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Abstract—Dynamic power management schemes (also called
policies) reduce the power consumption of complex electronic sys-
tems by trading off performance for power in a controlled fash-
ion, taking system workload into account. In a power-managed
system it is possible to set components into different states, each
characterized by performance and power consumption levels. The
main function of a power management policy is to decide when
to perform component state transitions and which transition
should be performed, depending on system history, workload,
and performance constraints.

In the past, power management policies have been formulated
heuristically. The main contribution of this paper is to introduce
a finite-state, abstract system model for power-managed systems
based on Markov decision processes. Under this model, the
problem of finding policies that optimally tradeoff performance
for power can be cast as a stochastic optimization problem and
solved exactly and efficiently. The applicability and generality
of the approach are assessed by formulating Markov model and
optimizing power management policies for several systems.

Index Terms—Energy conservation, energy management, opti-
mization methods.

I. INTRODUCTION

BATTERY-OPERATED portable appliances impose tight
constraints on the power dissipation of their components.

Such constraints are becoming tighter as complexity and
performance requirements are pushed forward by user demand.
Reducing power dissipation is a design objective also for
stationary equipment, because excessive power dissipation
implies increased cost and noise for complex cooling systems.
Numerous computer-aided design techniques for low power
have been proposed [1]–[3] targeting digital very large scale
integration (VLSI) circuits, i.e., chip-level designs.

Almost every portable electronic appliance is far more
complex than a single chip. Portable devices such as cellular
telephones and laptop computers contain tens or even hundreds
of components. To further complicate the picture, in most
electronic products, digital components are responsible for
only a fraction of the total power consumed. Analog, electro-

Manuscript received May 29, 1998; revised November 18, 1998. This
work was supported in part by the National Science Foundation (NSF) under
Contract MIP-9421129 and by the ARPA under Contract DABT-63-95-C-
0049. This paper was recommended by Associate Editor R. Camposano.

L. Benini and A. Bogliolo are with the Università di Bologna, DEIS,
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mechanical, and optical components are often responsible for
the largest contributions to the power budget. For example,
the power breakdown for a well-known laptop computer [4]
shows that, on average, 36% of the total power is consumed by
the display, 18% by the hard drive, 18% by the wireless LAN
interface, 7% by noncritical components (keyboard, mouse,
etc.), and only 21% by digital VLSI circuitry (mainly memory
and CPU). Reducing the power in the digital logic portion of
this laptop by10X would reduce the overall power consump-
tion by less than 19%. Laptop computers are not an isolated
case. Many others electronic appliances are complex and het-
erogeneous systems containing a wide variety of devices that
do not fall within the scope of the available computer-aided
power optimization techniques. Designers have reacted to the
new challenges posed by power-constrained design by mixing
technological innovation and power-conscious architectural
design and optimization.

One of the most successful techniques employed by design-
ers at the system level isdynamic power management[8],
[9]. This technique reduces power dissipation by selectively
turning off (or reducing the performance of) system compo-
nents when they are idle (or partially unexploited). Building
a complex system that supports dynamic power management
is a difficult and error-prone process. Long trial-and-error
iterations cannot be tolerated when fast time to market is the
main factor deciding the success of a product.

To shorten the design cycle of complex power-managed
systems, several hardware and software vendors [10], [11]
are pursuing a long-term strategy to simplify the task of
designing large and complex power-managed systems. The
strategy is based on a standardization initiative known as the
advanced configuration and power interface(ACPI). ACPI
specifies an abstract and flexible interface between power-
manageable hardware components (VLSI chips, disk drivers,
display drivers, etc.) and thepower manager(the system
component that controls when and how to turn on and off func-
tional resources). The ACPI interface specification simplifies
the task of controlling the operating conditions of the system
resources, but it does not provide insight on how and when
to power manage them. We callpower management policy
(policy for brevity) a procedure that takes decisions upon the
state of operation of system components and on the state of
the system itself.

The most aggressive policy (that we calleager policy)
turns off every system component as soon as it becomes idle.
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Whenever the functionality of a component is required to carry
out a system task, the component must be turned on and
restored to its fully functional state. The transition between
the inactive and the functional state requires time and power.
As a result, the eager policy is often unacceptable because it
degrades performance and may not decrease power dissipation.

For instance, consider a device that dissipates 2 W in
fully operational state and no power when set into inactive
state. The transition from operational to inactive state is
almost instantaneous (hence, it does not consume sizable
power). However, the opposite transition takes 2 s. During
the transition, the power consumption is 4 W. This device
is a highly simplified model of a hard-disk drive (a more
detailed model will be introduced later in this paper). Clearly,
the eager policy does not produce any power savings if the
device remains idle for less than 4 s. Moreover, even if the
idle time is longer than 4 s, transitioning the device to inactive
state degrades performance. If the eager policy is chosen, the
user will experience a 2-s delayevery timea request for the
device is issued after an idle interval.

The choice of the policy that minimizes power under
performance constraints (or maximizes performance under
power constraint) is a constrained optimization problem which
is of great relevance for low-power electronic systems. We call
this problempolicy optimization(PO). Several heuristic power
management policies have been investigated in the past [12],
[14], [15] but no strong optimality result has been proven.

In this paper we propose a stochastic model based on
Markov decision processes [22] for the formulation of policy
optimization and we describe a procedure for itsexactsolution.
The solution of PO is computed in polynomial time by solving
a linear optimization problem. We first describe the details and
the fundamental properties of the stochastic model, then we
show how to formulate and solve policy optimization. The
global optimality of the solutions obtained is also proved.
The procedure can be employed to explore the power versus
performance tradeoff curve.

The class of the optimal policies is then studied in detail. We
assess the sensitivity of policies to several system parameters.
Our results provide insights for system architects designing
power managed systems. Our model and optimization pro-
cedures can be used to help designers in difficult high-level
decisions on how to choose or design components that can be
power managed effectively.

Our analysis and our optimality result critically depends
on our modeling assumptions. We assess the soundness of our
assumptions by constructing the stochastic model for a real-life
device (a disk drive) under a realistic workload. We then apply
our optimization algorithm and compute optimal policies. The
performance and power dissipation of the policies are then
validated against simulation. Moreover, the optimal policies
are compared with heuristic solutions.

The paper is organized as follows. In Section II, we review
related work in the field of dynamic power management. In
Section III, we describe our stochastic model, starting from
a qualitative description, then moving to a more rigorous
mathematical formulation. The policy optimization problem
is formulated in Section IV and a procedure for its solution

is described. We implemented a tool for automatic power
optimization. In Section V, we describe the tool implemen-
tation. Section VI is dedicated to the application of policy
optimization to realistic case studies and to the analysis
of the sensitivity of optimal policies to system parameters.
Section VII presents a discussion on modeling issues, where
we clarify the basic assumptions and the domain of applicabil-
ity of our model. Finally, in Section VIII, we summarize our
findings and outline future directions of research.

II. RELATED WORK

The fundamental premise for the applicability of power
management schemes is that systems, or system components,
experience nonuniform workloads during normal operation
time. Nonuniform workloads are common in communication
networks and in almost any thinkable interactive system. In the
recent past, several researchers have realized the importance
of power management for large classes of applications. Chip-
level power management features have been implemented in
mainstream commercial microprocessors [5]–[7]. Micropro-
cessor power management has two main flavors. First, the
entire chip can be shut down in several sleep states through
external signals or software control. Second, chip units can be
shut down by stopping their local clock distribution. This is
done automatically by dedicated on-chip control logic, without
user control. Techniques for the automatic synthesis of chip-
level power management logic are surveyed in [8].

At a higher level of abstraction, energy-conscious commu-
nication protocols based on power management have been
studied [16]–[20]. The main purpose of these protocols is to
regulate the access of several communication devices to a
shared medium trying to obtain maximum power efficiency
for a given throughput requirement. Power efficiency is a
stringent constraint for mobile communication devices. Pagers
are probably the first example of mobile device for personal
communication. In [20], communication protocols for pagers
are surveyed. These protocols have been designed for maxi-
mum power efficiency. Protocol power efficiency is achieved
by increasing the fraction of time in which a single pager is
idle and can operate in a low-power sleep state without the
risk of loosing messages.

With the widespread diffusion of advanced communication
devices (cellular phones, portable wireless terminals, etc.) the
bandwidth requirements for communication protocols have
become much more stringent. More complex and higher-
performance protocols are needed for controlling such ad-
vanced devices. In [16], astar communication network is
studied, where several power-constrained devices communi-
cate with each other through a base station that regulates
traffic. The contribution of [16] is the formulation of a slot
reservation strategy for the communicating devices and a
scheduling algorithm for the base station that reduces power
consumption while meeting service quality specifications.

The approaches presented in [18] and [19] are primar-
ily focused on how to maximize the efficiency of a single
power-constrained communication device operating in a noisy
environment. Traditionally, communication devices have been
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designed to respond to increased noise levels by increasing
transmission power and by repeating transmission. This strat-
egy is highly energy-inefficient and can be counterproductive
even throughput-wise if decreased transmission quality is
caused by interference from other transmitters operating with
the same protocol. Both [18] and [19] assume that the worst
menace to service quality is mutual interference and propose
retransmission protocols that tend to reduce mutual interfer-
ences by reducing the average transmission power and by
increasing silence time when error rate is high.

Power management schemes have also been studied in [12],
[14], and [15]. The system, or a component, is modeled as a
reactivesystem that receives requests from the external envi-
ronment and performs some computational task in response
to a request. The arrival rate of incoming requests is not
uniform over time, nor it is so high to impose full utilization.
Hence, power can be saved by transitioning the system to a
sleep state when it is not in use. The power-down strategy
impacts performance both in terms of latency and throughput,
because of transition delays. The approaches presented in [12],
[14], and [15] explore several shutdown policies that minimize
power at the cost of a marginal performance reduction.

Disk driver subsystems are studied in [12] and [13]. This
work presents an extensive study of the performance of various
disk spin-down policies. The problem of deciding when to
spin down a hard disk to reduce its power dissipation is
presented as a variation of the general problem of predicting
idleness for a system or a system component. This problem
has been extensively studied in the past by computer architects
and operating system designers (the paper by Goldinget
al. [13] contains numerous references on the topic), because
idleness prediction can be exploited to optimize performance
(for instance by exploiting long idle period to perform work
that will probably be useful in the future). When low power
dissipation is the target, idleness prediction is employed to
decide when it is convenient to spin down a disk to save
power (if a long idle period is predicted), and to decide when
to turn it on (if the predictor estimates that the end of the idle
period is approaching).

The studies presented in [14] and [15] target interactive
devices. A common assumption in these works is that future
workloads can be predicted by examining the past history.
The prediction results can then be used to decide when and
how transitioning the system to a sleep state. In [14], the
distribution of idle and busy periods for an interactive terminal
is represented as a time series, and approximated with a least-
squares regression model. The regression model is used for
predicting the duration of future idle periods. A simplified
power management policy is also introduced, that predicts the
duration of an idle period based on the duration of the last
activity period. The authors of [14] claim that the simple policy
performs almost as well as the complex regression model, and
it is much easier to implement. In [15], an improvement over
the prediction algorithm of [14] is presented, where idleness
prediction is based on a weighted sum of the duration of past
idle periods, with geometrically decaying weights. The policy
is augmented by a technique that reduces the likelihood of
multiple mispredictions.

A common feature of all previous works in the area of
power management is that policies are formulated heuristi-
cally, then tested with simulations or measurements to assess
their effectiveness. Another interesting commonality is that
the highly abstract models used to represent the target systems
necessarily imply some uncertainty. Uncertainty is caused by
abstraction (for instance system response time is uncertain
because detailed functionality is abstracted away), and by non-
determinism (for instance, request arrival times are uncertain
because they are not controlled by the system).

Probabilistic techniques and models are employed by all
previous approaches to deal with uncertainty. Similarly to
previous approaches, we will formulate a probabilistic system
model, but differently from previously published results, we
will rigorously formulate the policy optimization problem
within the framework provided by our model, and we will
show that it can be solved exactly and in polynomial time in
the size of the system model. To obtain this result, we leverage
well-known stochastic optimization techniques based on the
theory of Markov processes. A vast literature is available on
this topic, and the interested reader is referred one of the
numerous textbooks for detailed information (see, for instance,
[21]–[23]).

III. STOCHASTIC MODEL

In this section we first informally describe a system model,
then we provide definitions and we analyze the properties of
the model. We consider a system embedded in an environment
modeled as a single source of requests. Requests issued by
the event source are serviced by the system. The system itself
consists of two components: a resource that processes requests
(the service provider), and apower manager.

The resource has several states of operation. Each state is
characterized by a service rate, which is, roughly speaking,
proportional to the average number of requests serviced in
a time unit. Some states may have zero service rate. Such
states are calledsleep states,while states with nonnull service
rate are calledactive states. Both request arrivals and services
are stochastic processes, in other words, service times and
interarrival times between requests are nondeterministic. As
explained in Section II, nondeterminism models incomplete
information and/or uncertainty caused by the high level of
abstraction of the model.

The system may contain aqueue which stores requests
that cannot be immediately serviced upon arrival because the
service provider is either busy servicing other requests or it has
zero service rate. We assume that requests are indistinguish-
able, hence, service priorities are immaterial. Moreover we
assume that the traffic-management component has finite ca-
pacity. Whenever the number of enqueued requests exceeds the
capacity, requests are lost. Request loss does not model actual
lack of service in the system. In our abstract model, request
loss represents an undesirable condition that is verified when
too many requests are waiting to be serviced. Real-life systems
generally implement congestion-control mechanisms based on
synchronization primitives that prevent overflowing of internal
queues. We do not accurately model such mechanisms because
we focus on average-case operating conditions. However we

Page 3 of 21
f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


816 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 6, JUNE 1999

Fig. 1. Components of the system model.

model overflow of normal system capacity because it is
undesirable and should be avoided as much as possible.

The power manager is a controller that observes the history
of the service provider and of the queue and issues commands.
There is a finite number of commands, and their purpose is
to cause the transition of the service provider from one state
to another. The service provider responds to commands in a
nondeterministic fashion. In other words, there is no guarantee
that the service provider changes state as soon as a command
is issued, but there is a probability that the transition will be
performed in the future. Nondeterminism represents the delay
of the system in responding to commands and the uncertainty
on the actual value of such delay caused by the high abstraction
level of the model. The criterion used for choosing what
command to issue and when is calledpolicy.

The overall system architecture is depicted in Fig. 1. Our
goal is to search the space of all possible policies to find
the one that minimizes a cost metric. We define two cost
metrics:power and performance. Policy optimization targets
the optimization of one cost metric while using the second
as a constraint. In Sections III-A and III-B, we formulate a
stochastic system model based on Markov chains. Within this
model, policy optimization can be rigorously formulated and
solved. However, we do not discuss how and when the model
is a valid abstraction of a real-life system. This important issue
is analyzed in detail in Sections VI and VII.

A. System Components

We assume that the reader is familiar with basic probability
theory at the level of [25] and [26]. We use uppercase bold
letters (e.g., ) to denote matrices, lowercase bold letters
(e.g., ) to denote vectors, calligraphic letters (e.g.,) to
denote sets, uppercase italicized letters (e.g.,) to denote
scalar constants and lowercase italicized letters (e.g.,) to
denote scalar variables. We will consider a discrete-time (i.e.,
slotted time) setting, , where is the time resolution,

IN . We will write in place of . We call time slice
the time interval between two consecutive values of.

A stationary Markov chain is a stochastic process over
a finite state set , s.t. whose behavior
is such that, at any time , the state probability distribution
depends only on the state at time . Prob

is calledone-step transition probability. The one-
step transition probabilities are conveniently specified in the
form of a transition probability matrix , and

. A Markov chain can also be described by
its state-transition diagram,a directed graph whose nodes are
states, and whose edges are labeled with conditional transition
probabilities. State transition times in Markov chains have
geometric distribution

Prob (1)

A stationary controllable Markov chain is a Markov
chain whose transition probabilities are functions of
controlling variable . When the independent variablecan
take values in a finite set , the transition probabilities are

: , and the controllable Markov chain can
be represented by a set of matrices, one for each value of the
independent variable .

We first define acommand set , s.t.
. The elements of are commands issued by the

power manager for controlling the operation of the system.
Definition 3.1: A service provider(SP) is described by a

triple , , where: i) is a
stationary, controlled Markov process with state set
s.t. , control set and stochastic matrix

; ii) is a function : ; and iii)
is a function : .

The SP model is a discrete-time controllable Markov chain
and matrix is its conditional probability matrix. A
service rate is associated with each state and
command , it represents the probability of completing
the service of a request in a time slice, given that SP is in state

and that command has been issued at the beginning of the
time slice. Apower consumptionmeasure is associated
with each state and command . It represents
the power consumption of the SP in a time slice, given that
command has been issued and the SP is in state. In each
time slice, the service provider can be in only one state. The
power manager causes state transitions by issuing commands.
However, the response to a command is nondeterministic: the
SP may or may not transition to a new state. Clearly, it is
possible to model deterministic transitions by specifying a
conditional probability value equal to one. In the general case,
a command needs to be asserted over several time steps to
induce the desired transition. If we assume that the asserted
command does not change, the probability that the SP performs
the transition increases geometrically with the number of time
slices. Thus, the transition time has expected value

(2)

The value of is the average time for transitioning
from state to state , given that the command is issued
at every until the transition is performed.

Each pair is characterized by a performance
and a power consumption . Performance is expressed
in terms of service rate, which is the probability of completing
a request in a time slice, hence, the value ofis .
Zero service rate means that no requests can be serviced and
the SP is not active. Service rate means that a request
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Fig. 2. Markov chain model of the service provider.

is certainly serviced in each time slice. Functionis a general
real-valued function that expresses the power consumption in
arbitrary units (say Watts). The definitions ofand are the
basis for the computation of the cost metrics employed to
evaluate the quality of a policy.

Example 3.1:Consider a SP with two states,
on off . Assume that two commands are defined

on off , with the intuitive meaning of “switch on” and
“switch off,” respectively. When a command is issued, the SP
will move to a new state in the next period with a probability
dependent only on the command, and on the departure and
arrival states. The stochastic matrix can be represented
by two matrices, one for each command. For example

on

on off

on

off

off

on off

on

off

The Markov chain model of the SP is pictorially represented
in Fig. 2. Note that the transition time from off to on when the

on command has been issued is a geometric random variable
with average equal to 1/0.1 10 periods.

Service rate and power consumption can be
represented by two-dimensional tables with one entry for each
state-command pair. For instance

on off

on

off

on off

on

off

In this example, the SP is active only when it is in the on
state and it is not being switched off. Power dissipation is null
in the off state, but switching the resource on or off has a
sizable power cost: the power consumption of the SP during
the switching times (i.e., when the state is on and the command
is off, or when the state is off and the command ison) is
higher than that of the active state.

Definition 3.2: A service requester(SR) is described by a
pair where: i) is a Markov process with
state set s.t. and stochastic
matrix and ii) is a function : IN.

The service requester models the system’s environment as a
Markov chain with states and transition probability matrix

Fig. 3. Markov chain model of the service requester.

. The function represents the number of requests
issued per time slice by the service requester when it is in
state . Intuitively, SR states represent traffic conditions, and
the value gives a quantitative measure of the traffic
generated in each condition. For instance, if , state

represents an environmental condition where no requests
are generated. The Markov process of request generation is
completely autonomous and it does not depend on the behavior
of the system: it represents the external environment over
which the system has no control. Interarrival times have a
geometric, memoryless distribution.

Example 3.2:Consider a SR with two states, and ,
where function is defined as follows: ,
. Since there is a one-to-one correspondence between values

of and SR states, we will use the values ofas names for
the states ( will be called 0, and will be called 1). At
any time only two possibilities are given: either a single
request or no request is received. An example of a stochastic
matrix of SR is

The Markov chain of the SR is shown in Fig. 3. The SR
models a “bursty” workload. There is a high probability (0.85)
of receiving a request during period if a request was
received during period , and the mean duration of a stream
of requests is equal to 1/0.15 6.67 periods.

Remember that, although we have discussed examples of
two-state SR models, the number of states of the model can be
larger than two, and function can take arbitrary integer
values.

Definition 3.3: A service queueis described by a stationary
controllable Markov chain with state set

s.t. , control set and
stochastic matrix .

When service requests arrive during one period, they are
buffered in a queue of length . The queue is in state

when requests are waiting to be serviced. The queue is
bounded: if new requests arrive when its state is , the state
does not change (in this case we say that requests arelost). We
call the queue fullstate, and the queue emptystate.
The conditional probabilities of the SQ are completely
determined by the other system components. The SP controls
how fast the queue is emptied, while the SR controls how fast
the queue is filled. Given the triple we know
(the service rate) and the number of request arrivals. The
probability of servicing an enqueued request (or an incoming
one) is , while the probability that no requests are ser-
viced is . States (queue empty) and (queue
full) are corner cases. If and (i.e., no arrivals),
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