
INFORMATION
RETRIEVAL

Algorithms and Heuristics

David A. Grossman
Ophir Frieder

SPRINGER SCIENCE+BUSINESS MEDIA, LLC

Page 1 of 262 GOOGLE EXHIBIT 1010

INFORMATION RETRIEVAL:
ALGORITHMS AND HEURISTICS

Page 2 of 262

THE KLUWER INTERNATIONAL SERIES IN ENGINEERING
AND COMPUTER SCIENCE

Page 3 of 262

INFORMATION RETRIEVAL:
ALGORITHMS AND HEURISTICS

DAVID A. GROSSMAN
Office of Research and Development

OPHIR FRIEDER
Illinois Institute of Technology

Springer Science+Business Media, LLC

Page 4 of 262

Library of Congress Cataloging-in-Publication Data

Grossman, David A., 1965-
lnformation retrieval : algorithms and heuristics / David A.

Grossman, Ophir Frieder.
p. cm. -- (Kluwer international series in engineering and

computer science ; SECS 461)
Includes bibliographical references and index.
ISBN 978-1-4613-7532-6 ISBN 978-1-4615-5539-1 (eBook)
DOI 10.1007/978-1-4615-5539-1
I. Information storage and retrieval systems. I. Frieder, Ophir.

II. Title. lll. Series.
Z667.G76 1998
005.74--dc21

Copyright © 1998 by Springer Science+Business Media New York
Originally published by Kluwer Academic Publishers in 1998
Softcover reprint of the hardcover 1st edition 1998
Second Printing 2000

98-30435
CIP

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted in any form or by any means, mechanical, photo­
copying, recording, or otherwise, without the prior written permission of the
publisher, Springer Science+Business Media, LLC

Printed on acid-free paper.

Page 5 of 262

Contents

List of Figures vii
Preface ix
Acknowledgments xv

1. INTRODUCTION 1

2. RETRIEVAL STRATEGIES 11

2.1 Vector Space Model 13

2.2 Probabilistic Retrieval Strategies 22

2.3 Inference Networks 48
2.4 Extended Boolean Retrieval 58
2.5 Latent Semantic Indexing 60
2.6 Neural Networks 64

2.7 Genetic Algorithms 70
2.8 Fuzzy Set Retrieval 74
2.9 Summary 80
2.10 Exercises 81

3. RETRIEVAL UTILITIES 83
3.1 Relevance Feedback 84
3.2 Clustering 94
3.3 Passage-based Retrieval 100
3.4 N-grams 102
3.5 Regression Analysis 106
3.6 Thesauri 108
3.7 Semantic Networks 118
3.8 Parsing 125
3.9 Summary 131
3.10 Exercises 131

4. EFFICIENCY ISSUES PERTAINING TO SEQUENTIAL IR SYSTEMS 133
4.1 Inverted Index 134

Page 6 of 262

vi INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

4.2 Query Processing
4.3 Signature Files
4.4 Summary
4.5 Exercises

142
146
149
150

5. INTEGRATING STRUCTURED DATA AND TEXT 153
5.1 Review of the Relational Model 157
5.2 A Historical Progression 163
5.3 Information Retrieval Functionality Using the Relational Model 168
5.4 Boolean Retrieval 176
5.5 Proximity Searches 179
5.6 Computing Relevance Using Unchanged SQL 181
5.7 Relevance Feedback in the Relational Model 183
5.8 Summary 184
5.9 Exercises 184

6. PARALLEL INFORMATION RETRIEVAL SYSTEMS 185
6.1 Parallel Text Scanning 186
6.2 Parallel Indexing 191
6.3 Parallel Implementation of Clustering and Classification 198
6.4 Summary 198
6.5 Exercises 199

7. DISTRIBUTED INFORMATION RETRIEVAL 201
7.1 A Theoretical Model of Distributed IR 202
7.2 Replication in Distributed IR Systems
7.3 Implementation Issues of a Distributed IR System
7.4 Improving Performance of Web-based IR Systems
7.5 Web Search Engines
7.6 Summary
7.7 Exercises

8. THE TEXT RETRIEVAL CONFERENCE (TREC)

9. FUTURE DIRECTIONS

References

Index

206
209
212
214
217
219

221

227

231

253

Page 7 of 262

List of Figures

1.1
1.2
1.3
1.4
1.5
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
3.1
3.2
3.3
3.4
4.1
4.2
5.1
6.1
7.1
8.1
8.2

Document Retrieval
Document Routing
Result Set: Relevant Retrieved, Relevant, and Retrieved
Example of Precision and Two Points of Recall
Typical and Optimal Precision/Recall Graph
Vector Space Model
Example: Vector Space Model with a 2 Term Vocabulary
Example: Inverted Index
Training Data for Probabilistic Retrieval
Simple Inference Network
Document-Term-Query Inference Network
Inference Network Example
Neural Network with Feedback
Relevance Feedback Process
Document Clustering
Overlapping vs Non-Overlapping Passages
Using a Thesaurus to Expand a Query
Inverted Index
Signature File
IR as an Application of a RDBMS
Partitioning an Inverted Index
Distributed Document Retrieval
Sample TREC document
Sample TREC query

2
3
4
5
6

14
15
19
26
50
54
55
67
85
95

102
109
135
146
155
192
202
223
224

Page 8 of 262

Preface

This book focuses on the technology of information retrieival: a user enters a
query that describes a request for information, and an information retrieval
system responds by identifying documents that are relevant to the query. Of
course, the computer cannot understand documents and queries the way a
human can, so methods other than full natural language understanding of the
text must be employed. We cover the various techniques used to quickly find
relevant documents, with the necessary introduction, technical details, and
examples to illustrate the approach.

The advent of the World Wide Web has increased the importance of infor­
mation retrieval. Instead of going to the local library to find something, people
search the Web. Thus, the relative number of manual versus computer-assisted
searches for information has shifted dramatically in the past few years. This
has increased the need for automated information retrievall for extremely large
document collections.

It is estimated that the Web now contains more than twenty million different
content areas, presented on more than 320 million web pages, and one million
web servers-and it is doubling every nine months [Kahle, 1998, Lawrence and
Giles, 1998]. This book describes the techniques that can be used to try and
find the needle that a user is seeking in the enormous haystack that is the Web,
as well as and other large information collections. These techniques are found in
numerous research papers, described by many different authors, and presented
with many different examples. This book consolidates the most commonly used
information retrieval algorithms and heuristics.

The problem of finding relevant information is not new. Early systems tried
to classify knowledge into a set of known fixed categories. The first of these was
completed in 1668 by the English philosopher John Wilkins [Subbiondo, 1992].
The problem with this approach is that categorizers commonly do not place
documents into the categories where searchers expect to find them. No matter
what categories a user thinks of-they will not match what someone who is
searching will find. For example, users of e-mail systems place mail in folders
or categories-only to spend countless hours trying to find the same documents

Page 9 of 262

x INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

because they cannot remember what category they used, or the category they
are sure they used does not contain the relevant document. Effective and
efficient search techniques are needed to help users quickly find the information
they are looking for.

Another approach is to try to understand the content of the documents.
Ideally, documents would be loaded into the computer, the computer would
read and understand them, and then, users would simply ask questions and be
given direct answers. The field of Natural Language Processing works on this
approach-but suffice to say that this approach is extremely difficult, and we
currently lack systems that can build good knowledge structures for even the
simplest of texts.

If we rule out hand-categorization and natural language processing, that
leaves us with Information Retrieval (IR). With this approach, no real attempt
is made to have the computer understand the document-instead techniques
that use pattern matching, statistical sampling, machine learning, and proba­
bility theory are used to guess which documents are relevant. These systems are
not perfect, but they offer users the opportunity to sift through large volumes
of text.

The key problem is that simply matching on query words is not sufficient to
satisfy user requests. A query about "Abraham Lincoln" can bring back docu­
ments about "a man named Abraham went to the dealership to purchase a Lin­
coln." The most obvious techniques have not been shown to work well. Many
researchers suspect that an automated thesaurus will dramatically improve the
accuracy of document retrieval-to date, little success has been demonstrated
with such a technique. For every good word you add-you end up adding
something that degrades the results. For our same query, a thesaurus might
add the word "president" to the query but then the user might be treated to
documents describing presidents of large companies that have nothing to do
with the query.

Our objective is to describe the techniques or algorithms and heuristics used
to find documents that are relevant to the user request and to find them quickly.
Academic research since the late 1950s has focused on this problem. To really
attack the problem requires expertise in the fields of library science, computa­
tional linguistics, natural language processing, probability theory, and of course,
computer science. We have tried to give the necessary introduction to each
topic, and to give the details and examples needed to understand work that
has been done on each topic. The field is moving quickly-the advent of the
Web has brought new focus to the problem and many new algorithms have
been developed. When the first Text REtrieval Conference (TREC) met in
1992 to evaluate text retrieval-there were essentially four retrieval strategies
to find relevant documents-vector space retrieval, extended boolean retrieval,
probabilistic retrieval, and inference networks. Only six years later, we describe
eight strategies in Chapter 2. Many of these are recent, and we try to give solid
coverage to each one.

Page 10 of 262

PREFACE xi

We are still at the tip of the iceberg in terms of really succeeding at solving
the information retrieval problem. Measurements from TREC that include a
standard set of queries run against a two gigabyte document collection with
around half a million documents show that just about any technique or com­
binations of techniques results in an answer set that contains about twenty to
thirty percent of relevant documents. If we suspect most users look at the top
ten documents, systems are fortunate to get about three to four of these ten
documents correct. Users then waste time looking at more non-relevant docu­
ments than relevant documents. Other studies have shown that when informa­
tion retrieval systems are evaluated, they are found to miss numerous relevant
documents [Blair and Maron, 1985]. Moreover, users have become complacent
in what they expect of information r~trieval systems [Gordon, 1997]. It is this
relatively poor performance that drives more research in the area of effective­
ness. It is our goal to describe the algorithms and heuristics that were tried so
that researchers who wish to improve on past performance do not unnecessarily
repeat work that has already been completed.

Finding relevant documents is not enough. This book describes the current
techniques used to find relevant documents quickly. Some excellent information
retrieval texts are currently available on the market. Many of them, however,
do not treat both aspects of information retrieval, namely, retrieval effectiveness
in terms of accuracy and retrieval efficiency in terms of resource utilization. We
provide an algorithm-directed presentation for both orientations of interest. We
survey recent algorithms on effectiveness and efficiency. Certainly, new papers
are constantly being published, but we have focused on key algorithms that
must be understood before new papers can be digested.

Detailed examples are provided wherever possible since many books and
papers do not provide these examples. We assume the reader has a reasonable
understanding of data structures and algorithms, but we do not assume much
mathematical background. Whenever appropriate, a brief review to the needed
background concepts is prQvided prior to describing the information retrieval
material.

A recent collection Readings in Information Retrieval was published that
covers several key papers. Unfortunately, this collection excludes papers that
focus predominantly on efficiency. Furthermore, this collection is just that, a
collection of seminal papers. It is not organized as a text. Thus, it is difficult
to use this collection as a class text. It is, however, an excellent supplement to
this book.

This book is primarily intended as a textbook for an undergraduate or gradu­
ate level course in Information Retrieval. It has been used in a graduate course,
and we have incorporated student feedback in developing a set of overheads that
assist instruction using our text. The set of Powerpoint slides, including speaker
notes, are available at http://www.csam.iit.edu/-ophir/slides.

Additionally, practitioners who build m systems or applications that use IR
systems will find the information in this book useful when deciding on which
retrieval strategies and utilities to deploy in production applications. Note that

Page 11 of 262

xii INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

the focus of the book is on algorithms, not on commercial products, but, to our
knowledge, the basic strategies used by the majority of commercial products
are described in the book. Our intent is that a practitioner may find that a
commercial product is using a given strategy and can then use this book as a
reference for more information on what is known about the techniques used by
the product. Other information that is of use to practitioners is found in our
chapter that focuses on use of unchanged SQL to integrate structured data and
text.

Finally, we note that the information retrieval field changes daily. For the
most up to date coverage of the field, the best sources are publications such as
the ACM 7ransactions on Information Systems, the Journal of the American
Society for Information Science, Information Processing and Management, and
Information RetrietJal. Other relevant papers are found in the various infor­
mation retrieval conferences such as ACM SIGIR and NIST TREC, and to a
lesser degree ACM CIKM and the annual NLP conference.

Any comments, suggestions, or corrections regarding either the text or the
overheads are greatly welcomed and would be sincerely appreciated.

Hope to hear from you soon.

Ophir Frieder
IITRl Professor of Computer Science
Illinois Institute of Technology
ophir@csam.iit.edu

David Grossman
Staff Scientist
Office of Research and Development
dagr@jnpcs.com

Page 12 of 262

From David:

For my parents:

Roberta "Mickey'' and Joshua Grossman.

From Ophir:

In honor of my grandmother:
Hadasa Bogler

and in memory of my grandparents:

Yehoshua Bogler and
Ruzena and Armin Frieder

Page 13 of 262

Acknowledgments

We are indebted to many, many people, and we shudder at the thought of
leaving out someone whose contributions have improved the quality of the book.
Just in case we did, however, our sincere apologies on the oversight and a
heartful thanks for the contributions.

We are deeply indebted to Paul Kantor and Don Kraft for their insightful
comments during some of the early stages of the development of the book. We
also greatly thank Steve Robertson, K.L. Kwok, and Jamie Callan for critically
reviewing the sections describing their efforts, and Warren Greiff whose extreme
patience taught and retaught us the details of inference networks.

General critical feedback came from multiple individuals. Readability for
classroom use was enhanced by feedback given from the students participating
in Ophir's CSE6000 class that read each draft copy multiple times. Although
comments from all students are greatly appreciated, Salim Mounir Alaoui truly
went beyond the call of duty, and his assistance is acknowledged by name. Also
Matt Mahoney is recognized and thanked for his initial draft of the course
presentation overheads and Nazli Goharian for her technical review and en­
hancements of them. David Roberts provided several specific suggestions that
dramatically improved the introduction and focus of the book. John Juilfs
spent countless hours working out all of the examples and checking our math
(we take full responsibility for any remaining errors, but he saved us from lots
of them). David Holmes has been an instrumental part of our TREC group,
and his willingness to spend plenty of time and resources running experiments
for us was critical to the development of the integration of structured data and
text chapter. Special thanks go to Bill Bercik and Prachya Chalermwat for
their work on all of the figures used in the text. Abdur Chowdhury provided
valuable assistance with the content of the book and was a great help during
the construction of the index.

We are indebted to Steve Kirsch at Infoseek and Graham Spencer, Doug
Cutting, and Jack Xu at Excite for their assistance with the material found on
the section describing implementation details of web search engines.

Page 14 of 262

xvi INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

We thank many people who reviewed repeated iterations of the book in­
cluding Mary Catherine McCabe, Jean-Michel Pomarede, Muralidhar Medidi,
and Amit Jain, whom we thank for their technical comments and Deborah Be­
nigni, Wendy Grossman and Karen Sweeney for the great deal of copy editing
that they provided. We also thank all others who read the book and provided
excellent feedback, and our colleagues at work who provided moral support.

Finally, we would not have ever finished the book without constant moral
support from our families and close friends. Special thanks go to Sandy Halin­
Adams and Nazli Goharian who made countless sacrifices of their time and gave
us constant encouragement and support. Parents, siblings, in-laws, grandpar­
ents, aunts, uncles, and close friends, all helped with comments like "So, how
is the book going?" or "Is the book out yet?". In spite of knowing that they
were actually trying to cheer us on to finish, nothing was a better motivator to
push ahead than such remarks.

From the both of us to all of you, THANKS.

Page 15 of 262

1 INTRODUCTION

Since the near beginnings of human civilization, human beings have focused on
written communication. From cave drawings to scroll writings, from printing
presses to electronic libraries--communicating has been of primary concern to
our existence. Today, with the emergence of digital libraries and electronic
information exchange there is clear need for improved techniques to organize
these large quantities of information. Applied and theoretical research and
development in the areas of information authorship, processing, storage, and
retrieval is of interest to all sectors of the community. In this book, we overview
recent research efforts that focus on the electronic searching and retrieving of
documents.

Our focus is strictly on the retrieval of information in response to user
queries. That is, we discuss algorithms and approaches for ad hoc informa­
tion retrieval, or simply, information retrieval. Figure 1.1 illustrates the basic
process of ad hoc information retrieval. A static or relatively static document
collection is indexed prior to any user query. A query is: issued and a set of
documents that are deemed relevant to the query are ranked based on their coo­
puted similarity to the query and presented to the user. Numerous techniques
exist to identify how these documents are ranked, and that is a key focus of this
book (effectiveness). Other techniques also exist to rank documents quickly,
and these are also discussed (efficiency).

Information Retrieval (IR) is devoted to finding "relevant" documents, not
finding simple matches to patterns. Yet, often when information retrieval sys-

Page 16 of 262

2 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Figure 1.1. Document Retrieval

Ad-Hoc
Query

Static
Document
Collection

Ranked
Answer
Set

terns are evaluated, they are found to miss numerous relevant documents [Blair
and Maron, 1985]. Moreover, users have become complacent in their expecta­
tion of accuracy of information retrieval systems [Gordon, 1997].

A related problem is that of document routing or filtering. Here, the queries
are static and the document collection constantly changes. An environment
where corporate e-mail is routed based on predefined queries to different parts
of the organization (i.e., e-mail about sales is routed to the sales department,
marketing e-mail goes to marketing, etc.) is an example of an application of
document routing. Figure 1.2 illustrates document routing. Document routing
algorithms and approaches also widely appear in the literature, but are not
addressed in this book.

In Figure 1.3, we illustrate the critical document categories that correspond
to any issued query. Namely, in the collection there are documents which
are retrieved, and there are those documents that are relevant. In a perfect
system, these two sets would be equivalent-we would only retrieve relevant
documents. In reality, systems retrieve many non-relevant documents. To

Page 17 of 262

Documents
routed to
each user
based on
query or
profile

User 1

INTRODUCTION 3

Figure 1.2. Document Routing

Set of Predetermined
Queries or User
Profiles

Document
Routing
System

User2

Incoming Documents

User3 User4

measure effectiveness, two ratios are used: precision and recall. Precision is
the ratio of the number of relevant documents retrieved to the total number
retrieved. Precision provides an indication of the quality of the answer set.
However, this does not consider the total number of relevant documents. A
system might have good precision by retrieving ten documents and finding that
nine are relevant (a 0.9 precision), but the total number of relevant documents
also matters. If there were only nine relevant documents, the system would be
a huge success-however if millions of documents were relevant and desired,
this would not be a good result set.

Recall considers the total number of relevant documents-it is the ratio of
number of relevant documents retrieved to the total number of documents in the
collection that are believed to be relevant. When the total number of relevant
documents in the collection is unknown, an approximation of the number is
obtained. A good survey of effectiveness measures as well as a brief overview
of information retrieval is found in [Kantor, 1994).

Page 18 of 262

4 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Figure 1.3. Result Set: Relevant Retrieved, Relevant, and Retrieved

All documents

Relevant
Retrieved

Relevant

Recall=

Relevant Retrieved
Retrieved

Relevant Retrieved
Relevant

Precision may be computed at various points of recall. Consider the example
in Figure 1.4. Ten documents are retrieved, but only two documents (docu­
ments two and five) are relevant to the query. Consider the document retrieval
performance represented by the sloped line. Fifty percent recall (finding one
of the two relevant documents) results when two documents are retrieved. At
this point, precision is fifty percent as we have retrieved two documents and
one of them is relevant. To reach one hundred percent recall, we must continue
to retrieve documents until both relevant documents are retrieved. For our
example, it is necessary to retrieve five documents to find both relevant docu­
ments. At this point, precision is forty percent because two out of five retrieved
documents are relevant. Hence, for any desired level of recall it is possible to
compute precision. Graphing precision at various points of recall is referred to
as a precision/recall curve.

A typical precision/recall curve is shown in Figure 1.5. Typically, as higher
recall is desired, more documents must be retrieved to obtain the desired level of
recall. In a perfect system, only relevant documents are retrieved. This means

Page 19 of 262

INTRODUCTION 5

Figure 1.4. Example of Precision and Two Points of Recall

Precision

1.0

.9

.8

.7

.6

. 5

.4

.3

.2

.1

Numrol
Relevant Documenls = 2

(d2, d5)

............ (.5,.5)

Answer Set
in Order of Similarity Coefficient

.. -~~:4)
.............. _

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

Recall

Predsm a1 50o/o recal = 1/2 = 50%

Pr!mOll al 100% recal = 2tS = 40%

~
dB
d9
d10

that at any level of recall, precision would be 1.0. The optimal precision/recall
line is shown in Figure 1.5.

Average precision refers to an average of precision at various points of recall.
Many systems today, when run on a standard document collection, report an
average precision of between 0.2 and 0.3. Certainly, there is some element of
fuzziness here because relevance is not a clearly defined concept, but it is clear
that there is significant room for improvement in the area of effectiveness.

Finding relevant documents is not enough. Finding relevant documents
within an acceptable response time is the goal. This book describes the current
strategies used to find relevant documents quickly. The quest to find efficient
and effective information retrieval continues.

We explain each algorithm in detail, and for each topic, include examples
for the most crucial algorithms. We then switch gears into survey mode and
provide references to related and follow-on work. We explain the key aspects
of the algorithms and then provide references for those interested in further

Page 20 of 262

6 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Figure 1.5. Typical and Optimal Precision/Recall Graph

Precision

1.0

.9

.8

.7

.6

.5

.4

.3

.2

Optimal

.1 ------ Typical

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

Recall

details. A collection of key information retrieval research papers is found in
[Sparck Jones and Willett, 1997].

Recent algorithms designed to search large bodies of information are dis­
cussed throughout this book. Many research publications describe these al­
gorithms in detail, but they are spread across numerous journals and written
in a variety of different styles. Also, they have differing expectations of their
reader's background. We provide a relatively brief, but sufficiently detailed
overview of the field.

As earlier stated, a sophisticated mathematical background is not required.
Whenever detailed mathematical constructs are used, we provide a quick re­
fresher of the key points needed to understand the algorithms and detailed
examples.

We believe this book is valuable to a variety of readers. Readers familiar with
the core of computer science and interested in learning more about information
retrieval algorithms should benefit from this text. We provide explanations of

Page 21 of 262

INTRODUCTION 7

the fundamental problems that exist, and how people have addressed them in
the past.

This book also has value for anyone who currently uses and supports a
Relational Database Management System (RDBMS). Chapter 5 gives detailed
algorithms that treat text retrieval as an application of a RDBMS. This makes
it possible to integrate both structured data and text.

To guide the reader through the key issues in ad hoc information retrieval,
we partitioned our book into separate but inter-linked processing avenues. In
the first section, covered in Chapters 2 and 3, we overview retrieval processing
strategies and utilities. All of these strategies and utilities focus on one and
only one critical issue, namely, the improvement of retrieval accuracy. In Chap­
ter 2, we describe eight models that were either developed for or adapted to
information retrieval specifically for the purpose of enhancing the evaluation or
ranking of documents retrieved in response to user queries. Chapter 3 describes
utilities that could be applied to enhance any strategy described in Chapter 2.

In Chapter 3, under the "Retrieval Utilities" heading, we focus on tech­
niques that are applicable to either all or most of the models. Several of those
utilities described are language dependent, e.g., parsing and thesauri, others
focus specifically at being language independent, namely, N-gram processing.
We note in Chapter 3, that some of the described utilities were proposed as
individual processing strategies. In reality, however, it is the combination of
these techniques that yields the best improvements. An approach to precisely
determine the optimal mix of techniques, the order to execute them, and the
underlying models to operate them so as to yield the optimal processing strat­
egy is still unknown.

After describing models and utilities that address accuracy demands, we
turn our attention towards processing efficiency. In Chapter 4, we describe
various document access schemes. That is, we describe both the constructs
and usage of inverted indices as well as other representation schemes such as
signature files. Each of these access schemes has advantages and disadvantages.
The tradeoffs lie in terms of storage overhead and maintain.ability versus search
and retrieval processing times. After describing the various access methods, we
overview several compression schemes.

Chapters 2 through 4 cover the basics in terms of traditional information
retrieval models, utilities, and processing strategies. In Chapters 5, 6, and 7,
we focus our attention on special topics in information retrieval. The three
topics addressed, namely data integration, parallel, and distributed informa­
tion retrieval systems, were selected based on where the commercial sector is
focusing.

Traditionally, there was a clear separation between structured data, typ­
ically stored and accessed via relational database management systems, and
semi-structured data such as text, typically stored and accessed via informa­
tion retrieval systems. Each processing system supported its own data storage
files and access methods. Today, the distinction between structured and semi­
structured data is quickly vanishing. In fact, we no longer are concerned with

Page 22 of 262

8 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

just structured and semi-structured data, but often we include unstructured
data, such as images, in the same storage repository. Our focus does not in­
clude image processing, although in the future one needs to do so.

To address the integration of structured and unstructured data, commercial
enterprises such as Oracle, IBM, and lnformix have integrated information re­
trieval functionality with their traditional relational database engines. Further­
more, text retrieval companies such as Verity, have added relational processing
components. In all of these cases, however, additional functionality came at the
expense of requiring additional, separate, processing units. In Chapter 5, we
discuss the issues related to adding processing units and suggest an alternative
method that involves implementing information retrieval processing capability
as an application of relational databases. Using such an approach, the tradi­
tional benefits of relational database processing (i.e., portability, concurrency,
recovery, etc.) are made available without requiring additional software de­
velopment. Since all traditional relational database vendors provide parallel
implementations of their database software, implementing an information re­
trieval system as a relational database application further provides for a parallel
instantiation of an information retrieval system.

Having recognized the need for a parallel information retrieval capability,
we also overview recent developments in this area. In Chapter 6, we ini­
tially describe the earlier parallel processing efforts in information retrieval.
These approaches predominantly focus on the use of Single Instruction Multi­
ple Data (SIMD) multiprocessors to efficiently scan the text. However, as the
understanding of parallel processing techniques in information retrieval grew,
inverted index-based approaches were developed to reduce the unnecessarily
high 1/0 demands commonly associated with text scanning schemes. We dis­
cuss several of these approaches and finally, conclude Chapter 6 with some
recent work in parallel information retrieval focusing on the parallelization of
classical clustering and classification algorithms.

In the information processing world of today, no treatment of the field is
complete without addressing the most frequently used retrieval paradigm-the
World Wide Web. Thus, in Chapter 7, we describe the encompassing topic of
the web, namely, distributed information retrieval systems. We overview some
of the early theoretical foundations and culminate with a discussion of the web.

The problem of searching document collections and finding relevant docu­
ments has been addressed for over forty years. However, until the advent of the
Text REtrieval Conference (TREC) in 1990 (which is hosted by the National In­
stitute of Standards and Technology), there was no standard test-bed to judge
information retrieval algorithms. Without the existence of a standard test data
collection and a standard set of queries, there was no effective mechanism by
which to objectively compare the algorithms. Many of these algorithms were
run against only a few megabytes of text. It was hoped that the performance
of these would scale to larger document collections. A seminal paper showed
that some approaches that perform well on small document collections did not
perform as well on large collections [Blair and Maron, 1985].

Page 23 of 262

INTRODUCTION 9

In Chapter 8, we present a brief discussion of the TREC activities. Given
all of the models, utilities, and performance enhancements proposed over the
years, clearly measures and procedures to evaluate their effectiveness in terms
of accuracy and processing times are needed. Indeed, that was part of the moti­
vation behind the creation of the benchmark data and query sets and evaluation
forum called TREC. Today, TREC serves as the de facto forum for comparison
across systems and approaches. Unfortunately, only accuracy evaluations are
currently supported. Hopefully, in the future, processing efficiency will also be
evaluated.

Finally, we conclude our book with a discussion of the current limitations
of information retrieval systems. We overview our successes and project future
needs. Areas for further study are described. It is our hope that after reading
this text, you the reader, will be interested in furthering the field of information
retrieval and that in our future editions, we can overview your contributions as
part of our text.

Page 24 of 262

2 RETRIEVAL STRATEGIES

Retrieval strategies assign a measure of similarity between a query and a doc­
ument. These strategies are based on the common notion that the more often
terms are found in both the document and the query, the more "relevant" the
document is deemed to be to the query. Some of these strategies employ counter
measures to alleviate problems that occur due to the ambiguities inherent in
language-the reality that the same concept can often be described with many
different terms (e.g., new york and the big apple can refer to the same concept).
Additionally, the same term can have numerous semantic definitions (terms like
bark and duck have very different meanings in their noun and verb forms).

A retrieval strategy is an algorithm that takes a query Q and a set of doc­
uments D1 ,D2 , ••• , Dn and identifies the Similarity Coefficient SC(Q,Di) for
each of the documents 1 ::; i ::; n. (Note: SC is short for Similarity Coefficient,
sometimes it is written RSV for Retrieval Status Value).

The retrieval strategies identified are-

1. Vector Space Model-Both the query and each document are represented
as vectors in the term space. A measure of the similarity between the two
vectors is computed.

2. Probabilistic Retrieval-A probability based on the likelihood that a term
will appear in a relevant document is computed for each. term in the collec­
tion. For terms that match between a query and a document, the similarity

Page 25 of 262

12 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

measure is computed as the combination of the probabilities of each of the
matching terms.

3. Inference Networks-A Bayesian network is used to infer the relevance of a
document to a query. This is based on the "evidence" in a document that
allows an inference to be made about the relevance of the document. The
strength of this inference is used as the similarity coefficient.

4. Boolean Indexing-A score is assigned such that an initial Boolean query
results in a ranking. This is done by associating a weight with each query
term so that this weight is used to compute the similarity coefficient.

5. Latent Semantic Indexing-The occurrence of terms in documents is repre­
sented with a term-document matrix. The matrix is reduced via Singular
Value Decomposition (SVD) to filter out the noise found in a document so
that two documents which have the same semantics are located close to one
another in a multi-dimensional space.

6. Neural Networks-A sequence of "neurons," or nodes in a network, that fire
when activated by a query triggering links to documents. The strength of
each link in the network is transmitted to the document and collected to
form a similarity coefficient between the query and the document. Networks
are "trained" by adjusting the weights on links in response to predetermined
relevant and irrelevant documents.

7. Genetic Algorithms-An optimal query to find relevant documents can be
generated by evolution. An initial query is used with either random or
estimated term weights. New queries are generated by modifying these
weights. A new query survives by being close to known relevant documents
and queries with less "fitness" are removed from subsequent generations.

8. Fuzzy Set Retrieval-A document is mapped to a fuzzy set (a set that
contains not only the elements but a number associated with each element
that indicates the strength of membership). Boolean queries are mapped
into fuzzy set intersection, union, and complement operations that result in
a strength of membership associated with each document that is relevant
to the query. This strength is used as a similarity coefficient.

For a given retrieval strategy, many different utilities are employed to improve
the results of the retrieval strategy. These are described in Chapter 3. Note
that some strategies and utilities are based on very different mathematical con­
structs. For example, a probabilistic retrieval strategy should theoretically not
be used in conjunction with a thesaurus based on the vector space model. How­
ever, it may be the case that such a combination could improve effectiveness.
We merely note that care should be taken when mixing and matching strategies
and utilities that are based on very different mathematical models.

Attempting to refine the query, most of these utilities add or remove terms
from the initial query. Others simply refine the focus of the query (using

Page 26 of 262

RETRIEVAL STRATEGIES 13

subdocuments or passages instead of whole documents). The key is that each
of these utilities (although rarely presented as such) are plug-and-play utilities
that should work with an arbitrary retrieval strategy.

2.1 Vector Space Model

The vector space model computes a measure of similarity by defining a vector
that represents each document, and a vector that represents the query [Salton
et al., 1975]. The model is based on the idea that, in some rough sense, the
meaning of a document is conveyed by the words used. If one can represent the
words in the document by a vector, it is possible to compare documents with
queries to determine how similar their content is. If a query is considered to
be like a document, a similarity coefficient (SC) that measures the similarity
between a document and a query can be computed. Documents whose content,
as measured by the terms in the document, correspond most closely to the
content of the query are judged to be the most relevant. Figure 2.1 illustrates
the basic notion of the vector space model in which vectors that represent a
query and three documents are illustrated.

This model involves constructing a vector which represents the terms in the
document and choosing a method of measuring the closeness of any two vectors.
One could look at the magnitude of the difference vector between two vectors,
but this would tend to make any large document appear to be not relevant to
most queries, which typically are short. The traditional method of determining
closeness of two vectors is to use the size of the angle between them. This
angle is computed by the use of the inner product (or dot product). However,
it is not necessary to use the actual angle. Any monotonic function of the
angle suffices. Often the expression "similarity coefficient" is used instead of
an angle. Computing this number is done in a variety of ways, but the inner
product generally plays a prominent role. Underlying this whole discussion
is the idea that a document and a query are similar to the extent that their
associated vectors point in the same general direction.

There is one component in these vectors for every distinct term or concept
that occurs in the document collection. Consider a document collection with
only two distinct terms, a and /3. All vectors contain only two components,
the first component represents occurrences of a, and the second represents
occurrences of /3. The simplest means of constructing a vector is to place a one
in the corresponding vector component if the term appears, and a zero, if the
term does not appear. Consider a document, D 1 , that contains two occurrences
of term a and zero occurrences of term f3. The vector, < 1, 0 >, represents this
document using a binary representation. This binary representation can be
used to produce a similarity coefficient, but it does not take into account the
frequency of a term within a document. By extending the representation to
include a count of the number of occurrences of the terms in each component,
the frequency of the terms can be considered. In this example, the vector would
now appear as < 2, 0 >.

Page 27 of 262

14 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Figure 2.1. Vector Space Model

t1 - (dn ,1) - (dlO ,2) ~ -

t2

t. - (dj, t{j) I ~

tn

A simple example is given in Figure 2.2. A component of each vector is
required for each distinct term in the collection. Using the almost humorous
example of a language with a two word vocabulary (only A and I are valid
terms), all queries and documents can be represented in two dimensional space.
A query and three documents are given along with their corresponding vectors
and a graph of these vectors. The similarity coefficient between the query and
the documents can be computed as the distance from the query to the two
vectors. In this example, it can be seen that document one is represented by
the same vector as the query so it will have the highest rank in the result set.

Instead of simply specifying a list of terms in the query, a user is often given
the opportunity to indicate that one term is more important than another.
This was done initially with manually assigned term weights selected by users.
Another approach uses automatically assigned weights-typically based on the
frequency of a term as it occurs across the entire document collection. The idea
was that a term that occurs infrequently should be given a higher weight than
a term that occurs frequently. Similarity coefficients that employed automat-

Page 28 of 262

RETRIEVAL STRATEGIES 15

Figure 2.2. Example: Vector Space Model with a 2 Term Vocabulary

D1 =~ =< 1 1 >

D2 =Li =< 10>
D3 =DJ =<01 >

a =[KJJ = < 1 1 >

1
D3

Q and D1

y

D2

~ 0 X 1

ically assigned weights were compared to manually assigned weights [Salton,
1969, Salton, 1970]. It was shown that automatically assigned weights perform
at least as well as manually assigned weights [Salton, 1969, Salton, 1970]. Un­
fortunately, these results did not include the relative weight of the term across
the entire collection.

The value of a collection weight was studied in the 1970s. The conclusion
was that relevance rankings improved if collection-wide weights were included.
Although relatively small document collections were used to conduct the exper­
iments, the authors still concluded that, "in so far as anything can be called a
solid result in information retrieval research, this is one" [Robertson and Sparck
Jones, 1976].

This more formal definition, and slightly larger example, illustrates the use
of weights based on the collection frequency. Weight is computed using the
Inverse Document Frequency (IDF) corresponding to a given term.

Page 29 of 262

16 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

To construct a vector that corresponds to each document, consider the fol-
lowing definitions:

n = number of distinct terms in the document collection
t/ii = number of occurrences of term ti in document Di [term frequency]
d!J = number of documents which contain tJ
id/; = log(,D;) where d is the total number of documents [inverse document

frequency]

The vector for each document has n components and contains an entry
for each distinct term in the entire document collection. The components in
the vector are filled with weights computed for each term in the document
collection. The terms in each document are automatically assigned weights
based on how frequently they occur in the entire document collection and how
often a term appears in a particular document. The weight of a term in a
document increases the more often the term appears in one document and
decreases the more often it appears in all other documents.

A weight computed for a term in a document vector is non-zero only if the
term appears in the document. For a large document collection consisting of
numerous small documents, the document vectors are likely to contain mostly
zeros. For example, a document collection with 10,000 distinct terms results
in a 10,000-dimensional vector for each document. A given document that
has only 100 distinct terms will have a document vector that contains 9,900
zero-valued components.

Calculation of the weighting factor (d) for a term in a document is defined as
a combination of term frequency (ti), and inverse document frequency (id/).
To compute the value of the jth entry in the vector corresponding to document
i, the following equation is used:

dij = t/;; X id/j

The two important factors used in computing this coefficient are term fre­
quency and inverse document frequency. Consider a document collection that
contains a document, D 1 , with ten occurrences of the term green and a doc­
ument, D2 , with only five occurrences of the term green. If green is the only
term found in the query, then document D1 is ranked higher than D 2 •

When a document retrieval system is used to query a collection of documents
with t terms, the system computes a vector D (du, di2, ••• , dit) of size t for
each document. The vectors are filled with term weights as described above.
Similarly, a vector Q (wq1, wq2, ••. , Wqt) is constructed for the terms found in
the query.

A simple similarity coefficient (SC) between a query Q and a document Di
is defined by the product of the two vectors. Since a query vector is similar in
length to a document vector, this same measure is often used to compute the

Page 30 of 262

RETRIEVAL STRATEGIES 17

similarity between two documents. We discuss this application of an SC as it
applies to document clustering in Section 3.2.

t

SC(Q, Di)= L Wqj X dij

j=l

2.1.1 Example of Similarity Coefficient

Consider a case insensitive query and document collection with a query Q and
a document collection consisting of the following three documents:

Q: "gold silver truck"
D1 : "Shipment of gold damaged in a fire"
D 2 : "Delivery of silver arrived in a silver truck"
D 3 : "Shipment of gold arrived in a truck"

In this collection, there are three documents, so n = 3. If a term appears in
only one of the three documents, its id/ is log clJ; = log f = 0.477. Similarly,

if a term appears in two of the three documents its id/ is log! = 0.176, and a
term which appears in all three documents has an id/ of log J = 0.

The idf for the terms in the three documents is given below:

id/a= 0
id/arrived= 0.176
id/damaged = 0.477
id/delivery = 0.477
id/fire = 0.477
id/gold = 0.176
idf;n = 0
id/of= 0
id/silver = 0.477
id/shipment = 0.176
id/truck = 0.176

Document vectors can now be constructed. Since eleven terms appear in the
document collection, an eleven-dimensional document vector is constructed.
The alphabetical ordering given above is used to construct the document vector
so that t1 corresponds to term number one which is a and t2 is arrived, etc.
The weight for term i in vector j is computed as the id/; x t/;;
The document vectors are:

SC(Q, D1 } = (0)(0) + (0)(0} + (0}(0.477) + (0}(0}

+ (0)(0.477) + (0.176)(0.176} + (0)(0} + (0)(0}

Page 31 of 262

18 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

docid ti h
D1 0 0
D2 0 .176
D3 0 .176

Q 0 0

Similarly,

fa t4 ts t6 h ts t9
.477 0 .477 .176 0 0 0

0 .477 0 0 0 0 .954
0 0 0 .176 0 0 0
0 0 0 .176 0 0 .477

+ (0.477)(0) + (0)(0.176) + (0.176)(0)
(0.176)2 ~ 0.031

ho
.176

0
.176

0

(0.954)(0.477) + {0.176)2 ~ 0.486

SC(Q,D3) (0.176)2 + (0.176)2 ~ 0.062

Hence, the ranking would be D2 , D3 , D1 .

tu
0

.176

.176

.176

Implementations of the vector space model and other retrieval strategies typ­
ically use an inverted index to avoid a lengthy sequential scan through every
document to find the terms in the query. Instead, an inverted index is gener­
ated prior to the user issuing any queries. Figure 2.3 illustrates the structure
of the inverted index. An entry for each of the n terms is stored in a structure
called the index. For each term, a pointer references a linked list called the
posting list. The posting list contains an entry for each unique document that
contains the term. In the figure below, the posting list contains both a docu­
ment identifier and the term frequency. The posting list in the figure indicates
that term t1 appears once in document one and twice in document ten. An
entry for an arbitrary term ti indicates that it occurs tf times in document
j. Details of inverted index construction and use are provided in Chapter 4,
but it is useful to know that inverted indexes are commonly used to improve
run-time performance of various retrieval strategies.

Although first proposed in 1975, the vector space model is still a popular
means of computing a measure of similarity between a query and a document
(Salton, 1991]. The measure is important as it is used by a retrieval system
to identify which documents are displayed to the user. Typically, the user
requests the top n documents, and these are displayed in order of the similarity
coefficient.

In 1988, several experiments were done to improve on the basic combination
of tf-idf weights (Salton and Buckley, 1988]. Many variations were studied,
and the following weight for term j in document i was identified as a good
performer:

Wij = t · 2
~i=1 ((logtfu + 1.0) * id/j]

(log tf;i + 1.0) * id/j

The motivation for this weight is that a single matching term with a high
term frequency can skew the effect of remaining matches between a query and

Page 32 of 262

RETRIEVAL STRATEGIES 19

Figure 2.3. Example: Inverted Index

t1 - (dn ,1) - (d10 ,2)
~ -

t2

t- - (dj, tfi) 1 ~

tn

a given document. To avoid this, the ln(t/) + 1 is used reduce the range of
term frequencies. A variation on the basic theme is to use weight terms in the
query differently than terms in the document.

One term weighting scheme, referred to as lnc.ltc, has been found to be
effective. It uses a document weight of (1 + ln(t/))(id/) and query weight of
(1 + ln(t/)). The label lnc.ltc is of the form: qqq.ddd where qqq refers to query
weights and ddd refers to document weights. The three letters: qqq or ddd are
of the form xyz.

The first letter, x, is either n, l, or a. n indicates the "natural" term fre­
quency or just t f is used. l indicates that the logarithm is used to scale down
the weight so 1 + log(t/) is used. a indicates that an augmented weight was
used where the weight is 0.5 x 0.5 x t/!~ ..

The second letter, y, indicates whether or not the id/ was used. A value of
n indicates that no id/ was used while a value oft indicates that the id/ was
used.

Page 33 of 262

20 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

The third letter, z, indicates whether or not document length normalization
was used. A value of n indicates no normalization was used, a value of c
indicates the standard cosine normalization was used, and a value of u indicates
Singhal length normalization was used [Singha!, 1997].

2.1.2 Similarity Measures

Several different means of comparing a query vector with a document vector
have been implemented. These are well documented and are presented here
simply as a quick review. The most common of these is the cosine measure
where the cosine of the angle between the query and document vector is given:

Since the JE~=l (w~i) appears in the computation for every document,
the cosine coefficient should give the same relevance results as dividing the
inner product by the magnitude of the document vector. Note that the cosine
measure "normalizes" the result by considering the length of the document.
With the inner product measure, a longer document may result in a higher
score simply because it is longer, and thus, has a higher chance of containing
terms that match the query-not necessarily because it is relevant.

The Dice coefficient is defined as:

2'°'t· w ·d··
SC(Q D·) = L..JJ=l qJ •J

' • °"t (d· ·)2 °"t (·)2 L..Jj=l •J L..Jj=l Wqi

The Jaccard coefficient is defined as:

SC(Q D·) - 2:;=l Wqjdij

' ' - L~=l(d;j) 2 + L~=I(Wqj)2 - L~=l Wqjdij

The cosine measure levels the playing field by dividing the computation
by the length of the document vector. A recent Ph.D. thesis has described
modifications to this basic means of document normalization [Singhal, 1997].
The assumption used in the cosine measure is that document length has no
impact on relevance. Without a normalization factor, longer documents are
more likely to be found relevant simply because they have more terms which
increases the likelihood of a match. Dividing by the document vector removes
the size of the document from consideration.

It turns out that (at least for the TREC data), this basic assumption is
not correct. Taking all of the relevant documents found for a set of fifty TREC
queries, Singhal found that more documents judged to be relevant actually were
found in longer documents. The reason for this may be that a longer document
simply has more opportunity to have some components that are relevant to a
given query.

Page 34 of 262

RETRIEVAL STRATEGIES 21

To identify a means of adjusting the normalization factor, Singhal compared

the likelihood of relevance with the likelihood of retrieval in a collection where
the documents relevant to a set of queries was known. Ideally, if the probability
of retrieval and the probability of relevance are both plotted against the length
of the document, the two curves should be roughly the same. Since this is not
the case (the two curves actually cross), there must be a document length in
which the probability of relevance equals the probability of retrieval. Before
this point (referred to as the pivot), a document is more likely to be retrieved
than relevant. After this point, the reverse is true. Once the pivot is found, a
"correction factor" can be used to adjust the normalization. The "correction
factor" is computed from a linear equation whose value at pivot is equal to pivot

and whose slope is selected to increase the normalization for shorter documents
so that their probability of selection is equal to their probability of relevance.
Thus, the similarity coefficient is:

This scheme has two variables: s and p for the slope and pivot, respectively.
However, it is possible to express the slope as a function of pivot. Singhal selects
as pivot the average normalization factor taken over the entire collection prior
to any correction and adjusts the slope accordingly. At the same time the
normalization factor is divided by (1.0 - s)p. The resulting equation for the
similarity coefficient:

where avgn is the average document normalization factor before any correction
is made.

The pivoted scheme works fairly well for short and moderately long doc­
uments, but extremely long documents tend to be more favored than those
without any normalization. To remedy this, the number of unique terms in a
document, ldi I is proposed as the normalization function prior to any adjust­
ment.

A final adjustment is made to account for extremely high term frequencies
that occur in very large documents. First, a weight of (1 + log t/) is used
to scale the frequency. To account for longer documents, an individual term
weight is divided by the weight given to the average term frequency.

The new weight, dij, is computed as-

d·· _ 1 +logtf
'' - 1 + log(at/)

Page 35 of 262

22 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Using this new weight, and dividing it by the correction factor gives the follow­
ing equation:

1:;=l Wqjd;j

SC(Q, D;) = ((1.0 - s)p + (s)(jd;I))

The modified normalization factor makes it more likely to retrieve longer doc­
uments and consistently shows about a ten percent improvement for TREC
queries.

It should also be noted that the vector space model assumes terms are inde­
pendent. One approach to alleviating the question of term independence in the
vector space model is to change the basis. Although changing the basis does
not totally eliminate the problem, it can reduce it. The idea is to pick a basis
vector for each combination of terms that exist in a document (regardless of
the number of occurrences of the term). The new basis vectors can be made
mutually orthogonal and can be scaled to be unit vectors. The documents
and the query can be expressed in terms of the new basis vectors. Using the
procedure in conjunction with other (possibly probabilistic) methods avoids in­
dependence assumptions, but in practice, it has not been shown to significantly
improve effectiveness.

2.2 Probabilistic Retrieval Strategies

The probabilistic model computes the similarity coefficient (SC) between a
query and a document as the probability that the document will be relevant
to the query. This reduces the relevance ranking problem to an application of
probability theory. A survey on probabilistic methods is given in (Fuhr, 1992].

Probability theory can be used to compute a measure of relevance between
a query and a document. Two fundamentally different approaches have been
proposed. The first relies on usage patterns to predict relevance [Maron and
Kuhns, 1960], the second uses each term in the query as clues as to whether or
not a document is relevant [Robertson and Sparck Jones, 1976].

The original work on the use of probability theory to retrieve documents
can be traced to Maron and Kuhns. Their work developed an area of research
where the probability that a document will be relevant given a particular term
is estimated.

All of the more recent work on probabilistic retrieval stems from the concept
of estimating a term's weight based on how often the term appears or does not
appear in relevant documents and non-relevant documents, respectively. Sec­
tion 2.2.1 describes the simple term weight model, a non-binary independence
model is discussed in Section 2.2.2, and Sections 2.2.3 and 2.2.4 describe the
Poisson and component-based models which have both performed well on the
TREC collection. Finally, Section 2.2.5 focuses on two large issues with the
model-parameter estimation and independence assumptions.

Page 36 of 262

RETRIEVAL STRATEGIES 23

2.2.1 Simple Term Weights

The use of term weights is based on the probability ranking principle (PRP),
which assumes that optimal effectiveness occurs when documents are ranked
based on an estimate of the probability of their relevance to a query [Robertson,
1977].

The key is to assign probabilities to components of the query and then use
each of these as evidence in computing the final probability that a document
is relevant to the query.

The terms in the query are assigned weights which correspond to the prob­
ability that a particular term, in a match with a given query, will retrieve a
relevant document. The weights for each term in the query are combined to
obtain a final measure of relevance.

Most of the papers in this area incorporate probability theory and describe
the validity of independence assumptions, so a brief review of probability theory
is in order.

Suppose we are trying to predict whether or not a softball team called the
Salamanders will win one of its games. We might observe, based on past ex­
perience, that they usually win on sunny days when their best shortstop plays.
This means that two pieces of evidence, outdoor-conditions and presence of
good-shortstop, might be used. For any given game, there is a seventy five per­
cent chance that the team will win if the weather is sunny and a sixty percent
chance that the team will win if the shortstop plays. Therefore, we write-

p(win I sunny)= 0.75
p(win I good-shortstop) = 0.6

The conditional probability that the team will win given both situations is
written as p(win I sunny, good-shortstop). This is read "the probability that
the team will win given that there is a sunny day and the good-shortstop
plays." We have two pieces of evidence indicating that the Salamanders will
win. Intuition says that together the two pieces should be stronger than either
alone. This method of combining them is to "look at the odds." A seventy-five
percent chance of winning is a twenty-five percent chance of losing, and a sixty
percent chance of winning is a forty percent chance of losing. Let us assume
the independence of the pieces of evidence.

p(win I sunny, good-shortstop) = o:
p(win I sunny) = /3
p(win I good-shortstop) = 'Y

By Bayes' Theorem-

P(win, sunny, good-shortstop) P(sunny, good-shortstoplwin)P(win)
o:---=--c,---------,------,------------

- P(sunny, good-shortstop) - P(sunny, good-shortstop)

Page 37 of 262

24 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Therefore-

a P(sunny, good-shortstopjwin)P(win) =---------_;_ ___ _
1 - a P(sunny, good-shortstopjlose)P(lose)

Solving for the first term (because of the independence assumptions)-

P(sunny, good-shortstoplwin)
P(sunny, good-shortstopllose)

P(sunnylwin)P(good-s hortstoplwin)
P(sunnyllose)P(good-shortstopllose)

Similarly,

{3 P(sunnylwin)P(win)
1- {3 = P(sunnyjlose)P(lose)

'Y --=
P (good-s hortstopj win)P (win)

1 -'Y P(good-shortstopjlose)P(lose)

Making all of the appropriate substitutions, we obtain-

1:a = (1~/3) (;~~:;D (i2'Y) (;~~:;D (;~:::D
Simplifying-

1:a = C~/3) c:'Y) (;~~:;D
Assume the Salamanders are a 0.500 ball club (that is they win as often as

they lose) and assume numeric values for {3 and 'Y of 0.6 and 0.75, respectively.
We then obtain-

a (0.6) (0.75) (0.500) ()()() 1 - a = 0.4 0.25 0.500 = l.5 3·0 l.O = 4·5

Solving for a gives a value of -!r = 0.818.

Note the combined effect of having both sunny weather and the good­
shortstop results in a higher probability of success than either individual con­
dition.

The key is the independence assumptions. The likelihood of the weather
being nice and the good-shortstop showing up are completely independent. The
chance the shortstop will show up is not changed by the weather. Similarly,
the weather is not affected by the presence or absence of the good-shortstop.
If the independence assumptions are violated-suppose the shortstop prefers
sunny weather- special consideration for the dependencies is required. The
independence assumptions also require that the weather and the appearance of
the good-shortstop are independent given either a win or a loss.

For an information retrieval query, the terms in the query may be viewed as
indicators that a given document is relevant. The presence or absence of query

Page 38 of 262

RETRIEVAL STRATEGIES 25

term A can be used to predict whether or not a document is relevant. Hence,
after a period of observation, it is found that when term A is in the query and
the document, there is an x percent chance the document iis relevant. We then
assign a probability to term A. Assuming independence of terms, this may be
done for each of the terms in the query. Ultimately, the product of all the
weights may be used to compute the probability of relevance.

We know that independence assumptions are really not a good model of
reality. Some research has investigated why systems with these assumptions
have performed reasonably well, despite their theoretical problems [Cooper,
1991]. For example, a relevant document that has the term apple in response
to a query for apple pie probably has a better chance of having the term pie than
some other randomly selected term. Hence, the key independence assumption
is violated.

Most work in the probabilistic model assumes independence of terms because
handling dependencies involves substantial computation. It is unclear whether
or not effectiveness is improved when dependencies are considered. We note
that relatively little work has been done implementing these approaches. They
are computationally expensive, but more importantly they are difficult to esti­
mate. It is necessary to obtain sufficient training data about term co-occurence
in both relevant and non-relevant documents. Typically, it is very difficult to
obtain sufficient training data to estimate these parameters.

Figure 2.4 illustrates the need for training data with most probabilistic mod­
els. A query with two terms, q1 and q2 , is executed. Five documents are
returned and an assessment is made that documents two and four are rele­
vant. From this assessment, the probability that a document is relevant (or
non-relevant) given that it contains term q1 is computed. Likewise, the same
probabilities are computed for term q2 • Clearly these probabilities are estimates
based on training data. The idea is that sufficient training data can be obtained
so that when a user issues a query, a good estimate of which documents are
relevant to the query can be obtained.

Consider a document, d;, consisting of terms (w1 , w2 , ... , Wt), where w; is
the estimate that term i will result in this document being relevant. The weight
or "odds" that document d; is relevant is based on the probability of relevance
for each term in the document. For a given term in a document, its contribution
to the estimate of relevance for the entire document is computed as-

P (wi lrel)
P(w;lnonrel)

The question is then, how do we combine the odds of relevance for each term
into an estimate for the entire document? Given our independence assumptions,
we can multiply the odds for each term in a document to obtain the odds that
the document is relevant. Taking the log of the product yields-

1 P(w;I rel) 1 P(wilrel)
(t) t ()

og TI P(wil nonrel) = ~ og P(w;ln«mrel)

Page 39 of 262

26 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Figure 2.4. Training Data for Probabilistic Retrieval

Query q (q1 ,q2)

Run qand retrieve top ndocuments (let n = 5)
di represents an arbitrary document

dl d 3 d4 d s

LJ LJ LJ W,~q2
Assumed 2 and d 4 are relevant:

1
P(q 1 I di is relevant) =

2

P(q 1 I di is not relevant) =

P(q 2 I di is relevant) = 1

P(q 2 I di is not relevant)

2

3

1

3

We note that these values are computed based on the assumption that terms will
occur independently in relevant and non-relevant documents. The assumption
is also made that if one term appears in a document, then it has no impact on
whether or not another term will appear in the same document.

Now that we have described how the individual term estimates can be com­
bined into a total estimate of relevance for the document, it is necessary to
describe a means of estimating the individual term weights. Several different
means of computing the probability of relevance and non-relevance for a given
term have been studied since the introduction of the probabilistic retrieval
model. In their 1976 paper, Robertson and Sparck Jones considered several
methods (Robertson and Sparck Jones, 1976]. They began by presenting two
mutually exclusive independence assumptions-

11: The distribution of terms in relevant documents is independent and their
distribution in all documents is independent.

Page 40 of 262

RETRIEVAL STRATEGIES 27

12: The distribution of terms in relevant documents is independent and their
distribution in non-relevant documents is independent.

They also presented two methods, referred to as ordering principles, for pre­
senting the result set-

01: Probable relevance is based only on the presence of search terms in the doc­
uments.

02: Probable relevance is based on both the presence of search terms in doc­
uments and their absence from documents.

11 indicates that terms occur randomly within a document-that is, the
presence of one term in a document in no way impacts the presence of another
term in the same document. This is analogous to our example in which the
presence of the good-shortstop had no impact on the weather given a win. This
also states that the distribution of terms across all documents is independent
unconditionally for all documents-that is, the presence of one term in a doc­
ument in no way impacts the presence of the same term in other documents.
This is analogous to saying that the presence of a good-shortstop in one game
has no impact on whether or not a good-shortstop will play in any other game.
Similarly, the presence of good-shortstop in one game has no impact on the
weather for any other game.

12 indicates that terms in relevant documents are independent-that is, they
satisfy 11 and terms in non-relevant documents also satisfy 11. Returning to our
example, this is analogous to saying that the independence of a good-shortstop
and sunny weather holds regardless of whether the team wins or loses.

01 indicates that documents should be highly ranked only if they contain
matching terms in the query (i.e. the only evidence used is which query terms
are actually present in the document). We note that this ordering assumption
is not commonly held today because it is also important to consider when
query terms are not found in the document. This is inconvenient in practice.
Most systems use an inverted index that identifies for each term, all occurences
of that term in a given document. If absence from a document is required,
the index would have to identify all terms not in a document (for a detailed
discussion of inverted indexes see Section 4.1. To avoid the need to track the
absence of a term in a document, the estimate makes the zero point correspond
to the probability of relevance of a document lacking all the query terms-as
opposed to the probability of relevance of a random document. The zero point
does not mean that we do not know anything- it simply means that we have
some evidence for non-relevance. This has the effect of converting the 02 based
weights to presence-only weights.

02 takes 01 a little further and says that we should consider both the
presence and the absence of search terms in the query. Hence, for a query that
asks for term t1 and term t2-a document with just one of these terms should
be ranked lower than a document with both terms.

Page 41 of 262

28 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Four weights are then derived based on different combinations of these or­
dering prinicples and independence assumptions. Given a term, t, consider the
following quantities-

N number of documents in the collection

R = number of relevant documents for a given query q

n number of documents that contain term t
r number of relevant documents that contain term t

Choosing 11 and O 1 yields the following weight-

W1 = log (%)
Choosing 12 and 01 yields the following weight-

W2 = log (n~r)
N-R

Choosing 11 and 02 yields the following weight-

w3 = log (R;;r)
N-n

Choosing 12 and 02 yields the following weight-

W4 = log (~)
(N-n)-(R-r)

Robertson and Sparck Jones argue that 02 is correct and that 12 is more likely
than 11 to describe what actually occurs. Hence, w4 is most likely to yield the
best results. They then present results that indicate that W4 and w3 performed
better than w1 and w2 • Most subsequent work starts with W4 and extends it to
contain other important components such as the within-document frequency of
the term and the relative length of a document. We describe these extensions
to w4 in Section 2.2.3.

When incomplete relevance information is available, 0.5 is added to the
weights to account for the uncertainty involved in estimating relevance. Robert­
son and Sparck Jones suggest that, "This procedure may seem somewhat ar­
bitrary, but it does in fact have some statistical justification." The modified
weighting function appears as-

w _ lo (R-r)+o.s (
r+0.5)

- g (n-r +o.5
(N-n)-(~-r)+0.5

Page 42 of 262

RETRIEVAL STRATEGIES 29

The claimed advantage to the probabilistic model is that it is entirely based
on probability theory. The implication is that other models have a certain
arbitrary characteristic. They may perform well experimentally, but they lack
a sound theoretical basis because the parameters are not easy to estimate.

Either complete training data are required, or an inaccurate estimate must be

made.
This debate is similar to one that occurs when comparing a relational to an

object-oriented database management system (DBMS). Object-oriented DBMS
are sometimes said to model "real world" data, but lack sound theoretical basis.

Relational DBMS, on the other hand, have very solid set-theoretic underpin­

nings, but sometimes have problems modeling real data.

2.2.1.1 Example. Using the same example we used previously with the
vector space model, we now show how the four different weights can be used
for relevance ranking.

Again, the documents and the query are-

Q : "gold silver truck"
D 1 : "Shipment of gold damaged in a fire."
D2 : "Delivery of silver arrived in a silver truck."
D 3 : "Shipment of gold arrived in a truck."

Since training data are needed for the probabilistic model, we assume that
these three documents are the training data and we deem documents D 2 and
D3 as relevant to the query.

To compute the similarity coefficient, we assign term weights to each term
in the query. We then sum the weights of matching terms. There are four
quantities we are interested in:

N = number of documents in the collection

n = number of documents indexed by a given term

R = number of relevant documents for the query

r number of relevant documents indexed by the given term

These values are given in the table below for each term in the query.

variable gold silver truck
N 3 3 3
n 2 1 2

R 2 2 2
r 1 1 2

Page 43 of 262

30 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

As we stated previously, Robertson and Sparck Jones described the following
four different weighting equations to estimate, for a given term, the likelihood
that a document which contains the query term is relevant.

w3 = log [(R:r)]

~

[r l 1 (R-rJ
W4 = og (n-r)

(N-n)-(R-r)

Note that with our collection, the weight for silver is infinite, since (n - r) =
0. This is because "silver" only appears in relevant documents. Since we
are using this procedure in a predictive manner, Robertson and Sparck Jones
recommended adding constants to each quantity (Robertson and Sparck Jones,
1976). The new weights are given below:

(R+If [(,-±<l_.fill
W1 = log bv~~~

(R+If [(,-±<l_.fil l
W2 = log (n-r+0.5)

(N-R+l)

[
(r+0.5) l - l {R-r+0.5)

W3 - og (n+l)
{N-n+l)

[
(r+0.5) l

1 (R-r+0.5)
W 4 = og (n-r+0.5)

(N-n-(R-rf+o.5

Page 44 of 262

RETRIEVAL STRATEGIES 31

Using these equations, we derive the following weights:

gold

silver

truck

gold

silver

truck

gold

silver

truck

gold

_ WI,_ 0.5_ [~]
W1 - log ~~t~~ - log 0_6 - -0.079

WI, 0.5 [~]
w1 = log ~~t~~ = log 0.4 = 0.097

[
~] 0.833

w1 = log ~~!~j = log().6 = 0.143

_ WI, _ 0.5 _ [~] w2 - log (2-i+o.fi) - log 0_75 - -0.176
(3-2+1)

WI, [~ l w2 = log (l-l+0.5)
3-2+1

[~ l l2+IJ
w2 = log (2-2+0.5)

3-2+1

I 0.5 = og 0_25 = 0.301

.833 = log 0_25 = 0.523

= 1 <2-i+0-5) = 1 1.0 = -0 176 [
(l+o.5) l

W3 og ~ og 1.5 .
"{3=-2-tiJ

[,.~., l 0 ·5> = I 1.0 = 0 176
1 og .667 ·
+1

[,_,, l 2-2+0.5} 5
~ = log 1.5 = 0.523
"{3=-2-tiJ

[
(1+0.0) l (2-l+0.5)

W4 = log ,2_1+o.s)
(3-2-2+1+0.5)

1 = log 3 = -0.477

Page 45 of 262

32 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

silver

[
(H0.5} l _ (2-1+0.s)

W4 - log (1-1+0.s)
(3-1-2+1+0.s)

1 = log 0_333 = 0.477

truck

[
(2+0.5) l (2-2+0.5) 5

w4 = log (2 _ 2+o.5) = log (0_333) = 1.176
(3-2-2+2+0.5)

The results are summarized in Table 2.1:

Table 2.1. Example: Term Weights

term W1 W2 W3 W4

gold -0.079 -0.176 -0.176 -0.477
silver 0.097 0.301 0.176 0.477
truck 0.143 0.523 0.523 1.176

Table 2.2. Example: Document Weights

document W1 W2 W3 W4

Di -0.079 -0.176 -0.176 -0.477
D2 0.240 0.824 0.699 1.653
D3 0.064 0.347 0.347 0.699

The similarity coefficient for a given document is obtained by summing the
weights of the terms present. Table 2.2 gives the similarity coefficients for each
of the four different weighting schemes. For D 1 , gold is the only term to appear
so the weight for D 1 is just the weight for gold, which is -0.079. For D 2 , silver
and truck appear so the weight for D 2 is the sum of the weights for silver and
truck, which is 0.097 + 0.143 = 0.240. For D 3 , gold and truck appear so the
weight for D3 is the sum for gold and truck, which is -0.079 + 0.143 = 0.064.
The terms may be summed as the need to combine them (multiply) is removed
since their definition takes the logarithm of the weight.

2.2.1.2 Results. Initial tests of the four weights were done on the 1,400
document Cranfield collection. These showed that the third and fourth weights
performed somewhat comparably, but were superior to the first and second
weights. An additional study against the 27,361 document UKCIS collection
measured the difference in the first weight and the fourth weight (Sparck Jones,
1979a]. Again a significant improvement was found in use of the fourth weight.

Page 46 of 262

RETRIEVAL STRATEGIES 33

Two other baseline tests were run. The first simply ranked documents based
on the number of term matches, the second test used inverse document fre­
quency as an estimated weight. Both of these approaches were inferior to any
of the four weights, but the use of the id/ was better than simply counting term
matches. In all cases, the ranking of the documents was D2, D3, Dl-the same
ranking that was obtained with the vector space model in Section 2.1.

The number of times a term appears in a given document is not used, as
the weighting functions are based on whether or not the term appears in lots
of relevant documents. Thus, if term t appears 50 times over the span of 10
relevant documents and term u appears only 10 times in the same relevant
documents, they are given the same weight.

2.2. 1.3 Incorporating Term Frequency. Term frequency was not used
in the original probabilistic model. Croft and Harper incorporate term fre­
quency weights in [Croft and Harper, 1979]. Relevance is estimated by includ­
ing the probability that a term will appear in a given document, rather than
the simple presence or absence of a term in a document. The term frequency
is used to derive an estimate of how likely it is for the term to appear in a
document. This new coefficient is given below.

The P(d;j) indicates the probability that term i appears in document j, and
can be estimated simply as the term frequency of term i ill document j. Un­
fortunately, this frequency is not a realistic probability so another estimate,
normalized term frequency is used. The normalized term frequency is com­
puted as-

tfii
ntf;i = ------''----­

max(tfii, thi, ... , t/tj)

Normalized term frequency is the ratio of the term frequency of a given term
to the maximum term frequency of any term in the document. If term i appears
ten times in the document, and the highest term frequency of any other term
in the document is 100, the ntf;i is 0.1.

Croft and Harper compared the use of the normalized term frequency, the
unnormalized term frequency, and a baseline without any use of term fre­
quency for the Cranfield collection and the 11,429 document NPL collection.
The results were statistically significant in that the normalized term frequency
outperformed the baseline. In many cases, the unnormalized term frequency
performed worse than the baseline.

2.2.2 Non-Binary Independence Model

The non-binary independence model developed by Yu, Meng, and Park incor­
porates term frequency and document length, somewhat naturally, into the

Page 47 of 262

34 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

calculation of term weights [Yu et al., 1989]. Once the term weights are com­
puted, the vector space model (see Section 2.1) is used to compute an inner
product for obtaining a final similarity coefficient.

The simple term weight approach estimates a term's weight based on whether
or not the term appears in a relevant document. Instead of estimating the prob­
ability that a given term will identify a relevant document, the probability that
a term which appears tf times will appear in a relevant document is estimated.
For example, consider a ten document collection in which document one con­
tains the term blue one time and document two contains ten occurrences of the
term blue. Assume both documents one and two are relevant and the eight
other documents are not relevant. With the simple term weight model, we
would compute the p(Rel I blue) = 0.2 because blue occurs in two out of ten
relevant documents.

With the non-binary independence model, we calculate a separate probabil­
ity for each term frequency. Hence, we compute the probability that blue will
occur one time P(l I R) = 0.1, because it did occur one time in document one.
The probability that blue will occur ten times is P(lO I R) = 0.1, because it
did occur ten times in one out of ten documents.

To incorporate document length, the weights are normalized based on the
size of the document. Hence, if document one contains five terms and document
two contains ten terms, we recompute the probability that blue occurs one time
and is relevant to the probability that blue occurs 0.5 times and is relevant.

The probability that a term will result in a non-relevant document is also
used. The final weight is computed as the ratio of the probability that that a
term will occur tf times in relevant documents to the probability that the term
will occur t/ times in non-relevant documents.

More formally-

! P(d;IR)
og P(dilN)

where P(dilR) is the probability that a relevant document will contain d; oc­
currences of the ith term, and P(d;IN) is the probability that a non-relevant
document has d; occurrences of the ith term.

2.2.2.1 Example. Returning to our example, the documents and the query
are:

Q : "gold silver truck"
D1 : "Shipment of gold damaged in a fire."
D2 : "Delivery of silver arrived in a silver truck."
D3 : "Shipment of gold arrived in a truck."

Thus, we have three documents with eleven terms and a single query. We order
the terms alphabetically so that t1 corresponds to term number one which is a
and t2 is arrived, etc. This is summarized below-

Page 48 of 262

RETRIEVAL STRATEGIES 35

docid ti t2 h t4 t5 fo h ts t9 tio tu

D1 1 0 1 0 1 1 1 1 0 1 0
D2 1 1 0 1 0 0 1 1 2 0 1
D3 1 1 0 0 0 1 1 1 0 1 1
Q 0 0 0 0 0 1 0 0 1 0 1

The training data includes both relevant and non-relevant documents. We
assume that document two and three are relevant and document one is not
relevant (we are free to do this as relevance is, after all, in the eyes of the
beholder). Normalizing by document length gives-

docid ti h t3 t4 t5 t6 t1 ts t9 tio tu

D1
1 0 1 0 1 1 1 1 0 1 0 ,; ,; ,; ,; ,; ,; ,;

D2
1 1 0 1 0 0 1 1 1 0 1
0 0 0 0 0 ::;: Ji

D3
1 I 0 0 0 I 1 1 0 I 1 ,; ,; ,; 7 7 7 7

We do not normalize the query. The terms present in the query are gold, silver,
and truck. For D1 the weight of gold is

Of the two relevant documents, one has a frequency of t and one does not,
so P(tlR) = ½- However, the only non-relevant document has gold with a
frequency of ½, so P(½ IN) = 1.
For silver in D 1 we obtain:

[P(0IR)] 1
log P(0IN) = log 2 = -0.3010.

Weights for each term and a given term frequency can be computed in this way
for each term in a document. Vectors can then be constructed and a similarity
coefficient can be computed between a query and each document.

With our example, there are only a few frequencies to consider, but a nor­
mal collection would have a large number of frequencies, especially if document
length normalization is used. To alleviate this problem, it is possible to aggre­
gate all of the frequencies into classes. Thus, all of the documents with zero
frequency would be in one class, but for terms with positive term frequency,
intervals (O, Ji], (/1, '2], ... , Un, oo) would be selected such that the intervals
contain approximately equal numbers of terms. To obtain the weights, P(d;IR)
and P(d;IN) are replaced by P(d; E IJIR) and P(d; E IJIN), respectively. Ii
is the jth interval (/J-2, /J-il• The weight becomes:

Page 49 of 262

36 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

2.2.3 Poisson Model

Robertson and Walker have developed a probabilistic model which uses a Pois­
son distribution to estimate probabilities of relevance and incorporate term
frequency and document length (Robertson and Walker, 1994]. In the standard
probabilistic model, the weighting is given by-

w = logp(l - q)
q(l -p)

where p is the probability that the term is present given that a document is
relevant, and q is the probability that the term is present given that a document
is not relevant.

To incorporate the term frequencies, Pt/ is used. This indicates the prob­
ability that the term is present with frequency tf, given relevance and qt/ is
the corresponding probability for non-relevance. The subscript O denotes the
absence of a term. The weighting then becomes-

w = log {pi,)(qo)
(qt/)(po)

The assumption is made that terms randomly occur within the document ac­
cording to the Poisson distribution.

mt/
p(tf) =e-m­

tf!

The parameter m differs according to whether or not the document is about
the concepts represented by the query terms. This leads to the weighting-

(p' + (l-p')(~)tfei)(q'e(-i) + (1- q'))
w = log >.

(q' + (1 - q')(~,)ti ei)(p'e(-i) + (1 - p'))

where A is the Poisson mean for documents which are about the term t,
µ is the Poisson mean for documents which are not about the term t,
j is the difference: A - µ,
p' is the probability that a document is about t given that it is relevant, and
q' is the probability that a document is about t given that it is not relevant.

The difficulty with this weight is in its application; it is unlikely that there
will be direct evidence for any of the four parameters: p', q', .X, µ. The shape of
the curve is used, and simpler functions are found, based on the more readily
observable quantities: term frequency and document length, that have similar
shape. To incorporate term frequency, we use the function-

, tf
w = wk1 +tf

Page 50 of 262

RETRIEVAL STRATEGIES 37

where w is the standard probabilistic weight, and k1 is an unknown constant
whose value depends on the collection and must be determined experimentally.

Document length is also taken into account. The simplest means to account
for document length is to modify the equation given above for w' by substitut­
ing:

d documentlength

A averagedocumentlength

The new equation for w' is-

w' -w (tf)
- (k1l(d) + tf

The symmetry between documents and queries is used to incorporate the
query term frequency in a fashion similar to document frequency. A tuning
parameter k1 is used to scale the effect of document term frequency. Similarly,
another parameter k3 is used to scale the query term frequency (qt!). Finally,
a closer match to the 2-Poisson estimate can be attempted with an additional
term possessing a scaling factor of k2 . This term is-

(((A -d)))
k2 IQI (A +d)

where k2 is a constant that is experimentally determined, and !QI is the number
of query terms. This term enables a high value of k2 to give additional emphasis
to documents that are shorter than average. These modifications result in the
following similarity coefficient-

SC(Q,D;) t (r) ~lo ~ .£-J g (n-r)
j=l {N-n)-(R-r)

((k)!QI ((6 - dl;)))
2 (A+ dl;)

where--

N = number of documents in the collection

Page 51 of 262

38 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

n number of documents indexed by a given term

R number of relevant documents for the query

r = number of relevant documents indexed by the given term

th; = term frequency of term j in document i

qt!; term frequency of term j in query Q

dli number of terms in document i

IQI number of terms in the query

~ average document length

k1, k2, k3 tuning parameters

Small values for k1 and k3 have the effect of reducing the impact of term
frequency and query term frequency. If either is zero, the effect is to eliminate
that quantity. Large values of k1 and k3 result in significantly reducing the size
of the first term.

Including a factor of (k1 + 1) and (k3 + 1) in the numerator does not affect
the overall ranking because these factors apply equally to all documents. How­
ever, it does allow for the use of large values of k1 or k3 without reducing the
magnitude of the first term. Additionally, this normalizes the impact of the
tuning parameters. The idea is that when the term frequency is one, there is
no need to change the original weights.

To normalize for document length, the similarity measure also includes a
denominator of ~ in the first term. This makes good sense if the only reason
a document is long is because it is simply giving more detail about the topic.
In this case, long documents should not be weighted any more than short doc­
uments. However, it could be that a document is long because it is discussing
several unrelated topics. In this case, long documents should be penalized. A
new tuning parameter, b, allows for tuning a query based on the nature of the
document collection. This parameter is incorporated by substituting K for k1

in the factor involving t/;;, where-

K = k1 ((1 - b) + b (~i))
Incorporating the tuning parameter band placing (k1 + 1) and (k3 + 1) in the
numerator yields-

~l (~) L., og (n-r)
j=l (N-n)-(R-r)

SC(Q,Di) ((k1 + l)tfo) ((k3 + l)qtf;) +
K + tfi; k3 + qtf;

((k2)IQI:; !li)
For the experiments conducted as part of TREC-4, these values were taken as
(k1 = 1, k2 = 0, k3 = 8, b = 0.6) [Robertson et al., 1995).

Page 52 of 262

RETRIEVAL STRATEGIES 39

2.2.3.1 Ex81Ilple. Using the same documents and query as before, we pre­
viously computed W4 as-

gold= -0.477
silver = 0.477
truck= 1.176
avgdl = 2; = 7.33

Using the same parameters for k1 , k2 , k3 , bas given in the TREC-4 calibrations,
we compute values for dli:

dl1 = 7
dl2 = 8
dl3 = 7

For D 1 the only match with the query is "gold" which appears with a t/ = 1;
so, the SC for D1 is just the value for "gold" (Note the length of ell for D 1 is
seven).

K = l ((1 - 0.6) + (0;~~~7)) = 0.973

Now that we have the value of K, it is possible to compute the similarity
coefficient for D1 . The coefficient is a summation for all terms, but only one
term "gold" will have a non-zero value. We start with the value of w4 = - 1.099
which was obtained in Section 2.2.1.1.

((1+1)(1)) (8+1) (2) SC(Q,D1) = -0.477 0_973 + l 8 + 1 = -0.477 1.973 = -0.484

For D2 the terms that match the query "silver" and "truck", result in non-zero
values in the summation.

K = l (o.4+ (0.6)(8)) = 1.055
7.33

For "silver", t/12 = 2-

= -0 477 ((1 + 1H2)) ((8 + 1H2)) = 1124
W 4 • 1.055 + 2 8 + 2 .

For "truck", t/22 = 1-

w = 1.176 ((l + l)(l)) ((8 + l)(l)) = 1145
4 1.055 + 1 8 + 1 .

Page 53 of 262

40 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

SC(Q, D2) = 1.124 + 1.145 = 2.269

For D3 , dl = 7 so K = 0.973 (as in the case of D1). We have two terms "gold"
and "truck" that both appear once.
For "gold", t/13 = 1:

w =-0.477((l+l)(l)) ((8 +l)(l)) =-0.484
4 0.973 + 1 8 + 1

For "truck", t/23 = 1:

= 1176 ((1 + l)(l)) ((8 + l)(l)) = 1192
W 4 • 0.973 + 1 8 + 1 .

SC(Q,D3) = -0.484+ 1.192 = 0.708

Comparing the SC, with the term frequency, to the base SC, without the term
frequency we see-

Document Not/ tf
Di -0.477 -0.484
D2 1.653 2.269
D3 0.699 0.708

Overall, the document ranking is the same, but the use of term frequency
produced a more pronounced difference between the top ranked document D 2

and the remaining relevant document D3 •

2.2.4 Term Components

A variation on the standard probabilistic model is given in [Kwok, 1990]. The
premise of the algorithm is to rank documents based on the components of the
document. For example, a document can be partitioned into multiple para­
graphs and a similarity coefficient can be computed for each paragraph. Once
this is done, a measure is needed to combine the component similarity coeffi­
cients to develop a ranking for the entire document. Kwok proposes the use of
a geometric mean (for n numbers, the nth root of their product) to effectively
average the individual components.

The algorithm used to rank a given component certainly can vary, and the
size of a component can also vary. If the whole document is used as a compo­
nent, then we are back at traditional probabilistic information retrieval.

The basic weight for a given component is defined as the ratio of the proba­
bility of the component being relevant to the probability that it is not relevant.
This is-

Page 54 of 262

RETRIEVAL STRATEGIES 41

Wale= In (Talc) + In ((1 - Bale))
(1- Talc) Bale

Tale and Ba1c are weights that can be estimated in one of three different ways-

■ Initial estimate using self-relevance. A component which is relevant to itself,
results in-

where La is the number of components in the document, and F1c is the
number of occurrences of term k in the collection. Nw is the number of
distinct components in the collection.

■ Inverse collection term frequency (ICTF). Used as an initial estimate with
relevance feedback. Assume the estimate of B above is good because there
are probably more non-relevant than relevant documents. Hence, a term
that is infrequent in the entire collection has a low value of Bale• Assume
the initial estimate of Talc is poor and just use a constant p. Using Ta1c as
a constant results in the whole weight being equivalent to Bale• Using pin
our weight computation yields the following weight which is very close to
the id/.

[p] [1- B·le] Wile = In -1-- + In --•-
- p Bile

■ Essentially, weights are computed based on the use of feedback from the
user. (Use of relevance feedback will be discussed in more detail in Section
3.1). Once the estimates are obtained, all that remains is to combine the
component weights-in either query focused means, a document focused
measure, or a combined measure. Using the query as focus, the query
is given, and all the weights are computed as related to the query. The
geometric mean is then computed for each of the components. This reduces
to-

le (<4") tt Li Wale

A document focused measure computes the components of the query and then
averages them in relation to a given document. This reduces to-

Page 55 of 262

42 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

t (~~) w,,.
i=l 1

The combined measure can then be obtained. This combined measure is simply
the sum of the query focused and the document focused measures given as-

t (~")Wal,+ t (~~) Wal,
i=l i i=l 1

The component theory was shown to be comparable to term-based retrieval, and
superior for retrieval in the presence of relevance feedback. The combination
of query focused and document focused retrieval was almost always shown to
be superior than just query focused or just document focused retrieval.

We now use Kwok's measure to compute a similarity coefficient for the doc­
uments in our example. We note this is applicable when only single terms are
chosen as term components.

Q : "gold silver truck"
D1 : "Shipment of gold damaged in a fire."
D2 : "Delivery of silver arrived in a silver truck."
D3 : "Shipment of gold arrived in a truck."

docid ti h t3 t4 h t6 h ts
Di 1 0 1 0 1 1 1 1
D2 1 1 0 1 0 0 1 1
D3 1 1 0 0 0 1 1 1
Sum 3 2 1 1 1 2 3 3
Q 0 0 0 0 0 1 0 0

t9 t10 tu Length
0 1 0 7
2 0 1 8
0 1 1 7
2 2 2 22
1 0 1 0

We now need to compute a query focused similarity coefficient W,;q and a
document focused coefficient, Wi/d· The query focused coefficient is computed
as-

where wa1, is the weight of the kth term of the query, t,., and di,. is the frequency
oft,. in document di. Li is the length of di or the total number of components
of di. (In this example, components are terms).

l (r al,) l (1 - Ba1,) Wal, = n -1-- + n ---
- Tai, Sal,

Page 56 of 262

RETRIEVAL STRATEGIES 43

ra,. is the probability that t,. is present given that the document is relevant. It
is estimated by ~. where Qa/c is the frequency of term t,. in the query, and La

is the length of the query. Bd is the probability that t,. is present given that
the document is not relevant. It is estimated by R; where F,. is the collection
term frequency oft,. and Nw is the total number of terms in the collection.
Substituting from our example gives Wi/d for D1 and Qd = 1 fork= 1, 2, 3,
and La = 3, since each term in the query occurs once, and each term appears
only one time.

Since we take the query as being relevant to itself, the total relevance for
each term in the query is 1. ra/c = ½ for k = 1, 2, 3 and Ba/c = ; 2 for k = 1,
2, 3, since each term in the query occurs twice in the collection and the whole
collection has twenty-two terms.

1 (1-.l.)
Wa1=ln(l~½} +In ;/2

1 20
= In 2 + ln 2 = -0.693 + 2.303 = 1.609

Wa2 and Waa will have the same values since the values for ra,. and Ba/care equal
for k = 1, 2, 3.

Knowing the result of Wai for all three terms is 1.609, we multiply each term
by ~. which is a measure of term importance as compared to other terms in
the query. We now can compute the query focused measure for each of the
three documents-

1 0 0
W1,, = (1.609) 7 + (1.609) 7 + (1.609} 7 = 0.230

0 2 1
W2,, = (1.609} 8 + (1.609) 8 + (1.609}8 = 0.603

1 0 1
Wa,, = (1.609) 7 + (1.609} 7 + (1.609) 7 = 0.460

Now the document focused measure is computed. The computation is the
same, the difference is that we have a different estimate for ri/c and Bi/c· For the
document focused measure, we assume each document considered is relevant to
the query. Hence, the estimate for ri1c is-

This uses the number of terms, di1c, that match the assumed "relevant docu­
ment." Bile is estimated similarly since the size of the one relevant document is
removed from the estimates that use the whole collection.

Page 57 of 262

44 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Substituting we have-

__ (F1r, -d;1r,)
s,1r. - N. -L·

11/ •

1
ru = 7

0
r12 = 7 = 0

0
r13 = 7 =0

2-1 1
811 = 22- 7 = 15

2-0 2
812 = 22 - 7 = 15

2-0 2
813 = 22 - 7 = 15

To compute the weight of gold in D1 we have-

(!.) (1-.L) 1 Wu= In (l ~ t) + In fg15 = In 6 + In 14 = -1.792 + 2.639 = 0.847

Since silver and truck do not appear in D1 the values of W1r,; are equal to
zero. The document focused measure is now computed as-

- 0.847 - 0 282
W1d- - 3- - ·

Estimates for rands are now given for documents D2 and D3 •

2 1
821 = 22 - 8 = 8

822 = 0

1
823 = 14

r21 = 0

2
r22 = 8

1
r23 = 8

1
r31 = 7 = 0.143

Page 58 of 262

RETRIEVAL STRATEGIES 45

0
ra2 = - = 0

7
1

raa = 7 = 0.143

2-1 1
831 = 22 - 7 = 15

2-0 2
832 = 22 - 7 = 15

2-0 2
833 = 22 - 7 = 15

W23 = 1n ({l i ½)) + ln (l f 4 ft) = ln ~ + 1n 13 = -1.946 + 2.565 = 0.619

1
W2d = (0.619) 3 = 0.206

1
W31 = ln 6 + ln 14 = -0.1792 + 2.639 = 0.847

w32 will not be used as r 32 equals zero.

1
Waa = ln 16 + ln 14 = -0.134

Wad = 0.847 + -0.134 = 0_238
3 3

We now have query-focused and document-focused measure for each document.
Summing these results in a similarity coefficient, we find-

D1 = 0.230 + 0.282 = 0.512
D2 = 0.603 + 0.206 = 0.809
D3 = 0.460 + 0.238 = 0.698

2.2.5 Key Concerns with Probabilistic Models

Typically probabilistic models have to work around two fundamental prob­
lems. The first is parameter estimation. This refers to the problem that ac­
curate probabilistic computations are based on the need to estimate relevance.
Without a good training data set, it is often difficult to accurately estimate
parameters. The second problem is the use of independence assumptions. It is
clear that the presence of the term new increases the likelihood of the presence
of the term york but many probabilistic models require this assumption even
though it is not a realistic assumption.

Page 59 of 262

46 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

2.2.5.1 Parameter Estimation. The need for good parameter estimation
was clearly documented in the 1970s. Initial experiments with simple term
weights partitioned the document collection into an even and an odd compo­
nent. The even component was used as training data and, after relevance infor­
mation was obtained, used to retrieve data in the odd component. For many
applications, the a priori relevance information is not known in advance. A
follow-up paper by Sparck Jones [Sparck Jones, 1979b] used reduced relevance
information. The effect of using only the best one or two most relevant docu­
ments as training data, instead of using all relevant documents was measured.
For the small Cranfield collection, results of using fewer relevant documents
were comparable to using all relevant documents. Unfortunately, when the test
was run on the larger UKCIS, the results with only two relevant documents
were inferior to results using all relevant documents.

The initial model did not indicate how the process should start. Once rele­
vance information is available (via a training set), it is possible to conduct new
searches. In an on-line system where it is not possible to guess which queries
will be asked in advance, it is not possible to use the weighting functions given
above. They all require values for r and R which can only be obtained by run­
ning a query and examining the relevant documents. Certainly, it is possible
to use another technique for the initial search, and then ask users for relevance
information on the results of the initial search. This information can then be
used for subsequent searches. This technique is called relevance feedback and is
discussed in more detail in Section 3.1.

Using the probabilistic weights as a means of implementing relevance feed­
back relegates the probabilistic model to an interesting utility that can be
applied to an arbitrary retrieval strategy. A cosine measure can be used to
identify an initial ranking, and then the probabilistic weights can be used for
relevance feedback.

The problem of using the probabilistic model without any a priori relevance
information is addressed in [Croft and Harper, 1979]. In doing so, it becomes
clear that the probabilistic model is a retrieval strategy that is capable of rank­
ing documents without any other assistance. By assuming that without any
relevance information, the probability that a given term will induce relevance
is equal for each term. Thus, the following similarity coefficient is obtained-

t t N -n·
SC(Q,Di) = CLq;d;j + Lq;d;;log--_-•

i=l i=l n,

N number of documents in the collection
n number of documents indexed by a given term

d;j 1, if term i appears in document j
d;i 0, if term i does not appear in document j
q; 1, if term i appears in the query
q; 0, if term i does not appear in the query

Page 60 of 262

RETRIEVAL STRATEGIES 47

C is a constant that may be varied to "tune" the retrieval. The term weight of
N ;;_n; is very close to the inverse document frequency of ;! for large document
collections (large values of N). Hence, the whole expression is very close to the
t/-id/ that was used in the vector space model.

The authors tested this SC against the cosine coefficient and a coefficient
obtained by simply summing the id/' s of each term. The new SC performed
slightly better, but it is important to remember the tests were run on the small
Cranfield collection.

Recently, Croft and Harper's work on the problem of computing relevance
weights with little or no relevance information was improved [Robertson and
Walker, 1997]. They note that the weighting scheme of Croft and Harper can,
under some circumstances, lead to negative weights.

In the original model by Robertson and Sparck Jones, two probabilities were
used to determine the weighting. The first value, p, estimates for a given term
the probability that a document containing the term will be relevant. The
probability q estimates the probability that a document containing the term
will not be relevant. In previous models, p and q are assumed to be constant,
but Robertson and Walker allow p to vary as a function of known evidence of
relevance.

Specifically a weighting function that is developed with no information gives
an inverse collection frequency weight (or some slight variation). At the other
extreme, with a large amount of relevance information, the weighting function is
determined by the relevance information. The equation from Croft and Harper
can take on negative weights (when a term appears in over half of the document
collection). Robertson and Walker developed new equations that are tunable
and that estimate the weights of p and q independently. That is, information
about relevance only influences the weight due to p and information about
non-relevance only influences the weight due to q.

The new weight is given by-

w = k5 ~ R (k4 + log N N_ n) + k5 ! R log (R ~: :~.5)

where
R
r
s
8

k4, ko, ko

- ka k~ S log (N ~ n) - ka ! Slog (()~: ~~5))

=
number of relevant documents

number of relevant documents indexed by the given term

number of non-relevant documents

number of non-relevant documents which contain the term

are tuning constants-

(k4 must be non-negative to avoid any negative weights)

Page 61 of 262

48 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

The first two terms give the component of the weight due to relevance infor­
mation, and the last two terms give the weight due to non-relevance informa­
tion. (Note that if there is no knowledge (R=S=O), then the equations reduce
to k4 +log~)- k4 measures how good the query term should be, while ks
and k6 measure the sensitivity to relevance and non-relevance respectively. A
statistically-based argument can be made that, instead of using R and S to
scale the terms in the equation, the square roots of R and S should be used.

2.2.5.2 Independence Assumptions. The key assumption that provides
for a simple combination of term weights to compute the probability ofrelevance
is the assumption that the terms appear independent of one another. Because
this assumption is false, it has been suggested that the entire model is derived
from a "faulty theory" (Cooper, 1991]. In fact, the inference network strategy
and the logistic regression utility are both designed to work around the problem
of independence assumptions. These are discussed in Sections 2.3 and 3.5,
respectively.

Papers in the late 1970s and early 1980s start to address the failure of the in­
dependence assumption (Rijsbergen, 1977, Yu et al., 1983], but they all require
co-occurrence information which is very computationally expensive to obtain.
Van Rijsbergen suggests that related terms should be grouped together by us­
ing simple clustering algorithms and then the dependencies between groups can
be obtained (Rijsbergen, 1977].

With increased computational speed, these approaches may soon be more
tractable. To our knowledge, none of these modifications have been tried on a
large test collection.

2.3 Inference Networks

Inference networks use evidential reasoning to estimate the probability that a
document will be relevant to a query. They model the probabilistic retrieval
strategy discussed in Section 2.2 and enhance that model to include additional
evidence that a document may be relevant to a query.

In this section we first give a basic overview of what an inference network
is, and then describe how they are used for relevance ranking.

2.3.1 Background

The essence of an inference network is to take known relationships and use them
to "infer" other relationships. This dramatically reduces the computational
requirements needed to estimate the probability that an event will occur.

A binary inference network uses events where the event will have either a
value of true or false. A prior probability indicates the likelihood of the event.
Assume we know events A, B, C, D and E all occur with respective probabilities
p(A = true) = a, p(B = true) = b, p(C = true) = c, p(D = true) = d and
p(E = true) = e. These events are independent-that is, the probability that

Page 62 of 262

RETRIEVAL STRATEGIES 49

all events will still occur is the same regardless of whether or not any of the
other events occur. More formally, for all possible combinations of b, c, d and e
then p(Alb, c, d, e) = p(a). Assume we know that event F depends on events A,
B, C, D and E, and we want to compute the probability that F occurs given the
probability that A, B, C, D and E occur. Figure 2.5 illustrates this example
inference network.

To do this without an inference network, the computation is exponential
and requires consideration of all 25 combinations for the events A, B, C, D
and E. Using notation given in [Greif£, 1996], let R be the set of all 25 possible
subsets of 1, 2, 3, 4, 5. Let Pi indicate the probability that the ith event is
true-in our example events 1, 2, 3, 4 and 5 correspond to A, B, C, D and E.
Let Pi indicate the state value (either true or false) of the ith event-that is
Pi indicates whether or not A is true, P2 indicates whether or not B is true,
etc. Finally, the mere existence of an event or combination of events A, B, C,
D or E changes the likelihood that F is true. This probability is called O:R and
is defined as:

0:R = p(F = truelPi, ... , P5)

where i ER ➔ Pi is true,

i f/. R ➔ Pi is false

To compute p(F = true), assuming, A, B, C, D and E are independent, the
following equation is used:

p(F =true)= L O:R II Pi II (1 - p;)
R\;{1, ... ,5} iER iER

For a simple problem with only five values, we end up with a 32-element com­
putation. The exponential nature of this problem is addressed by inference
networks with naturally occurring intermediaries. This enables the use of par­
tial inferences to obtain a final inference.

Assume we know that events A, B, and C cause event X, and events D and E
cause event Y. We can now use X and Y to infer F. The figure below illustrates
this simple inference network.

Consider an example where we are trying to predict whether or not the
Salamanders will win a softball game. Assume this depends on which coaches
are present and which umpires are present. At the top layer of the network
might be nodes that correspond to a given coach or umpire being present.
The Scott, David, and Catherine nodes (nodes A, B,and C) all correspond to
coaches and the Jim and Manny nodes (nodes D and E) correspond to umpires.
Now the event "good coach is present" (node X) depends on the Scott, David,
and Catherine nodes and the event "good umpire is present" (node Y) depends
on the Jim and Manny nodes. The event "Salamanders win" (node F) clearly
depends on nodes X and Y.

In our example, the presence of an umpire in no way determines whether
or not another umpire attends, but it certainly impacts whether or not the

Page 63 of 262

50 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Figure 2.5. Simple Inference Network

umpires are "friendly" to the Salamanders. Similarly, the presence of a given
coach does not impact the presence of other coaches, but it does impact whether
or not the whole coaching staff is present. Also, the presence or absence of a
coach has no impact on whether or not the umpires will be favorable.

To compute F, the 32-element equation given above can be used, or we can
use an inference network to take advantage of the logical groupings inherent in
the events X and Y. First, we compute p(X = true) using the three parents­
A,B,and C- this requires 23 computations. The impact of the parent nodes
on the child node with the variable o and a binary subscript that indicates
the likeihood that the child node is true, given various combinations of parent
nodes being true. For example, 0111 indicates the probability that the child
node is true given that all three parents are true. Computing p(X = true) we
obtain-

p(X = true) = 0111abc + o:uoab(l - c) + 0101a(l - b)c +
010oa(l - b)(l -c) + oou(l - a)bc+ 0:010(1- a)b(l - c) +
0001(1- a)(l - b)c + O:ooo(l - a)(l - b)(l - c)

and now we compute p(Y = true) using the two parents D, E-

Page 64 of 262

RETRIEVAL STRATEGIES 51

p(Y =true)= a 11de + a10d(l - e) + 001(1- d)e + aoo{l - d){l - e)

Once the prior probabilities for X and Y are known, we compute the probability
that F is true as:

p(F = true) = a 11 xy + 010:c{l - y) + ao1y{l - x) + aoo{l - x){l - y)

To compute F it took eight additions for X, four for Y, and finally four for
F. Therefore, we now require only sixteen instead of the thirty-two required
without the inference network. The key is that F is independent of A, B, C, D
and E given X, Y or:

p(F = truela, b, c, d, e, x, y) = p(F = truelx, y)

Once the initial values of the top layer of the inference network are assigned
{these are referred to as prior probabilities), a node on the network is instanti­
ated and all of its links are followed to nodes farther down the network. These
nodes are then activated. At this point, the node that is activated is able to
compute the belief that the node is true or false. The belief is computed based
on the belief that all of its parent nodes are true or false. At this point, we
have assumed that all parents contributed equally to the belief that a node
was present. Link matrices indicate the strength by which parents {either by
themselves or in conjunction with other parents) affect children in the inference
network.

2.3.2 Link Matrices

Another capability provided by the inference network is the ability to include
the dependence of a child on the parents. Suppose we know that a particular
umpire, Manny, is much more friendly to the Salamanders than any other
umpire. Hence, the contribution of D, E to the value of X may not be equal.

The link matrix contains an entry for each of the 2n combinations of parents
and {for a binary inference network in which nodes are either true or false) will
contain only two rows.

In our example, the link matrix for the node Y that represents the impact
of umpires D and E on X is given as:

DE DE DE DE
Y true 0.9 0.8 0.2 0.05
Y false 0.1 0.2 0.8 0.95

This matrix indicates that the presence of the friendly umpire Manny (D)
coupled with the absence of Jim (E) results in an eighty percent contribution
to the belief that we have friendly umpires for the game. We use the notation
Li(Y) to indicate the value of the ith entry in the link matrix to identify
whether or not Y is true and Li(Y) to indicate the value to determine whether
or not Y is false.

Page 65 of 262

52 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

The link matrix entries are included as an additional element in the compu­
tation given above. The new equation to compute the belief that a given node
N with n parents using the previously used set R becomes:

p(N = true) = L Li(N) II Pi II (1 - Pi)
Ri;;{1, ... ,n}

The link matrix for p parents contains 2P entries. Again, the link matrix mea­
sures the contribution of individual parents to a given inference. The link
matrix can be selected such that a closed form computation is possible. The
simplest matrix, the LAND for an arbitrary node N is of the form [Turtle, 1991]:

Pooo Poo1 Po10 Pou Pioo Puo P111

N true O 0 0 0 0 0 0 1

The entries are given in binary such that a 1 or O is given for each of the
possible p parents (p=3 in this case). The computation results in zero's for all
combinations of parents except when allp parents exist. The value ofp(N=true)
will be (p1)U"i)U>:J) where Pi indicates the probability that the parent Pi is true.
Only a single element must be summed to obtain the final result instead of the
worst case of 2N. Other closed form link matrices exist that essentially average
the prior probabilities of parents.

To give an example with our existing inference network, assume there is
a seventy percent chance A will attend, and a sixty percent chance B and C
will attend (p(A) = 0.7, p(B) = 0.6, p(C) = 0.6). For umpires, assume p(D)
= 0.8 and p(E) = 0.4. The links from A, B, C, D,and E are followed and
the probability that X and Y are true can now be computed. To compute
p(X = true), we need the link matrix for X. Let's assume the link matrix
results in a closed form average of all parent probabilities

~~Pi
n

(X _ t) _ 0. 7 + 0.6 + 0.6 _ O 63 p -rue- 3 -.

Now to compute the probability for Y, the link matrix given above is used to
obtain:

p(Y =true)= Lu(Y)de+L1o(Y)d(l-e)+Lo1(Y)(l-d)e+Loo(Y)(l-d)(l-e)

p(Y = true) = (0.9)(0.8)(0.4)+(0.8)(0.8)(0.6)+(0.2)(0.2)(0.4)+(0.05)(0.2)(0.6)

p(Y = true) = 0.288 + 0.384 + 0.008 + 0.016 = 0.694

Page 66 of 262

RETRIEVAL STRATEGIES 53

Now we have the belief that X and Y are true, assume we use the unweighted
sum link matrix. This is a closed form link matrix that results in a simple
average of the parent probabilities to compute the belief in F. The final value
for Fis:

(F _) _ 0.694 + 0.630 _ O 662 p -true- 2 -.

In this case, we had only three elements to sum to compute X, four to compute
Y, and two to compute F. If we did not have a closed form link matrix we
would have had 23 for X, 22 for Y, and 22 for F or 16 elements-substantially
less than the 25 required without an inference network.

2.3.3 Relevance Ranking with Inference Networks

Turtle's Ph.D. thesis is the seminal work on the use of inference networks for
information retrieval [Turtle, 1991]. The documents are represented as nodes
on the inference network, and a link exists from each document to each term
in the document. When a document is instantiated, all of the term nodes
linked to the document are instantiated. A simple three-layered approach then
connects the term nodes directly to query nodes. This three-layered network
is illustrated in Figure 2.6. A link exists between a term node and a query
node for each term in the query. Note that this is the most simplistic form of
inference network for IR. The three-layered approach consists of a document
layer, a term layer, and a query layer. Note that the basic algorithm will work
if a layer that contains generalizations of terms or concepts exists. This layer
could sit between the term layer and the query layer. Links from a term to
a concept could exist based on semantic processing or the use of a thesaurus
(see Sections 3.7 and 3.6). Using a concept layer gives the inference network
resilience to the matching problem because terms in the query do not have to
directly match terms in the document; only the concepts have to match.

An example of an inference network with actual nodes and links is given in
Figure 2.7. A query and three documents are given along with the correspond­
ing network. Links exist from the document layer to the term layer for each
occurrence of a term in a document.

For our discussion, we focus on a three-layered inference network. Processing
begins when a document is instantiated. By doing this we are indicating that
we believe document one (Di) has been observed. This instantiates all term
nodes in D1 . We only instantiate the network with a single document at a time.
Hence, the closed form for the link matrix for this layer will equal the weight
for which a term might exist in a document. Typically, some close variant on
tf - idf is used for this weight.

Subsequently, the process continues throughout the network. All links em­
anate from the term nodes just activated, and are instantiated, and a query
node is activated. The query node then computes the belief in the query given
Di. This is used as the similarity coefficient for Di. The process continues
until all documents are instantiated.

Page 67 of 262

54 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Figure 2.6. Document-Term-Query Inference Network

Query Network

2.3.4 Example

We now use an inference network to compute a similarity coefficient for the
documents in our example:

Q : "gold silver truck"
D1 : "Shipment of gold damaged in a fire."
D2 : "Delivery of silver arrived in a silver truck."
D3 : "Shipment of gold arrived in a truck."

Page 68 of 262

RETRIEVAL STRATEGIES 55

Figure 2.7. Inference Network Example

D3

w

Document Layer

Concept Layer

Query Layer

We need to evaluate our belief in the query given the evidence of a docu­
ment, Di. Assuming that our belief is proportional to the frequency within
the document and inversely proportional to the frequency within the collection
leads us to consider the term frequency, tf, and inverse document frequency,
idf. However, both are normalized to the interval [0,1] by dividing tf by the
maximum term frequency for the document, and idf by the maximum possi­
ble idf. Using our same alphabetic term ordering which assigns term a to t1,
arrived to t2 , we obtain-

t1 h fa t4 t5 ts tr ts tg ho tu
idf 0 0.41 1.10 1.10 1.10 0.41 0 0 0.41 0.41 0.41
nidf 0 0.37 1 1 1 0.37 0 0 0.37 0.37 0.37
D1 1 0 1 0 1 1 1 1 0 1 0
D2 0.5 0.5 0 0.5 0 0 0.5 0.5 1 0 0.5
D3 1 1 0 0 0 1 1 1 0 1 1

In our three document collection, each term appears 1, 2 or 3 times. The total
size of the collection is 3, so for-

Page 69 of 262

56 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

tf= 1, id/= logf = 1.10

tf = 2, id/= log i = 0.41

tf = 3, id/= log j = 0

Each term appears in a document either once or not at all, with the single
exception of silver which appears twice in D2 • For each combination of term
and document, we evaluate P;i = P(r; = trueldi = true). Turtle used the
formula !'ii = 0.5 + 0.5(nt/;j)(nidf;) to compute the belief in a given term
given a document. Instantiating a document provides equal support for all
members of the assigned term nodes. Any node for which there is no support
(no documents instantiated) has belief equal to zero.

For each term, a link matrix is constructed that describes the support by its
parent nodes. For the concepts in the query, the link matrices are given below:

The link matrix for gold is:

DiDa DiDa DiDa
False 1 0.315 0.315
True 0 0.685 0.685

The matrix indicates the belief of falsehood (first row) or truth (second row)
given the conditions described in the column. When we instantiate a document,
it is taken as true. Only one document is instantiated at a time. The number
in the table is the value for Pii, or the belief that term i is true given document
j has been instantiated.

If D 3 is assigned a value of true, the belief is computed as:

Pii = 0.5 + 0.5(nt/;j)(nidf;) = 0.5 + 0.5(0.369)(1) = 0.685

This is found in the link matrix when D3 is true. In this case, the link matrix
has a closed form. Hence, it need not be stored or computed in advance. The
matrix only accounts for three possibilities: both documents are false, Di is
assigned a value of true and not D3 , D3 is assigned a value of true and not Di.
Since gold does not appear in document two, there is no need to consider the
belief when D 2 is assigned a value of true as there is no link from D 2 to the
node that represents the term gold. Also, since documents are assigned a value
of true one at a time, there is never a need to consider a case when Di and D3
are true at the same time.

Similarly, the link matrix for silver can be constructed. Silver only appears
in document D 2 so the only case to consider is whether or not D 2 is assigned
a value of true. The link matrix computes:

P;1 = 0.5 + 0.5(nt/;j)(nidf;) = 0.5 + 0.5(0.369)(1) = 0.685

Page 70 of 262

RETRIEVAL STRATEGIES 57

Similarly, the link matrix for truck is constructed. Truck has two parents D2

and Dg.

D2D3 D2D3 D2D3
False 1 0.315 0.408
True 0 0.685 0.592

For D 2 true and D 3 false, we have--

P;j = 0.5 + 0.5(ntf;i)(nidf;) = 0.5 + 0.5(0.5)(0.369) = 0.592

We have now described all of the link matrices that are used to compute the
belief in a term given the instantiation of a document. Now a link matrix for
a query node must be developed.

There is quite a bit of freedom in choosing this matrix. The user interface
may allow users to indicate that some terms are more important than others. If
that is the case, the link matrix for the query node can be weighted accordingly.
One simple matrix is given in Turtle's thesis [Turtle, 1991]. Using g, s,and t to
represent the terms gold, silver, and truck, it is of the form-

gst g s gs t gt st gst
False 0.9 0.7 0.7 0.5 0.5 0.3 0.3 0.1
True 0.1 0.3 0.3 0.5 0.5 0.7 0.7 0.9

The rationale for this matrix is that gold and silver are equal in value and truck
is more important. Also, even if no terms are present, there is some small
belief (0.1) that the document is relevant. Similarly, if all terms are present,
there is some doubt (0.1). Finally, belief values are included for the presence
of multiple terms.

We now instantiate D 1 which means bel(gold)-the belief that gold is true
given document D 1-is 0.685, bel(truck) = 0.5,and bel(silver)=0.5. Note "bel(x)"
represents "the belief in x" for this example.

At this point, all term nodes have been instantiated so the query node can
now be instantiated.

Bel(Q I D1) = 0.1(0.315)(1)(1) + 0.3(0.685)(1)(1) + 0.3(0.315)(0)(1) +
0.5(0.685)(0)(1) + 0.5(0.315)(1)(0) + 0.7(0.685)(1)(0) +
0.7(0.315)(0)(0) + 0.9(0.685)(0)(0) = 0.031 + 0.206 = 0.237.

This directly follows from the equation given in our prior examples using the
link matrix entries L;(Q).

Instantiating D2 gives bel(gold) = 0, bel(silver) = 0.685, and bel(truck) =
0.592. The belief in D2 is computed as-

Page 71 of 262

58 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Bel(Q I D2) = (0.1)(1)(0.315)(0.408) + (0.3)(0)(0.315)(0.408) +
(0.3)(1)(0.315)(0.408) + (0.5)(0)(0.685)(0.408) +
(0.5)(1)(0.315)(0.592) + (0.7)(0)(0.315)(0.592) +
(0.7)(1)(0.685)(0.592) + (0.9)(0)(0.685)(0.592) =
0.129 + 0.084 + 0.093 + 0.283 = 0.589.

Assigning D3 a value of true gives bel(gold) = 0.685, bel(silver) = 0, bel(truck)
= 0.685. The belief in D3 is computed as-

Bel(Q I D3) = (0.1)(0.315)(1)(0.315) + (0.3)(0.685)(1)(0.315) +
(0.3)(0.315)(0)(0.315) + (0.5)(0.685)(0)(0.315) +
(0.5)(0.315)(1)(0.685) + (0.7)(0.685)(1)(0.685) +
(0.7)(0.315)(0)(0.685) + (0.9)(0.685)(0)(0.685) =
0.01 + 0.065 + 0.108 + 0.328 = 0.511.

The link matrices we have used in this example assume each parent has an
equal contribution to the child probability. The assumption is that if two par­
ents exist, regardless of which parents, the child probability is greater. Recent
work has described the potential to generate closed forms for link matrices in
which the presence or absence of each parent is not equal [Greif£ et al., 1997].
Only the surface has been scratched with regard to the topology of inference
networks for relevance ranking. Potential exists to group common subdocu­
ments in the inference network or to group sets of documents or clusters within
the inference network. Also, different representations for the same document
can be used. To our knowledge, very little has been done in this area.

2.4 Extended Boolean Retrieval

Conventional Boolean retrieval does not lend itself well to relevance ranking
because documents either satisfy the Boolean request or do not satisfy the
Boolean request. All documents that satisfy the request are retrieved (typically
in chronological order), but no estimate as to their relevance to the query is
computed.

An approach to extend Boolean retrieval to allow for relevance ranking is
given in [Fox, 1983a] and a thorough description of the foundation for this
approach is given in [Salton, 1989]. The basic idea is to assign term weights to
each of the terms in the query and to the terms in the document. Instead of
simply finding a set of terms, the weights of the terms are incorporated into a
document ranking. Consider a query that requests (ti OR t2) that is matched
with a document that contains ti with a weight of wi and t2 with a weight of
W2,

If both wi and w2 were equal to one, a document that contained both of
these terms would be given the highest possible ranking. A document that
contained neither of the terms would be given the lowest possible ranking. A
simple means of computing a measure of relevance is to compute the Euclidean

Page 72 of 262

RETRIEVAL STRATEGIES 59

distance from the point (w1 , w2) to the origin. Hence, for a document that
contains terms t 1 and t 2 with weights w1 and w2 , the similarity coefficient
could be computed as:

For weights of 0.5 and 0.5, the SC would be:

SC(Q, d,) = Jo.52 + 0.52 = v'D.5 = 0.707

The highest value of SC occurs when w1 and w2 are each equal to one. In this
case we obtain SC(Q, Di) = ../2 = 1.414. If we want the similarity coefficient
to scale between 0 and 1, a normalization of ../2 is added. The SC becomes:

This coefficient assumes we are starting with a query that contains the Boolean
OR: (t1 V h). It is straightforward to extend the computation to include an
AND. Instead of measuring the distance to the origin, the distance to the point
(1,1) is measured. The closer a query is to the point (1,1) the more likely it
will be to satisfy the AND request. More formally-

2.4.1 Extensions to Include Query Weights

Consider again the same document that contains query terms ti and t2 with
weights w1 and w2 • Previously, we assumed the query was simply a Boolean
request of the form (t1 OR t2) or (t1 AND t2). We now add the weights q1 and
q2 to the query. The new similarity coefficient that includes these weights is
computed as:

2.4.2 Extending for arbitrary numbers of terms

For Euclidean distances in two-dimensional space, a 2-norm is used. To com­
pute the distance from the origin in multi-dimensional space, an Lp vector norm
is used. The parameter,p, allows for variations on the amount of importance
the weights hold in evaluating the measure of relevance. The new similarity

Page 73 of 262

60 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

coefficient for a query Q with terms ti and ti with weights qi and qi and a
document Di with the same terms having weights of Wi and Wj is defined as:

l.
. _ [qf(l - wf) + cf;(l - wf)] p

sim(D, Q(q, /\ q;)) - 1 - qf + cf;

At p equal to one, this is equivalent to a vector space dot product. At p equal
to infinity, this reduces to a normal Boolean system where term weights are
not included. Initial tests found some improvement with the extended Boolean
indexing over vector space (i.e., p = 2), but these tests were only done for small
data collections and were computationally more expensive than the vector space
model.

2.4.3 Automatic Insertion of Boolean Logic

Each of the retrieval strategies we have addressed do not require users to iden­
tify complex Boolean requests. Hence, with the use of OR, a query consisting
only of terms can be used. Weights can be automatically assigned (using some­
thing like t/-idf) and documents can then be ranked by inserting OR's between
each of the terms. The conventional vector space model, implicitly computes a
ranking that is essentially an OR of the document terms. Any document that
contains at least one of the terms in the query is ranked with a score greater
than 0.

Conversely, a more sophisticated algorithm takes a sequence of terms and
automatically generate ANDs and ORs to place between the terms [Fox, 1983a].
The algorithm estimates the size of a retrieval set based on a worst-case sum
of the document frequencies. If term t1 appears in 50 documents and term
t2 appears in 100 documents, we estimate that the query will retrieve 150
documents. This will only happen if t1 and t2 never co-occur in a document.

Using the worst-case sum, the terms in the query are ranked by document
frequency. The term with the highest frequency is placed into a REMOVED set.
This is done for the two highest frequency terms. Terms from the REMOVED
set are then combined into pairs, and the pair with the lowest estimated retrieval
set is added. The process continues until the size of the retrieval set is below
the requested threshold.

2.5 Latent Semantic Indexing

Matrix computation is used as a basis for information retrieval in the retrieval
strategy called Latent Semantic Indexing (Deerwester et al., 1990]. The premise
is that more conventional retrieval strategies (i.e., vector space, probabilistic
and extended Boolean) all have problems because they match directly on key­
words. Since the same concept can be described using many different keywords,

Page 74 of 262

RETRIEVAL STRATEGIES 61

this type of matching is prone to failure. The authors cite a study in which
two people used the same word for the same concept only twenty percent of
the time.

Searching for something that is closer to representing the underlying seman­
tics of a document is not a new goal. Canonical forms have been proposed
for natural language processing since the early 1970s [Winograd, 1983, Schank,
1975]. Applied here the idea is not to find a canonical knowledge representa­
tion, but to use matrix computation, in particular Singular Value Decompo­
sition (SVD). This filters out the noise found in a document, such that two
documents that have the same semantics (whether or not they have matching
terms) will be located close to one another in a multi-dimensional space.

The process is relatively straightforward. A term-document matrix A is con­
structed such that location (i, j) indicates the number of times term i appears
in document j. A SVD of this matrix results in matrices U :E vr such that
:E is a diagonal matrix. A is a matrix that represents each term in a row.
Each column of A represents documents. The values in :E are referred to as
the singular values. The singular values may then be sorted by magnitude and
the top k values are selected as a means of developing a "latent semantic" rep­
resentation of the A matrix. The remaining singular values are then set to 0.
Only the first k columns are kept in U1,; only the first k rows are recorded in
V[. After setting the results to 0, a new A' matrix is generated to approximate
A= U}:VT.

Comparison of two terms is done via an inner product of the two correspond­
ing rows in U1,. Comparison of two documents is done as an inner product of
two corresponding rows in V[.

A query-document similarity coefficient treats the query as a document and
computes the SVD. However, the SVD is computationally expensive; so, it is
not recommended that this be done as a solution. Techniques that approximate
:E and avoid the overhead of the SVD exist. For an infrequently updated
document collection, it may be pragmatic to periodically compute the SVD.

2.5.1 Example

To demonstrate Latent Semantic Indexing we will use our previous query and
document example:

Q: "gold silver truck"
D1 "Shipment of gold damaged in a fire."
D2 : "Delivery of silver arrived in a silver truck."
Da: "Shipment of gold arrived in a truck."

The A matrix is obtained from the numeric columns in the term-document
table given below:

Page 75 of 262

62 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

term Di D2 D3
a 1 1 1
arrived 0 1 1
damaged 1 0 0
delivery 0 1 0
fire 1 0 0
gold 1 0 1
in 1 1 1
of 1 1 1
shipment 1 0 1
silver 0 2 0
truck 0 1 1

This step computes the singular value decompositions (SVD) on A. This
results in an expression of A as the product of U E VT. In our example, A is
equal to the product of-

-0.4201
-o.2gg5
-0.1200
-0.1576
-0.1206
-0.2626
-0.4201
-0.4.201
-0.2626
-0.8161
-0.2996

0.0748
-0.2001

0.2749
-0.8040

0.2749
0.8794
0.0748
0,0748
0.8794

-0.6098
-0.2001

-0.0460
0.4078

-0.4188
-0.2006
-0.4588

0.1547
-0.0400
-0.0480

0.1547
-0.4018

0.4078

0 0] [-0.4946
2.3616 0 0.6492

0 1.2787 -0.1780

-0.8468
-0.719-l
-0.2666

-0.6817]
-0.2469

0.7760

However, it is not the intent to reproduce A exactly. What is desired, is to
find the best rank k approximation of A. We only want the largest k singular
values (k < 3). The choice of k and the number of singular values in :E to
use is somewhat arbitrary. For our example, we choose k = 2. We now have
A2 = U2 I:;2 Vl. Essentially, we take only the first two columns of U and the
first two rows of E and VT.

This new product is given below-

-0.4201 0.0748
-0.2995 -0.2001
-0.1206 0.2749
-0.1576 -0.3046
-0.1206 0.2749

[4.0989 0] [-0.4945 -0.6458 -0.5817] -0.2626 0.3794
0 2.3616 0.6492 -0.7194 -0.2469

-0.4201 0.0748
-0.4201 0.0748
-0.2626 0.3794
-0.3151 -0.6093
-0.2995 -0.2001

To obtain a k x 1 dimensional array, we now incorporate the query. The query
vector qT is constructed in the same manner as the original A matrix. The
query vector is now mapped into a 2-space by the transformation qTU2 I:;;1 .

This is given below-

Page 76 of 262

RETRIEVAL STRATEGIES 63

0 -0.4201 0.0748
0 -0.2995 -0.2001
0 -0.1206 0.2749
0 -0.1576 -0.3046
0 -0.1206 0.2749

[0.244~ 0.423~] = [-0.2140 1 -0.2626 0.3794 -0.1821]
0 -0.4201 0.0748
0 -0.4201 0.0748
0 -0.2626 0.3794
1 -0.3151 -0.6093
1 -0.2995 -0.2001

We could use the same transformation to map our document vectors into 2-
space, but the rows of V2 contain the co-ordinates of the documents. Therefore-

Di = (-0.4945
D2 = (-0.6458
Da = (-0.5817

0.6492)
-0.7194)
-0.2469)

Finally, we are ready to compute our relevance value using the cosine similarity
coefficient. This yields the following-

Di = (-0.2140)(-0.4945) + (-0.1821)(0.6492) = _0_0541
J(-0.2140)2 + (-0.1821)2)J(-0.4945) 2 + (-0.6492)2)

D 2 = (-0.2140)(-0.6458) + (-0.1821)(-0.7194) = 0_9910
J(-0.2140) 2 + (-0.1821) 2)J(-0.6458)2 + (-0.7194)2)

D3 = (-0.2140)(-0.5817) + (-0.1821)(-0.2469) = 0_9543
J(-0.2140)2 + (-0.1821)2)J(-0.5817)2 + (-0.2469)2)

2.5.2 Choosing a Good Value of k

The value k is the number of columns kept after the SVD and it is determined
via experimentation. Using the MED database of only 1,033 documents and
thirty queries, the average precision over nine levels of recall was plotted for
different values of k. Starting at twenty, the precision increases dramatically
up to values of around 100, and then it starts to level off.

2.5.3 Comparison to Other Retrieval Strategies

A comparison is given between Latent Semantic Indexing (LSI) with a factor
of 100 to both the basic tf-idf vector space retrieval strategy and the extended
Boolean retrieval strategy. For the MED collection, LSI had thirteen percent

Page 77 of 262

64 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

higher average precision than both strategies. For the CISI collection of sci­
entific abstracts, LSI did not have higher precision. Upon review, the authors
found that the term selection for the LSI and tf-idf experiments was very dif­
ferent. The LSI approach did not use stemming or stop words. When the same
terms were used for both methods, LSI was comparable to tf-idf. More recent
work has been done with LSI on the TIPSTER collection [Dumais, 1994]. In
this work, LSI was shown to perform slightly better than the conventional vec­
tor space model, a 0.24 average precision as compared to 0.22 average precision.

2.5.4 Potential Extensions

LSI is relatively straightforward because few variations have been described
in the literature. It is the only retrieval strategy to make extensive use of
matrix computation. LSI focuses on the need for a semantic representation of
documents that is resilient to the fact that many terms in a query can describe
a relevant document, but not actually be present in the document.

2.5.5 Run-Time Performance

Run-time performance of the LSI approach is clearly a serious concern. With
the vector space or probabilistic retrieval strategy, an inverted index is used
to quickly compute the similarity coefficient. Each document in the collection
does not need to be examined (unless a term in the query appears in every
document). With LSI, an inverted index is not possible as the query is rep­
resented as just another document and must, therefore, be compared with all
other documents.

Also, the SVD itself is computationally expensive. We note that several
parallel algorithms have been developed specifically for the computation of the
SVD given here [Berry, 1992]. For a document collection with N documents
and a singular value matrix I: of rank k, an O(N2 k3) algorithm is available.
A detailed comparison of several parallel implementations for information re­
trieval using LSI is given in [Letsche and Berry, 1997].

2.6 Neural Networks

Neural networks consist of nodes and links. Essentially, nodes are composed
of output values and input values. The output values, when activated, are
then passed along links to other nodes. The links are weighted, because the
value passed along the link is the product of the sending nodes output and the
link weight. An input value of a node is computed as the sum of all incoming
weights. Neural networks can be constructed in layers such that all the data
the network receives is activated in phases, and where an entire layer sends
data to the next layer in a single phase. Algorithms that attempt to learn
based on a training set, modify the weights of the links in response to training
data. Initial work with neural networks to implement information retrieval was

Page 78 of 262

RETRIEVAL STRATEGIES 65

done in [Belew, 1989). This work used only bibliographic citations, but it did
illustrate the basic layered approach used by later efforts.

For ad hoc query retrieval, neural nets have been used to implement vector
space retrieval and probabilistic retrieval. Additionally, relevance feedback may
be implemented with neural networks.

Using a neural network to implement vector space retrieval can at first ap­
pear to be of limited interest because the model can be implemented more
easily without the use of neural networks. However, neural networks provide a
learning capability in which the network can be changed based on relevance in­
formation. In this regard, the network adapts or learns about user preferences
during a session with an end-user.

Section 2.6.1 describes a vector space implementation with a neural network.
Section 2.6.2 describes implementation of relevance feedback. Section 2.6.3
describes a learning algorithm that can be used with a neural network for
information retrieval. Subsequently, we describe a probabilistic implementation
in Section 2.6.4. Section 2.6.5 describes how term components may be used
within neural networks. Section 2.6.6 uses weights derived from those used for
vector space and probabilistic models.

2.6.1 Vector Space with Neural Networks

Using a neural network to implement the vector space model is done by setting
up a network of three types of nodes: QUERY, TERM, and DOCUMENT
[Crouch et al., 1994). The links between the nodes are defined as query-term
links and document-term links. A link between a query and a term indicates
the term appears in the query. The weight of the link is computed as tf-idf for
the term. Document-term links appear for each term that occurs in a given
document. Again, a tf-idf weight can be used.

A feed-forward network works by activating a given node. A node is active
when its output exceeds a given threshold. To begin, a query node is activated
by setting its output value to one. All of its links are activated and subsequently
new input weights for the TERM nodes are obtained. The link sends a value
of (tf)(id/)(1) since it transmits the product of the link weight with the value
sent by the transmitting node (a one in this case). The weight, tf-idf in this
case, is received by the term node. A receiving node computes its weight as the
sum of all incoming links. For a term node with only one activated query, one
link will be activated. The TERM node's output value will be a tf-idf weight.
In the next phase, the TERM nodes are activated and all of the links that
connect to a document node are activated. The DOCUMENT node contains
the sum of all of the weights associated with each term in the document. For
a collection with t terms, the DOCUMENT node associated with document j
will now have the value:

t

DOCj = I)tf;j)(idfi)
i=l

Page 79 of 262

66 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

The DOCUMENT node now has a weight associated with it that measures the
relevance of the document to a given query. It can easily be seen that this
weight is equivalent to a simple dot product similarity coefficient as given in
Section 2.1.

2.6.2 Relevance Feedback with Neural Nets

To implement relevance feedback, a new set of links are added to the net­
work. The new links connect DOCUMENT nodes back to TERM nodes. The
document-term link is activated after the initial retrieval. Figure 2.8 illustrates
this process along with a sample query and three documents. Links are fed
into a newly defined input site on the TERM node, and their input is added
to the value found in the existing query site of the TERM node. Without
relevance feedback, the network operates in two phases. The first phase sends
information from the QUERY nodes to the TERM nodes. The second phase
sends information from the TERM nodes to the DOCUMENT nodes.

If relevance feedback is used, processing continues. The third phase sends in­
formation from the DOCUMENT nodes to the TERM nodes for the documents
that are deemed relevant. The relevant documents are identified manually or
the top n documents may be deemed relevant. Finally, in the fourth phase, the
TERM nodes are activated, if they exceed a threshold parameter. The TERM­
DOCUMENT links are used to send the newly defined weights obtained during
the relevance feedback phase to the DOCUMENT nodes. At this point, the
DOCUMENT nodes are scored with a value that indicates the effect of a single

iteration of relevance feedback.
Initial experiments with the MEDLARS and CACM collection found an

improvement of up to fifteen percent in average precision for MED LARS and a
degradation of eleven percent for CACM. As mentioned before, these collections
are very small. Using a residual evaluation, in which documents found before
relevance feedback are no longer considered, the average precision for CACM
reached twenty-one percent and MEDLARS was as high as sixty percent.

2.6.3 Learning Modifications to the Neural Network

The links between the terms and documents can be modified so that future
queries can take advantage of relevance information. Typical vector space rel­
evance feedback uses relevance information to adjust the score of an individual
query. A subsequent query is viewed as a brand new event, and no knowledge
from any prior relevance assessments is incorporated.

To incorporate relevance information into subsequent queries, the document
nodes add a new signal called the learning signal. This is set to one if the
user judges the document as relevant, zero if it is not judged, and negative
one if it is judged as non-relevant. Term-document links are then adjusted
based on the difference between the user assessment and the existing document
weight. Documents with high weights that are deemed relevant do not result
in much change to the network. A document weighted 0.95 will have a 8 of

Page 80 of 262

Feedback
Loop

RETRIEVAL STRATEGIES 67

Figure 2.8. Neural Network with Feedback

Query Layer

Term Layer

Term Layer

Example

1 - 0.95 = 0.05, so each of its term-document links will be increased by only
five percent. A document with a low weight that is deemed relevant will result
in a much higher adjustment to the network.

Results of incorporating the learning weight were not substantially different
than simple relevance feedback, but the potential for using results of feedback
sets this approach apart from traditional vector space relevance ranking.

2.6.4 Neural Networks for Probabilistic Retrieval

Standard probabilistic retrieval based on neural networks is described in [Crestani,
1994]. The standard term weight given in Sparck Jones and described in more
detail in Section 2.2.1 is used. This weight is:

Page 81 of 262

68 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

r·(N-n·-R+r·)
log ' ' '

(R - ri)(ni - ri)

where-

N number of documents

R = relevant documents

ri = number of relevant documents that contain term i

ni number of documents (relevant or non-relevant) that contain term i

The weight is a ratio of how often a term appears in relevant documents to
the number of times it occurs in the whole collection. A term that is infrequent
in the collection, but appears in most of the relevant documents is given a high
weight. These weights are used as the weight of the query-term links, the term­
document links, and essentially replaces the tf-idf weights used in the vector
space model. The sum operation to combine links takes place as before, and
results in a value that is very similar to the weight computed by the standard
probabilistic retrieval model.

The training data are used, and a standard back propagation learning algo­
rithm is used to re-compute the weights. Once training is complete, the top
ten terms are computed using the neural network and the query is modified to
include these terms.

Using the Cranfield collection, the neural network-based algorithm per­
formed consistently worse than the News Retrieval Tool, an existing proba­
bilistic relevance feedback system (Sanderson and Rijsbergen, 1991). The au­
thors cite the relative lack of training data as one problem. Also, the authors
note that the large number of links in the neural network makes the network
cumbersome and consumes a substantial computational resource.

2.6.5 Component Based Probabilistic Retrieval with Neural Nets

A component-based retrieval model using neural networks is given in [Kwok,
1989). A three-layered network is used as before, but the weights are different.
Query-term links for query a are assigned a weight of Wka = ¥. Document

q

term links for document i are assigned Wki = ¥;'-, where Qik indicates the term
frequency of term k in query i. Similarly, d;k is the term frequency of term k

in document i. L indicates the number of components in a document or query.
Term-query links are weighted Wak and document-term links are weighted wu,.
Definitions for Wak and wil, are found in Section 2.2.4. The query-focused
measure is obtained by activating document nodes and feeding forward to the
query. The document-focused measure is obtained by activating the query
nodes and feeding forward to the documents.

Kwok extends his initial work with neural networks in a recent paper (Kwok,
1995). The basic approach is given along with new learning algorithms that

Page 82 of 262

RETRIEVAL STRATEGIES 69

make it possible to modify the weights inside of the neural network based on
a training collection. Learning algorithms that added new terms to the query
based on relevance feedback were given. Other algorithms did not require any
additional query terms and simply modified the weights. The algorithms were
tested on a larger corpus using over three hundred megabytes of the Wall Street
Journal portion of the TIPSTER collection. Kwok goes on to give learning algo­
rithms based on no training collections, training based on relevance information
and query expansion.

Without a training collection some initial data estimates can be made that
are constant as described in Section 2.2.4. Training with relevance information
proceeds using document-term links and term-document links as described in
Section 2.6.2.

2.6.6 Neural Networks Using Combined Weights

A similar input-term-document-output layered neural network was used for
TREC-6 [Boughanem and Soule-Depuy, 1997]. To our knowledge, this is the
first report of the use of a neural network on a reasonably large document
collection.

The key weight, which is used to represent the occurrence of a term in a
document, is based on the pivoted document length normalization developed
for the vector space model and the document length normalization developed
for the probabilistic model (See Section 2.1.2 and Section 2.2.3).

The weight of the link from term ti to document D; is:

(1 + log(t/i;)) * (h1 + h2 * log f))
Wij = d

h3+h4•i

where--

th; = weight of term iin document j

d/i = number of documents that contains term i
d; = length in terms (not included stop terms) of document j
.!l average document length

Tuning parameters, h1, h2, h3, and h4, were obtained by training on the TREC-
5 collection. Relevance feedback was also incorporated with the top twelve
documents being assumed relevant and used to supply additional terms. Doc­
uments 500-1000 were assumed non-relevant. An average precision of 0.1772
was observed on the TREC-6 data, placing this effort among the top performers
at TREC-6.

2.6. 7 Neural Networks for Document Clustering

A neural network algorithm for document clustering is given in [Macleod and
Robertson, 1991]. The algorithm performs comparably to sequential clustering

Page 83 of 262

70 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

algorithms that are all hierarchical in nature. On a parallel machine the neural
algorithm may perform substantially faster since the hierarchical algorithms
are all inherently sequential.

The algorithm works by first associating a node in the network for each
cluster. Each node then computes (in parallel) a measure of similarity between
the existing document and the centroid that represents the cluster associated
with the node. First, a similarity coefficient is computed between the incoming
document X and the existing cluster centroids. The input nodes of the neural
network correspond to each cluster. If the similarity coefficient, s1 , is higher
than a threshold, siavg, the input node is activated. It then loops back to
itself after a small recalculation to participate in a competition to add X to
the cluster. Nodes that are not close enough to the incoming document are
deactivated.

A new pass then occurs for all of the nodes that won the first round and the
similarity coefficient is computed again. The process continues until only one
cluster passes the threshold. At this point, a different similarity coefficient is
computed, s2 , to ensure the winning cluster is reasonably close to the incoming
document. If it is close enough, it is added to the cluster and the centroid for
the cluster is updated. Otherwise, a new cluster is formed with the incoming
document.

The algorithm performed comparably to the single linkage, complete link­
age, group average, and Ward's method which are described in Section 3.2.
Given that this algorithm is non-hierarchical and can be implemented in par­
allel, it can be more practical than its computationally expensive hierarchical
counterparts.

2. 7 Genetic Algorithms

Genetic algorithms are based on principles of evolution and heredity. A recent
overview of genetic algorithms used for information retrieval is given in (Chen,
1995]. Chen overviews the following steps for genetic algorithms-

1. Initialize Population

2. Loop

■ Evaluation

■ Selection

■ Reproduction

■ Crossover

■ Mutation

3. Convergence

The initial population consists of possible solutions to the problem, and a fit­
ness function that measures the relative "fitness" of a given solution. Note that

Page 84 of 262

RETRIEVAL STRATEGIES 71

the similarity coefficient is a good fitness function for the problem of finding rel­
evant documents to a given query. Some solutions are selected (preferably the
ones that are most fit} to survive, and go on to the next generation. The solu­
tions correspond to chromosomes and each component of a solution is referred
to as a gene.

The next generation is formed by selecting the surviving chromosomes. This
is done based on the fitness function. A value Fis computed as the sum of the
individual fitness functions-

population

F = L fitness(½)
i=l

where population is the number of initial solutions. Consider a case where the
initial population has a fitness function as follows:

i fitness{i}
1 5
2 10
3 25
4 50
5 10

The aggregate sum of the fitness function, F, is 100, and the population size is
five. To form the next generation, five values are chosen randomly, with a bias
based on their corresponding portion of F.

The table below gives the proportions of the total for each entry in the
population.

i fitness(i) litneaa(i) Selection Interval

1 5 0.05 [0,0.05)

2 10 0.10 [0.05,0.15)

3 25 0.25 [0.15,0.40)

4 50 0.50 [0.40,0.90)

5 10 0.10 [0.90,1.0)

To form a new generation of size five, five random values are selected from
between zero and one. The selection interval used for each member of the
population is based on its portion of the fitness function. If the random number
is 0.50 it falls within the (0.40, 0.90] interval, and member four is selected.
The magnitude of the fitness for a given member plays a substantial role in
determining whether or not that member survives to the next generation. In
our case, member four's fitness function is one half of the fitness function. There
is a 1 - (½)5 = ~~ chance of selecting this member into the next round.

Two types of changes can occur to the survivors-a crossover or a muta­
tion. A crossover occurs between two survivors and is obtained by swapping

Page 85 of 262

72 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

components of the two survivors. Consider a case where the first survivor is
represented as 11111 and the second is 00000. A random point is then selected,
(e.g., three). After the crossover the two new children are: 11100 and 00011.
This first child is derived from the first three one's from the first parent and
the last two zero's of the second parent. The second child is derived from the
first three zero's of the second parent with the last two one's of the first parent.

Subsequently, mutations occur by randomly examining each gene of each
survivor. The probability of mutation is a parameter to the genetic algorithm.
In implementations of genetic algorithms for information retrieval, the genes
are represented as bits and a mutation results in a single bit changing its value.
In our example, a random mutation in the second bit of the second child results
in the second child changing its value from zero to one giving 01011.

The process continues until the fitness function for a new generation or
sequence of generations is no better than it was for a preceding generation.
This is referred to as convergence. Some algorithms do not attain convergence
and are stopped after a predetermined number of generations.

2.7.1 Forming Document Representations Using a Genetic Algorithm

An initial foray into the use of genetic algorithms for information retrieval is
given in [Gordon, 1988]. The premise being that a key problem in information
retrieval is finding a good representation for a document. Hence, the initial
population consists of multiple representations for each document in the col­
lection. Each representation is a vector that maps to a term or phrase that is
most likely selected by some users. A fixed set of queries is then identified, and
a genetic algorithm is used to form the best representation for each document.

The query representation stays fixed, but the document representation is
evaluated and modified using the genetic algorithm. The Jaccard similarity
coefficient is used to measure the fitness of a given representation. The total
fitness for a given representation is computed as the average of the similarity
coefficient for each of the training queries against a given document representa­
tion. Document representations then "evolve" as described above by crossover
transformations and mutations. Overall, the average similarity coefficient of all
queries and all document representations should increase. Gordon showed an
increase of nearly ten percent after forty generations.

First, a set of queries for which it was known that the documents were
relevant were processed. The algorithm was then modified to include processing
of queries that were non-relevant. Each generation of the algorithm did two
sets of computations. One was done for the relevant queries and another for the
non-relevant queries, against each representation. Survivors were then selected
based those that maximized the increase of the average Jaccard score to the
relevant queries and maximized a decrease of the average Jaccard score for the
non-relevant queries. After forty generations, the average increase was nearly
twenty percent and the average decrease was twenty-four percent. Scalability
of the approach can not be determined since the queries and the documents
came from an eighteen document collection with each document having eighteen

Page 86 of 262

RETRIEVAL STRATEGIES 73

different description collections. These results must be viewed as somewhat
inconclusive-particularly for modem day collections.

It should be noted, however, that although we have referred to this as a
document indexing algorithm, it is directly applicable to document retrieval.
Different automatically generated representations, such as only terms, only
phrases, different stemming algorithms, etc., could be used. After some train­
ing and evolution, a pattern could emerge that indicates the best means of
representing documents. Additionally, we note that this strategy may be more
applicable for document routing applications than for ad hoc query processing.

2. 7.2 Automatic Generation of Query Weights

A genetic algorithm that derives query weights is given in [Yang and Korfhage,
1994). It was tested on the small Cranfield collection. Tests using the DOE
portion of the TIPSTER collection (and associated modifications that were nec­
essary to scale to a larger collection) are given in [Yang and Korfhage, 1993].
Essentially, the original query is taken without any weights. The initial pop­
ulation is simply composed of randomly generating ten sets of weights for the
terms in the original query. In effect, ten queries then exist in the population.

The genetic algorithm subsequently implements each of the queries and iden­
tifies a fitness function. First, the distance from the query to each document
is computed, and the top x documents are retrieved for the query (x is deter­
mined based on a distance threshold used to determine when to stop retrieving
documents, with an upper limit of forty documents). The fitness function is
based on a relevance assessment of the top x documents retrieved:

fitness(i) = lORr - Rn - Nr

where-

Rr = number of relevant retrieved

Rn = number of non-relevant retrieved

Nr = number of relevant not retrieved

Basically, a good fitness value is given for finding relevant documents. Since
it is difficult to retrieve any relevant documents for larger collections, a constant
of ten is used to give extra weight to the identification of relevant documents.
Selection is based on choosing only those individuals whose fitness is higher
than the average. Subsequently, reproduction takes place using the weighted
application of the fitness value such that individuals with a high fitness value
are most likely to reproduce. Mutations are then applied with some randomly
changed weights. Crossover changes occur in which portions of one query vector
are swapped with another. The process continues until all relevant documents
are identified. The premise is that the original queries will find some relevant
documents and, based on user feedback, other relevant documents will be found.

Page 87 of 262

74 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Tests on the Cranfield collection showed improved average precision, after
feedback, to be twenty percent higher than previous relevance feedback ap­
proaches. In the follow-up paper using the DOE collection, the authors indicate
that the genetic algorithm continues to find new relevant documents in each
pass. This is interesting because the only thing that is changing in the query
are the query weights. No new terms are added or removed from the query.
Yang and Kortbage did use a relatively large collection {the DOE portion of
the TIPSTER document collection) but only tested two queries.

2. 7.3 Automatic Generation of Weighted Boolean Queries

Genetic algorithms to build queries are given in [Kraft et al., 1994, Petry et al.,
1993]. The idea is that the perfect query for a given request can be evolved from
a set of single query terms. Given a set of documents known to be relevant to the
query, all of the terms in those documents can be used as the initial population
for a genetic algorithm. Each term is then a query, and its fitness can be
measured with a similarity coefficient (Kraft et al., used the Jaccard coefficient}.
Mutations of the query terms resulted in weighted Boolean combinations of the
query terms. Three different fitness functions were proposed. The first is simple
recall-

r
E1 = R

where r is the number of relevant retrieved and R is the number of known
relevant.

The second combines recall and precision as:

E2 = a(recall} + {3(precisian)

where a and /3 are arbitrary weights.
The results showed that either of E1 or E2 fitness functions were able to

generate queries that found all of the relevant documents (after fifty genera­
tions}. Since & incorporated precision, the number of non-relevant documents
found decreased from an average of thirty-three (three different runs were im­
plemented for each test) to an average of nine.

This work showed that genetic algorithms could be implemented to generate
weighted Boolean queries. Unfortunately, it was only done for two queries on a
small document collection (CACM collection with 483 documents), so it is not
clear if this algorithm scales to a larger document collection.

2.8 Fuzzy Set Retrieval

Fuzzy sets were first described in [Zadeh, 1965]. Instead of assuming that an
element is a member in a set, a membership function is applied to identify the
degree of membership in a set. For information retrieval, fuzzy sets are useful
because they can describe what a document is "about."

A set of elements where each element describes what the document is about
is inherently fuzzy. A document may be about "medicine" with some oblique

Page 88 of 262

RETRIEVAL STRATEGIES 75

references to lawsuits, so maybe it is slightly about "medical malpractice."
Placing "medical malpractice" as an element of the set is not really accurate,
but eliminating it is also inaccurate. A fuzzy set is a membership in which the
strength of membership of each element is inherently more accurate. In our
example, the set of concepts that describe the document appears as:

C = {(medicine, 1.0), (malpractice, 0.5)}

The set C is a fuzzy set since it has degrees of membership associated with
each member. More formally, a fuzzy set including the concepts in C =
{ c1, c2, ... , Cn} is represented as:

A= (ci, /A(c1)}, (c2, /A(c2)), • •,, (en, /A(c,.))

where / A : C ➔ [0, 1] is a membership function that indicates the degree of
membership of an element in the set.

For finite sets, the fuzzy set A is expressed as:

A= { fA(c1)' f A(c2' ... ' /A(c,.)}
C1 C2 Cn

Basic operations of intersection and union on fuzzy sets are given below. Es­
sentially, the intersection uses the minimum of the two membership functions
for the same element, and union uses the maximum of the two membership
functions for the same element.

The following definitions are used to obtain intersection, union, and comple­
ment.

2.8.1 Fuzzy Set Boolean Retrieval

Fuzzy set extensions to Boolean retrieval were developed in the late 1970s
and are summarized well in [Salton, 1989]. A Boolean similarity coefficient
can be computed by treating the terms in a document as fuzzy because their
membership is based on how often they occur in the document.

Consider a set D that consists of all documents in the collection. A fuzzy set
Dt can be computed as the set D that describes all documents that contain the
term t. This set appears as- Dt = {(d1 , 0.8), (d:z,0.5)}. This indicates that d1

contains element t with a strength of 0.8 and d2 contains t with a strength of
0.5.

Page 89 of 262

76 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Similarly, a set D. can be defined as the set of all documents that contain
term a. This set might appear as- D. = {(d1,0.5), (c:b,0.4)}

Computing (a Vt) requires n. u Dt and (a I\ t) n. n Dt. These can be com­
puted using the maximum value for union and the minimum for intersection.
Hence--

(a Vt)= n. LJDt = {(d1,0.8), (d2,0.5)}

(a I\ t) = D. n Dt = {(di, 0.5), (d2, 0.4)}

More complex Boolean expressions are constructed by applying the results of
these operations to new expressions. Ultimately, a single set that contains the
documents and their similarity coefficient is obtained.

One problem with this approach is that the model does not allow for the
weight of query terms. This can be incorporated into the model by multiplying
the query term weight by the existing membership strength for each element
in the set. Another problem is that terms with very low weight dominate the
similarity coefficient. Terms that have a very low membership function are
ultimately the only factor in the similarity coefficient. Consider a case where
document one contains term a with a membership value of 0.0001 and term
t with a membership value of 0.5. In a query asking for a At, the score for
document one will be 0.0001. Should the query have many more terms, this
one term dominates the weight of the entire similarity coefficient. A remedy
for this is to define a threshold x in which the membership function becomes
zero if it falls below x.

2.8.1.1 Example. We now apply fuzzy set Boolean retrieval to our exam­
ple. Our query "gold silver truck" is inadequate as it is designed for a relevance
ranking, so we change it to the Boolean request: "gold OR silver OR truck."
We take each document as a fuzzy set. To get a strength of membership for
each term, we take the ratio of the term frequency within the document to the
document length. Hence, our collection of documents becomes a collection of
fuzzy sets:

D1 = {(a, 0.143), (damaged, 0.143), (fire, 0.143), (gold, 0.143),
(in, 0.143), (of, 0.143), (shipment, 0.143)}

D2 = {(a, 0.125), (arrived, 0.125), (delivery, 0.125), (in, 0.125),
(of, 0.125), (silver, 0.25), (truck, 0.125)}

D3 = {(a, 0.143), (arrived, 0.143), (gold, 0.143), (in, 0.143),
(of, 0.143), (shipment, 0.143), (truck, 0.143)}

To compute Q(gold V silver V truck), we look at the documents which con­
tain each of those terms. Gold is in D1 and D3 with a strength of membership
of 0.143. Silver is only in D2 with a strength of membership of 0.25. Similarly,

Page 90 of 262

RETRIEVAL STRATEGIES 77

truck is in D2 with a membership of 0.125 and Da with 0.143. Applying the
maximum set membership to implement the fuzzy OR, we obtain:

Q(gold V siltJer V trock} = {(Di, 0.143), (D2, 0.25}, (Da, 0.143)}

The documents would then be ranked, D2, Di, D3 based on strength of mem­
bership for each document. As another example, consider the query: (truck A
(gold V silver)). For this query, we determine D(trock} and D(gold V silver)­
we will refer to these two sets as set A and set B.

A = D(truck} = {(D2 , 0.125), (D3 , 0.143)}

For D(gold V silver) we proceed as before, taking the maximum value of
each degree of membership for each document in which either term appears.
From our previous computation, we determine:

B = D(gold V silver) = {(Di, 0.143), (D2, 0.25), (Da, 0.143)}

Taking the fuzzy intersection of set A with set B we use the minimum strength
of membership. This yields:

A n B = D(truck V (gold A silver)) = {(D2, 0.125}, (Da, 0.143)}

At this point, we have not incorporated any query weights. We now modify
the example to multiply each strength of membership by the id/for each query
term. We use the following query term weights-

gold
3

= log 2 = 0.176

silver
3

log 1 = 0.477

truck
3

= log 2 = 0.176

We now compute D(gold V silver V truck}. Di includes only gold with a
strength of0.143. Gold has a query term weight of0.176 so Di has a weighted
strength of membership of (0.143)(0.176) = 0.025.

Silver and truck are found in D2 • Silver has a strength of membership of
0.25 and a weight of 0.477 so the weighted strength of (0.25)(0.477) = 0.119.
Similarly, for truck, the weighted strength is (0.125)(0.176} = 0.022. Since we
are taking the union, we take the maximum value so D2 will have a strength
of membership of 0.119.

For D3 , both gold and truck are present with a strength of 0.143 and both
terms are weighted by 0.176. Hence, the weighted strength is (0.143)(0.176}
= 0.025. The fuzzy set D(gold V silver V trock) = {(Di, 0.025), (D2 , 0.119},
(Da, 0.025)}

Page 91 of 262

78 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

For the query, D(truck I\ (gold V silver)) we must again determine D(gold I\
silver) and D(truck). Using the weighted strength of membership yields:

A= D(truck) = {(D2 , 0.022), (D3 , 0.025)}
B = D(gold I\ silver)= {D1 , 0.025), {D2 , 0.119), (D3 , 0.025)}.

Again, taking the minimum strength of membership to compute the intersec­
tion, we obtain:

A n B = D(truck I\ (gold V silver)) = {(D2 , 0.022), (D3 , 0.025)}

2.8.2 Using a Concept Hierarchy and Fuzzy Sets

An approach using fuzzy logical inference with a concept hierarchy is given in
1991 in a paper that describes the FIRST system {Fuzzy Information Retrieval
SysTem) [Lucarella and Morara, 1991).

A concept network is used to represent concepts found in documents and
queries and to represent the relationships between these concepts. A concept
network is a graph with each vertex representing a concept and a directed edge
between two vertices representing the strength of the association of the two
concepts. A document can then be represented as a fuzzy set of concepts:

This indicates that document one contains the concepts (C1 ,C2 ,C3) and the
strength of each concept is given by (w1 , w2 , w3). The link relationships are
defined as fuzzy transitive so that if Ci is linked to Cj, and Ci is linked to Ck,
and the strength of Ci to Ck is defined as-

F(Ci,Ck) = Min(F(C;,Ci),F(Cj,Ck))

To compute the strength between two concepts, take the minimum value of
all edges along the path, then add query Q at the root of the concept hierarchy.
For each concept linked to the query, it is possible to obtain the strength of
that concept for a given document. To do so, find all paths through the concept
graph from the concept to the document and take the minimum of all edges
that connect the source concept to the document. Each of these paths results in
a single value. An aggregation rule is then applied to compute the strength of
the source concept as the maximum of the value returned by each distinct path.
A detailed example is given in [Lucarella and Morara, 1991). Note for queries
involving more than one initial concept, the appropriate fuzzy operations are
applied to each pair of arguments in a Boolean operator.

Page 92 of 262

RETRIEVAL STRATEGIES 79

A comparison of the vector space model to this approach was done. A 300
document Italian test collection was used with a handbuilt concept graph that
contained 175 concepts. Ten queries were chosen, and FffiST had comparable
precision to vector space and had higher recall.

2.8.3 Allowing Intervals and Improving Efficiency

In [Chen and Wang, 1995], Lucarella's model was extended through the use of
intervals rather than real values as concept weights. Additionally, an efficiency
improvement was added in that a concept matrix was developed.

The concept matrix is aC x C matrix that is represented such that M(Ci, C;)
indicates the strength of the relationships between Ci and C;. The strength is
defined as a single value or an interval such that the strength occurs somewhere
inside of the interval. The transitive closure T of M is computed via successive
matrix multiplications of M. Once the T matrix is computed, an entry T(Ci, C;)
indicates the strength of the relationship of Ci to C;, where the strength is
computed as the maximum of all paths from Ci to C;.

Although the initial computation of T is expensive for a concept network
with a high number of concepts, T efficiently computes a similarity coefficient.
First, a new matrix of size D x C maps all of the documents to concepts.
An entry, tij, in this matrix indicates the strength of the relationship between
document i and concept j. Values for ti; are obtained either directly, if the
concept appears in the given document, or indirectly, if the concept does not
appear in the given document-in this case the T matrix is used to obtain the
weight for that concept.

Given a document, Di, with concepts (en, Ci2, ..• , Cin) and a query Q with
concepts (x1, X2, ... , Xn), a similarity coefficient is computed for all concepts
that exist in the query (a concept that does not exist in the query has the value
of"-"):

n

E T(tij,Xj)
q(j),¢"-" Aj=l

where T(x,y) = 1 - Ix - :ul-
The function T measures the difference between the strength of the concept

found in the document and the user input strength of the concept found in the
query. The document strength is computed as the minimum of the strengths
found on the path from the document to the concept. A small difference results
in a high value of T, and the similarity coefficient simply sums these differences
for each concept given in the query.

For intervals, a new function, S, computes the average of the distance be­
tween the high and low ends of the interval. For example, an interval of [3, 5]
compared with an interval of [2, 6] results in a distance of 13- 21;15-GI = 1. These
differences are then summed for a similarity coefficient based on intervals.

Page 93 of 262

80 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

2.9 Summary

We have described eight different strategies used to rank documents in re­
sponse to a query. The probabilistic model, vector space model, and inference
networks all make use of statistical measures that essentially rely upon match­
ing terms between a query and a document. The probabilistic model uses basic
probability theory with some key assumptions to estimate the probability of
relevance. It is often criticized as requiring pre-existing relevance informa­
tion to perform well. We have described various means of circumventing this
problem-including K wok's novel idea of using self-relevance to obtain an initial
estimate.

The vector space model represents documents and queries as vectors. Sim­
ilarity among documents, and between documents and queries is defined in
terms of the distance between two vectors. For example, one of the common
similarity measures is the cosine similarity that treats the difference between
two documents or a document and a query as the cosine of the angle between
these two vectors.

Using evidence, inference networks use Bayesian inference to infer the prob­
ability that a document is relevant. Since inference networks are capable of
modeling both vector space and probabilistic models, they may be seen as a
more powerful model. In fact, different inference network topologies have yet
to be fully explored.

Latent semantic indexing is the only strategy we have presented that directly
addresses the problem that relevant documents to a query, at times, contain
numerous terms that are identical in meaning to the query but do not share
the same syntax. By estimating the "latent semantic" characteristics of a term­
term matrix, LSI is able to accurately score a document as relevant to the query
even though the term-mismatch problem is present.

Neural networks and genetic algorithms are both used commonly for machine
learning applications and have only initially been used in document ranking.
Computational resource limitations have prevented their widespread use-but
the potential for these strategies to retrieve very different documents than the
other strategies is intriguing.

The fuzzy set and extended boolean are older strategies that extend the
widespread use of Boolean requests into relevance ranks. Other strategies re­
quire users to submit a list of terms-instead of a Boolean request-and a
ranking is then obtained. In some applications, users prefer Boolean requests.
This is particularly true for those users who have relied on Boolean requests
for years.

So which strategy is best? This is still an area for debate, and therefore,
for further investigation. To our knowledge, no head-to-head comparison of all
of these strategies has been implemented. The TREC (Text REtrieval Confer­
ence) has been used to compare the effects of complete IR systems, but a system
includes a strategy and a set of utilities, as well as, a variety of other imple­
mentation details. Thus far, no decisive conclusion can be deduced. Additional
thoughts and comments related to these strategies are described in [Kowalski,

Page 94 of 262

RETRIEVAL STRATEGIES 81

1997, Salton, 1989], and some of the original papers describing these efforts
were reprinted in [Sparck Jones and Willett, 1997].

2.10 Exercises

1. Show how inference networks can be used to model either the vector space
model or the probabilistic model.

2. Download Alice in Wonderland from the internet. Write some code to
identify the id/ of each term. Identify how closely this work matches the
Zipfian distribution.

3. Devise a new strategy that allows users to implement a Boolean retrieval
request. The results should be ranked in order of the similarity to the query.
Compare your new strategy with the extended Boolean retrieval strategy.

4. Describe the effect of adding new or changing existing documents to the
vector space strategy. What values must be recomputed? How can the
strategy be slightly modified so that it is more resilient to the addition of
new documents?

5. It has been suggested that one or more strategies could be merged to form an
improved result set. Give two general heuristics to merge results from two
arbitrary retrieval strategies. Describe the advantages and disadvantages
inherent in your approach.

Page 95 of 262

3 RETRIEVAL UTILITIES

Many different utilities improve the results of a retrieval strategy. Most utilities
add or remove terms from the initial query in an attempt to refine the query.
Others simply refine the focus of the query (use subdocuments or passages in­
stead of whole documents). The key is that each of these utilities (although
rarely presented as such} are plug-and-play utilities that operate with any ar­
bitrary retrieval strategy.

The utilities identified are-

1. Relevance Feedback-The top documents found by an initial query are iden­
tified as relevant. These documents are then examined. They may be
deemed relevant either by manual intervention or by an assumption that
the top n documents are relevant. Various techniques are used to rank the
terms. The top t terms from these documents are then added back to the
original query.

2. Clustering-Documents or terms are clustered into groups either automat­
ically or manually. The query is only matched against clusters that are
deemed to contain relevant information. This limits the search space. The
goal is to avoid non-relevant documents before the search even begins.

3. Passage-based Retrieval-The premise is that most relevant documents
have a non-relevant portion and the relevant passage is somewhat con­
centrated. Hence, queries are matched to passages (either overlapping or

Page 96 of 262

84 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

non-overlapping) of documents, and the results for each passage are then
combined into a single similarity coefficient. The size of each passage is
either fixed or varied based on the passage finding algorithm. Other ap­
proaches simply rank each sentence, paragraph, or other naturally occurring
subdivision of a document.

4. Parsing (noun phrase processing, stemming, etc.)- Simply matching terms
does not always yield good results. The identification and use of phrases
is computationally much easier than proximity operators. Parsing rules
and/or lists of known phrases are used to identify valid phrases like "New
York." These phrases are then treated as single terms. Other parsing
techniques avoid common prefixes or suffixes to allow for matches between
query and document terms that share a common root but have different
prefixes or suffixes.

5. N-grams-The query is partitioned into n-grams (overlapping or
non-overlapping sequences of n characters). These are used to match queries
with the document. The goal is to obtain a "fuzzier" match that would be
resilient to misspellings or optical character recognition (OCR) errors. Also,
n-grams are language independent.

6. Thesauri-Thesauri are generated from text or by manual methods. The
key is not only to generate the thesaurus, but to use it to expand either
queries or documents to improve retrieval.

7. Semantic Networks-Concept hierarchies exist in which individual concepts
are linked to other related concepts. The strength of the relationship is as­
sociated with the link. One such network is Wordnet [Beckwith and Miller,
1990], but others exist. Attempts to automatically construct such a network
have been pursued. The challenge is to use the network to expand queries
or documents to contain more terms describing the contents of the query.

8. Regression Analysis- Statistical techniques are used to identify parameters
that describe characteristics of a match to a relevant document. These can
then be used with a regression analysis to identify the exact parameters
that refine the similarity measure.

3.1 Relevance Feedback

A popular IR utility is relevance feedback. The basic premise is to implement
retrieval in multiple passes. The user refines the query in each pass based on
results of previous queries. Typically, the user indicates which of the documents
presented in response to an initial query are relevant, and new terms are added
to the query based on this selection. Additionally, existing terms in the query
can be re-weighted based on user feedback. This process is illustrated in Figure
3.1.

An alternative is to avoid asking the user anything at all and to simply
assume the top ranked documents are relevant. Using either manual (where the

Page 97 of 262

RETRIEVAL UTILITIES 85

Figure 3.1. Relevance Feedback Process

New Query
Based on
Result Set

I

user is asked) or automatic (where it is assumed the top documents are relevant)
feedback, the initial query is modified, and the new query is re-executed.

For example, an initial query "find information surrounding the various con­
spiracy theories about the assassination of John F. Kennedy" has both useful
keywords and noise. The most useful keywords are probably assassination and
John F. Kennedy. Like many queries (in terms of retrieval) there is some mean­
ingless information. Terms such as various and information are probably not
stop words (i.e., frequently used words that are typically ignored by an IR sys­
tem such as a, an, and, the), but they are more than likely not going to help
retrieve relevant documents. The idea is to use all terms in the initial query
and ask the user if the top ranked documents are relevant. The hope is that the
terms in the top ranked documents that are said to be relevant will be "good"
terms to use in a subsequent query.

Assume a highly ranked document contains the term Oswald. It is reasonable
to expect that adding the term Oswald to the initial query would improve both
precision and recall. Similarly, if a top ranked document that is deemed relevant
by the user contains many occurrences of the term assassination, the weight
used in the initial query for this term should be increased.

With the vector space model, the addition of new terms to the original
query, the deletion of terms from the query, and the modification of existing
term weights has been done. With the probabilistic model, relevance feedback
initially was only able to reweight existing terms and there was no accepted
means of adding terms to the original query. The exact means by which rel­
evance feedback is implemented is fairly dependent on the retrieval strategy
being employed. However, the basic concept of relevance feedback (i.e., run a

Page 98 of 262

86 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

query, gather information from the user, enhance the query, and repeat) can
be employed with any arbitrary retrieval strategy.

Section 3.1.1 discusses the initial use of the vector space model to implement
relevance feedback. Section 3.1.2 discusses the probabilistic means by which
relevance feedback is added.

Relevance feedback has been fertile ground for research, as many tuning
parameters are immediately apparent. Most feedback algorithms start with
the premise that within the top x ranked documents, the top t terms will be
used. Finding correct values for x and t, as well as examining the number of
iterations required to obtain good results, has been the subject of a fair amount
of research.

3.1.1 Relevance Feedback in the Vector Space Model

Rocchio, in his initial paper, started the discussion of relevance feedback [Roc­
chio, 1971]. Interestingly, his basic approach has remained fundamentally un­
changed.

Rocchio's approach used the vector space model to rank documents. The
query is represented by a vector Q, each document is represented by a vector
D;, and a measure of relevance between the query and the document vector is
computed as SC(Q, D;), where SC is the similarity coefficient. As discussed in
Section 2.1, the SC is computed as an inner product of the document and query
vector or the cosine of the angle between the two vectors. The basic assumption
is that the user has issued a query Q and retrieved a set of documents. The
user is then asked whether or not the documents are relevant. After the user
responds, the set R contains the n1 relevant document vectors, and the set S
contains the n2 non-relevant document vectors. Rocchio builds the new query
Q' from the old query Q using the equation given below:

R. and S; are individual components of R and S, respectively.
The document vectors from the relevant documents are added to the initial

query vector, and the vectors from the non-relevant documents are subtracted.
If all documents are relevant, the third term does not appear. To ensure that
the new information does not completely override the original query, all vector
modifications are normalized by the number of relevant and non-relevant doc­
uments. The process can be repeated such that Qi+1 is derived from Q; for as
many iterations as desired.

The idea is that the relevant documents have terms matching those in the
original query. The weights corresponding to these terms are increased by
adding the relevant document vector. Terms in the query that are in the non­
relevant documents have their weights decreased. Also, terms that are not in
the original query (had an initial component value of zero) are now added to
the original query.

Page 99 of 262

RETRIEVAL UTILITIES 87

In addition to using values n 1 and n2 , it is possible to use arbitrary weights.

The equation now becomes-

Not all of the relevant or non-relevant documents must be used. Adding
thresholds na and nb to indicate the thresholds for relevant and non-relevant

vectors results in-

The weights a, /3, and 'Y are referred to as Rocchio weights and are frequently
mentioned in the annual proceedings of TREC. The optimal values were ex­

perimentally obtained, but it is considered common today to drop the use of

non-relevant documents (assign zero to -y) and only use the relevant documents.
This basic theme was used by Ide in follow-up research to Rocchio where the
following equation was defined:

n1

Q' = aQ + f3LR; -Si
i=l

Only the top ranked non-relevant document is used, instead of the sum of all

non-relevant documents. Ide refers to this as the Dec-Hi (decrease using high­
est ranking non-relevant document) approach. Also, a more simplistic weight

is described in which the normalization, based on the number of document

vectors-is removed, and a, /3, and 'Y are set to 1 [Salton, 1971a]. This new
equation is-

n1 n2

Q' = Q +LR; - LS;
i=l i=l

An interesting case occurs when the original query retrieves only non-relevant

documents. Kelly addresses this case in [Salton, 1971b]. The approach suggests
that an arbitrary weight should be added to the most frequently occurring

concept in the document collection. This can be generalized to increase the

component with the highest weight. The hope is that the term was important,

but it was drowned out by all of the surrounding noise. By increasing the
weight, the term now rings true and yields some relevant documents. Note
that this approach is applied only in manual relevance feedback approaches. It
is not applicable to automatic feedback as the top n documents are assumed,
by definition, to be relevant.

3.1.2 Relevance Feedback in the Probabilistic Model

We described the basic probabilistic model in Section 2.2. Essentially, the terms
in the document are treated as evidence that a document is relevant to a query.

Page 100 of 262

88 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Given the assumption of term independence, the probability that a document
is relevant is computed as a product of the probabilities of each term in the
document matching a term in the query.

The probabilistic model is well suited for relevance feedback because it is
necessary to know how many relevant documents exist for a query to compute
the term weights. Typically, the native probabilistic model requires some train­
ing data for which relevance information is known. Once the term weights are
computed they are applied to another collection.

Relevance feedback does not require training data. Viewed as simply a
utility instead of a retrieval strategy, probabilistic relevance feedback "plugs
in" to any existing retrieval strategy. The initial query is executed using an
arbitrary retrieval strategy and then the relevance information obtained during
the feedback stage is incorporated.

For example the basic weight used in the probabilistic retrieval strategy is-

where--

Wi

R =
N

ri =
ni =

....IL
w· = log __ R;.;;.-_r;...:, __

1 n-r;
(N-n,)-(R-r;J

weight of term iin a particular query

number of documents that are relevant to the query

number of documents in the collection

number of relevant documents that contain term i

number of documents that contain term i

R and r cannot be known at the time of the initial query unless training data
with relevance information is available. Realistically, the presence of domain­
independent training data is unlikely. Some other retrieval strategy such as the
vector space model could be used for the initial pass, and the top n documents
could be observed. At this point, R can be estimated as the total relevant
documents found in the top n documents and r is the number of occurrences
in these documents. The problem of requiring training data before the prob­
abilistic retrieval strategy can be used is eradicated with the use of relevance
feedback.

3.1.2.1 Initial Estimates. The initial estimates for the use of relevance
feedback using the probabilistic model have varied widely. Some approaches
simply sum the id/ as an initial first estimate. Wu and Salton proposed an
interesting extension which requires the use of training data. For a given term
t, it is necessary to know how many documents are relevant to term t for
other queries. The following equation estimates the value of ri prior to doing
a retrieval:

ri=a+blogf

where f is the frequency of the term across the entire document collection.

Page 101 of 262

RETRIEVAL UTILITIES 89

This equation results in a curve that maps frequency to an estimated number
of relevant documents. Frequency is an indicator of the number of relevant
documents that will occur because of a given term. After obtaining a few
sample points, values for a and b can be obtained by a least squares curve
fitting process. Once this is done, the value for Ti can be estimated given a
value of/, and using the value of Ti, an estimate for an initial weight (IW)
is obtained. The initial weights are then combined to compute a similarity
coefficient. In the paper [Wu and Salton, 1981] it was concluded (using very
small collections) that id/ was far less computationally expensive, and that the
IW resulted in slightly worse precision and recall. However, we are unaware of
work done with IW on the TREC collection.

3.1.2.2 Computing New Query Weights. Some variations on the basic
weighting strategy for use with relevance feedback were proposed in [Robertson
and Sparck Jones, 1976]. The potential for using relevance feedback with the
probabilistic model was first explored in [Wu and Salton, 1981]. Essentially,
Wu and Salton applied Sparck Jones' equation for relevance information. They
modified the approach by using the similarity coefficient found in the equation
below. Given a vector Q representing the query and a vector Di representing
the documents with a collection of t terms, the following equation computes
the similarity coefficient. The components of di are assumed to be binary. A
one indicates the term is present, and a zero indicates the term is absent, and
K is a constant.

~ Pi(l- Ui)
SC(Q,Di) = L..,dilog ·{l - ·) +K

i=l u, P,

Using this equation requires estimates for Pi and Ui· The simplest estimate
uses Pi = rk1!i5 and Ui = n,i..,-~W+°i5 . That is, the ratio of the number of relevant
documents retrieved that contain term i to the number of relevant documents
is a good estimate of the evidence that a term i results in relevance. The 0.5 is
simply an adjustment factor. Similarly, the ratio of the number of documents
that contain term i that were not retrieved to the number of documents that
are not relevant is an estimate of Ui· Substituting these probabilities into the
equation yields one of the conventional Sparck Jones weights, w2 we described
in Section 2.2.1.1:

n·-r+0.5
lv-ti+1

Using relevance feedback, a query is initially submitted and some relevant
documents may be found in the initial answer set. The top documents are now
examined by the user and values for Ti and R can be more accurately estimated
(the values for ni and N are known prior to any retrieval). Once this is done,
new weights may be computed and the query is executed again. Wu and Salton
tested four variations of composing the new query:

Page 102 of 262

90 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

1. Generate the new query based solely on the weights computed after the first
retrieval.

2. Generate the new query, but combine the old weights with the new. Wu
suggested that the weights could be combined as-

Q' = l ; /1 + (1 - /3) (T)

where Q contains the old weights and T contains the weights computed by using
the initial first pass. /3 is a scaling factor that indicates the importance of the
initial weights. The ratio of relevant documents retrieved to relevant documents
available collection-wide is used for this value (/1 = 5t). A query that retrieves
many relevant documents should use the new weights more heavily than a query
that retrieves only a few relevant documents.

3. Expand the query by combining all the terms in the original query with all
the terms found in the relevant documents. The weights for the new query are
used as in step one for all of the old terms (those that existed in the original
query and in the relevant documents). For terms that occurred in the original
query, but not in any documents retrieved in the initial phase, their weights
are not changed. This is a fundamental difference from the work done by
Sparck Jones because it allows for expansion as well as reweighting. Before
this proposal, work in probabilistic retrieval relied upon the reweighting of old
terms, but it did not allow for the addition of new new terms.

4. Expand the query using a combination of the initial weight and the new
weight. This is similar to variation number two above. Assuming q1 to qm are
the weights found in the m components of the original query, and m - n new
terms are found after the initial pass, we have the following-

Additionally, a modified estimate for Pi and u; was computed. These new
values are given below:

ri+ w,
Pi= R+ l

ni -r; + N
U; = N-R+l

Here the key element of the idf is used as the adjustment factor instead of the
crude 0.5 assumption.

Wu and Salton found the fourth variation, which combines results of reweight­
ing and term expansion, to be the most effective. Relatively little difference
was observed with the modified Pi and q;.

Page 103 of 262

RETRIEVAL UTILITIES 91

Salton and Buckley give an excellent overview of relevance feedback. Twelve
variations on relevance feedback were attempted, which included: stemmed
Rocchio, Ide, conventional Sparck Jones probabilistic equation (see Section
2.2.1}, and the extended probabilistic given in Wu and Salton [Salton and Buck­
ley, 1990). All twelve were tested against six small collections (CACM, CISI,
CRAN, INSPEC, MED, and NPL). All of these collections were commonly used
by many researchers prior to the development of the larger TIPSTER collec­
tion. Different parameters for the variations were tried, such that there were
seventy-two different feedback methods in all. Overall Ide Dec-Hi (decrease
using the highest ranking elements) performed the best-having a ranking of
one in three of the six collections and a ranking of two and six in the others.

3.1.2.3 Partial Query Expansion. The initial work done by Wu and
Salton in 1981 either used the original query and reweighted it or added all of
the terms in the initial result set to the query and computed the weights for
them [Wu and Salton, 1981). The idea of using only a selection of the terms
found in the top documents was presented in [Harman, 1988). In this paper, the
top ten documents were retrieved and, of those some documents were manually
identified as relevant. The question then arises as to which terms from these
documents should be used to expand the initial query. Harman sorted the
terms based on six different sort orders and, once the terms were sorted, chose
the top twenty terms. The sort order had a large impact on effectiveness. Six
different sort orders were tested on the small Cranfield collection.

In many of the sort orders a noise measure, n, is used. This measure is
computed as-

where-

~ tj--,.
nr. = L., N + log2 /r.t/a

i=l J/;

t/;-,. = number of occurrences of term i in document k
f-,. = number of occurrences of term kin the collection

N number of terms in the collection

This noise value increases for terms that occur infrequently in many documents,
but frequently across the collection. A small value for noise occurs if a term
occurs frequently in the collection. It is similar to the id/, but the frequency
within individual documents is incorporated.

Additional variables used for sort orders are-

p-,. = number of documents in the relevant set that contain term k

rtfr. number of occurrences of term kin the relevant set

Page 104 of 262

92 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

A modified noise measure, rnk, is defined as the noise within the relevant set.
This is computed as-

'°' th rnk = ~Pk 1: log2 fkt/;k

Various combinations of rnk, n,., and Pk were used to sort the top terms. The
six sort orders tested were-

1. nk

2. Pk

3. rnk

4. n,. x rt/,.

5. n,. X rt/,. X Pk

6. n,. x rtfk

Sort five above, n,. x fk x Pk, resulted in the highest improvement in average
precision (9.4%). This is very similar to Pk x id/ which is a reasonable measure
given that Pk is an intuitively good value to use (i.e., a term that appears
frequently in the relevant set is probably a good term to add to the query).
However, this will not be the case for noise terms that occur frequently across
the collection. This explains why the Pk value did not perform as well as when
it was combined with n,..

Six additional sort orders were tested in a follow-up paper [Harman, 1992].
The sorts tested were-

1. (RTi)}d/i) where RTj is the total number of documents retrieved for query
j, d/; is the document frequency or number of documents in the collection
that contain term i, and N is the number of documents in the collection.
This gives additional weight to terms that appear in multiple documents of
the initial answer set.

2. !jf - 1:Jf where r;J is the number of retrieved relevant documents for query
j that have term i. Ri is the number of retrieved relevant documents
for query j. This gives additional weight to terms that occur in many
relevant documents and which occur infrequently across the entire document
collection.

3. Wii = log:l (~~~~)~:~ where W;J is the term weight for term i in query j.
This is based on Sparck Jones probabilistic weights given in Section 2.2.1.
The probability that term i is assigned within the set of relevant documents
to query j is Pii· The probability that term i is assigned within the set of
non-relevant documents for query j is Qij· These are computed as-

_ r;j +0.5
Pii - Ri + 1.0

d/; - r; + 0.5
QiJ = N-RJ+l.0

Page 105 of 262

RETRIEVAL UTILITIES 93

4. id/; (pij - Qij) where the theoretical foundation is based on the presumption
that the term i's importance is computed as the amount that it will increase
the difference between the average score (SC) of a relevant document and
the average score of a nonrelevant document. The means of identifying a
term weight are not specified in this work so for this sort order id!; is used.
Additional details are given in [Robertson, 1990].

5. Wij(pij - Qij) where the term weight is computed as given above.

6. log(RTFi + l)(pij -Qij) where RT Fi is the number of occurrences of term
i in the retrieved relevant documents.

Essentially sort three was found to be superior to sort four, five, and six, but
there was little difference in the use of the various sort techniques. Sorts one
and two were not as effective.

Once the sort order was identified, the number of terms to add to the new
query was studied. A peak at twenty terms was identified. At TREC, similar
differences have been observed in which some groups engaged in "massive query
expansion" in which all terms in the first phase are added to the query, while
other groups use only a subset of those terms [Buckley et al., 1994, Salton
and Buckley, 1990]. Some groups at TREC have used fifty terms and twenty
phrases and obtained good results.

More recent work in [Lundquist et al., 1997] has explored additional sort
techniques using the TIPSTER collection and found Pk x nidf to be a good
performer. The variable, nidf, is a normalized idf using Singhal's document
length normalization-see Section 2.1.2). Additionally, it was shown that the
use of the top ten items (either terms or phrases) resulted in a thirty-one percent
improvement in average precision over the use of the top fifty terms and twenty
phrases.

3.1.2.4 Number of Feedback Iterations. The number of iterations
needed for successful relevance feedback was initially tested in 1971 by Salton
[Salton, 1971d]. His 1990 work with 72 variations on relevance feedback as­
sumed that only one iteration of relevance feedback was used. Harman investi­
gated the effect of using multiple iterations of relevance feedback in [Harman,
1992).

In her work, the top ten documents were initially retrieved. A count of the
number of relevant documents was obtained, and a new set of ten documents
was then retrieved. The process continued for six iterations. Searching termi­
nates if zero relevant documents are found in a given iteration. Three variations
of updating term weights across iterations were used based on whether or not
the counting of relevant documents found was static or cumulative. Each iter­
ation used the basic strategy of retrieving the top ten documents, identifying
the top 20 terms, and reweighting the terms.

The three variations tested were-

1. Cumulative count-counts relevant documents and term frequencies within
relevant documents. It accumulates across iterations

Page 106 of 262

94 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

2. Reset count-resets the number of relevant documents and term frequencies
within relevant documents are reset after each iteration

3. Reset count, single iteration term-counts are reset and the query is reset
such that it only contains terms from the current iteration

In each case, the number of new relevant documents found increased with
each iteration. However, most relevant documents were found in the first two
iterations. On average, iterations 3, 4, 5, and 6 routinely found less than
one new relevant document per query. All three variations of implementing
relevance feedback across iterations performed comparably.

3.1.2.5 User Interaction. As earlier stated, the initial work in relevance
feedback assumed the user would be asked to determine which documents were
relevant to the query. Subsequent work assumes the top n documents are
relevant and simply uses these documents. An interesting user study, done by
Spink, looked at the question of using the top documents to suggest terms for
query expansion, but giving the user the ability to pick and choose which terms
to add [Spink, 1994, Spink, 1995]. Users were also studied to determine how
much relevance feedback is used to add terms as compared to other sources.
The alternative sources for query terms were--

■ Original written query

■ User interaction---discussions with an expert research user or "intermedi-
ary" prior to the search to identify good terms for the query

■ Intermediary-suggestion by expert users during the search

■ Thesaurus

■ Relevance feedback-selection of terms could be selected by either the user
or the expert intermediary

Users chose forty-eight terms (eleven percent) of their search terms (over
forty queries) from relevance feedback. Of these, the end-user chose fifteen and
the expert chose thirty-three. This indicates a more advanced user is more
likely to take advantage of the opportunity to use relevance feedback.

Additionally, the study identified which section of documents users found
terms for relevance feedback. Some eighty-five percent of the relevance feedback
terms came from the title or the descriptor fields in the documents, and only
two terms came from the abstract of the document. This study concluded that
new systems should focus on using only the title and descriptor elements of
documents for sources of terms during the relevance feedback stages.

3.2 Clustering

Document clustering attempts to group documents by content to reduce the
search space required to respond to a query. For example, a document collection

Page 107 of 262

RETRIEVAL UTILITIES 95

that contains both medical and legal documents might be clustered such that
all medical documents are placed into one cluster, and all legal documents
are assigned to a legal cluster (see Figure 3.2). A query over legal material
might then be directed (either automatically or manually) to the legal document
cluster.

Figure 3.2. Document Clustering

Document Collection

8 8
Several clustering algorithms have been proposed. In many cases, the eval­

uation of clustering algorithms has been challenging because it is difficult to
automatically point a query at a document cluster. Viewing document clus­
tering as a utility to assist in ad hoc document retrieval, we now focus on
clustering algorithms and examine the potential uses of these algorithms in
improving precision and recall of ad hoc and manual query processing.

Another factor that limits the widespread use of clustering algorithms is their
computational complexity. Many algorithms begin with a matrix that contains
the similarity of each document with every other document. For a 1,000,000
document collection this matrix has 11000d°002 different elements. Typically, this
matrix is usually very sparse (many terms appear in a single document-only
a single entry in a row of the matrix is non-zero for these terms).

Recent proposals use clustering as a utility to assist relevance feedback [Lu
et al., 1996]. In those cases only the results of a query are clustered (a much
smaller document set), and relevance feedback proceeds by obtaining only new
terms from large clusters. This may be an area where clustering will be compu­
tationally feasible enough to implement on a large scale. Also, initial work on
a Digital Array Processor (DAP) was done to improve run-time performance
of clustering algorithms by using parallel processing [Rasmussen and Willett,
1989). More recently, these algorithms were implemented on a parallel machine
with a torus interconnection network [Ruocco and Frieder, 1997].

Page 108 of 262

96 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

A detailed review of clustering algorithms is given in [Salton, 1989]. Clus­
ters are formed with either a top-down or bottom-up process. In a top-down
approach, the entire collection is viewed as a single cluster and is partitioned
into smaller and smaller clusters. The bottom-up approach starts with each
document being placed into a separate cluster of size one and these clusters are
then glued to one another to form larger and larger clusters. The bottom up
approach is referred to as hierarchical agglomerative because the result of the
clustering is a hierarchy (as clusters are pieced together, a hierarchy emerges).

3.2.1 Hierarchical Agglomerative Clustering

First the N x N document similarity matrix is formed. Each document is placed
into its own cluster. The following two steps are repeated until only one cluster
exists.

■ The two clusters that have the highest similarity are found.

■ These two clusters are combined and the similarity between the newly
formed cluster and the remaining clusters recomputed.

As the larger cluster is formed, the clusters that merged together are tracked
and form a hierarchy.

Assume documents A, B, C, D, and E exist and a document-document sim­
ilarity matrix exists. At this point, each document is in a cluster by itself:

{{A} {B} {C} {D} {E}}

We now assume the highest similarity is between document A and document
B. So the contents of the clusters become-

{ {A,B} {C} {D} {E}}

After repeated iterations of this algorithm, eventually there will only be a single
cluster that consists of {A,B,C,D,E}. However, the history of the formation
of this cluster will be known. The node {AB} will be a parent of nodes {A}
and {B} in the hierarchy that is formed by clustering since both A and B were
merged to form the cluster {AB}.

Hierarchical agglomerative algorithms differ based on how {A} is combined
with {B} in the first step. Once it is combined, a new similarity measure
is computed that indicates the similarity of a document to the newly formed
cluster {AB}.

3.2.1.1 Single Link Clustering. The similarity between two clusters is
computed as the maximum similarity between any two documents in the two
clusters, each initially from a separate cluster. Hence, if eight documents are
in cluster A and ten are in cluster B, we compute the similarity of A to B as
the maximum similarity between any of the eight documents in A and the ten
documents in B.

Page 109 of 262

RETRIEVAL UTILITIES 97

3.2.1.2 Complete Linkage. Inter-cluster similarity is computed as the
minimum of the similarity between any documents in the two clusters such
that one document is from each cluster.

3.2.1.3 Group Average. Each cluster member has a greater average sim­
ilarity to the remaining members of that cluster, than to any other cluster.

3.2.1.4 Ward's Method. Clusters are joined so that their merger mini­
mizes the increase in the sum of the distances from each individual document
to the centroid of the cluster containing it (El-Hamdouchi and Willett, 1986).
The centroid is defined as the average vector in the vector space. If a vector
represents the ith document, D; =< t1 , t2 , ••. , tn >, the centroid C is written
as C =< c1 , c2 , ••• , Cn >. The jth element of the centroid vector is computed
as the average of all of the jth elements of the document vectors:

C. - E?=l t;j
3- n

Hence, if cluster A merged with either cluster B or cluster C, the centroids for
the potential cluster AB and AC are computed as well as the maximum distance
of any document to the centroid. The cluster with the lowest maximum is used.

3.2.1.5 Analysis of Hierarchical Clustering Algorithms. A paper that
describes the implementation of all of these algorithms found that Ward's
method typically took the longest to implement, with single link and com­
plete linkage being somewhat similar in run-time (El-Hamdouchi and Willett,
1989).

A recent summary of several different studies on clustering is given in (Bur­
gin, 1995]. In most studies, clusters found in single link clustering tend to be
fairly broad in nature and tend to provide lower effectiveness than the others.
Choosing the best cluster as the source of relevant documents resulted in very
close effectiveness results for complete link, Ward's, and group average cluster­
ing. A consistent drop in effectiveness for single link clustering was noted.

3.2.2 Clustering Without a Precomputed DOC-DOC Similarity Matrix

Other approaches exist in which the N x N similarity matrix indicates that the
similarity between each document and every other document is not required.
These approaches are dependent upon the order in which the input text is
received, and do not produce the same result for the same set of input files.

3.2.2.1 One-Pass Clustering. One approach uses a single pass through
the document collection. The first document is assumed 1;0 be in a cluster of
size one. A new document is read as input and the similarity between the new
document and all existing clusters is computed. The similarity is computed
as the distance between the new document and the centroid of the existing
clusters. The document is then placed into the closest cluster, as long as it

Page 110 of 262

98 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

exceeds some threshold of closeness. This approach is very dependent on the
order of the input. An input sequence of documents 1, 2, ... , 10 can result in
very different clusters than any other of the (10! - 1) possible orderings.

Since resulting clusters can be too large, it may be necessary to split them
into smaller clusters. Also, clusters that are too small may be merged into
larger clusters.

3.2.2.2 Rocchio Clustering. Rocchio developed a clustering algorithm in
1966 [Rocchio, 1966], in which all documents are scanned and defined as either
clustered or loose. An unclustered document is tested as a potential center of a
cluster by examining the density of the document and thereby requiring that n1

documents have a similarity coefficient of at least p1 and at least n2 documents
have a correlation of P2· The similarity coefficient Rocchio most typically used
was the cosine coefficient. If this is the case, the new document is viewed as
the center of the cluster and the old documents in the cluster are checked to
ensure they are close enough to this new center to stay in the cluster. The new
document is then marked as clustered.

If a document is outside of the threshold, its status may change from clustered

to loose. After processing all documents, some remain loose. These are added
to the cluster whose centroid the document is closest to (revert to the single
pass approach).

Several parameters for this algorithm were described in 1971 by Grauer and
Messier [Grauer and Messier, 1971]. These included-

■ Minimum and maximum documents per cluster

■ Lower bound on the correlation between an item and a cluster below which
an item will not be placed in the cluster. This is a threshold that would be
used in the final cleanup phase of unclustered items.

■ Density test parameters (n1, n2,P1,P2)

■ Similarity coefficient

3.2.2.3 Buckshot Clustering. Buckshot clustering is a fast clustering al­
gorithm that runs in O(kn) time where k is the number of clusters that are gen­
erated and n is the number of documents. For applications where the number
of desired clusters is small, the clustering time is close to O(n) which is a clear
improvement over the O(n2) alternatives that require a document-document
similarity matrix.

Buckshot clustering works by choosing a random sample of v'kn documents.
These v'kn documents are then clustered by a hierarchical clustering algorithm
(any one will do). Using this approach, k clusters may be identified from the
cluster hierarchy. The hierarchical clustering algorithms all require a DOC-

DOC similarity matrix, so this step will require 0(v'kn,2) = O(kn) time. Once
the k centers are found, the remaining documents are then scanned and assigned
to one of the k centers based on the similarity coefficient between the incoming

Page 111 of 262

RETRIEVAL UTILITIES 99

document and each of the k centers. The entire algorithm requires on the order
of O(kn) time, as O(kn) is required to obtain the centers and O(kn) is required
to scan the document collection and assign each document to one of the centers.
Note that buckshot clustering can result in different clusters with each running
because a different random set of documents may be chosen to find the initial k
centers. Details of the buckshot clustering algorithm and its analysis are given
in [Cutting et al., 1992].

3.2.3 Querying Hierarchically Clustered Document Collections

Once the hierarchy is generated, it is necessary to determine which portion of
the hierarchy should be searched. A top-down search starts at the root of the
tree and compares the query vector to the centroid for each subtree. The subtree
with the greatest similarity is then searched. The process continues until a leaf
is found or the cluster size is smaller than a predetermined threshold.

A bottom-up search starts with the leaves and moves upwards. Early work
showed that starting with leaves, which contained small clusters, was better
than starting with large clusters. Subsequently three different bottom-up pro­
cedures were studied [Willett, 1988]:

■ Assume a relevant document is available and start with the cluster that
contains that document.

■ Assume no relevant document is available. Implement a standard vector­
space query and assume the top-ranked document is relevant. Start with
the cluster that contains the top-ranked document.

■ Start with the bottom level cluster whose centroid is closest to the query.

Once the leaf or bottom-level cluster is identified, all of its parent clusters
are added to the answer set until some threshold for the size of the answer set
is obtained.

These three bottom-up procedures were compared to a simpler approach in
which only the bottom is used. The bottom-level cluster centroids are compared
to the query and the answer set is obtained by expanding the top n clusters.

3.2.4 Efficiency Issues

Although the focus of this chapter is on effectiveness, the limited use of clus­
tering algorithms compels us to briefly mention efficiency concerns. Many al­
gorithms begin with a matrix that contains the similarity of each document
with every other document. For a 1,000,000 document collection, this matrix
has 1•00~ 0002 elements. Algorithms designed to improve the efficiency of clus­
tering are given in [Voorhees, 1986], but at present, no TREC participant has
clustered the entire document collection.

3.2.4.1 Parallel Document Clustering. Another means of improving
run-time performance of clustering algorithms is to implement them on a para!-

Page 112 of 262

100 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

lel processor (see Chapter 6). Initial work on a Digital Array Processor (DAP)

was done to improve the run-time of clustering algorithms by using parallel

processing [Rasmussen and Willett, 1989]. Recently, these algorithms were im­
plemented on a parallel machine with a torus interconnection network [Ruocco
and Frieder, 1997].

Recent proposals use clustering as a utility to assist relevance feedback [Lu

et al., 1996]. Only the results of a query are clustered (a much smaller document
set), and relevance feedback proceeds by only obtaining new terms from large

clusters.

3.2.4.2 Clustering with Truncated Document Vectors. The most ex­
pensive step in the clustering process occurs when the distance between the

new document and all existing clusters is computed. This is typically done by

computing the centroid of each cluster and measuring the cosine of the angle
between the new document vector and the centroid of each cluster. More re­
cently, it has been shown that clustering may be done with vectors that use only

a few representative terms from a document [Schutze and Silverstein, 1997].
One means of reducing the size of the document vector is to use Latent

Semantic Indexing (see Section 2.5) to identify the most important components.

Another means is to simply truncate the vector by removing those terms with
a weight below a given threshold. No significant difference in effectiveness was

found for a baseline of no truncation, or using latent semantic indexing with

twenty, fifty, and one hundred and fifty terms or simple truncation with fifty

terms.
Although very recent, it appears that this result is a breakthrough in docu­

ment clustering because effective clustering may be implemented with substan­

tially smaller document vectors than previously attempted.

3.3 Passage-based Retrieval

Passage-based retrieval [Callan, 1994], is based on the premise that only a

small portion of each relevant document (i.e., the relevant passage within the

document) contains the information that is relevant to the query. By computing
metrics that compare the entire document to the query, the noisy parts of the

document (the sections that are nonrelevant) potentially mask the relevant
segment of the document.

For instance, consider this book. This section is the only section that con­
tains relevant information in response to a query that searches for passage-based
retrieval. If the entire book was viewed as a single document, this section might
contribute very little to the overall similarity coefficient between the book and
the passage.

Since documents often are naturally segmented into chapters, sections, and

subsections, it is reasonable to use each of these author-determined boundaries
and simply rank the passages to the original query. A similarity coefficient

must then merge the passage-based results and obtain a final coefficient.

Page 113 of 262

RETRIEVAL UTILITIES 101

Consider a document D1 with sections A, B, C, and D. Further assume sec­
tion C is the only section that mentions anything about the query. A similarity
coefficient SC(Q, D1) could result in a coefficient that is heavily biased towards
nonrelevance because sections A, B, and D have many terms that do not match
with terms in the query. The similarity coefficient reflects this and given the
length of the document and the relatively small proportion of matching terms,
or even terms that are semantically related, the document would have a low
similarity coefficient. With passage-based retrieval, four separate coefficients
are computed: SC(Q,A), SC(Q,B), SC(Q,C), and SC(Q,D). The four different
similarity coefficients would then be merged. Several different techniques for
merging these components are presented.

Passage-based research focuses on the decision of how to identify the delim­
iters of a passage and how to combine the input of each passage into a single
similarity coefficient. The following sections discuss each of these problems and
demonstrate some initial work in each area.

3.3.1 Marker-based Passages

Marker-based passages use section headers or paragraph indentation and verti­
cal space as a means of partitioning passages. SG ML tags found in long Federal
Register documents were used in [Zobel et al., 1995].

In similar work, paragraph markers were used. To avoid very long or short
paragraphs, long paragraphs were partitioned based on size and short para­
graphs were glued together. The passages were bounded such that no passage
contained fewer than fifty terms or was larger than 200 terms [Callan, 1994]. In
[Zobel et al., 1995] passages were glued together until a sii:e of p was exceeded.
In both papers, some modest improvement occurred, but results given with the
Federal Register should be viewed with care as there are comparatively few rel­
evant documents in this particular collection. The reason given for the limited
success of this intuitively appealing approach is that the paragraph markers
and section markers are prone to error on the part of the author and may not
have resulted in a good semantic partitioning (i.e., one passage might have
described numerous concepts).

3.3.2 Dynamic Passage Partitioning

Different approaches have been used to automatically find good partitions.
These approaches attempt to partition documents differently based on the par­
ticular query [Callan, 1994]. One means of doing this is to find a term that
matches the query and then build a passage around this match. If a term
matches at position n, passage A will begin at position n and continue until
position n + p where p is a variable passage size. The next passage, B, will
overlap with A and start at position n+ ~- Figure 3.3 illustrates the difference
between overlapping and non-overlapping passages. For a term that matches
at position ten, a small passage length of fifty results in passages around the
terms [10, 60], [35, 85], [60, 110], etc. where [i, j] indicates the passage starts

Page 114 of 262

102 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

at position i and continues to j. Overlapping passages are intended to avoid
splitting sections of relevant text.

Figure 3.3. Overlapping vs Non-Overlapping Passages

D1 m

□
Pl

P2

P3

□ P4

Non-Overlapping Overlapping

3.3.3 Merging Passage-based Similarity Measures

Passages contribute to the similarity coefficient in a number of different ways.
One study tested twenty different methods of merging passage-based contribu­
tions [Wilkinson, 1994]. These methods ranged from simply taking the highest
ranked passage as the similarity coefficient to combining document level contri­
butions with passage level contributions. The work done in [Callan, 1994] also
used a combination score with the document and the passage level evidence to
obtain their best results. Similar results also occurred in [Wilkinson, 1994].

3.4 N-grams

Term-based search techniques typically use an inverted index or a scan of text
(details surrounding inverted index construction and search are given in Chap­
ter 4). Additionally, queries that are based on exact matches with terms in
document perform poorly against corrupted documents. This occurs regard­
less of the source of the errors-either OCR (optical character recognition)
errors or those due to misspelling. To provide resilience to noise, n-grams have
been proposed. The premise is to decompose terms into word fragments of

Page 115 of 262

RETRIEVAL UTILITIES 103

size n, then design matching algorithms that use these fragments to determine
whether or not a match exists.

N-grams have also been used for detection and correction of spelling er­
rors [Pollock and Zamora, 1984, Thorelli, 1962, Zamora et al., 1981] and text
compression [Yannakoudakis et al., 1982]. A survey of automatic correction
techniques is found in [Kukich, 1992]. Most recently, n-grams have been used
to determine the authorship of documents (Kjell et al., 1994]. Traditional infor­
mation retrieval algorithms based on n-grams are described in [D 'Amore and
Mah, 1985, Damashek, 1995, Pearce and Nicholas, 1993, Teuful, 1988, Cavnar
and Vayda, 1993].

3.4.1 D'Amore and Mah

Initial information retrieval research focused on n-grams as presented in [D'Amore
and Mah, 1985]. The motivation behind their work was the fact that it is dif­
ficult to develop mathematical models for terms since the potential for a term
that has not been seen before is infinite. With n-grams, only a fixed number
of n-grams can exist for a given value of n. A mathematical model was devel­
oped to estimate the noise in indexing and to determine appropriate document
similarity measures.

D'Amore and Mah's method replaces terms with n-grams in the vector space
model. The only remaining issue is computing the weights for each n-gram. In­
stead of simply using n-gram frequencies, a scaling method is used to normalize
the length of the document. D' Amore and Mah's contention was that a large
document contains more n-grams than a small document, so it should be scaled
based on its length.

To compute the weights for a given n-gram, D'Amore and Mah estimated
the number of occurrences of an n-gram in a document. The first simplifying
assumption was that n-grams occur with equal likelihood and follow a binomial
distribution. Hence, it was no more likely for n-gram "ABC" to occur than
"DEF." The Zipfian distribution that is widely accepted for terms is not true
for n-grams. D'Amore and Mah noted that n-grams are not equally likely
to occur, but the removal of frequently occurring terms from the document
collection resulted in n-grams that follow a more binomial distribution than
the terms.

D'Amore and Mah computed the expected number of occurrences of an n­
gram in a particular document. This is the product of the number of n-grams
in the document (the document length) and the probability that the n-gram
occurs. The n-gram's probability of occurrence is computed as the ratio of
its number of occurrences to the total number of n-grams in the document.
D'Amore and Mah continued their application of the binomial distribution to
derive an expected variance and, subsequently, a standard deviation for n-gram
occurrences. The final weight for n-gram i in document j is-

Page 116 of 262

104 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

where-

/i; = frequency of an n-gram i in document j

ei; = expected number of occurrences of an n-gram i in document j

Ui; = standard deviation

Then-gram weight designates the number of standard deviations away from the
expected value. The goal is to give a high weight to an n-gram that has occurred
far more than expected and a low weight to an n-gram that has occurred only
as often as expected.

D' Amore and Mah did several experiments to validate that the binomial
model was appropriate for n-grams. Unfortunately, they were not able to test
their approach against a term-based one on a large standardized corpus.

3.4.2 Dama.shek

Damashek expanded on D'Amore and Mah's work by implementing a five­
gram-based measure of relevance [Damashek, 1995). Damashek's algorithm re­
lies upon the vector space model, but computes relevance in a different fashion.
Instead of using stop words and stemming to normalize the expected occur­
rence of n-grams, a centroid vector is used to eliminate noise. To compute the
similarity between a query and a document, the following cosine measure is
used-

Here µ9 and J.&d represent centroid vectors that are used to characterize the
query language and the document language. The centroid value for each n­
gram is computed as the ratio of the total number of occurrences of the n-gram
to the total number of n-grams. This is the same value used by D'Amore and
Mah. It is not used as an expected probability for the n-grams, but merely
as a characterization of the n-gram 's frequency across the document collection.
The weight of a specific n-gram in a document vector is the ratio of the number
of occurrences of the n-gram in the document to the total number of all of
the n-grams in the document. This "within document frequency" is used to
normalize based on the length of a document, and the centroid vectors are
used to incorporate the frequency of the n-grams across the entire document
collection.

By eliminating the need to remove stop words and to support stemming, (the
theory is that the stop words are characterized by the centroid so there was
no need to eliminate them), the algorithm simply scans through the document
and grabs n-grams without any parsing. This makes the algorithm language
independent. Additionally, the use of the centroid vector provides a means
of filtering out common n-grams in a document. The remaining n-grams are
reverse engineered back into terms and used as automatically assigned keywords
to describe a document. A description of this reverse engineering process is

Page 117 of 262

RETRIEVAL UTILITIES 105

given in [Cohen, 1995]. Proof of language independence is given with tests
covering English, German, Spanish, Georgian, Russian, and Japanese.

3.4.3 Pearce and Nicholas

An expansion of Damashek's work uses n-grams to generate hypertext links
[Pearce and Nicholas, 1993]. The links are obtained by computing similarity
measures between a selected body of text and the remainder of the document.
After a user selects a body of text, the five-grams are identified, and a vector
representing this selected text is constructed. Subsequently, a cosine similarity
measure is computed, and the top rated documents are then displayed to the
user as dynamically defined hypertext links. The user interface issues surround­
ing hypertext is the principal enhancement over Damashek's work. The basic
idea of constructing a vector and using a centroid to eliminate noise remains
intact.

3.4.4 Teufel

Teufel also uses n-grams to compute a measure of similarity using the vector
space model [Teuful, 1988]. Stop words and stemming algorithms are used and
advocated as a good means of reducing noise in the set of n-grams. However,
his work varies from the others in that he used a measure of relevance that is
intended to enforce similarity over similar documents. The premise was that if
document A is similar to B, and B is similar to C, then A should be roughly
similar to C. Typical coefficients, such as inner product, Dice, or Jaccard (see
Section 2.1.2), are non-transitive. Teufel uses a new coefficient, H, where--

H = X +Y-(XY)

and Xis a direct similarity coefficient (in this case Dice was used, but Jaccard,
cosine, or inner product could also have been used) and Y is an "indirect"
measure that enforces transitivity. With the indirect measure, document A is
identified as similar to document C. A more detailed description of the indirect
similarity measure is given in [Teuful, 1991].

Good precision and recall was reported for the INSPEC document collection.
Language independence was claimed in spite of reliance upon stemming and
stop words.

3.4.5 Cavnar and Vayda

N-grams were also proposed in [Cavnar, 1993, Cavnar and Vayda, 1993]. Most
of this work involves using n-grams to recognize postal addresses. N-grams
were used due to their resilience to errors in the address. A simple scanning
algorithm that counts the number of n-gram matches that occur between a
query and a single line of text in a document was used. No weighting of any
kind was used, but, by using a single text line, there is no need to normalize
for the length of a document. The premise is that the relevant portion of a
document appears in a single line of text.

Page 118 of 262

106 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Cavnar's solution was the only documented approach that has been tested
on a large standardized corpus. For the entire TIPSTER document collection,
average precision of between 0.06 and 0.15 was reported. It should be noted
that for the AP portion of the collection an average precision of 0.35 was ob­
tained. These results on the AP documents caused Cavnar to avoid further
tuning. Unfortunately, results on the entire collection exhibited relatively poor
performance. Regarding these results, the authors claimed that "It is unclear
why there should be such variation between the retrievability of the AP docu­
ments and the other document collections."

3.5 Regression Analysis

Another approach to estimating the probability of relevance is to develop vari­
ables that describe the characteristics of a match to a relevant document. Re­
gression analysis is then used to identify the exact parameters that match the
training data. For example, if trying to determine an equation that predicts a
person's blood pressure given their age-

Age Blood Pressure
45 200
50 220
70 220

A simple least squares polynomial regression could be implemented, that would
identify the correct values of a and /3 to predict blood pressure (BP) based on
age (A):

BP= aA+/3

For a given age, it is possible to find the related blood pressure. Now, if we
wish to predict the likelihood of a person having heart disease, we might obtain
the following data:

Age Blood Pressure Heart Disease
45 200 yes
50 220 no
70 220 yes

The issue now is to fit a curve to the data points such that if a new person
shows up and asks for the chance of their having heart disease, the point on the
curve that corresponds to their age and blood pressure could be examined. This
second example is more analogous to document retrieval because, we are trying
to identify characteristics in a query-document match that indicate whether or

Page 119 of 262

RETRIEVAL UTILITIES 107

not the document is relevant. The problem is that relevance is typically given
a binary (1 or 0) for training data-it is rare that we have human assessments
that the document is "kind of" relevant. Note that there is a basic independence
assumption that says age will not be related to blood pressure (an assumption
we implied was false in our preceding example). Logistic regression is typically
used to estimate dichotomous variables-those that only have a small set of
values, (i.e., gender, heart disease present, and relevant documents).

Focusing on information retrieval, the problem is to find the set of variables
that provide some indication that the document is relevant.

Matching Terms Size of Query Size of Document Relevant?
5 10 30 yes
8 20 45 no

Six variables used recently [Fontaine, 1995] are given below-

1. The mean of the total number of matching terms in the query.

2. The square root of the number of terms in the query.

3. The mean of the total number of matching terms in the document.

4. The square root of the number of terms in the document.

5. The average id/ of the matching terms.

6. The total number of matching terms in the query.

A brief overview of polynomial regression and the initial use of logistic re­
gression is given in [Cooper et al., 1992]. However, the use oflogistic regression
requires the variables used for the analysis to be independent. Hence, the lo­
gistic regression is given in two stages. Composite clues which are composed of
independent variables are first estimated. Assume clues 1-3 above are found in
one composite clue and 4-6 are in the second composite clue. The two stages
proceed as follows-

Stage 1:
A logistic regression is done for each composite clue.

logO(RIC1) = Co+ c1X1 + c2X2 + csXs

logO(RIC2) = do+ d1X4 + "2Xs + dsXu

At this point the coefficients Co, c1, c2 , c3 are computed to estimate the relevance
for the composite clue C1. Similarly, do,d1,d2 , d3 estimate the relevance of C2.

Page 120 of 262

108 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Stage 2:
The second stage of the staged logistic regression attempts to correct for

errors induced by the number of composite clues. As the number of compos­
ite clues grows, the likelihood of error increases. For N composite clues, the
following logistic regression is computed:

where Z is computed as the sum of the composite clues or­

N

Z = }: log O(RICi)
i=l

The results of the first stage regression are applied to the second stage. It
should be noted that further stages are possible.

Once the initial regression is completed, the actual computation of simi­
larity coefficients proceeds quickly. Composite clues are only dependent on
the presence or absence of terms in the document and can be precomputed.
Computations based on the number of matches found in the query and the
document are done at query time, but involve combining the coefficients com­
puted in the logistic regression with the precomputed segments of the query.
Further implementation details are found in (Fontaine, 1995].

The question is whether or not the coefficients can be computed in a generic
fashion that is resilient to changes in the document collection. The appealing
aspects of this approach are that experimentation can be done to identify the
best clues, and the basic independence assumptions are avoided. Additionally,
the approach corrects for errors incurred by the initial logistic regression.

3.6 Thesauri

One of the most intuitive ideas for enhancing effectiveness of an information
retrieval system is to include the use of a thesaurus. Almost from the dawn of
the first information retrieval systems in the early 1960s, researchers focused
on incorporating a thesaurus to improve precision and recall. The process of
using a thesaurus to expand a query is illustrated in Figure 3.4.

A thesaurus, at first glance, might appear to assist with a key problem­
two people very rarely describe the same concepts with the same terms (i.e.,
one person will say that they went to a party while another person might
call it a gathering). This problem makes statistical measures that rely on the
number of matches between a query term and the document terms somewhat
brittle when confronted with semantically equivalent terms that happen to be
syntactically distinct. A query that asks for information about dogs is probably
also interested in documents about canines.

A document relevant to a query might not match any of the terms in the
query. A thesaurus can be used either to assign a common term for all synonyms

Page 121 of 262

RETRIEVAL UTILITIES 109

Figure 3.4. Using a Thesaurus to Expand a Query

Query ----16 -
~ Thesaurus

l
Document
Collection

l
[>

Results l
of a term, or to expand a query to include all synonymo\JlS terms. Intuitively
this should work fine, but unfortunately, results have not been promising. This
section describes the use of hand-built thesauri, a very labor intensive means of
building a thesaurus, as well as the quest for a sort of holy grail of information
retrieval, an automatically generated thesaurus.

3.6.1 Automatically Constructed Thesauri

A hand-built thesaurus might cover general terms, but it lacks domain-specific
terms. A medical document collection has many terms that do not occur in a
general purpose thesaurus. To avoid the need for numerous hand-built domain­
specific thesauri, automatic construction methods have been implemented.

3.6.1.1 Term Co-occurrence. An early discussion of automatic thesaurus
generation is found in [Salton, 1971c]. The key to this approach is to repre­
sent each term as a vector. The terms are then compared using a similarity

Page 122 of 262

110 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

coefficient that measures the Euclidean distance, or angle, between the two
vectors.

To form a thesaurus for a given term t, related terms for t are all those
terms u such that SC(t,u) is above a given threshold. Note, this is an O(t2)

process so it is often common to limit the terms for which a related term list
is built. This is done by using only those terms that are not so frequent that
they become stop terms, but not so infrequent that there is little chance they
have many synonyms.

Consider the following example-

Di: "a dog will bark at a cat in a tree"
D2 : "ants eat the bark of a tree"

This results in the term-document occurrence matrix found in Table 3.1.

Table 3.1. Term-Document Matrix

term Di D2
a 3 1
ants 0 1
at 1 0
bark 1 1
cat 1 0
dog 1 0
eat 0 1
in 1 0
of 0 1
the 0 1
tree 1 1
will 1 0

To compute the similarity of term i with term j, a vector of size N, where N is
the number of documents, is obtained for each term. The vector corresponds
to a row in the following table. A dot product similarity between "bark" and
"tree" is computed as-

SC(bark,tree) =< 1 1 > • < 1 1 > = 2

The corresponding term-term similarity matrix is given in Table 3.2.

The matrix is symmetric as SC(t1 , t2} is equivalent to SC(h, t1). The
premise is that words are similar or related to the company they keep. Con­
sider "tree" and "bark", in our example, these terms co-occur twice in two
documents. Hence, this pair has the highest similarity coefficient. Other sim­
ple extensions to this approach are the use of word stems instead of whole terms

Page 123 of 262

RETRIEVAL UTILITIES 111

Table 3.2. Example Term-Term Similarity Matrix

term a ants at bark cat dog eat in of the tree will
a 0 1 3 4 3 3 1 3 1 1 4 3
ants 1 0 0 1 0 0 1 0 1 1 1 0

at 3 0 0 1 1 1 0 1 0 0 1 0
bark 4 1 1 0 1 1 1 1 1 1 2 1

cat 3 0 1 1 0 1 0 1 0 0 1 1

dog 3 0 1 1 1 0 0 1 0 1 1 1

eat 1 1 0 1 0 0 0 0 1 0 1 0
in 3 0 1 1 1 1 0 0 0 0 1 1
of 1 1 0 1 0 0 1 0 0 1 1 0
the 1 1 0 1 0 0 1 0 1 0 1 0
tree 4 1 1 2 1 1 1 1 1 1 0 1
will 3 0 1 1 1 1 0 1 0 0 1 0

(for more on stemming see Section 3.8.1). The use of stemming is important
here so that the term cat will have no real difference than cats. The tf-idf
measure can be used in the term-term similarity matrix to give more weight to
co-occurrences between relatively infrequent terms.

Early work done with the term-term similarity matrix was given in [Minker
et al., 1972). This paper summarizes much of the work done in the 1960s us­
ing term clustering, and provides some additional experiments [Salton, 1971c,
Sparck Jones and Jackson, 1968, Sparck Jones and Barber, 1971). The com­
mon theme of these papers is that the term-term similarity matrix can be con­
structed, and then various clustering algorithms can be used to build clusters
of related terms.

Once the clusters are built, they are used to expand the query. Each term in
the original query is found in a cluster that was included in some portion or all
(depending on a threshold) elements of its cluster. Much of the related work
done during this time focused on different clustering algorithms and different
thresholds to identify the number of terms added to the cluster. The conclusion
was that the augmentation of a query using term clustering did not improve
on simple queries that used weighted terms.

More recent work with term-term similarity matrices is presented in [Chen
and Ng, 1995). A domain-specific thesaurus was constructed on information
about the Caenorhabditis elegans worm in support of molecular biologists [Chen
et al., 1995). A term-term similarity measure was built with phrases and terms.
A weight that used tf-idf but also included another factor Pi, was used where
Pi indicated the number of terms in phrase i. Hence, a two-term phrase was
weighted double that of a single term. The new weight was-

Wii = tfo x log(; x Pi)

Page 124 of 262

112 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Using this new weight, an asymmetric similarity coefficient was also developed.
The premise was that the symmetric coefficients are not as useful for ranking
because a measurement between ti, t; can become very skewed if either ti or
t; occurs frequently. The asymmetric coefficient allows for a ranking of an
arbitrary term ti, frequent or not, with all other terms. Applying a threshold
to the list means that for each term, a list of other related terms is generated­
and this can be done for all terms.

The measurement for SC(ti,t;) is given as-

(
I:~=l min(tfil., tf;,.) log (I; x P;))

SC(ti, t;) = :En
k=l Wik

xW;

where d/i; is the number of co-occurrences of term i with term j. Two additional
weights make this measure asymmetric: Pi and W;. As we have said P; is a
small weight included to measure the size of term j. With all other weights
being equal, the measure: SC(food, apple pie) > SC(food, apple) since phrases
are weighted higher than terms. The weighting factor, W;, gives additional
preference to terms that occur infrequently without skewing the relationship
between term i and term j. The weight W; is given as-

W· = (log (i))
1 logN

Consider the term york and its relationship to the terms new and castle. Assume
new occurs more frequently than castle. With all other weights being equal,
the new weight, W;, causes the following to occur:

SC(york,castle) > SC(york,new)

This is done without regard for the frequency of the term york. The key is that
we are trying to come up with a thesaurus, or a list of related terms, for a given
term (i.e., york). When we are deriving the list of terms for new we might find
that york occurs less frequently than castle so we would have:

SC(new, york) > SC(new, castle)

Note that we were able to consider the relative frequencies of york and castle
with this approach. In this case-

SC(new, york) = SC(york, new)

The high frequency of the term new drowns out any real difference between
york and castle-or at least that is the premise of this approach. We note in
our example, that new york would probably be recognized as a phrase, but that
is not really pertinent to this example.

Page 125 of 262

RETRIEVAL UTILITIES 113

Hence, at this point, we have defined SC(t;, tj)- Since the coefficient is
asymmetric we now give the definition of SC(tj, t;):

xW;

A threshold was applied so that only the top one hundred terms were used for a
given term. These were presented to a user and, for relatively small document
collections, users found that the thesaurus assisted their recall. No testing of
generic precision and recall for automatic retrieval was measured.

3.6. 1.2 Term Context. Instead of relying on term co-occurrence, recent
work uses the context (surrounding terms) of each term to construct the vectors
that represent each term [Gauch and Wang, 1996]. The problem with the
vectors given above is that they do not differentiate the senses of the words. A
thesaurus relates words to different senses. In the example given below, "bark"
has two entirely different senses. A typical thesaurus lists "bark" as-

bark-surface of tree (noun)
bark-dog sound (verb)

Ideally an automatically generated thesaurus would ha.ve separate lists of
synonyms. The term-term matrix does not specifically identify synonyms, and
Gauch and Wang do not attempt this either. Instead, the relative position of
nearby terms is included in the vector used to represent .a. term [Gauch and
Wang, 1996].

The key to similarity is not that two terms happen to occur in the same
document; it is that the two terms appear in the same context-that is they
have very similar neighboring terms.

Bark, in the sense of a sound emanating from a dog, appears in different
contexts than bark, in the sense of a tree surface. Consider the following three
sentences:

S1: "The dog yelped at the cat."
S2: "The dog barked at the cat."
Sa: "The bark fell from the tree to the ground."

In sentences S1 and S2 , yelped is a synonym for barked, and the two terms
occur in exactly the same context. It is unlikely that another sense of bark
would appear in the same context. "Bark" as a surface of tree more commonly
would have articles at one position to the left instead of two positions to the
left, etc.

To capture the term's context, it is necessary to identify a set of context
terms. The presence or absence of these terms around a given target term
will determine the content of the vector for the target term. In [Gauch and

Page 126 of 262

114 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Wang, 1996], the authors assume the highest frequency terms are the best
context terms, so the 200 most frequent terms (including stop terms) are used
as context terms. A window of size seven was used. This window includes the
three terms to the left of the target term and the three terms to the right of
the target term. The new vector that represents target term i will be of the
general form-

where each vector, Vi, and i = -3, -2, -1, 1, 2, and 3 corresponds to a 200 element
vector that represents the context of the target term for a given position. The
vector v_3 contains a component for each of the 200 context terms that occur
three terms to the left of the target term. Similarly, the vector v3 contains
a component for each of the 200 context terms that occur three terms to the
right of the target.

The Vi vectors are all concatenated to form the entire Ti vector for the term.
For a simple example, we build the context vectors for the terms bark and yelp
based on the document collection S1 , S2 , and S3 • To simplify the example,
we assume that stemming is done to normalize bark and barked and that the
and at are the only two context terms occupying components one and two,
respectively, of the context vectors.

Tbark = [< 00 >< 10 >< 10 >< 01 >< 10 >< 10 >]

T11e1p = [< 00 >< 10 >< 00 >< 01 >< 10 >< 00 >]
The matching of S1 and S2 is the driving force between the two vectors being
very similar. The only differences occur because of the additional word sense
that occurs in Sa.

This example uses the frequency of occurrence of a context term as the
component of the context vectors. In [Gauch and Wang, 1996], the authors
use a measure that attempts to place more weight on context terms that occur
less frequently than might be expected. The actual component value of the jth
component of vector Vi, is a mutual information measure. Let-

dfi; frequency of co-occurrence of context term

j with target term i

tf; = total occurrences of context term i

in the collection

t !; = the total occurrences of context term j

in the collection

Page 127 of 262

RETRIEVAL UTILITIES 115

This gives a higher weight to a context term that appears more frequently with
a given target term than predicted by the overall frequencies of the two terms.

Gauch and Wang use the top 200 terms, with a seven term window size,
so each term vector is of size 1200. The vectors are then compared with a
standard cosine measure, and all terms with a similarity above a threshold are
used. The choice of which target words to choose is difficult, and after some
experimentation 4,000 target words were chosen from the frequency list.

Queries were then expanded using only the top n terms that fell above a
certain threshold. Unfortunately, average precision for the expanded query was
not significantly higher than without the expansion.

Analysis of the repeated failure of automatically generated thesauri built
from term-term similarity matrices is given in [Peat and Willett, 1991]. They
noted a key problem with using term co-occurrence to generate a thesaurus is
that relatively frequent terms co-occur with other frequent terms. The result is
a thesaurus in which one relatively general term is found to be related to another
general term (e.g., hairy might be found to be related to furry). Although these
terms are related, they do not improve precision and recall because, due to their
relatively high frequency, they are not good discriminators.

Interestingly, an early paper showed that randomly selecting terms for expan­
sion was sometimes more effective than using those generated by a term-term
similarity matrix [Smeaton and Rijsbergen, 1983]. Given a Zipfian distribu­
tion [Zipf, 1949] most terms appear infrequently (over half occur only once), so
there is a good chance that the randomly selected terms were low frequency,
and hence, did not do as much damage as a high frequency non-discriminating
term.

3.6.1.3 Clustering with Singular Value Decomposition. Schutze and
Pedersen use term clustering and a singular value decomposition (SVD) to gen­
erate a thesaurus [Schutze and Pedersen, 1997]. First a matrix, A, is computed
for terms that occur 2000-5000 times. The matrix contains the number of
times these terms co-occur with a term window of size k (k is 40 in this work).
Subsequently, these terms are clustered into 200 A-classes (group average ag­
glomerative clustering is used-see Section 3.2.1.3). For example, one A-class,
UA1, might have terms (ti, t2, ta) and another, UA2, would have (t4, t5).

Subsequently, a new matrix, B, is generated for the 20,000 most frequent
terms based on their co-occurrence between clusters found in the matrix. For
example, if term t; co-occurs with term t1 ten times, term t2 five times, and term
t4 six times, B[l, j] = 15 and B[2, j] = 6. Note the use of clusters has reduced
the size of the B matrix and provides substantially more training information.
The rows of B correspond to classes in A, and the columns correspond to terms.
The B matrix is of size 200 x 20,000. The 20,000 columns are then clustered
into 200 B-classes using the buckshot clustering algorithm (see Section 3.2.2.3).

Finally, a matrix, C, is formed for all terms in the collection. An entry
C[ij] indicates the number of times term j co-occurs with the B-classes. Once
this is done, the C matrix is decomposed and singular values are computed to

Page 128 of 262

116 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

represent the matrix. This is similar to the technique used for latent semantic
indexing (see Section 2.5). The SVD is more tractable at this point since only
200 columns exist.

A document is represented by a vector that is the sum of the context vectors
(vectors that correspond to each column in the SVD). The context vector is
used to match a query.

Another technique that uses the context vector matrix, is to cluster the
query based on its context vectors. This is referred to as word factorization.
The queries were partitioned into three separate clusters. A query is then run
for each of the word factors and a given document is given the highest rank of
the three. This requires a document to be ranked high by all three factors to
receive an overall high rank. The premise is that queries are generally about
two or three concepts and that a relevant document has information relevant
to all of the concepts.

Overall, this approach seems very promising. It was run on a reasonably
good-sized collection (the Category B portion of TIPSTER using term factor­
ization, average precision improved from 0.27 to 0.32-an 18.5% overall im­
provement).

3.6.1.4 Using only Document Clustering to Generate a Thesaurus.
Another approach to automatically build a thesaurus is described in [Crouch,
1989, Crouch, 1990]. First, a document clustering algorithm is implemented to
partition the document collection into related clusters. A document-document
similarity coefficient is used. Complete link clustering is used here, but other
clustering algorithms could be used (for more details on clustering algorithms
see Section 3.2).

The terms found in each cluster are then obtained. Since they occur in
different documents within the cluster, different operators are used to obtain
the set of terms that correspond to a given cluster. Consider documents with
the following terms-

Di= ti,t2,ta,t4

D2 = t2,t4

Da = ti,t2

The cluster may be represented by the union of all the terms {ti, t2 , t 3 , t4},
the intersection {t2 }, or some other operation that considers the number of
documents in the cluster that contain the term. Crouch found that simple
clustering worked the best. The terms that represented the cluster now appear
as a thesaurus class, in that they form the automatically generated thesaurus.
The class is first reduced to obtain only the good terms. This is done by using a
term discriminating function that is based on document frequency. (see Section
2.1 for more details on document frequency).

Page 129 of 262

RETRIEVAL UTILITIES 117

Queries are expanded based on the thesaurus class. Any term that occurs
in the query that matches a term in the thesaurus class results in all terms in
the class being added to the query. Average precision was shown to improve
ten percent for the small ADI collection and fifteen percent for the Medlars
collection. Unfortunately, both of these results were for small collections, and
the document clustering is computationally expensive, requiring O(N2 } time,
where N is the number of documents in the collection.

3.6.2 Use of Manually Generated Thesaurus

Although a manually generated thesaurus is far more time consuming to build,
several researchers have explored the use of such a thesaurus to improve preci­
sion and recall.

3.6.2.1 Extended Relevance Ranking with Manual Thesaurus. A
system developed in 1971 used computers to assist with the manual construction
of a thesaurus at the Columbia University School of Library Service. The
algorithm was essentially equivalent to a simple thesaurus editor [Hines and
Harris, 1971].

Manual thesaurus construction is typically used for domain-specific thesauri.
A group of experts is convened, and they are asked to identify the relationship
between domain-specific terms. Ghose and Dhawle note that manual generation
of these thesauri can be more difficult to build for social sciences than natural
sciences given that there is more disagreement about the meaning of domain­
specific terms in the social sciences (Ghose and Dhawle, 1977].

A series of handbuilt thesauri (each one was constructed by students) was
described in [Wang et al., 1985]. These thesauri were generated by the rela­
tionships between two terms-such as dog is-a animal. Ultimately the thesauri
were combined into one that contained seven groups of relations. These groups
were--

■ antonyms

■ all relations but antonyms

■ all relations

■ part-whole and set relations

■ colocation relations

■ taxonomy and synonymy relations

■ paradigmatic relations

The antonym relation identified terms that were opposites of one another
(e.g., night, day) and is-part-of identifies entities that are involved in a bill­
of-materials relationship (e.g., tire, automobile}. Co-location contains relations

Page 130 of 262

118 IN1<0RMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

between words that frequently co-occur in the same phrase or sentence. Taxon­
omy and synonym represent synonyms. Paradigmatic relations relate different
forms of words that contain the same semantic core such as canine and dog.
Experiments in adding each or all of the terms from these relations were done
on a small document collection with relevance judgments obtained by the re­
searchers conducting the study. Use of all relations, with the exception of
antonyms, delivered the best average precision and recall, but there was little
overall improvement.

A study done in 1993 used a thesaurus containing five different relations:
equivalence (synonym), hierarchical (is-a), and associative relationships [Kris­
tensen, 1993]. Recall of a fairly large (227,000} document collection composed
of Finnish newspaper articles was shown to increase from 4 7 percent to 100
percent while precision only decreased from 62.5 percent to 51 percent. For­
tunately, the work was done on a large collection, however, the thesaurus was
hand-built for the test and contained only 1,011 concepts and a total of 1,573
terms. Only thirty queries were used and the high results are clearly due to
"good" terms found in the thesaurus.

Given the nature of the highly specific thesaurus, this result might be very
similar in nature to the manual track of the TREC conference where partici­
pants are allowed to hand-modify the original query to include more discrim­
inating terms. The synonym, narrower term, and related term searches all
showed a 10 to 20% increase in recall from a 50% baseline. The union search
(using all values) showed a rather high fifty percent increase in average preci­
sion. This work does represent one of the few studies outside of the TIPSTER
collection that is run on a sizable collection. It is not clear, however, how ap­
plicable the results are to a more general collection that uses a more general
thesaurus.

3.6.2.2 Extending Boolean Retrieval With a Hand Built Thesaurus.
All work described attempts to improve relevance ranking using a thesaurus.
Lee et al., describe the extensions to the extended Boolean retrieval model as a
means of including thesaurus information in a Boolean request [Lee et al., 1994].
A description of the extended Boolean model is found in Section 2.4. Values
for p were attempted, and a value of six (value suggested for standard extended
Boolean retrieval by Salton in [Salton, 1989]} was found to perform the best.
Results of this approach were found to show slightly higher effectiveness.

3.7 Semantic Networks

Semantic networks are based on the idea that knowledge can be represented
by concepts which are linked together by various relationships. A semantic
network is simply a set of nodes and arcs. The arcs are labeled for the type of
relationship they represent. Factual information about a given node, such as its
individual characteristic, (color, size, etc.) are often stored in a data structure
called a frame. The individual entries in a frame are called slots [Minsky, 1975].

A frame for a rose may take the form-

Page 131 of 262

(rose
(has-color red}
(height 2 feet)
(is-a flower}

RETRIEVAL UTILITIES 119

Here the frame rose is a single node in a semantic network containing an is-a link
to the node flower. The slots has-color and height store individual properties
of the rose.

Natural language understanding systems have been developed to read human
text and build semantic networks representing the knowledge stored in the text
[Schank, 1975, Schank and Lehnert, 1977, Gomez and Segami, 1989, Gomez
and Segami, 1991]. It turns out that there are many concepts that are not
easily represented (the hardest ones are usually those that involve temporal or
spatial reasoning). Storing information in the sentence "A rose is a flower." is
easy to do as well as to store, "A rose is red", but semantic nets have difficulty
with storing the information that, "The rose grew three feet last Wednesday
and was taller than anything else in the garden." Storing information about
the size of the rose on different dates, as well as, the relative location of the
rose is often quite difficult in a semantic network. For a detailed discussion
see the section on "Representational Thorns" about the large-scale knowledge
representation project called Cyc (a project in which a large portion of common
sense reasoning is being hand-crafted} [Lenat and Guha, 1989].

Despite some of the problems with storing complex knowledge in a semantic
network, research has been done in which semantic networks have been used to
improve information retrieval. This work yielded limited results and is highly
language specific, however, the potential for improvement still exists.

Semantic networks attempt to resolve the mismatch problem in which the
terms in a query do not match those found in a document, even though the
document is relevant to the query. Instead of matching characters in the query
terms with characters in the documents, the semantic distance between the
terms is measured (by various measures) and incorporated into a semantic
network. The premise behind this is that terms which share the same meaning
appear relatively close together in a semantic network. Spreading activation is
one means of identifying the distance between two terms in a semantic network.

There is a close relationship between a thesaurus and a semantic network.
From the standpoint of an IR system, a thesaurus attempts to solve the same
mismatch problem by expanding a user query with related terms and hoping
that the related terms will match the document. A semantic network sub­
sumes a thesaurus by incorporating links that indicate "is-a-synonym-of' or
"is-related-to," but a semantic network can represent more complex informa­
tion such as an is-a hierarchy which is not found in a thesaurus.

One semantic network used as a tool for information retrieval research is
WordNet [Beckwith and Miller, 1990]. WordNet is publicly available and con­
tains frames specifically designed for words (some semantic networks might con-

Page 132 of 262

120 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

tains frames for more detailed concepts such as big-and-hairy-person). WordNet
can be found on the World Wide Web at: www.cogsci.princeton.edu/-wn.

WordNet contains different entries for the various semantic meanings of a
term. Additionally, various term relationships are stored including: synonyms,
antonyms (roughly the opposite of a word), hyponyms (lexical relations such as
is-a), and meronyms (is a part-of). Most nouns in WordNet are placed in the
is-a hierarchy while antonyms more commonly relate adjectives.

Interestingly, less commonly known relations of entailment and troponyms
are used to relate verbs. Two verbs are related by entailment when the first
verb entails the second verb. For example, to buy something entails that you
will pay for it. Hence, buy and pay are related by entailment. A troponym
relation occurs when the two activities related by entailment must occur at the
same time (temporally co-extensive) such as the pair (limp, walk). Software
used to search WordNet is further described in [Beckwith and Miller, 1990].

It is reasonable to assume that WordNet would help effectivness by expand­
ing query terms with synsets found in WordNet. Surprisingly, there is no known
result that has shown this to be the case. Work done by Voorhees [Voorhees,
1993] showed that even with manual selection of synsets, effectiveness was not
improved when queries were expanded. A key obstacle was that terms in queries
were not often found in WordNet due to their specificity-terms such as Na­
tional Rifle Association are not in WordNet. Also, the addition of terms that
have multiple meanings or word senses significantly degrade effectiveness.

Semantic networks have been used to augment Boolean retrieval and auto­
matic relevance ranking. We describe these approaches in the remainder of this
section.

3. 7.1 Distance Measures

To compute the distance between a single node in a semantic network and
another node, a spreading activation algorithm is used. A pointer starts at
each of the two original nodes and links are followed until an intersection occurs
between the two points. The shortest path between the two nodes is used to
compute the distance. Note that the simple shortest path algorithm does not
apply here because there may be several links that exist between the same two
nodes. The distance between nodes a and bis:

Distance(a,b) = minimum number of edges separating a and b

3.7.1.1 R-distance. The problem of measuring the distance between two
sets of nodes is more complex. Ideally the two sets line up, for example "large
rose" and "tall flower" is one such example where "large" can be compared with
"tall" and "rose" can be compared with "flower." The problem is that it is dif­
ficult to align the concepts such that related concepts will be compared. Hence,
the R-distance defined in [Rada et al., 1987] takes all of the individual entries
in each set and averages the distance between all the possible combinations of
the two sets.

Page 133 of 262

RETRIEVAL UTILITIES 121

If a document is viewed as a set of terms that are "AND"ed together, and a
query is represented as a Boolean expression in disjunctive normal form, then
the R-distance identifies a measure of distance between the Boolean query and
the document. Also, a NOT applied to a concept yields the distance that is
furthest from the concept. Hence, for a query Q for terms ((a AND b AND
c} OR (e AND f)) and Document D with terms (t1 AND t2 }, the similarity is
computed below.

d(a, t1} + d(a, t2) + d(b, t1) + d(b, t2) + d(c, ti)+ d(c, t2)
6

d(e, t1) + d(e, t2) + d(f, t1) + d(f, t2)
4

SC(Q,D) is computed now as the MIN(c1 ,c2). Essentially each concept rep­
resented in the query is compared to the whole document and the similarity
measure is computed as the distance between the document and the closest
query concept.

Formally, the R-distance of a disjunctive normal form query Q, and a docu­
ment D with terms (t1, t2, ... , tn) and Cij, indicates the jth term in concept i
is defined as:

SC(Q,D)

SCi(c;,D)

SC(Q,D)

min (SC1 (c1,D), SC1(c2, D), ... , SC1(cm, D))
l n m

~ LLd(t;,c;;)
n i=l j=l

0, if Q = D

3.7.1.2 K-distance. A subsequent distance measure referred to as the K­
distance was developed in [Kim and Kim, 1990]. This measure incorporates
weighted edges in the semantic network. The distance defined between two
nodes is obtained by finding the shortest path between the two nodes (again by
using spreading activation} and then summing the edges along the path. More
formally the distance between terms t; and t; is obtained by:

d;; = Wt,,z, + w.,,,.,, + ... + w.,n,t;

where the shortest path from t; to ti is: t;, x 1 , x2 , ••• , t;.
The authors treat NOT as a special case. Details are given in [Kim and

Kim, 1990] but the basic idea is to dramatically increase the weights of the
arcs that connect the node that is being referenced with a NOT (referred to
as separation edges). Once this is done, any paths that include this node are
much longer than any other path that includes other terms not referenced by
a NOT.

Page 134 of 262

122 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

To obtain the distance between two sets, A and B, of nodes with weighted
arcs, the K-distance measure computes the minimum of the distances between
each node in set A and set B. These minimum distances are then averaged.
Since the weights on the arcs may not be equivalent in both directions, the
distance measure from A to B is averaged with the distance from B to A. For
our same query Q-

((a AND b AND c) OR (e AND f))

Assume document D has only two terms: (ti AND t2), the similarity is com­
puted below.

min(d(a, ti), d(a, t2)) + min(d(b, ti), d(b, t2)) + min(d(c, ti), d(c, t2))
Ci= 3

min(d(e, ti), d(e, t2)) + min(d(f, ti), d(f, t2))
C2 = 2

SC(Q,D) is still the min(ci,c2). The value of SC(D,Q) would then be ob­
tained, and the two coefficients are then averaged to obtain the final similarity
measure.

The K-distance of a disjunctive normal form query Q and a document D
with terms (ti , t2 , ••• , tn) is defined as:

SC(Q,D) = SCi(Q,D) + SCi(D, Q)
2

SC(Q,D) = 0, if Q = D

The R-distance satisfies the triangular inequality such that r-dist(a,c) is less
than or equal to r-dist(a,b) + r-dist(b,c). The K-distance does not satisfy this
inequality but it does make use of weights along the edges of the semantic
network.

3.7.1.3 KB-EBM: Incorporating Distance Into Extended Boolean
Retrieval. Lee, et al., incorporated a distance measure using a semantic net­
work into the Extended Boolean Retrieval model and called it-KB-EBM for
Knowledge Base-Extended Boolean Model [Lee et al., 1993]. The idea was
to take the existing Extended Boolean Retrieval model described in Section

Page 135 of 262

RETRIEVAL UTILITIES 123

2.4 and modify the weights used to include a distance between two nodes in a
semantic network.

The Extended Boolean model uses a function F that indicates the weight of
a term in a document. In our earlier description we simply called it w;, but
technically it could be represented as F(d, t;). Lee, et al., modified this weight
by using a semantic network and then used the rest of the Extended Boolean
model without any other changes. This cleanly handled the case of NOT.

The primitive distance function, d(t;, ti), returns the length of the shortest
path between two nodes. This indicates the conceptual closeness of the two
terms. What is needed here is the conceptual distance, which is inversely
proportional to the primitive distance function. Hence, the new F function
uses-

d . -1 () ,\
istance t;, ti = , d" t (t t) "+ is ance i, i

First, the function F is given for a document with unweighted terms. The
new function, F(d, t;), computes the weight of term t; in the document as the
average distance of t; to all other nodes in the document. The new function F
is then-

F(d, t) = I:?=i dis!ance- 1(t;, t)
1 + X+T(n -1)

For existing weights for a term in a document, F is modified to include
weights wi. This is the weight of the ith term in document d.

F(d, t) = I:?-i dist:nce-1 (t;, t)w;
1 + X+T(n -1)

3.7.1.4 Evaluation of Distance Measures. All three distance measures
were evaluated on four collections with nine, six, seven, and seven documents,
respectively. Precision and recall were not measured, so evaluations were done
using comparisons of the rankings produced by each distance. In some cases
MESH was used-a medical semantic network-in other cases, the Computing
Reviews Classification Scheme (CRCS) was used. Overall, the small size of
the test collections and the lack of precision and recall measurements made it
difficult to evaluate these measures. They are presented here due to their ability
to use semantic networks. Most work done today is not focused on Boolean
requests. However, all of these distance measures are applicable if the natural
language request is viewed as a Boolean OR of the terms in the query. It would
be interesting to test them against a larger collection with a general semantic
network such as WordNet.

3. 7.2 Developing Query Term Based on "Concepts"

Instead of computing the distance between query terms and document terms
in a semantic network and incorporating that distance into the metric, the se­
mantic network can be used as a thesaurus to simply replace terms in the query

Page 136 of 262

124 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

with "nearby" terms in the semantic network. Vectors of "concepts" can then
be generated to represent the query, instead of term-based vectors. This was
described in the early 1970s. In 1988, an algorithm was given that described
a means of using this approach to improve an existing Boolean retrieval sys­
tem [Giger, 1988]. Terms in the original Boolean system were replaced with
"concepts". These concepts were found in a semantic network that contained
links to the original terms. The paper referred to the network as a thesaurus,
but the different relationships existing between terms meet our definition of a
semantic network.

The system described in [Chen and Lynch, 1992, Chen et al., 1993] used
an automatically generated semantic network. The network was developed
using two different clustering algorithms. The first was the standard cosine
algorithm (see Section 3.2), while the second was developed by the authors and
yields asymmetric links between nodes in the semantic net. Users were then
able to manually traverse the semantic network to obtain good terms for the
query, while the semantic nets were also used to find suitable terms to manually
index new documents.

3.7.3 Ranking Based on Constrained Spreading Activation

Two interesting papers appeared in 1987 that are frequently referenced in dis­
cussions of knowledge-based information retrieval [Cohen and Kjeldsen, 1987,
Kjeldsen and Cohen, 1987]. These papers describe the GRANT system in which
potential funding agencies are identified based on areas of research interest. A
manually built semantic network with 4,500 nodes and 700 funding agencies
was constructed with links that connect agencies and areas of interest based on
the topics agencies are interested in.

Given a topic, the links emanating from the topic are activated and spreading
activation begins. Activation stops when a funding agency is found. At each
step, activation is constrained. After following the first link, three constraints
are used. The first is distance. If the path exceeds a length of four, it is
no longer followed. The second is fan-out, if a path reaches a node that has
more than four links emanating from it, it is not followed. This is because
the node that has been reached is too general to be of much use and it will
cause the search to proceed in many directions that are of little use. The third
type of constraint is a rule that results in a score for the link. The score is
considered an endorsement. Ultimately, the results are ranked based on the
accumulation of these scores. An example of one such endorsement occurs if
a researcher's area of interest is a subtopic or specialization of a general topic
funded by the agency it gets a positive endorsement. An agency that funds
research on database systems will fund research in temporal database systems.
More formally-

request-funds-for-topic(x) and IS-A(x,y) ➔ request-funds-for-topic(y)

A negative endorsement rule exists when the area of research interest is a
generalization of a funding agency's areas of research. An agency that funds

Page 137 of 262

RETRIEVAL UTILITIES 125

database systems will probably not be interested in funding generic interest in
computer science.

A best-first search is used such that high-scoring endorsements are followed
first. The search ends when a certain threshold number of funding agencies
are identified. The GRANT system was tested operationally, and found to be
superior to a simple keyword matching system that was in use. Searches that
previously took hours could be done in minutes. More formal testing was done
with a small set of twenty-three queries. However, the semantic network and
t4e document collection were both relatively small so it is difficult to generalize
from these results. Overall, the GRANT system is very interesting in that it
uses a semantic network, but the network was constrained based on domain­
specific rules.

We are unaware of work done using constrained spreading activation for
domain-specific text retrieval, but this could be an interesting algorithm to use
with WordNet (assuming reasonable constraints could be developed).

3.8 Parsing

The ability to identify a set of tokens to represent a body of text is an essen­
tial feature of every information retrieval system. Simply using every token
encountered leaves a system vulnerable to fundamental semantic mismatches
between a query and a document. For instance, a query that asks for infor­
mation about computer chips matches documents that describe potato chips.
Simple single-token approaches, both manual and automatic, are described in
Section 3.8.1. Although these approaches seem crude and ultimately treat text
as a bag of words, they generally are easy to implement, efficient, and often
result in as good or better effectiveness than many sophisticated approaches
measured at the Text REtrieval Conference (TREC). A detailed discussion of
TREC is provided in Chapter 8).

A step up from single-term approaches is the use of phrases in document
retrieval. Phrases capture some of the meaning behind the bag of words and
result in two-term pairs (or multi-term phrases, in the general case) so that
a query that requires information about New York will not find information
about the new Prince of York. Section 3.8.2 describes simple approaches to
phrase identification.

More sophisticated approaches to phrase identification are given in Section
3.8.3. These are based on algorithms commonly used for natural language
processing (NLP). These include part-of-speech taggers, syntax parsers, and
information extraction heuristics. We provide a brief overview of the heuristics
that are available and pay particular attention only to those that have been
directly incorporated into information retrieval systems. An entire book could
be written on this section as the entire field of natural language processing is
relevant.

Overall, it should be noted that parsing is critical to the performance of a
system. For complex NLP approaches, parsing is discussed in great detail, but
to date, these approaches have typically performed with no significant difference

Page 138 of 262

126 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

in performance than simplistic approaches. A review of the recent work done to
integrate NLP into information retrieval systems is given in [Lewis and Sparck
Jones, 1996].

3.8.1 Single Terms

The simplest approach to search documents is to require manual intervention
and to assign names of terms to each document. The problem is that it is not al­
ways easy to assign keywords that distinctly represent a document. Also, when
categorizations are employed-like the Library of Congress subject headings­
it is difficult to stay current within a domain. Needless to say, the manual effort
used to categorize documents is extremely high. Therefore, it was learned early
in the process that manually assigned tokens did not perform significantly bet­
ter than automatically assigned tokens [Salton, 1971d].

Once scanning was deemed to be a good idea in the early 1960s, the next
step was to try to normalize text to avoid simple mismatches due to differing
prefixes, suffixes, or capitalization. Today, most information retrieval systems
convert all text to a single case so that terms that simply start a sentence do
not result in a mismatch with a query simply because they are capitalized.

Stemming refers to the normalization of terms by removing suffixes or pre­
fixes. The idea is that a user who includes the term "throw" in the query might
also wish to match on "throwing", "throws", etc. Stemming algorithms have
been developed for more than twenty years. The Porter and Lovins algorithms
are most commonly used [Porter, 1980, Lovins, 1968]. These algorithms simply
remove common suffixes and prefixes. A problem is that two very different
terms might have the same stem. A stemmer that removes -ing and -ed results
in a stem of r for terms red and ring. KSTEM uses dictionaries to ensure that
any generated stem will be a valid word [Krovetz and Croft, 1989, Krovetz,
1993]. A more recent approach uses corpus-based statistics (essentially based
on term co-occurrence) to identify stems in a language-independent fashion
[Croft and Xu, 1994]. These stemmers were shown to result in improved rele­
vance ranking over more traditional stemmers.

Stop words are terms deemed relatively meaningless in terms of document
relevance and are not stored in the index. These terms represent approximately
forty percent of the document collection [Francis and Kucera, 1982]. Removing
these terms reduces index construction, time and storage cost, may also reduce
the ability to respond to some queries. A counterexample to the use of stop
word removal occurs when a query requests a phrase that only contains stop
words (e.g., "to be or not to be"). Nevertheless, stop word lists are frequently
used, and some research has been directed solely at determining a good stop
word list [Fox, 1990].

Finally, we find that other parsing rules are employed to handle special char­
acters. Questions arise such as what to do with special characters like hyphens,
apostrophes, commas, etc. Some initial rules for these questions are given in
[Adams, 1991], but the effect on precision and recall is not discussed. Many
TREC papers talk about cleaning up their Parser and the authors confess to

Page 139 of 262

RETRIEVAL UTILITIES 127

having seen their own precision and recall results improved by very simple
parsing changes. However, we are unaware of a detailed study on single-term
parsing and the treatment of special characters, and its related effect on preci­
sion and recall.

3.8.2 Simple Phrases

Many TREC systems identify phrases as any pair of terms that are not sep­
arated by a stop term. Subsequently, infrequently occurring phrases are not
stored. In many TREC systems, phrases occurring fewer than 25 times are re­
moved. This dramatically reduces the number of phrases and thereby reduces
memory requirements found in the inverted index [Ballerini et al., 1996).

Once phrases are employed, the question as to how they should be incor­
porated into the relevance ranking arises. Some systems simply add them to
the query, while others add them to the query, but do not include them in the
computation of the document length normalization [Buckley et al., 1995). The
reason for this is that the terms have already been considered. Tests using just
phrases or terms were performed on many systems. It was found that phrases
should be used to augment, not replace the terms. Hence, a query for New
York should be modified to search for new, york, and New York. Phrases used
in this fashion are generally accepted to yield about a ten percent improvement
in precision and recall over simple terms.

3.8.3 Complex Phrases

The quest to employ NLP to answer a user query has been undertaken since the
early 1960s. In fact, NLP systems were often seen as diametrically opposed to
IR systems because the NLP systems were trying to understand a document by
building a canonical structure that represents the document. The goal behind
the canonical structure is to reduce the inherent ambiguity found in language.
A query that asks for information about walking should match documents that
describe people who are moving slowly by gradually placing one foot in front of
the other.

A NLP system stores information about walking and moving slowly with
the exact same canonical structure-it does this by first parsing the document
syntactically-identifying the key elements of the document (subject, verb,
object, etc.) and then building a single structure for the document. Simple
primitives that encompass large categories of verbs have been proposed [Schank,
1975) such as PTRANS (physically transport), in which John drove to work and
John used his car to get to work both result in the same simple structure John
PTRANS work.

Progress in NLP has occurred, but the reality is that many problems in
knowledge representation make it extremely difficult to actually build the nec­
essary canonical structures. The CYC project has spent the last ten years
hand-building a knowledge base and has encountered substantial difficulty in

Page 140 of 262

128 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

identifying the exact means of representing the knowledge found in text [Lenat
and Guha, 1989].

A side effect of full-scale NLP systems is that many tools that do not work
perfectly for full language understanding are becoming quite usable for IR sys­
tems. We may not be able to build a perfect knowledge representation of a
document, but by using the same part-of-speech tagger and syntactic parser
that might be used by an NLP system, we can develop several algorithms to
identify key phrases in documents.

3.8.3.1 Use of POS and Word Sense Tagging. The most recent part­
of-speech taggers are based on either statistical or rule-based methods. The
goal is take a section of text and identify the parts of speech for each token.
One approach incorporates a pretagged corpus to identify two measures: the
frequency a given term is assigned a particular tag and the frequency with
which different tag sequences occur [Church, 1988]. For example, duck might
appear as a noun (creature that swims in ponds) eighty percent of a time and
a verb (to get out of the way of a ball thrown at your head) twenty percent of
the time. Additionally, "noun noun verb" may occur ten percent of the time
while "noun noun noun" may occur thirty percent of the time. Using these two
lists (generated based on a pretagged training corpus) a dynamic programming
algorithm can be obtained to optimize the assignment of a tag to a token for
a given step. DeRose improved on Church's initial tagger in [DeRose, 1988].
Rule-based taggers in which tags are assigned based on the firing of sequences
of rules are described in [Brill, 1992].

Part-of-speech taggers can be used to identify phrases. One use is to identify
all sequences of nouns such as Virginia Beach or sequences of adjectives followed
by nouns such as big red truck [Allan et al., 1995, Broglio et al., 1994]. Another
use of a tagger is to modify processing such that a match of a term in the
query only occurs if it matches the same part-of-speech found in the document.
In this fashion, duck as a verb does not match a reference to duck as a noun.
Although this seems sensible, it has not been shown to be particularly effective.
One reason is that words such as bark have many different senses within a part
of speech. In the sentences A dog's bark is often stronger than its bite and Here
is a nice piece of tree bark, bark is a noun in both cases with very different word
senses. Some initial development of word sense taggers has begun [Kravetz,
1993]. This work identifies word senses by using a dictionary-based stemmer.

3.8.3.2 Syntactic Parsing. As we move along the continuum of increas­
ingly more complex NLP tools, we now discuss syntactic parsing. These tools
attempt to identify the key syntactic components of a sentence, such as subject,
verb, object, etc. For simple sentences the problem is not so hard. Whales eat
fish has the simple subject of Whales, the verb of eat, and the object of fish.
Typically, parsers work by first invoking a part-of-speech tagger.

Subsequently, a couple of different approaches are employed. One method is
to apply a grammar. The first attempt at parsers used augmented transition

Page 141 of 262

RETRIEVAL UTILITIES 129

networks (ATNs) that were essentially non-deterministic finite state automata
in which: subject-verb-object would be a sequence of states. The problem is,
that for complex sentences, many different paths occur through the automata.
Also, some sentences recursively start the whole finite state automata (FSA),
in that they contain structures that have all the individual components of a
sentence. Relative clauses that occur in sentences such as Mary, who is a
nice girl that plays on the tennis team, likes seafood. Here, the main struc­
ture of Mary likes seafood also has a substructure of Mary plays tennis. After
ATNs, rule-based approaches that attempt to parse based on firing rules, were
attempted.

Other parsing algorithms, such as the Word Usage Parser (WUP) by Gomez,
use a dictionary lookup for each word, and each word generates a specialized
sequence of states [Gomez, 1988]. In other words, the ATN is dynamically
generated based on individual word occurrences. Although this is much faster
than an ATN, it requires substantial manual intervention to build the dictionary
of word usages. More recent parsers such as the Apple Pie Parser, are based
on light parsing in which rules are followed to quickly scan for key elements of
a sentence, but more complex sentences are not fully parsed.

Once the parse has been obtained, an information retrieval system makes
use of the component structures. A simple use of a parser is to use the various
component phrases such as SUBJECT or OBJECT as the only components
of a query and match them against the document. Phrases generated in this
fashion match many variations found in English. A query with American Pres­
ident will match phrases that include President of America, president who is in
charge of America, etc. Recent work that identifies head-modifier pairs (e.g.,
"America+president") was evaluated against a patent collection and demon­
strated as much as a sixteen percent improvement in average precision [Osborn
et al., 1997]. On the TREC-5 dataset, separate indexes based on stems, simple
phrases (essentially adjective-noun pairs or noun-noun pairs), head-modifier
pairs, and people name's were all separately indexed [Strzalkowski et al., 1997].
These streams were then combined and a twenty percent improvement in aver­
age precision was observed.

To date, this work has not resulted in substantial improvements in effec­
tiveness, although it dramatically increases the run-time performance of the
system.

3.8.3.3 Information Extraction. The Message Understanding Confer­
ence (MUC) focuses on information extraction-the problem of finding various
structured data within an unstructured document. Identification of people's
names, places, amounts, etc. is the essential problem found in MUC and nu­
merous algorithms to attempt to solve this problem exist. Again, these are
either rule-based or statistical algorithms. The first step in many of these al­
gorithms is to generate a syntactic parse of the sentence, or at the very least,
generate a part-of-speech tag. Details of these algorithms are found in the
MUC Conference Proceedings.

Page 142 of 262

130 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Current extractors identify people names, organizations, and locations. We
present a brief example that we created with a rule-based extractor from BBN
Corporation to obtain this new document. This extractor works by using hun­
dreds of hand-crafted rules that use surrounding terms to identify when a term
should be extracted. First, we show the pre-extracted text-a paragraph about
the guitarist Allen Collins.

<TEXT>
Collins began his rise to success as the lightning-fingered
guitarist for the Jacksonville band formed in 1966 by a group
of high school students. The band enjoyed national fame in
the 1970s with such hits as "Free Bird," "Gimme Three Steps,"
"Saturday Night Special" and Ronnie Van Zant's
feisty "Sweet Home Alabama."
</TEXT>

The following output is generated by the extractor. Tags such as PERSON and
LOCATION are now marked.

<TEXT>
<ENAMEX TYPE="PERSON">Collins</ENAMEX> began his rise to success
as the lightning-fingered guitarist for the <ENAMEX
TYPE="LOCATION">Jacksonville</ENAMEX> band formed in <TIMEX
TYPE="DATE">1966</TIMEX> by a group of high school students. The
band enjoyed national fame in the <TIMEX TYPE="DATE">1970s
</TIMEX> with such hits as "Free <ENAMEX TYPE="PERSON"> Bird
</ENAMEX>," "Gimme Three Steps," "Saturday Night Special" and
<ENAMEX TYPE="PERSON">Ronnie Van Zant</ENAMEX>'s feisty "Sweet
Home <ENAMEX TYPE="LOCATION">Alabama</ENAMEX>."
</TEXT>

In this example, and in many we have hand-checked, the extractor performs
well. Many extractors are now performing at much higher levels of precision
and recall than those of the early 1990s (Sundheim, 1995]. However, they are
not perfect. Notice the label of PERSON being assigned to the term "Bird" in
the phrase "Free Bird."

Using extracted data makes it possible for a user to be shown a list of
all person names, locations, and organizations that appear in the document
collection. These could be used as suggested query terms for a user.

Extractors are still very slow. We recently ran one extractor from BBN,
and it took nearly a week on a SUN SPARC 20 to process half a gigabyte
of text. The simplest use of an extractor is to recognize key phrases in the
documents. An information retrieval system could incorporate extraction by
increasing term weights for extracted terms. Given that extractors are only
recently running fast enough to even consider using for large volumes of text,
research in the area of using extractors for IR systems is in its infancy.

Page 143 of 262

RETRIEVAL UTILITIES 131

3.9 Summary

We described eight utilities, emphasizing that each of these utilities, both in­
dependently and in combination with each other can be integrated with any
strategy. Most of these utilities address the term-mismatch problem, namely, a
document can be highly relevant without having many terms that syntactically
match those terms specified in the query. The relevance feedback, thesaurus,
and semantic network strategies directly address this problem as they attempt
to find related terms that do match the document and the query. Parsing and
N-grams avoid mismatches by using fragments of terms instead of the actual
terms. Fragmentation can avoid mismatches that may occur due to spelling
errors or the loss or addition of a common prefix or suffix.

Passages attempt to focus on only the relevant part of a document. Thus,
mismatching terms from spurious parts of the document are ignored and do
not significantly reduce the similarity coefficient. Clustering algorithms also
attempt to focus a user search onto only a relevant cluster of documents, thereby
avoiding irrelevant documents.

Regression analysis estimates coefficients for a similarity measure based on
a history of relevant documents. Although this does require prior relevance
information, it offers an opportunity to fine tune different retrieval strategies.

Which utility is most important? Perhaps a more interesting question is,
which utility or combination of utilities work best with a given strategy? The
answer to either of these questions is unclear. Relevance feedback is an ac­
cepted part of most systems participating in the TREC activities. Document
clustering has exceeded most computational resources, and thus, has not been
used widely. Thesauri and semantic networks have yet to show dramatic im­
provements over a baseline comparison. Parsing plays a critical role in all
information retrieval systems with much work done on various stemmers. N­
grams are not as commonly used because they require substantial growth in an
inverted index, but they do offer resilience to spelling errors.

The bottom line is that more testing is needed to identify which utility works
best with a given strategy, and which measurements are needed to identify the
extent to which a given utility improves effectiveness.

3.10 Exercises

1. Using the text from Alice in Wonderland, write some code that will use
a trivial strategy for ranking documents. For a query with i matching
terms, assign a similarity measure of i for a given document (for simplicity
define a document as ten lines of the book). Implement automatic relevance
feedback using this strategy to suggest ten new terms for a given query. Use
id/ as your new term sort order.

(a) Identify a query where five out of the ten terms are "good" in that they
directly relate to the query.

(b) Identify a query where five of the terms are "bad".

Page 144 of 262

132 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

2. Develop an example with a retrieval strategy of your choice and show how a
modification to the parser will result in fundamentally different results (the
document ranking will be different).

3. Implement an automatic thesaurus generation algorithm for the term teacup
in the book. Give the top three terms most related to this term.

4. Give ten examples where stemming will do what a user would like it to do.
Give ten terms where stemming will not do that a user would like.

5. One idea to improve effectiveness of an IR system is to match on both the
term and the sense of the term. The idea is that for a query of the term
duck as noun, a document containing "She tried to duck to avoid the ball
thrown at her." would not match. Implement five queries with your favorite
web search engine, and for each query identify a document that could have
been avoided using this heuristic.

Page 145 of 262

4 EFFICIENCY ISSUES PERTAINING
TO SEQUENTIAL IR SYSTEMS

Thus far, we have discussed the algorithms used to improve the effectiveness
of query processing in terms of precision and recall. Retrieval strategies and
utilities all focus on finding the relevant documents for a query. They are not
concerned with how long it takes to find them.

However, users of production systems clearly are concerned with run-time
performance. A system that takes too long to find relevant documents is not
as useful as one that finds relevant documents quickly. The bulk of information
retrieval research has focused on improvements to precision and recall since the
hope has been that machines would continue to speed up. Also, there is valid
concern that there is little merit in speeding up a heuristic if it is not retrieving
relevant documents.

Sequential information retrieval algorithms are difficult to analyze in detail
as their performance is often based on the selectivity of an information retrieval
query. Most algorithms are on the order of O(q(tfma:r:)) where q is the number
of terms in the query and tf ma:r: is the maximum selectivity of any of the query
terms. This is, in fact, a high estimate for query response time as many terms
appear infrequently (about half are hapax legomena, or those that occur once
according to Zipf's law [Zipf, 1949]).

We are not aware of a standard analytical model that can effectively be used
to estimate query performance. Given this, sequential information retrieval
algorithms are all measured empirically with experiments that require large
volumes of data and are somewhat time consuming in nature.

Page 146 of 262

134 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

The good news is that given larger and larger document collections, more
work is appearing on improvements to run-time performance. We describe that
work in this chapter. Additional research has been done to speed up information
retrieval algorithms by employing multiple processors. That work is covered
in Chapter 6. However, in any study of parallel algorithms, it is important
that work be compared with the best sequential algorithm. Hence, this chapter
describes the best sequential algorithms that we are aware of for information
retrieval.

We also note that most of the algorithms described in this chapter are di­
rected at the vector space model. These algorithms are also directly applicable
to the probabilistic model. Clearly, similar work is needed to improve perfor­
mance for other retrieval strategies and utilities.

Early information retrieval systems simply scanned very small document
collections. Subsequently, inverted indexes were used to speed query processing
at the expense of storage and time to build the index. Signature files were also
proposed. These are typically smaller and faster, but support less retrieval
functionality than an inverted index.

More recent work compressed inverted indexes to speed up query processing.
Additionally, partial document rankings that are much faster than full rankings
can be done at relatively low cost. In some cases precision and recall are
comparable to doing a full ranking [Lee and Ren, 1996].

In Section 4.1, we first overview inverted indexing and then describe meth­
ods used to compress an inverted index. In Section 4.2, we describe algorithms
that improve run-time of query processing, and in Section 4.3, we review sig­
nature files.

4.1 Inverted Index

Since many document collections are reasonably static, it is feasible to build
an inverted index to quickly find terms in the document collection. Inverted
indexes were used in both early information retrieval and database management
systems in the 1960s [Bleir, 1967]. Instead of scanning the entire collection, the
text is preprocessed and all unique terms are identified. This list of unique
terms is referred to as the index. For each term a list of documents that
contain the term is also stored. This list is referred to as a posting list. Figure
4.1 Ilustrates an inverted index.

An entry in the list of documents can also contain the location of the term in
the document (e.g., word, sentence, paragraph) to facilitate proximity search­
ing. Additionally, an entry can contain a manually or automatically assigned
weight for the term in the document. This weight is frequently used in compu­
tations that generate a measure of relevance to the query. Once this measure is
computed, the document retrieval algorithm identifies all the documents that
are "relevant" to the query by sorting the coefficient and presenting a ranked
list to the user.

Indexing requires additional overhead since the entire collection is scanned
and substantial 1/0 is required to generate an efficiently represented inverted

Page 147 of 262

EFFICIENCY ISSUES PEKI'AINING TO SEQUENTIAL IR SYSTEMS 135

Figure 4.1. Inverted Index

,,-- ... ,,
,' \

I \
I \

I I
I I

I ,-----, I
I I
I I

I I
I I
I I

' ' '

--------- --- ---
,,-.------------------.-----,, --=-----, '-11 -► Long Posting List \

I I

' ' I
I --=--....... ~•~,:• Short

', Posting List

I
I , ,

' ' I I
I I
I I
I I
\ I
I I
\ I

\ Index /
\ I

\ ,

---r--
Best when this
fits in main
memory

Due to size, posting lists
will have to be stored on disk

,,'

, ,

index for use in secondary storage. Indexing has been shown to dramatically
reduce the amount of I/0 required to satisfy an ad hoc query [Stone, 1987].
Upon receiving a query, the index is consulted, the corresponding posting lists
are retrieved, and the algorithm ranks the documents based on the contents of
the posting lists.

The size of the index is another concern. Many indexes can be equal to the
size of the original text. This means that storage requirements are doubled due
to the index. However, compression of the index typically results in a space
requirement of less than ten percent of the original text [Witten et al., 1994].
The terms or phrases stored in the index depend on the parsing algorithms that
are employed (see Section 3.8).

The size of posting lists in the inverted index can be approximated by the
Zipfian distribution-Zipf proposed that the term frequency distribution in a
natural language is such that if all terms were ordered and assigned a rank, the
product of their frequency and their rank would be constant [Zipf, 1949]. The
following table illustrates the Zipfian distribution when this constant is equal
to one.

Page 148 of 262

136 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Rank Frequency Constant
1 1.00 1
2 0.50 1
3 0.33 1
4 0.25 1
5 0.20 1

Using ~. where r is the rank and C is the value of the constant, an estimate
can be made for the number of occurrences of a given term. The constant,
C, is domain-specific and equals the number of occurrences of the most fre­
quent term.

4.1.1 Building an Inverted Index

An inverted index consists of two components, a list of each distinct term
referred to as the index and a set of lists referred to as posting lists. To compute
relevance ranking, the term frequency or weight must be maintained. Thus, a
posting list contains a set of tuples for each distinct term in the collection. The
set of tuples is of the form < doc_id, tf> for each distinct term in the collection.
A typical uncompressed index spends four bytes on the document identifier and
two bytes on the term frequency, since a long document can have a term that
appears more than 255 times.

Consider a document collection in which document one contains two oc­
currences of sales and one occurrence of vehicle. Document two contains one
occurrence of vehicle. The index would contain the entries vehicle and sales.
The posting list is simply a linked list that is associated with each of these
terms. For this example, we would have-

sales ➔ (1, 2)
vehicle ➔ (1, 1) (2, 1)

The entries in the posting lists are stored in ascending order by document
number. Clearly, the construction of this inverted index is expensive, but once
built, queries can be efficiently implemented. The algorithms underlying the
implementation of the query processing and the construction of the inverted
index are now described.

A possible approach to index creation is as follows: An inverted index is
constructed by stepping through the entire document collection, one term at a
time. The output of the index construction algorithm is a set of files written
to disk. These files are-

■ Index file. Contains the actual posting list for each distinct term in the
collection. A term, t that occurs in i different documents will have a posting
list of the form:

t ➔ (d1, t/ii), (d2, tfo), ... , (d;, tfo)

Page 149 of 262

EFFICIENCY ISSUES PERTAINING TO SEQUENTIAL IR SYSTEMS 137

where di indicates the document identifier of document i and tfu indicates
the number of times term j occurs in document i.

■ Document file. Contains information about each distinct document­
document identifier, long document name, date published, etc.

■ Weight file. Contains the weight for each document. This is the denomi­
nator for the cosine coefficient-defined as the cosine of the angle between
the query and document vector (see Section 2.1).

The construction of the inverted index is implemented by scanning the entire
collection, one term at a time. When a term is encountered, a check is made
to see if this term is a stop word (if stop word removal is used) or if it is
a previously identified term. A hash function is used to quickly locate the
term in an array. Collisions caused by the hash function are resolved via a
linear linked list. Different hashing functions and their relative performance
are given in [McKenzie et al., 1990). Once the posting list corresponding to
this term is identified, the first entry of the list is checked to see if its document
identifier matches the current document. If it does, the term frequency is
merely incremented. Otherwise, this is the first occurrence of this term in the
document, so a new posting list entry is added to the start of the list.

The posting list is stored entirely in memory. Memory is allocated dynami­
cally for each new posting list entry. With each memory allocation, a check is
made to determine if the memory reserved for indexing has been exceeded. If
it has, processing halts while all posting lists resident in memory are written
to disk. Once processing continues, new posting lists are written. With each
output to disk, posting list entries for the same term are chained together.

Processing is completed when all of the terms have been processed. At this
point, the inverse document frequency for each term is computed by scanning
the entire list of unique terms. Once the inverse document frequency is com­
puted, it is possible to compute the document weight (the denominator for the
cosine coefficient). This is done by scanning the entire posting list for each
term.

4.1.2 Compressing an Inverted Index

A key objective in the development of inverted index files is to develop al­
gorithms that reduce 1/0 and storage overhead. The size of the index file
determines the storage overhead imposed. Furthermore, since large index files
demand greater 1/0 to read them, the size also directly affects the processing
times.

Although compression of text has been extensively studied [Bell et al., 1990,
Gutmann and Bell, 1994, Gupte and Frieder, 1995), relatively little work has
been done in the area of inverted index compression. However, in work by Mof­
fat and Zobel, an index was generated that was relatively easy to decompress.
It comprised less than ten percent of the original document collection, and,
more impressively, included stop terms.

Page 150 of 262

138 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Two primary areas in which an inverted index might be compressed are
compression of the index and compression of the posting lists. Given relatively
inexpensive memory costs, we do not focus on compression of indexes, although
some work is described in [Witten et al., 1994]. The King James Bible (about
five megabytes) contains 9,020 distinct terms and the TREC collection (slightly
over two gigabytes) contains 538,244 distinct terms [Witten et al., 1994]. The
number of new terms always slightly increases as new domains are encountered,
but it is reasonable to expect that it will stabilize at around one or two million
terms. With an average term length of six, a four byte document frequency
counter, and a four byte pointer to the first entry in the posting list, fourteen
bytes are required for each term. For the conservative estimate of two million
terms, the uncompressed index is likely to fit comfortably within 32 MB.

Given the relatively small size of an index and the ease with which it should
fit in memory, we do not describe a detailed discussion of techniques used to
compress the index. We note that stemming reduces this requirement and
Huffman encoding can be used in a relatively straightforward fashion [Witten
et al., 1994]. Also, the use of phrases improves precision and recall (see Section
3.8.2). Storage of phrases in the index may well require compression (depending
upon how phrases are identified and restricted most systems eliminate phrases
that occur infrequently).

To overview index compression algorithms, we first describe a relatively
straightforward one that is referred to as the Byte Aligned (BA) index com­
pression [Grossman, 1995]. BA compression is done within byte boundaries to
improve run-time at a slight cost to the compression ratio. This algorithm is
easy to implement and provides good compression (about fifteen percent of the
size of an uncompressed inverted index when stop words are used). Much bet­
ter compression is given by [Witten et al., 1994], but variable length encoding
is used so it is more complex to implement.

4.1.2.1 Fixed Length Index Compression. As discussed in the previ­
ous section, the entries in a posting list are in descending order by document
identifier. This list is always in descending order as new entries are added to
the start of the list. Hence, run-length encoding is applicable for document
identifiers. For any document identifier, only the offset between the current
identifier and the identifier immediately preceding it are computed. For the
case when no other document identifier exists, a compressed version of the doc­
ument identifier is stored. Using this technique a high proportion of relatively
low values is assured.

This scheme effectively reduces the domain of the identifiers, allowing their
storage in a more concise format. Subsequently, the following method is applied
to compress the data. For a given input value, the two left-most bits are
reserved to store a count for the number of bytes that are used in storing the
value. There are four possible combinations of two bit representations; thus a
two bit length indicator is used for all document identifiers. Integers are stored
in either 6, 14, 22, or 30 bits. Optimally, a reduction of each individual data

Page 151 of 262

EFFICIENCY ISSUES PERTAINING TO SEQUENTIAL m SYSTEMS 139

record size by a factor of four is obtained by this method, since, in the best case,
all values are less than 26 = 64 and can be stored in a single byte. Without
compression, four bytes are used for all document identifiers.

For each value to be compressed, a minimum number of bytes required to
store this value is computed. The table below indicates the range of values
that can be stored, as well as the length indicator for one, two, three, and
four bytes. For document collections exceeding 230 documents, this scheme can
be extended to include a three bit length indicator which extends the range
to 261 -1.

Length Number of Bytes Required
0~x<64 1
64 ~ X < 16,384 2
16,384~ X < 4,194,304 3
4,194,304< X < 1,073,741,824 4

For term frequencies, there is no concept of using an offset between the succes­
sive values as each frequency is independent of the preceding value. However,
the same encoding scheme can be used. Since we do not expect a document to
contain a term more than 215 = 32, 768 times, either one or two bytes are used
to store the value with one bit used as the length indicator.

4.1.2.2 Ex8I11ple. Consider an entry for an arbitrary term, ti, that indi­
cates t1 occurs in documents 1, 3, 7, 70, and 250.

ti ➔ 1, 3, 7, 70, 250

Byte-aligned (BA) compression uses the leading two high order bits to indicate
the number of bytes used to represent the value. For the first four values, only
one byte is required; for the final value, 180, two bytes are required.

Value Compressed Bit String
1 00 000001
2 00 000010
4 00 000100

63 00 111111
180 01 000000 10110100

Using no compression, the five entries in the posting list require four bytes each
for a total of twenty bytes.

Value Compressed Bit String
1 00000000 00000000 00000000 00000001
3 00000000 00000000 00000000 00000011
7 00000000 00000000 00000000 00000111

70 00000000 00000000 00000000 01000110
250 00000000 00000000 00000000 11111010

Page 152 of 262

140 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

In this example, uncompressed data requires 160 bits, while BA compression
requires only 48 bits.

4.1.3 Variable Length Index Compression

Moffat and Zobel improve on work done by Linoff and Stanfill in which com­
pression is not byte aligned and numbers are represented as sequences of blocks
of n bits terminated by a sequence of s stop bits. The tuning of n and s is
possible for various collections. More details appear in (Linoff and Stanfill,
1993].

Moffat and Zobel also use the differences in the posting list. They capi­
talize on the fact that for most long posting lists, the difference between two
entries is relatively small. They first mention that patterns can be seen in
these differences and that Huffman encoding provides the best compression. In
this method, the frequency distribution of all of the offsets is obtained through
an initial pass over the text, a compression scheme is developed based on the
frequency distribution, and a second pass uses the new compression scheme.
For example, if it was found that an offset of one has the highest frequency
throughout the entire index, the scheme would use a single bit to represent the
offset of one.

Moffat and Zobel use a family of universal codes described in [Elias, 1975].
This code represents an integer x with 2llog2xJ + 1 bits. The first Llog2xJ
bits are the unary representation of Llog2xJ. (Unary representation is a base
one representation of integers using only the digit one. The number 510 is
represented as 111111.) After the leading unary representation, the next bit is
a single stop bit of zero. At this point, the highest power of two that does not
exceed x has been represented. The next Llog2x J bits represent the remainder
of x - 2Liog, zj in binary.

As an example, consider the compression of the decimal 14. First, llog2x J =
3 is represented in unary as 111. Next, the stop bit is used. Subsequently, the
remainder of x - 2L1og, zJ = 14 - 8 = 6 is stored in binary using llog2 14J = 3
bits as 110. Hence, the compressed code for 1410 is 1110110.

Decompression is done in one pass, because it is known that for a number
with n bits prior to the stop bit, there will be n bits after the stop bit. The
first eight integers using the Elias 'Y encoding are given below:

X 'Y
1 0
2 10 0
3 10 1
4 11000
5 11001
6 11010
7 11011
8 1110 000

Page 153 of 262

EFFICIENCY ISSUES PERTAINING TO SEQUENTIAL IR SYSTEMS 141

4.1.3.1 ExaJI1ple. For our same example, the differences of 1, 2, 4, 63, and
180 are stored as:

Value Compressed Bit String
1 0
2 10 0
4 11000

63 11111011111
180 11111110 0110100

This requires only 35 bits, thirteen less than the simple BA compression. Also,
our example contained an even distribution of relatively large offsets to small
ones. The real gain can be seen in that very small offsets require only a 1 or a
0. Moffat and Zobel use the I code to compress the term frequency in a posting
list, but use a more complex coding scheme for the posting list entries.

4.1.4 Varying Compression Based on Posting List Size

The gamma scheme can be generalized as a coding paradigm based on the
vector V with positive integers i where I: vi ~ N. To code integer x ~ 1
relative to V, find k such that-

k-1 k

"'v· < x < "'v· ~ :J -~ :J
j=l j=l

In other words, find the first component of V such that the sum of all preceding
components is greater than or equal to the value, x, to be encoded. For our
example of 7, using a vector V of <1, 2, 4, 8, 16, 32> we find the first three
components that are needed (1, 2, 4) to equal or exceed 7 so k is equal to three.
Now k can be encoded in some representation (unary is typically used) followed
by the difference:

k-1

d=x- 1:v1- l
j=l

Using this sum we have: d = 7 - (1 + 2) - 1 = 3 which is now coded in
flog2 Vk l = flog2 41 = 2 binary bits. With this generalization, the , scheme
can be seen as using the vector V composed of powers of 2 <l, 2, 4, 8, ... , >
and coding k in binary.

Clearly, V can be changed to give different compression characteristics.
Low values in v optimize compression for low numbers, while higher values
in v provide more resilience for high numbers. A clever solution given by
[Zobel et al., 1992] was to vary V for each posting list such that V = <
b, 2b, 4b, 8b, 16b, 32b, 64b > where b is the median offset given in the posting
list.

Page 154 of 262

142 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

4.1.4.1 Example. Using our example of 1, 2, 4, 63, 180, the median, b, has
four results in the vector V = < 4, 8, 16, 32, 64, 128, 256>.

Value Compressed Bit String
1 0 00
2 0 01
4 011
63 11110 000100
180 1111110 01001100

This requires thirty-five bits as well and we can see that, for this example, the
use of the median was not such a good choice as there was wide skew in the
numbers. A more typical posting list in which numbers were uniformly closer
to the median could result in better compression.

4.2 Query Processing

Recent work has focused on improving query run-time. Moffat and Zobel have
shown that query performance can be improved by modifying the inverted index
to support fast scanning of a posting list [Moffat and Zobel, 1996, Moffat and
Zobel, 1994]. Other work has shown that reasonable precision and recall can
be obtained by retrieving fewer terms in the query [Grossman et al., 1997].
A recent study showed that the computation can be reduced even further by
eliminating some of the complexity found in the vector space model [Lee and
Ren, 1996].

4.2.1 Inverted Index Modifications

Moffat and Zobel show how an inverted index can be segmented so as to allow
for a quick search of a posting list to see if a particular document is found
[Witten et al., 1994]. The typical ranking algorithm scans the entire posting
list for each term in the query. An array of document scores is updated for
each entry in the posting list. Moffat and Zobel suggest the least frequent
terms should be processed first.

The premise is that less frequent terms carry the most meaning and proba­
bly have the most significant contribution to a high-ranking documents. The
entire posting lists for these terms are processed. Some algorithms suggest that
processing should stop after d documents are assigned a non-zero score. The
premise is that at this point, the high-frequency terms in the query will sim­
ply be generating scores for documents that will not end up in the final top t
documents, where tis the number of documents that are displayed to the user.

A suggested improvement to this is to continue processing all the terms in
the query, but only update the weights found in the d documents. In other
words, after some threshold of d scores has been reached, the remaining query
terms become part of an AND (they only increment documents who contain
another term in the query) instead of the usual vector space OR. At this point,

Page 155 of 262

EFFICIENCY ISSUES PERTAINING TO SEQUENTIAL IR SYSTEMS 143

it is cheaper to reverse the order of the nested loop that is used to increment
scores. Prior to reaching d scores, the basic algorithm is-

For each term t in the query Q
Obtain the posting list entries fort
For each posting list entry that indicates t is in doc i

Update score for document i

For query terms with small posting lists, the outer loop is small; however,
when terms that are very frequent are examined, extremely long posting lists
are prevalent. Also, after d documents are accessed, there is no need to update
the score for every document, it is only necessary to update the score for those
documents that have a non-zero score.

To avoid scanning very long posting lists, the algorithm is modified to be-

For each term t in the query Q
Obtain posting list, p, for documents that contain t
For each document x in the reserved list of d documents

Scan posting list p for x
if x exists

update score for document x

The key here is that the inverted index must be changed to allow quick
access to a posting list entry. It is assumed that the entries in the posting
list are sorted by a document identifier. As a new document is encountered, its
entry can be appended to the existing posting list. Moffat and Zobel propose to
change the posting list by partitioning it and adding pointers to each partition.
The posting list can quickly be scanned by checking the first partition pointer
(which contains the document identifier of the highest document in the partition
and a pointer to the next partition). This check indicates whether or not a
jump should be made to the next partition or if the current partition should be
scanned. The process continues until the partition is found and the document
we are looking for is matched against the elements of the partition. A small
size, d, of about 1,000 resulted in the best CPU time for a set of TREC queries
against the TREC data [Moffat and Zobel, 1996].

4.2.2 Partial Result Set Retrieval

Another way to improve run-time performance is to stop processing after some
threshold of computational resources has been expended. One approach has
been to count disk I/O and stop after a threshold of disk I/O has been reached
[Yee et al., 1993]. The key to this approach is to sort the terms in the query
based on some indicator of term goodness and process the terms in this order.
By doing this, query processing stops after the important terms have been
processed. Sorting the terms is really analogous to sorting their posting lists.
Three measures used to characterize a posting list are now described.

Page 156 of 262

144 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

4.2.2.1 Cutoff Based on Document Frequency. The simplest measure
of term quality is to rely on document frequency. This was described in [Gross­
man et al., 1997, Grossman et al., 1994] which showed that using between
twenty-five to seventy-five percent of the query terms after they were sorted by
document frequency resulted in almost no degradation in precision and recall
for the TREC-4 document collection. In some cases, precision and recall im­
proves with fewer terms because lower ranked terms are sometimes noise terms
such as good, nice, useful, etc. These terms have long posting lists that result
in scoring thousands of documents and do little to improve the quality of the
result. Using term frequency is a means of implementing a dynamic stop word
list in which high-frequency terms are eliminated without using a static set of
stop words.

4.2.2.2 Cutoff Based on Maximum Estimated Weight. Two other
measures of sorting the query terms are described in [Yee et al., 1993]. The
first computes the maximum term frequency of a given query term as tfmaz
and uses the following as a means of sorting the query.

tfmaz X id/

The idea is that a term that appears frequently in all the documents in which it
appears, is probably of more importance than a term that appears infrequently
in the documents that it appears in. The assumption is that the maximum
value is a good indicator of how often the term appears in a document.

4.2.2.3 Cutoff Based on the Weight of a Disk Page in the Posting
List. The cutoffs based on term weights can be used to characterize posting
lists and choose which posting list to process first. The problem is that a posting
list can be quite long and may have substantial skew. To avoid this problem, a
new measure sorts disk pages within a posting list instead of the entire posting
list. At index creation time, the posting lists are sorted in decreasing order by
term frequency and instead of just a pointer that points to the first entry in the
posting list, the index contains an entry for each page of the posting list. The
entry indicates the maximum term frequency on a given page. The posting list
pages are then sorted by-

t/ maz X id/ X f (I)

where /(I) is a function that indicates the number of entries on a page. This is
necessary since some pages will not be full and a normalization is needed such
that they are not sorted in exactly the same way as a full page. One value that
is used for / (I) is i" where O < e < 1.

Unfortunately, this measure requires an entry in the index for each page in
the posting list. However, results show (for a variety of query sizes) that only
about forty percent of the disk pages need to be retrieved to obtain eighty
percent of the documents that would be found if all one hundred percent of the

Page 157 of 262

EFFICIENCY ISSUES PERTAINING TO SEQUENTIAL IR SYSTEMS 145

pages were accessed. All of these tests were performed using small document
collections.

4.2.3 Vector Space Simplifications

Recent work has shown, in many cases, that simplifications to the vector space
model can be made with only limited degradation in precision and recall [Lee
et al., 1997]. In this work, five variations to the basic cosine measure (see
Section 2.1) were tested on five small collections and 10,000 articles from the
Wall Street Journal portion of the TREC collection. To review, the baseline
cosine coefficient is-

The first variation was to replace the document length normalization that is
based on weight with the square root of the number of terms in D;. The second
variation was to simply remove the document length normalization (simple dot
product coefficient) given by-

t

SC(Q,D;) = LWqjdij
j=l

The third measure drops the idf. This eliminates one entry in the index for
each term.

t

SC(Q,D;) = L t/qjt/;j
j=l

The fourth measure drops the t/ but retains the id/. This eliminates the need
to store the t/ in each entry of the posting list-a significant computational
savings.

t

SC(Q,D;) = LWqjWij
j=l

The weight, Wqj, is one if term j is in the query and zero if otherwise. The
weight, w;; is equal to idf; if term j is in the document and zero otherwise.

The fifth and final method simply counts matches between the query and
the terms. That is-

t

SC(Q,D;) = LWqjWij
j=l

where wq; is one if term j is in the query and zero otherwise, and Wij is equal
to one if term j is in the document and zero otherwise.

Page 158 of 262

146 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

For the TREC subset, two tests were done. The first was with the TREC
narratives (long queries) and the second was with the TREC concepts (short
queries). With the narratives, the baseline cosine measure performed the best
with the square root document length normalization doing slightly better. The
concept queries had the interesting result that the fourth and fifth (no id/ and
simple match counting) methods had a higher precision than the baseline. The
only explanation to this somewhat surprising result is that the concept queries
are very specific in nature so the effect of additional weights did not have much
impact on the result.

4.3 Signature Files

The use of signature files lies between a sequential scan of the original text
and the construction of an inverted index. A signature is an encoding of a
document. The idea is to encode all documents as relatively small signatures
(often the goal is to represent a signature in only a few bits). Once this is done,
the signatures can be scanned instead of the entire documents. Typically,
signatures do not uniquely represent a document (i.e., a signature represents
multiple documents) so it is usually necessary to implement a retrieval in two
phases. The first phase scans all of the signatures and identifies possible hits,
and the second phase scans the original text of the documents in the possible hit
list to ensure that they are correct matches. Hence, signature files are combined
with pattern matching. Figure 4.2 illustrates the mapping of documents onto
the signatures.

Figure 4.2. Signature File

Original Document

01

02

03

Signature

S1

S2

S3

Small enough so
sequential scan can

be considered

Construction of a signature is often done with different hashing functions.
One or more hashing functions are applied to each word in the document.

Page 159 of 262

EFFICIENCY ISSUES PERTAINING TO SEQUENTIAL IR SYSTEMS 147

Often, the hashing function is used to set a bit in the signature. For example,
if the terms information and retrietJal were in a document and h(in/ormation)
and h{retrietJal) equaled to one and four respectively, a four bit binary signature
for this document might appear as 1001.

A false match occurs when a word, that is not in the list of w signatures, has
the same bitmap as one of these signatures. For example, consider a term t1

that sets bits one and three in the signature and another term t2 that sets bits
two and four in the signature. A third term ta might correspond to bits one
and two and thereby be deemed a match with the signature, even though it is
not equal to t 1 or t2 • The following table gives the three terms just discussed
and their corresponding hash values:

term h(term)
t1 0101
t2 1010
ta 0011

Consider document d1 that contains ti, document d2 contains t1 and ta and
document da contains t1 and t2. The signatures for the three documents are
given below:

Document Signature
d1 0101
~ 0111
da 1111

Hence, a query that is searching for term ta will obtain a false match on docu­
ment da even though it does not contain ta.

By lengthening the signature to 1,024 bits and keeping the number of words
stored in a signature small, the chance of a false match can be shown to be less
than three percent [Stanfill and Thau, 1991].

To implement document retrieval, a signature is constructed for the query.
A Boolean AND is executed between the query signature and each document
signature. If the AND returns TRUE, the document is added to the possible
hit list. Similarly, a Boolean OR can be executed if it is only necessary for any
word in the query to be in the document. To minimize false positives, multiple
hashing functions are applied to the same word [Stanfill and Kahle, 1986].

A Boolean signature cannot store proximity information or information about
the weight of a term as it appears in a document. Most measures of relevance
determine that a document that contains a query term multiple times will be
ranked higher than a document that contains the same term only once. With
Boolean signatures, it is not possible to represent the number of times a term
appears in a document; therefore, these measures of relevance cannot be im­
plemented.

Signatures are useful if they can fit into memory. Also, it is easier to add or
delete documents in a signature file than to an inverted index, and the order

Page 160 of 262

148 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

of an entry in the signature file does not matter. This somewhat orderless
processing is amenable to parallel processing (see Section 6.1.2). However, there
is always a need to check for false matches, and the basic definition does not
support ranked queries. One recent modification to allow support for document
ranking is to partition a signature into groups where each term frequency is
associated with a group [Lee and Ren, 1996].

4.3.1 Scanning to Remove False PosiUves

Once a signature has found a match, scanning algorithms are employed to verify
whether or not the match is a false positive due to collisions. We do not cover
these in detail as a lengthy survey surrounding the implementation of many
text scanning algorithms is given in [Lecroq, 1994]. Signature algorithms can
be employed without scanning for false drops (if a long enough signature is
used) and no significant degradation in precision and recall occurs [Lee and
Ren, 1996]. However, for completeness, we do provide a brief summary of text
scanning algorithms.

Pattern matching algorithms are related to the use of scanning in informa­
tion retrieval since they strive to find a pattern in a string of text characters.
Typically, pattern matching is defined as finding all positions in the input text
that contain the start of a given pattern. If the pattern is of size p and the text
is of sizes, the naive nested loop pattern match requires O(ps) comparisons.

Aho and Corasick's algorithms implement deterministic finite state automata
to identify matches in the text [Aho and Corasick, 1975]. Knuth, Morris, and
Pratt (KMP) also describe an algorithm that runs in O(s) time that scans
forward along the text, but uses preprocessing of the pattern to determine
appropriate skips in the string that can be safely taken [Knuth et al., 1977].

The Boyer-Moore algorithm is another approach that preprocesses the pat­
tern, but starts at the last character of the pattern and works backwards to­
wards the beginning of the string. Two preprocessed functions of the pattern
are developed to skip parts of the pattern when repetition in the pattern occurs
and to skip text that simply cannot match the pattern. These functions use
knowledge gleaned from the present search point [Boyer and Moore, 1977]. The
algorithm was improved to run in linear time even when multiple occurrences
of the pattern are present [Galil, 1979].

Later, in the 1980s, a pattern matching algorithm that works by applying a
hash function to the pattern and the next p characters in the text was given in
[Karp and Rabin, 1987]. If a match in the hash function occurs (i.e., a colli­
sion between h(pattem) and h(text}), the contents of the pattern and text are
examined. The goal is to reduce false collisions. By using large prime num­
bers, collisions occur extremely rarely, if at all. Finally, a recent and practical
pattern matching algorithm, presented in [Frakes and Baeza-Yates, 1993], has
a set of bit strings representing Boolean states that are constantly updated as
the pattern is streamed through the text.

The best of these algorithms runs in a time ofO(o:s) where o: is some constant
0 $ o: $ 1. The goal is to lower the constant. In the worst case, s comparisons

Page 161 of 262

EFFICIENCY ISSUES PEKI'AINING TO SEQUENTIAL IR SYSTEMS 149

must be done, but the average case for these algorithms is often sublinear. An
effort is made in these algorithms to avoid having to look backward in the
text. The scan continues to move forward with each comparison to facilitate
a physically contiguous scan of a disk. The KMP algorithm builds a finite
state automata for many patterns so it is directly applicable. A more recent
algorithm by Uratani and Takeda combines the FSA approach by Aho and
Corasick with the Boyer-Moore idea of avoiding much of the search space.
Essentially, the FSA is built by using some of the search space reductions given
by Boyer-Moore. The FSA scans text from right to left, as done in Boyer­
Moore. Note this is done for a query that contains multiple terms [Uratani and
Takeda, 1993]. In a direct comparison with repeated use of the Boyer-Moore
algorithm, the Uratani and Tekeda algorithm is shown to execute ten times
fewer probes for a query of 100 patterns. For only two patterns, the average
probe ratio (the ratio of the number of references in the text and the length of
the text) of Boyer-Moore is 0.236 while Uratani-Takeda is 0.178.

4.4 Summary

Performance evaluation considerations of information retrieval systems involve
both effectiveness (accuracy) and efficiency (run-time and storage overhead}
measures. In this chapter, we focused on the efficiency considerations.

Initially we described the concept of and motivation for the use of an in­
verted index. An inverted index is a many to many mapping of terms onto
documents. Using an inverted index, only documents that contain the speci­
fied query terms are accessed, thus significantly reducing the 1/0 requirements
as compared to other search processing structures. Having described the con­
cept of an inverted index, we continued by illustrating a method to implement
an inverted index. We also outlined various techniques for compressing the
index. Two compression techniques were reviewed. The first, fixed length
compression, has the advantage of simplicity and slightly more efficient query
processing times as compared to the second, variable length compression. Vari­
able length compression, however, does result in a slightly better compression
ratio.

We concluded the chapter with an overview of signature files. Signature files
contain a set of document signatures, one signature per document. A docu­
ment signature is an encoding of each document. Key terms contained in the
document are hashed onto a vector; the existence of a term j in the document i
is denoted by a one in the jth bit of document signature i. To determine which
documents are relevant to a particular query, only the signature file must be
examined. Since term hashing can result in false positive indications, a two
pass search strategy is necessary. In the first pass, involving the examination
of the signature file, all potential candidates are determined. In the second
phase, a full text scan of the potential candidates determined in the first pass
is performed.

Although greater attention has traditionally been placed on the effective­
ness of information retrieval systems, efficiency issues are critical. Failure to

Page 162 of 262

150 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

optimize the efficiency of an information retrieval system can result in a highly
accurate system that has prohibitive execution or storage performance. As
storage technology continues to improve and reduce in cost, storage constraints
are becoming less critical. However, with the continued exponential growth of
online data, storage constraints are still a concern and run-time performance
considerations are of tantamount importance. Parallel processing techniques
used to improve the overall run-time performance are described in Chapter 6.

4.5 Exercises

1. Write a utility called index that builds an inverted index of Alice in Won­
derland. Assume ten lines of input is a separate document. Assume you
have enough memory to store all of the posting lists in memory while you
are building the inverted index. Identify how much space your index re­
quires and how long it takes to build it. Store the id/ for each term in the
index. Each posting list entry should contain the term frequency in the
document. Use the 100 most frequent terms as stop terms. Test your index
by computing a vector space tf-idf similarity measure for the following five
queries.

(a) rabbit watch

{b) looking glass

(c) tea party

(d) cheshire cat

(e) queen of hearts

2. Now modify the code you just wrote to use an inverted index compression
technique. Pick one in this chapter. Measure query performance for the
same five queries, storage overhead, and the time to build the index.

3. Pick a query that contains ten terms. Execute it and retrieve the top doc­
uments choosing ten that are relevant. Now, sort the query terms by their
term frequency across the collection. Re-execute the query with one term­
the least frequently occurring term in the collection. Identify the number of
relevant documents found with just this term. Repeat this process, adding
a single term to the query each time. Are all ten terms needed to find the
relevant documents you found with the original query? Talk about what
you have learned with this exercise and how this technique could be used
to improve run-time without a corresponding loss in accuracy.

4. Develop a signature-based index where you build a signature for each "doc­
ument" in the book. Use a 24-bit signature for each document. Now im­
plement the ten queries used in the previous exercises as a simple Boolean
OR. Compare run-time performance of the use of signatures to the inverted
index. Describe the loss in functionality inherent in the use of signatures.
Identify a heuristic in which signatures could be used as a "first-pass filter"

Page 163 of 262

EFFICIENCY ISSUES PERTAINING TO SEQUENTIAL IR SYSTEMS 151

for a very large collection and then describe how an inverted index could be
used for detailed analysis.

Page 164 of 262

5 INTEGRATING STRUCTURED DATA
AND TEXT

Essential problems associated with searching and retrieving relevant documents
were discussed in the preceding chapters. However, simply searching massive
quantities of unstructured data is not sufficient.

Terabytes of structured data currently exist. NCR recently demonstrated
the use of its database system on a 14 terabyte database [Holmes, 1998]. It
is reasonable to expect databases to grow into the hundreds of terabytes in
the near future. The study of database management systems (DBMS) focuses
on the algorithms necessary to support thousands of concurrent users adding,
deleting, updating, and retrieving structured data.

It is difficult to formally characterize structured data. Structured data are
data that have a certain repetitive nature to them-data that fit within an eas­
ily recognizable datatype. Examples of structured data include name, address,
phone number, and salary. Each occurrence of a structured data item is recog­
nizable, sometimes it is possible to list only a few valid values for a structured
data element (i.e., gender has only two valid values-male or female).

Airline reservation systems, automated teller machines, credit card valida­
tion are all systems that pervade everyday life. Each are fraught with struc­
tured data. One large production structured database is 11 TB and is held by
Wal-Mart. It contains details of every purchase made at every store. In this
fashion, there is no need to ever compute an average store. Specific inventory
requirements can be managed on a store-by-store basis. This system has given

Page 165 of 262

154 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Wal-Mart a tremendous competitive advantage, and it is reasonable to expect
that the database will continue to grow.

There is clearly a need to integrate both structured data and text. Most
production systems implemented with a relational database management sys­
tem (RDBMS) have some text-such as a comment field-which allows users
to enter a free text comment about a particular order. Commercial database
systems allow users to store these unstructured fields in Binary Large OBject
(BLOB) or Character Large OBjects (CLOB) datatypes that allow 32K or
larger sets of unstructured data [Loney, 1997, Kirkwood, 1997]. The problem
is that these unstructured fields cannot be efficiently accessed. Access methods
such as inverted indexes found in information retrieval systems are lacking, and
when they do exist, they are implemented in a non-standard fashion.

Similarly, information retrieval systems typically have large quantities of
structured information, (i.e., author of a document, publication date, etc.)
and usually have the ability to store data in zoned fields. These fields have a
particular start and stop delimiter that identifies a zone in a document. The
problem is that these structured fields cannot be efficiently accessed. Access
methods for structured data (e.g., B-trees) and query optimization techniques
that determine the best access method to the data are not usually found in IR
systems.

A database management system (DBMS) and an information retrieval sys­
tem are analogous to a martial artist who is trained to attack and defend against
others who are trained in the same art. A Tai Kwon Do master is capable of de­
fending against other Tai Kwon Do masters. An information retrieval system is
capable of efficiently handling unstructured data. A Judo master is capable of
defending against other Judo masters. A database management system is capa­
ble of efficiently handling structured data. The problem is when the Tai Kwon
Do master faces a Judo master. This is analogous to accessing unstructured
data in a structured database system.

The approach described in the remainder of this chapter is to build some
unstructured data handling techniques on top of an existing relational database
management system. This is analogous to teaching the Judo master some Tai
Kwon Do techniques, but doing so in a way that still relies upon Judo.

So it is possible to start with a database system and extend it to handle
unstructured data or to start with an unstructured system and extend it to
handle structured data. The approach taken in this chapter is to extend the
database system. Information retrieval is then treated as an application of
the database system (see Figure 5.1). The reason for this is that relational
database systems, over the years, have developed substantially more infras­
tructure than information retrieval systems. Hence, to solve the integration
problem, a straightforward approach is to start with an existing database sys­
tem and add the necessary information retrieval functionality. In addition to
providing integration, two additional benefits are obtained: parallel processing
and dynamic updates.

Page 166 of 262

IRGUI

INTEGRATING STRUCTURED DATA AND TEXT 155

Figure 5.1. IR as an Application of a RDBMS

Document
Collection

Parallel processing takes advantage of multiple processors to improve run­
time performance. In Chapter 6, several parallel information retrieval algo­
rithms are described. Although these algorithms do improve performance, none
of them have shown particularly good speedup, that is, when additional proces­
sors are added they are not fully used. However, most major database vendors
(i.e., IBM, Sybase, Oracle, Informix) all have parallel solutions. Some database
vendors specialize in special-purpose parallel hardware that implements a pro­
prietary database system (the NCR Teradata and the DataCache). Relational,
set-theoretic operators are intrinsically unordered, and it is this lack of order
that makes it easier to implement parallel operations. Treating information re­
trieval as a database application is intrinsically a parallel information retrieval
algorithm because the underlying DBMS may be parallelized.

A second advantage of treating information retrieval as an application of a
relational database management system (RDBMS) is that document data can
be easily updated. Most information retrieval systems have a lengthy prepro­
cessing phase in which the inverted index is constructed. To add, modify, or
delete an existing document usually requires a process in which the inverted
index is modified. Most information retrieval systems do not support on-line
modifications to a document. A RDBMS has substantial infrastructure (con­
currency control and recovery management) to ensure that updates may be
done in real-time, and if an error occurs in the middle of an update, pieces of
the update are not partially stored in the database systems.

Two questions remain-which database model to use and how should the
information retrieval functionality be added? Database system models include
the inverted list, hierarchical, network, relational, and object-oriented mod­
els [Date, 1994]. Most current commercial systems rely upon the relational
model. Although it is interesting to contemplate whether or not another model
would be better suited for unstructured data, pragmatic reasons force the use
of the relational model. At present, the relational DBMS market for LANs is
over seven billion dollars per year. The mainframe DB2 market using IBM's
technology is not publicly documented, but it is known that over 10,000 instal­
lations currently run DB2. Using a different data model to obtain integration
would mean that countless sites would have to convert their existing DBMS to
a new model. The cost for this would be astronomical.

Page 167 of 262

156 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

To gauge how long relational systems will dominate the market, it is useful
to look at their predecessors. IMS, a hierarchical system, and IDMS, a net­
work system, dominated the market in the 1970s. By 1980, both were well
established. At that time, Oracle, the first relational vendor was founded. Re­
lational systems had been advocated heavily in the research community during
the mid-1970s with substantial work having been done with a full-fledged pro­
totype named System R.

IBM introduced its first commercial relational system, SQL/DS, in 1984 and
DB2 in 1986. Relational systems did not gain significant market share until the
early 1990s, a full ten years after Oracle was founded. At present, some object­
oriented vendors exist and have existed since the early 1990s. Using the ten year
estimate given above, it is reasonable to expect that object-oriented systems
may gain market share by the year 2000. However, many other factors exist to
slow them down. The relational vendors are all adding some object-oriented
functionality into their base systems-these extended relational systems will
probably compete well against full-fledged or pure object-oriented systems. The
massive complexity of building a DBMS engine works against the pure object­
oriented vendors.

Given that there probably are five to ten years of remaining relational dom­
inance, this book uses the relational model. The final question as to how to use
the relational model remains. Two choices exist: extend the relational engine
or treat information retrieval as an application of an RDBMS.

Section 5.2 reviews prior attempts to extend the relational model. The main
problem with these attempts is that they are all non-standard. Portability is
lost because each relational extension is somewhat different, and users are not
able to move applications from one system to another. Other problems are that
query optimization must be modified to support any additions to the engine.
Additionally, adding new functionality to the engine makes an already complex
engine even more complex. Some additions allow users to add functions to
the engine. This makes integrity an issue as a malicious or negligent user
may intentionally or unintentionally introduce bugs into the database engine.
Finally, parallel algorithms must be developed for each addition.

By treating information retrieval as an application of a RDBMS, these prob­
lems are eliminated. The key concern is to develop efficient unchanged Struc­
tured Query Language (SQL) algorithms that adhere to the ANSI SQL-92
standard [Date, 1997] for each type of information retrieval functionality. This
chapter describes relational approaches for the following information retrieval
functionality:

■ Boolean keyword search

■ Proximity search

■ Relevance ranking with terms

■ Relevance feedback

Page 168 of 262

INTEGRATING STRUCTURED DATA AND TEXT 157

Relevance ranking with Spanish, phrases, passages, n-grams, and relevance
feedback have all been implemented as an application of a relational DBMS
with standard, unchanged SQL by using straightforward modifications to the
approaches described in this chapter. Details are found in [Lundquist et al.,
1997, Grossman et al., 1997].

Section 5.1 briefly reviews the relational model and SQL. The remaining
portions of this section describe the algorithms used to treat each of the afore­
mentioned information retrieval functions and implement them as an applica­
tion of a relational system. Run-time performance and accuracy evaluations of
this approach for the TREC-4 data conclude this section.

5.1 Review of the Relational Model

The relational model was initially described by Codd [Codd, 1970]. Prior data
models were navigational, in that application developers had to indicate the
means by which the database should be traversed. They specifically described
how to find the data. The relational model stores data in relations and enables
the developer to simply describe what data are required, not how to obtain the
data. During the early 1970s, relational systems were not developed as they in­
cur additional computational overhead. Over the years, algorithms to improve
query optimization were developed. These algorithms reduce the amount of
overhead expended when using a relational system.

Over time, the benefits of the relational model have outmatched the costs,
and the relational model is the centerpiece of most production database sys­
tems. For some extremely high-performance applications, navigational systems
are used, but relational systems have prevailed.

5.1.1 Relational Database, Primitives and Nomenclature

A relational database system stores data in set-theoretic relations. An attribute
within a relation is any symbol from a finite set£= {A0 ,A1 ,A2 , .•• ,An}­
A relation 7l on the set £ is a subset of the Cartesian product dom(A0) x
dom(A1) x dom(A2) x ... dom(An) where dom(A;) is the domain of Ai.
R[AoA1A2 ... An] represents 1l on the set {Ao, Ai, A2, ... ,, An} and is referred
to as the schema of 'Tl. In R[AoA1A2 .. . An], each column Ai is called an
attribute of R, and is denoted as R.Ai.

Simply stated, each attribute contains values, preferably a singular value,
chosen from a given domain of values. An attribute color can have a domain
of red, green, black, etc. A relation is then a collection of attributes. A row, or
tuple, in the relation has a value for each attribute such that the value comes
from the domain for that attribute.

Each tuple of R is designated by< ao, ai, a2, ... , an >, where ai E dom(Ai)­
The value of attribute A; of tuple x E R is denoted as x[A,]. Similarly, if tuple
x E R, then x[W] is the value of the attributes of attribute set W in tuple x.
Consider the relations EMP and EMP-PROJ. Relation EMP has four attributes
(emp_no, emp_name, age, salary) while the EMP-PROJ :relation has two at-

Page 169 of 262

158 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Table 5.1. Employee (EMP)

emp_no emp_name age salary
100 Hank 35 $10,000
200 Fred 40 $20,000
300 Mary 25 $30,000
400 Sue 23 $40,000
500 Mike 30 $50,000

Table 5.2. Employee-Project (EMP YROJ)

emp_no project
100 A
100 B
100 C
200 B
300 A
300 C
400 A

tributes (emp_no, project). The EMP relation contains a tuple for each em­
ployee in the organization indicating the employee's unique identification num­
ber, name, age, and salary. An employee may also be assigned to an arbitrary
number of projects. Simply adding a project attribute to the EMP relation
would not work since it would only hold a single value. Another solution­
adding project1, project2, projects attributes is also inadequate because an
employee may have worked on more than three projects. In this case, there
would be no place to store the 4th to nth project.

Data models primarily differ in how they handle this type of multi-valued
relationship. This is referred to as a MANY-MANY relationship in that one
employee may be assigned to many projects while a project may be assigned
to many employees. In a navigational model, a pointer points from the EMP
master record with all single-valued occurrences to a list that contains the multi­
valued occurrences. A user who wishes to see which projects an employee is
assigned to issues a request to traverse the link from the master record to the
multi-valued list.

Additional relations are developed for the relational solution. In our case, a
single relation EMP-PROJ may be added to store the multi-valued information.
Notice that EMP-PROJ has an attribute emp_no that matches values in the
EMP relation. Hence, employee number 100 works on projects A, B, and C.
The key point is that no a priori link between EMP and EMP _pRQJ exists.
At query time, a user may request that all tuples having matching values in
the two relations be obtained. In this fashion, the user has only specified what
is required not how to obtain the data.

Page 170 of 262

INTEGRATING STRUCTURED DATA AND TEXT 159

This is important since requests for data may occur on an ad hoc basis long
after the database has been created and populated with data. The relational
model is well-suited to ad hoc requests because work is not required to redefine
relationships between the data. Additionally, data independence is intended
to reduce application development time because developers are not forced to
learn all of the intricacies of retrieving data from multi-valued relationships.
The database optimizer makes decisions and chooses the best access path to
the data.

A problem exists if it is necessary to track single-valued information about
a project such as the delivery date for the completed project or the budget for
the project. ff the EMP-PROJ relation is modified to include these additional
attributes, needless repetition occurs.

Table 5.3. Employee-Project (EMP YROJ)

emp_no project delivery_date budget
100 A 06/30/1997 $90,000,000
100 B 09/15/1997 $25,000,000
100 C 03/31/1998 $60,000,000
200 B 09/15/1997 $25,000,000
300 A 06/30/1997 $90,000,000
300 C 03/31/1997 $60,000,000
400 A 06/30/1997 $90,000,000

Notice the attributes delivery_date and budget are single-valued descriptors of
a project (all dates are assumed to be represented as Julian dates, and hence,
are single-valued descriptors). These are repeated for each employee who is
working on a project. Employees 100, 300, and 400 all work on Project A, and
the delivery_date and budget are replicated for each of these tuples. If an update
was required (i.e., the budget increased), it would be necessary to update each
occurrence. To avoid these problems, a third relation is typically used to store
the single-valued data for PROJECT. It would appear as given below-

Table 5.4. Project

project delivery_date Budget
A 06/30/1997 $90,000,000
B 09/15/1997 $25,000,000
C 03/31/1998 $60,000,000

At this point three relations exist, one to represent the EMP entity, one to
represent the PROJECT entity, and one to represent the relation EMP _pROJ
that exists between the two relations. It should be clear that an update to
single-valued information about a project only involves a single tuple.

Peter Chen, in a seminal paper, described the entity-relationship (ER) di­
agram in which entities and relationships are defined first, and the actual un-

Page 171 of 262

160 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

derlying relations are subsequently defined [Chen, 1976]. Typically, for large
relational systems, an ER diagram is developed to ensure the developers under­
stand all of the relationships between the data. Once complete, a normalized
database design is implemented.

Normalization is the process of ensuring the database design satisfies very
specific rules developed to reinforce the consistency and integrity of the data.
1st normal form (lNF) simply indicates that data are stored in single-valued
attributes. Our example relation, EMP, is in lNF. However, if the name at­
tribute were expanded to allow the employee's full first and last name in the
same attribute, this entity would no longer be in lNF because the name at­
tribute would permit the values for both the first and last names to coexist in
a single data element.

A relation is in 2nd normal form (2NF) if all attributes are fully dependent
on the primary key of the relation. Our example of the modified EMP .PROJ
relation is not in 2NF because the attributes of the relation delivery_date and
budget are not fully dependent on the composite primary key of emp_number and
project. Instead, delivery_date and budget are dependent solely on the project
attribute. An entity is in 3rd normal form (3NF) if all attributes of the entity
are dependent on the primary key of the relation and are not also dependent on
another key. The primary key is one or more attributes that uniquely identifies
a tuple in a relation. A database should satisfy at least 3NF.

It should be clear that no a priori linkages exist between any of the relation­
ships, and any linking of relations is done at query processing time rather than
data definition time.

Since the relations are based on set theory, all typical set-theoretic oper­
ations: Cartesian product, union, intersection, and set difference are imple­
mented in the relational model. Additional operations include-

Select-The selection on R[XYZ], denoted as UA=a(R), is defined by:

u A=a (R) = { xlx[A] = a, x E R}

where A is an attribute of R.

Project- The projection on R[XYZ], denoted as 11'A(R), is defined by:

11'A(R) = {x[A]lx ER}

where A is a set of attributes of R.

Join- The join of two relations R[XYZ] and S[VWX] (sharing the common
attribute X) is denoted as:

R[XYZ] 1><1 S[VWX] = {xi x[VWX] ES and x[XYZ] ER}

where V, W, X, Y, and Z are a disjoint set of attributes. Ifno common attribute
exists, the join of R and S is the Cartesian product of R and S.

When the relational model was first proposed nearly thirty years ago, re­
lational algebra and calculus were used to compute data manipulation. The
select, project, and join operators form a part of relational algebra. Since

Page 172 of 262

INTEGRATING STRUCTURED DATA AND TEXT 161

this was not very user friendly, two different query languages QUEL and SQL
(originally derived from SEQUEL) were developed. SQL became popular with
IBM's adoption in its commercial database system, SQL/DS, in 1982 and with
ANSI's adoption of the first SQL standard in 1985. Today, SQL is one of the
few standards that is agreed upon by industry, academia, and various interna­
tional standards committees. SQL 92 has been recently adopted and SQL 3,
which will include object oriented extensions, is currently under construction.

A good overview of SQL can be found in [Date, 1994]. A SQL query has the
structur~

SELECT <list of attributes>
FROM <list of relations>

[WHERE <list of conditions>]
[ORDER BY <list of attributes>]
[GROUP BY <list of attributes>)
[HAVING <list of conditions>]

A list of attributes is specified after the SELECT keyword. The FROM
clause indicates the relations that are used. The WHERE clause describes
conditions that must be satisfied for a tuple to be returned. Hence, the entire
query is actually a specification of a result.
The following query indicates that only the employee numbers from the EMP
table should be retrieved. It does not, in any form, indicate how the employee
numbers should be retrieved. Another form includes the addition of a WHERE
clause.

SELECT emp-110
FROMEMP

The following query indicates that only tuples with an emp_no of 400 are to
be retrieved. Nothing is indicated as to how to find this tuple. ff the system
has a B-tree index on the emp_no attribute, an O(logn) algorithm traverses
the tree and finds all such tuples, otherwise, a linear scan is used. In any event,
the author of the query does not specify the algorithm to use to retrieve these
data.

SELECT emp-110
FROMEMP
WHERE emp-110 = 400

GROUP BY is used to partition the result set into groups and apply an
aggregate function to the group. Aggregate functions in the SQL standard
include COUNT (size of the partition), SUM (the total of an attribute in the
partition), MIN (the smallest value in the partition), MAX (highest value in
the partition), and AVG (average of all values in the partition). ff a GROUP
BY is not present, these operators work on the entire result set.

Page 173 of 262

162 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Consider a request to develop a report that contains each employee's num­
ber and the total number of projects to which they have been assigned. The
following query obtains this information:

SELECT empJ10, COUNT(*)
FROM EMP .PROJ
GROUP BY empJ10

Grouping by the employee number partitions the EMP .PROJ relation into
a partition for each employee. COUNT returns zero if no tuples are found. If
a WHERE clause existed it would specify that the partitions should consider
only the tuples identified by the WHERE clause.

HAVING restricts groups, typically based on an aggregate. The following
query finds all employees who worked on at least 4 projects:

SELECT empJ10, COUNT(*)
FROM EMP .PROJ
GROUP BY empJ10
HAVING COUNT(*)> 3

ORDER BY is used to sort the tuples in the order of the attributes specified
in the ORDER BY clause. Since sets do not have any inherent ordering, the
result set of a query may be obtained in an arbitrary order unless the ORDER
BY clause is used. Executing this query results in a list comprising all em­
ployee numbers in ascending order (the DESC option must be used to obtain
descending order).

SELECT empJ10
FROM EMP .PROJ
ORDER BY empJ10

A JOIN is implemented by first specifying multiple relations in the FROM
clause and then adding the JOIN condition in the WHERE clause. The fol­
lowing query implements a join to find the age of all employees who worked on
project A.

SELECT a.empJ10, a.age
FROM EMP a, EMP .PROJ b
WHERE a.empJ10 = b.empJ10 AND

b.project = 'A'

This query joins the two relations. Again nothing is said about the join
order or the order in which the WHERE clause is executed.

Page 174 of 262

INTEGRATING STRUCTURED DATA AND TEXT 163

5.2 A Historical Progression

Previous work can be partitioned into systems that combine information re­
trieval and DBMS together, or systems that extend relational DBMS to include
information retrieval functionality. We now describe each of these approaches
in detail.

5.2.1 Combining Separate Systems

Several researchers proposed integrated solutions which consist of writing a
central layer of software to send requests to underlying DBMS and informa­
tion retrieval systems [Schek and Pistor, 1982]. Queries are parsed and the
structured portions are submitted as a query to the DBMS, while text search
portions of the query are submitted to an information retrieval system. The
results are combined and presented to the user. It does not take long to build
this software, and since information retrieval systems and DBMS are readily
available, this is often seen as an attractive solution.

The key advantage of this approach is that the DBMS and information re­
trieval system are commercial products that are continuously improved upon
by vendors. Additionally, software development costs are minimized. The dis­
advantages include poor data integrity, portability, and run-time performance.

5.2.1.1 Data Integrity. Data integrity is sacrificed because the DBMS
transaction log and the information retrieval transaction log are not coordi­
nated. Should a failure occur in the middle of an update transaction, the
DBMS will end in a state where the entire transaction is either completed or
it is entirely undone. It is not possible to complete half of an update.

The information retrieval log (if present) would not know about the DBMS
log. Hence, the umbrella application that coordinates work between the two
systems must handle all recovery. Recovery done within an application is typ­
ically error prone and, in many cases, applications simply ignore this coding.
Hence, if a failure should occur in the information retrieval system, the DBMS
will not know about it. An update that must take place in both systems may
succeed in the DBMS, but fail in the information retrieval system. A partial
update is clearly possible, but is logically flawed.

5.2.1.2 Portability. Portability is sacrificed because the query language is
not standard. Presently, a standard information retrieval query language does
not exist. However, some work is being done to develop standard informa­
tion retrieval query languages. If one existed, it would be many years before
widespread commercial acceptance. The problem is that developers must be re­
trained each time a new DBMS and information retrieval system is brought in.
Additionally, system administration is far more difficult with multiple systems.

Page 175 of 262

164 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

5.2.1.3 Performance. Run-time performance suffers because of the lack of
parallel processing and query optimization. Although most commercial DBMS
have parallel implementations, most information retrieval systems do not.

Query optimization exists in every relational DBMS. The optimizer's goal
is to choose the appropriate access path to the data. A rule-based optimizer
uses pre-defined rules, while a cost-based optimizer estimates the cost of using
different access paths and chooses the cheapest one. In either case, no rules
exist for the unstructured portion of the query and no cost· estimates could
be obtained because the optimizer would be unaware of the access paths that
may be chosen by the information retrieval system. So any optimization that
included both structured and unstructured data would have to be done by the
umbrella application. This would be a complex process. The difficulties with
such optimization were discussed by the authors who suggested this approach
[Lynch and Stonebraker, 1988]. Hence, run-time performance would suffer due
to a lack of parallel algorithms and limited global query optimization.

5.2.1.4 Extensions to SQL. Blair, in an unpublished paper in 1975, pro­
posed that SQL (actually a precursor named SEQUEL) could be modified
to support text [Blair, 1974]. Subsequently, a series of papers between 1978
and 1981 were written that described several extensions to SQL [Macleod,
1978, Macleod, 1979, Crawford, 1981]. The SMART information retrieval pro­
totype initially developed in the 1980s used the INGRES relational database
system to store its data [Fox, 1983b].

These papers described extensions to support relevance ranking as well as
Boolean searches. The authors focused on the problem of efficiently searching
text in a RDBMS. They went on to indicate that the RDBMS would store
the inverted index in another table thereby making it possible to easily view
the contents of the index. An information retrieval system typically hides the
inverted index as simply an access structure that is used to obtain data. By
storing the index as a relation, the author's pointed out that users could easily
view the contents of the index and make changes if necessary. The authors men­
tioned extensions, such as RELEVANCE(*), that would compute the relevance
of a document to a query using some pre-defined relevance function.

More recently, a language called SQLX was used to access documents in a
multimedia database [Ozkarahan, 1995]. SQLX assumes that an initial cluster­
based search has been performed based on keywords (see Section 3.2 for a
description of document clustering). SQLX extensions allow for a search of
the results with special connector attributes that obviate the need to explicitly
specify joins.

5.2.2 User-defined Operators

User-defined operators that allow users to modify SQL by adding their own
functions to the DBMS engine were described as early as [Stonebraker et al.,
1983]. Commercialization of this idea has given birth to several products includ­
ing the Teradata Multimedia Object Manager, lnformix Data Blades, as well as

Page 176 of 262

INTEGRATING STRUCTURED DATA AND TEXT 165

new features in Oracle and Sybase [Connell et al., 1996, McNally, 1997, Loney,
1997]. An example query that uses the user-defined area function is given be­
low. Area must be defined as a function that accepts a single argument. The
datatype of the argument is given as rectangle. Hence, this example uses both
a user-defined function and a user-defined datatype.

Ex: 1 SELECT MAX(AREA(Rectangle))
FROM SHAPE

In the information retrieval domain, an operator such as proximity() could
be defined to compute the result set for a proximity search. In this fashion
the "spartan simplicity of SQL" is preserved, but users may add whatever
functionality is needed. A few years later user-defined operators were defined
to implement information retrieval [Lynch and Stonebraker, 1988].

The following query obtains all documents that contain the terms term1,
term2, and term9:

Ex: 2 SELECT DocJd
FROM DOC

WHERE SEARCH-TERM(Text, Term1, Term2, Term3)

This query can take advantage of an inverted index to rapidly identify the
terms. To do this, the optimizer would need to be made aware of the new
access method. Hence, user-defined functions also may require user-defined
access methods.

The following query uses the proximity function to ensure that the three
query terms are found within a window of five terms.

Ex: 3 SELECT DocJd
FROM DOC

WHERE PROXIMITY(Text, 5, Term1, Term2, Term3)

The advantages of user-defined operators are that this does not just solve the
problem for text, it solves it for spatial data, image processing, etc. Users may
add whatever functionality is required. The key problems with user-defined
operators again are integrity, portability, and run-time performance.

5.2.2.1 Integrity. User-defined operators allow application developers to
add functionality to the DBMS rather than the application that uses the DBMS.
This unfortunately opens the door for application developers to circumvent the
integrity of the DBMS. For user-defined operators to be efficient, they must be
linked into the same module as the entire DBMS, giving them access to the
entire address space of the DBMS. Data that resides in memory or on disk files
that are currently opened, can be accessed by the user-defined operator. It is
possible that the user-defined operator could corrupt these data.

Page 177 of 262

166 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

To protect the DBMS from a faulty user-defined operator, a remote proce­
dure call (RPC) may be used to invoke the user-defined operator. This ensures
the operator has access only to its address space, not the entire DBMS address
space. Unfortunately, the RPC incurs substantial overhead, so this is not a
solution for applications that require high performance.

5.2.2.2 Portability. A user-defined operator implemented at SITE A may
not be present at SITE B. Worse, the operator may appear to exist, but it may
perform an entirely different function. Without user-defined operators, anyone
with an RDBMS may write an application and expect it to run at any site that
runs that RDBMS. With user-defined operators, this perspective changes as
the application is limited to only those sites with the user-defined operator.

5.2.2.3 Performance. Query optimization, by default, does not know much
about the specific user-defined operators. Optimization is often based on sub­
stantial information about the query. A query with an EQUAL operator can be
expected to retrieve fewer rows than a LESS THAN operator. This knowledge
assists the optimizer in choosing an access path.

Without knowing the semantics of a user-defined operator, the optimizer
is unable to efficiently use it. Some user-defined operators might require a
completely different access structure like an inverted index. Unless the opti­
mizer knows that an inverted index is present and should be included in path
selection, this path is not chosen.

Lynch's work discussed information that must be stored with each user­
defined operator to assist with query optimization. For user-defined operators
to gain widespread acceptance, some means of providing information about
them to the optimizer is needed.

Additionally, parallel processing of a user-defined operator would be some­
thing that must be defined inside of the user-defined operator. The remainder
of the DBMS would have no knowledge of the user-defined operator, and as
such, would not know how to parallelize the operator.

5.2.3 Non-fi.rst Normal Form Approaches

Non-first normal form (NFN) approaches have also been proposed [Desai et al.,
1987, Schek and Pistor, 1982, Niemi and Jarvelin, 1995]. The idea is that
many-many relationships are stored in a cumbersome fashion when 3NF (third
normal form) is used. Typically, two relations are used to store the entities that
share the relationship, and a separate relation is used to store the relationship
between the two entities.

For an inverted index, a many-many relationship exists between documents
and terms. One term may appear in many documents, while one document
may have many terms. This, as will be shown later, may be modeled with a
DOC relation to store data about documents, a TERM relation to store data
about individual terms, and an INDEX relation to track an occurrence of a
term in a document.

Page 178 of 262

INTEGRATING STRUCTURED DATA AND TEXT 167

Instead of three relations, a single NFN relation could store information
about a document and a nested relation would indicate which terms appeared
in that document.

Although this is clearly advantageous from a run-time performance stand­
point, portability is a key issue. No standards currently exist for NFN collec­
tions. Additionally, NFN makes it more difficult to implement ad hoc queries.

Since both user-defined operators and NFN approaches have deficiencies,
we describe an approach using the unchanged, standard relational model to
implement a variety of information retrieval functionality. This approach has
been shown to support integrity and portability while still yielding acceptable
run-time performance [Grossman et al., 1997].

Some applications, such as image processing or CAD/CAM may require
user-defined operators, as their processing is fundamentally not set-oriented
and is difficult to implement with standard SQL.

5.2.4 Bibliographic Search with Unchanged SQL

Blair explored the potential of relational systems to provide typical information
retrieval functionality [Blair, 1988]. Blair's work included queries using struc­
tured data (e.g., affiliation of an author} with unstructured data (e.g., text
found in the title of a document}. The following relations model the document
collection.

■ DIRECTORY(name, institution}-identifies the author's name and the in­
stitution the author is affiliated with.

■ AVTHOR(name, Doc/d)-indicates who wrote a particular document.

■ INDEX(term, Doc/d)-identifies terms used to index a particular document

The following query ranks institutions based on the number of publications
that contain inpuUerm in the document.

Ex: 4 SELECT UNIQUE institution, COUNT(UNIQUE na.me)
FROM DIRECTORY
WHERE name IN

(SELECT name
FROM AUTHOR
WHERE Dodd IN

SELECT Dodd
FROM INDEX

WHERE term = inpuLterm
ORDER BY 2 DESCENDING

Blair cites several benefits for using the relational model as a foundation for
document retrieval. These benefits are the basis for providing typical informa­
tion retrieval functionality in the relational model, so we will list some of them
here.

Page 179 of 262

168 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

1. Recovery routines

2. Performance measurement facilities

3. Database reorganization routines

4. Data migration routines

5. Concurrency control

6. Elaborate authorization mechanisms

7. Logical and physical data independence

8. Data compression and encoding routines

9. Automatic enforcement of integrity constraints

10. Flexible definition of transaction boundaries (e.g., commit and rollback)

11. Ability to embed the query language in a sequential applications language

5.3 Information Retrieval Functionality Using the Relational Model

Work with extensions to SQL started first in an unpublished paper [Blair, 1974]
and continued with several papers by Macleod and Crawford between 1978 and
1981 [Macleod, 1978, Crawford, 1981].

Initial extensions described by Macleod are based on the use of a QUERY
(term) relation that stores the terms in the query, and an INDEX (Docld, term)
relation that indicates which terms appear in which documents. The following
query lists all the identifiers of documents that contain at least one term in
QUERY:

Ex: 5 SELECT DISTINCT(i.Docld)
FROM INDEX i, QUERY q

WHERE i.term = q.term

Frequently used terms or stop terms are typically eliminated from the docu­
ment collection. Therefore, a STOP _TERM relation may be used to store the
frequently used terms. The STOP _TERM relation contains a single attribute
(term). A query to identify documents that contain any of the terms in the
query except those in the STOP _TERM relation is given below:

Ex: 6 SELECT DISTINCT(i.Docld)
FROM INDEX i, QUERY q, STOP _TERM s

WHERE i.term = q.term AND
i.term -:f- s.term

Finally, to implement a logical AND of the terms InputTerm1, InputTerm2,
and InputTerm3, Macleod and Crawford proposed the following query:

Page 180 of 262

INTEGRATING STRUCTURED DATA AND TEXT 169

Ex: 7 SELECT Docld
FROM INDEX

WHERE term = lnputTenn1
INTERSECT

SELECT Docld
FROM INDEX

WHERE term = InputTenn2
INTERSECT

SELECT Docld
FROM INDEX

WHERE term = InputTenn3

The query consists of three components. Each component results in a set of
documents that contain a single term in the query. The INTERSECT keyword
is used to find the intersection of the three sets. After processing, an AND is
implemented.

Macleod and Crawford went on to present extensions for relevance ranking.
The key extension was a corr() function-a built-in function to determine the
similarity of a document to a query.

The SEQUEL (a precursor to SQL) example that was given was-

Ex: 8 SELECT Docld
FROM INDEX i, QUERY q

WHERE i.term = q.term
GROUP BY Docld
HAVING CORR()> 60

Other extensions, such as the ability to obtain the first n tuples in the answer
set, were given. Macleod and Crawford gave detailed design examples as to how
a document retrieval system should be treated as a database application.

We now describe more recent work that relies on the unchanged relational
model to implement information retrieval functionality with standard SQL
[Grossman et al., 1997]. First, a discussion of preprocessing text into files
for loading into a relational DBMS is required.

5.3.1 Preprocessing

Input text is originally stored in source files either at remote sites or locally
on CD-ROM. For purposes of this discussion, it is assumed that the data files
are in ASCII or can be easily converted to ASCII with SGML markers. SGML
markers are a standard means by which different portions of the document are
marked [Goldfarb, 1990]. The markers in the working example are found in the
TIPSTER collection which is used as the standard dataset for TREC. These
markers begin with a< and end with a> (e.g., <TAG>).

A preprocessor that reads the input file and outputs separate flat files is used.
Each term is read and checked against a list of SGML markers. The main

Page 181 of 262

170 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

algorithm for the preprocessor simply parses terms and then applies a hash
function to hash them into a small hash table. If the term has not occurred for
this document, a new entry is added to the hash table. Collisions are handled by
a single linked list associated with the hash table. If the term already exists, its
term frequency is updated. When an end-of-document marker is encountered,
the hash table is scanned and, for each entry in the hash table a record is
output. The record contains the document identifier for the current document,
the term, and its term frequency. Once the hash table is output, the contents
are set to NULL and the process repeats for the next document. A variety of
experiments designed to identify the most efficient means of implementing the
preprocessor are given in [Pulley, 1994].

After processing, two output files are stored on disk. The output files are
then bulk-loaded into a relational database. Each file corresponds to a rela­
tion. The first relation, DOC, contains information about each document. The
second relation, INDEX, models the inverted index and indicates which term
appears in which document and how often the term has appeared.

The relations are-

IND EX (Doc/ d, Term, TermFrequency)

DOC(Doc/d, DocName, PubDate, Dateline).

These two relations are built by the preprocessor. A third TERM relation
tracks statistics for each term based on its number of occurrences across the
document collection. At a minimum, this relation contains the document fre­
quency (df) and the inverse document frequency (id!). These were described
in Section 2.1. The term relation is of the form-

TERM(Term, Id!).

It is possible to use an application programming interface (API) so that the
preprocessor stores data directly into the database. However, for some appli­
cations, the INDEX relation has one hundred million tuples or more. This
requires one hundred million separate calls to the DBMS INSERT function.
With each insert, a transaction log is updated. All relational DBMS provide
some type of bulk-load facility in which a large flat file may be quickly mi­
grated to a relation without significant overhead. Logging is often turned off
(something not typically possible via an on-line API) and most vendors pro­
vide efficient load implementations. For parallel implementations, flat files are
loaded using multiple processors. This is much faster than anything that can
be done with the APL

Page 182 of 262

INTEGRATING STRUCTURED DATA AND TEXT 171

For all examples in this chapter, assume the relations were initially populated
via an execution of the preprocessor, followed by a bulk load. Notice that the
DOC and INDEX tables are output by the preprocessor. The TERM relation
is not output. In the initial testing of the preprocessor, it was found that this
table was easier to build using the DBMS than within the preprocessor. To
compute the TERM relation once the INDEX relation is created, the following
SQL statement is used:

Ex: 9 INSERT INTO TERM
SELECT Term, log(N / COUNT(*))

FROM INDEX
GROUP BY Term

N is the total number of documents in the collection, and it is usually
known prior to executing this query. However, if it is not known then SELECT
COUNT(*) FROM DOC will obtain this value. This statement partitions the
INDEX relation by each term, and COUNT(*) obtains the number of docu­
ments represented in each partition (i.e., the document frequency). The id/ is
computed by dividing N by the document frequency.

Consider the following working example. Input text is provided, and the
preprocessor creates two files which are then loaded into the relational DBMS
to form DOC and INDEX. Subsequently, SQL is used to populate the TERM
relation.

5.3.2 A Working Example

Throughout this chapter, the following working example is used. Two docu­
ments are taken from the TIPSTER collection and modeled using relations.
The documents contain both structured and unstructured data and are given
below.

<DOC>
<DOCNO> WSJ870323-0180 </DOCNO>
<HL> Italy's Commercial Vehicle Sales </HL>
<DD> 03/23/87 </DD>
<DATELINE> TURIN, Italy </DATELINE>
<TEXT>
Commercial-vehicle sales in Italy rose 11.4% in February from a year earlier, to 8,848
units, according to provisional figures from the Italian Association of Auto Makers.
</TEXT>
</DOC>

<DOC>
<DOCNO> WSJ870323-0161 </DOCNO>
<HL> Who's News: Du Pont Co. </HL>
<DD> 03/23/87 </DD>
<DATELINE> Du Pont Company, Wilmington, DE </DATELINE>

Page 183 of 262

172 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

<TEXT>
John A. Krol was named group vice president, Agriculture Products department, of
this diversified chemicals company, succeeding Dale E. Wolf, who will retire May 1.

Mr. Krol was formerly vice president in the Agricultural Products department.

</TEXT>
</DOC>

The preprocessor accepts these two documents as input and creates the two
files that are then loaded into the relational DBMS. The corresponding DOC
and INDEX relations are given below:

Table 5.5. DOC

Docld DocName PubDate Dateline
1 WSJ870323-0180 3/23/87 TURIN, Italy
2 WSJ870323-0161 3/23/87 Du Pont Company, Wilmington, DE

Table 5.6. INDEX

Docld Term TermFrequency
1 commercial 1
1 vehicle 1
1 sales 1
1 italy 1
1 february 1
1 year 1
1 according 1
...
2 krol 2
2 president 2
2 diversified 1
2 company 1
2 succeeding 1
2 dale 1
2 products 2
...

INDEX models an inverted index by storing the occurrences of a term in a
document. This relation is the key to this approach.

Without this relation, it is not possible to obtain high performance text
search within the relational model. Simply storing the entire document in a
Binary Large OBject (BLOB) removes the storage problem, but most searching
operations on BLOB's are limited, in that BLOB's typically cannot be indexed.

Page 184 of 262

INTEGRATING STRUCTURED DATA AND TEXT 173

Hence, any search of a BLOB involves a linear scan, which is significantly slower
than the O(logn) nature of an inverted index.

In a typical information retrieval system, a lengthy preprocessing phase oc­
curs in which parsing is done and all stored terms are identified. A posting list
that indicates, for each term, which documents contain that term is identified
(see Section 4.1 for a brief overview of inverted indexes). A pointer from the
term to the posting list is implemented. In this fashion, a hashing function
may be used to quickly jump to the term, and the pointer can be followed to
the posting list. This inverted file technique is so effective that it was used
in some of the earliest structured systems in the mid-1960s such as TDBMS
[Bleir, 1967].

The fact that one term can appear in many documents and one document
contains many terms indicates that a many-many relationship exists between
terms and documents. To model this, document and term may be thought
of as entities (analogous to employee and project), and a linking relation that
describes the relationship EMP .PROJ must be modeled. The INDEX relation
described below models the relationship. A tuple in the INDEX relation is
equivalent to an assertion that a given term appears in a given document.

Note that the term frequency (t/) or number of occurrences of a term within
a document, is a specific characteristic of the APPEARS-IN relationship; thus,
it is stored in this table. The primary key for this relation is (Docld, Term),
hence, term frequency is entirely dependent upon this key.

For proximity searches such as "Find all documents in which the phrase 11ice
president exists," an additional offset attribute is required. Without this, the
INDEX relation indicates that vice and president co-occur in the same docu­
ment, but no information as to their location is given. To indicate that 11ice is
adjacent to president, the offset attribute identifies the current term offset in
the document. The first term is given an offset of zero, the second an offset of
one, and, in general, the nth is given an offset of n - 1. The INDEX.PROX re­
lation given below contains the necessary offset attribute required to implement
proximity searches.

Several observations about the INDEX.PROX relation should be noted.
Since stop words are not included, offsets are not contiguously numbered. An
offset is required for each occurrence of a term. Thus, terms are listed multiple
times instead of only once, as was the case in the original INDEX relation.
To obtain the INDEX relation from INDEX.PROX, the following statement
may be used:

Ex: 10 INSERT INTO INDEX
SELECT Docld, Term, COUNT(*)

FROM INDEX.PROX
GROUP BY Docld, Term

Finally, single-valued information about terms is required. The TERM relation
contains the id/ for a given term. To review, a term that occurs frequently has
a low id/ and is assumed to be relatively unimportant. A term that occurs

Page 185 of 262

174 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Table 5.7. INDEXYROX

Docld Term Offset
1 commercial 0
1 vehicle 1
1 sales 2
1 italy 4
1 rose 5
1 february 8
1 year 11
1 earlier 12
1 units 15
1 according 16
1 provisional 18
1 figures 19
1 italian 22
1 association 23
1 auto 25
1 makers 26
...
2 krol 2
...

infrequently is assumed very important. Since each term has only one id/, this
is a single-valued relationship which is stored in a collection-wide single TERM
relation.

To maintain a syntactically fixed set of SQL queries for information retrieval
processing, and to reduce the syntactic complexities of the queries themselves,
a QUERY relation is used. The QUERY relation contains a single tuple for
each query term. Queries are simplified because the QUERY relation may be
joined to INDEX to see if any of the terms in QUERY are found in INDEX.
Without QUERY, a lengthy WHERE clause is required to specifically request
each term in the query.

Finally, STOP _TERM is used to indicate all of the terms that are omit­
ted during the parsing phase. This relation is not used in this chapter, but
illustrates that the relational model can store internal structures that are used
during data definition and population.

The following query illustrates the potential of this approach. The SQL satisfies
the request to "Find all documents that describe vehicles and sales written on
3/23/87." The keyword search covers unstructured data, while the publication
date is an element of structured data.

This example is given to quickly show how to integrate both structured data
and text. Most information retrieval systems support this kind of search by

Page 186 of 262

INTEGRATING STRUCTURED DATA AND TEXT 175

Table 5.8. TERM

Term Idf
according 0.9031
commercial 1.3802
company 0.6021
dale 2.3856
diversified 2.5798
february 1.4472
italy 1.9231
krol 4.2768
president 0.6990
products 0.9542
... ...
... . ..
sales 1.0000
succeeding 2.6107
vehicle 1.8808
year 0.4771
... ...

Table 5.9. QUERY

Term tr
vehicle 1
sales 1

Table 5.10. STOP _TERM

Term
a
an
and
...
the
...

making DATE a "zoned field"-a portion of text that is marked and always
occurs in a particular section or zone of a document. These fields can then be
parsed and stored in a relational structure. Section 5.1.1 illustrates a sequence
of queries that use much more complicated unstructured data, which could not
easily be queried with an information retrieval system.

Page 187 of 262

176 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Ex: 11 SELECT d.Docld
FROM DOC d, INDEX i

WHERE i.Term IN ("vehicle", "sales") AND
d.PubDate = "3/23/87'' AND
d.Docld = i.Docld

5.4 Boolean Retrieval

A Boolean query is given with the usual operators-AND, OR, and NOT. The

result set must contain all documents that satisfy the Boolean condition.
For small bibliographic systems (e.g., card catalog systems), Boolean queries

are useful. They quickly allow users to specify their information need and return
all matches. For large document collections, they are less useful because the
result set is unordered, and a query can result in thousands of matches. The
user is then forced to tune the Boolean conditions and retry the query until the
result is obtained. Relevance ranking avoids this problem by ranking documents
based on a measure of relevance between the documents and the query. The
user then looks at the top-ranked documents and determines whether or not
they fill the information need.

We start with the use of SQL to implement Boolean retrieval. We then show
how a proximity search can be implemented with unchanged SQL, and finally,
a relevance ranking implementation with SQL is described.

The following SQL query returns all documents that contain an arbitrary
term, JnputTerm.

Ex: 12 SELECT DISTINCT(i.Docld)
FROM INDEX i

WHERE i.Term = InputTenn

Obtaining the actual text of the document can now be performed in an ap­
plication specific fashion. The text is found in a single large attribute that
contains a BLOB or CLOB (binary or character large object), possibly divided
into separate components (i.e., paragraphs, lines, sentences, phrases, etc.). If

the text is found in a single large attribute (in this example we call it Text),
the query can be extended to execute a subquery to obtain the document iden­
tifiers. Then then the identifiers can be used to find the appropriate text in
DOC.

Ex: 13 SELECT d.Text
FROM DOC d

WHERE d.Docld IN
(SELECT DISTINCT(i.Docld)

FROMINDEXi
WHERE i.Term = InputTenn)

Page 188 of 262

INTEGRATING STRUCTURED DATA AND TEXT 177

For the remainder of the section, we are only concerned with obtaining the
document identifiers found in the answer set. Either a separate query may be
executed using the document identifiers in an application specific fashion or the
queries can be extended in the form given in Example 13.

It is natural to attempt to extend the query in Example 12 to allow for n
terms. If the Boolean request is an OR, the extension is straightforward and
does not increase the number of joins found in the query.

Ex: 14 SELECT DISTINCT(i.Docid)
FROMINDEXi

WHERE i.Term = InputTerm1 OR
i.Term = InputTermf OR
i.Term = InputTerm9 OR

i.Term = InputTermN

Unfortunately, a Boolean AND results in a dramatically more complex query.
For a query containing n input terms, the INDEX relation must be joined n
times. This results in the following query.

Ex: 15 SELECT a.Docid
FROM INDEX a, INDEX b, INDEX c, ... INDEX n - 1, INDEX n

WHERE a.Term= InputTerm1 AND
b.Term = InputTerm2 AND
c.Term = InputTerma AND

n.Term = InputTerm,. AND
a.Docid = b.Docid AND
b.Docid = c.Docid AND

n - l.Docid = n.Docid

Multiple joins are expensive. The order that the joins are computed affects
performance, so a cost-based optimizer will compute costs for many of the
orderings [Elmasri and Navathe, 1994]. Pruning the list is discussed in [Selinger,
1979], but it is still expensive.

In addition to performance concerns, the reality is that commercial systems
are unable to implement more than a fixed number of joins. Although it is
theoretically possible to execute a join of n terms, most implementions impose
limits on the number of joins (around sixteen is common) (White and Date,
1989, McNally, 1997]. It is the complexity of this simple Boolean AND that has
led many researchers to develop extensions to SQL or user-defined operators to
allow for a more simplistic SQL query.

An approach that requires a fixed number of joins regardless of the number
of terms found in the input query is given in [Grossman et al., 1997]. This
reduces the number of conditions found in the query. However, an additional

Page 189 of 262

178 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

sort is needed (due to a GROUP BY) in the query where one previously did
not exist.

The following query computes a Boolean AND using standard syntactically
fixed SQL:

Ex: 16 SELECT i.Docld
FROM INDEX i, QUERY q

WHERE i.Term = q.Term
GROUP BY i.Docid
HAVING COUNT(i.Term) =

(SELECT COUNT(*) FROM QUERY)

The WHERE clause ensures that only the terms in the query relation that
match those in INDEX are included in the result set. The GROUP BY specifies
that the result set is partitioned into groups of terms for each document. The
HAVING ensures that the only groups in the result set will be those whose
cardinality is equivalent to that of the query relation.

For a query with k terms (ti, t2, ••• , t1,) the following set of tuples are gen­
erated for document c4 containing all k terms.

Table 5.11. Result Set

Docld term
di ti
di h
... ...
di t1c

The GROUP BY clause causes the cardinality, k, of this document to be com­
puted. At this point, the HAVING clause determines if the k terms in this
group matches the number of terms in the query. If so, a tuple di appears in
the final result set.

Until this point, we assumed that the INDEX relation contains only one
occurrence of a given term for each document. This is consistent with our
example where a term frequency is used to record the number of occurrences
of a term within a document. In proximity searches, a term is stored multiple
times in the INDEX relation for a single document. Hence, the query must
be modified because a single term in a document might occur k times which
results in di being placed in the final result set, even when it does not contain
the remaining k - 1 terms.

The query below uses the DISTINCT keyword to ensure that only the dis­
tinct terms in the document are considered. This query is used on INDEX
relations in which term repetition in a document results in term repetition in
the INDEX relation.

Page 190 of 262

INTEGRATING STRUCTURED DATA AND TEXT 179

Ex: 17 SELECT i.Docld
FROM INDEX i, QUERY q

WHERE i.Term = q.Term
GROUP BY i.Docid
HAVING COUNT(DISTINCT(i.Term))

= (SELECT COUNT(*) FROM QUERY)

This query executes whether or not duplicates are present, but if it is known
that duplicate terms within a document do not occur, this query is somewhat
less efficient than its predecessor. The DISTINCT keyword typically requires
a sort.

Using a set-oriented approach to Boolean keyword searches results in the
fortunate side-effect that a threshold AND (TAND) is easily implemented. A
partial AND is one in which the condition is true if k subconditions are true.
It is not required that all of the subconditions must be true. The following
query returns all documents who have k or more terms matching those found
in the query.

Ex: 18 SELECT i.Docld
FROM INDEX i,QUERY q

WHERE i.Term = q.Term
GROUP BY i.Docld
HAVING COUNT(DISTINCT(i.Term)) ~ k

5.5 Proximity Searches

To briefly review, proximity searches are used in IR systems to ensure that
the terms in the query are found in a particular sequence or at least within a
particular window of the document. Most users searching for a query of "vice
president" do not wish to retrieve documents that contain the sentence "His
primary vice was to yearn to be president of the company."

To implement proximity searches the INDEX.PROX given in our working
example is used. The offset attribute indicates the relative position of each
term in the document.

The following query, albeit a little complicated at first glance, uses un­
changed SQL to identify all documents that contain all of the terms in QUERY
within a term window of width terms. For the query given in our working ex­
ample "vice" and "president" occur in positions seven and eight, respectively.
Document two would be retrieved if a window of two or larger were used.

Page 191 of 262

180 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Ex: 19 SELECT a.Docld
FROM INDEX_pROX a, INDEX_pROX b

WHERE a.Term IN (SELECT q.Term FROM QUERY q) AND
b.Term IN (SELECT q.Term FROM QUERY q) AND
a.Docld = b.Docid AND
(b.Offset - a.Offset) BETWEEN O AND (width - 1)

GROUP BY a.Docld, a.Term, a.Offset
HAVING COUNT{DISTINCT{b.Term)) =
(SELECT COUNT(*) FROM QUERY)

The INDEX.PROX table must be joined to itself since the distance between
each term and every other term in the document must be evaluated. For a doc­
ument d. that contains k terms (ti, t2, ... , t1,:) in the corresponding term offsets
of (01, O:!, ••. , 01,:), the first two conditions ensure that we are only examining
..>ffsets for terms in the document that match those in the query. The third con­
dition ensures that the offsets we are comparing do not span across documents.
The following tuples make the first three conditions evaluate to TRUE.

The table below is given to assist in understanding the logic of the query.
Drawing out the first step of the join of INDEX.PROX to itself for an arbitrary
document di yields tuples in which each term in INDEX_TERM is matched

with all other terms. This table shows only those terms within document di
that matched with other terms in document di. This is because only these
tuples evaluate to TRUE when the condition "a.Dodd = b.Docld" is applied.
We also assume that the terms in the table below match those found in the
query, thereby satisfying the condition "b.term IN (SELECT q.term FROM
QUERY)."

Table 5.12. Result of self-join of INDEXYROX

a.Docld a.Term a.Offset b.Docld b.Term b.Offset
d; ti 01 d; ti 01

d; ti 01 d; t2 02

cl; ti 01 d; tk Ok

d; h 02 d; ti 01

d, h 02 d; t2 02

d; h 02 d; t,. Ok

d, tk Ok d; ti 01

d; tk Ok d; t2 02

d; tk 01, d; t1, 01,

The fourth condition examines the offsets and returns TRUE only if the
terms exist within the specified window. The GROUP BY clause partitions
each particular offset within a document. The HAVING clause ensures that
the size of this partition is equal to the size of the query. If this is the case,
the document has all of terms in QUERY within a window of size offset. Thus,
document di is included in the final result set.

Page 192 of 262

INTEGRATING STRUCTURED DATA AND TEXT 181

For an example query with "vehicle" and "sales" within a two term window,
all four conditions of the WHERE cla11Se evaluate to TRUE for the following
tuples. The first three have eliminated those terms that were not in the query,
and the fourth eliminated those terms that were outside of the term window.
The GROUP BY cla11Se results in a partition in which "vehicle", at offset one,
is in one partition and "sales", at offset two, is in the other partition. The first
partition has two terms which match the size of the query, so document one is
included in the final result set.

Table 5.13. Result after all four conditions of the WHERE clause have been evaluated

a.Docld a.Tern1 a.Offset b.Docld b.Tern1 b.Offset
1 vehicle 1 1 vehicle 1
1 vehicle 1 1 sales 2
1 sales 2 1 sales 2

5.6 Computing Relevance Using Unchanged SQL

Relevance ranking is critical for large document collections as a Boolean query
frequently returns many thousands of documents. Recent World Wide Web
search engines such as Alta Vista and Yahoo!, as well as commercial informa­
tion retrieval systems such as Excalibur's RetrievalWare and Verity's Topic, all
implement relevance ranking. Numerous algorithms exist to compute a mea­
sure of similarity between a query and a document. We have discussed many
of these variations in Chapter 2.

The vector-space model has been heavily discussed in the literature, and
systems 11Sing this model have repeatedly performed well at the Text REtrieval
and Evaluation Conference (TREC). Hence, the SQL-based system was built
using this model. The model works by representing each document and each
query by a vector of size t, where t is the number of distinct terms in the
document collection. The distance between the query vector Q and the docu­
ment vector Di is used to rank documents. The following dot product measure
computes this distance:

t
SC(Q,Di) = Lqi X dij

j=l

where Qj is the jth term in the query, and dii is the jth term in the ith
document.

In the simplest case, each component of the vector is either zero or one (one
indicates that the term corresponding to this component exists). Numerous
weighting schemes are described in [Salton and Buckley, 1988], but one com­
monly used weight is tf-idf in which the term frequency is combined with the

Page 193 of 262

182 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

inverse document frequency (see Section 2.2.1). The following SQL implements
a dot product query with the tf-idf weight.

Ex: 20 SELECT i.Docid, SUM(q.tf * t.idf * i.tf * t.idf)
FROM QUERY q, INDEX i, TERM t

WHERE q.Term = t.Term AND
i.Term = t.Term

GROUP BY i.Dodd
ORDER BY 2 DESC

The WHERE clause ensures that only terms found in QUERY are included
in the computation. Since all terms not found in the query are given a zero
weight in the query vector, they do not contribute to the summation. The id/
is obtained from the TERM relation and is used to compute the tf-idf weight
in the select-list. The ORDER BY clause ensures that the result is sorted by
the similarity coefficient.

At this point we have used a simple similarity coefficient. Many variations of
this coefficient are found in the literature [Salton, 1989]. Unchanged SQL can
be used to implement these coefficients as well. Typically, the cosine coefficient
or its variants is commonly used. The cosine coefficient is defined as-

'°'~ w ·d··
SC(Q D ·) = L..i=1 qi ''

' • . I t t V Ej=l (d;j)2 Ej=l (Wqj)2

The numerator is the same as the dot product, but the denominator requires
a normalization which uses the size of the document vector and the size of
the query vector. Each of these normalization factors could be computed at
query time, but the syntax of the query becomes overly complex. To simplify
the SQL, two separate relations are created: DOC_WT (Docld, Weight) and
QUERY _WT (Weight). DOC_WT stores the size of the document vector for
each document and QUERY_ WT contains a single tuple that indicates the size
of the query vector. These relations may be populated with the following SQL:

Ex: 21 INSERT INTO DOC_WT
SELECT Dodd, SQRT(SUM(i.tf * t.idf * i.tf * t.idf))

FROM INDEX i, TERM t
WHERE i.Term = t.Term
GROUP BY Dodd

Ex: 22 INSERT INTO QRY _WT
SELECT SQRT(SUM(q.tf * t.idf * q.tf * t.idf))

FROM QUERY q, TERM t
WHERE q. Term = t.Term

For each of these INSERT-SELECT statements, the weights for the vector are
computed, squared, and then summed to obtain a total vector weight. The
following query computes the cosine.

Page 194 of 262

INTEGRATING STRUCTURED DATA AND TEXT 183

Ex: 23 SELECT i.Docld, SUM{q.tf • t.idf • i.tf • t.idf) /
(dw.Weight • qw.Weight)

FROM QUERY q, INDEX i, TERM t, DOC_WT dw, QRY _WT qw
WHERE q.Term = t.Term AND

i.Term = t.Term AND
i.Docld = dw.Docld

GROUP BY i.Docld, dw.Weight, qw.Weight
ORDER BY 2 DESC

The inner product is modified to use the normalized weights by joining the two
new relations, DOC_WT and QRY _WT. An additional condition is added to
the WHERE clause in order to obtain the weight for each document.

To implement this coefficient, it is necessary to use the built-in square root
function which is often present in many SQL implementations. We note that
these queries can all be implemented without the non-standard square root
function simply by squaring the entire coefficient. This modification does not
affect the document ranking as a :S b => a2 :S b2 for a, b ~ 0. For simplicity
of presentation, we used a built-in sqrt function {which is present in many
commercial SQL implementations) to compute the square root of an argument.

5. 7 Relevance Feedback in the Relational Model

Recent work has shown that relevance feedback may be incorporated into the
relational model [Lundquist et al., 1997]. Relevance feedback is the process of
adding new terms to a query based on documents presumed to be relevant in
an initial running of the query {see Section 3.1). In this work, separate SQL
statements were used for each of the following steps:

Step 1: Run the initial query. This is done using the SQL we
have just described.

Step 2: Obtain the terms in the top n documents. A query of the
INDEX relation given a list of document identifiers (these
could be stored in a temporary relation generated by Step 1
will result in a distinct list of terms in the top
n documents. This query will run significantly
faster if the DBMS has the ability to limit the number of
tuples returned by a single query {many commercial systems
have this capability). An INSERT-SELECT can be used to
insert the terms obtained in this query into the QUERY relation.

Step 3: Run the modified query. The SQL remains the same as used in
Step 1.

Page 195 of 262

184 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

5.8 Summary

We discussed several approaches focused on the integration of structured and
text data. To aid the reader, we initially provided a limited review of the rela­
tional database model and continued with a historical progression of the data
integration field. We discussed the key concerns involved in data integration­
namely data integrity, portability, and performance---and noted that maintain­
ing and coordinating two separate systems was difficult and expensive to do.

Having motivated the integration of traditional relational database manage­
ment features with traditional information retrieval functionality, we described
early efforts that extended relational database management systems with user­
defined operators. These extensions provided information retrieval function­
ality, but also potentially incurred performance and portability penalties. We
concluded the chapter with a detailed illustration of the integration of both
information retrieval and relation database functionality using standard, un­
changed SQL. As of the time of the writing of this book, two major database
vendors are considering integrating this standard SQL information retrieval
functionality into their text processing efforts.

5. 9 Exercises

1. Using Alice in Wonderland develop a utility to output a file that is suitable
for populating the INDEX relation described in this chapter.

2. Load the output obtained in the preceding exercise into the relational DBMS
of your choice.

3. Implement a simple dot product SQL query to query the data you have just
loaded. Implement ten different queries.

4. Notice that the term Alice is replicated numerous times. Implement a Huff­
man encoding compression algorithm to reduce the space stored for each
term. Reload the INDEX relation and compute the amount of storage over­
head.

5. Show how the probabilistic approach developed by Robertson and Sparck
Jones described in Section 2.2.1 can be implemented as an application of a
relational database system. Repeat this exercise for the approach developed
by Kwok described in section 2.2.4.

Page 196 of 262

6 PARALLEL INFORMATION
RETRIEVAL SYSTEMS

Parallel architectures are often described based on the number of instruction
and data streams, namely single and multiple data and instruction streams. A
complete taxonomy of different combinations of instruction streams and data
was given in [Flynn, 1972]. To evaluate the performance delivered by these
architectures on a given computation, speedup is defined as f, where T8 is the

p

time taken by the best sequential algorithm, and Tp is the time taken by the
parallel algorithm under consideration. The higher the speedup, the better the
performance. The motivation for measuring speedup is that it indicates whether
or not an algorithm scales. An algorithm that has near linear speedup on sixteen
processors may not exhibit similar speedup on hundreds of processors. However,
an algorithm that delivers very little or no speedup on only two processors will
certainly not scale to large numbers of processors.

Multiple instruction multiple data (MIMD) implies that each processing ele­
ment is potentially executing a different instruction stream. This is the case in
most of the modern parallel engines such as the Intel Paragon and IBM SP2, as
well as some of the earlier machines such as the Intel iPSC and the NCUBE/10.
Synchronization is more difficult with this approach, as compared to a single
instruction multiple data (SIMD) system, because one processor can still be
running some code while another is waiting for a message.

In SIMD architectures, all processors execute the same instruction concur­
rently. A controlling master processor sends an instruction to a collection of
slave processors, and they all execute it at the same time on different sequences

Page 197 of 262

186 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

of data. SIMD systems are effective when all processors work on different pieces
of data with the same instruction. In such cases, large speedups using SIMD en­
gines are possible. Some image processing applications, where each pixel or set
of pixels are assigned to a processor, are solved efficiently by SIMD solutions.
The Connection Machine (CM) and CM-2, the various MASPAR architectures,
and the DAP are all SIMD machines.

In this chapter, we include only algorithms written for a parallel processor.
We distinguish these algorithms from distributed algorithms since they are fun­
damentally different. A distributed information retrieval algorithm is designed
to satisfy the need to store data in many physically different locations. The
most known example of a distributed information retrieval system is the World
Wide Web (WWW). We will discuss this and other distributed information
retrieval systems in Chapter 7. However, with parallel systems, the processing
elements are close to one another-often on the same board.

6.1 Parallel Text Scanning

In parallel pattern match, the text collection consisting of n documents is par­
titioned into p partitions (p is typically the number of available processors)
(Evans and Ghanemi, 1988]. Each available processor receives a partition of
the text and a copy of the query. A sequential algorithm executes on each r ~ l
sized portion of text. Once this is done, all of the hits are returned to the
controlling processor. Since it is possible for a pattern to span across two or
more partitions, an additional step is required to check for matches that span
partitions. This extra checking results in additional overhead for the parallel
algorithm.

Parallel string matching is a simpler case of parallel text scanning, in that
string matching assumes that the text to be searched is completely memory
resident. A survey of parallel string matching algorithms is found in [Breslauer
and Galil, 1991]. This survey describes several different parallel algorithms that
search a text string of size l for a pattern of size k.

The parallel pattern matching algorithm has a key flaw in that patterns
which span partitions result in considerable overhead. For some cases, the par­
allel algorithm yields no speedup at all. The parallel signature file approach
yields linear speedup over the sequential file, but run time for this algorithm is
not better than the time required to implement a sequential indexing algorithm.
This fact was pointed out by Salton when he implemented this algorithm on a
Connection Machine and a SUN3 [Salton, 1988]. Additionally, Stone used an
analytical model to compute that a sequential machine will outperform a par­
allel machine with 32K processors. This occurs if an inverted index is used for
the sequential matching and the file scan is used on the 32K processor machine
[Stone, 1987]. Another repetition of the theme that information retrieval does
not require enough processing to enable good parallel processing algorithms is
given in [Cockshott, 1989].

Page 198 of 262

PARALLEL INFORMATION RETRIEVAL SYSTEMS 187

Generally, parallel algorithms start with the best sequential algorithm. Com­
paring a parallel scanner to a sequential scanner is not an accurate measure of
speedup, as it is well known that the best sequential algorithms use an inverted
index.

6.1.1 Scanning Hardware

Numerous special purpose hardware machines have been built to scan text. A
survey of these is found in [Hurson et al., 1990]. We briefly review two of these
as they serve to illustrate the need for this portion of our taxonomy.

6.1.1.1 Utah Retrieval System. The Utah Retrieval System (URS) is
implemented as a non-deterministic finite state automata (FSA) with a series
of special purpose comparators [Hollaar and Haskins, 1984, Hollaar and Hask­
ins, 1991]. The FSA is constructed so that many non-deterministic paths are
explored at the same time, therefore it never requires a backward look. The
URS is essentially a smart disk controller, as the hardware is placed close to the
disk controller so that only data that match the retrieval criteria are returned
to the calling processor. As always, the motivation behind the special purpose
algorithm is run-time performance. While proximity searching can be done,
it is not clear that the URS can be used to store weights of terms in a docu­
ment. Hence, this approach has some of the same problems as a signature-based
approach.

More recent work with the URS employs an index and a simplified posting
list. This posting list does not contain proximity information so the index is
used simply to identify which documents should be scanned. The FSA is used to
scan the documents to obtain the required response to the query. This scanning
step is needed to determine the locations of terms within the document.

6.1.1.2 A Data Parallel Pattern Matching Approach. To avoid pre­
computation of a FSA and to search large blocks of text simultaneously a data
parallel pattern matching (DPPM) algorithm was developed [Mak et al., 1991].
In the DPPM algorithm, a block of data is compared against a sequential se­
rial portion of the pattern. Sequentially, one character at a time of the search
pattern is compared against an entire block of text. Given the high degree of
mismatch between the pattern and the block of text an "early-out" mismatch
detection scheme flushes out the entire block of text. This occurs once a match
with the pattern is no longer possible. This early mismatch detection mecha­
nism greatly reduces the total search processing time as redundant comparisons
are avoided.

An architecture, which relied on multiple individual DPPM search engines
to identify document offsets where the pattern matches were found, was out­
lined. Based on simple computations and the predetermined offsets, the re­
quired information retrieval operators proposed for the Utah Retrieval System
were supported. A VLSI realization of the DPPM engine, and a corresponding

Page 199 of 262

188 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

analysis of the global architecture, was presented. The analysis demonstrated
a potential search rate of one gigabyte of text per second.

6.1.2 Parallel Signature Files

6.1.2.1 Connection Machine. An early algorithm developed for the Con­
nection Machine used signature files to represent documents [Stanfill and Kahle,
1986]. Details of sequential algorithms that use text signatures are described
in Section 4.3.

Several signatures are stored in each processing element. Each processing
element is assigned signatures only for a single document. The reason for this is
that it was assumed that a document would not expand beyond a single process­
ing element. A query is processed by generating the bitmap for a term in the
query and broadcasting it to all processors. Each processor checks the bitmap
against the list of signatures. When a match occurs, the mailbox in the pro­
cessing element that corresponds to the document is updated with the weight
of the query term. Document weights due to repetition within a document
are lost because the signature does not capture the number of occurrences of a
word in a document. However, a global weight across the document collection
is used.

Once all the signatures are scanned, the documents are ranked by doing a
global maximum of all mailboxes. The processors whose mailboxes contain the
global maximum are then zeroed, and the global maximum is repeated. This
continues until the number of documents that should be retrieved is obtained.

The commercial implementation of this algorithm contained several refine-
ments [Sherman, 1994]. The actual values for the signatures for the CM were-

w = 30 words per signature

s = 1024 bits in a signature

i = 10 hash functions used to code a word

Fifty-five signatures were placed in a single processing element. The assump­
tion that one processing element maps to a corresponding signature is removed.
Additionally, weights are not done by document. They are computed for sig­
nature pairs. The idea being that a sixty word radius is a better document
segment to rank than an entire document. Hence, a weight is maintained for
each signature.

To resolve a query, the top one hundred query weights were used. The
bitmap for the query was generated like before and rapid microcode was used
to quickly check the corresponding i bits in the signature. Whenever a query
term appeared to match a signature, the corresponding weight was updated
appropriately. Once the signature match was complete, the signature pairs
were then combined using a proprietary scoring algorithm that averaged the
weights of the two signatures. The use of signature pairs made it possible to
incorporate proximity information into the relevance ranking. Some interpro­
cessor communication occurs to obtain the single signature part that crosses

Page 200 of 262

PARALLEL INFORMATION RETRIEVAL SYSTEMS 189

a document boundary (both above and below the processing element). How­
ever, the overhead for these two processor "sends" is low because it occurs only
between adjacent processors.

The algorithm was completely memory resident, as the application queried
a news wire service in which only the most recent news articles were used in
retrieval. As documents aged, they were exported from the CM to make room
for new documents. Several million documents could then be stored in memory
and run-time performance was routinely within one to three seconds.

6.1.2.2 Digital Array Processor {DAP). Signatures were used initially
in the Digital Array Processor (DAP) by using a two-phased search. Many of
the parallel algorithms are based on a bit serial implementation of the sequential
algorithms given in [Mohan and Willett, 1985]. In this algorithm, signatures
are assigned by using a term dictionary and setting a single bit in the signature
for each term. The 1024 bit-long signatures are distributed to each processor
(4096 processors). Hence, 4096 documents are searched in parallel. The query
is broadcast to each processor. Since only one bit is set per term, the number
of matching bits is used as a measure of relevance. This uses the assumption

that a bit match with the query indicates a match with the term. Since several
terms can map to the same bit in the signature, this is not always true.

To verify that a match really occurs, a second phase begins. In this phase a
pattern matching algorithm is implemented, and the document is examined to
compute the number of terms that really match. This is done sequentially and
only for the documents that ranked highly during the first phase. Performance
of the algorithm is claimed to be "good," but no specific results are presented
[Pogue and Willett, 1987].

6.1.2.3 HYTERM. A more recent approach by Lee, HYbrid TExt Re­
trieval Machine (HYTERM), uses a hybrid approach between special-purpose
search hardware and partitioned signature files, which can be done via hard­
ware or software [Lee, 1995]. This architecture employs a signature file using
superimposed signatures to identify possible matches to a Boolean request.
Once this is done, the false hits are removed either by a software scan or a
special-purpose pattern match device.

The signatures are partitioned such that each partition has a certain key or
portion of the signatures. This saves memory as the signatures in a given par­
tition need not store the partition key. The key is checked quickly to determine
whether or not the entire partition must be searched. The partitions are stored
in memory, and are spread across the processors or, as Lee calls them signature
modules, as they are filled. Initially, only one signature module is used. Once
it is full, a single-bit key is used, and the signatures are partitioned across two
processors. The process continues until all free processors are full, then new
ones can be added and the process can continue indefinitely.

The actual text is stored across numerous small texts. Once the signature
modules have identified candidate documents to be checked for false drops, the

Page 201 of 262

190 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

text processing modules retrieve the document from a disk. It is noted that
by spreading the documents across numerous disks, the resilience to failure
improves. When a disk is down, it only means a few documents will be inac­
cessible. The overall query will still work, it will just have lower precision and
recall than if the disk had been working. Documents are uniformly distributed
to the disks, either by hashing or round-robin allocation.

6.1.2.4 Transputers. Two algorithms were developed with transputers in
the early 1990s (Cringean et al., 1990, Cringean et al., 1991]. The first was
a term-based algorithm in which only full terms were encoded in a signature,
the second algorithm uses trigrams (overlapping three character sequences-see
Section 3.4) to respond to wildcard searches.

Another signature-based algorithm was implemented on a transputer net­
work. Transputers essentially serve as building blocks to an arbitrary parallel
interconnection network, and are often distributed as a chip in which links are
present that can be connected to other transputers. For this approach, differ­
ent interconnection networks were tested, but ultimately a triple chain network
was used in which a master processor sends messages to three separate llnear
arrays. Using only a single linear array, data transmission requires on the order
of p steps, where p is the number of processors.

A two-phased algorithm is again used. In this first phase, a master pro­
cessor sequentially scans signatures for each document. The documents that
correspond to signature matches are then distributed to the p processors, and
a sequential string matching algorithm is implemented on each of the p proces­
sors. In this work, a modified Boyer-Moore algorithm by Horspool is used for
sequential string matching (Horspool, 1983].

During one performance test, the signatures were eliminated and only string
matching was done. For this test with fifteen processors, a speedup of 12.6 was
obtained. Additional tests with varying signature lengths were conducted. For
larger signatures, fewer false hits occur. Thus, less string matching in parallel
is needed. With 512 bit signatures, fifteen processors only obtained a speedup
of 1.4 because only thirteen percent of the original document collection were
searched.

Additional tests were done with signatures based on trigrams instead of
terms. Each trigram was hashed to a single bit. The pattern-matching al­
gorithm implemented on each processor was modified to search for wildcards.
These searches include symbols that indicate one or more characters will sat­
isfy the search (e.g., a search for "st•" will find all strings with a prefix of
"st"). Initial speedups for trigram-based signatures were only 2.1 for fifteen
processors. This poor speedup was caused by the sequential signature match
in the first phase of the algorithm. To alleviate this, additional transputer
components were added so that two and then four processors were used to scan
the signature file in parallel. With four transputers for the parallel signature
match, speedup improved to 4.5 for twelve processors.

Page 202 of 262

PARALLEL INFORMATION RETRIEVAL SYSTEMS 191

Another term-based transputer algorithm is found in [Walden and Sere,
1988]. In this work, a master processor sends the query to each of the processors
where all "relevant" documents are identified and returned to the master for
final ranking. "Relevant" is defined as having matched one of the terms in the
query. Document signatures are used to save storage, but no work is done to
avoid false hits. The interesting aspect of this work is that three different inter­
connection networks were investigated: ring, linear array, and tree. Speedups
for a 10 megabyte document collection with a ring interconnection network
were almost linear for up to fifteen processing elements, but fell to only 6.14 for
sixty-three processing elements. Essentially, the test collection was too small
to exploit the work of the processing elements. In a tree structure, sixty-three
processing elements yielded a speedup of 7.33.

6.2 Parallel Indexing

Another approach is to parallelize the inverted index. The idea is to partition
the index such that portions of the index are processed by different processors.
Figure 6.1 illustrates an inverted index that has been partitioned between two
processors. This is intrinsically more difficult, in that simply partitioning the
index and sending an equal number of terms to each of the p processors does
not always result in equal amounts of work. Skew in posting list size poses a
difficult problem. Nevertheless, parallel index algorithms were developed for the
Connection Machine, the OAP, and some others. We discuss these algorithms
in this section.

6.2.1 Parallel Indexing on a Connection Machine

The signature-based algorithm did not improve on the best sequential algo­
rithm, so a new approach based on an inverted index was developed. Both an
entirely memory resident index and a disk-based index were constructed [Stan­
fill et al., 1989]. The posting lists were sequences of document identifiers that
were placed in a two dimensional array. Mapping between posting list entries,
and placement within a two dimensional array was defined. The entries of the
posting were allocated one at a time, starting with the first row and moving
to the second row only after the first row was full. This has had the effect of
allocating data to the different processors (since each column is processed by
an individual processor) in a round-robin fashion.

Consider a posting list with terms ti, h, and ta. Assume ti occurs in doc­
uments d1 and d-J. The posting list for this term will be stored in the first
two positions of row zero, in an array stored in memory. Assume t2 occurs in
documents d1 and da, and ta occurs in documents d1 , d2 , and da. For these
three terms, the 2 x 4 dimensional array shown in Table 6.1 is populated. Using
this approach a row of 1024 postings can be processed in a single step if all
processors are used. A full row is referred to as a stripe. Since the terms have
been scattered across the array, it is necessary to track which entries map to a
given posting list. A second array is used for this purpose. It holds an entry for

Page 203 of 262

192 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Figure 6.1. Partitioning an Inverted Index

Processor 1

1
_ _ _ _ _ _ _ _ _ _+ _____ Postin_g_List

I
I

I I - I -- I -
I
I - I

I I -- I
~

I
I
I

I I - I
~ - ~

I ~----------------------------
1

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Posti n_g_ List
1

I

I I
I - I ~ I - - I

I I
I I
I

I I
I

I I - - I - I - I
I I
I I

·------------t--------------~

Index Processor 2

Table 6.1. Parallel Storage of Posting Lists

I ~ I ~ I ~ I 3 I

the term followed by a start row, a start column, and a length for the posting
list. The start row and column indicate the first location in the posting list
that corresponds to the term. Continuing our example, the index table for the
terms 0, 1, and 2 is given in Table 6.2.

The first row of this entry indicates that term t1 contains a posting list that
starts at position [0,0] and continues to position [0,1] of the two dimensional
posting list array given above. This can be inferred because the row-at-a-time
allocation scheme is used.

Page 204 of 262

PARALLEL INFORMATION RETRIEVAL SYSTEMS 193

A query of n terms is processed in n steps. Essentially, the algorithm is­

do i = 1 ton
curr_row = index(i)
for j = 1 to row Jength do in parallel

curr_docjd = docjd(curr..row)
score(curr..docjd) = score(curr..docjd) + weight(curr..row)

end
end

This is only a sketch of the algorithm. Extra work must be done to deactivate
processors when an entire row is not required (a bit mask can be used to
deactivate a processor). Additionally, for long posting lists, or posting lists
that start at the end of a stripe, more than one row must be processed during
a single iteration of the inner loop.

For each query term, a lookup in the index is done to determine which
stripe of the posting list is to be processed. Each processor looks at its entry
for the stripe in the doc_id. It is this doc_id whose score must be updated,
as the entry in the posting list implies that the term in the query is matched
by a term in this document. A one-dimensional score array (referred to as a
"mailbox" in the original algorithm) is updated. This one-dimensional array is
distributed as one element to each processor, so each processor corresponds to
a document. For a document collection with more documents than processors
a "virtual processor" must be used. (Note: there will always be no more than
one update to the score element as the posting list only contains one entry for
each term-doc appearance). The final ranking is done with a global maximum
to find the highest-ranked element of the score array and to successively mask
that element. This can be repeated until all documents have been retrieved.

This algorithm obtains good speedup when a posting list uses an entire
stripe. The problem is that often a stripe is only being used for one or two
entries. A posting list containing one entry results in 1023 processors doing
nothing while one processor issues the update to the score array. The posting
table may be partitioned by node in order [Stanfill, 1990, Stanfill and Thau,
1991]. to accommodate clusters of processors (or nodes). This facilitates the
movement of data from disk into the posting array,

One node consists of thirty-two processors. The problem is that if the posting
list entries are arbitrarily assigned to nodes based on a document range (i.e.,

Table 6.2. Mapping of Index Terms to Posting List Entries

Term Start Row Start Column Length
ti 0 0 2

h 0 2 2

ta 1 0 3

Page 205 of 262

194 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

node one receives postings for documents zero and two, while node two receives
postings for documents one and three) it is conceivable that one node can have
substantially more postings than another. To avoid this problem, the nodes
are partitioned such that each partition contains a range of term identifiers.
Occasionally, empty space occurs in a partition as there may be no data for
a given range of terms in a particular range of documents. It can be shown
that for typical document collections, eighty to ninety percent of the storage is
used. This partitioned posting list yields improved speedup as the number of
idle processors is reduced.

6.2.2 Inverted Index on the CM with Parallel Processing of Query Terms

The previous algorithm processed one query term at a time. Parallel processing
was done to update the ranking, but even with optimal processor utilization
(fully used stripes), the time taken for a query oft terms is on the order of O(t).
An approach that allows logarithmic time is given in [Asokan et al., 1990]. The
algorithm consists of the following steps-

Step 1: Partition the set of processors into clusters. Each cluster works on a
single query term.

Step 2: Each cluster simultaneously references the index to determine the
posting list that corresponds to its own cluster. Hence, cluster 1 obtains the
posting list for term 1, cluster 2 obtains the posting list for term 2, etc.

Step 3: Use all p processors to merge the r~l posting lists, where n is the
number of documents. This effectively produces a sorted list of all documents
that are referenced by the terms in the query. Since the posting list contains
the weight, a document weight appears as well. Hence, a merged posting list
might appear as-< Dl,0.5 >< Dl,0.3 >< D2,0.5 >< D2,0.9 >. This
posting list occurs if document one contains two query terms with weights of
0.5 and 0.3, respectively, and document two contains two terms with weights
of 0.5 and 0.9 respectively.

Step 4: Use all processors to eliminate duplicates from this list and generate
a total score. After this step, our posting list appears as- < Dl,0.8 ><
D2, 1.4 >
Step 5: Sort the posting list again based on the score assigned to each docu­
ment. Our posting list will now appear as- < D2, 1.4 >< DI, 0.8 >

A modified bitonic sort can be done to merge the lists so the complexity of
the algorithm is O(log2 t) time. This appears superior to the O(t) time, but
it should be noted that the algorithm requires O(r~l) processors assigned to
a cluster to process a single posting list for a given term. If too many terms
exist, it may be necessary to overlay some of the operations.

Page 206 of 262

PARALLEL INFORMATION RETRIEVAL SYSTEMS 195

6.2.3 Parallel Indexing on a Digital Array Processor (DAP)

As with the Connection Machine, an earlier scanning algorithm that uses term
signatures on the DAP, was replaced with an indexing algorithm [Reddaway,
1991, Bond and Reddaway, 1993].

The key difference between the DAP algorithm and the CM algorithm is that
a compressed posting list is used. Additionally, the algorithm running on the
DAP is claimed to be more efficient as the DAP uses a simpler interconnection
network (a mesh instead of a hypercube} and the global operations such as
global maximum are substantially faster. Since no really remote "send" opera­
tions are done, the authors of the DAP approach claim that it is not necessary
to have a hypercube.

The compression scheme is based on the observation that large hit lists often
have the same leading bits. Consider a hit list that contains documents 8, 9,
10, 11, 12, 13, 14, and 15. The binary values all have a leading bit of 1 (1000,
1001, 1010, 1011, 1100, 1101, 1110, and 1111}. By allocating one bit as a block
indicator, the hits within the block can be stored in three bits. Hence, block 1
would contain the references (000, 001, 010, 011, 100, 101, 110, and 111}. The
total bits for the representation changes from (8)(4) = 32 to 1 + (8)(3} = 25.
Clearly, the key to this representation is the number of hits within a block.
For the DAP, a 24-bit code (no compression) is used for rare terms (those
that occur only once in every 50,000 documents). For terms that appear more
frequently, an 8-bit block code with a 16-bit offset within the block (the block
holds up to 64K) references entries in the posting list. Finally, for the most
frequent terms, a 64K document block is treated as 256 separate sub-blocks.
A key difference in the parallel algorithm for the DAP is that the expansion
of the posting list into an uncompressed form is done in parallel. Performance
of the DAP-based system is claimed to be 200 times faster than the previous
sequential work. Other experiments using 4096 processors indicate the DAP
610 yields a significant (over one hundred times faster) improvement over a
VAX 6000 [Manning, 1989, Reddaway, 1991].

6.2.4 Partitioning a Parallel Index

An analytical model for determining the best means of partitioning an inverted
index in a shared nothing environment is given in [Tomasic and Garcia-Molina,
1993]. Three approaches were studied. The first, referred to as the system
approach, partitioned the index based on terms. The entire posting list for
term a was placed on disk 1, the posting list for term b was placed on disk 2,
etc. The posting lists were assigned to disks in a round-robin fashion.

Partitioning based on documents was referred to as the disk strategy. In
this approach, all posting list entries corresponding to document 1 are placed
on disk 1, document 2 on disk 2, etc. Documents were assigned to disks in
a round-robin fashion. Hence, to retrieve an entire posting list for term a, it
is necessary to retrieve the partial posting lists from each disk for term a and

Page 207 of 262

196 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

merge them. Although the merge talces more time than the system entry, the
retrieval can talce place in parallel.

The host strategy partitioned posting list entries for each document and
placed them on separate processors. Hence, document 1 is sent to processor 1,
document 2 to processor 2, etc.

An analytical model was also developed by fitting a frequency distribution
to some text (a more realistic approach than blindly following Zipf's Law). The
results of the analytical simulation were that the host and disk strategy perform
comparably, but the system strategy does not perform as well. This is because
the system strategy requires sequential reading of potentially long posting lists
and transmission of those lists. The system strategy becomes competitive when
the communication costs were dramatically reduced.

6.2.5 A Parallel Inverted Index Algorithm on the CM-5

A more recent algorithm on the CM-5 is described in [Masand and Stanfill,
1994]. In this work, the documents were distributed to sixty-four different pro­
cessors where a compressed inverted index was built for each of the processors.
Construction of the inverted index was extremely fast. In twenty minutes, a
2.1 gigabyte document collection was indexed and the size of the index file was
only twenty-four percent of the size of the raw text.

Queries are processed by sending the query to each of the processors and ob­
taining a relevance ranking for each processor. At this point, a global maximum
is done to determine the highest ranked document among all the processors.
This document is ranked first. The global maximum is repeated until the num­
ber of documents that are to be retrieved is obtained.

6.2.6 Computing Boolean Operations on Posting Lists in Parallel

Another area in which parallel processing is used in conjunction with an in­
verted index is the computation of Boolean operations on two posting lists,
A and B [Bataineh et al., 1989, Bataineh et al., 1991]. The posting lists are
partitioned so that the total number of elements in each partition is of equal
size. The Boolean computation is obtained by computing the Boolean result for
each partition. There is no need to compare values located in one partition with
another because the partitions are constructed such that each partition con­
tains values within a specific range and no other partition contains values that
overlap within that range. This partitioning process can be done in parallel.

Once the partitions are identified, each one is sent to a separate process­
ing element. Subsequently, each processing element individually computes the
Boolean result for its values. Finally, the results are obtained and stored on
disk. The algorithm was originally implemented on the NCUBE/4 and the
Intel iPSC/2. For posting lists corresponding to term human and English of
520,316 and 115,831 postings, respectively (the MEDLINE database was used),
speedups of five for an eight processor NCUBE were observed and a speedup
of seven for a sixteen processor IPSC were obtained. It was noted that the

Page 208 of 262

PARALLEL INFORMATION RETRIEVAL SYSTEMS 197

parallel algorithm began to degrade as the number of processors increased. As
this happens, the amount of work per processor is reduced and communication
overhead is increased.

6.2. 7 Parallel IR As an Application of an RDBMS

One of the motivating features behind the development of an information re­
trieval engine as an application of the relational database model (see Chapter
5) was the availability of commercial parallel database implementations. Exe­
cuting the SQL scripts that implement the information retrieval application on
a parallel relational database engine results in a parallel implementation of an
information retrieval system.

In [Grossman et al., 1997], the feasibility of implementing a parallel infor­
mation retrieval application as a parallel relational database application was
demonstrated. Using a four processor NCR DBC/1012 database engine nearly
uniform processor loads and disk access rates were observed. From these find­
ings, it was hypothesized that it was possible to develop a scaleable, parallel
information retrieval system using parallel relational database technology.

To validate this hypothesis, scaling experiments were conducted using a
twenty-four processor NCR DBC/1012 database engine [Lundquist et al., 1998].
The initial findings were, however, disappointing. Using the same relational
table definitions described in [Grossman et al., 1997], only a forty percent pro­
cessor efficiency was achieved. Further investigation revealed that the limiting
factor to scalability was the non-uniform processor load on the DBC/1012.

The DBC/1012 supports automatic load balancing. The hashing scheme
used to implement the load balancing is based on the index structure in the
defined relational schema. In the DBC/1012 architecture used to evenly dis­
tribute the load, a uniformly distributed set of attributes must be the input to
the hashing function. In the initial implementation, the hashing function was
based on terms, and thus, was nonuniform. Modifying the input to the hashing
function to include document identifiers, as well as terms, resulted in a uniform
distribution of load to the processors. In later experimentation, a balanced
processor utilization of greater than 92% was demonstrated, and a speedup
of roughly twenty-two using twenty-four nodes, as compared to a comparable
uniprocessor implementation, was achieved.

6.2.8 Summary of Parallel Indexing

Parallel processing within information retrieval is becoming more applicable as
the cost of parallel 1/0 is reduced. Previous algorithms had problems with
memory limitations and expensive communication between processors. Signa­
ture files were popular, but have not been used recently due to their unnec­
essarily high 1/0 demand and their inability to compute more sophisticated
measures of relevance. Parallel inverted index algorithms are becoming more
popular, and with improved compression techniques, they are becoming sub­
stantially more economical.

Page 209 of 262

198 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

6.3 Parallel Implementation of Clustering and Classification

Recently, parallel clustering and classification implementations were developed
for the Intel Paragon [Ruocco and Frieder, 1997]. Using a production machine,
the authors developed a parallel implementation for the single-pass clustering
and single-link classification algorithms (see Section 3.2). Using the Wall Street
Journal portion of the TREC document collection, the authors evaluated the
efficiency of their approach and noted near-linear scalability for sixteen nodes.

To accurately compare the efficiency of the developed approaches, the results
derived from both the parallel and serial implementations must be identical.
Otherwise, an improvement in the efficiency of the algorithm {via parallelism)
could come at the expense of accuracy.

The single-pass clustering algorithm is data, presentation, and order depen­
dent. Namely, the order in which the data are presented as input directly
affects the output produced. Thus, it was necessary to provide mechanisms
in the parallel implementation that mimicked the order of the presentation of
the documents as input to the algorithm. Guaranteeing the identical order of
document presentation resulted in the formation of identical clusters in both
the serial and parallel implementations. The authors noted that the size of the
clusters varied dramatically and suggested measures to reduce the cluster size
disparity. Since the size disparity is a consequence of the single-pass algorithm,
no modification was made.

6.4 Summary

As the volumes of data available on-line continued to grow, information re­
trieval solutions that were able to cope with the ever expanding collections
were needed. Towards addressing this data growth explosion, parallel solu­
tions were investigated. Initially, parallel information retrieval solutions fo­
cused on hardware-based full-text filtering. Eventually, these hardware solu­
tions gave way to software implementations that roughly mirrored the hardware
approaches. Recent parallel efforts are mostly algorithmic and architecturally
independent.

We began our review by describing parallel text scanning techniques. We
described two hardware solutions for full-text scanning, the Utah Retrieval
System and the data parallel data matching system. Both systems supported
hardware-level filtering to reduce the retrieved document sets. Although they
did demonstrate significant improvements as compared to software full-text
scanning, in general, full-text scanning introduces excessive I/0 demands as all
documents must be scanned. Recently, efforts using the Utah Retrieval System
did rely on indexing, but given recent advances in parallel system technology,
in practice, special purpose solutions are quickly declining in popularity.

Later efforts developed software supported text scanning. To reduce the 1/0
demands associated with full-text scanning, most efforts focused on signature
analysis. Early studies relied on SIMD architectures, namely the DAP archi­
tecture and the Connection Machine. Results demonstrated limited scalability

Page 210 of 262

PARALLEL INFORMATION RETRIEVAL SYSTEMS 199

in terms of performance. Later signature analysis efforts were evaluated on
MIMD systems such as the Inmos Transputers with somewhat better results.

The prohibitive 1/0 demands of text scanning approaches, both full-text and
signature analysis, resulted in the development of parallel indexing approaches.
The need for index-based approaches was clearly demonstrated in [Stone, 1987]
where it was shown that serial computers using indexing techniques sustained
faster retrieval speeds than parallel engines using a signature analysis approach.
Parallel indexing approaches on both SIMD and MIMD architectures were de­
veloped, with some efforts resulting in near linear speedup.

We concluded this chapter with a brief overview of recent parallelizations of
both clustering and classification algorithms. The approaches described were
implemented on an Intel Paragon that was in production use. For all the
algorithms studied, near linear speedup was noted.

Parallel information retrieval is a relatively unexplored area. The develop­
ment of parallel scalable algorithms that efficiently support the strategies dis­
cussed in Chapter 2 and the utilities listed in Chapter 3 is needed. Currently,
very few such algorithms are known, and even fewer, have been implemented
and evaluated in a production environment.

A different approach to developing parallel information systems was recently
addressed in [Grossman et al., 1997, Lundquist, 1997, Lundquist et al., 1998].
In these efforts, a mapping from information retrieval operators onto parallel
databases primitives was defined. Parallelism was achieved without requiring
new parallel algorithms to be developed. Roughly a 22-fold speedup using
twenty-four nodes was achieved. Such speedup is encouraging, and especially
so, since it was unnecessary to implement new software.

Given the diversity of the commercially available parallel systems and the
vast types of applications that constitute the realm of information retrieval,
all that is clear is that it is still an open question of how best to support the
domain of parallel information retrieval.

6.5 Exercises

1. Develop an average-case algorithmic analysis for a sequential inverted index
for a t/-id/vector space query with t terms. Compare this to a parallel linear
scan of a document collection with p processors.

2. Develop an algorithm to search an inverted index in parallel with a MIMD
machine that will perform as well as or better than the sequential algorithm.
Analyze your algorithm and clearly describe your analysis.

3. Design a simple parallel document clustering algorithm and analyze its per­
formance. Compare this to a sequential document clustering algorithm.

Page 211 of 262

7 DISTRIBUTED INFORMATION
RETRIEVAL

In the previous chapters, we focused on the use of a single machine to provide
service to run an information retrieval. In Chapter 6, we discussed the use
of a single machine with multiple processors to improve performance. Today,
document collections are often scattered across many different geographical ar­
eas. Distributed Information Retrieval Systems (DIRS) provide access to data
located in many different geographical areas on many different machines (see
Figure 7.1). The search engines that exist on the World Wide Web (WWW)
are examples of distributed information retrieval systems.

In the early 1980s, it was seen that DIRS would be necessary. First, a
theoretical model was developed that described some of the key components
of a DIRS. We describe this model in Section 7.1. Subsequently, in the late
1980s to early 1990s, specific algorithms to support DIRS were developed. We
describe these in Section 7.2. Some implementation details of distributed IR
systems are described in Section 7.3. Finally, in Section 7.4, we describe recent
work on algorithms to support web-based search engines. Note that we could
turn this chapter into a survey of web-based tools but that would be outside
of the scope of this book. Surveys of search engines are found in [Courtois
et al., 1995, Courtois, 1996, Hodges and Lehmann, 1997, Gudivada et al., 1997].
Several popular web engines include-Alta-Vista, CUI W3 Catalog, Excite,
Harvest, Infoseek, Inktomi, Lycos, Open Text, WebCrawler, WWW Worm,
and Yahoo!

Page 212 of 262

202 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Figure 7.1. Distributed Document Retrieval

Query

Inverted
Index

Results
Set

(titles)

7.1 A Theoretical Model of Distributed IR

Documents
at Site 1

Documents
atSite2

Documents
at Site n

We first define a model for a centralized information retrieval system and then
expand that model to include a distributed information retrieval system.

7.1.1 Centralized Information Retrieval System

Formally, an information retrieval system is defined as a triple, I = (D, R, 6)
where D is a document collection, R is the set of queries, and Oj :➔ 2D; is a
mapping assigning the jth query to a set of relevant documents.

Many information retrieval systems rely upon a thesaurus, in which a user
query is expanded, to include synonyms of the keywords to match synonyms
in a document. Hence, a query that contains the term curtain will also include
documents containing the term drapery.

To include the thesaurus in the model, it was proposed in [Turski, 1971] that
the triple be expanded to a quadruple as-

Page 213 of 262

DISTRIBUTED INFORMATION RETRIEVAL 203

I= (T,D,R,o)

where Tis a set of distinct terms and the relation p CT x T such that p(ti, t2)

implies that t1 is a synonym of h- Using the synonym relation, it is possible to
represent documents as a set of descriptors and a set of ascriptors. Consider a
document D 1 , the set of descriptors d consists of all terms in D1 such that-

■ Each descriptor is unique

■ No descriptor is a synonym of another descriptor

An ascriptor is defined as a term that is a synonym of a descriptor. Each
ascriptor must be synonymous with only one descriptor. Hence, the descriptors
represent a minimal description of the document.

In addition to the thesaurus, a generalization relation over the sets of de­
scriptors is defined as 'Y Cd x d where "!(ti, t2) implies that t1 is a more general
term than t2 • Hence, "f(animal,dog) is an example of a valid generalization.

The generalization relation assumes that it is possible to construct a hierar­
chical knowledge base of all pairs of descriptors. Construction of such knowl­
edge bases has been attempted both automatically and manually [Lenat and
Guha, 1989), but many terms are difficult to define. Relationships pertaining
to spatial and temporal substances, ideas, beliefs, etc. tend to be difficult to
represent in this fashion. However, this model does not discuss how to con­
struct such a knowledge base, only some interesting properties that occur if
one could be constructed.

The motivation behind the use of a thesaurus is to simplify the description
of a document to only those terms that are not synonymous with one another.
The idea being that additional synonyms do not add to the semantic value of
the document. The generalization relation is used to allow for the processing
of a query that states "List all animals" to return documents that include
information about dogs, cats, etc. even though the term dog or cat does not
appear in the document.

The generalization can then be used to define a partial ordering of docu­
ments. Let the partial ordering be denoted by ~ and let t(di) indicate the list
of descriptors for document di. Partial ordering, ~' is defined as-

t(d1) ~ t(d2) ¢:> (Vt' E t(d1))(3t" E t(d2))("/(t',t"))

Hence, a document d1 whose descriptors are all generalizations of the de­
scriptors found in d2 will have the ordering d1 ~ d-i. For example, a document
with the terms animal and person will precede a document with terms dog and
John. Note that this is a partial ordering because two documents with terms
that have no relationship between any pairs of terms will be unordered.

To be inclusive, the documents that correspond to a general query q1 must
include (be a superset of) all documents that correspond to the documents that
correspond to a more specific query q2 , where q1 ~ q2 • Formally-

Page 214 of 262

204 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

The model described here was proven to be inclusive in [Turski, 1971]. This
means that if two queries, q1 and q2, are presented to a system such that q1 is
more general than q2 , it is not necessary to retrieve from the entire document
collection for each query. It is only necessary to obtain the answer set for q1 ,

o(qi), and then iteratively search o(q1) to obtain the o(~).

7.1.2 Distributed Information Retrieval System

The centralized information retrieval system can be partitioned into n local
information retrieval systems S1 ,S2 , ••• ,Sn (Mazur, 1984]. Each system S1
is of the form: S1 = (T1,D1,R1,01), where Ti is the thesaurus; D; is the
document collection; R1 the set of queries; and o1 : R1 ➔ 2D; maps the queries
to documents.

By taking the union of the local sites, it is possible to define the distributed
information retrieval system as-

S = (T,D,R,o)

where-

n

T=LJT1
j=l

This states that the global thesaurus can be reconstructed from the local the­
sauri, and the queries at the sites j will only include descriptors at site j. This
is done so that the terms found in the query that are not descriptors will not
retrieve any documents.

n

D = LJ DJ
j=l

The document collection, D, can be constructed by combining the document
collection at each site.

n

R ::> LJ R;, j;=j n(RJ x R1)
j=l

The queries can be obtained by combining the queries at each local site. The
partial ordering defined at site j will only pertain to queries at site j.

(Vr E R)(o(r) = d: d ED Ar j t(d))

Page 215 of 262

DISTRIBUTED INFORMATION RETRIEVAL 205

For each query in the system, the document collection for that query contains
documents in the collection where the documents are at least as specific as the
query.

The hierarchy represented by 'Y is partitioned among the different sites. A
query sent to the originating site would be sent to each local site and a local
query would be performed. The local responses are sent to the originating site
where they are combined into a final result set. The model allows for this
methodology if the local sites satisfy the criteria of being a subsystem of the
information retrieval system.

S1 = (T1, D1, R1, 81) is a subsystem of S2 = (T2, D2, R2, 82) if:

The thesaurus of T1 is a superset of T2 •

The document collection at site S1 contains the collection D2 •

The queries at site S1 contain those found in S2 .

The document collection returned by queries in S1 will include all documents
returned by queries in S2. The following example illustrates that an arbitrary
partition of a hierarchy may not yield valid subsystems.
Consider the people hierarchy-

"f(people, Harold), "f(people, Herbert), "f(people, Mary)

and the second animal hierarchy-

"/(animal, cat), 'Y(animal,dog), 'Y(cat,black-cat),
"((cat, cheshire), "f(dog, doberman),
"f(dog, poodle)

Assume that the hierarchy is split into sites S1 and S2 • The hierarchy at S1

is-

Page 216 of 262

206 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

"((people, Harold), "((people, Mary)
"((animal, cat), 'Y(animal,dog), "((dog, doberman), "f(dog, poodle)

The hierarchy at S2 is-

"f(people, Herbert), "((people, Harold)
"((animal, cat), "((animal, doberman), "((cat, cheshire), "((cat, black-cat)

Consider a set of documents with the following descriptors­

D1 = (Mary, Harold, Herbert)
D2 = (Herbert, dog)
Da = (people, dog)
D4 = (Mary, cheshire)
D5 = (Mary, dog)
D6 = (Herbert, black-cat, doberman)
D1 = (Herbert, doberman)

A query of the most general terms (people, animal) should return all documents
2 through 7 (document 1 contains no animals and the query is effectively a
Boolean AND). However, the hierarchy given above as S1 will only retrieve
documents D3 and D 5 , and S2 will only retrieve documents D 6 and D 7 • Hence,
documents D2 and D4 are missing from the final result if the local results sets
are simply concatenated. Since, the document collections cannot simply be
concatenated, the information retrieval systems at sites S1 and S2 fail to meet
the necessary criterion to establish a subsystem.

In practical applications, there is another problem with the use of a general­
izion hierarchy. Not only are they hard to construct, but also it is non-trivial to
partition them. Partitioning of the hierarchy to the different sites may have re­
sult in a valid subsystem. This distributed model has been expanded to include
weighted keywords for use with relevance (Mazur, 1988].

7 .2 Replication in Distributed IR Systems

Distributed structured DBMS algorithms were first developed in the early
1980s. These algorithms, such as the two-phase commit (Elmasri and Na­
vathe, 1994, Date, 1994, Ceri and Pelagatti, 1984, Oszu and Valduriez, 1991],
support updates to multiple sites in a single transaction. Since the premise be­
hind information retrieval systems is that updates occur relatively infrequently,
replication algorithms specific to information retrieval systems have been de­
veloped. We first describe snapshots (a technique used in DBMS replication),
and then describe information retrieval specific algorithms that are descended
from snapshots. The first, quasi-copies, replicates data based on various con­
ditions. The second, a more recent algorithm by Obraczka, was developed for
web-based replication (Obraczka et al., 1996].

Page 217 of 262

DISTRIBUTED INFORMATION RETRIEVAL 207

7.2.1 Snapshots

The fundamental differences in a distributed information retrieval system and
a distributed DBMS are-

■ Modifications to existing data occur infrequently

■ Reads occur far more frequently than writes

Replication of data from a remote site to a local site is commonly done when
users at the local site access the same data repeatedly. Instead of paying the
expensive communication cost, a copy of the data is made at the local site.
Users then read the data from the local site without any communication cost.
However, writing data requires the distributed DBMS to invoke an algorithm
that updates all copies of the replicated data. Since local writes to the data
dramatically complicate the use of replicated data, it has been proposed that
only a read of the replicated data should be permitted.

Users may read the data at a local site, but all updates to the data are made
to the site from which the data was originally copied. Periodically, after some
time t, the local data is refreshed from the originating site. Since the data
is refreshed at a pre-defined time, and is not refreshed at the local site every
time the original values are updated, it is essentially a snapshot of the original
data at time t. Snapshots, and a variety of algorithms to maintain them, have
been proposed to provide support for distributed DBMS in which applications
typically do more reads than writes.

7.2.2 Quasi-copies

Quasi-copies is an extension of snapshots specifically developed for distributed
information retrieval systems. The basic idea is to address user requirements
specific to a distributed information retrieval system. Some reasons for these
different requirements are-

■ Public access to information retrieval systems is becoming much more com­
mon than access to distributed DBMS. Almost 125,000 of Dow Jones 160,000
customers have access to a personal computer (PC). These PCs can be used
to locally store copies of the centralized document collection.

■ Typically, inserts to a DBMS are small (i.e., add employee). Granted there
are exceptions for scientific applications, but these do not commonly use
traditional DBMS.

■ Information retrieval systems often have a higher communication cost. The
users of the Dow Jones system access the data over telephone lines. Hence,
communication costs dramatically exceed disk I/0.

Essentially, a quasi-copy is a copy of data item x that is only updated based
on consistency criteria specified by the user. Instead of a fixed time t as in
snapshots-temporal windows, version conditions, and arithmetic conditions
are defined.

Page 218 of 262

208 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

7.2.3 Temporal Windows

Let x(t) denote the value of data item x at time t. Let the quasi-copy of x
be denoted by x'. A temporal window is defined such that x' will always be
no more than a temporal units younger than x. A snapshot representation
assumes that the data are refreshed after a units of time. Here, the temporal
window is not dictated as precisely to the system. As long as no item x' is not
older than a, this constraint is satisfied. Should the system have the necessary
resources, it is acceptable to refresh x' prior to the deadline imposed by a.
Formally-

(Vt ~ 0), 3k, (0 ~ k ~ a) A (x'(t) = x(t - k))

7.2.4 Version Conditions

As data item x is updated, x' is no longer current. Instead of determining when
to refresh x based on time, the number of updates to x is used. A threshold (3
is assigned so that no more than (3 updates to x occur before x' is refreshed.
Let v(x) indicate the version of x. After two updates, v(x) is equal to two. Let
x(to) indicate the initial values of x. Formally-

Vt~ 0, 3k, 0 ~ k ~ (3 A v(x(t)) = v(x(to)) + k

7.2.5 Arithmetic Conditions

The final condition allows the user to check on the magnitude of an update to
data item x before a refresh of x' is done. Data item x' is updated if an update
to x results in the new value of x exceeding a threshold e. Formally-

Vt~ 0, lx'(t) - x(t)I ~ e

This constraint determines when a copy of x' is refreshed by the current value
of x. Once this condition is defined, it is necessary to verify its correctness. It
is possible that an update to x could occur, resulting in the need to refresh x'.
However, if the central site fails after x is updated, but prior to a send to x',
it is possible the consistency constraints will not be satisfied. Time continues
to pass, but the value of x' is still not updated. To ensure correctness, it is
necessary to use a two-phased commit (2PC) protocol to ensure that if x and
x' are both updated, they are updated within a single transaction.

Since 2PC requires resources to be held until the transaction completes,
performance is improved if it is possible to relax the requirement that the
constraints must always be satisfied. Instead, the originating site guarantees
that a message is sent to all sites every o seconds. If no refresh is required for
a given site and o seconds have elapsed, a null message is sent. Upon receipt
of the null message, the local site sets a flag AVAILABLE to true, indicating
that the originating site is available (as indicated by the fact that it is sending
messages). If o seconds have elapsed and the receiving site has not received

Page 219 of 262

DISTRIBUTED INFORMATION RETRIEVAL 209

a message from the originating site the AVAILABLE flag is set to false. The
application at the local site then notifies users that constraints may not be
satisfied because of a site failure.

An analytical performance model for quasi-copies is described in [Alonso
et al., 1990]. It is intuitive to expect that as more data are stored locally,
communication is reduced and performance improves. The cost of checking
constraints is also considered. The model verifies that if too many constraints
result in frequent communications, any gains in performance due to local copies
are lost. However, for systems where infrequent updates occur performance is
improved. This verifies the assumption that the cost of checking numerous
constraints at a central site is far less than the cost of sending every update to
the value x at the originating site to all sites that have a copy of x'.

7.2.6 Massive Replication of Internet Archives

A recent algorithm designed to support replication of internet archives was
given in [Obraczka et al., 1996]. Essentially, the algorithm estimates topological
information between source nodes, replicas, and groups replicates based on
their physical topology. Those that are deemed closest (lowest communication
cost based on available bandwidth and propagation delay) are automatically
grouped together. The source node then has to replicate only to one replica in
a group and it can then be later propagated to each group member.

Individual replicas request data from a source member. Whenever a replica is
transferred, the destination sends a message to members in its group indicating
that it has received a replica that has a given timestamp. When a site receives
this message, it checks to see if its current replica is out of date, and if so it
requests a copy. Since each replica requests data, and is only sent data upon its
request. It is not possible for a site to receive data from more than one place
at a given time. Overhead associated with this approach is relatively small
and is primarily based on the frequency with which communication costs are
estimated. The key to this approach is that replicas are oriented automatically
(some prior work required manual administration) and the heuristic constantly
tries to send data to sites that have a low communication cost.

7.3 Implementation Issues of a Distributed IR System

A prototype used to investigate implementation details of a distributed infor­
mation retrieval system is described in [Martin et al., 1990].

7.3.1 Client/Server Architecture

Macleod developed a hybrid between an actual implementation and a simulator
[Macleod et al., 1987]. Information retrieval system simulators were used at lo­
cal sites, but the communications between sites was actually implemented using
remote operation calls, a communications protocol, and a directory system.

Page 220 of 262

210 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

7.3.2 Remote Operation Calls

Remote operation calls (ROCs) make it possible for a node at one site to
invoke a procedure located at another site. The ROC may be synchronous or
asynchronous. Additionally, a ROC may be sent to one site (unicast) or sent to
multiple sites (multicast) whereby the code requested would be executed at all
receiving sites, but the sending site would only use results obtained by the first
site to receive the ROC. A unicast ROC is directed at a specific site or it may
be undirected. An undirected ROC is sent to a site that contains the requested
procedure according to some previously defined policy indicating the order in
which sites are to be searched for the appropriate procedure. Essentially, ROCs
are extensions of commonly used remote procedure calls (RPCs) [Birrell and
Nelson, 1984]. A RPC is an undirected, unicast, synchronous ROC.

7.3.3 Directory Server

A directory server is used to store metadata about objects in the distributed
database, and the sites with which that data are located. ROCs are provided
to add and delete directory entries. To protect against a failure of a directory
server, the server itself may be replicated. Searching the directory server is
done via a ROC.

7.3.4 System Performance

System performance was measured for various data distribution strategies. A
network consisting of only four sites was tested. The distributed data that were
in the following form-

■ Dictionary-contains all distinct words in the document collection

■ Inverted file-list of dodd's in which the word appears

■ Text Index-structured data and a pointer to all text

■ Text File-copy of the free text

The following data distribution strategies were tested-

1. Place all files (inverted index, text, directory) on a single node. This is
equivalent to a centralized system.

2. Limit the dictionary, inverted file, text index, and text file to one node each.
Replicate the inverted index file to one additional node. Hence, the network
contains two copies of the inverted index.

3. Same as strategy number two, but the text index (smallest of all files) is
replicated to every node.

4. The text file is partitioned across three nodes. The intent of this is to place
local documents at each site on each of these nodes. The text file remains

Page 221 of 262

DISTRIBUTED INFORMATION RETRIEVAL 211

at all nodes, and the text index file and the index file are replicated to two
nodes.

The performance of strategy one was even worse than a centralized system
because of overhead incurred by providing support for ROC's. Strategies in­
volving replicated data (two, three, and four) showed improved performance for
higher workloads in precisely the expected areas. It should be noted that the
workload consisted solely of read operations. No writes to the database were
attempted, so it is difficult to ensure that replicated copies would continue to
provide acceptable performance. Since the premise of an information retrieval
system is that reads are far more frequent, this study verifies the intuitive belief
that replicated data dramatically reduce the communication cost required to
access the data remotely.

7.3.5 Caching

Data caching was also investigated for this system [Martin et al., 1990, Martin
and Russell, 1991]. However, data were assumed to be primarily read-only
so quasi-copies were not used. Instead, algorithms that pre-fetched data were
used. When a local site requests a block and it is not in the local cache, a
request for the block and the next sequential block is made. Pre-fetching was
tested both during a transaction request and during user wait time. While a
user waited, disk blocks close to the most recently fetched block are obtained
from the server. The performance simulation verified that this strategy results
in improvements over LRU (Least Recently Used} strategies because of the
"sequentiality" of the workload.

7.3.6 Efficient Document Allocation

In an effort to improve the efficiency of document processing in distributed
information retrieval systems, a genetic algorithm for document distribution
across multiple execution sites was presented in (Frieder and Siegelmann, 1991].
Given a clustered document collection, the authors developed a genetic algo­
rithm with a modified crossover procedure that allocated documents onto a
distributed information retrieval environment subject to two constraints.

The first constraint focused on a uniform processing load. Given a simplify­
ing uniform document access assumption (i.e., all documents are, on average,
equally relevant to the issued queries), the authors developed an allocation
algorithm that evenly balanced the access to the documents. This was ac­
complished by guaranteeing that the number of documents allocated to any
pair of execution sites did not differ by more than one document. ff indeed
the access to all documents was uniform, the derived allocation would provide
a somewhat balanced processing load. Given "hotspots" in document access,
however, non-uniformity in processing loads was likely to occur. However, load
balancing was achieved to a degree.

The second constraint imposed was that closely related documents (assumed
to be those documents found in the same cluster) were mapped close (on the

Page 222 of 262

212 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

same or neighboring nodes whenever possible} to each other. This was achieved
by developing a cost function based on document location proximity that fa­
vored those mappings where closely related documents were "near" each other.

In spite of the uniform document access assumption, the greatest limitation
with this approach was the lengthy computation times commonly experienced
when using genetic algorithm-based solutions. Given the processing time con­
straints, the experimentation focused on only small collections. Nonetheless,
the derived mappings were significantly better in terms of the specified cost
functions than those mappings derived by other more conventional approaches
such as greedy and random algorithms. In 1994, a follow-on study [Park et al.,
1994], used the parallelization of this approach to support an enlarged docu­
ment collection.

In parallelizing genetic algorithms, a key concern is the mating procedure.
In serial implementations, genetic algorithms rely on global mating in the
crossover phase. The global mating principle assumes that any member in the
population can mate with any other population member with equal probabil­
ity. Supporting global mating in distributed memory parallel implementations
results in significant communication overhead when mating a pair of members
that reside on differing execution sites.

To reduce the overhead, the implementation in [Park et al., 1994] uses pre­
dominantly local mating (an island model). In local mating, only members
that reside on the same execution site are routinely mated. Mating across sites
occurs infrequently. The greater the cross-site mating, the closer the parallel
implementation resembles the serial implementation. Given the probabilistic
nature of genetic algorithms, it is difficult to compare the average quality of
the allocations derived by the serial and parallel implementations. In terms of
scalability, near optimal speedup was achieved.

7.4 Improving Performance of Web-based IR Systems

Using a web server to implement an information retrieval system does not
dramatically vary the types of algorithms that might be used. For a single
machine, all of the algorithms given in Chapter 4 are relevant. Compression of
the inverted index is the same, partial relevance ranking is the same, etc. How­
ever, there has been some work at improving the performance of information
retrieval systems that are specific to the use of web services.

Some work is being done to apply web server performance improvements to
the development of distributed information retrieval systems [Liu et al., 1996].
In those cases, the use of pre-started processes, or cliettes, avoids the start-up
costs of starting processes from a typical common gateway interface (CGI).
This was used to implement a prototype system that provides search access to
eight library collections.

It is reasonable to improve accuracy' of a web search engine by sending the
request to a variety of different search engines and merging the results. This has
been done by several web services and the issues surrounding fusion of results
have been the part of a side track of the TREC since TREC-4. More recent

Page 223 of 262

DISTRIBUTED INFORMATION RETRIEVAL 213

work following this thread can be observed in the CYBERosetta prototype
system where a request is sent to multiple search servers and the results are
merged into a single result [Desantis et al., 1997].

Lee describes several heuristics developed to merge search results that are
obtained from multiple independent search engines [Lee, 1997]. His findings
demonstrate that using his CombMNZ fusion heuristic results in higher re­
trieval accuracy than any of the individual search engines used. Aloui, et. al.
expanded these findings and concluded that to best capitalize on result fusion
techniques, as individual input search engines greatly differ in their processing
strategies and utilities (Alaoui et al., 1998]. Most current web servers use a
very detailed, full-text index, but if the Web continues to grow it may not be
practical to use a single index.

Early work in the area of web-based distributed query processing was done
by [Duda and Sheldon, 1994] in which a system that used the Wide Area
Information Service (WAIS) only sent queries to certain servers based on an
initial search of the content of those servers. The content was described by some
specific fields in the documents that exist on each server such as headline of a
news article or subject of an e-mail message. The use of a content index is the
middle ground between sending the request to all of the servers, or providing a
very detailed full-text index, and sending the request to only those servers that
match the index.

More recent work done for the Glossary-of-Servers Server (GlOSS) builds a
server that estimates the best server for a given query, based on the vector-space
model (Gravano and Garcia-Molina, 1995]. The query vector is matched with
a vector that characterizes each individual server. The top n servers are then
ranked and searched. Several means of characterizing a server are explored.
The simplest is to sum the t/-id/ weights of each term on a given server and
normalize based on the number of documents on the server. This yields a
centroid vector for each server. A tf-id/ vector space coefficient (as described in
Section 2.1) can then be used to rank the servers for a given query. Different
similarity coefficient thresholds at which a server is considered a possible source
and assumptions used to estimate which databases are likely to contain all of
the terms in the query are also used. It is estimated that the index on the
GlOSS server is deemed to be only two percent of the size of a full-text index.

Query processing using a full-text index on a web server can be done with
any of the combination of strategies and utilities described in Chapters 2 and 3.
However, an additional strategy based on the use of hypertext links found on
web pages has recently been investigated [Yuwono and Lee, 1996]. In this work,
a strategy referred to as vector spreading activation was investigated in which
documents were ranked based on a match with a term in a simple query, then
those documents that contained links to the original set of documents were also
assumed to contain the query term. The weight of the documents was scaled
to be less than the weight of the documents that actually contained the term.
Experiments with scaling factors O and 0.5, and with increments of 0.1, showed
that 0.2, was the best scaling factor. Vector spreading activation was shown

Page 224 of 262

214 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

to be slightly better than t/-id/ when precision recall was measured for a small
test collection of only 2,393 web pages. Additionally, this system did not use a
full-text index. The indexer uses only HTML tokens such as terms in boldface
or italics, the first sentence of every list item, titles, all-level headings, and
anchor hypertexts.

7.5 Web Search Engines

No section on distributed information retrieval would be complete without some
mention of web search engines. Search tools that access web pages on the
Internet are prime examples of the implementation of many of the algorithms
and heuristics discussed in this book. These systems are, by nature, distributed
in that they access data stored on web servers around the world. Most of these
systems have a centralized index, but all of them store pointers in the form of
hypertext links to various web servers.

These systems service millions of user queries a day, and all of them have
an inverted index on the order of 50 to 200 GB. We do not describe each
search engine in vast detail because search engines change very frequently (some
vendors produce new releases or publish fixes in a week). Instead, we focus on
the distributed aspects of these systems and provide a general guide to the
type of effectiveness algorithms that they employ. In most cases, effectiveness
algorithms are somewhat crude because efficiency is paramount to the success
of these systems.

7.5.1 Excite

7,5,1.1 Effectiveness. Excite uses the vector space model for relevance
ranking [Spencer et al., 1998]. Term weights are computed as the ./(ti) x id/,
a compromise between using the t/ and the log(t/). The Singha! document
length normalization, as described in Section 2.1.2, is used as the basis for how
documents are normalized.

An extended Boolean operator as we have described in Section 2.4 is used
to ensure these documents that contain more matching terms in the query are
ranked higher than those which only have a single term in the query. This
operator, which is referred to as a coordination level, is based on work done in
[Rose and Stevens, 1996].

Additional document length normalization is done to adjust the ranking such
that very short documents are given a relatively low weight. The premise is
that very long documents and very short documents should be adjusted for
size.

Other, more web-specific, adjustments are made to document ranking. The
number of hypertext links coming into or emanating from a document is also
considered in the ranking. A document that is heavily linked is considered
more likely to be relevant to a query than a document that has very few links.
Additionally, a manually built hierarchy of web sites is used to adjust the
ranking. This hierarchy is used for users who wish to browse the web, but who

Page 225 of 262

DISTRIBUTED INFORMATION RETRIEVAL 215

do not have a specific query in mind. In addition to browsing, the hierarchy is
used for ranking because a document that appears in the hierarchy is considered
more likely to be relevant. The premise is that there are "good" sites in the
hierarchy.

Excite also takes care to avoid duplicate documents. At present, a simple
hash of each document is done and matched against existing documents. If
the hash value (MD5 hashing is used) matches, a duplicate is identified. This
requires a perfect match of the two documents. Other duplicate document
detection algorithms exist in which duplicates are identified by the multiple
hashing of overlapping shingles. Shingles are segments of text that are chosen
from across several portions of a document [Broder et al., 1997). These will be
incorporated into future versions of Excite.

Manual relevance feedback, as described in Section 3.1, is used to assist users
in finding documents in subsequent search iterations. After an initial search,
users can choose an entry in the result set and indicate that they wish to
invoke the "more like this" function. This function is implemented by treating
the selected document as a query and re-running the initial query.

To additionally help users, a suggested term list is identified after a user
query. This includes terms that a user may wish to add to the query in sub­
seuqent iterations. These terms are identified from a sparse term-term co­
occurence matrix as described in Section 3.6.1.1. At present, the matrix con­
tains 100,000 terms, and an entry in the matrix is made for a given term-term
pair when the term weight of each term exceeds a particular threshold. The
term-term matrix must fit into memory to provide acceptable run-time. As of
May 1998, the term matrix resides within one gigabyte of memory.

Much work is done on parsing (see Section 3.8). Stemming is not imple­
mented, and a small list of 199 stop words is used. Special handling of special
characters is used to treat terms such as AT&T and F-16 as a single term.
Also, e-mail addresses are maintained as a single term.

7.5.1.2 Efficiency and Distributed Query Processing. The Excite in­
verted index is compressed using techniques similar to those described in Sec­
tion 4.1.2. At present, a 50 GB index is used to access 50 million documents.
The performance goal for all queries is to use only a single CPU second per
query. Currently, ten million queries are processed in a typical day.

Excite also has a proprietary algorithm that is used to synchronize an id/
across different sites. At present, this algorithm is patent pending so details
can not be disclosed.

7.5.2 Infoseek

7.5.2.1 Effectiveness. Infoseek uses an inference network for relevance
ranking, but the weights are implemented using simple tf-id/ weights [Kirsch,
1997a]. The ranking is analagous to that done by the vector space model (see
Section 2.1 and 2.3 for relevant background).

Page 226 of 262

216 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Relevance feedback (see Section 3.1) will soon be implemented by allowing
users to choose a document in the result set and ask for more documents like
the one selected. Terms from the selected document will be chosen and used
as the original query.

A precomputed "directory" is obtained using document clustering. Users
navigate through the directory following hypertext links instead of issuing an
ad hoc query. The directory is formed by partitioning documents into domains
via clustering (see Section 3.2). A cluster is generated by identifying training
documents that belong to a particular cluster and computing a centroid for the
cluster. Documents are then compared to the cluster centroids and are added
to the cluster with the closest centroid. Clusters are then randomly checked
for accuracy, and documents that do not fit in a cluster are eliminated.

Another form of document clustering is used to improve the final result set.
This result list is modified such that documents that occur in a single web site
are clustered into a single result.

Efficiency concerns drive most of these design decisions. The tf-idf weight is
relatively simple and quick to implement. Relevance feedback with only a single
document is certainly less expensive than feedback from the top n documents.
Finally, document clustering, as described here, can be done in O(nk) time
where n is the number of documents and k is the number of clusters. A multiple
pass DOC-DOC similarity matrix is too computationally expensive.

7.5.2.2 Distributed Processing. lnfoseek has a patent on a distributed
processing algorithm [Kirsch, 1997b]. The algorithm spreads the document
collection across different either homogeneous or heterogenous search engines.
All that is required by each engine is the ability to search for a set of query
terms and identify the documents that contain the query terms. A query is then
submitted to each site. It is then run independently on each site and a list of
documents is returned along with the number of occurences of each query term
(ti) inside of each document. The document frequency, df, is also identified
for each site. The responses are all sent to the node that originated the query.
A global idf is then be computed. Given that the tf for each document is sent
from each site, a tf-idf weight may be computed, and the final result is very
similar to one in which an entirely centralized index is used. Note that the
result will vary if the top x documents are chosen from each site. A document
ranked in the x + 1 position may be eliminated from a site when in a centralized
collection, as it would have been ranked higher than any other site.

This algorithm avoids the problem that a term may have a local id/ very
different from the global idf. A site devoted to baseball might have the phrase
pine tar many more times than a typical site. A query about baseball incidents
with pine tar might rank documents at the baseball site very low if pine tar
has a low local id/ when, in reality, the global id/ of pine tar is high and these
documents should in fact be ranked high. Returning the term frequencies to
the originating site also avoids the need to update the local id/ at each site
whenever a new document is added to a single site. The df for the one site

Page 227 of 262

DISTRIBUTED INFORMATION RETRIEVAL 217

must be updated, but all other df's may remain the same. The algorithm
guarantees that the same document in two different collections, which are each
maintained by separate search engines, will still be identically scored in the
final result (after the results from each search engine are merged).

The distributed algorithm does not describe the exact communication mech­
anism between sites. One proposal given in [Gravano et al., 1997] standardizes
the exact data structures that should contain the document identfiers, term
frequencies, and document frequencies required to share data between differ­
ent inverted indexes. In this proposal, the sites can have very different search
algorithms, but they send the basic values back to the originating site in a
straightforward fashion.

7.6 Summary

Data are created, modified, summarized, characterized, and categorized world­
wide. Institutions now consider data as one of their key assets. It is no longer
possible to centralize data into one repository. Data are best managed where
they are located [Shuey et al., 1997] and are an essential entity of distributed
systems [Shuey, 1986]. Therefore, the information retrieval world must embrace
this reality. In this chapter, we reviewed past and present efforts in the realm
of distributed information retrieval.

We began by presenting a theoretical foundation for the representation and
analysis of centralized information retrieval systems. Having presented a model
for centralized information retrieval systems, we partitioned our global model
into local partitions whose union is equivalent to the original centralized model.
Properties of distributed information systems, such as replication, were defined.
We highlighted issues such as distributed snapshots, quasi-copies, temporal win­
dows, and versioning-culminating with a commentary on massive replication
of data archives.

After presenting the theoretical underpinnings of distributed information
retrieval systems, we addressed a diversity of associated implementation is­
sues. Predominant in our discussion was overall system run-time performance.
Towards improving run-time performance, caching strategies, system architec­
tures, and data distribution schemes were discussed.

We concluded our discussion of distributed information retrieval with what
can be argued as one of the key technological impacts on today's society, namely,
the World Wide Web. Our goal was not to review in detail any of the techno­
logical, societal, or commercial aspects of the World Wide Web, but to simply
place the Web in an appropriate context within the field of information re­
trieval.

In our daily existence, it is virtually impossible to survive without being
exposed to some aspect of the World Wide Web. Advertisements, news items,
stock quotes, entertainment information, and propaganda of various sorts are
continuously available to each of us on the Web. Newspaper articles and tele­
vision shows refer to their World Wide Web addresses. Thus, even those indi­
viduals who are not using computer technology as part of their daily activities

Page 228 of 262

218 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

are still bombarded with the Web. The true societal question is-are we better
off given this situation?

Clearly our intent in writing this book was not to necessarily motivate so­
cietal change, nor was it to address society's concerns. A critical concern of
the Web that we must, however address, lest we be negligent, is the issue of
data reliability. Data content on the Web is currently unconstrained, and with
the exception of one's own level of self control, no refereeing for validity is per­
formed on the data. By data content we are not addressing the issue of the
moral nature of the information available on-line nor are we referring to cen­
sorship concerns, although these are emotionally charged and relevant issues.
What we are referring to are the issues of technical correctness of the material
and the permanence of the access to it.

Routinely, data are posted to the Web and indexes are set to these items.
Periodically, after some duration of time, the posted items are removed and
are no longer publicly available. Unfortunately, the indexes to these items are
rarely deleted and both local and remote pointers continue to reference the
now non-existent items. Thus, even though the original item was relevant to
a user's query, and hence the index information related to it is likely to have
potentially affected the relevance ranking process-the item itself is no longer
available. This can result in users that would have been satisfied with having
somewhat less relevant but still available items, now retrieving only pointers to
non-existing references.

If one is fortunate and does retrieve relevant data, a key concern is the tech­
nical correctness of the data. It is clear that even in the past many articles that
appeared in press were technologically flawed. This has always been of concern.
However, today, with the broad availability of on-line electronic publishing, the
degree of quality assurance has greatly decreased. Web data are typically not
verified for correctness prior to publication. Thus, as long as the user is aware
of the level of quality assurance of the data retrieved from the Web, the Web
is a great resource. Remember, regardless of what is listed on anyone's home
page, the world is still round.

A more recent phenomenon of concern to Web users is the notion of "spoofing
the web search engines." Some users are now including key words and phrases as
part of their documents to intentionally mislead Web search engines. Currently,
the search engine community is focusing on developing heuristics to combat this
situation, but no one hundred percent solutions exist.

Clearly the realm of distributed information retrieval is greatly impacting our
lives. What solutions will solve the existing bandwidth overload, improve the
technical accuracy of the on-line information both in terms of items available
and retrieved, and still coexist with moral concerns is a question for which
many books can be written. Such books can be both technical and societal in
nature, and hence, we leave it for others to explore.

Page 229 of 262

DISTRIBUTED INFORMATION RETRIEVAL 219

7. 7 Exercises

1. Develop a distributed m algorithm that stores equally sized portions of
an inverted index on separate machines. Compute the communications
overhead required by your approach.

2. Describe the effects of document updates on a distributed m algorithm
described in this chapter.

3. Recently Web search engines are facing the problem that developers of Web
pages are adding terms that are commonly queried just to draw attention to
their page. A user might add Disneyland to a page about kitchen plumbing.
Develop a heuristic to circumvent this problem-talk about how your ap­
proach will avoid a reduction in effectiveness for a "normal" or untampered
document collection.

Page 230 of 262

8 THE TEXT RETRIEVAL
CONFERENCE (TREC)

We have already described many different search and retrieval approaches, most
of which primarily focused on improving the accuracy of the information re­
trieval engines. Unlike other search and retrieval domains, e.g., traditional
relational databases, the accuracy of retrieval is not constant. That is, in the
traditional relational database domain all techniques result in perfect accuracy.
Hence, the main concern, in terms of performance evaluation, is the overall
system throughput and the individual query performance.

In the information retrieval domain, accuracy varies as the associated preci­
sion and recall measures of all engines are both approach and data dependent.
Thus, all information retrieval performance evaluation must account for both
the resulting accuracy, as well as the associated processing times. In both
database and IR systems performance evaluation, commonly referred to as
benchmarking, must also take storage overhead into account. Given the contin­
uing improvements in storage technology coupled with the ongoing reduction
in their costs, relatively little attention is focused on storage overhead reduc­
tion as compared to improving computational time--and where appropriate,
accuracy demands.

To assess the performance of database systems, many benchmarks were de­
veloped. Many of these benchmarks are in commercial use. Examples of such
benchmarks include the TPC family of benchmarks [Kohler, 1993]. Until rel­
atively recently, little emphasis was placed on the development of benchmarks
for uniform evaluation of the performance of information retrieval approaches

Page 231 of 262

222 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

or engines. The datasets used in the evaluation of information retrieval sys­
tems were small in size, often on the order of megabytes, and the mix of queries
studied were limited in number, domain focus, and complexity.

In 1985, Blair and Maron [Blair and Maron, 1985] authored a seminal pa­
per that demonstrated what was suspected earlier. Performance measurements
obtained using small datasets were not indicative for larger document collec­
tions. In the early 1990s, the United States National Institute of Standards
and Technology (NIST), using the text collection created by the United States
Defense Advanced Research Project Agency (DARPA), initiated a conference
to support the collaboration and technology transfer between academia, in­
dustry, and government in the area of text retrieval. The conference, named
the Text REtrieval Conference (TREC) aims to improve evaluation methods
and measures in the information retrieval domain by increasing the research
in information retrieval using relatively large test collections on a variety of
datasets.

TREC is an annual event with November 1998 scheduled as the seventh
conference in the series. In its 1998 incarnation, TREC consists of a primary
task: ad hoc retrieval of English. Numerous sub-tasks include foreign language
and cross language tracks, speech processing, high-precision interactive filter­
ing, and large corpus tracks. We focus our discussion on the mainstream task
only since it occurs continuously every year.

Conference participation procedures are as follows. In early January, partic­
ipation proposals are due at NIST. After evaluation, accepted participants are
required to sign several copyright and other participation rule agreements and
are sent the data. Strict deadlines, typically in August, are set for submission
of results. For ease of processing, results are submitted in designated formats.
All participants that submit final results are invited to the yearly conference.

The volume of TREC data is continuously growing with the current main­
stream (main tracks) data being on the order of multiple gigabytes. Represen­
tative collection statistics are listed in Table 8.1.

TREC data are provided by NIST on CDs to all participants. The data are
stored in compressed format, and are delimited by SGML markers. A sample
of a typical uncompressed TREC document is presented in Figure 8.1.
Each year, 50 queries are specified for each main-stream task. Queries are avail­
able on-line from a password-protected ftp site and are also SGML delimited.
A sample query is illustrated in Figure 8.1.

Currently, there are three levels of TREC participation: categories A, B,
and C. All three categories adhere to the same processing rules and support
the same manner of interaction. All three categories process the queries either
manually (some degree of human interaction) or automatically (no degree of
human interaction). The primary differences between the three involvement
categories are the volume of data that must be processed, and the degree of
reporting that is required from the participant. Categories A and C process the
entire dataset, on the order of a few gigabytes, while category B is for resource­
limited participants and consists of several hundreds of megabytes. Finally,

Page 232 of 262

THE TEXT RETRIEVAL CONFERENCE (TREC) 223

Table 8.1. Size of TREC data

Disk Collection Size Number of Median Mean
(MB) Documents Term• ~ --;,:-

1 Wall Street Journal, 1987-1989 267 98,732 245 434.0
1 Associated Press, 1989 254 84,678 446 473.9
1 Computer Select, Ziff-Davis 242 75,180 200 473.0
1 Federal Register, 1989 260 25,960 391 1,315.9
1 abstracts of US DOE 184 226,087 111 120.4
2 Wall Street Journal, 1990-1992 242 74,520 301 508.4
2 Associated Press, 1988 237 79,919 438 468.7
2 Computer Select, Ziff-Davis 175 56,920 182 451.9
2 Federal Register, 1988 209 19,860 396 1,378.1
3 San Jose Mercury News, 1991 287 90,257 379 453.0
3 Associated Press, 1990 237 78,321 451 478.4
3 Computer Select, Ziff-Davis 345 161,021 122 295.4
3 US Patents, 1993 243 6,711 4,425 5,391
4 Financial Times, 1991-1994 564 210,158 316 412.7
4 Federal Register, 1994 395 55,630 588 644.7
4 Congressional Record, 1993 235 27,922 288 1,373

Figure 8.1. Sample TREC document

<DOC>
<DOCNO> WSJ880406-0090 </DOCNO>
<HL> AT&T Unveils Services to Upgrade Phone Networks Under Global Plan
</HL>
<AUTHOR> Janet Guyon (WSJ Staff) </AUTHOR>
<DATELINE> NEW YORK </DATELINE>
<TEXT>
American Telephone & Telegraph Co. introduced the first of a new generation of
phone services with broad implications for computer and communications equipment
markets. AT&T said it is the first national long-distance carrier to announce prices
for specific services under world-wide standardization plan to upgrade phone net­
works. By announcing commercial services under the plan, which the industry calls
the Integrated Services Digital Network, AT&T will influence evolving communi­
cations standards to its advantage, consultants said, just as International Business
Machines Corp. has created de facto computer standards favoring its products.
</TEXT>
</DOC>

category A and B participants must fully document the algorithms that they
followed in their participation, while category C participants are typically from
industry and need not fully describe their process to protect proprietary secrets.

Page 233 of 262

224 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Figure 8.2. Sample TREC query
<top>
<num> Number: 168
<title> Topic: Financing AMTRAK

<desc> Description:
A document will address the role of the Federal Government in financing the operation
of the National Railroad Transportation Corporation {AMTRAK)
<narr> Narrative:
A relevant document must provide information on the government's responsibility to
make AMTRAK an economically viable entity. It could also discuss the privatization
of AMTRAK as an alternative to continuing government subsidies given to air and
bus transportation with those provided to AMTRAK would also be relevant.
</top>

Throughout its existence, interest in TREC activities has steadfastly in­
creased. With the expanding awareness and popularity of distributed informa­
tion retrieval engines, e.g., the various World Wide Web search engines, the
number of academic and commercial TREC participants continues to grow.
Given this increased participation, more and more techniques are being devel­
oped and evaluated. The transfer of general ideas and crude experiments from
TREC participants to commercial practice from year to year demonstrates the
success of TREC.

Over the years, the raw average precision numbers presented in the various
TREC proceedings initially increased and then decreased. This appears to
indicate that the participating systems have actually declined in their accuracy
over the past several years. In actuality, the queries have increased in difficulty.
When the newer, revised systems currently participating in TREC are run using
the queries and data from prior years, they tend to exhibit a higher degree
of accuracy as compared to their predecessors. Any perceived degradation is
probably due to the relative complexity of the queries.

We do not review the performance of the individual engines participating in
the yearly event since the focus of this book is on algorithms, and the details
of the effects of the individual utilities and strategies are not always docu­
mented. Detailed information on each TREC conference is available in written
proceedings or on-line at: www.nlp-ir.nist.gov.

TREC, although successful, does have its shortcomings. As noted, per­
formance evaluation in retrieval systems involves both accuracy and perfor­
mance assistance. TREC, however, only evaluates accuracy, paying little if
any, significance to processing times and storage overheads. In terms of rel­
evancy (accuracy), common TREC criticism focuses on the means of judging
document-to-query relevancy.

Given the limited number of human document judgment analysts available
to NIST, pooling is used to determine the relevant documents. Pooling, as now

Page 234 of 262

THE TEXT RETRIEVAL CONFERENCE (TREC) 225

used in TREC [Harman, 1995], is the process of selecting top-ranked documents
obtained from mtµtiple engines, merging and sorting them, and retaining the
remaining unique document identifiers as relevant documents (i.e., removing
the duplicate document identifiers). Although relatively effective, pooling does
result in several false-negative document ratings. Hence, some of the accuracy
measures are somewhat imprecise. Finally, complicating this imprecision is the
lack of statistically significant differences between the results obtained among
the systems, creating further grievances.

Page 235 of 262

9 FUTURE DIRECTIONS

In spite of all the past successful research efforts, the domain of information
retrieval is still in its infancy. As recently as ten years ago, the number of
retrieval strategies that were commonly noted in the literature could be counted
on one hand. Most of the research literature focused on the four key retrieval
strategies: the vector space, probabilistic, Boolean, and fuzzy-set. In this book
alone, we described eight different strategies and have merely highlighted the
more popular ones.

Until recently, distributed information retrieval was only of theoretical in­
terest. With the insurgence of personal Internet use and the advent of the
World Wide Web (WWW), distributed information retrieval, namely search
and retrieval of information across the WWW, is of daily practice.

In terms of the research community, heightened interest is best demonstrated
by the increased popularity of the NIST TREC activities. In its initial years,
the number of participants in the TREC activities numbered less than thirty
for most tasks. In the sixth NIST TREC meeting, the number of participants
exceeded fifty. This increase in participation has occurred despite the fact that
NIST no longer provides any financial support to the participants.

Given the growing interest, future advances are clearly on the horizon. The
question is what areas still need further investigation. We project future re­
search using the same paradigm used throughout the book. That is, first we
address strategies, followed by utilities and efficiency concerns. Issues involving
parallelism and distributed processing conclude our projections.

Page 236 of 262

228 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

Additional data strategies are probably required. In the TREC activities,
the average precision numbers rarely reach the forty percent mark for any task.
Significantly improving these numbers requires new insight and potentially a
new strategy. The past several years have resulted in a steady improvement in
retrieval accuracy, but current results are still unacceptable. It is unlikely that
even this continued improvement will result in significant strides to sufficiently
improve retrieval accuracy. This is especially true when faced with vastly larger
data sets. It is reasonable to suspect that simple pattern matching approaches
will continue to stay at the existing plateau observed in TREC during the last
two or three years. To go beyond this will more than likely require incorporation
of more complex natural language processing. At present, recent work on infor­
mation extraction and "light parsing" are just now becoming computationally
feasible.

Additional strategies are also required to cope with the diversity of data
presently available on-line. Throughout this book, we addressed only text ori­
ented data. Given the adage a picture is worth a thousand words, one must find
a way of extracting and integrating the thousands of words portrayed by an
image. Currently, information retrieval models do not support this. There are
efforts that address the image integration issue, for example, the IRIS (more
recently adapted as the IBM ImageMiner Project) [Alshuth et al., 1998]. How­
ever, they still do not fully integrate structured, text, and image data into a
cohesive environment. It is reasonable to expect that the future will require an
extended corpus consisting of integrated text with images. Such a corpus will
make it possible to evaluate progress of new text and image retrieval algorithms.

It is possible to represent information retrieval processing utilities on a con­
tinuum where the two extremes are simple pattern matching and full natural
language text processing. Currently, the majority of the utilities fall closer
to the simple pattern matching end of the continuum. For example, both
passage-based and n-gram clearly focus on purely pattern matching analysis.
Semantic networks and parsing techniques more closely align with natural lan­
guage processing, but clearly do not support full content analysis as expected
from natural language processing. It is our belief that to significantly increase
the accuracy of retrieval, the connotational meaning of the text, in contrast to
its denotational, or even worse-purely its character representation-must be
extracted. Initial work in text extraction is ongoing, but only limited success
has been demonstrated.

Parallel processing architectures are now widely available and are in daily
use. They are no longer just research engines. Even our personal comput­
ers are configured as parallel processing engines. Thus, information retrieval
applications must be developed to harness this parallel processing capability.
In Chapter 6, we overviewed some of the ongoing parallel processing efforts.
None of these efforts, however, have demonstrated scalability to the thousands
of nodes. None can handle a diversity of data formats, support multi-language
retrieval, efficiently support all of the described retrieval strategies and utili­
ties, provide multi-user concurrency with on-line recovery, and support a plug

Page 237 of 262

FUTURE DIRECTIONS 229

and play composition of strategies and utilities environment. Furthermore,
with the diversity of the underlying models of parallel architectures, even if
some solutions to the above concerns are available, they do not seamlessly port
across multiple parallel architectures. Clearly, in the realm of parallelism in
information retrieval, there is a wide area for further investigation.

With the continued advances in wireless technology, data are available not
only on host computers, but also on mobile computing devices world wide.
This distributed nature introduces several issues not previously of vast concern
to the information retrieval domain. For example, due to the portable nature
of the storage devices, most of the data are available only at uncertain time
intervals. Furthermore, each search site has access to only limited information
and this information may change rapidly. Thus, distributed information re­
trieval algorithms must account for these constraints. Some ongoing research
efforts in the domains of distributed operating and database systems focus on
related issues. An adaptation of some of the results from such efforts might
be appropriate. To date, no information retrieval research efforts address these
concerns.

Throughout this book, we have advocated a plug and play architecture for
information retrieval. We overviewed strategies, utilities, efficiency consider­
ations, integration paradigms, and processing topologies for information re­
trieval. The true research and development question for future information
retrieval research is how does one reach synergy in the composition of all of
these factors.

Page 238 of 262

References

[Adams, 1991] Adams, E. (1991). A Study of Trigrams and Their Feasibility
as Index Terms in a Full Text Information Retrieval System. PhD thesis,
George Washington University, Department of Computer Science.

[Aho and Corasick, 1975] Aho, A. and Corasick, M. (1975). Efficient string
matching: An aid to bibliographic search. Communications of the A CM,
18:333-340.

[Alaoui et al., 1998] Alaoui, M., Goharian, N., Mahoney, M., Salem, A., and
Frieder, 0. (1998). Fusion of information retrieval engines (FIRE). In Pro­
ceedings of the International Conference on Parallel and Distributed Process­
ing Techniques and Applications (PDPTA-98}.

[Allan et al., 1995] Allan, J., Ballesteros, L., Callan, J., Croft, W., and Lu, Z.
(1995). Recent experiments with INQUERY. In Proceedings of the Fourth
Text REtrieval Conference (TREC-4), pages 49-63.

[Alonso et al., 1990] Alonso, R., Barbara, D., and Garcia-Molina, H. (1990).
Data caching issues in an information retrieval system. ACM 1ransactions
on Database Systems, 15(3):359-384.

[Alshuth et al., 1998] Alshuth, P., Hermes, T., Herzog, 0., and Voigt, L.
(1998). On video retrieval: Content analysis by Imageminer. In Proceed­
ings of the IS&T/SPIE Symposium on Electronic Imaging 98, Science and
Technology, Multimedia Processing and Applications, Storage and Retrieval
for Image and Video Databases, volume 3312, pages 236-247.

[Asokan et al., 1990] Asokan, N., Ranka, S., and Frieder, 0. (1990). A par­
allel free text search system with indexing. In Proceedings of the Interna­
tional Conference on Databases, Parallel Architectures, and their Applica­
tions (PARBASE-90), pages 519-534.

[Ballerini et al., 1996] Ballerini, J., Buchel, M., Domenig, R., Knaus, D., Ma­
teev, B., Mittendorf, E., Schauble, P., Sheridan, P., and Wechsler, M. (1996).

Page 239 of 262

232 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

SPIDER retrieval system at TREC-5. In Proceedings of the Fifth Text RE­
trieval Conference (TREC-5), pages 217-228.

[Bataineh et al., 1991] Bataineh, A., Ozguner, F., and Sarwal, A. (1991). Par­
allel boolean operations for information retrieval. Information Processing
Letters, 39:99-108.

[Bataineh et al., 1989] Bataineh, A., Sarwal, A., Ozguner, F., and Dick, R.
(1989). Parallel boolean operations for information retrieval. In Conference
on Hypercubes, Concurrent Computers, and Applications, pages 445-448.

[Beckwith and Miller, 1990] Beckwith, R. and Miller, G. (1990). Implementing
a lexical network. International Journal of Lexicography, 3(4):302-312.

[Belew, 1989] Belew, R. (1989). Adaptive information retrieval. In Proceedings
of the Twelfth Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 11-20.

[Bell et al., 1990] Bell, T., Cleary, J., and Witten, I. (1990). Text Compression.
Prentice Hall, Englewood Cliffs, NJ.

[Berry, 1992] Berry, M. W. (1992). Large-scale sparse singular computations.
The International Journal of Supercomputer Applications, 6(1):13-49.

[Birrell and Nelson, 1984] Birrell, A. and Nelson, B. (1984). Implementing re­
mote procedure calls. ACM '.lransactions on Computer Systems, 2(1):39-59.

[Blair, 1974] Blair, D. (1974). SQUARE (Specifying QUeries as Relational
Expressions) as a document retrieval language. Unpublished working paper,
University of California, Berkeley.

[Blair, 1988] Blair, D. (1988}. An extended relational document retrieval
model. Information Processing and Management, 24(3):349-371.

[Blair and Maron, 1985] Blair, D. and Maron, M. (1985). An evaluation of
retrieval effectiveness for a full-text document-retrieval system. Communi­
cations of the ACM, 28(3):289-299.

[Bleir, 1967] Bleir, R. {1967). Treating hierarchical data structures in the SDC
time-shared data management system (TOMS}. In Proceedings, 22nd ACM
National Conference, pages 41-49.

[Bond and Reddaway, 1993] Bond, N. and Reddaway, S. (1993). A massively
parallel indexing engine using DAP. Cambridge Parallel Processing. Techni­
cal Report.

[Boughanem and Soule-Depuy, 1997] Boughanem, M. and Soule-Depuy, C.
(1997). Mercure at TREC-6. In Proceedings of the Sixth Text REtrieval
Conference (TREC-6), pages 187-193.

Page 240 of 262

REFERENCES 233

[Boyer and Moore, 1977] Boyer, R. and Moore, J. (1977). A fast string search­
ing algorithm. Communications of the ACM, 20(10):762-772.

[Breslauer and Galil, 1991] Breslauer, D. and Galil, Z. (1991). Parallel string
matching algorithms. Carnegie-Mellon. Technical Report: CUCS-002-gf_

[Brill, 1992] Brill, E. (1992). A simple rule-based part of speech tagger. Pro­
ceedings of the Third Conference on Applied Computational Linguistics,
pages 152-155.

[Broder et al., 1997] Broder, A., Glassman, S., Manasse, M., and Zweig, G.
(1997). Syntactic clustering of the web. Technical Report 1997-015, Digital
Equipment Corporation, Systems Research Center (SRC).

[Broglio et al., 1994] Broglio, J., Callan, J., Croft, W., and Nachbar, D. (1994).
Document retrieval and routing using the INQUERY system. In Proceedings
of the Third Text REtrieval Conference (TREC-3), pages 29-38.

[Buckley et al., 1994] Buckley, C., Salton, G., Allan, J., and Singha!, A. (1994).
Automatic query expansion using SMART: TREC-3. In Proceedings of the
Third Text REtrieval Conference (TREC-3), pages 69-80.

[Buckley et al., 1995] Buckley, C., Singha!, A., Mitra, M., and (G. Salton)
(1995). New retrieval approaches using SMART: TREC-4. In Proceedings of
the Fourth Text REtrieval Conference (TREC-4), pages 25--48.

[Burgin, 1995] Burgin (1995). The retrieval effectiveness of five clustering al­
gorithms as a function of indexing exhaustivity. Journal of the American
Society for Information Science, 46(8):562-572.

[Callan, 1994] Callan, J. (1994). Passage-level evidence in document retrieval.
In Proceedings of the Seventeenth Annual International ACM SIGIR Confer­
ence on Research and Development in Information Retrieval, pages 302-310.

[Cavnar, 1993] Cavnar, W. (1993). N-gram based text filtering for TREC-2.
In Proceedings of the Second Text REtrieval Conference (TREC-2), pages
171-179.

[Cavnar and Vayda, 1993] Cavnar, W. and Vayda, A. (1993). N-gram based
matching for multifield database access in postal applications. In Proceedings
of the Second Annual Symposium on Document Analysis and Information
Retrieval, pages 287-297.

[Ceri and Pelagatti, 1984] Ceri, S. and Pelagatti, G. (1984). Distributed
Databases: Principles and Systems. McGraw-Hill.

[Chen, 1995] Chen, H. (1995). Machine learning for information retrieval: Neu­
ral networks, symbolic learning, and genetic algorithms. Journal of the
American Society for Information Science, 46(3):194-216.

Page 241 of 262

234 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

(Chen and Lynch, 1992] Chen, H. and Lynch, K. J. (1992). Automatic con­
struction of networks of concepts characterizing document databases. IEEE
'Iransactions on Systems, Man, and Cybernetics, 22(5):885-902.

(Chen et al., 1993] Chen, H., Lynch, K. J., Basu, K., and Ng, T. (1993). Gen­
erating, integrating, and activating thesauri for concept-based document re­
trieval. IEEE Expert, 8(2):25-34.

[Chen and Ng, 1995] Chen, H. and Ng, T. (1995). An algorithmic approach to
concept exploration in a large knowledge network (automatic thesaurus con­
sultation): Symbolic branch and bound search versus connectionist hopfield
net activation. Journal of the American Society for Information Science,
46(5):348-369.

[Chen et al., 1995] Chen, H., Yim, T., and Frye, D. (1995). Automatic the­
saurus generation for an electronic community system. Journal of the Amer­
ican Society for Information Science, 46(3):175-193.

[Chen, 1976] Chen, P. (1976). The entity relationship model-toward a unified
view of data. ACM 'Iransactions on Database Systems, 1(1):9-36.

[Chen and Wang, 1995] Chen, S. and Wang, J.-Y. (1995). Document retrieval
using knowledge-based fuzzy information retrieval techniques. IEEE 'Irans­
actions on Systems, Man, and Cybernetics, 25(5):793-803.

[Church, 1988] Church, K. (1988). A stochastic parts program and noun phrase
parser for unrestricted text. In Proceedings of the Second Conference on
Applied Natural Language Processing, pages 136-143.

[Cockshott, 1989] Cockshott, P. (1989). Disadvantages of parallelism in text
retrieval. In Proceedings of the IEE Colloquium on Parallel Techniques for
Information Retrieval Digest, pages 377-387.

[Codd, 1970] Codd, E. (1970). A relational model for large shared data banks.
Communications of the ACM, 13(6):377-387.

[Cohen, 1995] Cohen, J. (1995). Highlights: Language and domain-
independent automatic indexing terms for abstracting. Journal of American
Society for Information Science, 46(3):162-174.

[Cohen and Kjeldsen, 1987] Cohen, P. and Kjeldsen, R. (1987). Information
retrieval by constrained spreading activation in semantic networks. Infor­
mation Processing and Management, 23(4):255-268.

[Connell et al., 1996] Connell, W. 0., Ieong, I., Schrader, D., Watson, C.,
Biliris, A., Choo, S., Colin, P., Linderman, G., Panagos, E., Wang, J., and
Walter, T. (1996). A teradata content-based multimedia object manager for
massively parallel architectures. In Proceedings of the 1996 ACM Special
Interest Group on the Management of Data (SIGMOD), pages 68-78.

Page 242 of 262

REFERENCES 235

[Cooper, 1991] Cooper, W. (1991). Some inconsistencies and misnomers in
probabilistic information retrieval. In Proceedings of the Fourteenth Annual
International ACM SIGIR Conference on Research and Development in In­
formation Retrieval, pages 57---02.

[Cooper et al., 1992] Cooper, W., Gey, F., and Dabney, D. (1992). Proba­
bilistic retrieval based on staged logistic regression. In Proceedings of the
Fifteenth Annual International ACM SIGIR Conference on Research and
Development in Information Retrieva~ pages 198-210.

[Courtois, 1996] Courtois, M. (1996). Cool tools for web seaching: An update.
Online, 20(3):29-36.

[Courtois et al., 1995] Courtois, M., Baer, W., and Stark, M. (1995). Cool
tools for searching the web. Online, 19(6):15-31.

[Crawford, 1981] Crawford, R. (1981). The relational model in information
retrieval. Journal of the American Society for Information Science, pages
51---04.

[Crestani, 1994] Crestani, F. (1994). Comparing neural and probabilistic rele­
vance feedback in an interactive information retrieval system. In Proceedings
of the IEEE International Conference on Neural Networks, pages 3226-3230.

[Cringean et al., 1990] Cringean, J., England, R., Manson, G., and Willett, P.
(1990). Parallel text searching in serial files using a processor farm. In
Proceedings of the Thirteenth Annual ACM SIG IR Conference on Research
and Development in Information Retrieval, pages 429-445.

[Cringean et al., 1991] Cringean, J., England, R., Manson, G., and Willett, P.
(1991). Nearest-neighbour searching in files of text signatures using trans­
puter networks. Electronic Publishing-Origination, Dissemination, and De­
sign, 4(1):185-202.

[Croft and Harper, 1979] Croft, W. and Harper, D. (1979). Using probabilis­
tic models of document retrieval without relevance information. Journal of
Documentation, 35(4):282-295.

[Croft and Xu, 1994] Croft, W. and Xu, J. (1994). Corpus-specific stemming
using word form co-occurence. In Proceedings for the Fourth Annual Sym­
posium on Document Analysis Information Retrieval, pages 147-159.

[Crouch, 1989] Crouch, C. (1989). A cluster-based approach to thesaurus con­
struction. In Eleventh International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 309-320.

[Crouch, 1990] Crouch, C. (1990). An approach to the automatic construction
of global thesauri. Information Processing and Management, 26(5):629---040.

Page 243 of 262

236 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

[Crouch et al., 1994] Crouch, C., Crouch, D., and Nareddy, K. {1994). Associa­
tive and adaptive retrieval in a connectionist system. International Journal
of Expert Systems, 7(2):193-202.

[Cutting et al., 1992] Cutting, D., Karger, D., Pedersen, J., and Tukey, J.
(1992). Scatter/gather: A cluster-based approach to browsing large docu­
ment collections. In Proceedings of the Fifteenth Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval,
pages 318-329.

[Damashek, 1995] Damashek, M. (1995). Gauging similarity via n-grams: Lan­
guage independent categorization of text. Science, 267{5199):843-848.

[D'Amore and Mah, 1985] D'Amore, R. and Mah, C. (1985). One-time com­
plete indexing of text: Theory and practice. Eighth Annual ACM SIGIR
Conference on Research and Development in Information Retrieval, pages
155-164.

[Date, 1994] Date, C. {1994). An Introduction to Database Systems. Addison­
Wesley.

[Date, 1997] Date, C. {1997). A Guide to the SQL Standard: A User's Guide
to the Standard Relational Language SQL. Addison-Wesley.

[Deerwester et al., 1990] Deerwester, S., Dumais, S., Furnas, G., Landauer, T.,
and Harshman, R. (1990). Indexing by latent semantic analysis. Journal of
the American Society for Information Science, 41(6):391-407.

[DeRose, 1988] DeRose, S. (1988). Grammatical category disambiguation by
statistical optimization. Computational Linguistics, 14(1):31-39.

[Desai et al., 1987] Desai, B., Goyal, P., and Sadri, F. (1987). Non-first normal
form universal relations: An application to information retrieval systems.
Information Systems, 12(1):49-55.

[Desantis et al., 1997] Desantis, R., Frieder, 0., and Moini, A. (1997). The
CYBERosetta architecture. Software Productivity Consortium, Internal Re­
port.

[Duda and Sheldon, 1994] Duda, A. and Sheldon, M. (1994). Content rout­
ing in a network of WAIS servers. In Proceedings of the IEEE Fourteenth
International Conference on Distributed Computing Systems, pages 124-132.

[Dumais, 1994] Dumais, S. T. {1994). Latent semantic indexing (LSI): TREC-
3 report. In Proceedings of the Third Text REtrieval Conference (TREC-3),
pages 219-230.

[El-Hamdouchi and Willett, 1986] El-Hamdouchi, A. and Willett, P. (1986).
Hierarchic document clustering using ward's method. In Proceedings of the

Page 244 of 262

REFERENCES 237

Ninth Annual International ACM SIGIR Conference on Research and De­
velopment in Information Retrieval, pages 149-156.

[El-Hamdouchi and Willett, 1989) El-Hamdouchi, A. and Willett, P. (1989).
Comparison of hierarchic agglomerative clustering methods for document
retrieval. The Computer Journal, 32(3):220-226.

[Elias, 1975] Elias, P. (1975). Universal codeword sets and representations of
the integers. IEEE '.lransactions on Information Theory, IT-21(2):194-203.

[Elmasri and Navathe, 1994) Elmasri, R. and Navathe, S. (1994). F\mdamen­
tals of Database Systems. Addison-Wesley.

[Evans and Ghanemi, 1988) Evans, D. and Ghanemi, S. (1988). Parallel string
matching algorithms. Kybernetes, 17(3):32-34.

[Flynn, 1972] Flynn, M. (1972). Some computer organizations and their effec­
tiveness. IEEE '.Iransactions on Computers, 21(9):948-960.

[Fontaine, 1995] Fontaine, A. (1995). Sub-element indexing and probabilistic
retrieval in the POSTGRES database system. Master's thesis, University of
California, Berkeley.

[Fox, 1990) Fox, C. (1990). A stop list for general text. SIGIR Forum, 24(1):19-
35.

[Fox, 1983a) Fox, E. (1983a). Extending the Boolean and Vector Space Models
of Information Retrie11al with P-Norm Queries and Multiple Concept 1ypes.
PhD thesis, Cornell University.

[Fox, 1983b) Fox, E. (1983b). Some considerations for implementing the
SMART information retrieval system under UNIX. Technical Report TR83-
560, Cornell University.

[Frakes and Baeza-Yates, 1993] Frakes, W. and Baeza-Yates, R. (1993). Infor­
mation Retrieval: Data Structures and Algorithms. Prentice-Hall, Inc.

[Francis and Kucera, 1982] Francis, W. and Kucera, H. (1982). Frequency
Analysis of English Usage. Lexicon and Grammer. Houghton Mifflin.

[Frieder and Siegelmann, 1991) Frieder, 0. and Siegelmann, H. (1991). On the
allocation of documents in information retrieval systems. In Proceedings of
the Fourteenth Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 230-239.

[Fuhr, 1992] Fuhr, N. (1992). Probabilistic models in information retrieval.
The Computer Journal, 35(3):243-255.

[Galil, 1979] Galil, Z. (1979). On improving the worst-case running time of
the Boyer-Moore string matching algorithm. Communications of the ACM,
22(9):505-508.

Page 245 of 262

238 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

[Gauch and Wang, 1996] Gauch, S. and Wang, J. (1996). Corpus analysis for
TREC-5 query expansion. In Proceedings of the Fifth Text REtrieval Con­
ference (TREC-5), pages 537-546.

[Ghose and Dhawle, 1977] Ghose, A. and Dhawle, A. (1977). Problems of the­
saurus construction. Journal of the American Society for Information Sci­
ence, 28(4):211-217.

[Giger, 1988) Giger, H. (1988). Concept based retrieval in classical IR sys­
tems. In Eleventh International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 275-289.

[Goldfarb, 1990] Goldfarb, C. (1990). The SGML Handbook. Oxford University
Press.

[Gomez, 1988] Gomez, F. (1988). WUP: a parser based on word usage. In
Seventh Annual International Phoenix Conference on Computers and Com­
munications, pages 445-449.

[Gomez and Segami, 1989] Gomez, F. and Segami, C. (1989). The recognition
and classification of concepts in understanding scientific texts. Journal of
Experimental Theoretical Artificial Intelligence, pages 51-77.

[Gomez and Segami, 1991] Gomez, F. and Segami, C. (1991). The recogni­
tion and classification of concepts in understanding scientific texts. IEEE
1ransactions on Systems, Man and Cybernetics, 21(3):644-659.

[Gordon, 1988] Gordon, M. (1988). Probabilistic and genetic algorithms for
document retrieval. Communications of the ACM, 31(10):1208-1218.

[Gordon, 1997] Gordon, M. (1997). It's 10 a.m. do you know where your doc­
uments are? The nature and scope of information retrieval problems in busi­
ness. Information Processing and Management, 33(1):107-121.

[Grauer and Messier, 1971] Grauer, R. and Messier, M. {1971). The SMART
Retrieval System-Experiments in Automatic Document Processing, chapter
An Evaluation of Rocchio's Clustering Algorithm, pages 243-264. Prentice
Hall.

lGravano et al., 1997] Grava.no, L., C, C., Garcia-Molina, H., and Paepcke, A.
{1997). STARTS: Stanford Proposal for Internet Meta-Searching. In Pro­
ceedings of the 1997 A CM Special Interest Group on the Management of
Data (SIGMOD), pages 207-218.

[Grava.no and Garcia-Molina, 1995] Gravano, L. and Garcia-Molina, H. (1995).
Generalizing GIOSS to vector-space databases and broker hierarchies. In
Proceedings of the 21st International Conference on Very Large Database
Conference, pages 78-89.

Page 246 of 262

REFERENCES 239

[Greif£, 1996) Greif£, W. (1996). Computationally tractable, conceptually plau­
sible classes of link matrices for the Inquery inference network. Technical
Report TR96-66, University of Massachusetts, Amherst.

[Greif£ et al., 1997) Greif£, W., Croft, W., and Turtle, H. (1997). Computation­
ally tractable probabilistic modelling of boolean operators. In Proceedings
of the 20th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 119-128.

[Grossman, 1995) Grossman, D. (1995). Integrating Structured Data and Text:
A Relational Approach. PhD thesis, George Mason Univeristy.

[Grossman et al., 1997] Grossman, D., Frieder, 0., Holmes, D., and Roberts,
D. (1997). Integrating structured data and text: A relational approach.
Journal of the American Society for Information Science, 48(2):122-132.

(Grossman et al., 1994) Grossman, D., Holmes, D., and Frieder, 0. (1994). A
parallel DBMS approach to IR. The Third Text REtrieval Conference, pages
279-288.

[Gudivada et al., 1997) Gudivada, V., Raghavan, V., Grosley, W., and
Kasanagottu, R. (1997). Information retrieval on the world wide web. IEEE
Internet Computing, 1(5):58-68.

[Gupte and Frieder, 1995) Gupte, A. and Frieder, 0. (1995). Compression
within a context-sensitive commercial random access domain: An industrial
case study. Information Processing and Management, 31(4):573-591.

[Gutmann and Bell, 1994] Gutmann, P. and Bell, T. (1994). A hybrid ap­
proach to text compression. In Proceedings of the Data Compression Con­
ference DCC '94, pages 225-233.

[Harman, 1988] Harman, D. (1988). Towards interactive query expansion. In
Eleventh International ACM SIGIR Conference on Research and Develop­
ment in Information Retrieval, pages 321-331.

[Harman, 1992) Harman, D. (1992). Relevance feedback revisited. In Pro­
ceedings of the Fifteenth Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 1-10.

[Harman, 1995) Harman, D. (1995). The TREC conferences. In Proceedings of
the Hypertext - Information Retrieval - Multimedia: Synergieeffekte Elektro­
nischer Informationssysteme {HIM'95}, pages 9-28.

[Hines and Harris, 1971) Hines, T. and Harris, J. L. (1971). Columbia Uni­
versity School of Library Service System for Thesaurus Development and
Maintenance. Information Storage and Retrieval, 7(1):39-50.

[Hodges and Lehmann, 1997) Hodges, J. and Lehmann, E. (1997). Seek and
ye shall find (maybe). Wired, 4(5).

Page 247 of 262

240 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

[Hollaar and Haskins, 1984] Hollaar, L. and Haskins, R. (1984). Method and
system for matching encoded characters. U.S. Patent Number ,l,,150,520.

[Hollaar and Haskins, 1991] Hollaar, L. and Haskins, R. (1991). Implementa­
tion and evaluation of a parallel text searcher for very large text databases.
In Proceedings of the Twenty-Fifth International Conference on System Sci­
ences, volume 1, pages 300-307.

[Holmes, 1998] Holmes, D. (1998). Personal communication with David Gross­
man.

[Horspool, 1983] Horspool, R. (1983). Practical fast searching in strings. Soft­
ware Practice and Experience, 10(6):501-510.

[Burson et al., 1990] Hurson, A., Miller, L., Pakzad, S., and Cheng, J. (1990).
Specialized parallel architectures for textual databases. Advances in Com­
puters, 30:1-37.

[Kahle, 1998] Kahle, B. (1998). Personal communication with David Gross­
man.

[Kantor, 1994] Kantor, P. (1994). Information Retrieval Techniques, vol­
ume 29, chapter 2, pages 53-90. Learned Information, Inc.

[Karp and Rabin, 1987] Karp, R. and Rabin, M. (1987). Efficient randomized
pattern-matching algorithms. IBM Journal of Research and Development,
31(2):249-260.

[Kim and Kim, 1990] Kim, Y. and Kim, J. (1990). A model of knowledge based
information retrieval with hierarchical concept graph. Journal of Documen­
tation, 46(2):113-136.

[Kirkwood, 1997] Kirkwood, J. (1997). Official Sybase Internals: Designing
and Troubleshooting for High Performance. McGraw-Hill.

[Kirsch, 1997a] Kirsch, S. (1997a). Personal Communication with D. Gross­
man.

[Kirsch, 1997b] Kirsch, S. (1997b). Document retrieval over networks wherein
ranking and relevance scores are computed at the client for multiple database
documents. U.S. Patent Number 5,659,792.

[Kjeldsen and Cohen, 1987] Kjeldsen, R. and Cohen, P. (1987). The evolution
and performance of the GRANT system. IEEE Expert, 2(2):73-79.

[Kjell et al., 1994] Kjell, B., Woods, W., and Frieder, 0. (1994). Discrimination
of authorship using visualization. Information Processing and Management,
30(1):141-150.

[Knuth et al., 1977] Knuth, D., Morris, J., and Pratt, V. (1977). Fast pattern
matching in strings. SIAM Journal of Computing, 6(2):323-350.

Page 248 of 262

REFERENCES 241

[Kohler, 1993] Kohler, W. (1993). TPC: Transaction Processing performance
Council. Capacity Management Review, 21(9):5-6.

[Kowalski, 1997] Kowalski, G. (1997). Information Retrieval Systems Theory
and Implementation. Kluwer Academic Publishers, Boston, MA.

[Kraft et al., 1994] Kraft, D., Petry, F., Buckles, B., and Sadasivan, T. (1994).
The use of genetic programming to build queries for information retrieval.
In Proceedings of the IEEE Symposium on Evolutionary Computation, pages
468-473.

[Kristensen, 1993] Kristensen, J. (1993). Expanding end-users' query state­
ments for free text searching with a search-aid thesaurus. Information Pro­
cessing and Management, 29(6):733-744.

[Krovetz, 1993] Krovetz, R. (1993). Viewing morphology as an inference pro­
cess. In Proceedings of the Sixteenth Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages
191-202.

[Krovetz and Croft, 1989] Krovetz, R. and Croft, W. (1989). Word sense dis­
ambiguation using machine-readable dictionaries. In Proceedings of the
Twelfth Annual International ACM SIGIR Conference on Research and De­
velopment in Information Retrieval, pages 127-136.

[Kukich, 1992] Kukich, K. (1992). Techniques for automatically correcting
words in text. ACM Computing Surveys, 24(4):377--439.

[Kwok, 1989] Kwok, K. (1989). A neural network for probabilistic information
retrieval. In Proceedings of the Twelth Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages
21-30.

[Kwok, 1990] Kwok, K. (1990). Experiments with a component theory of prob­
abilistic information retrieval based on single terms as document compo­
nents. ACM 1hmsactions on Office Information Systems, 8(4):363-386.

[Kwok, 1995] Kwok, K. (1995). A network approach to probabilistic informa­
tion retrieval. ACM Transactions on Information Systems, 13(3):324-353.

[Lawrence and Giles, 1998] Lawrence, S. and Giles, C. L. (1998). Searching
the World Wide Web. Science, 280(5360):98.

[Lecroq, 1994] Lecroq, T. (1994). Experimental results on string matching.
Software Practice and Experience, 25(7):727-765.

[Lee, 1995] Lee, D. (1995). Massive parallelism on the hybrid text-retrieval
machine. Information Processing and Management, 31(6):815-830.

[Lee et al., 1997] Lee, D., Chuang, H., and Seamons, K. (1997). Document
ranking and the vector-space model. IEEE Software, 14(2):67-75.

Page 249 of 262

242 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

(Lee and Ren, 1996) Lee, D. and Ren, L. (1996). Document ranking on weight­
partitioned signature files. ACM '.Iransactions on Information Systems,
14(2):109-137.

(Lee, 1997] Lee, J. (1997). Analysis of multple evidence combinations. In
Proceedings of the 20th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 267-276.

(Lee et al., 1993] Lee, J., Kim, M., and Lee, Y. (1993). Information retrieval
based on conceptual distance in is-a hierarchies. Journal of Documentation,
49(2):188-207.

(Lee et al., 1994] Lee, J., Kim, M., and Lee, Y. (1994). Ranking documents
in thesaurus-based boolean retrieval systems. Information Processing and
Management, 30(1):79-91.

(Lenat and Guha, 1989) Lenat, D. and Guha, R. (1989). Building Large
Knowledge-Based Systems. Addison-Wesley.

(Letsche and Berry, 1997) Letsche, T. and Berry, M. (1997). Large-scale in­
formation retrieval with latent semantic indexing. Information Sciences,
100: 105-137.

(Lewis and Sparck Jones, 1996) Lewis, D. and Sparck Jones, K. (1996). Nat­
ural language processing for information retrieval. Communications of the
ACM, 39(1):92-101.

(Linoff and Stanfill, 1993] Linoff, G. and Stanfill, C. (1993). CompreBSion of
indexes with full positional information in very large text databases. SIGIR
Forum, 2:88-95.

(Liu et al., 1996] Liu, Y., Dantzig, P., Wu, C., Challenger, J., and Ni, L. (1996).
A distributed web server and its performance analysis on multiple platforms.
In Proceedings of the Sixteenth IEEE International Conference on Distributed
Computing Systems, pages 665-672.

(Loney, 1997] Loney, K. (1997). Oracle 8 DEA Handbook. Osborne McGraw­
Hill.

(Lovins, 1968] Lovins, J. (1968). Development of a stemming algorithm. Me­
chanical '.Iranslation and Computational Linguistics, 11:22-31.

(Lu et al., 1996] Lu, A., Ayoub, M., and Dong, J. (1996). Ad hoc experi­
ments using EUREKA. In Proceedings of the Fifth Text REtrieval Confer­
ence (TREC-5), pages 229-239.

(Lucarella and Morara, 1991] Lucarella, D. and Morara, R. (1991). FIRST:
Fuzzy information retrieval systems. Journal of Information Science,
17(2):81-91.

Page 250 of 262

REFERENCES 243

[Lundquist, 1997] Lundquist, C. (1997). Relational Information Retrieval: Us­
ing Relevance Feedback and Parallelism to Improve Accuracy and Perfor­
mance. PhD thesis, George Mason University.

[Lundquist et al., 1998] Lundquist, C., Frieder, 0., Holmes, D., and Grossman,
D. (1998). A parallel relational database management system approach to
relevance feedback in information retrieval. to appear in Journal of the Amer­
ican Society for Information Science.

[Lundquist et al., 1997] Lundquist, C., Grossman, D., and Frieder, 0. (1997).
Improving relevance feedback in the vector space model. In Proceedings of the
Sixth ACM Annual Conference on Information and Knowledge Management
(CIKM '97).

[Lynch and Stonebraker, 1988] Lynch, C. and Stonebraker, M. (1988). Ex­
tended user-defined indexing with application to textual databases. In
Proceedings of the Fourteenth International Conference on Very Large
Databases, pages 306-317.

[Macleod, 1978] Macleod, I. (1978). A relational approach to modular infor­
mation retrieval systems design. In Proceedings of the ASIS Annual Meeting,
pages 83--85.

[Macleod, 1979] Macleod, I. (1979). SEQUEL as a language for document re­
trieval. Journal of the American Society for Information Science, 30(5):243-
249.

[Macleod et al., 1987] Macleod, I., Martin, T., and Nordin, B. (1987}. Strate­
gies for building distributed information retrieval systems. Information Pro­
cessing and Management, 23(6):511-528.

[Macleod and Robertson, 1991] Macleod, K. and Robertson, W. (1991}. A neu­
ral algorithm for document clustering. Information Processing and Manage­
ment, 27(4):337-346.

[Mak et al., 1991] Mak, V., Lee, K., and Frieder, 0. (1991}. Exploiting par­
allelism in pattern matching: An information retrieval application. A CM
1ransactions on Information Systems, 9(1):52-74.

[Manning, 1989] Manning, G. (1989). The use of the DAP, a massively par­
allel computing system, for information retrieval and processing. In IEE
Colloquium on Parallel Techniques for Information Retrieval Digest, pages
28-32.

[Maron and Kuhns, 1960] Maron, M. and Kuhns, J. (1960). On relevance,
probabilistic indexing and information retrieval. Journal of the Association
for Computing Machines, 7:216-244.

Page 251 of 262

244 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

(Martin et al., 1990] Martin, T., Macleod, I., and Russell, J. (1990). A case
study of caching strategies for a distributed full text retrieval system. Infor­
mation Processing and Management, 26(2):227-247.

(Martin and Russell, 1991] Martin, T. and Russell, J. (1991). Data caching
strategies for distributed full text retrieval systems. Information Systems,
16(1):1-11.

(Masand and Stanfill, 1994] Masand, B. and Stanfill, C. (1994). An informa­
tion retrieval test-bed on the CM-5. In Proceedings of the Third Text RE­
trieval Conference (TREC-3), pages 117-122.

(Mazur, 1984] Mazur, Z. (1984). On a model of distributed information re­
trieval systems based on thesauri. Information Processing and Management,
20(4):499-505.

(Mazur, 1988] Mazur, Z. (1988). Properties of a model of distributed homoge­
neous information retrieval based on weighted models. Information Process­
ing and Management, 24(5):525-540.

(McKenzie et al., 1990] McKenzie, B., Harries, R., and Bell, T. (1990). Select­
ing a hashing algorithm. Software Practice and Experience, 20(2):209-224.

(McNally, 1997] McNally, J. (1997). Informix Unleashed. Sams.

(Minker et al., 1972] Minker, J., Wilson, G., and Zimmerman, B. (1972). An
evaluation of query expansion by the addition of clustered terms for a doc­
ument retrieval system. Information Storage and Retrieval, 8(6):329-348.

(Minsky, 1975] Minsky, M. (1975). The Psychology of Computer Vision, chap-
ter A Framework for Representing Knowledge, pages 211-277. McGraw-Hill
Book Company.

(Moffat and Zobel, 1994] Moffat, A. and Zobel, J. (1994). Fast ranking in lim­
ited space. In Proceedings of the Tenth IEEE International Conference on
Data Engineering, pages 428-437.

(Moffat and Zobel, 1996] Moffat, A. and Zobel, J. (1996). Self-indexing in­
verted files for fast text retrieval. ACM 1ransactions on Information Sys­
tems, 14(4):349-379.

(Mohan and Willett, 1985] Mohan, K. and Willett, P. (1985). Nearest neighbor
searching in serial files using text signatures. Journal of Information Science
Principles and Practice, 11(1):31-39.

[Niemi and Jarvelin, 1995] Niemi, T. and Jarvelin, K. (1995). A straightfor­
ward NF2 relational interface with applications in information retrieval. In­
formation Processing and Management, 31(2):215-231.

Page 252 of 262

REFERENCES 245

[Obraczka et al., 1996] Obraczka, K., Danzig, P., DeLucia, D., and Tsai, E.
(1996). A tool for massively replicating internet archives: Design, implemen­
tation, and experience. In Proceedings of the Sixteenth IEEE International
Conference on Distributed Computing Systems, pages 657-664.

[Osborn et al., 1997] Osborn, M., Strzalkowski, T., and Marinescu, M. (1997).
Evaluating document retrieval in patent database: A preliminary report. In
Proceedings of the Sixth A CM International Conference on Information and
Knowledge Management, pages 216-221.

[Oszu and Valduriez, 1991] Oszu, T. and Valduriez, P. (1991). Principles of
Distributed Database Systems. Prentice-Hall.

[Ozkarahan, 1995] Ozkarahan, E. (1995). Multimedia document retrieval. In­
formation Processing and Management, 31(1):113-131.

[Park et al., 1994] Park, K., Frieder, 0., and Sood, A. (1994). A parallel so­
lution for the multiprocessor document allocation problem. In Proceedings
of the International Conference on Parallel Processing, pages 119-122, St.
Charles, Illinois.

[Pearce and Nicholas, 1993] Pearce, C. and Nicholas, C. (1993). Generating a
dynamic hypertext environment with n-gram analysis. In Procedings of the
Second International Conference on Information and Knowledge Manage­
ment, pages 148-153.

[Peat and Willett, 1991] Peat, H. and Willett, P. (1991). The limitations of
term co-occurrence data for query expansion in document retrieval systems.
Journal of the American Society for Information Science, 42(5):378-383.

[Petry et al., 1993] Petry, F., Buckles, B., Prabbu, D., and Kraft, D. (1993).
Fuzzy information retrieval using genetic algorithms and relevance feedback.
In ASIS '99 Proceedings of the Fifty-Sixth Annual ASIS Meeting, pages 122-
125.

[Pogue and Willett, 1987] Pogue, C. and Willett, P. (1987). Use of text sig­
natures for document retrieval in a highly parallel environment. Parallel
Computing, 4(3):259-268.

[Pollock and Zamora, 1984] Pollock, J. and Zamora, A. (1984). Automatic
spelling correction in scientific and scholarly text. Communications of the
ACM, 27(4):358-358.

[Porter, 1980] Porter, M. (1980). An algorithm for suffix stripping. Program,
14(3):130-137.

[Pulley, 1994] Pulley, E. (1994). A preprocessor for integrating structured data
and text. Master's thesis, George Mason University.

Page 253 of 262

246 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

[Rada et al., 1987] Rada, R., Mill, H., Bicknell, E., and Blettner, M. (1987).
Development and application of a metric on semantic nets. IEEE '.lransac­
tions on System, Man, and Cybernetics, 19(1):17-30.

[Rasmussen and Willett, 1989] Rasmussen, E. and Willett, P. (1989). Effi­
ciency of hierarchic agglomerative clustering using the ICL distributed array
processor. Journal of Documentation, 45(1):1-24.

[Reddaway, 1991] Reddaway, S. (1991). High speed text retrieval from large
databases on a massively parallel processor. Information Processing and
Management, 27(4):311-316.

[Rijsbergen, 1977] Rijsbergen, C. V. (1977). A theoretical basis for the use
of co-occurrence data in information retrieval. Journal of Documentation,
33(2):106-119.

[Robertson, 1977] Robertson, S. (1977). The probability ranking principle in
m. Journal of Documentation, 33(4):294-304.

[Robertson, 1990] Robertson, S. (1990). On term selection for query expansion.
Journal of Documentation, 46(4):359-364.

[Robertson and Sparck Jones, 1976] Robertson, S. and Sparck Jones, K.
(1976). Relevance weighting of search terms. Journal of American Soci­
ety for Information Science, 27(3):129-146.

[Robertson and Walker, 1994] Robertson, S. and Walker, S. (1994). Some sim­
ple effective approximations to the 2-Poisson model for probabilistic weighted
retrieval. In Proceedings of the Seventeenth Annual International ACM SI­
GIR Conference on Research and Development in Information Retrieval,
pages 232-241.

[Robertson and Walker, 1997] Robertson, S. and Walker, S. (1997). On rele­
vance weights with little relevance information. In Proceedings of the !0th
Annual International ACM SIGIR Conference on Research and Development
in Information Retrieva~ pages-16-24.

[Robertson et al., 1995] Robertson, S., Walker, S., Beaulieu, M., and Gatford,
M. (1995). Okapi at TREC-4. In Proceedings of the Fourth Text REtrieval
Conference (TREC-~), pages 73-96.

[Rocchio, 1966] Rocchio, J. J. (1966}. Document Retrieval Systems-
Optimization and Evaluation. PhD thesis, Harvard.

[Rocchio, 1971] Rocchio, J. J. (1971). The SMART Retrieval System Exper­
iments in Automatic Document Processing, chapter Relevance Feedback in
Information Retrieval, pages 313-323. Prentice Hall.

[Rose and Stevens, 1996] Rose, D. and Stevens, C. (1996). V-twin: A
lightweight engine for interactive use. In Proceedings of the Fifth Text RE­
trieval Conference (TREC-5), pages 279-290.

Page 254 of 262

REFERENCES 247

[Ruocco and Frieder, 1997] Ruocco, A. and Frieder, 0. (1997). Clustering and
classification of large document bases in a parallel environment. Journal of
the American Society for Information Science, 48(10):932-943.

[Salton, 1969] Salton, G. (1969). A comparison between manual and automatic
indexing methods. Journal of American Documentation, 20(1):61-71.

[Salton, 1970] Salton, G. (1970).
168(3929) :335-342.

Automatic text analysis. Science,

[Salton, 1971a] Salton, G. (1971a). The SMART Retrieval System-
Experiments in Automatic Document Processing, chapter New Experiments
in Relevance Feedback, pages 337-354. Prentice Hall.

[Salton, 1971b] Salton, G. (1971b). The SMART Retrieval System-
Experiments in Automatic Document Processing, chapter Negative Response
Relevance Feedback, pages 403-411. Prentice Hall.

[Salton, 1971c] Salton, G. (1971c). The SMART Retrieval System-
Experiments in Automatic Document Processing, chapter Information Anal­
ysis and Dictionary Construction, pages 115-142. Prentice Hall.

[Salton, 1971d] Salton, G. (1971d). The SMART Retrieval System Experiments
in Automatic Document Processing, chapter Relevance feedback and the op­
timization of retrieval effectiveness, pages 324-336. Prentice Hall.

[Salton, 1988] Salton, G. (1988). Parallel text search methods. Communica­
tions of the ACM, 31(2):202-214.

[Salton, 1989] Salton, G. (1989). Automatic Text Processing. Addison-Wesley.

[Salton, 1991] Salton, G. (1991). Developments in automatic text retrieval.
Science, 253(5023):974-980.

[Salton and Buckley, 1988] Salton, G. and Buckley, C. (1988). Term-weighting
approaches in automatic text retrieval. Information Processing and Man­
agement, 24(5):513-523.

[Salton and Buckley, 1990] Salton, G. and Buckley, C. (1990). Improving re­
trieval performance by relevance feedback. Journal of the American Society
for Information Science, 41(4):288-297.

[Salton et al., 1975] Salton, G., Yang, C., and Wong, A. (1975). A vector-space
model for automatic indexing. Communications of the ACM, 18(11):613-620.

[Sanderson and Rijsbergen, 1991] Sanderson, M. and Rijsbergen, C. V. (1991).
NRT: News Retrieval Tool. Electronic Publishing, 4(4):205-217.

[Schank, 1975] Schank, R. (1975). Conceptual Information Processing. Oxford,
Amsterdam.

Page 255 of 262

248 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

[Schank and Lehnert, 1977] Schank, R. and Lehnert, W. (1977). Human and
Artificial Intelligence, chapter Computer Understanding of Stories, pages
135-139.

[Schek and Pistor, 1982] Schek, H. and Pistor, P. (1982). Data structures
for an integrated data base management and information retrieval system.
In Proceedings of the Eighth International Conference on Very Large Data
Bases, pages 197-207.

[Schutze and Pedersen, 1997] Schutze, H. and Pedersen, J. (1997). A co­
occurrence-based thesaurus and two applications to information retrieval.
Information Processing and Management, 33(3):307-318.

[Schutze and Silverstein, 1997] Schutze, H. and Silverstein, C. (1997). Projec­
tions for efficient document clustering. In Proceedings of the 20th Annual
International ACM SIGIR Conference on Research and Development in In­
formation Retrieval, pages 74-81.

[Selinger, 1979] Selinger, P. (1979). Access path selection in a rela-
tional database management system. IBM Technical Disclosure Bulletin,
22(4):1657-1660.

(Sherman, 1994] Sherman, F. (1994). Personal communication with David
Grossman.

[Shuey, 1986] Shuey, R. L. (1986). Guest editors introduction - special issue
on data engineering. IEEE Computer, 19(1).

[Shuey et al., 1997] Shuey, R. L., Spooner, D. L., and Frieder, 0. (1997). The
Architecture of Distributed Computer Systems. Addison-Wesley Publishing
Company.

(Singha!, 1997] Singha!, A. (1997). Term Weighting Revisited. PhD thesis,
Cornell University.

(Smeaton and Rijsbergen, 1983] Smeaton, A. and Rijsbergen, C. V. (1983).
The retrieval effects of query expansion on a feedback document retrieval
system. The Computer Journal, 26(3):239-246.

[Sparck Jones, 1979a] Sparck Jones, K. (1979a). Experiments in relevance
weighting of search terms. Information Processing and Management,
15(3):133-144.

[Sparck Jones, 1979b] Sparck Jones, K. (1979b). Search term relevance weight­
ing given little relevance information. Journal of Documentation, 35(1):30-
48.

[Sparck Jones and Barber, 1971] Sparck Jones, K. and Barber, E. (1971).
What makes an automatic keyword classification effective? Journal of the
American Society for Information Science, 22(3):166-175.

Page 256 of 262

REFERENCES 249

[Sparck Jones and Jackson, 1968] Sparck Jones, K. and Jackson, D. (1968}.
Some experiments in the use of automatically obtained term clusters for
retrieval. Mechanized Information Storage, Retrieval and Dissemination,
pages 203-212.

[Sparck Jones and Willett, 1997] Sparck Jones, K. and Willett, P. (1997}.
Readings in Information Retrieval. Morgan Kaufmann Publishers, Inc.

[Spencer et al., 1998] Spencer, G., Cutting, D., and Xu, J. (1998}. Personal
Communication with D. Grossman.

[Spink, 1994] Spink, A. (1994). Term relevance feedback and query expansion:
Relation to design. In Proceedings of the Seventeenth Annual International
ACM SIGIR Conference on Research and Devlopment in Information Re­
trieval, pages 81-90.

[Spink, 1995] Spink, A. (1995). Term relevance feedback and mediated
database searching: Implications for information retrieval practice and sys­
tems design. Information Processing and Management, 31(2):161-171.

[Stanfill, 1990] Stanfill, C. (1990}. Partitioned posting files: A parallel inverted
file structure for information retrieval. In Proceedings of the Thirteenth An­
nual ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 413-428.

[Stanfill and Kahle, 1986] Stanfill, C. and Kahle, B. (1986}. Parallel free-text
search on the connection machine system. Communications of the ACM,
29(12):1229-1239.

[Stanfill and Thau, 1991] Stanfill, C. and Thau, R. (1991}. Information re­
trieval on the connection machine: 1 to 8192 gigabytes. Information Pro­
cessing and Management, 27(4):285-310.

[Stanfill et al., 1989] Stanfill, C., Thau, R., and Waltz, D. (1989}. A parallel
indexed algorithm for information retrieval. In Proceedings of the Twelfth
Annual ACM SIGIR Conference on Research and Development in Informa­
tion Retrieval, pages 88-97.

[Stone, 1987] Stone, H. (1987). Parallel querying of large databases: A case
study. Computer, 20(10):11-21.

[Stonebraker et al., 1983] Stonebraker, M., Stettner, H., Lynn, N., Kalash, J.,
and Guttman, A. (1983). Document processing in a relational database
system. ACM '.lransactions on Office Information Systems, 1(2):143-158.

[Strzalkowski et al., 1997] Strzalkowski, T., Lin, F., and Perez-Carballo, J.
(1997). Natural language information retrieval TREC-6 report. In Pro­
ceedings of the Sixth Text REtrieval Conference (TREC-6), pages 209-228.

Page 257 of 262

250 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

[Subbiondo, 1992] Subbiondo, J. L. (1992}. John Wilkins and 17th-Century
British Linguistics. John Benjamins Publishing Company.

[Sundheim, 1995] Sundheim, B. (1995}. Overview of results of the MUC-6
evaluation. In Proceedings of the Sixth Message Understanding Conference
(MUC-6}, pages 13-32.

[Teuful, 1988] Teuful, B. (1988}. Statistical n-gram indexing of natural lan­
guage documents. International Forum of Information and Documentation,
13(4):3-10.

[Teuful, 1991] Teuful, B. (1991). Office document retrieval. International Fo­
rum of Information and Documentation, 16(4):15-19.

[Thorelli, 1962] Thorelli, L. E. (1962}. Automatic correction of errors in text.
BIT, 2:45-62.

[Tomasic and Garcia-Molina, 1993] Tomasic, A. and Garcia-Molina, H. (1993).
Performance of inverted indices in shared-nothing distributed text document
information retreival systems. In Proceedings of the Second International
Conference on Parallel and Distributed Information Systems, pages 8-17.

[Turski, 1971] Turski, W. (1971). On a model of information retrieval systems
based on thesaurus. Information Storage and Retrieval, 7(201):201-205.

[Turtle, 1991] Turtle, H. (1991). Inference Networks for Document Retrieval.
PhD thesis, University of Massachusetts, Amherst.

[Uratani and Takeda, 1993] Uratani, N. and Takeda, M. (1993}. A fast string­
searching algorithm for multiple patterns. Information Processing and Man­
agement, 29(6):775-791.

[Voorhees, 1986] Voorhees, E. (1986}. Implementing agglomerative hierarchic
clustering algorithms for use in document retrieval. Information Processing
and Management, 22(6):465-476.

[Voorhees, 1993] Voorhees, E. (1993}. On expanding query vectors with lexi­
cally related words. In Proceedings of the Second Text REtrieval Conference
{TREC-2), pages 223-231.

[Walden and Sere, 1988] Walden, M. and Sere, K. (1988}. Free text retrieval
on transputer networks. Microprocessors and Microsystems, 13(3):179-187.

[Wang et al., 1985] Wang, Y., Vandendorpe, J., and Evens, M. (1985}. Rela­
tional thesauri in information retrieval. Journal of the American Society for
Information Science, 36(1):15-27.

[White and Date, 1989] White, C. and Date, C. (1989). A Guide to SQL/DS.
Addison-Wesley.

Page 258 of 262

REFERENCES 251

[Wilkinson, 1994] Wilkinson, R. (1994). Effective retrieval of structured docu­
ments. In Proceedings of the Seventeenth Annual International ACM SIGIR
Conference on Research and Devlopment in Information Retrieval, pages
311-317.

[Willett, 1988] Willett, P. (1988). Recent trends in hierarchic document
clustering: A critical review. Information Processing and Management,
24(5):577-597.

[Winograd, 1983] Winograd, T. (1983). Language as a Cognitive Process: Vol­
ume 1: Syntax. Addison-Wesley.

[Witten et al., 1994] Witten, I., Moffat, A., and Bell, T. (1994). Managing
Gigabytes. Van Nostrand Reinhold.

[Wu and Salton, 1981] Wu, H. and Salton, G. (1981). The estimation of term
relevance weights using relevance feedback. Journal of Documentation,
37(4):194-214.

[Yang and Korfhage, 1993] Yang, J. and Korfhage, R. (1993). Effects of query
term weights modification in document retrieval: A study based on a genetic
algorithm. In Proceedings of the Second Annual Symposium on Document
Analysis and Information Retrieval, pages 271-285.

[Yang and Korfhage, 1994] Yang, J. and Korfhage, R. (1994). Query modifica­
tion using genetic algorithms in vector space models. International Journal
of Expert Systems, 7(2):165-191.

[Yannakoudakis et al., 1982] Yannakoudakis, E., Goyal, P., and Huggill, J.
(1982). The generation and use of text fragments for data compression.
Information Processing and Management, 18(1):15-21.

[Yee et al., 1993] Yee, W., Wong, P., and Lee, D. (1993). Implementations of
partial document ranking using inverted files. Information Processing and
Management, 29(5):647-689.

[Yu et al., 1983] Yu, C., Buckley, C., Lam, I., and Salton, G. (1983). A gen­
eralized term dependence model in information retrieval. Information Tech­
nology: Research and Development, 2(4):129-154.

[Yu et al., 1989] Yu, C., W, M., and Park, S. (1989). A framework for effective
retrieval. ACM '.lhmsactions on Database Systems, 14(2):147-167.

[Yuwono and Lee, 1996] Yuwono, B. and Lee, D. (1996). Search and ranking
algorithms for locating resources on the world wide web. In Proceedings
of the Twelfth IEEE International Conference on Data Engineering, pages
164-171.

[Zadeh, 1965] Zadeh, L.A. (1965). Fuzzy sets. Information Control, 8:338-353.

Page 259 of 262

252 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

[Zamora et al., 1981] Zamora, E., Pollock, J., and Zamora, A. (1981). The use
of trigram analysis for spelling error detection. Information Processing and
Management, 17(6):305-316.

[Zipf, 1949] Zipf, G. (1949). Human Behaviour and the Principle of Least Ef­
fort. Addison-Wessley.

[Zobel et al., 1992] Zobel, J., Moffat, A., and Sacks-Davis, R. (1992). An effi­
cient indexing technique for full-text database systems. In Proceedings of the
Eighteenth International Conference on Very Large Databases, pages 352-
362.

[Zobel et al., 1995] Zobel, J., Moffat, A., Wilkinson, R., and Sacks-Davis, R.
(1995). Efficient retrieval of partial documents. Information Processing and
Management, 31(3):361-377.

Page 260 of 262

Index

2-Poisson, 37
Antonym, 117
B-TI-ee, 161
Bitonic sort, 194
Boolean query, 121, 176, 181
Bayer-Moore, 148-149, 190
Buckshot clustering, 98-99, 115
CACM, 66, 74, 91
Centroid vector, 97, 104, 213
CISI, 64, 91
Collision, 148
Compression, 7, 103, 135, 137-142, 149, 195,

197, 212
Connection machine, 186, 188, 191, 195, 198
Context term, 114-115
Cosine, 20, 46-47, 63, 80, 86, 98, 100,

104-105, 115,124,137, 145-146, 182
Cranfield, 32-33, 46-47, 68, 73-74, 91
CYC, 127
DAP, 186, 191, 195, 198
Data integration, 7, 184
Database management system, 7, 29,

154-155
DBMS, 7, 29, 155-157, 163-166, 169-173,

206-207
Dec-Hi, 91
Dice, 20, 105
Digital array processor, 95, 100, 189
Disjunctive normal form, 121-122
Distributed systems, 217
Document length, 20-21, 33-38, 69, 76, 93,

127, 145-146, 214
Document routing, 2, 73
DOE, 73-74
Dynamic programming, 128
Excite, 201, 214-215
Extended Boolean retrieval, 63, 118, 122
FIRST, 78-79
Fitness function, 70-73
Fuzzy set, 75-78, 80

Genetic algorithm, 72-74, 211
GRANT, 124-125
Hash function, 137, 148, 170
Hashing, 137, 146-147, 149,173,190,197,

215
Inference network, 48-54, 58, 80, 215
Information extraction, 125, 228
Infoseek, 201, 215-216
Inner product, 13, 20, 34, 61, 86, 105, 183
INSPEC, 91, 105
Intel, 185, 196, 198-199
Inverted indexing, 134
Jaccard, 20, 72, 74, 105
K-distance, 121-122
KMP, 149
Knowledge base, 127, 203
KSTEM, 126
Latent semantic indexing, 60---61, 63, 80,

100, 116
Lovins, 126
LSI, 63-64, 80
MASPAR, 186
MED, 63, 91
MEDLARS, 66
MIMD, 199
MUC, 129
N-gram, 7, 103-105, 228
Natural language processing, 61, 125, 228
NCR, 153, 155, 197
Neural network, 65, 68-70
NLP, 125-128
Non-binary independence model, 22, 33-34
NPL, 33
OCR,102
Parsing, 7, 104, 125-129, 131, 135, 173-174,

215, 228
Polynomial regression, 106-107
Porter, 126
Probabilistic retrieval, 12, 22, 26, 48, 64-65,

67---68, 88, 90

Page 261 of 262

254 INFORMATION RETRIEVAL: ALGORITHMS AND HEURISTICS

PTRANS, 127
R-distance, 120-122
Regression analysis, 106, 131
Relevance feedback, 41--42, 46, 65-69, 74,

84-89, 91, 93-95, 100, 131, 183,
215-216

Relevance ranking, 22, 29, 48, 58, 67, 76,
117-118, 120, 126-127, 136, 164, 169,
176, 181, 188, 196, 212, 214-215, 218

Semantic network, 118-125, 131
Signature file, 147-149, 186, 189-190
SIMD, 185-186, 198-199
Similarity measure, 38, 96, 105, 111,

121-122, 131
Singular value decomposition, 61, 115
Slots, 119
SMAR:r, 164
Sort order, 91, 93
Spreading activation, 120, 124-125, 213
SQL, 157, 161, 164, 167-169, 171, 174,

176-179, 182-184, 197
Staged logistic regression, 108
Stemming, 64, 73, 104-105, 111, 114, 126,

138, 215
Stop word, 126, 137, 144
Structured data, 7-8, 129, 153-155, 164,

167,171, 174-175,210
Synonym, 113, 118, 203

Target term, 113-115
Term frequency, 16, 18-19, 21, 33-38, 40--41,

43, 55, 68, 76, 135-137, 141, 144, 148,
170, 173, 178, 181

Term independence, 22, 88
Term weights, 14, 16, 23, 26, 29, 34, 46, 48,

58, 60, 85, 88, 93, 130, 144, 214
Text scanning, 8, 148, 186, 198-199
Thesaurus, 12, 53, 108-113, 115-119,

123-124, 131, 202-205
TIPSTER, 64, 69, 73-74, 91, 93, 106, 116,

118,169,171
TREC, 9, 20, 22, 80, 87, 89, 93, 99, 118,

125-127, 131, 138, 143, 145-146, 169,
198,212,222, 224-225,227-228

Trigram, 190
Troponym, 120
Vector space model, 12-13, 18, 22, 29,

33-34, 47, 60,64-65,68-69, 79-80,
85-86, 88, 103-105, 134, 142, 145,
214-215

VLSI, 187
Wordnet, 119-120, 123, 125
World Wide Web, 8, 120, 181, 186, 201, 217,

224, 227
WWW, 201,227
Zipf's Law, 133
Zipfian distribution, 103, 115, 1350

Page 262 of 262

