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Preface 

This book focuses on the technology of information retrieival: a user enters a 
query that describes a request for information, and an information retrieval 
system responds by identifying documents that are relevant to the query. Of 
course, the computer cannot understand documents and queries the way a 
human can, so methods other than full natural language understanding of the 
text must be employed. We cover the various techniques used to quickly find 
relevant documents, with the necessary introduction, technical details, and 
examples to illustrate the approach. 

The advent of the World Wide Web has increased the importance of infor­
mation retrieval. Instead of going to the local library to find something, people 
search the Web. Thus, the relative number of manual versus computer-assisted 
searches for information has shifted dramatically in the past few years. This 
has increased the need for automated information retrievall for extremely large 
document collections. 

It is estimated that the Web now contains more than twenty million different 
content areas, presented on more than 320 million web pages, and one million 
web servers-and it is doubling every nine months [Kahle, 1998, Lawrence and 
Giles, 1998]. This book describes the techniques that can be used to try and 
find the needle that a user is seeking in the enormous haystack that is the Web, 
as well as and other large information collections. These techniques are found in 
numerous research papers, described by many different authors, and presented 
with many different examples. This book consolidates the most commonly used 
information retrieval algorithms and heuristics. 

The problem of finding relevant information is not new. Early systems tried 
to classify knowledge into a set of known fixed categories. The first of these was 
completed in 1668 by the English philosopher John Wilkins [Subbiondo, 1992]. 
The problem with this approach is that categorizers commonly do not place 
documents into the categories where searchers expect to find them. No matter 
what categories a user thinks of-they will not match what someone who is 
searching will find. For example, users of e-mail systems place mail in folders 
or categories-only to spend countless hours trying to find the same documents 
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x INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS 

because they cannot remember what category they used, or the category they 
are sure they used does not contain the relevant document. Effective and 
efficient search techniques are needed to help users quickly find the information 
they are looking for. 

Another approach is to try to understand the content of the documents. 
Ideally, documents would be loaded into the computer, the computer would 
read and understand them, and then, users would simply ask questions and be 
given direct answers. The field of Natural Language Processing works on this 
approach-but suffice to say that this approach is extremely difficult, and we 
currently lack systems that can build good knowledge structures for even the 
simplest of texts. 

If we rule out hand-categorization and natural language processing, that 
leaves us with Information Retrieval (IR). With this approach, no real attempt 
is made to have the computer understand the document-instead techniques 
that use pattern matching, statistical sampling, machine learning, and proba­
bility theory are used to guess which documents are relevant. These systems are 
not perfect, but they offer users the opportunity to sift through large volumes 
of text. 

The key problem is that simply matching on query words is not sufficient to 
satisfy user requests. A query about "Abraham Lincoln" can bring back docu­
ments about "a man named Abraham went to the dealership to purchase a Lin­
coln." The most obvious techniques have not been shown to work well. Many 
researchers suspect that an automated thesaurus will dramatically improve the 
accuracy of document retrieval-to date, little success has been demonstrated 
with such a technique. For every good word you add-you end up adding 
something that degrades the results. For our same query, a thesaurus might 
add the word "president" to the query but then the user might be treated to 
documents describing presidents of large companies that have nothing to do 
with the query. 

Our objective is to describe the techniques or algorithms and heuristics used 
to find documents that are relevant to the user request and to find them quickly. 
Academic research since the late 1950s has focused on this problem. To really 
attack the problem requires expertise in the fields of library science, computa­
tional linguistics, natural language processing, probability theory, and of course, 
computer science. We have tried to give the necessary introduction to each 
topic, and to give the details and examples needed to understand work that 
has been done on each topic. The field is moving quickly-the advent of the 
Web has brought new focus to the problem and many new algorithms have 
been developed. When the first Text REtrieval Conference (TREC) met in 
1992 to evaluate text retrieval-there were essentially four retrieval strategies 
to find relevant documents-vector space retrieval, extended boolean retrieval, 
probabilistic retrieval, and inference networks. Only six years later, we describe 
eight strategies in Chapter 2. Many of these are recent, and we try to give solid 
coverage to each one. 
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PREFACE xi 

We are still at the tip of the iceberg in terms of really succeeding at solving 
the information retrieval problem. Measurements from TREC that include a 
standard set of queries run against a two gigabyte document collection with 
around half a million documents show that just about any technique or com­
binations of techniques results in an answer set that contains about twenty to 
thirty percent of relevant documents. If we suspect most users look at the top 
ten documents, systems are fortunate to get about three to four of these ten 
documents correct. Users then waste time looking at more non-relevant docu­
ments than relevant documents. Other studies have shown that when informa­
tion retrieval systems are evaluated, they are found to miss numerous relevant 
documents [Blair and Maron, 1985]. Moreover, users have become complacent 
in what they expect of information r~trieval systems [Gordon, 1997]. It is this 
relatively poor performance that drives more research in the area of effective­
ness. It is our goal to describe the algorithms and heuristics that were tried so 
that researchers who wish to improve on past performance do not unnecessarily 
repeat work that has already been completed. 

Finding relevant documents is not enough. This book describes the current 
techniques used to find relevant documents quickly. Some excellent information 
retrieval texts are currently available on the market. Many of them, however, 
do not treat both aspects of information retrieval, namely, retrieval effectiveness 
in terms of accuracy and retrieval efficiency in terms of resource utilization. We 
provide an algorithm-directed presentation for both orientations of interest. We 
survey recent algorithms on effectiveness and efficiency. Certainly, new papers 
are constantly being published, but we have focused on key algorithms that 
must be understood before new papers can be digested. 

Detailed examples are provided wherever possible since many books and 
papers do not provide these examples. We assume the reader has a reasonable 
understanding of data structures and algorithms, but we do not assume much 
mathematical background. Whenever appropriate, a brief review to the needed 
background concepts is prQvided prior to describing the information retrieval 
material. 

A recent collection Readings in Information Retrieval was published that 
covers several key papers. Unfortunately, this collection excludes papers that 
focus predominantly on efficiency. Furthermore, this collection is just that, a 
collection of seminal papers. It is not organized as a text. Thus, it is difficult 
to use this collection as a class text. It is, however, an excellent supplement to 
this book. 

This book is primarily intended as a textbook for an undergraduate or gradu­
ate level course in Information Retrieval. It has been used in a graduate course, 
and we have incorporated student feedback in developing a set of overheads that 
assist instruction using our text. The set of Powerpoint slides, including speaker 
notes, are available at http://www.csam.iit.edu/-ophir/slides. 

Additionally, practitioners who build m systems or applications that use IR 
systems will find the information in this book useful when deciding on which 
retrieval strategies and utilities to deploy in production applications. Note that 
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the focus of the book is on algorithms, not on commercial products, but, to our 
knowledge, the basic strategies used by the majority of commercial products 
are described in the book. Our intent is that a practitioner may find that a 
commercial product is using a given strategy and can then use this book as a 
reference for more information on what is known about the techniques used by 
the product. Other information that is of use to practitioners is found in our 
chapter that focuses on use of unchanged SQL to integrate structured data and 
text. 

Finally, we note that the information retrieval field changes daily. For the 
most up to date coverage of the field, the best sources are publications such as 
the ACM 7ransactions on Information Systems, the Journal of the American 
Society for Information Science, Information Processing and Management, and 
Information RetrietJal. Other relevant papers are found in the various infor­
mation retrieval conferences such as ACM SIGIR and NIST TREC, and to a 
lesser degree ACM CIKM and the annual NLP conference. 

Any comments, suggestions, or corrections regarding either the text or the 
overheads are greatly welcomed and would be sincerely appreciated. 

Hope to hear from you soon. 

Ophir Frieder 
IITRl Professor of Computer Science 
Illinois Institute of Technology 
ophir@csam.iit.edu 

David Grossman 
Staff Scientist 
Office of Research and Development 
dagr@jnpcs.com 
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1 INTRODUCTION 

Since the near beginnings of human civilization, human beings have focused on 
written communication. From cave drawings to scroll writings, from printing 
presses to electronic libraries--communicating has been of primary concern to 
our existence. Today, with the emergence of digital libraries and electronic 
information exchange there is clear need for improved techniques to organize 
these large quantities of information. Applied and theoretical research and 
development in the areas of information authorship, processing, storage, and 
retrieval is of interest to all sectors of the community. In this book, we overview 
recent research efforts that focus on the electronic searching and retrieving of 
documents. 

Our focus is strictly on the retrieval of information in response to user 
queries. That is, we discuss algorithms and approaches for ad hoc informa­
tion retrieval, or simply, information retrieval. Figure 1.1 illustrates the basic 
process of ad hoc information retrieval. A static or relatively static document 
collection is indexed prior to any user query. A query is: issued and a set of 
documents that are deemed relevant to the query are ranked based on their coo­
puted similarity to the query and presented to the user. Numerous techniques 
exist to identify how these documents are ranked, and that is a key focus of this 
book (effectiveness). Other techniques also exist to rank documents quickly, 
and these are also discussed (efficiency). 

Information Retrieval (IR) is devoted to finding "relevant" documents, not 
finding simple matches to patterns. Yet, often when information retrieval sys-
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Figure 1.1. Document Retrieval 

Ad-Hoc 
Query 

Static 
Document 
Collection 

Ranked 
Answer 
Set 

terns are evaluated, they are found to miss numerous relevant documents [Blair 
and Maron, 1985]. Moreover, users have become complacent in their expecta­
tion of accuracy of information retrieval systems [Gordon, 1997]. 

A related problem is that of document routing or filtering. Here, the queries 
are static and the document collection constantly changes. An environment 
where corporate e-mail is routed based on predefined queries to different parts 
of the organization (i.e., e-mail about sales is routed to the sales department, 
marketing e-mail goes to marketing, etc.) is an example of an application of 
document routing. Figure 1.2 illustrates document routing. Document routing 
algorithms and approaches also widely appear in the literature, but are not 
addressed in this book. 

In Figure 1.3, we illustrate the critical document categories that correspond 
to any issued query. Namely, in the collection there are documents which 
are retrieved, and there are those documents that are relevant. In a perfect 
system, these two sets would be equivalent-we would only retrieve relevant 
documents. In reality, systems retrieve many non-relevant documents. To 
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Figure 1.2. Document Routing 

Set of Predetermined 
Queries or User 
Profiles 

Document 
Routing 
System 

User2 

Incoming Documents 

User3 User4 

measure effectiveness, two ratios are used: precision and recall. Precision is 
the ratio of the number of relevant documents retrieved to the total number 
retrieved. Precision provides an indication of the quality of the answer set. 
However, this does not consider the total number of relevant documents. A 
system might have good precision by retrieving ten documents and finding that 
nine are relevant (a 0.9 precision), but the total number of relevant documents 
also matters. If there were only nine relevant documents, the system would be 
a huge success-however if millions of documents were relevant and desired, 
this would not be a good result set. 

Recall considers the total number of relevant documents-it is the ratio of 
number of relevant documents retrieved to the total number of documents in the 
collection that are believed to be relevant. When the total number of relevant 
documents in the collection is unknown, an approximation of the number is 
obtained. A good survey of effectiveness measures as well as a brief overview 
of information retrieval is found in [Kantor, 1994). 
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Figure 1.3. Result Set: Relevant Retrieved, Relevant, and Retrieved 

All documents 
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Retrieved 

Relevant 

Recall= 

Relevant Retrieved 
Retrieved 

Relevant Retrieved 
Relevant 

Precision may be computed at various points of recall. Consider the example 
in Figure 1.4. Ten documents are retrieved, but only two documents (docu­
ments two and five) are relevant to the query. Consider the document retrieval 
performance represented by the sloped line. Fifty percent recall (finding one 
of the two relevant documents) results when two documents are retrieved. At 
this point, precision is fifty percent as we have retrieved two documents and 
one of them is relevant. To reach one hundred percent recall, we must continue 
to retrieve documents until both relevant documents are retrieved. For our 
example, it is necessary to retrieve five documents to find both relevant docu­
ments. At this point, precision is forty percent because two out of five retrieved 
documents are relevant. Hence, for any desired level of recall it is possible to 
compute precision. Graphing precision at various points of recall is referred to 
as a precision/recall curve. 

A typical precision/recall curve is shown in Figure 1.5. Typically, as higher 
recall is desired, more documents must be retrieved to obtain the desired level of 
recall. In a perfect system, only relevant documents are retrieved. This means 
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Figure 1.4. Example of Precision and Two Points of Recall 
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that at any level of recall, precision would be 1.0. The optimal precision/recall 
line is shown in Figure 1.5. 

Average precision refers to an average of precision at various points of recall. 
Many systems today, when run on a standard document collection, report an 
average precision of between 0.2 and 0.3. Certainly, there is some element of 
fuzziness here because relevance is not a clearly defined concept, but it is clear 
that there is significant room for improvement in the area of effectiveness. 

Finding relevant documents is not enough. Finding relevant documents 
within an acceptable response time is the goal. This book describes the current 
strategies used to find relevant documents quickly. The quest to find efficient 
and effective information retrieval continues. 

We explain each algorithm in detail, and for each topic, include examples 
for the most crucial algorithms. We then switch gears into survey mode and 
provide references to related and follow-on work. We explain the key aspects 
of the algorithms and then provide references for those interested in further 
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Figure 1.5. Typical and Optimal Precision/Recall Graph 
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details. A collection of key information retrieval research papers is found in 
[Sparck Jones and Willett, 1997]. 

Recent algorithms designed to search large bodies of information are dis­
cussed throughout this book. Many research publications describe these al­
gorithms in detail, but they are spread across numerous journals and written 
in a variety of different styles. Also, they have differing expectations of their 
reader's background. We provide a relatively brief, but sufficiently detailed 
overview of the field. 

As earlier stated, a sophisticated mathematical background is not required. 
Whenever detailed mathematical constructs are used, we provide a quick re­
fresher of the key points needed to understand the algorithms and detailed 
examples. 

We believe this book is valuable to a variety of readers. Readers familiar with 
the core of computer science and interested in learning more about information 
retrieval algorithms should benefit from this text. We provide explanations of 
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the fundamental problems that exist, and how people have addressed them in 
the past. 

This book also has value for anyone who currently uses and supports a 
Relational Database Management System (RDBMS). Chapter 5 gives detailed 
algorithms that treat text retrieval as an application of a RDBMS. This makes 
it possible to integrate both structured data and text. 

To guide the reader through the key issues in ad hoc information retrieval, 
we partitioned our book into separate but inter-linked processing avenues. In 
the first section, covered in Chapters 2 and 3, we overview retrieval processing 
strategies and utilities. All of these strategies and utilities focus on one and 
only one critical issue, namely, the improvement of retrieval accuracy. In Chap­
ter 2, we describe eight models that were either developed for or adapted to 
information retrieval specifically for the purpose of enhancing the evaluation or 
ranking of documents retrieved in response to user queries. Chapter 3 describes 
utilities that could be applied to enhance any strategy described in Chapter 2. 

In Chapter 3, under the "Retrieval Utilities" heading, we focus on tech­
niques that are applicable to either all or most of the models. Several of those 
utilities described are language dependent, e.g., parsing and thesauri, others 
focus specifically at being language independent, namely, N-gram processing. 
We note in Chapter 3, that some of the described utilities were proposed as 
individual processing strategies. In reality, however, it is the combination of 
these techniques that yields the best improvements. An approach to precisely 
determine the optimal mix of techniques, the order to execute them, and the 
underlying models to operate them so as to yield the optimal processing strat­
egy is still unknown. 

After describing models and utilities that address accuracy demands, we 
turn our attention towards processing efficiency. In Chapter 4, we describe 
various document access schemes. That is, we describe both the constructs 
and usage of inverted indices as well as other representation schemes such as 
signature files. Each of these access schemes has advantages and disadvantages. 
The tradeoffs lie in terms of storage overhead and maintain.ability versus search 
and retrieval processing times. After describing the various access methods, we 
overview several compression schemes. 

Chapters 2 through 4 cover the basics in terms of traditional information 
retrieval models, utilities, and processing strategies. In Chapters 5, 6, and 7, 
we focus our attention on special topics in information retrieval. The three 
topics addressed, namely data integration, parallel, and distributed informa­
tion retrieval systems, were selected based on where the commercial sector is 
focusing. 

Traditionally, there was a clear separation between structured data, typ­
ically stored and accessed via relational database management systems, and 
semi-structured data such as text, typically stored and accessed via informa­
tion retrieval systems. Each processing system supported its own data storage 
files and access methods. Today, the distinction between structured and semi­
structured data is quickly vanishing. In fact, we no longer are concerned with 
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8 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS 

just structured and semi-structured data, but often we include unstructured 
data, such as images, in the same storage repository. Our focus does not in­
clude image processing, although in the future one needs to do so. 

To address the integration of structured and unstructured data, commercial 
enterprises such as Oracle, IBM, and lnformix have integrated information re­
trieval functionality with their traditional relational database engines. Further­
more, text retrieval companies such as Verity, have added relational processing 
components. In all of these cases, however, additional functionality came at the 
expense of requiring additional, separate, processing units. In Chapter 5, we 
discuss the issues related to adding processing units and suggest an alternative 
method that involves implementing information retrieval processing capability 
as an application of relational databases. Using such an approach, the tradi­
tional benefits of relational database processing (i.e., portability, concurrency, 
recovery, etc.) are made available without requiring additional software de­
velopment. Since all traditional relational database vendors provide parallel 
implementations of their database software, implementing an information re­
trieval system as a relational database application further provides for a parallel 
instantiation of an information retrieval system. 

Having recognized the need for a parallel information retrieval capability, 
we also overview recent developments in this area. In Chapter 6, we ini­
tially describe the earlier parallel processing efforts in information retrieval. 
These approaches predominantly focus on the use of Single Instruction Multi­
ple Data (SIMD) multiprocessors to efficiently scan the text. However, as the 
understanding of parallel processing techniques in information retrieval grew, 
inverted index-based approaches were developed to reduce the unnecessarily 
high 1/0 demands commonly associated with text scanning schemes. We dis­
cuss several of these approaches and finally, conclude Chapter 6 with some 
recent work in parallel information retrieval focusing on the parallelization of 
classical clustering and classification algorithms. 

In the information processing world of today, no treatment of the field is 
complete without addressing the most frequently used retrieval paradigm-the 
World Wide Web. Thus, in Chapter 7, we describe the encompassing topic of 
the web, namely, distributed information retrieval systems. We overview some 
of the early theoretical foundations and culminate with a discussion of the web. 

The problem of searching document collections and finding relevant docu­
ments has been addressed for over forty years. However, until the advent of the 
Text REtrieval Conference (TREC) in 1990 (which is hosted by the National In­
stitute of Standards and Technology), there was no standard test-bed to judge 
information retrieval algorithms. Without the existence of a standard test data 
collection and a standard set of queries, there was no effective mechanism by 
which to objectively compare the algorithms. Many of these algorithms were 
run against only a few megabytes of text. It was hoped that the performance 
of these would scale to larger document collections. A seminal paper showed 
that some approaches that perform well on small document collections did not 
perform as well on large collections [Blair and Maron, 1985]. 
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In Chapter 8, we present a brief discussion of the TREC activities. Given 
all of the models, utilities, and performance enhancements proposed over the 
years, clearly measures and procedures to evaluate their effectiveness in terms 
of accuracy and processing times are needed. Indeed, that was part of the moti­
vation behind the creation of the benchmark data and query sets and evaluation 
forum called TREC. Today, TREC serves as the de facto forum for comparison 
across systems and approaches. Unfortunately, only accuracy evaluations are 
currently supported. Hopefully, in the future, processing efficiency will also be 
evaluated. 

Finally, we conclude our book with a discussion of the current limitations 
of information retrieval systems. We overview our successes and project future 
needs. Areas for further study are described. It is our hope that after reading 
this text, you the reader, will be interested in furthering the field of information 
retrieval and that in our future editions, we can overview your contributions as 
part of our text. 
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Retrieval strategies assign a measure of similarity between a query and a doc­
ument. These strategies are based on the common notion that the more often 
terms are found in both the document and the query, the more "relevant" the 
document is deemed to be to the query. Some of these strategies employ counter 
measures to alleviate problems that occur due to the ambiguities inherent in 
language-the reality that the same concept can often be described with many 
different terms (e.g., new york and the big apple can refer to the same concept). 
Additionally, the same term can have numerous semantic definitions (terms like 
bark and duck have very different meanings in their noun and verb forms). 

A retrieval strategy is an algorithm that takes a query Q and a set of doc­
uments D1 ,D2 , ••• , Dn and identifies the Similarity Coefficient SC(Q,Di) for 
each of the documents 1 ::; i ::; n. (Note: SC is short for Similarity Coefficient, 
sometimes it is written RSV for Retrieval Status Value). 

The retrieval strategies identified are-

1. Vector Space Model-Both the query and each document are represented 
as vectors in the term space. A measure of the similarity between the two 
vectors is computed. 

2. Probabilistic Retrieval-A probability based on the likelihood that a term 
will appear in a relevant document is computed for each. term in the collec­
tion. For terms that match between a query and a document, the similarity 
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measure is computed as the combination of the probabilities of each of the 
matching terms. 

3. Inference Networks-A Bayesian network is used to infer the relevance of a 
document to a query. This is based on the "evidence" in a document that 
allows an inference to be made about the relevance of the document. The 
strength of this inference is used as the similarity coefficient. 

4. Boolean Indexing-A score is assigned such that an initial Boolean query 
results in a ranking. This is done by associating a weight with each query 
term so that this weight is used to compute the similarity coefficient. 

5. Latent Semantic Indexing-The occurrence of terms in documents is repre­
sented with a term-document matrix. The matrix is reduced via Singular 
Value Decomposition (SVD) to filter out the noise found in a document so 
that two documents which have the same semantics are located close to one 
another in a multi-dimensional space. 

6. Neural Networks-A sequence of "neurons," or nodes in a network, that fire 
when activated by a query triggering links to documents. The strength of 
each link in the network is transmitted to the document and collected to 
form a similarity coefficient between the query and the document. Networks 
are "trained" by adjusting the weights on links in response to predetermined 
relevant and irrelevant documents. 

7. Genetic Algorithms-An optimal query to find relevant documents can be 
generated by evolution. An initial query is used with either random or 
estimated term weights. New queries are generated by modifying these 
weights. A new query survives by being close to known relevant documents 
and queries with less "fitness" are removed from subsequent generations. 

8. Fuzzy Set Retrieval-A document is mapped to a fuzzy set (a set that 
contains not only the elements but a number associated with each element 
that indicates the strength of membership). Boolean queries are mapped 
into fuzzy set intersection, union, and complement operations that result in 
a strength of membership associated with each document that is relevant 
to the query. This strength is used as a similarity coefficient. 

For a given retrieval strategy, many different utilities are employed to improve 
the results of the retrieval strategy. These are described in Chapter 3. Note 
that some strategies and utilities are based on very different mathematical con­
structs. For example, a probabilistic retrieval strategy should theoretically not 
be used in conjunction with a thesaurus based on the vector space model. How­
ever, it may be the case that such a combination could improve effectiveness. 
We merely note that care should be taken when mixing and matching strategies 
and utilities that are based on very different mathematical models. 

Attempting to refine the query, most of these utilities add or remove terms 
from the initial query. Others simply refine the focus of the query (using 
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subdocuments or passages instead of whole documents). The key is that each 
of these utilities (although rarely presented as such) are plug-and-play utilities 
that should work with an arbitrary retrieval strategy. 

2.1 Vector Space Model 

The vector space model computes a measure of similarity by defining a vector 
that represents each document, and a vector that represents the query [Salton 
et al., 1975]. The model is based on the idea that, in some rough sense, the 
meaning of a document is conveyed by the words used. If one can represent the 
words in the document by a vector, it is possible to compare documents with 
queries to determine how similar their content is. If a query is considered to 
be like a document, a similarity coefficient (SC) that measures the similarity 
between a document and a query can be computed. Documents whose content, 
as measured by the terms in the document, correspond most closely to the 
content of the query are judged to be the most relevant. Figure 2.1 illustrates 
the basic notion of the vector space model in which vectors that represent a 
query and three documents are illustrated. 

This model involves constructing a vector which represents the terms in the 
document and choosing a method of measuring the closeness of any two vectors. 
One could look at the magnitude of the difference vector between two vectors, 
but this would tend to make any large document appear to be not relevant to 
most queries, which typically are short. The traditional method of determining 
closeness of two vectors is to use the size of the angle between them. This 
angle is computed by the use of the inner product (or dot product). However, 
it is not necessary to use the actual angle. Any monotonic function of the 
angle suffices. Often the expression "similarity coefficient" is used instead of 
an angle. Computing this number is done in a variety of ways, but the inner 
product generally plays a prominent role. Underlying this whole discussion 
is the idea that a document and a query are similar to the extent that their 
associated vectors point in the same general direction. 

There is one component in these vectors for every distinct term or concept 
that occurs in the document collection. Consider a document collection with 
only two distinct terms, a and /3. All vectors contain only two components, 
the first component represents occurrences of a, and the second represents 
occurrences of /3. The simplest means of constructing a vector is to place a one 
in the corresponding vector component if the term appears, and a zero, if the 
term does not appear. Consider a document, D 1 , that contains two occurrences 
of term a and zero occurrences of term f3. The vector, < 1, 0 >, represents this 
document using a binary representation. This binary representation can be 
used to produce a similarity coefficient, but it does not take into account the 
frequency of a term within a document. By extending the representation to 
include a count of the number of occurrences of the terms in each component, 
the frequency of the terms can be considered. In this example, the vector would 
now appear as < 2, 0 >. 
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Figure 2.1. Vector Space Model 

t1 - (dn ,1) - (dlO ,2) ~ -

t2 

t. - (dj, t{j) I ~ 

tn 

A simple example is given in Figure 2.2. A component of each vector is 
required for each distinct term in the collection. Using the almost humorous 
example of a language with a two word vocabulary (only A and I are valid 
terms), all queries and documents can be represented in two dimensional space. 
A query and three documents are given along with their corresponding vectors 
and a graph of these vectors. The similarity coefficient between the query and 
the documents can be computed as the distance from the query to the two 
vectors. In this example, it can be seen that document one is represented by 
the same vector as the query so it will have the highest rank in the result set. 

Instead of simply specifying a list of terms in the query, a user is often given 
the opportunity to indicate that one term is more important than another. 
This was done initially with manually assigned term weights selected by users. 
Another approach uses automatically assigned weights-typically based on the 
frequency of a term as it occurs across the entire document collection. The idea 
was that a term that occurs infrequently should be given a higher weight than 
a term that occurs frequently. Similarity coefficients that employed automat-
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Figure 2.2. Example: Vector Space Model with a 2 Term Vocabulary 

D1 =~ =< 1 1 > 

D2 =Li =< 10> 
D3 =DJ =<01 > 

a =[KJJ = < 1 1 > 

1 
D3 

Q and D1 

y 

D2 

~ 0 X 1 

ically assigned weights were compared to manually assigned weights [Salton, 
1969, Salton, 1970]. It was shown that automatically assigned weights perform 
at least as well as manually assigned weights [Salton, 1969, Salton, 1970]. Un­
fortunately, these results did not include the relative weight of the term across 
the entire collection. 

The value of a collection weight was studied in the 1970s. The conclusion 
was that relevance rankings improved if collection-wide weights were included. 
Although relatively small document collections were used to conduct the exper­
iments, the authors still concluded that, "in so far as anything can be called a 
solid result in information retrieval research, this is one" [Robertson and Sparck 
Jones, 1976]. 

This more formal definition, and slightly larger example, illustrates the use 
of weights based on the collection frequency. Weight is computed using the 
Inverse Document Frequency (IDF) corresponding to a given term. 
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To construct a vector that corresponds to each document, consider the fol-
lowing definitions: 

n = number of distinct terms in the document collection 
t/ii = number of occurrences of term ti in document Di [term frequency] 
d!J = number of documents which contain tJ 
id/; = log( ,D;) where d is the total number of documents [inverse document 

frequency] 

The vector for each document has n components and contains an entry 
for each distinct term in the entire document collection. The components in 
the vector are filled with weights computed for each term in the document 
collection. The terms in each document are automatically assigned weights 
based on how frequently they occur in the entire document collection and how 
often a term appears in a particular document. The weight of a term in a 
document increases the more often the term appears in one document and 
decreases the more often it appears in all other documents. 

A weight computed for a term in a document vector is non-zero only if the 
term appears in the document. For a large document collection consisting of 
numerous small documents, the document vectors are likely to contain mostly 
zeros. For example, a document collection with 10,000 distinct terms results 
in a 10,000-dimensional vector for each document. A given document that 
has only 100 distinct terms will have a document vector that contains 9,900 
zero-valued components. 

Calculation of the weighting factor ( d) for a term in a document is defined as 
a combination of term frequency (ti), and inverse document frequency (id/). 
To compute the value of the jth entry in the vector corresponding to document 
i, the following equation is used: 

dij = t/;; X id/j 

The two important factors used in computing this coefficient are term fre­
quency and inverse document frequency. Consider a document collection that 
contains a document, D 1 , with ten occurrences of the term green and a doc­
ument, D2 , with only five occurrences of the term green. If green is the only 
term found in the query, then document D1 is ranked higher than D 2 • 

When a document retrieval system is used to query a collection of documents 
with t terms, the system computes a vector D (du, di2, ••• , dit) of size t for 
each document. The vectors are filled with term weights as described above. 
Similarly, a vector Q (wq1, wq2, ••. , Wqt) is constructed for the terms found in 
the query. 

A simple similarity coefficient (SC) between a query Q and a document Di 
is defined by the product of the two vectors. Since a query vector is similar in 
length to a document vector, this same measure is often used to compute the 
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similarity between two documents. We discuss this application of an SC as it 
applies to document clustering in Section 3.2. 

t 

SC(Q, Di)= L Wqj X dij 

j=l 

2.1.1 Example of Similarity Coefficient 

Consider a case insensitive query and document collection with a query Q and 
a document collection consisting of the following three documents: 

Q: "gold silver truck" 
D1 : "Shipment of gold damaged in a fire" 
D 2 : "Delivery of silver arrived in a silver truck" 
D 3 : "Shipment of gold arrived in a truck" 

In this collection, there are three documents, so n = 3. If a term appears in 
only one of the three documents, its id/ is log clJ; = log f = 0.477. Similarly, 

if a term appears in two of the three documents its id/ is log! = 0.176, and a 
term which appears in all three documents has an id/ of log J = 0. 

The idf for the terms in the three documents is given below: 

id/a= 0 
id/arrived= 0.176 
id/damaged = 0.477 
id/delivery = 0.477 
id/fire = 0.477 
id/gold = 0.176 
idf;n = 0 
id/of= 0 
id/silver = 0.477 
id/shipment = 0.176 
id/truck = 0.176 

Document vectors can now be constructed. Since eleven terms appear in the 
document collection, an eleven-dimensional document vector is constructed. 
The alphabetical ordering given above is used to construct the document vector 
so that t1 corresponds to term number one which is a and t2 is arrived, etc. 
The weight for term i in vector j is computed as the id/; x t/;; 
The document vectors are: 

SC(Q, D1 } = (0)(0) + (0)(0} + (0}(0.477) + (0}(0} 

+ (0)(0.477) + (0.176)(0.176} + (0)(0} + (0)(0} 
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docid ti h 
D1 0 0 
D2 0 .176 
D3 0 .176 

Q 0 0 

Similarly, 

fa t4 ts t6 h ts t9 
.477 0 .477 .176 0 0 0 

0 .477 0 0 0 0 .954 
0 0 0 .176 0 0 0 
0 0 0 .176 0 0 .477 

+ (0.477)(0) + (0)(0.176) + (0.176)(0) 
(0.176)2 ~ 0.031 

ho 
.176 

0 
.176 

0 

(0.954)(0.477) + {0.176)2 ~ 0.486 

SC(Q,D3) (0.176)2 + (0.176)2 ~ 0.062 

Hence, the ranking would be D2 , D3 , D1 . 

tu 
0 

.176 

.176 

.176 

Implementations of the vector space model and other retrieval strategies typ­
ically use an inverted index to avoid a lengthy sequential scan through every 
document to find the terms in the query. Instead, an inverted index is gener­
ated prior to the user issuing any queries. Figure 2.3 illustrates the structure 
of the inverted index. An entry for each of the n terms is stored in a structure 
called the index. For each term, a pointer references a linked list called the 
posting list. The posting list contains an entry for each unique document that 
contains the term. In the figure below, the posting list contains both a docu­
ment identifier and the term frequency. The posting list in the figure indicates 
that term t1 appears once in document one and twice in document ten. An 
entry for an arbitrary term ti indicates that it occurs tf times in document 
j. Details of inverted index construction and use are provided in Chapter 4, 
but it is useful to know that inverted indexes are commonly used to improve 
run-time performance of various retrieval strategies. 

Although first proposed in 1975, the vector space model is still a popular 
means of computing a measure of similarity between a query and a document 
(Salton, 1991]. The measure is important as it is used by a retrieval system 
to identify which documents are displayed to the user. Typically, the user 
requests the top n documents, and these are displayed in order of the similarity 
coefficient. 

In 1988, several experiments were done to improve on the basic combination 
of tf-idf weights (Salton and Buckley, 1988]. Many variations were studied, 
and the following weight for term j in document i was identified as a good 
performer: 

Wij = t · 2 
~i=1 ((logtfu + 1.0) * id/j] 

(log tf;i + 1.0) * id/j 

The motivation for this weight is that a single matching term with a high 
term frequency can skew the effect of remaining matches between a query and 
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Figure 2.3. Example: Inverted Index 

t1 - (dn ,1) - (d10 ,2) 
~ -

t2 

t- - (dj, tfi) 1 ~ 

tn 

a given document. To avoid this, the ln(t/) + 1 is used reduce the range of 
term frequencies. A variation on the basic theme is to use weight terms in the 
query differently than terms in the document. 

One term weighting scheme, referred to as lnc.ltc, has been found to be 
effective. It uses a document weight of (1 + ln(t/))(id/) and query weight of 
(1 + ln(t/)). The label lnc.ltc is of the form: qqq.ddd where qqq refers to query 
weights and ddd refers to document weights. The three letters: qqq or ddd are 
of the form xyz. 

The first letter, x, is either n, l, or a. n indicates the "natural" term fre­
quency or just t f is used. l indicates that the logarithm is used to scale down 
the weight so 1 + log(t/) is used. a indicates that an augmented weight was 
used where the weight is 0.5 x 0.5 x t/!~ .. 

The second letter, y, indicates whether or not the id/ was used. A value of 
n indicates that no id/ was used while a value oft indicates that the id/ was 
used. 
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The third letter, z, indicates whether or not document length normalization 
was used. A value of n indicates no normalization was used, a value of c 
indicates the standard cosine normalization was used, and a value of u indicates 
Singhal length normalization was used [Singha!, 1997]. 

2.1.2 Similarity Measures 

Several different means of comparing a query vector with a document vector 
have been implemented. These are well documented and are presented here 
simply as a quick review. The most common of these is the cosine measure 
where the cosine of the angle between the query and document vector is given: 

Since the JE~=l (w~i) appears in the computation for every document, 
the cosine coefficient should give the same relevance results as dividing the 
inner product by the magnitude of the document vector. Note that the cosine 
measure "normalizes" the result by considering the length of the document. 
With the inner product measure, a longer document may result in a higher 
score simply because it is longer, and thus, has a higher chance of containing 
terms that match the query-not necessarily because it is relevant. 

The Dice coefficient is defined as: 

2'°'t· w ·d·· 
SC(Q D·) = L..JJ=l qJ •J 

' • °"t (d· ·)2 °"t ( ·)2 L..Jj=l •J L..Jj=l Wqi 

The Jaccard coefficient is defined as: 

SC(Q D·) - 2:;=l Wqjdij 

' ' - L~=l(d;j) 2 + L~=I(Wqj)2 - L~=l Wqjdij 

The cosine measure levels the playing field by dividing the computation 
by the length of the document vector. A recent Ph.D. thesis has described 
modifications to this basic means of document normalization [Singhal, 1997]. 
The assumption used in the cosine measure is that document length has no 
impact on relevance. Without a normalization factor, longer documents are 
more likely to be found relevant simply because they have more terms which 
increases the likelihood of a match. Dividing by the document vector removes 
the size of the document from consideration. 

It turns out that (at least for the TREC data), this basic assumption is 
not correct. Taking all of the relevant documents found for a set of fifty TREC 
queries, Singhal found that more documents judged to be relevant actually were 
found in longer documents. The reason for this may be that a longer document 
simply has more opportunity to have some components that are relevant to a 
given query. 
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To identify a means of adjusting the normalization factor, Singhal compared 

the likelihood of relevance with the likelihood of retrieval in a collection where 
the documents relevant to a set of queries was known. Ideally, if the probability 
of retrieval and the probability of relevance are both plotted against the length 
of the document, the two curves should be roughly the same. Since this is not 
the case (the two curves actually cross), there must be a document length in 
which the probability of relevance equals the probability of retrieval. Before 
this point (referred to as the pivot), a document is more likely to be retrieved 
than relevant. After this point, the reverse is true. Once the pivot is found, a 
"correction factor" can be used to adjust the normalization. The "correction 
factor" is computed from a linear equation whose value at pivot is equal to pivot 

and whose slope is selected to increase the normalization for shorter documents 
so that their probability of selection is equal to their probability of relevance. 
Thus, the similarity coefficient is: 

This scheme has two variables: s and p for the slope and pivot, respectively. 
However, it is possible to express the slope as a function of pivot. Singhal selects 
as pivot the average normalization factor taken over the entire collection prior 
to any correction and adjusts the slope accordingly. At the same time the 
normalization factor is divided by (1.0 - s)p. The resulting equation for the 
similarity coefficient: 

where avgn is the average document normalization factor before any correction 
is made. 

The pivoted scheme works fairly well for short and moderately long doc­
uments, but extremely long documents tend to be more favored than those 
without any normalization. To remedy this, the number of unique terms in a 
document, ldi I is proposed as the normalization function prior to any adjust­
ment. 

A final adjustment is made to account for extremely high term frequencies 
that occur in very large documents. First, a weight of (1 + log t/) is used 
to scale the frequency. To account for longer documents, an individual term 
weight is divided by the weight given to the average term frequency. 

The new weight, dij, is computed as-

d·· _ 1 +logtf 
'' - 1 + log(at/) 
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Using this new weight, and dividing it by the correction factor gives the follow­
ing equation: 

1:;=l Wqjd;j 

SC(Q, D;) = ((1.0 - s)p + (s)(jd;I)) 

The modified normalization factor makes it more likely to retrieve longer doc­
uments and consistently shows about a ten percent improvement for TREC 
queries. 

It should also be noted that the vector space model assumes terms are inde­
pendent. One approach to alleviating the question of term independence in the 
vector space model is to change the basis. Although changing the basis does 
not totally eliminate the problem, it can reduce it. The idea is to pick a basis 
vector for each combination of terms that exist in a document (regardless of 
the number of occurrences of the term). The new basis vectors can be made 
mutually orthogonal and can be scaled to be unit vectors. The documents 
and the query can be expressed in terms of the new basis vectors. Using the 
procedure in conjunction with other (possibly probabilistic) methods avoids in­
dependence assumptions, but in practice, it has not been shown to significantly 
improve effectiveness. 

2.2 Probabilistic Retrieval Strategies 

The probabilistic model computes the similarity coefficient (SC) between a 
query and a document as the probability that the document will be relevant 
to the query. This reduces the relevance ranking problem to an application of 
probability theory. A survey on probabilistic methods is given in (Fuhr, 1992]. 

Probability theory can be used to compute a measure of relevance between 
a query and a document. Two fundamentally different approaches have been 
proposed. The first relies on usage patterns to predict relevance [Maron and 
Kuhns, 1960], the second uses each term in the query as clues as to whether or 
not a document is relevant [Robertson and Sparck Jones, 1976]. 

The original work on the use of probability theory to retrieve documents 
can be traced to Maron and Kuhns. Their work developed an area of research 
where the probability that a document will be relevant given a particular term 
is estimated. 

All of the more recent work on probabilistic retrieval stems from the concept 
of estimating a term's weight based on how often the term appears or does not 
appear in relevant documents and non-relevant documents, respectively. Sec­
tion 2.2.1 describes the simple term weight model, a non-binary independence 
model is discussed in Section 2.2.2, and Sections 2.2.3 and 2.2.4 describe the 
Poisson and component-based models which have both performed well on the 
TREC collection. Finally, Section 2.2.5 focuses on two large issues with the 
model-parameter estimation and independence assumptions. 
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2.2.1 Simple Term Weights 

The use of term weights is based on the probability ranking principle (PRP), 
which assumes that optimal effectiveness occurs when documents are ranked 
based on an estimate of the probability of their relevance to a query [Robertson, 
1977]. 

The key is to assign probabilities to components of the query and then use 
each of these as evidence in computing the final probability that a document 
is relevant to the query. 

The terms in the query are assigned weights which correspond to the prob­
ability that a particular term, in a match with a given query, will retrieve a 
relevant document. The weights for each term in the query are combined to 
obtain a final measure of relevance. 

Most of the papers in this area incorporate probability theory and describe 
the validity of independence assumptions, so a brief review of probability theory 
is in order. 

Suppose we are trying to predict whether or not a softball team called the 
Salamanders will win one of its games. We might observe, based on past ex­
perience, that they usually win on sunny days when their best shortstop plays. 
This means that two pieces of evidence, outdoor-conditions and presence of 
good-shortstop, might be used. For any given game, there is a seventy five per­
cent chance that the team will win if the weather is sunny and a sixty percent 
chance that the team will win if the shortstop plays. Therefore, we write-

p( win I sunny)= 0.75 
p(win I good-shortstop) = 0.6 

The conditional probability that the team will win given both situations is 
written as p(win I sunny, good-shortstop). This is read "the probability that 
the team will win given that there is a sunny day and the good-shortstop 
plays." We have two pieces of evidence indicating that the Salamanders will 
win. Intuition says that together the two pieces should be stronger than either 
alone. This method of combining them is to "look at the odds." A seventy-five 
percent chance of winning is a twenty-five percent chance of losing, and a sixty 
percent chance of winning is a forty percent chance of losing. Let us assume 
the independence of the pieces of evidence. 

p(win I sunny, good-shortstop) = o: 
p(win I sunny) = /3 
p(win I good-shortstop) = 'Y 

By Bayes' Theorem-

P(win, sunny, good-shortstop) P(sunny, good-shortstoplwin)P(win) 
o:---=--c,---------,------,------------

- P(sunny, good-shortstop) - P(sunny, good-shortstop) 
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Therefore-

a P(sunny, good-shortstopjwin)P(win) =---------_;_ ___ _ 
1 - a P(sunny, good-shortstopjlose)P(lose) 

Solving for the first term (because of the independence assumptions)-

P(sunny, good-shortstoplwin) 
P(sunny, good-shortstopllose) 

P(sunnylwin )P(good-s hortstoplwin) 
P(sunnyllose )P(good-shortstopllose) 

Similarly, 

{3 P(sunnylwin)P(win) 
1- {3 = P(sunnyjlose)P(lose) 

'Y --= 
P (good-s hortstopj win )P (win) 

1 -'Y P(good-shortstopjlose)P(lose) 

Making all of the appropriate substitutions, we obtain-

1:a = (1~/3) (;~~:;D (i2'Y) (;~~:;D (;~:::D 
Simplifying-

1:a = C~/3) c:'Y) (;~~:;D 
Assume the Salamanders are a 0.500 ball club (that is they win as often as 

they lose) and assume numeric values for {3 and 'Y of 0.6 and 0.75, respectively. 
We then obtain-

a (0.6) (0.75) (0.500) ( )( )( ) 1 - a = 0.4 0.25 0.500 = l.5 3·0 l.O = 4·5 

Solving for a gives a value of -!r = 0.818. 

Note the combined effect of having both sunny weather and the good­
shortstop results in a higher probability of success than either individual con­
dition. 

The key is the independence assumptions. The likelihood of the weather 
being nice and the good-shortstop showing up are completely independent. The 
chance the shortstop will show up is not changed by the weather. Similarly, 
the weather is not affected by the presence or absence of the good-shortstop. 
If the independence assumptions are violated-suppose the shortstop prefers 
sunny weather- special consideration for the dependencies is required. The 
independence assumptions also require that the weather and the appearance of 
the good-shortstop are independent given either a win or a loss. 

For an information retrieval query, the terms in the query may be viewed as 
indicators that a given document is relevant. The presence or absence of query 
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term A can be used to predict whether or not a document is relevant. Hence, 
after a period of observation, it is found that when term A is in the query and 
the document, there is an x percent chance the document iis relevant. We then 
assign a probability to term A. Assuming independence of terms, this may be 
done for each of the terms in the query. Ultimately, the product of all the 
weights may be used to compute the probability of relevance. 

We know that independence assumptions are really not a good model of 
reality. Some research has investigated why systems with these assumptions 
have performed reasonably well, despite their theoretical problems [Cooper, 
1991]. For example, a relevant document that has the term apple in response 
to a query for apple pie probably has a better chance of having the term pie than 
some other randomly selected term. Hence, the key independence assumption 
is violated. 

Most work in the probabilistic model assumes independence of terms because 
handling dependencies involves substantial computation. It is unclear whether 
or not effectiveness is improved when dependencies are considered. We note 
that relatively little work has been done implementing these approaches. They 
are computationally expensive, but more importantly they are difficult to esti­
mate. It is necessary to obtain sufficient training data about term co-occurence 
in both relevant and non-relevant documents. Typically, it is very difficult to 
obtain sufficient training data to estimate these parameters. 

Figure 2.4 illustrates the need for training data with most probabilistic mod­
els. A query with two terms, q1 and q2 , is executed. Five documents are 
returned and an assessment is made that documents two and four are rele­
vant. From this assessment, the probability that a document is relevant ( or 
non-relevant) given that it contains term q1 is computed. Likewise, the same 
probabilities are computed for term q2 • Clearly these probabilities are estimates 
based on training data. The idea is that sufficient training data can be obtained 
so that when a user issues a query, a good estimate of which documents are 
relevant to the query can be obtained. 

Consider a document, d;, consisting of terms (w1 , w2 , ... , Wt), where w; is 
the estimate that term i will result in this document being relevant. The weight 
or "odds" that document d; is relevant is based on the probability of relevance 
for each term in the document. For a given term in a document, its contribution 
to the estimate of relevance for the entire document is computed as-

P ( wi lrel) 
P(w;lnonrel) 

The question is then, how do we combine the odds of relevance for each term 
into an estimate for the entire document? Given our independence assumptions, 
we can multiply the odds for each term in a document to obtain the odds that 
the document is relevant. Taking the log of the product yields-

1 P(w;I rel) 1 P(wilrel) 
( t ) t ( ) 

og TI P(wil nonrel) = ~ og P(w;ln«mrel) 
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Figure 2.4. Training Data for Probabilistic Retrieval 

Query q (q1 ,q2 ) 

Run qand retrieve top ndocuments (let n = 5) 
di represents an arbitrary document 

dl d 3 d4 d s 

LJ LJ LJ W,~q2 
Assumed 2 and d 4 are relevant: 

1 
P(q 1 I di is relevant) = 

2 

P(q 1 I di is not relevant) = 

P(q 2 I di is relevant) = 1 

P(q 2 I di is not relevant) 

2 

3 

1 

3 

We note that these values are computed based on the assumption that terms will 
occur independently in relevant and non-relevant documents. The assumption 
is also made that if one term appears in a document, then it has no impact on 
whether or not another term will appear in the same document. 

Now that we have described how the individual term estimates can be com­
bined into a total estimate of relevance for the document, it is necessary to 
describe a means of estimating the individual term weights. Several different 
means of computing the probability of relevance and non-relevance for a given 
term have been studied since the introduction of the probabilistic retrieval 
model. In their 1976 paper, Robertson and Sparck Jones considered several 
methods (Robertson and Sparck Jones, 1976]. They began by presenting two 
mutually exclusive independence assumptions-

11: The distribution of terms in relevant documents is independent and their 
distribution in all documents is independent. 
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12: The distribution of terms in relevant documents is independent and their 
distribution in non-relevant documents is independent. 

They also presented two methods, referred to as ordering principles, for pre­
senting the result set-

01: Probable relevance is based only on the presence of search terms in the doc­
uments. 

02: Probable relevance is based on both the presence of search terms in doc­
uments and their absence from documents. 

11 indicates that terms occur randomly within a document-that is, the 
presence of one term in a document in no way impacts the presence of another 
term in the same document. This is analogous to our example in which the 
presence of the good-shortstop had no impact on the weather given a win. This 
also states that the distribution of terms across all documents is independent 
unconditionally for all documents-that is, the presence of one term in a doc­
ument in no way impacts the presence of the same term in other documents. 
This is analogous to saying that the presence of a good-shortstop in one game 
has no impact on whether or not a good-shortstop will play in any other game. 
Similarly, the presence of good-shortstop in one game has no impact on the 
weather for any other game. 

12 indicates that terms in relevant documents are independent-that is, they 
satisfy 11 and terms in non-relevant documents also satisfy 11. Returning to our 
example, this is analogous to saying that the independence of a good-shortstop 
and sunny weather holds regardless of whether the team wins or loses. 

01 indicates that documents should be highly ranked only if they contain 
matching terms in the query (i.e. the only evidence used is which query terms 
are actually present in the document). We note that this ordering assumption 
is not commonly held today because it is also important to consider when 
query terms are not found in the document. This is inconvenient in practice. 
Most systems use an inverted index that identifies for each term, all occurences 
of that term in a given document. If absence from a document is required, 
the index would have to identify all terms not in a document (for a detailed 
discussion of inverted indexes see Section 4.1. To avoid the need to track the 
absence of a term in a document, the estimate makes the zero point correspond 
to the probability of relevance of a document lacking all the query terms-as 
opposed to the probability of relevance of a random document. The zero point 
does not mean that we do not know anything- it simply means that we have 
some evidence for non-relevance. This has the effect of converting the 02 based 
weights to presence-only weights. 

02 takes 01 a little further and says that we should consider both the 
presence and the absence of search terms in the query. Hence, for a query that 
asks for term t1 and term t2-a document with just one of these terms should 
be ranked lower than a document with both terms. 
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Four weights are then derived based on different combinations of these or­
dering prinicples and independence assumptions. Given a term, t, consider the 
following quantities-

N number of documents in the collection 

R = number of relevant documents for a given query q 

n number of documents that contain term t 
r number of relevant documents that contain term t 

Choosing 11 and O 1 yields the following weight-

W1 = log ( % ) 
Choosing 12 and 01 yields the following weight-

W2 = log ( n~r ) 
N-R 

Choosing 11 and 02 yields the following weight-

w3 = log ( R;;r ) 
N-n 

Choosing 12 and 02 yields the following weight-

W4 = log ( ~ ) 
(N-n)-(R-r) 

Robertson and Sparck Jones argue that 02 is correct and that 12 is more likely 
than 11 to describe what actually occurs. Hence, w4 is most likely to yield the 
best results. They then present results that indicate that W4 and w3 performed 
better than w1 and w2 • Most subsequent work starts with W4 and extends it to 
contain other important components such as the within-document frequency of 
the term and the relative length of a document. We describe these extensions 
to w4 in Section 2.2.3. 

When incomplete relevance information is available, 0.5 is added to the 
weights to account for the uncertainty involved in estimating relevance. Robert­
son and Sparck Jones suggest that, "This procedure may seem somewhat ar­
bitrary, but it does in fact have some statistical justification." The modified 
weighting function appears as-

w _ lo (R-r)+o.s ( 
r+0.5 ) 

- g (n-r +o.5 
(N-n)-(~-r)+0.5 
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The claimed advantage to the probabilistic model is that it is entirely based 
on probability theory. The implication is that other models have a certain 
arbitrary characteristic. They may perform well experimentally, but they lack 
a sound theoretical basis because the parameters are not easy to estimate. 

Either complete training data are required, or an inaccurate estimate must be 

made. 
This debate is similar to one that occurs when comparing a relational to an 

object-oriented database management system (DBMS). Object-oriented DBMS 
are sometimes said to model "real world" data, but lack sound theoretical basis. 

Relational DBMS, on the other hand, have very solid set-theoretic underpin­

nings, but sometimes have problems modeling real data. 

2.2.1.1 Example. Using the same example we used previously with the 
vector space model, we now show how the four different weights can be used 
for relevance ranking. 

Again, the documents and the query are-

Q : "gold silver truck" 
D 1 : "Shipment of gold damaged in a fire." 
D2 : "Delivery of silver arrived in a silver truck." 
D 3 : "Shipment of gold arrived in a truck." 

Since training data are needed for the probabilistic model, we assume that 
these three documents are the training data and we deem documents D 2 and 
D3 as relevant to the query. 

To compute the similarity coefficient, we assign term weights to each term 
in the query. We then sum the weights of matching terms. There are four 
quantities we are interested in: 

N = number of documents in the collection 

n = number of documents indexed by a given term 

R = number of relevant documents for the query 

r number of relevant documents indexed by the given term 

These values are given in the table below for each term in the query. 

variable gold silver truck 
N 3 3 3 
n 2 1 2 

R 2 2 2 
r 1 1 2 
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As we stated previously, Robertson and Sparck Jones described the following 
four different weighting equations to estimate, for a given term, the likelihood 
that a document which contains the query term is relevant. 

w3 = log [ (R:r) ] 

~ 

[ r l 1 (R-rJ 
W4 = og (n-r) 

(N-n)-(R-r) 

Note that with our collection, the weight for silver is infinite, since (n - r) = 
0. This is because "silver" only appears in relevant documents. Since we 
are using this procedure in a predictive manner, Robertson and Sparck Jones 
recommended adding constants to each quantity (Robertson and Sparck Jones, 
1976). The new weights are given below: 

(R+If [ (,-±<l_.fill 
W1 = log bv~~~ 

(R+If [ (,-±<l_.fil l 
W2 = log (n-r+0.5) 

(N-R+l) 

[ 
(r+0.5) l - l {R-r+0.5) 

W3 - og (n+l) 
{N-n+l) 

[ 
(r+0.5) l 

1 (R-r+0.5) 
W 4 = og (n-r+0.5) 

(N-n-(R-rf+o.5 
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Using these equations, we derive the following weights: 

gold 

silver 

truck 

gold 

silver 

truck 

gold 

silver 

truck 

gold 

_ WI,_ 0.5_ [~] 
W1 - log ~~t~~ - log 0_6 - -0.079 

WI, 0.5 [~] 
w1 = log ~~t~~ = log 0.4 = 0.097 

[
~] 0.833 

w1 = log ~~!~j = log().6 = 0.143 

_ WI, _ 0.5 _ [~] w2 - log (2-i+o.fi) - log 0_75 - -0.176 
(3-2+1) 

WI, [ ~ l w2 = log (l-l+0.5) 
3-2+1 

[ ~ l l2+IJ 
w2 = log (2-2+0.5) 

3-2+1 

I 0.5 = og 0_25 = 0.301 

.833 = log 0_25 = 0.523 

= 1 <2-i+0-5) = 1 1.0 = -0 176 [ 
(l+o.5) l 

W3 og ~ og 1.5 . 
"{3=-2-tiJ 

[ ,.~., l 0 ·5> = I 1.0 = 0 176 
1 og .667 · 
+1 

[ ,_,, l 2-2+0.5} 5 
~ = log 1.5 = 0.523 
"{3=-2-tiJ 

[ 
(1+0.0) l (2-l+0.5) 

W4 = log ,2_1+o.s) 
(3-2-2+1+0.5) 

1 = log 3 = -0.477 
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silver 

[ 
(H0.5} l _ (2-1+0.s) 

W4 - log (1-1+0.s) 
(3-1-2+1+0.s) 

1 = log 0_333 = 0.477 

truck 

[ 
(2+0.5) l (2-2+0.5) 5 

w4 = log (2 _ 2+o.5) = log ( 0_333 ) = 1.176 
(3-2-2+2+0.5) 

The results are summarized in Table 2.1: 

Table 2.1. Example: Term Weights 

term W1 W2 W3 W4 

gold -0.079 -0.176 -0.176 -0.477 
silver 0.097 0.301 0.176 0.477 
truck 0.143 0.523 0.523 1.176 

Table 2.2. Example: Document Weights 

document W1 W2 W3 W4 

Di -0.079 -0.176 -0.176 -0.477 
D2 0.240 0.824 0.699 1.653 
D3 0.064 0.347 0.347 0.699 

The similarity coefficient for a given document is obtained by summing the 
weights of the terms present. Table 2.2 gives the similarity coefficients for each 
of the four different weighting schemes. For D 1 , gold is the only term to appear 
so the weight for D 1 is just the weight for gold, which is -0.079. For D 2 , silver 
and truck appear so the weight for D 2 is the sum of the weights for silver and 
truck, which is 0.097 + 0.143 = 0.240. For D 3 , gold and truck appear so the 
weight for D3 is the sum for gold and truck, which is -0.079 + 0.143 = 0.064. 
The terms may be summed as the need to combine them (multiply) is removed 
since their definition takes the logarithm of the weight. 

2.2.1.2 Results. Initial tests of the four weights were done on the 1,400 
document Cranfield collection. These showed that the third and fourth weights 
performed somewhat comparably, but were superior to the first and second 
weights. An additional study against the 27,361 document UKCIS collection 
measured the difference in the first weight and the fourth weight (Sparck Jones, 
1979a]. Again a significant improvement was found in use of the fourth weight. 
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Two other baseline tests were run. The first simply ranked documents based 
on the number of term matches, the second test used inverse document fre­
quency as an estimated weight. Both of these approaches were inferior to any 
of the four weights, but the use of the id/ was better than simply counting term 
matches. In all cases, the ranking of the documents was D2, D3, Dl-the same 
ranking that was obtained with the vector space model in Section 2.1. 

The number of times a term appears in a given document is not used, as 
the weighting functions are based on whether or not the term appears in lots 
of relevant documents. Thus, if term t appears 50 times over the span of 10 
relevant documents and term u appears only 10 times in the same relevant 
documents, they are given the same weight. 

2.2. 1.3 Incorporating Term Frequency. Term frequency was not used 
in the original probabilistic model. Croft and Harper incorporate term fre­
quency weights in [Croft and Harper, 1979]. Relevance is estimated by includ­
ing the probability that a term will appear in a given document, rather than 
the simple presence or absence of a term in a document. The term frequency 
is used to derive an estimate of how likely it is for the term to appear in a 
document. This new coefficient is given below. 

The P(d;j) indicates the probability that term i appears in document j, and 
can be estimated simply as the term frequency of term i ill document j. Un­
fortunately, this frequency is not a realistic probability so another estimate, 
normalized term frequency is used. The normalized term frequency is com­
puted as-

tfii 
ntf;i = ------''----­

max(tfii, thi, ... , t/tj) 

Normalized term frequency is the ratio of the term frequency of a given term 
to the maximum term frequency of any term in the document. If term i appears 
ten times in the document, and the highest term frequency of any other term 
in the document is 100, the ntf;i is 0.1. 

Croft and Harper compared the use of the normalized term frequency, the 
unnormalized term frequency, and a baseline without any use of term fre­
quency for the Cranfield collection and the 11,429 document NPL collection. 
The results were statistically significant in that the normalized term frequency 
outperformed the baseline. In many cases, the unnormalized term frequency 
performed worse than the baseline. 

2.2.2 Non-Binary Independence Model 

The non-binary independence model developed by Yu, Meng, and Park incor­
porates term frequency and document length, somewhat naturally, into the 
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calculation of term weights [Yu et al., 1989]. Once the term weights are com­
puted, the vector space model (see Section 2.1) is used to compute an inner 
product for obtaining a final similarity coefficient. 

The simple term weight approach estimates a term's weight based on whether 
or not the term appears in a relevant document. Instead of estimating the prob­
ability that a given term will identify a relevant document, the probability that 
a term which appears tf times will appear in a relevant document is estimated. 
For example, consider a ten document collection in which document one con­
tains the term blue one time and document two contains ten occurrences of the 
term blue. Assume both documents one and two are relevant and the eight 
other documents are not relevant. With the simple term weight model, we 
would compute the p(Rel I blue) = 0.2 because blue occurs in two out of ten 
relevant documents. 

With the non-binary independence model, we calculate a separate probabil­
ity for each term frequency. Hence, we compute the probability that blue will 
occur one time P(l I R) = 0.1, because it did occur one time in document one. 
The probability that blue will occur ten times is P(lO I R) = 0.1, because it 
did occur ten times in one out of ten documents. 

To incorporate document length, the weights are normalized based on the 
size of the document. Hence, if document one contains five terms and document 
two contains ten terms, we recompute the probability that blue occurs one time 
and is relevant to the probability that blue occurs 0.5 times and is relevant. 

The probability that a term will result in a non-relevant document is also 
used. The final weight is computed as the ratio of the probability that that a 
term will occur tf times in relevant documents to the probability that the term 
will occur t/ times in non-relevant documents. 

More formally-

! P(d;IR) 
og P(dilN) 

where P(dilR) is the probability that a relevant document will contain d; oc­
currences of the ith term, and P(d;IN) is the probability that a non-relevant 
document has d; occurrences of the ith term. 

2.2.2.1 Example. Returning to our example, the documents and the query 
are: 

Q : "gold silver truck" 
D1 : "Shipment of gold damaged in a fire." 
D2 : "Delivery of silver arrived in a silver truck." 
D3 : "Shipment of gold arrived in a truck." 

Thus, we have three documents with eleven terms and a single query. We order 
the terms alphabetically so that t1 corresponds to term number one which is a 
and t2 is arrived, etc. This is summarized below-
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docid ti t2 h t4 t5 fo h ts t9 tio tu 

D1 1 0 1 0 1 1 1 1 0 1 0 
D2 1 1 0 1 0 0 1 1 2 0 1 
D3 1 1 0 0 0 1 1 1 0 1 1 
Q 0 0 0 0 0 1 0 0 1 0 1 

The training data includes both relevant and non-relevant documents. We 
assume that document two and three are relevant and document one is not 
relevant (we are free to do this as relevance is, after all, in the eyes of the 
beholder). Normalizing by document length gives-

docid ti h t3 t4 t5 t6 t1 ts t9 tio tu 

D1 
1 0 1 0 1 1 1 1 0 1 0 ,; ,; ,; ,; ,; ,; ,; 

D2 
1 1 0 1 0 0 1 1 1 0 1 
0 0 0 0 0 ::;: Ji 

D3 
1 I 0 0 0 I 1 1 0 I 1 ,; ,; ,; 7 7 7 7 

We do not normalize the query. The terms present in the query are gold, silver, 
and truck. For D1 the weight of gold is 

Of the two relevant documents, one has a frequency of t and one does not, 
so P(tlR) = ½- However, the only non-relevant document has gold with a 
frequency of ½, so P( ½ IN) = 1. 
For silver in D 1 we obtain: 

[ P(0IR)] 1 
log P(0IN) = log 2 = -0.3010. 

Weights for each term and a given term frequency can be computed in this way 
for each term in a document. Vectors can then be constructed and a similarity 
coefficient can be computed between a query and each document. 

With our example, there are only a few frequencies to consider, but a nor­
mal collection would have a large number of frequencies, especially if document 
length normalization is used. To alleviate this problem, it is possible to aggre­
gate all of the frequencies into classes. Thus, all of the documents with zero 
frequency would be in one class, but for terms with positive term frequency, 
intervals (O, Ji], (/1, '2], ... , Un, oo) would be selected such that the intervals 
contain approximately equal numbers of terms. To obtain the weights, P(d;IR) 
and P(d;IN) are replaced by P(d; E IJIR) and P(d; E IJIN), respectively. Ii 
is the jth interval (/J-2, /J-il• The weight becomes: 
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2.2.3 Poisson Model 

Robertson and Walker have developed a probabilistic model which uses a Pois­
son distribution to estimate probabilities of relevance and incorporate term 
frequency and document length (Robertson and Walker, 1994]. In the standard 
probabilistic model, the weighting is given by-

w = logp(l - q) 
q(l -p) 

where p is the probability that the term is present given that a document is 
relevant, and q is the probability that the term is present given that a document 
is not relevant. 

To incorporate the term frequencies, Pt/ is used. This indicates the prob­
ability that the term is present with frequency tf, given relevance and qt/ is 
the corresponding probability for non-relevance. The subscript O denotes the 
absence of a term. The weighting then becomes-

w = log {pi, )(qo) 
(qt/ )(po) 

The assumption is made that terms randomly occur within the document ac­
cording to the Poisson distribution. 

mt/ 
p(tf) =e-m­

tf! 

The parameter m differs according to whether or not the document is about 
the concepts represented by the query terms. This leads to the weighting-

(p' + (l-p')(~)tfei)(q'e(-i) + (1- q')) 
w = log >. 

(q' + (1 - q')( ~,)ti ei)(p'e(-i) + (1 - p')) 

where A is the Poisson mean for documents which are about the term t, 
µ is the Poisson mean for documents which are not about the term t, 
j is the difference: A - µ, 
p' is the probability that a document is about t given that it is relevant, and 
q' is the probability that a document is about t given that it is not relevant. 

The difficulty with this weight is in its application; it is unlikely that there 
will be direct evidence for any of the four parameters: p', q', .X, µ. The shape of 
the curve is used, and simpler functions are found, based on the more readily 
observable quantities: term frequency and document length, that have similar 
shape. To incorporate term frequency, we use the function-

, tf 
w = wk1 +tf 
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where w is the standard probabilistic weight, and k1 is an unknown constant 
whose value depends on the collection and must be determined experimentally. 

Document length is also taken into account. The simplest means to account 
for document length is to modify the equation given above for w' by substitut­
ing: 

d documentlength 

A averagedocumentlength 

The new equation for w' is-

w' -w ( tf ) 
- (k1l(d) + tf 

The symmetry between documents and queries is used to incorporate the 
query term frequency in a fashion similar to document frequency. A tuning 
parameter k1 is used to scale the effect of document term frequency. Similarly, 
another parameter k3 is used to scale the query term frequency (qt!). Finally, 
a closer match to the 2-Poisson estimate can be attempted with an additional 
term possessing a scaling factor of k2 . This term is-

( ((A -d))) 
k2 IQI (A +d) 

where k2 is a constant that is experimentally determined, and !QI is the number 
of query terms. This term enables a high value of k2 to give additional emphasis 
to documents that are shorter than average. These modifications result in the 
following similarity coefficient-

SC(Q,D;) t ( r ) ~lo ~ .£-J g (n-r) 
j=l {N-n)-(R-r) 

( (k )!QI ( (6 - dl;))) 
2 (A+ dl;) 

where--

N = number of documents in the collection 
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n number of documents indexed by a given term 

R number of relevant documents for the query 

r = number of relevant documents indexed by the given term 

th; = term frequency of term j in document i 

qt!; term frequency of term j in query Q 

dli number of terms in document i 

IQI number of terms in the query 

~ average document length 

k1, k2, k3 tuning parameters 

Small values for k1 and k3 have the effect of reducing the impact of term 
frequency and query term frequency. If either is zero, the effect is to eliminate 
that quantity. Large values of k1 and k3 result in significantly reducing the size 
of the first term. 

Including a factor of (k1 + 1) and (k3 + 1) in the numerator does not affect 
the overall ranking because these factors apply equally to all documents. How­
ever, it does allow for the use of large values of k1 or k3 without reducing the 
magnitude of the first term. Additionally, this normalizes the impact of the 
tuning parameters. The idea is that when the term frequency is one, there is 
no need to change the original weights. 

To normalize for document length, the similarity measure also includes a 
denominator of ~ in the first term. This makes good sense if the only reason 
a document is long is because it is simply giving more detail about the topic. 
In this case, long documents should not be weighted any more than short doc­
uments. However, it could be that a document is long because it is discussing 
several unrelated topics. In this case, long documents should be penalized. A 
new tuning parameter, b, allows for tuning a query based on the nature of the 
document collection. This parameter is incorporated by substituting K for k1 

in the factor involving t/;;, where-

K = k1 ( (1 - b) + b ( ~i)) 
Incorporating the tuning parameter band placing (k1 + 1) and (k3 + 1) in the 
numerator yields-

~l ( ~ ) L., og (n-r) 
j=l (N-n)-(R-r) 

SC(Q,Di) ( (k1 + l)tfo) ((k3 + l)qtf;) + 
K + tfi; k3 + qtf; 

((k2)IQI:; !li) 
For the experiments conducted as part of TREC-4, these values were taken as 
(k1 = 1, k2 = 0, k3 = 8, b = 0.6) [Robertson et al., 1995). 
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2.2.3.1 Ex81Ilple. Using the same documents and query as before, we pre­
viously computed W4 as-

gold= -0.477 
silver = 0.477 
truck= 1.176 
avgdl = 2; = 7.33 

Using the same parameters for k1 , k2 , k3 , bas given in the TREC-4 calibrations, 
we compute values for dli: 

dl1 = 7 
dl2 = 8 
dl3 = 7 

For D 1 the only match with the query is "gold" which appears with a t/ = 1; 
so, the SC for D1 is just the value for "gold" (Note the length of ell for D 1 is 
seven). 

K = l ( (1 - 0.6) + (0;~~~7)) = 0.973 

Now that we have the value of K, it is possible to compute the similarity 
coefficient for D1 . The coefficient is a summation for all terms, but only one 
term "gold" will have a non-zero value. We start with the value of w4 = - 1.099 
which was obtained in Section 2.2.1.1. 

( (1+1)(1)) (8+1) ( 2 ) SC(Q,D1 ) = -0.477 0_973 + l 8 + 1 = -0.477 1.973 = -0.484 

For D2 the terms that match the query "silver" and "truck", result in non-zero 
values in the summation. 

K = l (o.4+ (0.6)(8)) = 1.055 
7.33 

For "silver", t/12 = 2-

= -0 477 ((1 + 1H2)) ((8 + 1H2)) = 1124 
W 4 • 1.055 + 2 8 + 2 . 

For "truck", t/22 = 1-

w = 1.176 ((l + l)(l)) ((8 + l)(l)) = 1145 
4 1.055 + 1 8 + 1 . 
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SC(Q, D2 ) = 1.124 + 1.145 = 2.269 

For D3 , dl = 7 so K = 0.973 (as in the case of D1). We have two terms "gold" 
and "truck" that both appear once. 
For "gold", t/13 = 1: 

w =-0.477((l+l)(l)) ((8 +l)(l)) =-0.484 
4 0.973 + 1 8 + 1 

For "truck", t/23 = 1: 

= 1176 ((1 + l)(l)) ((8 + l)(l)) = 1192 
W 4 • 0.973 + 1 8 + 1 . 

SC(Q,D3) = -0.484+ 1.192 = 0.708 

Comparing the SC, with the term frequency, to the base SC, without the term 
frequency we see-

Document Not/ tf 
Di -0.477 -0.484 
D2 1.653 2.269 
D3 0.699 0.708 

Overall, the document ranking is the same, but the use of term frequency 
produced a more pronounced difference between the top ranked document D 2 

and the remaining relevant document D3 • 

2.2.4 Term Components 

A variation on the standard probabilistic model is given in [Kwok, 1990]. The 
premise of the algorithm is to rank documents based on the components of the 
document. For example, a document can be partitioned into multiple para­
graphs and a similarity coefficient can be computed for each paragraph. Once 
this is done, a measure is needed to combine the component similarity coeffi­
cients to develop a ranking for the entire document. Kwok proposes the use of 
a geometric mean (for n numbers, the nth root of their product) to effectively 
average the individual components. 

The algorithm used to rank a given component certainly can vary, and the 
size of a component can also vary. If the whole document is used as a compo­
nent, then we are back at traditional probabilistic information retrieval. 

The basic weight for a given component is defined as the ratio of the proba­
bility of the component being relevant to the probability that it is not relevant. 
This is-
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Wale= In ( Talc ) + In ((1 - Bale)) 
(1- Talc) Bale 

Tale and Ba1c are weights that can be estimated in one of three different ways-

■ Initial estimate using self-relevance. A component which is relevant to itself, 
results in-

where La is the number of components in the document, and F1c is the 
number of occurrences of term k in the collection. Nw is the number of 
distinct components in the collection. 

■ Inverse collection term frequency (ICTF). Used as an initial estimate with 
relevance feedback. Assume the estimate of B above is good because there 
are probably more non-relevant than relevant documents. Hence, a term 
that is infrequent in the entire collection has a low value of Bale• Assume 
the initial estimate of Talc is poor and just use a constant p. Using Ta1c as 
a constant results in the whole weight being equivalent to Bale• Using pin 
our weight computation yields the following weight which is very close to 
the id/. 

[ p ] [1- B·le] Wile = In -1-- + In --•-
- p Bile 

■ Essentially, weights are computed based on the use of feedback from the 
user. (Use of relevance feedback will be discussed in more detail in Section 
3.1). Once the estimates are obtained, all that remains is to combine the 
component weights-in either query focused means, a document focused 
measure, or a combined measure. Using the query as focus, the query 
is given, and all the weights are computed as related to the query. The 
geometric mean is then computed for each of the components. This reduces 
to-

le (<4") tt Li Wale 

A document focused measure computes the components of the query and then 
averages them in relation to a given document. This reduces to-
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t (~~) w,,. 
i=l 1 

The combined measure can then be obtained. This combined measure is simply 
the sum of the query focused and the document focused measures given as-

t (~")Wal,+ t (~~) Wal, 
i=l i i=l 1 

The component theory was shown to be comparable to term-based retrieval, and 
superior for retrieval in the presence of relevance feedback. The combination 
of query focused and document focused retrieval was almost always shown to 
be superior than just query focused or just document focused retrieval. 

We now use Kwok's measure to compute a similarity coefficient for the doc­
uments in our example. We note this is applicable when only single terms are 
chosen as term components. 

Q : "gold silver truck" 
D1 : "Shipment of gold damaged in a fire." 
D2 : "Delivery of silver arrived in a silver truck." 
D3 : "Shipment of gold arrived in a truck." 

docid ti h t3 t4 h t6 h ts 
Di 1 0 1 0 1 1 1 1 
D2 1 1 0 1 0 0 1 1 
D3 1 1 0 0 0 1 1 1 
Sum 3 2 1 1 1 2 3 3 
Q 0 0 0 0 0 1 0 0 

t9 t10 tu Length 
0 1 0 7 
2 0 1 8 
0 1 1 7 
2 2 2 22 
1 0 1 0 

We now need to compute a query focused similarity coefficient W,;q and a 
document focused coefficient, Wi/d· The query focused coefficient is computed 
as-

where wa1, is the weight of the kth term of the query, t,., and di,. is the frequency 
oft,. in document di. Li is the length of di or the total number of components 
of di. (In this example, components are terms). 

l ( r al, ) l ( 1 - Ba1, ) Wal, = n -1-- + n ---
- Tai, Sal, 
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ra,. is the probability that t,. is present given that the document is relevant. It 
is estimated by ~. where Qa/c is the frequency of term t,. in the query, and La 

is the length of the query. Bd is the probability that t,. is present given that 
the document is not relevant. It is estimated by R; where F,. is the collection 
term frequency oft,. and Nw is the total number of terms in the collection. 
Substituting from our example gives Wi/d for D1 and Qd = 1 fork= 1, 2, 3, 
and La = 3, since each term in the query occurs once, and each term appears 
only one time. 

Since we take the query as being relevant to itself, the total relevance for 
each term in the query is 1. ra/c = ½ for k = 1, 2, 3 and Ba/c = ; 2 for k = 1, 
2, 3, since each term in the query occurs twice in the collection and the whole 
collection has twenty-two terms. 

1 (1-.l.) 
Wa1=ln(l~½} +In ;/2 

1 20 
= In 2 + ln 2 = -0.693 + 2.303 = 1.609 

Wa2 and Waa will have the same values since the values for ra,. and Ba/care equal 
for k = 1, 2, 3. 

Knowing the result of Wai for all three terms is 1.609, we multiply each term 
by ~. which is a measure of term importance as compared to other terms in 
the query. We now can compute the query focused measure for each of the 
three documents-

1 0 0 
W1,, = (1.609) 7 + (1.609) 7 + (1.609} 7 = 0.230 

0 2 1 
W2,, = (1.609} 8 + (1.609) 8 + (1.609}8 = 0.603 

1 0 1 
Wa,, = (1.609) 7 + (1.609} 7 + (1.609) 7 = 0.460 

Now the document focused measure is computed. The computation is the 
same, the difference is that we have a different estimate for ri/c and Bi/c· For the 
document focused measure, we assume each document considered is relevant to 
the query. Hence, the estimate for ri1c is-

This uses the number of terms, di1c, that match the assumed "relevant docu­
ment." Bile is estimated similarly since the size of the one relevant document is 
removed from the estimates that use the whole collection. 
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Substituting we have-

__ (F1r, -d;1r,) 
s,1r. - N. -L· 

11/ • 

1 
ru = 7 

0 
r12 = 7 = 0 

0 
r13 = 7 =0 

2-1 1 
811 = 22- 7 = 15 

2-0 2 
812 = 22 - 7 = 15 

2-0 2 
813 = 22 - 7 = 15 

To compute the weight of gold in D1 we have-

( !. ) (1-.L) 1 Wu= In (l ~ t) + In fg15 = In 6 + In 14 = -1.792 + 2.639 = 0.847 

Since silver and truck do not appear in D1 the values of W1r,; are equal to 
zero. The document focused measure is now computed as-

- 0.847 - 0 282 
W1d- - 3- - · 

Estimates for rands are now given for documents D2 and D3 • 

2 1 
821 = 22 - 8 = 8 

822 = 0 

1 
823 = 14 

r21 = 0 

2 
r22 = 8 

1 
r23 = 8 

1 
r31 = 7 = 0.143 
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0 
ra2 = - = 0 

7 
1 

raa = 7 = 0.143 

2-1 1 
831 = 22 - 7 = 15 

2-0 2 
832 = 22 - 7 = 15 

2-0 2 
833 = 22 - 7 = 15 

W23 = 1n ( {l i ½)) + ln ( l f 4 ft) = ln ~ + 1n 13 = -1.946 + 2.565 = 0.619 

1 
W2d = (0.619) 3 = 0.206 

1 
W31 = ln 6 + ln 14 = -0.1792 + 2.639 = 0.847 

w32 will not be used as r 32 equals zero. 

1 
Waa = ln 16 + ln 14 = -0.134 

Wad = 0.847 + -0.134 = 0_238 
3 3 

We now have query-focused and document-focused measure for each document. 
Summing these results in a similarity coefficient, we find-

D1 = 0.230 + 0.282 = 0.512 
D2 = 0.603 + 0.206 = 0.809 
D3 = 0.460 + 0.238 = 0.698 

2.2.5 Key Concerns with Probabilistic Models 

Typically probabilistic models have to work around two fundamental prob­
lems. The first is parameter estimation. This refers to the problem that ac­
curate probabilistic computations are based on the need to estimate relevance. 
Without a good training data set, it is often difficult to accurately estimate 
parameters. The second problem is the use of independence assumptions. It is 
clear that the presence of the term new increases the likelihood of the presence 
of the term york but many probabilistic models require this assumption even 
though it is not a realistic assumption. 
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2.2.5.1 Parameter Estimation. The need for good parameter estimation 
was clearly documented in the 1970s. Initial experiments with simple term 
weights partitioned the document collection into an even and an odd compo­
nent. The even component was used as training data and, after relevance infor­
mation was obtained, used to retrieve data in the odd component. For many 
applications, the a priori relevance information is not known in advance. A 
follow-up paper by Sparck Jones [Sparck Jones, 1979b] used reduced relevance 
information. The effect of using only the best one or two most relevant docu­
ments as training data, instead of using all relevant documents was measured. 
For the small Cranfield collection, results of using fewer relevant documents 
were comparable to using all relevant documents. Unfortunately, when the test 
was run on the larger UKCIS, the results with only two relevant documents 
were inferior to results using all relevant documents. 

The initial model did not indicate how the process should start. Once rele­
vance information is available (via a training set), it is possible to conduct new 
searches. In an on-line system where it is not possible to guess which queries 
will be asked in advance, it is not possible to use the weighting functions given 
above. They all require values for r and R which can only be obtained by run­
ning a query and examining the relevant documents. Certainly, it is possible 
to use another technique for the initial search, and then ask users for relevance 
information on the results of the initial search. This information can then be 
used for subsequent searches. This technique is called relevance feedback and is 
discussed in more detail in Section 3.1. 

Using the probabilistic weights as a means of implementing relevance feed­
back relegates the probabilistic model to an interesting utility that can be 
applied to an arbitrary retrieval strategy. A cosine measure can be used to 
identify an initial ranking, and then the probabilistic weights can be used for 
relevance feedback. 

The problem of using the probabilistic model without any a priori relevance 
information is addressed in [Croft and Harper, 1979]. In doing so, it becomes 
clear that the probabilistic model is a retrieval strategy that is capable of rank­
ing documents without any other assistance. By assuming that without any 
relevance information, the probability that a given term will induce relevance 
is equal for each term. Thus, the following similarity coefficient is obtained-

t t N -n· 
SC(Q,Di) = CLq;d;j + Lq;d;;log--_-• 

i=l i=l n, 

N number of documents in the collection 
n number of documents indexed by a given term 

d;j 1, if term i appears in document j 
d;i 0, if term i does not appear in document j 
q; 1, if term i appears in the query 
q; 0, if term i does not appear in the query 
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C is a constant that may be varied to "tune" the retrieval. The term weight of 
N ;;_n; is very close to the inverse document frequency of ;! for large document 
collections (large values of N). Hence, the whole expression is very close to the 
t/-id/ that was used in the vector space model. 

The authors tested this SC against the cosine coefficient and a coefficient 
obtained by simply summing the id/' s of each term. The new SC performed 
slightly better, but it is important to remember the tests were run on the small 
Cranfield collection. 

Recently, Croft and Harper's work on the problem of computing relevance 
weights with little or no relevance information was improved [Robertson and 
Walker, 1997]. They note that the weighting scheme of Croft and Harper can, 
under some circumstances, lead to negative weights. 

In the original model by Robertson and Sparck Jones, two probabilities were 
used to determine the weighting. The first value, p, estimates for a given term 
the probability that a document containing the term will be relevant. The 
probability q estimates the probability that a document containing the term 
will not be relevant. In previous models, p and q are assumed to be constant, 
but Robertson and Walker allow p to vary as a function of known evidence of 
relevance. 

Specifically a weighting function that is developed with no information gives 
an inverse collection frequency weight (or some slight variation). At the other 
extreme, with a large amount of relevance information, the weighting function is 
determined by the relevance information. The equation from Croft and Harper 
can take on negative weights ( when a term appears in over half of the document 
collection). Robertson and Walker developed new equations that are tunable 
and that estimate the weights of p and q independently. That is, information 
about relevance only influences the weight due to p and information about 
non-relevance only influences the weight due to q. 

The new weight is given by-

w = k5 ~ R ( k4 + log N N_ n) + k5 ! R log ( R ~: :~.5) 

where 
R 
r 
s 
8 

k4, ko, ko 

- ka k~ S log ( N ~ n) - ka ! Slog ( ()~: ~~5)) 

= 
number of relevant documents 

number of relevant documents indexed by the given term 

number of non-relevant documents 

number of non-relevant documents which contain the term 

are tuning constants-

(k4 must be non-negative to avoid any negative weights) 
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The first two terms give the component of the weight due to relevance infor­
mation, and the last two terms give the weight due to non-relevance informa­
tion. (Note that if there is no knowledge (R=S=O), then the equations reduce 
to k4 +log~)- k4 measures how good the query term should be, while ks 
and k6 measure the sensitivity to relevance and non-relevance respectively. A 
statistically-based argument can be made that, instead of using R and S to 
scale the terms in the equation, the square roots of R and S should be used. 

2.2.5.2 Independence Assumptions. The key assumption that provides 
for a simple combination of term weights to compute the probability ofrelevance 
is the assumption that the terms appear independent of one another. Because 
this assumption is false, it has been suggested that the entire model is derived 
from a "faulty theory" (Cooper, 1991]. In fact, the inference network strategy 
and the logistic regression utility are both designed to work around the problem 
of independence assumptions. These are discussed in Sections 2.3 and 3.5, 
respectively. 

Papers in the late 1970s and early 1980s start to address the failure of the in­
dependence assumption (Rijsbergen, 1977, Yu et al., 1983], but they all require 
co-occurrence information which is very computationally expensive to obtain. 
Van Rijsbergen suggests that related terms should be grouped together by us­
ing simple clustering algorithms and then the dependencies between groups can 
be obtained (Rijsbergen, 1977]. 

With increased computational speed, these approaches may soon be more 
tractable. To our knowledge, none of these modifications have been tried on a 
large test collection. 

2.3 Inference Networks 

Inference networks use evidential reasoning to estimate the probability that a 
document will be relevant to a query. They model the probabilistic retrieval 
strategy discussed in Section 2.2 and enhance that model to include additional 
evidence that a document may be relevant to a query. 

In this section we first give a basic overview of what an inference network 
is, and then describe how they are used for relevance ranking. 

2.3.1 Background 

The essence of an inference network is to take known relationships and use them 
to "infer" other relationships. This dramatically reduces the computational 
requirements needed to estimate the probability that an event will occur. 

A binary inference network uses events where the event will have either a 
value of true or false. A prior probability indicates the likelihood of the event. 
Assume we know events A, B, C, D and E all occur with respective probabilities 
p(A = true) = a, p(B = true) = b, p(C = true) = c, p(D = true) = d and 
p(E = true) = e. These events are independent-that is, the probability that 
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all events will still occur is the same regardless of whether or not any of the 
other events occur. More formally, for all possible combinations of b, c, d and e 
then p(Alb, c, d, e) = p(a). Assume we know that event F depends on events A, 
B, C, D and E, and we want to compute the probability that F occurs given the 
probability that A, B, C, D and E occur. Figure 2.5 illustrates this example 
inference network. 

To do this without an inference network, the computation is exponential 
and requires consideration of all 25 combinations for the events A, B, C, D 
and E. Using notation given in [Greif£, 1996], let R be the set of all 25 possible 
subsets of 1, 2, 3, 4, 5. Let Pi indicate the probability that the ith event is 
true-in our example events 1, 2, 3, 4 and 5 correspond to A, B, C, D and E. 
Let Pi indicate the state value (either true or false) of the ith event-that is 
Pi indicates whether or not A is true, P2 indicates whether or not B is true, 
etc. Finally, the mere existence of an event or combination of events A, B, C, 
D or E changes the likelihood that F is true. This probability is called O:R and 
is defined as: 

0:R = p(F = truelPi, ... , P5) 

where i ER ➔ Pi is true, 

i f/. R ➔ Pi is false 

To compute p(F = true), assuming, A, B, C, D and E are independent, the 
following equation is used: 

p(F =true)= L O:R II Pi II (1 - p;) 
R\;{1, ... ,5} iER iER 

For a simple problem with only five values, we end up with a 32-element com­
putation. The exponential nature of this problem is addressed by inference 
networks with naturally occurring intermediaries. This enables the use of par­
tial inferences to obtain a final inference. 

Assume we know that events A, B, and C cause event X, and events D and E 
cause event Y. We can now use X and Y to infer F. The figure below illustrates 
this simple inference network. 

Consider an example where we are trying to predict whether or not the 
Salamanders will win a softball game. Assume this depends on which coaches 
are present and which umpires are present. At the top layer of the network 
might be nodes that correspond to a given coach or umpire being present. 
The Scott, David, and Catherine nodes (nodes A, B,and C) all correspond to 
coaches and the Jim and Manny nodes (nodes D and E) correspond to umpires. 
Now the event "good coach is present" (node X) depends on the Scott, David, 
and Catherine nodes and the event "good umpire is present" (node Y) depends 
on the Jim and Manny nodes. The event "Salamanders win" (node F) clearly 
depends on nodes X and Y. 

In our example, the presence of an umpire in no way determines whether 
or not another umpire attends, but it certainly impacts whether or not the 

Page 63 of 262



50 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS 

Figure 2.5. Simple Inference Network 

umpires are "friendly" to the Salamanders. Similarly, the presence of a given 
coach does not impact the presence of other coaches, but it does impact whether 
or not the whole coaching staff is present. Also, the presence or absence of a 
coach has no impact on whether or not the umpires will be favorable. 

To compute F, the 32-element equation given above can be used, or we can 
use an inference network to take advantage of the logical groupings inherent in 
the events X and Y. First, we compute p(X = true) using the three parents­
A,B,and C- this requires 23 computations. The impact of the parent nodes 
on the child node with the variable o and a binary subscript that indicates 
the likeihood that the child node is true, given various combinations of parent 
nodes being true. For example, 0111 indicates the probability that the child 
node is true given that all three parents are true. Computing p(X = true) we 
obtain-

p(X = true) = 0111abc + o:uoab(l - c) + 0101a(l - b)c + 
010oa(l - b)(l -c) + oou(l - a)bc+ 0:010(1- a)b(l - c) + 
0001(1- a)(l - b)c + O:ooo(l - a)(l - b)(l - c) 

and now we compute p(Y = true) using the two parents D, E-
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p(Y =true)= a 11de + a10d(l - e) + 001(1- d)e + aoo{l - d){l - e) 

Once the prior probabilities for X and Y are known, we compute the probability 
that F is true as: 

p(F = true) = a 11 xy + 010:c{l - y) + ao1y{l - x) + aoo{l - x){l - y) 

To compute F it took eight additions for X, four for Y, and finally four for 
F. Therefore, we now require only sixteen instead of the thirty-two required 
without the inference network. The key is that F is independent of A, B, C, D 
and E given X, Y or: 

p(F = truela, b, c, d, e, x, y) = p(F = truelx, y) 

Once the initial values of the top layer of the inference network are assigned 
{these are referred to as prior probabilities), a node on the network is instanti­
ated and all of its links are followed to nodes farther down the network. These 
nodes are then activated. At this point, the node that is activated is able to 
compute the belief that the node is true or false. The belief is computed based 
on the belief that all of its parent nodes are true or false. At this point, we 
have assumed that all parents contributed equally to the belief that a node 
was present. Link matrices indicate the strength by which parents {either by 
themselves or in conjunction with other parents) affect children in the inference 
network. 

2.3.2 Link Matrices 

Another capability provided by the inference network is the ability to include 
the dependence of a child on the parents. Suppose we know that a particular 
umpire, Manny, is much more friendly to the Salamanders than any other 
umpire. Hence, the contribution of D, E to the value of X may not be equal. 

The link matrix contains an entry for each of the 2n combinations of parents 
and {for a binary inference network in which nodes are either true or false) will 
contain only two rows. 

In our example, the link matrix for the node Y that represents the impact 
of umpires D and E on X is given as: 

DE DE DE DE 
Y true 0.9 0.8 0.2 0.05 
Y false 0.1 0.2 0.8 0.95 

This matrix indicates that the presence of the friendly umpire Manny (D) 
coupled with the absence of Jim (E) results in an eighty percent contribution 
to the belief that we have friendly umpires for the game. We use the notation 
Li(Y) to indicate the value of the ith entry in the link matrix to identify 
whether or not Y is true and Li(Y) to indicate the value to determine whether 
or not Y is false. 
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The link matrix entries are included as an additional element in the compu­
tation given above. The new equation to compute the belief that a given node 
N with n parents using the previously used set R becomes: 

p(N = true) = L Li(N) II Pi II (1 - Pi) 
Ri;;{1, ... ,n} 

The link matrix for p parents contains 2P entries. Again, the link matrix mea­
sures the contribution of individual parents to a given inference. The link 
matrix can be selected such that a closed form computation is possible. The 
simplest matrix, the LAND for an arbitrary node N is of the form [Turtle, 1991]: 

Pooo Poo1 Po10 Pou Pioo Puo P111 

N true O 0 0 0 0 0 0 1 

The entries are given in binary such that a 1 or O is given for each of the 
possible p parents (p=3 in this case). The computation results in zero's for all 
combinations of parents except when allp parents exist. The value ofp(N=true) 
will be (p1)U"i)U>:J) where Pi indicates the probability that the parent Pi is true. 
Only a single element must be summed to obtain the final result instead of the 
worst case of 2N. Other closed form link matrices exist that essentially average 
the prior probabilities of parents. 

To give an example with our existing inference network, assume there is 
a seventy percent chance A will attend, and a sixty percent chance B and C 
will attend (p(A) = 0.7, p(B) = 0.6, p(C) = 0.6). For umpires, assume p(D) 
= 0.8 and p(E) = 0.4. The links from A, B, C, D,and E are followed and 
the probability that X and Y are true can now be computed. To compute 
p(X = true), we need the link matrix for X. Let's assume the link matrix 
results in a closed form average of all parent probabilities 

~~Pi 
n 

(X _ t ) _ 0. 7 + 0.6 + 0.6 _ O 63 p -rue- 3 -. 

Now to compute the probability for Y, the link matrix given above is used to 
obtain: 

p(Y =true)= Lu(Y)de+L1o(Y)d(l-e)+Lo1(Y)(l-d)e+Loo(Y)(l-d)(l-e) 

p(Y = true) = (0.9)(0.8)(0.4)+(0.8)(0.8)(0.6)+(0.2)(0.2)(0.4)+(0.05)(0.2)(0.6) 

p(Y = true) = 0.288 + 0.384 + 0.008 + 0.016 = 0.694 
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Now we have the belief that X and Y are true, assume we use the unweighted 
sum link matrix. This is a closed form link matrix that results in a simple 
average of the parent probabilities to compute the belief in F. The final value 
for Fis: 

(F _ ) _ 0.694 + 0.630 _ O 662 p -true- 2 -. 

In this case, we had only three elements to sum to compute X, four to compute 
Y, and two to compute F. If we did not have a closed form link matrix we 
would have had 23 for X, 22 for Y, and 22 for F or 16 elements-substantially 
less than the 25 required without an inference network. 

2.3.3 Relevance Ranking with Inference Networks 

Turtle's Ph.D. thesis is the seminal work on the use of inference networks for 
information retrieval [Turtle, 1991]. The documents are represented as nodes 
on the inference network, and a link exists from each document to each term 
in the document. When a document is instantiated, all of the term nodes 
linked to the document are instantiated. A simple three-layered approach then 
connects the term nodes directly to query nodes. This three-layered network 
is illustrated in Figure 2.6. A link exists between a term node and a query 
node for each term in the query. Note that this is the most simplistic form of 
inference network for IR. The three-layered approach consists of a document 
layer, a term layer, and a query layer. Note that the basic algorithm will work 
if a layer that contains generalizations of terms or concepts exists. This layer 
could sit between the term layer and the query layer. Links from a term to 
a concept could exist based on semantic processing or the use of a thesaurus 
(see Sections 3.7 and 3.6). Using a concept layer gives the inference network 
resilience to the matching problem because terms in the query do not have to 
directly match terms in the document; only the concepts have to match. 

An example of an inference network with actual nodes and links is given in 
Figure 2.7. A query and three documents are given along with the correspond­
ing network. Links exist from the document layer to the term layer for each 
occurrence of a term in a document. 

For our discussion, we focus on a three-layered inference network. Processing 
begins when a document is instantiated. By doing this we are indicating that 
we believe document one (Di) has been observed. This instantiates all term 
nodes in D1 . We only instantiate the network with a single document at a time. 
Hence, the closed form for the link matrix for this layer will equal the weight 
for which a term might exist in a document. Typically, some close variant on 
tf - idf is used for this weight. 

Subsequently, the process continues throughout the network. All links em­
anate from the term nodes just activated, and are instantiated, and a query 
node is activated. The query node then computes the belief in the query given 
Di. This is used as the similarity coefficient for Di. The process continues 
until all documents are instantiated. 
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Figure 2.6. Document-Term-Query Inference Network 

Query Network 

2.3.4 Example 

We now use an inference network to compute a similarity coefficient for the 
documents in our example: 

Q : "gold silver truck" 
D1 : "Shipment of gold damaged in a fire." 
D2 : "Delivery of silver arrived in a silver truck." 
D3 : "Shipment of gold arrived in a truck." 
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Figure 2.7. Inference Network Example 

D3 

w 

Document Layer 

Concept Layer 

Query Layer 

We need to evaluate our belief in the query given the evidence of a docu­
ment, Di. Assuming that our belief is proportional to the frequency within 
the document and inversely proportional to the frequency within the collection 
leads us to consider the term frequency, tf, and inverse document frequency, 
idf. However, both are normalized to the interval [0,1] by dividing tf by the 
maximum term frequency for the document, and idf by the maximum possi­
ble idf. Using our same alphabetic term ordering which assigns term a to t1, 
arrived to t2 , we obtain-

t1 h fa t4 t5 ts tr ts tg ho tu 
idf 0 0.41 1.10 1.10 1.10 0.41 0 0 0.41 0.41 0.41 
nidf 0 0.37 1 1 1 0.37 0 0 0.37 0.37 0.37 
D1 1 0 1 0 1 1 1 1 0 1 0 
D2 0.5 0.5 0 0.5 0 0 0.5 0.5 1 0 0.5 
D3 1 1 0 0 0 1 1 1 0 1 1 

In our three document collection, each term appears 1, 2 or 3 times. The total 
size of the collection is 3, so for-
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tf= 1, id/= logf = 1.10 

tf = 2, id/= log i = 0.41 

tf = 3, id/= log j = 0 

Each term appears in a document either once or not at all, with the single 
exception of silver which appears twice in D2 • For each combination of term 
and document, we evaluate P;i = P(r; = trueldi = true). Turtle used the 
formula !'ii = 0.5 + 0.5(nt/;j)(nidf;) to compute the belief in a given term 
given a document. Instantiating a document provides equal support for all 
members of the assigned term nodes. Any node for which there is no support 
(no documents instantiated) has belief equal to zero. 

For each term, a link matrix is constructed that describes the support by its 
parent nodes. For the concepts in the query, the link matrices are given below: 

The link matrix for gold is: 

DiDa DiDa DiDa 
False 1 0.315 0.315 
True 0 0.685 0.685 

The matrix indicates the belief of falsehood (first row) or truth (second row) 
given the conditions described in the column. When we instantiate a document, 
it is taken as true. Only one document is instantiated at a time. The number 
in the table is the value for Pii, or the belief that term i is true given document 
j has been instantiated. 

If D 3 is assigned a value of true, the belief is computed as: 

Pii = 0.5 + 0.5(nt/;j)(nidf;) = 0.5 + 0.5(0.369)(1) = 0.685 

This is found in the link matrix when D3 is true. In this case, the link matrix 
has a closed form. Hence, it need not be stored or computed in advance. The 
matrix only accounts for three possibilities: both documents are false, Di is 
assigned a value of true and not D3 , D3 is assigned a value of true and not Di. 
Since gold does not appear in document two, there is no need to consider the 
belief when D 2 is assigned a value of true as there is no link from D 2 to the 
node that represents the term gold. Also, since documents are assigned a value 
of true one at a time, there is never a need to consider a case when Di and D3 
are true at the same time. 

Similarly, the link matrix for silver can be constructed. Silver only appears 
in document D 2 so the only case to consider is whether or not D 2 is assigned 
a value of true. The link matrix computes: 

P;1 = 0.5 + 0.5(nt/;j)(nidf;) = 0.5 + 0.5(0.369)(1) = 0.685 
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Similarly, the link matrix for truck is constructed. Truck has two parents D2 

and Dg. 

D2D3 D2D3 D2D3 
False 1 0.315 0.408 
True 0 0.685 0.592 

For D 2 true and D 3 false, we have--

P;j = 0.5 + 0.5(ntf;i)(nidf;) = 0.5 + 0.5(0.5)(0.369) = 0.592 

We have now described all of the link matrices that are used to compute the 
belief in a term given the instantiation of a document. Now a link matrix for 
a query node must be developed. 

There is quite a bit of freedom in choosing this matrix. The user interface 
may allow users to indicate that some terms are more important than others. If 
that is the case, the link matrix for the query node can be weighted accordingly. 
One simple matrix is given in Turtle's thesis [Turtle, 1991]. Using g, s,and t to 
represent the terms gold, silver, and truck, it is of the form-

gst g s gs t gt st gst 
False 0.9 0.7 0.7 0.5 0.5 0.3 0.3 0.1 
True 0.1 0.3 0.3 0.5 0.5 0.7 0.7 0.9 

The rationale for this matrix is that gold and silver are equal in value and truck 
is more important. Also, even if no terms are present, there is some small 
belief (0.1) that the document is relevant. Similarly, if all terms are present, 
there is some doubt (0.1). Finally, belief values are included for the presence 
of multiple terms. 

We now instantiate D 1 which means bel(gold)-the belief that gold is true 
given document D 1-is 0.685, bel(truck) = 0.5,and bel(silver)=0.5. Note "bel(x)" 
represents "the belief in x" for this example. 

At this point, all term nodes have been instantiated so the query node can 
now be instantiated. 

Bel(Q I D1) = 0.1(0.315)(1)(1) + 0.3(0.685)(1)(1) + 0.3(0.315)(0)(1) + 
0.5(0.685)(0)(1) + 0.5(0.315)(1)(0) + 0.7(0.685)(1)(0) + 
0.7(0.315)(0)(0) + 0.9(0.685)(0)(0) = 0.031 + 0.206 = 0.237. 

This directly follows from the equation given in our prior examples using the 
link matrix entries L;(Q). 

Instantiating D2 gives bel(gold) = 0, bel(silver) = 0.685, and bel(truck) = 
0.592. The belief in D2 is computed as-
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Bel(Q I D2) = (0.1)(1)(0.315)(0.408) + (0.3)(0)(0.315)(0.408) + 
(0.3)(1)(0.315)(0.408) + (0.5)(0)(0.685)(0.408) + 
(0.5)(1)(0.315)(0.592) + (0.7)(0)(0.315)(0.592) + 
(0.7)(1)(0.685)(0.592) + (0.9)(0)(0.685)(0.592) = 
0.129 + 0.084 + 0.093 + 0.283 = 0.589. 

Assigning D3 a value of true gives bel(gold) = 0.685, bel(silver) = 0, bel(truck) 
= 0.685. The belief in D3 is computed as-

Bel( Q I D3 ) = (0.1)(0.315)(1)(0.315) + (0.3)(0.685)(1)(0.315) + 
(0.3)(0.315)(0)(0.315) + (0.5)(0.685)(0)(0.315) + 
(0.5)(0.315)(1)(0.685) + (0.7)(0.685)(1)(0.685) + 
(0.7)(0.315)(0)(0.685) + (0.9)(0.685)(0)(0.685) = 
0.01 + 0.065 + 0.108 + 0.328 = 0.511. 

The link matrices we have used in this example assume each parent has an 
equal contribution to the child probability. The assumption is that if two par­
ents exist, regardless of which parents, the child probability is greater. Recent 
work has described the potential to generate closed forms for link matrices in 
which the presence or absence of each parent is not equal [Greif£ et al., 1997]. 
Only the surface has been scratched with regard to the topology of inference 
networks for relevance ranking. Potential exists to group common subdocu­
ments in the inference network or to group sets of documents or clusters within 
the inference network. Also, different representations for the same document 
can be used. To our knowledge, very little has been done in this area. 

2.4 Extended Boolean Retrieval 

Conventional Boolean retrieval does not lend itself well to relevance ranking 
because documents either satisfy the Boolean request or do not satisfy the 
Boolean request. All documents that satisfy the request are retrieved (typically 
in chronological order), but no estimate as to their relevance to the query is 
computed. 

An approach to extend Boolean retrieval to allow for relevance ranking is 
given in [Fox, 1983a] and a thorough description of the foundation for this 
approach is given in [Salton, 1989]. The basic idea is to assign term weights to 
each of the terms in the query and to the terms in the document. Instead of 
simply finding a set of terms, the weights of the terms are incorporated into a 
document ranking. Consider a query that requests (ti OR t2 ) that is matched 
with a document that contains ti with a weight of wi and t2 with a weight of 
W2, 

If both wi and w2 were equal to one, a document that contained both of 
these terms would be given the highest possible ranking. A document that 
contained neither of the terms would be given the lowest possible ranking. A 
simple means of computing a measure of relevance is to compute the Euclidean 
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distance from the point ( w1 , w2 ) to the origin. Hence, for a document that 
contains terms t 1 and t 2 with weights w1 and w2 , the similarity coefficient 
could be computed as: 

For weights of 0.5 and 0.5, the SC would be: 

SC(Q, d,) = Jo.52 + 0.52 = v'D.5 = 0.707 

The highest value of SC occurs when w1 and w2 are each equal to one. In this 
case we obtain SC(Q, Di) = ../2 = 1.414. If we want the similarity coefficient 
to scale between 0 and 1, a normalization of ../2 is added. The SC becomes: 

This coefficient assumes we are starting with a query that contains the Boolean 
OR: (t1 V h). It is straightforward to extend the computation to include an 
AND. Instead of measuring the distance to the origin, the distance to the point 
(1,1) is measured. The closer a query is to the point (1,1) the more likely it 
will be to satisfy the AND request. More formally-

2.4.1 Extensions to Include Query Weights 

Consider again the same document that contains query terms ti and t2 with 
weights w1 and w2 • Previously, we assumed the query was simply a Boolean 
request of the form (t1 OR t2 ) or (t1 AND t2). We now add the weights q1 and 
q2 to the query. The new similarity coefficient that includes these weights is 
computed as: 

2.4.2 Extending for arbitrary numbers of terms 

For Euclidean distances in two-dimensional space, a 2-norm is used. To com­
pute the distance from the origin in multi-dimensional space, an Lp vector norm 
is used. The parameter,p, allows for variations on the amount of importance 
the weights hold in evaluating the measure of relevance. The new similarity 
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coefficient for a query Q with terms ti and ti with weights qi and qi and a 
document Di with the same terms having weights of Wi and Wj is defined as: 

l. 
. _ [qf(l - wf) + cf;(l - wf)] p 

sim(D, Q(q, /\ q;)) - 1 - qf + cf; 

At p equal to one, this is equivalent to a vector space dot product. At p equal 
to infinity, this reduces to a normal Boolean system where term weights are 
not included. Initial tests found some improvement with the extended Boolean 
indexing over vector space (i.e., p = 2), but these tests were only done for small 
data collections and were computationally more expensive than the vector space 
model. 

2.4.3 Automatic Insertion of Boolean Logic 

Each of the retrieval strategies we have addressed do not require users to iden­
tify complex Boolean requests. Hence, with the use of OR, a query consisting 
only of terms can be used. Weights can be automatically assigned (using some­
thing like t/-idf) and documents can then be ranked by inserting OR's between 
each of the terms. The conventional vector space model, implicitly computes a 
ranking that is essentially an OR of the document terms. Any document that 
contains at least one of the terms in the query is ranked with a score greater 
than 0. 

Conversely, a more sophisticated algorithm takes a sequence of terms and 
automatically generate ANDs and ORs to place between the terms [Fox, 1983a]. 
The algorithm estimates the size of a retrieval set based on a worst-case sum 
of the document frequencies. If term t1 appears in 50 documents and term 
t2 appears in 100 documents, we estimate that the query will retrieve 150 
documents. This will only happen if t1 and t2 never co-occur in a document. 

Using the worst-case sum, the terms in the query are ranked by document 
frequency. The term with the highest frequency is placed into a REMOVED set. 
This is done for the two highest frequency terms. Terms from the REMOVED 
set are then combined into pairs, and the pair with the lowest estimated retrieval 
set is added. The process continues until the size of the retrieval set is below 
the requested threshold. 

2.5 Latent Semantic Indexing 

Matrix computation is used as a basis for information retrieval in the retrieval 
strategy called Latent Semantic Indexing (Deerwester et al., 1990]. The premise 
is that more conventional retrieval strategies (i.e., vector space, probabilistic 
and extended Boolean) all have problems because they match directly on key­
words. Since the same concept can be described using many different keywords, 
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this type of matching is prone to failure. The authors cite a study in which 
two people used the same word for the same concept only twenty percent of 
the time. 

Searching for something that is closer to representing the underlying seman­
tics of a document is not a new goal. Canonical forms have been proposed 
for natural language processing since the early 1970s [Winograd, 1983, Schank, 
1975]. Applied here the idea is not to find a canonical knowledge representa­
tion, but to use matrix computation, in particular Singular Value Decompo­
sition (SVD). This filters out the noise found in a document, such that two 
documents that have the same semantics ( whether or not they have matching 
terms) will be located close to one another in a multi-dimensional space. 

The process is relatively straightforward. A term-document matrix A is con­
structed such that location ( i, j) indicates the number of times term i appears 
in document j. A SVD of this matrix results in matrices U :E vr such that 
:E is a diagonal matrix. A is a matrix that represents each term in a row. 
Each column of A represents documents. The values in :E are referred to as 
the singular values. The singular values may then be sorted by magnitude and 
the top k values are selected as a means of developing a "latent semantic" rep­
resentation of the A matrix. The remaining singular values are then set to 0. 
Only the first k columns are kept in U1,; only the first k rows are recorded in 
V[. After setting the results to 0, a new A' matrix is generated to approximate 
A= U}:VT. 

Comparison of two terms is done via an inner product of the two correspond­
ing rows in U1,. Comparison of two documents is done as an inner product of 
two corresponding rows in V[. 

A query-document similarity coefficient treats the query as a document and 
computes the SVD. However, the SVD is computationally expensive; so, it is 
not recommended that this be done as a solution. Techniques that approximate 
:E and avoid the overhead of the SVD exist. For an infrequently updated 
document collection, it may be pragmatic to periodically compute the SVD. 

2.5.1 Example 

To demonstrate Latent Semantic Indexing we will use our previous query and 
document example: 

Q: "gold silver truck" 
D1 "Shipment of gold damaged in a fire." 
D2 : "Delivery of silver arrived in a silver truck." 
Da: "Shipment of gold arrived in a truck." 

The A matrix is obtained from the numeric columns in the term-document 
table given below: 
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term Di D2 D3 
a 1 1 1 
arrived 0 1 1 
damaged 1 0 0 
delivery 0 1 0 
fire 1 0 0 
gold 1 0 1 
in 1 1 1 
of 1 1 1 
shipment 1 0 1 
silver 0 2 0 
truck 0 1 1 

This step computes the singular value decompositions (SVD) on A. This 
results in an expression of A as the product of U E VT. In our example, A is 
equal to the product of-

-0.4201 
-o.2gg5 
-0.1200 
-0.1576 
-0.1206 
-0.2626 
-0.4201 
-0.4.201 
-0.2626 
-0.8161 
-0.2996 

0.0748 
-0.2001 

0.2749 
-0.8040 

0.2749 
0.8794 
0.0748 
0,0748 
0.8794 

-0.6098 
-0.2001 

-0.0460 
0.4078 

-0.4188 
-0.2006 
-0.4588 

0.1547 
-0.0400 
-0.0480 

0.1547 
-0.4018 

0.4078 

0 0 ] [ -0.4946 
2.3616 0 0.6492 

0 1.2787 -0.1780 

-0.8468 
-0.719-l 
-0.2666 

-0.6817 ] 
-0.2469 

0.7760 

However, it is not the intent to reproduce A exactly. What is desired, is to 
find the best rank k approximation of A. We only want the largest k singular 
values (k < 3). The choice of k and the number of singular values in :E to 
use is somewhat arbitrary. For our example, we choose k = 2. We now have 
A2 = U2 I:;2 Vl. Essentially, we take only the first two columns of U and the 
first two rows of E and VT. 

This new product is given below-

-0.4201 0.0748 
-0.2995 -0.2001 
-0.1206 0.2749 
-0.1576 -0.3046 
-0.1206 0.2749 

[ 4.0989 0 ] [ -0.4945 -0.6458 -0.5817 ] -0.2626 0.3794 
0 2.3616 0.6492 -0.7194 -0.2469 

-0.4201 0.0748 
-0.4201 0.0748 
-0.2626 0.3794 
-0.3151 -0.6093 
-0.2995 -0.2001 

To obtain a k x 1 dimensional array, we now incorporate the query. The query 
vector qT is constructed in the same manner as the original A matrix. The 
query vector is now mapped into a 2-space by the transformation qTU2 I:;;1 . 

This is given below-
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0 -0.4201 0.0748 
0 -0.2995 -0.2001 
0 -0.1206 0.2749 
0 -0.1576 -0.3046 
0 -0.1206 0.2749 

[ 0.244~ 0.423~ ] = [ -0.2140 1 -0.2626 0.3794 -0.1821 ] 
0 -0.4201 0.0748 
0 -0.4201 0.0748 
0 -0.2626 0.3794 
1 -0.3151 -0.6093 
1 -0.2995 -0.2001 

We could use the same transformation to map our document vectors into 2-
space, but the rows of V2 contain the co-ordinates of the documents. Therefore-

Di = (-0.4945 
D2 = (-0.6458 
Da = (-0.5817 

0.6492) 
-0.7194) 
-0.2469) 

Finally, we are ready to compute our relevance value using the cosine similarity 
coefficient. This yields the following-

Di = (-0.2140)(-0.4945) + (-0.1821)(0.6492) = _0_0541 
J(-0.2140)2 + (-0.1821)2 )J(-0.4945) 2 + (-0.6492)2 ) 

D 2 = (-0.2140)(-0.6458) + (-0.1821)(-0.7194) = 0_9910 
J(-0.2140) 2 + (-0.1821) 2 )J(-0.6458)2 + (-0.7194)2) 

D3 = (-0.2140)(-0.5817) + (-0.1821)(-0.2469) = 0_9543 
J(-0.2140)2 + (-0.1821)2)J(-0.5817)2 + (-0.2469)2) 

2.5.2 Choosing a Good Value of k 

The value k is the number of columns kept after the SVD and it is determined 
via experimentation. Using the MED database of only 1,033 documents and 
thirty queries, the average precision over nine levels of recall was plotted for 
different values of k. Starting at twenty, the precision increases dramatically 
up to values of around 100, and then it starts to level off. 

2.5.3 Comparison to Other Retrieval Strategies 

A comparison is given between Latent Semantic Indexing (LSI) with a factor 
of 100 to both the basic tf-idf vector space retrieval strategy and the extended 
Boolean retrieval strategy. For the MED collection, LSI had thirteen percent 
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higher average precision than both strategies. For the CISI collection of sci­
entific abstracts, LSI did not have higher precision. Upon review, the authors 
found that the term selection for the LSI and tf-idf experiments was very dif­
ferent. The LSI approach did not use stemming or stop words. When the same 
terms were used for both methods, LSI was comparable to tf-idf. More recent 
work has been done with LSI on the TIPSTER collection [Dumais, 1994]. In 
this work, LSI was shown to perform slightly better than the conventional vec­
tor space model, a 0.24 average precision as compared to 0.22 average precision. 

2.5.4 Potential Extensions 

LSI is relatively straightforward because few variations have been described 
in the literature. It is the only retrieval strategy to make extensive use of 
matrix computation. LSI focuses on the need for a semantic representation of 
documents that is resilient to the fact that many terms in a query can describe 
a relevant document, but not actually be present in the document. 

2.5.5 Run-Time Performance 

Run-time performance of the LSI approach is clearly a serious concern. With 
the vector space or probabilistic retrieval strategy, an inverted index is used 
to quickly compute the similarity coefficient. Each document in the collection 
does not need to be examined (unless a term in the query appears in every 
document). With LSI, an inverted index is not possible as the query is rep­
resented as just another document and must, therefore, be compared with all 
other documents. 

Also, the SVD itself is computationally expensive. We note that several 
parallel algorithms have been developed specifically for the computation of the 
SVD given here [Berry, 1992]. For a document collection with N documents 
and a singular value matrix I: of rank k, an O(N2 k3 ) algorithm is available. 
A detailed comparison of several parallel implementations for information re­
trieval using LSI is given in [Letsche and Berry, 1997]. 

2.6 Neural Networks 

Neural networks consist of nodes and links. Essentially, nodes are composed 
of output values and input values. The output values, when activated, are 
then passed along links to other nodes. The links are weighted, because the 
value passed along the link is the product of the sending nodes output and the 
link weight. An input value of a node is computed as the sum of all incoming 
weights. Neural networks can be constructed in layers such that all the data 
the network receives is activated in phases, and where an entire layer sends 
data to the next layer in a single phase. Algorithms that attempt to learn 
based on a training set, modify the weights of the links in response to training 
data. Initial work with neural networks to implement information retrieval was 
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done in [Belew, 1989). This work used only bibliographic citations, but it did 
illustrate the basic layered approach used by later efforts. 

For ad hoc query retrieval, neural nets have been used to implement vector 
space retrieval and probabilistic retrieval. Additionally, relevance feedback may 
be implemented with neural networks. 

Using a neural network to implement vector space retrieval can at first ap­
pear to be of limited interest because the model can be implemented more 
easily without the use of neural networks. However, neural networks provide a 
learning capability in which the network can be changed based on relevance in­
formation. In this regard, the network adapts or learns about user preferences 
during a session with an end-user. 

Section 2.6.1 describes a vector space implementation with a neural network. 
Section 2.6.2 describes implementation of relevance feedback. Section 2.6.3 
describes a learning algorithm that can be used with a neural network for 
information retrieval. Subsequently, we describe a probabilistic implementation 
in Section 2.6.4. Section 2.6.5 describes how term components may be used 
within neural networks. Section 2.6.6 uses weights derived from those used for 
vector space and probabilistic models. 

2.6.1 Vector Space with Neural Networks 

Using a neural network to implement the vector space model is done by setting 
up a network of three types of nodes: QUERY, TERM, and DOCUMENT 
[Crouch et al., 1994). The links between the nodes are defined as query-term 
links and document-term links. A link between a query and a term indicates 
the term appears in the query. The weight of the link is computed as tf-idf for 
the term. Document-term links appear for each term that occurs in a given 
document. Again, a tf-idf weight can be used. 

A feed-forward network works by activating a given node. A node is active 
when its output exceeds a given threshold. To begin, a query node is activated 
by setting its output value to one. All of its links are activated and subsequently 
new input weights for the TERM nodes are obtained. The link sends a value 
of (tf)(id/)(1) since it transmits the product of the link weight with the value 
sent by the transmitting node (a one in this case). The weight, tf-idf in this 
case, is received by the term node. A receiving node computes its weight as the 
sum of all incoming links. For a term node with only one activated query, one 
link will be activated. The TERM node's output value will be a tf-idf weight. 
In the next phase, the TERM nodes are activated and all of the links that 
connect to a document node are activated. The DOCUMENT node contains 
the sum of all of the weights associated with each term in the document. For 
a collection with t terms, the DOCUMENT node associated with document j 
will now have the value: 

t 

DOCj = I)tf;j)(idfi) 
i=l 
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The DOCUMENT node now has a weight associated with it that measures the 
relevance of the document to a given query. It can easily be seen that this 
weight is equivalent to a simple dot product similarity coefficient as given in 
Section 2.1. 

2.6.2 Relevance Feedback with Neural Nets 

To implement relevance feedback, a new set of links are added to the net­
work. The new links connect DOCUMENT nodes back to TERM nodes. The 
document-term link is activated after the initial retrieval. Figure 2.8 illustrates 
this process along with a sample query and three documents. Links are fed 
into a newly defined input site on the TERM node, and their input is added 
to the value found in the existing query site of the TERM node. Without 
relevance feedback, the network operates in two phases. The first phase sends 
information from the QUERY nodes to the TERM nodes. The second phase 
sends information from the TERM nodes to the DOCUMENT nodes. 

If relevance feedback is used, processing continues. The third phase sends in­
formation from the DOCUMENT nodes to the TERM nodes for the documents 
that are deemed relevant. The relevant documents are identified manually or 
the top n documents may be deemed relevant. Finally, in the fourth phase, the 
TERM nodes are activated, if they exceed a threshold parameter. The TERM­
DOCUMENT links are used to send the newly defined weights obtained during 
the relevance feedback phase to the DOCUMENT nodes. At this point, the 
DOCUMENT nodes are scored with a value that indicates the effect of a single 

iteration of relevance feedback. 
Initial experiments with the MEDLARS and CACM collection found an 

improvement of up to fifteen percent in average precision for MED LARS and a 
degradation of eleven percent for CACM. As mentioned before, these collections 
are very small. Using a residual evaluation, in which documents found before 
relevance feedback are no longer considered, the average precision for CACM 
reached twenty-one percent and MEDLARS was as high as sixty percent. 

2.6.3 Learning Modifications to the Neural Network 

The links between the terms and documents can be modified so that future 
queries can take advantage of relevance information. Typical vector space rel­
evance feedback uses relevance information to adjust the score of an individual 
query. A subsequent query is viewed as a brand new event, and no knowledge 
from any prior relevance assessments is incorporated. 

To incorporate relevance information into subsequent queries, the document 
nodes add a new signal called the learning signal. This is set to one if the 
user judges the document as relevant, zero if it is not judged, and negative 
one if it is judged as non-relevant. Term-document links are then adjusted 
based on the difference between the user assessment and the existing document 
weight. Documents with high weights that are deemed relevant do not result 
in much change to the network. A document weighted 0.95 will have a 8 of 
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Figure 2.8. Neural Network with Feedback 

Query Layer 

Term Layer 

Term Layer 

Example 

1 - 0.95 = 0.05, so each of its term-document links will be increased by only 
five percent. A document with a low weight that is deemed relevant will result 
in a much higher adjustment to the network. 

Results of incorporating the learning weight were not substantially different 
than simple relevance feedback, but the potential for using results of feedback 
sets this approach apart from traditional vector space relevance ranking. 

2.6.4 Neural Networks for Probabilistic Retrieval 

Standard probabilistic retrieval based on neural networks is described in [Crestani, 
1994]. The standard term weight given in Sparck Jones and described in more 
detail in Section 2.2.1 is used. This weight is: 
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r·(N-n·-R+r·) 
log ' ' ' 

(R - ri)(ni - ri) 

where-

N number of documents 

R = relevant documents 

ri = number of relevant documents that contain term i 

ni number of documents (relevant or non-relevant) that contain term i 

The weight is a ratio of how often a term appears in relevant documents to 
the number of times it occurs in the whole collection. A term that is infrequent 
in the collection, but appears in most of the relevant documents is given a high 
weight. These weights are used as the weight of the query-term links, the term­
document links, and essentially replaces the tf-idf weights used in the vector 
space model. The sum operation to combine links takes place as before, and 
results in a value that is very similar to the weight computed by the standard 
probabilistic retrieval model. 

The training data are used, and a standard back propagation learning algo­
rithm is used to re-compute the weights. Once training is complete, the top 
ten terms are computed using the neural network and the query is modified to 
include these terms. 

Using the Cranfield collection, the neural network-based algorithm per­
formed consistently worse than the News Retrieval Tool, an existing proba­
bilistic relevance feedback system (Sanderson and Rijsbergen, 1991). The au­
thors cite the relative lack of training data as one problem. Also, the authors 
note that the large number of links in the neural network makes the network 
cumbersome and consumes a substantial computational resource. 

2.6.5 Component Based Probabilistic Retrieval with Neural Nets 

A component-based retrieval model using neural networks is given in [Kwok, 
1989). A three-layered network is used as before, but the weights are different. 
Query-term links for query a are assigned a weight of Wka = ¥. Document 

q 

term links for document i are assigned Wki = ¥;'-, where Qik indicates the term 
frequency of term k in query i. Similarly, d;k is the term frequency of term k 

in document i. L indicates the number of components in a document or query. 
Term-query links are weighted Wak and document-term links are weighted wu,. 
Definitions for Wak and wil, are found in Section 2.2.4. The query-focused 
measure is obtained by activating document nodes and feeding forward to the 
query. The document-focused measure is obtained by activating the query 
nodes and feeding forward to the documents. 

Kwok extends his initial work with neural networks in a recent paper (Kwok, 
1995). The basic approach is given along with new learning algorithms that 
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make it possible to modify the weights inside of the neural network based on 
a training collection. Learning algorithms that added new terms to the query 
based on relevance feedback were given. Other algorithms did not require any 
additional query terms and simply modified the weights. The algorithms were 
tested on a larger corpus using over three hundred megabytes of the Wall Street 
Journal portion of the TIPSTER collection. Kwok goes on to give learning algo­
rithms based on no training collections, training based on relevance information 
and query expansion. 

Without a training collection some initial data estimates can be made that 
are constant as described in Section 2.2.4. Training with relevance information 
proceeds using document-term links and term-document links as described in 
Section 2.6.2. 

2.6.6 Neural Networks Using Combined Weights 

A similar input-term-document-output layered neural network was used for 
TREC-6 [Boughanem and Soule-Depuy, 1997]. To our knowledge, this is the 
first report of the use of a neural network on a reasonably large document 
collection. 

The key weight, which is used to represent the occurrence of a term in a 
document, is based on the pivoted document length normalization developed 
for the vector space model and the document length normalization developed 
for the probabilistic model (See Section 2.1.2 and Section 2.2.3). 

The weight of the link from term ti to document D; is: 

(1 + log(t/i;)) * (h1 + h2 * log f )) 
Wij = d 

h3+h4•i 

where--

th; = weight of term iin document j 

d/i = number of documents that contains term i 
d; = length in terms (not included stop terms) of document j 
.!l average document length 

Tuning parameters, h1, h2, h3, and h4, were obtained by training on the TREC-
5 collection. Relevance feedback was also incorporated with the top twelve 
documents being assumed relevant and used to supply additional terms. Doc­
uments 500-1000 were assumed non-relevant. An average precision of 0.1772 
was observed on the TREC-6 data, placing this effort among the top performers 
at TREC-6. 

2.6. 7 Neural Networks for Document Clustering 

A neural network algorithm for document clustering is given in [Macleod and 
Robertson, 1991]. The algorithm performs comparably to sequential clustering 
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algorithms that are all hierarchical in nature. On a parallel machine the neural 
algorithm may perform substantially faster since the hierarchical algorithms 
are all inherently sequential. 

The algorithm works by first associating a node in the network for each 
cluster. Each node then computes (in parallel) a measure of similarity between 
the existing document and the centroid that represents the cluster associated 
with the node. First, a similarity coefficient is computed between the incoming 
document X and the existing cluster centroids. The input nodes of the neural 
network correspond to each cluster. If the similarity coefficient, s1 , is higher 
than a threshold, siavg, the input node is activated. It then loops back to 
itself after a small recalculation to participate in a competition to add X to 
the cluster. Nodes that are not close enough to the incoming document are 
deactivated. 

A new pass then occurs for all of the nodes that won the first round and the 
similarity coefficient is computed again. The process continues until only one 
cluster passes the threshold. At this point, a different similarity coefficient is 
computed, s2 , to ensure the winning cluster is reasonably close to the incoming 
document. If it is close enough, it is added to the cluster and the centroid for 
the cluster is updated. Otherwise, a new cluster is formed with the incoming 
document. 

The algorithm performed comparably to the single linkage, complete link­
age, group average, and Ward's method which are described in Section 3.2. 
Given that this algorithm is non-hierarchical and can be implemented in par­
allel, it can be more practical than its computationally expensive hierarchical 
counterparts. 

2. 7 Genetic Algorithms 

Genetic algorithms are based on principles of evolution and heredity. A recent 
overview of genetic algorithms used for information retrieval is given in (Chen, 
1995]. Chen overviews the following steps for genetic algorithms-

1. Initialize Population 

2. Loop 

■ Evaluation 

■ Selection 

■ Reproduction 

■ Crossover 

■ Mutation 

3. Convergence 

The initial population consists of possible solutions to the problem, and a fit­
ness function that measures the relative "fitness" of a given solution. Note that 
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the similarity coefficient is a good fitness function for the problem of finding rel­
evant documents to a given query. Some solutions are selected (preferably the 
ones that are most fit} to survive, and go on to the next generation. The solu­
tions correspond to chromosomes and each component of a solution is referred 
to as a gene. 

The next generation is formed by selecting the surviving chromosomes. This 
is done based on the fitness function. A value Fis computed as the sum of the 
individual fitness functions-

population 

F = L fitness(½) 
i=l 

where population is the number of initial solutions. Consider a case where the 
initial population has a fitness function as follows: 

i fitness{i} 
1 5 
2 10 
3 25 
4 50 
5 10 

The aggregate sum of the fitness function, F, is 100, and the population size is 
five. To form the next generation, five values are chosen randomly, with a bias 
based on their corresponding portion of F. 

The table below gives the proportions of the total for each entry in the 
population. 

i fitness(i) litneaa(i) Selection Interval 

1 5 0.05 [0,0.05) 

2 10 0.10 [0.05,0.15) 

3 25 0.25 [0.15,0.40) 

4 50 0.50 [0.40,0.90) 

5 10 0.10 [0.90,1.0) 

To form a new generation of size five, five random values are selected from 
between zero and one. The selection interval used for each member of the 
population is based on its portion of the fitness function. If the random number 
is 0.50 it falls within the (0.40, 0.90] interval, and member four is selected. 
The magnitude of the fitness for a given member plays a substantial role in 
determining whether or not that member survives to the next generation. In 
our case, member four's fitness function is one half of the fitness function. There 
is a 1 - ( ½ )5 = ~~ chance of selecting this member into the next round. 

Two types of changes can occur to the survivors-a crossover or a muta­
tion. A crossover occurs between two survivors and is obtained by swapping 
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components of the two survivors. Consider a case where the first survivor is 
represented as 11111 and the second is 00000. A random point is then selected, 
(e.g., three). After the crossover the two new children are: 11100 and 00011. 
This first child is derived from the first three one's from the first parent and 
the last two zero's of the second parent. The second child is derived from the 
first three zero's of the second parent with the last two one's of the first parent. 

Subsequently, mutations occur by randomly examining each gene of each 
survivor. The probability of mutation is a parameter to the genetic algorithm. 
In implementations of genetic algorithms for information retrieval, the genes 
are represented as bits and a mutation results in a single bit changing its value. 
In our example, a random mutation in the second bit of the second child results 
in the second child changing its value from zero to one giving 01011. 

The process continues until the fitness function for a new generation or 
sequence of generations is no better than it was for a preceding generation. 
This is referred to as convergence. Some algorithms do not attain convergence 
and are stopped after a predetermined number of generations. 

2.7.1 Forming Document Representations Using a Genetic Algorithm 

An initial foray into the use of genetic algorithms for information retrieval is 
given in [Gordon, 1988]. The premise being that a key problem in information 
retrieval is finding a good representation for a document. Hence, the initial 
population consists of multiple representations for each document in the col­
lection. Each representation is a vector that maps to a term or phrase that is 
most likely selected by some users. A fixed set of queries is then identified, and 
a genetic algorithm is used to form the best representation for each document. 

The query representation stays fixed, but the document representation is 
evaluated and modified using the genetic algorithm. The Jaccard similarity 
coefficient is used to measure the fitness of a given representation. The total 
fitness for a given representation is computed as the average of the similarity 
coefficient for each of the training queries against a given document representa­
tion. Document representations then "evolve" as described above by crossover 
transformations and mutations. Overall, the average similarity coefficient of all 
queries and all document representations should increase. Gordon showed an 
increase of nearly ten percent after forty generations. 

First, a set of queries for which it was known that the documents were 
relevant were processed. The algorithm was then modified to include processing 
of queries that were non-relevant. Each generation of the algorithm did two 
sets of computations. One was done for the relevant queries and another for the 
non-relevant queries, against each representation. Survivors were then selected 
based those that maximized the increase of the average Jaccard score to the 
relevant queries and maximized a decrease of the average Jaccard score for the 
non-relevant queries. After forty generations, the average increase was nearly 
twenty percent and the average decrease was twenty-four percent. Scalability 
of the approach can not be determined since the queries and the documents 
came from an eighteen document collection with each document having eighteen 
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different description collections. These results must be viewed as somewhat 
inconclusive-particularly for modem day collections. 

It should be noted, however, that although we have referred to this as a 
document indexing algorithm, it is directly applicable to document retrieval. 
Different automatically generated representations, such as only terms, only 
phrases, different stemming algorithms, etc., could be used. After some train­
ing and evolution, a pattern could emerge that indicates the best means of 
representing documents. Additionally, we note that this strategy may be more 
applicable for document routing applications than for ad hoc query processing. 

2. 7.2 Automatic Generation of Query Weights 

A genetic algorithm that derives query weights is given in [Yang and Korfhage, 
1994). It was tested on the small Cranfield collection. Tests using the DOE 
portion of the TIPSTER collection ( and associated modifications that were nec­
essary to scale to a larger collection) are given in [Yang and Korfhage, 1993]. 
Essentially, the original query is taken without any weights. The initial pop­
ulation is simply composed of randomly generating ten sets of weights for the 
terms in the original query. In effect, ten queries then exist in the population. 

The genetic algorithm subsequently implements each of the queries and iden­
tifies a fitness function. First, the distance from the query to each document 
is computed, and the top x documents are retrieved for the query (x is deter­
mined based on a distance threshold used to determine when to stop retrieving 
documents, with an upper limit of forty documents). The fitness function is 
based on a relevance assessment of the top x documents retrieved: 

fitness(i) = lORr - Rn - Nr 

where-

Rr = number of relevant retrieved 

Rn = number of non-relevant retrieved 

Nr = number of relevant not retrieved 

Basically, a good fitness value is given for finding relevant documents. Since 
it is difficult to retrieve any relevant documents for larger collections, a constant 
of ten is used to give extra weight to the identification of relevant documents. 
Selection is based on choosing only those individuals whose fitness is higher 
than the average. Subsequently, reproduction takes place using the weighted 
application of the fitness value such that individuals with a high fitness value 
are most likely to reproduce. Mutations are then applied with some randomly 
changed weights. Crossover changes occur in which portions of one query vector 
are swapped with another. The process continues until all relevant documents 
are identified. The premise is that the original queries will find some relevant 
documents and, based on user feedback, other relevant documents will be found. 
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Tests on the Cranfield collection showed improved average precision, after 
feedback, to be twenty percent higher than previous relevance feedback ap­
proaches. In the follow-up paper using the DOE collection, the authors indicate 
that the genetic algorithm continues to find new relevant documents in each 
pass. This is interesting because the only thing that is changing in the query 
are the query weights. No new terms are added or removed from the query. 
Yang and Kortbage did use a relatively large collection {the DOE portion of 
the TIPSTER document collection) but only tested two queries. 

2. 7.3 Automatic Generation of Weighted Boolean Queries 

Genetic algorithms to build queries are given in [Kraft et al., 1994, Petry et al., 
1993]. The idea is that the perfect query for a given request can be evolved from 
a set of single query terms. Given a set of documents known to be relevant to the 
query, all of the terms in those documents can be used as the initial population 
for a genetic algorithm. Each term is then a query, and its fitness can be 
measured with a similarity coefficient (Kraft et al., used the Jaccard coefficient}. 
Mutations of the query terms resulted in weighted Boolean combinations of the 
query terms. Three different fitness functions were proposed. The first is simple 
recall-

r 
E1 = R 

where r is the number of relevant retrieved and R is the number of known 
relevant. 

The second combines recall and precision as: 

E2 = a(recall} + {3(precisian) 

where a and /3 are arbitrary weights. 
The results showed that either of E1 or E2 fitness functions were able to 

generate queries that found all of the relevant documents ( after fifty genera­
tions}. Since & incorporated precision, the number of non-relevant documents 
found decreased from an average of thirty-three (three different runs were im­
plemented for each test) to an average of nine. 

This work showed that genetic algorithms could be implemented to generate 
weighted Boolean queries. Unfortunately, it was only done for two queries on a 
small document collection (CACM collection with 483 documents), so it is not 
clear if this algorithm scales to a larger document collection. 

2.8 Fuzzy Set Retrieval 

Fuzzy sets were first described in [Zadeh, 1965]. Instead of assuming that an 
element is a member in a set, a membership function is applied to identify the 
degree of membership in a set. For information retrieval, fuzzy sets are useful 
because they can describe what a document is "about." 

A set of elements where each element describes what the document is about 
is inherently fuzzy. A document may be about "medicine" with some oblique 
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references to lawsuits, so maybe it is slightly about "medical malpractice." 
Placing "medical malpractice" as an element of the set is not really accurate, 
but eliminating it is also inaccurate. A fuzzy set is a membership in which the 
strength of membership of each element is inherently more accurate. In our 
example, the set of concepts that describe the document appears as: 

C = {(medicine, 1.0), (malpractice, 0.5)} 

The set C is a fuzzy set since it has degrees of membership associated with 
each member. More formally, a fuzzy set including the concepts in C = 
{ c1, c2, ... , Cn} is represented as: 

A= (ci, /A(c1)}, (c2, /A(c2)), • •,, (en, /A(c,.)) 

where / A : C ➔ [0, 1] is a membership function that indicates the degree of 
membership of an element in the set. 

For finite sets, the fuzzy set A is expressed as: 

A= { fA(c1)' f A(c2' ... ' /A(c,.)} 
C1 C2 Cn 

Basic operations of intersection and union on fuzzy sets are given below. Es­
sentially, the intersection uses the minimum of the two membership functions 
for the same element, and union uses the maximum of the two membership 
functions for the same element. 

The following definitions are used to obtain intersection, union, and comple­
ment. 

2.8.1 Fuzzy Set Boolean Retrieval 

Fuzzy set extensions to Boolean retrieval were developed in the late 1970s 
and are summarized well in [Salton, 1989]. A Boolean similarity coefficient 
can be computed by treating the terms in a document as fuzzy because their 
membership is based on how often they occur in the document. 

Consider a set D that consists of all documents in the collection. A fuzzy set 
Dt can be computed as the set D that describes all documents that contain the 
term t. This set appears as- Dt = {(d1 , 0.8), (d:z,0.5)}. This indicates that d1 

contains element t with a strength of 0.8 and d2 contains t with a strength of 
0.5. 
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Similarly, a set D. can be defined as the set of all documents that contain 
term a. This set might appear as- D. = {(d1,0.5), (c:b,0.4)} 

Computing (a Vt) requires n. u Dt and (a I\ t) n. n Dt. These can be com­
puted using the maximum value for union and the minimum for intersection. 
Hence--

(a Vt)= n. LJDt = {(d1,0.8), (d2,0.5)} 

(a I\ t) = D. n Dt = {(di, 0.5), (d2, 0.4)} 

More complex Boolean expressions are constructed by applying the results of 
these operations to new expressions. Ultimately, a single set that contains the 
documents and their similarity coefficient is obtained. 

One problem with this approach is that the model does not allow for the 
weight of query terms. This can be incorporated into the model by multiplying 
the query term weight by the existing membership strength for each element 
in the set. Another problem is that terms with very low weight dominate the 
similarity coefficient. Terms that have a very low membership function are 
ultimately the only factor in the similarity coefficient. Consider a case where 
document one contains term a with a membership value of 0.0001 and term 
t with a membership value of 0.5. In a query asking for a At, the score for 
document one will be 0.0001. Should the query have many more terms, this 
one term dominates the weight of the entire similarity coefficient. A remedy 
for this is to define a threshold x in which the membership function becomes 
zero if it falls below x. 

2.8.1.1 Example. We now apply fuzzy set Boolean retrieval to our exam­
ple. Our query "gold silver truck" is inadequate as it is designed for a relevance 
ranking, so we change it to the Boolean request: "gold OR silver OR truck." 
We take each document as a fuzzy set. To get a strength of membership for 
each term, we take the ratio of the term frequency within the document to the 
document length. Hence, our collection of documents becomes a collection of 
fuzzy sets: 

D1 = {(a, 0.143), (damaged, 0.143), (fire, 0.143), (gold, 0.143), 
(in, 0.143), (of, 0.143), (shipment, 0.143)} 

D2 = {(a, 0.125), (arrived, 0.125), (delivery, 0.125), (in, 0.125), 
(of, 0.125), (silver, 0.25), (truck, 0.125)} 

D3 = {(a, 0.143), (arrived, 0.143), (gold, 0.143), (in, 0.143), 
(of, 0.143), (shipment, 0.143), (truck, 0.143)} 

To compute Q(gold V silver V truck), we look at the documents which con­
tain each of those terms. Gold is in D1 and D3 with a strength of membership 
of 0.143. Silver is only in D2 with a strength of membership of 0.25. Similarly, 
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truck is in D2 with a membership of 0.125 and Da with 0.143. Applying the 
maximum set membership to implement the fuzzy OR, we obtain: 

Q(gold V siltJer V trock} = {(Di, 0.143), (D2, 0.25}, (Da, 0.143)} 

The documents would then be ranked, D2, Di, D3 based on strength of mem­
bership for each document. As another example, consider the query: ( truck A 
(gold V silver)). For this query, we determine D(trock} and D(gold V silver)­
we will refer to these two sets as set A and set B. 

A = D(truck} = {(D2 , 0.125), (D3 , 0.143)} 

For D(gold V silver) we proceed as before, taking the maximum value of 
each degree of membership for each document in which either term appears. 
From our previous computation, we determine: 

B = D(gold V silver) = {(Di, 0.143), (D2, 0.25), (Da, 0.143)} 

Taking the fuzzy intersection of set A with set B we use the minimum strength 
of membership. This yields: 

A n B = D(truck V (gold A silver)) = {(D2, 0.125}, (Da, 0.143)} 

At this point, we have not incorporated any query weights. We now modify 
the example to multiply each strength of membership by the id/for each query 
term. We use the following query term weights-

gold 
3 

= log 2 = 0.176 

silver 
3 

log 1 = 0.477 

truck 
3 

= log 2 = 0.176 

We now compute D(gold V silver V truck}. Di includes only gold with a 
strength of0.143. Gold has a query term weight of0.176 so Di has a weighted 
strength of membership of (0.143)(0.176) = 0.025. 

Silver and truck are found in D2 • Silver has a strength of membership of 
0.25 and a weight of 0.477 so the weighted strength of (0.25)(0.477) = 0.119. 
Similarly, for truck, the weighted strength is (0.125)(0.176} = 0.022. Since we 
are taking the union, we take the maximum value so D2 will have a strength 
of membership of 0.119. 

For D3 , both gold and truck are present with a strength of 0.143 and both 
terms are weighted by 0.176. Hence, the weighted strength is (0.143)(0.176} 
= 0.025. The fuzzy set D(gold V silver V trock) = {(Di, 0.025), (D2 , 0.119}, 
(Da, 0.025)} 
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For the query, D(truck I\ (gold V silver)) we must again determine D(gold I\ 
silver) and D(truck). Using the weighted strength of membership yields: 

A= D(truck) = {(D2 , 0.022), (D3 , 0.025)} 
B = D(gold I\ silver)= {D1 , 0.025), {D2 , 0.119), (D3 , 0.025)}. 

Again, taking the minimum strength of membership to compute the intersec­
tion, we obtain: 

A n B = D(truck I\ (gold V silver)) = {(D2 , 0.022), (D3 , 0.025)} 

2.8.2 Using a Concept Hierarchy and Fuzzy Sets 

An approach using fuzzy logical inference with a concept hierarchy is given in 
1991 in a paper that describes the FIRST system {Fuzzy Information Retrieval 
SysTem) [Lucarella and Morara, 1991). 

A concept network is used to represent concepts found in documents and 
queries and to represent the relationships between these concepts. A concept 
network is a graph with each vertex representing a concept and a directed edge 
between two vertices representing the strength of the association of the two 
concepts. A document can then be represented as a fuzzy set of concepts: 

This indicates that document one contains the concepts (C1 ,C2 ,C3 ) and the 
strength of each concept is given by (w1 , w2 , w3 ). The link relationships are 
defined as fuzzy transitive so that if Ci is linked to Cj, and Ci is linked to Ck, 
and the strength of Ci to Ck is defined as-

F(Ci,Ck) = Min(F(C;,Ci),F(Cj,Ck)) 

To compute the strength between two concepts, take the minimum value of 
all edges along the path, then add query Q at the root of the concept hierarchy. 
For each concept linked to the query, it is possible to obtain the strength of 
that concept for a given document. To do so, find all paths through the concept 
graph from the concept to the document and take the minimum of all edges 
that connect the source concept to the document. Each of these paths results in 
a single value. An aggregation rule is then applied to compute the strength of 
the source concept as the maximum of the value returned by each distinct path. 
A detailed example is given in [Lucarella and Morara, 1991). Note for queries 
involving more than one initial concept, the appropriate fuzzy operations are 
applied to each pair of arguments in a Boolean operator. 
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A comparison of the vector space model to this approach was done. A 300 
document Italian test collection was used with a handbuilt concept graph that 
contained 175 concepts. Ten queries were chosen, and FffiST had comparable 
precision to vector space and had higher recall. 

2.8.3 Allowing Intervals and Improving Efficiency 

In [Chen and Wang, 1995], Lucarella's model was extended through the use of 
intervals rather than real values as concept weights. Additionally, an efficiency 
improvement was added in that a concept matrix was developed. 

The concept matrix is aC x C matrix that is represented such that M(Ci, C;) 
indicates the strength of the relationships between Ci and C;. The strength is 
defined as a single value or an interval such that the strength occurs somewhere 
inside of the interval. The transitive closure T of M is computed via successive 
matrix multiplications of M. Once the T matrix is computed, an entry T( Ci, C;) 
indicates the strength of the relationship of Ci to C;, where the strength is 
computed as the maximum of all paths from Ci to C;. 

Although the initial computation of T is expensive for a concept network 
with a high number of concepts, T efficiently computes a similarity coefficient. 
First, a new matrix of size D x C maps all of the documents to concepts. 
An entry, tij, in this matrix indicates the strength of the relationship between 
document i and concept j. Values for ti; are obtained either directly, if the 
concept appears in the given document, or indirectly, if the concept does not 
appear in the given document-in this case the T matrix is used to obtain the 
weight for that concept. 

Given a document, Di, with concepts (en, Ci2, ..• , Cin) and a query Q with 
concepts (x1, X2, ... , Xn), a similarity coefficient is computed for all concepts 
that exist in the query (a concept that does not exist in the query has the value 
of"-"): 

n 

E T(tij,Xj) 
q(j),¢"-" Aj=l 

where T(x,y) = 1 - Ix - :ul-
The function T measures the difference between the strength of the concept 

found in the document and the user input strength of the concept found in the 
query. The document strength is computed as the minimum of the strengths 
found on the path from the document to the concept. A small difference results 
in a high value of T, and the similarity coefficient simply sums these differences 
for each concept given in the query. 

For intervals, a new function, S, computes the average of the distance be­
tween the high and low ends of the interval. For example, an interval of [3, 5] 
compared with an interval of [2, 6] results in a distance of 13- 21;15-GI = 1. These 
differences are then summed for a similarity coefficient based on intervals. 
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2.9 Summary 

We have described eight different strategies used to rank documents in re­
sponse to a query. The probabilistic model, vector space model, and inference 
networks all make use of statistical measures that essentially rely upon match­
ing terms between a query and a document. The probabilistic model uses basic 
probability theory with some key assumptions to estimate the probability of 
relevance. It is often criticized as requiring pre-existing relevance informa­
tion to perform well. We have described various means of circumventing this 
problem-including K wok's novel idea of using self-relevance to obtain an initial 
estimate. 

The vector space model represents documents and queries as vectors. Sim­
ilarity among documents, and between documents and queries is defined in 
terms of the distance between two vectors. For example, one of the common 
similarity measures is the cosine similarity that treats the difference between 
two documents or a document and a query as the cosine of the angle between 
these two vectors. 

Using evidence, inference networks use Bayesian inference to infer the prob­
ability that a document is relevant. Since inference networks are capable of 
modeling both vector space and probabilistic models, they may be seen as a 
more powerful model. In fact, different inference network topologies have yet 
to be fully explored. 

Latent semantic indexing is the only strategy we have presented that directly 
addresses the problem that relevant documents to a query, at times, contain 
numerous terms that are identical in meaning to the query but do not share 
the same syntax. By estimating the "latent semantic" characteristics of a term­
term matrix, LSI is able to accurately score a document as relevant to the query 
even though the term-mismatch problem is present. 

Neural networks and genetic algorithms are both used commonly for machine 
learning applications and have only initially been used in document ranking. 
Computational resource limitations have prevented their widespread use-but 
the potential for these strategies to retrieve very different documents than the 
other strategies is intriguing. 

The fuzzy set and extended boolean are older strategies that extend the 
widespread use of Boolean requests into relevance ranks. Other strategies re­
quire users to submit a list of terms-instead of a Boolean request-and a 
ranking is then obtained. In some applications, users prefer Boolean requests. 
This is particularly true for those users who have relied on Boolean requests 
for years. 

So which strategy is best? This is still an area for debate, and therefore, 
for further investigation. To our knowledge, no head-to-head comparison of all 
of these strategies has been implemented. The TREC (Text REtrieval Confer­
ence) has been used to compare the effects of complete IR systems, but a system 
includes a strategy and a set of utilities, as well as, a variety of other imple­
mentation details. Thus far, no decisive conclusion can be deduced. Additional 
thoughts and comments related to these strategies are described in [Kowalski, 
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1997, Salton, 1989], and some of the original papers describing these efforts 
were reprinted in [Sparck Jones and Willett, 1997]. 

2.10 Exercises 

1. Show how inference networks can be used to model either the vector space 
model or the probabilistic model. 

2. Download Alice in Wonderland from the internet. Write some code to 
identify the id/ of each term. Identify how closely this work matches the 
Zipfian distribution. 

3. Devise a new strategy that allows users to implement a Boolean retrieval 
request. The results should be ranked in order of the similarity to the query. 
Compare your new strategy with the extended Boolean retrieval strategy. 

4. Describe the effect of adding new or changing existing documents to the 
vector space strategy. What values must be recomputed? How can the 
strategy be slightly modified so that it is more resilient to the addition of 
new documents? 

5. It has been suggested that one or more strategies could be merged to form an 
improved result set. Give two general heuristics to merge results from two 
arbitrary retrieval strategies. Describe the advantages and disadvantages 
inherent in your approach. 
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Many different utilities improve the results of a retrieval strategy. Most utilities 
add or remove terms from the initial query in an attempt to refine the query. 
Others simply refine the focus of the query (use subdocuments or passages in­
stead of whole documents). The key is that each of these utilities (although 
rarely presented as such} are plug-and-play utilities that operate with any ar­
bitrary retrieval strategy. 

The utilities identified are-

1. Relevance Feedback-The top documents found by an initial query are iden­
tified as relevant. These documents are then examined. They may be 
deemed relevant either by manual intervention or by an assumption that 
the top n documents are relevant. Various techniques are used to rank the 
terms. The top t terms from these documents are then added back to the 
original query. 

2. Clustering-Documents or terms are clustered into groups either automat­
ically or manually. The query is only matched against clusters that are 
deemed to contain relevant information. This limits the search space. The 
goal is to avoid non-relevant documents before the search even begins. 

3. Passage-based Retrieval-The premise is that most relevant documents 
have a non-relevant portion and the relevant passage is somewhat con­
centrated. Hence, queries are matched to passages (either overlapping or 
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non-overlapping) of documents, and the results for each passage are then 
combined into a single similarity coefficient. The size of each passage is 
either fixed or varied based on the passage finding algorithm. Other ap­
proaches simply rank each sentence, paragraph, or other naturally occurring 
subdivision of a document. 

4. Parsing (noun phrase processing, stemming, etc.)- Simply matching terms 
does not always yield good results. The identification and use of phrases 
is computationally much easier than proximity operators. Parsing rules 
and/or lists of known phrases are used to identify valid phrases like "New 
York." These phrases are then treated as single terms. Other parsing 
techniques avoid common prefixes or suffixes to allow for matches between 
query and document terms that share a common root but have different 
prefixes or suffixes. 

5. N-grams-The query is partitioned into n-grams (overlapping or 
non-overlapping sequences of n characters). These are used to match queries 
with the document. The goal is to obtain a "fuzzier" match that would be 
resilient to misspellings or optical character recognition (OCR) errors. Also, 
n-grams are language independent. 

6. Thesauri-Thesauri are generated from text or by manual methods. The 
key is not only to generate the thesaurus, but to use it to expand either 
queries or documents to improve retrieval. 

7. Semantic Networks-Concept hierarchies exist in which individual concepts 
are linked to other related concepts. The strength of the relationship is as­
sociated with the link. One such network is Wordnet [Beckwith and Miller, 
1990], but others exist. Attempts to automatically construct such a network 
have been pursued. The challenge is to use the network to expand queries 
or documents to contain more terms describing the contents of the query. 

8. Regression Analysis- Statistical techniques are used to identify parameters 
that describe characteristics of a match to a relevant document. These can 
then be used with a regression analysis to identify the exact parameters 
that refine the similarity measure. 

3.1 Relevance Feedback 

A popular IR utility is relevance feedback. The basic premise is to implement 
retrieval in multiple passes. The user refines the query in each pass based on 
results of previous queries. Typically, the user indicates which of the documents 
presented in response to an initial query are relevant, and new terms are added 
to the query based on this selection. Additionally, existing terms in the query 
can be re-weighted based on user feedback. This process is illustrated in Figure 
3.1. 

An alternative is to avoid asking the user anything at all and to simply 
assume the top ranked documents are relevant. Using either manual (where the 
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Figure 3.1. Relevance Feedback Process 

New Query 
Based on 
Result Set 

I 

user is asked) or automatic (where it is assumed the top documents are relevant) 
feedback, the initial query is modified, and the new query is re-executed. 

For example, an initial query "find information surrounding the various con­
spiracy theories about the assassination of John F. Kennedy" has both useful 
keywords and noise. The most useful keywords are probably assassination and 
John F. Kennedy. Like many queries (in terms of retrieval) there is some mean­
ingless information. Terms such as various and information are probably not 
stop words (i.e., frequently used words that are typically ignored by an IR sys­
tem such as a, an, and, the), but they are more than likely not going to help 
retrieve relevant documents. The idea is to use all terms in the initial query 
and ask the user if the top ranked documents are relevant. The hope is that the 
terms in the top ranked documents that are said to be relevant will be "good" 
terms to use in a subsequent query. 

Assume a highly ranked document contains the term Oswald. It is reasonable 
to expect that adding the term Oswald to the initial query would improve both 
precision and recall. Similarly, if a top ranked document that is deemed relevant 
by the user contains many occurrences of the term assassination, the weight 
used in the initial query for this term should be increased. 

With the vector space model, the addition of new terms to the original 
query, the deletion of terms from the query, and the modification of existing 
term weights has been done. With the probabilistic model, relevance feedback 
initially was only able to reweight existing terms and there was no accepted 
means of adding terms to the original query. The exact means by which rel­
evance feedback is implemented is fairly dependent on the retrieval strategy 
being employed. However, the basic concept of relevance feedback (i.e., run a 
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query, gather information from the user, enhance the query, and repeat) can 
be employed with any arbitrary retrieval strategy. 

Section 3.1.1 discusses the initial use of the vector space model to implement 
relevance feedback. Section 3.1.2 discusses the probabilistic means by which 
relevance feedback is added. 

Relevance feedback has been fertile ground for research, as many tuning 
parameters are immediately apparent. Most feedback algorithms start with 
the premise that within the top x ranked documents, the top t terms will be 
used. Finding correct values for x and t, as well as examining the number of 
iterations required to obtain good results, has been the subject of a fair amount 
of research. 

3.1.1 Relevance Feedback in the Vector Space Model 

Rocchio, in his initial paper, started the discussion of relevance feedback [Roc­
chio, 1971]. Interestingly, his basic approach has remained fundamentally un­
changed. 

Rocchio's approach used the vector space model to rank documents. The 
query is represented by a vector Q, each document is represented by a vector 
D;, and a measure of relevance between the query and the document vector is 
computed as SC(Q, D;), where SC is the similarity coefficient. As discussed in 
Section 2.1, the SC is computed as an inner product of the document and query 
vector or the cosine of the angle between the two vectors. The basic assumption 
is that the user has issued a query Q and retrieved a set of documents. The 
user is then asked whether or not the documents are relevant. After the user 
responds, the set R contains the n1 relevant document vectors, and the set S 
contains the n2 non-relevant document vectors. Rocchio builds the new query 
Q' from the old query Q using the equation given below: 

R. and S; are individual components of R and S, respectively. 
The document vectors from the relevant documents are added to the initial 

query vector, and the vectors from the non-relevant documents are subtracted. 
If all documents are relevant, the third term does not appear. To ensure that 
the new information does not completely override the original query, all vector 
modifications are normalized by the number of relevant and non-relevant doc­
uments. The process can be repeated such that Qi+1 is derived from Q; for as 
many iterations as desired. 

The idea is that the relevant documents have terms matching those in the 
original query. The weights corresponding to these terms are increased by 
adding the relevant document vector. Terms in the query that are in the non­
relevant documents have their weights decreased. Also, terms that are not in 
the original query (had an initial component value of zero) are now added to 
the original query. 
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In addition to using values n 1 and n2 , it is possible to use arbitrary weights. 

The equation now becomes-

Not all of the relevant or non-relevant documents must be used. Adding 
thresholds na and nb to indicate the thresholds for relevant and non-relevant 

vectors results in-

The weights a, /3, and 'Y are referred to as Rocchio weights and are frequently 
mentioned in the annual proceedings of TREC. The optimal values were ex­

perimentally obtained, but it is considered common today to drop the use of 

non-relevant documents (assign zero to -y) and only use the relevant documents. 
This basic theme was used by Ide in follow-up research to Rocchio where the 
following equation was defined: 

n1 

Q' = aQ + f3LR; -Si 
i=l 

Only the top ranked non-relevant document is used, instead of the sum of all 

non-relevant documents. Ide refers to this as the Dec-Hi (decrease using high­
est ranking non-relevant document) approach. Also, a more simplistic weight 

is described in which the normalization, based on the number of document 

vectors-is removed, and a, /3, and 'Y are set to 1 [Salton, 1971a]. This new 
equation is-

n1 n2 

Q' = Q +LR; - LS; 
i=l i=l 

An interesting case occurs when the original query retrieves only non-relevant 

documents. Kelly addresses this case in [Salton, 1971b]. The approach suggests 
that an arbitrary weight should be added to the most frequently occurring 

concept in the document collection. This can be generalized to increase the 

component with the highest weight. The hope is that the term was important, 

but it was drowned out by all of the surrounding noise. By increasing the 
weight, the term now rings true and yields some relevant documents. Note 
that this approach is applied only in manual relevance feedback approaches. It 
is not applicable to automatic feedback as the top n documents are assumed, 
by definition, to be relevant. 

3.1.2 Relevance Feedback in the Probabilistic Model 

We described the basic probabilistic model in Section 2.2. Essentially, the terms 
in the document are treated as evidence that a document is relevant to a query. 
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Given the assumption of term independence, the probability that a document 
is relevant is computed as a product of the probabilities of each term in the 
document matching a term in the query. 

The probabilistic model is well suited for relevance feedback because it is 
necessary to know how many relevant documents exist for a query to compute 
the term weights. Typically, the native probabilistic model requires some train­
ing data for which relevance information is known. Once the term weights are 
computed they are applied to another collection. 

Relevance feedback does not require training data. Viewed as simply a 
utility instead of a retrieval strategy, probabilistic relevance feedback "plugs 
in" to any existing retrieval strategy. The initial query is executed using an 
arbitrary retrieval strategy and then the relevance information obtained during 
the feedback stage is incorporated. 

For example the basic weight used in the probabilistic retrieval strategy is-

where--

Wi 

R = 
N 

ri = 
ni = 

....IL 
w· = log __ R;.;;.-_r;...:, __ 

1 n-r; 
(N-n,)-(R-r;J 

weight of term iin a particular query 

number of documents that are relevant to the query 

number of documents in the collection 

number of relevant documents that contain term i 

number of documents that contain term i 

R and r cannot be known at the time of the initial query unless training data 
with relevance information is available. Realistically, the presence of domain­
independent training data is unlikely. Some other retrieval strategy such as the 
vector space model could be used for the initial pass, and the top n documents 
could be observed. At this point, R can be estimated as the total relevant 
documents found in the top n documents and r is the number of occurrences 
in these documents. The problem of requiring training data before the prob­
abilistic retrieval strategy can be used is eradicated with the use of relevance 
feedback. 

3.1.2.1 Initial Estimates. The initial estimates for the use of relevance 
feedback using the probabilistic model have varied widely. Some approaches 
simply sum the id/ as an initial first estimate. Wu and Salton proposed an 
interesting extension which requires the use of training data. For a given term 
t, it is necessary to know how many documents are relevant to term t for 
other queries. The following equation estimates the value of ri prior to doing 
a retrieval: 

ri=a+blogf 

where f is the frequency of the term across the entire document collection. 
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This equation results in a curve that maps frequency to an estimated number 
of relevant documents. Frequency is an indicator of the number of relevant 
documents that will occur because of a given term. After obtaining a few 
sample points, values for a and b can be obtained by a least squares curve 
fitting process. Once this is done, the value for Ti can be estimated given a 
value of/, and using the value of Ti, an estimate for an initial weight (IW) 
is obtained. The initial weights are then combined to compute a similarity 
coefficient. In the paper [Wu and Salton, 1981] it was concluded (using very 
small collections) that id/ was far less computationally expensive, and that the 
IW resulted in slightly worse precision and recall. However, we are unaware of 
work done with IW on the TREC collection. 

3.1.2.2 Computing New Query Weights. Some variations on the basic 
weighting strategy for use with relevance feedback were proposed in [Robertson 
and Sparck Jones, 1976]. The potential for using relevance feedback with the 
probabilistic model was first explored in [Wu and Salton, 1981]. Essentially, 
Wu and Salton applied Sparck Jones' equation for relevance information. They 
modified the approach by using the similarity coefficient found in the equation 
below. Given a vector Q representing the query and a vector Di representing 
the documents with a collection of t terms, the following equation computes 
the similarity coefficient. The components of di are assumed to be binary. A 
one indicates the term is present, and a zero indicates the term is absent, and 
K is a constant. 

~ Pi(l- Ui) 
SC(Q,Di) = L..,dilog ·{l - ·) +K 

i=l u, P, 

Using this equation requires estimates for Pi and Ui· The simplest estimate 
uses Pi = rk1!i5 and Ui = n,i..,-~W+°i5 . That is, the ratio of the number of relevant 
documents retrieved that contain term i to the number of relevant documents 
is a good estimate of the evidence that a term i results in relevance. The 0.5 is 
simply an adjustment factor. Similarly, the ratio of the number of documents 
that contain term i that were not retrieved to the number of documents that 
are not relevant is an estimate of Ui· Substituting these probabilities into the 
equation yields one of the conventional Sparck Jones weights, w2 we described 
in Section 2.2.1.1: 

n·-r+0.5 
lv-ti+1 

Using relevance feedback, a query is initially submitted and some relevant 
documents may be found in the initial answer set. The top documents are now 
examined by the user and values for Ti and R can be more accurately estimated 
(the values for ni and N are known prior to any retrieval). Once this is done, 
new weights may be computed and the query is executed again. Wu and Salton 
tested four variations of composing the new query: 
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1. Generate the new query based solely on the weights computed after the first 
retrieval. 

2. Generate the new query, but combine the old weights with the new. Wu 
suggested that the weights could be combined as-

Q' = l ; /1 + (1 - /3) (T) 

where Q contains the old weights and T contains the weights computed by using 
the initial first pass. /3 is a scaling factor that indicates the importance of the 
initial weights. The ratio of relevant documents retrieved to relevant documents 
available collection-wide is used for this value (/1 = 5t). A query that retrieves 
many relevant documents should use the new weights more heavily than a query 
that retrieves only a few relevant documents. 

3. Expand the query by combining all the terms in the original query with all 
the terms found in the relevant documents. The weights for the new query are 
used as in step one for all of the old terms (those that existed in the original 
query and in the relevant documents). For terms that occurred in the original 
query, but not in any documents retrieved in the initial phase, their weights 
are not changed. This is a fundamental difference from the work done by 
Sparck Jones because it allows for expansion as well as reweighting. Before 
this proposal, work in probabilistic retrieval relied upon the reweighting of old 
terms, but it did not allow for the addition of new new terms. 

4. Expand the query using a combination of the initial weight and the new 
weight. This is similar to variation number two above. Assuming q1 to qm are 
the weights found in the m components of the original query, and m - n new 
terms are found after the initial pass, we have the following-

Additionally, a modified estimate for Pi and u; was computed. These new 
values are given below: 

ri+ w, 
Pi= R+ l 

ni -r; + N 
U; = N-R+l 

Here the key element of the idf is used as the adjustment factor instead of the 
crude 0.5 assumption. 

Wu and Salton found the fourth variation, which combines results of reweight­
ing and term expansion, to be the most effective. Relatively little difference 
was observed with the modified Pi and q;. 
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Salton and Buckley give an excellent overview of relevance feedback. Twelve 
variations on relevance feedback were attempted, which included: stemmed 
Rocchio, Ide, conventional Sparck Jones probabilistic equation (see Section 
2.2.1}, and the extended probabilistic given in Wu and Salton [Salton and Buck­
ley, 1990). All twelve were tested against six small collections (CACM, CISI, 
CRAN, INSPEC, MED, and NPL). All of these collections were commonly used 
by many researchers prior to the development of the larger TIPSTER collec­
tion. Different parameters for the variations were tried, such that there were 
seventy-two different feedback methods in all. Overall Ide Dec-Hi (decrease 
using the highest ranking elements) performed the best-having a ranking of 
one in three of the six collections and a ranking of two and six in the others. 

3.1.2.3 Partial Query Expansion. The initial work done by Wu and 
Salton in 1981 either used the original query and reweighted it or added all of 
the terms in the initial result set to the query and computed the weights for 
them [Wu and Salton, 1981). The idea of using only a selection of the terms 
found in the top documents was presented in [Harman, 1988). In this paper, the 
top ten documents were retrieved and, of those some documents were manually 
identified as relevant. The question then arises as to which terms from these 
documents should be used to expand the initial query. Harman sorted the 
terms based on six different sort orders and, once the terms were sorted, chose 
the top twenty terms. The sort order had a large impact on effectiveness. Six 
different sort orders were tested on the small Cranfield collection. 

In many of the sort orders a noise measure, n, is used. This measure is 
computed as-

where-

~ tj--,. 
nr. = L., N + log2 /r.t/a 

i=l J/; 

t/;-,. = number of occurrences of term i in document k 
f-,. = number of occurrences of term kin the collection 

N number of terms in the collection 

This noise value increases for terms that occur infrequently in many documents, 
but frequently across the collection. A small value for noise occurs if a term 
occurs frequently in the collection. It is similar to the id/, but the frequency 
within individual documents is incorporated. 

Additional variables used for sort orders are-

p-,. = number of documents in the relevant set that contain term k 

rtfr. number of occurrences of term kin the relevant set 
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A modified noise measure, rnk, is defined as the noise within the relevant set. 
This is computed as-

'°' th rnk = ~Pk 1: log2 fkt/;k 

Various combinations of rnk, n,., and Pk were used to sort the top terms. The 
six sort orders tested were-

1. nk 

2. Pk 

3. rnk 

4. n,. x rt/,. 

5. n,. X rt/,. X Pk 

6. n,. x rtfk 

Sort five above, n,. x fk x Pk, resulted in the highest improvement in average 
precision (9.4%). This is very similar to Pk x id/ which is a reasonable measure 
given that Pk is an intuitively good value to use (i.e., a term that appears 
frequently in the relevant set is probably a good term to add to the query). 
However, this will not be the case for noise terms that occur frequently across 
the collection. This explains why the Pk value did not perform as well as when 
it was combined with n,.. 

Six additional sort orders were tested in a follow-up paper [Harman, 1992]. 
The sorts tested were-

1. (RTi)}d/i) where RTj is the total number of documents retrieved for query 
j, d/; is the document frequency or number of documents in the collection 
that contain term i, and N is the number of documents in the collection. 
This gives additional weight to terms that appear in multiple documents of 
the initial answer set. 

2. !jf - 1:Jf where r;J is the number of retrieved relevant documents for query 
j that have term i. Ri is the number of retrieved relevant documents 
for query j. This gives additional weight to terms that occur in many 
relevant documents and which occur infrequently across the entire document 
collection. 

3. Wii = log:l (~~~~)~:~ where W;J is the term weight for term i in query j. 
This is based on Sparck Jones probabilistic weights given in Section 2.2.1. 
The probability that term i is assigned within the set of relevant documents 
to query j is Pii· The probability that term i is assigned within the set of 
non-relevant documents for query j is Qij· These are computed as-

_ r;j +0.5 
Pii - Ri + 1.0 

d/; - r; + 0.5 
QiJ = N-RJ+l.0 
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4. id/; (pij - Qij) where the theoretical foundation is based on the presumption 
that the term i's importance is computed as the amount that it will increase 
the difference between the average score (SC) of a relevant document and 
the average score of a nonrelevant document. The means of identifying a 
term weight are not specified in this work so for this sort order id!; is used. 
Additional details are given in [Robertson, 1990]. 

5. Wij(pij - Qij) where the term weight is computed as given above. 

6. log(RTFi + l)(pij -Qij) where RT Fi is the number of occurrences of term 
i in the retrieved relevant documents. 

Essentially sort three was found to be superior to sort four, five, and six, but 
there was little difference in the use of the various sort techniques. Sorts one 
and two were not as effective. 

Once the sort order was identified, the number of terms to add to the new 
query was studied. A peak at twenty terms was identified. At TREC, similar 
differences have been observed in which some groups engaged in "massive query 
expansion" in which all terms in the first phase are added to the query, while 
other groups use only a subset of those terms [Buckley et al., 1994, Salton 
and Buckley, 1990]. Some groups at TREC have used fifty terms and twenty 
phrases and obtained good results. 

More recent work in [Lundquist et al., 1997] has explored additional sort 
techniques using the TIPSTER collection and found Pk x nidf to be a good 
performer. The variable, nidf, is a normalized idf using Singhal's document 
length normalization-see Section 2.1.2). Additionally, it was shown that the 
use of the top ten items (either terms or phrases) resulted in a thirty-one percent 
improvement in average precision over the use of the top fifty terms and twenty 
phrases. 

3.1.2.4 Number of Feedback Iterations. The number of iterations 
needed for successful relevance feedback was initially tested in 1971 by Salton 
[Salton, 1971d]. His 1990 work with 72 variations on relevance feedback as­
sumed that only one iteration of relevance feedback was used. Harman investi­
gated the effect of using multiple iterations of relevance feedback in [Harman, 
1992). 

In her work, the top ten documents were initially retrieved. A count of the 
number of relevant documents was obtained, and a new set of ten documents 
was then retrieved. The process continued for six iterations. Searching termi­
nates if zero relevant documents are found in a given iteration. Three variations 
of updating term weights across iterations were used based on whether or not 
the counting of relevant documents found was static or cumulative. Each iter­
ation used the basic strategy of retrieving the top ten documents, identifying 
the top 20 terms, and reweighting the terms. 

The three variations tested were-

1. Cumulative count-counts relevant documents and term frequencies within 
relevant documents. It accumulates across iterations 
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2. Reset count-resets the number of relevant documents and term frequencies 
within relevant documents are reset after each iteration 

3. Reset count, single iteration term-counts are reset and the query is reset 
such that it only contains terms from the current iteration 

In each case, the number of new relevant documents found increased with 
each iteration. However, most relevant documents were found in the first two 
iterations. On average, iterations 3, 4, 5, and 6 routinely found less than 
one new relevant document per query. All three variations of implementing 
relevance feedback across iterations performed comparably. 

3.1.2.5 User Interaction. As earlier stated, the initial work in relevance 
feedback assumed the user would be asked to determine which documents were 
relevant to the query. Subsequent work assumes the top n documents are 
relevant and simply uses these documents. An interesting user study, done by 
Spink, looked at the question of using the top documents to suggest terms for 
query expansion, but giving the user the ability to pick and choose which terms 
to add [Spink, 1994, Spink, 1995]. Users were also studied to determine how 
much relevance feedback is used to add terms as compared to other sources. 
The alternative sources for query terms were--

■ Original written query 

■ User interaction---discussions with an expert research user or "intermedi-
ary" prior to the search to identify good terms for the query 

■ Intermediary-suggestion by expert users during the search 

■ Thesaurus 

■ Relevance feedback-selection of terms could be selected by either the user 
or the expert intermediary 

Users chose forty-eight terms (eleven percent) of their search terms (over 
forty queries) from relevance feedback. Of these, the end-user chose fifteen and 
the expert chose thirty-three. This indicates a more advanced user is more 
likely to take advantage of the opportunity to use relevance feedback. 

Additionally, the study identified which section of documents users found 
terms for relevance feedback. Some eighty-five percent of the relevance feedback 
terms came from the title or the descriptor fields in the documents, and only 
two terms came from the abstract of the document. This study concluded that 
new systems should focus on using only the title and descriptor elements of 
documents for sources of terms during the relevance feedback stages. 

3.2 Clustering 

Document clustering attempts to group documents by content to reduce the 
search space required to respond to a query. For example, a document collection 
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that contains both medical and legal documents might be clustered such that 
all medical documents are placed into one cluster, and all legal documents 
are assigned to a legal cluster (see Figure 3.2). A query over legal material 
might then be directed ( either automatically or manually) to the legal document 
cluster. 

Figure 3.2. Document Clustering 

Document Collection 

8 8 
Several clustering algorithms have been proposed. In many cases, the eval­

uation of clustering algorithms has been challenging because it is difficult to 
automatically point a query at a document cluster. Viewing document clus­
tering as a utility to assist in ad hoc document retrieval, we now focus on 
clustering algorithms and examine the potential uses of these algorithms in 
improving precision and recall of ad hoc and manual query processing. 

Another factor that limits the widespread use of clustering algorithms is their 
computational complexity. Many algorithms begin with a matrix that contains 
the similarity of each document with every other document. For a 1,000,000 
document collection this matrix has 11000d°002 different elements. Typically, this 
matrix is usually very sparse (many terms appear in a single document-only 
a single entry in a row of the matrix is non-zero for these terms). 

Recent proposals use clustering as a utility to assist relevance feedback [Lu 
et al., 1996]. In those cases only the results of a query are clustered (a much 
smaller document set), and relevance feedback proceeds by obtaining only new 
terms from large clusters. This may be an area where clustering will be compu­
tationally feasible enough to implement on a large scale. Also, initial work on 
a Digital Array Processor (DAP) was done to improve run-time performance 
of clustering algorithms by using parallel processing [Rasmussen and Willett, 
1989). More recently, these algorithms were implemented on a parallel machine 
with a torus interconnection network [Ruocco and Frieder, 1997]. 

Page 108 of 262



96 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS 

A detailed review of clustering algorithms is given in [Salton, 1989]. Clus­
ters are formed with either a top-down or bottom-up process. In a top-down 
approach, the entire collection is viewed as a single cluster and is partitioned 
into smaller and smaller clusters. The bottom-up approach starts with each 
document being placed into a separate cluster of size one and these clusters are 
then glued to one another to form larger and larger clusters. The bottom up 
approach is referred to as hierarchical agglomerative because the result of the 
clustering is a hierarchy (as clusters are pieced together, a hierarchy emerges). 

3.2.1 Hierarchical Agglomerative Clustering 

First the N x N document similarity matrix is formed. Each document is placed 
into its own cluster. The following two steps are repeated until only one cluster 
exists. 

■ The two clusters that have the highest similarity are found. 

■ These two clusters are combined and the similarity between the newly 
formed cluster and the remaining clusters recomputed. 

As the larger cluster is formed, the clusters that merged together are tracked 
and form a hierarchy. 

Assume documents A, B, C, D, and E exist and a document-document sim­
ilarity matrix exists. At this point, each document is in a cluster by itself: 

{{A} {B} {C} {D} {E}} 

We now assume the highest similarity is between document A and document 
B. So the contents of the clusters become-

{ {A,B} {C} {D} {E}} 

After repeated iterations of this algorithm, eventually there will only be a single 
cluster that consists of {A,B,C,D,E}. However, the history of the formation 
of this cluster will be known. The node {AB} will be a parent of nodes {A} 
and {B} in the hierarchy that is formed by clustering since both A and B were 
merged to form the cluster {AB}. 

Hierarchical agglomerative algorithms differ based on how {A} is combined 
with {B} in the first step. Once it is combined, a new similarity measure 
is computed that indicates the similarity of a document to the newly formed 
cluster {AB}. 

3.2.1.1 Single Link Clustering. The similarity between two clusters is 
computed as the maximum similarity between any two documents in the two 
clusters, each initially from a separate cluster. Hence, if eight documents are 
in cluster A and ten are in cluster B, we compute the similarity of A to B as 
the maximum similarity between any of the eight documents in A and the ten 
documents in B. 
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3.2.1.2 Complete Linkage. Inter-cluster similarity is computed as the 
minimum of the similarity between any documents in the two clusters such 
that one document is from each cluster. 

3.2.1.3 Group Average. Each cluster member has a greater average sim­
ilarity to the remaining members of that cluster, than to any other cluster. 

3.2.1.4 Ward's Method. Clusters are joined so that their merger mini­
mizes the increase in the sum of the distances from each individual document 
to the centroid of the cluster containing it (El-Hamdouchi and Willett, 1986). 
The centroid is defined as the average vector in the vector space. If a vector 
represents the ith document, D; =< t1 , t2 , ••. , tn >, the centroid C is written 
as C =< c1 , c2 , ••• , Cn >. The jth element of the centroid vector is computed 
as the average of all of the jth elements of the document vectors: 

C. - E?=l t;j 
3- n 

Hence, if cluster A merged with either cluster B or cluster C, the centroids for 
the potential cluster AB and AC are computed as well as the maximum distance 
of any document to the centroid. The cluster with the lowest maximum is used. 

3.2.1.5 Analysis of Hierarchical Clustering Algorithms. A paper that 
describes the implementation of all of these algorithms found that Ward's 
method typically took the longest to implement, with single link and com­
plete linkage being somewhat similar in run-time (El-Hamdouchi and Willett, 
1989). 

A recent summary of several different studies on clustering is given in (Bur­
gin, 1995]. In most studies, clusters found in single link clustering tend to be 
fairly broad in nature and tend to provide lower effectiveness than the others. 
Choosing the best cluster as the source of relevant documents resulted in very 
close effectiveness results for complete link, Ward's, and group average cluster­
ing. A consistent drop in effectiveness for single link clustering was noted. 

3.2.2 Clustering Without a Precomputed DOC-DOC Similarity Matrix 

Other approaches exist in which the N x N similarity matrix indicates that the 
similarity between each document and every other document is not required. 
These approaches are dependent upon the order in which the input text is 
received, and do not produce the same result for the same set of input files. 

3.2.2.1 One-Pass Clustering. One approach uses a single pass through 
the document collection. The first document is assumed 1;0 be in a cluster of 
size one. A new document is read as input and the similarity between the new 
document and all existing clusters is computed. The similarity is computed 
as the distance between the new document and the centroid of the existing 
clusters. The document is then placed into the closest cluster, as long as it 
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exceeds some threshold of closeness. This approach is very dependent on the 
order of the input. An input sequence of documents 1, 2, ... , 10 can result in 
very different clusters than any other of the (10! - 1) possible orderings. 

Since resulting clusters can be too large, it may be necessary to split them 
into smaller clusters. Also, clusters that are too small may be merged into 
larger clusters. 

3.2.2.2 Rocchio Clustering. Rocchio developed a clustering algorithm in 
1966 [Rocchio, 1966], in which all documents are scanned and defined as either 
clustered or loose. An unclustered document is tested as a potential center of a 
cluster by examining the density of the document and thereby requiring that n1 

documents have a similarity coefficient of at least p1 and at least n2 documents 
have a correlation of P2· The similarity coefficient Rocchio most typically used 
was the cosine coefficient. If this is the case, the new document is viewed as 
the center of the cluster and the old documents in the cluster are checked to 
ensure they are close enough to this new center to stay in the cluster. The new 
document is then marked as clustered. 

If a document is outside of the threshold, its status may change from clustered 

to loose. After processing all documents, some remain loose. These are added 
to the cluster whose centroid the document is closest to (revert to the single 
pass approach). 

Several parameters for this algorithm were described in 1971 by Grauer and 
Messier [Grauer and Messier, 1971]. These included-

■ Minimum and maximum documents per cluster 

■ Lower bound on the correlation between an item and a cluster below which 
an item will not be placed in the cluster. This is a threshold that would be 
used in the final cleanup phase of unclustered items. 

■ Density test parameters (n1, n2,P1,P2) 

■ Similarity coefficient 

3.2.2.3 Buckshot Clustering. Buckshot clustering is a fast clustering al­
gorithm that runs in O(kn) time where k is the number of clusters that are gen­
erated and n is the number of documents. For applications where the number 
of desired clusters is small, the clustering time is close to O(n) which is a clear 
improvement over the O(n2 ) alternatives that require a document-document 
similarity matrix. 

Buckshot clustering works by choosing a random sample of v'kn documents. 
These v'kn documents are then clustered by a hierarchical clustering algorithm 
(any one will do). Using this approach, k clusters may be identified from the 
cluster hierarchy. The hierarchical clustering algorithms all require a DOC-

DOC similarity matrix, so this step will require 0( v'kn,2 ) = O(kn) time. Once 
the k centers are found, the remaining documents are then scanned and assigned 
to one of the k centers based on the similarity coefficient between the incoming 
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document and each of the k centers. The entire algorithm requires on the order 
of O(kn) time, as O(kn) is required to obtain the centers and O(kn) is required 
to scan the document collection and assign each document to one of the centers. 
Note that buckshot clustering can result in different clusters with each running 
because a different random set of documents may be chosen to find the initial k 
centers. Details of the buckshot clustering algorithm and its analysis are given 
in [Cutting et al., 1992]. 

3.2.3 Querying Hierarchically Clustered Document Collections 

Once the hierarchy is generated, it is necessary to determine which portion of 
the hierarchy should be searched. A top-down search starts at the root of the 
tree and compares the query vector to the centroid for each subtree. The subtree 
with the greatest similarity is then searched. The process continues until a leaf 
is found or the cluster size is smaller than a predetermined threshold. 

A bottom-up search starts with the leaves and moves upwards. Early work 
showed that starting with leaves, which contained small clusters, was better 
than starting with large clusters. Subsequently three different bottom-up pro­
cedures were studied [Willett, 1988]: 

■ Assume a relevant document is available and start with the cluster that 
contains that document. 

■ Assume no relevant document is available. Implement a standard vector­
space query and assume the top-ranked document is relevant. Start with 
the cluster that contains the top-ranked document. 

■ Start with the bottom level cluster whose centroid is closest to the query. 

Once the leaf or bottom-level cluster is identified, all of its parent clusters 
are added to the answer set until some threshold for the size of the answer set 
is obtained. 

These three bottom-up procedures were compared to a simpler approach in 
which only the bottom is used. The bottom-level cluster centroids are compared 
to the query and the answer set is obtained by expanding the top n clusters. 

3.2.4 Efficiency Issues 

Although the focus of this chapter is on effectiveness, the limited use of clus­
tering algorithms compels us to briefly mention efficiency concerns. Many al­
gorithms begin with a matrix that contains the similarity of each document 
with every other document. For a 1,000,000 document collection, this matrix 
has 1•00~ 0002 elements. Algorithms designed to improve the efficiency of clus­
tering are given in [Voorhees, 1986], but at present, no TREC participant has 
clustered the entire document collection. 

3.2.4.1 Parallel Document Clustering. Another means of improving 
run-time performance of clustering algorithms is to implement them on a para!-
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lel processor (see Chapter 6). Initial work on a Digital Array Processor (DAP) 

was done to improve the run-time of clustering algorithms by using parallel 

processing [Rasmussen and Willett, 1989]. Recently, these algorithms were im­
plemented on a parallel machine with a torus interconnection network [Ruocco 
and Frieder, 1997]. 

Recent proposals use clustering as a utility to assist relevance feedback [Lu 

et al., 1996]. Only the results of a query are clustered (a much smaller document 
set), and relevance feedback proceeds by only obtaining new terms from large 

clusters. 

3.2.4.2 Clustering with Truncated Document Vectors. The most ex­
pensive step in the clustering process occurs when the distance between the 

new document and all existing clusters is computed. This is typically done by 

computing the centroid of each cluster and measuring the cosine of the angle 
between the new document vector and the centroid of each cluster. More re­
cently, it has been shown that clustering may be done with vectors that use only 

a few representative terms from a document [Schutze and Silverstein, 1997]. 
One means of reducing the size of the document vector is to use Latent 

Semantic Indexing (see Section 2.5) to identify the most important components. 

Another means is to simply truncate the vector by removing those terms with 
a weight below a given threshold. No significant difference in effectiveness was 

found for a baseline of no truncation, or using latent semantic indexing with 

twenty, fifty, and one hundred and fifty terms or simple truncation with fifty 

terms. 
Although very recent, it appears that this result is a breakthrough in docu­

ment clustering because effective clustering may be implemented with substan­

tially smaller document vectors than previously attempted. 

3.3 Passage-based Retrieval 

Passage-based retrieval [Callan, 1994], is based on the premise that only a 

small portion of each relevant document (i.e., the relevant passage within the 

document) contains the information that is relevant to the query. By computing 
metrics that compare the entire document to the query, the noisy parts of the 

document (the sections that are nonrelevant) potentially mask the relevant 
segment of the document. 

For instance, consider this book. This section is the only section that con­
tains relevant information in response to a query that searches for passage-based 
retrieval. If the entire book was viewed as a single document, this section might 
contribute very little to the overall similarity coefficient between the book and 
the passage. 

Since documents often are naturally segmented into chapters, sections, and 

subsections, it is reasonable to use each of these author-determined boundaries 
and simply rank the passages to the original query. A similarity coefficient 

must then merge the passage-based results and obtain a final coefficient. 
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Consider a document D1 with sections A, B, C, and D. Further assume sec­
tion C is the only section that mentions anything about the query. A similarity 
coefficient SC(Q, D1 ) could result in a coefficient that is heavily biased towards 
nonrelevance because sections A, B, and D have many terms that do not match 
with terms in the query. The similarity coefficient reflects this and given the 
length of the document and the relatively small proportion of matching terms, 
or even terms that are semantically related, the document would have a low 
similarity coefficient. With passage-based retrieval, four separate coefficients 
are computed: SC(Q,A), SC(Q,B), SC(Q,C), and SC(Q,D). The four different 
similarity coefficients would then be merged. Several different techniques for 
merging these components are presented. 

Passage-based research focuses on the decision of how to identify the delim­
iters of a passage and how to combine the input of each passage into a single 
similarity coefficient. The following sections discuss each of these problems and 
demonstrate some initial work in each area. 

3.3.1 Marker-based Passages 

Marker-based passages use section headers or paragraph indentation and verti­
cal space as a means of partitioning passages. SG ML tags found in long Federal 
Register documents were used in [Zobel et al., 1995]. 

In similar work, paragraph markers were used. To avoid very long or short 
paragraphs, long paragraphs were partitioned based on size and short para­
graphs were glued together. The passages were bounded such that no passage 
contained fewer than fifty terms or was larger than 200 terms [Callan, 1994]. In 
[Zobel et al., 1995] passages were glued together until a sii:e of p was exceeded. 
In both papers, some modest improvement occurred, but results given with the 
Federal Register should be viewed with care as there are comparatively few rel­
evant documents in this particular collection. The reason given for the limited 
success of this intuitively appealing approach is that the paragraph markers 
and section markers are prone to error on the part of the author and may not 
have resulted in a good semantic partitioning (i.e., one passage might have 
described numerous concepts). 

3.3.2 Dynamic Passage Partitioning 

Different approaches have been used to automatically find good partitions. 
These approaches attempt to partition documents differently based on the par­
ticular query [Callan, 1994]. One means of doing this is to find a term that 
matches the query and then build a passage around this match. If a term 
matches at position n, passage A will begin at position n and continue until 
position n + p where p is a variable passage size. The next passage, B, will 
overlap with A and start at position n+ ~- Figure 3.3 illustrates the difference 
between overlapping and non-overlapping passages. For a term that matches 
at position ten, a small passage length of fifty results in passages around the 
terms [10, 60], [35, 85], [60, 110], etc. where [i, j] indicates the passage starts 
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at position i and continues to j. Overlapping passages are intended to avoid 
splitting sections of relevant text. 

Figure 3.3. Overlapping vs Non-Overlapping Passages 
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3.3.3 Merging Passage-based Similarity Measures 

Passages contribute to the similarity coefficient in a number of different ways. 
One study tested twenty different methods of merging passage-based contribu­
tions [Wilkinson, 1994]. These methods ranged from simply taking the highest 
ranked passage as the similarity coefficient to combining document level contri­
butions with passage level contributions. The work done in [Callan, 1994] also 
used a combination score with the document and the passage level evidence to 
obtain their best results. Similar results also occurred in [Wilkinson, 1994]. 

3.4 N-grams 

Term-based search techniques typically use an inverted index or a scan of text 
(details surrounding inverted index construction and search are given in Chap­
ter 4). Additionally, queries that are based on exact matches with terms in 
document perform poorly against corrupted documents. This occurs regard­
less of the source of the errors-either OCR (optical character recognition) 
errors or those due to misspelling. To provide resilience to noise, n-grams have 
been proposed. The premise is to decompose terms into word fragments of 
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size n, then design matching algorithms that use these fragments to determine 
whether or not a match exists. 

N-grams have also been used for detection and correction of spelling er­
rors [Pollock and Zamora, 1984, Thorelli, 1962, Zamora et al., 1981] and text 
compression [Yannakoudakis et al., 1982]. A survey of automatic correction 
techniques is found in [Kukich, 1992]. Most recently, n-grams have been used 
to determine the authorship of documents (Kjell et al., 1994]. Traditional infor­
mation retrieval algorithms based on n-grams are described in [D 'Amore and 
Mah, 1985, Damashek, 1995, Pearce and Nicholas, 1993, Teuful, 1988, Cavnar 
and Vayda, 1993]. 

3.4.1 D'Amore and Mah 

Initial information retrieval research focused on n-grams as presented in [D'Amore 
and Mah, 1985]. The motivation behind their work was the fact that it is dif­
ficult to develop mathematical models for terms since the potential for a term 
that has not been seen before is infinite. With n-grams, only a fixed number 
of n-grams can exist for a given value of n. A mathematical model was devel­
oped to estimate the noise in indexing and to determine appropriate document 
similarity measures. 

D'Amore and Mah's method replaces terms with n-grams in the vector space 
model. The only remaining issue is computing the weights for each n-gram. In­
stead of simply using n-gram frequencies, a scaling method is used to normalize 
the length of the document. D' Amore and Mah's contention was that a large 
document contains more n-grams than a small document, so it should be scaled 
based on its length. 

To compute the weights for a given n-gram, D'Amore and Mah estimated 
the number of occurrences of an n-gram in a document. The first simplifying 
assumption was that n-grams occur with equal likelihood and follow a binomial 
distribution. Hence, it was no more likely for n-gram "ABC" to occur than 
"DEF." The Zipfian distribution that is widely accepted for terms is not true 
for n-grams. D'Amore and Mah noted that n-grams are not equally likely 
to occur, but the removal of frequently occurring terms from the document 
collection resulted in n-grams that follow a more binomial distribution than 
the terms. 

D'Amore and Mah computed the expected number of occurrences of an n­
gram in a particular document. This is the product of the number of n-grams 
in the document (the document length) and the probability that the n-gram 
occurs. The n-gram's probability of occurrence is computed as the ratio of 
its number of occurrences to the total number of n-grams in the document. 
D'Amore and Mah continued their application of the binomial distribution to 
derive an expected variance and, subsequently, a standard deviation for n-gram 
occurrences. The final weight for n-gram i in document j is-
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where-

/i; = frequency of an n-gram i in document j 

ei; = expected number of occurrences of an n-gram i in document j 

Ui; = standard deviation 

Then-gram weight designates the number of standard deviations away from the 
expected value. The goal is to give a high weight to an n-gram that has occurred 
far more than expected and a low weight to an n-gram that has occurred only 
as often as expected. 

D' Amore and Mah did several experiments to validate that the binomial 
model was appropriate for n-grams. Unfortunately, they were not able to test 
their approach against a term-based one on a large standardized corpus. 

3.4.2 Dama.shek 

Damashek expanded on D'Amore and Mah's work by implementing a five­
gram-based measure of relevance [Damashek, 1995). Damashek's algorithm re­
lies upon the vector space model, but computes relevance in a different fashion. 
Instead of using stop words and stemming to normalize the expected occur­
rence of n-grams, a centroid vector is used to eliminate noise. To compute the 
similarity between a query and a document, the following cosine measure is 
used-

Here µ9 and J.&d represent centroid vectors that are used to characterize the 
query language and the document language. The centroid value for each n­
gram is computed as the ratio of the total number of occurrences of the n-gram 
to the total number of n-grams. This is the same value used by D'Amore and 
Mah. It is not used as an expected probability for the n-grams, but merely 
as a characterization of the n-gram 's frequency across the document collection. 
The weight of a specific n-gram in a document vector is the ratio of the number 
of occurrences of the n-gram in the document to the total number of all of 
the n-grams in the document. This "within document frequency" is used to 
normalize based on the length of a document, and the centroid vectors are 
used to incorporate the frequency of the n-grams across the entire document 
collection. 

By eliminating the need to remove stop words and to support stemming, (the 
theory is that the stop words are characterized by the centroid so there was 
no need to eliminate them), the algorithm simply scans through the document 
and grabs n-grams without any parsing. This makes the algorithm language 
independent. Additionally, the use of the centroid vector provides a means 
of filtering out common n-grams in a document. The remaining n-grams are 
reverse engineered back into terms and used as automatically assigned keywords 
to describe a document. A description of this reverse engineering process is 
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given in [Cohen, 1995]. Proof of language independence is given with tests 
covering English, German, Spanish, Georgian, Russian, and Japanese. 

3.4.3 Pearce and Nicholas 

An expansion of Damashek's work uses n-grams to generate hypertext links 
[Pearce and Nicholas, 1993]. The links are obtained by computing similarity 
measures between a selected body of text and the remainder of the document. 
After a user selects a body of text, the five-grams are identified, and a vector 
representing this selected text is constructed. Subsequently, a cosine similarity 
measure is computed, and the top rated documents are then displayed to the 
user as dynamically defined hypertext links. The user interface issues surround­
ing hypertext is the principal enhancement over Damashek's work. The basic 
idea of constructing a vector and using a centroid to eliminate noise remains 
intact. 

3.4.4 Teufel 

Teufel also uses n-grams to compute a measure of similarity using the vector 
space model [Teuful, 1988]. Stop words and stemming algorithms are used and 
advocated as a good means of reducing noise in the set of n-grams. However, 
his work varies from the others in that he used a measure of relevance that is 
intended to enforce similarity over similar documents. The premise was that if 
document A is similar to B, and B is similar to C, then A should be roughly 
similar to C. Typical coefficients, such as inner product, Dice, or Jaccard (see 
Section 2.1.2), are non-transitive. Teufel uses a new coefficient, H, where--

H = X +Y-(XY) 

and Xis a direct similarity coefficient (in this case Dice was used, but Jaccard, 
cosine, or inner product could also have been used) and Y is an "indirect" 
measure that enforces transitivity. With the indirect measure, document A is 
identified as similar to document C. A more detailed description of the indirect 
similarity measure is given in [Teuful, 1991]. 

Good precision and recall was reported for the INSPEC document collection. 
Language independence was claimed in spite of reliance upon stemming and 
stop words. 

3.4.5 Cavnar and Vayda 

N-grams were also proposed in [Cavnar, 1993, Cavnar and Vayda, 1993]. Most 
of this work involves using n-grams to recognize postal addresses. N-grams 
were used due to their resilience to errors in the address. A simple scanning 
algorithm that counts the number of n-gram matches that occur between a 
query and a single line of text in a document was used. No weighting of any 
kind was used, but, by using a single text line, there is no need to normalize 
for the length of a document. The premise is that the relevant portion of a 
document appears in a single line of text. 
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Cavnar's solution was the only documented approach that has been tested 
on a large standardized corpus. For the entire TIPSTER document collection, 
average precision of between 0.06 and 0.15 was reported. It should be noted 
that for the AP portion of the collection an average precision of 0.35 was ob­
tained. These results on the AP documents caused Cavnar to avoid further 
tuning. Unfortunately, results on the entire collection exhibited relatively poor 
performance. Regarding these results, the authors claimed that "It is unclear 
why there should be such variation between the retrievability of the AP docu­
ments and the other document collections." 

3.5 Regression Analysis 

Another approach to estimating the probability of relevance is to develop vari­
ables that describe the characteristics of a match to a relevant document. Re­
gression analysis is then used to identify the exact parameters that match the 
training data. For example, if trying to determine an equation that predicts a 
person's blood pressure given their age-

Age Blood Pressure 
45 200 
50 220 
70 220 

A simple least squares polynomial regression could be implemented, that would 
identify the correct values of a and /3 to predict blood pressure (BP) based on 
age (A): 

BP= aA+/3 

For a given age, it is possible to find the related blood pressure. Now, if we 
wish to predict the likelihood of a person having heart disease, we might obtain 
the following data: 

Age Blood Pressure Heart Disease 
45 200 yes 
50 220 no 
70 220 yes 

The issue now is to fit a curve to the data points such that if a new person 
shows up and asks for the chance of their having heart disease, the point on the 
curve that corresponds to their age and blood pressure could be examined. This 
second example is more analogous to document retrieval because, we are trying 
to identify characteristics in a query-document match that indicate whether or 
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not the document is relevant. The problem is that relevance is typically given 
a binary (1 or 0) for training data-it is rare that we have human assessments 
that the document is "kind of" relevant. Note that there is a basic independence 
assumption that says age will not be related to blood pressure (an assumption 
we implied was false in our preceding example). Logistic regression is typically 
used to estimate dichotomous variables-those that only have a small set of 
values, (i.e., gender, heart disease present, and relevant documents). 

Focusing on information retrieval, the problem is to find the set of variables 
that provide some indication that the document is relevant. 

Matching Terms Size of Query Size of Document Relevant? 
5 10 30 yes 
8 20 45 no 

Six variables used recently [Fontaine, 1995] are given below-

1. The mean of the total number of matching terms in the query. 

2. The square root of the number of terms in the query. 

3. The mean of the total number of matching terms in the document. 

4. The square root of the number of terms in the document. 

5. The average id/ of the matching terms. 

6. The total number of matching terms in the query. 

A brief overview of polynomial regression and the initial use of logistic re­
gression is given in [Cooper et al., 1992]. However, the use oflogistic regression 
requires the variables used for the analysis to be independent. Hence, the lo­
gistic regression is given in two stages. Composite clues which are composed of 
independent variables are first estimated. Assume clues 1-3 above are found in 
one composite clue and 4-6 are in the second composite clue. The two stages 
proceed as follows-

Stage 1: 
A logistic regression is done for each composite clue. 

logO(RIC1) = Co+ c1X1 + c2X2 + csXs 

logO(RIC2) = do+ d1X4 + "2Xs + dsXu 

At this point the coefficients Co, c1, c2 , c3 are computed to estimate the relevance 
for the composite clue C1. Similarly, do,d1,d2 , d3 estimate the relevance of C2. 
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Stage 2: 
The second stage of the staged logistic regression attempts to correct for 

errors induced by the number of composite clues. As the number of compos­
ite clues grows, the likelihood of error increases. For N composite clues, the 
following logistic regression is computed: 

where Z is computed as the sum of the composite clues or­

N 

Z = }: log O(RICi) 
i=l 

The results of the first stage regression are applied to the second stage. It 
should be noted that further stages are possible. 

Once the initial regression is completed, the actual computation of simi­
larity coefficients proceeds quickly. Composite clues are only dependent on 
the presence or absence of terms in the document and can be precomputed. 
Computations based on the number of matches found in the query and the 
document are done at query time, but involve combining the coefficients com­
puted in the logistic regression with the precomputed segments of the query. 
Further implementation details are found in (Fontaine, 1995]. 

The question is whether or not the coefficients can be computed in a generic 
fashion that is resilient to changes in the document collection. The appealing 
aspects of this approach are that experimentation can be done to identify the 
best clues, and the basic independence assumptions are avoided. Additionally, 
the approach corrects for errors incurred by the initial logistic regression. 

3.6 Thesauri 

One of the most intuitive ideas for enhancing effectiveness of an information 
retrieval system is to include the use of a thesaurus. Almost from the dawn of 
the first information retrieval systems in the early 1960s, researchers focused 
on incorporating a thesaurus to improve precision and recall. The process of 
using a thesaurus to expand a query is illustrated in Figure 3.4. 

A thesaurus, at first glance, might appear to assist with a key problem­
two people very rarely describe the same concepts with the same terms (i.e., 
one person will say that they went to a party while another person might 
call it a gathering). This problem makes statistical measures that rely on the 
number of matches between a query term and the document terms somewhat 
brittle when confronted with semantically equivalent terms that happen to be 
syntactically distinct. A query that asks for information about dogs is probably 
also interested in documents about canines. 

A document relevant to a query might not match any of the terms in the 
query. A thesaurus can be used either to assign a common term for all synonyms 
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Figure 3.4. Using a Thesaurus to Expand a Query 

Query ----16 -
~ Thesaurus 

l 
Document 
Collection 

l 
[ > 

Results l 
of a term, or to expand a query to include all synonymo\JlS terms. Intuitively 
this should work fine, but unfortunately, results have not been promising. This 
section describes the use of hand-built thesauri, a very labor intensive means of 
building a thesaurus, as well as the quest for a sort of holy grail of information 
retrieval, an automatically generated thesaurus. 

3.6.1 Automatically Constructed Thesauri 

A hand-built thesaurus might cover general terms, but it lacks domain-specific 
terms. A medical document collection has many terms that do not occur in a 
general purpose thesaurus. To avoid the need for numerous hand-built domain­
specific thesauri, automatic construction methods have been implemented. 

3.6.1.1 Term Co-occurrence. An early discussion of automatic thesaurus 
generation is found in [Salton, 1971c]. The key to this approach is to repre­
sent each term as a vector. The terms are then compared using a similarity 

Page 122 of 262



110 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS 

coefficient that measures the Euclidean distance, or angle, between the two 
vectors. 

To form a thesaurus for a given term t, related terms for t are all those 
terms u such that SC(t,u) is above a given threshold. Note, this is an O(t2) 

process so it is often common to limit the terms for which a related term list 
is built. This is done by using only those terms that are not so frequent that 
they become stop terms, but not so infrequent that there is little chance they 
have many synonyms. 

Consider the following example-

Di: "a dog will bark at a cat in a tree" 
D2 : "ants eat the bark of a tree" 

This results in the term-document occurrence matrix found in Table 3.1. 

Table 3.1. Term-Document Matrix 

term Di D2 
a 3 1 
ants 0 1 
at 1 0 
bark 1 1 
cat 1 0 
dog 1 0 
eat 0 1 
in 1 0 
of 0 1 
the 0 1 
tree 1 1 
will 1 0 

To compute the similarity of term i with term j, a vector of size N, where N is 
the number of documents, is obtained for each term. The vector corresponds 
to a row in the following table. A dot product similarity between "bark" and 
"tree" is computed as-

SC(bark,tree) =< 1 1 > • < 1 1 > = 2 

The corresponding term-term similarity matrix is given in Table 3.2. 

The matrix is symmetric as SC(t1 , t2} is equivalent to SC(h, t1). The 
premise is that words are similar or related to the company they keep. Con­
sider "tree" and "bark", in our example, these terms co-occur twice in two 
documents. Hence, this pair has the highest similarity coefficient. Other sim­
ple extensions to this approach are the use of word stems instead of whole terms 
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Table 3.2. Example Term-Term Similarity Matrix 

term a ants at bark cat dog eat in of the tree will 
a 0 1 3 4 3 3 1 3 1 1 4 3 
ants 1 0 0 1 0 0 1 0 1 1 1 0 

at 3 0 0 1 1 1 0 1 0 0 1 0 
bark 4 1 1 0 1 1 1 1 1 1 2 1 

cat 3 0 1 1 0 1 0 1 0 0 1 1 

dog 3 0 1 1 1 0 0 1 0 1 1 1 

eat 1 1 0 1 0 0 0 0 1 0 1 0 
in 3 0 1 1 1 1 0 0 0 0 1 1 
of 1 1 0 1 0 0 1 0 0 1 1 0 
the 1 1 0 1 0 0 1 0 1 0 1 0 
tree 4 1 1 2 1 1 1 1 1 1 0 1 
will 3 0 1 1 1 1 0 1 0 0 1 0 

(for more on stemming see Section 3.8.1). The use of stemming is important 
here so that the term cat will have no real difference than cats. The tf-idf 
measure can be used in the term-term similarity matrix to give more weight to 
co-occurrences between relatively infrequent terms. 

Early work done with the term-term similarity matrix was given in [Minker 
et al., 1972). This paper summarizes much of the work done in the 1960s us­
ing term clustering, and provides some additional experiments [Salton, 1971c, 
Sparck Jones and Jackson, 1968, Sparck Jones and Barber, 1971). The com­
mon theme of these papers is that the term-term similarity matrix can be con­
structed, and then various clustering algorithms can be used to build clusters 
of related terms. 

Once the clusters are built, they are used to expand the query. Each term in 
the original query is found in a cluster that was included in some portion or all 
(depending on a threshold) elements of its cluster. Much of the related work 
done during this time focused on different clustering algorithms and different 
thresholds to identify the number of terms added to the cluster. The conclusion 
was that the augmentation of a query using term clustering did not improve 
on simple queries that used weighted terms. 

More recent work with term-term similarity matrices is presented in [Chen 
and Ng, 1995). A domain-specific thesaurus was constructed on information 
about the Caenorhabditis elegans worm in support of molecular biologists [Chen 
et al., 1995). A term-term similarity measure was built with phrases and terms. 
A weight that used tf-idf but also included another factor Pi, was used where 
Pi indicated the number of terms in phrase i. Hence, a two-term phrase was 
weighted double that of a single term. The new weight was-

Wii = tfo x log(; x Pi) 
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Using this new weight, an asymmetric similarity coefficient was also developed. 
The premise was that the symmetric coefficients are not as useful for ranking 
because a measurement between ti, t; can become very skewed if either ti or 
t; occurs frequently. The asymmetric coefficient allows for a ranking of an 
arbitrary term ti, frequent or not, with all other terms. Applying a threshold 
to the list means that for each term, a list of other related terms is generated­
and this can be done for all terms. 

The measurement for SC(ti,t;) is given as-

(
I:~=l min(tfil., tf;,.) log ( I; x P;)) 

SC(ti, t;) = :En 
k=l Wik 

xW; 

where d/i; is the number of co-occurrences of term i with term j. Two additional 
weights make this measure asymmetric: Pi and W;. As we have said P; is a 
small weight included to measure the size of term j. With all other weights 
being equal, the measure: SC(food, apple pie) > SC(food, apple) since phrases 
are weighted higher than terms. The weighting factor, W;, gives additional 
preference to terms that occur infrequently without skewing the relationship 
between term i and term j. The weight W; is given as-

W· = (log (i)) 
1 logN 

Consider the term york and its relationship to the terms new and castle. Assume 
new occurs more frequently than castle. With all other weights being equal, 
the new weight, W;, causes the following to occur: 

SC(york,castle) > SC(york,new) 

This is done without regard for the frequency of the term york. The key is that 
we are trying to come up with a thesaurus, or a list of related terms, for a given 
term (i.e., york). When we are deriving the list of terms for new we might find 
that york occurs less frequently than castle so we would have: 

SC(new, york) > SC(new, castle) 

Note that we were able to consider the relative frequencies of york and castle 
with this approach. In this case-

SC(new, york) = SC(york, new) 

The high frequency of the term new drowns out any real difference between 
york and castle-or at least that is the premise of this approach. We note in 
our example, that new york would probably be recognized as a phrase, but that 
is not really pertinent to this example. 
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Hence, at this point, we have defined SC(t;, tj)- Since the coefficient is 
asymmetric we now give the definition of SC(tj, t;): 

xW; 

A threshold was applied so that only the top one hundred terms were used for a 
given term. These were presented to a user and, for relatively small document 
collections, users found that the thesaurus assisted their recall. No testing of 
generic precision and recall for automatic retrieval was measured. 

3.6. 1.2 Term Context. Instead of relying on term co-occurrence, recent 
work uses the context (surrounding terms) of each term to construct the vectors 
that represent each term [Gauch and Wang, 1996]. The problem with the 
vectors given above is that they do not differentiate the senses of the words. A 
thesaurus relates words to different senses. In the example given below, "bark" 
has two entirely different senses. A typical thesaurus lists "bark" as-

bark-surface of tree (noun) 
bark-dog sound (verb) 

Ideally an automatically generated thesaurus would ha.ve separate lists of 
synonyms. The term-term matrix does not specifically identify synonyms, and 
Gauch and Wang do not attempt this either. Instead, the relative position of 
nearby terms is included in the vector used to represent .a. term [Gauch and 
Wang, 1996]. 

The key to similarity is not that two terms happen to occur in the same 
document; it is that the two terms appear in the same context-that is they 
have very similar neighboring terms. 

Bark, in the sense of a sound emanating from a dog, appears in different 
contexts than bark, in the sense of a tree surface. Consider the following three 
sentences: 

S1: "The dog yelped at the cat." 
S2: "The dog barked at the cat." 
Sa: "The bark fell from the tree to the ground." 

In sentences S1 and S2 , yelped is a synonym for barked, and the two terms 
occur in exactly the same context. It is unlikely that another sense of bark 
would appear in the same context. "Bark" as a surface of tree more commonly 
would have articles at one position to the left instead of two positions to the 
left, etc. 

To capture the term's context, it is necessary to identify a set of context 
terms. The presence or absence of these terms around a given target term 
will determine the content of the vector for the target term. In [Gauch and 
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Wang, 1996], the authors assume the highest frequency terms are the best 
context terms, so the 200 most frequent terms (including stop terms) are used 
as context terms. A window of size seven was used. This window includes the 
three terms to the left of the target term and the three terms to the right of 
the target term. The new vector that represents target term i will be of the 
general form-

where each vector, Vi, and i = -3, -2, -1, 1, 2, and 3 corresponds to a 200 element 
vector that represents the context of the target term for a given position. The 
vector v_3 contains a component for each of the 200 context terms that occur 
three terms to the left of the target term. Similarly, the vector v3 contains 
a component for each of the 200 context terms that occur three terms to the 
right of the target. 

The Vi vectors are all concatenated to form the entire Ti vector for the term. 
For a simple example, we build the context vectors for the terms bark and yelp 
based on the document collection S1 , S2 , and S3 • To simplify the example, 
we assume that stemming is done to normalize bark and barked and that the 
and at are the only two context terms occupying components one and two, 
respectively, of the context vectors. 

Tbark = [< 00 >< 10 >< 10 >< 01 >< 10 >< 10 >] 

T11e1p = [< 00 >< 10 >< 00 >< 01 >< 10 >< 00 >] 
The matching of S1 and S2 is the driving force between the two vectors being 
very similar. The only differences occur because of the additional word sense 
that occurs in Sa. 

This example uses the frequency of occurrence of a context term as the 
component of the context vectors. In [Gauch and Wang, 1996], the authors 
use a measure that attempts to place more weight on context terms that occur 
less frequently than might be expected. The actual component value of the jth 
component of vector Vi, is a mutual information measure. Let-

dfi; frequency of co-occurrence of context term 

j with target term i 

tf; = total occurrences of context term i 

in the collection 

t !; = the total occurrences of context term j 

in the collection 
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This gives a higher weight to a context term that appears more frequently with 
a given target term than predicted by the overall frequencies of the two terms. 

Gauch and Wang use the top 200 terms, with a seven term window size, 
so each term vector is of size 1200. The vectors are then compared with a 
standard cosine measure, and all terms with a similarity above a threshold are 
used. The choice of which target words to choose is difficult, and after some 
experimentation 4,000 target words were chosen from the frequency list. 

Queries were then expanded using only the top n terms that fell above a 
certain threshold. Unfortunately, average precision for the expanded query was 
not significantly higher than without the expansion. 

Analysis of the repeated failure of automatically generated thesauri built 
from term-term similarity matrices is given in [Peat and Willett, 1991]. They 
noted a key problem with using term co-occurrence to generate a thesaurus is 
that relatively frequent terms co-occur with other frequent terms. The result is 
a thesaurus in which one relatively general term is found to be related to another 
general term (e.g., hairy might be found to be related to furry). Although these 
terms are related, they do not improve precision and recall because, due to their 
relatively high frequency, they are not good discriminators. 

Interestingly, an early paper showed that randomly selecting terms for expan­
sion was sometimes more effective than using those generated by a term-term 
similarity matrix [Smeaton and Rijsbergen, 1983]. Given a Zipfian distribu­
tion [Zipf, 1949] most terms appear infrequently (over half occur only once), so 
there is a good chance that the randomly selected terms were low frequency, 
and hence, did not do as much damage as a high frequency non-discriminating 
term. 

3.6.1.3 Clustering with Singular Value Decomposition. Schutze and 
Pedersen use term clustering and a singular value decomposition (SVD) to gen­
erate a thesaurus [Schutze and Pedersen, 1997]. First a matrix, A, is computed 
for terms that occur 2000-5000 times. The matrix contains the number of 
times these terms co-occur with a term window of size k (k is 40 in this work). 
Subsequently, these terms are clustered into 200 A-classes (group average ag­
glomerative clustering is used-see Section 3.2.1.3). For example, one A-class, 
UA1, might have terms (ti, t2, ta) and another, UA2, would have (t4, t5). 

Subsequently, a new matrix, B, is generated for the 20,000 most frequent 
terms based on their co-occurrence between clusters found in the matrix. For 
example, if term t; co-occurs with term t1 ten times, term t2 five times, and term 
t4 six times, B[l, j] = 15 and B[2, j] = 6. Note the use of clusters has reduced 
the size of the B matrix and provides substantially more training information. 
The rows of B correspond to classes in A, and the columns correspond to terms. 
The B matrix is of size 200 x 20,000. The 20,000 columns are then clustered 
into 200 B-classes using the buckshot clustering algorithm (see Section 3.2.2.3). 

Finally, a matrix, C, is formed for all terms in the collection. An entry 
C[ij] indicates the number of times term j co-occurs with the B-classes. Once 
this is done, the C matrix is decomposed and singular values are computed to 
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represent the matrix. This is similar to the technique used for latent semantic 
indexing (see Section 2.5). The SVD is more tractable at this point since only 
200 columns exist. 

A document is represented by a vector that is the sum of the context vectors 
(vectors that correspond to each column in the SVD). The context vector is 
used to match a query. 

Another technique that uses the context vector matrix, is to cluster the 
query based on its context vectors. This is referred to as word factorization. 
The queries were partitioned into three separate clusters. A query is then run 
for each of the word factors and a given document is given the highest rank of 
the three. This requires a document to be ranked high by all three factors to 
receive an overall high rank. The premise is that queries are generally about 
two or three concepts and that a relevant document has information relevant 
to all of the concepts. 

Overall, this approach seems very promising. It was run on a reasonably 
good-sized collection (the Category B portion of TIPSTER using term factor­
ization, average precision improved from 0.27 to 0.32-an 18.5% overall im­
provement). 

3.6.1.4 Using only Document Clustering to Generate a Thesaurus. 
Another approach to automatically build a thesaurus is described in [Crouch, 
1989, Crouch, 1990]. First, a document clustering algorithm is implemented to 
partition the document collection into related clusters. A document-document 
similarity coefficient is used. Complete link clustering is used here, but other 
clustering algorithms could be used (for more details on clustering algorithms 
see Section 3.2). 

The terms found in each cluster are then obtained. Since they occur in 
different documents within the cluster, different operators are used to obtain 
the set of terms that correspond to a given cluster. Consider documents with 
the following terms-

Di= ti,t2,ta,t4 

D2 = t2,t4 

Da = ti,t2 

The cluster may be represented by the union of all the terms {ti, t2 , t 3 , t4}, 
the intersection {t2 }, or some other operation that considers the number of 
documents in the cluster that contain the term. Crouch found that simple 
clustering worked the best. The terms that represented the cluster now appear 
as a thesaurus class, in that they form the automatically generated thesaurus. 
The class is first reduced to obtain only the good terms. This is done by using a 
term discriminating function that is based on document frequency. (see Section 
2.1 for more details on document frequency). 
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Queries are expanded based on the thesaurus class. Any term that occurs 
in the query that matches a term in the thesaurus class results in all terms in 
the class being added to the query. Average precision was shown to improve 
ten percent for the small ADI collection and fifteen percent for the Medlars 
collection. Unfortunately, both of these results were for small collections, and 
the document clustering is computationally expensive, requiring O(N2 } time, 
where N is the number of documents in the collection. 

3.6.2 Use of Manually Generated Thesaurus 

Although a manually generated thesaurus is far more time consuming to build, 
several researchers have explored the use of such a thesaurus to improve preci­
sion and recall. 

3.6.2.1 Extended Relevance Ranking with Manual Thesaurus. A 
system developed in 1971 used computers to assist with the manual construction 
of a thesaurus at the Columbia University School of Library Service. The 
algorithm was essentially equivalent to a simple thesaurus editor [Hines and 
Harris, 1971]. 

Manual thesaurus construction is typically used for domain-specific thesauri. 
A group of experts is convened, and they are asked to identify the relationship 
between domain-specific terms. Ghose and Dhawle note that manual generation 
of these thesauri can be more difficult to build for social sciences than natural 
sciences given that there is more disagreement about the meaning of domain­
specific terms in the social sciences (Ghose and Dhawle, 1977]. 

A series of handbuilt thesauri (each one was constructed by students) was 
described in [Wang et al., 1985]. These thesauri were generated by the rela­
tionships between two terms-such as dog is-a animal. Ultimately the thesauri 
were combined into one that contained seven groups of relations. These groups 
were--

■ antonyms 

■ all relations but antonyms 

■ all relations 

■ part-whole and set relations 

■ colocation relations 

■ taxonomy and synonymy relations 

■ paradigmatic relations 

The antonym relation identified terms that were opposites of one another 
(e.g., night, day) and is-part-of identifies entities that are involved in a bill­
of-materials relationship (e.g., tire, automobile}. Co-location contains relations 
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between words that frequently co-occur in the same phrase or sentence. Taxon­
omy and synonym represent synonyms. Paradigmatic relations relate different 
forms of words that contain the same semantic core such as canine and dog. 
Experiments in adding each or all of the terms from these relations were done 
on a small document collection with relevance judgments obtained by the re­
searchers conducting the study. Use of all relations, with the exception of 
antonyms, delivered the best average precision and recall, but there was little 
overall improvement. 

A study done in 1993 used a thesaurus containing five different relations: 
equivalence (synonym), hierarchical (is-a), and associative relationships [Kris­
tensen, 1993]. Recall of a fairly large (227,000} document collection composed 
of Finnish newspaper articles was shown to increase from 4 7 percent to 100 
percent while precision only decreased from 62.5 percent to 51 percent. For­
tunately, the work was done on a large collection, however, the thesaurus was 
hand-built for the test and contained only 1,011 concepts and a total of 1,573 
terms. Only thirty queries were used and the high results are clearly due to 
"good" terms found in the thesaurus. 

Given the nature of the highly specific thesaurus, this result might be very 
similar in nature to the manual track of the TREC conference where partici­
pants are allowed to hand-modify the original query to include more discrim­
inating terms. The synonym, narrower term, and related term searches all 
showed a 10 to 20% increase in recall from a 50% baseline. The union search 
(using all values) showed a rather high fifty percent increase in average preci­
sion. This work does represent one of the few studies outside of the TIPSTER 
collection that is run on a sizable collection. It is not clear, however, how ap­
plicable the results are to a more general collection that uses a more general 
thesaurus. 

3.6.2.2 Extending Boolean Retrieval With a Hand Built Thesaurus. 
All work described attempts to improve relevance ranking using a thesaurus. 
Lee et al., describe the extensions to the extended Boolean retrieval model as a 
means of including thesaurus information in a Boolean request [Lee et al., 1994]. 
A description of the extended Boolean model is found in Section 2.4. Values 
for p were attempted, and a value of six (value suggested for standard extended 
Boolean retrieval by Salton in [Salton, 1989]} was found to perform the best. 
Results of this approach were found to show slightly higher effectiveness. 

3.7 Semantic Networks 

Semantic networks are based on the idea that knowledge can be represented 
by concepts which are linked together by various relationships. A semantic 
network is simply a set of nodes and arcs. The arcs are labeled for the type of 
relationship they represent. Factual information about a given node, such as its 
individual characteristic, (color, size, etc.) are often stored in a data structure 
called a frame. The individual entries in a frame are called slots [Minsky, 1975]. 

A frame for a rose may take the form-
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Here the frame rose is a single node in a semantic network containing an is-a link 
to the node flower. The slots has-color and height store individual properties 
of the rose. 

Natural language understanding systems have been developed to read human 
text and build semantic networks representing the knowledge stored in the text 
[Schank, 1975, Schank and Lehnert, 1977, Gomez and Segami, 1989, Gomez 
and Segami, 1991]. It turns out that there are many concepts that are not 
easily represented (the hardest ones are usually those that involve temporal or 
spatial reasoning). Storing information in the sentence "A rose is a flower." is 
easy to do as well as to store, "A rose is red", but semantic nets have difficulty 
with storing the information that, "The rose grew three feet last Wednesday 
and was taller than anything else in the garden." Storing information about 
the size of the rose on different dates, as well as, the relative location of the 
rose is often quite difficult in a semantic network. For a detailed discussion 
see the section on "Representational Thorns" about the large-scale knowledge 
representation project called Cyc (a project in which a large portion of common 
sense reasoning is being hand-crafted} [Lenat and Guha, 1989]. 

Despite some of the problems with storing complex knowledge in a semantic 
network, research has been done in which semantic networks have been used to 
improve information retrieval. This work yielded limited results and is highly 
language specific, however, the potential for improvement still exists. 

Semantic networks attempt to resolve the mismatch problem in which the 
terms in a query do not match those found in a document, even though the 
document is relevant to the query. Instead of matching characters in the query 
terms with characters in the documents, the semantic distance between the 
terms is measured (by various measures) and incorporated into a semantic 
network. The premise behind this is that terms which share the same meaning 
appear relatively close together in a semantic network. Spreading activation is 
one means of identifying the distance between two terms in a semantic network. 

There is a close relationship between a thesaurus and a semantic network. 
From the standpoint of an IR system, a thesaurus attempts to solve the same 
mismatch problem by expanding a user query with related terms and hoping 
that the related terms will match the document. A semantic network sub­
sumes a thesaurus by incorporating links that indicate "is-a-synonym-of' or 
"is-related-to," but a semantic network can represent more complex informa­
tion such as an is-a hierarchy which is not found in a thesaurus. 

One semantic network used as a tool for information retrieval research is 
WordNet [Beckwith and Miller, 1990]. WordNet is publicly available and con­
tains frames specifically designed for words (some semantic networks might con-
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tains frames for more detailed concepts such as big-and-hairy-person). WordNet 
can be found on the World Wide Web at: www.cogsci.princeton.edu/-wn. 

WordNet contains different entries for the various semantic meanings of a 
term. Additionally, various term relationships are stored including: synonyms, 
antonyms (roughly the opposite of a word), hyponyms (lexical relations such as 
is-a), and meronyms (is a part-of). Most nouns in WordNet are placed in the 
is-a hierarchy while antonyms more commonly relate adjectives. 

Interestingly, less commonly known relations of entailment and troponyms 
are used to relate verbs. Two verbs are related by entailment when the first 
verb entails the second verb. For example, to buy something entails that you 
will pay for it. Hence, buy and pay are related by entailment. A troponym 
relation occurs when the two activities related by entailment must occur at the 
same time (temporally co-extensive) such as the pair (limp, walk). Software 
used to search WordNet is further described in [Beckwith and Miller, 1990]. 

It is reasonable to assume that WordNet would help effectivness by expand­
ing query terms with synsets found in WordNet. Surprisingly, there is no known 
result that has shown this to be the case. Work done by Voorhees [Voorhees, 
1993] showed that even with manual selection of synsets, effectiveness was not 
improved when queries were expanded. A key obstacle was that terms in queries 
were not often found in WordNet due to their specificity-terms such as Na­
tional Rifle Association are not in WordNet. Also, the addition of terms that 
have multiple meanings or word senses significantly degrade effectiveness. 

Semantic networks have been used to augment Boolean retrieval and auto­
matic relevance ranking. We describe these approaches in the remainder of this 
section. 

3. 7.1 Distance Measures 

To compute the distance between a single node in a semantic network and 
another node, a spreading activation algorithm is used. A pointer starts at 
each of the two original nodes and links are followed until an intersection occurs 
between the two points. The shortest path between the two nodes is used to 
compute the distance. Note that the simple shortest path algorithm does not 
apply here because there may be several links that exist between the same two 
nodes. The distance between nodes a and bis: 

Distance(a,b) = minimum number of edges separating a and b 

3.7.1.1 R-distance. The problem of measuring the distance between two 
sets of nodes is more complex. Ideally the two sets line up, for example "large 
rose" and "tall flower" is one such example where "large" can be compared with 
"tall" and "rose" can be compared with "flower." The problem is that it is dif­
ficult to align the concepts such that related concepts will be compared. Hence, 
the R-distance defined in [Rada et al., 1987] takes all of the individual entries 
in each set and averages the distance between all the possible combinations of 
the two sets. 
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If a document is viewed as a set of terms that are "AND"ed together, and a 
query is represented as a Boolean expression in disjunctive normal form, then 
the R-distance identifies a measure of distance between the Boolean query and 
the document. Also, a NOT applied to a concept yields the distance that is 
furthest from the concept. Hence, for a query Q for terms ((a AND b AND 
c} OR (e AND f)) and Document D with terms (t1 AND t2 }, the similarity is 
computed below. 

d(a, t1} + d(a, t2) + d(b, t1) + d(b, t2) + d(c, ti)+ d(c, t2) 
6 

d(e, t1) + d(e, t2) + d(f, t1) + d(f, t2) 
4 

SC(Q,D) is computed now as the MIN(c1 ,c2 ). Essentially each concept rep­
resented in the query is compared to the whole document and the similarity 
measure is computed as the distance between the document and the closest 
query concept. 

Formally, the R-distance of a disjunctive normal form query Q, and a docu­
ment D with terms ( t1, t2, ... , tn) and Cij, indicates the jth term in concept i 
is defined as: 

SC(Q,D) 

SCi(c;,D) 

SC(Q,D) 

min (SC1 (c1,D), SC1(c2, D), ... , SC1(cm, D)) 
l n m 

~ LLd(t;,c;;) 
n i=l j=l 

0, if Q = D 

3.7.1.2 K-distance. A subsequent distance measure referred to as the K­
distance was developed in [Kim and Kim, 1990]. This measure incorporates 
weighted edges in the semantic network. The distance defined between two 
nodes is obtained by finding the shortest path between the two nodes (again by 
using spreading activation} and then summing the edges along the path. More 
formally the distance between terms t; and t; is obtained by: 

d;; = Wt,,z, + w.,,,.,, + ... + w.,n,t; 

where the shortest path from t; to ti is: t;, x 1 , x2 , ••• , t;. 
The authors treat NOT as a special case. Details are given in [Kim and 

Kim, 1990] but the basic idea is to dramatically increase the weights of the 
arcs that connect the node that is being referenced with a NOT (referred to 
as separation edges). Once this is done, any paths that include this node are 
much longer than any other path that includes other terms not referenced by 
a NOT. 
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To obtain the distance between two sets, A and B, of nodes with weighted 
arcs, the K-distance measure computes the minimum of the distances between 
each node in set A and set B. These minimum distances are then averaged. 
Since the weights on the arcs may not be equivalent in both directions, the 
distance measure from A to B is averaged with the distance from B to A. For 
our same query Q-

( ( a AND b AND c) OR (e AND f)) 

Assume document D has only two terms: (ti AND t2), the similarity is com­
puted below. 

min(d(a, ti), d(a, t2)) + min(d(b, ti), d(b, t2)) + min(d(c, ti), d(c, t2)) 
Ci= 3 

min(d(e, ti), d(e, t2)) + min(d(f, ti), d(f, t2)) 
C2 = 2 

SC(Q,D) is still the min(ci,c2). The value of SC(D,Q) would then be ob­
tained, and the two coefficients are then averaged to obtain the final similarity 
measure. 

The K-distance of a disjunctive normal form query Q and a document D 
with terms (ti , t2 , ••• , tn) is defined as: 

SC(Q,D) = SCi(Q,D) + SCi(D, Q) 
2 

SC(Q,D) = 0, if Q = D 

The R-distance satisfies the triangular inequality such that r-dist(a,c) is less 
than or equal to r-dist(a,b) + r-dist(b,c). The K-distance does not satisfy this 
inequality but it does make use of weights along the edges of the semantic 
network. 

3.7.1.3 KB-EBM: Incorporating Distance Into Extended Boolean 
Retrieval. Lee, et al., incorporated a distance measure using a semantic net­
work into the Extended Boolean Retrieval model and called it-KB-EBM for 
Knowledge Base-Extended Boolean Model [Lee et al., 1993]. The idea was 
to take the existing Extended Boolean Retrieval model described in Section 
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2.4 and modify the weights used to include a distance between two nodes in a 
semantic network. 

The Extended Boolean model uses a function F that indicates the weight of 
a term in a document. In our earlier description we simply called it w;, but 
technically it could be represented as F(d, t;). Lee, et al., modified this weight 
by using a semantic network and then used the rest of the Extended Boolean 
model without any other changes. This cleanly handled the case of NOT. 

The primitive distance function, d(t;, ti), returns the length of the shortest 
path between two nodes. This indicates the conceptual closeness of the two 
terms. What is needed here is the conceptual distance, which is inversely 
proportional to the primitive distance function. Hence, the new F function 
uses-

d . -1 ( ) ,\ 
istance t;, ti = , d" t (t t ) "+ is ance i, i 

First, the function F is given for a document with unweighted terms. The 
new function, F(d, t;), computes the weight of term t; in the document as the 
average distance of t; to all other nodes in the document. The new function F 
is then-

F(d, t) = I:?=i dis!ance- 1(t;, t) 
1 + X+T(n -1) 

For existing weights for a term in a document, F is modified to include 
weights wi. This is the weight of the ith term in document d. 

F(d, t) = I:?-i dist:nce-1 (t;, t)w; 
1 + X+T(n -1) 

3.7.1.4 Evaluation of Distance Measures. All three distance measures 
were evaluated on four collections with nine, six, seven, and seven documents, 
respectively. Precision and recall were not measured, so evaluations were done 
using comparisons of the rankings produced by each distance. In some cases 
MESH was used-a medical semantic network-in other cases, the Computing 
Reviews Classification Scheme (CRCS) was used. Overall, the small size of 
the test collections and the lack of precision and recall measurements made it 
difficult to evaluate these measures. They are presented here due to their ability 
to use semantic networks. Most work done today is not focused on Boolean 
requests. However, all of these distance measures are applicable if the natural 
language request is viewed as a Boolean OR of the terms in the query. It would 
be interesting to test them against a larger collection with a general semantic 
network such as WordNet. 

3. 7.2 Developing Query Term Based on "Concepts" 

Instead of computing the distance between query terms and document terms 
in a semantic network and incorporating that distance into the metric, the se­
mantic network can be used as a thesaurus to simply replace terms in the query 
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with "nearby" terms in the semantic network. Vectors of "concepts" can then 
be generated to represent the query, instead of term-based vectors. This was 
described in the early 1970s. In 1988, an algorithm was given that described 
a means of using this approach to improve an existing Boolean retrieval sys­
tem [Giger, 1988]. Terms in the original Boolean system were replaced with 
"concepts". These concepts were found in a semantic network that contained 
links to the original terms. The paper referred to the network as a thesaurus, 
but the different relationships existing between terms meet our definition of a 
semantic network. 

The system described in [Chen and Lynch, 1992, Chen et al., 1993] used 
an automatically generated semantic network. The network was developed 
using two different clustering algorithms. The first was the standard cosine 
algorithm (see Section 3.2), while the second was developed by the authors and 
yields asymmetric links between nodes in the semantic net. Users were then 
able to manually traverse the semantic network to obtain good terms for the 
query, while the semantic nets were also used to find suitable terms to manually 
index new documents. 

3.7.3 Ranking Based on Constrained Spreading Activation 

Two interesting papers appeared in 1987 that are frequently referenced in dis­
cussions of knowledge-based information retrieval [Cohen and Kjeldsen, 1987, 
Kjeldsen and Cohen, 1987]. These papers describe the GRANT system in which 
potential funding agencies are identified based on areas of research interest. A 
manually built semantic network with 4,500 nodes and 700 funding agencies 
was constructed with links that connect agencies and areas of interest based on 
the topics agencies are interested in. 

Given a topic, the links emanating from the topic are activated and spreading 
activation begins. Activation stops when a funding agency is found. At each 
step, activation is constrained. After following the first link, three constraints 
are used. The first is distance. If the path exceeds a length of four, it is 
no longer followed. The second is fan-out, if a path reaches a node that has 
more than four links emanating from it, it is not followed. This is because 
the node that has been reached is too general to be of much use and it will 
cause the search to proceed in many directions that are of little use. The third 
type of constraint is a rule that results in a score for the link. The score is 
considered an endorsement. Ultimately, the results are ranked based on the 
accumulation of these scores. An example of one such endorsement occurs if 
a researcher's area of interest is a subtopic or specialization of a general topic 
funded by the agency it gets a positive endorsement. An agency that funds 
research on database systems will fund research in temporal database systems. 
More formally-

request-funds-for-topic(x) and IS-A(x,y) ➔ request-funds-for-topic(y) 

A negative endorsement rule exists when the area of research interest is a 
generalization of a funding agency's areas of research. An agency that funds 
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database systems will probably not be interested in funding generic interest in 
computer science. 

A best-first search is used such that high-scoring endorsements are followed 
first. The search ends when a certain threshold number of funding agencies 
are identified. The GRANT system was tested operationally, and found to be 
superior to a simple keyword matching system that was in use. Searches that 
previously took hours could be done in minutes. More formal testing was done 
with a small set of twenty-three queries. However, the semantic network and 
t4e document collection were both relatively small so it is difficult to generalize 
from these results. Overall, the GRANT system is very interesting in that it 
uses a semantic network, but the network was constrained based on domain­
specific rules. 

We are unaware of work done using constrained spreading activation for 
domain-specific text retrieval, but this could be an interesting algorithm to use 
with WordNet (assuming reasonable constraints could be developed). 

3.8 Parsing 

The ability to identify a set of tokens to represent a body of text is an essen­
tial feature of every information retrieval system. Simply using every token 
encountered leaves a system vulnerable to fundamental semantic mismatches 
between a query and a document. For instance, a query that asks for infor­
mation about computer chips matches documents that describe potato chips. 
Simple single-token approaches, both manual and automatic, are described in 
Section 3.8.1. Although these approaches seem crude and ultimately treat text 
as a bag of words, they generally are easy to implement, efficient, and often 
result in as good or better effectiveness than many sophisticated approaches 
measured at the Text REtrieval Conference (TREC). A detailed discussion of 
TREC is provided in Chapter 8). 

A step up from single-term approaches is the use of phrases in document 
retrieval. Phrases capture some of the meaning behind the bag of words and 
result in two-term pairs (or multi-term phrases, in the general case) so that 
a query that requires information about New York will not find information 
about the new Prince of York. Section 3.8.2 describes simple approaches to 
phrase identification. 

More sophisticated approaches to phrase identification are given in Section 
3.8.3. These are based on algorithms commonly used for natural language 
processing (NLP). These include part-of-speech taggers, syntax parsers, and 
information extraction heuristics. We provide a brief overview of the heuristics 
that are available and pay particular attention only to those that have been 
directly incorporated into information retrieval systems. An entire book could 
be written on this section as the entire field of natural language processing is 
relevant. 

Overall, it should be noted that parsing is critical to the performance of a 
system. For complex NLP approaches, parsing is discussed in great detail, but 
to date, these approaches have typically performed with no significant difference 
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in performance than simplistic approaches. A review of the recent work done to 
integrate NLP into information retrieval systems is given in [Lewis and Sparck 
Jones, 1996]. 

3.8.1 Single Terms 

The simplest approach to search documents is to require manual intervention 
and to assign names of terms to each document. The problem is that it is not al­
ways easy to assign keywords that distinctly represent a document. Also, when 
categorizations are employed-like the Library of Congress subject headings­
it is difficult to stay current within a domain. Needless to say, the manual effort 
used to categorize documents is extremely high. Therefore, it was learned early 
in the process that manually assigned tokens did not perform significantly bet­
ter than automatically assigned tokens [Salton, 1971d]. 

Once scanning was deemed to be a good idea in the early 1960s, the next 
step was to try to normalize text to avoid simple mismatches due to differing 
prefixes, suffixes, or capitalization. Today, most information retrieval systems 
convert all text to a single case so that terms that simply start a sentence do 
not result in a mismatch with a query simply because they are capitalized. 

Stemming refers to the normalization of terms by removing suffixes or pre­
fixes. The idea is that a user who includes the term "throw" in the query might 
also wish to match on "throwing", "throws", etc. Stemming algorithms have 
been developed for more than twenty years. The Porter and Lovins algorithms 
are most commonly used [Porter, 1980, Lovins, 1968]. These algorithms simply 
remove common suffixes and prefixes. A problem is that two very different 
terms might have the same stem. A stemmer that removes -ing and -ed results 
in a stem of r for terms red and ring. KSTEM uses dictionaries to ensure that 
any generated stem will be a valid word [Krovetz and Croft, 1989, Krovetz, 
1993]. A more recent approach uses corpus-based statistics (essentially based 
on term co-occurrence) to identify stems in a language-independent fashion 
[Croft and Xu, 1994]. These stemmers were shown to result in improved rele­
vance ranking over more traditional stemmers. 

Stop words are terms deemed relatively meaningless in terms of document 
relevance and are not stored in the index. These terms represent approximately 
forty percent of the document collection [Francis and Kucera, 1982]. Removing 
these terms reduces index construction, time and storage cost, may also reduce 
the ability to respond to some queries. A counterexample to the use of stop 
word removal occurs when a query requests a phrase that only contains stop 
words (e.g., "to be or not to be"). Nevertheless, stop word lists are frequently 
used, and some research has been directed solely at determining a good stop 
word list [Fox, 1990]. 

Finally, we find that other parsing rules are employed to handle special char­
acters. Questions arise such as what to do with special characters like hyphens, 
apostrophes, commas, etc. Some initial rules for these questions are given in 
[Adams, 1991], but the effect on precision and recall is not discussed. Many 
TREC papers talk about cleaning up their Parser and the authors confess to 
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having seen their own precision and recall results improved by very simple 
parsing changes. However, we are unaware of a detailed study on single-term 
parsing and the treatment of special characters, and its related effect on preci­
sion and recall. 

3.8.2 Simple Phrases 

Many TREC systems identify phrases as any pair of terms that are not sep­
arated by a stop term. Subsequently, infrequently occurring phrases are not 
stored. In many TREC systems, phrases occurring fewer than 25 times are re­
moved. This dramatically reduces the number of phrases and thereby reduces 
memory requirements found in the inverted index [Ballerini et al., 1996). 

Once phrases are employed, the question as to how they should be incor­
porated into the relevance ranking arises. Some systems simply add them to 
the query, while others add them to the query, but do not include them in the 
computation of the document length normalization [Buckley et al., 1995). The 
reason for this is that the terms have already been considered. Tests using just 
phrases or terms were performed on many systems. It was found that phrases 
should be used to augment, not replace the terms. Hence, a query for New 
York should be modified to search for new, york, and New York. Phrases used 
in this fashion are generally accepted to yield about a ten percent improvement 
in precision and recall over simple terms. 

3.8.3 Complex Phrases 

The quest to employ NLP to answer a user query has been undertaken since the 
early 1960s. In fact, NLP systems were often seen as diametrically opposed to 
IR systems because the NLP systems were trying to understand a document by 
building a canonical structure that represents the document. The goal behind 
the canonical structure is to reduce the inherent ambiguity found in language. 
A query that asks for information about walking should match documents that 
describe people who are moving slowly by gradually placing one foot in front of 
the other. 

A NLP system stores information about walking and moving slowly with 
the exact same canonical structure-it does this by first parsing the document 
syntactically-identifying the key elements of the document (subject, verb, 
object, etc.) and then building a single structure for the document. Simple 
primitives that encompass large categories of verbs have been proposed [Schank, 
1975) such as PTRANS (physically transport), in which John drove to work and 
John used his car to get to work both result in the same simple structure John 
PTRANS work. 

Progress in NLP has occurred, but the reality is that many problems in 
knowledge representation make it extremely difficult to actually build the nec­
essary canonical structures. The CYC project has spent the last ten years 
hand-building a knowledge base and has encountered substantial difficulty in 
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identifying the exact means of representing the knowledge found in text [Lenat 
and Guha, 1989]. 

A side effect of full-scale NLP systems is that many tools that do not work 
perfectly for full language understanding are becoming quite usable for IR sys­
tems. We may not be able to build a perfect knowledge representation of a 
document, but by using the same part-of-speech tagger and syntactic parser 
that might be used by an NLP system, we can develop several algorithms to 
identify key phrases in documents. 

3.8.3.1 Use of POS and Word Sense Tagging. The most recent part­
of-speech taggers are based on either statistical or rule-based methods. The 
goal is take a section of text and identify the parts of speech for each token. 
One approach incorporates a pretagged corpus to identify two measures: the 
frequency a given term is assigned a particular tag and the frequency with 
which different tag sequences occur [Church, 1988]. For example, duck might 
appear as a noun (creature that swims in ponds) eighty percent of a time and 
a verb (to get out of the way of a ball thrown at your head) twenty percent of 
the time. Additionally, "noun noun verb" may occur ten percent of the time 
while "noun noun noun" may occur thirty percent of the time. Using these two 
lists (generated based on a pretagged training corpus) a dynamic programming 
algorithm can be obtained to optimize the assignment of a tag to a token for 
a given step. DeRose improved on Church's initial tagger in [DeRose, 1988]. 
Rule-based taggers in which tags are assigned based on the firing of sequences 
of rules are described in [Brill, 1992]. 

Part-of-speech taggers can be used to identify phrases. One use is to identify 
all sequences of nouns such as Virginia Beach or sequences of adjectives followed 
by nouns such as big red truck [Allan et al., 1995, Broglio et al., 1994]. Another 
use of a tagger is to modify processing such that a match of a term in the 
query only occurs if it matches the same part-of-speech found in the document. 
In this fashion, duck as a verb does not match a reference to duck as a noun. 
Although this seems sensible, it has not been shown to be particularly effective. 
One reason is that words such as bark have many different senses within a part 
of speech. In the sentences A dog's bark is often stronger than its bite and Here 
is a nice piece of tree bark, bark is a noun in both cases with very different word 
senses. Some initial development of word sense taggers has begun [Kravetz, 
1993]. This work identifies word senses by using a dictionary-based stemmer. 

3.8.3.2 Syntactic Parsing. As we move along the continuum of increas­
ingly more complex NLP tools, we now discuss syntactic parsing. These tools 
attempt to identify the key syntactic components of a sentence, such as subject, 
verb, object, etc. For simple sentences the problem is not so hard. Whales eat 
fish has the simple subject of Whales, the verb of eat, and the object of fish. 
Typically, parsers work by first invoking a part-of-speech tagger. 

Subsequently, a couple of different approaches are employed. One method is 
to apply a grammar. The first attempt at parsers used augmented transition 

Page 141 of 262



RETRIEVAL UTILITIES 129 

networks (ATNs) that were essentially non-deterministic finite state automata 
in which: subject-verb-object would be a sequence of states. The problem is, 
that for complex sentences, many different paths occur through the automata. 
Also, some sentences recursively start the whole finite state automata (FSA), 
in that they contain structures that have all the individual components of a 
sentence. Relative clauses that occur in sentences such as Mary, who is a 
nice girl that plays on the tennis team, likes seafood. Here, the main struc­
ture of Mary likes seafood also has a substructure of Mary plays tennis. After 
ATNs, rule-based approaches that attempt to parse based on firing rules, were 
attempted. 

Other parsing algorithms, such as the Word Usage Parser (WUP) by Gomez, 
use a dictionary lookup for each word, and each word generates a specialized 
sequence of states [Gomez, 1988]. In other words, the ATN is dynamically 
generated based on individual word occurrences. Although this is much faster 
than an ATN, it requires substantial manual intervention to build the dictionary 
of word usages. More recent parsers such as the Apple Pie Parser, are based 
on light parsing in which rules are followed to quickly scan for key elements of 
a sentence, but more complex sentences are not fully parsed. 

Once the parse has been obtained, an information retrieval system makes 
use of the component structures. A simple use of a parser is to use the various 
component phrases such as SUBJECT or OBJECT as the only components 
of a query and match them against the document. Phrases generated in this 
fashion match many variations found in English. A query with American Pres­
ident will match phrases that include President of America, president who is in 
charge of America, etc. Recent work that identifies head-modifier pairs (e.g., 
"America+president") was evaluated against a patent collection and demon­
strated as much as a sixteen percent improvement in average precision [Osborn 
et al., 1997]. On the TREC-5 dataset, separate indexes based on stems, simple 
phrases (essentially adjective-noun pairs or noun-noun pairs), head-modifier 
pairs, and people name's were all separately indexed [Strzalkowski et al., 1997]. 
These streams were then combined and a twenty percent improvement in aver­
age precision was observed. 

To date, this work has not resulted in substantial improvements in effec­
tiveness, although it dramatically increases the run-time performance of the 
system. 

3.8.3.3 Information Extraction. The Message Understanding Confer­
ence (MUC) focuses on information extraction-the problem of finding various 
structured data within an unstructured document. Identification of people's 
names, places, amounts, etc. is the essential problem found in MUC and nu­
merous algorithms to attempt to solve this problem exist. Again, these are 
either rule-based or statistical algorithms. The first step in many of these al­
gorithms is to generate a syntactic parse of the sentence, or at the very least, 
generate a part-of-speech tag. Details of these algorithms are found in the 
MUC Conference Proceedings. 
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Current extractors identify people names, organizations, and locations. We 
present a brief example that we created with a rule-based extractor from BBN 
Corporation to obtain this new document. This extractor works by using hun­
dreds of hand-crafted rules that use surrounding terms to identify when a term 
should be extracted. First, we show the pre-extracted text-a paragraph about 
the guitarist Allen Collins. 

<TEXT> 
Collins began his rise to success as the lightning-fingered 
guitarist for the Jacksonville band formed in 1966 by a group 
of high school students. The band enjoyed national fame in 
the 1970s with such hits as "Free Bird," "Gimme Three Steps," 
"Saturday Night Special" and Ronnie Van Zant's 
feisty "Sweet Home Alabama." 
</TEXT> 

The following output is generated by the extractor. Tags such as PERSON and 
LOCATION are now marked. 

<TEXT> 
<ENAMEX TYPE="PERSON">Collins</ENAMEX> began his rise to success 
as the lightning-fingered guitarist for the <ENAMEX 
TYPE="LOCATION">Jacksonville</ENAMEX> band formed in <TIMEX 
TYPE="DATE">1966</TIMEX> by a group of high school students. The 
band enjoyed national fame in the <TIMEX TYPE="DATE">1970s 
</TIMEX> with such hits as "Free <ENAMEX TYPE="PERSON"> Bird 
</ENAMEX>," "Gimme Three Steps," "Saturday Night Special" and 
<ENAMEX TYPE="PERSON">Ronnie Van Zant</ENAMEX>'s feisty "Sweet 
Home <ENAMEX TYPE="LOCATION">Alabama</ENAMEX>." 
</TEXT> 

In this example, and in many we have hand-checked, the extractor performs 
well. Many extractors are now performing at much higher levels of precision 
and recall than those of the early 1990s (Sundheim, 1995]. However, they are 
not perfect. Notice the label of PERSON being assigned to the term "Bird" in 
the phrase "Free Bird." 

Using extracted data makes it possible for a user to be shown a list of 
all person names, locations, and organizations that appear in the document 
collection. These could be used as suggested query terms for a user. 

Extractors are still very slow. We recently ran one extractor from BBN, 
and it took nearly a week on a SUN SPARC 20 to process half a gigabyte 
of text. The simplest use of an extractor is to recognize key phrases in the 
documents. An information retrieval system could incorporate extraction by 
increasing term weights for extracted terms. Given that extractors are only 
recently running fast enough to even consider using for large volumes of text, 
research in the area of using extractors for IR systems is in its infancy. 
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3.9 Summary 

We described eight utilities, emphasizing that each of these utilities, both in­
dependently and in combination with each other can be integrated with any 
strategy. Most of these utilities address the term-mismatch problem, namely, a 
document can be highly relevant without having many terms that syntactically 
match those terms specified in the query. The relevance feedback, thesaurus, 
and semantic network strategies directly address this problem as they attempt 
to find related terms that do match the document and the query. Parsing and 
N-grams avoid mismatches by using fragments of terms instead of the actual 
terms. Fragmentation can avoid mismatches that may occur due to spelling 
errors or the loss or addition of a common prefix or suffix. 

Passages attempt to focus on only the relevant part of a document. Thus, 
mismatching terms from spurious parts of the document are ignored and do 
not significantly reduce the similarity coefficient. Clustering algorithms also 
attempt to focus a user search onto only a relevant cluster of documents, thereby 
avoiding irrelevant documents. 

Regression analysis estimates coefficients for a similarity measure based on 
a history of relevant documents. Although this does require prior relevance 
information, it offers an opportunity to fine tune different retrieval strategies. 

Which utility is most important? Perhaps a more interesting question is, 
which utility or combination of utilities work best with a given strategy? The 
answer to either of these questions is unclear. Relevance feedback is an ac­
cepted part of most systems participating in the TREC activities. Document 
clustering has exceeded most computational resources, and thus, has not been 
used widely. Thesauri and semantic networks have yet to show dramatic im­
provements over a baseline comparison. Parsing plays a critical role in all 
information retrieval systems with much work done on various stemmers. N­
grams are not as commonly used because they require substantial growth in an 
inverted index, but they do offer resilience to spelling errors. 

The bottom line is that more testing is needed to identify which utility works 
best with a given strategy, and which measurements are needed to identify the 
extent to which a given utility improves effectiveness. 

3.10 Exercises 

1. Using the text from Alice in Wonderland, write some code that will use 
a trivial strategy for ranking documents. For a query with i matching 
terms, assign a similarity measure of i for a given document (for simplicity 
define a document as ten lines of the book). Implement automatic relevance 
feedback using this strategy to suggest ten new terms for a given query. Use 
id/ as your new term sort order. 

(a) Identify a query where five out of the ten terms are "good" in that they 
directly relate to the query. 

(b) Identify a query where five of the terms are "bad". 
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2. Develop an example with a retrieval strategy of your choice and show how a 
modification to the parser will result in fundamentally different results (the 
document ranking will be different). 

3. Implement an automatic thesaurus generation algorithm for the term teacup 
in the book. Give the top three terms most related to this term. 

4. Give ten examples where stemming will do what a user would like it to do. 
Give ten terms where stemming will not do that a user would like. 

5. One idea to improve effectiveness of an IR system is to match on both the 
term and the sense of the term. The idea is that for a query of the term 
duck as noun, a document containing "She tried to duck to avoid the ball 
thrown at her." would not match. Implement five queries with your favorite 
web search engine, and for each query identify a document that could have 
been avoided using this heuristic. 
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TO SEQUENTIAL IR SYSTEMS 

Thus far, we have discussed the algorithms used to improve the effectiveness 
of query processing in terms of precision and recall. Retrieval strategies and 
utilities all focus on finding the relevant documents for a query. They are not 
concerned with how long it takes to find them. 

However, users of production systems clearly are concerned with run-time 
performance. A system that takes too long to find relevant documents is not 
as useful as one that finds relevant documents quickly. The bulk of information 
retrieval research has focused on improvements to precision and recall since the 
hope has been that machines would continue to speed up. Also, there is valid 
concern that there is little merit in speeding up a heuristic if it is not retrieving 
relevant documents. 

Sequential information retrieval algorithms are difficult to analyze in detail 
as their performance is often based on the selectivity of an information retrieval 
query. Most algorithms are on the order of O(q(tfma:r:)) where q is the number 
of terms in the query and tf ma:r: is the maximum selectivity of any of the query 
terms. This is, in fact, a high estimate for query response time as many terms 
appear infrequently (about half are hapax legomena, or those that occur once 
according to Zipf's law [Zipf, 1949]). 

We are not aware of a standard analytical model that can effectively be used 
to estimate query performance. Given this, sequential information retrieval 
algorithms are all measured empirically with experiments that require large 
volumes of data and are somewhat time consuming in nature. 
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The good news is that given larger and larger document collections, more 
work is appearing on improvements to run-time performance. We describe that 
work in this chapter. Additional research has been done to speed up information 
retrieval algorithms by employing multiple processors. That work is covered 
in Chapter 6. However, in any study of parallel algorithms, it is important 
that work be compared with the best sequential algorithm. Hence, this chapter 
describes the best sequential algorithms that we are aware of for information 
retrieval. 

We also note that most of the algorithms described in this chapter are di­
rected at the vector space model. These algorithms are also directly applicable 
to the probabilistic model. Clearly, similar work is needed to improve perfor­
mance for other retrieval strategies and utilities. 

Early information retrieval systems simply scanned very small document 
collections. Subsequently, inverted indexes were used to speed query processing 
at the expense of storage and time to build the index. Signature files were also 
proposed. These are typically smaller and faster, but support less retrieval 
functionality than an inverted index. 

More recent work compressed inverted indexes to speed up query processing. 
Additionally, partial document rankings that are much faster than full rankings 
can be done at relatively low cost. In some cases precision and recall are 
comparable to doing a full ranking [Lee and Ren, 1996]. 

In Section 4.1, we first overview inverted indexing and then describe meth­
ods used to compress an inverted index. In Section 4.2, we describe algorithms 
that improve run-time of query processing, and in Section 4.3, we review sig­
nature files. 

4.1 Inverted Index 

Since many document collections are reasonably static, it is feasible to build 
an inverted index to quickly find terms in the document collection. Inverted 
indexes were used in both early information retrieval and database management 
systems in the 1960s [Bleir, 1967]. Instead of scanning the entire collection, the 
text is preprocessed and all unique terms are identified. This list of unique 
terms is referred to as the index. For each term a list of documents that 
contain the term is also stored. This list is referred to as a posting list. Figure 
4.1 Ilustrates an inverted index. 

An entry in the list of documents can also contain the location of the term in 
the document (e.g., word, sentence, paragraph) to facilitate proximity search­
ing. Additionally, an entry can contain a manually or automatically assigned 
weight for the term in the document. This weight is frequently used in compu­
tations that generate a measure of relevance to the query. Once this measure is 
computed, the document retrieval algorithm identifies all the documents that 
are "relevant" to the query by sorting the coefficient and presenting a ranked 
list to the user. 

Indexing requires additional overhead since the entire collection is scanned 
and substantial 1/0 is required to generate an efficiently represented inverted 
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Figure 4.1. Inverted Index 
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index for use in secondary storage. Indexing has been shown to dramatically 
reduce the amount of I/0 required to satisfy an ad hoc query [Stone, 1987]. 
Upon receiving a query, the index is consulted, the corresponding posting lists 
are retrieved, and the algorithm ranks the documents based on the contents of 
the posting lists. 

The size of the index is another concern. Many indexes can be equal to the 
size of the original text. This means that storage requirements are doubled due 
to the index. However, compression of the index typically results in a space 
requirement of less than ten percent of the original text [Witten et al., 1994]. 
The terms or phrases stored in the index depend on the parsing algorithms that 
are employed (see Section 3.8). 

The size of posting lists in the inverted index can be approximated by the 
Zipfian distribution-Zipf proposed that the term frequency distribution in a 
natural language is such that if all terms were ordered and assigned a rank, the 
product of their frequency and their rank would be constant [Zipf, 1949]. The 
following table illustrates the Zipfian distribution when this constant is equal 
to one. 

Page 148 of 262



136 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS 

Rank Frequency Constant 
1 1.00 1 
2 0.50 1 
3 0.33 1 
4 0.25 1 
5 0.20 1 

Using ~. where r is the rank and C is the value of the constant, an estimate 
can be made for the number of occurrences of a given term. The constant, 
C, is domain-specific and equals the number of occurrences of the most fre­
quent term. 

4.1.1 Building an Inverted Index 

An inverted index consists of two components, a list of each distinct term 
referred to as the index and a set of lists referred to as posting lists. To compute 
relevance ranking, the term frequency or weight must be maintained. Thus, a 
posting list contains a set of tuples for each distinct term in the collection. The 
set of tuples is of the form < doc_id, tf> for each distinct term in the collection. 
A typical uncompressed index spends four bytes on the document identifier and 
two bytes on the term frequency, since a long document can have a term that 
appears more than 255 times. 

Consider a document collection in which document one contains two oc­
currences of sales and one occurrence of vehicle. Document two contains one 
occurrence of vehicle. The index would contain the entries vehicle and sales. 
The posting list is simply a linked list that is associated with each of these 
terms. For this example, we would have-

sales ➔ (1, 2) 
vehicle ➔ (1, 1) (2, 1) 

The entries in the posting lists are stored in ascending order by document 
number. Clearly, the construction of this inverted index is expensive, but once 
built, queries can be efficiently implemented. The algorithms underlying the 
implementation of the query processing and the construction of the inverted 
index are now described. 

A possible approach to index creation is as follows: An inverted index is 
constructed by stepping through the entire document collection, one term at a 
time. The output of the index construction algorithm is a set of files written 
to disk. These files are-

■ Index file. Contains the actual posting list for each distinct term in the 
collection. A term, t that occurs in i different documents will have a posting 
list of the form: 

t ➔ (d1, t/ii ), (d2, tfo), ... , (d;, tfo) 
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where di indicates the document identifier of document i and tfu indicates 
the number of times term j occurs in document i. 

■ Document file. Contains information about each distinct document­
document identifier, long document name, date published, etc. 

■ Weight file. Contains the weight for each document. This is the denomi­
nator for the cosine coefficient-defined as the cosine of the angle between 
the query and document vector (see Section 2.1). 

The construction of the inverted index is implemented by scanning the entire 
collection, one term at a time. When a term is encountered, a check is made 
to see if this term is a stop word (if stop word removal is used) or if it is 
a previously identified term. A hash function is used to quickly locate the 
term in an array. Collisions caused by the hash function are resolved via a 
linear linked list. Different hashing functions and their relative performance 
are given in [McKenzie et al., 1990). Once the posting list corresponding to 
this term is identified, the first entry of the list is checked to see if its document 
identifier matches the current document. If it does, the term frequency is 
merely incremented. Otherwise, this is the first occurrence of this term in the 
document, so a new posting list entry is added to the start of the list. 

The posting list is stored entirely in memory. Memory is allocated dynami­
cally for each new posting list entry. With each memory allocation, a check is 
made to determine if the memory reserved for indexing has been exceeded. If 
it has, processing halts while all posting lists resident in memory are written 
to disk. Once processing continues, new posting lists are written. With each 
output to disk, posting list entries for the same term are chained together. 

Processing is completed when all of the terms have been processed. At this 
point, the inverse document frequency for each term is computed by scanning 
the entire list of unique terms. Once the inverse document frequency is com­
puted, it is possible to compute the document weight (the denominator for the 
cosine coefficient). This is done by scanning the entire posting list for each 
term. 

4.1.2 Compressing an Inverted Index 

A key objective in the development of inverted index files is to develop al­
gorithms that reduce 1/0 and storage overhead. The size of the index file 
determines the storage overhead imposed. Furthermore, since large index files 
demand greater 1/0 to read them, the size also directly affects the processing 
times. 

Although compression of text has been extensively studied [Bell et al., 1990, 
Gutmann and Bell, 1994, Gupte and Frieder, 1995), relatively little work has 
been done in the area of inverted index compression. However, in work by Mof­
fat and Zobel, an index was generated that was relatively easy to decompress. 
It comprised less than ten percent of the original document collection, and, 
more impressively, included stop terms. 
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Two primary areas in which an inverted index might be compressed are 
compression of the index and compression of the posting lists. Given relatively 
inexpensive memory costs, we do not focus on compression of indexes, although 
some work is described in [Witten et al., 1994]. The King James Bible (about 
five megabytes) contains 9,020 distinct terms and the TREC collection (slightly 
over two gigabytes) contains 538,244 distinct terms [Witten et al., 1994]. The 
number of new terms always slightly increases as new domains are encountered, 
but it is reasonable to expect that it will stabilize at around one or two million 
terms. With an average term length of six, a four byte document frequency 
counter, and a four byte pointer to the first entry in the posting list, fourteen 
bytes are required for each term. For the conservative estimate of two million 
terms, the uncompressed index is likely to fit comfortably within 32 MB. 

Given the relatively small size of an index and the ease with which it should 
fit in memory, we do not describe a detailed discussion of techniques used to 
compress the index. We note that stemming reduces this requirement and 
Huffman encoding can be used in a relatively straightforward fashion [Witten 
et al., 1994]. Also, the use of phrases improves precision and recall (see Section 
3.8.2). Storage of phrases in the index may well require compression (depending 
upon how phrases are identified and restricted most systems eliminate phrases 
that occur infrequently). 

To overview index compression algorithms, we first describe a relatively 
straightforward one that is referred to as the Byte Aligned (BA) index com­
pression [Grossman, 1995]. BA compression is done within byte boundaries to 
improve run-time at a slight cost to the compression ratio. This algorithm is 
easy to implement and provides good compression (about fifteen percent of the 
size of an uncompressed inverted index when stop words are used). Much bet­
ter compression is given by [Witten et al., 1994], but variable length encoding 
is used so it is more complex to implement. 

4.1.2.1 Fixed Length Index Compression. As discussed in the previ­
ous section, the entries in a posting list are in descending order by document 
identifier. This list is always in descending order as new entries are added to 
the start of the list. Hence, run-length encoding is applicable for document 
identifiers. For any document identifier, only the offset between the current 
identifier and the identifier immediately preceding it are computed. For the 
case when no other document identifier exists, a compressed version of the doc­
ument identifier is stored. Using this technique a high proportion of relatively 
low values is assured. 

This scheme effectively reduces the domain of the identifiers, allowing their 
storage in a more concise format. Subsequently, the following method is applied 
to compress the data. For a given input value, the two left-most bits are 
reserved to store a count for the number of bytes that are used in storing the 
value. There are four possible combinations of two bit representations; thus a 
two bit length indicator is used for all document identifiers. Integers are stored 
in either 6, 14, 22, or 30 bits. Optimally, a reduction of each individual data 
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record size by a factor of four is obtained by this method, since, in the best case, 
all values are less than 26 = 64 and can be stored in a single byte. Without 
compression, four bytes are used for all document identifiers. 

For each value to be compressed, a minimum number of bytes required to 
store this value is computed. The table below indicates the range of values 
that can be stored, as well as the length indicator for one, two, three, and 
four bytes. For document collections exceeding 230 documents, this scheme can 
be extended to include a three bit length indicator which extends the range 
to 261 -1. 

Length Number of Bytes Required 
0~x<64 1 
64 ~ X < 16,384 2 
16,384~ X < 4,194,304 3 
4,194,304< X < 1,073,741,824 4 

For term frequencies, there is no concept of using an offset between the succes­
sive values as each frequency is independent of the preceding value. However, 
the same encoding scheme can be used. Since we do not expect a document to 
contain a term more than 215 = 32, 768 times, either one or two bytes are used 
to store the value with one bit used as the length indicator. 

4.1.2.2 Ex8I11ple. Consider an entry for an arbitrary term, ti, that indi­
cates t1 occurs in documents 1, 3, 7, 70, and 250. 

ti ➔ 1, 3, 7, 70, 250 

Byte-aligned (BA) compression uses the leading two high order bits to indicate 
the number of bytes used to represent the value. For the first four values, only 
one byte is required; for the final value, 180, two bytes are required. 

Value Compressed Bit String 
1 00 000001 
2 00 000010 
4 00 000100 

63 00 111111 
180 01 000000 10110100 

Using no compression, the five entries in the posting list require four bytes each 
for a total of twenty bytes. 

Value Compressed Bit String 
1 00000000 00000000 00000000 00000001 
3 00000000 00000000 00000000 00000011 
7 00000000 00000000 00000000 00000111 

70 00000000 00000000 00000000 01000110 
250 00000000 00000000 00000000 11111010 
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In this example, uncompressed data requires 160 bits, while BA compression 
requires only 48 bits. 

4.1.3 Variable Length Index Compression 

Moffat and Zobel improve on work done by Linoff and Stanfill in which com­
pression is not byte aligned and numbers are represented as sequences of blocks 
of n bits terminated by a sequence of s stop bits. The tuning of n and s is 
possible for various collections. More details appear in (Linoff and Stanfill, 
1993]. 

Moffat and Zobel also use the differences in the posting list. They capi­
talize on the fact that for most long posting lists, the difference between two 
entries is relatively small. They first mention that patterns can be seen in 
these differences and that Huffman encoding provides the best compression. In 
this method, the frequency distribution of all of the offsets is obtained through 
an initial pass over the text, a compression scheme is developed based on the 
frequency distribution, and a second pass uses the new compression scheme. 
For example, if it was found that an offset of one has the highest frequency 
throughout the entire index, the scheme would use a single bit to represent the 
offset of one. 

Moffat and Zobel use a family of universal codes described in [Elias, 1975]. 
This code represents an integer x with 2llog2xJ + 1 bits. The first Llog2xJ 
bits are the unary representation of Llog2xJ. (Unary representation is a base 
one representation of integers using only the digit one. The number 510 is 
represented as 111111.) After the leading unary representation, the next bit is 
a single stop bit of zero. At this point, the highest power of two that does not 
exceed x has been represented. The next Llog2x J bits represent the remainder 
of x - 2Liog, zj in binary. 

As an example, consider the compression of the decimal 14. First, llog2x J = 
3 is represented in unary as 111. Next, the stop bit is used. Subsequently, the 
remainder of x - 2L1og, zJ = 14 - 8 = 6 is stored in binary using llog2 14J = 3 
bits as 110. Hence, the compressed code for 1410 is 1110110. 

Decompression is done in one pass, because it is known that for a number 
with n bits prior to the stop bit, there will be n bits after the stop bit. The 
first eight integers using the Elias 'Y encoding are given below: 

X 'Y 
1 0 
2 10 0 
3 10 1 
4 11000 
5 11001 
6 11010 
7 11011 
8 1110 000 
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4.1.3.1 ExaJI1ple. For our same example, the differences of 1, 2, 4, 63, and 
180 are stored as: 

Value Compressed Bit String 
1 0 
2 10 0 
4 11000 

63 11111011111 
180 11111110 0110100 

This requires only 35 bits, thirteen less than the simple BA compression. Also, 
our example contained an even distribution of relatively large offsets to small 
ones. The real gain can be seen in that very small offsets require only a 1 or a 
0. Moffat and Zobel use the I code to compress the term frequency in a posting 
list, but use a more complex coding scheme for the posting list entries. 

4.1.4 Varying Compression Based on Posting List Size 

The gamma scheme can be generalized as a coding paradigm based on the 
vector V with positive integers i where I: vi ~ N. To code integer x ~ 1 
relative to V, find k such that-

k-1 k 

"'v· < x < "'v· ~ :J -~ :J 
j=l j=l 

In other words, find the first component of V such that the sum of all preceding 
components is greater than or equal to the value, x, to be encoded. For our 
example of 7, using a vector V of <1, 2, 4, 8, 16, 32> we find the first three 
components that are needed (1, 2, 4) to equal or exceed 7 so k is equal to three. 
Now k can be encoded in some representation (unary is typically used) followed 
by the difference: 

k-1 

d=x- 1:v1- l 
j=l 

Using this sum we have: d = 7 - (1 + 2) - 1 = 3 which is now coded in 
flog2 Vk l = flog2 41 = 2 binary bits. With this generalization, the , scheme 
can be seen as using the vector V composed of powers of 2 <l, 2, 4, 8, ... , > 
and coding k in binary. 

Clearly, V can be changed to give different compression characteristics. 
Low values in v optimize compression for low numbers, while higher values 
in v provide more resilience for high numbers. A clever solution given by 
[Zobel et al., 1992] was to vary V for each posting list such that V = < 
b, 2b, 4b, 8b, 16b, 32b, 64b > where b is the median offset given in the posting 
list. 
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4.1.4.1 Example. Using our example of 1, 2, 4, 63, 180, the median, b, has 
four results in the vector V = < 4, 8, 16, 32, 64, 128, 256>. 

Value Compressed Bit String 
1 0 00 
2 0 01 
4 011 
63 11110 000100 
180 1111110 01001100 

This requires thirty-five bits as well and we can see that, for this example, the 
use of the median was not such a good choice as there was wide skew in the 
numbers. A more typical posting list in which numbers were uniformly closer 
to the median could result in better compression. 

4.2 Query Processing 

Recent work has focused on improving query run-time. Moffat and Zobel have 
shown that query performance can be improved by modifying the inverted index 
to support fast scanning of a posting list [Moffat and Zobel, 1996, Moffat and 
Zobel, 1994]. Other work has shown that reasonable precision and recall can 
be obtained by retrieving fewer terms in the query [Grossman et al., 1997]. 
A recent study showed that the computation can be reduced even further by 
eliminating some of the complexity found in the vector space model [Lee and 
Ren, 1996]. 

4.2.1 Inverted Index Modifications 

Moffat and Zobel show how an inverted index can be segmented so as to allow 
for a quick search of a posting list to see if a particular document is found 
[Witten et al., 1994]. The typical ranking algorithm scans the entire posting 
list for each term in the query. An array of document scores is updated for 
each entry in the posting list. Moffat and Zobel suggest the least frequent 
terms should be processed first. 

The premise is that less frequent terms carry the most meaning and proba­
bly have the most significant contribution to a high-ranking documents. The 
entire posting lists for these terms are processed. Some algorithms suggest that 
processing should stop after d documents are assigned a non-zero score. The 
premise is that at this point, the high-frequency terms in the query will sim­
ply be generating scores for documents that will not end up in the final top t 
documents, where tis the number of documents that are displayed to the user. 

A suggested improvement to this is to continue processing all the terms in 
the query, but only update the weights found in the d documents. In other 
words, after some threshold of d scores has been reached, the remaining query 
terms become part of an AND (they only increment documents who contain 
another term in the query) instead of the usual vector space OR. At this point, 

Page 155 of 262



EFFICIENCY ISSUES PERTAINING TO SEQUENTIAL IR SYSTEMS 143 

it is cheaper to reverse the order of the nested loop that is used to increment 
scores. Prior to reaching d scores, the basic algorithm is-

For each term t in the query Q 
Obtain the posting list entries fort 
For each posting list entry that indicates t is in doc i 

Update score for document i 

For query terms with small posting lists, the outer loop is small; however, 
when terms that are very frequent are examined, extremely long posting lists 
are prevalent. Also, after d documents are accessed, there is no need to update 
the score for every document, it is only necessary to update the score for those 
documents that have a non-zero score. 

To avoid scanning very long posting lists, the algorithm is modified to be-

For each term t in the query Q 
Obtain posting list, p, for documents that contain t 
For each document x in the reserved list of d documents 

Scan posting list p for x 
if x exists 

update score for document x 

The key here is that the inverted index must be changed to allow quick 
access to a posting list entry. It is assumed that the entries in the posting 
list are sorted by a document identifier. As a new document is encountered, its 
entry can be appended to the existing posting list. Moffat and Zobel propose to 
change the posting list by partitioning it and adding pointers to each partition. 
The posting list can quickly be scanned by checking the first partition pointer 
( which contains the document identifier of the highest document in the partition 
and a pointer to the next partition). This check indicates whether or not a 
jump should be made to the next partition or if the current partition should be 
scanned. The process continues until the partition is found and the document 
we are looking for is matched against the elements of the partition. A small 
size, d, of about 1,000 resulted in the best CPU time for a set of TREC queries 
against the TREC data [Moffat and Zobel, 1996]. 

4.2.2 Partial Result Set Retrieval 

Another way to improve run-time performance is to stop processing after some 
threshold of computational resources has been expended. One approach has 
been to count disk I/O and stop after a threshold of disk I/O has been reached 
[Yee et al., 1993]. The key to this approach is to sort the terms in the query 
based on some indicator of term goodness and process the terms in this order. 
By doing this, query processing stops after the important terms have been 
processed. Sorting the terms is really analogous to sorting their posting lists. 
Three measures used to characterize a posting list are now described. 
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4.2.2.1 Cutoff Based on Document Frequency. The simplest measure 
of term quality is to rely on document frequency. This was described in [Gross­
man et al., 1997, Grossman et al., 1994] which showed that using between 
twenty-five to seventy-five percent of the query terms after they were sorted by 
document frequency resulted in almost no degradation in precision and recall 
for the TREC-4 document collection. In some cases, precision and recall im­
proves with fewer terms because lower ranked terms are sometimes noise terms 
such as good, nice, useful, etc. These terms have long posting lists that result 
in scoring thousands of documents and do little to improve the quality of the 
result. Using term frequency is a means of implementing a dynamic stop word 
list in which high-frequency terms are eliminated without using a static set of 
stop words. 

4.2.2.2 Cutoff Based on Maximum Estimated Weight. Two other 
measures of sorting the query terms are described in [Yee et al., 1993]. The 
first computes the maximum term frequency of a given query term as tfmaz 
and uses the following as a means of sorting the query. 

tfmaz X id/ 

The idea is that a term that appears frequently in all the documents in which it 
appears, is probably of more importance than a term that appears infrequently 
in the documents that it appears in. The assumption is that the maximum 
value is a good indicator of how often the term appears in a document. 

4.2.2.3 Cutoff Based on the Weight of a Disk Page in the Posting 
List. The cutoffs based on term weights can be used to characterize posting 
lists and choose which posting list to process first. The problem is that a posting 
list can be quite long and may have substantial skew. To avoid this problem, a 
new measure sorts disk pages within a posting list instead of the entire posting 
list. At index creation time, the posting lists are sorted in decreasing order by 
term frequency and instead of just a pointer that points to the first entry in the 
posting list, the index contains an entry for each page of the posting list. The 
entry indicates the maximum term frequency on a given page. The posting list 
pages are then sorted by-

t/ maz X id/ X f (I) 

where /(I) is a function that indicates the number of entries on a page. This is 
necessary since some pages will not be full and a normalization is needed such 
that they are not sorted in exactly the same way as a full page. One value that 
is used for / (I) is i" where O < e < 1. 

Unfortunately, this measure requires an entry in the index for each page in 
the posting list. However, results show (for a variety of query sizes) that only 
about forty percent of the disk pages need to be retrieved to obtain eighty 
percent of the documents that would be found if all one hundred percent of the 
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pages were accessed. All of these tests were performed using small document 
collections. 

4.2.3 Vector Space Simplifications 

Recent work has shown, in many cases, that simplifications to the vector space 
model can be made with only limited degradation in precision and recall [Lee 
et al., 1997]. In this work, five variations to the basic cosine measure (see 
Section 2.1) were tested on five small collections and 10,000 articles from the 
Wall Street Journal portion of the TREC collection. To review, the baseline 
cosine coefficient is-

The first variation was to replace the document length normalization that is 
based on weight with the square root of the number of terms in D;. The second 
variation was to simply remove the document length normalization (simple dot 
product coefficient) given by-

t 

SC(Q,D;) = LWqjdij 
j=l 

The third measure drops the idf. This eliminates one entry in the index for 
each term. 

t 

SC(Q,D;) = L t/qjt/;j 
j=l 

The fourth measure drops the t/ but retains the id/. This eliminates the need 
to store the t/ in each entry of the posting list-a significant computational 
savings. 

t 

SC(Q,D;) = LWqjWij 
j=l 

The weight, Wqj, is one if term j is in the query and zero if otherwise. The 
weight, w;; is equal to idf; if term j is in the document and zero otherwise. 

The fifth and final method simply counts matches between the query and 
the terms. That is-

t 

SC(Q,D;) = LWqjWij 
j=l 

where wq; is one if term j is in the query and zero otherwise, and Wij is equal 
to one if term j is in the document and zero otherwise. 
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For the TREC subset, two tests were done. The first was with the TREC 
narratives (long queries) and the second was with the TREC concepts (short 
queries). With the narratives, the baseline cosine measure performed the best 
with the square root document length normalization doing slightly better. The 
concept queries had the interesting result that the fourth and fifth (no id/ and 
simple match counting) methods had a higher precision than the baseline. The 
only explanation to this somewhat surprising result is that the concept queries 
are very specific in nature so the effect of additional weights did not have much 
impact on the result. 

4.3 Signature Files 

The use of signature files lies between a sequential scan of the original text 
and the construction of an inverted index. A signature is an encoding of a 
document. The idea is to encode all documents as relatively small signatures 
(often the goal is to represent a signature in only a few bits). Once this is done, 
the signatures can be scanned instead of the entire documents. Typically, 
signatures do not uniquely represent a document (i.e., a signature represents 
multiple documents) so it is usually necessary to implement a retrieval in two 
phases. The first phase scans all of the signatures and identifies possible hits, 
and the second phase scans the original text of the documents in the possible hit 
list to ensure that they are correct matches. Hence, signature files are combined 
with pattern matching. Figure 4.2 illustrates the mapping of documents onto 
the signatures. 

Figure 4.2. Signature File 

Original Document 

01 

02 

03 

Signature 

S1 

S2 

S3 

Small enough so 
sequential scan can 

be considered 

Construction of a signature is often done with different hashing functions. 
One or more hashing functions are applied to each word in the document. 

Page 159 of 262



EFFICIENCY ISSUES PERTAINING TO SEQUENTIAL IR SYSTEMS 147 

Often, the hashing function is used to set a bit in the signature. For example, 
if the terms information and retrietJal were in a document and h(in/ormation) 
and h{retrietJal) equaled to one and four respectively, a four bit binary signature 
for this document might appear as 1001. 

A false match occurs when a word, that is not in the list of w signatures, has 
the same bitmap as one of these signatures. For example, consider a term t1 

that sets bits one and three in the signature and another term t2 that sets bits 
two and four in the signature. A third term ta might correspond to bits one 
and two and thereby be deemed a match with the signature, even though it is 
not equal to t 1 or t2 • The following table gives the three terms just discussed 
and their corresponding hash values: 

term h(term) 
t1 0101 
t2 1010 
ta 0011 

Consider document d1 that contains ti, document d2 contains t1 and ta and 
document da contains t1 and t2. The signatures for the three documents are 
given below: 

Document Signature 
d1 0101 
~ 0111 
da 1111 

Hence, a query that is searching for term ta will obtain a false match on docu­
ment da even though it does not contain ta. 

By lengthening the signature to 1,024 bits and keeping the number of words 
stored in a signature small, the chance of a false match can be shown to be less 
than three percent [Stanfill and Thau, 1991]. 

To implement document retrieval, a signature is constructed for the query. 
A Boolean AND is executed between the query signature and each document 
signature. If the AND returns TRUE, the document is added to the possible 
hit list. Similarly, a Boolean OR can be executed if it is only necessary for any 
word in the query to be in the document. To minimize false positives, multiple 
hashing functions are applied to the same word [Stanfill and Kahle, 1986]. 

A Boolean signature cannot store proximity information or information about 
the weight of a term as it appears in a document. Most measures of relevance 
determine that a document that contains a query term multiple times will be 
ranked higher than a document that contains the same term only once. With 
Boolean signatures, it is not possible to represent the number of times a term 
appears in a document; therefore, these measures of relevance cannot be im­
plemented. 

Signatures are useful if they can fit into memory. Also, it is easier to add or 
delete documents in a signature file than to an inverted index, and the order 
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of an entry in the signature file does not matter. This somewhat orderless 
processing is amenable to parallel processing (see Section 6.1.2). However, there 
is always a need to check for false matches, and the basic definition does not 
support ranked queries. One recent modification to allow support for document 
ranking is to partition a signature into groups where each term frequency is 
associated with a group [Lee and Ren, 1996]. 

4.3.1 Scanning to Remove False PosiUves 

Once a signature has found a match, scanning algorithms are employed to verify 
whether or not the match is a false positive due to collisions. We do not cover 
these in detail as a lengthy survey surrounding the implementation of many 
text scanning algorithms is given in [Lecroq, 1994]. Signature algorithms can 
be employed without scanning for false drops (if a long enough signature is 
used) and no significant degradation in precision and recall occurs [Lee and 
Ren, 1996]. However, for completeness, we do provide a brief summary of text 
scanning algorithms. 

Pattern matching algorithms are related to the use of scanning in informa­
tion retrieval since they strive to find a pattern in a string of text characters. 
Typically, pattern matching is defined as finding all positions in the input text 
that contain the start of a given pattern. If the pattern is of size p and the text 
is of sizes, the naive nested loop pattern match requires O(ps) comparisons. 

Aho and Corasick's algorithms implement deterministic finite state automata 
to identify matches in the text [Aho and Corasick, 1975]. Knuth, Morris, and 
Pratt (KMP) also describe an algorithm that runs in O(s) time that scans 
forward along the text, but uses preprocessing of the pattern to determine 
appropriate skips in the string that can be safely taken [Knuth et al., 1977]. 

The Boyer-Moore algorithm is another approach that preprocesses the pat­
tern, but starts at the last character of the pattern and works backwards to­
wards the beginning of the string. Two preprocessed functions of the pattern 
are developed to skip parts of the pattern when repetition in the pattern occurs 
and to skip text that simply cannot match the pattern. These functions use 
knowledge gleaned from the present search point [Boyer and Moore, 1977]. The 
algorithm was improved to run in linear time even when multiple occurrences 
of the pattern are present [Galil, 1979]. 

Later, in the 1980s, a pattern matching algorithm that works by applying a 
hash function to the pattern and the next p characters in the text was given in 
[Karp and Rabin, 1987]. If a match in the hash function occurs (i.e., a colli­
sion between h(pattem) and h(text}), the contents of the pattern and text are 
examined. The goal is to reduce false collisions. By using large prime num­
bers, collisions occur extremely rarely, if at all. Finally, a recent and practical 
pattern matching algorithm, presented in [Frakes and Baeza-Yates, 1993], has 
a set of bit strings representing Boolean states that are constantly updated as 
the pattern is streamed through the text. 

The best of these algorithms runs in a time ofO(o:s) where o: is some constant 
0 $ o: $ 1. The goal is to lower the constant. In the worst case, s comparisons 

Page 161 of 262



EFFICIENCY ISSUES PEKI'AINING TO SEQUENTIAL IR SYSTEMS 149 

must be done, but the average case for these algorithms is often sublinear. An 
effort is made in these algorithms to avoid having to look backward in the 
text. The scan continues to move forward with each comparison to facilitate 
a physically contiguous scan of a disk. The KMP algorithm builds a finite 
state automata for many patterns so it is directly applicable. A more recent 
algorithm by Uratani and Takeda combines the FSA approach by Aho and 
Corasick with the Boyer-Moore idea of avoiding much of the search space. 
Essentially, the FSA is built by using some of the search space reductions given 
by Boyer-Moore. The FSA scans text from right to left, as done in Boyer­
Moore. Note this is done for a query that contains multiple terms [Uratani and 
Takeda, 1993]. In a direct comparison with repeated use of the Boyer-Moore 
algorithm, the Uratani and Tekeda algorithm is shown to execute ten times 
fewer probes for a query of 100 patterns. For only two patterns, the average 
probe ratio (the ratio of the number of references in the text and the length of 
the text) of Boyer-Moore is 0.236 while Uratani-Takeda is 0.178. 

4.4 Summary 

Performance evaluation considerations of information retrieval systems involve 
both effectiveness (accuracy) and efficiency (run-time and storage overhead} 
measures. In this chapter, we focused on the efficiency considerations. 

Initially we described the concept of and motivation for the use of an in­
verted index. An inverted index is a many to many mapping of terms onto 
documents. Using an inverted index, only documents that contain the speci­
fied query terms are accessed, thus significantly reducing the 1/0 requirements 
as compared to other search processing structures. Having described the con­
cept of an inverted index, we continued by illustrating a method to implement 
an inverted index. We also outlined various techniques for compressing the 
index. Two compression techniques were reviewed. The first, fixed length 
compression, has the advantage of simplicity and slightly more efficient query 
processing times as compared to the second, variable length compression. Vari­
able length compression, however, does result in a slightly better compression 
ratio. 

We concluded the chapter with an overview of signature files. Signature files 
contain a set of document signatures, one signature per document. A docu­
ment signature is an encoding of each document. Key terms contained in the 
document are hashed onto a vector; the existence of a term j in the document i 
is denoted by a one in the jth bit of document signature i. To determine which 
documents are relevant to a particular query, only the signature file must be 
examined. Since term hashing can result in false positive indications, a two 
pass search strategy is necessary. In the first pass, involving the examination 
of the signature file, all potential candidates are determined. In the second 
phase, a full text scan of the potential candidates determined in the first pass 
is performed. 

Although greater attention has traditionally been placed on the effective­
ness of information retrieval systems, efficiency issues are critical. Failure to 
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optimize the efficiency of an information retrieval system can result in a highly 
accurate system that has prohibitive execution or storage performance. As 
storage technology continues to improve and reduce in cost, storage constraints 
are becoming less critical. However, with the continued exponential growth of 
online data, storage constraints are still a concern and run-time performance 
considerations are of tantamount importance. Parallel processing techniques 
used to improve the overall run-time performance are described in Chapter 6. 

4.5 Exercises 

1. Write a utility called index that builds an inverted index of Alice in Won­
derland. Assume ten lines of input is a separate document. Assume you 
have enough memory to store all of the posting lists in memory while you 
are building the inverted index. Identify how much space your index re­
quires and how long it takes to build it. Store the id/ for each term in the 
index. Each posting list entry should contain the term frequency in the 
document. Use the 100 most frequent terms as stop terms. Test your index 
by computing a vector space tf-idf similarity measure for the following five 
queries. 

(a) rabbit watch 

{b) looking glass 

( c) tea party 

(d) cheshire cat 

( e) queen of hearts 

2. Now modify the code you just wrote to use an inverted index compression 
technique. Pick one in this chapter. Measure query performance for the 
same five queries, storage overhead, and the time to build the index. 

3. Pick a query that contains ten terms. Execute it and retrieve the top doc­
uments choosing ten that are relevant. Now, sort the query terms by their 
term frequency across the collection. Re-execute the query with one term­
the least frequently occurring term in the collection. Identify the number of 
relevant documents found with just this term. Repeat this process, adding 
a single term to the query each time. Are all ten terms needed to find the 
relevant documents you found with the original query? Talk about what 
you have learned with this exercise and how this technique could be used 
to improve run-time without a corresponding loss in accuracy. 

4. Develop a signature-based index where you build a signature for each "doc­
ument" in the book. Use a 24-bit signature for each document. Now im­
plement the ten queries used in the previous exercises as a simple Boolean 
OR. Compare run-time performance of the use of signatures to the inverted 
index. Describe the loss in functionality inherent in the use of signatures. 
Identify a heuristic in which signatures could be used as a "first-pass filter" 
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for a very large collection and then describe how an inverted index could be 
used for detailed analysis. 
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5 INTEGRATING STRUCTURED DATA 
AND TEXT 

Essential problems associated with searching and retrieving relevant documents 
were discussed in the preceding chapters. However, simply searching massive 
quantities of unstructured data is not sufficient. 

Terabytes of structured data currently exist. NCR recently demonstrated 
the use of its database system on a 14 terabyte database [Holmes, 1998]. It 
is reasonable to expect databases to grow into the hundreds of terabytes in 
the near future. The study of database management systems (DBMS) focuses 
on the algorithms necessary to support thousands of concurrent users adding, 
deleting, updating, and retrieving structured data. 

It is difficult to formally characterize structured data. Structured data are 
data that have a certain repetitive nature to them-data that fit within an eas­
ily recognizable datatype. Examples of structured data include name, address, 
phone number, and salary. Each occurrence of a structured data item is recog­
nizable, sometimes it is possible to list only a few valid values for a structured 
data element (i.e., gender has only two valid values-male or female). 

Airline reservation systems, automated teller machines, credit card valida­
tion are all systems that pervade everyday life. Each are fraught with struc­
tured data. One large production structured database is 11 TB and is held by 
Wal-Mart. It contains details of every purchase made at every store. In this 
fashion, there is no need to ever compute an average store. Specific inventory 
requirements can be managed on a store-by-store basis. This system has given 
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Wal-Mart a tremendous competitive advantage, and it is reasonable to expect 
that the database will continue to grow. 

There is clearly a need to integrate both structured data and text. Most 
production systems implemented with a relational database management sys­
tem (RDBMS) have some text-such as a comment field-which allows users 
to enter a free text comment about a particular order. Commercial database 
systems allow users to store these unstructured fields in Binary Large OBject 
(BLOB) or Character Large OBjects (CLOB) datatypes that allow 32K or 
larger sets of unstructured data [Loney, 1997, Kirkwood, 1997]. The problem 
is that these unstructured fields cannot be efficiently accessed. Access methods 
such as inverted indexes found in information retrieval systems are lacking, and 
when they do exist, they are implemented in a non-standard fashion. 

Similarly, information retrieval systems typically have large quantities of 
structured information, (i.e., author of a document, publication date, etc.) 
and usually have the ability to store data in zoned fields. These fields have a 
particular start and stop delimiter that identifies a zone in a document. The 
problem is that these structured fields cannot be efficiently accessed. Access 
methods for structured data (e.g., B-trees) and query optimization techniques 
that determine the best access method to the data are not usually found in IR 
systems. 

A database management system (DBMS) and an information retrieval sys­
tem are analogous to a martial artist who is trained to attack and defend against 
others who are trained in the same art. A Tai Kwon Do master is capable of de­
fending against other Tai Kwon Do masters. An information retrieval system is 
capable of efficiently handling unstructured data. A Judo master is capable of 
defending against other Judo masters. A database management system is capa­
ble of efficiently handling structured data. The problem is when the Tai Kwon 
Do master faces a Judo master. This is analogous to accessing unstructured 
data in a structured database system. 

The approach described in the remainder of this chapter is to build some 
unstructured data handling techniques on top of an existing relational database 
management system. This is analogous to teaching the Judo master some Tai 
Kwon Do techniques, but doing so in a way that still relies upon Judo. 

So it is possible to start with a database system and extend it to handle 
unstructured data or to start with an unstructured system and extend it to 
handle structured data. The approach taken in this chapter is to extend the 
database system. Information retrieval is then treated as an application of 
the database system (see Figure 5.1). The reason for this is that relational 
database systems, over the years, have developed substantially more infras­
tructure than information retrieval systems. Hence, to solve the integration 
problem, a straightforward approach is to start with an existing database sys­
tem and add the necessary information retrieval functionality. In addition to 
providing integration, two additional benefits are obtained: parallel processing 
and dynamic updates. 
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Figure 5.1. IR as an Application of a RDBMS 

Document 
Collection 

Parallel processing takes advantage of multiple processors to improve run­
time performance. In Chapter 6, several parallel information retrieval algo­
rithms are described. Although these algorithms do improve performance, none 
of them have shown particularly good speedup, that is, when additional proces­
sors are added they are not fully used. However, most major database vendors 
(i.e., IBM, Sybase, Oracle, Informix) all have parallel solutions. Some database 
vendors specialize in special-purpose parallel hardware that implements a pro­
prietary database system (the NCR Teradata and the DataCache). Relational, 
set-theoretic operators are intrinsically unordered, and it is this lack of order 
that makes it easier to implement parallel operations. Treating information re­
trieval as a database application is intrinsically a parallel information retrieval 
algorithm because the underlying DBMS may be parallelized. 

A second advantage of treating information retrieval as an application of a 
relational database management system (RDBMS) is that document data can 
be easily updated. Most information retrieval systems have a lengthy prepro­
cessing phase in which the inverted index is constructed. To add, modify, or 
delete an existing document usually requires a process in which the inverted 
index is modified. Most information retrieval systems do not support on-line 
modifications to a document. A RDBMS has substantial infrastructure (con­
currency control and recovery management) to ensure that updates may be 
done in real-time, and if an error occurs in the middle of an update, pieces of 
the update are not partially stored in the database systems. 

Two questions remain-which database model to use and how should the 
information retrieval functionality be added? Database system models include 
the inverted list, hierarchical, network, relational, and object-oriented mod­
els [Date, 1994]. Most current commercial systems rely upon the relational 
model. Although it is interesting to contemplate whether or not another model 
would be better suited for unstructured data, pragmatic reasons force the use 
of the relational model. At present, the relational DBMS market for LANs is 
over seven billion dollars per year. The mainframe DB2 market using IBM's 
technology is not publicly documented, but it is known that over 10,000 instal­
lations currently run DB2. Using a different data model to obtain integration 
would mean that countless sites would have to convert their existing DBMS to 
a new model. The cost for this would be astronomical. 
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To gauge how long relational systems will dominate the market, it is useful 
to look at their predecessors. IMS, a hierarchical system, and IDMS, a net­
work system, dominated the market in the 1970s. By 1980, both were well 
established. At that time, Oracle, the first relational vendor was founded. Re­
lational systems had been advocated heavily in the research community during 
the mid-1970s with substantial work having been done with a full-fledged pro­
totype named System R. 

IBM introduced its first commercial relational system, SQL/DS, in 1984 and 
DB2 in 1986. Relational systems did not gain significant market share until the 
early 1990s, a full ten years after Oracle was founded. At present, some object­
oriented vendors exist and have existed since the early 1990s. Using the ten year 
estimate given above, it is reasonable to expect that object-oriented systems 
may gain market share by the year 2000. However, many other factors exist to 
slow them down. The relational vendors are all adding some object-oriented 
functionality into their base systems-these extended relational systems will 
probably compete well against full-fledged or pure object-oriented systems. The 
massive complexity of building a DBMS engine works against the pure object­
oriented vendors. 

Given that there probably are five to ten years of remaining relational dom­
inance, this book uses the relational model. The final question as to how to use 
the relational model remains. Two choices exist: extend the relational engine 
or treat information retrieval as an application of an RDBMS. 

Section 5.2 reviews prior attempts to extend the relational model. The main 
problem with these attempts is that they are all non-standard. Portability is 
lost because each relational extension is somewhat different, and users are not 
able to move applications from one system to another. Other problems are that 
query optimization must be modified to support any additions to the engine. 
Additionally, adding new functionality to the engine makes an already complex 
engine even more complex. Some additions allow users to add functions to 
the engine. This makes integrity an issue as a malicious or negligent user 
may intentionally or unintentionally introduce bugs into the database engine. 
Finally, parallel algorithms must be developed for each addition. 

By treating information retrieval as an application of a RDBMS, these prob­
lems are eliminated. The key concern is to develop efficient unchanged Struc­
tured Query Language (SQL) algorithms that adhere to the ANSI SQL-92 
standard [Date, 1997] for each type of information retrieval functionality. This 
chapter describes relational approaches for the following information retrieval 
functionality: 

■ Boolean keyword search 

■ Proximity search 

■ Relevance ranking with terms 

■ Relevance feedback 
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Relevance ranking with Spanish, phrases, passages, n-grams, and relevance 
feedback have all been implemented as an application of a relational DBMS 
with standard, unchanged SQL by using straightforward modifications to the 
approaches described in this chapter. Details are found in [Lundquist et al., 
1997, Grossman et al., 1997]. 

Section 5.1 briefly reviews the relational model and SQL. The remaining 
portions of this section describe the algorithms used to treat each of the afore­
mentioned information retrieval functions and implement them as an applica­
tion of a relational system. Run-time performance and accuracy evaluations of 
this approach for the TREC-4 data conclude this section. 

5.1 Review of the Relational Model 

The relational model was initially described by Codd [Codd, 1970]. Prior data 
models were navigational, in that application developers had to indicate the 
means by which the database should be traversed. They specifically described 
how to find the data. The relational model stores data in relations and enables 
the developer to simply describe what data are required, not how to obtain the 
data. During the early 1970s, relational systems were not developed as they in­
cur additional computational overhead. Over the years, algorithms to improve 
query optimization were developed. These algorithms reduce the amount of 
overhead expended when using a relational system. 

Over time, the benefits of the relational model have outmatched the costs, 
and the relational model is the centerpiece of most production database sys­
tems. For some extremely high-performance applications, navigational systems 
are used, but relational systems have prevailed. 

5.1.1 Relational Database, Primitives and Nomenclature 

A relational database system stores data in set-theoretic relations. An attribute 
within a relation is any symbol from a finite set£= {A0 ,A1 ,A2 , .•• ,An}­
A relation 7l on the set £ is a subset of the Cartesian product dom(A0 ) x 
dom(A1) x dom(A2) x ... dom(An) where dom(A;) is the domain of Ai. 
R[AoA1A2 ... An] represents 1l on the set {Ao, Ai, A2, ... ,, An} and is referred 
to as the schema of 'Tl. In R[AoA1A2 .. . An], each column Ai is called an 
attribute of R, and is denoted as R.Ai. 

Simply stated, each attribute contains values, preferably a singular value, 
chosen from a given domain of values. An attribute color can have a domain 
of red, green, black, etc. A relation is then a collection of attributes. A row, or 
tuple, in the relation has a value for each attribute such that the value comes 
from the domain for that attribute. 

Each tuple of R is designated by< ao, ai, a2, ... , an >, where ai E dom(Ai)­
The value of attribute A; of tuple x E R is denoted as x[A,]. Similarly, if tuple 
x E R, then x[W] is the value of the attributes of attribute set W in tuple x. 
Consider the relations EMP and EMP-PROJ. Relation EMP has four attributes 
( emp_no, emp_name, age, salary) while the EMP-PROJ :relation has two at-
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Table 5.1. Employee (EMP) 

emp_no emp_name age salary 
100 Hank 35 $10,000 
200 Fred 40 $20,000 
300 Mary 25 $30,000 
400 Sue 23 $40,000 
500 Mike 30 $50,000 

Table 5.2. Employee-Project (EMP YROJ) 

emp_no project 
100 A 
100 B 
100 C 
200 B 
300 A 
300 C 
400 A 

tributes (emp_no, project). The EMP relation contains a tuple for each em­
ployee in the organization indicating the employee's unique identification num­
ber, name, age, and salary. An employee may also be assigned to an arbitrary 
number of projects. Simply adding a project attribute to the EMP relation 
would not work since it would only hold a single value. Another solution­
adding project1, project2, projects attributes is also inadequate because an 
employee may have worked on more than three projects. In this case, there 
would be no place to store the 4th to nth project. 

Data models primarily differ in how they handle this type of multi-valued 
relationship. This is referred to as a MANY-MANY relationship in that one 
employee may be assigned to many projects while a project may be assigned 
to many employees. In a navigational model, a pointer points from the EMP 
master record with all single-valued occurrences to a list that contains the multi­
valued occurrences. A user who wishes to see which projects an employee is 
assigned to issues a request to traverse the link from the master record to the 
multi-valued list. 

Additional relations are developed for the relational solution. In our case, a 
single relation EMP-PROJ may be added to store the multi-valued information. 
Notice that EMP-PROJ has an attribute emp_no that matches values in the 
EMP relation. Hence, employee number 100 works on projects A, B, and C. 
The key point is that no a priori link between EMP and EMP _pRQJ exists. 
At query time, a user may request that all tuples having matching values in 
the two relations be obtained. In this fashion, the user has only specified what 
is required not how to obtain the data. 
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This is important since requests for data may occur on an ad hoc basis long 
after the database has been created and populated with data. The relational 
model is well-suited to ad hoc requests because work is not required to redefine 
relationships between the data. Additionally, data independence is intended 
to reduce application development time because developers are not forced to 
learn all of the intricacies of retrieving data from multi-valued relationships. 
The database optimizer makes decisions and chooses the best access path to 
the data. 

A problem exists if it is necessary to track single-valued information about 
a project such as the delivery date for the completed project or the budget for 
the project. ff the EMP-PROJ relation is modified to include these additional 
attributes, needless repetition occurs. 

Table 5.3. Employee-Project (EMP YROJ) 

emp_no project delivery_date budget 
100 A 06/30/1997 $90,000,000 
100 B 09/15/1997 $25,000,000 
100 C 03/31/1998 $60,000,000 
200 B 09/15/1997 $25,000,000 
300 A 06/30/1997 $90,000,000 
300 C 03/31/1997 $60,000,000 
400 A 06/30/1997 $90,000,000 

Notice the attributes delivery_date and budget are single-valued descriptors of 
a project (all dates are assumed to be represented as Julian dates, and hence, 
are single-valued descriptors). These are repeated for each employee who is 
working on a project. Employees 100, 300, and 400 all work on Project A, and 
the delivery_date and budget are replicated for each of these tuples. If an update 
was required (i.e., the budget increased), it would be necessary to update each 
occurrence. To avoid these problems, a third relation is typically used to store 
the single-valued data for PROJECT. It would appear as given below-

Table 5.4. Project 

project delivery_date Budget 
A 06/30/1997 $90,000,000 
B 09/15/1997 $25,000,000 
C 03/31/1998 $60,000,000 

At this point three relations exist, one to represent the EMP entity, one to 
represent the PROJECT entity, and one to represent the relation EMP _pROJ 
that exists between the two relations. It should be clear that an update to 
single-valued information about a project only involves a single tuple. 

Peter Chen, in a seminal paper, described the entity-relationship (ER) di­
agram in which entities and relationships are defined first, and the actual un-
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derlying relations are subsequently defined [Chen, 1976]. Typically, for large 
relational systems, an ER diagram is developed to ensure the developers under­
stand all of the relationships between the data. Once complete, a normalized 
database design is implemented. 

Normalization is the process of ensuring the database design satisfies very 
specific rules developed to reinforce the consistency and integrity of the data. 
1st normal form (lNF) simply indicates that data are stored in single-valued 
attributes. Our example relation, EMP, is in lNF. However, if the name at­
tribute were expanded to allow the employee's full first and last name in the 
same attribute, this entity would no longer be in lNF because the name at­
tribute would permit the values for both the first and last names to coexist in 
a single data element. 

A relation is in 2nd normal form (2NF) if all attributes are fully dependent 
on the primary key of the relation. Our example of the modified EMP .PROJ 
relation is not in 2NF because the attributes of the relation delivery_date and 
budget are not fully dependent on the composite primary key of emp_number and 
project. Instead, delivery_date and budget are dependent solely on the project 
attribute. An entity is in 3rd normal form (3NF) if all attributes of the entity 
are dependent on the primary key of the relation and are not also dependent on 
another key. The primary key is one or more attributes that uniquely identifies 
a tuple in a relation. A database should satisfy at least 3NF. 

It should be clear that no a priori linkages exist between any of the relation­
ships, and any linking of relations is done at query processing time rather than 
data definition time. 

Since the relations are based on set theory, all typical set-theoretic oper­
ations: Cartesian product, union, intersection, and set difference are imple­
mented in the relational model. Additional operations include-

Select-The selection on R[XYZ], denoted as UA=a(R), is defined by: 

u A=a (R) = { xlx[A] = a, x E R} 

where A is an attribute of R. 

Project- The projection on R[XYZ], denoted as 11'A(R), is defined by: 

11'A(R) = {x[A]lx ER} 

where A is a set of attributes of R. 

Join- The join of two relations R[XYZ] and S[VWX] (sharing the common 
attribute X) is denoted as: 

R[XYZ] 1><1 S[VWX] = {xi x[VWX] ES and x[XYZ] ER} 

where V, W, X, Y, and Z are a disjoint set of attributes. Ifno common attribute 
exists, the join of R and S is the Cartesian product of R and S. 

When the relational model was first proposed nearly thirty years ago, re­
lational algebra and calculus were used to compute data manipulation. The 
select, project, and join operators form a part of relational algebra. Since 
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this was not very user friendly, two different query languages QUEL and SQL 
(originally derived from SEQUEL) were developed. SQL became popular with 
IBM's adoption in its commercial database system, SQL/DS, in 1982 and with 
ANSI's adoption of the first SQL standard in 1985. Today, SQL is one of the 
few standards that is agreed upon by industry, academia, and various interna­
tional standards committees. SQL 92 has been recently adopted and SQL 3, 
which will include object oriented extensions, is currently under construction. 

A good overview of SQL can be found in [Date, 1994]. A SQL query has the 
structur~ 

SELECT <list of attributes> 
FROM <list of relations> 

[ WHERE <list of conditions> ] 
[ ORDER BY <list of attributes> ] 
[ GROUP BY <list of attributes> ) 
[ HAVING <list of conditions> ] 

A list of attributes is specified after the SELECT keyword. The FROM 
clause indicates the relations that are used. The WHERE clause describes 
conditions that must be satisfied for a tuple to be returned. Hence, the entire 
query is actually a specification of a result. 
The following query indicates that only the employee numbers from the EMP 
table should be retrieved. It does not, in any form, indicate how the employee 
numbers should be retrieved. Another form includes the addition of a WHERE 
clause. 

SELECT emp-110 
FROMEMP 

The following query indicates that only tuples with an emp_no of 400 are to 
be retrieved. Nothing is indicated as to how to find this tuple. ff the system 
has a B-tree index on the emp_no attribute, an O(logn) algorithm traverses 
the tree and finds all such tuples, otherwise, a linear scan is used. In any event, 
the author of the query does not specify the algorithm to use to retrieve these 
data. 

SELECT emp-110 
FROMEMP 
WHERE emp-110 = 400 

GROUP BY is used to partition the result set into groups and apply an 
aggregate function to the group. Aggregate functions in the SQL standard 
include COUNT (size of the partition), SUM (the total of an attribute in the 
partition), MIN (the smallest value in the partition), MAX (highest value in 
the partition), and AVG (average of all values in the partition). ff a GROUP 
BY is not present, these operators work on the entire result set. 
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Consider a request to develop a report that contains each employee's num­
ber and the total number of projects to which they have been assigned. The 
following query obtains this information: 

SELECT empJ10, COUNT(*) 
FROM EMP .PROJ 
GROUP BY empJ10 

Grouping by the employee number partitions the EMP .PROJ relation into 
a partition for each employee. COUNT returns zero if no tuples are found. If 
a WHERE clause existed it would specify that the partitions should consider 
only the tuples identified by the WHERE clause. 

HAVING restricts groups, typically based on an aggregate. The following 
query finds all employees who worked on at least 4 projects: 

SELECT empJ10, COUNT(*) 
FROM EMP .PROJ 
GROUP BY empJ10 
HAVING COUNT(*)> 3 

ORDER BY is used to sort the tuples in the order of the attributes specified 
in the ORDER BY clause. Since sets do not have any inherent ordering, the 
result set of a query may be obtained in an arbitrary order unless the ORDER 
BY clause is used. Executing this query results in a list comprising all em­
ployee numbers in ascending order (the DESC option must be used to obtain 
descending order). 

SELECT empJ10 
FROM EMP .PROJ 
ORDER BY empJ10 

A JOIN is implemented by first specifying multiple relations in the FROM 
clause and then adding the JOIN condition in the WHERE clause. The fol­
lowing query implements a join to find the age of all employees who worked on 
project A. 

SELECT a.empJ10, a.age 
FROM EMP a, EMP .PROJ b 
WHERE a.empJ10 = b.empJ10 AND 

b.project = 'A' 

This query joins the two relations. Again nothing is said about the join 
order or the order in which the WHERE clause is executed. 
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5.2 A Historical Progression 

Previous work can be partitioned into systems that combine information re­
trieval and DBMS together, or systems that extend relational DBMS to include 
information retrieval functionality. We now describe each of these approaches 
in detail. 

5.2.1 Combining Separate Systems 

Several researchers proposed integrated solutions which consist of writing a 
central layer of software to send requests to underlying DBMS and informa­
tion retrieval systems [Schek and Pistor, 1982]. Queries are parsed and the 
structured portions are submitted as a query to the DBMS, while text search 
portions of the query are submitted to an information retrieval system. The 
results are combined and presented to the user. It does not take long to build 
this software, and since information retrieval systems and DBMS are readily 
available, this is often seen as an attractive solution. 

The key advantage of this approach is that the DBMS and information re­
trieval system are commercial products that are continuously improved upon 
by vendors. Additionally, software development costs are minimized. The dis­
advantages include poor data integrity, portability, and run-time performance. 

5.2.1.1 Data Integrity. Data integrity is sacrificed because the DBMS 
transaction log and the information retrieval transaction log are not coordi­
nated. Should a failure occur in the middle of an update transaction, the 
DBMS will end in a state where the entire transaction is either completed or 
it is entirely undone. It is not possible to complete half of an update. 

The information retrieval log (if present) would not know about the DBMS 
log. Hence, the umbrella application that coordinates work between the two 
systems must handle all recovery. Recovery done within an application is typ­
ically error prone and, in many cases, applications simply ignore this coding. 
Hence, if a failure should occur in the information retrieval system, the DBMS 
will not know about it. An update that must take place in both systems may 
succeed in the DBMS, but fail in the information retrieval system. A partial 
update is clearly possible, but is logically flawed. 

5.2.1.2 Portability. Portability is sacrificed because the query language is 
not standard. Presently, a standard information retrieval query language does 
not exist. However, some work is being done to develop standard informa­
tion retrieval query languages. If one existed, it would be many years before 
widespread commercial acceptance. The problem is that developers must be re­
trained each time a new DBMS and information retrieval system is brought in. 
Additionally, system administration is far more difficult with multiple systems. 
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5.2.1.3 Performance. Run-time performance suffers because of the lack of 
parallel processing and query optimization. Although most commercial DBMS 
have parallel implementations, most information retrieval systems do not. 

Query optimization exists in every relational DBMS. The optimizer's goal 
is to choose the appropriate access path to the data. A rule-based optimizer 
uses pre-defined rules, while a cost-based optimizer estimates the cost of using 
different access paths and chooses the cheapest one. In either case, no rules 
exist for the unstructured portion of the query and no cost· estimates could 
be obtained because the optimizer would be unaware of the access paths that 
may be chosen by the information retrieval system. So any optimization that 
included both structured and unstructured data would have to be done by the 
umbrella application. This would be a complex process. The difficulties with 
such optimization were discussed by the authors who suggested this approach 
[Lynch and Stonebraker, 1988]. Hence, run-time performance would suffer due 
to a lack of parallel algorithms and limited global query optimization. 

5.2.1.4 Extensions to SQL. Blair, in an unpublished paper in 1975, pro­
posed that SQL (actually a precursor named SEQUEL) could be modified 
to support text [Blair, 1974]. Subsequently, a series of papers between 1978 
and 1981 were written that described several extensions to SQL [Macleod, 
1978, Macleod, 1979, Crawford, 1981]. The SMART information retrieval pro­
totype initially developed in the 1980s used the INGRES relational database 
system to store its data [Fox, 1983b]. 

These papers described extensions to support relevance ranking as well as 
Boolean searches. The authors focused on the problem of efficiently searching 
text in a RDBMS. They went on to indicate that the RDBMS would store 
the inverted index in another table thereby making it possible to easily view 
the contents of the index. An information retrieval system typically hides the 
inverted index as simply an access structure that is used to obtain data. By 
storing the index as a relation, the author's pointed out that users could easily 
view the contents of the index and make changes if necessary. The authors men­
tioned extensions, such as RELEVANCE(*), that would compute the relevance 
of a document to a query using some pre-defined relevance function. 

More recently, a language called SQLX was used to access documents in a 
multimedia database [Ozkarahan, 1995]. SQLX assumes that an initial cluster­
based search has been performed based on keywords (see Section 3.2 for a 
description of document clustering). SQLX extensions allow for a search of 
the results with special connector attributes that obviate the need to explicitly 
specify joins. 

5.2.2 User-defined Operators 

User-defined operators that allow users to modify SQL by adding their own 
functions to the DBMS engine were described as early as [Stonebraker et al., 
1983]. Commercialization of this idea has given birth to several products includ­
ing the Teradata Multimedia Object Manager, lnformix Data Blades, as well as 
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new features in Oracle and Sybase [Connell et al., 1996, McNally, 1997, Loney, 
1997]. An example query that uses the user-defined area function is given be­
low. Area must be defined as a function that accepts a single argument. The 
datatype of the argument is given as rectangle. Hence, this example uses both 
a user-defined function and a user-defined datatype. 

Ex: 1 SELECT MAX(AREA(Rectangle)) 
FROM SHAPE 

In the information retrieval domain, an operator such as proximity() could 
be defined to compute the result set for a proximity search. In this fashion 
the "spartan simplicity of SQL" is preserved, but users may add whatever 
functionality is needed. A few years later user-defined operators were defined 
to implement information retrieval [Lynch and Stonebraker, 1988]. 

The following query obtains all documents that contain the terms term1, 
term2, and term9: 

Ex: 2 SELECT DocJd 
FROM DOC 

WHERE SEARCH-TERM(Text, Term1, Term2, Term3) 

This query can take advantage of an inverted index to rapidly identify the 
terms. To do this, the optimizer would need to be made aware of the new 
access method. Hence, user-defined functions also may require user-defined 
access methods. 

The following query uses the proximity function to ensure that the three 
query terms are found within a window of five terms. 

Ex: 3 SELECT DocJd 
FROM DOC 

WHERE PROXIMITY(Text, 5, Term1, Term2, Term3) 

The advantages of user-defined operators are that this does not just solve the 
problem for text, it solves it for spatial data, image processing, etc. Users may 
add whatever functionality is required. The key problems with user-defined 
operators again are integrity, portability, and run-time performance. 

5.2.2.1 Integrity. User-defined operators allow application developers to 
add functionality to the DBMS rather than the application that uses the DBMS. 
This unfortunately opens the door for application developers to circumvent the 
integrity of the DBMS. For user-defined operators to be efficient, they must be 
linked into the same module as the entire DBMS, giving them access to the 
entire address space of the DBMS. Data that resides in memory or on disk files 
that are currently opened, can be accessed by the user-defined operator. It is 
possible that the user-defined operator could corrupt these data. 
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To protect the DBMS from a faulty user-defined operator, a remote proce­
dure call (RPC) may be used to invoke the user-defined operator. This ensures 
the operator has access only to its address space, not the entire DBMS address 
space. Unfortunately, the RPC incurs substantial overhead, so this is not a 
solution for applications that require high performance. 

5.2.2.2 Portability. A user-defined operator implemented at SITE A may 
not be present at SITE B. Worse, the operator may appear to exist, but it may 
perform an entirely different function. Without user-defined operators, anyone 
with an RDBMS may write an application and expect it to run at any site that 
runs that RDBMS. With user-defined operators, this perspective changes as 
the application is limited to only those sites with the user-defined operator. 

5.2.2.3 Performance. Query optimization, by default, does not know much 
about the specific user-defined operators. Optimization is often based on sub­
stantial information about the query. A query with an EQUAL operator can be 
expected to retrieve fewer rows than a LESS THAN operator. This knowledge 
assists the optimizer in choosing an access path. 

Without knowing the semantics of a user-defined operator, the optimizer 
is unable to efficiently use it. Some user-defined operators might require a 
completely different access structure like an inverted index. Unless the opti­
mizer knows that an inverted index is present and should be included in path 
selection, this path is not chosen. 

Lynch's work discussed information that must be stored with each user­
defined operator to assist with query optimization. For user-defined operators 
to gain widespread acceptance, some means of providing information about 
them to the optimizer is needed. 

Additionally, parallel processing of a user-defined operator would be some­
thing that must be defined inside of the user-defined operator. The remainder 
of the DBMS would have no knowledge of the user-defined operator, and as 
such, would not know how to parallelize the operator. 

5.2.3 Non-fi.rst Normal Form Approaches 

Non-first normal form (NFN) approaches have also been proposed [Desai et al., 
1987, Schek and Pistor, 1982, Niemi and Jarvelin, 1995]. The idea is that 
many-many relationships are stored in a cumbersome fashion when 3NF (third 
normal form) is used. Typically, two relations are used to store the entities that 
share the relationship, and a separate relation is used to store the relationship 
between the two entities. 

For an inverted index, a many-many relationship exists between documents 
and terms. One term may appear in many documents, while one document 
may have many terms. This, as will be shown later, may be modeled with a 
DOC relation to store data about documents, a TERM relation to store data 
about individual terms, and an INDEX relation to track an occurrence of a 
term in a document. 
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Instead of three relations, a single NFN relation could store information 
about a document and a nested relation would indicate which terms appeared 
in that document. 

Although this is clearly advantageous from a run-time performance stand­
point, portability is a key issue. No standards currently exist for NFN collec­
tions. Additionally, NFN makes it more difficult to implement ad hoc queries. 

Since both user-defined operators and NFN approaches have deficiencies, 
we describe an approach using the unchanged, standard relational model to 
implement a variety of information retrieval functionality. This approach has 
been shown to support integrity and portability while still yielding acceptable 
run-time performance [Grossman et al., 1997]. 

Some applications, such as image processing or CAD/CAM may require 
user-defined operators, as their processing is fundamentally not set-oriented 
and is difficult to implement with standard SQL. 

5.2.4 Bibliographic Search with Unchanged SQL 

Blair explored the potential of relational systems to provide typical information 
retrieval functionality [Blair, 1988]. Blair's work included queries using struc­
tured data (e.g., affiliation of an author} with unstructured data (e.g., text 
found in the title of a document}. The following relations model the document 
collection. 

■ DIRECTORY(name, institution}-identifies the author's name and the in­
stitution the author is affiliated with. 

■ AVTHOR(name, Doc/d)-indicates who wrote a particular document. 

■ INDEX(term, Doc/d)-identifies terms used to index a particular document 

The following query ranks institutions based on the number of publications 
that contain inpuUerm in the document. 

Ex: 4 SELECT UNIQUE institution, COUNT(UNIQUE na.me) 
FROM DIRECTORY 
WHERE name IN 

(SELECT name 
FROM AUTHOR 
WHERE Dodd IN 

SELECT Dodd 
FROM INDEX 

WHERE term = inpuLterm 
ORDER BY 2 DESCENDING 

Blair cites several benefits for using the relational model as a foundation for 
document retrieval. These benefits are the basis for providing typical informa­
tion retrieval functionality in the relational model, so we will list some of them 
here. 
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1. Recovery routines 

2. Performance measurement facilities 

3. Database reorganization routines 

4. Data migration routines 

5. Concurrency control 

6. Elaborate authorization mechanisms 

7. Logical and physical data independence 

8. Data compression and encoding routines 

9. Automatic enforcement of integrity constraints 

10. Flexible definition of transaction boundaries (e.g., commit and rollback) 

11. Ability to embed the query language in a sequential applications language 

5.3 Information Retrieval Functionality Using the Relational Model 

Work with extensions to SQL started first in an unpublished paper [Blair, 1974] 
and continued with several papers by Macleod and Crawford between 1978 and 
1981 [Macleod, 1978, Crawford, 1981]. 

Initial extensions described by Macleod are based on the use of a QUERY 
(term) relation that stores the terms in the query, and an INDEX (Docld, term) 
relation that indicates which terms appear in which documents. The following 
query lists all the identifiers of documents that contain at least one term in 
QUERY: 

Ex: 5 SELECT DISTINCT(i.Docld) 
FROM INDEX i, QUERY q 

WHERE i.term = q.term 

Frequently used terms or stop terms are typically eliminated from the docu­
ment collection. Therefore, a STOP _TERM relation may be used to store the 
frequently used terms. The STOP _TERM relation contains a single attribute 
(term). A query to identify documents that contain any of the terms in the 
query except those in the STOP _TERM relation is given below: 

Ex: 6 SELECT DISTINCT(i.Docld) 
FROM INDEX i, QUERY q, STOP _TERM s 

WHERE i.term = q.term AND 
i.term -:f- s.term 

Finally, to implement a logical AND of the terms InputTerm1, InputTerm2, 
and InputTerm3, Macleod and Crawford proposed the following query: 
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Ex: 7 SELECT Docld 
FROM INDEX 

WHERE term = lnputTenn1 
INTERSECT 

SELECT Docld 
FROM INDEX 

WHERE term = InputTenn2 
INTERSECT 

SELECT Docld 
FROM INDEX 

WHERE term = InputTenn3 

The query consists of three components. Each component results in a set of 
documents that contain a single term in the query. The INTERSECT keyword 
is used to find the intersection of the three sets. After processing, an AND is 
implemented. 

Macleod and Crawford went on to present extensions for relevance ranking. 
The key extension was a corr() function-a built-in function to determine the 
similarity of a document to a query. 

The SEQUEL (a precursor to SQL) example that was given was-

Ex: 8 SELECT Docld 
FROM INDEX i, QUERY q 

WHERE i.term = q.term 
GROUP BY Docld 
HAVING CORR()> 60 

Other extensions, such as the ability to obtain the first n tuples in the answer 
set, were given. Macleod and Crawford gave detailed design examples as to how 
a document retrieval system should be treated as a database application. 

We now describe more recent work that relies on the unchanged relational 
model to implement information retrieval functionality with standard SQL 
[Grossman et al., 1997]. First, a discussion of preprocessing text into files 
for loading into a relational DBMS is required. 

5.3.1 Preprocessing 

Input text is originally stored in source files either at remote sites or locally 
on CD-ROM. For purposes of this discussion, it is assumed that the data files 
are in ASCII or can be easily converted to ASCII with SGML markers. SGML 
markers are a standard means by which different portions of the document are 
marked [Goldfarb, 1990]. The markers in the working example are found in the 
TIPSTER collection which is used as the standard dataset for TREC. These 
markers begin with a< and end with a> (e.g., <TAG>). 

A preprocessor that reads the input file and outputs separate flat files is used. 
Each term is read and checked against a list of SGML markers. The main 
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algorithm for the preprocessor simply parses terms and then applies a hash 
function to hash them into a small hash table. If the term has not occurred for 
this document, a new entry is added to the hash table. Collisions are handled by 
a single linked list associated with the hash table. If the term already exists, its 
term frequency is updated. When an end-of-document marker is encountered, 
the hash table is scanned and, for each entry in the hash table a record is 
output. The record contains the document identifier for the current document, 
the term, and its term frequency. Once the hash table is output, the contents 
are set to NULL and the process repeats for the next document. A variety of 
experiments designed to identify the most efficient means of implementing the 
preprocessor are given in [Pulley, 1994]. 

After processing, two output files are stored on disk. The output files are 
then bulk-loaded into a relational database. Each file corresponds to a rela­
tion. The first relation, DOC, contains information about each document. The 
second relation, INDEX, models the inverted index and indicates which term 
appears in which document and how often the term has appeared. 

The relations are-

IND EX ( Doc/ d, Term, TermFrequency) 

DOC(Doc/d, DocName, PubDate, Dateline). 

These two relations are built by the preprocessor. A third TERM relation 
tracks statistics for each term based on its number of occurrences across the 
document collection. At a minimum, this relation contains the document fre­
quency (df) and the inverse document frequency (id!). These were described 
in Section 2.1. The term relation is of the form-

TERM(Term, Id!). 

It is possible to use an application programming interface (API) so that the 
preprocessor stores data directly into the database. However, for some appli­
cations, the INDEX relation has one hundred million tuples or more. This 
requires one hundred million separate calls to the DBMS INSERT function. 
With each insert, a transaction log is updated. All relational DBMS provide 
some type of bulk-load facility in which a large flat file may be quickly mi­
grated to a relation without significant overhead. Logging is often turned off 
(something not typically possible via an on-line API) and most vendors pro­
vide efficient load implementations. For parallel implementations, flat files are 
loaded using multiple processors. This is much faster than anything that can 
be done with the APL 
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For all examples in this chapter, assume the relations were initially populated 
via an execution of the preprocessor, followed by a bulk load. Notice that the 
DOC and INDEX tables are output by the preprocessor. The TERM relation 
is not output. In the initial testing of the preprocessor, it was found that this 
table was easier to build using the DBMS than within the preprocessor. To 
compute the TERM relation once the INDEX relation is created, the following 
SQL statement is used: 

Ex: 9 INSERT INTO TERM 
SELECT Term, log(N / COUNT(*)) 

FROM INDEX 
GROUP BY Term 

N is the total number of documents in the collection, and it is usually 
known prior to executing this query. However, if it is not known then SELECT 
COUNT(*) FROM DOC will obtain this value. This statement partitions the 
INDEX relation by each term, and COUNT(*) obtains the number of docu­
ments represented in each partition (i.e., the document frequency). The id/ is 
computed by dividing N by the document frequency. 

Consider the following working example. Input text is provided, and the 
preprocessor creates two files which are then loaded into the relational DBMS 
to form DOC and INDEX. Subsequently, SQL is used to populate the TERM 
relation. 

5.3.2 A Working Example 

Throughout this chapter, the following working example is used. Two docu­
ments are taken from the TIPSTER collection and modeled using relations. 
The documents contain both structured and unstructured data and are given 
below. 

<DOC> 
<DOCNO> WSJ870323-0180 </DOCNO> 
<HL> Italy's Commercial Vehicle Sales </HL> 
<DD> 03/23/87 </DD> 
<DATELINE> TURIN, Italy </DATELINE> 
<TEXT> 
Commercial-vehicle sales in Italy rose 11.4% in February from a year earlier, to 8,848 
units, according to provisional figures from the Italian Association of Auto Makers. 
</TEXT> 
</DOC> 

<DOC> 
<DOCNO> WSJ870323-0161 </DOCNO> 
<HL> Who's News: Du Pont Co. </HL> 
<DD> 03/23/87 </DD> 
<DATELINE> Du Pont Company, Wilmington, DE </DATELINE> 
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<TEXT> 
John A. Krol was named group vice president, Agriculture Products department, of 
this diversified chemicals company, succeeding Dale E. Wolf, who will retire May 1. 

Mr. Krol was formerly vice president in the Agricultural Products department. 

</TEXT> 
</DOC> 

The preprocessor accepts these two documents as input and creates the two 
files that are then loaded into the relational DBMS. The corresponding DOC 
and INDEX relations are given below: 

Table 5.5. DOC 

Docld DocName PubDate Dateline 
1 WSJ870323-0180 3/23/87 TURIN, Italy 
2 WSJ870323-0161 3/23/87 Du Pont Company, Wilmington, DE 

Table 5.6. INDEX 

Docld Term TermFrequency 
1 commercial 1 
1 vehicle 1 
1 sales 1 
1 italy 1 
1 february 1 
1 year 1 
1 according 1 
... ... . .. 
2 krol 2 
2 president 2 
2 diversified 1 
2 company 1 
2 succeeding 1 
2 dale 1 
2 products 2 
... ... ... 

INDEX models an inverted index by storing the occurrences of a term in a 
document. This relation is the key to this approach. 

Without this relation, it is not possible to obtain high performance text 
search within the relational model. Simply storing the entire document in a 
Binary Large OBject (BLOB) removes the storage problem, but most searching 
operations on BLOB's are limited, in that BLOB's typically cannot be indexed. 
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Hence, any search of a BLOB involves a linear scan, which is significantly slower 
than the O(logn) nature of an inverted index. 

In a typical information retrieval system, a lengthy preprocessing phase oc­
curs in which parsing is done and all stored terms are identified. A posting list 
that indicates, for each term, which documents contain that term is identified 
(see Section 4.1 for a brief overview of inverted indexes). A pointer from the 
term to the posting list is implemented. In this fashion, a hashing function 
may be used to quickly jump to the term, and the pointer can be followed to 
the posting list. This inverted file technique is so effective that it was used 
in some of the earliest structured systems in the mid-1960s such as TDBMS 
[Bleir, 1967]. 

The fact that one term can appear in many documents and one document 
contains many terms indicates that a many-many relationship exists between 
terms and documents. To model this, document and term may be thought 
of as entities (analogous to employee and project), and a linking relation that 
describes the relationship EMP .PROJ must be modeled. The INDEX relation 
described below models the relationship. A tuple in the INDEX relation is 
equivalent to an assertion that a given term appears in a given document. 

Note that the term frequency (t/) or number of occurrences of a term within 
a document, is a specific characteristic of the APPEARS-IN relationship; thus, 
it is stored in this table. The primary key for this relation is (Docld, Term), 
hence, term frequency is entirely dependent upon this key. 

For proximity searches such as "Find all documents in which the phrase 11ice 
president exists," an additional offset attribute is required. Without this, the 
INDEX relation indicates that vice and president co-occur in the same docu­
ment, but no information as to their location is given. To indicate that 11ice is 
adjacent to president, the offset attribute identifies the current term offset in 
the document. The first term is given an offset of zero, the second an offset of 
one, and, in general, the nth is given an offset of n - 1. The INDEX.PROX re­
lation given below contains the necessary offset attribute required to implement 
proximity searches. 

Several observations about the INDEX.PROX relation should be noted. 
Since stop words are not included, offsets are not contiguously numbered. An 
offset is required for each occurrence of a term. Thus, terms are listed multiple 
times instead of only once, as was the case in the original INDEX relation. 
To obtain the INDEX relation from INDEX.PROX, the following statement 
may be used: 

Ex: 10 INSERT INTO INDEX 
SELECT Docld, Term, COUNT(*) 

FROM INDEX.PROX 
GROUP BY Docld, Term 

Finally, single-valued information about terms is required. The TERM relation 
contains the id/ for a given term. To review, a term that occurs frequently has 
a low id/ and is assumed to be relatively unimportant. A term that occurs 
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Table 5.7. INDEXYROX 

Docld Term Offset 
1 commercial 0 
1 vehicle 1 
1 sales 2 
1 italy 4 
1 rose 5 
1 february 8 
1 year 11 
1 earlier 12 
1 units 15 
1 according 16 
1 provisional 18 
1 figures 19 
1 italian 22 
1 association 23 
1 auto 25 
1 makers 26 
... ... ... 
2 krol 2 
... ... ... 

infrequently is assumed very important. Since each term has only one id/, this 
is a single-valued relationship which is stored in a collection-wide single TERM 
relation. 

To maintain a syntactically fixed set of SQL queries for information retrieval 
processing, and to reduce the syntactic complexities of the queries themselves, 
a QUERY relation is used. The QUERY relation contains a single tuple for 
each query term. Queries are simplified because the QUERY relation may be 
joined to INDEX to see if any of the terms in QUERY are found in INDEX. 
Without QUERY, a lengthy WHERE clause is required to specifically request 
each term in the query. 

Finally, STOP _TERM is used to indicate all of the terms that are omit­
ted during the parsing phase. This relation is not used in this chapter, but 
illustrates that the relational model can store internal structures that are used 
during data definition and population. 

The following query illustrates the potential of this approach. The SQL satisfies 
the request to "Find all documents that describe vehicles and sales written on 
3/23/87." The keyword search covers unstructured data, while the publication 
date is an element of structured data. 

This example is given to quickly show how to integrate both structured data 
and text. Most information retrieval systems support this kind of search by 
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Table 5.8. TERM 

Term Idf 
according 0.9031 
commercial 1.3802 
company 0.6021 
dale 2.3856 
diversified 2.5798 
february 1.4472 
italy 1.9231 
krol 4.2768 
president 0.6990 
products 0.9542 
... ... 
... . .. 
sales 1.0000 
succeeding 2.6107 
vehicle 1.8808 
year 0.4771 
... ... 

Table 5.9. QUERY 

Term tr 
vehicle 1 
sales 1 

Table 5.10. STOP _TERM 

Term 
a 
an 
and 
... 
the 
... 

making DATE a "zoned field"-a portion of text that is marked and always 
occurs in a particular section or zone of a document. These fields can then be 
parsed and stored in a relational structure. Section 5.1.1 illustrates a sequence 
of queries that use much more complicated unstructured data, which could not 
easily be queried with an information retrieval system. 
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Ex: 11 SELECT d.Docld 
FROM DOC d, INDEX i 

WHERE i.Term IN ("vehicle", "sales") AND 
d.PubDate = "3/23/87'' AND 
d.Docld = i.Docld 

5.4 Boolean Retrieval 

A Boolean query is given with the usual operators-AND, OR, and NOT. The 

result set must contain all documents that satisfy the Boolean condition. 
For small bibliographic systems (e.g., card catalog systems), Boolean queries 

are useful. They quickly allow users to specify their information need and return 
all matches. For large document collections, they are less useful because the 
result set is unordered, and a query can result in thousands of matches. The 
user is then forced to tune the Boolean conditions and retry the query until the 
result is obtained. Relevance ranking avoids this problem by ranking documents 
based on a measure of relevance between the documents and the query. The 
user then looks at the top-ranked documents and determines whether or not 
they fill the information need. 

We start with the use of SQL to implement Boolean retrieval. We then show 
how a proximity search can be implemented with unchanged SQL, and finally, 
a relevance ranking implementation with SQL is described. 

The following SQL query returns all documents that contain an arbitrary 
term, JnputTerm. 

Ex: 12 SELECT DISTINCT(i.Docld) 
FROM INDEX i 

WHERE i.Term = InputTenn 

Obtaining the actual text of the document can now be performed in an ap­
plication specific fashion. The text is found in a single large attribute that 
contains a BLOB or CLOB (binary or character large object), possibly divided 
into separate components (i.e., paragraphs, lines, sentences, phrases, etc.). If 

the text is found in a single large attribute (in this example we call it Text), 
the query can be extended to execute a subquery to obtain the document iden­
tifiers. Then then the identifiers can be used to find the appropriate text in 
DOC. 

Ex: 13 SELECT d.Text 
FROM DOC d 

WHERE d.Docld IN 
(SELECT DISTINCT(i.Docld) 

FROMINDEXi 
WHERE i.Term = InputTenn) 
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For the remainder of the section, we are only concerned with obtaining the 
document identifiers found in the answer set. Either a separate query may be 
executed using the document identifiers in an application specific fashion or the 
queries can be extended in the form given in Example 13. 

It is natural to attempt to extend the query in Example 12 to allow for n 
terms. If the Boolean request is an OR, the extension is straightforward and 
does not increase the number of joins found in the query. 

Ex: 14 SELECT DISTINCT(i.Docid) 
FROMINDEXi 

WHERE i.Term = InputTerm1 OR 
i.Term = InputTermf OR 
i.Term = InputTerm9 OR 

i.Term = InputTermN 

Unfortunately, a Boolean AND results in a dramatically more complex query. 
For a query containing n input terms, the INDEX relation must be joined n 
times. This results in the following query. 

Ex: 15 SELECT a.Docid 
FROM INDEX a, INDEX b, INDEX c, ... INDEX n - 1, INDEX n 

WHERE a.Term= InputTerm1 AND 
b.Term = InputTerm2 AND 
c.Term = InputTerma AND 

n.Term = InputTerm,. AND 
a.Docid = b.Docid AND 
b.Docid = c.Docid AND 

n - l.Docid = n.Docid 

Multiple joins are expensive. The order that the joins are computed affects 
performance, so a cost-based optimizer will compute costs for many of the 
orderings [Elmasri and Navathe, 1994]. Pruning the list is discussed in [Selinger, 
1979], but it is still expensive. 

In addition to performance concerns, the reality is that commercial systems 
are unable to implement more than a fixed number of joins. Although it is 
theoretically possible to execute a join of n terms, most implementions impose 
limits on the number of joins (around sixteen is common) (White and Date, 
1989, McNally, 1997]. It is the complexity of this simple Boolean AND that has 
led many researchers to develop extensions to SQL or user-defined operators to 
allow for a more simplistic SQL query. 

An approach that requires a fixed number of joins regardless of the number 
of terms found in the input query is given in [Grossman et al., 1997]. This 
reduces the number of conditions found in the query. However, an additional 
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sort is needed (due to a GROUP BY) in the query where one previously did 
not exist. 

The following query computes a Boolean AND using standard syntactically 
fixed SQL: 

Ex: 16 SELECT i.Docld 
FROM INDEX i, QUERY q 

WHERE i.Term = q.Term 
GROUP BY i.Docid 
HAVING COUNT(i.Term) = 

(SELECT COUNT(*) FROM QUERY) 

The WHERE clause ensures that only the terms in the query relation that 
match those in INDEX are included in the result set. The GROUP BY specifies 
that the result set is partitioned into groups of terms for each document. The 
HAVING ensures that the only groups in the result set will be those whose 
cardinality is equivalent to that of the query relation. 

For a query with k terms (ti, t2, ••• , t1,) the following set of tuples are gen­
erated for document c4 containing all k terms. 

Table 5.11. Result Set 

Docld term 
di ti 
di h 
... ... 
di t1c 

The GROUP BY clause causes the cardinality, k, of this document to be com­
puted. At this point, the HAVING clause determines if the k terms in this 
group matches the number of terms in the query. If so, a tuple di appears in 
the final result set. 

Until this point, we assumed that the INDEX relation contains only one 
occurrence of a given term for each document. This is consistent with our 
example where a term frequency is used to record the number of occurrences 
of a term within a document. In proximity searches, a term is stored multiple 
times in the INDEX relation for a single document. Hence, the query must 
be modified because a single term in a document might occur k times which 
results in di being placed in the final result set, even when it does not contain 
the remaining k - 1 terms. 

The query below uses the DISTINCT keyword to ensure that only the dis­
tinct terms in the document are considered. This query is used on INDEX 
relations in which term repetition in a document results in term repetition in 
the INDEX relation. 
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Ex: 17 SELECT i.Docld 
FROM INDEX i, QUERY q 

WHERE i.Term = q.Term 
GROUP BY i.Docid 
HAVING COUNT(DISTINCT(i.Term)) 

= (SELECT COUNT(*) FROM QUERY) 

This query executes whether or not duplicates are present, but if it is known 
that duplicate terms within a document do not occur, this query is somewhat 
less efficient than its predecessor. The DISTINCT keyword typically requires 
a sort. 

Using a set-oriented approach to Boolean keyword searches results in the 
fortunate side-effect that a threshold AND (TAND) is easily implemented. A 
partial AND is one in which the condition is true if k subconditions are true. 
It is not required that all of the subconditions must be true. The following 
query returns all documents who have k or more terms matching those found 
in the query. 

Ex: 18 SELECT i.Docld 
FROM INDEX i,QUERY q 

WHERE i.Term = q.Term 
GROUP BY i.Docld 
HAVING COUNT(DISTINCT(i.Term)) ~ k 

5.5 Proximity Searches 

To briefly review, proximity searches are used in IR systems to ensure that 
the terms in the query are found in a particular sequence or at least within a 
particular window of the document. Most users searching for a query of "vice 
president" do not wish to retrieve documents that contain the sentence "His 
primary vice was to yearn to be president of the company." 

To implement proximity searches the INDEX.PROX given in our working 
example is used. The offset attribute indicates the relative position of each 
term in the document. 

The following query, albeit a little complicated at first glance, uses un­
changed SQL to identify all documents that contain all of the terms in QUERY 
within a term window of width terms. For the query given in our working ex­
ample "vice" and "president" occur in positions seven and eight, respectively. 
Document two would be retrieved if a window of two or larger were used. 
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Ex: 19 SELECT a.Docld 
FROM INDEX_pROX a, INDEX_pROX b 

WHERE a.Term IN (SELECT q.Term FROM QUERY q) AND 
b.Term IN (SELECT q.Term FROM QUERY q) AND 
a.Docld = b.Docid AND 
(b.Offset - a.Offset) BETWEEN O AND (width - 1) 

GROUP BY a.Docld, a.Term, a.Offset 
HAVING COUNT{DISTINCT{b.Term)) = 
(SELECT COUNT(*) FROM QUERY) 

The INDEX.PROX table must be joined to itself since the distance between 
each term and every other term in the document must be evaluated. For a doc­
ument d. that contains k terms (ti, t2, ... , t1,:) in the corresponding term offsets 
of (01, O:!, ••. , 01,:), the first two conditions ensure that we are only examining 
..>ffsets for terms in the document that match those in the query. The third con­
dition ensures that the offsets we are comparing do not span across documents. 
The following tuples make the first three conditions evaluate to TRUE. 

The table below is given to assist in understanding the logic of the query. 
Drawing out the first step of the join of INDEX.PROX to itself for an arbitrary 
document di yields tuples in which each term in INDEX_TERM is matched 

with all other terms. This table shows only those terms within document di 
that matched with other terms in document di. This is because only these 
tuples evaluate to TRUE when the condition "a.Dodd = b.Docld" is applied. 
We also assume that the terms in the table below match those found in the 
query, thereby satisfying the condition "b.term IN (SELECT q.term FROM 
QUERY)." 

Table 5.12. Result of self-join of INDEXYROX 

a.Docld a.Term a.Offset b.Docld b.Term b.Offset 
d; ti 01 d; ti 01 

d; ti 01 d; t2 02 

cl; ti 01 d; tk Ok 

d; h 02 d; ti 01 

d, h 02 d; t2 02 

d; h 02 d; t,. Ok 

d, tk Ok d; ti 01 

d; tk Ok d; t2 02 

d; tk 01, d; t1, 01, 

The fourth condition examines the offsets and returns TRUE only if the 
terms exist within the specified window. The GROUP BY clause partitions 
each particular offset within a document. The HAVING clause ensures that 
the size of this partition is equal to the size of the query. If this is the case, 
the document has all of terms in QUERY within a window of size offset. Thus, 
document di is included in the final result set. 
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For an example query with "vehicle" and "sales" within a two term window, 
all four conditions of the WHERE cla11Se evaluate to TRUE for the following 
tuples. The first three have eliminated those terms that were not in the query, 
and the fourth eliminated those terms that were outside of the term window. 
The GROUP BY cla11Se results in a partition in which "vehicle", at offset one, 
is in one partition and "sales", at offset two, is in the other partition. The first 
partition has two terms which match the size of the query, so document one is 
included in the final result set. 

Table 5.13. Result after all four conditions of the WHERE clause have been evaluated 

a.Docld a.Tern1 a.Offset b.Docld b.Tern1 b.Offset 
1 vehicle 1 1 vehicle 1 
1 vehicle 1 1 sales 2 
1 sales 2 1 sales 2 

5.6 Computing Relevance Using Unchanged SQL 

Relevance ranking is critical for large document collections as a Boolean query 
frequently returns many thousands of documents. Recent World Wide Web 
search engines such as Alta Vista and Yahoo!, as well as commercial informa­
tion retrieval systems such as Excalibur's RetrievalWare and Verity's Topic, all 
implement relevance ranking. Numerous algorithms exist to compute a mea­
sure of similarity between a query and a document. We have discussed many 
of these variations in Chapter 2. 

The vector-space model has been heavily discussed in the literature, and 
systems 11Sing this model have repeatedly performed well at the Text REtrieval 
and Evaluation Conference (TREC). Hence, the SQL-based system was built 
using this model. The model works by representing each document and each 
query by a vector of size t, where t is the number of distinct terms in the 
document collection. The distance between the query vector Q and the docu­
ment vector Di is used to rank documents. The following dot product measure 
computes this distance: 

t 
SC(Q,Di) = Lqi X dij 

j=l 

where Qj is the jth term in the query, and dii is the jth term in the ith 
document. 

In the simplest case, each component of the vector is either zero or one ( one 
indicates that the term corresponding to this component exists). Numerous 
weighting schemes are described in [Salton and Buckley, 1988], but one com­
monly used weight is tf-idf in which the term frequency is combined with the 

Page 193 of 262



182 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS 

inverse document frequency (see Section 2.2.1). The following SQL implements 
a dot product query with the tf-idf weight. 

Ex: 20 SELECT i.Docid, SUM(q.tf * t.idf * i.tf * t.idf) 
FROM QUERY q, INDEX i, TERM t 

WHERE q.Term = t.Term AND 
i.Term = t.Term 

GROUP BY i.Dodd 
ORDER BY 2 DESC 

The WHERE clause ensures that only terms found in QUERY are included 
in the computation. Since all terms not found in the query are given a zero 
weight in the query vector, they do not contribute to the summation. The id/ 
is obtained from the TERM relation and is used to compute the tf-idf weight 
in the select-list. The ORDER BY clause ensures that the result is sorted by 
the similarity coefficient. 

At this point we have used a simple similarity coefficient. Many variations of 
this coefficient are found in the literature [Salton, 1989]. Unchanged SQL can 
be used to implement these coefficients as well. Typically, the cosine coefficient 
or its variants is commonly used. The cosine coefficient is defined as-

'°'~ w ·d·· 
SC(Q D ·) = L..i=1 qi '' 

' • . I t t V Ej=l (d;j)2 Ej=l (Wqj)2 

The numerator is the same as the dot product, but the denominator requires 
a normalization which uses the size of the document vector and the size of 
the query vector. Each of these normalization factors could be computed at 
query time, but the syntax of the query becomes overly complex. To simplify 
the SQL, two separate relations are created: DOC_WT (Docld, Weight) and 
QUERY _WT ( Weight). DOC_WT stores the size of the document vector for 
each document and QUERY_ WT contains a single tuple that indicates the size 
of the query vector. These relations may be populated with the following SQL: 

Ex: 21 INSERT INTO DOC_WT 
SELECT Dodd, SQRT(SUM(i.tf * t.idf * i.tf * t.idf)) 

FROM INDEX i, TERM t 
WHERE i.Term = t.Term 
GROUP BY Dodd 

Ex: 22 INSERT INTO QRY _WT 
SELECT SQRT(SUM(q.tf * t.idf * q.tf * t.idf)) 

FROM QUERY q, TERM t 
WHERE q. Term = t.Term 

For each of these INSERT-SELECT statements, the weights for the vector are 
computed, squared, and then summed to obtain a total vector weight. The 
following query computes the cosine. 
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Ex: 23 SELECT i.Docld, SUM{q.tf • t.idf • i.tf • t.idf) / 
(dw.Weight • qw.Weight) 

FROM QUERY q, INDEX i, TERM t, DOC_WT dw, QRY _WT qw 
WHERE q.Term = t.Term AND 

i.Term = t.Term AND 
i.Docld = dw.Docld 

GROUP BY i.Docld, dw.Weight, qw.Weight 
ORDER BY 2 DESC 

The inner product is modified to use the normalized weights by joining the two 
new relations, DOC_WT and QRY _WT. An additional condition is added to 
the WHERE clause in order to obtain the weight for each document. 

To implement this coefficient, it is necessary to use the built-in square root 
function which is often present in many SQL implementations. We note that 
these queries can all be implemented without the non-standard square root 
function simply by squaring the entire coefficient. This modification does not 
affect the document ranking as a :S b => a2 :S b2 for a, b ~ 0. For simplicity 
of presentation, we used a built-in sqrt function {which is present in many 
commercial SQL implementations) to compute the square root of an argument. 

5. 7 Relevance Feedback in the Relational Model 

Recent work has shown that relevance feedback may be incorporated into the 
relational model [Lundquist et al., 1997]. Relevance feedback is the process of 
adding new terms to a query based on documents presumed to be relevant in 
an initial running of the query {see Section 3.1). In this work, separate SQL 
statements were used for each of the following steps: 

Step 1: Run the initial query. This is done using the SQL we 
have just described. 

Step 2: Obtain the terms in the top n documents. A query of the 
INDEX relation given a list of document identifiers (these 
could be stored in a temporary relation generated by Step 1 
will result in a distinct list of terms in the top 
n documents. This query will run significantly 
faster if the DBMS has the ability to limit the number of 
tuples returned by a single query {many commercial systems 
have this capability). An INSERT-SELECT can be used to 
insert the terms obtained in this query into the QUERY relation. 

Step 3: Run the modified query. The SQL remains the same as used in 
Step 1. 
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5.8 Summary 

We discussed several approaches focused on the integration of structured and 
text data. To aid the reader, we initially provided a limited review of the rela­
tional database model and continued with a historical progression of the data 
integration field. We discussed the key concerns involved in data integration­
namely data integrity, portability, and performance---and noted that maintain­
ing and coordinating two separate systems was difficult and expensive to do. 

Having motivated the integration of traditional relational database manage­
ment features with traditional information retrieval functionality, we described 
early efforts that extended relational database management systems with user­
defined operators. These extensions provided information retrieval function­
ality, but also potentially incurred performance and portability penalties. We 
concluded the chapter with a detailed illustration of the integration of both 
information retrieval and relation database functionality using standard, un­
changed SQL. As of the time of the writing of this book, two major database 
vendors are considering integrating this standard SQL information retrieval 
functionality into their text processing efforts. 

5. 9 Exercises 

1. Using Alice in Wonderland develop a utility to output a file that is suitable 
for populating the INDEX relation described in this chapter. 

2. Load the output obtained in the preceding exercise into the relational DBMS 
of your choice. 

3. Implement a simple dot product SQL query to query the data you have just 
loaded. Implement ten different queries. 

4. Notice that the term Alice is replicated numerous times. Implement a Huff­
man encoding compression algorithm to reduce the space stored for each 
term. Reload the INDEX relation and compute the amount of storage over­
head. 

5. Show how the probabilistic approach developed by Robertson and Sparck 
Jones described in Section 2.2.1 can be implemented as an application of a 
relational database system. Repeat this exercise for the approach developed 
by Kwok described in section 2.2.4. 
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RETRIEVAL SYSTEMS 

Parallel architectures are often described based on the number of instruction 
and data streams, namely single and multiple data and instruction streams. A 
complete taxonomy of different combinations of instruction streams and data 
was given in [Flynn, 1972]. To evaluate the performance delivered by these 
architectures on a given computation, speedup is defined as f, where T8 is the 

p 

time taken by the best sequential algorithm, and Tp is the time taken by the 
parallel algorithm under consideration. The higher the speedup, the better the 
performance. The motivation for measuring speedup is that it indicates whether 
or not an algorithm scales. An algorithm that has near linear speedup on sixteen 
processors may not exhibit similar speedup on hundreds of processors. However, 
an algorithm that delivers very little or no speedup on only two processors will 
certainly not scale to large numbers of processors. 

Multiple instruction multiple data (MIMD) implies that each processing ele­
ment is potentially executing a different instruction stream. This is the case in 
most of the modern parallel engines such as the Intel Paragon and IBM SP2, as 
well as some of the earlier machines such as the Intel iPSC and the NCUBE/10. 
Synchronization is more difficult with this approach, as compared to a single 
instruction multiple data (SIMD) system, because one processor can still be 
running some code while another is waiting for a message. 

In SIMD architectures, all processors execute the same instruction concur­
rently. A controlling master processor sends an instruction to a collection of 
slave processors, and they all execute it at the same time on different sequences 
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of data. SIMD systems are effective when all processors work on different pieces 
of data with the same instruction. In such cases, large speedups using SIMD en­
gines are possible. Some image processing applications, where each pixel or set 
of pixels are assigned to a processor, are solved efficiently by SIMD solutions. 
The Connection Machine (CM) and CM-2, the various MASPAR architectures, 
and the DAP are all SIMD machines. 

In this chapter, we include only algorithms written for a parallel processor. 
We distinguish these algorithms from distributed algorithms since they are fun­
damentally different. A distributed information retrieval algorithm is designed 
to satisfy the need to store data in many physically different locations. The 
most known example of a distributed information retrieval system is the World 
Wide Web (WWW). We will discuss this and other distributed information 
retrieval systems in Chapter 7. However, with parallel systems, the processing 
elements are close to one another-often on the same board. 

6.1 Parallel Text Scanning 

In parallel pattern match, the text collection consisting of n documents is par­
titioned into p partitions (p is typically the number of available processors) 
(Evans and Ghanemi, 1988]. Each available processor receives a partition of 
the text and a copy of the query. A sequential algorithm executes on each r ~ l 
sized portion of text. Once this is done, all of the hits are returned to the 
controlling processor. Since it is possible for a pattern to span across two or 
more partitions, an additional step is required to check for matches that span 
partitions. This extra checking results in additional overhead for the parallel 
algorithm. 

Parallel string matching is a simpler case of parallel text scanning, in that 
string matching assumes that the text to be searched is completely memory 
resident. A survey of parallel string matching algorithms is found in [Breslauer 
and Galil, 1991]. This survey describes several different parallel algorithms that 
search a text string of size l for a pattern of size k. 

The parallel pattern matching algorithm has a key flaw in that patterns 
which span partitions result in considerable overhead. For some cases, the par­
allel algorithm yields no speedup at all. The parallel signature file approach 
yields linear speedup over the sequential file, but run time for this algorithm is 
not better than the time required to implement a sequential indexing algorithm. 
This fact was pointed out by Salton when he implemented this algorithm on a 
Connection Machine and a SUN3 [Salton, 1988]. Additionally, Stone used an 
analytical model to compute that a sequential machine will outperform a par­
allel machine with 32K processors. This occurs if an inverted index is used for 
the sequential matching and the file scan is used on the 32K processor machine 
[Stone, 1987]. Another repetition of the theme that information retrieval does 
not require enough processing to enable good parallel processing algorithms is 
given in [Cockshott, 1989]. 
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Generally, parallel algorithms start with the best sequential algorithm. Com­
paring a parallel scanner to a sequential scanner is not an accurate measure of 
speedup, as it is well known that the best sequential algorithms use an inverted 
index. 

6.1.1 Scanning Hardware 

Numerous special purpose hardware machines have been built to scan text. A 
survey of these is found in [Hurson et al., 1990]. We briefly review two of these 
as they serve to illustrate the need for this portion of our taxonomy. 

6.1.1.1 Utah Retrieval System. The Utah Retrieval System (URS) is 
implemented as a non-deterministic finite state automata (FSA) with a series 
of special purpose comparators [Hollaar and Haskins, 1984, Hollaar and Hask­
ins, 1991]. The FSA is constructed so that many non-deterministic paths are 
explored at the same time, therefore it never requires a backward look. The 
URS is essentially a smart disk controller, as the hardware is placed close to the 
disk controller so that only data that match the retrieval criteria are returned 
to the calling processor. As always, the motivation behind the special purpose 
algorithm is run-time performance. While proximity searching can be done, 
it is not clear that the URS can be used to store weights of terms in a docu­
ment. Hence, this approach has some of the same problems as a signature-based 
approach. 

More recent work with the URS employs an index and a simplified posting 
list. This posting list does not contain proximity information so the index is 
used simply to identify which documents should be scanned. The FSA is used to 
scan the documents to obtain the required response to the query. This scanning 
step is needed to determine the locations of terms within the document. 

6.1.1.2 A Data Parallel Pattern Matching Approach. To avoid pre­
computation of a FSA and to search large blocks of text simultaneously a data 
parallel pattern matching (DPPM) algorithm was developed [Mak et al., 1991]. 
In the DPPM algorithm, a block of data is compared against a sequential se­
rial portion of the pattern. Sequentially, one character at a time of the search 
pattern is compared against an entire block of text. Given the high degree of 
mismatch between the pattern and the block of text an "early-out" mismatch 
detection scheme flushes out the entire block of text. This occurs once a match 
with the pattern is no longer possible. This early mismatch detection mecha­
nism greatly reduces the total search processing time as redundant comparisons 
are avoided. 

An architecture, which relied on multiple individual DPPM search engines 
to identify document offsets where the pattern matches were found, was out­
lined. Based on simple computations and the predetermined offsets, the re­
quired information retrieval operators proposed for the Utah Retrieval System 
were supported. A VLSI realization of the DPPM engine, and a corresponding 
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analysis of the global architecture, was presented. The analysis demonstrated 
a potential search rate of one gigabyte of text per second. 

6.1.2 Parallel Signature Files 

6.1.2.1 Connection Machine. An early algorithm developed for the Con­
nection Machine used signature files to represent documents [Stanfill and Kahle, 
1986]. Details of sequential algorithms that use text signatures are described 
in Section 4.3. 

Several signatures are stored in each processing element. Each processing 
element is assigned signatures only for a single document. The reason for this is 
that it was assumed that a document would not expand beyond a single process­
ing element. A query is processed by generating the bitmap for a term in the 
query and broadcasting it to all processors. Each processor checks the bitmap 
against the list of signatures. When a match occurs, the mailbox in the pro­
cessing element that corresponds to the document is updated with the weight 
of the query term. Document weights due to repetition within a document 
are lost because the signature does not capture the number of occurrences of a 
word in a document. However, a global weight across the document collection 
is used. 

Once all the signatures are scanned, the documents are ranked by doing a 
global maximum of all mailboxes. The processors whose mailboxes contain the 
global maximum are then zeroed, and the global maximum is repeated. This 
continues until the number of documents that should be retrieved is obtained. 

The commercial implementation of this algorithm contained several refine-
ments [Sherman, 1994]. The actual values for the signatures for the CM were-

w = 30 words per signature 

s = 1024 bits in a signature 

i = 10 hash functions used to code a word 

Fifty-five signatures were placed in a single processing element. The assump­
tion that one processing element maps to a corresponding signature is removed. 
Additionally, weights are not done by document. They are computed for sig­
nature pairs. The idea being that a sixty word radius is a better document 
segment to rank than an entire document. Hence, a weight is maintained for 
each signature. 

To resolve a query, the top one hundred query weights were used. The 
bitmap for the query was generated like before and rapid microcode was used 
to quickly check the corresponding i bits in the signature. Whenever a query 
term appeared to match a signature, the corresponding weight was updated 
appropriately. Once the signature match was complete, the signature pairs 
were then combined using a proprietary scoring algorithm that averaged the 
weights of the two signatures. The use of signature pairs made it possible to 
incorporate proximity information into the relevance ranking. Some interpro­
cessor communication occurs to obtain the single signature part that crosses 
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a document boundary (both above and below the processing element). How­
ever, the overhead for these two processor "sends" is low because it occurs only 
between adjacent processors. 

The algorithm was completely memory resident, as the application queried 
a news wire service in which only the most recent news articles were used in 
retrieval. As documents aged, they were exported from the CM to make room 
for new documents. Several million documents could then be stored in memory 
and run-time performance was routinely within one to three seconds. 

6.1.2.2 Digital Array Processor {DAP). Signatures were used initially 
in the Digital Array Processor (DAP) by using a two-phased search. Many of 
the parallel algorithms are based on a bit serial implementation of the sequential 
algorithms given in [Mohan and Willett, 1985]. In this algorithm, signatures 
are assigned by using a term dictionary and setting a single bit in the signature 
for each term. The 1024 bit-long signatures are distributed to each processor 
(4096 processors). Hence, 4096 documents are searched in parallel. The query 
is broadcast to each processor. Since only one bit is set per term, the number 
of matching bits is used as a measure of relevance. This uses the assumption 

that a bit match with the query indicates a match with the term. Since several 
terms can map to the same bit in the signature, this is not always true. 

To verify that a match really occurs, a second phase begins. In this phase a 
pattern matching algorithm is implemented, and the document is examined to 
compute the number of terms that really match. This is done sequentially and 
only for the documents that ranked highly during the first phase. Performance 
of the algorithm is claimed to be "good," but no specific results are presented 
[Pogue and Willett, 1987]. 

6.1.2.3 HYTERM. A more recent approach by Lee, HYbrid TExt Re­
trieval Machine (HYTERM), uses a hybrid approach between special-purpose 
search hardware and partitioned signature files, which can be done via hard­
ware or software [Lee, 1995]. This architecture employs a signature file using 
superimposed signatures to identify possible matches to a Boolean request. 
Once this is done, the false hits are removed either by a software scan or a 
special-purpose pattern match device. 

The signatures are partitioned such that each partition has a certain key or 
portion of the signatures. This saves memory as the signatures in a given par­
tition need not store the partition key. The key is checked quickly to determine 
whether or not the entire partition must be searched. The partitions are stored 
in memory, and are spread across the processors or, as Lee calls them signature 
modules, as they are filled. Initially, only one signature module is used. Once 
it is full, a single-bit key is used, and the signatures are partitioned across two 
processors. The process continues until all free processors are full, then new 
ones can be added and the process can continue indefinitely. 

The actual text is stored across numerous small texts. Once the signature 
modules have identified candidate documents to be checked for false drops, the 
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text processing modules retrieve the document from a disk. It is noted that 
by spreading the documents across numerous disks, the resilience to failure 
improves. When a disk is down, it only means a few documents will be inac­
cessible. The overall query will still work, it will just have lower precision and 
recall than if the disk had been working. Documents are uniformly distributed 
to the disks, either by hashing or round-robin allocation. 

6.1.2.4 Transputers. Two algorithms were developed with transputers in 
the early 1990s (Cringean et al., 1990, Cringean et al., 1991]. The first was 
a term-based algorithm in which only full terms were encoded in a signature, 
the second algorithm uses trigrams (overlapping three character sequences-see 
Section 3.4) to respond to wildcard searches. 

Another signature-based algorithm was implemented on a transputer net­
work. Transputers essentially serve as building blocks to an arbitrary parallel 
interconnection network, and are often distributed as a chip in which links are 
present that can be connected to other transputers. For this approach, differ­
ent interconnection networks were tested, but ultimately a triple chain network 
was used in which a master processor sends messages to three separate llnear 
arrays. Using only a single linear array, data transmission requires on the order 
of p steps, where p is the number of processors. 

A two-phased algorithm is again used. In this first phase, a master pro­
cessor sequentially scans signatures for each document. The documents that 
correspond to signature matches are then distributed to the p processors, and 
a sequential string matching algorithm is implemented on each of the p proces­
sors. In this work, a modified Boyer-Moore algorithm by Horspool is used for 
sequential string matching (Horspool, 1983]. 

During one performance test, the signatures were eliminated and only string 
matching was done. For this test with fifteen processors, a speedup of 12.6 was 
obtained. Additional tests with varying signature lengths were conducted. For 
larger signatures, fewer false hits occur. Thus, less string matching in parallel 
is needed. With 512 bit signatures, fifteen processors only obtained a speedup 
of 1.4 because only thirteen percent of the original document collection were 
searched. 

Additional tests were done with signatures based on trigrams instead of 
terms. Each trigram was hashed to a single bit. The pattern-matching al­
gorithm implemented on each processor was modified to search for wildcards. 
These searches include symbols that indicate one or more characters will sat­
isfy the search (e.g., a search for "st•" will find all strings with a prefix of 
"st"). Initial speedups for trigram-based signatures were only 2.1 for fifteen 
processors. This poor speedup was caused by the sequential signature match 
in the first phase of the algorithm. To alleviate this, additional transputer 
components were added so that two and then four processors were used to scan 
the signature file in parallel. With four transputers for the parallel signature 
match, speedup improved to 4.5 for twelve processors. 
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Another term-based transputer algorithm is found in [Walden and Sere, 
1988]. In this work, a master processor sends the query to each of the processors 
where all "relevant" documents are identified and returned to the master for 
final ranking. "Relevant" is defined as having matched one of the terms in the 
query. Document signatures are used to save storage, but no work is done to 
avoid false hits. The interesting aspect of this work is that three different inter­
connection networks were investigated: ring, linear array, and tree. Speedups 
for a 10 megabyte document collection with a ring interconnection network 
were almost linear for up to fifteen processing elements, but fell to only 6.14 for 
sixty-three processing elements. Essentially, the test collection was too small 
to exploit the work of the processing elements. In a tree structure, sixty-three 
processing elements yielded a speedup of 7.33. 

6.2 Parallel Indexing 

Another approach is to parallelize the inverted index. The idea is to partition 
the index such that portions of the index are processed by different processors. 
Figure 6.1 illustrates an inverted index that has been partitioned between two 
processors. This is intrinsically more difficult, in that simply partitioning the 
index and sending an equal number of terms to each of the p processors does 
not always result in equal amounts of work. Skew in posting list size poses a 
difficult problem. Nevertheless, parallel index algorithms were developed for the 
Connection Machine, the OAP, and some others. We discuss these algorithms 
in this section. 

6.2.1 Parallel Indexing on a Connection Machine 

The signature-based algorithm did not improve on the best sequential algo­
rithm, so a new approach based on an inverted index was developed. Both an 
entirely memory resident index and a disk-based index were constructed [Stan­
fill et al., 1989]. The posting lists were sequences of document identifiers that 
were placed in a two dimensional array. Mapping between posting list entries, 
and placement within a two dimensional array was defined. The entries of the 
posting were allocated one at a time, starting with the first row and moving 
to the second row only after the first row was full. This has had the effect of 
allocating data to the different processors (since each column is processed by 
an individual processor) in a round-robin fashion. 

Consider a posting list with terms ti, h, and ta. Assume ti occurs in doc­
uments d1 and d-J. The posting list for this term will be stored in the first 
two positions of row zero, in an array stored in memory. Assume t2 occurs in 
documents d1 and da, and ta occurs in documents d1 , d2 , and da. For these 
three terms, the 2 x 4 dimensional array shown in Table 6.1 is populated. Using 
this approach a row of 1024 postings can be processed in a single step if all 
processors are used. A full row is referred to as a stripe. Since the terms have 
been scattered across the array, it is necessary to track which entries map to a 
given posting list. A second array is used for this purpose. It holds an entry for 
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Figure 6.1. Partitioning an Inverted Index 
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Table 6.1. Parallel Storage of Posting Lists 

I ~ I ~ I ~ I 3 I 

the term followed by a start row, a start column, and a length for the posting 
list. The start row and column indicate the first location in the posting list 
that corresponds to the term. Continuing our example, the index table for the 
terms 0, 1, and 2 is given in Table 6.2. 

The first row of this entry indicates that term t1 contains a posting list that 
starts at position [0,0] and continues to position [0,1] of the two dimensional 
posting list array given above. This can be inferred because the row-at-a-time 
allocation scheme is used. 
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A query of n terms is processed in n steps. Essentially, the algorithm is­

do i = 1 ton 
curr_row = index(i) 
for j = 1 to row Jength do in parallel 

curr_docjd = docjd(curr..row) 
score(curr..docjd) = score(curr..docjd) + weight(curr..row) 

end 
end 

This is only a sketch of the algorithm. Extra work must be done to deactivate 
processors when an entire row is not required (a bit mask can be used to 
deactivate a processor). Additionally, for long posting lists, or posting lists 
that start at the end of a stripe, more than one row must be processed during 
a single iteration of the inner loop. 

For each query term, a lookup in the index is done to determine which 
stripe of the posting list is to be processed. Each processor looks at its entry 
for the stripe in the doc_id. It is this doc_id whose score must be updated, 
as the entry in the posting list implies that the term in the query is matched 
by a term in this document. A one-dimensional score array (referred to as a 
"mailbox" in the original algorithm) is updated. This one-dimensional array is 
distributed as one element to each processor, so each processor corresponds to 
a document. For a document collection with more documents than processors 
a "virtual processor" must be used. (Note: there will always be no more than 
one update to the score element as the posting list only contains one entry for 
each term-doc appearance). The final ranking is done with a global maximum 
to find the highest-ranked element of the score array and to successively mask 
that element. This can be repeated until all documents have been retrieved. 

This algorithm obtains good speedup when a posting list uses an entire 
stripe. The problem is that often a stripe is only being used for one or two 
entries. A posting list containing one entry results in 1023 processors doing 
nothing while one processor issues the update to the score array. The posting 
table may be partitioned by node in order [Stanfill, 1990, Stanfill and Thau, 
1991]. to accommodate clusters of processors (or nodes). This facilitates the 
movement of data from disk into the posting array, 

One node consists of thirty-two processors. The problem is that if the posting 
list entries are arbitrarily assigned to nodes based on a document range (i.e., 

Table 6.2. Mapping of Index Terms to Posting List Entries 

Term Start Row Start Column Length 
ti 0 0 2 

h 0 2 2 

ta 1 0 3 
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node one receives postings for documents zero and two, while node two receives 
postings for documents one and three) it is conceivable that one node can have 
substantially more postings than another. To avoid this problem, the nodes 
are partitioned such that each partition contains a range of term identifiers. 
Occasionally, empty space occurs in a partition as there may be no data for 
a given range of terms in a particular range of documents. It can be shown 
that for typical document collections, eighty to ninety percent of the storage is 
used. This partitioned posting list yields improved speedup as the number of 
idle processors is reduced. 

6.2.2 Inverted Index on the CM with Parallel Processing of Query Terms 

The previous algorithm processed one query term at a time. Parallel processing 
was done to update the ranking, but even with optimal processor utilization 
(fully used stripes), the time taken for a query oft terms is on the order of O(t). 
An approach that allows logarithmic time is given in [Asokan et al., 1990]. The 
algorithm consists of the following steps-

Step 1: Partition the set of processors into clusters. Each cluster works on a 
single query term. 

Step 2: Each cluster simultaneously references the index to determine the 
posting list that corresponds to its own cluster. Hence, cluster 1 obtains the 
posting list for term 1, cluster 2 obtains the posting list for term 2, etc. 

Step 3: Use all p processors to merge the r~l posting lists, where n is the 
number of documents. This effectively produces a sorted list of all documents 
that are referenced by the terms in the query. Since the posting list contains 
the weight, a document weight appears as well. Hence, a merged posting list 
might appear as-< Dl,0.5 >< Dl,0.3 >< D2,0.5 >< D2,0.9 >. This 
posting list occurs if document one contains two query terms with weights of 
0.5 and 0.3, respectively, and document two contains two terms with weights 
of 0.5 and 0.9 respectively. 

Step 4: Use all processors to eliminate duplicates from this list and generate 
a total score. After this step, our posting list appears as- < Dl,0.8 >< 
D2, 1.4 > 
Step 5: Sort the posting list again based on the score assigned to each docu­
ment. Our posting list will now appear as- < D2, 1.4 >< DI, 0.8 > 

A modified bitonic sort can be done to merge the lists so the complexity of 
the algorithm is O(log2 t) time. This appears superior to the O(t) time, but 
it should be noted that the algorithm requires O(r~l) processors assigned to 
a cluster to process a single posting list for a given term. If too many terms 
exist, it may be necessary to overlay some of the operations. 
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6.2.3 Parallel Indexing on a Digital Array Processor (DAP) 

As with the Connection Machine, an earlier scanning algorithm that uses term 
signatures on the DAP, was replaced with an indexing algorithm [Reddaway, 
1991, Bond and Reddaway, 1993]. 

The key difference between the DAP algorithm and the CM algorithm is that 
a compressed posting list is used. Additionally, the algorithm running on the 
DAP is claimed to be more efficient as the DAP uses a simpler interconnection 
network (a mesh instead of a hypercube} and the global operations such as 
global maximum are substantially faster. Since no really remote "send" opera­
tions are done, the authors of the DAP approach claim that it is not necessary 
to have a hypercube. 

The compression scheme is based on the observation that large hit lists often 
have the same leading bits. Consider a hit list that contains documents 8, 9, 
10, 11, 12, 13, 14, and 15. The binary values all have a leading bit of 1 (1000, 
1001, 1010, 1011, 1100, 1101, 1110, and 1111}. By allocating one bit as a block 
indicator, the hits within the block can be stored in three bits. Hence, block 1 
would contain the references (000, 001, 010, 011, 100, 101, 110, and 111}. The 
total bits for the representation changes from (8)( 4) = 32 to 1 + (8)(3} = 25. 
Clearly, the key to this representation is the number of hits within a block. 
For the DAP, a 24-bit code (no compression) is used for rare terms (those 
that occur only once in every 50,000 documents). For terms that appear more 
frequently, an 8-bit block code with a 16-bit offset within the block (the block 
holds up to 64K) references entries in the posting list. Finally, for the most 
frequent terms, a 64K document block is treated as 256 separate sub-blocks. 
A key difference in the parallel algorithm for the DAP is that the expansion 
of the posting list into an uncompressed form is done in parallel. Performance 
of the DAP-based system is claimed to be 200 times faster than the previous 
sequential work. Other experiments using 4096 processors indicate the DAP 
610 yields a significant (over one hundred times faster) improvement over a 
VAX 6000 [Manning, 1989, Reddaway, 1991]. 

6.2.4 Partitioning a Parallel Index 

An analytical model for determining the best means of partitioning an inverted 
index in a shared nothing environment is given in [Tomasic and Garcia-Molina, 
1993]. Three approaches were studied. The first, referred to as the system 
approach, partitioned the index based on terms. The entire posting list for 
term a was placed on disk 1, the posting list for term b was placed on disk 2, 
etc. The posting lists were assigned to disks in a round-robin fashion. 

Partitioning based on documents was referred to as the disk strategy. In 
this approach, all posting list entries corresponding to document 1 are placed 
on disk 1, document 2 on disk 2, etc. Documents were assigned to disks in 
a round-robin fashion. Hence, to retrieve an entire posting list for term a, it 
is necessary to retrieve the partial posting lists from each disk for term a and 
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merge them. Although the merge talces more time than the system entry, the 
retrieval can talce place in parallel. 

The host strategy partitioned posting list entries for each document and 
placed them on separate processors. Hence, document 1 is sent to processor 1, 
document 2 to processor 2, etc. 

An analytical model was also developed by fitting a frequency distribution 
to some text (a more realistic approach than blindly following Zipf's Law). The 
results of the analytical simulation were that the host and disk strategy perform 
comparably, but the system strategy does not perform as well. This is because 
the system strategy requires sequential reading of potentially long posting lists 
and transmission of those lists. The system strategy becomes competitive when 
the communication costs were dramatically reduced. 

6.2.5 A Parallel Inverted Index Algorithm on the CM-5 

A more recent algorithm on the CM-5 is described in [Masand and Stanfill, 
1994]. In this work, the documents were distributed to sixty-four different pro­
cessors where a compressed inverted index was built for each of the processors. 
Construction of the inverted index was extremely fast. In twenty minutes, a 
2.1 gigabyte document collection was indexed and the size of the index file was 
only twenty-four percent of the size of the raw text. 

Queries are processed by sending the query to each of the processors and ob­
taining a relevance ranking for each processor. At this point, a global maximum 
is done to determine the highest ranked document among all the processors. 
This document is ranked first. The global maximum is repeated until the num­
ber of documents that are to be retrieved is obtained. 

6.2.6 Computing Boolean Operations on Posting Lists in Parallel 

Another area in which parallel processing is used in conjunction with an in­
verted index is the computation of Boolean operations on two posting lists, 
A and B [Bataineh et al., 1989, Bataineh et al., 1991]. The posting lists are 
partitioned so that the total number of elements in each partition is of equal 
size. The Boolean computation is obtained by computing the Boolean result for 
each partition. There is no need to compare values located in one partition with 
another because the partitions are constructed such that each partition con­
tains values within a specific range and no other partition contains values that 
overlap within that range. This partitioning process can be done in parallel. 

Once the partitions are identified, each one is sent to a separate process­
ing element. Subsequently, each processing element individually computes the 
Boolean result for its values. Finally, the results are obtained and stored on 
disk. The algorithm was originally implemented on the NCUBE/4 and the 
Intel iPSC/2. For posting lists corresponding to term human and English of 
520,316 and 115,831 postings, respectively (the MEDLINE database was used), 
speedups of five for an eight processor NCUBE were observed and a speedup 
of seven for a sixteen processor IPSC were obtained. It was noted that the 
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parallel algorithm began to degrade as the number of processors increased. As 
this happens, the amount of work per processor is reduced and communication 
overhead is increased. 

6.2. 7 Parallel IR As an Application of an RDBMS 

One of the motivating features behind the development of an information re­
trieval engine as an application of the relational database model (see Chapter 
5) was the availability of commercial parallel database implementations. Exe­
cuting the SQL scripts that implement the information retrieval application on 
a parallel relational database engine results in a parallel implementation of an 
information retrieval system. 

In [Grossman et al., 1997], the feasibility of implementing a parallel infor­
mation retrieval application as a parallel relational database application was 
demonstrated. Using a four processor NCR DBC/1012 database engine nearly 
uniform processor loads and disk access rates were observed. From these find­
ings, it was hypothesized that it was possible to develop a scaleable, parallel 
information retrieval system using parallel relational database technology. 

To validate this hypothesis, scaling experiments were conducted using a 
twenty-four processor NCR DBC/1012 database engine [Lundquist et al., 1998]. 
The initial findings were, however, disappointing. Using the same relational 
table definitions described in [Grossman et al., 1997], only a forty percent pro­
cessor efficiency was achieved. Further investigation revealed that the limiting 
factor to scalability was the non-uniform processor load on the DBC/1012. 

The DBC/1012 supports automatic load balancing. The hashing scheme 
used to implement the load balancing is based on the index structure in the 
defined relational schema. In the DBC/1012 architecture used to evenly dis­
tribute the load, a uniformly distributed set of attributes must be the input to 
the hashing function. In the initial implementation, the hashing function was 
based on terms, and thus, was nonuniform. Modifying the input to the hashing 
function to include document identifiers, as well as terms, resulted in a uniform 
distribution of load to the processors. In later experimentation, a balanced 
processor utilization of greater than 92% was demonstrated, and a speedup 
of roughly twenty-two using twenty-four nodes, as compared to a comparable 
uniprocessor implementation, was achieved. 

6.2.8 Summary of Parallel Indexing 

Parallel processing within information retrieval is becoming more applicable as 
the cost of parallel 1/0 is reduced. Previous algorithms had problems with 
memory limitations and expensive communication between processors. Signa­
ture files were popular, but have not been used recently due to their unnec­
essarily high 1/0 demand and their inability to compute more sophisticated 
measures of relevance. Parallel inverted index algorithms are becoming more 
popular, and with improved compression techniques, they are becoming sub­
stantially more economical. 
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6.3 Parallel Implementation of Clustering and Classification 

Recently, parallel clustering and classification implementations were developed 
for the Intel Paragon [Ruocco and Frieder, 1997]. Using a production machine, 
the authors developed a parallel implementation for the single-pass clustering 
and single-link classification algorithms (see Section 3.2). Using the Wall Street 
Journal portion of the TREC document collection, the authors evaluated the 
efficiency of their approach and noted near-linear scalability for sixteen nodes. 

To accurately compare the efficiency of the developed approaches, the results 
derived from both the parallel and serial implementations must be identical. 
Otherwise, an improvement in the efficiency of the algorithm {via parallelism) 
could come at the expense of accuracy. 

The single-pass clustering algorithm is data, presentation, and order depen­
dent. Namely, the order in which the data are presented as input directly 
affects the output produced. Thus, it was necessary to provide mechanisms 
in the parallel implementation that mimicked the order of the presentation of 
the documents as input to the algorithm. Guaranteeing the identical order of 
document presentation resulted in the formation of identical clusters in both 
the serial and parallel implementations. The authors noted that the size of the 
clusters varied dramatically and suggested measures to reduce the cluster size 
disparity. Since the size disparity is a consequence of the single-pass algorithm, 
no modification was made. 

6.4 Summary 

As the volumes of data available on-line continued to grow, information re­
trieval solutions that were able to cope with the ever expanding collections 
were needed. Towards addressing this data growth explosion, parallel solu­
tions were investigated. Initially, parallel information retrieval solutions fo­
cused on hardware-based full-text filtering. Eventually, these hardware solu­
tions gave way to software implementations that roughly mirrored the hardware 
approaches. Recent parallel efforts are mostly algorithmic and architecturally 
independent. 

We began our review by describing parallel text scanning techniques. We 
described two hardware solutions for full-text scanning, the Utah Retrieval 
System and the data parallel data matching system. Both systems supported 
hardware-level filtering to reduce the retrieved document sets. Although they 
did demonstrate significant improvements as compared to software full-text 
scanning, in general, full-text scanning introduces excessive I/0 demands as all 
documents must be scanned. Recently, efforts using the Utah Retrieval System 
did rely on indexing, but given recent advances in parallel system technology, 
in practice, special purpose solutions are quickly declining in popularity. 

Later efforts developed software supported text scanning. To reduce the 1/0 
demands associated with full-text scanning, most efforts focused on signature 
analysis. Early studies relied on SIMD architectures, namely the DAP archi­
tecture and the Connection Machine. Results demonstrated limited scalability 
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in terms of performance. Later signature analysis efforts were evaluated on 
MIMD systems such as the Inmos Transputers with somewhat better results. 

The prohibitive 1/0 demands of text scanning approaches, both full-text and 
signature analysis, resulted in the development of parallel indexing approaches. 
The need for index-based approaches was clearly demonstrated in [Stone, 1987] 
where it was shown that serial computers using indexing techniques sustained 
faster retrieval speeds than parallel engines using a signature analysis approach. 
Parallel indexing approaches on both SIMD and MIMD architectures were de­
veloped, with some efforts resulting in near linear speedup. 

We concluded this chapter with a brief overview of recent parallelizations of 
both clustering and classification algorithms. The approaches described were 
implemented on an Intel Paragon that was in production use. For all the 
algorithms studied, near linear speedup was noted. 

Parallel information retrieval is a relatively unexplored area. The develop­
ment of parallel scalable algorithms that efficiently support the strategies dis­
cussed in Chapter 2 and the utilities listed in Chapter 3 is needed. Currently, 
very few such algorithms are known, and even fewer, have been implemented 
and evaluated in a production environment. 

A different approach to developing parallel information systems was recently 
addressed in [Grossman et al., 1997, Lundquist, 1997, Lundquist et al., 1998]. 
In these efforts, a mapping from information retrieval operators onto parallel 
databases primitives was defined. Parallelism was achieved without requiring 
new parallel algorithms to be developed. Roughly a 22-fold speedup using 
twenty-four nodes was achieved. Such speedup is encouraging, and especially 
so, since it was unnecessary to implement new software. 

Given the diversity of the commercially available parallel systems and the 
vast types of applications that constitute the realm of information retrieval, 
all that is clear is that it is still an open question of how best to support the 
domain of parallel information retrieval. 

6.5 Exercises 

1. Develop an average-case algorithmic analysis for a sequential inverted index 
for a t/-id/vector space query with t terms. Compare this to a parallel linear 
scan of a document collection with p processors. 

2. Develop an algorithm to search an inverted index in parallel with a MIMD 
machine that will perform as well as or better than the sequential algorithm. 
Analyze your algorithm and clearly describe your analysis. 

3. Design a simple parallel document clustering algorithm and analyze its per­
formance. Compare this to a sequential document clustering algorithm. 
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RETRIEVAL 

In the previous chapters, we focused on the use of a single machine to provide 
service to run an information retrieval. In Chapter 6, we discussed the use 
of a single machine with multiple processors to improve performance. Today, 
document collections are often scattered across many different geographical ar­
eas. Distributed Information Retrieval Systems (DIRS) provide access to data 
located in many different geographical areas on many different machines (see 
Figure 7.1). The search engines that exist on the World Wide Web (WWW) 
are examples of distributed information retrieval systems. 

In the early 1980s, it was seen that DIRS would be necessary. First, a 
theoretical model was developed that described some of the key components 
of a DIRS. We describe this model in Section 7.1. Subsequently, in the late 
1980s to early 1990s, specific algorithms to support DIRS were developed. We 
describe these in Section 7.2. Some implementation details of distributed IR 
systems are described in Section 7.3. Finally, in Section 7.4, we describe recent 
work on algorithms to support web-based search engines. Note that we could 
turn this chapter into a survey of web-based tools but that would be outside 
of the scope of this book. Surveys of search engines are found in [Courtois 
et al., 1995, Courtois, 1996, Hodges and Lehmann, 1997, Gudivada et al., 1997]. 
Several popular web engines include-Alta-Vista, CUI W3 Catalog, Excite, 
Harvest, Infoseek, Inktomi, Lycos, Open Text, WebCrawler, WWW Worm, 
and Yahoo! 
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Figure 7.1. Distributed Document Retrieval 
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We first define a model for a centralized information retrieval system and then 
expand that model to include a distributed information retrieval system. 

7.1.1 Centralized Information Retrieval System 

Formally, an information retrieval system is defined as a triple, I = (D, R, 6) 
where D is a document collection, R is the set of queries, and Oj :➔ 2D; is a 
mapping assigning the jth query to a set of relevant documents. 

Many information retrieval systems rely upon a thesaurus, in which a user 
query is expanded, to include synonyms of the keywords to match synonyms 
in a document. Hence, a query that contains the term curtain will also include 
documents containing the term drapery. 

To include the thesaurus in the model, it was proposed in [Turski, 1971] that 
the triple be expanded to a quadruple as-
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I= (T,D,R,o) 

where Tis a set of distinct terms and the relation p CT x T such that p(ti, t2) 

implies that t1 is a synonym of h- Using the synonym relation, it is possible to 
represent documents as a set of descriptors and a set of ascriptors. Consider a 
document D 1 , the set of descriptors d consists of all terms in D1 such that-

■ Each descriptor is unique 

■ No descriptor is a synonym of another descriptor 

An ascriptor is defined as a term that is a synonym of a descriptor. Each 
ascriptor must be synonymous with only one descriptor. Hence, the descriptors 
represent a minimal description of the document. 

In addition to the thesaurus, a generalization relation over the sets of de­
scriptors is defined as 'Y Cd x d where "!(ti, t2 ) implies that t1 is a more general 
term than t2 • Hence, "f(animal,dog) is an example of a valid generalization. 

The generalization relation assumes that it is possible to construct a hierar­
chical knowledge base of all pairs of descriptors. Construction of such knowl­
edge bases has been attempted both automatically and manually [Lenat and 
Guha, 1989), but many terms are difficult to define. Relationships pertaining 
to spatial and temporal substances, ideas, beliefs, etc. tend to be difficult to 
represent in this fashion. However, this model does not discuss how to con­
struct such a knowledge base, only some interesting properties that occur if 
one could be constructed. 

The motivation behind the use of a thesaurus is to simplify the description 
of a document to only those terms that are not synonymous with one another. 
The idea being that additional synonyms do not add to the semantic value of 
the document. The generalization relation is used to allow for the processing 
of a query that states "List all animals" to return documents that include 
information about dogs, cats, etc. even though the term dog or cat does not 
appear in the document. 

The generalization can then be used to define a partial ordering of docu­
ments. Let the partial ordering be denoted by ~ and let t(di) indicate the list 
of descriptors for document di. Partial ordering, ~' is defined as-

t(d1) ~ t(d2) ¢:> (Vt' E t(d1))(3t" E t(d2))("/(t',t")) 

Hence, a document d1 whose descriptors are all generalizations of the de­
scriptors found in d2 will have the ordering d1 ~ d-i. For example, a document 
with the terms animal and person will precede a document with terms dog and 
John. Note that this is a partial ordering because two documents with terms 
that have no relationship between any pairs of terms will be unordered. 

To be inclusive, the documents that correspond to a general query q1 must 
include (be a superset of) all documents that correspond to the documents that 
correspond to a more specific query q2 , where q1 ~ q2 • Formally-

Page 214 of 262



204 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS 

The model described here was proven to be inclusive in [Turski, 1971]. This 
means that if two queries, q1 and q2, are presented to a system such that q1 is 
more general than q2 , it is not necessary to retrieve from the entire document 
collection for each query. It is only necessary to obtain the answer set for q1 , 

o(qi), and then iteratively search o(q1) to obtain the o(~). 

7.1.2 Distributed Information Retrieval System 

The centralized information retrieval system can be partitioned into n local 
information retrieval systems S1 ,S2 , ••• ,Sn (Mazur, 1984]. Each system S1 
is of the form: S1 = (T1,D1,R1,01), where Ti is the thesaurus; D; is the 
document collection; R1 the set of queries; and o1 : R1 ➔ 2D; maps the queries 
to documents. 

By taking the union of the local sites, it is possible to define the distributed 
information retrieval system as-

S = (T,D,R,o) 

where-

n 

T=LJT1 
j=l 

This states that the global thesaurus can be reconstructed from the local the­
sauri, and the queries at the sites j will only include descriptors at site j. This 
is done so that the terms found in the query that are not descriptors will not 
retrieve any documents. 

n 

D = LJ DJ 
j=l 

The document collection, D, can be constructed by combining the document 
collection at each site. 

n 

R ::> LJ R;, j;=j n(RJ x R1) 
j=l 

The queries can be obtained by combining the queries at each local site. The 
partial ordering defined at site j will only pertain to queries at site j. 

(Vr E R)(o(r) = d: d ED Ar j t(d)) 
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For each query in the system, the document collection for that query contains 
documents in the collection where the documents are at least as specific as the 
query. 

The hierarchy represented by 'Y is partitioned among the different sites. A 
query sent to the originating site would be sent to each local site and a local 
query would be performed. The local responses are sent to the originating site 
where they are combined into a final result set. The model allows for this 
methodology if the local sites satisfy the criteria of being a subsystem of the 
information retrieval system. 

S1 = (T1, D1, R1, 81) is a subsystem of S2 = (T2, D2, R2, 82) if: 

The thesaurus of T1 is a superset of T2 • 

The document collection at site S1 contains the collection D2 • 

The queries at site S1 contain those found in S2 . 

The document collection returned by queries in S1 will include all documents 
returned by queries in S2. The following example illustrates that an arbitrary 
partition of a hierarchy may not yield valid subsystems. 
Consider the people hierarchy-

"f(people, Harold), "f(people, Herbert), "f(people, Mary) 

and the second animal hierarchy-

"/( animal, cat), 'Y(animal,dog), 'Y(cat,black-cat), 
"((cat, cheshire), "f(dog, doberman), 
"f(dog, poodle) 

Assume that the hierarchy is split into sites S1 and S2 • The hierarchy at S1 

is-
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"((people, Harold), "((people, Mary) 
"((animal, cat), 'Y(animal,dog), "((dog, doberman), "f(dog, poodle) 

The hierarchy at S2 is-

"f(people, Herbert), "((people, Harold) 
"((animal, cat), "((animal, doberman), "((cat, cheshire), "((cat, black-cat) 

Consider a set of documents with the following descriptors­

D1 = (Mary, Harold, Herbert) 
D2 = (Herbert, dog) 
Da = (people, dog) 
D4 = (Mary, cheshire) 
D5 = (Mary, dog) 
D6 = (Herbert, black-cat, doberman) 
D1 = (Herbert, doberman) 

A query of the most general terms (people, animal) should return all documents 
2 through 7 (document 1 contains no animals and the query is effectively a 
Boolean AND). However, the hierarchy given above as S1 will only retrieve 
documents D3 and D 5 , and S2 will only retrieve documents D 6 and D 7 • Hence, 
documents D2 and D4 are missing from the final result if the local results sets 
are simply concatenated. Since, the document collections cannot simply be 
concatenated, the information retrieval systems at sites S1 and S2 fail to meet 
the necessary criterion to establish a subsystem. 

In practical applications, there is another problem with the use of a general­
izion hierarchy. Not only are they hard to construct, but also it is non-trivial to 
partition them. Partitioning of the hierarchy to the different sites may have re­
sult in a valid subsystem. This distributed model has been expanded to include 
weighted keywords for use with relevance (Mazur, 1988]. 

7 .2 Replication in Distributed IR Systems 

Distributed structured DBMS algorithms were first developed in the early 
1980s. These algorithms, such as the two-phase commit (Elmasri and Na­
vathe, 1994, Date, 1994, Ceri and Pelagatti, 1984, Oszu and Valduriez, 1991], 
support updates to multiple sites in a single transaction. Since the premise be­
hind information retrieval systems is that updates occur relatively infrequently, 
replication algorithms specific to information retrieval systems have been de­
veloped. We first describe snapshots (a technique used in DBMS replication), 
and then describe information retrieval specific algorithms that are descended 
from snapshots. The first, quasi-copies, replicates data based on various con­
ditions. The second, a more recent algorithm by Obraczka, was developed for 
web-based replication (Obraczka et al., 1996]. 
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7.2.1 Snapshots 

The fundamental differences in a distributed information retrieval system and 
a distributed DBMS are-

■ Modifications to existing data occur infrequently 

■ Reads occur far more frequently than writes 

Replication of data from a remote site to a local site is commonly done when 
users at the local site access the same data repeatedly. Instead of paying the 
expensive communication cost, a copy of the data is made at the local site. 
Users then read the data from the local site without any communication cost. 
However, writing data requires the distributed DBMS to invoke an algorithm 
that updates all copies of the replicated data. Since local writes to the data 
dramatically complicate the use of replicated data, it has been proposed that 
only a read of the replicated data should be permitted. 

Users may read the data at a local site, but all updates to the data are made 
to the site from which the data was originally copied. Periodically, after some 
time t, the local data is refreshed from the originating site. Since the data 
is refreshed at a pre-defined time, and is not refreshed at the local site every 
time the original values are updated, it is essentially a snapshot of the original 
data at time t. Snapshots, and a variety of algorithms to maintain them, have 
been proposed to provide support for distributed DBMS in which applications 
typically do more reads than writes. 

7.2.2 Quasi-copies 

Quasi-copies is an extension of snapshots specifically developed for distributed 
information retrieval systems. The basic idea is to address user requirements 
specific to a distributed information retrieval system. Some reasons for these 
different requirements are-

■ Public access to information retrieval systems is becoming much more com­
mon than access to distributed DBMS. Almost 125,000 of Dow Jones 160,000 
customers have access to a personal computer (PC). These PCs can be used 
to locally store copies of the centralized document collection. 

■ Typically, inserts to a DBMS are small (i.e., add employee). Granted there 
are exceptions for scientific applications, but these do not commonly use 
traditional DBMS. 

■ Information retrieval systems often have a higher communication cost. The 
users of the Dow Jones system access the data over telephone lines. Hence, 
communication costs dramatically exceed disk I/0. 

Essentially, a quasi-copy is a copy of data item x that is only updated based 
on consistency criteria specified by the user. Instead of a fixed time t as in 
snapshots-temporal windows, version conditions, and arithmetic conditions 
are defined. 
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7.2.3 Temporal Windows 

Let x(t) denote the value of data item x at time t. Let the quasi-copy of x 
be denoted by x'. A temporal window is defined such that x' will always be 
no more than a temporal units younger than x. A snapshot representation 
assumes that the data are refreshed after a units of time. Here, the temporal 
window is not dictated as precisely to the system. As long as no item x' is not 
older than a, this constraint is satisfied. Should the system have the necessary 
resources, it is acceptable to refresh x' prior to the deadline imposed by a. 
Formally-

(Vt ~ 0), 3k, (0 ~ k ~ a) A (x'(t) = x(t - k)) 

7.2.4 Version Conditions 

As data item x is updated, x' is no longer current. Instead of determining when 
to refresh x based on time, the number of updates to x is used. A threshold (3 
is assigned so that no more than (3 updates to x occur before x' is refreshed. 
Let v(x) indicate the version of x. After two updates, v(x) is equal to two. Let 
x(to) indicate the initial values of x. Formally-

Vt~ 0, 3k, 0 ~ k ~ (3 A v(x(t)) = v(x(to)) + k 

7.2.5 Arithmetic Conditions 

The final condition allows the user to check on the magnitude of an update to 
data item x before a refresh of x' is done. Data item x' is updated if an update 
to x results in the new value of x exceeding a threshold e. Formally-

Vt~ 0, lx'(t) - x(t)I ~ e 

This constraint determines when a copy of x' is refreshed by the current value 
of x. Once this condition is defined, it is necessary to verify its correctness. It 
is possible that an update to x could occur, resulting in the need to refresh x'. 
However, if the central site fails after x is updated, but prior to a send to x', 
it is possible the consistency constraints will not be satisfied. Time continues 
to pass, but the value of x' is still not updated. To ensure correctness, it is 
necessary to use a two-phased commit (2PC) protocol to ensure that if x and 
x' are both updated, they are updated within a single transaction. 

Since 2PC requires resources to be held until the transaction completes, 
performance is improved if it is possible to relax the requirement that the 
constraints must always be satisfied. Instead, the originating site guarantees 
that a message is sent to all sites every o seconds. If no refresh is required for 
a given site and o seconds have elapsed, a null message is sent. Upon receipt 
of the null message, the local site sets a flag AVAILABLE to true, indicating 
that the originating site is available (as indicated by the fact that it is sending 
messages). If o seconds have elapsed and the receiving site has not received 
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a message from the originating site the AVAILABLE flag is set to false. The 
application at the local site then notifies users that constraints may not be 
satisfied because of a site failure. 

An analytical performance model for quasi-copies is described in [Alonso 
et al., 1990]. It is intuitive to expect that as more data are stored locally, 
communication is reduced and performance improves. The cost of checking 
constraints is also considered. The model verifies that if too many constraints 
result in frequent communications, any gains in performance due to local copies 
are lost. However, for systems where infrequent updates occur performance is 
improved. This verifies the assumption that the cost of checking numerous 
constraints at a central site is far less than the cost of sending every update to 
the value x at the originating site to all sites that have a copy of x'. 

7.2.6 Massive Replication of Internet Archives 

A recent algorithm designed to support replication of internet archives was 
given in [Obraczka et al., 1996]. Essentially, the algorithm estimates topological 
information between source nodes, replicas, and groups replicates based on 
their physical topology. Those that are deemed closest (lowest communication 
cost based on available bandwidth and propagation delay) are automatically 
grouped together. The source node then has to replicate only to one replica in 
a group and it can then be later propagated to each group member. 

Individual replicas request data from a source member. Whenever a replica is 
transferred, the destination sends a message to members in its group indicating 
that it has received a replica that has a given timestamp. When a site receives 
this message, it checks to see if its current replica is out of date, and if so it 
requests a copy. Since each replica requests data, and is only sent data upon its 
request. It is not possible for a site to receive data from more than one place 
at a given time. Overhead associated with this approach is relatively small 
and is primarily based on the frequency with which communication costs are 
estimated. The key to this approach is that replicas are oriented automatically 
(some prior work required manual administration) and the heuristic constantly 
tries to send data to sites that have a low communication cost. 

7.3 Implementation Issues of a Distributed IR System 

A prototype used to investigate implementation details of a distributed infor­
mation retrieval system is described in [Martin et al., 1990]. 

7.3.1 Client/Server Architecture 

Macleod developed a hybrid between an actual implementation and a simulator 
[Macleod et al., 1987]. Information retrieval system simulators were used at lo­
cal sites, but the communications between sites was actually implemented using 
remote operation calls, a communications protocol, and a directory system. 
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7.3.2 Remote Operation Calls 

Remote operation calls (ROCs) make it possible for a node at one site to 
invoke a procedure located at another site. The ROC may be synchronous or 
asynchronous. Additionally, a ROC may be sent to one site (unicast) or sent to 
multiple sites (multicast) whereby the code requested would be executed at all 
receiving sites, but the sending site would only use results obtained by the first 
site to receive the ROC. A unicast ROC is directed at a specific site or it may 
be undirected. An undirected ROC is sent to a site that contains the requested 
procedure according to some previously defined policy indicating the order in 
which sites are to be searched for the appropriate procedure. Essentially, ROCs 
are extensions of commonly used remote procedure calls (RPCs) [Birrell and 
Nelson, 1984]. A RPC is an undirected, unicast, synchronous ROC. 

7.3.3 Directory Server 

A directory server is used to store metadata about objects in the distributed 
database, and the sites with which that data are located. ROCs are provided 
to add and delete directory entries. To protect against a failure of a directory 
server, the server itself may be replicated. Searching the directory server is 
done via a ROC. 

7.3.4 System Performance 

System performance was measured for various data distribution strategies. A 
network consisting of only four sites was tested. The distributed data that were 
in the following form-

■ Dictionary-contains all distinct words in the document collection 

■ Inverted file-list of dodd's in which the word appears 

■ Text Index-structured data and a pointer to all text 

■ Text File-copy of the free text 

The following data distribution strategies were tested-

1. Place all files (inverted index, text, directory) on a single node. This is 
equivalent to a centralized system. 

2. Limit the dictionary, inverted file, text index, and text file to one node each. 
Replicate the inverted index file to one additional node. Hence, the network 
contains two copies of the inverted index. 

3. Same as strategy number two, but the text index (smallest of all files) is 
replicated to every node. 

4. The text file is partitioned across three nodes. The intent of this is to place 
local documents at each site on each of these nodes. The text file remains 
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at all nodes, and the text index file and the index file are replicated to two 
nodes. 

The performance of strategy one was even worse than a centralized system 
because of overhead incurred by providing support for ROC's. Strategies in­
volving replicated data (two, three, and four) showed improved performance for 
higher workloads in precisely the expected areas. It should be noted that the 
workload consisted solely of read operations. No writes to the database were 
attempted, so it is difficult to ensure that replicated copies would continue to 
provide acceptable performance. Since the premise of an information retrieval 
system is that reads are far more frequent, this study verifies the intuitive belief 
that replicated data dramatically reduce the communication cost required to 
access the data remotely. 

7.3.5 Caching 

Data caching was also investigated for this system [Martin et al., 1990, Martin 
and Russell, 1991]. However, data were assumed to be primarily read-only 
so quasi-copies were not used. Instead, algorithms that pre-fetched data were 
used. When a local site requests a block and it is not in the local cache, a 
request for the block and the next sequential block is made. Pre-fetching was 
tested both during a transaction request and during user wait time. While a 
user waited, disk blocks close to the most recently fetched block are obtained 
from the server. The performance simulation verified that this strategy results 
in improvements over LRU (Least Recently Used} strategies because of the 
"sequentiality" of the workload. 

7.3.6 Efficient Document Allocation 

In an effort to improve the efficiency of document processing in distributed 
information retrieval systems, a genetic algorithm for document distribution 
across multiple execution sites was presented in (Frieder and Siegelmann, 1991]. 
Given a clustered document collection, the authors developed a genetic algo­
rithm with a modified crossover procedure that allocated documents onto a 
distributed information retrieval environment subject to two constraints. 

The first constraint focused on a uniform processing load. Given a simplify­
ing uniform document access assumption (i.e., all documents are, on average, 
equally relevant to the issued queries), the authors developed an allocation 
algorithm that evenly balanced the access to the documents. This was ac­
complished by guaranteeing that the number of documents allocated to any 
pair of execution sites did not differ by more than one document. ff indeed 
the access to all documents was uniform, the derived allocation would provide 
a somewhat balanced processing load. Given "hotspots" in document access, 
however, non-uniformity in processing loads was likely to occur. However, load 
balancing was achieved to a degree. 

The second constraint imposed was that closely related documents (assumed 
to be those documents found in the same cluster) were mapped close (on the 
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same or neighboring nodes whenever possible} to each other. This was achieved 
by developing a cost function based on document location proximity that fa­
vored those mappings where closely related documents were "near" each other. 

In spite of the uniform document access assumption, the greatest limitation 
with this approach was the lengthy computation times commonly experienced 
when using genetic algorithm-based solutions. Given the processing time con­
straints, the experimentation focused on only small collections. Nonetheless, 
the derived mappings were significantly better in terms of the specified cost 
functions than those mappings derived by other more conventional approaches 
such as greedy and random algorithms. In 1994, a follow-on study [Park et al., 
1994], used the parallelization of this approach to support an enlarged docu­
ment collection. 

In parallelizing genetic algorithms, a key concern is the mating procedure. 
In serial implementations, genetic algorithms rely on global mating in the 
crossover phase. The global mating principle assumes that any member in the 
population can mate with any other population member with equal probabil­
ity. Supporting global mating in distributed memory parallel implementations 
results in significant communication overhead when mating a pair of members 
that reside on differing execution sites. 

To reduce the overhead, the implementation in [Park et al., 1994] uses pre­
dominantly local mating (an island model). In local mating, only members 
that reside on the same execution site are routinely mated. Mating across sites 
occurs infrequently. The greater the cross-site mating, the closer the parallel 
implementation resembles the serial implementation. Given the probabilistic 
nature of genetic algorithms, it is difficult to compare the average quality of 
the allocations derived by the serial and parallel implementations. In terms of 
scalability, near optimal speedup was achieved. 

7.4 Improving Performance of Web-based IR Systems 

Using a web server to implement an information retrieval system does not 
dramatically vary the types of algorithms that might be used. For a single 
machine, all of the algorithms given in Chapter 4 are relevant. Compression of 
the inverted index is the same, partial relevance ranking is the same, etc. How­
ever, there has been some work at improving the performance of information 
retrieval systems that are specific to the use of web services. 

Some work is being done to apply web server performance improvements to 
the development of distributed information retrieval systems [Liu et al., 1996]. 
In those cases, the use of pre-started processes, or cliettes, avoids the start-up 
costs of starting processes from a typical common gateway interface (CGI). 
This was used to implement a prototype system that provides search access to 
eight library collections. 

It is reasonable to improve accuracy' of a web search engine by sending the 
request to a variety of different search engines and merging the results. This has 
been done by several web services and the issues surrounding fusion of results 
have been the part of a side track of the TREC since TREC-4. More recent 
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work following this thread can be observed in the CYBERosetta prototype 
system where a request is sent to multiple search servers and the results are 
merged into a single result [Desantis et al., 1997]. 

Lee describes several heuristics developed to merge search results that are 
obtained from multiple independent search engines [Lee, 1997]. His findings 
demonstrate that using his CombMNZ fusion heuristic results in higher re­
trieval accuracy than any of the individual search engines used. Aloui, et. al. 
expanded these findings and concluded that to best capitalize on result fusion 
techniques, as individual input search engines greatly differ in their processing 
strategies and utilities (Alaoui et al., 1998]. Most current web servers use a 
very detailed, full-text index, but if the Web continues to grow it may not be 
practical to use a single index. 

Early work in the area of web-based distributed query processing was done 
by [Duda and Sheldon, 1994] in which a system that used the Wide Area 
Information Service (WAIS) only sent queries to certain servers based on an 
initial search of the content of those servers. The content was described by some 
specific fields in the documents that exist on each server such as headline of a 
news article or subject of an e-mail message. The use of a content index is the 
middle ground between sending the request to all of the servers, or providing a 
very detailed full-text index, and sending the request to only those servers that 
match the index. 

More recent work done for the Glossary-of-Servers Server (GlOSS) builds a 
server that estimates the best server for a given query, based on the vector-space 
model (Gravano and Garcia-Molina, 1995]. The query vector is matched with 
a vector that characterizes each individual server. The top n servers are then 
ranked and searched. Several means of characterizing a server are explored. 
The simplest is to sum the t/-id/ weights of each term on a given server and 
normalize based on the number of documents on the server. This yields a 
centroid vector for each server. A tf-id/ vector space coefficient ( as described in 
Section 2.1) can then be used to rank the servers for a given query. Different 
similarity coefficient thresholds at which a server is considered a possible source 
and assumptions used to estimate which databases are likely to contain all of 
the terms in the query are also used. It is estimated that the index on the 
GlOSS server is deemed to be only two percent of the size of a full-text index. 

Query processing using a full-text index on a web server can be done with 
any of the combination of strategies and utilities described in Chapters 2 and 3. 
However, an additional strategy based on the use of hypertext links found on 
web pages has recently been investigated [Yuwono and Lee, 1996]. In this work, 
a strategy referred to as vector spreading activation was investigated in which 
documents were ranked based on a match with a term in a simple query, then 
those documents that contained links to the original set of documents were also 
assumed to contain the query term. The weight of the documents was scaled 
to be less than the weight of the documents that actually contained the term. 
Experiments with scaling factors O and 0.5, and with increments of 0.1, showed 
that 0.2, was the best scaling factor. Vector spreading activation was shown 
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to be slightly better than t/-id/ when precision recall was measured for a small 
test collection of only 2,393 web pages. Additionally, this system did not use a 
full-text index. The indexer uses only HTML tokens such as terms in boldface 
or italics, the first sentence of every list item, titles, all-level headings, and 
anchor hypertexts. 

7.5 Web Search Engines 

No section on distributed information retrieval would be complete without some 
mention of web search engines. Search tools that access web pages on the 
Internet are prime examples of the implementation of many of the algorithms 
and heuristics discussed in this book. These systems are, by nature, distributed 
in that they access data stored on web servers around the world. Most of these 
systems have a centralized index, but all of them store pointers in the form of 
hypertext links to various web servers. 

These systems service millions of user queries a day, and all of them have 
an inverted index on the order of 50 to 200 GB. We do not describe each 
search engine in vast detail because search engines change very frequently (some 
vendors produce new releases or publish fixes in a week). Instead, we focus on 
the distributed aspects of these systems and provide a general guide to the 
type of effectiveness algorithms that they employ. In most cases, effectiveness 
algorithms are somewhat crude because efficiency is paramount to the success 
of these systems. 

7.5.1 Excite 

7,5,1.1 Effectiveness. Excite uses the vector space model for relevance 
ranking [Spencer et al., 1998]. Term weights are computed as the ./(ti) x id/, 
a compromise between using the t/ and the log(t/). The Singha! document 
length normalization, as described in Section 2.1.2, is used as the basis for how 
documents are normalized. 

An extended Boolean operator as we have described in Section 2.4 is used 
to ensure these documents that contain more matching terms in the query are 
ranked higher than those which only have a single term in the query. This 
operator, which is referred to as a coordination level, is based on work done in 
[Rose and Stevens, 1996]. 

Additional document length normalization is done to adjust the ranking such 
that very short documents are given a relatively low weight. The premise is 
that very long documents and very short documents should be adjusted for 
size. 

Other, more web-specific, adjustments are made to document ranking. The 
number of hypertext links coming into or emanating from a document is also 
considered in the ranking. A document that is heavily linked is considered 
more likely to be relevant to a query than a document that has very few links. 
Additionally, a manually built hierarchy of web sites is used to adjust the 
ranking. This hierarchy is used for users who wish to browse the web, but who 
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do not have a specific query in mind. In addition to browsing, the hierarchy is 
used for ranking because a document that appears in the hierarchy is considered 
more likely to be relevant. The premise is that there are "good" sites in the 
hierarchy. 

Excite also takes care to avoid duplicate documents. At present, a simple 
hash of each document is done and matched against existing documents. If 
the hash value (MD5 hashing is used) matches, a duplicate is identified. This 
requires a perfect match of the two documents. Other duplicate document 
detection algorithms exist in which duplicates are identified by the multiple 
hashing of overlapping shingles. Shingles are segments of text that are chosen 
from across several portions of a document [Broder et al., 1997). These will be 
incorporated into future versions of Excite. 

Manual relevance feedback, as described in Section 3.1, is used to assist users 
in finding documents in subsequent search iterations. After an initial search, 
users can choose an entry in the result set and indicate that they wish to 
invoke the "more like this" function. This function is implemented by treating 
the selected document as a query and re-running the initial query. 

To additionally help users, a suggested term list is identified after a user 
query. This includes terms that a user may wish to add to the query in sub­
seuqent iterations. These terms are identified from a sparse term-term co­
occurence matrix as described in Section 3.6.1.1. At present, the matrix con­
tains 100,000 terms, and an entry in the matrix is made for a given term-term 
pair when the term weight of each term exceeds a particular threshold. The 
term-term matrix must fit into memory to provide acceptable run-time. As of 
May 1998, the term matrix resides within one gigabyte of memory. 

Much work is done on parsing (see Section 3.8). Stemming is not imple­
mented, and a small list of 199 stop words is used. Special handling of special 
characters is used to treat terms such as AT&T and F-16 as a single term. 
Also, e-mail addresses are maintained as a single term. 

7.5.1.2 Efficiency and Distributed Query Processing. The Excite in­
verted index is compressed using techniques similar to those described in Sec­
tion 4.1.2. At present, a 50 GB index is used to access 50 million documents. 
The performance goal for all queries is to use only a single CPU second per 
query. Currently, ten million queries are processed in a typical day. 

Excite also has a proprietary algorithm that is used to synchronize an id/ 
across different sites. At present, this algorithm is patent pending so details 
can not be disclosed. 

7.5.2 Infoseek 

7.5.2.1 Effectiveness. Infoseek uses an inference network for relevance 
ranking, but the weights are implemented using simple tf-id/ weights [Kirsch, 
1997a]. The ranking is analagous to that done by the vector space model (see 
Section 2.1 and 2.3 for relevant background). 
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Relevance feedback (see Section 3.1) will soon be implemented by allowing 
users to choose a document in the result set and ask for more documents like 
the one selected. Terms from the selected document will be chosen and used 
as the original query. 

A precomputed "directory" is obtained using document clustering. Users 
navigate through the directory following hypertext links instead of issuing an 
ad hoc query. The directory is formed by partitioning documents into domains 
via clustering (see Section 3.2). A cluster is generated by identifying training 
documents that belong to a particular cluster and computing a centroid for the 
cluster. Documents are then compared to the cluster centroids and are added 
to the cluster with the closest centroid. Clusters are then randomly checked 
for accuracy, and documents that do not fit in a cluster are eliminated. 

Another form of document clustering is used to improve the final result set. 
This result list is modified such that documents that occur in a single web site 
are clustered into a single result. 

Efficiency concerns drive most of these design decisions. The tf-idf weight is 
relatively simple and quick to implement. Relevance feedback with only a single 
document is certainly less expensive than feedback from the top n documents. 
Finally, document clustering, as described here, can be done in O(nk) time 
where n is the number of documents and k is the number of clusters. A multiple 
pass DOC-DOC similarity matrix is too computationally expensive. 

7.5.2.2 Distributed Processing. lnfoseek has a patent on a distributed 
processing algorithm [Kirsch, 1997b]. The algorithm spreads the document 
collection across different either homogeneous or heterogenous search engines. 
All that is required by each engine is the ability to search for a set of query 
terms and identify the documents that contain the query terms. A query is then 
submitted to each site. It is then run independently on each site and a list of 
documents is returned along with the number of occurences of each query term 
(ti) inside of each document. The document frequency, df, is also identified 
for each site. The responses are all sent to the node that originated the query. 
A global idf is then be computed. Given that the tf for each document is sent 
from each site, a tf-idf weight may be computed, and the final result is very 
similar to one in which an entirely centralized index is used. Note that the 
result will vary if the top x documents are chosen from each site. A document 
ranked in the x + 1 position may be eliminated from a site when in a centralized 
collection, as it would have been ranked higher than any other site. 

This algorithm avoids the problem that a term may have a local id/ very 
different from the global idf. A site devoted to baseball might have the phrase 
pine tar many more times than a typical site. A query about baseball incidents 
with pine tar might rank documents at the baseball site very low if pine tar 
has a low local id/ when, in reality, the global id/ of pine tar is high and these 
documents should in fact be ranked high. Returning the term frequencies to 
the originating site also avoids the need to update the local id/ at each site 
whenever a new document is added to a single site. The df for the one site 
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must be updated, but all other df's may remain the same. The algorithm 
guarantees that the same document in two different collections, which are each 
maintained by separate search engines, will still be identically scored in the 
final result (after the results from each search engine are merged). 

The distributed algorithm does not describe the exact communication mech­
anism between sites. One proposal given in [Gravano et al., 1997] standardizes 
the exact data structures that should contain the document identfiers, term 
frequencies, and document frequencies required to share data between differ­
ent inverted indexes. In this proposal, the sites can have very different search 
algorithms, but they send the basic values back to the originating site in a 
straightforward fashion. 

7.6 Summary 

Data are created, modified, summarized, characterized, and categorized world­
wide. Institutions now consider data as one of their key assets. It is no longer 
possible to centralize data into one repository. Data are best managed where 
they are located [Shuey et al., 1997] and are an essential entity of distributed 
systems [Shuey, 1986]. Therefore, the information retrieval world must embrace 
this reality. In this chapter, we reviewed past and present efforts in the realm 
of distributed information retrieval. 

We began by presenting a theoretical foundation for the representation and 
analysis of centralized information retrieval systems. Having presented a model 
for centralized information retrieval systems, we partitioned our global model 
into local partitions whose union is equivalent to the original centralized model. 
Properties of distributed information systems, such as replication, were defined. 
We highlighted issues such as distributed snapshots, quasi-copies, temporal win­
dows, and versioning-culminating with a commentary on massive replication 
of data archives. 

After presenting the theoretical underpinnings of distributed information 
retrieval systems, we addressed a diversity of associated implementation is­
sues. Predominant in our discussion was overall system run-time performance. 
Towards improving run-time performance, caching strategies, system architec­
tures, and data distribution schemes were discussed. 

We concluded our discussion of distributed information retrieval with what 
can be argued as one of the key technological impacts on today's society, namely, 
the World Wide Web. Our goal was not to review in detail any of the techno­
logical, societal, or commercial aspects of the World Wide Web, but to simply 
place the Web in an appropriate context within the field of information re­
trieval. 

In our daily existence, it is virtually impossible to survive without being 
exposed to some aspect of the World Wide Web. Advertisements, news items, 
stock quotes, entertainment information, and propaganda of various sorts are 
continuously available to each of us on the Web. Newspaper articles and tele­
vision shows refer to their World Wide Web addresses. Thus, even those indi­
viduals who are not using computer technology as part of their daily activities 
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are still bombarded with the Web. The true societal question is-are we better 
off given this situation? 

Clearly our intent in writing this book was not to necessarily motivate so­
cietal change, nor was it to address society's concerns. A critical concern of 
the Web that we must, however address, lest we be negligent, is the issue of 
data reliability. Data content on the Web is currently unconstrained, and with 
the exception of one's own level of self control, no refereeing for validity is per­
formed on the data. By data content we are not addressing the issue of the 
moral nature of the information available on-line nor are we referring to cen­
sorship concerns, although these are emotionally charged and relevant issues. 
What we are referring to are the issues of technical correctness of the material 
and the permanence of the access to it. 

Routinely, data are posted to the Web and indexes are set to these items. 
Periodically, after some duration of time, the posted items are removed and 
are no longer publicly available. Unfortunately, the indexes to these items are 
rarely deleted and both local and remote pointers continue to reference the 
now non-existent items. Thus, even though the original item was relevant to 
a user's query, and hence the index information related to it is likely to have 
potentially affected the relevance ranking process-the item itself is no longer 
available. This can result in users that would have been satisfied with having 
somewhat less relevant but still available items, now retrieving only pointers to 
non-existing references. 

If one is fortunate and does retrieve relevant data, a key concern is the tech­
nical correctness of the data. It is clear that even in the past many articles that 
appeared in press were technologically flawed. This has always been of concern. 
However, today, with the broad availability of on-line electronic publishing, the 
degree of quality assurance has greatly decreased. Web data are typically not 
verified for correctness prior to publication. Thus, as long as the user is aware 
of the level of quality assurance of the data retrieved from the Web, the Web 
is a great resource. Remember, regardless of what is listed on anyone's home 
page, the world is still round. 

A more recent phenomenon of concern to Web users is the notion of "spoofing 
the web search engines." Some users are now including key words and phrases as 
part of their documents to intentionally mislead Web search engines. Currently, 
the search engine community is focusing on developing heuristics to combat this 
situation, but no one hundred percent solutions exist. 

Clearly the realm of distributed information retrieval is greatly impacting our 
lives. What solutions will solve the existing bandwidth overload, improve the 
technical accuracy of the on-line information both in terms of items available 
and retrieved, and still coexist with moral concerns is a question for which 
many books can be written. Such books can be both technical and societal in 
nature, and hence, we leave it for others to explore. 
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7. 7 Exercises 

1. Develop a distributed m algorithm that stores equally sized portions of 
an inverted index on separate machines. Compute the communications 
overhead required by your approach. 

2. Describe the effects of document updates on a distributed m algorithm 
described in this chapter. 

3. Recently Web search engines are facing the problem that developers of Web 
pages are adding terms that are commonly queried just to draw attention to 
their page. A user might add Disneyland to a page about kitchen plumbing. 
Develop a heuristic to circumvent this problem-talk about how your ap­
proach will avoid a reduction in effectiveness for a "normal" or untampered 
document collection. 
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8 THE TEXT RETRIEVAL 
CONFERENCE (TREC) 

We have already described many different search and retrieval approaches, most 
of which primarily focused on improving the accuracy of the information re­
trieval engines. Unlike other search and retrieval domains, e.g., traditional 
relational databases, the accuracy of retrieval is not constant. That is, in the 
traditional relational database domain all techniques result in perfect accuracy. 
Hence, the main concern, in terms of performance evaluation, is the overall 
system throughput and the individual query performance. 

In the information retrieval domain, accuracy varies as the associated preci­
sion and recall measures of all engines are both approach and data dependent. 
Thus, all information retrieval performance evaluation must account for both 
the resulting accuracy, as well as the associated processing times. In both 
database and IR systems performance evaluation, commonly referred to as 
benchmarking, must also take storage overhead into account. Given the contin­
uing improvements in storage technology coupled with the ongoing reduction 
in their costs, relatively little attention is focused on storage overhead reduc­
tion as compared to improving computational time--and where appropriate, 
accuracy demands. 

To assess the performance of database systems, many benchmarks were de­
veloped. Many of these benchmarks are in commercial use. Examples of such 
benchmarks include the TPC family of benchmarks [Kohler, 1993]. Until rel­
atively recently, little emphasis was placed on the development of benchmarks 
for uniform evaluation of the performance of information retrieval approaches 
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or engines. The datasets used in the evaluation of information retrieval sys­
tems were small in size, often on the order of megabytes, and the mix of queries 
studied were limited in number, domain focus, and complexity. 

In 1985, Blair and Maron [Blair and Maron, 1985] authored a seminal pa­
per that demonstrated what was suspected earlier. Performance measurements 
obtained using small datasets were not indicative for larger document collec­
tions. In the early 1990s, the United States National Institute of Standards 
and Technology (NIST), using the text collection created by the United States 
Defense Advanced Research Project Agency (DARPA), initiated a conference 
to support the collaboration and technology transfer between academia, in­
dustry, and government in the area of text retrieval. The conference, named 
the Text REtrieval Conference (TREC) aims to improve evaluation methods 
and measures in the information retrieval domain by increasing the research 
in information retrieval using relatively large test collections on a variety of 
datasets. 

TREC is an annual event with November 1998 scheduled as the seventh 
conference in the series. In its 1998 incarnation, TREC consists of a primary 
task: ad hoc retrieval of English. Numerous sub-tasks include foreign language 
and cross language tracks, speech processing, high-precision interactive filter­
ing, and large corpus tracks. We focus our discussion on the mainstream task 
only since it occurs continuously every year. 

Conference participation procedures are as follows. In early January, partic­
ipation proposals are due at NIST. After evaluation, accepted participants are 
required to sign several copyright and other participation rule agreements and 
are sent the data. Strict deadlines, typically in August, are set for submission 
of results. For ease of processing, results are submitted in designated formats. 
All participants that submit final results are invited to the yearly conference. 

The volume of TREC data is continuously growing with the current main­
stream (main tracks) data being on the order of multiple gigabytes. Represen­
tative collection statistics are listed in Table 8.1. 

TREC data are provided by NIST on CDs to all participants. The data are 
stored in compressed format, and are delimited by SGML markers. A sample 
of a typical uncompressed TREC document is presented in Figure 8.1. 
Each year, 50 queries are specified for each main-stream task. Queries are avail­
able on-line from a password-protected ftp site and are also SGML delimited. 
A sample query is illustrated in Figure 8.1. 

Currently, there are three levels of TREC participation: categories A, B, 
and C. All three categories adhere to the same processing rules and support 
the same manner of interaction. All three categories process the queries either 
manually (some degree of human interaction) or automatically (no degree of 
human interaction). The primary differences between the three involvement 
categories are the volume of data that must be processed, and the degree of 
reporting that is required from the participant. Categories A and C process the 
entire dataset, on the order of a few gigabytes, while category B is for resource­
limited participants and consists of several hundreds of megabytes. Finally, 
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Table 8.1. Size of TREC data 

Disk Collection Size Number of Median Mean 
(MB) Documents Term• ~ --;,:-

1 Wall Street Journal, 1987-1989 267 98,732 245 434.0 
1 Associated Press, 1989 254 84,678 446 473.9 
1 Computer Select, Ziff-Davis 242 75,180 200 473.0 
1 Federal Register, 1989 260 25,960 391 1,315.9 
1 abstracts of US DOE 184 226,087 111 120.4 
2 Wall Street Journal, 1990-1992 242 74,520 301 508.4 
2 Associated Press, 1988 237 79,919 438 468.7 
2 Computer Select, Ziff-Davis 175 56,920 182 451.9 
2 Federal Register, 1988 209 19,860 396 1,378.1 
3 San Jose Mercury News, 1991 287 90,257 379 453.0 
3 Associated Press, 1990 237 78,321 451 478.4 
3 Computer Select, Ziff-Davis 345 161,021 122 295.4 
3 US Patents, 1993 243 6,711 4,425 5,391 
4 Financial Times, 1991-1994 564 210,158 316 412.7 
4 Federal Register, 1994 395 55,630 588 644.7 
4 Congressional Record, 1993 235 27,922 288 1,373 

Figure 8.1. Sample TREC document 

<DOC> 
<DOCNO> WSJ880406-0090 </DOCNO> 
<HL> AT&T Unveils Services to Upgrade Phone Networks Under Global Plan 
</HL> 
<AUTHOR> Janet Guyon (WSJ Staff) </AUTHOR> 
<DATELINE> NEW YORK </DATELINE> 
<TEXT> 
American Telephone & Telegraph Co. introduced the first of a new generation of 
phone services with broad implications for computer and communications equipment 
markets. AT&T said it is the first national long-distance carrier to announce prices 
for specific services under world-wide standardization plan to upgrade phone net­
works. By announcing commercial services under the plan, which the industry calls 
the Integrated Services Digital Network, AT&T will influence evolving communi­
cations standards to its advantage, consultants said, just as International Business 
Machines Corp. has created de facto computer standards favoring its products. 
</TEXT> 
</DOC> 

category A and B participants must fully document the algorithms that they 
followed in their participation, while category C participants are typically from 
industry and need not fully describe their process to protect proprietary secrets. 
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Figure 8.2. Sample TREC query 
<top> 
<num> Number: 168 
<title> Topic: Financing AMTRAK 

<desc> Description: 
A document will address the role of the Federal Government in financing the operation 
of the National Railroad Transportation Corporation {AMTRAK) 
<narr> Narrative: 
A relevant document must provide information on the government's responsibility to 
make AMTRAK an economically viable entity. It could also discuss the privatization 
of AMTRAK as an alternative to continuing government subsidies given to air and 
bus transportation with those provided to AMTRAK would also be relevant. 
</top> 

Throughout its existence, interest in TREC activities has steadfastly in­
creased. With the expanding awareness and popularity of distributed informa­
tion retrieval engines, e.g., the various World Wide Web search engines, the 
number of academic and commercial TREC participants continues to grow. 
Given this increased participation, more and more techniques are being devel­
oped and evaluated. The transfer of general ideas and crude experiments from 
TREC participants to commercial practice from year to year demonstrates the 
success of TREC. 

Over the years, the raw average precision numbers presented in the various 
TREC proceedings initially increased and then decreased. This appears to 
indicate that the participating systems have actually declined in their accuracy 
over the past several years. In actuality, the queries have increased in difficulty. 
When the newer, revised systems currently participating in TREC are run using 
the queries and data from prior years, they tend to exhibit a higher degree 
of accuracy as compared to their predecessors. Any perceived degradation is 
probably due to the relative complexity of the queries. 

We do not review the performance of the individual engines participating in 
the yearly event since the focus of this book is on algorithms, and the details 
of the effects of the individual utilities and strategies are not always docu­
mented. Detailed information on each TREC conference is available in written 
proceedings or on-line at: www.nlp-ir.nist.gov. 

TREC, although successful, does have its shortcomings. As noted, per­
formance evaluation in retrieval systems involves both accuracy and perfor­
mance assistance. TREC, however, only evaluates accuracy, paying little if 
any, significance to processing times and storage overheads. In terms of rel­
evancy (accuracy), common TREC criticism focuses on the means of judging 
document-to-query relevancy. 

Given the limited number of human document judgment analysts available 
to NIST, pooling is used to determine the relevant documents. Pooling, as now 
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used in TREC [Harman, 1995], is the process of selecting top-ranked documents 
obtained from mtµtiple engines, merging and sorting them, and retaining the 
remaining unique document identifiers as relevant documents (i.e., removing 
the duplicate document identifiers). Although relatively effective, pooling does 
result in several false-negative document ratings. Hence, some of the accuracy 
measures are somewhat imprecise. Finally, complicating this imprecision is the 
lack of statistically significant differences between the results obtained among 
the systems, creating further grievances. 
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In spite of all the past successful research efforts, the domain of information 
retrieval is still in its infancy. As recently as ten years ago, the number of 
retrieval strategies that were commonly noted in the literature could be counted 
on one hand. Most of the research literature focused on the four key retrieval 
strategies: the vector space, probabilistic, Boolean, and fuzzy-set. In this book 
alone, we described eight different strategies and have merely highlighted the 
more popular ones. 

Until recently, distributed information retrieval was only of theoretical in­
terest. With the insurgence of personal Internet use and the advent of the 
World Wide Web (WWW), distributed information retrieval, namely search 
and retrieval of information across the WWW, is of daily practice. 

In terms of the research community, heightened interest is best demonstrated 
by the increased popularity of the NIST TREC activities. In its initial years, 
the number of participants in the TREC activities numbered less than thirty 
for most tasks. In the sixth NIST TREC meeting, the number of participants 
exceeded fifty. This increase in participation has occurred despite the fact that 
NIST no longer provides any financial support to the participants. 

Given the growing interest, future advances are clearly on the horizon. The 
question is what areas still need further investigation. We project future re­
search using the same paradigm used throughout the book. That is, first we 
address strategies, followed by utilities and efficiency concerns. Issues involving 
parallelism and distributed processing conclude our projections. 
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Additional data strategies are probably required. In the TREC activities, 
the average precision numbers rarely reach the forty percent mark for any task. 
Significantly improving these numbers requires new insight and potentially a 
new strategy. The past several years have resulted in a steady improvement in 
retrieval accuracy, but current results are still unacceptable. It is unlikely that 
even this continued improvement will result in significant strides to sufficiently 
improve retrieval accuracy. This is especially true when faced with vastly larger 
data sets. It is reasonable to suspect that simple pattern matching approaches 
will continue to stay at the existing plateau observed in TREC during the last 
two or three years. To go beyond this will more than likely require incorporation 
of more complex natural language processing. At present, recent work on infor­
mation extraction and "light parsing" are just now becoming computationally 
feasible. 

Additional strategies are also required to cope with the diversity of data 
presently available on-line. Throughout this book, we addressed only text ori­
ented data. Given the adage a picture is worth a thousand words, one must find 
a way of extracting and integrating the thousands of words portrayed by an 
image. Currently, information retrieval models do not support this. There are 
efforts that address the image integration issue, for example, the IRIS (more 
recently adapted as the IBM ImageMiner Project) [Alshuth et al., 1998]. How­
ever, they still do not fully integrate structured, text, and image data into a 
cohesive environment. It is reasonable to expect that the future will require an 
extended corpus consisting of integrated text with images. Such a corpus will 
make it possible to evaluate progress of new text and image retrieval algorithms. 

It is possible to represent information retrieval processing utilities on a con­
tinuum where the two extremes are simple pattern matching and full natural 
language text processing. Currently, the majority of the utilities fall closer 
to the simple pattern matching end of the continuum. For example, both 
passage-based and n-gram clearly focus on purely pattern matching analysis. 
Semantic networks and parsing techniques more closely align with natural lan­
guage processing, but clearly do not support full content analysis as expected 
from natural language processing. It is our belief that to significantly increase 
the accuracy of retrieval, the connotational meaning of the text, in contrast to 
its denotational, or even worse-purely its character representation-must be 
extracted. Initial work in text extraction is ongoing, but only limited success 
has been demonstrated. 

Parallel processing architectures are now widely available and are in daily 
use. They are no longer just research engines. Even our personal comput­
ers are configured as parallel processing engines. Thus, information retrieval 
applications must be developed to harness this parallel processing capability. 
In Chapter 6, we overviewed some of the ongoing parallel processing efforts. 
None of these efforts, however, have demonstrated scalability to the thousands 
of nodes. None can handle a diversity of data formats, support multi-language 
retrieval, efficiently support all of the described retrieval strategies and utili­
ties, provide multi-user concurrency with on-line recovery, and support a plug 
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and play composition of strategies and utilities environment. Furthermore, 
with the diversity of the underlying models of parallel architectures, even if 
some solutions to the above concerns are available, they do not seamlessly port 
across multiple parallel architectures. Clearly, in the realm of parallelism in 
information retrieval, there is a wide area for further investigation. 

With the continued advances in wireless technology, data are available not 
only on host computers, but also on mobile computing devices world wide. 
This distributed nature introduces several issues not previously of vast concern 
to the information retrieval domain. For example, due to the portable nature 
of the storage devices, most of the data are available only at uncertain time 
intervals. Furthermore, each search site has access to only limited information 
and this information may change rapidly. Thus, distributed information re­
trieval algorithms must account for these constraints. Some ongoing research 
efforts in the domains of distributed operating and database systems focus on 
related issues. An adaptation of some of the results from such efforts might 
be appropriate. To date, no information retrieval research efforts address these 
concerns. 

Throughout this book, we have advocated a plug and play architecture for 
information retrieval. We overviewed strategies, utilities, efficiency consider­
ations, integration paradigms, and processing topologies for information re­
trieval. The true research and development question for future information 
retrieval research is how does one reach synergy in the composition of all of 
these factors. 
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