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On Optimum and Nearly Optimum Data Quantization for

Signal Detection 13“" onyx

Abstract—The application of companding approximation theory to the
quantization of data for detection of coherent signals in a noisy environ-
ment is considered. This application is twofold, allowing for greater
simplicity in both analysis and design of quantizers for detection systems.
Most computational methods for designing optimum (most efficient)
quantizers for signal detection systems are iterative and are extremely
sensitive to initial conditions. Companding approximation theory is used
here to obtain suitable initial conditions for this problem. Furthermore,
the companding approximation idea is applied to design suboptimum
quantizers which are nearly as efficient as optimum quantizers when the
number of levels is large. In this design, iteration is not needed to derive the
parameters of the quantizer, and the design procedure is very simple. In
this paper, we explore this approach numerically and demonstrate its
effectiveness for designing and analyzing quantizers in detection systems.

I. INTRODUCTION

N recent years there have been several studies of problems
relating to the quantization of data for use in signal detec-

tion systems [l]—[6]. These studies include both analytical
and numerical treatment of the problem of optimal data
quantization for the detection of deterministic (coherent)
signals [1], [2] and purely stochastic signals [5] , and analyti-
cal treatments of quantization within more general signal de-
tection formulations [3]—[6]. In particular, Kassarn [1] has
considered this problem for the coherent detection case and
has developed a design technique for this situation based on
the solution to a system of nonlinear equations in the quan-
tizer parameters. He showed that quantizers derived in this
manner have maximum efficacy (i.e., are most efficient)
among all quantizers with a fixed number of output levels.
It is interesting to compare Kassam’s quantizer to those
optimized by a criterion not specifically for signal detection
purposes; for instance, the minimum-distortion quantizer [7],
which minimizes the mean-squared error between data and its
quantized version, coincides with the optimum quantizer
based on Kassam’s detection criterion [1] only for Gauss-
ian noise.

In the alternative context of quantizing data for minimum
distortion, approximations to the minimum-distortion non—
uniform quantizer which are of practical interest have been
proposed. Bennett [8] modeled a nonuniform quantizer by a
compressor, followed by a uniform quantizer and an expander
(compander). With this companding model, Panter and Bite
[9] presented a useful approximation to minimum-distortion
quantizers. Later, Algazi [10] used the companding approxi—
mation to obtain results on optimal quantizers for a general
class of error criteria (Algazi estimated distortion due to

Paper approved by the Editor for Communication Theory of the IEEE
Communications Society for publication after presentation at the Conference
on Information Sciences and Systems, Johns Hopkins University, Baltimore.
MD, March 1983. Manuscript received March 22, 1983; revised November
21, 1983. This work was supported by the Joint Services Electronics Program
(US. Army, Navy, and Air Force) under Contract N00014—79-C~0424.

The authors are with the Department of Electrical Engineering and the
Coordinated Science Laboratory, University of Illinois at Urbana-Champaign,
Urbana, IL 61801.

"‘t- 1...:

optimally quantizing data in the minimum mean-squared error
sense; see also Gersho [1 1]).

In this paper, we apply the companding approximation
theory to signal detection problems. First, we use the com-
panding approximation to help in solving Kassam’s system of
nonlinear equations for the optimum quantizer parameters
(see also Bucklew and Gallagher [12]). Then, we present a
scheme to design a quantizer which in a sense estimates Kas-
sam’s optimum quantizer using a companding approximation.
The performance of detection systems using these companding
quantizers is compared to that of Kassam’s optimum quantizer
detector. Also, the exact performance of the optimum system
is compared to its approximate performance predicted by the
companding model. These issues are explored numerically for
a wide range of noise distributions, including both Gaussian
and non—Gaussian cases.

II. PRELIMINARIES

The model we consider is based on a standard additive noise
assumption. In particular, we assume that we have a sequence
of data samples x = {x5 1' = 1, 2, W, n} from a random se—
quence X : {X13 1' = l, 2, W, n} which can obey one of the
two possible statistical hypotheses:

HOZXi:NiJ i=1,2,"',n (21)
versus

leXi=Ni+ 9.53, i= 1, 2,”, n

where {N13 i = l, 2, ..., n} is an independent, identically dis—
tributed (i.i.d.) zero—mean noise sequence with known com—
mon univariate probability density and distribution functions
f and F, respectively. Throughout this work, the noise proba-
bility density function fis assumed to be symmetric about the
origin. The parameter 0 is a positive signal-to-noise ratio (SNR)
parameter and {s,-; i = l, 2, m, n} is a known coherent (i.e.,
deterministic) signal sequence. As a practical case, we wish
to consider the weak signal case (0 *> 0+), since this is the
situation in which the design is most critical. Therefore, rather
than maximizing the detection probability (6) for a fixed false
alarm probability (or), we consider the locally optimum de-
tector for H0 versus H1 which maximizes the slope of the
power function (asap/2x9) at (9 = 0 while keeping a fixed false-
alarm probability. Within mild regularity conditions, the
locally optimum test statistic for our detection problem is
given by

 

.n

W: 25223100“) (22)i=1

where the locally optimum nonlinearity glob) is given by

f'IIXJ
gromé— , (2.3f0) )

0090—6778/84/0700-0745$01.00 © 1984 IEEE
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Noise Reduction in Image Sequences Using

Motion-Compensated Temporal Filtering

ERIC DUBOIS, MEMBER, IEEE, AND SHAKER SABRI, MEMBER, IEEE

Abstract—Noise in television signals degrades both the image quality
and the performance of image coding algorithms. This paper describes a
nonlinear temporal filtering algorithm using motion compensation for
reducing noise in image sequences. A specific implementation for NTSC
composite television signals is described, and simulation results on several
video sequences are presented. This approach is shown to be successful in

improving image quality and also improving the efficiency of subsequent
image coding operations.

I. INTRODUCTION

NOISE introduced in television signals degrades both theimage quality and the performance of subsequent image
coding operations. This noise may arise in the initial signal
generation and handling operations, or in the storage or trans-
mission of these signals. The effect of additive noise on poten—
tial image coding performance is illustrated by considering a
uniformly distributed noise with values —1. 0, 1 out of 256,
giving an SNR of 45.8 dB. Although this added noise is barely
perceptible, it has an entropy of 1.58 bits/sample, clearly limit-
ing the image coding compression factor. Thus, there is great
interest in reducing the noise level in the input signal in order
to get maximum coding efficiency.

Noise reduction in image sequences is possible to the ex—
tent that image and noise components have different character-
istics. For stationary random processes, the classical method
of noise reduction is Wiener filtering, based on the image
and noise power spectra. However, images are not well modeled
by stationary random processes, and other approaches based on
improved image models are sought. A major distinguishing fea-
ture between the noise and signal in image sequences is that the
noise is uncorrelated from frame to frame, while the image
is highly correlated, especially in the direction of motion.
By performing a low-pass temporal filtering in the direction
of motion, the noise component can be attenuated without
affecting the signal component.

Noise reduction using temporal filtering to give improved
image quality has been described in [11—[3]. These systems
use motion detection, as opposed to motion estimation;
temporal filtering is only applied in the nonchanging parts
of the picture. This is accomplished either by explicitly
segmenting into changing and nonchanging areas, or by a non»
linear filtering approach (to be discussed later). These al-
gorithms have the disadvantage that noise cannot be reduced in
moving areas without modifying the image detail, and noise
can appear and disappear as objects begin and stop moving.
Although noise in moving areas is masked to some extent by
the motion, it will still be visible in slowly moving areas.

Paper approved by the Editor for Signal Processing and Communication
Electronics of the IEEE Commnications Society for publication without oral
presentation. Manuscript received September 26, 1983. This work was sup-
ported by the International Telecommunications Satellite Organization (IN-
TELSAT) under Contract INTEL«114, 1980.

E. Dubois is with INRS—Te‘lécommunications, Universite' du Quebec, Ile
des Soeurs, Verdun, P.Q.. Canada H3E 1H6.

S. Sabri is with Bell—Northem Research, lle des Soeurs, Verdun, P.Q.,Canada H3F. 1H6.

The concept of motion-compensated temporal filtering
has been described by Huang and Hsu [4]. In this approach,
the displacement at each picture element is estimated, and
a temporal averaging is performed along the trajectory of
motion. Reference [4] describes nonrecursive linear and
median temporal filters, both with and without motion
compensation. However, the amount of noise reduction which

can be attained with low-order nonrecursive filters is quite
limited. Also this approach can introduce artifacts in areas
where motion is not tracked and in newly exposed areas.

In this paper, the nonlinear recursive filtering approach of
[2], [3] is extended by the application of motion compensa—
tion techniques. A specific noise reducer for use with NTSC

composite television signals is then described, and computer
simulation results of its performance on several Video se-
quences are presented. It is shown that this approach is success-
ful in improving image quality, while also improving the
performance of subsequent image coding operations.

11. MOTION -COMPENSATED TEMPORAL FILTERS FOR
NOISE REDUCTION

A. Theory ofMorion-Compensated Temporal Filtering

Let u(x, ,2) be the image intensity at spatial location x =
(x1, x2) and time t, and let d(x, 2‘) be the displacement of the
image point at (x, t) between time t — T and t, The vector

field d(x, 2‘) is called the displacement field. If the intensity
of the object point has not changed over the time T, then

u(x, t) = u(x— d(x, 1), r — T), (1)

Note that d is not defined in newly exposed areas, i.e., for
those picture elements (pels) which were not visible in the

previous field. For background and stationary objects,d(x, t) =
0, while for an object in translational motion, d(x, t) is a
constant over the object. In general, d(x, r) is a slowly vary-
ing function of space, except for discontinuities at the edges
of moving objects.

The value over time of the image sequence at a given object
point forms a one-dimensional signal, defined on the time
interval for which this point is visible in the scene. This Signal
is assumed to be the sum of an image component and an ad-
ditive noise component. The variation in the image compo—
nent is solely due to change in the luminance of the object
point, caused by changes in illumination or orientation of the

object. This change is relatively slow, so that the image compo—
nent is a low bandwidth signal. The noise is assumed to be

white and uncorrelated with the signal. By performing a low-
pass filtering operation on this signal. the noise component
can be significantly attenuated, with a minimal effect on the
image component.

In practice, the image sequence is sampled spatially, and
it is not precisely possible to filter the sequences correspond-
ing to given object points. However, the principle of per-
forming a temporal filtering or averaging operation along the
trajectory of motion is feasible. This filtering can be of either
the recursive or nonrecursive type. Since greater selectivity
can be obtained for a given filter order with recursive filters,

0090-6778/84/0700~0826$01.00 ©1984IEEE
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this type of filter has been chosen for this application. This
is especially important in temporal filtering, where each in—
crease by one in filter order requires an additional frame
memory.

A block diagram of a first—order recursive temporal filter
with motion compensation is shown in Fig. l (assume for
now that the output of the block NL is a constant value or).
The basic operation of this filter is described by

u(x, t) = ocu(x, t) + (l — d)U(x — d(x, 2‘), t — T) (2)

where v is the output of the filter, dis an estimate of d, and

5 is an estimate of U at a non—grid point obtained by spatial
interpolation. The signal 12(x, t) = 17(x — d, t — T) is called
the prediction and e 2 u — 12 is called the prediction error.
This filter requires a frame memory in order to be able to
form the prediction. A module for estimating the displacement
field is also required. This estimation can be performed using
any of a number of algorithms which have been proposed
in the literature [5] -[8]. The displacement estimator can
use the input signal as well as any of the signals available in
the noise reducer to perform the estimate.

An indication of the ability of this filter to reduce noise
can be obtained by considering its performance in stationary
areas Where d = 0. In this case, the filter reduces to a standard
one—dimensional temporal recursive filter with transfer func-
tion

or

1—(1—a)z—1'
It can easily be shown that for a white noise input, the noise
power is reduced by 10 log10((2 — 00/01) dB. Due to the
spatial interpolation error, the performance in moving areas
will be slightly different, even if the displacement estimate is
perfectly accurate.

A number of modifications are required to make this scheme
work in practice The major change is based on the observa-
tion that the displacement field is not defined for the newly
exposed parts of the image, and that the displacement estimate
may not always be accurate, especially in regions where
(l) is violated. These regions are characterized by a large
value of prediction error. Since the movement is not being
followed in these regions, it is preferable to disable the filtering
operation. This can be accomplished by varying the value of
a as a function of the prediction error, which is equivalent
to passing the prediction error 8 through a memoryless non-
linearity y = a(e)'e. A typical piecewise-linear characteris-
tic for the function 046) is shown in Fig. 2. It is given by

11(2) = (3)

i Gib, ifle|<Pb;
i “In—Ole
_ oz(e)= “kl +Pbae—Peab, ibe<Iel<Pe;
.‘ Pb_Pe

“e, iflel>Pe.

(4)

In areas where the motion is tracked, e(x, t) is small (of the
order of the noise level), and a linear temporal filtering with
parameter or = 01b is performed. In areas where the motion is

, not being tracked and e(x, r) is large, a temporal filtering with
parameter are is performed. To avoid introducing artifacts
in these regions, are is typically set to unity. For values of e
between Pb and P8, 01(e) varies linearly between orb and Ole,

. to provide a smooth transition between regions where motion

: is tracked and where it is not. The choice of values of Pb
and Fe to be used depends on the noise level and the appearance
of artifacts.

¥

827

  9
Displacement

 

 
Estimator

Fig. l. First—order recursive temporal filter with motion compensation.
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Fig. 2. Nonlinear function for multiplier coefficient 02.

The digital noise reducers which have been described in

the literature [ll—[3] are basically obtained by setting the
displacement estimate to zero, and filtering only in the sta-
tionary areas. This can be accomplished by explicitly seg—
menting into changed and unchanged areas, and filtering
with a linear temporal filter in the unchanged areas, or by
using a nonlinear temporal filter with the nonlinearity as
described above. In either case, the noise in the moving or
changed areas can only be reduced at the expense of image
detail. (Note that higher noise level in changing areas is per—
missible to a certain extent because the movement or change
will mask the noise). With this system, noise can abruptly
appear in areas which were fixed and then begin to move.
If an accurate displacement estimate is available, these effects
can be reduced. Clearly, a displacement estimator which is
robust in the presence of noise is required.

B. A Motion-Compensated Noise Reducer for NTSC
Composite Video Signals

This section describes a particular nonlinear temporal
filter with motion compensation suitable for noise reduction
in NTSC composite video signals. This noise reducer must
specifically account for the properties of the NTSC composite
signal, namely, the modulation of the chrominance informa-

tion on a subcarrier, and the 2:1 line-interlaced scanning. The
issues related to displacement estimation and prediction from
NTSC composite signals are discussed in [8]. The techniques
described here can easily be adapted to component processing
of color video signals.

The NTSC Signal: The NTSC signal has the form

U0) 2 Y(r) + C0) = Y(r) + 1(r) cos (ZTrfscI + 33°)

+ Q(r)sin(21rfsct + 33°) (5)

where Y is the luminance component and I and Q are the
chrominance components, quadrature-modulated on a sub-
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