[54] COMPOSITION AND PROCESS
[75] Inventor: Paul A. Aristoff, Portage, Mich.
[73] Assignee: The Upjohn Company, Kalamazoo,Mich.
[21] Appl. No.: 219,210
[22] Filed: Dec. 22, 1980
Related U.S. Application Data
[63] 1980, aban-in-p[51] Int. Cl. ${ }^{3}$
\qquad C07C 177/00
[52] U.S. Cl.

\qquad
560/56; 568/734;

568/807; 260/239 BF; 568/808; 260/326.45; 260/465 F; 260/465 D; 260/326.5 C; 544/154; 544/171; 544/176; 544/336; 544/386; 546/203; 546/205; 546/285; 546/314; 546/309; 546/337; 548/250; 560/28; 562/466; 562/451; 562/452; 562/455; 564/80; 564/172; 564/174; 564/88; 564/90; 564/95; 564/158; 568/632; 568/633; 568/634
[58] Field of Search 560/56, 28; 562/466, 562/451, 452, 455; 260/239 BF, 326.4 V, 465 F , 465 D, 326.5 C; 544/154, 171, 176, 336, 386;

546/203, 205, 285, 314, 309, 337; 548/280; $564 / 80,172,174,88,90,95,158 ; 568 / 632,633$, $634,734,807,808$

[56]

References Cited FOREIGN PATENT DOCUMENTS

2017699 10/1979 United Kingdom \qquad 810/56

OTHER PUBLICATIONS

Derwent Abstract 48154B/26 J 54063059 05/21/79.
Primary Examiner-PauL J. Killos
Altorney, Agent, or Firm-L. Ruth Hattan; Robert A. Armitage

ABSTRACT
The present specification provides novel analogs of carbacyclin (CBA_{2}), 6a-carba-prostacyclin (6a-carbaPGI 2), which have pronounced prostacyclin-like pharmacological activity, e.g., as platelet antiaggregatory agents. Specifically the novel chemical analogs of CBA_{2} are those substituted by fluoro (C-S), alkyl (C-9), interphenylene ($\mathrm{C}-5$), and methano (C-6a,9). Further provided are benzindene analogs of CBA_{2} and substituted forms thereof, i.e., 9 -deoxy- $2^{\prime}, 9$-methano (or $2^{\prime}, 9$ -metheno)-3-oxa-4,5,6-trinor-3,7-($1^{\prime}, 3^{\prime}$-interphenylene)PGF 1 compounds. Also provided are a variety of novel chemical intermediates, e.g., substituted bicyclo[3.3.0 Joctane intermediates, and chemical process utilizing such intermediates which are useful in the preparation of the novel CBA ${ }_{2}$ analogs.

13 Claims, No Drawings

COMPOSITION AND PROCESS

This application is a continuation-in-part of Ser. No. 135,055, filed Mar. 28, 1980, now abandoned.

BACKGROUND OF THE INVENTION

The present invention relates to novel compositions of matter and novel processes for preparing these compositions of matter. Moreover, there are provided novel methods by which certain of these novel compositions of matter are employed for pharmacologically useful purposes. Further there are provided novel chemical intermediates for preparing these compositions of matter.

The present invention is specifically concerned with novel analogs of prostacyclin or PGI_{2}. Specifically, the present invention is concerned with analogs of carbacyclin modified at the C-5 or C-9 position, e.g., C-5 interphenylene analogs of carbacyclin, 5-fluoro analogs of carbacyclin, 9β-alkyl analogs of carbacyclin, C-6a,9 tricyclic (cyclopropyl) analogs of carbacyclin, and combinations thereof as well as novel benzidene analogs thereof.

Prostacyclin is an endogenously produced compound in mammalian species, being structurally and biosynthetically related to the prostaglandins (PG's). In particular, prostacyclin exhibits the structure and carbon atom numbering of formula I when the C-5,6 positions are unsaturated. For convenience, prostacyclin is often referred to simply as " PGI_{2} ". Carbacyclin, 6a-carbaPGI_{2}, exhibits the structure and carbon atom numbering indicated in formula II when the $\mathbf{C}-5,6$ positions are unsaturated. Likewise, for convenience, carbacyclin is referred to simply as "CBA 2_{2} ".
A stable partially saturated derivative of PGI_{2} is PGI_{1} or 5,6-dihydro- PGI_{2} when the $\mathrm{C}-5,6$ positions are saturated, depicted with carbon atom numbering in formula II when the C-5,6 positions are saturated. The corresponding 5,6-dihydro-CBA ${ }_{2}$ is CBA_{1}, depicted in formula II.

As is apparent from inspection of formulas I and II, prostacyclin and carbacyclin may be trivially named as derivatives of PGF-type compounds, e.g., PGF2a of formula III. Accordingly, prostacyclin is trivially named 9-deoxy-6,9a-epoxy-(5Z)-5,6-didehydro-PGF1 and carbacyclin is named 9 -deoxy-6,9 α-methano-(5E)5,6 -didehydro-PGF ${ }_{1}$. For description of prostacyclin and its structural identification, see Johnson, et al., Prostaglandins 12:915 (1976),

For convenience, the novel prostacyclin or carbacyclin analogs will be referred to by the trivial, art-recognized system of nomenclature described by N_{+}A. Nelson, J. Med. Chem. 17:911 (1974) for prostaglandins. Accordingly, all of the novel prostacyclin derivatives herein will be named as 9 -deoxy-PGF1-type compounds, PGI_{2} derivatives, or preferably as CBA 1 or CBA_{2} derivatives.

In the formulas herein, broken line attachments to a ring indicate substituents in the "alpha" (α) configuration, i.e., below the plane of said ring. Heavy solid line attachments to a ring indicate substituents in the "beta" (β) configuration, i.e., above the plane of said ring. The use of wavy lines (\sim) herein will represent attachment of substituents in the alpha or beta configuration or attached in a mixture of alpha and beta configurations. Alternatively wavy lines will represent either an E or Z
and Hayashi, M., Chem. Lell. 1437-I440 (1979); and Li, Tsung-tee, "A Facile Synthesis of 9(0)-Methano-prostacyclin", Abstract No. 378, (Organic Chemistry), and P. A. Aristoff, "Synthesis of 6a-Carbaprostacyclin $\mathbf{1}_{2}$ ", Abstract No. 236 (Organic Chemistry) both at Abstract of Papers (Part II) Second Congress of the North American Continent, San Francisco, California (Las Vegas, Nevada), USA, 24-29 August 1980.

7 -Oxo and 7-hydroxy-CBA ${ }_{2}$ compounds are apparently disclosed in U.S. Pat. No. 4,192,891. 19-HydroxyCBA_{2} compounds are disclosed in U.S. Ser. No. 54,811 , filed 5 July 1979. CBA 2 aromatic esters are disclosed in U.S. Pat. No. 4,180,657. 11-Deoxy- Δ^{10}. or $\Delta^{11}-$ CBA $_{2}$ compounds are described in Japanese Kokai No. 77/24,865, published 24 Feb. 1979.

SUMMARY OF THE INVENTION

The present specification particular by provides:
(a) a carbacyclin intermediate of formula IV, V, VI, VII, VIII, or IX; and
(b) a carbacyclin analog of formula X or XI;
wherein g is $0,1,2$, or 3 ;
wherein n is one or 2 ;
wherein L_{1} is $\alpha-\mathrm{R}_{3}: \beta-\mathrm{R}_{4}, \alpha-\mathrm{R}_{4}: \beta-\mathrm{R}_{3}$, or a mixture of $\alpha-\mathrm{R}_{3}: \beta-\mathrm{R}_{4}$ and $\alpha-\mathrm{R}_{4}: \beta-\mathrm{R}_{3}$, wherein R_{3} and R_{4} are hydrogen, methyl, or fluoro, being the same or different, with the proviso that one of R_{3} and R_{4} is fluoro only when the other is hydrogen or fluoro;
wherein M_{1} is $\alpha-\mathrm{OH}: \beta-\mathrm{R}_{5}$ or $\alpha-\mathrm{R}_{5} ; \beta-\mathrm{OH}$, wherein R_{5} is hydrogen or methyl;
wherein M_{6} is $\alpha-\mathrm{OR}_{10}: \beta-\mathrm{R}_{5}$ or $\alpha-\mathrm{R}_{5}: \beta-\mathrm{OR}_{10}$, wherein R_{5} is hydrogen or methyl and R_{10} is an acid hydrolyzable protective group;
wherein R_{7} is
(1) $-\mathrm{C}_{m} \mathrm{H}_{2 m}-\mathrm{CH}_{3}$, wherein m is an integer from one to 5 , inclusive,
(2) phenoxy optionally substituted by one, two or three chloro, fluoro, trifluoromethyl, $\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right)$ alkyl, or ($\mathrm{C}_{1}-\mathrm{C}_{3}$)alkoxy, with the proviso that not more than two substituents are other than alkyl, with the proviso that R_{7} is phenoxy or substituted phenoxy, only when R_{3} and R_{4} are hydrogen or methyl, being the same or different,
(3) phenyl, benzyl, phenylethyl, or phenylpropyl optionally substituted on the aromatic ring by one, two or three chloro, fluoro, trifluoromethyl, ($C_{1}-C_{3}$)alkyl, or $\left(C_{1}-C_{3}\right)$ alkoxy, with the proviso that not more than two substituents are other than alkyl,
(4) $\mathrm{cis}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$,
(5) $-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{3}$, or
(6) $-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$;
wherein- $\mathrm{C}\left(\mathrm{L}_{1}\right)-\mathrm{R}_{7}$ taken together is
(1) $\left(\mathrm{C}_{4}-\mathrm{C}_{7}\right)$ cycloalkyl optionally substituted by one 55 to 3 ($\mathrm{C}_{1}-\mathrm{C}_{5}$) alkyl;
(2) 2-(2-furyl)ethyl,
(3) 2-(3-thienyl)ethoxy, or
(4) 3-thienyloxymethyl;
wherein R_{8} is hydroxy, hydroxymethyl, or hydrogen; 60 wherein R_{15} is hydrogen or fluoro;
wherein R_{16} is hydrogen or R_{16} and R_{17} taken together are - CH_{2} - or R_{16} and R_{47} taken together form a second valence bond between C-6a and C-9 or are $-\mathrm{CH}_{2}$-;
wherein R_{17} is as defined above or is
(1) hydrogen, or
(2) $\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)$ alkyl;
wherein R_{18} is hydrogen, hydroxy, hydroxymethyl, $-\mathrm{OR}_{10}$ or $-\mathrm{CH}_{2} \mathrm{OR}_{10}$, wherein R_{10} is an acid-hydrolyzable protective group; wherein
(1) $\mathrm{R}_{20}, \mathrm{R}_{21}, \mathrm{R}_{22}, \mathrm{R}_{23}$, and R_{24} are all hydrogen with R_{22} being either α-hydrogen or β-hydrogen,
(2) R_{20} is hydrogen, R_{21} and R_{22} taken together form a second valence bond between C-9 and C-6a, and R_{23} and R_{24} taken together form a second valence bond between C-8 and C-9 or are both hydrogen, or
(3) R_{22}, R_{23}, and R_{24} are all hydrogen, with R_{22} being either α-hydrogen or β-hydrogen, and
(a) R_{20} and R_{21} taken together are oxo, or
(b) R_{20} is hydrogen and R_{21} is hydroxy, being α hydroxy or β-hydroxy;
wherein R_{27} is the same as R_{7} except that - $\left(\mathrm{CH}_{2}\right.$.
$)_{2}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{3}$ is $-\left(\mathrm{CH}_{2}\right)-\mathrm{CH}\left(\mathrm{OR}_{11}\right)-\mathrm{CH}_{3}$;
wherein R_{32} is hydrogen or R_{31}, wherein R_{31} is a hydroxyl hydrogen replacing group;
wherein R_{33} is - CHO or $-\mathrm{CH}_{2} \mathrm{OR}_{32}$, wherein R_{32} is as defined above;
wherein R_{47} is as defined above or is
(1) $\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)$ alkyl, or
(2) $-\mathrm{CH}_{2} \mathrm{OH}$;
wherein X_{1} is
(1) $-\mathrm{COOR}_{1}$, wherein R_{1} is
(a) hydrogen,
(b) $\left(\mathrm{C}_{1}-\mathrm{C}_{12}\right)$ alkyl,
(c) $\left(\mathrm{C}_{3}-\mathrm{C}_{10}\right)$ cycloalkyl,
(d) $\left(\mathrm{C}_{7}-\mathrm{C}_{12}\right)$ aralkyl,
(e) phenyl, optionally substituted with one, 2 or 3 chloro or ($\mathrm{C}_{1}-\mathrm{C}_{3}$) alkyl,
(f) phenyl substituted in the para position by
(i) $-\mathrm{NH}-\mathrm{CO}-\mathrm{R}_{25}$,
(ii) $-\mathrm{CO}-\mathrm{R}_{26}$,
(iii) $-\mathrm{O}-\mathrm{CO}-\mathrm{R}_{54}$, or
(iv) $-\mathrm{CH}=\mathrm{N}-\mathrm{NH}-\mathrm{CO}-\mathrm{NH}_{2}$ wherein R_{25} is methyl, phenyl, acetamidophenyl, benzamidophenyl, or $-\mathrm{NH}_{2} ; \mathrm{R}_{26}$ is methyl, phenyl, - NH_{2}, or methoxy; and R_{54} is phenyl or acetamidophenyl; inclusive, or
(g) a pharmacologically acceptable cation;
(2) $-\mathrm{CH}_{2} \mathrm{OH}$,
(3) $-\mathrm{COL}_{4}$, wherein L_{4} is
(a) amino of the formula $-\mathrm{NR}_{51} \mathrm{R}_{52}$, wherein R_{51} and R_{52} are
(i) hydrogen,
(ii) $\left(\mathrm{C}_{1}-\mathrm{C}_{12}\right)$ alkyl,
(iii) $\left(\mathrm{C}_{3}-\mathrm{C}_{10}\right)$ cycloalkyl,
(iv) $\left(\mathrm{C}_{7}-\mathrm{C}_{12}\right)$ aralkyl,
(v) phenyl, optionally substituted with one, 2 or 3 chloro, $\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right)$ alkyl, hydroxy, carboxy, ($\mathrm{C}_{2}-\mathrm{C}_{5}$) alkoxycarbonyl, or nitro,
(vi) $\left(\mathrm{C}_{2}-\mathrm{C}_{5}\right)$ carboxyalkyl,
(vii) ($\mathrm{C}_{2}-\mathrm{C}_{5}$)carbamoylalkyl,
(viii) ($\mathrm{C}_{2}-\mathrm{C}_{5}$)cyanoalkyl,
(ix) $\left(\mathrm{C}_{3}-\mathrm{C}_{6}\right)$ acetylalkyl,
(x) $\left(\mathrm{C}_{7}-\mathrm{C}_{11}\right)$ benzoalkyl, optionally substituted by one, 2 or 3 chloro, $\left(C_{1}-C_{3}\right)$ alkyl, hydroxy, ($\mathrm{C}_{1}-\mathrm{C}_{3}$) alkoxy, carboxy, ($\mathrm{C}_{2}-\mathrm{C}_{5}$) alkoxycarbonyl, or nitro,
(xi) pyridyl, optionally substituted by one, 2 or 3 chloro, $\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right)$ alkyl, or $\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right)$ alkoxy,
(xii) ($\mathrm{C}_{6}-\mathrm{C}_{9}$) pyridylalkyl optionally substituted by one, 2 or 3 chloro, $\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right)$ alkyl, hydroxy, or ($\mathrm{C}_{1}-\mathrm{C}_{3}$)alkyl,
(xiii) $\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)$ hydroxyalkyl,
(xiv) $\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)$ dihydroxyalkyl
(xv) $\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)$ trihydroxyalkyl,
vith the further proviso that not more than one of R_{51} and R_{52} is other thán hydrogen or alkyl,
(b) cycloamino selected from the group consisting of pyrolidino, piperidino, morpholino, piperazino, hexamethyleneimino, pyrrolino, or 3,4 didehydropiperidinyl optionally substituted by one or $2\left(\mathrm{C}_{1}-\mathrm{C}_{12}\right)$ alkyl of one to 12 carbon atoms, inclusive,
(c) earbonylamino of the formula $-\mathrm{NR}_{53} \mathrm{COR}_{51}$, wherein R_{23} is hydrogen or (C_{1}-C4)alkyl and R_{51} is other than hydrogen, but otherwise as defined above,
(d) sulfonylamino of the formula $-\mathrm{NR}_{53} \mathrm{SO}_{2} \mathrm{R}_{51}$, wherein R_{21} and R_{23} are as defined in (c),
(4) $-\mathrm{CH}_{2} \mathrm{NL}_{2} \mathrm{~L}_{3}$, wherein L_{2} and L_{3} are hydrogen or ($\mathrm{C}_{1}-\mathrm{C}_{4}$)alkyl, being the same or different, or the pharmacologically acceptable acid addition salts thereof when X_{1} is $-\mathrm{CH}_{2} \mathrm{NL}_{2} \mathrm{~L}_{3}$,
wherein Y_{1} is trans- $\mathrm{CH}=\mathrm{CH}-$, cis $-\mathrm{CH}=\mathrm{CH}-$,

wherein Z_{1} is
(1) $-\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)-\mathrm{C}\left(\mathrm{R}_{2}\right)_{2}$, wherein R_{2} is hydrogen or fluoro and f is zero, one, 2 , or 3 ,
(2) trans- $\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-$,
(3) $-(\mathrm{Ph})-\left(\mathrm{CH}_{2}\right)_{g}-$, wherein (Ph) is 1,2 -, 1,3 -, or 1,4 -phenylene and g is zero, one, 2 , or 3 ;
wherein Z_{4} is $-\mathrm{CH}_{2}-$ or $-\left(\mathrm{CH}_{2}\right)_{f}-\mathrm{CF}_{2}$, wherein f is as defined above;
with the overall proviso that
(1) $\mathrm{R}_{15}, \mathrm{R}_{16}$, and R_{17} are all hydrogen only when Z_{1} is $-(\mathrm{Ph})-\left(\mathrm{CH}_{2}\right)_{g}$, and
(2) Z_{1} is $-(\mathrm{Ph})-\left(\mathrm{CH}_{2}\right)_{\xi}-$ only when R_{15} is hydrogen.
With regard to the divalent substituents described above (e.g., L_{1} and M_{1}), these divalent radicals are defined as $\alpha-\mathrm{R}_{i} ; \beta-\mathrm{R}_{j}$, wherein R_{i} represents the substituent of the divalent moiety in the alpha configuration with respect to the plane of the $\mathrm{C}-8$ to $\mathrm{C}-12$ cyclopentane ring and R_{j} represents the substituent of the divalent moiety in the beta configuration with respect to the plane of the ring. Accordingly, when M_{1} is defined as $\alpha-\mathrm{OH}: \beta-\mathrm{R}_{5}$, the hydroxy of the M_{1} moiety is in the alpha configuration, i.e., as in PGI_{2} above, and the R_{5} substituent is in the beta configuration.
The carbon atom content of various hydrocarboncontaining moieties is indicated by a prefix designating the minimum and maximum number of carbon atoms in the moiety, i.e., the prefix $\left(\mathrm{C}_{i}-\mathrm{C}_{j}\right)$ indicates a moiety of the integer " i " to the integer " j " carbon atoms, inclusive. Thus $\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right)$ alkyl refers to alkyl of one to 3 carbon atoms, inclusive, or methyl, ethyl, propyl, and isopropyl.

Certain novel prostacyclin analogs herein, i.e., formula X compounds, are all named as CBA_{1} or CBA_{2} compounds, respectively, by virtue of the substitution of methylene for oxa in the heterocyclic ring of prostacyclin and the substitution. CBA 2 compounds are those exhibiting the olefinic double bond at $\mathrm{C}-5,6$, while CBA_{1} compounds are those saturated at $\mathrm{C}-5,6$. Formula XI compounds are named as PGE_{1} or PGF_{1} derivatives as hereinafter described.
Novel compounds wherein Z_{1} is $(\mathrm{Ph})-\left(\mathrm{CH}_{2}\right)_{g}$ are designated inter-o-, inter-m-, or inter-p-phenylene depending on whether the attachment between $\mathrm{C}-5$ and the - $\left(\mathrm{CH}_{2}\right)_{\xi}$ - moiety is ortho, meta, or para, respectively.

7,7
are all hydrogen and R_{21} is α-hydroxy are characterized
as "6a α-hydroxy-9-deoxy-2",9 α-methano- 3 -oxa-4,5,6-trinor-3,7-(1 ', 3^{\prime}-inter-phenylene)-PGF," or "6ad-hydroxy-9-deoxy-2',9 9 -methano-3-oxa-4,5,6-trinor-3,7($1^{\prime}, 3^{\prime}$-inter-phenylene)-PGF ${ }_{1}{ }^{\prime \prime}$ compounds depending on whether R_{22} is α-hydrogen or β-hydrogen, respectively. Finally, formula XI TXA analogs wherein R_{20}, $\mathrm{R}_{22}, \mathrm{R}_{23}$, and R_{24} are all hydrogen and R_{21} is β-hydroxy are characterized as " $6 a \beta$-hydroxy-9-deoxy-2',9 β^{-} methano-3-oxa-4,5,6-trinor-3,7-($1^{\prime}, 3^{\prime}$-inter-phenylene). PGF1" or "6a β-hydroxy-9-deoxy-2',9a-methano-3-oxa-4,5,6-trinor-3,7-($1^{\prime}, 3^{\prime}$-inter-phenylene)-PGF1"' compounds depending on whether R_{22} is α-hydrogen or β-hydrogen, respectively. When Z_{4} is $-\left(\mathrm{CH}_{2}\right)_{f}-\mathrm{CF}_{2}$ and f is zero, the formula XI CBA analogs are additionally characterized as " 2,2 -difluoro" compounds. When f is one, 2 , or 3 , such compounds are additionally characterized as "2a-homo", "2a,2b-dihomo" or " $2 \mathrm{a}, 2 \mathrm{~b}, 2 \mathrm{c}$ trihomo" compounds.

When R_{5} is methyl, the carbacyclin analogs are all named as " 15 -methyl-CBA" compounds. Further, except for compounds wherein Y_{1} is cis- $\mathrm{CH}=\mathrm{CH}-$, compounds wherein the M_{1} moiety contains an hydroxyl in the beta configuration are additionally named as " 15 -epi-CBA" compounds.
For the compounds wherein Y_{1} is cis- $\mathrm{CH}=\mathrm{CH}-$, then compounds wherein the M_{1} mojety contains an hydroxyl in the alpha configuration are named as " 15 -epi-CBA" compounds. For a description of this convention of nomenclature for identifying C -15 epimers, see U.S. Pat. No. $4,016,184$, issued 5 Apr. 1977, particularly columns 24-27 thereof.
The novel carbacyclin analogs herein which contain - $\left(\mathrm{CH}_{2}\right)_{2}-$, $\mathrm{cis}-\mathrm{CH}=\mathrm{CH}-$, or $-\mathrm{C} \equiv \mathrm{C}$ - as the Y_{1} moiety, are accordingly referred to as " 13,14 -dihydro", "cis-13", or "13,14-didehydro" compounds, respectively.

When R_{7} is straight chained $-\mathrm{C}_{m} \mathrm{H}_{2 m}-\mathrm{CH}_{3}$, wherein m is as defined above, the compounds so described are named as "19,20-dinor", "20-nor", " 20 methyl" or "20-ethyl" compounds when m is one, 2,4 or 5 , respectively. When R_{7} is branched chain $-\mathrm{C}_{m} \mathrm{H}-$ ${ }_{2 m}-\mathrm{CH}_{3}$, then the compounds so described are " 17 -, 18 -, 19 -, or 20 -alkyl" or "17,17-, 17,18 -, $-17,19-, 17,20$-, 18,18 -, 18,19 -, $18,20-19,19$-, or 19,20 -dialkyl" compounds when m is 4 or 5 and the unbranched portion of the chain is at least n-butyl, e.g., " 17,20 -dimethyl" compounds are described when m is 5 (1 -methylpentyl).
When R_{7} is phenyl and neither R_{3} and \mathbf{R}_{4} is methyl, the compounds so described are named as " 16 -phenyl-$17,18,19,20$-tetranor" compounds. When R_{7} is substituted phenyl, the corresponding compounds are named as " 16 -(substituted phenyl)-17,18,19,20-tetranor" compounds. When one and only one of R_{3} and R_{4} is methyl or both R_{3} and R_{4} are methyl, then the corresponding compounds wherein R_{7} is as defined in this paragraph are named as " 16 -phenyl or 16 -(substituted phenyl)18, 19,20-trinor" compounds or "16-methyl-16-phenylor 16 -(substituted phenyl)-18,19,20-trinor" compounds respectively.

When R_{7} is benzyl, the compounds so described are named as "17-phenyl-18,19,20-trinor" compounds. When R_{7} is substituted benzyl, the corresponding compounds are named as " 17 -(substituted phenyl)-18,19,20trinor" compounds.

When R_{7} is phenylethyl, the compounds so described are named as " 18 -phenyl-19,20-dinor" compounds. When R_{7} is substituted phenylethyl, the corresponding
\qquad

compounds are named as " 18 -(substituted pheny))-19,20-dinor" compounds.
When R_{7} is phenylpropyl, the compounds so described are named as " 19 -phenyl-20-nor" compounds. When R_{7} is substituted phenylpropyl the corresponding compounds are named as " 19 -(substituted phenyl)-20nor" compounds.
When R_{7} is phenoxy and neither R_{3} nor R_{4} is methyl, the compounds so described are named as "16-phenoxy-17,18,19,20-tetranor" compounds. When R_{7} is substituted phenoxy, the corresponding compounds are named as " 16 -(substituted phenoxy)-17,18,19,20tetranor" compounds. When one and only one of R_{3} and R_{4} is methyl or both R_{3} and R_{4} are methyl, then the corresponding compounds wherein R_{7} is as defined in this paragraph are named as " 16 -phenoxy or 16 -(substituted phenoxy)-18,19,20-trinor" compounds or " 16 -methyl-16-phenoxy- or 16 -substituted phenoxy) $18,19,20$-trinor" compounds, respectively.

When R_{7} is cis- $\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{CH}_{3}$, the compounds so described are named as "cis-17,18-didehydro" compounds.
When R_{7} is $-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{3}$, the compounds so described are named as "19-hydroxy" compounds.

When R_{7} is $-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$, the compounds so described are named as " 20 -isopropylidene" compounds.
When $-C\left(L_{1}\right)-R_{7}$ is optionally substituted cycloalkyl, 2-(2-furyl)ethyl, 2-(3-thienyl)ethyl, or 3-thienyloxymethyl, the compounds so described are respectively 15 -cycloalkyl-16,17,18,19,20-pentanor compounds, 17 (2 -furyl)-18,19,20-trinor-CBA compounds, 17-(3-thienyl)-18,19,20-trinor compounds, or 16-(3-thienyl-)oxy-17,18,19,20-tetranor compounds.
When at least one of R_{3} and R_{4} is not hydrogen then (except for the 16 -phenoxy or 16 -phenyl compounds discussed above) there are described the " 16 -methyl" (one and only one of R_{3} and R_{4} is methyl), "16,16dimethyl" (R_{3} and R_{4} are both methyl), " 16 -fluoro" (R_{3} or R_{4} is fluoro), " 16,16 -difluoro" (R_{3} and R_{4} are both fluoro) compounds. For those compounds wherein R_{3} and R_{4} are different, the prostaglandin analogs so represented contain an asymmetric carbon atom at C-16. Accordingly, two epimeric configurations are possible: "(16 S)" and " (16R)". Further, there is described by this invention the C-16 epimeric mixture: "(16RS)".

When X_{1} is $-\mathrm{CH}_{2} \mathrm{OH}$, the compounds so described are named as " 2 -decarboxy- 2 -hydroxymethyl" compounds.
When X_{1} is $-\mathrm{CH}_{2} \mathrm{NL}_{2} \mathrm{~L}_{3}$, the compounds so described are named as " 2 -decarboxy-2-aminomethyl" or " 2 -(substituted amino)methyl" compounds.

When X_{1} is-COL4, the novel compounds herein are named as CBA-type amides. Further, when X_{1} is $-\mathrm{COOR}_{\mathrm{j}}$, the novel compounds herein are named as CBA-type esters and CBA-type salts.
Examples of phenyl esters substituted in the para position (i.e., \mathbf{X}_{1} is -COOR ${ }_{1}, \mathrm{R}_{1}$ is p -substituted phenyl) include p-acetamidophenyl ester, p-benzamidophenyl ester, p-(p-acetamidobenzamido)phenyl ester, p-(p-benzamidobenzamido)phenyl ester, p aminocarbonylaminophenyl ester, p -acetylphenyl ester, p-benzylphenyl ester, p-amidocarbonylphenyl ester, p -methoxycarbonylphenyl ester, p-benzoyloxyphenyl hydroxybenzaldehyde semicarbazone ester.

DOCKET
 A LARM

Explore Litigation

 InsightsDocket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with real-time alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

