,c,,- — d3, = 0, (6.38)

where

CW 2 (:03ng = {31' 'fij (6.39)

and

d5;- = Ila: will? (6.40)

We can take any triplet of constraints (fry, fik, fjk} and eliminate the dj and (1;, using

Sylvester resultants (Cox, Little, and O'Shea 200?) to obtain a quartic equation in (1%,

amid?) = and? + 33d? + agd? + ald? + a0 = 0. (6.41)

Given five or more correspondences, we can generate W triplets to obtain a linear
estimate (using SVD) for the values of (d§, (if, df}, d3) (Quan and L311 1999). Estimates for
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d? can computed as ratios of successive afn+2jdgn estimates and these can be averaged to
obtain a final estimate of d? (and hence (11,).

Once the individual estimates of the at, distances have been computed, we can generate

a 3D structure consisting of the seated point directions (1,59,, which can then be aligned with

the 3D point cloud {1),} using absolute orientation (Section 6.1.5) to obtained the desired

pose estimate. Quan and Lan (1999) give accuracy results for this and other techniques,

which use fewer points but require more complicated algebraic manipulations. The paper by

Moreno-Noguer, Lepetit, and Fua (2007) reviews more recent alternatives and also gives a

lower complexity algorithm that typically produces more accurate results.

Unfortunately, because minimal PnP solutions can be quite noise sensitive and also suffer

from bas-reiiefambigniries (e.g., depth reversals) (Section 7.4.3]. it is often preferable to use

the linear six-point algorithm to guess an initial pose and then optimize this estimate using

the iterative technique described in Section 6.2.2.

An alternative pose estimation algorithm involves starting with a scaled orthographic pro-

jection model and then iteratively refining this initial estimate using a more accurate perspec-

tive projection model (DeMenthon and Davis [995). The attraction of this model, as stated

in the paper‘s title, is that it can be implemented “in 25 lines of [Mathematica] code".

6.2.2 Iterative algorithms

The most accurate (and flexible) way to estimate pose is to directly minimize the squared (or

robust) reprojection error for the 2D points as a function of the unknown pose parameters in

(R, t) and optionally K using non-linear least squares (Tsai 1987; Bogart 1991; Gleicher
and Witkin 1992). We can write the projection equations as

res; = f(p,;;R,t,K) (6.42)

and iteratively minimize the robustified linearized reprojection errors

6f 8f 31”2 —AR — -— — - .4ENLP 21:45:12 + atAt+aKAK r, , (6 3)
where r,- = :13,- — 52,; is the current residual vector (2D error in predicted position) and the

partial derivatives are with respect to the unknown pose parameters (rotation, translation, and

optionally calibration). Note that if full 2D covariance estimates are available for the 2D
feature locations, the above squared norm can be weighted by the inverse point covariance

matrix, as in Equation (6.11).

An easier to understand (and implement) version of the above non—linear regression prob-

lem can be constructed by re-writing the projection equations as a concatenation of simpler

steps, each of which transforms a 4D homogeneous coordinate p,- by a simple transformation
such as translation, rotation, or perspective division (Figure 6.5). The resulting projection

equations can be written as

9(1) = fripti Ci) = Pt. _ 63', (6'44)

9(2) 2 fR(y(1)i‘-Ij): 12(ij ’9“): (645)

(3) (2) "9(2)
”9 = fpiy ) fl: (6'46)

:2.- = fciymiki = K (k) 29(3)- (6.47)
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Figure 6.5 A set of chained transforms for projecting a 3D point p,- to a 2D measurement 3:, through a series of

transformations 3‘“), each of which is controlled by its own set of parameters. The dashed lines indicate the flow

of information as partial derivatives are computed during a backward pass.

Note that in these equations, we have indexed the camera centers c3- and camera rotation

quaternions qj by an index 3', in case more than one pose of the calibration object is being
used (see also Section 7.4.) We are also using the camera center cj instead of the world

translation ti: since this is a more natural parameter to estimate.

The advantage of this chained set of transformations is that each one has a simple partial

derivative with respect both to its parameters and to its input. Thus, once the predicted value

of 5:,- has been computed based on the 3D point location p,- and the current values of the pose

parameters (cg-,qj, k), we can obtain all of the required partial derivatives using the chain
rule

81",- 673 By“)

aptk) Z aye) ape)!

where 30““) indicates one of the parameter vectors that is being optimized. (This same “trick”

is used in neural networks as part of the backpmpagarion algorithm (Bishop 2006).)

The one special case in this formulation that can be considerably simplified is the compu—

tation of the rotation update. Instead of directly computing the derivatives of the 3 x 3 rotation

matrix R(q) as a function of the unit quaternion entries, you can prepend the incremental ro-

tation matrix AR(w) given in Equation [2.35) to the current rotation matrix and compute the

partial derivative of the transform with respect to these parameters, which results in a simple

cross product of the backward chaining partial derivative and the outgoing 3D vector {2.36).

   
(6.48)

6.2.3 Appfication: Augmented reality

A widely used application of pose estimation is augmented reality, where virtual 3D images

or annotations are superimposed on top of a live video feed, either through the use of see-

through glasses (a head—mounted display) or on a regular computer or mobile device screen

(Azuma, Baillot, Behringer er a1. 2001; Haller, Billinghurst, and Thomas 2007). In some

applications, a special pattern printed on cards or in a book is tracked to perform the aug-

mentation (Kate, Billinghurst, Poupyrev at at. 2000; Billinghurst, Kato, and Poupyrev 2001).

For a desktop application, a grid of dots printed on a mouse pad can be tracked by a camera

embedded in an augmented mouse to give the user control of a full six degrees of freedom

over their position and orientation in a 3D space (Hinckley, Sinclair. Hanson er at. 1999). as

shown in Figure 6.6.

Sometimes, the scene itself provides a convenient object to track, such as the rectangle

defining a desktop used in throagh-the-lens camera contra! (Gleicher and Witkin 1992). In
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(b)

Figure 6.6 The VideoMouse can sense six degrees of freedom relative to a specially printed mouse pad using

its embedded camera (Hinckley, Sinclair, Hanson er at. 1999) © 1999 ACM: (a) top view of the mouse; (b) view

of the mouse showing the curved base for rocking; (c) moving the mause pad with the other hand extends the

interaction capabilities; (d) the resulting movement seen on the screen.

outdoor locations, such as film sets, it is more common to place special markers such as

brightly colomd balls in the scene to make it easier to find and track them (Bogart 1991). In

older applications, surveying techniques were used to determine the locations of these balls

before filming. Today, it is more common to apply structure—from—motion directly to the film

footage itself (Section 7.4.2).

Rapid pose estimation is also central to tracking the positiou and orientation of the hand-

held remote controls used in Nintendo‘s Wii game systems. A high-speed camera embedded

in the remote control is used to track the locations of the infrared (IR) LEDs in the bar that
is mounted on the TV monitor. Pose estimation is then used to infer the remote control‘s

location and orientation at very high frame rates. The Wii system can be extended to a variety

of other user interaction applications by mounting the bar on a handheld device, as described

by Johnny Lee.ll

Exercises 6.4 and 6.5 have you implement two different tracking and pose estimation sys-

tems for augmented-reality applications. The first system tracks the outline of a rectangular

object, such as a book cover or magazine page, and the second has you track the pose of a
hand—held Rubik’s cube.

6.3 Geometric intrinsic calibration

As described above in Equations (6.42—6.43), the computation of the internal (intrinsic) cam—

era calibration parameters can occur simultaneously with the estimation of the (extrinsic)

pose of the camera with respect to a known calibration target. This, indeed, is the “classic”

approach to camera calibration used in both the photogrammetry (Slama 1980) and the com-

puter vision (Tsai 198?) communities. In this section, we look at alternative formulations

(which may not involve the full solution of a non—linear regression problem), the use of alter—

native calibration targets, and the estimation of the non-linear part of camera optics such as
radial distortion. '2

 

1‘ http:inohnnyleehetfprojectsfwiil.
12 In some applications, you can use the EXIF tags associated with a JPEG image to obtain a rough estimate of a

camera’s focal length but this technique should be used with caution as the results are often inaccurate.
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(a) (b)

Figure 6.7 Calibrating a lens by drawing straight lines on cardboard (Debevec, Wenger, Tchou er al. 2002) ©

2002 ACM: (3) an image taken by the video camera showing a hand holding a metal ruler whose right edge

appears vertical in the image; (b) the set of lines drawn on the cardboard converging on the front nodal point

(center of projection) of the lens and indicating the horizontal field of view.

6.3.1 Calibration patterns

The use of a calibration pattern or set of tnarkers is one of the more reliable ways to estimate

a camera's intrinsic parameters. In photogrammetry, it is common to set up a camera in a

large field looking at distant calibration targets whose exact location has been precomputed

using surveying equipment (Slama 1980; Atkinson 1996; Kraus 1997). In this case, the trans—

lational component of the pose becomes irrelevant and only the camera rotation and intrinsic

parameters need to be recovered.

If a smaller calibration rig needs to be used, e.g.. for indoor robotics applications or for

mobile robots that carry their own calibration target, it is best if the calibration object can span

as much of the workspace as pessible (Figure 6.8a), as planar targets often fail to accurately

predict the components of the pose that lie far away from the plane. A good way to determine

if the calibration has been successfully performed is to estimate the covariance in the param-

eters (Section 6.1.4) and then project 3D points from various points in the workspace into the

image in order to estimate their 2D positional uncertainty.

An alternative method for estimating the focal length and center of projection of a lens

is to place the camera on a large flat piece of cardboard and use a long metal ruler to draw

lines on the cardboard that appear vertical in the image, as shown in Figure 6.7a (Debevec,

Wenger, Tchou et nl. 2002). Such lines lie on planes that are parallel to the vertical axis of

the camera sensor and also pass through the lens’ front nodal point. The location of the nodal

point (projected vertically onto the cardboard plane) and the horizontal field of view {deter-

mined from lines that graze the left and right edges of the visible image) can be recovered by

intersecting these lines and measuring their angular extent (Figure 6.7b).

If no calibration pattern is available, it is also possible to perform calibration simulta—

neously with structure and pose recovery (Sections 6.3.4 and 14), which is known as self-

calibration (Faugeras, Luong, and Maybank 1992; Hartley and Zisserman 2004; Moons, Van

(3001, and Vergauwen 2010). However, such an approach requires a large amount of imagery
to be accurate.
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(a) (b)

Figure 6.8 Calibration patterns: (a) a three—dimensional target (Quan and Lan 1999) © 1999 IEEE; (b) a two-

dimensional target (Zhang 2000) © 2000 IEEE. Note that radial distortion needs to be removed from such images

before the feature points can he need for calibration.

Planar calibration patterns

When a finite workspace is being used and accurate machining and motion control platforms

are available, a good way to perform calibration is to move a planar calibration target in a

controlled fashion through the workspace volume. This approach is sometimes called the N-

planes calibration approach (Gremban, Thorpe, and Kanade 1988; Champleboux, Lavallée,

Szeliski et at. 1992; Grossberg and Nayar 2001) and has the advantage that each camera pixel

can be mapped to a unique 3D ray in space, which takes care of both linear effects modeled

by the calibration matrix K and non-linear effects such as radial distortion (Section 6.3.5).

A less cumbersome but also less accurate calibration can be obtained by waving a pla-

nar calibration pattern in front of a camera (Figure 6.8b). In this case, the pattern’s pose

has (in principle) to be recovered in conjunction with the intrinsics. In this technique, each

input image is used to compute a separate homography (6.19—6.23) 1:1 mapping the plane‘s

calibration points (X,, Y,;, 0) into image coordinates (33,-, pi).

3i Xi _
:12: = yr ~ K[ r0 m t ] Y.- ~ HR, (6.49)

1 1

where the r, are the first two columns of R and ~ indicates equality up to scale. From

these, Zhang (2000) shows how to form linear constraints on the nine entries in the B =

K'TK’1 matrix, from which the calibration matrix K can be recovered using a matrix

square root and inversion. (The matrix B is known as the image of the absolute conic (IAC)

in projective geometry and is commonly used for camera calibration (Hartley and Zisserman

2004, Section 7.5).) If only the focal length is being recovered, the even simpler approach of

using vanishing points can be used instead.

6.3.2 Vanishing points

A common case for calibration that occurs often in practice is when the camera is looking at

a man-made scene with strong extended rectahedral objects such as boxes or room walls. In

this case, we can intersect the 2D lines corresponding to 3D parallel lines to compute their
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x2 x2

(a) (b)

Figure 6.9 Calibration from vanishing points: (a) any pair of finite vanishing points (jhcicj) can be used to

estimate the focal length; (b) the orthocenter of the vanishing point triangle gives the optical center of the image
no.

vanishing points, as described in Section 4.3.3, and use these to determine the intrinsic and

extrinsic calibration parameters (Caprile and Torre I990; Becker and Hove 1995; Liebowitz

and Zisserman l998; Cipolla. Drummond, and Robertson 1999; Antone and Teller 2002;

Criminisi, Reid, and Zisserman 2000; Hartley and Zisserman 2004; Pflugfelder 2008).

Let us assume that we have detected two or more orthogonal vanishing points, all of which

are finite, i.e., they are not obtained from lines that appear to be parallel in the image plane

(Figure 6.9a}. Let us also assume a simplified form for the calibration matrix K where only

the focal length is unknown (2.59). (It is often safe for rough 3D modeling to assume that

the optical center is at the center of the image. that the aspect ratio is l, and that there is no

skew.) In this case, the projection equation for the vanishing points can be written as

:12; — C;

so,- = 3),; — cy w Rp, = n, (6.50)

f

where p,- corresponds to one of the cardinal directions (1, 0,0), (0. 1,0), or (O, 0, 1), and 1“,;
is the ith column of the rotation matrix R.

From the orthogonality between columns of the rotation matrix, we have

n- r;- ~ (so — cim — cs) + (a- — anoi- — cg) +f2 = 0 (6.51)

from which we can obtain an estimate for f2. Note that the accuracy of this estimate increases

as the vanishing points move closer to the center of the image. In other words, it is best to tilt

the calibration pattern a decent amount ar0und the 45° axis, as in Figure 6.9a. Once the focal

length f has been determined, the individual columns of R can be estimated by normalizing

the left hand side of (6.50) and taking cross products. Alternatively, an SVD of the initial R

estimate, which is a variant on orthogonal Procrustes (6.32), can be used.

If all three vanishing points are visible and finite in the same image. it is also possible to

estimate the optical center as the orthocenter of the triangle formed by the three vanishing

points (Caprile and Torre 1990; Hartley and Zisserman 2004, Section 7.6) (Figure 6.9b}.

Ln practice, however, it is more accurate to re—esrimate any unknown intrinsic calibration

parameters using non—linear least squares (6.42).
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(b)

Figure 6.10 Single view metrology (Criminisi, Reid, and Zisserman 2000) © 2000 Springer: (a) input image

showing the three coordinate axes computed from the two horizontal vanishing points (which can be determined

from the sidings on the shed); (b) a new view of the 3D reconstruction.

6.3.3 Application: Single view metrology

A fun application of vanishing point estimation and camera calibration is the single view

metrology system developed by Criminisi, Reid, and Zisserman (2000). Their system allows

people to interactively measure heights and other dimensions as well as to build piecewise—

planar 3D models, as shown in Figure 6.10.

The first step in their system is to identify two orthogonal vanishing points on the ground

plane and the vanishing point for the vertical direction, which can be done by draWing some

parallel sets of lines in the image. (Alternatively, automated techniques such as those dis

cussed in Section 4.3.3 or by Schaffalitzky and Zisserman (2000) could be used.) The user

then marks a few dimensions in the image, such as the height of a reference object, and

the system can automatically compute the height of another object. Walls and other planar

impostors (geometry) can also be sketched and reconstructed.

In the formulation originally developed by Criminisi, Reid, and Zisserman (2000), the

system produces an afi‘ine reconstruction, i.e., one that is only known up to a set of indepen—

dent scaling factors along each axis. A potentially more useful system can be constructed by

assuming that the camera is calibrated up to an unknown focal length, which can be recov-

ered from orthogonal (finite) vanishing directions, as we just described in Section 6.3.2. Once

this is done, the user can indicate an origin on the ground plane and another point a known

distance away. From this, points on the ground plane can be directly projected into 3D and

points above the ground plane, when paired with their ground plane projections, can also be

recovered. A fully metric reconstruction of the scene then becomes possible.

Exercise 6.9 has you implement such a system and then use it to model some simple

3D scenes. Section 12.6.1 describes other, potentially multi-view, approaches to architectural

reconstruction, including an interactive piecewise-planar modeling system that uses vanishing

points to establish 3D line directions and plane normals (Sinha, Steedly, Szeliski er al. 2008).
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Figure 6.11 Four images taken with a hand-held camera registered using a 3D rotation motion model, which

,_ can be used to estimate the focal length of the camera (Szeliski and Shum 1997) © 2000 ACM.

6.3.4 Rotational motion

When no calibration targets or known structures are available but you can rotate the camera

around its front nodal point (or, equivalently, work in a large open environment where all ob

jects are distant), the camera can be calibrated from a set of overlapping images by assuming

that it is undergoing pure rotational motion, as shown in Figure 6.11 (Stein 1995; Hartley

1997b; Hartley, Hayman, de Agapito at at. 2000; de Agapito, Hayman. and Reid 2001 ; Kang

and Weiss 1999; Shunt and Szeliski 2000; Frahm and Koch 2003). When a full 360° mo»

tion is used to perform this calibration, a very accurate estimate of the focal length f can be

obtained, as the accuracy in this estimate is proportional to the total number of pixels in the

resulting cylindrical panorama (Section 9.1.6) (Stein 1995; Shum and SzeIiski 2000).

To use this technique, we first compute the homographies EL,- between all overlapping
pairs of images, as explained in Equations (6.l9—6.23). Then, we use the observation, first

made in Equation (2.?2) and explored in more detail in Section 9.1.3 (9.5), that each homog»

raphy is related to the inter-camera rotation RU- through the (unknown) calibration matrices

Kg and Xi?

H,,- = K,R,R;1K;1 = KiRinjTl. (6.52)

The simplest way to obtain the calibration is to use the simplified form of the calibra~

tion matrix (2.59), where we assume that the pixels are square and the optical center lies at

the center of the image, i.e., Ki, 2 diag(fk, fig, 1}. (We number the pixel coordinates ac—

cordingly, i.e., place pixel (m, y) 2 (0,0) at the center of the image.) We can then rewrite

Equation (6.52) as

fl horn hct foFlhoz
Rio ~ KleiuKo N 010 h11 ice—13112 ‘ (6-53)

fihzo f1 ’12] Jen—lfihzz

where inj- are the elements of H10.
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Using the orthonormality properties of the rotation matrix R10 and the fact that the right

hand side of [6.53) is known only up to a scale, we obtain

hfio + a + fir—23132 = hi0 + hi1 + fight? (6.54)

and

humble + holhu + from/:12 = 0. (6.55)

From this, we can compute estimates for f9 of

[12 _ h22 12 02 - 2 2 2 2
=_. f l h h h 6.

f0 figs + 3131 _ ha] _ hf] 1 100 + or # It] + 11 f 56)

or i I
f3 = —102112 if 11001110 7'3 —hoihii- (6‘57)

hoo-‘lliu + hmhii

(Note that the equations originaliy given by Szeliski and Shum (1997) are erroneous; the

correct equations are given by Shum and Szeliski (2000).) If neither of these conditions

holds, we can also take the dot products between the first (or second) row and the third one.

Similar results can be obtained for f1 as well, by analyzing the columns of 1:110. If the focal

length is the same for both images. we can take the geometric mean of f0 and f1 as the

estimated focal length f = m. When multiple estimates of f are available, e.g., from

different homographies, the median value can be used as the final estimate.

A more general (upper—triangular) estimate of K can be obtained in the case of a fixed-

paramcter camera K,- = K using the technique of Hartley (1997b). Observe fmm (6.52)

that 1153‘ N K_1.FI,-jK and Rag-T w KTIEIQTK_T. Equating jo = RIG-T we obtain
K_lfi,jK ~ KTfIgT-TK—T, from which we get

fi,j(KKT) ~ (KKTJEQT. (6.58)

This provides us with some homogeneous linear constraints on the entries in A = KKT,
which is known as the duo! of the image of the absolute conic {Hartley 1992b; Hartley and

Zisserman 2004). (Recall that when we estimate a homography, we can only recover it up to

an unknown scale.) Given a sufficient number of independent homography estimates I‘Lj,
we can recover A (up to a scale) using either SVD or eigenvalue analysis and then recover

K through Cholesky decomposition (Appendix A. 1 .4). Extensions to the cases of temporally

varying calibration parameters and non-stationary cameras are discussed by Hartley, Hayman,

de Agapito et at. (2000) and de Agapito, Hayman, and Reid (2001).

The quality of the intrinsic camera parameters can be greatly increased by constructing a

full 360° panorama, since nus-estimating the focal length will result in a gap {or excessive

overlap) when the first image in the sequence is stitched to itself (Figure 9.5). The resulting

mis—alignment can be used to improve the estimate of the focal length and to readjust the

rotation estimates, as described in Section 9.1.4. Rotating the camera by 90‘J around its optic

axis and re-shooting the panorama is a good way to check for aspect ratio and skew pixel

problems. as is generating a full hemi-spherical panorama when there is sufficient texture.

Ultimately, however, the most accurate estimate of the calibration parameters (including

radial distortion) can be obtained using a full simultaneous non-linear minimization of the

intrinsic and extrinsic (rotation) parameters, as described in Section 9.2.
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5.3.5 Radial distortion

When images are taken with wide—angle lenses, it is often necessary to model Jens distor—

tions such as radio! distortion. As discussed in Section 2.1.6, the radial distortion model

says that coordinates in the observed images are displaced away from (barre! distortion) or

towards (piacashiort distortion) the image center by an amount proportional to their radial

distance (Figure 2.13a—b). The simplest radial distortion models use low-order polynomials

(c.f. Equation (233)),

a: 2 35(1 —l— mt"? + s2r4)

y = y(1 + tilt"? + regal), [6.59)

where “r2 = x2 + yz and m and 52 are called the radial distortion parameters (Brewn 1971;

Slama 1980).t3

A variety of techniques can be used to estimate the radial distortion parameters for a

given lens.14 One of the simplest and most useful is to take an image of a scene with a lot

of straight lines, especially lines aligned with and near the edges of the image. The radial

distortion parameters can then be adjusted until all of the lines in the image are straight,

which is commonly called the plumb-line method (Brown 1971; Kang 2001; El-Melegy and

Farag 2003). Exercise 6.10 gives some more details on how to implement such a technique.

Another approach is to use several overlapping images and to combine the estimation

of the radial distortion parameters with the image alignment process, i.e., by extending the

pipeline used for stitching in Section 9.2.1. Sawhney and Kumar (1999) use a ltierarchy

of motion models (translation, affine, projective) in a coarse-to-fine strategy coupled with

a quadratic radial distortion correction term. They use direct (intensity—based) minimiza—

tion to compute the alignment. Stein (1997) uses a feature-based approach combined with

a general 3D motion model (and quadratic radial distortion), which requires more matches

than a parallax-free rotational panorama but is potentially more general. More recent ap-

proaches sometimes simultaneously compute both the unknown intrinsic parameters and the

radial distortion coafficients, which may include higher-order terms or more complex rational

or non-parametric forms [Claus and Fitzgibbon 2005; Sturm 2005; Thirthala and Pollefeys

2005; Barreto and Daniilidis 2005; Hartley and Kang 2005; Steele and Jaynes 2006; Tardif,

Sturm, Trudeau er of. 2009).

When a known calibration target is being used (Figure 6.8), the radial distortion estima-

tion can be folded into the estimation of the other intrinsic and extrinsic parameters (Zhang

2000; Hartley and Kang 2007; Tardif, Sturm, Trudeau at at. 2009). This can be viewed as

adding another stage to the general non—linear minimization pipeline shown in Figure 6.5

between the intrinsic parameter multiplication box fc and the perspective division box fp.

(See Exercise 6.11 on more details for the case of a planar calibration target.)

Of course, as discussed in Section 2.1.6, more general models of lens distortion, such as

fisheye and non-central projection, may sometimes be required. While the parameterization

of such lenses may be more complicated (Section 2.1.6), the general approach of either us—

ing calibration rigs with known 3D positions or self-calibration through the use of multiple 

13 Sometimes the relationship between :t: and 1% is expressed the other way around, i.e., using primed (final)

coordinates on fire right—hand side, .7: = £0 + mfg + s21“). This is convenienl if we map image pixels into
(warped) rays and then undistort the rays to obtain 30 rays in space. i.e., if we are using inverse warping.

‘4 Some of today‘s digital cameras are starting to remove radial distortion using software in the camera itself.
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overlapping images of a scene can both be used (Hartley and Kang 2007'; Tardif, Sturm, and

Roy 2007). The same techniques used to calibrate for radial distortion can also be used to

reduce the amount of chromatic aberration by separately calibrating each color channel and

then warping the channels to put them back into alignment (Exercise 6.12).

6.4 Additional reading

Hartley and Zisserrnan (2004) provide a wonderful introduction to the topics of feature-based

alignment and optimal motion estimation, as well as an in-depth discussion of camera cali-

bration and pose estimation techniques.

Techniques for robust estimation are discussed in more detail in Appendix 13.3 and in

monographs and review articles on this topic (Huber 1981; Hampei, Ronchetti, Rousseeuw er

of. 1986; RouSSeeuw and Leroy 198?; Black and Rangarajan 1996; Stewart 1999). The most

commonly used robust initialization technique in computer vision is RANdom SAmple Con-

sensus (RANSAC) (Fischler and Bolles 1981), which has spawned a series of more efficient

variants (Nistér 2003; Chum and Matas 2005).

The topic of registering 3D point data sets is called absolute orientation (Horn 1987) and

3D pose estimation (Lorusso, Eggert, and Fisher 1995). A variety of techniques has been

developed for simultaneously computing 3D point correspondences and their corresponding

rigid transformations (Besl and McKay 1992; Zhang 1994; Szeliskj and Lavallée 1996; Gold,

Rangarajan, Lu er of. 1998; David, DeMenthon. Duraiswami er oi. 2004; Li and Hartley 2007;

Enqvist, Josephson, and Kahl 2009).

Camera calibration was first studied in photogrammetry (Brown 197 l ; Slama 1980; Atkin-

son 1996; Kraus 1997) but it has also been widely studied in computer vision (Tsai 198?;

Gremban, Thorpe, and Kanade 1988; Champleboux, Lavallée, Szeliski e: oi. 1992; Zhang

2000; Grossberg and Nayar 2001). Vanishing points observed either from rectahedral cali-

bration objects or man-made architecture are often used to perform rudimentary calibration

(Caprile and Torre 1990; Becker and Bove 1995; Liebowitz and Zisserman 1998; Cipolla,

Drummond, and Robertson 1999; Antone and Teller 2002; Criminisi, Reid, and Zisserman

2000; Hartley and Zisserman 2004; Pflugfelder 2008). Performing camera calibration without

using known targets is known as seificoiibrolion and is discussed in textbooks and surveys on

structure from motion (Faugeras, Luong, and Maybank 1992; Hartley and Zisserman 2004;

Moons. Van Gool, and Vergauwen 2010). One popular subset of such techniques uses pure

rotational motion (Stein 1995; Hartley 1997b; Hartley, Hayrnan, de Agapito et at. 2000; de

Agapito, Hayman, and Reid 2001; Kang and Weiss 1999; Shum and Szeliski 2000; Frahm

and Koch 2003).

6.5 Exercises

Ex 6.1: Feature-based image alignment for flip-book animations Take a set of photos of

an action scene or portrait (preferably in motor-drive—continuous shooting—mode) and

align them to make a composite or flip—book animation.

1. Extract features and feature descriptors using some of the techniques described in Sec—
tions 4.]. 1—4.1.2.
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2. Match your features using nearest neighbor matching with a nearest neighbor distance

ratio test {4.18).

3. Compute an optimal 2D translatiorr and rotation between the first image and all subse—

quent images, using least squares (Section 6. i . 1) with optional RANSAC for robustness

(Section 6.1.4).

4. Resample all of the images onto the first image‘s coordinate frame (Section 3.6.1) using

. either bilinear or bicubic resampling and optioually crop them to their common area.

5. Convert the resulting images into an animated GIF (using software available from the

Web) or optionally implement cross—dissolves to turn them into a “510mm” video.

6. (Optional) Combine this technique with feature—based (Exercise 3.25) morphing.

Ex 6.2: Panography Create the kind of panograph discussed in Section 6.1.2 and com—

monly found on the Web.

1. Take a series of interesting overlapping photos.

2. Use the feature detector, descriptor, and matcher developed in Exercises 4.1—4.4 (or

existing software) to match features among the images.

3. Turn each connected component of matching features into a track, i.e., assign a unique

index i to each track, discarding any tracks that are inconsistent (contain two different

features in the same image).

4. Compute a global translation for each image using Equation (6.12).

5. Since your matches probably contain errors, turn the above least square metric into a

robust metric (6.25) and re-solve your system using iteratively reweighted least squares.

6. Compute the size of the resulting composite canvas and resample each image into its

final position on the canvas. (Keeping track of bounding boxes will make this more

efficient.)

7. Average all of the images, or choose some kind of ordering and impiement translucent

over compositing (3.8).

8. (Optional) Extend your parametric motion model to include rotations and scale, i.e.,

the similarity transform given in Table 6.]. Discuss how you could handle the case of

translations and rotations only (no scale).

9. (Optional) Write a simple tool to let the user adjust the ordering and opacity, and add

or remove images.

10. (Optional) Write down a different least squares problem that involves pairwise match—

ing of images. Discuss why this might be better or worse than the global matching

formula given in (6.12).

Ex 6.3: 2D rigidJ'Euclidean matching Several alternative approaches are given in Section 6.1.3

for estimating a 2D rigid (Euclidean) alignment.
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