
United States Patent (19)
Rossides

USOO6131085A

11 Patent Number: 6,131,085
(45) Date of Patent: Oct. 10, 2000

54 ANSWER COLLECTION AND RETRIEVAL
SYSTEM GOVERNED BY A PAY-OFF METER

76 Inventor: Michael T Rossides, 3666 Upton St.,
NW., Washington, D.C. 20008

21 Appl. No.: 08/706,762
22 Filed: Aug. 28, 1996

Related U.S. Application Data

63 Continuation-in-part of application No. 08/640,132, Apr. 30,
1996, abandoned, which is a continuation-in-part of appli
cation No. 08/526,497, Sep. 11, 1995, abandoned, which is
a continuation-in-part of application No. 08/389,405, Feb.
16, 1995, abandoned, which is a continuation-in-part of
application No. 08/327.704, Oct. 24, 1994, abandoned,
which is a continuation-in-part of application No. 08/072,
386, May 21, 1993, Pat. No. 5,359,508.

(51) Int. Cl. .. G06F 15/00
52 U.S. Cl. 705/1; 705/400; 707/1;

707/3
58 Field of Search 705/1, 400; 379/112,

379/114, 121, 126; 707/1, 3, 104

56) References Cited

U.S. PATENT DOCUMENTS

4,725,977 2/1988 Izumi et al. 711/115
4,992,940 2/1991 Dworkin ... 705/401
5,247,575 9/1993 Sprague et al. 705/53

(START MODE)
INPUT USERID,
INPUT MODE

REGISTER

CHARGETO

REQUESTOR
ROYALTY TO

SUPPLIER

OUTPUT

DATA

NUMBER OF

TIMES REQUEST
MADEN =

CALCULAE

PAY-OFF

FORMULA - 14

INPUT DATA

REQUEST

OUTPUT b
PAY-OFF ESTMATE C)

4/1995 Shear .. 705/53
9/1999 Nielsen 709/200

5,410,598
5.984,054

Primary Examiner Eric W. Stamber
ASSistant Examiner Jason W. Rhodes

57 ABSTRACT

The invention is a set of processes for improving the
interface of a Self-organizing database. This type of database
Stores both questions and answers. The improved interface
processes enable a user who has found a (first) question in
the database to enter a new (Second) question and label that
second question as “more specific' than the first. When a
user presses an “enter more Specific question' command, the
System enables the user to enter a question and then Stores
the question and labels it as more Specific than the first, and
links the two questions in the database. Then, when any user
has found the first question, the System enables him to "go
to the linked, more specific question by entering a “go to
more specific question' command. Further, when a user has
found a question, the System can present a list of all the more
Specific questions linked to that question. The System also
enables a user to find a first question and then enter a new
(second) question and label it as a Synonym of the first. The
System then links the two questions as Synonyms in its
database. Further, when any user has found a question, the
System can present a list of all the linked “Synonym
questions and can enable the user to “go to a linked
Synonym question by Selecting it.

2 Claims, 54 Drawing Sheets

(SUPPLY MODE)
INPUT DATA

REQUEST

OUTPUT
"DATA IN
DATA-BAS
A READY"

DATAN
DATA-BAS

INPUT DATAO

CORRESPOND
COR

RECTING
DATA

TO REGISTER

ROYALTIES,
STORE USERD

WITH DATA

REQUEST MADE,
N = N + 1

CACULATE

PAYOFF

FORMULA

IPR2020-00686
Apple EX1019 Page 1

U.S. Patent Oct. 10, 2000 Sheet 1 of 54 6,131,085

(START MODE)
INPUT USERID,
INPUT MODE

- 1 FIGURE A-1

(SUPPLY MODE)
REQUEST INPUT DATA

MODE REQUEST 19

OUTPUT
"DATA IN

DATA-BAS
ALREADY"

DATA IN
DATA-BAS

INPUT DATA

REQUEST

REGISTER

CHARGE TO REGISTER TIME

REQUESTOR DATE OF REQUEST
ROYALTY TO

SUPPLIER

COR
RECTING
DATA

OUTPUT
TO REGISTER

ROYALTIES,
STORE USER ID

WITH DATA

REQUEST MADE,
N = N + 1

NUMBER OF

TIMES REQUEST
MADE N =

CALCULATE

PAYOFF

FORMULA

OUTPUT

PAY-OFF ESTIMATE
CALCULATE

PAY-OFF

FORMULA - 4

IPR2020-00686
Apple EX1019 Page 2

U.S. Patent Oct. 10, 2000 Sheet 2 of 54 6,131,085

FIGURE A-2a.
(START MODE)
INPUT USER ID.

INPUT MODE

REGISTER

CHARGE TO

REQUESTOR
ROYALTY TO

SUPPLIER

REQUES
MODE

(REQUEST MODE)
INPUT PRODUCT 31

OUTPUT

PRICE & STOR

THAN ONE

LOWEST LOWEST

35 - REQUESTED MBER OF TIMES
BEFORE REQUEST MADE,

N se N - 1

36 REQUEST MADE.
N = 1 CALCULATE

w - PAYOFF

FORMULA

37 CALCULATE OUTPUT
AY-OFF FORMULA PAY-OFF ESTIMATE

IPR2020-00686
Apple EX1019 Page 3

U.S. Patent Oct. 10, 2000 Sheet 3 of 54 6,131,085

FIGURE A-2b
(SUPPLY MODE)
INPUT PRODUCT - 50

NAME

INPUT STORE 51
AND PRICE

HOLD

PRICE &

STORE DATA

FOR OUTPUT

FIND FIRST
PRICE PRICE LIST

ENTERED

CREATE

LIST

MORE
THAN ONE
LOWEST

PUT STORE

DATA IN LIST

FIND LOWEST

PRICE IN LIST

IPR2020-00686
Apple EX1019 Page 4

U.S. Patent Oct. 10, 2000 Sheet 4 of 54 6,131,085

INPUT QUESTION | 10000

REGISTE GISTER TIME OF 10100
REQUEST

CREATE RECORD FOR
DEMAND INFORMATION
ABOUT OUESTION AND

CORRESPONDING ANSWER

STORE TIME OF
REQUEST AND
SETN= N + 1

QUESTION FOUND

STORE TIME OF REQUEST,
SET NUMBER OF REQUESTS,

N, TO

FIGURE A-3

IPR2020-00686
Apple EX1019 Page 5

U.S. Patent Oct. 10, 2000 Sheet 5 of 54 6,131,085

SHOW PRICE TO
110 - REQUESTOR

REQUESTOR REGISTER REJECTION
111 Q ACCEPTS PRICE OF PRICE

?

REGISTER
113 ACCEPTANCE OF PRICE

114 — ANSWER FOUND

TELL REQUESTOR
THAT ANSWER IS
NOT IN THE SYSTEM

116 - OUTPUT ANSWER

117 | RESEE CALCULATE POE
- 18

FIGURE A-3A 119 - OUTPUT POE

IPR2020-00686
Apple EX1019 Page 6

U.S. Patent Oct. 10, 2000 Sheet 6 of 54 6,131,085

GO 126 N TELL REQUESTOR
THAT ANSWER IS NOT

IN THE SYSTEM

ASK REQUESTOR FOR OFFER

TELL REQUESTOR
THAT ANSWER IS IN

THE SYSTEM REGISTER NON-BNDING
AMOUNT COMMITTEMENT

REQUESTOR ENTERED

SHOW PRICE TO
REQUESTOR

NO

REGISTER
AMOUNT BINDING

REQUESTOR COMMITTEMENT
COMITTS TO ENTERED
PAYENG

REQUESTOR ACCEPTS NO
PRICE

REGISTER
AMOUNT

REQUESTOR EARNEST MONEY
COMTTS TO COMMITTEMENT
PAYING AND ENTERED
REGISTER

OPINION

REGISTER CHARGES

OUTPUT POE (2) FIGURE A-3B our pe

NO

REGISTER
REJECTION
OF PRICE

OPINION
OUTPUT ANSWER ENTERED

REGISTER
ACCEPTANCE OF

PRICE

NO

IPR2020-00686
Apple EX1019 Page 7

U.S. Patent Oct. 10, 2000 Sheet 7 of 54 6,131,085

141

SHOW PRICE TO
REQUESTOR

REQUESTOR ACCEPTS

ANSWER FOUND

145

HAS REQUESTOR
MADE AN OFFER FOR THIS

ANSWER BEFORE

TELL REOUESTOR REGISTER REGISTER
THAT OFFER HAS ACCEPTANCE REJECTION OF
ALREADY BEEN OF PRICE PRICE

REJECTED
147

TELL REQUESTOR 143
144 —- THAT ANSWER IS

NOT IN SYSTEM
148 - REGISTER OFFER

NO TELL REQUESTOR
ACCEPT OFFER THAT OFFER IS NOT

ACCEPTED

REEE THAT THIS UESTOR HAS MADE AN
OUTPUT ANSWER OFFER FOR THIS ANSWER FIGURE

REGISTER CHARGES
AND ROYALTIES CALCULATE POE

OUTPUT POE

IPR2020-00686
Apple EX1019 Page 8

U.S. Patent Oct. 10, 2000 Sheet 8 of 54 6,131,085

HAS REQUESTOR
MADE A PREVIOUS OFFER

FOR THIS ANSWER
THAT HAS BEEN

REJECTED
t

YES

161 162

HAS ENOUGH TELL REQUESTOR TIME PASSED FOR
163 - As EESR REQUESTOR TO MAKE caNS EEDE

ANOTHER OFFER AT THIS TIME

164 REGISTER OFFER

TELL REQUESTOR
THAT ANSWER IS NOT 65 - ANSWER FOUND

IN SYSTEM

TELL REQUESTOR
OFFER NOT
ACCEPTED

SET TIME WHEN THIS
REQUESTOR CAN

OUTPUT ANSWER MAKE ANOTHER
OFFER FOR THIS

ANSWER

REGISTER CHARGES
AND ROYALTIES

FIGURE A-3D OUTPUT POE G2)

CALCULATE POE

IPR2020-00686
Apple EX1019 Page 9

U.S. Patent Oct. 10, 2000 Sheet 9 of 54 6,131,085

1 - INPUT USERD DATA

FIGURE 1
REQUEST

2 - MODE

SELECTED NO (B)
YES

3

10

5
STORE TIME OF
REQUESTAND
SETN= N + 1

REGISTER CHARGE
DUEBY REQUESTOR
AND ROYALTY DUETO

SUPPLIER

CALCULATE POE

9 - OUTPUT POE

STORE TIME OF REQUEST,
SET NUMBER OF REQUESTS,

N, TO OUTPUT
"ANSWER NOT FOUND"

IPR2020-00686
Apple EX1019 Page 10

U.S. Patent Oct. 10, 2000 Sheet 10 0f 54 6,131,085

FIGURE 1A
15 - INPUT QUESTION

17

STORE QUESTION QUESTION FOUNDY - 16

OUTPUT
CREATE DEMAND RECORD AN "ANSWER ALREADY N

FOR QUESTION sWER FOUND SYSTEM"

CORRECT
SELECTED

INPUT ANSWER

INPUT NEW ANSWER -25

STORE ANSWERTO

20 CORRESE THE REPLACE EXISTING
ANSWER WITH NEW - 26

ANSWER

STORE USERD DATA

21- ALSY SER N STORE USER D DATA
ROYALTIES ALONG WITH NEW ANSWER 27

NORDER TO CREDIT
ROYALTIES

STORE REPLACED ANSWER
IN RECORD FOR PAST
ANSWERS TO THE

QUESTION

IPR2020-00686
Apple EX1019 Page 11

U.S. Patent Oct. 10, 2000 Sheet 11 of 54 6,131,085

REQUEST
MODE

SELECTED GA) INPUT USER D DATA

30

GB)
YES

31 — INPUT PRODUCT NAME
38

33
32

NO
STORE PRODUCT NAME

CREATE DEMAND RECORD
FOR QUESTION

STORE TIME OF
RECQUEST AND
SETN= N + 1

QUESTION
(PRODUCT NAME

FOUND

39

FIND LOWEST PRICE PRICE LIST FOUND

NO

sRi E; Es MORE THAN OUTPUT ET NUMBER OF REQUESTS, ONE LOWEST
N, TO PRICE NO PRICES FOUND

40
FIND FIRST PRICE ENTERED

OUTPUT PRICE AND
MERCHANT

REGISTER CHARGE DUE BY
REQUESTOR AND ROYALTY

DUE TO SUPPLIER

FIGURE 2 are (2)

IPR2020-00686
Apple EX1019 Page 12

U.S. Patent Oct. 10, 2000 Sheet 12 of 54 6,131,085

50- INPUT QUESTION Gz)
51
N

52

STORE QUESTION

CREATE DEMAND RECORD
FOR OUESTION

CREATE PRODUCT PRICE
LIST

REPLACE EXISTING
NPUT ANSWER MERCHANT PRICE WITH

SUPPLIERS PRICE

STORE TIME ANSWER WAS
ENTERED

STORE USER D DATA
ALONG WITH ANSWER IN

OUTPUT MESSAGE
"SORRY THAT PRICE HAS
ALREADY BEEN ENTERED

FOR THAT STORE"

NO

ATCHING
MERCHANT
FOUND

DIFFERENT PRICE
FOUND

63 —

57 STORE TIME ANSWER WAS
ENTERED

STORE USER D DATA
58 - ALONG WITH ANSWER IN ORDER TO CREDIT

ORDER TO CREDT ROYALTES
ROYALTES

FIGURE 2A 65-STORE REPLACED ANSWER
N RECORD FOR PREVIOUS

ANSWERS TO THE
QUESTION

IPR2020-00686
Apple EX1019 Page 13

U.S. Patent Oct. 10, 2000 Sheet 13 of 54 6,131,085

CURRENTQ: What's the recipe for toll-house Cookies?

ENTER Q

ENTER
Q-SPECS

ENTER
A-STATS

GET
A-STATS

GO TO O

BUYA

SUPPLY A

FIGURE 3

IPR2020-00686
Apple EX1019 Page 14

U.S. Patent Oct. 10, 2000 Sheet 14 of 54 6,131,085

CURRENTO: What's holding up traffic?

MATCHES 107

G O

GO SCROLL 106

114

PREVIOUS A-STATS 115

C-SPECS NULLO 117

102

SWITCH CURRENT
MODES 113

PREVIOUS 08

OTHER LAST O'S
OPTIONS 109

USER OS 110

SH O W

SUPPLY A O-INFO LNKED 111

SEARCH 100 NEW O Q-SPECS STATS - 118

116

SUPPLY 103 REPHRASE COMP-O STATS 120

119

O S

FIGURE 5.10

IPR2020-00686
Apple EX1019 Page 15

U.S. Patent Oct. 10, 2000 Sheet 15 0f 54 6,131,085

WHAT'S HOLDING UP
TRAFFIC 130 -

Q-RECORD

132

FIGURE 5.11

IPR2020-00686
Apple EX1019 Page 16

U.S. Patent Oct. 10, 2000 Sheet 16 of 54 6,131,085

WHAT'S HOLDING UP
TRAFFIC,
7:00 A.M.

Q-RECORD

142 -

WHAT'S HOLDING UP
TRAFFIC

Q-RECORD

140 —

WHAT'S HOLDING UP
TRAFFIC,
6:00 A.M.

Q-RECORD

141 —

FIGURE 5.12

IPR2020-00686
Apple EX1019 Page 17

U.S. Patent Oct. 10, 2000 Sheet 17 0f 54 6,131,085

MOVIE REVIEW OF
CASABLANCA,

152 — BY G. SISKEL

Q-RECORD

MOVIE REVIEW OF
-------- CASABLANCA 150

Q-RECORD

MOVIE REVIEW OF
CASABLANCA,

151 – BY P. KAEL

Q-RECORD
—

FIGURE 5.13

IPR2020-00686
Apple EX1019 Page 18

U.S. Patent Oct. 10, 2000 Sheet 18 of 54 6,131,085

SHORT BIOOF BETHE
--

GOOD REVIEWS

Q+-RECORD

160

SHORT BIOOF BETHE
')

Q-RECORD

FIGURE 5.14

IPR2020-00686
Apple EX1019 Page 19

U.S. Patent Oct. 10, 2000 Sheet 19 of 54 6,131,085

Q-STRING X

Q-RECORD

170 —

Q-STRING Y

Q-RECORD

- 173 71 -

Q-STRING Z

Q-RECORD

172 -

FIGURE 5.15

IPR2020-00686
Apple EX1019 Page 20

U.S. Patent Oct. 10, 2000 Sheet 20 0f 54 6,131,085

181

182

184 - SHORT BOOF BETHE Q-A A
RECORD - 180 go

Q-RECORD

183

FIGURE 5.16

IPR2020-00686
Apple EX1019 Page 21

U.S. Patent Oct. 10, 2000 Sheet 21 of 54 6,131,085

185

187

SHORT BIOOF BETHE Q-A4
RECORD -186

Q-RECORD

187
Q-A1 187 - RECORD

Q-A2 Q-A3 - REcoRD 187 RED H A 3 186

A
A 2

186 186

FIGURE 5.17

IPR2020-00686
Apple EX1019 Page 22

U.S. Patent Oct. 10, 2000 Sheet 22 of 54 6,131,085

190

TODAY'S WEATHER
RECORD

Q-RECORD

Q-A1
RECORD

A 2 - 191
CURRENT

194 -

193 -

FIGURE 5.18

IPR2020-00686
Apple EX1019 Page 23

U.S. Patent Oct. 10, 2000 Sheet 23 of 54 6,131,085

195

Q- A4
RECORD

SHORT BIOOF BETHE

Q-RECORD

Q-A1 Q-A2 Q-A3
RECORD RECORD RECORD

196

FIGURE 5.19

IPR2020-00686
Apple EX1019 Page 24

U.S. Patent Oct. 10, 2000 Sheet 24 of 54 6,131,085

197

Q-A2 A 2
RECORD CURRENT
- -

TODAY'S WEATHER

Q-RECORD

Q- A
198 RECORD

FIGURE 5.20

IPR2020-00686
Apple EX1019 Page 25

U.S. Patent Oct. 10, 2000 Sheet 25 0f 54 6,131,085

205

Q. A QUICK BIOOF BETHE
RECORD

Q-RECORD

SHORT BIOOF BETHE

Q-RECORD 2

Q. A ACTUAL
RECORD 2 ANSWER 204
/ A

SHORT PROFILE OF BETHE Q-A
RECORD 3

Q-RECORD 3

FIGURE 5.21

IPR2020-00686
Apple EX1019 Page 26

U.S. Patent Oct. 10, 2000 Sheet 26 of 54 6,131,085

SHOW PRICE TO
210 - REQUESTOR

REQUESTOR REGISTER REJECTION
211 Q ACCEPTS PRICE OF PRICE

)

REGISTER
213 ACCEPTANCE OF

PRICE

214 — ANSWER FOUND

TELL REQUESTOR
THAT ANSWERS
NOT IN THE SYSTEM

216 OUTPUT ANSWER

REGISTER CHARGES
217 AND ROYALTES CALCULATE POE

— 218

219 - OUTPUT POE

IPR2020-00686
Apple EX1019 Page 27

U.S. Patent Oct. 10, 2000 Sheet 27 0f 54 6,131,085

GO 226 N

ANSWER FOUND

TELL REQUESTOR
THAT ANSWER IS NOT

INTHE SYSTEM

ASK REQUESTOR FOR OFFER

TELL REQUESTOR
THAT ANSWER IS IN

THE SYSTEM REGISTER NON-BINDING
AMOUNT COMMTMENT

REQUESTOR ENTERED

SHOW PRICE TO
REQUESTOR

NO

REGISTER BINDING
AMOUNT COMMITMENT

COMMITS TO t
PAYING

REQUESTOR ACCEPTS NO

REGISTER
AMOUNT

EYQ, EARNEST MONEY
COMMTMENT

REGISTER PAYING AND ENTERED
ACCEPTANCE OF REGISTER

PRICE AMOUNT OF
NO

REGISTER
REJECTION OPINION

OUTPUT ANSWER OF PRICE REGISTER

NO REGISTER CHARGES

IPR2020-00686
Apple EX1019 Page 28

U.S. Patent Oct. 10, 2000 Sheet 28 of 54 6,131,085

24

SHOW PRICE TO
REQUESTOR

REQUESTOR ACCEPTS

ANSWER FOUND

245

HAS REQUESTOR
MADEAN OFFER FOR THIS

ANSWER BEFORE

TELL REQUESTOR REGISTER REGISTER
N 247 THAT OFFER HAS ACCEPTANCE REJECTION OF

1 ALREADY BEEN OF PRICE PRICE
REJECTED

O

ASK REQUESTOR FOR
OFFER

REGISTER OFFER

NO
ACCEPT OFFER

OUTPUT ANSWER

REGISTER CHARGES
AND ROYALTIES

TELL REQUESTOR 243
244 - THAT ANSWER IS

NOT IN SYSTEM
246

TELL REQUESTOR
THAT OFFER IS NOT

ACCEPTED

REGISTER THAT THIS
REQUESTOR HAS MADE AN
OFFER FOR THIS ANSWER

CALCULATE POE

OUTPUT POE

FIGURE 6C

IPR2020-00686
Apple EX1019 Page 29

U.S. Patent Oct. 10, 2000 Sheet 29 of 54 6,131,085

HAS REQUESTOR
MADE A PREVIOUS OFFER

FOR THIS ANSWER
THAT HAS BEEN

REJECTED
261 262

HAS ENOUGH TELL REQUESTOR TIME PASSED FOR ASK REOUESTOR THAT OFFER
263 - FOR OFFER RESS SE CANNOT BE MADE

AT THIS TIME

264 - REGISTER OFFER

TELL REQUESTOR
265 — ANSWER FOUND THAT ANSWER IS NOT

IN SYSTEM

TELL REQUESTOR
TELL REQUESTOR HOW MUCH TIME

267 - OFFER NOT UNTIL HE CAN MAKE
ACCEPTED ANOTHER OFFER

SET TIME WHEN THIS
REQUESTOR CAN
MAKE ANOTHER
OFFER FOR THIS

ANSWER

CACULATE POE

OUTPUT POE

OUTPUT ANSWER

REGISTER CHARGES
AND ROYALTES

FIGURE 6D

IPR2020-00686
Apple EX1019 Page 30

U.S. Patent Oct. 10, 2000 Sheet 30 0f 54 6,131,085

FIGURE 15

REPHRASE
QUESTION

INPUT FOREIGN
LANGUAGE GUESTION

TRANSLATE OUESTION
NTO ENGLISH

1502 -

STORE TRANSLATED
QUESTION AND
CREATE DEMAND

RECORD

EXACT MATCH
FOUND OUTPUT TRANSLATED

VERSION OF ANSWER
AND POE

TRANSLATE ANSWER
INTO FOREIGN
LANGUAGE

BEST MATCH
FOUND

TRANSLATION
CONFIRMED OUTPUT

POE

REGISTER DEMAND
INFORMATION IN
DEMAND RECORD

ANSWER
FOUND NO

1512

IPR2020-00686
Apple EX1019 Page 31

U.S. Patent Oct. 10, 2000 Sheet 31 of 54 6,131,085

OUTPUT POE FOR
LANGUAGE

VERSION THAT
USER SELECTED

OUTPUT COMBO
POE

OUTPUT HUMAN
VERSION OF ANSWER
N LANGUAGE USER

SELECTED
OUTPUT MACHINE

TRANSLATED VERSION
OF ANSWER

HUMAN
VERSION FOUND IN
LANGUAGE USER

SELECTED

TRANSLATE ANSWER
NTO LANGUAGE
USER SELECTED

ANSWER
FOUND

REGISTER USER'S
DEMAND FOR AN
ANSWER IN THE

SELECTED LANGUAGE

LE USER SELECT
LANGUAGE FOR ANSWER - 1521

(TRANSLATION OF
QUESTION CONFIRMED) FIGURE 15a

IPR2020-00686
Apple EX1019 Page 32

U.S. Patent Oct. 10, 2000 Sheet 32 of 54 6,131,085

2510

CURRENTO: What's the recipe for toll-house Cookies?
GET

2511 MSOS

2512 GET OTHER
Q'S

2513 ES5

2514 ENTERA

NEW
2515 LABEL

| LINK 2516 - | TOOL

2517 – ZIP TO Q POE: S2.25

2518 REPHRASE

2519. ENTER SUB-MENUS
NEW Q

2520 - | STOP

Figure 25

IPR2020-00686
Apple EX1019 Page 33

U.S. Patent Oct. 10, 2000 Sheet 33 of 54 6,131,085

GET A CURRENTO: What's the recipe for toll-house Cookies?

GET
MS-O'S

GEg:R Restr MS-Q: What's the recipe for toll-house Cookies with Walnuts?

Restr MS-Q: What's the recipe for toll-house Cookies with macadamia nuts? ENTER
2622- MS-C)

--- MS-Q: How do you make toll-house COOkies without burning the bottoms?
ENTERA

MS-Q: What's the recipe for making toll house Cookies Come Out chewy?

MS-Q: What's the official recipe for toll-house Cookies?

2621 - ZIP TO O
| AVERAGEPOE:

S2.25

ENTER RESTRICTED UNRESTRICTED

REPHRASE

NEW Q MS-O TO BE ENTERED IS

STOP
2623

Figure 26

IPR2020-00686
Apple EX1019 Page 34

U.S. Patent Oct. 10, 2000 Sheet 34 of 54 6,131,085

USER

RECIPE FOR
TOLL-HOUSE DIRECT ANSWER - 2731

2730 - - COOKIES TO Q

(Q)

RECIPE FOR

2732 - SSE DIRECT ANSWER COOKIES WITH

INDIRECT ANSWER
(MS-Q) TO Q

FIGURE 27

IPR2020-00686
Apple EX1019 Page 35

U.S. Patent Oct. 10, 2000 Sheet 35 0f 54 6,131,085

DIRECT ANSWER
TO MS-O

INDIRECT ANSWER
TO Q

RECIPE FOR
TOLL-HOUSE
COOKES 2

(Q)

- 2741

RECIPE FOR
TOLL-HOUSE
COOKES AS
WRITTEN ON A
NESTLE BAG?

(MS-Q)

— 2740

RECIPE FOR
TOLL-HOUSE
COOKIES WITH DIRECT ANSWER

TO MS-O
Ns. INDIRECT ANSWER

TO Q

FIGURE 27A

IPR2020-00686
Apple EX1019 Page 36

U.S. Patent Oct. 10, 2000 Sheet 36 of 54 6,131,085

2860 G2) YES GA) 2850 /
"NEW

QUESTION"
SELECTED

"REPHRASE"
SELECTED

"STOP"
SELECTED

2862

GR) REGISTER THAT NEXT OUESTION
ENTERED IS AREPHRASING OF THE
PREVIOUS QUESTION ENTERED

INPUT QUESTION
NO

FIGURE 28 EXACT MATCH
FOUND

YES

QUESTION ENTERED =
SELECTED QUESTION

STORE QUESTION,
CREATE DEMAND RECORD

BEST MATCH
FOUND

OUTPUT BEST MATCH — 2857

MATCH QUESTION =
SELECTED QUESTION

YES

QUESTION ENTERED -
2856 SELECTED QUESTION

BEST MATCH
SELECTED

NO

IPR2020-00686
Apple EX1019 Page 37

U.S. Patent Oct. 10, 2000 Sheet 37 of 54 6,131,085

FIGURE 28A
2870 2874
N

l REGISTER OUTPUT ANSWER,
5SE DEMAND E), EHARGESER INFORMATION CREDT SUPPLIER

OUTPUT
"NO ANSWER FOUND"

ARE MS-O'S
LINKED TO SELECTED

QUESTION
OUTPUT

DIRECTLY LINKED
MS-O' S

NO

OUTPUT
"NOMS-O'S FOUND"

ARE ANY
MS-O'S

ON SCREEN

SELECTED MS-O
= SELECTED
QUESTION

"ZIP TO"

SELECTED
INPUT MS-Q
SELECTION

STORE QUESTION
AS ANMS-Q OF

SELECTED
QUESTION

CREATE DEMAND
RECORD FOR NEW

QUESTION

"ENTER

SELECTED

"ENTER
ANSWER"
SELECTED

IPR2020-00686
Apple EX1019 Page 38

U.S. Patent Oct. 10, 2000 Sheet 38 0f 54 6,131,085

FIGURE 28B

2890

INPUT ANSWER

ISA DIRECT
ANSWER TO

SELECTED OUESTION
N DATA-BASE

i)

"DIRECT
ANSWER"
SELECTED

STORE ANSWER AS THE
DIRECT ANSWER OF
SELECTED QUESTION OUTPUT MESSAGE THAT

ANSWER IS IN DATA-BASE

"INDIRECT
ANSWER"
SELECTED

REGISTER USERD DATA
WITH ANSWER IN ORDER
TO CREDIT ROYALTIES

INPUT NEW QUESTION

STORE NEW OUESTION AS AN
MS-Q OF

SELECTED QUESTION,
NEW QUESTION = LATEST MS-C

STORE THAT ANSWER AS
THE DIRECT ANSWER OF

LATEST MS-O 2896 -

2897

HAS THE USER
ENTERED AN ANSWER

TO THE SELECTED QUESTION
OR TO AN MS-Q
OF THE SELECTED

QUESTION

DOES THE USER
WANT THE LAST ANSWER
HE ENTERED TO ALSO

ANSWER THE
LATEST MS-Q

380

STORE ANSWER AS
THE DIRECT ANSWER

OR THE
LATEST MS-Q

INPUT ANSWER
2898

IPR2020-00686
Apple EX1019 Page 39

U.S. Patent Oct. 10, 2000 Sheet 39 0f 54 6,131,085

"GETMS-QS"SELECTED)

RESTRICTED MS-Q
SELECTED

ARE ARE RESTRICTED
MS-O'S LINKED TO MSS NEP TO

SELECTED QUESTION
QUESTIO)

OUTPUT
"NO RESTRICTED
MS-O'S FOUND"

YES YES
OUTPUT

"NOMS-OS FOUND"

OUTPUT MS-QS
OUTPUT

RESTRICTED MS-O'S

FIGURE 29

IPR2020-00686
Apple EX1019 Page 40

U.S. Patent Oct. 10, 2000 Sheet 40 of 54 6,131,085

ENTER MS-Q"
SELECTED)

2911

INPUT OUESTION INPUT QUESTION RESTRICTED MS-Q
SELECTED

STORE QUESTION STORE QUESTION
AS A CREATE DEMAND AS AN

RESTRICTED RECORD FOR NEW UNRESTRICTED
MS-O OF SELECTED QUESTION MS-O OF SELECTED

QUESTION QUESTION

FIGURE 29A

IPR2020-00686
Apple EX1019 Page 41

U.S. Patent Oct. 10, 2000 Sheet 41 of 54 6,131,085

WHAT'S BMS
3020 PHONE NUMBER

(Q)

FIGURE 30

IPR2020-00686
Apple EX1019 Page 42

U.S. Patent Oct. 10, 2000 Sheet 42 of 54 6,131,085

WHAT'S IBM'S FORTECH
NUMBER 3023 SUPPORT

(MS-Q1)

WHAT'S IBM'S
PHONE NUMBER

3022 - (Q)

WHAT'S A 1-800
NUMBER FOR IBM?

(MS-Q2)
3024 —

FIGURE 30A

IPR2020-00686
Apple EX1019 Page 43

U.S. Patent Oct. 10, 2000 Sheet 43 of 54 6,131,085

FORTECH
SUPPORT?
(MS-Q1)

FOR INKJETS?
(MS-Q1A)

3028 - - 3029

WHAT'S IBM'S WHAT'S IBM'S
3025 - PHONE NUMBER2 TOLL-FREE

(Q) NUMBER, FOR
NKJETTECH
SUPPORT
(MS-Q3)

800-333-4444

- 3026
WHAT'S A 1-800

3030 - NUMBER FOR IBM?
(MS-Q2)

FIGURE 30B

IPR2020-00686
Apple EX1019 Page 44

U.S. Patent Oct. 10, 2000 Sheet 44 of 54 6,131,085

WHAT'S IBM'S
NUMBER

FOR TECH
SUPPORT
(MS-Q1)

FOR NKJETS?
(MS-Q1A)

WHAT'S IBM'S
TOLL-FREE
NUMBER, FOR
NKJETTECH
SUPPORT
(MS-Q3)

WHAT'S IBM'S
PHONE NUMBER2

(Q)

800-333-4444

WHAT'S A 1-800
3040 NUMBER FORBM?

(MS-Q2)

3O41 / \ 3045
N 3043

FOR LAPTOP
COMPLAINTS AND
SUGGESTIONS

FOR LAPTOP
PRODUCT

INFORMATION?
(MS-Q2A) (MS-Q2B)

800-490-0987 800-123-4569

3042 3044 3046

FOR LAPTOP TECH
SUPPORT
(MS-Q2C)

IPR2020-00686
Apple EX1019 Page 45

U.S. Patent Oct. 10, 2000 Sheet 45 of 54 6,131,085

FORTECH
SUPPORT
(MS-Q)

3053- FOR INKJETS?
(MS-Q1A)

WHAT'S IBM'S
TOLL-FREE
NUMBER, FOR
INKJETTECH
SUPPORT?
(MS-Q3)

WHAT'S IBM'S
PHONE NUMBER

(Q)

WHAT'S IBM'S 1-800
NUMBER FOR TECH

SUPPORT?
(MS-Q1B &
MS-Q2D)

WHAT'S A 1-800
NUMBER FOR IBM

(MS-Q2)
3054 - — 3050

FOR LAPTOP FOR LAPTOP
PRODUCT COMPLAINTS AND FOR LAPTOP TECH

INFORMATION? SUGGESTIONS SUPPORT - 3052

FIGURE 3OD

(MS-Q2B) (MS-Q2A)

800-490-0987 800-23-4569

IPR2020-00686
Apple EX1019 Page 46

U.S. Patent Oct. 10, 2000 Sheet 46 of 54 6,131,085

-5001

5000 - -

5002

5004

5003 - - - 5005

FIGURE 32

IPR2020-00686
Apple EX1019 Page 47

U.S. Patent Oct. 10, 2000 Sheet 47 0f 54 6,131,085

5010

N O-1
A-1 WHAT’S THE UV

INDEX TODAY IN
MIAM?

8-5017 8 N

| SYN
5016 8 8

5011

O-2
A-2 HOW BAD ARE

THE UV RAYS IN
MIAM TODAY?

01 - 5018 01 LC

5015 .7
A 5012

Q-3
WEATHER

REPORT FOR
MAM?

1-5019 1
A LS

5014 9 9

G-4 / Natial FIGURE 33
WEATHER

SERVICE REPORT,
MIAM?

IPR2020-00686
Apple EX1019 Page 48

U.S. Patent Oct. 10, 2000 Sheet 48 of 54 6,131,085

s 5032

GO-GO GO GO
5030

G) as (E)
5036 5035

FIGURE 34

IPR2020-00686
Apple EX1019 Page 49

U.S. Patent Oct. 10, 2000 Sheet 49 of 54 6,131,085

O-1 Q-2 Q-3 NATIONAL WEATHER UV INDEX,
SERVICE, UV REPORT, SOUTH BEACH, MIAM? BROABASEPOB S

MIAM? MIAM?

O-X
WHAT'S THE UV INDEX
TODAY IN MAM?

FIGURE 35

IPR2020-00686
Apple EX1019 Page 50

U.S. Patent Oct. 10, 2000 Sheet 50 0f 54 6,131,085

NATIONAL
WEATHER SERVICE

FIGURE 36 REPORT, MAMI.
100 WORDS.
PRICES.O1 5053

ACTUAL ACTUAL
ANSWER MS ANSWER

5058 NATIONAL NATIONAL
WEATHER SERVICE NATIONAL WEATHER SERVICE
REPORT, MIAMI. MS-LS WEATHER SERVICE LS-MS REPORT, MIAM.
5 MINUTE WIDEO? REPORT, MAMI? 500 WORDS.?

P PRICES.05
Rii. 11:30 PM

5055

5052 5054

MS
... - 5057
LS

505

MIAM WEATHER2 WEATREPORT MAM'S WEATHER
REX sts SYN-SYN

5056

SYN-SYN SYN-SYN

WEATHER, MIAMI? WEATHER REPORT
FOR MAM

IPR2020-00686
Apple EX1019 Page 51

U.S. Patent Oct. 10, 2000 Sheet 51 of 54 6,131,085

FIGURE 37

IPR2020-00686
Apple EX1019 Page 52

U.S. Patent Oct. 10, 2000 Sheet 52 0f 54 6,131,085

- 5204

FIGURE 38

IPR2020-00686
Apple EX1019 Page 53

U.S. Patent Oct. 10, 2000 Sheet 53 of 54 6,131,085

A

CURRENTQ: What's the recipe for toll-house Cookies?
LABEL

MS-O'S

LS-O'S

SYN-O'S

MC-O'S

LC-O'S

REL-Q'S

REPH-O'S
-
-
PAST O'S SPACE FOR SUB-MENU

NEW O REPHRASE - 5475

GET ENTER ZIP TO LINK POE stop

MATCHES

Figure 40

IPR2020-00686
Apple EX1019 Page 54

U.S. Patent Oct. 10, 2000

NATIONAL
WEATHER SERVICE

FIGURE 41 REPORT, MIAMI,
100 WORDS?
PRICES.01
SSSSSS

ACTUAL
ANSWER

MS

LS

NATIONAL
WEATHER SERVICE NATIONAL
REPORT, MIAMI, MS-LS WEATHER SERVICE
5 MINUTE WIDEO REPORT, MAMI?

PRICES.60

SSSSSS SSSSSS

MS

LS

MIAM WEATHER WEATHER REPORT,
MAM?

SYN-SYN
SSSSSS SSSSSS

SYN.SYN

WEATHER, MIAMI?

Sheet 54 of 54

SYN.SYN

SYN-SYN

5500 - -

- 5501

LS-MS

6,131,085

ACTUAL
ANSWER

NATIONAL WEATHER
SERVICE REPORT,

500 WORDS?
PRICES.05

SSSSSS

MAM'S WEATHER

SSSSSS

WEATHER REPORT
FOR MAMI?
SSSSSS

IPR2020-00686
Apple EX1019 Page 55

6,131,085
1

ANSWER COLLECTION AND RETRIEVAL
SYSTEM GOVERNED BY A PAY-OFF METER

CROSS-REFERENCE

This application (hereinafter referred to as CIP 5) is a
continuation-in-part of application Ser. No. 08/640,132
(hereinafter referred to as CIP 4), filed Apr. 30, 1996, now
abandoned, which is a continuation-in-part of application
Ser. No. 08/526,497 (hereinafter referred to as CIP3), filed
Sep. 11, 1995, now abandoned, which is a continuation-in
part of application Ser. No. 08/389,405 (hereinafter referred
to as CIP 2), filed Feb. 16, 1995, now abandoned, which is
a continuation-in-part of application Ser. No. 08/327,704
(hereinafter referred to as CIP 1), filed Oct. 24, 1994, now
abandoned, which is a continuation in part of application
Ser. No. 08/072,386, filed May 21, 1993 now U.S. Pat. No.
5,359,508 issued Oct. 25, 1994.

BACKGROUND

1. Field of Invention

This invention relates to a fee Supported database System
for community use.

2. The Prior Art

The primary prior art is U.S. Pat. No. 5,359,508, which
describes a new type of online database System. The System
disclosed in this patent provides an economic Solution to two
critical problems of online data bases: what answers (data)
to collect and how to collect them. The Solution of the
invention is to estimate the reward for Supplying a given
answer, and then report this reward to users who might be in
a position to Supply the answer. The estimate is based on
how many people request the answer. Basically, the System
tells users, “Hey, enter this answer and I project you will
make X amount of money.” Then, if the answer is Supplied
and used, those who used it are charged and the Supplier is
paid. This Sequence can be viewed as a Sort of economic
feedback loop, and the System can be viewed as an economy
where the products are answers. The point is not to Sum
marize the original patent, but to Say that it is a pioneer type
patent that takes a sharp departure from previous approaches
to data base System design.

The main goal of this patent was to describe the basic loop
of this answer economy. The loop can be built upon. CIP 1
added new matter in three areas. First, it described a new
feature for displaying the pay-off estimates of certain kinds
of answers. Second, it described the collection of more
information about the demand for an answer, particularly
price information. Third, it described a form of the invention
in which the System does not actually collect and output
answers but collects and outputs information about the
answers, including reference information telling where the
answers can be found.
CIP 2 added more new matter, the most important being

an interface and data Storage procedure that lets people
“talk” to the System in natural language.
CIP3 added new matter including procedures for entering

and displaying questions and answers, for registering
demand for answers, and for granting property rights to
USCS.

CIP 3 was also a rewrite of CIP 2 in order make the
reading easier and better explain how the System could be
adapted to collect and Sell a wide variety of answers. In the
rewrite Several terms were changed in the interest of clari
fying concepts. For example, in CIP 2 the term data request
was often used for question. And the term data was often

15

25

35

40

45

50

55

60

65

2
used for answer. CIP 3 kept more to the natural terms,
question and answer. While the shift is Semantic, rather than
essential, there are reasons for avoiding the term data.
Thinking about questions and answers is more natural than
thinking about data-requests and data. We know a lot about
questions and answers. We know that most questions are
ambiguous. We know that Some answers are permanent and
Some are not. We know that credibility counts. We know that
people make mistakes when asking questions and giving
answers. We know that many questions and answers are
improvable. We know that the meaning of questions is
Subject to interpretation. We know that certain answers are
mere Suggestions while others are nearly certain facts. We
know a lot more than this.

It's not a Surprise that we know these things because
questions and answers are what we use to communicate with
each other and find out about the World. And So a System that
lets us use these naturally can be a boon. That is what the
invention is designed to do; it is an economic System that
provides answers in response to questions. Thus, the change
in terminology clarifies things and Signifies a break from
traditional data base Systems which, of course, emphasize
data.

While all the key methods and functions of the U.S. Pat.
No. 5,359,508, CIP 1 and CIP 2 remain in CIP3, large parts
of the CIP 2 are copied in an appendix, for legal reasons of
maintaining disclosure continuity for priority purposes.
Some of the “additional functions' described in CIP 2 are
Superseded by functions in CIP3. Most all remain but are
improved or elaborated on.

CIP4, takes up where CIP3 left off, mainly by continuing
to describe how the System can handle natural language.

This application, CIP 5, takes up where CIP 4 left off,
adding new material about how the System can handle
natural language (Chapter 26). It adds material concerning
quality control (Chapter 13), translation (Chapters 15 and
27) and the pay-off meter (Chapters 9 and 25).
Book Form, With Missing Chapters

This application is written in the form of three books. In
order to adapt the invention to handle a wide variety of
questions and answers, numerous features can be added to
the basic System. These are conveniently explained in chap
terS.

Book I concerns the basic System and features that can be
added to it. Book II concerns adapting the basic System to
handle natural language questions and answers. The books
are incomplete though. Many chapters are left unwritten.
Others that are written can be expanded. Thus, while a table
of contents is given, the reader will find Several chapters
missing.

Future continuing applications are planned that will
expand both Books I and II. It should be noted that in many
instances in Book I, we say things like, "as will be seen in
Book II,” or “this topic will be taken up in Book II.” Often,
those parts of Book II have yet to be written or expanded. We
make these Statements in this application because we intend
to fill in those parts in a future application.
Book III concerns adapting the System to handle a variety

of jobs.

SUMMARY OF THE INVENTION

The invention is an online System for collecting and
Selling answers. The System charges users who receive
answers and pays users who Supply those answers. The key
to the system is a feedback mechanism, called the Pay-off
Meter, that tells users what the estimated royalty value is for

IPR2020-00686
Apple EX1019 Page 56

6,131,085
3

Supplying a given answer. The Pay-off Meter keeps track of
the rate of requests for an answer and from this rate projects
an estimate of future Sales of the answer if the answer is
supplied. From this estimate of sales the Pay-off Meter
calculates the projected royalties the answer will generate.
Usually, the more requests in a period of time the greater the
projected pay-off.
One crucial feature of the System is that the projected

pay-off is shown to requestors of an answer. The beauty is
that, if the answer is not in the System, a requestor may have
to find the answer anyway elsewhere. To collect the pay-off,
a requestor then has only to “call the System back and input
the answer. A Sensitive feedback loop is created Such that the
more an answer is requested the more likely, on average, it
will be Supplied by a requestor or by Someone a requestor
tells of the pay-off. Moreover, this pay-off is an incentive to
correct or update faulty answers.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 shows a flow chart of the basic system.
FIG. 2 shows the flow chart of the Request Mode of a

lowest price locator.
FIG. 2A shows the flow chart of the Supply Mode of a

lowest price locator.
FIGS. 3 shows part of a question display menu.
FIG. 5.10 shows a another view of a question display
CU.

FIG. 5.11 shows a question location.
FIG. 5.12 shows a question location and question speci

fiers.

FIG. 5.13 shows form linked question locations.
FIG. 5.14 shows a Q+ leading to a question location.
FIG. 5.15 shows three question locations with the same

missing answer.
FIG. 5.16 shows a question location with an actual
SWC.

FIG. 5.17 shows multiple Q-A-locations as part of a
question location.

FIG. 5.18 shows a question location with a current and a
past answer.

FIG. 5.19 shows two links between Q-A-locations.
FIG. 5.20 shows a link between Q-A-locations.
FIG. 5.21 shows multiple Q-A-locations for the same

actual answer.

FIG. 6a shows a flow chart of steps for gathering of
information on what users are willing to pay for given
SWCS.

FIG. 6b shows another set of steps for gathering of
information on what users are willing to pay for given
SWCS.

FIG. 6c shows another set of steps for gathering of
information on what users are willing to pay for given
SWCS.

FIG. 6d shows another set of steps for gathering of
information on what users are willing to pay for given
SWCS.

FIG. 15 shows a flow chart of steps for a multi-lingual
System.

FIG. 15a shows a flow chart of steps for registering
requests for answers in Specific languages.

FIG. 25 shows a basic menu for a system that includes
More Specific Questions.

15

25

35

40

45

50

55

60

65

4
FIG. 26 shows another basic menu for a system that

includes More Specific Questions.
FIGS. 27 and 27a show how a direct answer might be

relabelled.

FIGS. 28-28b show a flow chart of steps for a system with
More Specific Questions.

FIGS. 29 and 29a show additional steps for getting and
entering More Specific Questions.

FIGS. 30–30d show diagrams of steps for creating ques
tion and answer nets using More Specific Questions.

FIG. 32 shows diagrams of basic Steps for growing
question networks.

FIG. 33 shows a diagram of the probabilities associated
with Semantic linkS.

FIG. 34 shows a match path in portion of a question
network.

FIG.35 shows three questions that can be traveled to from
a fourth question.

FIG. 36 shows linked match choices for a question.
FIG. 37 shows a path for finding an actual answer in a

question network.
FIG.38 shows demand information in a question network.
FIG. 40 shows a part of a menu for making links between

questions.
FIG. 41 shows a question network with economic aspects

illustrated.

APPENDIX FIGURES

FIG. A-1 shows a flow chart of the basic system.
FIG. A-2a shows a flow chart of the Request Mode of a

lowest price locator.
FIG. A-2b shows a flow chart of the Supply Mode of a

lowest price locator.
FIG. A-3a shows a flow chart of steps for gathering of

information on what users are willing to pay for given
SWCS.

FIG. A-3b shows another set of steps for gathering of
information on what users are willing to pay for given
SWCS.

FIG. A-3c shows another set of steps for gathering of
information on what users are willing to pay for given
SWCS.

FIG. A-3d shows another set of steps for gathering of
information on what users are willing to pay for given
SWCS.

DESCRIPTION OF THE INVENTION

INTRODUCTION
Goal of the Invention
The goal of the invention is Straight out of Science fiction.

It is to make a computer System that will answer any
question posed to it. Of course this goal will not be reached,
but why not? What's the problem? Well, there are lots of
problems. But is there a main problem?

Yes. The problem is, to find answers requires labor. One
may pose a question fairly easily, but Someone has to expend
effort to find the answer.
Now certain questions may be meaningless, Such as, Do

blobs have livers?. Certain questions have answers that are
not very Suitable to put in a computer, Such as, What does a
hamburger taste like?. And certain questions may be imprac
tical to answer, Such as, How many grains of Sand are there

IPR2020-00686
Apple EX1019 Page 57

6,131,085
S

exactly on the Earth'?. The universe of Such questions Seems
far vaster than the universe of questions whose answers can
be found and put into a computer. That is beside the point
though. There is a great universe of questions whose
answers are conveyable by computer, provided people can
and want to make the effort to find those answers and then
enter them.

Even the labor involved in entering answers can be a
crucial obstacle. For example, there currently is no good,
central, international directory of phone numbers or E-mail
addresses. Why not? People know their own numbers and
addresses. The information is simple. Why not enter it into
Some central data base? The cost seems Small, yet it is
enough to prevent the formation of just Such a central
directory.
And So, we see that the main thing Stopping us from

having our Science fiction computer is the labor required to
find (and Sometimes enter) the answers.
How then do we get the answers in? In general, to get

people to expend their labor, we must pay. So how does the
System get answers in Well, it pays for them.

But with an infinity of questions and answers, which
answers does it pay for and how does it decide how much to
pay?
Which Answers? That Depends on the Questions

The System is designed to Store answers that users ask for.
The way people ask for answers is by posing questions. So
the process begins with questions not answers. Thus the
invention is not just a System that Stores answers and outputs
them in response to questions, it is a System that Stores the
questions themselves. It might be called a question base, as
well as an answer base.
When we say that the process begins with questions we

mean that the first Step to getting an answer into the System
is for a user to enter the corresponding question. For
example, a user might enter What is Leona's telephone
number?. If the question has not been asked before, the
question is Stored. Presuming Leona's number is eventually
entered, it will be Stored to correspond to the question.
How Much to Pay?

Still, how much should the system pay for answers that
have been requested?

Well, the payment offer must be economically sensible,
meaning that the income that the answer generates should
equal or exceed the amount paid to get the answer. In other
words, the System should not pay more for an answer than
it will receive from users who find that answer.
An Agent and a Market

But the system cannot know in advance how much will be
paid for an answer and So the System does not actually buy
answers. It lets users who provide the answers take the risk
that the answers will be bought. Then it pays these Suppliers
royalties on actual Sales. Thus the System acts as an agent
and a market, but not as a middleman who buys an answer
and then resells it. How much does the system pay then? It
pays a share of Sales.
Now the System can also act as an owner of answers. Once

the Supplier of an answer is paid off, the System may take
ownership. And the System may also act as a trustee, putting
an answer in the public domain. The System may or may not
charge for answers in the public domain.
Projecting Sales, the Critical Thing
So the key idea is to try to find out how much buyers are

Willing to pay, in total, for a given answer. The System must
try to project the total Sales of an answer in order to give the
Supplier a realistic idea of how much he will get for
Supplying the answer.

15

25

35

40

45

50

55

60

65

6
Therefore, the critical thing the invention does is estimate

the sales that an answer will have. The invention does not
solve this problem perfectly but well enough to serve in a
broad number of cases. (AS will be seen later, because of the
difficulty of estimating Sales, the invention may not neces
Sarily give a Sales estimate. It may only give demand
information so users can estimate the Sales themselves).
Among other things, the invention registers how many

users are interested in an answer, when they are interested,
how much they are willing to pay, and other demand
information. Then it converts this information into a pro
jection of total Sales. From this Sales estimate the System can
then estimate the reward, the royalties, a person will get for
finding and entering the answer into the System.
We call this estimate the Pay-off Estimate (POE) because

it signifies the pay-off for Supplying an answer. The POE is
a projection of income though, not a guaranteed offer. The
System payS royalties on the actual income generated. For
example, let's assume that 40 people a week request the
Smithsonian's general information number and that that
telephone number is not yet in the system. From this weekly
tally of requests the System might estimate that there will be
2,000 requests a year, and the system outputs a POE based
on that estimate. Then let's Say a user Supplies the telephone
number and that the actual tally of requests is 2,500. Further
let’s say that the system charges 10 cents for the Smithso
nian's number. Then the total income is S250 for the year.
The supplier would get a share of that. But if by chance the
Smithsonian's number changed immediately after the Sup
plier entered it, the Supplier would probably get nothing (the
payment depends on the rules that apply).
We give the name Pay-off Meter to this machine imple

mented process that outputs a POE. We use the term “meter
because the process is like that of any meter. For example,
a meter that measures electricity usage collects information
about the flow of electricity through a line. Then, using
mechanical or algorithmic means, it converts this informa
tion into a number. And then it displays the number. The
number provides useful feedback about the electricity usage.
Likewise, the Pay-off Meter collects information about an
answer, converts this information into a number and, dis
plays the number, which provides useful feedback about the
answer. In this case, the number tells the projected reward
for providing the answer.
A Crucial Trick

But who should the POE be shown to? The system cannot
broadcast the POE to all users because most every one
would be uninterested. Who then to show it to?

Here we come to another crucial trick of the invention.
The system shows the reward to the requesters themselves of
the given answer. Requestors have the greatest interest in
finding the answer, and are often in the best position to find
it or to tell others who may be able to find it. For example,
if Someone asks for a phone number that is not in the System,
she would see (or hear) the POE for that phone number. As
mentioned, to collect the pay-off, any requestor has only to
“call” the system back and enter the answer.
To See the feedback loop created, pretend one users asks,

What is the boiling point of jello? and is willing to pay 5
cents for the answer. The System might announce a projected
pay-off of, Say, 4 cents for providing the answer. Given this
Small pay-off prospect, the answer may not be Supplied. But
if fifty people have the same question, each willing to pay a
nickel, then the pay-off estimate may be, say, S2.00. Given
this higher pay-off prospect the answer will probably have a
higher chance of being Supplied. (And might also, in
general, cost less per person.)

IPR2020-00686
Apple EX1019 Page 58

6,131,085
7

Of course, this reasoning does not hold for all answers.
For example, everyone on the planet may want to know how
to cure all cancers and Stop all wars, but that does not mean
that there is a good chance that the answers will be provided.

In general, if people are willing to pay more in total than
the cost of finding and entering an answer, then there is a
reasonable chance that the answer will be found and entered.
That's why the System can be called a Self organizing data
base.

It can also be considered a Self-correcting database in the
Sense that users are also rewarded for correcting, updating,
adding to, and otherwise improving answers that are in the
System.

The system is “Governed by a Pay-off Meter” in the sense
that the System's essential feedback mechanism is the part
that produces a pay-off estimate, the Signal that tells which
answers are worth finding and entering. The term governed
is used because it is reminiscent of the Watt governor, the
critical feedback mechanism of the Watt Steam engine.
A New Name

In U.S. Pat. No. 5,359,508, and CIP’s 1 & 2 the invention
was called a Self Organizing Data Base and abbreviated as
SODB and sometimes SOD. While that name is still apt,
from here on the invention will be named AC instead. Why?
Because it's easier to say than “SODB' and because it pays
tribute to Isaac Asimov, who told the tale of AC, a computer
that answered every question (in the story The Last
Question).
The Range of the System'?
What is the range of questions and answers that AC can

accommodate? No one can Say because questions are gen
eral tools for probing the world, both the real world and the
World of abstractions. What is the range of the real and
abstract world? It is too broad to understand, no less
describe. All the inventor can Say is that the System can be
adapted to handle most of the types of questions we ask each
other.

These types include questions that call for answers that
are true, answers that are guesses, answers that contain
probability estimates, answers that are Suggestions, answers
that are opinions, answers that require audio or visual
information, answers that are a few characters long, answers
that are volumes long, and So on. To give just a handful of
examples, questions like: What is Lincoln's Birthday?, What
is the best way to make a toll-house chocolate chip cookie?,
What might be the directions to the nearest 7-112, What is
the best guess as to who will win the next Presidential
election', Who is the best candidate?, Was Joan of Arc
framed?, What is the text of Moby Dick’?, How do you
change a tire, a Video tutorial please?, How do you cure
leukemia'?, Why is the top quark So heavy?, What's a picture
of an arterial plaque’?, How about an atheroma'?, What is the
definition of entropy'?.
Variety of Possible Features

These examples can only hint at the range of questions
and answers we commonly use. To handle Such a range,
many problems need to be overcome. There is no single
Solution to these problems. And So the System can include
numerous features for handling the wide variety of questions
and answers that we deal with.
AS an analogy, we can think of the wide variety of Systems

that people have come up with for Selling products: from
vegetable Stands, to vending machines, to grocery Stores, to
department Stores, to catalogues, to movie theaters, to travel
agencies, to auction houses, to brokerages, to Stock markets,
and on and on. All these have certain essential elements in
common: a product, two parties, and a payment. There is

15

25

35

40

45

50

55

60

65

8
great variety because the variety of products is great. All
kinds of agreements and descriptions of the products can be
added to the Selling Situation, for example, advertising,
product guarantees, deposits, anti-theft penalties, product
reviews, package labeling and more, of course.

Likewise with answers as products. Because the variety of
answers is great, a System for Selling the answers can include
a variety of different features. And So, the invention can be
Seen as a basic System that can have many options added to
it, depending on the particular type of answers involved and
the needs of users.
Menu and Sub-Menu Approach
We will describe numerous useful features that the inven

tion can include. After the basic System is described, we will
often show these options in a menu form, though given
implementations of the System may not include an actual
menu. We present them this way for clarity's sake, to show
what the users can do, what the invention does for users, and
how it does it. Which options a designer chooses to include
in an actual implementation depends on the application. The
variety is simply too great to Say that there is a preferred
embodiment.

For convenience, we show the options as they could, in a
limited way, appear on a screen display (the illustrations are
crude and are meant to get the key ideas across). We do not
show Voice input and output means, though we realize that
these means are very useful. Some of the options disclosed
are not Suited to Voice output.
The goal then is to describe the key StepS and functions

that the invention can include. Numerous modifications and
adaptations will be apparent to those skilled in the art
without departing from the Spirit and Scope of the present
invention.
Notes on Style
The description will include colloquial expressions that,

hopefully, will make the description clearer. AC will often be
referred to anthropomorphically, though it is understood that
AC is a computer System that must include computer based
means for executing its tasks.

Thus, when we Say, for instance, that AC does Something,
we mean that AC includes functions for performing that
Something. These functions are readily implementable by
persons skilled in the art. When we say that AC asks the user
to do Something we mean that AC prompts the user in Some
way to enter information. When we say AC enables the user
to do Something, we mean that AC includes means for
enabling to the user to do that Something. Again, these
means are readily implementable by perSons skilled in the
art. When we say the user does Something, we also mean that
AC includes functions for enabling the user to do that
Something. And So on and So forth. The essential parts of
these means will be described, unless those parts are obvious
to perSons Skilled in the art. The aim, of course, is to describe
what is new.

Part I

The Basic System
Chapter 1

The Necessary Functions
Below are basic explanations of the functions that the

System requires. By function we mean a set of Steps that the
System's computing means execute. Another term we will
use for a set of StepS is a procedure.

The explanations below are not comprehensive. They get
the main ideas acroSS but most concern Subjects that can be

IPR2020-00686
Apple EX1019 Page 59

6,131,085

delved into at length. Several of the subjects will be dis
cussed in more detail as the need arises to Show how AC can
be adapted to collect and Sell a wide variety of answers.

Some Definitions and Comments

Question: A Set of information corresponding to another
Set of information called the answer.

Answer: A Set of information corresponding to another Set
of information called the question.

Rules Concerning the Correspondence Between Ques
tions and Answers: There really is no Such thing as the
correspondence. When we say correspondence we may be
referring to many things, most of which we don’t understand
well, if at all. For our purposes right now, we will be
referring briefly to two senses of the word. One, there is a
correspondence between questions and answers inside AC.
AC includes internal rules, embodied in functions, for
Storing answers to correspond to questions, for finding
answers in response to questions and, for Outputting answers
in response to questions. Two, there is a correspondence in
the minds of users. For AC to Succeed, users must under
Stand what is considered a Satisfactory answer to a question
and what answers can replace other answers. And So AC
must have external meta-rules that define what answers
Satisfy questions. No Set of rules, internal or external, will
perfectly define what answer best Satisfies a question, which
means that disputes can arise. These can be mediated by a
System Manager. (The correspondence rules for questions
and answers are fundamental in designing given implemen
tations of AC, therefore this issue is discussed further in
Several places in the description (see chapters 4 and 5).

Sub-Answer: Depending on the correspondence rules of a
particular AC, the System may enable users to enter answers
that can be called Sub-answers in the Sense that they are used
in combination with other answers to form another answer.
For example, if the question is, Who are the major Steel
producers in the US., different users may Supply the names
of different Steelmakers and these Sub-answers can be com
bined into a list of Steelmakers.

Request: A question entered by a requestor who wants to
buy the corresponding answer. (Classifying requests can be
tricky, see chapter 6).

Answer-Use: When AC uses an answer, especially when
AC charges for the use.

Classifying Questions and Answers: There are potentially
infinite types of answers and answer uses. Presuming AC
collects different types of answers and enables different
types of answer-uses, it must distinguish between them for
the purpose of registering demand information and charges
and royalties. For example the use of t may be given a
different royalty value than the use of the date of Lincoln's
birth or the use of a passage from Shakespeare. Moreover,
the use of a Sequence of TL in a formula may be classified
differently than the answer to the question, What is the value
of at to ten decimal places. The classification possibilities
are infinite.

Request Mode: The procedure AC executes to register
demand information for answers, and to provide answers
and/or Pay-off estimates to users. A user Selects Request
Mode in order to find an answer or express interest in an
answer. The user enters (or Selects) a question. If the
question is new, AC Stores it. If the question is already in the
System, entering it causes AC to Search for the correspond
ing answer. If the answer is not found, a Pay-off Estimate is
outputted. If the answer is found, the answer is outputted
along with the Pay-off estimate and a Charge is registered to

15

25

35

40

45

50

55

60

65

10
the user. (Depending on the implementation of the System,
the user may have to confirm that he wants an answer before
AC outputs it). Whether the answer is in AC or not, AC
registers demand information about the answer.

Supply Mode: The procedure AC executes to allow users
to enter answers. User identification data is registered along
with an answer So that the user can be credited with royalties
each time the answer is used. Most simply, in Supply mode
a user enters (or Selects) a question and AC then enables the
user to enter a corresponding answer. If the question itself is
new to the System, AC first Stores the question.

(Note: the term mode is used as a convenient way to
describe separate paths of Steps. It is not meant to have any
Special, technical connotations beyond that. The System can
enable users to Switch easily between modes, with a single
command.)

Requestor: User who accesses request mode Seeking an
answer. The requestor normally owes a charge if the answer
is found and outputted.

Supplier: User who accesses Supply mode to enter an
answer. The Supplier gets paid a royalty each time the
answer is used as determined by the royalty rules of AC.

User Record: The user record is where AC stores various
information about a user, including at minimum, payment
information. AC can Store a wide variety of information
about a user's use of the System.

Charge: The amount owed by a requestor who receives an
answer from AC.

Charge Rules: The rules, embodied in functions, that
determine the amount an answer will cost a requestor.

Royalty: The amount owed to a Supplier of an answer for
the use of the answer.

Royalty Rules: The rules, embodied in functions, that
determine the amount due to a Supplier of an answer each
time that answer is used (either outputted to a requestor or
processed to yield another answer).

Payments Register: The function AC executes to register
payments owed by requestors and payments due Suppliers.
When an answer is outputted, AC registers who is owed a
royalty and who owes a charge. The payments due depend
on the charge and royalty rules of AC. The point of the
register is not that it is a distinct Storage entity necessarily
but that the System must have Steps for registering charges
and royalties. Payment records can be kept in user account
files and in the Demand Record for an answer, as well as in
a credit record for an answer. AC also has it own account
where the System's books are kept.

Pay-off Meter (POM): The POM is the function that is the
heart of AC. The POM has three aspects: Demand Records,
the Pay-off Formula and the Input Signal.

1) Demand Records (D-record). A D-record is kept for
each answer in AC. The D-Record, as the name implies,
is where AC stores demand information about the
answer. The information in the D-Record can be quite
varied. At the least, a D-record will store the number of
requests for an answer, the times of those requests, and
the actual Sales, if any, of the answer. Because an
answer often will not be in AC, the D-record for an
answer actually corresponds to a question. The ques
tion then corresponds to the given answer. So demand
information about an answer is actually Stored under
the question that corresponds to the answer. (If an
answer answers multiple questions, there can be a
different D-record for each question). The D-record can
thus be looked at as the D-record for a question. The

IPR2020-00686
Apple EX1019 Page 60

6,131,085
11

process of collecting demand information under a ques
tion may seem Straightforward. What is not necessarily
Straightforward, is what answer corresponds to the
question.

2) The Pay-off Formula (POF). The information in the
D-record for an answer is plugged into the POF for that
answer. The POF calculates a Pay-off Estimate (POE)
of the income a user will get for entering the answer.
The POF can be highly varied.

3) Input Signal (I-Signal). The I-Signal is a name for the
Step(s) of outputting the POE and, if necessary, out
putting instructions on how to enter an answer.

The POM works most simply when AC's answers are
Stored under questions and AC can find the answers by
Simple lookup. For example, a requestor may enter the
question, What is Lincoln's date of birth'?. AC will do a
lookup. If the question is not in AC, AC will store it and
create a D-record for it. Initially, the answer will not be in
AC. Each time the question is entered, AC will register the
request in the D-record for that question. AC will also
register the time of each request So that the rate of requests
over time can be calculated. This demand information will
be fed into the POF to yield the POE. The I-Signal can
output this POE to every requestor. Since answers are listed
under questions, the I-Signal need not tell what answer
needs inputting nor how to input it. It is assumed that
requesters implicitly know that to enter an answer they
Simply access Supply Mode, enter the question, and then
enter the answer. Once the answer is entered, AC continues
to collect demand information in the D-record because the
answer may need correcting or improving. The POM thus
also provides requesters with the POE for correcting the
SWC.

Aspects of the POM functions are discussed a little more
below.
Demand Record. As mentioned, the D-record for an

answer is Stored under the question that corresponds to that
answer. However, Since the correspondence between ques
tions and answerS is often unclear and unpredictable, the
answer that the D-record applies to may be unclear. Thus, as
mentioned, AC will include rules for dealing with the
relationship between questions and answers, in order to
make the demand information more reliable. We will give a
Short example to illustrate the trickiness of questions and
SWCS.

ASSume the question entered by a requestoris, What Store
has the lowest price on Sony Camcorder #12392. Say there
are 1,000 requests. Now it may be that ten stores have the
same lowest price. What then is the demand for the name of
a given store? That depends on how AC classifies the
answer. AC will have default assumptions built into it to
limit the size and number of answers outputted. For
example, AC may have a rule that only the first Store with
the lowest price can be outputted as the answer. This Store
becomes the answer and all royalties go to the Supplier of
this Store's name. Therefore, all other Stores, even though
they have the same lowest price are only potential answers
(the first store may change its price So that another store
takes its place).
On the other hand, AC can have a rule, for example, that

all Stores with the same price are equally part of the answer
So the answer then has ten components. The demand rate for
the Store with the lowest price can then, for example, be
divided by the number of components to arrive at a demand
rate for each component.
And So the information in the D-record applies to the

answers that the System outputs and charges for, but that in

15

25

35

40

45

50

55

60

65

12
turn depends on the internal and external correspondence
rules of the System.

These issues will be discussed in various parts of the
description, especially in chapters 4 and 5 and in various
chapters of Book II.

(Note: CIP 1 used the term “Demand Meter” to name the
parts of the POM that keep track of demand information and
calculate a “demand rate.” Here we use the term demand
record to name the part where demand information is Stored.
AS for the part that calculates a demand rate, we now
incorporate that into the POF).

Pay-off Formula (POF). The POF is the function that
calculates a Pay-off Estimate (POE) for a given answer. The
POF projects future sales for an answer based on the demand
it has had in the past. Thus two variables are critical: the
number of times the answer has been requested and, the
times those requests took place. Based on the rate of requests
for an answer the POF estimates how many future requests
the answer will have. The POF factors in the price of the
answer and the royalty rate to arrive at the POE. There are,
of course, many other factors that can be used as well.

Like any equation for a projection, the Pay-off formula
can be infinitely diverse based on historical data and other
factors. For example, the formula could include a histori
cally based assumption of when demand for an answer
would end. The POF may contain estimates based on
answers that are similar to a given answer. Also, the POF
must have an arbitrary value for the POE when an answer
has been requested Zero times or one time. This value could
be an amount or simply a message, “You are the first to ask
this question.”

There will be multiple POF's applied to different types of
answers. There may even be multiple POFS for a single
answer. These could give different types of POE's, for
example a conservative POE or an optimistic POE.
Not only can the POF be infinitely variable but the

information it yields can be of different types. Ideally the
POF would yield a reliable cash POE. But that is not always
practical for given answers. And so the POF might only
process information in the D-record to come up with infor
mation that can help users arrive at their own POE’s. In
given ACs, the POF may allow users to manipulate different
factors, Such as the price of an answer, in order to arrive at
a POE.

I-Signal. The I-Signal is the function that is the output part
of the POM, the signal that tells requesters what answer is
needed, what the value is of Supplying it and how to Supply
it. When a requestor requests an answer not in AC, AC
outputs the POE. When a requestor requests an answer that
is in AC, AC outputs the answer and the POE for correcting,
updating or improving it. (The POE may be outputted only
upon request rather than automatically). Usually, the answer
needed is implicit from the question asked, though special
input rules or restrictions may apply that the user is not
aware of.
The I-Signal can include many other features for giving

users POE information. For example, the I-Signal may
include an alert function whereby a user can “ask” to be told
if the POE for an answer rises above a threshold amount.
The I-Signal can then send an alert to the user's E-mailbox
if the threshold is exceeded.

Chapter 2
The Elements and Procedure for a Basic AC

AC Hardware Elements
AC is an online network of computers with terminals that

feed into a central computing unit that Stores and processes

IPR2020-00686
Apple EX1019 Page 61

6,131,085
13

questions, answers and other information of the kind
described above. When we say “central computing unit' we
mean that users communicate with the same body of data,
though that data may be physically located in different
places. The terminals can be a variety of types from tele
phones to Supercomputers. The network includes
E-mailboxes for users.
AC Procedure

FIGS. 1 and 1a show the procedure that a basic AC
follows, as explained below.
Start

User enters identification data, AC Stores it 1.
User enter Supply or request command 2, AC accesses the

appropriate mode.
Request Mode

Requestor enters a question, AC
inputs 3 the question and
checks 4 if the question is already in memory,
If the question is not in memory, AC
Stores 5 the question,
creates 6 a demand record for the question,
Sets 7 the request tally in the demand record to one and,
registers 7 the time of the request in the demand record,
calculates 8 the POE using the POF,
outputs 9 the POE.

If the question is in memory, AC
adds 10 one to the request tally,
registers 10 the time of the request in the demand record,
checkS 11 if the corresponding answer is in memory,

If the answer is in memory, AC
outputs 12 the answer,
registerS 13 a payment due by the requestor,
registerS 13 a royalty due to the Supplier,
calculates the POE using the POF,
outputs the POE.

If the answer is not in memory, AC
outputs 14 a message Saying the answer is not in the

System,
calculates the POE using the POF,
outputs the POE.

Supply Mode
Supplier enters a question, AC
inputs 15 the question,
checks 16 if the question is already in memory,
If the question is not in memory, AC
Stores 17 the question,
creates 18 a demand record for the question,
inputs 19 the answer,
Stores 20 the answer to correspond to the question,
stores 21 the Supplier's ID data with the answer, in order

to credit royalties.

If the question is in memory, AC
checkS 22 whether the corresponding answer is in
memory,
If the answer is not in memory, AC
inputs 19 the answer,
Stores 20 the answer to correspond to the question,
stores 21 the Supplier's ID data with the answer, in

order to credit royalties.
If the answer is in memory, AC

1O

15

25

35

40

45

50

55

60

65

14
outputS 23 a message Saying the answer is already in

the System,
If the Supplier enters a command 24 to correct the

answer, AC
inputs 25 the Supplier's answer,
replaces 26 the current answer with the Supplier's

anSWer,
stores 27 the Supplier's ID data with the new answer,

in order to credit royalties,
Stores 28 the replaced answer, along with informa

tion Stored specifically for that answer, in a record
for past answers to the question.

This procedure is the basic loop of AC. AC can include
many other useful sets of steps (functions). Before describ
ing Some of them, an embodiment is described, a Self-filling
telephone directory (the SFTD). Then an embodiment is
described that does more than just look up answers under
questions.
A Self-Filling Telephone Directory

1. The SFTD includes a list of names and corresponding
telephone numbers, a computer for Storing the list and
functions for inputting information into the list, outputting
information from the list and looking up information in the
list.

2. The SFTD also has a sign-on function that allows users
to identify themselves for billing and payment purposes. The
SFTD Stores this ID data.

3. Users access the SFTD by terminal connected to the
SFTD central computer. The SFTD enables users to choose
Request mode or Supply Mode.
Request Mode

4. Using the Request mode, a requestor accesses the
SFTD list by entering a name (a question). The SFTD inputs
the question and the does a lookup to see if it has a telephone
number corresponding to the name.

5. If the SFTD has a number corresponding to the name,
it outputs the number and registers the charge due by the
requestor and the royalty due to the Supplier. One is added
to the POM tally of requests, the time of the request is
registered, and a new POE is calculated and outputted along
with the number.

6. If the SFTD does not have a number corresponding to
the name, it:

a) it registers the time of the request,
b) it checks if the request has already been Stored in the
POM register,
b1) if not, it sets the request tally to 1, Stores the request

and defaults the POE to the message “Insufficient
Data to Estimate Pay-off.”

b2) if the request is already stored, the POM advances
the request tally by one and then calculates the POE
using the POF,

c) outputs the POE.
Supply Mode

7. Using the Supply Mode, a supplier accesses the SFTD
list by entering a name (a question). The SFTD does a
lookup to See if the name is in the list.

8. If the name is not in the list, the SFTD stores it in the
list and then allows the supplier to enter the number. The
SFTD stores the number to correspond to the name and
stores the Supplier's ID data along with the number in order
to credit royalties.

9. If the name is in the list, the SFTD does a lookup to see
if there is a corresponding telephone number. If there is no
corresponding number, the SFTD stores it in the list and then
allows the Supplier to enter the number and Stores the
Supplier's ID data along with the number in order to credit
royalties.

IPR2020-00686
Apple EX1019 Page 62

6,131,085
15

9. If there is a corresponding number already in the list,
the SFTD outputs a message, “Number is already in direc
tory.” If the number needs correcting, the Supplier then
enters the command, CORRECT. The SFTD then allows the
supplier to enter the number. The SFTD stores the number
to correspond to the question, to the name that is, and also
stores the Supplier's ID data with the number, in order to
credit royalties. The SFTD also stores the previous number
and previous Supplier ID data in a record of past numbers.
A Lowest Price Locator

Let uS look at another embodiment, a lowest price locator,
as shown in FIGS. 2-2a.

1. A lowest price locator (LPL) is an AC that includes a
central computer for Storing a list of product names
(questions) and merchants and prices (answers). An LPL
includes a network of terminals from which users can enter
questions and answers. The central computer includes func
tions for creating price lists, looking up answers in the list
and processing answers in the list and, outputting answers
from the list.

2. The LPL has a sign-on function 30 and a Request and
Supply mode.
Request Mode

3. Using the Request mode, a requestor enters a product
name. The LPL inputs 31 the question and checks 32 to see
if the question is already Stored.

If the question is not stored, LPL
stores 33 it,
creates 34 a demand record for it,
sets 35 the number of requests to one,
registers 35 the time of the request,
calculates 36 the POE (which in this case would normally

result in a message Such as, “You are the first person to
ask for a price on this product”) and, outputs 37 the
POE.

If the question is stored, LPL
adds 38 one to the number of request,
registers 38 the time of the request and
checks 39 to see if the corresponding price is in memory.

If there is no price in memory, LPL outputs 40 “No
Prices Found”, and calculates and outputs the POE.

If there is a list of prices and merchants under the
product name, LPL checks 41 for the lowest price.
If more than one merchant has the same lowest price,
LPL finds 42 the merchant whose lowest price was
entered first and outputs 43 that merchant's name
and the price.

If there is only one lowest price, LPL outputs 43 the
name of the Single lowest priced merchant and the
price.

LPL then registers 44 the charge owed by the requestor
and the royalty owed the Supplier. It then calculates
and outputs the POE.

Supply Mode
4. Using Supply Mode, a Supplier enters a product name

(question) into the LPL. The LPL inputs 50 the question and
checkS 51 to see if the question is already Stored.

5. If the question is not stored, LPL
stores 52 it,
creates 53 a demand record for it,
creates 54 a price list for the product,
enables the Supplier to enter a merchant and price

(answer) into the list,
inputs 55 the answer,

15

25

35

40

45

50

55

60

65

16
stores 56 the answer in the list to correspond to the

question,
stores 57 the time the answer is entered and

stores 58 the Supplier's ID data in order to credit royalties.
6. If the question is already stored, LPL
enables the Supplier to enter a merchant and price

(answer) into the list,
inputs the answer,
checks 59 to see if the merchant entered matches any

merchant in the list,
If the merchant does not match any merchants in the

list, LPL
stores 56 the merchant and price in the list,
stores 57 the time the price is entered,
and stores 58 the Supplier's ID data along with the

answer in order to credit royalties.
If the merchant does match a merchant in the list, LPL

checks 60 to see if the price entered is the same as the
existing price,
if the price is the same, outputS 61 a message that the

price has already been entered,
if the price is different, puts the Supplier's price in the

list in place 62 of the price stored with the match
ing merchant,

stores 63 the time the price is entered,
and stores 64 the Supplier's ID data along with the

answer in order to credit royalties,
Stores 65 the displaced price, along with other infor

mation Stored Specifically for that price, in a
record for past prices.

The Option of Having an Answer Delivered When It Comes
In

Rather than have a user constantly checking AC to find
out if an answer is in the System, AC can enable the user to
“place an order” in the Sense that if an answer is not in the
System, it can be delivered when it arrives. A simple way is
Sending the answer to the user's E-mailbox, though there are
other places the message can be posted. However, Since the
requestor is paying for an answer, it is usually better to Send
a message alerting the user that the answer is in and asking
him if he still wants it. If the requestor responds “yes” then
the answer is Sent and a charge and royalty are registered. AS
will be seen in chapter 6, a user can place various types of
orders, involving various commitments.
AS will be seen, many different types of messages can be

Sent to a user's E-mail box.

Part II

Adapting the System to Collect and Sell a Wide
Range of Answers

In part II we describe ways that AC, as Seen in part I, can
be adapted to collect and Sell a wide range of answers. Core
principles that guide the design of any adaptation are laid out
in chapter 3. In Saying that the System is made to collect
answers we do not forget questions, for no answer can be
collected without a corresponding question being asked, and
Stored, first. Answers must correspond to questions in AC.
Before discussing this issue, we discuss, in chapter 4, how
questions and answers correspond to each other in the minds
of people. We need to do this to see the problems involved
in trying to create a workable correspondence in AC. Then
in chapter 5, we describe basic ways that questions and
answers can correspond to each other in AC.

In chapters 6 through 18, we elaborate on the Pay-off
Meter and other functions described in Part I, showing how

IPR2020-00686
Apple EX1019 Page 63

6,131,085
17

these functions can be adapted to Suit a variety of questions
and answers. We also introduce new functions, Such as those
for Setting prices and for registering people's interest in
Supplying answers.

However, we wait until Book II to describe how the
System can be adapted to handle the kinds of questions we
normally ask each other, questions in everyday language that
is. The functions described in book I are necessary for
building a System that can accommodate a wide range of
answers, but these functions are not Sufficient for building a
System that allows users to ask natural language questions.
Lands of AC
AC can be a big system with various ways of handling

questions and answers. The System can have numerous
Sub-AC's where different rules and functions apply. We call
these Sub-ACS lands. For example, one land might be a
lowest price locator where questions and answers are
entered in a strictly defined form. Another land might be an
encyclopedia where all answers are under 100 words long
and cost five cents. Another land might be a photo album
where all the answers are photos. The point is, AC does not
necessarily have one Set of rules that applies to all questions
and answers in the System.
Most Rules Are Inherently Variable

Throughout the description we will be discussing numer
ous kinds of rules that AC requires. Most of these are highly
variable. For example, AC requires royalty rules, and these
can, of course, vary widely. ACS rules determine what kind
of functions and formulas AC has, So these in turn can vary.
AS another example, formulas for calculating royalties and
functions for registering royalties can vary depending on the
royalty rules.
Evolution of Rules and Formulas
While AC requires various kinds of rules and formulas,

their specific forms cannot be given Satisfactorily. Not only
are the Specific forms design decisions, but no designer can
tell what is best in advance. He or she can only guess.

However, a System designer can Set concrete goals for the
rules and formulas and can conduct tests. The pay-off
formula provides the best example because it has the clearest
goal: to provide accurate projections of royalty income.
Thus a designer can test to see how accurate a given formula
is over a Series of answers. There will be numerous pay-off
formulas designed for different circumstances, and there will
be numerous kinds of Statistics that can be developed about
user behavior. All these can be tested against the goal of
accurate projections. Thus the formulas can evolve.
AC's matching rules are another example. AC matches

questions that users enter with questions already in AC.
Users confirm whether the matches are Satisfactory or not.
Thus, designers can Strive to increase the rate of Satisfactory
matches.

Rules for property rights provide another key example.
The goals here are vague though, and So designers must
choose what to test for. Despite the vagueness, devising
measures and tests is possible and thus, rules for property
rights can evolve as well. In fact this testing is the only
alternative concerning most rules and formulas, because
Situations are diverse and experience is Scant.

It is also possible to do auto-variation, in the Spirit of
genetic algorithms, where AC itself makes variations in the
formulas. Because AC can become quite large, there can be
enough answers and enough time to conduct Such tests.

Thus when we say that AC's rules and formulas are
variable we mean it in two Senses: one, designers can come
up with different rules that suit different situations; and two,
designers usually cannot come up with the best rules and

15

25

35

40

45

50

55

60

65

18
formulas but must test their guesses and let the rules and
formulas evolve.
Testing Device, a Laboratory
Not well appreciated is the great need for a device that

enables people to test the effects of rules on the economy.
AC is both a device and a real economy. AS Such, it

provides means for testing rules under real conditions in a
variety of circumstances. Rules tested in AC can then be
tried in the larger economy. And So AC can also be thought
of as a testing apparatus, an economic laboratory.

For example, it allows us to test property rights. Property
rights, including royalty rules, are feasible to test because an
experimenter can See various effects of changing property
rights. These effects can range from whether answers are
provided or not, to the Speed with which answers are
provided, to the price of answers, to the number of people
who have tried to Supply answers, and more.
Further Notes on Style

For convenience, we will often use ReX to represent a
requestor and Sue to represent a Supplier.

Also for convenience, example questions are usually kept
Short, though in practice questions can be quite long.
When we say that AC includes a given option, we also

mean that AC includes the necessary functions for carrying
out the purpose of the option.
When we say “enter a command, we mean that the user

activates an option. And when we Say AC “includes a
command, we usually mean that it includes the correspond
ing option.

“Ouestion' will often be abbreviated as “O'” when it is
preceded by certain names, for example, a “Current-Q.”

Chapter 3

Core Design Principles

Before describing various ways questions and answers
can correspond to each other in AC and various types of
functions that can be added to the basic system, we will first
Step back and describe eight core principles that guide the
design of any AC.

Principle 1

AC is a Marketplace for Answers and Potential
AnSWerS

AC is a medium that enables people to ask for and offer
to pay for answers. It is a medium that enables people to
Supply those answers. It is a medium that enables people to
find and pay for answers that have been Supplied. It is a
medium that payS Suppliers of answers a percentage of the
Sales of those answers. In other words, it is a marketplace for
SWCS.

It is more than a conventional marketplace though
because it enables people to offer to pay for answers that do
not yet exist in the marketplace. And it enables people to
evaluate whether providing these answers will pay enough
to be profitable. Thus it is also a marketplace for potential
SWCS.

Principle 2

The Organizing Goal is to Make Good Sales
Forecasts

Every AC will have the same organizing goal in the Sense
that the Success of the System depends on the goal being
achieved and in the Sense that many of the System's func

IPR2020-00686
Apple EX1019 Page 64

6,131,085
19

tions are designed to achieve the goal. The goal is to give the
user a good guess as to the income She will receive for
Supplying a given answer. Another way of putting it is that
the goal is to arrive at a good guess of the total Sales that an
answer will have once the answer is in the System. From
these sales the supplier's share (the POE) is easily calculated
according to the royalty rules. The royalty rules may be
complicated, but generally the calculation is simple and the
real task is to come up with a good Sales estimate from which
the royalty estimate is taken. So the organizing goal is to
arrive at good Sales forecasts for answers.

Principle 3

The Foundation Task is to Count How Many
People Want an Answer

The goal of good Sales forecasts leads to what we might
call the foundation task of the system. The foundation task
is to count all the people who want to buy a given answer.
(These people include those who actually do buy). It is from
this count that AC builds an estimate of the future sales of
that answer.

There are, of course, many other variables that are critical
to making a Sales estimate. For example, the prices at which
people are willing to buy are key. Nevertheless, functions for
gathering information on other Sales variables are not central
to the design of AC. By contrast, many of the key functions
and rules of AC are designed for counting how many people
want given answers.

Counting how many people want an answer is tricky for
many reasons and can lead to a variety of different features
being included in the system. Above all, counting is tricky
because identifying which answers are wanted is tricky. This
trickineSS will be discussed later.

For now let's point out one problem that is not about
identifying answers. The problem is that people must offer
to buy an answer at Some particular time. Different people
will make offers at different times. So when we say that AC
must count how many people want an answer that is
misleading, for the count can only be based on past offers,
there is no Such thing as counting exactly how many people
want an answer in the present or future. That is just one
limitation of any effort to forecast Sales.

Principle 4

Questions Identify and Represent Answers
In order to count how many people want an answer, the

answer must be identified. Actually, answers have to be
identified for more reasons than that. Having emphasized the
pay-off estimate aspect of AC, let us not forget that AC is a
System where people request answers, find answers and
Supply answers. To do all these things the answers must be
identified. The way answers are identified is with questions.
We don't normally think of questions that way. If we think

about the matter at all, we think of questions as “asking” for
answers. But asking for an answer means describing, iden
tifying the answer. With questions we can ask for (identify)
a great range of answers: facts, guesses, predictions,
Solutions, inventions, explanations, Suggestions, treatises,
opinions, critiques, and on and on.

Because they are how we identify answers, questions are
central to how AC works:

People identify the answer they want by entering a
question.

1O

15

25

35

40

45

50

55

60

65

20
People identify the answer they have Supplied by entering

a question.
AC identifies where an answer is with a question. (This

means that a perSon can find an answer by entering a
corresponding question.)

And AC identifies which answers people want according
to what questions people enter. (This means that AC
collects information about an answer under the corre
Sponding question).

Of course the way humans use questions is different from
the way AC uses questions, and that can be confusing. For
humans, a question is a Statement in human language that
describes an answer. For AC, a question is a question String,
a set of Search parameters, and instructions for finding an
SWC.

Once a question is entered into AC and Stored, AC creates
a question record (Q-record). AC registers various informa
tion in this record that it gathers from users who enter the
question. This information is about the answer that the
question corresponds to. The question record can contain
many Sub-records, the most important of these being the
demand record.
Thus the question identifies not only an answer but also

information that describes the answer. In other words, AC
uses a question String to create a location in memory for
information about the answer.
We might Say that a question represents an answer

because this term gets the plan acroSS. If no answer has been
Supplied, the question represents what we call a potential
answer or a missing answer.

(That does not mean that there is only one possible
answer. We can use the plurals, potential answers and
missing answers. Singular or plural in this case is really a
matter of taste, for there is no good existing term for the idea
of a potential answer).

If an answer has been Supplied, we call the answer an
actual answer. If there is an actual answer, the question
represents that answer and any potential improvements or
changes in the answer. So even if there is an actual answer,
the question Still represents potential answers.

(Now, if more than one answer in AC is identified directly
by a question, the answers need to be distinguished. They
can be distinguished by information that is distinct to each
of them. Thus, each actual answer will have a separate
record that includes information unique to that answer. We
call Such a record a Q-A record because it is identified by the
question and by information about an actual answer).

If more than one question corresponds to an answer, AC
collects information in each Q-record and can combine that
information.

If more than one answer corresponds to a question, the
information in the Q-record can apply to the multiple
answers. The principle remains, questions are used to rep
reSent anSWerS.

In AC, as perhaps in reality, there is no Such thing as an
answer without a question.

Principle 5
Question String Information Can Be Conveniently

Split Into Two Kinds
AS discussed above, a question String (Q-String) repre

Sents and describes an answer. It is what a requestor enters
to describe the answer he wants, and what a Supplier enters
to describe the answer she provides. An example is: What's
the treatment for first degree burns?
While questions are, on average, shorter than answers,

they can vary considerably in length. A Q-String can be

IPR2020-00686
Apple EX1019 Page 65

6,131,085
21

anywhere from as short as a name to as long as a book.
Naturally, few questions will be that long but common
questions often do involve paragraphs of description when
people describe situations in detail. For example, a requestor
who has just been burned might ask,
What's the treatment for a first degree burn when you've
been burned with water coming out of an espreSSO machine
and the burn is on the back of your hand and you don't have
any bandages around and you're not Sure how hot the water
was and you See ablister Starting to form and the blister is
about a quarter the size of a dime and it hurts like hell and
it's been five minutes Since you were burned . . .
Two Kinds of Question String Information
AC can divide question String information into two kinds

called the main question String (main String) and the ques
tion specifiers (Q-specs). Q-specs are not mandatory and in
certain lands of AC there may be no Such thing as Q-specs,
only main Strings.

Usually, when we say question String or question we will
mean the combination of these two kinds of information.
However, if there are no Q-Specs, then a question simply
refers to the main String.
Question Specifiers (Q-Specs)
AC can enable both requestors and Suppliers to enter

question Specifiers. Specifiers can be thought of as Standard
adjectives that modify the main String and thereby further
describe an answer. They are part of the overall question
String but are distinguished from the main String. They are
distinct entities in memory in the Sense that they are part of
the question String but have their own place in memory, as
does the main String. There are a few reasons for Separating
Q-Specs.

First, it is helpful to have a set of standard specifiers that
can be used Separately from the main String. For example, a
user may enter the main String, A Biography of Hans Bethe'?.
The user may then specify, under 500 words. Thus the user
can fiddle with the main question by adding and Subtracting
Specifiers.

Second, Specifiers contain Standard information that can
apply to wide ranges of main questions. For example, the
length of an answer is a Standard Specifier. By contrast, the
information in the main Strings can vary tremendously.

Third, specifiers really are like adjectives. Without the
Subject, the main String, they are practically meaningless. A
perSon can ask to See a sleek plane but a perSon cannot ask
to See a sleek. Likewise, a person can ask for A Biography
of Hans Bethe, but cannot ask for under 500 words.
AC can enable users to create their own Standard Speci

fiers. Below is a partial list of the key Q-specs AC can enable
uSerS to enter:

Type of Question. AC can include certain basic types of
questions. These direct AC to do different things. They are
described in chapter 5.

Land of the Question. AS noted, AC can have numerous
sub-parts which we call lands. Each land has different
characteristics in the Sense that the questions and answers
conform to certain rules.

Subject. An answer might be about a certain Subject area
and this can be specified in advance. For example, the
employees of a company might ask various questions having
to do with the company. All these questions can be specified
by the name of the company.

Place. An answer might be about a certain “local”
Situation, and So a location specifier can be useful. For
example, a question might be about a particular traffic jam,
which can be specified by a given location. However, the
idea of location is broader than just geography; it is the
general idea of place.

5

15

25

35

40

45

50

55

60

65

22
Time. A user may specify various time aspects of an

answer. For example, the time that a question is asked might
matter. For instance, the time that a question about a traffic
jam is entered can be key. Likewise, the time of the answer
is found can be key. Obviously, time, like place, is a
fundamental Specifier.

Format of the Answer. A user may specify the format of
an answer: text, audio, Video or multi-media.

Length of the Answer. A user may specify the length of an
answer by word count or by time.

Price of the Answer. A user may specify the price category
of an answer.

Language of the Answer. A user may specify the original
language of an answer.
The Supplier of the Answer. A user may specify the

Supplier of an answer.
The Source(s) of the Answer. A user may specify the

Source(s) of an answer.
Quality. A user may specify certain quality aspects of an

answer. This is discussed in chapter 13 on quality control.
It is important to note that the main String might Specify

all these things. Standard Specifiers are not mandatory; they
are just a useful feature.

Principle 6

AC can Collect, Process and Display Lots of
Information about Answers

We don't normally think of an answer as a product, like
a TV, yet in AC that is what an answer is from the point of
view of requestors. We don't normally think of an answer as
an investment, an income producing property, like an office
building, yet in AC that is what an answer is, from the point
of View of Suppliers.
Thus AC collects, processes and displayS all kinds of

product and investment information about an answer. This
includes information about demand, projected income,
price, quality, property rights, Supplier competition, alterna
tive answers, and more. In each of these broad areas, AC can
collect lots of Specific pieces of information. For example, in
the area of the quality of an answer, AC can register the
primary Source of the answer, probability estimates of the
answer being true, reviews of the answer, and more. What
and how much information is registered, processed and
displayed depends on the answer and can vary.
We will call all the information that is registered question

information (Q-info). And we will call the information that
AC displays about the answer, answer statistics (A-stats).
AC uses the Q-info to come up with A-Stats. In Some cases
the information will be the same in the sense that AC will not
process a given piece of Q-info but just display it as an
A-stat. The Q-info is normally stored in the Q-record.
Now it may seem Strange that the information registered

is called question information when it is Supposed to be
about an answer. However, this term is reasonable for
Several reasons.

One, the information is registered under a question. Some
of it is registered automatically when a user enters a question
String. The rest is registered “at the question. By that we
mean that after the user enters a Q-String, AC presents the
user with a display, which we call the question display
(Q-display). The Q-display shows the question and includes
a menu of options that the user can Select from in order to
enter and See various kinds of information about the answer
that the question represents. This information is entered into
and gotten from the Q-record. An illustration of a Q-display

IPR2020-00686
Apple EX1019 Page 66

6,131,085
23

is given in FIG. 3 (though it should be noted that this figure
is incomplete, and is intended only to show Some of the key
kinds of options that the Q-display includes).
Two, Since the question String represents the answer, the

information Stored in the question record can be considered
to be about the question String and about the actual answer
or missing answer.

Three, it is often not clear what answer the question String
refers to, or represents. And So, the Q-info might apply to
many answers. Thus it really is Q-info that then corresponds
in Some way to one or more potential answers. AS a
consequence, Q-records (which contain the Q-info) can exist
without ever corresponding directly to an actual answer.
Answer Statistics (A-Stats)
We call the information that AC shows about an answer

by the name A-stats to get across the idea of AC processing
and keeping track of a variety of useful information about an
answer, the answer's "vital statistics.” Not all the stats are
numerical; many are qualitative. For example, AC can Store
and show an abstract of an answer and a Sample of an
answer. AS another example, AC can Store and show who has
rights to Supply an answer and for how long.
Much of the rest of this patent specification will be spent

describing functions and options that AC can include for
gathering, processing and displaying various kinds of Q-info
and A-stats. Below we give a partial list of Some of the key
kinds of A-stats that AC can create from the Q-info. Many
of these kinds are discussed in depth in the chapters ahead
because they are Subjects in and of themselves.

The POE (and related demand information).
Whether the answer is in the system or not.
Who the Supplier is.
The price of the answer.
The original language of the answer.
The date and time the answer was entered.
The length of the answer.
The format of the answer (text, audio, graphics, Video,

multi-media).
Peoples interest in Supplying the answer.
Property rights concerning the answer.
The popularity of the answer (more demand information).
Quality information about the answer.
How users found the answer.
History of past answers.
Key words of the answer.

The Difference Between Q-specs and A-stats
AS the list above shows, Q-Specs and A-stats are catego

ries that include Some of the same kinds of information. The
length, price, and format of an answer, to name a few, can
all be Q-spec information and A-stat information. But that
does not mean that Q-Strings and A-stats are the same things.
While they both describe an answer, the difference is how
the information is used by AC.
AC uses the Q-String to create a memory location, a

question record, where answer Statistics belong. The
Q-String represents the answer and that is why the A-stats are
Stored in the Q-record. A main String is like a baseball
player's name, while a Q-spec is like the player's team, and
a set of A-Stats are like the player's Stats. This is not a perfect
example because a player's team might change, but it gets
the idea acroSS. A-Stats can be used to differentiate question
records and answers in memory. But they are not used to
create a question that then has a question record.
At a question display, AC may show Q-Specs and A-stats

that have the same kind of information. For example, Say a

15

25

35

40

45

50

55

60

65

24
question String is: What's treatment for a first degree burn?.
And say a Q-spec is under 500 words. Now, say an answer
is Supplied, and Say it is 408 words. AC can register the
length and then show the A-stat of 408 words. If the answer
is later changed, this A-stat might change.
Most A-stats are created by the collective actions of users

entering information and are compiled by AC. Most A-stats
can change whereas Q-String information basically cannot.
Whether an answer is in the system or not, the A-stats tell the
current Story of the answer. This story changes as new
information about the answer is registered. For example, the
POE is an A-stat that can change with each request.
Sometimes the dividing line between Q-String informa

tion and A-stat information is not clear. That's because both
kinds of information describe an answer and can be used to
differentiate an answer in memory. Whether a user chooses
to enter the information as Q-spec or A-stat or both depends
on the user and the choices AC gives with the particular
question.
The key litmus test is this:

Users enter Q-String information in the expectation that
other users can Supply an answer that will match the Q-String
conditions, that will fit the question.

Users enter A-stat information to describe an answer but
they do not expect other users to Supply an answer that will
fit the A-stat conditions.

Operationally this means that AC enables users to enter
Q-String information through different input forms than
A-stat information. Users are expected to know the differ
ence. AC then uses the Q-String information to create
questions and Q-records. AC puts the A-stat information in
the Q-records.

Principle 7

A Question is a Location where AC and Users do
Business

A question identifies an answer but is it more than that in
AC. It is a location in AC's memory that users (with AC’s
help, of course) create. The first time a given question String
is entered into AC, it is Stored.
Once that happens, all kinds of other information can be

attached to the String, as described above. And So, AC
creates a location made up of a Q-String and Q-record.
And once the question is Stored, other users can “go to”

that question, go to the location created by the question
String and Q-record that is.

In other words, a question String is a location. And it is a
place where users and AC interact, where users can See and
find and enter information that corresponds to the String.
Thus the actions of users and of AC revolve around ques
tions. That's because questions represent answers, which is
what people are looking to buy and looking to Supply.
We are going to elaborate on this idea of a location. AS we

extend the idea we are no longer thinking just of a Q-String
but of the Q-string and Q-record and Q-display. We are
thinking of all the A-stats that AC might display along with
the main String and of all the options that AC can present to
users for entering and getting information, and for buying
and Supplying answers. In other words, we are thinking of a
question as a location in AC where users and AC can do
business.

FIG. 3 gives an illustration of the Q-display with a menu
of options for: entering questions 70, Selecting questions 74,
entering A-stats 72, Seeing A-stats 73, buying answers 75,
and supplying answers 76. The figure is abbreviated for it

IPR2020-00686
Apple EX1019 Page 67

6,131,085
25

does not show all the options the Q-display can have. And
it cannot show the functions that AC executes automatically
and invisibly to register information and show information.
We might think of the Q-display as a generic Storefront

with nothing in the window until a Q-String is put there.
Once the Q-String is there, the Q-display becomes a display
for a particular Store-for a Q-location-that is made for
Selling the answer that corresponds to the Q-String. The
Q-String is like a sign advertising the answer.

But the metaphor of a store falls very short because a
Q-display has many more functions than any ordinary Store.
A Q-display with a Q-String is more a multi-purpose sign
than a store. And yet it is more than that.

The CIP3 used the made up term signomat to name the
multiple functions that AC builds around a question. Why
that? Well, first it is supposed to get across the idea that AC
turns each question into a multi-purpose Sign for an answer.
Second it is Supposed to get acroSS the idea of a vending
machine (it comes from the term Automat, which was the
name of vending machine system for food). We can think of
AC as creating a virtual vending machine around each
question that is Stored in the System. Unfortunately, the term
Signomat comes up short in getting acroSS the third main
idea, which is the idea of gathering and Storing information.
AC has many functions for gathering information that few,
if any, machines in the real world Seem to have.
We do not want to think of a user going to a Q-display, for

the Q-display is a generic thing with no content. We want to
think of a user going to a question located in AC and shown
on a display, a display with options that enables a user to act
regarding the question and the answer that the question
represents. Information registered about the user's actions is
Stored in the Q-record, is Stored at the Q-location, in other
words. And information about the question and answer is
pulled from the Q-record, from the Q-location, in other
words.

And So we will think of a question, for now, in terms of
a Signomat. We can think of AC as a vast bazaar of
Signomats. And we can think of AC as creating Signomats
for new questions Strings, and of AC as taking users from
one Signomat to another, and of users traveling to and
arriving at Signomats. We elaborate below.
1. A Signomat as an Interactive, Commercial Sign
The Signomat’s question String and A-stats describe an

answer. We can think of all this displayed information as a
multi-purpose Sign. AC presents certain A-stats
automatically, and the user can ask to See more. Thus the
Signomat includes option buttons for getting A-stats. The
A-stats can be quite detailed, depending on the type of Stat.
For example, AC may gather extensive POE information for
a given answer. Anyway, the point is that the Signomat is an
interactive sign.

It is also a commercial sign, in Several Senses:
a. It's a buyer ad. When a requestor enters a question, AC

Stores it and the question advertises that the requestor wants
the corresponding answer. When additional requestors enter
the same question this fact is registered and reflected in the
POE, and that advertises that multiple people want the
SWC.

b. It’s a Seller ad. When a perSon Supplies an answer she
Supplies it to the corresponding question. Thus the Signomat
describes the answer that the Supplier has entered.

c. It's an address sign for locating an answer. This simply
means that to find an answer people enter the corresponding
question. If the answer is there it will be found. This scheme
Seems simplistic but it is a fundamental, people friendly way

15

25

35

40

45

50

55

60

65

26
of finding answers. (Even in the cases where the System
processes answers to come up with other answers, a question
is still an address as far as users are concerned).

d. It’s a tote board. As with a tote board at the track, AC
collects information and processes it and then displays it for
users to See. In the case of a tote board, of course, the Subject
is usually a horse race. In the case of AC, the Subject is an
answer. While a Signomat can display a lot more information
than a tote board can, the general idea is the Same.
2. A Signomat as an Information Gathering Apparatus
The term “information gathering apparatus' does not tell

uS much because there are So many of these kinds of
machines. However, there is no simple machine to compare
a Signomat to in regards to how AC gathers information.
That is because AC collects many different types of infor
mation about a product, about user interest in the product,
and about the Sales of a product. In the Sense of AC
collecting demand information, we might look at a Signomat
as a polling Station where users cast their votes for a
particular answer. However, AC collects a lot more than
polling data. As a minor example, when a user Supplies an
answer, AC automatically registers how long the answer is.
AS noted, AC gatherS Some information automatically. It

also presents users with option buttons for entering
information, which are shown on Screen. A user Selects a
button and then AC enables him to enter the corresponding
information. AC also gathers information by prompting
USCS.

3. A Signomat as a Vending Machine
A Signomat is a vending machine in the Sense that when

people arrive there AC enables them to buy the answer that
is Stored there. Like a vending machine, it must be Stocked
with an answer. Thus a Supplier must provide a product to
the Signomat.
The answer may be outputted automatically once a user

arrives. Or AC can include a variety of possibilities for
having the user make a price offer. The Signomat may even
negotiate with the user.

If a user buys, AC registers charges, just as a vending
machine would. It also registers royalties (which few vend
ing machines do).
Now people may or may not buy when they arrive at a

Signomat; they may see information there that gets them to
decide one way or another. But the point is that people can
offer to buy-press a button and agree to pay Some money
at the Signomat and can receive the product if it is there.

(Note: Vending machines might be linked Such that a user
at one vending machine can actually get an answer from
another machine, but that is beside the point here).

A Question Centered System
By now we have Seen that questions play various roles: as

Strings of symbols, as descriptions in language, and as places
of business. Questions have multiple roles because AC is a
question centered System. The effort to find answers is
organized economically around questions. That is ACS plan
and it is fundamental.

Principle 8
Everything Depends on People Understanding Each

Other Well Enough
The most important process that AC depends on is actu

ally outside AC. It is the process by which people understand
what questions mean. It is the proceSS whereby we can ask
a perSon a question and she has a decent chance of under
Standing the conditions that an answer will have to meet to
Satisfy uS.

IPR2020-00686
Apple EX1019 Page 68

6,131,085
27

This correspondence process is not well understood but it
is the basis of the system. So AC must be adapted to the way
people understand questions.

This issue is taken up next.

Chapter 4

Problems Concerning the Correspondence Between
Questions and Answers in the Minds of People

Questions and answers correspond to each other in Some
Strange way in people's minds. The point of this chapter is
to lay out Some of the problems that are faced in adapting AC
to the way people think about and use questions and
SWCS.

We will not be able to illuminate these problems very
well, of course, for they are large mysteries. And we do not
give Our Solutions for them here, but Save those for rest of
this application, particularly chapter 5 and Book II.

Here we are concerned with meaning: What does a
question refer to, correspond to? And how do people use
questions to refer to, correspond to, answers?
When we say we are concerned with meaning, we are not

trying to get bogged down in a philosophical Swamp. We do
have a fairly concrete task in mind, making AC operate
Successfully, fulfilling the principles of the previous chapter.
In accomplishing the task, it is obviously helpful to know
Some of the key problems.

Problem Number One

AS discussed in the previous chapter, AC is a communi
cation System that is built around people's ability to under
Stand each other. The whole System depends on people
having a good chance of knowing what answer will Satisfy
Someone who asks a question.

But there is a big problem with this plan because people
often do not know what answer will Satisfy a perSon asking
a question. The correspondence between questions and
answers is not one-to-one. The problem is that many
answers can correspond to a question, and there are no clear
rules as to what a Satisfactory answer even is. We might call
this the multiple answer reality or the endleSS answers
problem.

Apart from the necessity of having people answer a
question Satisfactorily, recall that the foundation task of AC
is to count how many people want a given answer. Since
questions represent answers, AC bases its request count for
an answer on the number of times people enter the corre
sponding question String. Of course, if we are not Sure what
answer corresponds to a String then we are going to have a
problem counting based on question Strings.

Problem Number Two

There is a Second big problem in making a count based on
questions Strings. The problem is that there are multiple
ways to ask for an answer. In other words, multiple questions
can correspond to the same answer.
Now if people ask for the same answer with different

question Strings then there is obviously a problem in count
ing up how many people want the answer. Thus AC requires
ways to match up the different questions where the same
answer is involved. We might call this the endless questions
problem or the matching up questions problem.

Let us look at why we have this problem then we will
return to problem number one. Why are there multiple ways

15

25

35

40

45

50

55

60

65

28
to ask for the same answer? Who knows. We very Superfi
cially point to four reasons below:
The Flexibility of Language
A question is a kind of description. It describes the answer

a perSon is looking for. Language allows multiple ways to
describe things including, of course, answers. Different
words can refer to the same idea and word order can be
changed without changing meaning. For example: What was
the precipitation last night?, What was the rainfall last night?
and, The rainfall last night was what? can all be considered
the same question. There are practically infinite ways to pose
the same question in the Sense that the different question
Strings ask for the same answer.
The IncompleteneSS of Language

Usually there is no to way to describe the answer one
wants with complete precision, in the Sense of a unique,
complete description. That just seems to be the nature of
language and reality. It seems that we cannot describe any
piece of reality with complete precision. For example, if we
ask a question that Sounds fairly precise Such as, How much
does John weigh in pounds, we see that we leave out many
things. To what decimal do we want to go? At what time. At
what place'? With what scale? And so on. We find we can
keep adding details. The proceSS never ends and So there is
no unique, complete way to describe or ask for Something.
There are only multiple, incomplete ways.
Ignorance
We often don’t know exactly the answer we are looking

for So we pose questions in various ways trying to describe
what we are looking for. For example, Say you have just
spilled very hot coffee on your hand and you feel a burn. You
want to know the answer to the question, What should I do
to treat my hand, but you don't quite know how to describe
the Situation exactly because you don't know much about
burns. You might ask, How do you deal with a first degree
burn'? or How can you tell how badly burned you are? or
What should you do when you spill really hot coffee on your
hand?. You’d probably ask all these kinds of questions and
OC.

You have no exact thing in mind, and yet you have the
“Same' answer in mind, a description of what to do about
your burned hand. There is no Such thing in your mind as the
answer. The same answer really means similar answers, and
this notion is not well understood.
Now the various questions we ask looking for an answer

might not describe the same answer at all. They may be very
different. We have no good theory of the relationships
between questions. But we do know that in Seeking an
answer we may ask a variety of “related” questions, Some of
which, at least in our minds, describe (refer to) the “same”
answer. In other words, if we are ignorant about what we
want, we will not be able to describe it well, and will use
various descriptions.
Multiple Paths to an Answer
We live in a clue reality, where different pieces of infor

mation might lead us to the same answer. This also means
that very different questions can all lead to the same answer.
For example, let uS Say We are looking for an actor's name.
We can ask, What actor starred in The Graduate and Mara
thon Man'?, What actor has a big nose and looks sort of like
Al Pacino and is not Robert DeNiro but is considered a
really good actor, What actor has created lots of cool roles
like Lenny and Ratso Rizzo'?, and so on. We are looking for
the same answer, the same object if you will and yet we can
ask different questions. These questions are not synonyms.
If we compare them they do not appear to describe the same
thing. And yet they do correspond to the same thing because

IPR2020-00686
Apple EX1019 Page 69

6,131,085
29

they describe different aspects of that thing (Dustin Hoffman
in this case). This may seem to be just a philosophical point
but it is important for the organization of AC because in our
minds, and therefore in AC, very different questions can
correspond to the Same answer.
Why a Problem and What to Do?

Given that practically an infinite number of questions can
correspond in our minds to the “same' answer, we have a
problem because AC bases its request count for an answer on
the number of times people enter the corresponding question
String(s).
What do we do when different questions are entered that

correspond to the same answer. And how can the System
“know’ that the questions correspond to the same answer?
AS noted, we might call this the matching up questions
problem.

To deal with it, AC needs ways to combine the request
counts (and other question information) of those different
question Strings. In the next chapter we discuss Some meth
ods for accomplishing this task, and in Book II we discuss
more methods.

Back To Problem Number One

Before we need to be concerned about matching different
question Strings, we must be concerned about what the
questions mean. Users need to know what answer to expect
when they enter a question, and they need to know what
answer to Supply to a question. And yet the fact is that, in the
minds of users, more than one answer can almost always
Satisfy a question. That is a fundamental fact and AC needs
rules and procedures for dealing it.
Why do multiple answers correspond to a single question?

Again, who knows. We very Superficially point to six
reasons below:
The IncompleteneSS of Language
Words are Something we use to refer to things. AS

mentioned above, we cannot refer to anything with perfect
precision, meaning we cannot refer to anything that is
completely unique. (Depending on your point of view, there
may be exceptions in the ideal world of math). The things
that we refer to actually have So many details that our
language can only get us to a point where we generally agree
on what is being referred to. There is no exact description,
only good enough.
Words express (refer to) ideas. Ideas refer to similar

patterns. But we don’t know what Similar means, how it
WorkS. All we know is that any idea refers to innumerable
things that we call Similar. For example, the word house
refers to an innumerable Slew of Similar configurations and
we can't Say what that Slew is.

Even when we Say Something that Seems unique, Such as,
that house right there, we might be referring to the house
now, in the future, in the past, and there are other possibili
ties. When it is “clear what a statement refers to, that is
because we have unconsciously agreed with each other
about the correspondence Scheme in a way that we do not
understand. Some questions, Such as, Who was the first
President of the United States of America'?, do seem to have
a unique, obvious answer because of the unconscious,
collective rules we have agreed on. However, most questions
we ask each other do not describe unique, mutually agreed
upon answers. Take, for example, What's the best way to
make Some money? Or How do you get to the nearest
mailbox2. Like all descriptions, our question descriptions
are incomplete.
Now a question describes an answer. And an answer itself

describes Something. So a question is a description of a

15

25

35

40

45

50

55

60

65

30
description. That does not change the fundamental Situation,
which is that we cannot describe things with perfect preci
Sion.
We can think of the classic example of a map. If we ask

someone, What is a map of Brooklyn'?, what details should
she draw in the map? Even if we describe the map we want
more Specifically, our description of the map we want will
be incomplete. When our cartographer looks at the real
world, she will reflect various details of the real world that
we did not Specify. The same principle holds for more
conventional answers. When we describe an answer, by
asking a question, Someone trying to answer the question,
even ourselves, will find when we look at reality (or what
ever System we are looking at) that many answers might
match the conditions we have Set forth in the question.
The Economics of Language

Usually in our first attempt to describe Something we are
leSS precise than we could be. For example, we might ask,
Where's the store'? rather than, Where's the grocery store'?
rather than, Where's the grocery store that's within walking
distance? rather than, Where's the grocery store that I can
walk to in less than five minutes?. Why do we start out being
less precise than we could be? Because, on average: (the cost
of being less precise +the cost of correcting confusion) is
less than (the cost of being more precise +the cost of
correcting less confusion). In other words, it pays to be
vague at first because people usually understand what we are
Saying even when we are vague. When they don’t
understand, we clarify. The cost of clarifying is less than the
cost of Stating more details in the first place. That is a beauty
of how we use language. It also means that we naturally ask
questions in a way that leaves much room for various
possible answers.
The Flexibility of Language
To repeat, there are many ways of Stating (making) a

description. An answer is a description of Something and
therefore can be Stated in Virtually countleSS ways.
Ignorance

Since we are often ignorant about what we want when we
ask a question, we will not ask it very precisely and So leave
open many possible answers. For example, Say we ask, What
is the patent office's form for a continuing application? Let's
Say we don’t know that there multiple types of continuing
applications and multiple forms. And So, multiple answers
are Satisfactory. Even we who ask the question cannot say
that one form Satisfies the question better than another. AS
another example, Say we ask, What is a durable pair oftennis
shoes?. Since we do not really know what we are looking for
(we are probably not experts on the durability of tennis
shoes) and do not know what the possibilities are (the
possible shoes), we will usually describe conditions in a
vague way (durable shoes) that can be Satisfied by multiple
answers (the names of multiple brands of shoes).
Multiple Ways to a Goal
A question is the Statement of conditions that an answer

must match. Often we think of a question as Stating a goal
and of the answer as instructions on how to achieve that
goal. In other words, a question States a problem and an
answer is a Solution. AS we know there are usually innu
merable ways to Solve a problem, to get to a goal. How may
ways are there to get from the East Coast to California, for
instance'? Well, there are a hell of a lot.
Different Minds

People have different minds and So the same Statements,
including questions, can mean different things to different
people. Even when people agree that two answerS Satisfy a
question, one answer might pop into one person's head

IPR2020-00686
Apple EX1019 Page 70

6,131,085
31

while another answer will pop into the other person's head.
These two people will not Supply the same answer to the
question. AS an impractical definition, we might Say that a
question with a single answer is one in which everybody
interested in the answer agrees on the best answer.
Why a Problem and What to Do?
Now if there can be multiple answers to a question then

users may be confused as to what answer to expect and what
answer to Supply, and that will lead to the System failing
for why ask a question if one has very little chance of getting
the answer one wants back, and why Supply an answer if one
cannot expect that it will Satisfy users who ask the corre
sponding question?

There is never a guarantee that we will receive an answer
that we are looking for or that we will Supply an answer that
others are looking for. But we can raise our chances. AC
requires rules and procedures So that users can have a good
chance of agreeing on what answers to expect and what
answers to Supply to given questions.

Basically there are two approaches that AC can use. One
it can include rules that define what a Satisfactory answer is
in Such a way that the possible answers are tightly con
Strained. The other is to include rules that allow people to
enter multiple answers but to do So in a way that the answers
are differentiated and labeled. We will describe Such rules
and procedures chapter 5, and then further in Book II.

Before doing that we note an important consequence of
the multiple answer reality.
The Flip Side

The flip Side of having multiple possible answers to a
question is that a question does not represent one answer.
Thus a perSon posting a question has a chance of getting an
answer that Satisfies him. And the perSon Supplying the
answer has a chance of Supplying an answer that Satisfies the
requestor. Moreover, if there are multiple people asking the
Same question, there is a chance that different answers that
will Satisfy them; a single answer has a chance of Satisfying
a percentage of the requestors. We may guess at these
chances and but we know that there is no certainty when a
question does not represent a unique answer.

This also means that the information that is collected in a
question record might or might not apply to the answer that
is provided. Demand information, to take the most important
example, then has to be discounted in Some way, in the Sense
that it applies to only probabilistically to any answer that a
Supplier has in mind. Say 20 people have asked for the price
of a gallon of gasoline at a certain gas Station. But also say
that the Station has three grades of gas. How many people are
asking for three prices? And how many are interested just in
a Single price, and which price'? And So what is “the
answer? And what is the request count for “the” answer?
There is no Solid count; the demand record contains a count
that can be used Statistically in arriving at a guess about the
interest in a likely answer or answers.
Demand information is only one kind of information that

is collected about an answer. The Same principle applies to
all Q-info. What answer does the Q-info correspond to'?
There is no Solid, Single answer.
Note on Terminology

Since questions can have more than one answer, it seems
that we should stay away from the term the answer. But it
will be used frequently for three reasons. First, it is conve
nient. “The answer” is easier to say than “an undefinable,
infinite Set of potential answers.” Second, in many contexts
it is apt (for example, if there is one answer in AC to a
question then that answer is the answer in AC). Third, force
of habit. The reader Should apply common Sense when
Seeing the term the answer.

15

25

35

40

45

50

55

60

65

32
The term an answer can also be misleading. For example,

it is misleading to Say that a question describes an answer.
And yet for the reasons above, we will often use the term an
answer. Again, the reader should be careful.

Likewise the reader should use common Sense when
Seeing the terms the same answer and the same question.
Usually there is no Such thing as the exact same thing, except
where we are thinking of question Strings that exactly match
each other and answer Strings that exactly match each other.

Chapter 5

How Questions Can Correspond to Answers in AC

5.0 Organization of this Chapter
Having discussed the correspondence between questions

and answers in the minds of people, let us now discuss it in
AC. Questions and answers must correspond to each other
within AC in Some concrete way. There are various possible
ways, which well call correspondence paths. By these we
mean how questions and answers are related to each other
within AC, and how answers get in and out of the System.
To get questions and answers in and out of AC requires

the actions of users, So in describing correspondence paths
we also describe how users and AC interact.

The place to Start is with questions, for they precede
answers in AC. Questions are inputted and outputted. And
they are the Starting point of the input and output of answers
because answers are Stored to correspond to questions, and
answers are outputted in response to questions.

Therefore, in Section 5.1, we discuss various aspects of
questions: how they are entered into the System and Stored,
how users can “travel' to them, what can be done “at” them,
and how they can be linked to one another. In this Section,
we also elaborate on the idea of a question location
(Q-location).
AC enables users to enter different types of questions. The

way answers are inputted and outputted depends on the type
of question involved. However, in terms of creating a
location in memory, a question type can be thought of as a
Q-spec, as described in chapter 3. We list the basic types of
questions here. They will be elaborated on in this chapter.

a. Plain Old Questions. By these we mean questions that
users can answer. These are the Staple questions of the
System. They predominate by far.

b. Combo-Questions. By these we mean questions that
users answer by contributing Separate answers that AC
combines into a larger answer.

c. Function Based Questions. By these we mean questions
that activate Special Search and processing functions that
operate on questions and answers that are in AC. Usually
users cannot Supply answers to these questions. Further,
these questions do not really have questions Strings, they
have what we call Subject information.

d. Auto-Questions. By these we mean questions that are
created by AC based on questions that users have entered.
Users can answer auto-questions.

In Section 5.2, we discuss answer input paths, how
answers are gotten into AC to correspond to questions.

In Section 5.3, we discuss answer output paths, how
answers are gotten out of AC in response to questions.
The discussion in Sections 5.2 and 5.3 applies to plain old

questions, combo questions and auto questions.
We wait until section 5.4 to discuss function based

questions.

IPR2020-00686
Apple EX1019 Page 71

6,131,085
33

In Section 5.5 we briefly discuss how to combine question
information, particularly demand information, when an
answer is requested from multiple questions.
The example questions in this chapter are colloquial and

are Suited for a System that can handle natural language. We
use colloquial questions because they are easier to think
about and because they prepare for Book II, where methods
for handling natural language are described. Still, the dis
cussion in this chapter applies to questions and answers
whose grammar is highly constrained as well.

5.1 Creating, Finding, and Traveling to Questions
In this section we describe how AC enables users to

create, find and travel to questions. AC presents options for
doing these things at the Q-display. The options are pre
Sented to users in all modes. There are Some differences in
what happens depending on the mode the user is in. We will
be discussing request and Supply modes primarily (there are
other modes which are described later).

In FIG. 5.10, the options are grouped in three areas:
Q-info, Show and Go. They are grouped this way for
illustration's Sake, not because this way is best. In illustrat
ing these options we ignore the many other options that AC
presents at the Q-display, for they are not the concern of this
Section.

5.1a Seven Definitions

Definitions are given here of Some key features and
processes of AC that are discussed in this chapter. Other
features and processes are defined along the way. The first
three definitions below are basically repeated from chapters
1 and 3.

1. A Question
In this chapter, when we say a question we usually mean

it in the Sense of a Q-String that a user enters. The Q-String
may be made up of a main String and question Specifiers. Or,
it may be just a main String. (See chapter 3).

2. A Question Record (Q-record)
The record AC creates to store information about a

question and about the answer(s) that the question repre
SentS.

3. A Question Display (Q-display)
The interface AC presents to users. It shows a question

and numerous options and Sub-options. We call these
Q-display options. As illustrated in FIG. 3, these include
options for:

entering questions 70, 71,
finding questions 70, 71, 72, 74,
entering information into Q-records 72, 75, 76,
getting information from Q-records 73,
finding answers 70, 71, 72, 73, 74,
buying answers 75, and
entering (Supplying) answers 76.
4. The Current Question
The main subject of the Q-display is called the current

question (current-Q). When we say main Subject we mean
that the question is normally shown on Screen and that the
Q-display options apply to it and its Q-record. However, AC
can show more than one question at a time, and Several of
the Q-display options can apply to these other questions as
well. Thus, when we say the current-Q we mean the question
that most of the options apply to. The current-Q is not
necessarily shown on Screen. This is because AC may

15

25

35

40

45

50

55

60

65

34
instead display other questions, or an answer, or a Sub-menu
for a given option. If the current-Q is hidden, it can be called
up by a Show Current-Q command.

5. Being At a Question
“Being at a question' is another way of Saying that the

user is presented with the current-Q and/or with the options
that apply to the current-Q.

6. The Null Ouestion
The null question (null-Q) means the absence of a

current-Q or of any question. The user can enter a command,
which we might call Null Q, in order to clear the screen of
questions. The user is then at the null-Q. When there is no
current-Q, fewer options apply. Those that do apply allow
the user to enter a new question. They may also enable the
user to call up past questions.

7. Traveling To (Going To, Arriving At) a Question
Traveling to a question means that a user enters a

question, or Selects a question on Screen, to be the next
current-Q, and that AC then makes that entry or Selection the
current-Q. When we say “makes' we mean the process by
which AC finds the question and presents it to the user as the
main Subject of the Q-display, or, if the question does not
exist already in AC, the process by which AC creates the
question in memory and then presents it to the user as the
main Subject of the Q-display.

5.1b Entering a Question
At the Q-display, AC enables a user to enter a question

String.
Because the user can enter various types of information

besides a Q-String, AC can have the user first press a
Q-string button 100 to identify the information. Or AC can
Simply let the user designate a Q-String area on Screen and
type the question in there. Or AC can default to assuming
that the user is entering a Q-String.

After the user is Satisfied with the question he presses an
Enter 101 button to complete the entry. (In certain lands, AC
might not have the user hit Enter, but we leave this possi
bility aside, for it only applies in special cases.)
AC enables the user to edit the question, if he so desires,

in order to make a new question. After editing, he hits Enter
again.
He can clear the screen by pressing Null Q102.
Note: For illustration purposes, as we continue this

discussion, we will use certain questions, Such as, What's
holding up traffic?. These have no special significance.

5.1c The Main Rule of Creation

When a user enters a question AC does a look-up to See
if the question is already Stored. If the question is not already
Stored, AC Stores it and creates a question record to go along
with the question in memory. That is the main rule of
creation.
We call a question String and its question record a

question location (Q-location). In FIG. 5.11 we picture a
Q-location 130 as a circle with its Q-string 131 written
inside and with its Q-record 132 as a rectangle within the
circle as well. The missing (potential) answer is pictured as
a blank Square 133 connected to the circle. AS we go along,
we will add to this scheme.

AC stores the new question Such that it can become a
current-Q. In other words, it is a location in memory not just
in the Sense of Storage but in the Sense that the user can find
it, be taken to it, and in the Sense that the Q-display options
apply to it and its Q-record.

IPR2020-00686
Apple EX1019 Page 72

6,131,085
35

Technically, any information the user enters can be stored
and called up. The point here is that a location is created that
users find when they enter a matching question-that AC
finds for them, that is, when they enter a matching question.
(We discuss matching questions in 5.1d, below.)
When the Rule Applies

So the main rule of creation is that a Q-location is made
for each new question entered. However, this rule is not
applied in all cases. Whether it applies depends on what
mode the user is in and what the user's purpose is in entering
the question. The idea behind the rule is that questions are
created to enable people to express interest in and to find
SWCS.

Thus, if the user is a requestor, then the rule holds because
the user's purpose is to ask for an answer. That is what
request mode means.

If the user is a Supplier, the rule holds when the Supplier
also enters an answer to go along with the question.

(Note: What is registered in the Q-record at the time of
creation differS depending on the user's mode. For example,
when a Supplier enters a question, AC does not register
demand information).

If the user is in another mode, Such as browse or check
mode, the rule does not usually hold because users are not
asking for or Supplying answers.
A user can enter a new question for other reasons that

require AC to create a Q-location. For example, a user in
Supply (or browse or check) mode may enter a question to
test demand. In other words, a potential Supplier may post a
question not because she plans to Supply the answer but to
See if others will express interest in the answer. A potential
Supplier may also post a question because she intends to
Supply the answer in the future and wants to collect demand
in the meantime, or because she wants to post a reservation
message (see chapter 8). So AC can create Q-locations under
more circumstances than a user being in request mode and
entering a question, or a user being in Supply mode and
entering a question and an answer.
AC can include an option enabling a user to designate the

purpose of a question.
But what if a user is in request or Supply mode and is just

browsing and/or checking POE’s? Here we have a problem
because AC cannot divine the users intention and can only
rely on the user telling it. Thus AC can have various default
rules. For example, if a user is in Supply mode, AC may
create a question only temporarily. If the user does not then
enter an answer, or does not designate Some special purpose
for the question, AC may erase the question. The default
rules can vary.

Another important case where the main rule holds is when
a user, in whatever mode, wants to enter a question in order
to link it to another. Here, again, the purpose is to help
people find an answer or express interest in an answer.
And as a variation on the main rule, AC may only Store

a question upon confirmation from the user that he wants the
question to be stored.

Having Said all this, it is possible, as a design decision, for
the main rule of creation to always hold. AC can Store all
new questions and create locations for them. But it seems
that better default rules can be created to fulfill the under
lying idea of creating questions to enable people to express
interest in and find answers.

In Section 5.2 we elaborate on the notion of Q-locations.

5.1d Finding/Matching a Question
AS discussed, when a question is entered, AC looks for a

match. Here we elaborate on what happens.

15

25

35

40

45

50

55

60

65

36
First we must point out that in order to default to “best”

matches, AC may also rely on A-stat information in the
Q-records of potential matches. In other words, AC does not
So much match questions as it matches Q-locations. The
match Seen by the user may only be a Q-String but still, AC
may be using A-stat information as well to arrive at that
match.
Now, AC may find no match. It may find an exact match.

And it may find “best” matches which we will also call
tentative matches.

Even if an exact match is found, AC still looks for
tentative matches. These can be important because the user
may want to See what Similar questions have been asked by
others. The Similar questions might have answers the user is
interested in. And they might have A-stats that the user is
interested in.
How many matches are found is a design decision that

depends on the defaults built into ACS matching rules.
(Note: In this section we are concerned with how a user

finds a question with a Q-String. A user can also find an
answer. We save that subject for the section 5.3.)
Rephrase Option for Finding Questions
AC can also enable a user to enter multiple versions of a

question in Search of a good match. Let's Say the user enters,
What's holding up traffic?, and AC finds no match.
Therefore, he continues to rephrase the question:
What's the cause of all this traffic?
Why is the traffic all jammed up?
Traffic jam, basic info'?
He can do this by erasing the current-Q, or by pressing

Null Q and then entering a new question, until he finds a
good match, if one exists.
AC can also give him the option of pressing what we will

call a rephrase button 103. When he presses this, it means
that the next question entered is a rephrase of the current-Q.
This signifies to AC that AC should use information from
both Q-Strings to find a good match. There may be more than
two questions involved because the user can hit the rephrase
button before entering a third question, and a fourth, and So
on. Combined information from multiple questions may
result in a more Successful Search.
(We will see in Book II how AC link the different

phrasings with a rephrase link).
Finding Matches to the Current-Q
We will be discussing, in 5.1g, how users can travel to a

question by Selecting it, rather than entering it. The reason
we mention that here is to point out that AC can look for the
matches to a current-Q, even though the user has gotten
there by Selecting it, rather than entering it.
AC may look for matches to the current-Q automatically,

as it does when the user enters a question, or a user can ask
to See matching questions.
AS noted, the option of Seeing matching question enables

a user to See questions in AC that are similar to the
current-Q.

Next we discuss how AC can show matches. But first we
digreSS briefly on the Subject of matching.
Digression on the Importance of “Best” (Tentative) Match
Algorithms

Best match algorithms are essential to the operation of AC
because, unless the grammar of the questions is highly
constrained, people Searching for the same answer will
rarely enter the same question String. People will usually
enter Similar Strings. Even if the grammar is highly
constrained, people will Still often enter Similar questions,
while looking for the same answer. For example, two people
looking for the same phone number may enter different

IPR2020-00686
Apple EX1019 Page 73

6,131,085
37

questions, Such as: Daneel Olivaw's phone number? and R.
Daneel Olivaw's phone number'?.
A question that is entered into AC needs to be tentatively

matched up against existing questions So that the user who
entered the question has the option of finding and Selecting
a match. A user might not Select any match. But, if there was
no option of Selecting matching questions, then users would
not be able to see what Similar questions other users have
asked, and So there would be little accumulation of demand
on questions-little accumulation of demand for answers,
that is.
AC must do the tentative matching, of course, because

users do not know what potential matches exist in AC.
Let's consider one more example. ASSume that What's

holding up traffic? has been asked in Several languages and
is translated into a common language. Yet this is a false
assumption, for there is no single question in different
languages that means What's holding up traffic?. There are
Similar questions. AS noted in chapter 4, there is no single
Q-String for any question. When we think of a question in
different languages this fact is exposed.

If we are to match, Say, two synonymous questions that
have been Stated in different languages, we need best match
algorithms, for if we translate one question into the language
of the other, the two Q-Strings in the same language will
rarely be exact matches.
Many techniques are known for enabling computers to

find text matches. We do not go into them. We do note that
while these techniques are essential, they are all deficient
because no one knows how to program a computer to do a
good job of recognizing Similar things.
(We should note that people are often unable to decide

what the best match is for a question because people do not
know what best match means. Still, people are much better
at matching than computers, as long as the Set of potential
matches is Small).
Digression on the Inadequacy of Best (Tentative) Matching
Alone

The problem of matching a question against existing
questions goes beyond the difficulties of machine matching.
A bigger problem is the fact that innumerable Similar
questions can describe the “Same' answer. Thus users can,
and will, create a profusion of Similar questions, all potential
matches. But if there are hundreds or thousands or millions
or billions or trillions of similar questions, how to find and
show potential matches to a given question? And how to
decide which potential match is the “right' match for a given
question?

Say Rex asks where he can find a certain T-shirt that he
describes in his question. ReX can ask that the T-Shirt have
a certain price, that it be made in a certain country, that it be
a certain percentage of cotton, that it be a certain color, that
it be a certain size, that it be a certain thickness, and on and
on. The possibilities are endless.
And say that 10,000,000 other people in the past have

asked where they can buy a certain T-shirt and that each
perSon has described a different shirt, though we might
recognize many of the shirts as Similar. Now, how can AC
find the “right” match for Rex's question among the 10,000,
000 possible matching questions in AC.? How can a human
find the right match'? Well, no one can, for there is no right
match. The reality is a profusion of Similar questions. How
then to match them up?
A solution to this problem is described in Book II and is

previewed at the end of this Section. Here, all we say is that
ACS matching rules of course include defaults for limiting
and Selecting the matches shown to the current-Q.

5

15

25

35

40

45

50

55

60

65

38
5.1e Showing Matching Questions

If AC finds an exact match then it tells the user.

If AC cannot find an exact match it may find one or more
tentative matches. These can be shown in an area on the
Q-display for matching questions.

If AC cannot find an exact or tentative match, it shows a
"no matches' message.

If AC finds an exact match, it still may show tentative
matches. That is because, as noted, a user may want to See
Similar questions that other users have asked. AC enables
users to press a Scroll command 106 for Scrolling through the
matching questions.
How much of a matching question is shown is a design

decision and depends on the Situation.
AC can hide matching questions and enable the user to

call them up by entering a command Such as, Show Matches
107.
While tentatively matching questions are not current-Q's,

AC can append certain key A-stats to them, Such as whether
they have answers. These Statistics come from the Q-records
of the questions involved.
Match Statistics
AC can show match Statistics (match Stats) for the ques

tion entered. By these we mean Statistics about how many
tentative matches AC can find for a question. Of course,
there may be a large number of Such matches. For example,
What's holding up traffic? might have one exact match and
billions of tentative matches. (In this situation the user
would usually want to further specify the question).

(Note: AC can show match Stats for a current-Q regardless
of how a user got there).
Digression on Multiple Hits

In many conventional database Systems, there are Search
methods that yield “multiple hits” in cases where the search
key is an exact Subset of multiple targets in the database. For
example, let us pretend that a database has the terms Yabba
Dabba and Yabba Dabba Doo. Now let us pretend that the
Search key is Yabba. In many conventional data bases, a
search would yield two hits.

But in AC, the search does not yield a hit in this sense. The
AC procedure is:

Enter Yabba.

Do look-up to find Yabba.
Yabba found?

If no, create Q-location for Yabba.
Look for tentative matches.
(Yabba Dabba and Yabba Dabba Doo might or might not

then be tentative matches).
The point is that AC creates a new Q-location for any new

Q-String regardless if it is a Subset of Some other String.
Little is different from Little Red is different from Little Red
Schoolhouse and Little Red Riding Hood. Thus AC treats
them differently.
Now having said all this, we note that AC can show

conventional hit Statistics So that if a user enters, for
example, What's holding up traffic?, AC can show how
many questions What's holding up traffic? is an exact Subset
of. Ideally, AC shows how many very Similar questions there
are, and Similarity is not definable in terms of exact Subsets.

5.1f Showing Other Questions
In addition to showing matching questions, or rather than

showing matching questions, AC can enable the user to See
other questions.

IPR2020-00686
Apple EX1019 Page 74

6,131,085
39

AC can enable the user to press a command 108 for seeing
the previous question. By previous question we mean the
previous current-Q. This option is a useful skip back com
mand.

AC can keep a list of questions that the user has asked
during a certain period of time. And AC can include a
command 109 enabling the user to call up questions from
this list, Such as the last ten questions the user has entered.
AC can also enable the user to maintain a list of open

questions, questions that have not been answered but that the
user Still wants answered. The list can be kept in the user
record. AC can include a command 110 enabling the user to
call up this list.
AC can also include a command 111 enabling a user to See

linked questions of various kinds. We Say various kinds
because there are different kinds of links, which we will
discuss later, especially in Book II.

5.1g Traveling to a Question
We use the colloquial term, “travels to a question for the

proceSS by which a user identifies a question and AC makes
the question the current-Q 112. We also use the terms
“arrives at and “goes to.”
AS noted, the current-Q is not necessarily shown all the

time. For example, when an answer that corresponds to the
question is shown, the user may not see the current-Q. The
current-Q may be hidden for various other reasons. Thus AC
includes a command 113 for showing the current-Q if it is
hidden.

Before arriving at any question, a user is at no question.
We call this being at the null question. The user starts his
travels then by entering a question, or by calling up a
question from his user record. (When we say “he.” we do not
only mean Rex; we mean a user in any mode).
AS noted, there are two basic ways a user can travel to a

question:
1. He can enter a question. AC then makes this question

the current-Q.
2. He can Select a question that is on Screen. AC then
makes this question the current-Q.

AS discussed, a question on Screen, other than the current
Q, may be a matching question, a question from a list of
previous questions, a question from the user record, or a
linked question. It may also be a comparison question,
which we describe a little bit later.
When we say “select here we mean that the user desig

nates that he wants the question to be the current-Q that he
wants to go to the question. He might designate this by
Selecting it and then hitting a Go 114 command, for instance.

The reason we distinguish the type of Selection is that the
user can Select a question in order to have other options
apply. (AS noted, Some Q-display options apply not only to
the current-Q). For example, the user might Select a question
in order to See A-stats about it. In this case he might Select
it and hit a See A-stats 115 command.
AC may not show all of a question on Screen. Partial

information can be shown and the user can Select that.
Likewise, AC might have buttons for designating certain
kinds of questions, Such as the previous current-Q and the
null-O. The user can select one of these and hit Go as well.
Surveying the Scenery
A variation on the plan above is the following. AC can

enable the user to choose an option whereby the user enters
a question and AC only shows matching questions. By this
we mean that if the user enters a question that is new, AC Still

15

25

35

40

45

50

55

60

65

40
creates a Q-location for it, but does not show all the usual
options. The question is Still the current-Q, but it is hidden.
AC shows the user tentatively matching questions and
options that apply to these. The reason for this travel option
is that a user looking for an answer might not want to meSS
around with a new question that he might create. He might
want to get an existing answer, or he might want to get to a
question that others have asked. Thus AC can enable the user
to choose an option whereby he does not see the usual
options if his question is new. (Of course the user might want
to see the current-O and can enter a Show Current-Q
command, in which case AC shows the usual Q-display
options that apply to the current-Q.)
Tentative Current Question
AS a further variation on the plan above, the user can ask

AC to Show the Single best match AC can find, and the user
can confirm whether this match is adequate. The difference
here from showing multiple matching questions on an equal
basis is that AC may show more A-stats about the “single
best” match than it would ordinarily show about other match
questions.
AC may show A-stats as if the best match was the

current-Q. It may, for example, show matches of the best
match. When AC does this, we might think of the single best
match as the tentative current-Q.

If the user confirms the best match it becomes a real
current-Q. This confirmation is another way of Selecting a
question on Screen.

If the user does not confirm the best match or does not
Select any other matches to go to, he can continue entering
questions until he is Satisfied with a match.
Seeing Matching Questions to the Current-Q
AS noted in Sub-Section 5.1d, AC can find matches for the

current-Q regardless of whether the user got there by enter
ing the question or Selecting an existing question on Screen.
As noted, AC can include a Show Matches command. This
command, when pressed, can signify that the user wants to
See best matches to the current-Q. Enabling the user to See
matches to the current-Q is a critical option because it allows
the user to See and travel to questions that are Similar to a
given question. This applies not only to a new question that
a user enters but to any question a user is at.
Travel Options
From the preceding we can See that a user can land in AC

in various ways, and can continue on his travels once he
lands. He can land at an entirely new question that he entered
and that AC has created for him. He can land at a question
that has already been created. He can land at no question,
merely Surveying what questions are similar to the one he
entered. And he can choose to go to one of these similar
questions. When at a question he can See questions similar
to that question. And he can go to one of these as well. Or
from where he is he can enter a new question and be taken
there. Or he can ask to See Some of the previous questions
he has been at. And he can Select one of these as well. Or he
can ask to be taken back to the origin, to the null question.
Come-From and Go-To Ouestions
A user will often go to a tentatively matching question.

When this happens, we will call the question that the user
came from, the previous current-Q that is, a come-from
question (come-from-Q). From the point of view of the
question that becomes the previous current-Q, we call the
new current-Q a go-to question (go-to-Q).

For a given question, AC can register what question a user
arrives from and what question a user goes to. Naturally,
when a user travels from one question to another, AC can
register the fact in two question records, at the origination

IPR2020-00686
Apple EX1019 Page 75

6,131,085
41

airport and the arrival airport if you will. We call this
information arrival Stats and destination stats. (Both kinds of
information together will be called travel stats.)
Pseudo Traveling. Using Want-it Marks
When Rex travels to a question it is often to express

interest in the corresponding direct answer. AC can give ReX
another way to express interest in a missing answer without
having Rex actually travel to the corresponding question.
AS discussed above, when ReX is at a question he may See

one or more matching questions. He may be interested in the
answer to one or more of these. AS noted, when AC shows
these matches, it can also show Rex that the questions do not
have actual answers. Rather than have Rex go to these
questions to express interest in their answers, AC can enable
him to express interest by marking the questions with a
want-it mark. AC may, for instance, have a check box next
to each matching question whose answer is missing. If ReX
checks the box it means he wants the corresponding answer.
Now AC may also enable Rex to make a price offer but

that is beside the point here. The main thing is that AC can
enable ReX to express interest in the answers to matching
questions without traveling to those other questions. This
option can be an important convenience. Not only can it Save
ReX time but can show AC what are good matches to a
question and can help ReX pool demand on given questions.

For future discussions, particularly those about registering
demand information, a want-it mark will be considered a
kind of request, even though ReX does not go to the question
that is marked.

5.1h Question Specifiers
AS discussed in chapter 3, AC enables a user to enter

Standard question specifiers (Q-specs) that are a kind of
Q-string information. As Q-string information, AC uses
Q-Specs to create Q-locations. It also uses them to find
existing questions.
A user can enter Q-Specs along with a main String. AC can

include a Q-spec button 116 that a user Selects to call up a
Q-Spec form, enabling him to enter the Q-Specs.
He can also enter the Q-specs after he has entered the

main String. For example, a user might enter What's holding
up traffic?. There might be one exact match and 5,000,000,
000 tentative matches for this main string. And so the user
might then enter certain Q-specs to further Specify his
question. He might enter for example:

Time: 6:30 a.m.
Date: 6/6/96
Place: Ten Freeway, LA.
Source: California Highway Patrol
Just as a user can edit the main String, the user can edit

Q-Specs, changing them and then entering the new question
that is created. For example, the user can change the Q-spec
above concerning the Source of the answer to, Say, Anyone
Official. Or the user might erase the Q-Spec entirely, leaving
it blank, and implying that the Source can be anyone at all.
The Q-specs may be hidden. Thus, AC can include a
command 117 for calling up the current Q-Specs as well as
one for entering them.
Match Instructions
AC can enable a user to designate Q-specS as optional or

mandatory. This means that the mandatory conditions are
preferably matched over the optional ones. (This also tells
potential Suppliers that an answer must fit the mandatory
conditions.) For example, a user might designate the time
and date as mandatory and the Source of the answer as
optional. AC can also enable a user to rank Q-Specs in order
of preference, to give AC guidance in Selecting matches.

15

25

35

40

45

50

55

60

65

42
Now when we say “match' we mean it in the sense

discussed previously of most similar matches that AC can
find according to ACS internal match rules. Thus a Q-spec
or any String information might not be matched exactly. A
Q-Spec, for instance, of 10 cents or under, might be matched
by a Q-spec of 15 cents.
AC can also enable a user to designate a Q-spec to be a

Screen. By this we mean that the Q-Spec must be matched in
the Sense of a true match. For example, if the Q-Spec is 10
cents or under, then the matching question must also include
a Q-Spec that Specifies a price of 10 cents or under. 7 cents
will do. 11 cents will not do.
Repeat Use of Q-Specs
Now a user may go to a matching Q-location that has

different Q-Specs than those he entered. As a convenience,
AC can enable the user to have the last Set of Q-Specs
entered kept in the background to be used for a future
question entry. We will call these background Q-Specs. By
this we mean that the last Q-Specs entered are kept tempo
rarily in memory and hidden from view. AC can enable the
user to call them up (and edit them possibly) and designate
that they be used when he enters another main String. To let
a user do this, AC might have, as options of the Q-Specs
menu, a command called Use Previous Q-specs and a
command called Edit Previous Q-specs. Or, when the user
calls up the Q-spec form to enter Q-Specs, AC can assume
that the Q-Specs remain the Same from the previous entry,
until the user changes them. The point of these options is to
Save the user the time of re-entering Q-specs.
AS another convenience, AC can enable a user to Set

Q-Spec defaults. Such that a given set of Q-Specs goes along
with every main String the user enters, until the user cancels
the default command. A Q-specs default can be quite useful.
For example, ReX might have lots of questions about the
traffic jam he is in. He might want to automatically preface
them all with the same time and place Q-Specs.
Matching Q-Specs Against A-Stats
AS noted in chapter 3, certain Q-Specs and A-stats can be

about the same kinds of information. While AC treats the
information differently with respect to memory locations, it
can in certain cases match Q-spec information against A-stat
information. Price information is an example. A Q-spec
might be for 10 cents or under, and an A-stat might be 7
cents. Here there could be a match.
Automatically Creating Two Questions
A useful procedure AC can include is to automatically

create two questions when a user enters a set of Q-Specs. In
this procedure, one question is made up of just the main
String, and one question is made up of the main String plus
the Q-specs.

In FIG. 5.12, we assume a user has entered, What's
holding up traffic, and has also entered a Q-Spec, 6:00 a.m.
And So AC creates two locations, one for the main String 140
and one for the main String plus Q-spec 141. We also assume
another user has entered the same main String but with a
different Q-spec of 7:00 a.m. And so AC creates a third
Q-location 142.
Form Linking Questions
Not only can AC create these double questions but it can

link them in memory, So that users arriving at the main String
can then call up linked questions made up of the Same main
String plus different Q-specs.
We call this manner of linking questions form linking.

And we call the link a form link. We use this name because
the Q-Specs are Standard and can be entered in a form. When
the difference between the two questions is a matter of the
Q-Specs, we might call the link a Q-Spec link.

IPR2020-00686
Apple EX1019 Page 76

6,131,085
43

Form linking can be quite useful for Several reasons. It
can enable a user to See what Similar questions other users
have asked. This can help requestors find Similar questions
and locate Similar answers.

Further, it can enable users to pool requests on particular
questions, especially the main String. For example, if 100
people ask Movie review of Casablanca'? but they all have
different Q-specs, then there will be 100 different questions
and there will be less chance that there is enough demand to
answer any one of them. But the main String may show
enough demand to be answered.
On the Supply Side, a potential Supplier is in a better

position to decide whether it is worthwhile to provide an
answer that may Satisfy Some fraction of all the users who
have entered that main String. Moreover, a Supplier may find
other Similar questions worth answering.

For example, as Seen in FIG. 5.13, a user might enter,
Movie review of Casablanca'? 150. Now we face the mul
tiple answers problem discussed in the previous chapter.
What answer is the user looking for? What answer should a
user Supply? One partial Solution is a form linked question
in which the main String is built upon with Q-Specs to create
a new question that differentiates the answer.

Say the user wants to enter only one Q-Spec, the name of
the author of the answer (the review). A requestor would
enter a desired author, say P. Kael 151, whereas a supplier
would enter the actual author, say, G. Siskel 152 (note: we
do not picture the answer having been Supplied). Thus AC
can have numerous questions all Starting with Movie review
of Casablanca'? but distinguished by the names of different
authors. These questions are linked to the same main String.

5.1i Answer Statistics as Search Parameters

AS discussed in chapter 3, AC collects, compiles and
displays statistics (A-stats) about an answer. These are
Stored in the answer's Q-record and are accessed from the
Q-display.

A-stats can also be entered by a user along with a Q-String
as additional Search parameters to find a question (and
perhaps an answer). When used for this purpose, we will call
them Search Stats. AC can include a command 118 that, when
pressed, calls up a form for entering Search Stats.
We will call the combination of Q-string and search stat

information a Q+.
AC matches a Q+ against existing Q-String+A-stat infor

mation in AC. In other words, it matches them against
existing Q-locations.

For example, a user might enter the Q-String: Movie
review of Casablanca'?. There might be one exact match and
5,000,000 tentative matches. And so the user might then
enter Search Stats to further specify his question. For
example:

Popularity: Most popular answer by sales
Length: Less than 200 words
Price: Less than 50 cents
AC then shows the user the Q-locations that best match

this information. AC may show just the matching Q-Strings.
Or AC may show the A-stats that correspond to the search
Stats as well.

Now the A-stats that are shown may differ depending on
whether a question has a missing answer or an actual answer.
But we do not pursue this point right now. AS noted, in this
Section we are concerned with how users find and arrive at
questions. AS discussed in Sections 5.2 and 5.3, a user can
also find an answer with a Q--. We wait until Section 5.2 to

15

25

35

40

45

50

55

60

65

44
discuss what A-stats are shown when a user arrives at a
question with an actual answer or answers.

Just as a user can edit Q-Specs, the user can edit Search
Stats, changing them and then entering the new Q+ that is
created.
Match Instructions
AS with Q-specs, AC can enable a user to designate given

Search Stats as optional or mandatory. This means that the
mandatory conditions are preferably matched over the
optional ones. AC can also enable a user to rank Search Stats
in order of preference, to give AC guidance in Selecting
matches.
AS before, when we Say “match' we mean it in the Sense

discussed previously of the most Similar matches that AC
can find according to ACS internal match rules.
AC can also enable a user to designate given Search Stats

as Screens. AS before, by this we mean that the Search Stats
must be matched in the Sense of a true match. For example,
if the Search Stat is 10 cents or under, then the matching
A-stat must also be equal to or less than 10 cents. 11 cents
will not do.
Repeat Use of Search Stats
Now when a user arrives at a Q-location, the location has

no Search Stats. It does have A-stats, but these are not Search
Stats, they are not used to Search for a question or answer that
S.

AS a convenience, AC can enable the user to have the last
Set of Search Stats entered kept in the background to be used
for a future question entry. We will call these background
Search Stats. By this we mean that the last Search Stats
entered are kept temporarily in memory and hidden from
view. AC can enable the user to call them up (and edit them
possibly) and designate that they be used when he enters
another Q-String. To let a user do this, AC can have, as
options of the Search Stats menu, a command called Use
Previous Search Stats and a command called Edit Previous
Search Stats. Or, when the user calls up the form to enter
Search Stats, AC can assume that the Search Stats remain the
Same from the previous entry, until the user changes them.
The point of these options is to Save the user time.
AS another convenience, AC can enable a user to Set

Search Stat defaults. Such that a given Set of Search Stats goes
along with every Q-String the user enters, until the user
cancels the default command. This default option can be
quite useful. For example, returning to our traffic jam, ReX
might have lots of questions about the jam. He might want
to automatically preface them all with, Say, the same price
and quality information.
Matching Q-Specs

In certain cases, Search Stats can be matched against
Q-Specs.
Little Digression

There are essential aspects of answers that cannot be
Supplied by any Single individual. And there are essential
aspects that have nothing to do with information in the Sense
of bits and bytes. This is a fascinating thing about answers.
Aspects Such as credibility and demand come from else
where.
And they are crucial to the value of answers.
Thus people want to know about these aspects and people

ask for answers based upon them. For instance, people want
credible answers. If Rex asks, How should I teach a blind
person to walk acroSS the Street?, Rex will Surely want to
know that the technique Supplied has been well tested. There
are various ways of Verifying answers. We do not have any
perfect way. And yet the fact that an answer has been Verified
changes the answer (and can be reflected in A-stats).

IPR2020-00686
Apple EX1019 Page 77

6,131,085
45

Credibility is an obvious case of an aspect of an answer
that is valuable though not well understood. Let's take a leSS
obvious example that is quite important where AC is
concerned, and that is the example of demand. Say a user
wants to find an actual answer in AC and finds none that he
is Satisfied with. He might then want to find a missing
answer that is similar and that also has a high POE. He might
want to find Such an answer in order to pool demand with
other requesters. Indeed, the intentional pooling of demand
will turn out in many cases to be a critical way that the POE
is raised high enough for a given answer to be Supplied. And
if the answer is Supplied, it can be found by its demand, its
popularity that is. So demand is an aspect of a missing or
actual answer that we do not understand but that can be
critical to choosing the answer.
AC compiles Statistics that enable people to differentiate

answers based on many essential, though perhaps poorly
understood, aspects of answers. This is a key feature of AC.
Imperfect Representation
AS we have discussed, questions represent answers. The

A-stats that come from the Q-record of a given Q-String are
part of the representation of an answer, whether the answer
is missing or present.

The A-stats also show us how imperfect any representa
tion is, especially a representation that changes in time. For
example, if an answer has no complaints registered against
it one day and ten the next, is it a different answer? Yes, in
the minds of potential buyers it is.
And yet we collect demand for an answer based on who

arrives at the corresponding question. Why do we collect
demand information based on what questions people arrive
at rather than on what questions people arrive at and on what
A-stats are showing at the times of arrival? Why not?
Because the A-stats change. Therefore, we cannot Say what
answer is represented. We cannot collect enough demand. So
we compromise and use questions as the Static Surrogates for
SWCS.

Now it is possible to show what A-stats were showing at
the times that each requestor arrived at a question and made
an offer for the corresponding answer. AC can enable users
to see this information. It can be important for deciding
whether or not to Supply an answer. Still, the problem
remains, there is no perfect way to represent an answer,
especially one that changes in time.
Q-Locations Created?
So does AC create a new Q-location using the A-stats that

are entered along with a Q-String? No, not when A-stats are
used as Search parameters (Search Stats). Users in any mode
can use A-stats as Search parameters. To explain why
Q-locations are not created with them, we will assume ReX
is the one entering them. The same reasoning holds for users
in other modes.
When ReX enters A-Stats along with a Q-String, the

purpose is to find a question (and possibly an actual answer,
if one has been Supplied). Like the Q-String, A-stats describe
an answer, which may be actual or missing. AS discussed in
chapter 3, what makes A-stat information different from
Q-String information generally is that A-stat information
describes aspects of an answer that are not expected to be
Supplied.
Many important aspects of answers can be described by

A-stats but cannot be Supplied directly. We repeat Some
examples previously given because A-stats are important,
and in many ways new.

For example, Rex can ask for the answer to the question:
Biography of Hans Bethe'?
ReX can specify an A-stat of: Good reviews.

15

25

35

40

45

50

55

60

65

46
Sue cannot Supply an answer with good reviews.
ReX can Specify an A-stat of Most popular by Sales.
Sue cannot Supply an answer with high Sales.
ReX can Specify an A-stat of: No verified complaints.
Sue cannot Supply an answer with no verified complaints.
Rex can specify an A-stat of: POE above S10.
Sue cannot supply an answer with a given POE level.
Rex can specify an A-stat of: Price under S1.
Sue may be able to Supply an answer at a given price. But

She may not be setting prices. Price is an example of
information that can be Q-String and/or A-stat information.
If the price is Set by AC, then Sue, obviously, cannot Supply
an answer with a given price.
AS noted, many A-stats can be phrased in terms of

Q-String information. For example, Rex can Specify in a
Q-String that an answer is to be under a certain length. This
information can also be specified as an A-Stat. That does not
affect the idea of A-stats. The user decides how to enter the
information, as Q-String or A-stat or both. If the user decides
to enter the information as an A-stat then it is understood that
AC will not create a Q-location with the information.
The bottom line is that Rex can enter A-stats to find a

question (and corresponding answer), by matching the
A-stats in the question's Q-record.

If the Q-String that ReX is entering is new then AC creates
a location for it. But AC does not create a new location for
the Q-String+A-stats in the Sense that has been previously
explained: a place that AC takes users to when they enter a
question, a place people Select to find an answer, and a place
people go to to Supply an answer.
Pseudo Locations
AS noted, a Q-String plus Search Stats is called a Q+. AC

can Store a Q+ in memory. Further, a Q+ can have a record
that contains key facts about the Q+, Such as who entered it
and when and how many people entered it. We call a Q+ and
its record by the name pseudo location.
A pseudo location is created in addition to normal

Q-location, not in place of it. We use the term “pseudo'
because AC does not take users to this location when it
matches questions to Q-locations and when it matches Q+'s
to Q-locations.
Why create a pseudo location then? The main reason is

that it can be used as demand information. A Q+ can be
Stored as a come-from-Q, a come-from-Q+ that is. In other
words, it shows what Search Stats a user entered in order to
arrive at a given question. And it can show what Search Stats
a user entered in order to get a given answer. For example,
it can be valuable to know that 25% of people who bought
the answer to Biography of Hans Bethe'? included a search
stat of Good reviews.
Now AC can keep Statistics about what Search Stats were

entered by people who arrived at a question in the Q-record
of that question. And AC can enable users to call these
Statistics up from a given Q-record. Seeing what A-stats
were entered in the Search of an answer can be valuable
demand information for Suppliers. Let's pretend an answer
is a certain kind of blender and that each buyer has to fill out
a questionnaire about why he bought. Now if 43% of buyers
listed as a reason for buying that the blender had gotten a
good review in Consumer Reports, and 71% listed price as
a reason, then that is valuable information. The same prin
ciple applies to answers.
Now no one buys anything for one reason. There are

multiple factors and it can be useful to See which ones a
given buyer lists. Using the metaphor above, it can be useful
to See an individual questionnaire, as well as the combined
Statistics from multiple questionnaires. Thus it can also be

IPR2020-00686
Apple EX1019 Page 78

6,131,085
47

valuable to enable users to call up the come-from-Q+'s of a
given question. That way users themselves can See the Q+'s
that led people to the question. And So, as an A-stat option,
AC can enable users to call up come-from-Q+'s. We picture
a Q-- in FIG. 5.14 as a thin-line circle 160.

5.1k Entering Multiple Questions to Correspond to
a Single Answer

A user may want to enter more than one question to
correspond to the same answer. For example, a user who
enters Who is Spiderman's alter ego'? might want to enter
other Similar questions, Such as, In Marvel Comics, who is
Spiderman's alter ego'? Or, Who's the man behind Spider
man's mask'?.

(If Rex enters the additional question(s), his purpose can
be to find a good matching question. He may also want to let
other Rex's find his question in order to pool demand for the
same answer. If Sue enters the additional question(s), her
purpose can be to enable Rex's to find the answer that she
puts in.)

Hence, AC can enable a user to designate that the next
question to be entered corresponds to the same answer that
the current-Q corresponds to. AC can include a command
that might be labeled Synonym Question which the user
Selects to designate that the next question entered is a
Synonym of the current-Q. AS explained in Book II, AC can
create a direct link between these questions called a Syn
onym link. As seen in FIG. 5.15, it is also possible for AC
to link the questions 170, 171, 172 indirectly through the
actual answer or missing answer 173.

5.11 Comparison Questions
AC can enable users to enter what we will call a com

parison question (comp-Q). A comp-Q is shown along with
the current-Q. It can become the current-q if the user Selects
it to be.

AC can also enable the user to Select a question on Screen
and designate it a comp-Q.
The purpose of the comp-Q, as the name implies, is to be

compared with the current-Q. For example,
the current-Q might be: What's causing this traffic jam"?
and the comp-Q might be: What's going on, goddamnit,

on the Ten'?.

AC can include a comp-Q button 119 that the user selects
before entering a Q-String. After pressing this button he
enters a question just as he enters a question to be the new
current-Q. The comp-Q is shown on Screen and, as with a
new current-Q, AC Searches for a match.
AC can then show certain key match Stats and A-stats

about the comp-q or the user can ask to see these Stats.
Upon Seeing these, the user can then decide if he wants to

make the comp-Q the current-Q. If So, he can Select it and
enter Go.

Now if he is dissatisfied with the comp-q he can erase it
and enter another. AS with the current Q, he can edit it and
hit Enter after the editing. AC can also enable him to copy
the current-Q into the comp-Q area on Screen and then edit
the question to create the comp-Q.

The comp-Q option can be quite useful for it enables a
user to easily compare the key Stats of two questions.
AC can also enable the user to link the current-Q and the

comp-Q in various ways, but we Save this possibility for
Book II.
Now in the matter of creating a Q-location for the

comp-Q, AC does So by the main rule of creation discussed

15

25

35

40

45

50

55

60

65

48
above, even though the user might not go to the comp-Q. For
example, if the user is a requestor and the question is new,
AC still creates a location, complete with Q-record.
However, what is registered in the Q-record may be different
than what is registered when the user goes to the question.

5.1m Auto-Questions
AC can include a type of question that when entered

causes AC to create more questions based on the information
in the original question. We call questions that are created in
this way auto-questions (auto-Q's). And we call a set of
these questions an auto-Set. A question that causes AC to
create an auto-Set is a Seed question.

For example, Say a user enters, Jim's phone number?.
From this AC can create numerous questions about Jim:
Jim's address?, Jim's age?, Jim's job?, and So on. AC creates
a Q-record for each of the auto-questions and for the auto-Set
altogether.
Now we assume that the user has designated a land where

this first question is a Seed question. To enter a Seed question,
a user has to enter Subject information into a given named
field. The Subject information is used to create the auto-Set.
This is illustrated in tables.
Tables

Tables of answers can be very useful to have in AC. A
table can be made up of answers entered to correspond to
auto-Sets. The key feature of tables in AC is a potential
auto-Set of questions, more conveniently thought of as a
blank row. A blank row is made up of a set of blank named
fields. For example:

Product Store Price
A row will have at least one subject field. In the case

above, we will say that the Subject field is the product field.
Once the subject field is filled in, it implies-and AC

creates-an auto-Set of actual questions. For example, if
product field is filled in:
Walkman X Store
we have a Set of questions:
Where is a Walkman X Sold? and
What is the price of a Walkman X'?.
Of course, more than one field can be filled in, which can

make for different questions. For example:
Walkman X Circuit City Price
Walkman X Luskins Price

are different questions:
What is the price of a Walkman X at Circuit City'? and,
What is the price of a Walkman X at Luskins'?.
AS more fields are added to a row, more individual

questions are created. For example, if we add a phone
number field above, we have the questions:
What is the phone number of the Circuit City that sells

Walkman X?
What is the phone number of the Luskins that sells

Walkman X?
Questions are defined by the information in a row that is

missing from blank fields and by the information that is
present in filled fields.

In order to enter an answer, Sue can name the table or
enter a Seed question. AC then presents her with a blank row
that she can enter her answers into.
Though questions can look like answers-because they

both can have the same information-AC does not use the
Same table for questions and answers. AC Stores questions
and answers distinctly from each other.
A Multitude of Questions
A multitude of questions can be used to Search a table and

process the answers in a table to yield other answers. There

Price

IPR2020-00686
Apple EX1019 Page 79

6,131,085
49

are plain old questions, where answers are asked for and
outputted by direct lookup, for example, finding the price of
a given product. And there are function based questions
(FB-Q’s), for example, finding the five lowest prices in a list
of prices. Regardless of the great variety of particular
questions, they all use the same named fields as are in the
table.
AC creates Q-locations for all these questions, using the

information that is filled into the fields. The rules of creation
are the same as discussed before. (The creation of FB-Q
Q-locations is discussed in Section 5.4.)

(Note: Table structures and the meta-rules of their opera
tion are set up by System operators. AC can also enable users
to set up their own tables.)

5.1n Entering and Linking Questions
AC can enable questions to be entered and linked to one

another. There are two categories of links which well call
form links and named links. A question can be linked to
others by form link and by named link.

Linking questions is a big topic because linking questions
in certain ways can provide Solutions to the problems raised
in the previous chapter. As noted, Book II is devoted to the
linking of questions and So we do not dwell on the topic
here.

The main point to make now is that questions can corre
spond to each other and not only to answers.
Entering Name Linked Questions
We have discussed form links above. The second type of

link is what we call a named link. Here a user can enter a
question and link it to an existing one with a link that is
named to reflect the Semantic relationship between the two
different question Strings. For example, a synonym link
means that the user considers two linked questions to be
Synonyms of each other. Named links are a broader category
than form linkS. In fact, form linkS can be considered special
cases of named linkS.
Preview of What Will Be Described in Book II
AS discussed above in Sub-Section 5.1d on the matching

of questions, there can be a profusion of potential matches
to a given question. How then to match a question against
existing questions?

The Solution of Book II is a Semantic-economic one, using
links between questions. We preview the solution here
because we refer to linked questions throughout this chapter,
and it is useful to have Some context as to how they are used.
We use the Small example of just two similar questions:

1. Daneel Olivaw's phone number? and,
2. R. Daneel Olivaw's phone number?.
AS noted, AC enables users to link pairs of questions by

naming the Semantic relationship between the questions
involved. For example, a user might enter both of the
questions above and link them with a synonym link. Or a
user might enter one of these questions and AC might
tentatively match it to the other that, Say, is already in the
System. The user, Seeing the tentative match, can then link
the two questions with a synonym link.
ASSume then that both questions are in the System and are

linked with a Synonym link. And assume that a user arrives
at Daneel Olivaw's phone number?. He can ask to see
Synonym questions. AC then shows him, R. Daneel
Olivaw's phone number?. He can then travel to that ques
tion. At each question he travels to he can express interest in
the answer.

Linked questions have their own Separate demand
records, but of great importance, the information in the
demand records can be combined. For example, Say that 7

15

25

35

40

45

50

55

60

65

SO
people have landed on the first question and that 5 people
have landed on the second. There are 12 different arrival
requests. Some of the same people who landed on the first
question might also have landed on the Second. And So a
combined tally will not have the value of 12 requests by 12
different people. We cannot give any universal rules for how
demand information is combined, but we do recognize that
it can be combined in useful ways.
Thus our “net” of two questions has a combined amount

of demand. A person who might want to enter the answer to
the first question knows that there may be extra demand
from people who arrived at the Second question.

Let uS Say then that Someone enters an answer to the first
question. (She might also enter the same answer to the
Second, but we disregard that possibility here.) Now, when
Someone is at the Second question, which we assume has no
answer, he can ask to See an answer to a Synonym question.
AC can then take him to the first question and show him that
the first question has an answer. Or, AC might just output the
answer to the first question, depending on the output rules in
that Situation, and on what he has asked AC to do.
Now in this simple example, we have used the only two

questions and So the linking is simple. What if there were
thousands of potential match questions. Would we connect
them all to each other directly? If we did we would not be
Solving our problem. We do not need to link them all directly
but can do So indirectly. The links are a kind of match.
We then allow users to find questions and answers by

traveling along linkS or “jumping around” question nets. AS
users travel they can express demand for answers at different
questions.
Now this idea alone will not work for we will have

networks of linked questions but with no question having
more matches (no greater expression of demand) than
another in general. And so we add economic signals. For
example, we allow people to see which questions have more
demand than others. And we allow people to specify travel
destinations according to economic information, according
to the most popular destinations, for example.

People can then intentionally pool demand on given
questions. A question may be favored for no good reason
initially, but people can join in because it pays to pool efforts
rather than only express interest in one's own question. If the
pay-off rises high enough, an answer may be Supplied. This
answer can then be found through linked questions.
Another thing that can happen is that no question may

have much more demand than another. Yet a Supplier may
enter an answer to a given question, Seeing the combined
demand of a “net.” The answer can then be found through
other, linked questions that make up that net.
Of course, the situations can get more complicated than

this. The use of demand information as a specifier to find a
question and/or answer is just one example of the ways
people can find questions and answers in a question net.
The point we make here is that we do not need to find the

“best” match for a given question out of a large Set of
potential matches. “Best match' is a mirage in most cases.
If we link the questions in certain ways and allow people to
find the questions through the links in certain ways, we can
Solve our matching problem well enough.

5.2 The Q-A Input Path, Entering and Storing
AnSWerS

There is one basic input path for entering and Storing
answers in AC. We will call it the Q-A input path. We say
basic because while the details of entering answers may
differ the essential idea remains: a question is identified and
an answer is entered to correspond directly to that question
in memory.

IPR2020-00686
Apple EX1019 Page 80

6,131,085
S1

The details of the Q-A input path will vary depending on
the land of AC and on the answer involved. For example, in
certain lands, AC might assume by default that Sue wants to
Supply an answer to the question she has entered, simply
because she has Selected Supply mode. The particular Series
of StepS for inputting a given answer can be called an input
Structure. Because answers vary greatly, input Structures can
vary greatly. For example, the Steps for entering a phone
number, an article, a blueprint, and a Video tutorial will
likely be different.
More importantly, the rules for Storing answers can vary

widely regarding how the Stored answers are found and Sold.
Thus, “basic input path” refers to numerous variations on

a single theme.

5.2a The Q-A Input Path

Entering an Answer to Correspond Directly to a
Question

To enter an answer Sue must be at a question other than
the null question. She may have created the question in order
to enter her answer. Or she may have arrived at a question
Someone else has created.

Once She is at a question, she Selects the option AC
includes for entering an answer. Once she Selects this Enter
Answer option, AC enables her to enter an answer. She then
enters an answer, and AC stores it and links it directly to the
question in memory. We might also say that AC Stores the
answer directly under the question.

This answer is a direct answer to the question. And the
question is a direct question to the answer.

Direct answer in a Sense is defined by the inverse opera
tions of finding the answer and getting the answer for output.
We can think of a dictionary where words are questions and
definitions are answers. A definition can be found directly
under a word; it corresponds directly to the word. It is in this
Sense that we mean a direct linkage or direct correspondence
between a question and answer.
AS we know from any dictionary, there can be many

different definitions stored under a word. In a conventional
dictionary, definitions are ordered.

Like a conventional dictionary, AC can have multiple
answers for a question. However, unlike a conventional
dictionary, ACS rules for presenting answers can vary
widely and are not usually a visual ordering, as in a
conventional dictionary. (Note: we use the term “conven
tional dictionary because AC can be considered, among
other things, a new, unconventional dictionary.)
We discuss the issue of multiple direct answers a little

later below. For now our point is that an answer is Stored
under a question So that a user who arrives at the question
can ask to get the direct answer.

For example, Say a question is:
What is a two word weather report for the Summer in

Washington, D.C.?
Sue arrives at this question. She then enters her answer:

Hot, Swampy.
Then when ReX arrives at the question, he can get the

answer: Hot, Swampy.
Let us make a few notes about terms. When we say that

a question has an answer, we mean that a direct answer has
been Supplied and Stored for that question. When we say that
an answer is at a question, we mean that a direct answer has
been Supplied and Stored for that question. When we say that

1O

15

25

35

40

45

50

55

60

65

52
an answer is missing, we mean that no direct answer has
been Supplied and Stored for that question. When we say that
a question has a missing answer, we mean that no direct
answer has been Supplied and Stored for that question.
Sometimes, we will use the terms direct actual answer, and
direct missing answer. Usually it should be clear from the
context whether we are referring to an actual or a missing
answer or both.

5.2 b The O-A-Record
To store Q-info (A-stat information) about Sue's actual

answer, AC creates a new record, which we call a Q-A-
record. This record is a Sub-record of the Q-record.
We sometimes call the information in the Q-A-record by

the name Q-A-info. But this name can be misleading
because the Q-A-record is a Subset of the Q-record. So
Q-A-info is also Q-info. We use the term Q-A-info because
it is simpler than Saying "Q-info about an actual answer.”
Most all the A-stats that apply to a missing answer also

apply to an actual answer. Thus much of the information
registered for missing answers is registered for actual
answers as well. For example, the Q-A-record will have a
demand record pertaining to Sue's actual answer.

However, numerous additional A-stats are registered
about an actual answer that cannot be registered about a
missing answer, Such the length of the answer, the price of
the answer, Sales of the answer, complaints about the answer,
and So on.
Sometimes we will use the term actual-answer Statistics

(A-A-Stats) to refer to A-stats that are registered about an
actual answer. Usually we let the context dictate whether the
A-stats are about all the answers to a question or mainly
about a particular actual answer.

There are three main purposes for Storing information
about an actual answer:

1. to describe the actual answer,
2. to keep track of royalties owed, and
3. to give information about potential other answers to the

actual answer's question.
It is because the Q-A-record is used to provide informa

tion about potential answers that the Q-A-record is a Sub
record of the Q-record. We elaborate on this point later.

Since one of the purposes of the Q-A-record is to Store
royalty information for Sue's answer, the Q-A-record
includes a credit record where royalties are registered. The
credit record may include citation information pertaining to
answers that get a share of the royalties from Sue's answer.
We discuss this point later as well.
When we say that A-A-Stats describe an actual answer we

mean it in two Senses. One, is user's point of View. They tell
about the actual answer. The other is AC’s point of view. The
A-A-Stats distinguish the actual answer in memory from
other actual answers to the same question. Why not then call
the Q-A-record just an actual answer record? Because, an
answer is not alone in AC. It corresponds to at least one
question. And, information about it can indirectly tell about
other answers.
How is information registered in the Q-A-record? Most

information is registered when users, especially Rex's, react
to Sue's answer. (How users react to her answer depends on
how it is presented. And there are various ways AC can
present an answer. We will discuss this topic later as well.)
Some information is registered automatically when Sue
enters her answer. Examples are Sue's ID data, the time of
entry, and the length of the answer. Other information can be
entered by Sue. We discuss this kind of information next.

IPR2020-00686
Apple EX1019 Page 81

6,131,085
S3

5.2c Entering Supply Stats

Certain A-stats (A-A-Stats) can be entered by Sue along
with her answer to describe the answer. When A-stats are
used this way, we call them Supply Stats. Examples of Supply
Stats are the Source of her answer, quality assertions about
her answer, the price of her answer, and So on.

For example, she may Supply the answer to the question,
Short Biography of Hans Bethe'?.
AS Supply stat information, she might enter certain

keywords, Such as physics great, Los Alamos, Cornell,
Longest active career, etc.

Keywords are a Small example of Supply Stats, but they
illustrate well that Supply Stats can describe various aspects
particular to Sue's answer.

To enter supply stats, Sue selects a command 120 that AC
includes for Supply Stats, and AC then presents her with a
form for entering them. Or, AC automatically provides her
with a Supply Stat form when she enters an answer.

The Supply stat form may be broken into many sub-forms:
a form for price, a form for quality assertions, a form for
keywords, and So on.
AC Stores the Supply Stats she enters in the Q-A-record for

her answer and displays them when necessary. They are Seen
by others as A-A-Stats for her answer.

Depending on the rules of the land that Sue is in, she may
be required to enter certain Supply Stats. For example, she
may be required to Set a price for her answer.

(Note: Price can be considered a special kind of Supply
Stat because it can change and vary in many ways, more So
than other Supply Stats in general. Another thing that Sepa
rates price from other supply stats is that it involves trans
action procedures, Sales that is. Still, while price does have
a Special role, we put it in the category of Supply Stats
because it does describe an actual answer, and because Sue
can enter it. We explain the role of price more fully in
Chapters 6 and 7.)

Supply stats are different from other A-stats in that they
can, in theory, have been asked for in a Q-String. Unlike
many kinds of A-Stats, they describe aspects of answers that
can be Supplied by a user.

Sue can change Supply Stats. Price is the most obvious
case, but other Stats are changeable as well. For example,
Sue may change quality assertions that she makes about her
answer. In order to change the Supply Stats, she must identify
her answer, and press the Supply Stat command. AC then
presents her with the Supply Stat form which she can use to
change given Supply Stats.

5.2d A Q-A-record Is a Subset of a Q-record

AS noted above, one purpose for collecting Q-A-info is to
create A-stats that describe that answer. These can enable
Rex to decide whether he wants to buy the answer. They are
product information. The A-stats also enable Sue to monitor
her answer. Through A-stats, she sees reaction to her answer.
She may then decide to change it in Some way, or to change
the price. Of course, A-Stats also enable AC to differentiate
between multiple direct actual answers to the same question.

While these purposes for gathering Q-A-info are obvi
ously essential, there is another essential purpose: to provide
information for helping users decide whether to enter
another answer to the question (for example, an improved
answer).
Thus the demand information in the Q-A-record does not

just apply to the actual answer. It also applies to potential

1O

15

25

35

40

45

50

55

60

65

S4
answers. It applies to answers that might replace the actual
answer. It applies to answers that might improve on the
actual answer. It applies to answers that might be completely
different from the actual answer.

Demand information is not the only Q-A-info that is
useful for a potential Supplier to know. She must answer two
key questions about a potential answer:

1. What answer should I supply? and
2. How much will I get for supplying it?
AC can provide a POE for telling her what she might get,

but AC cannot tell her what answer to supply. This she needs
to figure out from common Sense. Seeing A-stats (e.g.,
quality control comments) about an actual answer and
Seeing the actual answer itself can obviously help her make
guesses about these two questions.
We See this principle with most any physical product, of

course. The Sales of a product give us the best clues about
what the sales of similar products will be. And the product
itself gives clues as to what an improved product should be
like.

Information gathered about a single actual answer is not
the only information that is relevant to deciding whether to
enter an another answer to the direct question. First of all,
there is information that was gathered before any actual
answer was Supplied. Second of all, there may be multiple
direct answerS Supplied. Q-A-info from all these is collected
in the master record, the Q-record. Third of all, even when
an answer is Supplied to a question, AC may not initially
present that answer to a user who arrives at the question, and
may not initially register information in the Q-A-record. AC
may only register information in the Q-record. Thus, while
a Q-A-record is differentiated within its Q-record, it is just
part of the combined set of information in the Q-record that
enables users to evaluate potential new answers.

(Note: The exception to this rule occurs when Sue enters
a question and answer and no other direct answer has been
entered. Then the only information that is registered may be
about that actual answer. AS mentioned, what is registered
depends on how AC presents the answer and how AC
registers information in the Q-record and Q-A-record.)
We can see why a Q-A-record is a subset of a Q-record by

taking the example question: What is today's weather
report'?.
ASSume that there are 10 requests for the missing answer

to this question.
Now assume Someone Supplies an answer, and assume

that there are 10 more requests from different people. And So
we have a total of 20 requests for the answer, half when it
was missing and half when it is present. The combined tally
may help make a more accurate POE for a potential updated
answer than one of the tallies alone.
Demand for today's actual weather report might apply to

demand for tomorrow's potential weather report. And the
demand for the past 100 actual weather reports might apply
to the demand for tomorrow's weather report. Each past
report is a distinct answer to the direct question, while
tomorrow's potential report can have a POE based on the
Sales of the past reports. The demand records of all the past
reports are combined in the Q-record.
As shown in FIG. 5.16, when we picture an actual answer

180 being supplied to a question 181, we show a Q-A-record
182 along with the actual answer. We also show the Q-record
183, for it is the master record. And we also show a blank
box 184 Signifying a missing, potential answer. A potential
answer always exists.

IPR2020-00686
Apple EX1019 Page 82

6,131,085
SS

(Unfortunately, the idea that the Q-A-record is a Sub
record does not come out well in the figure because the
Q-A-record looks totally Separate from the Q-record. Later
we will introduce the idea of a Q-A-location. So the figure
is a compromise.)
Now it is easy to say that the Q-A-record is a subset of the

Q-record, but what does that mean? How is the information
used? Well, we cannot say. The best we can say here is that
it is combined. The ways it can be combined and used are far
too various to describe, or even know much about. There is
little experience in this area.
AS discussed above, the key questions that Sue wants to

answer for herself are: 1) What answer should I supply? and
2) How much will I get for supplying it? (There are many
other things Sue may want to find out about, Such as what
price she should Set for her answer, but the two key
questions are the ones above.)
We cannot say much more than that the Q-A-record is a

Subset of the Q-record because we cannot Say much about
how the combined information will be used to make guesses
about these two questions. That is because there is far too
much variety in potential answers to a given question, and
far too much variety in the way answers can be Sold, and far
too much variety in the way royalties can be shared. We will
take up these issues briefly next.

5.2e. The Endless Answers Problem Revisited

When we consider how AC might enable users to enter
more than one direct answer to a question, we run right into
the endless answers problem. EndleSS answers reality is
another term for it. The reality is: If we take a question and
Supply an answer, we find that endless other answers can
also Satisfy the question.

There are numerous Sub-problems posed by this reality.
We have discussed some of them in Chapter 4, especially
those regarding the collection of demand information.
Regarding the Storing of more than one direct answer, the
problems posed are:

a. How to present an answer for Sale'?
b. How to assign royalty credit when it is sold?
That's because, in AC, a storage procedure for an answer

is defined in terms of how the answer is found, and Sold, and
credited with royalties.

For example, if there are 2,000 answers to the question,
Movie Review of Casablanca'?, how is AC to present them
to Rex

And let us say that many of the answers borrow from
other answers. How then is royalty credit to be split, given
paraphrasing and perhaps verbatim copying?

Let us give Some example questions to see the problems.
We will just give questions and imagine that Someone has
already Supplied an initial answer.
What is today's weather?
Now, what if someone enters an “updated' weather report

that changes just a few facts? How Shall we give credit to the
first answer? What if the updated report is very different, a
“new” weather report?
How high is Longs Peak'?
Now what if someone enters a “corrected” figure'? What

if there is a debate on the definition of height? What if there
are hundreds of measurements?
What is the price of Walkman X'?
Now what if Someone enters the same price as the initial

price'? The Second price might be considered a useleSS repeat
of the first, but then we might also call it a valuable
confirmation.

15

25

35

40

45

50

55

60

65

S6
What's a photo of Old Faithful?
Now let's Say Someone provides a Second photo which

many people prefer to the first photo? Should the first
photographer be paid? What if the second photo isn't that
much different from the first? What if it is very different? Of
course we don’t know what different means in any definite
Sense, So that poses a problem in deciding what to do.

Short Biography of Hans Bethe'?
Now what if Someone enters a Second biography that adds

to but does not change the first? What if the new biography
only differs in that it corrects Some mistaken footnotes in the
first biography'? What if the new biography is a translation?
What share of royalties should the translator get paid?
How do you get to Chicago fastest from Washington, DC,

by car?
What if someone enters an answer that copies the first but

changes a just a 5 mile Stretch going into Chicago'? What if
the two answers share only one road?

These examples are a very meager Selection. For most any
question one can think of a fantastic variety of different
kinds of answers. We have not even discussed the difference
in efforts to arrive at different answers, or ways of evaluating
how much people care about the differences.
We know so little about classifying the differences

between answers, and we know So little about paying for
improvements, that we certainly cannot say at this time what
are the best ways to present and give credit to answers. There
are no universal rules that hold. Yet, we can Say that AC
requires certain kinds of rules and functions for any Scheme
of enabling users to enter more than one answer to a
question.

Before, discussing these, we should mention that users
can enter answers under different questions rather than under
the same question. Using different questions is a fundamen
tal way of differentiating answers. This does not completely
Solve our problem, for the basic issues remain: how to
present the answers and how to credit answers. Moreover,
We Still need rules for how more than one answer can be
Supplied to a given question, because even when we use
different questions, we still need to accommodate the pos
Sibility of a better answer to a given question. Generally, it
will not work to reserve for eternity one answer to a given
question.

5.2e Rules and Functions for Storing Multiple
Answers to a Question

There are numerous ways AC can Store multiple direct
answers to a question. The variety comes from the various
kinds of rules there can be for presenting the answers and for
crediting the answers with royalties. While we cannot give
any Specific rules, we can say that AC requires four kinds of
rules and functions.

(Note: When we say rules, we mean both meta rules that
users understand and internal System rules that are required
for implementing the meta rules. Often we call internal rules
functions because they involve sets of Steps for carrying out
the meta rules.)
1. A Second Rule of Creation, Creating a Q-A-record
AC creates a Q-A-record for each actual answer Supplied.

This rule was discussed above. We may call it the second
rule of creation, in contrast with the main rule of creation,
which is to create a Q-record for any new question. Thus,
different actual answers to the same direct question are all
Stored under that question and are differentiated by their
A-A-Stats. (Another way of looking at the situation is that
AC creates a Q-A-location for each answer. We discuss this
idea later.)

IPR2020-00686
Apple EX1019 Page 83

6,131,085
57

(Now, in certain cases, where changes are made to an
answer, AC may not create an entirely new record, but that
is not really to the point. We will assume that AC creates a
new Q-A-record whenever Sue changes the content of an
answer.)
2. Copy/Credit Rules

If Sue uses another answer in her answer, which can
happen in a great variety of ways, then AC needs rules for
enabling Sue to give royalty credit to that other answer.
These rules are also discussed in Chapter 14 on property
rights.

Copy/credit rules illustrate how AC operates by meta
rules and internal rules. By meta rules here we mean rules
that tell Sue when to give credit to other answers. By internal
rules we mean functions that AC has for enabling Sue to
enter citation information and functions for automatically
crediting another answer with a share of Sue's royalties,
when Sue's answer is sold.

For example, if Sue uses a long quote in her answer, then
She may have to assign a share of her royalties to the owner
of the quote. It is by ACS guidelines for the Sharing of credit
that Sue understands what to do. It is by AC’s credit
functions that the royalty payments are transacted.

Copy/credit rules are the hidden regulators of the answers
that are supplied to AC. Why is that? Because a person will
enter an answer based upon how much she thinkS She will
make when it is sold. How much she will make depends on
how much she has to pay to other answers and on how much
people who copy her answer will have to pay her.

Thus, ACS rules for defining copying are fundamental
aspects of the System. One hesitates to call them part of the
System in that they are almost always meta rules. But Still,
they are fundamental in determining what answers get
entered.
When we Say copy we do not mean in the narrow Sense

of a copyright infringement, we are thinking more in terms
of patent infringement, and yet we are thinking of more. It
is an area that needs exploration. We need to discover better
rules for paying for improved answers, while giving enough
credit to the original answers that the improvements are
based on (see Chapters 8 and 14).
We cannot give any rules and Say only that experimen

tation Seems to be the best policy.
In Some cases, AC can have “what the market will bear”

rules in which Sue's answer is compared to another answer.
ReX can choose between two answers and explicitly pay for
a given improvement. For many reasons, Such a Scheme is
hard to execute and there is no time to go into the problems
involved.
3. Challenge Rules and Functions
AC's meta rules are rules that users need to follow in

order for the system to work. For example, Sue may be
expected to properly cite a given answer as deserving a share
of the royalties that her answer gets. The meta rules tell her
when to do this.
Where meta rules are concerned, there must be ways for

determining whether users have violated the rules. There can
obviously be disputes, for money is involved. And so, AC
needs means for enabling users to alert System judges to
problems. And AC needs means to allow System judges to
rule on matters.
AC has its traffic rules; it's right of way rules, So to Speak.

Instead of police roaming the Streets, users themselves Spot
infractions. They can complain to System judges. Unlike
many traffic Situations on the Streets, evidence is available
and can be evaluated. In other words, AC needs rules and
functions that enable users to challenge the actions of other

15

25

35

40

45

50

55

60

65

58
users. This is especially evident where users Supply com
peting answers.

These points, of course, apply to any meta rules and not
just those involving the Supplying of answers. The need for
challenging procedures is discussed in various places, espe
cially in Chapter 14.
4. Show and Sell Rules

If more than one direct answer can be Supplied to a
question, AC must have rules for how the answers are shown
when a user arrives at a question, and rules for which answer
is Sold when the user requests one for output.
(When we say that an answer is shown, we mean that

A-A-stats for the answer are shown. When we say that an
answer is Sold, we mean that it is outputted.)
To repeat a previous point, these rules are part of Storage

rules, because how an answer is shown and Sold is part of
how it is stored. While the name does not seem to have
anything to do with Storage, we will call these rules Show
and Sell rules.
The importance of show and Sell rules in AC can be seen

by analogy when we think of a printed product catalogue. In
a catalogue for, Say, office Supplies we see headings for
various kinds of products. Under a heading for Pens there
might be descriptions of a dozen different kinds of particular
pens. Obviously, it is crucial to the Sales of a given kind of
pen how the pens are displayed, and more important,
whether they are shown at all in the catalogue. We can
presume that many manufactures might want to get their
pens in the catalogue but cannot because of the catalogue
company's show and Sell rules.
AC is different than a Static print catalogue of course, but

the problem of presenting choices remains. While AC can
show partial A-stats for more than one answer at a time, the
number of answers whose A-stats can be shown at once is
severely limited. Thus AC needs rules for selecting which
answer(s) to show A-stats about.
AC also needs Selection rules for which answer to output.

(AC can output more than one answer at a time, but for
Simplicity, we will assume that only one answer is outputted
per output request.) The user may choose the answer, or AC
may choose the answer. When AC chooses the actual
answer, then AC obviously needs rules for Selecting the
answer out of a Set of possible answers.
While show and sell rules mean selection rules that apply

to direct answers already in AC, they can also mean rules for
restricting what answers are allowed to be Stored for a given
question. In other words, show and Sell rules can include
meta rules that define a Satisfactory answer to a given
question. Let us discuss this point briefly because it is a basic
way of handling the endless answer problem.
One way to handle the endless answer problem is to

narrowly restrict the meaning of questions. By tightly
restricting definitions, users can have a good chance of
knowing what answer to expect and what answer to Supply.
That does not mean that only one answer Satisfies a given
question, but that any answer entered has to match the
conditions of the meta rules. For example, a rule in certain
lands can be that an answer has to be true. Sometimes AC
can judge whether a condition has been met. For example,
a rule can be that an answer has to be under 100 words long.
AC can judge whether this condition is met. Other times, as
with a rule about the truth of an answer, AC cannot judge;
and So AC enables users to file complaints about answers
with a System judge. The judge may then rule that an answer
is unsatisfactory and may penalize the Supplier or take
various other actions, Such as allowing a different answer to
replace the offending one.

IPR2020-00686
Apple EX1019 Page 84

6,131,085
59

AS noted, AC can include numerous lands where different
meta rules apply and where the same questions mean
different things. Say questions are names. One land might
then be a phone directory where each name corresponds to
a phone number. Another might be an encyclopedia where
each name corresponds to a Subject. Another might be a
geographical locator where each name corresponds to a GPS
number. And So on.
Now rules for defining the boundaries of answers to a

given question need not be highly restrictive. But highly
restrictive conditions are necessary when questions are not
linked to one another. If definitions are not restricted-So
that users can have a good idea of what answer to expect
then the endleSS answers reality will Swamp the System
because no one will have a good guess as to what answer to
expect, or what answer to Supply, to a question.
Aside: Avoiding Many Constraining Rules by Linking Ques
tions
As described in Book II, many of the problems caused by

the endleSS answer reality can be greatly ameliorated by
linking questions in certain ways. By doing this we can input
and output as many answers as we want, but they will
correspond indirectly to a given question. We Separate the
answers by giving them different question-labels but connect
the question labels So that an answer can be found from more
than one question. Though certain meta rules remain, they
do not really limit the number and kind of answers that can
be entered to correspond indirectly to a question.

However, as noted, Storing answers under different ques
tions does not solve all our problems. Thus, show and sell
rules also apply to direct answers to linked questions.
What's Next
We will now discuss two general approaches to Storing

multiple answers to a question. These are just approaches,
with no specific rules attached to them. One we call the
unlimited answers approach. The other we call the current
answer approach. In a Sense they represent two poles of a
Spectrum of ways that multiple direct answers can be Stored.
One way is sort of a free for all. The other way is restrictive.
In between these two approaches are countless others that
vary according to the particular rules used to show and Sell
SWCS.

After discussing these two approaches, we will explain a
general method for making comparisons between direct
answers to the same question.

In all approaches, a central element is a Q-A-location, So
we discuss that first.

5.2f Q-A-Location
Another way of Saying that AC creates a Q-A-record is to

Say that AC creates a Q-A-location. By this we mean that AC
creates a record and enables users to access (interact with)
this record, just as a Q-location means both a Q-record and
that AC enables the user to access the Q-record.

The term location here can be confusing though because
the Q-A-location is not separate from the Q-location. A
Q-A-record, as noted, is part of the Q-record. Thus a
Q-A-location is part of the Q-location.

Recall, a Q-location is made up of a question and a
Q-record. When Q-record information is shown on the
Q-display, we say that the user is at a Q-location. The
Q-display shows options pertaining to that Q-location.
The Q-display also includes options for accessing a given

Q-A-record, and for getting the actual answer that the
Q-A-record corresponds to. When the Q-display options
apply to a particular Q-A-record, we say that the user is at
a Q-A-location. We can also use the term current Q-A-
location.

1O

15

25

35

40

45

50

55

60

65

60
Thus the Q-A-location is both a distinct location in

memory and part of the Q-location. If we think of the
Q-location as an area, we can think of a Q-A-location as an
Sub-area within the area. But this picture isn't very good
because the Sub-area leads to an actual answer, which isn't
very clear visually. As a better picture, we might think of a
question as a potentially vast, multiplex movie theater and a
Q-A-location as a theater within this multiplex. The theater
shows a movie, an actual answer. Outside this theater a
patron can See various information about the movie and then
decide whether or not to pay for and see the movie. But this
picture is not that good either. It falls Short because AC may
take a patron right into the movie without Stopping in the
“lobby” to see Q-A-info. Let us just realize that a Q-A-
location is a new thing that is hard to compare to existing
things. It is a Sub-record of a Q-record, and its Subject is an
actual answer.
When we say that AC finds or matches a Q-A-location, we

mean that AC matches a Q-A-record. When we say that a
user arrives at a Q-A-location, we mean that AC presents
him with options for accessing the Q-A-record, and for
getting the corresponding actual answer. A user does not So
much go to a Q-A-location as a given Q-A-location is
presented to him as part of the larger Q-location.
When a user arrives at a Q-A-location he sees A-A-Stats

for an actual answer. He can “react' to the answer, for
example by making an offer for the answer, or entering a
complaint about the answer. In other words, when a user is
at a Q-A-location, AC registers information in that actual
answer's Q-A-record.
When a user is at a Q-A-location, he is still at the

Q-location, and So information is still registered in the
Q-record. AC still shows options that pertain to the current
Q, and to potential answers, and to finding other Q-A-
records, if any, that are at that Q-location.

Thus, the term location is a bit confusing for the process
by which AC creates a record for an actual answer and
allows users to access that record, while the users are at a
larger record, the Q-record. Still, we use the term location
because it is convenient to think of a user going to a record.
We can then think of the linking of records, for example the
linking of Q-A-records, of Q-A-locations. We can think of a
user going to a given Q-A-location to See A-A-Stats about a
given actual answer.
How does a user arrive at a Q-A-location then? That

depends on ACS Show and Sell rules, which we are going to
discuss further below.

First let us discuss what we mean by being at an actual
answer. We do not think of an actual answer as having its
own location. We might Say that there is an actual answer
location, but in fact, when an answer is outputted, the user
is still at the Q-A-location for that answer. That is because
AC can Still register information about the actual answer and
can Still output information about the actual answer from the
Q-A-record. So, the actual answer is directly connected to
the Q-A-location. It is never entirely alone; it must have a
Q-A-record that goes along with it.

However, we should distinguish between being at a
Q-A-location and not Seeing the actual answer, and being at
a Q-A-location and Seeing the actual answer. Perhaps we
should say that when an answer is shown that means that the
user is at the actual answer location. Instead, we will just Say
that an answer is outputted or seen. That will mean that the
user is at the actual answer, and that the user is Simulta
neously at the Q-A-location for that answer.
Now let us return to the topic of how a user gets to a

Q-A-location.

IPR2020-00686
Apple EX1019 Page 85

6,131,085
61

5.2g The Unlimited Answers Approach
When the unlimited answers approach is employed, Sue

arrives at a question and enters her answer. AC creates a
Q-A-record for it. The Q-A-record is differentiated from
other Q-A-records by the A-A-stats for Sue's answer. We
picture this in FIG. 5.17 where a question 185 has four actual
answers 186 and Q-A-records 187.
What characterizes the unlimited answers approach is the

ways users arrive at a Q-A-location, the ways an actual
answer is presented, in other words. The main idea is that no
location is preferred over another, at least not at the time of
Storage. Given ACS matching rules, and given the various
Search instructions entered by users, there will be Q-A-
locations that are preferred, but we cannot say which ones in
advance. (This is in contrast to the current answer method
below where a single answer is preferred.) There are two
general ways that users can arrive at Q-A-locations given the
unlimited answers approach.
1. Arriving at a Question That Has No Q-A-location Show
ing Initially
AC can enable the user to arrive at a question and AC can

show no Q-A-location initially. In other words, AC does not
show any A-stats from any Q-A-record. AC instead enables
the user to enter a command for Scrolling through the
Q-A-records at that question. Alternatively, AC can enable
the user to enter further Search Stats to Specify a Q-A-
location that AC can then match and present.

For example, say that the question ReX arrives at is Short
Bio of Bethe'?. And say that there are 100 direct answers to
this question. Say also that ReX enters a Search Stat of 5
cents. AC will then take Rex to a Q-A-location for a bio that
costs 5 cents. Of course, AC may need other Search Stats in
order to narrow down the Selection to one Q-A-location. AC
may will also have defaults for taking users to given
Q-A-locations. For example, one default may be that AC
takes the user to the more popular of two given Q-A-
locations (of course, popularity can be defined in various
ways, and we are just giving an example). It all depends on
ACS matching rules.
2. Arriving at a Q-A-location Initially

The Second way that a user can arrive at a Q-A-location
is for AC to take him to the Q-A-location that best matches
the question or Q+ that the user has entered. In other words,
AC matches questions and Q+'s against Q-A-locations and
picks the best one it can find at that question. AC can present
more than one match at a time. And AC enables the user to
use the options for finding another Q-A-location. The only
difference from above is that AC does present a Q-A-
location initially. Of course, there must be a Q-A-location at
the question in order for this to happen.
Automated Output
When Rex askSAC to pick an actual answer to output, AC

chooses the best matching Q-A-location it can find.
However, it may not find one because there may be no
Q-A-records with adequately matching A-A-Stats (see 5.3c).

5.2h The Current Answer Approach
The idea behind the current answer approach is simple:

when a user arrives at a question, AC defaults to showing
him A-stats about one answer out of a Set of possible direct
answers. We call this favored answer the current answer.

The current answer is defined by meta rules which we call
displacement rules. When Sue enters an answer to a question
that already has a current answer, her answer is allowed to
become the current answer if it meets the displacement rules.
In other words, meta rules define what answers can displace

15

25

35

40

45

50

55

60

65

62
the current answer. If there is no existing current answer,
Sue's answer becomes the current answer.

Displacement rules can vary widely. The idea is that they
are designed So that a displacing answer is deemed “better
than the answer it displaces. Though better is very vague, it
gets the idea acroSS. A simple example of a displacement
rule is that the current answer should be correct. If it is not
correct, it can be displaced. For example, if a price is out of
date, a new, correct price can become the current answer.
Now AC cannot know about conditions in the real world

and so Sue must say whether her answer deserves to be the
current answer according to the meta rules. AC assumes She
is right, while allowing others to challenge her judgment.

Sue enters a new answer by pressing a New Current
Answer command that AC includes for enabling her to enter
an answer. After she enters her answer, AC makes it the
current answer, and the displaced answer becomes a past
answer. (AC can alert the Supplier of the displaced answer,
who may want to challenge the displacement.)

The current answer approach is an important way of
restricting the answers that can be Stored for a question. The
approach can be used to enable a given Sue to “reserve' an
interpretation of the question for her answer, blocking out
various other interpretations. That does not mean that a
single answer fits the question but that only a “better”
version should fit (we have not escaped the endless answer
reality, only narrowed interpretations).

For example, assume that the current answer can only be
displaced if it is found incorrect. Then, if a user desires to
enter an answer to a question that already has a correct
answer, the user has to enter the answer under another
question. For example, if Sue intends to Supply the answer
to Russell Marker's phone number?, and there already is a
correct phone number in AC for that question, Sue would
have to enter a different question, though one that Still
describes her answer. She might enter, Russell E. Marker's
phone number? (presuming of course that the Russell she
has in mind has the middle initial of E) to store her answer
under.

So the first Sue who entered the phone number for Russell
Marker “reserved” the meaning of Russell Marker as refer
ring to a particular Russell Marker. The new Sue who
wanted to use that question has to pick another question,
Russell E. Marker? That's because her answer was no better
than the first Sue's answer. We might say that they are
equally valid. And So the first answer remains undisplaced.

Thus, by the current answer approach:
Sue arrives at a question 190 and presses Enter Current

Answer, she enters her answer 191, AC stores her
answer and creates a Q-A-record 192 (a Q-A-location)
for it which AC makes the Q-A-location that people See
when they arrive at the question.

The previous current answer becomes a past answer 193,
whose Q-A-record 194 remains and differentiates it from
other past answers and the current answer.
Past Answers

Past answers have their own Q-A-locations, differentiated
by the A-A-Stats that are particular to their Q-A-records.
When a user arrives at the Q-A-location for the current
answer, AC can enable him to enter a See Past Answer
command for Seeing Q-A-locations of past answers. AC can
then enable him to Scroll through A-A-Stats for particular
past answers. Or AC may enable him to enter Search Stats for
finding a given past answer Q-A-location.

Therefore, even though a question has a current answer,
users can Still find past answer Q-A-locations, and can
transact business there as well.

IPR2020-00686
Apple EX1019 Page 86

6,131,085
63

How many past answers should be kept is a design
decision. To limit the number kept, AC can charge Sue a
Storage fee for keeping her past answer or can keep only
those that generate enough revenue to justify their Storage.

5.2i Labeling the Differences Between Two Direct
Answers to the Same Question

In many cases, when Sue wants to enter an answer, what
She wants to do is change or improve on an existing direct
answer. There can be So many ways that Sue can “change'
or “improve on an answer that these words cannot get the
possibilities acroSS. Instead let us just Say that Sue's answer
is different from a given answer.
Now Sue may want to point out how her new answer

differs from an existing answer. And AC may, in certain
cases, require her to do So.

(In Book II, we will discuss how AC can enable Sue to
name the relationship between answers that correspond
directly to different questions. Here we are not concerned
with that. We are concerned with how Sue can express the
relationship between two direct answers to the same
question.)
We give a method below that AC includes to enable Sue

to express the difference between her answer and an existing
answer to the same direct question. While there can be great
variety in the details of this method, it is just a Small
variation of the basic input path. The difference is that, rather
than arriving at just a Q-location, Sue arrives at a Q-A-
location for the answer that she wants to compare her answer
to. AC then enables her to describe the relationship between
that answer and her new, different answer. Thus:

1. Sue arrives at the Q-A-location of the answer she wants
to compare her answer to.

2. She presses a Change command that AC includes to
enable her to Signify that her new answer has a rela
tionship with the answer at the current Q-A-location.

3. AC enables her to enter her answer. She enters her
answer. AC Stores it under the question she is at and
creates a new Q-A-location for it.

4. AC takes her to the new Q-A-location. AC presents her
with a form for entering a description of the difference
between the answer she has entered and the answer at
the previous Q-A-location She was at.

5. She enters a description of the difference.
a. Her description can be taken from a list of Standard

descriptions that AC includes, for example: update,
improve, add to, validate, more complete answer.

b. AC can enable her to enter a description in her own
words in which she compares her answer to the
answer at the previous Q-A-location.

6. AC stores her comparison as an A-stat for both answers.
In the new answer's Q-A-record, AC tells which
answer the comparison refers to. For example AC
might Store, "an update of the answer with So and So
A-stats.” In the Q-A-record of this other answer, AC
also Stores the comparison and tells which the new
answer is. For example, "updated by the answer with So
and So A-stats.”

In addition, AC can create links between two Q-A-
records, as shown in FIGS. 5.19 and 5.20. By links we mean
that when a user is at one of the Q-A-locations 195, 197 he
can travel on the link to the other 196, 198.
Answer History

Using the method above AC can keep a history of
“changes that have been made to an actual answer. The

15

25

35

40

45

50

55

60

65

64
history is a chain of differences recorded in the Q-A-records
of each answer in that chain. This is especially appropriate
where the current answer approach is employed. Thus if the
current answer has displaced another answer, the current
answer can have an A-stat indicating what change was made.
Each answer then, except the first, has a record of how it
differs from the answer it has displaced.
Insert/Delete Option
AC can also include a command that enables Sue to edit

an existing answer. She presses this Edit Answer command,
and AC enables her to edit the answer of the Q-A-location
She is at. AS above, AC Still creates a new Q-A-record for her
edited answer. In this case, AC also saves the insertions and
deletions she has made, So that there is a record of the
change. The record can be kept as an A-stat in the Q-A-
record of her revised answer.
Alerting the Original Supplier
When Sue wants to compare her answer to an existing

answer by the method above, AC can automatically alert the
Supplier of that existing answer. The Supplier may object to
the comparison. The two Suppliers may communicate about
whether the comparison is appropriate. Also, Sue may want
to contact the original Supplier in order to get permission to
make a comparison or to consult about a comparison.
Note on Quality Control Labels
One way that any user can “change’ an answer is not by

changing the content of the answer but making quality
comments about it. These comments can be crucial. For
example, a comment might Say, “Out of Date” or “Incor
rect.” Of course there can be far more detailed reviews of an
SWC.

For now, the point is that answers can be Substantially
changed without actually changing their “content.” A sepa
rate Q-A-record is not made in this case. Instead a comment
is entered into the Q-A-record for the answer that is com
mented on.

Quality control labels (comments are one kind of label)
can be very important A-A-Stats (see chapter 13).

5.2 Brief Digression: What About the POE?
If there are multiple direct answers to a question, then

how is a person to evaluate the POE for a new answer to the
question. For example, if the question is Movie Review of
Casablanca, and there are already Several reviews Supplied,
how is a potential supplier to decide what the POE is for a
another review?

Of course, we cannot say generally. In this Section what
we have described are ways that AC can enable users to Store
multiple answers to correspond directly to a given question.
The endleSS Variety of potential answers remains.

Questions do not identify Single answers and So a given
Q-record and Q-A-record do not apply to only one answer.
The records do not even apply just to answers that can be
stored for their question. They apply to a slew of “similar'
answers that can be Stored under a slew of “similar ques
tions.
By the same reasoning, multiple Q-records can apply to

the answer that Sue is considering entering for a given
question.

Thus, Q-records can be linked So that users can make
guesses about the demand for a given actual answer that
might Satisfy Rex's who have entered different questions. In
other words, multiple Q-records, especially demand records,
can be combined to yield combined demand for an answer.
We then have demand based on a question net, but this
demand Still must be collected at individual questions.

IPR2020-00686
Apple EX1019 Page 87

6,131,085
65

When we think of question nets, which obviously have
many differing questions, we can See that evaluating the
demand collected in one Q-record is not necessarily the
point. And whether one or more answers have already been
Supplied to a given question is not necessarily the point.
There may be many alternative answers to consider, and they
may be Stored under different questions.
Why even have a demand record for a given question if

it does not apply to a single answer? Well, questions are the
only way we can identify answers. So we use them, while
realizing their limits. Demand information Stored under a
given question many not apply to a single answer, but it can
still help a potential Supplier decide whether it is worthwhile
to enter a given, actual answer.
How a user evaluates the demand information depends on

the Situation. The alternative answers that have been Sup
plied to the current-Q obviously are a factor to consider. So
are answers that have been Supplied to Similar questions.
There are a host of factors to consider. They not only include
considerations of what a question means but also of ACS
rules, like Show and Sell rules and copy/credit rules.
Auser must use common Sense. But without AC's A-Stats,

especially demand information, common Sense is blind.

5.2k Entering an Answer to Correspond Directly to
Multiple Questions

AS discussed in 5.1k, AC can enable users to enter more
than one direct question to correspond to the same answer.
We should note briefly, yet significantly, that when AC stores
an answer to correspond to one of these questions, it can
Store the answer to correspond to the other questions as well.
AC may have the user preSS a command for this to happen,
or AC may do it automatically.
We leave aside this matter until Section 5.5 where we

discuss common Q-records.

5.21 Questions That Correspond to Answers with
Multiple Parts

AC can include a type of question that allows multiple
users to contribute Sub-answers (Sub-As) to make up a
“larger' answer. We will call this type of question a
combo-Q and this larger answer a combo-A.

With combo-QS the Q-A input path again remains essen
tially the Same. However, AC requires procedures for putting
together the Sub-A's for Output. In addition, AC needs to
Store each Sub-A as a discrete entity that is tagged by Sue's
ID data, so that she can be credited when her Sub-answer is
outputted. (Of course, AC requires royalty rules for defining
how much credit each Sub-answer gets.)
A Sub-A corresponds directly to the combo-Q in memory

and is entered in the same way as a single answer: Sue enters
the combo-Q and then enters the Sub-A. For example, Say
Rex enters, What are the major steel companies in the US.?,
and designates this as a combo-Q. Then various Sues can
arrive at the question and enter the names of different Steel
companies. Each entry is a Sub-A and the full list can be
outputted. The list can continue to grow and be updated.
AS another example, Say a certain Sue enters, What's the

news in Angola, and designates it as a combo-Q. Subse
quent Sues can then contribute their accounts, which can be
differentiated in various ways, Such as by time of entry and
by author.
A combo-Q can be seen as a question where the unlimited

answers approach applies and where the multiple direct
answers under that question are outputted together.

15

25

35

40

45

50

55

60

65

66
However, by having a special category of combo-Q's, AC
can enable particular rules to apply that would not normally
apply with plain old questions. The particular rules concern
making it easy for people to enter answers to be combined
with other answers. Such rule include copy/credit rules and
presentation rules. We cannot give any particular rules but
just say that when answers are to meant to be combined that
different rules will apply than apply for plain old questions.
Combo-O's AS Linked Questions

It is important to note that the Sub-A’s to a combo-Q can
be differentiated by their own sub-questions. For example,

the combo-Q might be: What's the news in Angola'?,
a sub-Q might then be: What's the situation with unex

ploded mines as of 6/6/96?
another sub-Q might be: Dispatches by Flynn'?
If Sub-questions are included in the Scheme, a combo-Q is

really a kind of name linked question where the Sub-Q’s are
linked to the combo Q. A Sub-A is then a “full” answer to its
Sub-O, while it is also a Sub-A to the combo-Q.

5.2m The Q-A Input Path for Linked Questions
Regardless of whether a question is linked to another or

not, the basic Q-A input path applies: Sue arrives at a
question, and then enters an answer, and AC Stores the
answer to correspond directly to the question. She may have
gotten to the question by traveling through other questions,
but that is beside the point.
When a first question is linked to a Second question and

the Second question has a direct answer, we call the answer
an indirect answer to the first question. And we call the first
question an indirect question to the answer.

5.2n. Addendum: Invisible Test-Answers

AS discussed in 5.1c, users may enter questions,
Q-locations, just to test demand. We now consider a feature
AC can include for enabling users to test demand for actual
answers, rather than just answers represented by questions.
In other words, we discuss how AC can enable Sue to create
a fake Q-A-location for testing demand.
Now when Sue enters an answer she creates a Q-A-

location. The response of Rex's is then tested as demand
information is collected at this Q-A-location. The problem is
that it is only tested with one set of A-A-Stats, the Set a that
applies to her real, actual answer. If Sue Sets a price for her
answer, for example, then she only Sees what the demand for
her answer is at that price.

She may also want to See, hypothetically, who would have
bought her actual answer if certain A-A-Stats were different,
Such as product reviews and price. Thus AC can include a
Test Answer command for enabling her to enter fake,
hypothetical A-A-Stats along with her answer to create an
extra, invisible Q-A-location.
When we say invisible, we mean that Rex's do not arrive

at the Q-A-location, but that AC still collects certain kinds
of demand information. In particular, AC registers how may
times the answer would have been outputted by the MMA
path (see 5.3) based on the hypothetical Q-A-location.
To take a simple example, Sue can enter an answer and Set

a price of S5. She might also want to test demand at S2. So
She presses Test Answer, and AC enables her to enter
hypothetical A-A-Stats to describe her answer. The A-stats
can be Supply Stats and also A-stats that normally she cannot
Supply. In this example case She would enter a Supply Stat of
S2 rather than the real, visible S5.
Sue need not even have entered an actual answer. AC can

enable her to enter just hypothetical A-A-Stats. She can thus

IPR2020-00686
Apple EX1019 Page 88

6,131,085
67

do market research based on a completely hypothetical
actual answer that is described by the invisible, fake A-A-
StatS.

5.3 The Main Paths for Outputting Answers
While there is one basic path for getting answers into AC,

there are innumerable paths for getting them out and using
them, especially if we consider function based questions.
But here we ignore function based questions. They are
discussed in the next section. Here we boil down the various
ways into two basic output paths.
(We might point out here that, as with the basic input path,

details of the output paths can vary depending on the kind of
answer.)
Now when we say output path that does not necessarily

mean that an answer is actually outputted. The answer may
be missing. We are referring to the paths by which AC tries
to get an answer to output. An attempt may or may not
Succeed.

In other words, when we say output path we mean how
ReX declares that he wants an answer and what AC does in
response to that declaration.

(Note: AC enables Sue to get answers as well. She will
normally ask to See an answer in order to check the com
petition. AC does not register her declaration as demand
information. AC may also have a Special mode for users who
want answers outputted for the purpose of checking the
competition. We refer to Rex throughout because the output
paths mainly concern Rex.)

5.3a Some Definitions

We call Rex's declaration an output request (o-request).
Output requests are obviously a kind of request informa

tion. In describing the basic System of part I (Chapters 1 and
2, that is) we did not worry much about differentiating
request information. In this part (especially in Chapter 6) we
do identify many different kinds of request information and
request Situations. We do not simply think in terms of
“requests.”

Request information encompasses many actions by users
that do not involve a user actually asking to get a given
answer. For example, when ReX arrives at a question the
arrival alone is considered request information. Yet upon
arriving, he may not ask to get the direct answer. He may just
look at A-stats at that location.

In other Sections, for the Sake of convenience, we Some
times use the terms “to request' and “a request' too loosely.
The noun form especially is a more general term that does
not always mean that the user wants to buy an answer.
Because “a request' can be ambiguous, we use the term
"output request' in this Section to Signify that Rex asks AC
to output a given answer-missing or actual.
And when AC attempts to output a given answer, we call

that attempt an output request as well. That's because an
output request implies an output attempt.
AS with the word request, O-request will have a noun and

verb form. So, to o-request means that Rex asks to have an
answer outputted, and it means that AC tries to output an
SWC.

When a missing answer is found as a result of an
o-request, we call that an O-miss.
When an actual answer is found as a result of an o-request,

we call that an o-hit. We must be a little careful here. An
o-hit does not necessarily mean that an answer is outputted.

15

25

35

40

45

50

55

60

65

68
That's because ReX may not have offered to pay enough for
the answer. Either way, AC registers an o-hit.
AC may treat price differently from other Search Stats

because of its transactional aspects. Rex can be at a question
that has a direct answer. If he does not offer enough for the
answer, then he will not get it. That is not the case with other
Search Stats. Thus, AC can distinguish between a Successful
o-hit and a failed o-hit.

However, Since ways of making payment offers, and way
of matching answers can vary greatly, AC may treat price
like any other Search Stat.

5.3b The Human Matched Answer (HMA) Output
Path

The human matched answer (HMA) output path is an
awkward name. The path is So named because the user is the
one who decides what answer is chosen for output.

This output path is the inverse of the basic input path. Rex
arrives at a question (Q-location). The Q-display presents
him with options for Seeing A-stats about the direct answer
and with options for making and accepting price offers for
the answer. He then decides whether he wants the direct
SWC.

If he wants it he selects Get Direct Answer, the command
AC includes for designating the HMA path. If no answer is
there, AC registers a o-miss in the Q-record of the current-Q.
If an answer is there, AC registers an o-hit in the Q-A-
record. If Rex has offered to pay enough for the answer, AC
outputs it.

(AS discussed, an A-stat may tell Rex whether the answer
is in or not before he presses Get Direct Answer. Even if he
knows the answer is missing he may still press the command
to express his interest in buying the answer. Expressions of
interest are elaborated upon in Chapter 6.)

Here we ignore the commercial aspects of the transaction,
such as price offers. The point is that Rex decides that the
information at a Q-location indicates that the direct answer
will satisfy him. We might call the direct answer the directly
matching answer. And thus we say that ReX has decided on
the matching answer.
Now, as discussed in Section 5.2, a question may have

multiple direct answers. In this case, AC potentially then can
output multiple answers. But the Simplest way is to output
one. For simplicity, we assume then that AC outputs one
answer per o-request (and that AC registers one o-hit per
HMA o-request).
AS discussed, there are a variety of ways that AC can

present A-stats for actual answers. Regardless of the method
used, if only one direct answer is to be outputted, we can
generalize and Say that Rex must be at a particular Q-A-
location in order to use the HMA path. (How Rex arrives at
a Q-A-location is discussed in Section 5.2.) Get Direct
Answer then applies to the answer at that Q-A-location.
Digression on Output and Charge Rules
(We do not mean to short shrift the issue of how many

answers Rex Sees per o-request. Because there can be
numerous, Similar answers to a question, AC may enable
ReX to see more than one answer, while only charging him
for one. The output and charge rules can vary So widely that
we cannot go into the possible variations. For Simplicity we
assume that AC outputs and charges for only one answer per
o-request. The Same applies to the output path described
below.)

5.3c The Machine Matched Answer (MMA) Output
Path

The HMA output path is in contrast to the machine
matched answer (MMA) output path. In the MMA path Rex

IPR2020-00686
Apple EX1019 Page 89

6,131,085
69

determines the question and any Search Stats, but then leaves
it up to AC to decide what answer best matches the question
or O--.

The MMA path involves more output attempt possibilities
than the HMA path because the direct answer to the
current-Q is not the only candidate for output. The best
matching answer may be at another Q-location.
One of the key things that makes the MMA path different

from the HMA path is that if AC finds that the best matching
answer is missing, AC will look for the next best matching
answer, and So on, until it finds an actual answer, or until it
decides that there is no adequately matching actual answer.

In the HMA path, Rex makes one choice at a Q-location
(or Q-A-location). If an answer is not there, he must go to
another Q-location (or Q-A-location). In the MMA path, AC
may find numerous o-misses before it finds an o-hit. All the
misses are best matching answers, they are matches of
missing answers.
Now there can be variations on this plan. AC can include

defaults whereby, if the number of misses is greater than a
threshold, AC will ask Rex to specify his question or Q+
better. Defaults may be helpful because missing answers
will probably vastly outnumber actual answers in AC. In
other words, questions will probably vastly outnumber
actual answers.
A Few Definitions for Explaining the MMA Path

The Source of an o-request means the question ReX is at,
the current-Q, when ReX enters an o-request. Sometimes, we
will also call it the primary Source.
A direct o-request means that the Source of the o-request

is a direct question to the answer that is o-requested. (In the
HMA path everyo-request is a directo-request. In the MMA
path, o-requests can be direct and indirect.)
An indirect o-request means that the Source of the

o-request is a question other than a direct question to the
answer that is o-requested. (Note: in Section 5.2 we defined
an indirect question and an indirect answer in terms of how
questions are linked together. Here the term “indirect' has a
broader meaning. While linked questions can be the Sources
of indirect o-requests, non-linked questions and FB-Q's can
also be the Sources of indirect o-requests.)
The Secondary Source of an o-request is the question that

is matched by an indirect o-request. In other words, when an
answer is o-requested, and the direct question to that answer
is not the Source of the o-request, then the direct question is
called a secondary Source. (If there is more than one direct
question to an answer, it is only the direct question that is
matched that is the Secondary Source.)

If AC finds an actual answer due to an indirect o-request,
then AC registers an indirect o-hit in the Q-record of the
Secondary Source. If AC does not find an actual answer then
AC registers an indirect o-miss. We call these o-hits and
O-misses "indirect” because the direct-Q was not the Source
of the o-request.
Sequence for the MMA Path
AC includes a command, which we call Get Best Answer,

that designates the MMA path. (In certain lands, AC might
default to the MMA path.)

For Simplicity, we assume that ReX presses Get Best
Answer after he has arrived at a question. (AC may enable
him to press it before he enters a question.)

Search Stats can be used along with the current-Q to
search for an answer. Before hitting Get Best Answer, Rex
can enter Search Stats or designate that background ones are
to be used. AS noted, we call the current-Q plus Search Stats
a Q--.

(Again we ignore the commercial aspects, but we note
that when ReX uses Get Best Answer, he must also Set a price

15

25

35

40

45

50

55

60

65

70
threshold for the answer he wants to buy, unless he is
restricting his Search to a land where prices are uniform. In
other words, Rex must make a price offer along with his
o-request.)

After Rex hits Get Best Answer, AC searches for the
answer that best matches the current-Q or Q+. When we say
AC Searches for an answer, we mean that AC looks for the
best matching answer whether it is missing or actual. In
other words, AC Searches for best matching Q-locations and
Q-A-locations.

If AC finds a best matching Q-location without an answer,
that means AC has found a best matching missing answer.
AC then registers an O-miss in the Q-record of that question
and then looks for another match (if the matched question is
not the current-Q, AC registers an indirect o-miss). AC
keeps going until it finds an actual answer at or below the
price ReX has offered, or until it determines that there is no
adequately matching actual answer.

If AC finds a matching actual answer, it registers an o-hit
in the Q-record and Q-A-record of the matching question
and answer. Thus, if the matching answer is not a direct
answer to the current-Q, AC registers an indirect o-hit.
Now, where the MMA path is concerned, AC may treat

price like a Search Stat Screen in the Sense that it will not
register an o-hit unless the price of the answer is at or below
Rex's offer. In this case, AC will only register an o-hit for
one answer, the answer that is outputted.
The reason not to bother with actual answers that cost

more than Rex's price offer is that ReX may have Set Such a
low offer that AC has to match too many actual answers,
register too many unsuccessful o-hits, to no effect. (The
Same problem can exist where there is no actual answer, and
no price Set for the missing answer. AC may match too many
missing answers.)
On the other hand, AC may treat price specially, as

discussed, and register an o-hit for every actual answer that
matches Rex's question or Q+, except for the price Search
Stat.

How AC treats price when looking for an actual answer to
output can vary greatly. ACS matching rules can contain
various ways for cutting down on unnecessary matching that
can take place in the MMA path.
The Best Matching Answer Might Not Be at the Current-Q
Though Rex is at a current-Q when he hits Get Best

Answer, AC will not necessarily find that the current-Q has
a best matching actual or missing answer. Even if an actual
answer is there, AC may not choose it as the best available
answer. Any matching answer depends on what Search Stats,
if any, ReX has entered, and on the alternative answers that
exist, and on AC's matching rules.

(Off the point Somewhat, we note that one important
reason ReX may use the Get Best Answer command is
because there is no direct answer to the current-Q.)
A Way to Pick From Among Multiple Direct Answers
AS discussed, the current-Q may have multiple direct

answers and no current answer. If So, Get Best Answer can
be a way that ReX lets AC pick from among the direct
answers to the current-Q. Thus, AC may also have a separate
command, Get Best Direct Answer. This command applies
in cases where there are multiple direct answers and ReX has
decided that he wants one of these and not an answer at
another Q-location. While Rex has picked a direct answer,
We Still consider this a machine matched answer.
Not Bothering to Show a Q-location
AC can enable ReX to enter a question or Q+ and then hit

Get Best Answer without showing him the Q-location for
that question. That's because ReX may not be interested in
Seeing anything at a Q-location. He may just want to See an
SWC.

IPR2020-00686
Apple EX1019 Page 90

6,131,085
71

In this case, unseen by ReX, AC makes the new question
the current-Qas if ReX had entered the question without also
hitting Get Best Answer. AC registers the necessary
information, as discussed in Section 5.1. For example, if the
question is new to the System, AC creates a Q-location for
it. AC still searches for the answer that best matches the
question entered.
Rex will only see the answer, if any, that is found. If no

answer is found, AC tells Rex and ReX can keep entering
questions and Q+'s, until an answer is found.

In order to choose this option, ReX might enter a question
and then two commands Such as Get Best Answer and See
Answer Only.

5.3d Registering O-requests
Registering an O-request in the Q-record of a Direct Ques
tion
When an answer is o-requested, AC registers whether the

o-request is direct or indirect. And AC registers whether the
o-request is a hit or a miss. And AC registers whether the
o-request comes from the HMA or the MMA path. AC
registers these things in the Q-record of the direct question
to the answer that is o-requested.

In the case of an indirect o-request, AC also registers what
the Source of the o-request is. In other words, it registers the
primary Source of an indirecto-request in the Q-record of the
Secondary Source.

Registering the Sources of o-requests can be useful infor
mation that enables users to see what questions people have
asked in order to buy, or try to buy, a given answer. For
example, Say the Source of the o-request is: Movie Review
of Casablanca'?. And Say the answer that is o-requested is the
direct answer to the question: Movie Review of Casablanca
by Kael?. Then the primary Source of the o-request (Movie
Review of Casablanca?) is registered in the Q-record of the
Second question.
AC can also register Q+'s as Sources of o-requests.

Registering an O-request At the Source
In addition to registering an indirect o-request in the

Secondary Source's Q-record, AC also registers the
o-request, and it's result, in the Q-record of the primary
Source. For example, if ReX is at the question, Movie
Review of Casablanca'?, and presses Get Best Answer, then
AC registers the o-request in the Q-record of that question
and registers that the o-request is indirect, and registers that
that question is the Source.
Registering O-misses Due to the MMA Path
The MMA path can potentially lead to a great number of

O-misses per o-request, as AC tries to find the actual answer
that best matches Rex's question or Q+. Before AC finds a
question that has an actual answer, it may find hundreds,
thousands, millions of questions that are better matches, but
whose answers are missing. That can be a problem because
the value of each o-request can depend on how many other
o-requests have gone along with it. For example, if Someone
expresses interest in 200 different hypothetical shirts, that
does not mean that the person wants 200 shirts. He may only
have interest in one shirt. The value of each expression of
interest thus can depend on how many other shirts he has
expressed interest in.

So what happens when there are multiple MMAo-misses?
Well, as noted, AC may have default rules such that if there
are too many O-misses for a given o-request, AC will ask
Rex to further specify his question or Q+. That is beside the
point though.

1. AS discussed, AC registers each indirect o-request,
including O-misses, in the Q-record of the matched
questions, the Secondary Sources, that is.

15

25

35

40

45

50

55

60

65

72
2. Where the MMA path is concerned, for a given

o-request, AC can also register with each o-miss the number
of other o-misses associated with that O-request.

3. And further, for a given o-hit or o-miss, AC can also
register what questions AC considered better matches.

5.3e Output Path Through Linked Questions

AS noted, AC can enable users to link questions. When
ReX arrives at a question that is linked to others, the question
may possibly have a direct answer and/or an indirect answer.
A net of linked questions can potentially be vast; thus a
question may have a multitude of indirect answers.

Looking for an answer, ReX can travel from the current
question to a linked question and keep going in this manner
looking for an answer. Or, he may be tired of traveling and
may just want to get an answer.
Rex can choose the HMA option or the MMA option. The

HMA and MMA methods remain the same, though there can
be minor modifications.

AC can enable Rex, for instance, to specify that an
indirect answer is to be outputted. AC can enable ReX to
Specify what kind of indirect answer he wants. For example,
he might Specify an indirect answer that is linked by one or
more Synonym links to the current-Q. Link Specifications are
Search Stats actually, and So the essentials of output paths
with linked questions are no different than with non-linked
questions.

Linked questions mainly offer critical improvements in
the ability to find answers and collect demand for answers.
These topics are taken up in Book II.

5.4 Function Based Questions

AS noted, AC can include function based questions (FB
Qs) that call special functions for finding answers. "Func
tion based question' is a term that refers to a wide category
of questions that find answers by processing existing ques
tions and answers in AC.

This definition is inadequate. Actually, it is hard to define
FB-Q’s well because they cover a very broad spectrum of
possible functions for finding answers. Examples will
demonstrate, but a good definition is elusive.
An FB-Q has two parts:
1. a designated function and
2. Subject information.
To enter an FB-Q, a user designates the function and

enters the Subject information (though not necessarily in that
order). The function uses the subject information to find an
answer in AC.

(Certain Search Stats can be entered as well to Screen
answers but we will ignore these for they are not essential to
the discussion.)

In the discussion of FB-Q’s we reverse the previous order
of presentation. First we discuss output paths and then input
paths and then the creation of Q-locations. It is easier this
way because what distinguishes FB-Q’s from plain old
questions is how answers are gotten out of the System or are
used to yield other answers.

5.4a Output Paths for Function Based Questions
To repeat, FB-Q’s find answers by processing questions

and answers that already exist in AC. (When we say “FB
Q's find,” we mean, of course, that AC finds.)
An FB-Q can find an answer not only by working on the

information in a Q-String and in a Q-record, but also in an

IPR2020-00686
Apple EX1019 Page 91

6,131,085
73

answer itself. (For example, a keyword Search might find a
keyword in the content of an answer.)
Three Rough Types of FB-Q's
We can roughly divide FB-Q’s into three types of func

tions: those that Search through questions and answers, those
that Sort answers, and those that plug answers into formulas.
Actually there is no clear dividing line, and all three kinds
of functions can be combined in an FB-O. Often there is no
difference between Searching and Sorting. Still, the general
ideas of Searching, Sorting and plugging into formulas can
help explain how AC can use FB-Q's to find and output
SWCS.

(Note: We use colloquial questions below as examples,
though in actual implementation the Syntax of FB-Q's may
be quite constrained.)
FB-Q’s That Find Answers. By Searching Questions and
Answers
AC can include a large range of Search functions for

locating an answer. The most important are keyword Search
functions. For example, an FB-Q might be: Find: “Deep
Throat” within 10 words of “Alexander Haig'?. As noted, an
FB-Q can Search the content of both questions and answers.
AC can also enable Rex to Specify whether just questions or
just answers or both are to be searched.
FB-Q’s That Find Answers. By Sorting Answers
AC can include a large range of functions for Sorting

answers to yield a resulting answer. For example, an FB-Q
might be Find: Ten lowest prices of Walkman X'?. If AC has
a list of sellers of Walkman X and a corresponding list of
prices. AC Sorts the list and outputs the resulting answer.
FB-Q's that Find Answers by Plugging Answers Into For
mulas
AC can include a large range of functions for plugging

answers into formulas to yield resulting answers. For
example, an FB-Q might be, Find: Average Temperature of
Florida Cities?. The FB-Q can find the individual tempera
tures through their corresponding direct questions, which
might be: Temperature Miami?, Temperature Daytona'?,
Temperature Boca Raton'?, and so on. (AC might find the
answers by Some other indexing means, but that is beside the
point here.) The FB-Q plugs the individual answers into an
averaging formula, and outputs the resulting answer.
Use-Requests

In the previous Section, we discussed o-requests. Here we
add another kind of request, a use-request. By this we mean
that AC tries to use an answer as part of another answer or
that AC tries to use an answer to plug it into a formula to
yield another answer. AS with o-requests, the answer may be
present or missing.
AC must register different kinds of use-requests where

FB-Q’s are concerned. The variety of possible uses is
practically infinite.
Digression on Uses of FB-Q's
Many kinds of answers can only be found by processing

other answers in a list or table. Often those other answers can
only be collected efficiently by members of a community
rather than by a central authority. For example, usually the
most efficient way for an economy to find the lowest price
on a given product is through a System that allows people to
feed in prices to a central list where the prices are Sorted to
find the lowest ones. This way is more efficient than having
a central authority call all the Sellers of the product in order
to check prices. With a feed-in System, only the low price
Sellers need feed in. AC is, of course, a feed-in System. AC
registers the demand for “cell' answers (individual answers
in the table) based on the questions, especially FB-Q's, that
can be applied to those answers. Because it can collect this

15

25

35

40

45

50

55

60

65

74
demand, AC is well Suited to collecting and processing
answers in tables.
HMA and MMA Output Path
FB-Q’s require the MMA output path unless they take the

user to a question.
Certain FB-Q's, Such as keyword Searches, can take users

to questions. In these cases the user can designate the HMA
output path.

For example, Say a direct question is, What is the movie
Singing in the Rain about'?. The direct answer to this
question might be a description of the movie. Now, let Say
that our FB-Q is Find: “movie musical” within ten words of
“most popular”'. This FB-Q might find these words in the
direct answer. Rather than output the answer, the FB-Q can
take ReX to the direct question, What is the movie Singing
in the Rain about'?., and from there Rex can decide whether
or not to buy the answer.
Say the keyword is simply “Singing in the Rain'. This

will match the direct question. It will probably also match
phrases in the answer. The point is simply that AC can take
Rex to a question whether the FB-Q finds the answer
through the question's content, or through the answers
content, or through both.

(Of course, keyword Searches can find numerous matches
and therefore AC can enable Rex to enter further search
parameters in the form of more Subject information and
Search stats.)
FB-O's as Come-from-O's
When an FB-Q takes a user to a question, the FB-Q is

registered as a come-from-Q.
FB-Q’s as Sources of Indirect O-requests
When an FB-Q o-requests an answer, the FB-Q is an

indirect source of the o-request. That's because an FB-Q is
not a direct question to the answer that it causes AC to find.
For example, if the FB-Q is Find: Average temperature
Florida cities, AC o-requests the answers of various direct
questions, Such as Temperature Miami?, Temperature
Daytona, etc. to arrive at a resulting answer.

5.4b Function Based Questions Rarely Have Input
Paths

As noted, it is hard to define FB-Q’s well because they
cover a very broad spectrum of possible functions for
finding answers. One litmus test that helps define an FB-Q
is the following: an FB-Q is a question that users usually
cannot Supply an answer to. That is because an FB-Q works
on existing questions and answers in AC. Users cannot know
the answer to an FB-Q because users do not know all the
questions and answers in AC.

For example, an important kind of FB-Q is a keyword
Search. Now, a user can have no way of Supplying an answer
to such an FB-Q because she has no way of knowing all the
questions and answers in AC that will match the keywords.

Another important kind of FB-Q is one that plugs existing
answers into a formula, Say a formula for finding the average
temperature from a list of temperatures. Again, a user cannot
Supply the answer because the user does not know all the
relevant answers (temperatures) in AC’s list.

There are exceptions to the rule. Sometimes a user will
know enough about what is in AC to give a direct answer to
the FB-Q. Big exceptions are certain Sorting functions where
a user might know the highest or lowest Value to Supply to
a list that AC sorts.

This example was Seen in Chapter 2, with the lowest price
locator. The user can compare the lowest price in AC against
prices in the real world and might know of a lower price in
the real world.

IPR2020-00686
Apple EX1019 Page 92

6,131,085
75

Even if the user knows the answer to an FB-O, AC will
normally have the user Supply the answer as a direct answer
to a direct question. The FB-Q will then find the answer
through the direct question. For example, AC can enable the
user to enter the answer to a direct question about the price
of a product. The price then goes into a list which is Sorted.

Despite the exceptions, FB-Q's generally cannot be
answered by people and thus they do not have input paths
and direct answers.
Showing Direct Questions

Still, AC can show a user the direct questions that
correspond to the answers that an FB-Q causes AC to find.
In other words, the FB-Q is a primary Source of an o-request
and AC can show the Secondary Sources of those o-requests.
AC can enable a user to ask to see these direct questions.

Even without AC showing the direct questions, a user may
be able to recognize which direct questions and answers are
involved when an FB-Q searches for an answer.
A user can choose whether or not to enter direct answers

to those questions.

5.4c Creating Question Locations

Though an FB-Q has no direct answer, AC can still create
a Q-record (including a demand record) for an FB-Q.
Demand information (and other information) gathered in the
FB-Q's Q-record is fed into the Q-records of direct ques
tions that correspond to the answers that AC outputs or tries
to output as a result of the FB-Q.

Moreover, AC can show certain A-stats that apply to
FB-Q’s. The A-stats shown depend on the particular FB-Q.
The cost of an answer, for example, is useful to see. POE
information can be useful in rare, but important, cases.
That's because, as mentioned, users can in certain cases
know what answers will be used by the FB-Q.
How much information is kept in an FB-Q's Q-record

depends on the FB-Q. Demand information is normally most
important, but with FB-Q’s it may not be necessary to keep.
It depends on the Situation.

For example, AC may not keep demand records of key
word Search FB-Q's, but may instead simply register
demand information in the Q-records of the direct questions
that the keyword FB-Q’s find. Let us take an FB-Q that does
the following keyword Search:

Find: “orange” within ten words of “karpousi'?
Let us assume that this question is only entered into AC

once during a year. In a case Such as this there may be no
point in maintaining a demand record.
On the other hand, it may be quite useful to keep a

demand record for an FB-Q. Let us take an FB-Q that does
the following Sort:

Find: Lowest price Walkman X, in US.'?
Here, there may be hundreds of thousands of repeat

requests and it can be quite useful to maintain a demand
record.

There are no rigid rules, for the category of FB-Q’s is too
wide. Decisions in this area are design decisions.

5.5 Combining Information in Question Records
In the previous Sections we saw how multiple questions

can lead to the same answer being requested. When multiple
questions can lead to the Same answer being requested, AC
needs to come up with a combined set of information to be
fed into the POF. Recall, the organizing goal of the system
is to come up with an estimate of total Sales and royalties of

15

25

35

40

45

50

55

60

65

76
an answer. If a question is a vending machine and an answer
is a product, and if the product can be requested for Sale
through different machines, then it is obviously best to
combine the Sales records from each machine into a total
COunt.

In this short Section we have in mind mainly the com
bining of information in D-records because the main goal is
to create a good POE for an answer and that depends
primarily on the D-records. However, other parts of
Q-records can also be usefully combined. This is especially
So when there are multiple direct-QS for an answer.
Registering Indirect O-requests
To repeat from Section 5.3, an answer can be indirectly

o-requested. AS noted, AC registers an indirect o-request in
the Q-record of the direct-O of the answer that has been
o-requested. AC also registers the Source of the o-request.
And So, AC registers and classifies all the indirecto-requests
for an answer in the Q-record of the Secondary Source, the
direct-Q to that answer. In this way AC can combine the
request information from direct-Q’s and the Sources of
indirect o-requests.
When Multiple Direct Questions Correspond to the Same
Answer
When multiple questions are direct questions to the same

answer, AC can automatically link their Q-records. (By
linking records, we mean that information in a first record
can be accessed from a second record, and Vice versa.)

This principle applies whether the answer is missing or
actual. FIG. 5.21 shows three questions 201, 202, 203 that
correspond the same actual answer 204. We imagine that
their Q-records are linked by showing dashed arrows
between the questions. In addition, for each question there is
a Q-A-record 205, 206, 207 that corresponds to the actual
answer. The Q-A-record (Q-A-locations) are linked as well.
Thus, if a user is at one of the Q-records and Q-A-records,
AC can pull information from the other linked records. In
this way, AC can combine Q-info and Q-A-info to present to
the user, and to feed into the POF. If AC registers informa
tion in one of the Q-records, this information can also be
registered in the linked Q-records. Q-info can be combined
in a great variety of ways, of course.
Linking Question Records of Linked Questions

In Book II, we discuss how AC can directly link questions
that are not necessarily direct questions to the Same answer.
As discussed in Book II, whenever AC links two questions
it also links their Q-records, especially their D-records.

In Book II we will discuss how AC can combine demand
information of indirectly linked questions (how AC and
users can evaluate demand information combined from a net
of questions). For now, we just say that AC can link the
Q-records of directly linked questions. This implies that AC
can combine the information in Q-records of indirectly
linked questions.
Common Question Record
When there are multiple direct-Q’s to an answer, AC can

use information from their Q-records to create a common
Q-record. The principle applies for actual answers and
missing answers that have multiple direct-Q’s in common.

This common Q-record can be created by feeding in
information from the individual Q-records into the common
record.
The common record contains information from each

Q-record that applies to the answer that all the questions
have in common (though the individual Q-records might
contain demand information about answers not in common
as well).

In the case of multiple direct-Q's to an actual answer, a
common Q-A-record is created in addition to the common

IPR2020-00686
Apple EX1019 Page 93

6,131,085
77

Q-record. The common Q-A record may be considered a
Sub-record of the common Q-record.
When a user arrives at one of the individual direct-O’s, he

can See A-stats based on the common record, not just based
on the individual Q-record.
What Location Is the User At?

When a user is at a Q-location, he is interacting primarily
with the Q-record of that location. But, when a question is
linked to other questions, the Q-info can be pulled from
multiple Q-records. Or, the Q-info may be pulled from a
common Q-record. So, when multiple questions correspond
to the same direct answer we have two perspectives on a
question location. From the user's perspective, he is at a
Single question. In other words, in general, AC presents a
Single location to the user. But, from ACS perspective, one
can in Sense think of the user being at multiple locations, at
least that AC can pull information from multiple Q-records.
A more confusing situation can arise when the user

chooses the MMA output path and asks AC to Get the Best
Answer. AC then outputs an answer. Now, if the answer
corresponds to more than one Q-A-record, which Q-A-
location is the user at Again, AC may pull information from
the multiple Q-A-records, but in general, it presents the user
with a single location. (Of course, it is possible to show the
user that the answer corresponds to multiple direct questions
and multiple Q-A-records. For simplicity, we can Say that
AC would default to one of the Q-locations and one of the
Q-A-locations as the primary location.)
How to Use the Combined Information'?
A general, and generally unsolvable, problem is how to

apply the demand information that is combined from dif
ferent Q-records. This problem is an extension of the prob
lem of how to apply the demand information of a Single
Q-record. That's because, as discussed Several times now,
there is no single answer that the information should apply
to. This problem is the Same, and perhaps worse, when
different questions are involved in identifying “an' answer.

Chapter 6

Registering Demand Information

As described in Chapter 2, AC collected two kinds of
demand information about an answer. One was the number
of requests for the answer and the other was the times of
those requests. AC can collect other useful demand infor
mation. For example, AC can ask the user how much he is
Willing to pay for the answer.
AS previously discussed, demand information is Stored in

a demand record (D-record) which is part of a Q-record. AC
feeds the information in the D-record into the POF to yield
Sales forecast and POE information about an answer. In
other words, the idea is to collect information that can be
used to help potential Suppliers answer the question, “What
the hell am I going to make if I find and Supply this
answer?. Given the purpose of the record, it might be called
the Sales forecast record or the pay-off estimate record, but
demand record Seems more natural.

Whatever the name, a fat problem remains. Future
demand cannot be measured. The problems involved are
worse than just those inherent in making projections. In fact,
demand cannot be measured at all. And yet, in order to come
up with a good guess or guesses about future Sales, AC needs
to gather information on what we call demand. A brief
digression is in order.

15

25

35

40

45

50

55

60

65

78
6.1 A Digression About Demand

The Meaning of Demand
Demand can refer to the idea of how many units of

Something are Sold at a certain price over a certain period of
time. For example, one can Say that the demand for gasoline
this year was 80 billion gallons at a price of S1 a gallon
(never mind for the moment that prices fluctuate).

However, demand as we normally think of it means
Something more general. It usually refers to how much a
group of people want a product or Service or piece of
information. Here we get into trouble, for how much one
person wants. Something is a psychological State and we
cannot measure that. Then if we consider multiple people,
we have to add up their individual desires. Of course, if we
can’t measure one person's desire, we certainly can’t add the
desires of many people.
A “measure” we have of a person's demand (desire) for

Something is how much that perSon is willing to pay for the
thing. But even here we are in trouble and we can see how
Sloppy the idea of demand is, for how do we measure how
much an individual is “willing to pay for Something, Say, a
carton of milk, a lawnmower, a necklace, a house, a tele
phone number, a book? Well we cannot measure “willing
neSS to pay' because we cannot read a person's mind. The
amount a perSon does pay, the price at the time of purchase,
does not measure how much that perSon is willing to pay. A
person might buy a shirt at S40 but that doesn’t mean that
S40 is exactly what the person is willing to pay. He might
have been willing to pay more. A perSon might pass up a
shirt at S40 which he would have bought it at S35. Perhaps
the highest he was willing to pay was $37.47. The seller will
never know exactly. Even the buyer will never know an
exact, Static figure. He may be broke one day. He may be
flush the next. A purchasing decision is a psychological State
as well.
Then we add a further complication. With most goods and

Services we have an open market, meaning we usually offer
everyone the same price and make that price public, as
opposed to having individual negotiations with every poten
tial buyer. But an open market doesn't tell us much about the
total demand for an item. If the price of a shirt is S30 in the
open market, how will we know how many people would
have paid more and how much each person would have
paid? And how will we know how many people are willing
to pay for the shirt but not as much as S30, and how will we
know how much each of these people would have paid?
So while we often might Say that demand means how

many units of Something were Sold at a given price, over a
given period of time, that does not mean we are measuring
demand. We See that there is no Such thing as demand in the
Sense of Something concrete we can measure.
Then let us add yet another complication. We would like

to know about the total demand of a group of people, yet
different people express interest in a product at different
times. Moreover, prices fluctuate. How then can we measure
the total demand at a given time'? And at what point in time?
We cannot. There is no Such thing we can measure as
demand in the present. All we can do is have one set of
people, those who have expressed interest at different points
in the past represent a set of people in the future, quite a
dicey proposition.
We should not leave out one more major problem which

is that alternatives change. While we collect information
about an answer over a period of time, alternative answers,
both missing and actual, may arrive in AC during and after
that period. Say we have collected information about a given
shirt. What is the relevance of the past information when

IPR2020-00686
Apple EX1019 Page 94

6,131,085
79

new, competing shirts hit the stores? What is the relevance
when new Shirt designs are requested that may or may not
be Supplied AS with evaluating demand for any product, it
can be hard to evaluate the demand for a given answer in
light of new alternatives that keep popping up.

Despite all these problems, we can gather information
which we call demand information-that helps us guess at
what Sales of Something may be during a given period of the
future. Our guesses, on average, will be better with this
information than without.
A Few More Things to Keep in Mind About Demand
Information Collected by AC
AC registers demand information when a user Selects

request mode (or whatever we call the means by which AC
enables users to declare their desire to buy an answer). When
we say that a user declares his desire to buy an answer, we
do not mean a particular answer, we mean the more general
idea that the user is looking for an answer to get, rather than
looking to accomplish other goals.

(AS discussed, there are other modes that users can be in,
Such as Supply mode and check mode. AC can include
purpose (mode) buttons that a user can press to tell AC what
his or her purpose is for going to a given Q-location or
Q-A-location. The point is that AC enables users to differ
entiate between the desire to buy an answer, and the desire
to accomplish Some other goal.)

The demand information is collected (registered) at ques
tions (Q-locations) because questions represent answers.
Some of the information is collected automatically when the
requestor enters a question and other information is regis
tered by prompting him or enabling him to enter the infor
mation of his own accord.

The correspondence between questions and answers is
Strange. Therefore, how demand information applies to a
given answer is not clear. We recall from Chapter 4 that
demand information does not necessarily apply to a single
answer. But we also recall that the best we can do is gather
information under a question and then make assumptions
about how that information applies to an answer or answers.

6.2 Introduction: Demand Information in AC

People can ask for all kinds of answers from a phone
number, to a cure for malaria, to the contents of mayonnaise,
to a blueprint of the Great Pyramid, to a Video on changing
a tire. In Some cases, one perSon may be interested in an
answer, in other cases thousands of people may be inter
ested. In Some cases people will be willing to pay 0.1 cent,
in other cases a 1,000,000 dollars. The range of demand
possibilities is wide and demand information (D-info) can be
collected all along this range.

There are many kinds of D-info. Some is what we think
of as "plain old information,” Such as the time that a request
is made. But Some is more than that because it involves a
buying offer. If a user agrees to buy an answer at a given
price this offer is D-info. And if the answer is in the system,
and AC agrees to that price as well, then a Sale is made. In
other words, a buying offer involves more than just infor
mation. It involves a contract and possibly a transaction.
Now very often an answer will be missing and no sale will
be made. Whether an answer is missing or is present, the
point remains that ReX intends to buy and this intention is
made operational by AC. By that we mean that AC includes
functions for registering Rex's offer and for executing
whatever contractual obligations are involved, Such as the
delivery of the answer and the registering of charges and
payments. So when we Say D-info Sometimes we have in
mind plain old information, other times we have in mind
more than that, for an offer and transaction operations may
be involved.

15

25

35

40

45

50

55

60

65

80
We will show some of these transactional steps in this

Chapter even though they are operations in addition to the
Storing of information in the D-record. The registering of
D-info involves these activities So it is appropriate to discuss
Some of them here. However, we omit most of the transac
tional Steps, taking them to be understood.
(We should note that AC can use information that might

not be Stored in the D-record to help in predicting Sales. For
example, complaints about an answer might help predict the
Sales of the answer. These are Stored in the Q-record, though
perhaps not in the Sub-record we have called a D-record.
However, if AC uses information to predict sales, we will
consider that information to be D-info.)

In any projection of future Sales and income there are too
many factors to keep track of. Formulas for projections have
been known to contain thousands of variables and still fail
miserably. In the next Sections of this chapter we discuss
Several types of D-info that can be useful in forecasting the
Sales of an answer. The list is not, and cannot be, exhaustive.
(We do not describe how the information is used by a POF)

For convenience, Section 6.2 is divided into two parts.
Part 6.2a describes the registering of what we might call
request information, information that is registered along
with a request. Part 6.2b describes the registering of price
information. Both kinds of information are essential for
characterizing a request but it is convenient to split the
discussion into two parts because the registering of price
information involves numerous Sub-issues.

We note here that some of the D-info discussed can only
be registered in the D-record of the current-Q. For example,
when ReX makes a commitment to buy an answer, this
commitment applies to a direct answer to the current-Q. In
other cases, AC can register D-info in the D-records of
questions that are not necessarily the current-Q. This can
happen because of the MMA path, in which indirect
o-requests can be registered in the D-records of questions
other than the current-O. This was discussed in Section 5.3.
MMA o-requests can have many of the same things

registered about them as HMA o-requests. However, it is
hoped that it will clear from the context of the discussion
that certain kinds of information do not apply to MMA
O-requests.

Section 6.3 discusses the registering of buying Situations.
Instead of thinking of just a request plus additional
information, it is better to think in terms of situations. These
can be characterized by numerous factors, and we can only
touch on Some of the important ones.

Section 6.4 briefly discusses how AC can compile
demand Statistics and how it can use these in characterizing
a request.

Section 6.5 touches on the central issue of evaluating a
request in light of alternative requests.

Section 6.6 touches on how time can render D-info
obsolete and how AC can adjust for this problem.

Section 6.7 discusses a few other considerations that
might be thought of as miscellaneous points.

Sections 6.8 just mentions the important possibility of
investment offers.

6.2A Some Useful Kinds of Demand Information
1. Requests

Request is a term that covers a range of actions that ReX
can take and that AC can register information about. We can
distinguish between innumerable different requests based on
numerous Situations that Rex can be in and numerous

IPR2020-00686
Apple EX1019 Page 95

6,131,085
81

actions that AC can allow Rex to take. We will try to classify
requests in a limited number of ways, while realizing that
there are other ways, and that we can never be exhaustive.
Most broadly, we can divide requests into two generic

kinds: arrival requests and output requests. We add infor
mation to these generic requests. The more basic of the two
is the first.
1) Arrival requests (es-requests).
By arrival request we mean that ReX enters or Selects a

question. He thus arrives at a question, a Q-location (or a
Q-A-location), that is. We call Such a request an es-request
for the terms Enter and Select. (We would use A-request, for
Arrival, but that might be confused with Answer.) The
arrival at a question is the base request that all other D-info
is built on. Even output requests are built on eS-requests
because in order for Rex to make an output request he has
to be at a question (though he may not see the information
at the Q-location).
2) Output requests.

By output request we mean that Rex askSAC to output an
answer. We abbreviate this as o-request. In section 5.3 we
described two Get Answer commands, Get Direct Answer
and Get Best Answer, that cause AC to register o-requests.
However, there can be many other commands, and
Situations, that cause AC to try to output an answer. For
example, AC can include an Accept Price command which,
when pressed, Signifies that Rex accepts ACS price offer and
that he wants an answer to be outputted. AS usual, we cannot
give universal rules. But basically, if ReX has agreed to pay
an amount of money for an answer, AC considers that an
O-request.

Both eS-requests and o-requests have been described in
chapter 5. AC registers all the information discussed in
chapter 5 about requests including:

Come-from-Q’s and go-to-Q's, including Q+S.
O-requests-o-hits and O-misses, and whether they

resulted from the HMA or MMA path, and what their
primary and Secondary Sources were.

AS noted in chapter 5, in certain lands, arrival at a
question implies an output request. But in most lands AC
allows ReX to have more options than just buying, and
therefore, ReX may have other motives when he arrives at a
question. If we think of ReX as a shopper, we realize that he
can have many motives and that they might change depend
ing on what he sees at a question. Below we list Some of the
ways we can think of Rex's motives. These are colloquial
terms though. How AC classifies a request depends on what
ReX does at a question and on the situation ReX is in, and on
the rules of the particular AC.

a. Wants to Buy. He may want to buy the direct answer to
the current-Q.

b. Browsing. He might be browsing, Seeing what the
A-stats at the current-Q Say.

c. Traveling Through. He might be looking for another
question that matches the current-Q or is linked to the
current-Q.

d. Buying Through. He might want to buy an answer that
is not the direct answer to the current-Q (he can do this using
the MMA path).

e. Free Riding. He might want an answer but does not
want to pay for it. Answers may be free to certain users (see
chapter 7 on price Setting) and the requests of these users can
be used as D-info to indicate the demand of paying users.

Recalling the foundation task of the System-to count
how many people want an answer-the most important
distinction between requests is whether or not ReX has any
interest in buying the direct answer to the question he is at.

1O

15

25

35

40

45

50

55

60

65

82
We can think of Rex as if he was in a consumer electronics
Store. He walks up to (arrives) at a sign (Q-String) that says
Color TV. The sign also has a lot of other information
(A-stats) describing the TV. The TV is not right there in front
of him, only the description. In addition, the Sign lists the
names of Some other TV's and directions to where their
Signs are. Rex can go to one of those Signs as well. Now the
key issue is: does Rex want to buy the TV described by the
Sign that he is at?
AC needs means and rules that attempt to characterize

Rex's intentions. We discuss Some of these means and rules
after we discuss price tests. That's because guessing whether
Someone wants to buy Something is often tied up with
whether the perSon offers to pay for Something.

In Sub-sections 2-12 below, we describe Some of the
additional information AC can register along with a request.
AS noted, Some of the information described only applies to
eS-requests and to HMA path o-requests. It does not apply to
o-requests from the MMA path. Other information applies to
all requests.

(The main reason some of the information described
below cannot apply to MMA o-requests is that it requires a
decision by ReX about a specific answer, as represented by
the Q-location Rex is at. But with the MMA path AC may
automatically Search numerous locations without showing
them to ReX. It is thus impractical for him to make a decision
at each of these locations.)
2. Type of Use
An answer can be o-requested for various types of uses,

in addition to Straight output. For example, an answer can be
used in a formula that leads to the output of a different
answer. AC registers the type of use that is requested,
because different prices and royalty rates can apply to
different uses. This kind of information is an exception to
most D-info in that it applies mainly to indirect MMA
O-requests.
3. Actual Sales

Actual Sales are an important type of request information.
AC differentiates between requests when an answer is
bought and when it is not. Further, AC keeps track of total
Sales which are important not only for predicting future Sales
but for calculating royalties. And, further, AC keeps track of
refunds where buyers inform the System that an answer is
inadequate and where buyers get their money back.
4. Time Information
AC registers the time of each request. This information is

usually critical for calculating a POE and it is essential for
numerous other purposes.

Another kind of time information AC can register is how
long users will be interested in the answers they have
requested. Answers are only valuable for certain periods of
time. For example, AC might register dozens of requests for
the Score of a football game. From these requests, AC might
project a large POE. However, AC does not know that few
people will be interested in the Score shortly after the game
is over. Users must tell it in order for AC to reflect this fact
in the POE. (Of course, declining demand will show up in
the POE, but there will be a lag.) So AC can ask Rex to input
the time period for which he is interested in an answer.

Furthermore, AC can ask ReX to guess how long he thinkS
others will be interested in an answer. This guess can may be
useful for calculating a projection of future demand. Taking
our football Score example, Rex can input that he is inter
ested in the Score of the game up until, Say, four o'clock. And
he can input that he thinkS demand for the Score will taper
off at eight o'clock.
5. Requestor Identity

IPR2020-00686
Apple EX1019 Page 96

6,131,085
83

It goes without Saying that AC can register who has made
a request. This information is necessary for collecting and
using various kinds of D-info.
6. Prospect List
AC can maintain a list of all the people who have entered

or Selected a question. We might call this the prospect list for
the answer that corresponds to the question.

If an answer is not in the System, all the people who have
requested it are potential prospects. If an answer is in
System, all those people who did not buy it because the price
was too high are also prospects. If an answer is in System,
all those people who bought it are also potential prospects,
for the answer may change and these people might be
interested in the new version.
AC can differentiate between these three types of proS

pects (there are many other ways to classify prospects as
well).
AC can also store the price each prospect was willing to

buy at or did buy at (see price tests below).
AC can enable potential Sue's to contact the prospects to

See if they are still interested in an answer. A potential Sue
can also ask the prospects if they are willing to pay more for
it than they have offered.
AC can also contact prospects. Before the relevant answer

is in the System, AC can check to see if they are still
interested in the answer. Further, AC can recontact the
prospects when the answer arrives in the System or when the
price declines. Rather than contact every prospect, AC might
Sample the prospects to check reaction.
7. Placing an Order

If an answer is not in the System, AC enables Rex “place
an order” in the Sense of asking to be alerted when the
answer arrives. (The order may include the price that Rex is
willing to pay. See price tests below.) AC registers the order
and then, when the answer comes in, Sends ReX a message
that the answer has arrived.
AC also enables ReX to cancel the order at any time,

including when the answer arrives. The cancellation is also
registered.

Note: when an answer arrives, the price may not be
acceptable to ReX. Thus, ReX may not end up buying the
answer, even if he wants it.
8. Making a Commitment
Now if an answer is not in the system, AC enables Rex to

commit to buying the answer for a certain period of time at
a certain price. The price may be set by AC at the time of the
commitment, or Rex may make an offer (see price tests
below).
Making a commitment is different than placing an order.

In that case there is not a commitment to buy, just an
expression of interest. Here ReX makes a binding commit
ment good for a certain period of time. AC registers the
commitment and also registers when the time period expires.

If the answer arrives before the time period expires, AC
alerts Rex. And if the price of the answer is equal to or below
what ReX has committed to, then AC can automatically
charge ReX. On the other hand, the price might be higher
than Rex committed to and then he has to decide whether to
buy or not at that price.
AC may enable Rex to retract a commitment (the retrac

tion rules can vary widely and may, for example, involve the
forfeiture of a deposit).

The option to make a commitment can be quite an
important feature of AC because a commitment tells a
potential Sue that she can be more Sure of getting a given
amount of money for Supplying an answer. She can Say to
herself, “Well, at least I know that I’ll get that much money.”

5

15

25

35

40

45

50

55

60

65

84
9. Canceling an Order or Retracting a Commitment
When we say that AC registers the cancellation of an

order, that does not mean that AC deletes the original order
from the D-record. The original order no longer counts in the
Sense of Selling Rex the answer (after a cancellation, AC
does not alert Rex when the answer arrives). But the original
placing of the order may still be useful D-info. For example,
if a perSon orders a certain brand of cereal in the morning but
then cancels the order in the afternoon, the perSon's order
still may represent demand for the brand. It just may be that
the perSon, not wanting to wait, found a leSS preferable brand
for breakfast. Taking an answer example, a person might
place an order for instructions on how to change a tire. The
perSon might later cancel the order because, before the
instructions arrive, he finds Someone to show him how to
change the tire. Still, the person's order for the instructions
may represent (correlate with) other peoples desire for the
instructions in the future.
The Same reasoning applies to the failure to renew a

commitment when it expires, and also to the retraction of
Such a commitment. The original commitment can be useful
D-info.

Recall, the idea is to forecast the Sales of an answer and
that depends on the Situations of individual requestors and
whether their situations represent (correlate with) other
peoples Situations in the future. That is a highly variable,
dicey proposition. We can make no general rules. Sometimes
canceled orders and commitments will give uS helpful hints
about future Sales, other times not.

Because the Situations are So variable, it can help if AC
gathers information on why ReX canceled an order or
retracted a commitment or did not renew a commitment.

Thus, when ReX does any of these things, AC can ask him
the following questions and register his responses:

Did you change your mind because:
a. the requested answer is out of date?
b. your needs changed?
c. you found a better answer elsewhere?

if yes, was the answer in AC
if yes, which answer was it
(identify the answer by the question you found it

through, please).
(Though it is not the point here, let's mention that AC

enables a user to keep track of the questions he has asked.
AC keeps the list in the user record, which the user can
access. AC also maintains a Sub-list of questions the user has
asked and that have not yet been answered. A user can “clean
up' this list by going through the questions and marking
certain ones that he has no more interest in with a cancel
mark. AC registers each mark and cancels the corresponding
orders.)
10. Would've Bought (the Meaning of Direct O-misses)
When Rex is at a question and he knows the direct answer

is not in, he can Still make an o-request. We call this kind of
request a direct o-request, and it's result is a direct o-miss.
Now, if ReX does not place an order or make a commitment
to buy the answer, a directo-miss can be interpreted to mean,
“I would’ve bought the answer if it had been in.” Want-it
marks, discussed in 5.1g, are another way of making a direct
O-miss. AC can also enable ReX to make a price offer for the
missing answer.
ReX has the option of not entering a direct o-request when

he is at a question that has no direct answer. That is why Such
a request can be important D-info; it helps AC determine
Rex's intentions. This topic is discussed further after the
discussion of price offers.

(Another way that AC can enable Rex to make Such a
request is with Separate “button” Rex can press to indicate,

IPR2020-00686
Apple EX1019 Page 97

6,131,085
85

“I would’ve bought the answer if it was here.” This button
is equivalent to a direct o-request for a missing answer, but
it may be easier to give ReX two different commands, one
that applies when the direct answer is in, and one when it is
not.)
11. Preventing Double Counting
One piece of information that can be useful to register is

whether ReX has asked the same question previously. In
many caseS repeat requests lead to misleading double count
ing of requests. For example, ReX might ask for the final
Score of a football game ten times before getting an answer
(because the answer has not been entered until the time of
the tenth request). It can therefore be useful for AC to
include Steps for registering whether ReX is making a repeat
request.
AC can identify repeats by keeping a list of questions

arrived at by the user, and then checking against this list.
Alternatively, AC can keep a list in a given question record
of the users who have arrived at that question, and check
against this list.
When a repeat request is not for a new answer, we call it

a false request. AC requires rules for determining whether a
repeat request is a false request. There are many factors that
can come into play because the answer Situations and
requestor Situations vary widely.
Whether a repeat is a false request can depend on whether

an answer has changed. For example, ReX may ask, What's
the weather gonna be like?, ten different times, and each
time can be a true, new request where a new answer is
Sought or a new answer is provided.

Moreover, AC can register in the D-record whether Rex
bought and received an answer and can check whether the
answer has changed Since ReX bought it.
Whether a repeat request is a false request can depend on

whether ReX expects the answer to have changed. The
answer might not be changed in AC, but ReX may know that
the answer should change or might be changed. Conditions
in the World may change or the answer may be improvable.

Therefore, AC can ask Rex whether the repeat request is
for a new answer or not. Asking ReX can be important
because he may know better than a machine rule whether a
request constitutes double counting or not. For example, ReX
might ask for a Second time, What is the temperature of the
ocean at Ocean City'?. He will know whether his request is
a false request or if he expects a new answer. In other words,
if AC has an answer for the temperature, it may be out of
date. AC will not know that it is out of date. If Rex then
enters a request for the temperature, AC might treat it as a
false request. But ReX can tell AC that his request is for a
new answer. The point is that double counting depends on
the Situation and the user's common Sense about the real
World Situation can better identify double counting than a
machine rule.

(Note also, if AC does not store who has arrived a given
question, then AC can ask the user if the request is for a new
answer or not.)
12. Improvement Requests
When ReX gets an answer he might, for various reasons,

be dissatisfied. For illustrations, say he enters:
Question: Temperature Miami? and receives, Answer:
Mid 70's.

Now, assuming he is dissatisfied, AC can enable him to do
three general things:

1. He can enter a new question better expressing the
answer he wants.

2. He can use the quality control menu and enter the
reasons for his dissatisfaction.

5

15

25

35

40

45

50

55

60

65

86
3. He can enter what we will call an improvement request

(IR).
He can use one or more of these options.
The entering of another question has been discussed and

will be further discussed in Book II. Quality control options
are to be covered in chapter 13, So we will only mention
them here. In the quality control menu, AC can enable ReX
to enter a variety of different comments about the actual
answer, and can enable ReX to ask for a refund as well. For
example, ReX can ask that the existing answer be updated
and he can claim a refund based on the existing answer being
Wrong.
AS for IRS, the point to make here is that AC can register

D-info for desired improvements in an actual answer. After
ReX has seen an answer, AC can enable him to Select an
Improvement Request “button” and enter the improvement
that he desires.

Improvements can be expressed in an endless variety of
ways. AC can include a menu of Standard descriptions, Such
as, “needs updating,” “needs Source,” “needs date,” “needs
additional information,” “needs major fix,” “needs minor
fix,” and So on. In Some cases, the improvement desired will
be obvious, in others, elaboration will be needed. Thus, AC
can enable ReX to enter a message expressing in his own
words the improvement he wants. Where elaboration is
needed, we might Say that the IR is a custom IR.
An IR is like a question in that it describes, asks for, part

of an answer. AC can create records, Such as a D-record,
based on an IR. But an IR is not a separate question. AC does
not take a user to an IR, as it takes a user to a question, and
an answer is not Supplied to correspond to an IR. When an
improvement is entered, it is Supplied to the question that the
actual answer Was Supplied to. It replaces the previous
answer, or is made part of the previous answer. (Sue also has
the option of entering the improvement under a different
question.)
An IR can be useful because it can enable Rex to offer to

pay a certain amount for an improvement. (In this task a new
question may be a better way. Certain times though it may
be more appropriate to enter a comment about an existing
answer, rather than enter a whole new question, asking for
an improvement.)

Rex's payment offer may be just for the improvement
alone, meaning he will pay the amount in addition to what
he is willing to pay for the rest of the existing answer. Or,
Rex's offer may be for the whole answer, including the
improvement. Thus, AC can enable Rex to identify whether
the offer is just for the improvement or for the full answer
along with the improvement.
AC can enable Rex to enter an IR when Rex See an

answer. AS discussed, it can enable him to press an IR button
on Screen and then choose from Standard IR categories and
also enter in his own words what is needed. In addition, he
can also enter an offer to pay an amount for the improvement
described. AS three examples, ReX might enter:

Improvement Request: Update as of 2:00 p.m.
Payment Offer: S1
Improvement Request: Please give location where tem

perature was taken.
Payment Offer: S1
AS another example, ReX might enter:
Improvement Request: Please give Source of the answer.
Payment Offer: S1
AC can Store the IRS under their Standard category

names. For example, under “Update.” AC can show all the
requests for updates. These requests may include elabora
tions.

IPR2020-00686
Apple EX1019 Page 98

6,131,085
87

In order to collect demand for an imporvement that one
ReX has requested, AC needs to enable other Rex's to State
whether they want that improvement as well. Thus, AC can
enable Rex's to see the IR's that have been stored, and
confirm whether they want the same improvements that have
been requested. The improvements may not even have
Standard labels, they may just be comments that are entered,
along with payment offers. Thus demand for given improve
ments can be registered from multiple Rex's.
Now when a potential Sue see the IR's for an answer, she

can See what improvements various Rex's want. Further, she
can ask to see a POE for a given improvement. The POE can
be based on the D-info collected for the corresponding IR.
For example, she might see that ten Rex's have asked that
the Source of the answer be given, and that, in total, they are
willing to pay $4 for Seeing that improvement. She might
then Supply the Source of the answer.
How can AC calculate a POE based on an IR, a POE for

a requested improvement that is? A brief digression is in
order (this digression should go in chapter 9 about the POE,
however, that chapter is not yet written). This digression will
not clear up the matter, but only point out Some of the
problems involved.
Brief Digression: The POE for an Improved Answer
Once an actual answer has been Supplied to a question, the

POE generated from D-info at that question is a POE for an
improved answer, a different answer. But it is hard to define
the differences between answers. What is the POE, then, for
an improved answer? In other words, what is an improve
ment worth'? That depends on a variety of factors, Such as:

a. What the improvement is,
b. how many people want it,
c. how much are people willing to pay for it,
d. what share of the royalties Sue is entitled to for

Supplying it.
Based upon her commonSense and, perhaps, upon quality

control comments by Rex's, Sue needs to determine what
improvements, if any, are profitable to provide. It can help
her, of course, if she sees how much dissatisfied Rex's are
willing to pay for the improvement(s) they want. Thus, IR's
can help her guess the potential profit. ESSential to her guess
though are the meta rules defining what royalty credit she
will get for providing an improvement. AS is discussed in
SubSection 5.2e and in chapters 8 and 14, AC must have rules
to deal with apportioning credit for improvements-for
giving credit, in certain cases, to the Sue of the answer that
is improved upon.

The most clear-cut case is when an answer needs to be
“completely replaced.” But there are endless situations for
making improvements without replacing an answer entirely.
Because the possible improvements are So diverse, there are
no general rules for how to pay for improvements, and
therefore, there are no general rules for calculating the POE
of a given improvement. Just as with the calculation of a
POE for a completely new answer, the calculation of a POE
for an improvement on an existing answer requires rules that
are developed from experience and testing.

Generally, any POE will be based on all the D-info
gathered in a Q-record, not just the D-info gathered for one
actual answer. And, generally, the POE will be Some per
centage of the POE for a completely new answer.

6.2B Registering Price Information
Price
Now it is clear that the price of an answer is critical

demand information. Yet, as discussed above, it is not So
clear what a price means, at least in the philosophical Sense

15

25

35

40

45

50

55

60

65

88
of what it means in the minds of buyers. In the practical
Sense of how prices are implemented in AC, the definition of
price is fairly clear: the price of an answer is the amount of
money the answer Sells for at a given time to a given user.
On the other hand, there is often no Such thing as a fixed

price, or even a Single price for an answer. And in that Sense,
the meaning of price is different than what we normally
think of. AS explained in the next chapter on price Setting,
there can be a wide variety of pricing Schemes. The price
amount can differ from one point in time to another and from
one user to another. Rather than think of a price as a price
on, Say, a box of cereal, we should think of price offers and
acceptances of those offers. These can vary from moment to
moment and from person to person (they can be fairly static
as well, of course). Thus when we say “price' we often mean
a price offer or a price threshold. So the term price can be a
little confusing.
AC registers price offer information in the D-record of a

given question. Obviously, if offers and acceptances change
over time, there will be various Selling prices and price
offers for an answer in the record. (Note, when the price of
an answer is basically Static and users know it in advance,
then it not need be in the D-record, for it can be assumed in
the POF that applies to the answer.)
Static, Pre-Set Prices Often Impractical
AS described in chapter 2, AC did not gather price

information from requestors. It was assumed that the price
of an answer was Set and Rex could take it or leave it. Prices
can be set for broad categories of answers, and thus a user
can know the price in advance, as a person usually knows the
charges involved when calling directory assistance or when
using an online Service that charges by the minute.

Often though, it is impractical Set a price for a category of
answers. Similar type answers may have very different
values and prices. For example, the phone number of the
President's barber might cost 5 cents while the phone
number of the President might cost $5,000.

Moreover, the cost of finding an answer is often unknown
in advance and So Setting the price in advance is unreason
able. Then, after the answer is found, it is often impractical
to Set a Static price because the amounts that various users
are willing to pay is also unknown.

Often it is not desirable the let Rex know the price(s)
others have paid for an answer. If Rex knows that Some
people have paid, Say, two cents for an answer he might not
want to pay more, even though he might have originally
been willing to pay more. So when ReX is at a question, AC
may not show him a price for the answer.
Price Tests
When the price of an answer is not known in advance by

ReX, it is useful to gather information on what he is willing
to pay for the answer because this information can be used
to arrive at a POE. (The information can be used to set the
price of the answer as well.)
Now since AC can’t read minds, it must perform what we

will call price tests. These will not reveal exactly what
people are willing to pay, but they seem to be the best that
can be done. There are two fundamental price tests.
One test is where the system (the seller) offers a price for

an answer and Rex (the buyer) can accept or reject the price.
We Say price when the System makes an offer, for it is an
amount that ReX can accept or reject.
The other is where Rex offers a price and the system can

accept it, reject it, or Simply register it. When ReX makes an
offer, we say that AC has a price threshold in the Sense that
if Rex's offer is over the threshold, AC accepts Rex's price.
If the answer is not in the System, AC usually does not need
to accept or reject the offer but just record the offer in the
D-record.

IPR2020-00686
Apple EX1019 Page 99

6,131,085
89

In both kinds of test AC registers Rex's identity so that
follow-up actions can be taken, if called for. Some of these
are seen in the price testing sequences described below. (AS
noted, AC registers Rex's identity for other reasons as well.)

The world of commerce has evolved a great variety of
price offers and counter offers for Sale situations. Earnest
money can be pledged, time limits can be imposed, letters of
intent can be written, discounts can be given, and So forth.
Many of these aspects of offers can incorporated into price
offers and into price testing Sequences in AC. Here we will
describe mainly the basics, in which either the System makes
an offer or Rex makes an offer. We will include Some
additions, and will discuss counter-offers, but we realize that
a great number of variations are possible.

Price tests must occur in a Series of Steps between two
parties which we call price testing Sequences. There are
many commands AC can include for enabling ReX to make
and accept price offers. The Simplest is a Get Answer
command, which can imply the acceptance of an offer, and
which can be used in conjunction with making a price offer.
However, there are numerous Specialized commands that
AC can include that are tailored for given price testing
Sequences. We do not describe these in any detail, but
assume that AC includes command for executing the price
testing Sequences described.
We will describe some basic sequences, but before doing

that, let us elaborate a little on the price tests themselves.
System-Offer Price Tests

To repeat from above, in a System-offer price test AC
makes Rex an offer which he can accept or reject. When we
say that AC makes an offer, we mean that the AC (or Sue
using AC) presents a price to Rex.

ReX can accept or reject or even ignore the offer. AC
requires means and rules for classifying Rex's behavior. The
problem is that if Rex ignores the offer, AC cannot register
whether ReX rejected the price or rejected the answer for
Some other reason. This issue is taken up after price tests.
For now we assume that AC include means for enabling ReX
to explicitly reject the offer, Such as a reject button. Further,
AC may include defaults for assuming that ReX has rejected
the price.
ACS price or price threshold may be set by a price Setting

formula, by a System manager, or by a Sue. If Sue is Setting
the price, she is using AC as a medium. If AC is Setting the
price, it is acting as an agent for Sue. Whatever the method,
we will, for convenience, Say that AC has set the price. From
the point of View of price testing Sequences it is the same.
AC registers the total number of requests along with the

acceptance/rejection rate at given prices, and of course
actual Sales, if there are any, at given prices.
AC can present different prices for an answer to different

requestors, in order to experiment with the effect of those
prices on the POE. Experimentation can be critical to doing
a good job of Setting the price of an answer and of estimating
the income of an answer.

(Note: For simplicity, we ignore the fact that AC can
present more than one price to a Single Rex. AC can present
more than one price because AC may include price plans that
allow for this. As with prices for airline flights, the price for
the same flight can vary, for example, depending on when
one flies. The price of an answer can vary for many reasons.
We do not go into this because it is beside the main point,
yet we note that AC can present more than a Single price to
the same person.)
Requestor-Offer Price Tests
AS noted above, a Rex-offer price test means that ReX

makes an offer that AC can accept or not. (In this case AC

15

25

35

40

45

50

55

60

65

90
will have set a price threshold.) The basic idea behind a
Rex-offer test is simply that AC can register what each ReX
Says he will pay.

Rex's offer is not just talk. If the answer is in the system,
and if the offer is accepted by AC, ReX is charged the amount
offered and gets the answer. If the answer is not in the
System, he can place an order at a certain price (see Placing
an Order above). Further, he can commit to buying at a
certain price for a certain period of time (see Making a
Commitment above).

Apart from an actual price test, AC may also enable ReX
to State his opinion of what is a reasonable price. This
opinion is simply Rex's judgment and not an offer. It can be
important D-info in certain cases. AC can enable ReX to both
make an offer and State an opinion.
AC can enable Rex to do all of the above at the same time:

a. make a binding offer at a certain price in the present,
b. place an order at a certain price,
c. commit to paying a certain price, for a certain time

period, and
d. State an opinion as to a reasonable price.
AC can have an offer buttons that Rex Selects to enter a

price offer. When he selects this, AC presents him with a
price offer form.
Digression About Having a Variety of Prices for the Same
Answer

Let us digreSS for a moment to discuss the idea of Selling
an answer at different prices to different people. This idea is
well known. However, it can be taken much farther in AC
than it is normally taken, because users may not be told what
other users have offered and paid for given answers. To give
but a Small example, imagine four people Stuck in a traffic
jam. One is a high-powered executive on the way to an
important meeting. She might be willing to pay $50 to find
out an official guess as to when the traffic will clear. Another
perSon might just be hot and Sweaty and damn frustrated,
and willing to pay $5 to get good information about the jam
up. A third perSon might just like to know when he’ll get
home but is not willing to pay more than 50 cents to find out.
And a fourth might be a very calm naturally and a Student
of meditation. She might be willing to pay a nickel to find
out about the traffic jam. The Same answer can have a very
different value to different people and AC can take advan
tage of this to get a much greater total amount offered for the
answer than under a one price for all Scheme. It is quite
conceivable that one person would pay $50, another S5
cents, another 50 cents, and another 5 cents for the same
answer, even at the same time, given that AC can accept all
these offers. In effect, AC can conduct individual negotia
tions with each buyer.
Of course people would have an incentive to find out what

other people have paid for an answer and So AC can include
methods can to prevent this from happening (see Secrecy
Issue below). But before an answer is in the system, even if
a perSon knows that others have offered less for the answer,
that perSon may want to offer more to increase the chances
that the answer gets in the System.

6.2b1 Price Testing Sequences
Price tests must occur within a Sequence of Steps, for they

are an interaction between two parties, Rex and AC
(remember, AC means AC or a Sue using AC as a medium).
We will describe some basic sequences in which Rex or AC
make offers. Then we will describe Some counter-offer
possibilities. Before describing any Sequences, Some more
context is helpful.

IPR2020-00686
Apple EX1019 Page 100

IPR2020-00686
Apple EX1019 Page 101

6,131,085

91
Whether Answers Are In AC or Not

For price testing, it can matter if the answer is in AC or
not. For example, take the answer to the question, What time
does “The Rockford Files” start tonight?. After this answer
is in the system, AC might have a price set for it. But before
it is in the system, AC might ask Rex to make an offer.
Different price tests can be used before and after the answer
is in AC. Or, the same price test can be used before and after.
There are four possibilities:

Before Answer Is In After Answer Is In

1) AC makes offer AC makes offer
2) AC makes offer Rex makes offer
3) Rex makes offer AC makes offer
4) Rex makes offer Rex makes offer

Whether Rex Knows If the Answer Is In AC

It can also matter if the price test is done before telling
Rex whether or not the answer is in the system. That’s
because Rex may make a lower offer if he knows that the
answer is in the system. Thus we double the number of
possible sequences by which price tests can be done, if we
include the fact that Rex is told or not told before the test

whether the answer is in the system.
AC can register whether the price test was done before or

after the answer was in the system. AC can also register
whether or not Rex knew if the answer was in the system at
the time of the test.

Price Setting Assumed But Not Shown
The price offers and price thresholds can be set in various

ways: by the system manager, by Sue, by a price setting
formula, or by some combination of these. We omit the
setting of a price or threshold but assume that that step is
taken at appropriate times (see Price Setting in the next
chapter).

Feedback is inherent in the process. Price offers and price
thresholds are set and then tests are done. The test results can

then lead to the setting of new prices and new thresholds.
Then new tests are done. And so on.

Changing Offer Assumed But Not Shown
We assume that if AC enables Rex to make an offer that

it enables him to change an offer. Of course the rules for
changing offers can vary. In the case of binding
commitments, Rex can usually increase his offer, but he
might suffer a penalty for decreasing it. The ability to make
other changes is important too, such as lowering or raising
the price of a non-binding offer.
Other Omissions

In the sequences described below we avoid repeating
steps previously shown; the point is to show the new steps.
So we assume that a given question location has already
been created complete with D-record.

We also omit certain transactional steps that are taken to
be understood. For example, where Rex commits to buying
an answer, we do not show the system charging Rex when
the answer arrives and we do not show what the system does
when the commitment expires. Likewise, we do not show
the canceling of orders or the expiration of commitments.
The main point is to show the kind of price information AC
can register. That said, it helps to remember that this
information can involve transactions.

Some Price Testing Sequences
Below we describe some sequences that demonstrate the

steps that AC can include for carrying out price tests and
registering price information in the D-record. We illustrate

10

15

20

25

30

35

40

45

50

55

60

65

92

enough to get the basic steps across, while we recognize that
many other permutations are possible.

In the sequences, when we say that Rex does something,
we mean both that he does something and that AC includes
functions for enabling him to do so.

As mentioned, Rex is either told or not told before a price
test whether or not the answer is in the system. In some of
the sequences below he is told, in others not. It is of course
an easy matter to do the sequences vice versa with respect
to showing Rex whether the answer is in the system.

FIG. 6a shows a sequence in which only AC makes an
offer and in which AC does not tell Rex whether or not the

answer is in the system.

1) AC presents 210 a price to Rex.

2) Rex accepts 211 or rejects 211 the offer.

3) If Rex rejects the price, AC registers 212 the rejection
at that price, calculates 218 the POE, and outputs 219
the POE.

4) If Rex accepts the price, AC registers 213 the accep-
tance at that price, and then checks 214 to see if the
answer is in the system. If the answer is not found, AC
tells 215 Rex and then calculates and outputs the POE.
If the answer is found, AC outputs 216 the answer,
registers 217 the charge due to Rex and the royalty due
to the supplier and, calculates and outputs the POE.

FIG. 6b shows a sequence where Rex makes an offer
before the answer is in the system and AC makes an offer
after the answer is in. Further, before the price test, AC tells
Rex whether or not the answer is in the system.

1) AC checks 220 if the answer is in the system.
2) If the answer is in, AC tells 221 Rex and presents 222

a price.

3) Rex accepts 223 or rejects 223 the price. If Rex rejects
it, the system registers 224 the rejection at that price
and calculates and outputs the POE. If Rex accepts the
price, AC registers 225 the acceptance at that price,
outputs the answer, registers charges and royalties and
calculates and outputs the POE.

4) Now, if the answer is not in the system, AC tells 226
Rex that answer is not in. AC then asks 227 Rex to

make an offer. Here, as shown, AC includes steps for
enabling Rex to make various offers:
a. AC can register 228 a non-binding offer. Here Rex

expresses what he says he is willing to pay (places an
order and states a price).

b. AC can register 229 a binding offer to pay an amount
up until a certain time. In this offer Rex not only
states an amount he will pay but states a period of
time his commitment is valid until.

c. AC can register 230 binding offers that include a
commitment of earnest money.

d. AC can register 231 Rex’s opinion as to a reasonable
price for the answer.

As usual, once AC registers Rex’s offer, AC calculates
and outputs the POE.

FIG. 6c shows a sequence in which AC makes an offer
before the answer is in, and in which Rex makes an offer
after the answer is in. In this sequence Rex is not told before
the price test whether the answer is in the system.

The main new feature here concerns Rex’s offer. In

addition to asking for an offer, AC includes steps for limiting
the number of offers Rex can make. If Rex can make

unlimited offers when an answer is in the system, Rex will
start low and keep going up. Rex will try to discover AC’s
price threshold (“bottom line”). Thus, the system needs to
limit the number of offers Rex can make. This concern does

|PR2020-00686

Apple EX1019 Page 101

IPR2020-00686
Apple EX1019 Page 102

6,131,085

93

not apply usually when the answer is not in the system
because then the answer may have no threshold attached to
it.

The sequence in FIG. 6c limits Rex to one offer. (FIG. 6d
shows a sequence for limiting Rex to one offer per a set
period of time.)

1) AC checks 240 to see if the answer if found.

2) If the answer is not in the system, AC presents 241 a
price to Rex.

3) Rex and accepts or rejects the price.

4) AC then registers 242, 243 whether the price is
accepted or rejected and tells 244 Rex that the answer
is not in the system and then calculates and outputs a
POE (we note that, as usual, Rex’s identity is recorded
as well).

5) Now if the answer is in the system, AC checks 245
whether Rex has made a previous offer. If yes, AC tells
246 Rex that he is ineligible to make an offer and then,
as usual, the system calculates and outputs a POE. In
this case AC also tells whether the answer is in or not

since Rex may want to supply it.

6) If Rex has not made an offer, AC asks 247 Rex to make
an offer. AC then registers 248 the offer.

7) AC then accepts or rejects the offer. If the offer is
rejected, AC tells 249 Rex that the offer is rejected and
registers 250 that Rex has made an offer for this answer.
Then, as usual, AC calculates and outputs a POE. If the
offer is accepted, AC outputs 251 the answer, registers
the charges and royalties due, and calculates and out-
puts the POE.

FIG. 6d shows a sequence in which only Rex makes an
offer. In this sequence Rex is not told before the price test if
the answer is in the system. Here steps are shown that limit
Rex to making one offer per period of time. The point, as
mentioned previously, is to limit the number of offers that
Rex can make in order to get Rex to make a higher offer. We
note that, as shown, if Rex makes an offer before the answer
is in the system then this offer is not subject to a time period
prohibition. Rex is free to make a different offer once the
answer is in.

1) AC checks 260 whether Rex has made an offer that has
been rejected.

2) If Rex has never made an offer before that has been
rejected, the system asks for an offer, registers the offer
and checks to see if the answer is the system.

3) If Rex has made an offer that has been rejected, AC
checks 261 to see if the pre-determined time period has
expired.

4) If the time period has not expired, AC tells 262 Rex that
he cannot make another offer and, as usual, calculates
and outputs a POE.

5) If the time period has expired, AC asks 263 Rex to
make an offer. The system registers 264 the offer. AC
then checks 265 to see if the answer is in the system.

If the answer is not in the system, AC tells 266 Rex that
the answer is not found and, as usual, calculates and outputs
a POE.

If the answer is in the system, AC checks 267 the price
threshold and accepts or rejects the offer. If the system
rejects the offer, it tells 268 Rex that the offer is rejected and
sets 269 a time period for when Rex can make another offer
for the answer, and, as usual, calculates and outputs a POE.

If the system accepts the offer, it outputs the answer and
registers charges and royalties and calculates and outputs a
POE.

10

15

20

25

30

35

40

45

50

55

60

65

94
6.2b2 Counter Offers

AC can make counter offers and enables Rex to make

counter offers. And, of course, AC registers these offers.
We will describe the basic counter offer situations below.

Rather than repeat the sequences above, we will consider
two general situations: one where Rex has rejected AC’s
offer and the other where AC has rejected Rex’s offer.

We don’t go into counter counter offers because the
principles are the same, except that AC would place limits
one how many rounds of offers there could be per period of
time. (Note: if Sue is doing the price setting AC can leave
it up to her to decide how to conduct the negotiations.)
Situation 1: AC Presents a Price and Rex Rejects It

If Rex rejects AC’s price offer, Rex can make a counter
offer. In fact, Rex can make a few offers:

a. He can make a counter offer good for that moment.
b. He can place an order, saying in effect, call me when

you’ve lowered the price.
c. He can commit to paying a lower amount than AC’s

current price.
These are all offers that have been discussed above.

Because of their place in a price testing sequence, a
negotiation, they are called counter offers here.

AC can immediately accept or reject the counter offer. If
AC rejects the counter offer, AC can call Rex back when
AC’s price drops.

A second kind of counter offer is actually one that AC can
make. As noted, AC may have a reject button that Rex can
select. By pushing this button, Rex simply indicates that the
price is too high, but he does not make a counter offer. In this
case, AC can make a counter offer (a second offer) by
immediately lowering its price. If AC has this procedure, it
must also have rules for making Rex take a risk (or assume
some cost) for rejecting AC’s initial offer. Otherwise, Rex
will always reject AC’s initial offer. For example, AC can
have a rule whereby Rex has a chance of not being entitled
to buy the answer for a period of time if he rejects the initial
price.
Situation 2: Rex Offers a Price and AC Rejects It

If AC rejects Rex’s offer, AC can make a two basic
counter offers:

a. AC can present a price above Rex’s offer.
b. AC can ask Rex to make a new offer.

Rex can accept the new offer. He can make a new offer.
He can place an order. And he can make a commitment.
Re-Contacts

Now when Rex rejects AC’s price when AC rejects Rex’s
offer AC can register Rex’s identity in order to possibly
recontact him when AC’s price or price threshold drops (this
possibility was noted above in the discussion of the prospect
list). If AC recontacts Rex then both parties are can make
new offers.

Real Time Negotiations
AC can be looked at as an agent for Sue but it can also be

looked at as a medium. As such, it enables Rex and Sue to
engage in real time negotiations. In other words, Rex and
Sue can make offers and counter offers without significant
delay. This just means that the process of offer and counter
offer is in real time. It does not change the sequence. AC may
enable users to see each other or talk to each other directly.
(It also means that it is Sue, and not AC, who is setting the
prices and price thresholds.)

6.3 Registering the Buying Situation of a Request

We return now to the issue of characterizing requests,
with respect to whether Rex wants to buy or whether he has
other intentions.

|PR2020-00686

Apple EX1019 Page 102

IPR2020-00686
Apple EX1019 Page 103

6,131,085

95

Let us back up for a moment and recall the prime goal of
the system: to forecast sales. The central problem then is:
what sales does a request foretell?

AC’s approach is to register various D-info in addition to
the fact of the request, and use that information in a POF.
The point here is that Rex’s request represents a potential
sale to Rex, and it also may represent (correlate with) sales
to potential future buyers.

The most important thing to determine then is whether
Rex wants to buy the direct answer to the current-Q. Recall,
the foundation task of the system is to count how many
people want to buy an answer. Though other kinds of
interest, such as browsing without the intention to buy, may
be important to register, the intent to buy is usually the most
important thing.

Because a large percentage—no one can say what
percentage—of the requests are for answers that are not in
the system, AC needs to differentiate, at least on a statistical
basis, between the requests of window shoppers and live
prospects.

And yet, we know that in many cases there will be no way
to tell what Rex’s intentions are, whether he wants to buy or
not, at any price.

AC cannot read Rex’s mind. It can only characterize a
request according to facts that it registers about the request.
What facts then?

Now we know that the significance of a request—what
sales the request foretells—depends on the circumstances
that the request is made in. For example, if someone walks
into Tiffany’s on Fifth Avenue and asks to see a silver
necklace, that request has a different significance than if the
same person asks to see a diamond necklace. And that
request has a different significance than if the same person
walks into Schraft’s and asks for a malted milk. We know

there are differences even though we cannot measure them.
We can however register the facts of a large number of
situations and then see if the facts foretell anything on a
statistical basis.

More important than the type of merchandise (answer)
usually is whether Rex is under an obligation to buy. If he
is obliged to buy when the merchandise (answer) is in stock
then that obviously has a different significance than if he is
not obliged.

There are innumerable many factors that involved in a
buying situation. We cannot list them all, and AC cannot
register them all. But AC can register certain key facts that
are common to such situations. We will look at some of these

facts below. Before doing so, let us discuss the general idea
of a buying situation, restricted to certain kinds of informa-
tion: what Rex knows when he arrives at a question, what he
sees, and what he does. We will then describe some features
AC can include for getting Rex to declare his buying
interest. And after that, we will list key “buying situation”
facts that AC can register.
The Importance of the Buying Situation

Let’s pretend Rex walks into a bookstore and tells the
clerk the title (Q-string) of a book he wants. The clerk takes
Rex to the book. Rex doesn’t look inside the book but he

reads the back cover (A-stat) information which, let’s say,
includes a price. Rex then leaves the bookstore without the
book. Now did he leave without the book because the price
was too high? Or because of something he read in the back
cover? Or because he was just browsing with no real
intention of buying?

What if the back cover has references to other similar
books. And what if Rex doesn’t leave but asks the clerk

about one of those books? Again, why does he reject the first
book?

10

15

20

25

30

35

40

45

50

55

60

65

96

For a variety of reasons, he may not want to buy the
answer that corresponds to the question he is at. His inten-
tions cannot be captured by any set of simple rules. If Rex
does not indicate why he rejects an answer, no one can tell
whether it was because of the price or for some other reason.
(Even when Rex does tell, he may be lying.)

And things are stranger in AC than in a typical bookstore
where one usually knows if a book is in stock. AC is vast
Borgesian bookstore where the shelves are full of potential
books with only a smattering of actual books sprinkled in.

The best AC can do is register the key actions that Rex
takes and the key pieces of information Rex has seen when
he takes those actions (what he did and what he knew at the
time). For example, in the scenario above,AC would register
that Rex left without buying the book and that the price of
the book was presented to Rex.
Some Basic Buying Situations Rex Can Be In

We will illustrate some basic buying situations to show
how the significance of Rex’s request depends on Rex’s
situation. When we saying buying situation we mean what
Rex does at a question and what he knows when he does it.

The focus here is on whether Rex has any interest in
buying. We limit the discussion to a small set of factors
while realizing that many others may indicate buying inter-
est and may correlate with future sales.

How can AC tell if Rex has any interest in buying an
answer? Sometimes it seems clear he has no interest, other
times it seems clear he does, and other times it is unclear. We
look first at the situations where Rex’s interest in buying or
not buying seems clear. Then we look at situations where his
interest unclear.

Note: when we say below that Rex “knows” whether the
answer is in the system, we mean that AC has shown him
whether the answer is in. When we say he “does not know”
we mean that AC has not told him one way or the other.
Now, he may have a guess based on the real world aspects
of the answer but we are not referring to this guess, only to
what AC has shown Rex. Note also: we use the term seems

because Rex’s intentions are never certain, except perhaps
when he actually buys.
It Seems Clear That Rex Does Not Want to Buy

When Rex arrives at a question and:
AC shows him that the answer is in the system, and
AC asks him to make an offer, and
He does not make an offer,

Then it seems clear that he has no interest in buying theanswer.

(If the question is linked to another question or questions,
Rex might make an offer for an indirect answer. That is
another matter. But he still seems to have no interest in a

direct answer to the question he is at.)
It Seems Clear That Rex Does Want to Buy

When Rex arrives at a question and:
He makes any kind of binding offer, whether it is for

buying the answer immediately or whether it is a future
commitment,

Then it seems clear that he wants to buy (at least for the
period of the commitment).

When Rex arrives at a question and:
He knows the answer is in, and

He accepts AC’s price,

Then it seems clear that he wants to buy (after all, he does
buy).

When Rex arrives at a question and:

He does not know if the answer is in (he thinks it may be
in), and

|PR2020-00686

Apple EX1019 Page 103

IPR2020-00686
Apple EX1019 Page 104

6,131,085

97

He accepts AC’s price,

Then it seems clear that he wants to buy.
It Is Unclear Whether Rex Wants to Buy or Not

When Rex arrives at a question and:
He knows the answer is not in, and

He does not make an offer or does not respond to AC’s
price,

Then we cannot be sure whether he is interested in buying
the answer.

The problem here is that if Rex knows that an answer is
not in the system, he may feel no incentive to make an offer
or to reject or accept a price. He may feel it is a waste of his
time to even bother. Like any shopper or bidder, he might
want to know that a piece of merchandise is available before
he bothers with the price.

When Rex arrives at a question and:
He does not know whether the answer is in, and

He does not make an offer or does not respond to AC’s
price,

Then we cannot be sure whether he is interested in buying
the answer.

He might not want to bother making an offer or rejecting
or accepting a price if he isn’t sure the answer is available.

When Rex arrives at a question and:
He knows the answer is not in, and

He makes a non-binding offer (places an order),
Then we cannot be sure whether he is interested in buying

the answer.

In this situation, he may be lying intentionally or
unintentionally, like any buyer who expresses interest in a
product that may arrive at some time in the future. His only
cost is the time it takes to place the order.

When Rex arrives at a question and:

AC presents a price for Rex to accept, and

He does not respond to AC’s price,

Then we cannot be sure if he is rejecting the answer or the
price.

The problem here is that Rex may feel no incentive to
explicitly reject the price and no incentive to make a counter
offer. He may just not bother expressing any interest explic-
itly. Like any shopper who sees an item that he wants but
that he thinks is priced too high, he may just go on to the next
item without saying a word. This reasoning applies whether
or not the answer is in and whether or not Rex knows
whether the answer is in.

Some Rules and Functions and Options for Getting Rex to
Declare His Interest

Given that in a variety of basic buying situations Rex may
feel no need to express his buying interest explicitly, the
ideal is for AC to read Rex’s mind. That ideal will have to

wait. In the meantime, AC can include various functions and
options for getting Rex to declare interest in an answer,
wheher it is missing or actual. Below we list some of these.

“Reject Price” Button. AC can include a button that Rex
can press to signify that he is rejecting the price of an
answer. (AC can include other reject buttons so Rex can
express other reasons for rejecting an answer.)

Browse Mode. As noted, AC can include a separate mode
where users browse questions. AC can enable Rex to switch
in and out of browse mode with the press of a button. So it
is easy for Rex to tell AC whether he is browsing or not. (AC
might also register when Rex is browsing a question.
Though browsing is not considered a request for an answer,
the number of people who browse a question and their rate
of browsing can be significant D-info.) The difference

10

15

20

25

30

35

40

45

50

55

60

65

98

between browsing and “actively looking” for an answer is
often unclear. If AC is to have a browse mode, AC needs
meta-rules for defining browsing. AC may even include
different “levels” of browsing. And AC can enable users to
say, at a given question, whether they are browsing that
question or not.

Offer Palette. AC can include a palette for making price
offers. The palette can include set price levels. This allows
Rex to “click on” an offer, rather than entering one manually.
It is a small difference but it may be enough to overcome his
laziness.

Get Price Button. AC can include a button for getting the
price of an answer. If Rex bothers to get the price of an
answer it may mean he has some interest in buying.

Minimum Bid. AC can show Rex an amount that is the

minimum offer Rex can make. Otherwise Rex may inten-
tionally make an extremely low offer that tells little about his
interest in buying the answer.

Price Shown Only After a Binding Offer. AC can show
Rex the price only after Rex makes a binding offer. Other-
wise Rex can see the price and does not have to react to it.
This way, by making an offer, he must show some interest.
As noted, AC can stipulate a minimum bid.

Survey. AC can a conduct survey asking Rex why he
rejected an answer and providing a form for Rex to check-off
the appropriate reason. AC can conduct such a survey
randomly and use the data to create statistics for classifying
requests.
Information AC Can Register About Rex’s Buying Situation

We have described some basic buying situations above.
These are characterized by what Rex does at a question and
what he knows when he does it. As mentioned, the details of
a sales situation can vary tremendously. Even though we
have given the logical outlines of offer/counter offer
situations, we have not captured any extra details. These
details can be critical in compiling reliable statistics. For
example, the statistics would be different for an answer
costing 10 cents than one costing $10.

Below we list some key types buying situation informa-
tion. The list below is not exhaustive. Other types of
information can be registered. Most is repeated from above,
some is not, and some from above is omitted. In the relevant
situations then, AC can register the following information
about Rex and his request:

Which search stats did he use to arrive at the question?
Which A-stats did he see at the question?
Was the answer in the system?
Did the A-stats tell him whether the answer was in the

system?
Was a price presented to him automatically?
Did he ask for the price?
Was a price presented to him? If so, what was it?
Did he accept the price?
Did he make a counter offer? If so, what was it?
Was his counter offer accepted?
Was his counter offer rejected? If so, how low was it

compared to the price?
Was he asked to make an offer?

Did he make an offer? If so, what was it?
Was his offer accepted?
Was his offer rejected? If so, how low was it compared to

the price threshold?
Did he place an order? If so, did he state a price? If so,

what was the price?
Did he make a commitment? If so, did he state a price? If

so, what was the price?
Did he know before he arrived whether the answer was in

the system? (This can be relevant because AC can enable

|PR2020-00686

Apple EX1019 Page 104

IPR2020-00686
Apple EX1019 Page 105

6,131,085

99

users to screen questions based on whether they have direct
answers. Also, as discussed in section 5.1, AC can enable
users to see whether questions that can be selected have
answers.)

Did he know before he arrived what the price of the
answer was? If so, what was it?

Did he know before he arrived that he would have to make
an offer?

Did he enter a new question? If so, which one?
Did he travel to a linked question? If so, which one?
Did he come from a linked question? If so, which one?
Did he make an indirect o-request? If so, what search

stats, did he enter?

(Omitted here is information about alternative answers.
This kind of information can be very important. The regis-
tering of this information is discussed in Book II.)

6.4 Demand Statistics

Not all D-info is stored in the D-records of individual

questions. AC compiles demand statistics based on the
information in large numbers of D-records. The are used in
the POF as historical information.

The topic of demand statistics will only be touched on
briefly. Statistics for projections, like formulas for
projections, can vary too much to be described. Further, as
noted, an evolutionary approach is best, where the predictive
value of given statistics is tested. The point here is simply
that in order to come up with good POF’s, AC needs to
compile statistics on a great number of situations in order to
compare a given situation to similar situations in the past.
Population Statistics

AC can compile what we might call population statistics.
These are based on the requests of large numbers of people
in a great variety of situations. AC can examine similar
patterns of request information that occur in a large number
of D-records, and then check to see what the sales were in
these similar situations. In other words, AC can see how
actual sales correlate with certain patterns of request infor-
mation.

For example, AC can examine all cases where a question
has a single MMA o-miss request and see what that “pre-
dicts” for sales of the corresponding answer. An MMA
o-miss will likely have different predictive value than an
HMA o-miss. Moreover, the value of an MMA o-miss will
also depend on how many other o-misses were registered
due to the o-request that was involved (see section 5.3).
Likewise, an MMA o-miss that was registered along with
two other MMA o-misses will have different value than an

MMA o-miss that registered along with a thousand other
MMA o-misses.

These are tiny examples. The point is that request infor-
mation can vary widely. The only way for AC to develop
discount statistics to evaluate different requests is to compile
sales information on large numbers of cases. The factors that
can be examined will explode, but patterns should emerge.
Individual Buyer Stats

It is useful for AC to compile statistics on the buying
behavior of individuals as well. Such statistics can be used

to develop population based statistics. Just as in baseball we
can develop statistics about the chances that any player will
get a hit, we can also develop statistics for individual
players. What is the individual’s chance of making a hit? We
can further refine those statistics by given situation, for
example, what are the chances of getting a hit with runners
in scoring position?. As we know from something like
baseball, innumerable statistics can be developed that may
help predict performance. In AC, performance means sales.

10

15

20

25

30

35

40

45

50

55

60

65

100

However, where an individual is concerned, AC may not
be able to see what sales are in many cases because often the
individual does not buy in a given situation, and may not
even be able to buy because the given answer is missing.
Nevertheless, AC can develop statistics based on the indi-
vidual’s behavior.

Consider the situation where Rex arrives at a question
and:

AC shows him that the answer is not in the system, and

he did not know before arriving whether the answer was
in, and

he makes no offer.

Now, how does AC evaluate whether Rex has any interest
in buying the answer based on his past behavior?

One way is to have AC check past behavior in situations
where:

Rex arrives at a question, and

AC shows the user that the answer is in the system, and

Rex did not know before arriving whether the answer wasin.

AC can then see what percentage of the time he made an
offer in these situations. AC can then discount the request
where AC shows that the answer is missing by the same
percentage. Now this is not an ideal discount factor, for
many other factors can come into play. We are just giving an
example.

Rex’s buyer stats may be stored in a record about him and
then pulled, as relevant, to discount his requests for different
answers. The relevant statistic depends of course on the
given buying situation Rex is in.
Examples Individual Buyer Stats

We give some examples below that show how AC can use
the D-info discussed above. AC can keep statistics that
answer the following questions about Rex.

What percentage of the time does he buy an answer that
he has placed an order for?

(To give an idea of the importance of these kinds of
statistics, consider: If one user buys an answer 1% of the
time when he places an order, then we see that, price being
equal, the value of his request is less than that of someone
who buys 10% of the time he places an order.)

What percentage of the time does he buys when he has
made a commitment to buy?

When rejects a price, what percentage of the time does he
buy later for less?

What percentage of the time does he buy when he knows
an answer is in?

What percentage of the time does he buy a linked alter-
native answer?

What percentage of the time does he buy an answer when
he doesn’t if it is in?

What is his ratio of requests to purchases?
How does his behavior change depending on the price he

is presented and the price he is offered?
Answers to these kinds of questions about Rex’s past

behavior can enable AC to make a better guess about the
value of a request by Rex. Of course, we are not even
scratching the surface, just giving several examples.

6.5 Information About Alternative Answers

Knowing about the alternatives to a product can be
important for guessing what the sales of that product will be.
In AC, the products are answers and the principle is the
same. And so, in the D-record of a given question and
answer, AC can register information about answers that are
alternatives to that answer.

|PR2020-00686

Apple EX1019 Page 105

IPR2020-00686
Apple EX1019 Page 106

6,131,085

101

When we say alternatives, we mean alternatives as rep-
resented by questions and Q-records. The answers may or
may not be in the system. We mean the actual and potential
answers, as represented by questions and described by the
A-stats.

Taking a physical product example, someone who
expresses interest in buying a certain shirt at a department
store might also have expressed interest in buying other
shirts. The value of the expression of interest in that certain
shirt depends on how many other shirts the person has
expressed interest in and on whether those shirts are in stock
and on whether he prefers them and on other factors.
Likewise, a person who expresses interest in buying an
answer about a shirt may express interest in an buying
answers about other shirts. The value of his interest in that

certain answer will depend on whether the other answers are
in the system and on a variety of other factors.

The alternatives to answers in AC can be harder to

identify than the alternatives to physical products in the real
world. That’s not to say that product situations are simple,
for who is to say what all the alternatives are to a given
product. However, there are usually far more alternatives to
a given answer than to a given physical product because
answers are often easier to supply than physical products.

Moreover, AC does something that is not usually done in
the world of physical products; it allows individuals to
request their own versions of the products they want and to
state the requests for similar products in a great variety of
ways—ways that may or may not even seem similar. And so
there can be a sea of alternative answers, the vast majority
of which are missing. In other words, we have a sea of
potential alternatives. This is a fundamental problem of AC:
how to evaluate D-info in light of the multitude of alterna-
tives that the D-info can apply to, and in light of the fact that
preferable answers might be supplied at any time.

The problem gets worse when we consider that answers
and A-stats can be easily modified and that these modifica-
tions can change demand dramatically. For example, the
price of an answer be changed.

Though the potential alternatives to a given answer may
be very numerous in AC, that does not change the fact that
it can be quite valuable to gather information about these
alternatives.

The D-info AC collects about alternatives can help Sue
decide what to do. She may want to decide whether sup-
plying an answer is worth her time. Or she may already have
supplied an answer and wants to see how the competition is
affecting the sales of her answer. Therefore, AC can enable
her to:

a. see what some of the potential competition is,
b. see the sales and POE of alternatives that are actually

in the system,
c. see, perhaps, how the competition is pulling sales from

her answer.

Identifying alternatives is very important because of the
problem of phantom requests. Say Rex asks ten similar
questions none of which has an answer in AC, and say he
only wants one answer. As noted in chapter 4, asking a
number of similar questions is the common way that people
ask for something, especially when they are not sure of the
subject they are asking about. Well, which answer does he
want? We have the problem of phantom requests. Nine out
of ten questions are phantom requests. Or are they? This is
a big problem and we will address it in Book II.

Actually, we wait until Book II to address the whole issue
of gathering information on alternative answers. That’s

10

15

20

25

30

35

40

45

50

55

60

65

102

because the issue is more important with linked questions
and more explicit as well since alternatives are often linked
to each other.

The problem of factoring in alternatives is still important
with non-linked questions. It’s just harder to collect infor-
mation on the alternatives. Come-from-Q’s and go-to-Q’s
are the most natural choices to identify as alternatives. Thus
these are registered in the Q-record of a given question.

One way to handle the problem of factoring in alternatives
is to discount the value of requests. By discounting, it is
assumed that a certain percentage of times that a request is
registered, there is an alternative answer that a user will
prefer and find.

The “discount rate” for requests can be based on large
statistical samples of requestors. However, we know that
some people are more prone to being window shoppers than
others. Thus, such discount rates will be more accurate in
general if they take into account the buying behavior of
individual buyers and apply a “user discount rate” based on
an individual user’s buying habits. Additionally, the rate can
be based on the type of answer as well. In the world or
physical products we know that some products, like jewelry,
are more prone to attracting window shoppers than others,
like hamburgers.

As noted, the relevance of discount statistics and indi-
vidual buyer statistics depends on numerous factors because
buying situations can depend on numerous factors, for more
numerous than we can identify. Still such statistics can be
helpful.

6.6 Time Effects, Re-running Questions

As things change in the real world and in AC, questions
and answers change. Some answers become out of date.
Others are improved. The store of questions and answers
grows.

As new questions and answers are entered, what then is
the relevance of past D-info collected for older questions
and answers? How do we apply D-info collected in the past
to new questions and answers. How do we even apply it to
the questions and answers that existed when it was col-
lected? There is no good general solution to this problem. It
is another problem we will take up in more detail in Book
II.

We mention one approach here that AC can take. AC can
“re-run” questions, particularly MMA o-requests, from the
past to see which different answers AC would have
o-requested in the present. By “re-run” we mean that AC
identifies the sources of o-requests and simulates that the
o-requests have been entered again from those sources. AC
then sees which answers are o-requested. The answers that
are o-requested will change over time. Thus AC can some-
what adjust the o-request tallies for answers, at least with
respect to MMA o-requests. For example, if Movie Review
Casablanca? is the source of 1,000,000 o-requests over the
past year, AC can periodically re-run those requests to see
which reviews, missing and actual, AC would o-request
given the present store of missing and actual reviews in the
system. (How far back in time AC goes to get o-requests is
an open problem. As with so many other rules, AC must
experiment.)

As another example, an FB-Q might be, What are the top
ten companies in the US by sales?. Now these companies
change over time. And so when this question is entered for
the first time, AC sorts the existing companies (say they are
in a table) and comes up with the top ten. Now if AC
re-enters the FB-Q at a different time, AC might come up
with a different top ten.

|PR2020-00686

Apple EX1019 Page 106

IPR2020-00686
Apple EX1019 Page 107

6,131,085

103

AC can enable Sue to ask that AC re-run o-requests in
order to test what the effect will be on an answer Sue might
supply. In other words, AC can enable Sue to enter a test
question, as discussed in section 5.2, and then see what the
effect is of past o-requests. Sue can identify these o-requests
by their primary sources, but, more likely, she can choose
questions that she considers to be close alternatives to the
question she plans to answer. AC can then check the
D-records of these questions for MMA o-misses and o-hits.
AC can then check for the primary sources of those o-misses
and o-hits. And then AC can re-run those MMA o-requests
to see whether Sue’s new answer would be o-requested by
those sources.

6.7 Some Other Considerations

Changing Answers
If an answer changes, AC may nullify old offers both by

itself and by Rex. AC can then allow fresh negotiations and
may alert Rex to the possibility. The rules are of course
variable.

Brief Note About Price Tests With Price Ranges
Normally a price offer is at a single price. However, AC

may enable Rex to present an offer as a range, especially
when an the answer requested is not yet in the system. Like
a poll taker who asks people what they are willing to pay for
an item, AC can ask in terms of price ranges. Moreover, AC
can include a form by which Rex can check off ranges rather
than enter a single figure.

A more novel idea is that AC can present an offer of a
price range. That is because the nature of AC is such that a
user may indeed end up paying a price that is in a range.
Here we have the idea of projected price (see chapter 7 on
Price Setting).
Secrecy Issue

Now if AC does not reveal its price threshold for an
answer, finding that threshold can be valuable to Rex. There
is more information that can interest Rex: such as whether

an answer is in the system and the POE (the POE may yield
clues about whether an answer is in the system and about the
price threshold of an answer).

In many cases it will be best for AC to disclose all this
information. The price, the POE and the presence or absence
of an answer can help users, apart from buying answers. For
example, a user in check mode needs to see the POE’s. As
another example, Rex may want to screen answers according
to price range.

And yet oftentimes it will be useful to keep such infor-
mation secret. There are no universal rules. In cases where

secrecy is desired, AC can employ security methods to stop
Rex from cheating. Primarily these are authentication
techniques, because the key way people would cheat is to
use confederates (or use the ID information of confederates).
Rex can have a confederate make a lowball offer in order to

learn about a price threshold. In addition to authentication
methods, AC may seek suspicious correlations in the behav-
ior of users because a cheater will likely have the same
person(s) cheating on a repetitive basis.

6.8 Investment Offers

AC can include means and rules for enabling Rex to
invest in the supplying of an answer. There are difficulties
here as to the rules for determining which Sue would get to
use the investment funds. We are not going to delve into this
issue. Suffice to say that AC can include rules for the making
and accepting of investment offers. These can be of major
importance.

(See also Projected Price in chapter 7.)

10

15

20

25

30

35

40

45

50

55

60

65

104

Chapter 7

Price Setting in AC

AC sells answers and so those answers need to be priced.
A Quick Digression on the Difficulties of Pricing

Many problems of setting prices are the exact same as
those of measuring demand, for “measuring” demand really
means trying to find out how much people are willing to pay,
in total, for something. As noted, the key problem is that we
cannot read minds, for if we could, we would know how
much a person was willing to pay for something. When
setting a price, one can only guess.

And the problem is usually more complicated than that
because there are usually multiple buyers, each who may be
willing to pay a different maximum price.

Another complication is that the goal of setting prices is
vague. There can be many goals. One is “profit maximiza-
tion.” Here a seller tries to make the most money. Another
is “reasonable rate of return.” Here a seller just tries to
recoup his effort plus a profit, adjusted perhaps for the risk
he has taken. Of course, deciding what a person’s effort is
worth is a subjective exercise, as is judging the risk taken.

Another complication is that to arrive at a “fair” price we
may have to judge what will be paid in total in the future.
What will be paid depends on the vagaries of the future and
on the price itself.

Another complication is that one has to price with the
competition in mind. Who the competition is may not be
clear and, further, the competition may price in reaction to
one’s own price.

Let us add yet another complication. The effect of price on
units sold is highly variable. There is no universal, smooth
sales curve where a given reduction in price means a given
increase in units sold. Further the effect of price on total
sales income can be even more variable.

The problems above apply to the pricing of most goods
and services and information. But information, answers,
have another aspect that can further complicate the setting of
prices. Unlike most goods and services, information is easily
copiable. This means that an answer can be sold profitably
at very different prices to different buyers. So the pricing of
information can involve pricing schemes not usually seen in
the world of physical products.
Note on Definition of Price

In this section, we stick with the definition of price in the
chapter 6: the amount that an answer is sold for to a given
buyer at a given time.

However, in this chapter, when we say a price is set, that
can mean a price or price threshold. We say “price” often
because it is easier than saying “price or price threshold.”

The problem is that sometimes the idea of a threshold
does not apply, for a price may be shown to all with no secret
threshold and no negotiation involved. Perhaps we should
distinguish between open prices and price thresholds. Some-
times we will use the term open price, but usually, for
convenience, we will stick with the term price. It is hoped
that the reader will understand by the context where price
thresholds are inappropriate and open prices are the only
choice.

7.1 Ways That Prices Can Vary In AC

The previous chapter showed how the concept of a single
price is deceptive. In reality, an answer may have many
prices. An answer may have a single price for all buyers that
remains fairly static. It may have a single price for all buyers
but one that fluctuates rapidly. An answer can have multiple

|PR2020-00686

Apple EX1019 Page 107

IPR2020-00686
Apple EX1019 Page 108

6,131,085

105

prices according to various factors. Below we list some of
the ways that prices can vary. The point is simply to show
that prices can be set in AC using a great variety of schemes.

Prices that vary with sales. Where the price of an answer
depends on the answer’s sales level. The price may rise or
decline. It can also decline to zero after the answer has had

a given amount of sales.

Prices that vary by date. Where the price of an answer
depends on the date it is sold.

Prices that vary by time of day. As in peak and off-peak.

Prices that vary by identity of buyer. For example, student
rates.

Prices that vary according to the competition’s prices. For
example, a meet-the-competition rule.

Projected prices. Where a buyer can be rebated depending
on future sales of an answer. We elaborate on this concept
later, below.
Price Plans

Normally when we think of setting the price of something
we think of setting one price at a given point in time.
However, we can also think in terms of price plans where
prices over time are set according to some formula. AC can
have standard plans and can enable a supplier to pick a given
plan for an answer.
Price Per Answer or Per Period of Search Time

Normally when we think of setting the price of an answer,
we think of setting a price for that individual answer.
However, pricing per period of search time is a popular and
convenient method. In this method, the answers outputted
during a period of time to a given user are credited according
to the user’s charges for that period. For example, if a user
gets 10 answers in ten minutes and is charged $1 for those
ten minutes, then each answer might get 10 cents royalty
credit. How royalty credit is split among answers can vary.

The price of search time can vary in some of the same
ways that the price of an individual answer can vary.

Pricing by search time is a price category method of
setting prices (see below).

7.2 Basic Ways Prices Can Be Set
Basic Ways That AC Can Assign Prices and Price Thresh-
olds to Answers

Given the wide variety of pricing schemes, what we are
mainly concerned with in this chapter is:

a) Who does the price setting, and
b) What AC provided information can be used to do the

setting.
There are three parties that AC can enable to set prices,

whether before or after an answer is in the system. These
apply for the changing of prices as well. (As noted, we use
the term price to mean open price and price threshold.)

1. AC can have system operators set prices.
2. AC itself can set prices using price setting formulas.
3. AC can have suppliers set prices.
(Note: When a secret price threshold is set, a negotiation

takes place. In this case, Rex makes an offer. In a sense then,
Rex partially determines the price that an answer is sold for.
If his offer is above the threshold and the answer is in the

system, he gets the answer. By determining how far above
the threshold price he is, he is also partially setting his own
price, the actual price the answer is sold for.)
Information Loop for Price Setting

Regardless of who sets the prices, the general information
flow can be a feedback loop as follows:

Price setter sets price—>Price test doneePrice test data
sent to D-recordeD-info in D-record sent to POF—>POE

10

15

20

25

30

35

40

45

50

55

60

65

106

calculated by POFePOE sent to price setter for
evaluation—>Price setter sets price

This particular loop is not always mandatory, but what is
mandatory is that the relevant D-info registered by AC is
made available to the price setter.
Note About Setting Prices Before or After an Answer Is In
the System

As seen in the previous chapter, the price of an answer can
be set before or after the answer is in the system. If the price
is set after, then there is no price before. A problem seems
to exist as far as the POE is concerned. If there is no price
then how can there be a POE?

Well, the POF can include assumptions for guessing what
the price will be. These can use price test and historical
information. The POF can also give multiple POE’s based
on different prices and users can judge which price they
think is most likely. Further, AC can enable users to plug
their own price guesses into the POF to see different POE’s.
1. System Operators Setting Prices

System operators cannot feasibly set individual prices for
answers, but they can define standard price categories, such
as a one cent each category, a five cent each category, a two
dollar category, and so on. As noted above, a variation is
charging a standard amount per period of search time.

System operators can define price categories and then
suppliers can choose which categories to put their answers
in. (An answer may be put in more than one category at a
time.) In that way, the system operators and suppliers are
setting prices together.

Categories may be defined not only by price but according
to the content of answers. In certain cases, suppliers may be
forced to put certain kinds of answers in certain categories.
For example, certain phone numbers might have to cost a
certain standard amount.

Now when we say price categories, we do not mean just
one-price-for all categories. Prices can vary in many ways.
A price category is defined by known rules that determine
the prices of the answers in the category. By these rules, a
user knows ahead of time how much a given answer in a
given category will cost for that given user. Rates can vary
in standard ways based on different factors, as discussed
above.

Where price categories are concerned, AC can enable Rex
to file a price complaint if he thinks an answer costs too
much, in other words if the answer does not fit the conditions
of a given price category.

(Note: Rex can specify a price category when he asks a
question. If the answer is missing, a supplier of the answer
knows that to fit in that category, the answer must carry the
specified price. Rex suggests the price of the answer then,
but it is Sue who decides whether to put her answer in that
category.)
2. Price Setting Formulas

AC can include price setting formulas that take D-info for
an answer and calculate a price from that. Thus the infor-
mation in the D-record for an answer can be fed not only into
the POF but also to the Price Setting Formula (PSF). Indeed,
the POF can have price assumptions in it and these can be
changed by the PSF.

In the loop above, the PSF is the price setter. The loop
shows how D-info can be crucial for setting prices and for
estimating pay-offs, and further, how the results of setting
prices can affect POE’s, and how POE’s can affect the
setting of prices. Pricing is a helluva feedback situation.

Because so many real world factors can affect price,
PSF’s have great limitations. On the other hand, because AC
can accumulate a large body of experience with similar

|PR2020-00686

Apple EX1019 Page 108

IPR2020-00686
Apple EX1019 Page 109

6,131,085

107

situations, its PSF’s may potentially do a good job of setting
prices, or at least a good job of advising users.
3. Suppliers Setting Prices

AC can enable Sue to set the price for an answer she
supplies. Of course, she can also change the price of heranswer.

As mentioned, AC might have certain price categories and
Sue can put her answer in one of these. The system can also
show Sue the prices that exist for comparable answers. She
can then apply her common sense.

Thus the Q-display can include a price setting option that
Sue can select to enter a price for her answer. This option can
have a sub-menu so that Sue can select some other options
for seeing information that can help her make her pricing
decisions.

AC can make all D-info available to Sue so she can make

a better guess as to the best price to charge. For example, AC
can show the rate of requests received, the times the requests
were made, the variety of offers, the average offer, the range
of offers, and other price test information. Sue can then
apply common sense.

AC can enable her to ask for help from the PSF. When she
selects this option AC can also enable her to plug in various
guesses about future demand for her answer and possible
prices. In any case, Sue’s common sense will still not be
good enough to figure out the “best” price for her answer.
This problem will be solved when the Vulcan mind meld is
incorporated into software, but that is another story.

In addition, as a sub-option, AC can enable Sue to have
AC automatically set and monitor the price of her answer. In
this case, she can set the initial price and AC can take the
price setting from there, using PSF’s that attempt to maxi-
mize her income.

In addition, as a sub-option, AC can enable her to set
several different kind of alerts, alerts about the D-info
concerning her answer. Like a marketing manager, she can
ask AC to keep her apprised of key sales data concerning her
answer. If we think of AC as a vast bazaar for answers, we

can think of Sue as a peddler who rents a stall (a signomat).
In order to wheel and deal properly, she obviously needs
information about the sales of her product and she’d like
information about the sales of the wares of other peddlers.

She can ask to be alerted when the POE drops below a
certain amount, when the actual sales and the actual sales
rate hits certain values, and when the prices of comparable
answers change by a certain amount or percentage. If she
chooses to keep abreast of comparable (alternative) answers,
she may need to identify them to AC (though as we will see
in Book II, AC can have means for identifying comparable
answers).

She might ask to be alerted directly when a buyer makes
an offer that is below her threshold. She may want to
negotiate directly or respond with a counter offer quickly.
These are just some of the key alerts possible. (We will see
similar alerts in chapter 9 about the pay-off meter.)

7.3 Public and Private Domain Prices

Royalty Free Answers
AC likely will have rules for limiting the royalty income

that an answer can generate. AC can keep track of the total
royalty income of an answer and when the income exceeds
a threshold, a cap, AC can make the answer royalty free.
Another way AC can limit royalty income is to set a time
limit during which a user can get royalties. After such a time
limit, or income cap, is exceeded, we might say that the
answer passes into the public domain.

Once AC puts an answer in the public domain, AC might
drop the price to zero or to some very small amount to

10

15

20

25

30

35

40

45

50

55

60

65

108

compensate for overhead. Or, AC might keep the price high
in order to profit for itself. For convenience in the
discussion, we will assume that answers in the public
domain are free or near free.

Now to go into the public domain, the income cap must
be reached. How is that cap set? There are no good general
rules known. The solution in patent and copyright law is to
not to set a cap but to set a time limit for protecting income
(property rights). This seems stupid in many cases. AC can
give users the choice of a time limit or a cap. The setting of
income caps is an important area where rules need to be
developed by experiment.

Though we cannot suggest good rules for setting income
caps or time limits, we will assume AC enables caps and
time limits to be set by AC or Sue or a judge or Rex’s, or
some combination of these parties.

When Sue is still due royalties for an answer, we will say
that the answer is in the private domain.
“Reverting” to the Private Domain

Most answers can be changed. For example, a phone
number may need correcting, a blueprint may need revising,
a recipe for chocolate chip cookies may be improved.

As discussed in chapter 5, changing an answer requires
Sue’s effort and so she needs to be compensated. Thus, if an
answer that is in the public domain is changed, it “reverts”
to the private domain. This way of stating the situation is a
little misleading. When an answer is changed, the original
version is still is a past answer that is in the public domain.
It is the new version that is in the private domain. (Rex may
thus choose a past answer that is in the public domain rather
than a current answer that is in the private domain.)
Demand Information Still Registered and POE Still Calcu-
lated

If an answer is in the public domain, AC still registers
demand information and calculates a POE. That’s because

the answer may be changed and consequently revert to the
private domain. Since the price is zero in the public domain,
the POF must have price assumptions as to what the price of
the changed answer will be. There can be various changes
and various prices.

7.4 Projected Prices
Projected Price

The idea of a projected price was mentioned above. We
elaborate here because the idea is new as a method of pricing
answers in an answer base (data base).

What is a projected price? First let us say that AC can
present an initial price and a price range. The initial price is
the price that Rex is obliged to pay initially to receive an
answer. (If the answer is not in the system, the initial price
may be what Rex commits to paying.) The actual price is the
price he winds up paying over time. The price range is the
range of prices he might end up paying, from the initial
maximum amount to some lower minimum amount that Rex

may end up paying.
AC can estimate the actual price, and this estimated price

is called a projected price. For example, AC might present
an offer where the price range of an answer is, say, between
$2 and 20 cents, and the projected price is, say, 50 cents.
How can AC have these different prices? By rebating Rex
based on the future sales of the answer.

Let’s take an illustration. Let’s say that a question is,
What is a list of the major hologram sellers in the US.?. And
let’s say that Sue is thinking of compiling the list. And let’s
say she wants to be rather sure of being compensated for her
time. She might want, say, $20. And so, she might set the
initial price for the hologram answer high, because she think
that will raise the chances that she will be paid the $20. Thus

|PR2020-00686

Apple EX1019 Page 109

IPR2020-00686
Apple EX1019 Page 110

6,131,085

109

the first ten Rex’s might be charged $2 each. These ten Rex’s
can be presented with a initial price of $2 and a projected
price that is lower.

Once Sue has gotten her $20, a share of any additional
sales revenue from her answer can go into rebating the first
ten buyers. Say that another 100 Rex’s buy her answer.
These Rex’s can be charged less, say 40 cents each, and the
first ten Rex’s can be rebated an amount. Thus the actual

price that the first ten Rex’s pay is not definite, but depends
on the total sales of the answer they have bought.

Of course, many schemes are possible for rebating a buyer
according to sales that occur after the buyer has bought at an
initial price. The initial price can differ for different buyers
and the rebates can differ for different buyers.

Just as the system has a formula for calculating a POE, it
can have a formula for calculating a projected price. The
projection depends on AC’s sales projections. Thus Rex’s
projected rebate is just a modified version of Sue’s projected
pay-off.

Rex’s rebate may be greater even than the initial price he
paid. In other words, if the answer sells enough, Rex may get
a profit from buying the answer. The minimum price he pays
may be a negative price. This idea is not as crazy as it seems.
Early buyers can be looked at as investors. They are the
“early adopters” who pay the initial higher price, and in
some sense deserve to share in the rewards of the lower

price. They may share to the extent that they even profit.
This is a fundamental way of paying for innovation.
Who Makes the Projected Price Offer

AC can enable Rex to make a price offer where he offers
to pay a higher initial amount in return for a share of future
royalties once a cap has been reached. AC can enable him to
choose from standard plans for the sharing of royalties
between Rex’s and a Sue. AC can also enable him to craft

his own offer using a form that AC provides. Likewise, Sue
can make a price offer where she offers to pay a share of
future royalties in return for a given Rex or set of Rex’s
paying a higher initial price. She too can choose from among
standard plans AC or craft her own.

Regardless of who makes the offer, Sue must agree that it
applies to her answer. In other words, a projected price is
another kind of price that can be set. A given Rex can then
agree to pay the price or not.

In order to implement a projected price, AC stores the
standard or custom plan in the credit record for Sue’s
answer. AC then keeps track of the income generated by her
answer, and when the income exceeds the specified amount,
AC rebates Rex’s as specified by the plan.
End Note

We will not delve into this idea further here but simply
emphasize that the principle of projected price is fundamen-
tal and can be highly useful for getting answers into AC.

Chapter 8

Registering People’s Interest in Supplying Answers
and Registering People’s Rights to Supply Answers

Let’s assume that the POE for a given answer is $10,000
and is a good guess of what users will pay in total for the
answer. The answer is a large nugget of gold then, so to
speak. But is it fools gold?

That depends on how much it costs to try to find.

And it depends on the chances of finding it.

And it also depends on whether there is competition, for
if another prospector finds the nugget first, the mining trip
will be a bust.

10

15

20

25

30

35

40

45

50

55

60

65

110

Potential Competition and the POE
So let’s say a stranger offers to pay $10,000 to the first

person who measures the vacant space in the Empire State
Building. You see the offer and think the amount is generous.
But do you do the job? Before doing anything, you want to
know more.

You ask the stranger, Who else knows about this?

The stranger responds, A number of people.

And you ask, Well, how many of them are interested in
finding the answer?

And she responds, I don’t know.

And you ask, Well, do you know if anyone is up there
measuring right now?

And she responds, I don’t know.
And you might say, Count me out.

The potential competition might naturally scare you off.
Your projected pay-off for providing something is dras-

tically reduced by potential competition. A potential com-
petitor might take all your royalties or force you to split
royalties (how royalties are divided depends on the rules of
the particular situation). Regardless of the royalty sharing
rules, you face a risk of your income being cut, and so you
must factor that risk into your estimates.

Say the royalty sharing rule is that the first supplier gets
all the royalties. Say you think the chances someone will
beat you to the punch are 50%. In this case you think your
POE is cut by 50% on an expected basis. While your POE
is cut, your cost of finding an answer stays the same, and so
you may (or may not) have a negative projected profit.

Not only that, but other users in your position can feel the
same way and so no one may find an answer for fear that
someone else will do it first. In many situations, ignorance
can reasonably lead all interested parties into believing that
the projected profit is negative.
Camus Station

Let us imagine a train station, named by the way after
Albert Camus, the French absurdist. This strange station
doubles as a huge job placement center (it was established
in an effort to reduce the French unemployment rate). Hence,
the central information board that announces train depar-
tures and arrivals also announces jobs and the amounts of
money they pay.

Each job requires that a person travel to another city and
pick up a fact and bring it back to the stationmaster, who is
also the paymaster. Payment for each job is slightly more
than the cost of a round trip ticket to the city involved. And
only one payment is made per fact. So if two or more people
go to a city and bring back a fact, they must split the
proceeds, and therefore lose money on the trip.

The problem is that the diabolical stationmaster has a rule
that all ticket purchases must be made in secret. And so no
one knows until they get on the train whether or not others
will be on the same train to get the same fact. Unhappily
then, the station is full of job seekers, sitting on benches and
milling around, but not traveling. They all look at the board
to see what jobs are flashed but no one buys a ticket for fear
that another will have bought the same ticket. There is no
exit.

Assigning Opportunities
Presuming an opportunity is spotted in the economy by

one or more people, how is the job of exploiting the
opportunity assigned? What happens when the task is new,
and there is no boss or single customer to assign the task to
a single worker or company? How is the job to be assigned
when a new product or service or answer is to be provided,
and no single person makes the hiring decision?

|PR2020-00686

Apple EX1019 Page 110

IPR2020-00686
Apple EX1019 Page 111

6,131,085

111

In fact we have no rational way. We trust to the “invisible
hand,” but that is meaningless in actual, specific cases. In
real situations, people take a shot or don’t take a shot at
finding or making something new, while making vague
guesses about what the competition is or will be.

And so what do we get? We get duplication of efforts
throughout the economy. We can at least see this to some
extent when we look at same jobs being done by competing
parties. (Granted, duplication of efforts happens for more
reasons than ignorance of the competition, but this igno-
rance is an important factor.)

We also get something probably far worse, that we cannot
see. We get lost opportunities. Opportunities not taken
because people are in Camus station. And opportunities not
taken because people are busy duplicating efforts. That is not
to say we get zero innovation, just that we have no idea how
much we miss.

What then is a “rational” way to assign tasks if there is no
single customer or boss to decide? Well, there is none that
anyone knows of. All we can do is keep some goals in mind
and choose certain methods in certain situations. There are
no universals.
Social Goals

In the economy of AC, in order to use people’s resources
best, we would like to reduce the duplication of efforts. That
is a vague goal and yet we can’t say much more for there is
no general way to define tasks and duplication, no general
way to define the effort required to do something.

Another goal is to get the most valuable total store of
answers into AC. And yet that is equally impossible to
define, for what does valuable mean.

While we cannot escape from vague goals, they can guide
in developing measures to test assignment rules. We can
sometimes see that efforts are wasted and that certain
answers are more valuable than others. Hence we can

develop rules and functions that reduce the duplication of
efforts and increase the store of valuable answers. And we

can improve these rules and functions. This is a topic we do
not delve into. Assignment rules and functions are discussed
below, but not measures to test them (see the preface of Part
II).

The most important object of such rules and functions is
to get answers into AC in the first place, and that depends on
the pay-off equation for potential suppliers.
A Few Names for the Discussion

We will call a potential supplier a prospector. A user can
be a prospector in any mode. In fact, all users are potential
suppliers and thus prospectors.

We will also distinguish sometimes between a prospector,
which any user can be, and a live prospector, which is a user
who has registered interest in supplying an answer. For
convenience, we will sometimes call a live prospector by the
name Fisher (after Mel Fisher, the treasure hunter who found
the sunken Spanish galleon Attocha). We might think of a
user in request or supply mode as Rex or Sue Fisher.

We will sometimes use the term job in place of “supplying
the answer.”

The Prospector’s Pay-off Equation
The pay-off equation for a prospector determines whether

or not an answer will be provided. The basic equation for a
single job is:

(Projected reward)—(projected cost)=projected profit.

Since uncertainty about the competition can wreak havoc
with the projected reward, it can be crucial for a prospector
to find out about, or nullify, the competition.

10

15

20

25

30

35

40

45

50

55

60

65

112

Two General Approaches
AC takes two general approaches to help a prospector

evaluate the POE in light of potential competition and to
help protect the prospector’s future royalty income. One is
to enable prospectors to communicate with each other so
they can voluntarily reduce the duplication of efforts. The
other is to give prospectors property rights, exclusive rights
to supply answers. (AC also gives copyrights. These are
discussed in chapter 14 on Property Rights.)

For convenience we discuss these approaches separately,
though communication goes hand in hand with property
rights and property rights are a form of communication.

The various methods involved in these approaches are not
ideal solutions. In fact there seems to be no ideal solution

where competition is concerned. There are reasons to keep
competitors informed and reasons not to. There are reasons
to restrict competition and reasons not to.

As usual where answers are concerned, the range of
situations is extremely diverse and no general rules can be
prescribed.
Prospector Menu

Information about people’s interest in supplying an
answer is A-stat information. So is information about prop-
erty rights. Both kinds of information, like other A-stats, are
entered at the Q-display, are stored in the question record,
and can be accessed from the Q-display.

Thus the Q-display can include a prospector button that
can be selected and can lead to a prospector menu of options
that include the ones to be discussed below. When a user is

at a question then, he or she can select the prospector button
to assert interest in supplying an answer and/or assert rights
to supply an answer. Further, a user can see who the
prospectors are for that answer and/or what kind of interest
or rights each has asserted.

8.1 Enabling Prospectors to Communicate

AC enables prospectors to communicate with other each
other. By communicating, they can better assign the tasks of
supplying answers. They can stay out of each other’s way,
and they can better evaluate when a POE will turn negative
due to competition.

When we say communicate with each other, we mean that
they can post messages in the Q-record for all interested
users to see and that they can also direct messages to the
E-mailboxes of specific live prospectors.

AC can enable users to post several different kinds of
interest messages. These can be standard messages that are
stored in the question record and displayed upon request.

AC can also compile prospector statistics based on the
information registered from multiple live prospects.

Below we list some of the kinds of messages AC can
enable users to leave.

Non-Binding Expressions of Interest
AC can enable a user to post a message expressing a

non-binding interest (NBI) in supplying an answer. By
“non-binding” we mean that the user states that he is
interested in supplying an answer, but that the statement
carries no commitment and no penalty for non-performance.

As one of the options in the prospector menu then, AC can
include a button the user selects to enter NBI information.

When a user selects this button, AC registers that he is
interested in the answer, and AC can present him with a form
that asks for more information such as:

When do you think you will enter the answer by?

What is the probability you will enter it?

How much labor do you expect it will require to find, and
what kind of labor?

What are you planning on charging?

|PR2020-00686

Apple EX1019 Page 111

IPR2020-00686
Apple EX1019 Page 112

6,131,085

113

This information is registered in the Q-record and can be
displayed upon request. AC can combine the information
registered from different prospectors into collective
statistics, such as the number of NBI messages registered.

Another NBI message that AC can enable users to enter
is one that expresses interest contingent upon the POE rising
to a certain level. Thus Fisher can leave a message saying he
is interested in supplying the answer once the POE rises
above a certain threshold. Of course, in this case AC also
registers the threshold that Fisher enters and sends him an
alert message if the POE rises above the threshold.

While an NBI message carries no commitment, AC can
keep track of Fisher’s record of following through over a
series of answers, i.e. does he enter the answer, does he enter
it by the time he says he will, and are his probability
estimates fairly accurate?. That way people can evaluate
whether a prospector is much of threat to supply an answer.
AC may keep such individual prospector stats in a user’s
record and may attach them to an NBI message. For
example, if Fisher posts an NBI message, AC can add a
statistic telling the percentage of times he has supplied an
answer when he has posted an NBI message.
Binding Expressions of Interest

AC can also enable a user to post a message expressing a
binding interest (BI) in supplying an answer. By “binding”
we mean that Fisher commits to supply an answer by a
certain time. AC registers the time and checks to see if Fisher
has fulfilled his commitment. AC can assess penalties if
Fisher fails to fulfill the commitment. We call this type of
commitment a BI message. As with an NBI message, AC can
ask Fisher to enter further information, such as information
about charges and labor requirements. As with an NBI
message, AC can keep track of Fisher’s record of following
through over a series of answers.
Prospector Alerts

When Fisher is at a question, he can check the current
prospector information that has been registered. Let us say
that after seeing the currently registered competition, Fisher
decides to enter an expression of interest. While he sees the
currently registered competition, he might like to know
about other people who express interest after he does. And
so AC can enable him to ask that an alert message be sent
to him each time AC registers interest by someone else. The
alert can include some or all of the interest information

registered.
Collaboration Offer

AC can enable Fisher to post a message asking others to
collaborate in finding an answer. The message can be in a
standard form, or it can be lengthy, spelling out Fisher’s
proposal.

The terms of the collaboration may be worked out by
direct communication.

(We will not discuss collaboration much further though it
is a very important area. We assume AC has rules for
enabling cooperation and for the splitting of royalties. These
rules and attendant functions can, of course, vary widely.)
Elaboration Requests, Elaboration Messages, and Elabora-
tion Questions

Thus far we have skirted a big issue. When a user declares
an interest in supplying an answer, what is the answer? This
is the multiple answer problem, which we discussed in
chapter 4. We will revisit it only briefly here.

Since there can be multiple answers to a question, declar-
ing interesting in an answer may tell little about one’s
intentions. Other prospectors can remain quite uncertain.
And so, AC can enable users to send a message to a Fisher
asking for clarification about what answer he intends to

10

15

20

25

30

35

40

45

50

55

60

65

114

supply. We call this an elaboration request. Because of the
multiple answer reality, this option can be critical.

The elaboration request can be standard, such as: Please
elaborate, or it can be lengthy, asking for various details.

Fisher can respond with an elaboration message. This can
be a discussion of what he plans to do. This is an A-stat, like
the other prospector information, and can be accessed
through the relevant Q-record. We point this out because it
is in contrast to a second method of implementing an
elaboration message.

The alternative way for Fisher to elaborate is by entering
a new question, the question he intends to answer. We call
such a question a More Specific Question. It is discussed at
length in Book II.

For example, say Fisher expresses an interest in supplying
the answer to,

What is IBM’s phone number?.
Well, which number at IBM? Clearly, clarification may be

very useful.
Say the question is, What is the text of Hamlet’s solilo-

quy?.
Well, which soliloquy?
And in what language?
Again, Fisher can say more specifically what he intends to

supply.
Say the question is, How do you get rid of crabgrass?
Again, Fisher can get more specific. He may enter a new

question such as:
How do you get rid of crabgrass by obliterating all your

grass?
How do you get rid of crabgrass by chemical means?
How do you get rid of crabgrass by the introduction of a

different kind of grass?.
Since the elaboration message is actually a new question,

the original question is linked to the new question. (We save
the mechanics of more specific questions for Book II.)

The process of clarification can go back and forth with
Fisher responding and prospectors asking for more elabo-
ration. How much elaboration Fisher needs to give, and how
quickly depends on the situation and the rules in that
situation.
Direct Communication

AC can enable Fishers to contact each other directly. That
way they can more forcefully warn each other off. They can
ask each other to collaborate. And, they can ask each other
to elaborate on what they are planning and doing.
Disclosure Document Option

AC can include a disclosure document option. By this we
mean that Fisher can enter information that shows the

progress he has made in finding an answer. AC does not store
this information as the answer but does store it in the

Q-record. More than one Fisher may submit a disclosure
document.

Of course, the information can be kept secret and can be
divulged upon the permission of Fisher.

Disclosure document information can be essential where

it is important to demonstrate what progress has been made,
and to demonstrate priority.

8.2 Reservation Rights

Often communication is not enough to reduce duplication
of efforts and insure that a prospector’s POE is positive.
Some prospectors who intend to supply an answer may not
communicate their intentions. And even when they do, it is
uncertain whether they will supply an answer and when. For
any prospector then, despite communication channels, great
uncertainty can remain about potential competitors.

|PR2020-00686

Apple EX1019 Page 112

IPR2020-00686
Apple EX1019 Page 113

6,131,085

115

Therefore, in order to protect a person’s investment in
finding an answer, what are often needed are property rights,
exclusive rights to supply an answer. We will call such rights
reservation rights or reservations for short. A person who
gets a reservation will be called a reserver.

The general idea is that when a user is at a question, AC
can enable the user to enter a Reserve command after which

AC stores the user’s ID data in the Q-record to denote that

the user is the reserver of the corresponding answer. Then,
for a period of time, AC allows only that user to enter the
answer. AC also shows other users that the answer is

reserved for that period.
Reservation rights can vary widely. They need not be

long-term, exclusive monopolies. They can cap the amount
a supplier will make and they can be semi-exclusive. Parties
may collaborate under the protection of such rights. A
possibility is to allow part of the royalty income from an
answer to be protected while the rest is left open to unre-
stricted competition.

One variation is to allow another user besides the reserver

to supply an answer, but to keep this second answer undis-
closed until the reservation period runs out. The reserver still
gets royalties for his answer provided he supplies one. The
reason to allow another person to enter an answer is that the
reserver may decide he cannot fulfill his commitment, or
may just fail to fulfill it. In either case, the second supplier’s
answer can then be used.

Disputes, Judges, and Elaboration Rights
Where there are property rights there will be disputes. As

disputes are inevitable, AC must have judges to assign
credit.

The main problem, which is discussed above, is deter-
mining what answer a person has an exclusive right to
supply. What answer is Fisher claiming? It is tempting to
think of reservation rights in terms of land, where a pros-
pector stakes a claim to a piece of ground, yet the analogy
is deceptive. Answer are usually unlike land.

One solution, as discussed above, is an elaboration
request and an elaboration message. Where reservation
rights are concerned, the request can be an elaboration right
in itself, the right to demand that a reserver elaborate on the
answer she intends to supply. This option is usually vital to
make reservation rights work. It too involves a time limit, in
this case a time limit to respond. Thus AC can keep track of
the time and can penalize a reserver if she does not respond
in time.
The Best Laid Plans

Reservation rights are different than copyrights and
patents, yet they share some similarities, for all protect the
income a person gets from an answer. All protect against
uncompensated copying in essence. The big difference is
that reservations concern answers that are planned, answers
that have not yet been supplied. So disputes can arise over
copying what is not yet even found.

Prospectors who would like to supply an answer naturally
may be afraid of interfering with an existing reservation.
Moreover, two reservations might interfere as well. For
example, say that a question is, What’s causing this traffic
jam?. Now a user reserves the answer to this question and
goes off to find the answer. Let’s say that a second user
wants to answer the question as well. This second user is an
eyewitness to the accident that has caused the jam. She
might think it pointless to enter the answer though because
someone else has reserved it. Yet the original reserver might
not be able to find out the answer for a period of time.
Further, he might come up with some other answer. And so
we have a problem.

10

15

20

25

30

35

40

45

50

55

60

65

116

One solution is to have the second prospector enter a more
specific question such as, What’s causing this traffic jam,
according to an eyewitness? and then enter her answer to this
question. Adispute may arise later or it might not, depending
on what answer the original reserver planned to enter and
where he planed to get his answer from.

Given these problems, AC can enable users to consult a
judge who can give an opinion about a potential interfer-ence.

Of course there is no perfect solution to the problem. The
issue is similar to, and in some cases equivalent to, resolving
patent disputes. These are hard enough, but with reserva-
tions we are referring to something even more indefinite,
answers that are planned but that do not yet exist. And
further difficulties are presented because the methods of
getting an answer and the sources of an answer can matter,
as can a host of factors, such as timeliness. For example,
with the answer above, the original reserver might enter the
same answer as the eyewitness, that the jam was caused by,
say, a jackknifed tractor trailer. But the reserver may have
gotten his account third-hand and so it may be less reliable
that the eyewitness’s. It is the same answer and yet it is not.
Should the two answers interfere? And what if the original
reserver did not know where he would get his answer from?

To repeat, we will not give great solutions to these
problems, though such things as elaboration requests and
messages can help a great deal.

Despite the inevitable difficulties, it is useful for AC to
include reservation rights.
Completion Clock

Areservation only lasts for a certain period of time. (Time
limits can, of course, vary widely.) And so AC can have a
completion clock that, like a 24 second clock in basketball,
keeps track of the time limit once a reservation is granted
and shows how much time is left until the reservation runs
out.

AC can maintain a waiting list of people interested in
getting a reservation. People on the waiting list can be
granted the reservation should the reserver fail to do so
within the time limit.
Fees and Penalties

In order to provide a greater incentive to reservers to
fulfill their obligations, AC can assess fees for reservations.
Likewise, AC can assess penalties should a reserver fail to
fulfill his commitment.

8.3 Rules for Assigning Reservations

Presuming a reservation can be granted for an answer,
how is the right to be assigned? There are several basic
selection methods which we describe below. The simplest is
a first come first serve rule, where the first prospector to sign
up for the reservation gets it.
Reservation Clock

If a first come first serve rule is not in effect, AC needs a
reservation clock. This clock sets a period of time during
which prospectors are eligible to sign up for the chance to
get a reservation. AC displays the clock. The clock may be
started when the first prospector signs up for a reservation to
a given answer.
Alerts to Interest Parties

Once a prospector asks for a reservation, AC can send an
alert to all the live prospectors for that answer. The alert
shows the time on the reservation clock. Live prospectors
can then respond as to whether or not they want to be part
of a selection process for the reservation.
Assignment By Lot

One basic selection process is random selection. Thus AC
can randomly choose a Fisher to get the reservation.

|PR2020-00686

Apple EX1019 Page 113

IPR2020-00686
Apple EX1019 Page 114

6,131,085

117

Assignment by Auction
Another basic selection process is an auction. There are

different kinds of auctions that AC can hold. The auctions

may be silent or open.
One kind of auction is a highest bid auction, where

Fishers bid on how much they will pay for the reservation.
The highest bidder wins, and AC charges him accordingly.

A different kind of auction is a lowest price bid auction,
where the Fisher who promises to charge the least for the
answer wins. In this case, AC sets the price of the answer
once it is supplied according to what the winning Fisher has
pledged.

A variation is a lowest cap bid auction where Fishers
agree to cap the total royalty income for an answer. The
Fisher that bids the lowest cap wins. In this case, should the
answer be supplied, AC stops royalty payments once the cap
has been reached.

Another kind of auction is fastest completion bid auction,
one where the Fisher who bids to do the job fastest wins. In
this case, AC can keep track of whether the winning Fisher
has supplied the answer within the time pledged, and can
assess penalties if not.

The big problem of course with all such auctions is that
winning is based on one parameter, such as price. An auction
where more than one parameter is involved is hard to do and
requires more complicated scoring methods.
Letting Buyers Assign Rights

Typically in the economy a single buyer decides who does
a job. There are various ways for a buyer to do this. But what
happens when there are multiple, unrelated potential buyers?
How can they collectively select who gets to do a job?

Well, we have an economy where people “vote with their
wallets.” Collections of customers decide which company
has the better product and therefore ultimately who gets to
do a job in many cases. While that may be okay for products
that already eXist, how can unrelated potential customers
collectively select who gets to produce a product that is yet
unmade? How can they decide who gets a reservation right,
who gets to do a new job? As yet, there is no good way in
the general economy.

In AC it can be arranged so that sometimes it is practical
for them to see the credentials of the various candidate

prospectors and vote on who should get the right. Hence AC
can include procedures for enabling requestors to vote to
pick which live prospector gets the reservation. The quality
records of prospectors can be displayed (see chapter 13 on
Quality Control).

Another method is for requestors to grant reservations
individually. By this we mean that a requestor can specify
along with a request that he is giving a reservation right to
a supplier. A requestor can name a supplier or let anyone be
eligible for the reservation. He can further specify various
details about the right, including whether the right is
assigned on a first come first serve basis or whether it is by
some other method. If by some other method, he can also
specify the time on the reservation clock.

AC can also enable a Fisher to poll prospects and ask
them for exclusive rights.

In cases where requestors grant reservation rights the
problem is that different requesters can grant different rights
and to different Fishers. There is no general solution to this
problem. AC can include various rules for standardizing
rights. Further, AC can enable a Fisher to see what kind of
rights he will get given all the various ones that have been
offered. There are various ways to “total up rights.”

Another problem arises which is that there is no way to
poll future requesters and thus determine whether a Fisher

10

15

20

25

30

35

40

45

50

55

60

65

118

will get royalties from sales to those requesters. If some
requesters give reservations and others do not, who is to
claim the royalties from future sales?

We might assume that a reservation right includes the
right to share in some or all of the future sales of an answer.
But if the reservation is only conferred by certain requesters,
how do we determine what share a reserver gets, especially
if he is not the first the supply an answer? As with all rules
about reservations, there are no universals. AC must simply
include certain rules to determine the splits.
Selling Reservation Rights

A reserver can sell his reservation to another Fisher. This

option can be important because it is a solution to the
problem of what to do about a Fisher who is in a better
position than the reserver to supply an answer. Thus AC can
allow users to post messages for offering to buy and sell
reservations, and can enable users to execute the transac-
tions. These messages can be stored, as with other A-stats,
in the Q-record, and can be accessed through the prospectormenu.

First-to-File or First-to-Find, the Problem of Tipping One’s
Hand

A Fisher might not want to seek a reservation because he
might not want to tip his hand about the direction of his
research, about what he has found so far, about what he plans
to supply. This is the problem of giving protection on a
first-to-file basis or a first-to-find basis (in patent law the
issue is first-to-file versus first-to-invent).

Both approaches have merit. Therefore, AC might allow
Fisher to take either route, giving rights to both first to file
users and first to invent users. In other words, a reserver who
chooses first to file would share royalties with a reserver who
chooses first to invent. The key to splitting royalties is a
disclosure document discussed above. If Fisher wants “first-

to-find” rights, he needs to supply evidence of priority in a
disclosure document.

Problems With Allowing Reservations
A better answer may emerge because of competition, but

no answer may emerge because of competition. This is the
dilemma. Reservation rights restrict competition and are one
approach that can help to insure that an answer is provided
at all. But there are many open puzzles that come with
reservations (and copyrights), and they cannot be solved by
universal rules. Some of the puzzles are:
What is a copy of an answer?
What is an improvement of an answer?
What is a copy of a potential answer?
What is an improvement of a potential answer?
What credit should be given to improvements of answers?
What amount of time should be put on the completion clock?
What amount of time should be put on the reservation clock?
What happens to a reservation if someone can supply a

better answer or an equivalent answer but faster and
cheaper?

In general, how do we give reservation rights without
sacrificing the getting of better, faster, cheaper answers?

8.4 Using Prospector Information in the POF

Because potential competition can be a very big factor in
the POE, AC can include variables for prospector informa-
tion in the POF, and can feed prospector information into the
POF.

AC can show two POE’s, one that factors in prospector
information and one that does not (as will be seen in chapter
9, AC can show various POE’s).

AC can use historical prospector information as well. Just
as AC can collect information on buying situations, AC can

|PR2020-00686

Apple EX1019 Page 114

IPR2020-00686
Apple EX1019 Page 115

6,131,085

119

collect information on potential supplier situations. We
might call these prospector situation stats, which are distin-
guished from individual prospector stats that concern a
single individual’s record. For example, AC can compile
statistics on the likelihood that an answer will be entered,
and the likelihood of when, given various prospector situ-
ation facts, such as the number of NBI and BI messages that
have been registered.

As with buying situations, prospector situations can be
characterized in a variety of ways. Here we have not made
an attempt to list the basic situations. We have given some
key pieces of prospector information that can be registered
that can be used in characterizations. Other information that

can be used was discussed in the chapter 6 on registering
demand information.

Chapter 9

The Pay-off Meter

The Pay-off Meter (POM) is the name we have given to
the process by which AC records demand information about
an answer, converts that information by a pay-off formula
(POF) into a sales and a royalty estimate for that answer, and
shows the resulting pay-off estimate (POE) to users.

In this chapter, we describe some features that the POM
can include, and that AC can include regarding the POM.
POE Alerts

The POM can include POE alerts. APOE alert means that

AC alerts a user about a change in the POE for an answer.
The answer may be missing or actual.

As examples, AC can enable users to ask to be told when
the POE for a missing answer rises above (or drops below)
a threshold. Apotential supplier of an answer might want to
know when the POE rises above some amount because then

it might be worthwhile to supply the answer.
AC can enable a user to be alerted as to when the POE for

an actual answer drops below (or rises above) a threshold.
The supplier of an answer might want to know when the
POE drops below some threshold because she might then
want to take some action, such as, lowering her price,
improving her answer, or challenging an illegal copycat.

In AC, answers are products. Obviously then, the supplier
of a product might want to be kept informed of the sales
projections for her product, if that product makes a signifi-
cant amount of money (royalties). And she might want to
keep informed of the sales projections of competing prod-
ucts. Thus, like a system that keeps track of the price of
selected stocks, AC can enable Sue to keep track of the
POE’s of all of her answers, and of the competing answers
she is concerned about.
Check Mode

A different kind of mode from supply mode or request
mode is check mode. In check mode a user is simply looking
at answers, both actual and missing, to see whether a new
answer is worth supplying.

As has been pointed out before, the POE is a key search
stat, and so AC can enable users to search for answers
according to POE. The important thing to note here is that
AC can enable a user to explicitly state that he is in check
mode, that he is not looking to buy an answer, but only
looking for good jobs to do (or checking POE’s for some
other reason). Thus, a user’s activity in check mode would
not normally be registered by AC as D-info.
Multiple Types of POE

The POE depends on what a supplier intends on entering.
For example, the supplier of an answer that is only a small
improvement over an existing answer might only merit

10

15

20

25

30

35

40

45

50

55

60

65

120

credit for a small percentage of the royalties that the new,
improved answer generates. We might say that multiple
kinds of POE’s are possible for different kinds of improve-
ments that are made in an answer. AC can include certain

classifications of changes, with corresponding kinds of
credit due to those changes.

However, there are no general ways of classifying the
changes to an answer and relating those changes to percent-
ages of credit.

So, the simplest way to look at the situation is to say that
AC assumes Sue will get all the royalty credit for an answer
she enters, unless she tells AC differently. It is up to Sue to
figure out what percentage of the credit she will get accord-
ing to the property rights (the copy/credit rules) of AC.
These meta rules are crucial to any POE, but it is not AC’s
job, in general, to determine what share of the credit Sue
should get. She must honestly assign credit realizing that
others will be watching her, and challenging her if they think
she has hogged too much of the credit.
Multiple POF’s

AC will not necessarily show only one POE for a given
answer. The POE is the result of a POF that analyzes D-info.
Innumerable POF’s are possible, and AC can let a user to
choose from a variety of POF’s. Further, AC can show a user
which POF’s have been accurate in projecting income when
applied to D-info situations that are similar to the one that
the user faces.

Having Users Adjust the POF and the POE
The POE is the result of the POF taking D-info from a

Q-record (or Q-records) and converting it into a sales and
royalty projection. Innumerable factors (variables) can go
into a POF. AC can enable a user, say Sue, to see what values
it plugs into those variables and can allow Sue to help it
adjust key values to arrive at a better POE. Users can do
“what-if” scenarios, based on altering the values for different
factors.

(Note: A user adjusting a POF can be in any mode. For
convenience we will call the user Sue, even though Rex, or
prospector would do just as well. When we use Sue we do
not mean that the user will necessarily supply an answer. We
mean someone who has an actual answer in mind when she

is adjusting the POF.)
For many factors, human brains and human knowledge of

the situation surrounding a particular answer will be better
than AC’s assumptions, which are based on averages from
large statistical samples.

AC can show Sue a form that lists key variables in a POF
and can ask her to enter what she thinks are reasonable
values. AC can also enable her to examine the values that AC

proposes, and can enable her to ask AC how it arrived at
those values—in other words, she can ask to see the D-info
that AC has based its assumptions on. Below are just a five
values (factors) of a POF that Sue can adjust.
Price. Sue can enter the sales price of an answer.
Time Valid. Sue can enter when an answer will no longer be

wanted, or when the demand for an answer will tail off.
Royalty Rate. Sue can enter the royalty rate(s) for heranswer.

Credit. Sue can enter how much of the royalty credit she is
due for her answer.

Buyer Commitments. Sue can contact Rex’s directly to see
how solid their buying commitments are, and can enter
new assumptions about those commitments.

(In Chapter 25 of Book II, we discuss some more values that
Sue can adjust in order to arrive at a better POE.)

Chapter 10

Royalty Rules

Royalty rules are, of course, a crucial ingredient in the
POF and POE. AC can allow suppliers to pick standard
royalty plans or AC’s meta rules can determine the plans.

|PR2020-00686

Apple EX1019 Page 115

IPR2020-00686
Apple EX1019 Page 116

6,131,085

121

Royalty rules can be highly variable, just as pricing plans
can be highly variable. We cannot give any prescriptions
about what share of an answer’s sales Sue should get in
general, or what share AC should get, or when an answer
should go into the public domain.

Especially problematic are rules for determining how
royalties are to be split between Sue’s when one Sue uses
anothers answer within her answer. We cannot give any
general rules for the splitting of royalties between Sue’s. We
can only say that AC can enable users to split royalties
automatically through royalty rules. It is up to the users, and
perhaps the managers of AC, to determine those rules.

One important twist that should be mentioned is that AC
can include a royalty plan in certain cases where, based on
insurance principles, a POE is not an estimate but is a
guaranteed offer. For example, if ten people commit to
paying $1 for an answer, AC may make a Sue a guaranteed
offer of $5. In certain cases then, AC can enable Sue to
choose guaranteed royalties.
Brief Note on the Importance of the Flexibility of the
Royalty Rules

One of the advantages of AC is that the royalty rules and
the POF are infinitely variable. Thus, the system Manager
can adjust the rules to reward certain actions such as the
correcting of answers. Here we will note one of the most
important consequences, starting up the system and attaining
critical mass for certain answers.

For many types of fee based data-base systems, the
problem is starting up and gathering enough initial data and
enough initial customers. This problem is often referred to as
the critical mass problem. The idea is that a critical mass of
customers is needed for the system to be self-perpetuating.
But it is a chicken and egg problem, for often no users can
be gotten until the data is in the system.

The beauty of the AC is that it enables the System
Manager to provide incentives that can jump start the
system. For example, if your plan is to start a lowest price
locating system, a huge obstacle is how to convince thou-
sands of sellers nationwide to feed in their prices so that the
prices can be sorted. We met a similar problem in the very
beginning when we discussed the problem of even keeping
a data-base of telephone numbers up to date. The problems
with a lowest price locator are worse.

If we agree though that people would be interested in
lowest prices we can see that if the system got started it
might be self-perpetuating, for buyers would want to check
lowest prices and the low price sellers would, out of self
interest, want to display prices. So let us assume that once
the system got going it would have value for users and
would be self-perpetuating.

In order to jump start the system the System Manager can
adjust the royalty rules so that the people who are the first
to enter the lowest price of a given item get a share of future
income from all the lowest prices that are entered, for that
item for a period of time. For example, say that the item is
a Sony Walkman (we’ll pretend there is just one model in the
world). Then the royalty rules can be set such that the person
who enters the lowest price will get a share of the royalties
of all subsequent lowest prices, for a period of, say, 5 years.
Now, if there is no price in AC then the first person to enter
the price is the lowest. That is not a reasonable way to get
the system going. Therefore, the System Manager can set a
rule such that the “first” lowest price Supplier is considered
to be the person who has entered the lowest price that is valid
at a given date and time.

The System Manager can set the royalty rules such that,
for instance, the supplier of the lowest price for a Walkman

10

15

20

25

30

35

40

45

50

55

60

65

122

on December 24th, at noon, gets a small share of the
royalties for all lowest prices entered for the next 5 years on
a Walkman. The reward might be, say, $200. Thus the
System Manager sets up a competition to be the lowest price
supplier on a given date and time. The competition might
last, say a couple of months. At the end of this competition,
a truly low price might be entered and the system may be off
an running for prices on that item.

We use this illustration as a representative example of the
advantages of being able to adjust the POF (the royalty rules
really). There are many other advantages of being able to
adjust the royalty rate and thus the resulting POE’s, but this
use above is the inventor’s favorite.

Chapter 12

Direct Mail

(Note: Alonger chapter was planned here initially. However,
plans changed and we only have a few remarks to make
about “direct mail” in AC. Rather than eliminate this chapter
and then have to change all the later chapter headings, we
leave the chapter here.)

The basic idea of direct mail in AC is that a prospective
Sue can send E-mail messages to prospective buyers asking
them if they want to buy an answer. For example, Sue can
ask Rex, do you want an answer to the question, What’s the
newest and best treatment for rheumatoid arthritis?

(This point was already made in Chapter 6 on the regis-
tering of D-info.)

Of course, suppliers of actual answers, not just potential
answers, can also send “direct mail” solicitations to buyers.

Using AC’s user record information, Sue’s can find out
what Rex’s want by the questions they have been at and by
the offers they have made at those questions.

Chapter 13

Quality Control of Answers Through Labeling

For a practical AC, it is crucial that buyers be able to judge
the quality of answers. The idea quality covers a lot of
aspects of an answer, some describable and some not. In this
chapter, we will be concerned with some of the things that
users can say about answers that can help other users
evaluate the answers.

Now, when we say “quality control of answers through
labeling” we mean that an answer can be labeled in various
ways. We might think of an answer as breakfast cereal in a
cereal box. We can think of the corresponding question as
the primary label, the name on the box. And we can think of
A-A-stats concerning quality as the nutrition information on
the side of the box.

(It is important to note that much of the quality informa-
tion that can be included as A-A-stat information can be

included in an answer as well. This point will be clearer in
a bit when we look at information that can describe the

quality of an answer.)
A different kind of quality control occurs when a user

improves on or replaces an answer—e.g., when someone
updates a price. This kind of quality control is closely related
to quality control through labeling because, in order for
someone to know that something in an answer needs to be
changed, someone else often has to first say what needs
changing. A user may also explicitly request an improve-
ment. Such a request is a kind of description itself. And so,
the process of improving an answer is not entirely separate
from the labeling of an answer.

This chapter will stick to the subject of describing the
quality of an answer rather than the subject of changing the

|PR2020-00686

Apple EX1019 Page 116

IPR2020-00686
Apple EX1019 Page 117

6,131,085

123

content of the answer. Of course, when one describes the
quality, one usually changes the perception of an answer. So,
it is hard to say what it means to change an answer. Here we
usually mean the difference between an answer and its
A-A-stats—we usually have in mind the adding and chang-
ing of A-A-stats that describe the quality of an answer.

Who Describes the Quality of an Answer
The quality of an answer can be described by Sue, who

puts the answer in, by any Rex who sees the answer, and
even by AC in certain ways. Sue, Rex and AC can enter
some of the same kinds of descriptions. Mainly, Rex and Sue
can enter the same kinds of comments, while AC compiles
and shows statistics about an answer and about the people
who are commenting on the answer. First, let us take what
Sue can enter.

Some of the Things Sue Can Say About the Quality of Her
Answer

As discussed, most of the things that Sue can say about
her answer, she can include in her answer instead.
1. Timeliness of Her Answer

For example, if she answers, Who charges less, Sprint or
ATT? she would say when the answer was found, and
possibly when it was last checked.
2. Source(s) of Her Answer

For example, if she answers, What is the best treatment
for lupus?, then she would give sources.
3. Witnesses

For example, if she answers, How many people were at
the Yankees game last night?, she can name other people
who corroborate her figure. Sometimes a witness is the same
as a source and sometimes not. We will discuss witnessing
a bit later, but the point is that Sue tells about people who
verify her answer.
4. Methods

She can give an explanation of how her answer was
found.

5. Complete or Incomplete
She can say whether her answer is partial or complete (she

can tell this fact with semantically linked questions as well).
For example, if she answers, What is the best sunscreen
lotion?, she may give an answer, but explain that it is
incomplete in the sense that she has only tested a certain
number of lotions. Or, if she answers the question, What are
the ten largest steel producers in the US?, and she only gives
a few names, she might say that her answer is incomplete.
Normally, in such situations, she would also store her answer
under another, more appropriate question. The point is
simply that a basic quality comment is to say whether an
answer is “complete” or “incomplete”. (Naturally, these
terms are subjective since there is no general definition of a
“complete” answer.)
6. True or Not

Most answers that people give cannot be called true or
false because they are not posed precisely enough—e.g., a
movie review cannot be called true or false. Still, some
percentage of answers are posed well enough—e.g., the
reported price of the movie can be called true or false. Thus,
where applicable, Sue can claim that her answer is true, or
that certain assertions within her answer are true.
7. Guarantee

She can put up money to guarantee that certain statements
are true.

8. Probability Estimate
She can explain that statements are guesses and can assign

probability estimates that they are true.
9. Bets

She can make bets about statements in her answers.

10

15

20

25

30

35

40

45

50

55

60

65

124

10. Challenges
She can issue a challenge that her answer is better than

another. This gimmick can be an important, particularly if
she puts money behind it. There are many ways to pose a
challenge, of course.
11. Paid Review

She can pay to have a neutral party evaluate and report on
her answer.

12. Linking Answers to Supporting Answers
She can link her answer to others that support it. She can

also cite such answers.
13. Abstract

She can summarize, or provide a sample of, her answer.
Some of the Things Rex Can Say About the Quality of an
Answer

We should note that when Rex is making quality com-
ments about an answer, AC does not necessarily register this
activity as D-info. We might say that Rex is in Review
Mode. Certain kinds of quality information can be used as
D-info—for example, complaints can be correlated with the
sales of an answer—but the point is that Rex is not request-
ing an answer. Thus, we should just say that AC may or may
not use given quality information that Rex enters as D-info.

Rex’s review information can be abbreviated as, for
example, if he gives four stars to a movie. Of course, as with
a movie review, Rex’s review information can be elaborated
on. Below we will discuss mainly abbreviations. In all the
cases, AC can enable Rex to elaborate. The idea is just to
give categories of quality information.
1. Timeliness

Rex can point out whether an answer is out of date or not.
For example, if he sees a price, he can report that it is out of
date.
2. Fit or Clash

Rex can say that an answer does not fit a question. For
example, if the question is, How far is it to Chicago from
Washington DC?, and the answer is, Jello, then the answer
does not fit the question. Even when the answer is techni-
cally true, it may not fit the question. For example, the
answer, Less than 1,000,000 miles, may be true, but it does
not seem to be what is sought in the question above.
Actually, we have no definition of what it means for an
answer to fit a question, to match a question, to be appro-
priate to a question, and therefore all we can say is that AC
can enable any Rex to state whether an answer does or does
not fit a question.
3. True or False

Rex can say that an answer is true or false, or that certain
statements in an answer are true or false.

4. Misleading
Rex can say that an answer is misleading.

5. Satisfactory or Unsatisfactory
Rex and say whether an answer is satisfactory or not.

6. Numerical Scoring
Rex can rate an answer on a numerical scale (and AC can

compile the scores given by different Rex’s).
7. Guarantee

Rex can accept a guarantee about an answer.
8. Bets

Rex can accept a bet about an answer, or can place a bet
about an answer.

9. Refund Request
Rex can ask for refund. (AC would keep statistics on the

rate of refund requests for an answer.)
Some Things AC Can Say About the Quality of an Answer

1. Basic Facts About an Answer

AC can tell how long an answer is, when it was entered,
and by whom.

|PR2020-00686

Apple EX1019 Page 117

IPR2020-00686
Apple EX1019 Page 118

6,131,085

125

2. Scoring Methods
If people are able to score an answer, AC can compile and

display the scores given by different people.
3. Compiling Complaint and Satisfaction Statistics

AC can compile statistics on how many people have
complained about, or have complimented, an answer. For
example if 1,000 people have bought an answer and only 3
have asked for refunds then that is a indication that the

answer is good.
4. CSUB

AC can include a Communications System Using Bets.
5. Credibility Statistics

AC can compile statistics about the credibility of users.
a) Sue’s Credibility Record
AC can compile statistics about how many complaints

have been registered about all of Sue’s answers . Sue’s
“record of reliability” (a poor phrase) can be kept track of in
various ways. While no perfect record can be made, certain
statistics can differentiate between the reliability of different
people.

b) Reviewer’s Credibility Record
The same principle applies to reviewers of Sue’s answer.

6. Alerts

When a user has entered a review of Sue’s answer, AC can
alert her because she may want to acknowledge the review
or contest it in some way.

The Importance of Verifiable Statements
In any system for distributing answers, the credibility of

those answers is paramount. A fundamental way to gain
credibility is through the use of verifiable statements, state-
ments that can be found true or false.

By verifiable statement we do not mean a statement that
is verifiable by some elaborate procedure. We have in mind
statements that people agree can be found true or false
without much trouble defining what true and false are in the
situation that the verifiable statement describes. For example
when we say that William Powell and Myrna Loy starred in
The Thin Man, we do not explain how we would verify that,
still we realize that most people know that the statement can
be decided to be true or false.

(Another degree of verifiable statement is what can be
called a bet statement. Abet statement not only can be found
true or false but also contains directions telling how to find
it true or false, unless the procedure is obvious.)

Verifiable statements are the touchstones for determining
a person’s credibility and the credibility of an answer. Why?
Because they can be contested, can be called true or false.
Thus if an answer has numerous verifiable statements none

of which have been contested then we can often say that the
answer is credible (presuming the verifiable statements are
significant). But, when there are no significant verifiable
statements, we can’t judge well whether an answer is
credible.

So, AC can enable people to highlight (identify) their
verifiable statements and can enable other users to register
their assents or objections to the highlighted statements—
confirmations and refutations.

Judges will be required to settle disputes in many cases.
AC can compile statistics about how many times a

person’s verifiable statements have been successfully con-
tested (AC will have some kind of meta rules about what it
means to successfully contest a verifiable statement).
Further, for a given answer, AC can keep track of how many
people object, and do not object, to verifiable statements
within the answer.

Verifiable statements can also have money put behind
them, in which case we are dealing with bet statements and
bets.

10

15

20

25

30

35

40

45

50

55

60

65

126

Registering Demand for Verification (Witness Costs)
A hidden cost of knowledge, of answers that is, is the cost

of witnesses and witnessing. In order to use an answer, we’d
like to know that it is reliable. We’d like to trust the source
where it came from.

Every answer has to come from someone who saw or
heard or felt or tasted or smelt something. So, naturally, we
have to trust people.

Often the ultimate source of an answer is a single person,
or a single team of people that we can think of as a single
person. In other words, the ultimate source of an answer is
often a single witness.

And yet, in many cases, we are not satisfied with that. We
want more witnesses—we want verification. But verification

costs time and money. In fact, the prohibitive costs of paying
for extra, neutral witnessing is one of the main reasons we
can’t trust so many statements.

Consider the example of a medical study that says that
taking an aspirin a day lowers the chance of heart attack. We
want a witness to back up the claim. In this case, witnessing
means repeating the experiment. Obviously, it costs a lot to
do repeat studies needed to verify the results. Or, take the
example of an assertion by a sunscreen maker that its
product blocks UV rays at “15 times” a person’s normal
protection. Well, a customer may be skeptical, but who is to
fund the cost of verifying the statement?
Verification Questions

Of course, AC registers demand for the verification of an
answer whenever someone enters a question asking for
verification. (A request for the verification of an answer is
usually any question of the form: Who else says the same
thing and how do they know?) For convenience, AC can also
include a special, named question that we will call a veri-
fication question (ver question).

For example, say a question is, When is the best time of
the month to have intercourse if you want to get pregnant?.
And say the answer is, The week before ovulation according
to NIH. Aver-Q may then be, Who says so at NIH?. Another
ver-Q may be, What is the best time of the month to get
pregnant according to some respected institution other than
NIH, and according to some study other than the one NIH
relies upon?

A ver-Q can be linked to a question and/or answer. Note:
We discuss linked questions in Book II, so we are jumping
ahead a little.

A ver-Q is like any other question, it simply has a
semantic relationship relative to an answer, and to another
question. AC can enable a user to enter a ver-Q and link it
to a Q-A location of an answer. Auser seeing the answer can
then also see, and go to, ver-Q’s. And the user can also find
verifying answers corresponding to the ver-Q’s, if those
answers exist.

Ver-Q’s do not need to be specially named or linked to
answers. That is simply a convenience. The key point, which
perhaps does not need to be made, is that questions in AC
can reveal the costs of, and the need for, witnessing.
Digression on Paying for Guesses

An interesting philosophical and practical question is:
How much is a guess worth?

This question is not just philosophical because in conver-
sation most answers that people give are guesses, and any
answer to a certain extent is a guess. We cannot say what a
guess is worth in general.

Aperson who supplies a guess can sell the guess like any
other answer. Of course, it helps if she attaches a probability
estimate to the guess, telling what the chances are that the
guess is true, in her opinion.

|PR2020-00686

Apple EX1019 Page 118

IPR2020-00686
Apple EX1019 Page 119

6,131,085

127

Deciding how much to charge for a guess if one is the
seller, and how much to pay if one is the buyer, depends on
many factors.

A critical issue is the value of having a 100% certain
answer. Then the key issue is the supplier’s record in making
guesses. How good were her probability estimates in the
past? Her past record will often determine the value of her
guess.

(AC can keep track of a person’s record of past guesses,
comparing the distribution of results to the probability
estimates made before the results were known.)

Chapter 14

Property Rights

Since AC collects answers by paying people royalties on
the sales of those answers, AC needs to give suppliers
property rights, such as copyright protection. Uncompen-
sated copying has a huge cost, for it prevents people from
finding new answers. This principle is well known, but for
the sake of concreteness let’s take three example questions,
if only to keep in mind that there can be drastic differences
in the effort it takes to find different answers, and that
different kinds of protection may be necessary depending on
the effort involved.
1. What’s the formula for a lotion that will eliminate hair for

at least 6 months and will not damage the skin?
2. Who do 2000 randomly selected Americans think will win

the next Presidential election?
3. What’s a short definition of the term “tonic chord”?

It is recognized that some answers, like the answer to the
first question above, require some kind of protection, which
we call patent protection. Other answers, like the answers to
the second and third question, also require protection,
though current law in the outside world does not provide for
it. Why do most all answers require protection, at least
initially? Because, even if an answer takes little effort to
find, like the answer to the third question, it seems most
people would not supply it to AC if others could plagiarize
it and store it in under a slightly different question.

14.1 Laws of the Land

AC requires meta rules that spell out the property rights
of suppliers and it needs functions that reflect those meta-
rules. One critical property right is a law against uncom-
pensated copying (a copyright, which can last for a set
period of time or until a certain amount of income is paid).
Another critical property right is a law against wrongfully
changing an answer. Another critical property right is a law
against lying about an answer.

(Other key property rights were discussed in previous
chapters. Chapter 7 discussed the public and private domain.
Chapter 8 described reservation rights. These topics could
have been discussed in this chapter as well.)

Of course we will arrive at no good definitions for these
laws, because the definitions of copy/plagiarize, wrongfully
change, and lie cannot be made exact. For example, taking
the hypothetical poll question above, say someone does a
poll and enters the answer. Then say someone else does
another poll later and enters another result. Should the
second result be considered a new answer? What if the

second poll copied the technique of the first poll? What if the
second result was not from a totally new poll but was a
reinterpretation of the first result? What if the second poll
answer was more accurate but combined new poll data with
the first poll’s data?

10

15

20

25

30

35

40

45

50

55

60

65

128

While realizing that there are no good general rules, we
can only say that AC needs to include rules for defining
property rights.

14.2 Functions for Enforcing Property Rights

To enforce property rights, AC needs four things:
1. Means for Verifying the Identity of Users
Before letting a user change an answer or any other

valuable piece of information in AC, AC needs to verify the
user’s identity. AC can use well known authentication tech-
niques that need no elaboration here.

2. Judges
AC needs judges who will rule on whether rights have

been violated and who will settle credit disputes. AC can
enable users to file complaints with judges who, as in
conventional courts, can divide property and can assess
penalties. (As an aside, we note that AC can keep “rap
sheets” on users.)

3. To Register and Display Detection Information
AC needs to display information that enables people to

detect violations. Thus AC automatically time stamps
answers and can display the time stamps so that people can
see which of two given answers has priority.

As described in chapter 5, and a little later below, AC
enables Sue to enter credit information along with her
answer. This information, which might also be called cita-
tion information, shows which answers deserve credit as
part of her answer, and how much they deserve, in the sense
of what split of royalties they deserve. AC displays citations
so users can evaluate whether Sue has assigned proper
credit.

4. Means for Detecting Violations
Below are four functions AC can include for detecting

violations.
a. Alerts

AC can include a function for alerting Sue any time her
answer has been displaced (knocked out of the current
answer position) or changed in any way. She can then file a
complaint with a system judge if she feels that the change is
wrong under AC’s rules. (Note: AC can also alert Sue if her
answer has been commented on by others. Again, she can
file a complaint if she thinks her answer has been wrongly
criticized. This topic will be discussed in chapter 13 on
quality control labels, but that chapter is not written up yet.)
b. Snitch

AC can include a function that enables any user to report
plagiarism, and possibly get a reward, which possibly can be
paid by the offender. The snitch can report the plagiarism to
Sue or to a system judge.
c. Flip Flop Stopper

In order to cheat, a person might have a confederate
change an accurate answer to a wrong one. The person
would then re-enter the answer correctly and claim royalties.
AC can have a function such that if an answer reverts to a

previous answer within a given period of time, royalties will
be paid to the supplier of the previous answer, provided the
previous answer was accurate. The time allowed for rever-
sion can vary depending on the situation.
d. Competition Tracker

As will be seen in Book II, AC can to some extent track
which answers are taking sales away from a given answer.
Sue can request this information (or AC can send it
automatically). Sue can then check those competing answers
to see if they contain plagiarized material.

14.3 Sharing Royalties

As mentioned above, it can be useful for AC to enable a
person to copy all or part of an existing answer. As

|PR2020-00686

Apple EX1019 Page 119

IPR2020-00686
Apple EX1019 Page 120

6,131,085

129

discussed, the term copy can cover a very broad range of
uses. For illustration’s sake, we may imagine that Sue is
trying to improve an existing answer or that she uses an
existing answer within her answer. For example, Sue may
elaborate on a short article or she may use a quote. And so
AC has meta rules prescribing royalty sharing, and functions
enabling Sue to share royalties. (We have discussed the
necessity for these rules and functions in section 5.2e as
well.)

It is usually impractical for suppliers to engage in lengthy
negotiations about the splitting of royalties. (Of course that
depends mainly on the value of the answer and the size of
the royalty stream.) Thus AC can have standard royalty
sharing plans based on some classification of the uses of
answers within other answers. In addition to standard roy-
alty sharing plans, AC can enable users to specify that a
certain percentage of royalties or certain fixed royalties are
to go to another answer.

As discussed in Chapter 9, it is up to Sue, not AC, to figure
out how credit should be split according to the property
rights (the copy/credit rules) of AC. She must honestly
assign credit realizing that others will be watching her, and
challenging her if they think she has hogged too much of the
credit.

For royalty sharing to be implemented in an automated
way, AC must have functions that enable Sue to enter credit
information that:

a. identifies the answer(s) she owes credit to,
b. identifies the type of credit (the amount of credit) that is

involved.

Further, AC needs functions that:
c. transfer payments as specified by the credit information

Sue has entered.
AC stores Sue’s credit information in the credit record for

her answer, which is part of the answer’s Q-A record. Then
each time her answer is outputted, the cited answer gets a
share of the royalties as specified by the credit information.
When the credit information is displayed, we also call it
citation information.

An answer may share royalties with more than one other
answer directly. By directly we mean that Sue cites anotheranswer.

It is obvious, though worth noting, that credit chains can
be formed where one answer pays to a second answer, which
pays to a third answer, and so on. In this sense, an answer
can share royalties with another answer indirectly. In other
words, Sue might specify that a percentage of royalties are
to be paid from her answer to a second answer. The second
answer might in turn—as specified in its credit record—
share royalties with a third. Thus, Sue’s answer will be
sharing royalties with a third answer, even though she has
not cited that answer.

(Note: Because it is often practical to negotiate about the
splitting of royalties, AC can include functions for enabling
users to buy and sell rights to use an answer. Negotiated
splits are not treated different than splits where Sue unilat-
erally decides how much credit to allot another Sue’s
answer. Negotiated splits are also entered as credit informa-
tion so that AC can transfer payments as necessary, and so
that users can see who owes what to whom.)

Chapter 15

Multi-lingual AC

A great goal for AC is to be an international question and
answer base where people can enter questions and answers

10

15

20

25

30

35

40

45

50

55

60

65

130

in different languages: where a person can ask a question in,
say, Swahili and get an answer back in Swahili that has been
supplied originally in, say, English. It is a great goal not just
because of the ideal of international cooperation but because
of the economics of the system. In general, the more people
who are willing to pay for an answer the more likely it is to
be supplied, and the less it will cost per person. If 5 people
speaking English want to know, What are the names of all
the delegates to the United Nations?, the pay-off may be too
small to induce someone to supply the answer. But if, say,
3 French speakers, 7 Japanese speakers, 2 Russian speakers,
and others speaking other languages also want the answer
then it should usually have a better chance of being supplied
and should cost each person less.

For the system to be multi-lingual, it needs to do two
things:
A. Match up questions posed in different languages that ask

for the same answer.

B. Input an answer in a given language and output the
answer in other languages.
There are many ways these tasks can be accomplished.

Because it is simplest, we will first discuss a system that has
a central language such that all questions and answers are
translated into the central language and answers are output-
ted from the central language. After describing the key steps
involved with a central language model, we will discuss
other models.

15.1 The Central Language Model
Matching Up the Same Questions Posed in Different Lan-
guages

As mentioned in the section on best matching, the prob-
lem of matching up questions in different languages is a best
match problem with translation functions added. A trans-
lated question is often just an ungrammatical question
spoken in the language it has been translated into. The key
step really is the matching step, which is also necessary with
questions posed in a single language.

We will take the case of two languages because this case
illustrates the basic steps involved. In our example, we
assume the languages are French and English and that the
question is entered in French and translated into the central
language, English. And we assume that the user wants the
answer that corresponds to the question entered (the user
may just be passing through but we assume he is not). The
steps that the system requires are shown below and pictured
in FIG. 15.

1. Input 1500 French question string.
Anita Morris, comment-elle est morte?

2. Translate 1501 French string into English string.
We pretend that the system translates the French into,

How did Anita Morris die?

3. Check 1502 for match among English questions stored.
4. Exact match found 1503?

If no, store 1504 the English version, create a demand
record for the question.

If yes, translate 1505 match into French and go to step 6.
5. Best match(es) found 1506?

If no, output 1507 a message saying that no match was
found and enable the user to rephrase the question.

If yes, translate 1505 the best matches into French.
We will pretend that in AC there is a question, Anita Morris,
death of?, and that this question is the one that is the best
match found.

6. Output 1508 translated match(es).
The best match string is returned to the French user for

confirmation. We pretend that the translated version is, Anita
Morris, la morte?

|PR2020-00686

Apple EX1019 Page 120

IPR2020-00686
Apple EX1019 Page 121

6,131,085

131

7. Have user confirm 1509 whether any match is adequate.
Rex now sees the string in French, but it is different than

the one he entered originally, because it is a translation of the
best match. So Rex has the choice of rejecting the translated
match or not.

If he rejects it, the system can enable 1510 him to rephrase
the question.

If he accepts the best match, the system can then register
1511 demand information for the question, as posed in
English. In other words, at this point AC treats the situation
as if an English speaker has entered the question, Anita
Morris, death of?.
8. Check 1512 if the answer exists in English.

If no, output 1513 the POE and enable the user to rephrase
the question.

If yes, the translates 1514 answer into French and outputs
1515 it and the POE.

Why It’s Feasible to Match Up Translated Questions
Let’s see why questions in different languages can be

translated and matched well, even though we know that
machine translation is a hard problem. Well, is machine
translation a hard problem? That depends on what you are
doing. If you are translating a long piece of text then
problems of interpretation mess the translation up. A trans-
lation program can’t give multiple versions of each phrase in
the piece because the result would be a jumble. But with
short messages, like questions, multiple versions are pos-
sible. A program can make multiple interpretations of a
question and try these against a existing questions in the
system in a given language.

Then, when AC finds matches, it can translate these back
into the original language, giving multiple interpretations of
these. That number of versions can be manageable. And,
because questions are usually short, the user can easily
confirm a translation. Moreover, a user can easily rephrase
a question multiple ways, so as to have a good shot of
matching. In other words, because questions are usually (not
always) short, problems of interpretation can be overcome
by both the user and AC trying different possibilities.

The system also can include a feature that enables a user
to more easily correct a mistranslated word or phrase. When
the best matches are popped back, the system can enable the
user to change some word or phrase and then re-enter the
question without having to restate the whole thing.
Translating Answers into Different Languages from Central
Language

Matching up questions is one essential task of a multi-
lingual AC. The other is inputting answers in different
languages and then outputting the answers in other lan-
guages. AC can include functions that translate an answer
into a central language. From this language, the system can
translate an answer into any other language.

However, the problem of translating answers can be
tougher than that of translating questions because answers
are often longer than questions and therefore can suffer from
the problems of machine translation. The system can over-
come this problem by enabling users to:
a. enter different language versions of an answer,
b. enter improved versions of machine translations.

In order to do this, the system can accept an answer in any
language and store it in that language. For example, the
system can store an answer in French. When necessary, it
can be translated into English or Spanish or any other
language that the system has translation functions for.

Now, as shown in FIG. 15a, when Rex asks for an answer,
the system can allow him to select 1520 the language he
wants the answer in and can register that choice and can

10

15

20

25

30

35

40

45

50

55

60

65

132

enable 1521 Rex to make a payment offer (and enter any
other D-info) for a human supplied answer in the language
that Rex prefers. By registering D-info for the language Rex
wants, AC can create a POE 1523 for that answer in that
language.

If a “human version” of the answer in the language Rex
prefers is in AC, AC outputs it. By human version we mean
that the answer was originally supplied in the requested
language, or that a supplier translated the answer that was
originally supplied in another language, or that a supplier
improved a machine translation. If a human version is not in
the system, AC outputs a machine translation.

AC can also register demand for an improved translation,
whereby a user who gets a machine translation can request
an improved translation (we do not show this step in the
figure).

Thus AC can create and output two POE’s for an answer,
one a combined POE 1522 based on all the requests for an
answer regardless of language, and one POE 1523 for a
human translated version of an answer in a given language.

Aperson seeing the POE for a given language can provide
her own answer in that language or she can improve on a
machine translation of an answer that has already been
entered. AC can output 1524 the human version if one is
stored, otherwise AC outputs 1525 a machine version. The
person who supplied the answer first may get the bulk of the
royalties while the person who improved the machine trans-
lation can get a share each time his improved translation is
sold.

Thus AC can keep multi-lingual versions of an answer to
correspond to a question, regardless of the language a
question is posed in. And that is an important point: ques-
tions can be stored in various languages and need not
correspond to the languages of the answers.

15.2 Suburb Languages and Suburb AC’s

We have discussed the central language method. Let us
now let us discuss a simple addition to it, which we will call
the method of suburb languages. We use the name suburb
language in contrast to the name central language. The idea
is that AC will store questions and answers not only in the
central language but in suburb languages as well. Thus, a
person using a language can check first to see if a question
and answer are stored in that language rather than just in the
central language.

The trick is that the questions and answers in every suburb
language will be translated into and stored in the central
language, but not in each suburb language. We can think of
AC as having a center (a central language) with suburbs such
that all the material in the suburbs is translated into

(duplicated in) the center, but not vice versa.
So, AC translates every suburb language question into a

central language version and AC translates every suburb
language answer into a central language version, but not vice
versa. We will call a question in a suburb language and its
central language translation translation twins. The same
name applies to answer pairs.

Along with storing questions in a suburb language AC
will also keep corresponding question records with Q-info
that applies to those questions in that language. We will call
the set of questions, answers and Q-records in a suburb
language by the name suburb AC. And we will call the set
of questions, answers and Q-records in the central language
by the name central AC.
Why Have More than a Central Language AC?

Why have suburb AC? Because translations, especially
machine translations, can lose meaning, and therefore it is

|PR2020-00686

Apple EX1019 Page 121

IPR2020-00686
Apple EX1019 Page 122

6,131,085

133

preferable not to translate. However, we want to translate for
economic reasons of pooling demand. So, we try to have the
best of both worlds, giving native speakers the chance to
have questions and answers supplied in their own language
by people, but also taking advantage of the opportunity to
match those questions and answers with those entered by
people speaking other languages.

Most languages are spoken by large enough populations
of native speakers that they can support their own suburb
AC’s. The key is to duplicate those suburb AC’s into the
larger central AC. In other words, as in the central language
model with no suburb languages, the idea is to translate
questions and answers entered in any language into the
central language. All we are doing is adding the suburbs.
Steps for a Central Language and a Suburb Language

Below we restate the basic ideas above, giving some
specific steps for an AC that stores questions and answers in
two languages. To illustrate we will consider a central
language, English, and a suburb language, French. We will
assume that the user’s native language is French and that he
is using French questions and looking for French answers.
Key Definitions and Steps

A central language is the language that all questions and
answers are translated into. Asuburb language is a language
whose questions and answers are translated into central
language versions. To illustrate the key steps for a suburb
language, we take a sample question and see what AC does:
1. User enters French question, A quelle heure ouvre le

Louvre?

2. AC checks (its French suburb) to see if the question has
any exact matches.
a. If no,

a1. AC stores the question in French and creates a
French Q-record,

a2. AC translates the question into English, What time
does the Louvre open?, and checks if there is an
exact match in English already stored,
if no, AC stores the question and creates a central

Q-record,
if yes, AC adds a French request to the central

Q-record,
a3. AC checks for best matches in French and English.

b. If yes,
b1. AC adds to the tally of requests in the French

Q-record,
b2. AC adds a French request to the tally in the central

Q-record,
b3. AC checks for an answer stored in French.

b1a. If yes, AC outputs the answer.
b1b. If no, AC checks for an answer stored in

English.
If AC does not find an exact question match in French, we

assume that it checks for best matches in French and English
(even if it finds an exact match in French, AC can still search
for best matches in both languages) and decides whether to
present best matches in French and English. The point here
is not the presentation of best matches. We assume that, all
other things being equal, AC chooses a French match. The
point here is that questions get translated and duplicated into
the central language and that Q-info registered in the suburb
AC also gets registered in the central AC.

Thus, when a user expresses a preference for French, AC
checks first for matches of French questions and answers. At
the same time it translates everything into English so that
people from other languages can pool demand for the same
answers, and can enter answers to those questions.

(AC can still enable French speakers to explicitly express
demand for answers to be supplied in French by enabling

10

15

20

25

30

35

40

45

50

55

60

65

134

French speakers to make payment offers for having an
answer provided in French.)

Now, where answers are concerned, when a French user
enters an answer, AC would store the French version in the
French suburb and then translate it into English, if no
English version is already in AC. So, when a French user
goes to find the answer, he can get a French answer supplied
by a French speaker. When an English speaker goes to get
the answer, he will get a version translated from the French,
if no English version has been supplied.

If there is no French answer in AC, AC searches for an
English version. If an English version exists, AC translates
it and outputs it. Of course, if there is more than one suburb,
the answer may originally have come from some third
language.

(Note, we are not concerned here with how AC stores
machine translated answers.)
Security Council Model

It should also be noted that AC will probably have more
than one central language. It will probably have what we
might call Security Council languages—those languages
that represent the greatest populations, such as English,
Chinese, Spanish, Arabic and Hindi.

The questions and answers and question records con-
tained in each central AC would be translated into all the
other central AC’s.

15.3 Translating Questions Into Multiple Languages

AC may not have a central language at all. It can translate
questions into multiple languages, trying various ones until
it gets a match. When a user enters a question, AC first
checks if a match exists in the language of the question. If
not, AC can translate the question into multiple languages
and look for the best match. The translation procedure
described above can then follow. For example, if a French
speaker asks when the Louvre opens, AC checks first
whether any other French speaker has asked this question. If
no good match exists, the question can be translated into
various languages until a good match, if any, is found.

AC can store the multi-lingual versions of a question in a
common record, like a multi-lingual dictionary/thesaurus
entry for a question (a bi-lingual dictionary, like French-
English, is really a thesaurus). For example, a question can
be translated from French into English. If a user confirms the
translation then AC keeps a record for the question and this
record has two versions of the question. Then let us say that
the question is entered in Spanish and that it is translated into
French and that this translation is confirmed. AC would have

three versions of “the” question in the record. AC will have
done two translations, one of the French into the English and
one of the Spanish into the French. Which languages get
translated into which depends on AC’s rules.

When AC keeps multi-lingual versions of a question, the
demand tally for that question is based on the sum of the
times the question has been entered in each language. If the
question has been entered 4 times in Japanese, 3 times in
French, and 2 times in English then the tally is 9. AC can
keep a combination tally as well as a tally by language.

As discussed in chapter 4, there is no single Q-string for
a question. So rather than lump questions into a single
synonym record, it is preferable to store the questions
separately and connect them by named links, such as syn-
onym links, best match links, best translation links, and
others. We take up links in Book II, where we will revisit the
issue of translation.

Chapter 16
Form of the Invention

On one hand, this chapter should not be so short because
it describes applications of AC that may come to pass with
large commercial effects.

|PR2020-00686

Apple EX1019 Page 122

IPR2020-00686
Apple EX1019 Page 123

6,131,085

135

On the other hand, there is not much new to describe.
These applications are only small modifications of the
invention described in the previous chapters. We discuss
these modifications because they have such large commer-
cial potential and because there may be issues of priority.

16a Decentralized AC

It is worthwhile to pause and discuss the form of the
invention. Because it is to be used by a community of people
in different locations, the invention comprises a network in
which terminals in various locations are used to input
questions and supply answers.

The answers can be stored centrally or in nodes through-
out the network. For example, certain users might request
the full text of Dracula. Other users might want the film
version of Dracula. These two, different answers can be
stored centrally. Or the text of Dracula, the book, might be
stored in a computer owned by, say, the Library of Congress,
while the film might be stored in a computer owned by, say,
a film studio. Because of the added communications costs,
highly decentralized storage of answers is not usually the
most efficient method where AC is concerned. Nevertheless,
real world concerns might dictate such decentralization. A
movie studio, for example, might not want to put its copy-
righted movie in someone else’s computer for distribution to
the public.

(One problem in discussing the issue of centralized stor-
age is that the very concept of centralized storage is blurry
in this age of sprawling networks. We will not try to define
the notion crisply here, but will rely on peoples’ intuitive
notions.)

While the storage of answers may be decentralized, the
gathering of demand information in Q-records (and the
calculation and outputting of POE’s) must, in general, be
centralized. For example, say we have a question, How
many paintings are in the Louvre?, and say that a dozen
users request the answer to this question. It does no good if
the twelve requests are all registered on different systems.
There needs to be a central tally showing that there have
been twelve requests for the answer, so that the POE
corresponds to the demand of twelve people. Otherwise the
POE in each system would only correspond to one request.

In fact, the goal of AC is to collect the demand for a given
answer centrally. That way the pay-off for supplying the
answer is higher. Often, the higher the pay-off the more
likely the answer will be supplied into the system. Moreover,
the answer can cost less per user. If the collection of demand
is not centralized then there is no way to accumulate the
demand and that defeats the purpose of the system. Of
course it is conceivable that the demand could be registered
throughout the system but it would still have to be tallied
somewhere to yield a figure which would then lead to the
maximal POE.

(Note: Not only demand information must be collected
centrally but so must most other Q-record information. We
emphasize demand information because it is the key infor-
mation for calculating POE’s.)

The economic efficiency of accumulating demand infor-
mation does not mean that it is necessarily best for a single
AC to store all the world’s questions and Q-records. An AC
is meant to be used by a community and a community can
be defined narrowly. For example, a company might have an
AC for its employees. Still demand information (and other
Q-record information) for answers concerning the company
would be stored centrally and not in every employee’s
computer.

5

10

15

20

25

30

35

40

45

50

55

60

65

136

We have mentioned that answers might be stored in a
decentralized manner. If AC does not store answers

centrally, it must at least store pointers to the answers
centrally. For example, if Rex asks for a given answer, AC
must be able to tell if the answer is in the system or not. To
do this, an A-stat identifies whether the answer is in and
where it is located. Thus a pointer to an answer is surrogate
for storing the answer itself. In the case of decentralized
storage of answers then, a supplier who enters an answer
into the system has to enter a pointer centrally while entering
the answer into a given storage computer. AC can connect
users to the computer that stores the answer.

Another aspect of AC that can be decentralized is the
paying of royalties and the collecting of charges. This can be
done at the nodes where the answers are stored. However,
even if payments are transacted in a decentralized manner,
payment information would still be sent to the central AC
location because it is important demand information to be
used in calculating pay-off estimates.

It is also possible that AC only outputs routing (pointer)
information to Rex but does not make the connection to the

computer that stores a given answer. In this case, AC is
really a new kind of signaling system that tells users where
answers are stored and tells users the potential pay-off of
storing and selling the answers.

16b AC Applied to the World of Physical Products

It should be apparent that AC can be adapted to the world
of physical products. By this we mean that instead of
describing answers (information products), questions in AC
can describe physical products that people want. Thus, AC
can include lands where questions refer to physical products
rather than answers.

(We will not define the term physical product in any
precise way. Let us just say that a physical product is
something that one might find in a conventional catalogue.)

Normally, a question is a description of an answer. It is a
description of a description. When adapted to describing a
physical product, a question is about an actual thing.

But the distinction is more philosophical than real. As far
as the process of description goes, there is no difference
between describing a T-shirt and describing a picture of a
T-shirt. The main practical difference, where AC is
concerned, is that the description of an actual T-shirt refers
to something that cannot be entered into the system. Rather
than supplying physical products to AC, suppliers input
product descriptions and ordering information.

The main point is that AC can collect demand information
about physical products and can output POE’s about physi-
cal products. The collecting of demand information is basi-
cally the same as with answers.

AC can also execute transactions for the buying of actual
products and can arrange the delivery of physical products.

For example, AC can collect demand for a given T-shirt
which is described by a question. If the POE is high enough,
a supplier might decide to make the T-shirt. A supplier who
has made the T-shirt can supply to AC the fact that the T-shirt
has been produced and also supply ordering information.
The fact that the T-shirt is available is an answer to the

question describing the T-shirt.
A requester, seeing that the T-shirt is available, can order

it through AC. Previous requesters may have made buying
commitments before the T-shirt was produced. The terms of
these commitments can be fulfilled when the T-shirt is made.

The supplier may also supply a more detailed description
of the T-shirt, such as a picture of the T-shirt. This additional
description is then seen by prospective buyers. It is a kind of
supply stat.

|PR2020-00686

Apple EX1019 Page 123

IPR2020-00686
Apple EX1019 Page 124

6,131,085

137

Whether a supplier also provides a description of her
actual product or not, the reality of endless answers remains.
It does not matter if we are thinking of physical or infor-
mation products. A question can have infinite possible
answers. Thus the techniques of Book II are as applicable to
physical products as they are to answers.

And so, AC provides a novel system not only for orga-
nizing the getting of answers, but for the getting of physical
products.

Book II

Enabling the System to Accommodate Natural
Language

Background of Book II

Book II presents methods for enabling AC to handle
natural language questions and answers. Some explanation
is in order though about how this book was written.

CIP 2 addressed the issue of natural language and intro-
duced a method for using linked questions to overcome
problems with accommodating natural language. The new
matter in CIP 3 expanded on the relationship between
questions and answers in AC, as well as describing other
subjects. CIP 3 included the new matter in CIP 2 as Book II.

In this application, CIP 4, Book II is repeated and added
to. Except for some name changes, the material in chapters
20 and 21 is a repeat of material in CIP 2.

CIP 3 (basically chapters 3—8 of Book I) discussed the
nature of questions and answers more than CIP 2 did.
Therefore, some of the discussion of CIP 3 overlaps the
discussion in CIP 2, and parts of Book II seem to repeat parts
of Book I. But the parts in Book II were written first. If this
were simply a paper of explanation, the repetitive parts
would be deleted. But because it is a patent application, there
are legal reasons, having to do with priority, for not changing
what was written in previous applications. (Some parts of
CIP 2 are put in the appendix for the sake of avoiding legal
problems with a modified specification.)

CIP 2 disclosed the method of using semantic links
between questions in order to solve problems with accom-
modating natural language. In CIP 4, this application, chap-
ter 22, which is mostly new, elaborates on the semantic
linking of questions. Chapter 23 describes various kinds of
links between questions. Some of chapter 23 is repeated
from CIP 2, where important semantic links were disclosed.
And some of the chapter is new, where new links are
described.

The rest of the chapters in Book II are mainly made up of
new matter. And, as in Book I, several of the chapters are not
yet written.

The new discussion does not nullify the old, but simply
adds to it and, it is hoped, elucidates certain issues. For
example, the term the “same answer” is discussed in more
detail. There have also been some superficial changes in
names. For example, Requestor and Supplier have been
changed to Rex and Sue.

TABLE of CONTENTS for BOOK II

Background of Book II
Chapter 20 Problems of Natural Language
Chapter 21 A Solution to the Endless Answers Problem
Chapter 22 Linking Questions Semantically
Chapter 23 Kinds of Semantic Links Between Questions
Chapter 24 Semantic Links Between Actual Answers

10

15

20

25

30

35

40

45

50

55

60

65

138

Chapter 25 Combining Demand Information
Chapter 26 Follow Questions, Situation Stations and Elabo-

ration Lists

Chapter 27 Multi-lingual Q-nets

Chapter 20

Problems of Natural Language
Introduction

The foundation task ofAC, the one that the other key tasks
are based on, is to count the number of people who want a
given answer. The system must get a reasonably accurate
count of how many people seek the same answer because it
is from this number the system estimates of the future sales
and POE of the answer.

For the system described in CIP 1 to get a good count,
people must usually agree on the meanings of the questions
that they enter into the system, and so, the meanings need to
be highly constrained. For example, the question, Billy
Budd?, theoretically could correspond to an infinite number
of different answers. In a given AC, the meaning would
ideally be constrained to a single one, say, a phone number,
a movie, a book, and so on. Otherwise, the system could not
count how many people wanted the answer for there would
be no single answer.

Besides reasons of tallying demand, highly constrained
meanings are used, as in most data-bases, so that people can
find answers. Constrained meanings for queries are neces-
sary because computers cannot understand natural language.
For instance, when a person asks the Library of Congress
computer about books that Herman Melville has written, the
user must enter, Browse Melville, Herman. The user cannot
enter, Hey, what books did Herman Melville write? In the
case of AC, where users not only enter questions but also
enter the corresponding answers, it is especially important
that users agree on what valid answers are, that is, agree on
the interpretation of the questions. Therefore, with the
system of CIP 1, a system designer or operator would strive
to set rules that strictly limit how users interpret the ques-
tions entered into the system. No set of rules can succeed
perfectly if the questions and answers deal with the real
world, but the goal is to reduce ambiguity as much as
possible.
You Can Do A Lot

As the success of computer data-bases attests, you can do
a lot with constrained queries, even if the queries are just
names. Names can naturally correspond to information such
as phone numbers, addresses and prices and so this type of
information is readily collected in an AC. And since names
can correspond to most anything, AC can readily collect
more than short pieces of information. In fact, the original
name of AC was the MOAE, a strange acronym standing for
the Mother Of All Encyclopedias. This name came from the
fact that AC lends itself to creating a gigantic encyclopedia
with entries corresponding to subject names. The names
could be about any subject people care to know about, from
the acoustic properties of jello to the role of jello in the last
Presidential election.

A given MOAE would still need special rules for defining
a satisfactory answer though. These rules could allow a lot
of flexibility. One such rule could be that an answer that is
outputted and credited with royalties is an answer that is
voted best by users. In this case, the system would include
rules whereby certain users would vote for the best answer
to a question, or the best answer under a certain number of
words. Rules like this would allow a variety of possible
answers to be entered into the system, and yet the answers
that could be outputted at any one time would still be very
limited.

|PR2020-00686

Apple EX1019 Page 124

IPR2020-00686
Apple EX1019 Page 125

6,131,085

139

The Goal of Processing Natural Language Questions
The scope of AC would be greatly broadened if people

could ask it unconstrained, ambiguous, natural language
questions, as if they were talking to a person or the computer
on the Starship Enterprise. It would be nice to be able to ask
AC a question like, Hey, what books did Herman Melville
write?, and get the answer one was looking for. But natural
language poses problems for AC because when a user enters
a natural language question it is not clear what answer the
user is looking for. And if it is not clear what answer is
wanted then AC cannot estimate a value for the answer.

Why is the answer not clear though? And can we enable
the system to handle natural language questions and
answers? Let us, for a moment, discuss natural language, by
which we mean words and sentences people communicate
with.

Natural Language
Words and sentences are things we use to refer to other

things. As a synonym for “refer to” we also say that words
and sentences “mean,” “describe,” “represent,” “denote,”
“correspond to,” “match,” and “signify” things. These terms
seem simple enough but, of course, we do not actually
understand how this correspondence process works; we just
realize that words and sentences in our brains somehow do

correspond to things outside our brains and to ideas that may
be only in our brains.

One fact we know about the process is that a word or
sentence can refer to many things, even an infinite number
of things. Take the word “drive”. What does it refer to? That
depends on the situation. And since the number of possible
situations is infinite, the word “drive” can potentially refer
to innumerable things. It depends on what situation a person
has in mind. Therefore, to determine the meaning of a what
is said, one usually needs a great deal of context or a lengthy
description of a situation. Even then the meaning is still
personal and variable in the sense that it depends on a how
a person views the situation.
Agreement Necessary

To communicate successfully with words and sentences,
we must agree with each other about what those words and
sentences refer to, a fact that is especially obvious to anyone
who has listened to a foreign language. So, while words and
sentences can potentially refer to infinite things, in practice
they usually refer to a certain set of things that we generally
agree on. Such a set itself may be infinite but it does not
contain all things. So in fact, the meanings of words and
sentences are very constrained compared to all the possible
meanings they could have. And this fact makes communi-
cation with words and sentences possible.

Still words and sentences can refer to enough things that
an agreement process is necessary. While this agreement
process is not well understood either, we do know that an
essential part of it is the process of clarifying what is said.
To Humans, What Is a Question?

Now when someone asks us a question that needs
clarifying, what is it that we are trying to clarify? Well, we
are trying to clarify what information the person is seeking.
But what then is a question that it “asks” for information?

That is a mystery will not be cleared up here. All we can
say is that a question describes an answer, describes what
information a person is looking for. The description does not
tell all about an answer but tells enough so we know what
answers can fit the description. Thus we can think of a
question as a label on a black box and think of the corre-
sponding answer as an item hidden in the box.

The problem with natural language labels is that an
infinity of things could be in the box. So there is no such

5

10

15

20

25

30

35

40

45

50

55

60

65

140

thing really as the answer to a natural language question. A
multitude of answers can fit the description of a question-
label and can be considered an answer. That does not mean

all answers can fit the description, just that there is an infinity
that can.

Ambiguity, a Problem for AC
All this poses a problem for the system of CIP 1 because,

as mentioned, the key functions of AC depend on an agreed
on, unambiguous correspondence between questions and
answers. For the system to work best, a question should have
a single answer. The system presumes that the same question
strings (in the sense of a string of symbols that is) corre-
spond to the same answers because to a machine the same
question means the same question string. The system, being
a machine, recognizes strings, not the meanings of the
strings to humans.

To humans, the same string can refer to different answers.
For example, say three people enter the following string into
AC:

What is the definition of “drive”?

Now we know this string can refer to innumerable
definitions, just three being:
To push or urge forward.
In baseball, to propel (the ball) swiftly, as by a hard or direct

stroke.

A road prepared for driving, esp. for leisure driving, as in a
park.
Should AC register that there are three requests for the

answer corresponding to this question? Not necessarily.
Rex’s may want three different answers and only one request
should be registered for each. But how is the system to
recognize that? How is the system to recognize which
answers Rex’s want? How is the system to know if the
desired answers are in the system? And how even would a
human know which answer to supply?

The problem seems daunting when one realizes that even
seemingly specific questions like, How far is it to Chicago
from Washington D.C.?, are actually quite vague. How far in
miles? In inches? In the time it takes to get from Chicago to
Washington by foot, by car, by plane, by transporter beam?
From what point in Washington to what point in Chicago?
By what measurement method? According to whom? In
what year? In what season? At what time of day? On a map
or in reality? And so on.
Flexibility, Another Problem

Now let us consider another problem that comes about
because of the ambiguity of natural language and also
because of what is often called the flexibility of natural
language. By flexibility we mean that we can easily say the
same thing in many, even infinite ways. For humans, dif-
ferent words and sentences can refer to the same thing. Thus
people can enter different question strings into AC and have
the same answer in mind. That’s a problem for AC because
the machine cannot recognize the same question in the
human sense. To humans the string is not the point, the point
is the answer being sought. To humans the same question
means that the same answer is being sought. The machine
cannot recognize the answer being sought though. To repeat,
it recognizes strings, not their human meanings.

Let’s say that our three people have read the same passage
in a book and all three want to know the meaning of “drive”
in this passage. In this case they are looking for the same
answer. But in this imaginary case let us assume that they
enter:

What is the definition of “drive”?
What does “drive” mean?

How do you define “drive”?

|PR2020-00686

Apple EX1019 Page 125

IPR2020-00686
Apple EX1019 Page 126

6,131,085

141

How then is the system to recognize three requests for that
answer rather than one request for three different answers?

This problem also seems daunting because of the infinite
possible ways to ask the same question, in the sense that the
same answer is being sought. Continuing from a previous
example, a person in Washington DC. might want to know
how many miles it is to Chicago and ask, How many miles
is it to Chicago? or What’s the distance to Chicago? or How
far is it to Chicago? or Where is Chicago from here? and soon.

So not only can a question be a sign for a multitude of
different answers but a single answer can be labeled by a
multitude of signs.
Two Problems of Natural Language Restated

Let’s recall the foundation task of the system: to count
how many people seek the same answer. If the system is to
process natural language questions, we see at least two
obstacles to accomplishing this task:
1. For any question string, there are potentially infiniteanswers.

We might also call this the endless answers problem.
2. For any answer, there are potentially infinite questions

strings.
We might also call this the matching up questions prob-

lem.
What Follows

In the following sections we will describe solutions to
these problems. First we will point out how well known best
match algorithms can provide an initial solution to the
matching up questions problem. Then we will focus on
solving the endless answers problem. Some of the solutions
we describe can also be used to solve the matching up
questions problem in a new way.
To AC, What Is a Question? A Bazaar Analogy Is Given

Before plunging into these solutions, let us paint a picture,
by way of analogy, of what a question is in AC. The picture
will not be of just a question string but of all the information
that is stored along with the string, and further, of what users
can do when they have arrived at this question-record, which
we will usually refer to just as a question. The analogy will
not introduce any new ideas but give a more visual way of
looking at questions within the system. This picture should
help us keep track of the new things we will be adding to
questions in later sections. In this analogy the data-base is a
bazaar where answers are bought and sold.

It is said that the bazaar began long ago with a single
peddler, a man named Borges they say, though no one is
sure. Some come to the bazaar seeking answers and are
called buyers. Others come bearing answers and are called
producers. Though the bazaar was once crowded with
people hawking their wares at stands and stalls, time has
passed since the beginning and, though no one knows
exactly when, robots took over. The robots care nothing for
answers, only for running the bazaar. Why they do this is
unknown.

People are the only ones who supply answers for they are
the only ones who can venture out of the bazaar into the real
world. There is an exception. Certain kinds of answers are
made by combining and manipulating answers already in the
bazaar. Robots can and do produce these answers using the
materials humans supply.

People being people, disputes arise. But the robots care
nothing for the disputes of humans and so the bazaar has
human judges. These are wandering philosophers who spend
most of their time in thought. Anyone can ask the robots to
fetch one to mediate a dispute. Legend has it that the
philosophers have more to do with the operation of the
bazaar than meets the eye.

10

15

20

25

30

35

40

45

50

55

60

65

142

In the old days, a buyer who could not find an answer
would build a small stand and post a handwritten sign
offering a reward to anyone who would supply the answer.
Others who wanted the same answer could find that stand

and write an offer of additional money. Eventually, someone
might supply the answer to the stand and then that person or
his agent would stay there, selling the answer.

In this age, whenever a buyer asks for a new answer, states
a new question that is, the robots of the bazaar construct a
stand for that question and place it in its own location in the
bazaar. In this age, a stand is a machine. It is an electronic
sign with information about an answer, a vending machine
that may sell an answer and, a polling station that collects
information about buyer interest in the answer.

A question is a sign that stands twenty feet tall describing
a product. (In the bazaar the products are answers but one
can think of a product as anything, a pair of pants, a map, a
movie, anything.) The sign is also a meeting spot where
people go to find out about the product. And so the sign may
also tell whether the product is in stock, what the price is,
what the reward may be for supplying the product. This
information may change and can be revealed at different
times, depending on the type of product it is.

Aquestion is also a vending machine that can dispense the
product and collect money. In order for the product to be
there, it must be brought by a producer, who then gets a part
of the sales. With some questions, a buyer can agree to pay
for the product by pressing a button on the machine. With
other questions, just the arrival of the buyer means that he
buyer agrees to pay for the product if it is there. With still
others, the buyer must make an offer and the machine can
decide whether or not to accept it. Sometimes a buyer can
see the price of the answer in advance, other times not. The
machine automatically identifies the buyer and charges him
by debiting his account at the bazaar’s bank. Money is
electronic now, though some speak of the time when people
carried gold and defended themselves with long knives.

A question also is a polling station. Each buyer’s offer is
recorded along with the time of the offer, whether a buyer
has made an offer before and, whether a buyer has actually
bought. From this data, the machine projects the sales of the
product and displays the projection. Many scoff at this
predicting, some call it fortunetelling, and it is true that
many predictions have failed.

Because it is an automated, multi-purpose sign, a question
is sometimes called a signomat. Other times it is just called
a sign.

No one knows where signomats are located relative to
each other. The bazaar is now a vast place and no one has
surveyed it. Some say it is infinite. Other say it cannot be.
In the old days, people traveled for days to come to the
bazaar and had to travel by foot to find answers. Now the
bazaar sends vehicles, called hypercabs, to anyone interested
in buying or providing answers. The cabs have meters that
keep track of all the moves that buyers and producers make.
The cabs take riders to any signomat desired. All a rider has
to do is state a question and the cab will take him, at terrific
speed, to the signomat that displays that question. The cabs
are so well made that no one yet has complained of the
driving.

20.1 Initial Solution to the Problem of Matching
Up Questions

As mentioned, the matching up questions problem is that
people can enter different question strings but mean the same
thing. (While the discussion below applies to both Rex’s and
Sue’s, the term Rex will signify both types of users because

|PR2020-00686

Apple EX1019 Page 126

IPR2020-00686
Apple EX1019 Page 127

6,131,085

143

it is simpler just to talk about Rex and because it is Rex’s we
are more concerned with.)

The goal then is for the system to match up strings that are
different but, from each Rex’s point of view, correspond to
the same answer. Another important goal is to match up
different questions where Rex’s want “basically” the same
answer. We will not define this concept here but just point
out that rather than an identical answer, an answer that is
close enough may do.

An obvious solution is to use best match algorithms, many
of which are well known in the art. After Rex enters a

question, the best match algorithm would find the question
already stored in the system that best matches the question
entered. The system may enable users to enter multiple
phrasings of a question, all of which can be used to arrive at
a “best” match. (Of course, there may be multiple “best”
matches.) AC would then show the best match(es) and ask
Rex to confirm whether any match was satisfactory. If no
match was satisfactory, Rex could rephrase the original
question or stop.

Assuming that the best match is satisfactory and taking
the previous example of three people asking for the defini-
tion of the word “drive,” let us imagine that already in AC
is the question string:

What does the word “drive” mean?

Now say that the following three questions are entered by
different Rex’s:

What is the definition of “drive”?
What does “drive” mean?

How do you define “drive?”
In each case, we imagine that the system finds the best match
and it is:

What does the word “drive” mean?
Once Rex has confirmed that the best match is

satisfactory, basically three situations can occur with regard
to an answer. No answer may exist in the system for the best
match question. One answer may exist. Or, multiple answers
may exist.

What then does the system do? That depends on the rules
of the particular AC. In the following sections we will
describe some useful procedures for handling these situa-
tions. For now, we say that the best match is above all a way
to jump into AC (the data-base) and possibly land at a spot
where others have been before. If Rex is satisfied with a drop
off point then he can proceed. If not, he can try again.

Though we have spent little space on the best match step,
we do not want to shortchange its importance and will
discuss it more later. Suffice to say for now that it is an
essential starting point for matching up natural language
questions because a user seeking an answer usually will
rarely enter the exact same question string as other users
seeking the “same” answer.

Once Rex has confirmed that a best match question is a
satisfactory start, then we come to the endless answers
problem.

Chapter 21

A Solution to the Endless Answers Problem

Recap
As mentioned, the endless answers problem is that dif-

ferent Rex’s may enter the same question string into AC but
have different answers in mind. For example, each Rex
entering Where is the ballgame? may be thinking of a
different game. Thus, AC needs to have a way for Rex’s to
distinguish the answers they want even though they enter the
same question string initially.

10

15

20

25

30

35

40

45

50

55

60

65

144

Further, the problem is that different Sue’s may want to
supply different answers to a question. One may want to
supply “Fenway Park,” another, “Yankee Stadium,” another,
“George Mason Field,” and so on. Thus, AC needs to have
a way for Sue’s to give different answers to the same
question string.
One Solution

One possibility is to store all the answers together under
the same question string so that all the answers are outputted
in response to the question. Yet this way is only suitable for
special types of questions that require “composite” answers.
For example, the answer to, “What companies in the US.
make steel?” can include partial answers supplied by many
users, each contributing the name of a different steelmaker
as an answer. These multiple answers can be combined and
stored as a list under the single question above.

Generally though, combining different answers leads to
problems. First of all, it is usually impractical to output all
the different answers users might supply to a question.
Further, it is not possible for Rex to indicate which answer
he wants. Thus, it is usually impractical to record the
demand, and calculate a POE, for each answer individually.
Also, if Rex only wants one of the answers, it is usually
unreasonable to charge him for multiple answers. And
further, it is usually impractical to credit Sue’s.
Requirements of a Good Solution

A good solution to the endless answers problem should
enable AC to distinguish between answers so that:
1. Rex’s can signify which individual answers they want

without signifying answers they don’t want.
2. Rex’s can find the individual answers they want without

finding answers they don’t want.
3. AC can maintain a distinct demand record for each

individual answer.
4. Sue’s can enter different answers.

5. Users can be charged for the individual answers they
receive and credited for the individual answers they
supply.

A Better Solution

In the following sections we will describe an interface and
data storage procedure that enables AC to do all of the
above, not perfectly, but well enough to serve in a broad
range of cases. While this method involves many steps, they
all stem from a couple of operations that allow both Rex’s
and Sue’s to rephrase questions in a certain way. The
operations are these:
1. Rex who enters a first question can enter a second, more

specific question and link it to the first, less specific
question.

So if Rex enters a question and receives an answer that he
does not want he can enter a more specific question that
better describes the answer he wants and he can link that

question to his original question.
2. Sue who attempts to supply an answer to a first question

can enter a more specific question and link it to the first,
less specific question. And Sue can then enter an answer
to the more specific question.

So, in a sense, an answer to a question can be a more specific
question together with an answer to that more specific
question. That way, when Rex enters a question, what can
pop up is a more specific question, and possibly, its answer.
We say possibly because AC initially might only reveal
multiple more specific questions, allowing Rex to pick one
that has the answer he wants.

These two operations give Rex’s and Sue’s the critical
ability to rephrase a question so as to give a more specific
description of the answer they want or of the answer they

|PR2020-00686

Apple EX1019 Page 127

IPR2020-00686
Apple EX1019 Page 128

6,131,085

145

have supplied. The linking step is also critical because it
allows users to “travel” from a question to a linked more
specific question.

Before explaining how the rephrasing rules can be
implemented, here are examples that illustrate more specific
questions and show the generality of the approach.
Illustrations

What’s IBM’s phone number?

What’s IBM’s phone number in Armonk?

What’s IBM’s phone number for toll-free support?
What is 2+3?

What is 2+3 in Roman numerals?

What is 2+3 in the philosophy of Frege?
What is the square root of 2?

What is the square root of 2 to five decimal places?
What is the definition of entropy?

In 50 words, what is the definition of entropy?

In 5000 words by Fermi, what is the definition of entropy?
A-4 paper?

A-4 paper sellers?
A-4 paper sellers in Washington DC?

Was Casablanca a good movie?

Was Casablanca a good movie according to Siskel and
Ebert?

Was Casablanca a good movie according to Siskel and
Ebert; what is the full text of what they said?
Was Casablanca a good movie according to Siskel

and Ebert and what is the full text of what they
said on their show?

Was Casablanca a good movie according to Siskel
and Ebert and what is the full text of what they
said in their columns?

How do you get a passport?

How do you get a passport as fast as possible?
How do you get a passport as fast as possible in

Norway?
How do you make a chocolate chip cookie?

How do you make a chocolate chip cookie on an open
fire?

How do you make a chocolate chip cookie that is toll
house?

Blurgil smookle?
Blurgil smookle means what in the code of masterspy

“L”?

What is the text of the decision in the Merrill Lynch CMA
patent case?
What is the decision in the Merrill Lynch CMA patent

case, in abstract form?

What is the decision in the Merrill Lynch CMA patent
case, full text that is?
What is the decision in the Merrill Lynch CMA patent

case, full text that is plus commentaries?
Specific Enough

By entering a more specific question can Rex describe
exactly the answer he wants and can Sue describe exactly the
answer she has provided? That depends on whether you
believe that a natural language question can ever be per-
fectly exact. Usually, if not always, a more specific question
will still have infinite possible answers. But by describing
more Rex has a better chance of receiving an answer that
will satisfy him. And by describing more Sue has a better
chance of indicating what information an answer contains.
However, describing too much can be inefficient. Thus AC
allows Rex’s and Sue’s to use their common sense when

asking for and supplying answers.

5

10

15

20

25

30

35

40

45

50

55

60

65

146

The operations above enable users to act somewhat like
they would act in a natural conversation. For example, say
you ask a friend the following question,

Is there a restaurant around here where I can get some
dinner?

And say the friend supplies the following answer,
McDonald’s is around the corner.

But you dislike McDonald’s so you rephrase the question by
adding information,

I mean a good restaurant?
This rephrasing is, of course, analogous in AC to when Rex
sees an answer he doesn’t like and rephrases his original
question. Another possibility is that your friend supplies
more information to your question, for example, she sup-
plies a more specific question and an answer, such as:

You want Southern food? There’s a place at the Foundry
Building.
This rephrasing is analogous in AC to when Sue enters a
more specific question and an answer to that question.

Most conversations reveal that it is somewhat of a myth
that people understand natural language. Of course people
do, but often not at first. People usually arrive at an under-
standing by a certain kind of back and forth questioning and
answering. When the meaning of a question is ambiguous,
they know to ask for more information (they ask for a more
specific question).

The operations above allows both Rex’s and Sue’s to
enter more specific questions. And the link created between
two questions allows users to find a more specific question
even though they have initially entered one that is less
specific.

We should keep in mind that while users do ask AC
questions, they are really addressing other users. AC is a
communication system. So while the system cannot under-
stand natural language, it can enable people to better com-
municate their intentions. As with natural conversation, the
questions in AC can get more and more specific so an
original question can have a more specific question linked to
it and then that question can have a more specific question
linked to it, and so on, and so forth. The reason all this works
is that eventually, through asking more specific questions,
we can describe the answer we want so that our fellow

human beings understand, usually, what it is we want.
Advantages of the Approach

Enabling both Rex and Sue to link more specific questions
to a given first question has many advantages. Among other
things, it:
a. Allows Rex to state a question that better signifies which

answer he wants out of endless possible answers.
b. Allows Rex to find a question that better signifies which

answer he wants.

c. Allows as many answers to a single question as users want
to supply.

d. Allows Sue to label an answer with alternative questions.
e. Allows Rex to see the question-labels and choose the

answers he wants given what the labels describe.
f. Allows AC to first output only question-labels before

outputting corresponding answers. (This yields at least
two advantages. One, time is saved because full answers
do not have to be outputted. Two, AC can conceal an
answer until Rex agrees to pay for it.)

g. Allows AC to output a single answer to a given first
question.

h. Allows Rex to be charged for individual answers and
allows Sue to be credited for individual answers.

What Do We Mean By a More Specific Question?
Now that we have decided to use more specific questions,

we should define them. However, we cannot give a precise

|PR2020-00686

Apple EX1019 Page 128

IPR2020-00686
Apple EX1019 Page 129

6,131,085

147

definition. Only in rare cases is more specific well defined.
These cases occur when we have a finite set of possible
answers, say phone numbers. We can say that we are being
more specific when we narrow down the list of numbers
(answers) by providing more information. For example, take
the question, What is the phone number of John Smith?.
Assuming we are dealing with the real world, at some instant
in time, and assuming that all John Smith’s do not live at the
same address, and assuming no other shenanigans, a more
specific question is, What is the phone number of John Smith
at 14 Cherry Lane?.

But since natural language questions have infinite pos-
sible answers we cannot define a more specific question as
one that narrows down a list of answers. We can say that it
narrows down a list in a data-base but, we cannot say it
narrows down all the possible answers.

Perhaps the term more specific is not a good one. People
use the term to describe a variety of situations that are not
the same. The truth is, we do not understand specificity well,
just as we do not understand ideas well. Still we are going
to stick with the term more specific here because it is as good
as any other in getting the point across. We will try to give
a certain interpretation to it though.

In AC, the key to a more specific question is the purpose
it serves. The purpose is to better describe an answer relative
to the description in another question. We say that a
question, Qn, is more specific than another question, Q when
On:

1. matches the description of Q and
2. includes different descriptive material.
You can see this definition in operation in the illustrations

above. By this definition, a more specific question does not
mean that a question has more bits than another or that a
question “seems” more specific than another. For example,
What is in that goblet? cannot be compared to What is in that
swimming pool, by chemical composition, temperature,
volume and density? We intuitively feel that the second
question is more specific but, by our definition, the two
questions are not even compared. Aquestion is more specific
than a first question only when it matches the description
stated in the first and includes different descriptive material.
Another word for matches the description is fit the descrip-
tion. In other words then, the more specific question must
itself fit the original, less specific question. Of course,
whether or not the On “fits” Q is subjective.

One result of this definition is that an answer to the more

specific question should always be an answer to the less
specific question, for when stating a more specific question,
a person is not supposed to be changing what he was
originally looking for, he is just supposed to be giving a
better description.

Even though we cannot get into a philosophical discus-
sion of how humans match descriptions to other description
or to some subject, we can divide more specific questions
into two broad types which we will call restricted and
unrestricted.

A Restrictive Definition of “More Specific”
We said that On must fit the description of Q and include

different descriptive material. One way to do this is for On
to repeat Q and then add information. The illustrations above
all fit this definition. Below is another example, this time
with four questions, listed from least specific to most:
Q1 What is in the can?
Q2 that has no label on it?

Q3 and that you are holding?
Q4 in your left hand?

Still, the term the “repeat” Q is a little ambiguous for
when we add information to Q we can add to the front, to the

10

15

20

25

30

35

40

45

50

55

60

65

148

back, or in between. Or, we can do some combination of all
three. For example,
Q: What is the definition of entropy?

In 5000 words by Fermi, what is the definition of entropy?
What is the definition of entropy, in 5000 words by

Fermi?

What is the definition, in 5000 words by Fermi, of
entropy?

Because it is easier for people to keep track of extra
information when it is at the beginning or end of a sentence,
we shall ignore the version where a person can insert
information in between, though we note that it is often a
natural alternative. We will say that a restrictive definition of
a more specific question means that a question has the exact
same information as a first question plus more information
appended at the beginning or end of the first question.

This restrictive definition has advantages because it
reduces ambiguity. For example, users can make a “ladder”
like the one above that orders questions by their specificity.
On the other hand, we lose some of the benefits of natural
language.
A Loose Definition of “More Specific”

We would like a more natural definition of more specific.
Sorry. Though others may have better ideas, about the best
we can do here is the definition above that, to repeat, Qn
must fit the description of Q and include different descriptive
material. That is a very subjective definition.

To judge whether Qn is more specific than Q, the most
important test is to recall the purpose of a more specific
question—to better describe an answer relative to the
description in another question—and see if Qn fulfills that
purpose.

Another test is to see whether a question is more specific
than another is to check if an answer to the more specific
question will always be an answer to the less specific
question. As discussed above,

an answer to On is always an answer to Q but,
an answer to Q is not necessarily an answer On.

For example, the answer to What’s IBM’s phone number in
Armonk? will also answer What’s IBM’s phone number?.
But the answer to What’s IBM’s phone number? will not
necessarily answer What’s IBM’s phone number in
Armonk?. The reason is that the more specific question fits
all the conditions of the less specific question but the less
specific question does not include all the conditions of the
more specific question. Of course, this test is still subjective.

Below are examples of more specific questions posed in
an unrestricted manner.
More Illustrations

How can you reach IBM
What’s IBM’s phone number?
What’s IBM’s Internet address

Can you reach IBM’s manager’s by flying a blimp over
their headquarters?

Who were the main actors in Casablanca?
What was the full cast of Casablanca?

What time do the buses to New York leave today?
When do the afternoon buses to New York leave today?

When do the buses to New York leave after 3:00 pm.
today?

What is an example of furniture?
What is an example of Louis XIV style furniture?
What is an example of a chair?

What is the poverty rate in Washington, DC?
According to the Brookings Institution, how many people

in Washington DC. are below the poverty line?

|PR2020-00686

Apple EX1019 Page 129

IPR2020-00686
Apple EX1019 Page 130

6,131,085

149

What percentage of households in Washingtonian DC.
are on welfare?

What does the census say about the poverty rate in
Washington, DC?

“Oma”?

What is the definition of “oma”?
Does “oma” mean some kind of cancer?

What is a hybridoma?
What does an arterial plaque look like?

Arterial plaque in a ten minute video by NIH?

An illustrated guide to arterial plaques?

Artierial plaques according to drawings by Harvey?
Until someone fully understands how ideas work we

probably will have no precise definition of more specific.
Meanwhile, in a given AC the standards can vary and can be
judged by humans. The examples above show there is much
room for controversy as to whether a question is more
specific than another. Nevertheless, the benefits of using
natural language and letting people use their common sense
can outweigh the costs in confusion.

Both the restrictive and unrestrictive definitions can be

implemented in AC.
Now we describe a method for implementing more spe-

cific questions in AC. We discuss how AC enables people to
build networks of linked questions, using more specific
questions, and how AC enables users to move around in
those networks to get and supply answers.

22.1 Building and Moving Around in Question and
Answer Nets

In the system described in CIP 1, questions are stored, and
answers are stored to correspond directly to those questions.
This section, which has four parts, describes how the system
stores a new type of question that we have called a More
Specific Question (MS-Q) and describes how people use this
type of question. In part 1 we again define MS-Q’s, this time
giving rules about how they are stored in the system. In part
2 we describe new procedures that the system requires for
enabling people to use MS-Q’s. In part 3 we illustrate key
steps of these procedures. And in part 4 we give examples
of Rex’s and Sue’s using MS-Q’s.

Part 1: Rules Defining How MS-Q’s Are Stored
1. An MS-Q is a question.

This means that an MS-Q is like any other question in that
users can enter it, store it, find it, and store an answer to
correspond to it.
2. An MS-Q is a question that is stored to correspond directly
to another question.

This means that an MS-Q is linked directly to another
question, which we will call a Less Specific Question
(LS-Q). By “linked directly” we mean that an MS-Q is
stored such that when a user enters a linked LS-Q, the MS-Q
can be accessed by default or in response to a command. And
further, a user can jump from one linked question to another.
Rather than say that an MS-Q is a special type of question,
we can just as well say that the link created between two
questions is special.
3. Any question, including an MS-Q, can have an MS-Q
linked to it.

This means that a question can have an MS-Q linked to it
and that MS-Q can have an MS-Q linked to it and so on and
so on.

4. There is no limit to how many MS-Q’s can be linked to
a question.

(Of course, a system designer could set a limit.)

10

15

20

25

30

35

40

45

50

55

60

65

150
5. Users decide whether the link between an MS-Q and an

LS-Q is valid and users can nullify an invalid link.
This means that users, not the system, judge whether an

MS-Q is really more specific than a question it is linked to
(a partial exception, discussed below, is the case of
Restricted MS-Q’s). Further, the system can enable users to
take action to nullify a link they consider invalid.
Restricted MS-Q’s

As discussed, MS-Q’s can be divided into two types,
restricted and unrestricted.

2.1 A Restricted MS-Q includes the exact same information
as the LS-Q it is linked to and includes extra information as
well.

This means that the system can in certain cases recognize
whether a Restricted MS-Q is valid or not because the

system can recognize a mismatch between the LS-Q and
MS-Q. However, a system can eliminate this possibility by
enabling users to create an MS-Q just by entering the
information that is to be added to the LS-Q. The system can
also enable a user to choose whether the extra information

is added to the beginning or end of the LS-Q.
Linking Further Explained

Linking is a familiar term for the process of connecting
two records in memory so that they can be accessed from
one another. In AC the records we are concerned with are

questions, not just the question strings but all the informa-
tion that is collected to correspond to those strings—the
question record of Book I.

When we say a first and second record are linked directly
we mean several things:
a. The link is named to describe the semantic relationship

between the two question strings. When two question are
linked, each question is named relative to the other.

b. While a user is at a first record the system can display at
least the question string of the second record. The system
may display this second string by default or in response to
a command. If by command, the command would corre-
spond to the name of the link, for example, “Get
MS-Q’s.” From the first record, the user may be able to
access more, or even all, of the information in the second
record, depending on the rules of the particular system.

c. When a user is at a first record, the system can access all
information at the second record and can make decisions

based on that information. For example, if many MS-Q’s
are linked to a question, the system could determine
which ones to show based on the information held in each.

d. The system enables a user to travel from the first record
to the second.

e. The system can register when a user travels from one
record to the other. This information can be kept in each
record and/or kept in a third record created to store
information about movement on the link.

f. From a given record, the system can access an indirectly
linked record and can enable users to do so as well.

How Answers Correspond to Questions
The system also requires rules that define how many

answers can correspond to a question. There is no hard and
fast rule; it is a design decision. For simplicity’s sake, we
adopt the rule below.
6. Only one answer can correspond directly to a question.

This means that only one answer can correspond to a
question that has no linked MS-Q’s. If a question has linked
MS-Q’s these might have their own direct answers. If so,
these answers correspond indirectly to the original question,
the LS-Q. Hence this rule differentiates between a direct

answer and an indirect answer. A question can have one
direct and multiple indirect answers. Further, it can have
only indirect answers.

|PR2020-00686

Apple EX1019 Page 130

IPR2020-00686
Apple EX1019 Page 131

6,131,085

151

(To repeat: this rule is adopted for simplicity in the
following discussion. As discussed in Book I, there are many
rules that can be used for entering multiple direct answers to
a question.)

Finally, we recall a rule from CIP 1.
7. An answer can correspond directly to multiple questions.

The system described in CIP 1 allowed a single answer to
answer multiple questions. This rule can be very useful
where MS-Q’s are concerned.

Part 2. Procedures and Functions for MS-Q’s

To implement the rules above the system needs new
procedures and functions.
Follow the Signs

Before getting into a lot of details about these procedures,
let us get some perspective and see basically what is being
added to the system described in CIP 1. Basically, functions
are added that enable users to link questions, to identify
which of two linked questions is more specific, and to jump
from one linked question to another.

These additions mean that a question, while still being a
sign that tells about an answer, can also be a sign that tells
about other questions. Further, these additions mean that
users can find an answer by following the signs. In the
system of CIP 1, a person would find an answer by entering
the corresponding question. If the result was unsatisfactory,
the user would have to enter another question. In the new
system, a user can zip from sign to sign. What’s more, the
user can add new signs and link them to existing ones, letting
other users follow his path.

Returning to the bazaar, let’s say that the products are not
answers but clothes. And let us say that a buyer asks for
pants and that a sign exists for pants. This sign might point
to other more specific signs about pants, for example, for
khakis, jeans, cords, and others. Now let’s say a buyer
selects the sign for khaki’s. He would then zip to this sign
where he might find khaki pants but he also might find
directions to more specific signs, for example, for pleated
khaki’s, loose-fit, 100% cotton, pre-washed, and others.
Again he might pick one of these and then find directions
there to more specific signs such as those describing certain
sizes. Eventually he might find a sign that described the pair
of pants that he wanted. It probably would not be for the
exact pair of pants he wanted, but it could be close enough.

At that point he could request the pants and hope that they
were there. (The sign could tell him if they were there and
the price as well, and the estimated reward for supplying the
pants.) On the other hand he might not find a sign for the pair
of pants he wanted, for example no sign might describe his
size. And so he could ask for a certain type of pants in his
size and the robots of the bazaar would set up a sign for those
pants, and could link it to the sign he is at.

Now let’s say a producer and wants to supply khaki pants.
And say she finds that the sign saying “khaki pants” already
has pants in stock, but not the ones she has in mind. The
pants there might be khakis with pleats while she might want
to supply khakis without pleats. And so she could: 1) have
a sign set up saying “khaki pants without pleats,” 2) supply
the khakis without pleats and, 3) link the new sign to the sign
saying “khaki pants.”

To illustrate the situation with answers rather than clothes,
take the case of someone looking for a recipe for chocolate
chip cookies. A sign for such a recipe might direct a person
to more specific signs listing toll-house, and a variety of
other recipes. Aperson picking “toll-house” might then find
directions to more specific signs such as those for toll-house
cookies made with walnuts, or margarine, or turbinado
sugar, and so on. Eventually, the person might find the recipe
he wanted.

10

15

20

25

30

35

40

45

50

55

60

65

152

Thus the bazaar is transformed into land of linked signs
(or signomats as we also call them). A question gains an
extra role, that of an intersection that can have any number
of paths leading in and out. The intersection has a signomat
in the middle and the signomat now has a large telescreen,
like an airport telescreen, telling people the destinations they
can zip to. So a person can stop at the intersection and buy
something or just get directions to another signomat.

Now back to the procedures that the system includes to
make this scheme work.

How the Description Below Adds to the Description of CIP
1

In CIP 1 we described how a user could ask a question in
Request Mode and possibly get an answer. Further we
showed how the system included functions for registering
demand and outputting a POE. We also showed how a user
could supply an answer in Supply Mode. And we described
various other possible steps and functions such as those for
price testing and quality control.

Now we are adding a whole new capability to the system
but let us stress that the basic functions remain. The central

idea is of a question where demand is collected and where
users can get an answer and a POE, and where users can
supply an answer as well. The functions for making these
things possible, such as the pay-off formula, all remain,
though they may be modified. Rather than repeat what has
been said about these functions, we will describe mainly the
things that are added.

We will combine the old procedures with the new ones
and call them both options because they correspond to the
options that the new system presents to users. These options
can be in menu form. When a user chooses an option, further
choices may be possible and can be presented in a sub-menu.

Each option can have many variations. For example, the
option of Getting MS-Q’s can display MS-Q’s by default or
in response to a command. This option can also allow
MS-Q’s to be shown according to certain search parameters.
These are just a couple examples. The point is that numerous
variations are possible and we only have time to delve into
certain ones. We will explain the basic steps.

One thing that is different from CIP 1 is that in describing
the options we do not differentiate between Request and
Supply modes. That is because the point of the new proce-
dures is to enable users to build networks of questions and
answers, and to move around in those networks. Users do
these things in both the roles of Rex and Sue, and therefore,
Rex’s and Sue’s usually use these procedures in the same
way. Moreover, the system can allow users to switch roles
easily. In building the data-base, and moving through it, the
main difference between Rex’s and Sue’s is that the actions

of Rex’s are registered as demand information while those
of Sue’s are not. (Of course, Rex’s usually do more search-
ing than Sue’s and Sue’s enter answers.) In the discussions
then, we assume a user has declared which role he is in and
that he can switch at any time.

(As for Check Mode, we do not go into it but note that a
user in this mode would also use the same procedures for
moving around the data-base.)

As mentioned previously, two topics have their own
sections. These are the topics of the Pay-off Estimate
(registering and calculating demand) and of Searching. Both
topics involve functions that are part of the main menu
options but these functions are put in their own sections for
the sake of clarity. The key thing first is to describe how the
system allows questions to be linked to each other. Linked
questions allow users more choices of answers. It is these
choices that can then make registering demand and search-

|PR2020-00686

Apple EX1019 Page 131

IPR2020-00686
Apple EX1019 Page 132

6,131,085

153

ing more complex. So we first explain how the choices are
created then we describe functions for dealing with those
choices.

Being At a Question
With the new system it is natural to think of a user being

“at” a question because he can now move from one question
to another. Being “at” a question was never brought up in
CIP 1 because there was no need; a person who entered a
question was then “at” the question. While there, the user
could transact business—make an offer, receive an answer,
see a pay-off estimate, supply an answer, and so on. In the
system of CIP’s 2, 3 and 4 the meaning is the same as, except
that once at a question a user can do more things. When a
user arrives at a question, especially one that is already in the
system, a POE might be shown along with a question
automatically, even though a user does not request an answer
to the question.

(As discussed in Book I, the user can get to a question by
entering it, by confirming a best match, or by moving to it
from another question. We call the question that the user is
at the current question.)
Options

As seen in FIG. 25, once a user is at a question, the system
presents him with a list of options. The system lets the user:
a. Get an answer 2510,
b. Get MS-Q’s 2511,
c. Get other questions 2512,
d. Enter an MS-Q 2513,
e. Enter an answer 2514,
f. Enter a new question-label 2515,
g. Link the current question to an existing question 2516,
h. Zip to another question 2517,
i. Rephrase the last entered question 2518,
j. Enter a new question 2519,
k. Stop 2520.

We now describe these options one at a time but not in the
order above.

(Keep in mind that many of these options have been better
explained, and have been expanded, in Book I. See preface
to Book II as well for why this is so.)

(Note: We below give procedures for entering, finding and
zipping to MS-Q’s. The same procedures apply to LS-Q’s as
well, of course, in the sense that a user can enter, find and

zip to an LS-Q.)
Entering a Question

Before a user is at any question, he must use the procedure
for entering a question. Once he gets to a question he can
also use this procedure to get to another question.

When he enters a question the system searches for an
exact match. If there is no exact match, the system stores the
question and creates a demand record for it. The system then
looks for a best match. If there is no best match the system
alerts the user that there is no best match. If the user likes,
he can rephrase the question. If there is a best match or
matches the user can select a match. If he does, the selected
question becomes the current question.

The user may be satisfied with a best match candidate, but
he may still prefer his original question. Further, he may
want to link his original question to the best match question.
Thus even though the user chooses a best match, the system
stores the original question, and any rephrasings the user
enters.

In the bazaar the entering a question procedure is equiva-
lent to telling the cab driver which signomat to go to. If no
such signomat is already in the bazaar, the robots of the
bazaar construct the one that the rider has described. After

taking him to it, the cab takes him to on a tour to see one or

10

15

20

25

30

35

40

45

50

55

60

65

154

more similar sounding signomats. If the rider is satisfied
with one of these he can tell the driver to stop. If he is not
satisfied, the cab returns him to the new signomat the system
has constructed for him.

Rephrase the Question
When a user, especially Rex, enters a new question, he

may be starting a new search or he may be rephrasing a
previous question. The system may enable the user to
distinguish between starting afresh and rephrasing a ques-
tion. If so, the system includes a command for identifying
the next question entered as a rephrasing of the last question
entered.

In the bazaar this is analogous to a rider giving the driver
slightly different directions, hoping to get to a signomat that
already exists in the bazaar.
Zipping to Another Question

When a user is at a question, the system can enable him
to move to (zip to) a linked question, or to any other question
the system shows on screen or otherwise makes available to
him. The system includes a select command so the user can
designate which question he wants to move to. The com-
mand may consist of clicking on a question that is shown on
screen. As is pictured in FIG. 26, to move to a question, a
user would click on the zip tool 2621 and then click on a
question on screen. The selected question would then
become the current question and the information associated
with that question would then also appear on screen.

In the bazaar this option is equivalent to a rider telling the
driver to go to another signomat that user has seen either at
the current signomat or during his trip.
Getting MS-Q’s

When a user is at a question, the system enables him to see
the directly linked MS-Q’s. The system may show these
automatically or in response to a command. The system can
also display the number of MS-Q’s that are directly linked
to the current question. Once the system displays the
MS-Q’s, the user can select any one of them to zip to. The
process can be continued in the direction of greater
specificity, unless there are no MS-Q’s linked to the question
that the user is at.

The system can also enable the user to see more than one
level of MS-Q’s. This type of viewing is especially feasible
when the MS-Q’s are Restricted MS-Q’s. And the system
can tell the user the maximum depth and average depth of
the MS-Q tree is that the user is on (the actual depth depends
on the route a user takes).

As shown in FIG. 29, the system can enable the user to
select 2910 only the Restricted MS-Q’s. When a Restricted
MS-Q is shown, the system may output only the extra
information the MS-Q contains over the current question.

The system must include defaults to determine the order
in which MS-Q’s are shown when there are too many
MS-Q’s output at once. In this case, the system can enable
the user to scroll through the MS-Q’s. Also, the system can
enable the user to determine which MS-Q’s to see according
to various criteria.

In the bazaar, Getting MS-Q’s is like viewing the tele-
screen that shows signomats that are linked to the signomat
the rider is at. The telescreen may show these automatically
or the rider may have to press a button to see them.
Getting Other Questions

When a user is at a question the system can enable him to
see and move to more than just the directly linked MS-Q’s.
For example, the system can also show linked LS-Q’s. This
feature is important for it allows the user to backtrack,
instead of just going in the direction of greater specificity.

The system can also enable the user to see any question
the user has previously entered or been at. In this case, the

|PR2020-00686

Apple EX1019 Page 132

IPR2020-00686
Apple EX1019 Page 133

6,131,085

155

system keeps a list of the questions that the user has been at
and can enable the user to call up this list and select a
question from it. The most important of these is the last
question the user was at because returning to this question is
often the most natural type of backtracking. The system need
not show this previous question but can just include a
command for selecting it.

The system may include an option whereby the user may
ask to see questions that are good matches for the current
question but that are not directly linked to that question. The
reason for this feature is to enable the user to see questions
in the data-base that may be related to the current question
but that have not been linked together. This feature enables
a user to zip to and possibly link questions that the user
might not otherwise find out about.

In the bazaar, a signomat’s telescreen would be able to
display the less specific signomats linked to the signomat. A
rider could then select one of these to go to. Also, the cab
meter could keep a list of all the signomats a rider has gone
to in a certain trip and can let the rider pick a signomat on
the list to return to.

Entering an MS-Q and Linking It to a Question
When a user is at a question, the system enables him to

enter an MS-Q. The system includes a link command (as
shown in FIG. 26, “Enter MS-Q” 2622). The user selects the
command, which signifies that the current question is to be
an LS-Q, relative to a new question to be entered. The user
then enters a new question and the system stores it as an
MS-Q to correspond directly to the LS-Q. The user can
repeat this process, linking multiple MS-Q’s to the question
he is at.

As shown in FIG. 29a, if the system offers the option of
entering both Restricted and Unrestricted MS-Q’s then the
system can enable the user to select 2911 which type of
MS-Q the user wants to enter. This choice could be pre-
sented as part of a sub-menu. As mentioned, with Restricted
MS-Q’s the system can enable users to enter an MS-Q by
only entering information to be added to the LS-Q.

Now it may be that the MS-Q has an exact match in the
data-base. Thus when a user enters an MS-Q the system can
look for an exact match. If one is found, the system can link
it to the current question. The system can also look for a best
match for the MS-Q, and output best match candidates. The
user might want to link one of these to the current question
as well. The search for a match of the MS-Q can enable the

user to find and link questions he might not otherwise haveseen.

In the bazaar then, a rider can press a button on the
signomat that signifies that the next question he enters will
be for a more specific signomat and that the new signomat
should be linked to the signomat he is at. Then, when the
rider asks for a more specific product, the robots of the
bazaar construct a signomat for it and paint a magnetic path
with arrows pointing from the current signomat to the newone.

Entering an Answer
When a user is at a question, the system enables her to

enter an answer. Thus the system includes a command for
entering an answer (the system may enable Rex to become
Sue just by entering this “Enter Answer” command). After
the user enters the command, and if the question has no
direct answer, Sue enters the answer and the system stores
it is as the direct answer.

If the question already has a direct answer, the system tells
Sue she can only enter an indirect answer (unless she has is
correcting an existing answer) and enables her to do so. Sue
can enter an indirect answer by entering an MS-Q and

10

15

20

25

30

35

40

45

50

55

60

65

156

supplying a direct answer to the MS-Q. She can enter as
many indirect answers as he likes.

The system can enable the user to designate whether she
is entering a direct or indirect answer. She can enter both a
direct and indirect answers, if the current question has no
direct answer, or she can enter only indirect answers, if she
wants.

To make it easier to enter an indirect answer, the system
can enable Sue to use a sub-menu procedure when entering
an MS-Q and an answer to the MS-Q, rather than making
Sue switch to main menu option for entering an MS-Q. So
the Entering an Answer procedure can also include steps for
entering MS-Q’s.

As discussed earlier, a question is a label that identifies
what information a corresponding answer will have. It is
often helpful to label an answer in multiple ways. Multiple
labels can help people find an answer, just as listing a
business under different headings in the phone book can help
people find the business. The ability to name an answer in
various ways is especially important when dealing with
natural language requests where people call the same thing
by many different names. For Sue’s, multiple labels are like
having multiple advertisements for a single answer. So the
system can enable users to enter multiple MS-Q’s for a
single answer (and the system can include short cuts so that
a user does not have to re-enter the same answer each time

he enters a new label for it).
In the bazaar, a rider with a product to supply—call it a

recipe—can press a button on the appropriate signomat and
the signomat will then store the product to dispense to
buyers. But, if a product is already in the signomat, then the
producer must have a new signomat constructed. She can
link this new machine to the original signomat she wanted
to supply the product to. And she can have numerous
machines set up with different signs for the same product.
And she can have all these machines all linked to the original
signomat.
Linking Existing Questions to Each Other

The system can include a linking tool that enables users
to link two questions that are already stored in the system.
One way for such a tool to work is for a user to select (click
on) the tool and then select a question on screen. The system
then creates a link between the current question and the
selected question such that the selected question is an MS-Q
of the current question.

There are many other ways for selecting two questions to
be linked and for designating the relationship between the
two. In particular, a linking tool can be selected and then two
questions on screen can be selected. In this case, the system
would create a link between the two questions with the first
question selected being the LS-Q and the second the MS-Q
(or vice versa).

In the bazaar, the rider may press a linking button on the
signomat telescreen and then select a signomat on the
telescreen. The selected signomat then becomes linked to the
signomat the rider is at.
Entering a New Label for an Answer

Before explaining this procedure, a quick digression is in
order to explain the need for the procedure. Let us look at
some possibilities where questions, MS-Q’s and answers are
concerned.

A question can have no answer, in which case there is no
problem. A question can have one direct answer and no
MS-Q’s, in which case there is no problem. A question can
have no direct answer and have MS-Q’s that have direct

answers. Again there is no problem if the MS-Q’s just have
direct answers.

|PR2020-00686

Apple EX1019 Page 133

IPR2020-00686
Apple EX1019 Page 134

6,131,085

157

Aquestion can have a direct answer and an MS-Q that has
a direct answer. Now we may have an problem. Why?
Because when a person is at the question and wants an
answer, how is he to differentiate between the direct and
indirect answer? The question (the LS-Q) describes the
direct answer but it also describes the indirect answer. As

shown in FIG. 27, let’s say the LS-Q 2730 with the direct
answer 2731 is:

What is the recipe for Toll-House cookies?
And let’s say the MS-Q 2732 with the direct answer 2733 is:

What is the recipe for Toll-House cookies with nuts?
There is no way to differentiate between the LS-Q’s direct

answer and indirect answer. Both are valid answers to the

LS-Q. (The direct answer for both questions may even be the
same; it may be the same recipe with two different labels.)

The problem gets worse when many MS-Q’s are linked to
a question that has a direct answer. Ideally then, the direct
answer would be relabelled with an MS-Q so that the answer
could be differentiated from the indirect answers.

(It is also possible to do nothing, to allow the direct
answer to be described only by the LS-Q even though that
question may have many MS-Q’s with direct answers. This
situation is feasible depending on the rules for outputting
answers. These rules, for example, can include extra search
parameters so that the direct answer can be differentiated by
information other than the question-label.)

If a direct answer is to be relabelled, four people can do
the relabelling:

1. The original Sue can do it, but he may not be easy to
alert to the need and he may not be interested in doing it.

2. The new Sue who puts an MSQ on the question and
thus “crowds out” the direct answer can do it. But this person
has a conflict of interest and might not give an accurate label.

3. A system judge can do it, but judges cannot keep up
with the need.

4. Rex can do it. He might see a direct answer and feel it
needs a more accurate label. This type of labeling can help
other Rex’s find an answer and it can also be an excellent

method of quality control. For example, a question may be,
How far is it to Chicago from Washington, DC?

and someone may have supplied the following answer,
Less than 1,000,000 miles.

Now Rex receiving this answer might relabel the answer, for
example,

How far is it to Chicago from Washington, DC. to within
1,000,000 miles?

The rules as to who can do the relabelling can be variable
depending on the system. In any case, it can be useful for the
system to include a procedure for relabelling an answer.
Thus the system can include a command for selecting a
direct answer, for example by selecting its “direct” question,
and then entering an MS-Q to relabel (or add an extra label
to) the direct answer. As shown in FIG. 27a, this MS-Q 2740
would be linked to the original question and would corre-
spond to the original question’s direct answer 2741.

In the bazaar, this relabelling is like having the system
construct a new, more descriptive singomat for a product
that is already in a signomat.
Getting an Answer

When a user is at a question, the system can enable him
to get an answer, whether direct or indirect, by entering a
command. (The system may enable Sue to become Rex just
by entering this “Get Answer” command). We should note
that in some cases the system may output the answer without
a command.

Now, in the system of CIP 1, a person (a Rex that is) who
entered a question and was therefore “at” the question was

10

15

20

25

30

35

40

45

50

55

60

65

158

presumed to want the corresponding answer. Price tests
could be done there to gather more information about what
Rex was willing to pay, and it might turn out that Rex might
not get the answer even if it was there. But the point is that
it was presumed that Rex wanted the answer and so arriving
at a question was registered as demand information.

In the new system, arriving at a question does not nec-
essarily mean that a person wants a corresponding answer,
direct or indirect. The person can just be passing through,
looking for a good question. So the arrival is not necessarily
registered as demand information. Though it depends on the
particular system’s rules and on the particular answer, a user
may have to explicitly express interest in paying for an
answer, for instance by entering a Get Answer command, in
order for the system to register the demand information, and
for the system to output an answer. Of course, price testing
could then be done, and other demand information gathered.

Getting an Answer can be the most complicated procedure
of the ones we have discussed. That’s because the point of
implementing MS-Q’s is to give users more choices for
getting answers. The available answers may be direct and
indirect and there may be many available. Or there may be
unanswered but linked questions. As mentioned, these
expanded choices raise several design issues. For example,
when there are multiple possible answers, direct and indi-
rect:

a. which one is the system to output?,
b. how is demand to be registered when a user may

express interest in more than one answer; what should
the POE be based on?,

c. what if the user is dissatisfied with an answer because

didn’t think the question described it well and he wants
to look at another answer?

Our solution here is to skip these type issues for now and
discuss them in sections 2 and 3. Here we will take the

simplest case where the question has a direct answer and no
MS-Q’s. As in CIP 1, the user then asks for the answer,
demand information is registered and a POE is outputted,
and if the answer is in, the answer is outputted and Rex is
charged and Sue credited. Now, as discussed in CIP 1, there
are many ways to accomplish these things. For example,
price tests can be done. We will not go over these issues
again.

We do note though that in a system using natural
language, rules for charging for answers are likely to be
different than a system with highly constrained meanings. A
person is more likely to be disappointed with an answer that
corresponds to a natural language question than with one
that corresponds to a highly constrained query. And so a
system that handles natural language might have special
rules for enabling users to see more than one answer but only
pay for one. These rules are highly variable and are feasible
in the system of CIP 1 as well. (If the system charges a flat
per hour fee for searching the data-base, this issue is not as
relevant.)

We also note though that Sue’s as well as Rex’s can be
interested in whether an answer is in the system. Sue might
want to know so she can see if a question needs answering
or see if someone else has already entered his answer. Two
problems arise. One, Sue may be forced to pay to see an
answer. Two, Sue might steal an answer and store it under
another label (MS-Q). We do not go into these issues here,
only note that the system requires rules for dealing with
them. These issues are not new from CIP 1 but they become
more pronounced where multiple answers to a natural lan-
guage question are concerned.

Back in the bazaar, the signomat may or may not have the
product—again, call it a recipe—that the rider (a buyer) is

|PR2020-00686

Apple EX1019 Page 134

IPR2020-00686
Apple EX1019 Page 135

6,131,085

159

looking for. If the rider is interested in the recipe, he usually
presses a button. If the recipe is there, and if the rider knows
the price in advance, the recipe is dispensed. Another
possibility is that the signomat posts a price, and the buyer
can then choose to buy or not. Or the signomat can post a
message saying, “Well, I might have the recipe and I might
not, what are you willing to pay for it?,” and let the buyer
make an offer. If the recipe is there it is dispensed, if the
buyer’s offer is high enough. In any case, the signomat
registers the details of any buyer offer and displays a POE
for the recipe.
Quality Control Functions for MS-Q’s

The system can include functions for quality control that
enable users to nullify links. The system can allow users to
take several actions. Two mains ones are:

1. ask the system judge to invalidate a link,

2. post a complaint about a link for other users to see.
So the system can include means for a user to select an

MS-Q and post a complaint marker for others to see. Further
the system may reward users who properly point out invalid
links and may penalize those who create such links.

The system can be self-regulating though without these
measures because an invalid link may merely be ignored by
users. An ignored link will not benefit its creator, and further,
the system may have rules that cause an unused link to
vanish.

In the bazaar, this type of quality control is like a rider
posting a complaint on the telescreen about a linked
signomat and possibly asking a judge to erase the link.

Part 3. Sequence of Operation

We do not show steps for all the options in Part 2 above,
just the key steps for the critical options for creating question
and answer nets. We are repeating things that were said in
Part 2, but here give flow diagrams. In the sequence below,
selected question corresponds to current question in the
discussion above. Below we assume a user has already
arrived at a question and now selects an option. As shown in
FIGS. 28, 28a and 28b:
New Question

If the user selects “New Question” 2850 he enters a

question string and the system:

a. Inputs 2851 the question,
b. Checks 2852 for an exact match,

b1. If an exact match is found, the question is the
selected question 2853,

b2. If no exact match is found, the system stores 2854
the question, creates 2854 a demand record for it,
and checks 2855 for a best match,
b2a. If no best match is found, the question is the

selected question 2856,
b2b. If a best match is found, the system outputs

2857 the match(es) and asks the user to confirm
(select one) 2588,
b2b1. If the user selects a best match question, it

is the selected question 2859,
b2b2. If the user selects none of the matches, the

inputted question is the selected question 2856,

c. Waits for an option to be selected.
Rephrase

If the user selects “Rephrase” 2860 the system registers
2861 that the next question entered is a rephrasing of the
previous question entered. When the user enters a question,
the system continues with the procedure described just
above for New Question.

Stop

5

10

15

20

25

30

35

40

45

50

55

60

65

160

If the user selects “Stop” 2862 the system exits.
Get Answer

If the user selects “Get Answer” 2870 the system:
a. Registers 2871 demand information (the request, the

time of the request, the price offered, and other infor-
mation depending on the particular system),

b. Checks 2872 if an answer is in the data-base,
b1. If no, outputs 2873 a POE and the message “answer

not found”,
b2. If yes, outputs 2874 the answer, and a POE, and

registers 2874 a charge to Rex and a credit to Sue,
c. Waits for an option to be selected.

Get MS-Q’s

If the user selects “Get MSQ’s” 275 the system:
a. Checks 2876 if any MSQ’s are directly linked to the

selected question,
a1. If no, outputs 2877 a message that no MS-Q’s are

found,
a2. If yes, outputs 2878 the MSQ’s,

b. Waits for an option to be selected.
Zip To

If the user selects “Zip To” 2879 the system:
a. Checks 2880 if any MS-Q’s are currently outputted,

a1. If no, the system remains at the menu,
a2. If yes, the user selects one of the MS-Q’s that has

been outputted and the system inputs 2881 the
selection, and makes 2882 the selected MS-Q the
selected question,

b. Waits for an option to be selected.
Enter MS-Q

If the user selects “Enter MS-Q” 2883 the user enters a

question and the system:
a. Inputs 2884 the question,
b. Stores 2885 the question to correspond directly to the

selected question as an MS-Q of the selected question,
c. Creates 2886 a demand record for the new question,
d. Waits for an option to be selected.

Enter Answer

If the user selects “Enter Answer” 2887 the system:
a. Checks 2888 if a direct answer is in the data-base,

a1. If no, the system asks 2889 the user if he wants to enter
a direct answer,
a2a. If the user selects yes, he enters an answer,
a2a1. The system inputs 2890 the answer,
a2a2. Stores 2891 it as the direct answer to the selected

question and registers 2892 the user’s identification
data in order to credit royalties,
a2. If yes, outputs 2893 a message telling Sue that a

direct answer is already in the data-base,
b. Asks 2894 the user if he wants to enter an indirect

answer,

b1. If the user selects no, the system waits for an option
to be selected,

b2. If the user selects yes, he enters a question,
b2a. The system inputs 2895 the question,
b2b. Stores 2896 the new question as an MS-Q of the

selected question, and sets 2896 the MS-Q as the
Latest MS-Q,

b2c. Checks 2897 if the user has already entered an
answer to the selected question or to an MS-Q of the
selected question,
b2c1. If no, the user enters an answer and the system

inputs 2898 it and stores it as the direct answer to
the Latest MS-Q,

b2c2. If yes, the system asks 2899 the user if he
wants the last answer he entered to also answer the

Latest MS-Q,

|PR2020-00686

Apple EX1019 Page 135

IPR2020-00686
Apple EX1019 Page 136

6,131,085

161

b2c2a. If the user selects yes, the system stores
3800 that answer as the direct answer of the

Latest MS-Q,
b2c2b. If the user selects no, he enters an answer

and the system inputs 2898 it and stores 3801
it as the direct answer to the Latest MS-Q

b2c2c. Registers 2892 the user’s identification
data in order to credit royalties, and goes to
step b.

Part 4. Illustrations: Basic Situations

Now we show some illustrations of how users can build

question and answer networks (nets). Having arrived at a
question, a user can face three basic situations with regard
to direct answers.

1. The question is completely new; and so has no directanswer.

2. The question has been entered before but has no directanswer.

3. The question has a direct answer.
(Note: we do not show the situation where a question has no
direct answer but does have an indirect answer. In this case

the MS-Q is a question that has a direct answer and so this
case does not add much to the discussion.)
What the System Lets Rex’s Do
The Question Is Completely New

When Rex enters a question that no one has entered
before, the system stores it. The question the current ques-
tion and so Rex can enter an MS-Q. We do not picture the
user adding an MSQ, we only picture one new question, in
FIG. 30, and imagine that the question is, What’s IBM’s
phone number? 3020.
The Question Has Been Entered Before But Has No Direct

Answer

When Rex arrives at a question that is already in the
system but that has no direct answer, he can enter an MS-Q
to that question. In FIG. 30a, we imagine that the user has
initially entered, What’s IBM’s number? 3021, and that the
system has shown him a best match of What’s IBM’s phone
number? 3022, which he finds satisfactory. He then adds two
MS-Q’s, for tech support? 3023 and What’s a 1-800 number
for IBM? 3024. The first MS-Q is restricted and the second
is unrestricted.

The Question Has a Direct Answer

When Rex arrives at a question that has a direct answer,
he can get an answer and/or add an MS-Q. We do not picture
these situations.

What the System Lets Suppliers Do
The Question Is Completely New

When Sue enters a question that nobody else has entered,
the system stores it and Sue can then enter a direct answer.
She can also enter and MS-Q and an answer to that. We do

not picture these situations. (Sue may enter a new question
and answer because she feels that people will ask the
question in the future, even though no one has asked it in the
past. For example, IBM might enter, A Directory of IBM
Toll Free numbers in the U.S.?, and then enter an answer to

their own question.)
The Question Has Been Entered Before But Has No Direct

Answer

When Sue arrives at a question that has no direct answer,
she can:

a) supply a direct answer,
b) supply an MS-Q and a direct answer to the MS-Q or,
c) do both of the above.
Doing both is shown in FIG. 30b. Sue selects the original

question, What’s IBM’s phone number? 3025 and enters a

10

15

20

25

30

35

40

45

50

55

60

65

162

direct answer, 800-333-4444 3026. She then enters one
MS-Q, What’s IBM’s toll-free number for inkjet tech sup-
port? 3027, and then enters the same answer. She then
selects another existing MS-Q, What’s IBM’s phone number
for tech support? 3028 and adds, for inkj ets 3029 to this, thus
creating another MS-Q. She enters the same answer again.
Finally, she selects another existing MS-Q, What’s a 1-800
number for IBM? 3030, and enters the same answer.
The Question Has a Direct Answer

When Sue selects a question that already has a direct
answer she can then add an MS-Q and a direct answer to that

MS-Q. In FIG. 30c, Sue selects the question, What’s a 1-800
number for IBM? 3040, and then adds one MS-Q to it, for
laptop product information 3041, and then enters an answer
3042 to that new MS-Q. She then enters another MS-Q, for
laptop complaints and suggestions 3043, and an answer
3044 for that. Finally, she adds a third MS-Q, for laptop tech
support 3045, and an answer 3046 to that.
Using the Linking Tool

As mentioned, the system can provide a linking tool that
enables a user to link any two questions that appear on
screen. In FIG. 30d, we show how Rex might link a new
question with best match candidates.

The user enters,

What’s IBM’s 1-800 number for tech support? 3050
This is the current question. Now we assume the system

presents the user with four best match candidates:

What’s IBM’s toll-free number, for inkjet tech support?
3051

What a 1-800 number for IBM, for laptop tech support?
3052

What’s IBM’s phone number for tech support? 3053
What’s a 1-800 number for IBM? 3054

In FIG. 30d, the dashed lines 3055 represent possible
links between the current question and the match candidates.
We assume the linking tool works such that the user first
selects the tool and then selects two questions, the first being
designated the LS-Q and the second the MS-Q. In our
example, we imagine that the user selects the current ques-
tion 3050 and then selects the first match 3051 above. The

system creates a link between the two questions with the
match candidate being the MS-Q. The user repeats the
process with the second match candidate 3052. Now we
assume that the user selects the third candidate 3053 but

selects this question before selecting the current question
3050. Thus the current question becomes an MS-Q relative
to the third match candidate. The user repeats the process
with the fourth match candidate 3054. Thus four links have

been created, two where the current question is an LS-Q and
two where the current question is an MS-Q.

Chapter 22

Linking Questions Semantically

(A Solution to the Endless Questions Problem)
Introduction

Let us now take up the endless questions problem again.
This problem was discussed in chapters 4 and 5 and again in
the beginning of chapter 20. Here we delve into the problem
further (and repeat many points made previously) in order to
give a better explanation for the solution that is presented.
This discussion does not nullify what was previously said.

To see the problem, we first look at Rex’s goal of finding
an answer, Sue’s goal of supplying an answer, and AC’s goal

|PR2020-00686

Apple EX1019 Page 136

IPR2020-00686
Apple EX1019 Page 137

6,131,085

163

of enabling Rex and Sue to accomplish these goals. These
are search goals. For now, we do not consider AC’s eco-
nomic goal of creating a sales forecast (or forecasts) for an
answer. The search goals alone reveal why the reality of
endless questions is a big problem.

After presenting the problem, we give the gist of a
solution. The solution can be used independently of AC (in
the sense of AC’s economic organization). In other words,
the solution is a general one for enabling people to create
and search a data-base of natural language questions andanswers.

Of course, AC is a special data-base in that it is organized
around the goal of making good sales forecasts for answers.
The endless questions reality poses problems for achieving
this goal. In section 22.6, we show how the solution to the
search problem can be used to achieve AC’s primary eco-
nomic goal as well.

As examples of answers, we will use “a” weather report,
“a” photo of a rose, and “a” pair of jeans (a physical
product).
(Notes on terminology: As before, “entering a question”
may mean entering or selecting a question, also called
“arriving at a question” (see chapter 5). Context will dictate
whether “enter a question” means “enter a new question” or
“select an existing question” or either one. Also, when we
refer to Sue we may mean an actual Sue, someone who is
supplying an answer, or a potential Sue, someone who is
considering supplying an answer.)

22.1 Goals and Problems

Goals

When Rex enters a question (for instance, What’s the
weather going to be like today in Miami?) his goal is to find
an answer that is in AC or to express interest in buying an
answer that is not in AC.

When Sue enters a question (for instance, Miami weather
report?) her goal is to supply an answer to the question, and
have the answer found by every Rex who wants it. The
question may already be in AC due to a Rex, or it may be
a question Sue has originated.

AC’s goal is to enable Rex and Sue to accomplish their
goals.
What Is “An” Answer

As discussed, there is no such thing as an answer or the
answer, in the sense of a single answer. So what does Rex
want to find and what should Sue provide?

Let us discuss, once again, what an answer means. An
answer does not mean one answer; it means any answer from
a set of satisfactory answers. This set is undefinable except
as a matter of interpretation by each person who has asked
a question. A given Rex can say whether a particular
answer—a particular weather report, a particular photo of a
rose, a particular pair of jeans—is satisfactory or unsatis-
factory to him. But no person can define the set. Aparticular
person can only say yea or nay to particular examples ofanswers.

Naturally, different users will have different opinions
about whether a particular answer is satisfactory or unsat-
isfactory. A Sue and a Rex can disagree about whether an
answer fits a question.

From AC’s point of view, “an” or “the” answer to a
question usually means an answer according to what the
average user has in mind—the random Rex and the random
Sue. For example, generally speaking, AC calculates a POE
for an answer that is to be supplied by a random Sue, based
on the requests of random Rex’s. (We say “generally speak-
ing” because there are ways that AC can customize a POE
for a particular answer and according to particular Rex’s.)

10

15

20

25

30

35

40

45

50

55

60

65

164

“Average user” and “random user” are themselves a little
deceptive because the users interested in a given answer will
not be average or random. The idea, though, is that there is
usually no single opinion about what an answer should be.
AC cannot, usually, tell who will supply an answer, and who
will judge it. A slew of potential answers and a slew of
opinions about those answers is the reality.

In CIP’s 2 and 3 we used the terms “same answer, an
answer,” and, “the answer” often. Here we also use the terms
the “same satisfactory answer” and “a satisfactory answer”
because they may get across a little better the idea that there
is a slew of satisfactory answers for a given question.
Goals Restated

So, a better way of stating Rex’s goal is to say that he is
looking for a satisfactory answer—a satisfactory weather
report, photo of a rose, or pair of jeans. The broad adjective
“satisfactory” is used because what Rex wants when he
enters a question is fairly broad. His idea of what is
satisfactory may change when he finds out what is in AC. He
may lower his expectations, just as someone who goes to
buy a pair of jeans may settle for a pair that is not as good
as he “envisioned” in the first place. He may also raise his
expectations, seeing a selection of answers that are better
than he “envisioned” when he entered a question. We put
envisioned in quotes because Rex usually doesn’t see any
particular answer in advance. Only when he is provided with
a particular answer can he say “unsatisfactory,” or “satis-
factory.”

Satisfactory really refers to a person’s response to an
answer. It encompasses many responses (“not what I hoped
for but I’ll take it for now,” “partially satisfactory,” “just
what I wanted,” “better than I expected,” and so on). Perhaps
a better way of stating Rex’s goal is to say that he is looking
for the most satisfactory answer he can get, given limited
time (and usually limited money). He is not necessarily
completely satisfied by a “satisfactory” answer. He may
want a better one. In other words, Rex’s goal is not well
defined. For now, as good a way as any of briefly stating his
goal is to say that he wants a satisfactory answer,.

Abetter way of stating Sue’s goal, then, is to say that she
is seeking to provide a satisfactory answer to as many Rex’s
as she can.

(In fact, we should say that Sue is seeking to sell her answer
to as many Rex’s as possible, not just provide a satisfactory
answer. We are leaving the economic issue of sales until
section 22.6 of this chapter.)

AC’s goals then are to:
1) enable Rex to find a satisfactory answer and
2) enable Sue to provide a satisfactory answer to as many

Rex’s as she can.

Endless Answers Again
Of course, as discussed, the endless answers problem gets

in the way. We might restate the endless answers problem by
saying that there are endless satisfactory answers and end-
less unsatisfactory answers to any question—e.g., endless
unsatisfactory weather reports, photos of roses, and pairs of
jeans. The problem is: how can Rex tell Sue what he wants
so that she provides a satisfactory answer?

One basic solution to this problem is the introduction of
more specific questions. We will not repeat our discussion of
these.

Endless Questions Reality Restated
And so we come back to the endless questions reality

which we said was that endless questions could refer to the
“same answer”. Now we substitute the term “a satisfactory
answer” for “the same answer”. The underlying reality
remains: there are endless questions that refer to a satisfac-

|PR2020-00686

Apple EX1019 Page 137

IPR2020-00686
Apple EX1019 Page 138

6,131,085

165

tory answer (endless ways to ask for a satisfactory weather
report, photo of a rose, pair of jeans, and so on).
Why the Endless Questions Reality Is a Problem for Rex and

Sue

Recall, Rex’s goal is to find or express interest in a
satisfactory answer, but how? Which question should he
enter? If there are endless ways to ask for, say, a satisfactory
weather report, which question is he supposed to ask? If he
asks a question, how is Sue to know to find that one? And
if Sue has already supplied an answer to a particular
question, how is Rex to know to find that question?

Recall, Sue’s goal is to supply a satisfactory answer to a
question, but how? Which question is she supposed to
supply the answer to? A single Rex can ask for an answer,
say a weather report, in endless different ways. Say he asks
in a dozen different ways. Even if Sue sees these questions,
which one should she answer? As a practical matter, she
usually cannot answer all of them individually. And further,
with multiple Rex’s entering questions asking for similar
satisfactory answers (say the Rex’s are all asking in different
ways for “a” Miami weather report) howis Sue to answer so
many different questions? Again, as a practical matter, she
usually cannot answer all of them individually.

Consider the following list of seven ways to ask about the
weather in Miami. This list is quite short compared what
would really be in AC concerning the weather in Miami
(which could be tens of millions of questions or even far
more). Assume that seven different Rex’s have entered these
questions.

1. Weather report, Miami?
. What’s the weather going to be like today in Miami?
. What’s it going to do outside in Miami?

How hot is it going to get in Miami?
. What does the weather say today in Miami?

NWS report for Miami?
N.ational Weather Service report for Miami?

Now, lets say that Sue even finds these seven questions.
To repeat, which one should she provide an answer to? If
there really were only seven different ways to ask for a
weather report then she could answer them all. But with
natural language people phrase questions in a vast number of
different ways.

Now, let’s say that Sue has provided an answer to one of
the questions. To repeat, how is Rex supposed to find it? The
task is easy enough if there really were only seven ways to
ask about the weather in Miami, but what if there are ten
million questions in AC about the weather in Miami?

An initial solution to these problems is to use best match
algorithms. These are essential but inadequate for a few
reasons. First, there is no best match question, or small set
of questions, that AC can take users to. The reality is a huge
profusion of similar questions. Second, at this time, com-
puters cannot understand questions, which is necessary, in
most cases, to match two questions. In other words, two
questions may describe the same answer, but AC will usually
not realize the fact. (Fortunately, best match algorithms can
successfully match questions in enough cases.) Third, while
best match algorithms can get Rex or Sue to a given Qx, that
Qx will still be isolated in the sense that AC cannot recog-
nize in most cases when an answer to Qx may potentially be
supplied to a given Qy. Further, if a satisfactory answer to
Qx actually is supplied to Qy, AC will usually not be able to
locate that answer for a Rex who is at Qx, because AC does
not connect that answer with Qx.

\lgxm7pwm

22.2 Connecting Questions with Semantic Links
The solution is to let humans make semantic links

between questions so that questions are not isolated. We will

10

15

20

25

30

35

40

45

50

55

60

65

166

also call these question links (Q links). As was discussed in
the previous chapter, chains of questions can be formed
because questions are described relative to each other. So, a
question can be linked to another question, which can be
linked to another question, and so on. In this way vast
numbers of questions can be indirectly linked to one another.
Whether question networks are large or small, the questions
are linked two at a time, each time by some person deciding
on the semantic relationship between the two questions.

What is a semantic relationship? We can give no precise
definition. There are innumerable kinds of semantic rela-

tionships that people could point out between questions. To
be brief, for our purposes, a semantic relationship means a
relationship between two questions where—because of the
meaning of the questions—a satisfactory answer to a first
question may also be a satisfactory answer to a second
question. A more general way of putting it is that an answer
to a first question might be wanted by a person who has
asked (arrived at) a second question.

In other words, the meanings of two questions are com-
pared regarding their answers. A semantic relationship tells
why the answers to one question might satisfy another
question. Another way of putting it is that the answers to the
question are compared. Some relationships have to do with
a difference between the questions concerning their answers,
and some have to do with a similarity. (These things become
clearer in the next chapter, where several semantic relation-
ships are described. Note: It may be worthwhile to glance at
the next chapter at this point.)

For example, Qx might be called less specific relative to
Qy which is more specific relative to Qx. The corresponding
link, which can be called a less specific to more specific
(LS-MS) link, describes the relationship between the
answers to the two questions. Another example of a semantic
link is a synonym to synonym (Syn—Syn) link. When two
questions are linked by a Syn—Syn link that means that
some user thinks that the two questions refer to the same set,
or “roughly” the same set, of satisfactory answers. The two
questions are described, labeled, as synonyms of each other,
and a link is created between their Q-records. (The seven
questions above about the weather in Miami might be linked
by Syn—Syn links.)

Some semantic relationships are such that the answer to
Qx will usually answer Qy, but the answer to Qy will usually
not answer Qx. For example, the questions: Weather report,
Miami? and National Weather Service report for Miami?
may be linked. The answer to the first question may not
answer the second question, but the answer to the second
question will answer the first question, at least in the minds
of most people.

We also call a semantic link a named link since it names

the relationship between two questions. The essentials of
such a link then are:

1) each question is named to describe its semantic rela-
tionship to the other question,

2) a link is created in memory between the Q-records of
each question.

As will be seen in the next chapter, many relationships
between questions tell when the answer to one question may
satisfy someone who has asked another question.
Links Refer to Potential and Actual Answers

The semantic links we describe between questions do not
tell whether the questions have actual or missing answers.
(In chapter 24 we will describe links that refer only to actual
answers.) A semantic link between two questions is meant to
provide information about the relationship between the
potential answers to the two questions.

|PR2020-00686

Apple EX1019 Page 138

IPR2020-00686
Apple EX1019 Page 139

6,131,085

167

If a linked question has an actual answer, the semantic
link will describe that answer as well because the answer is

supposed to be part of the set of potential answers for that
question. For example, if a person is at Q-l (say, Weather
report, Miami?) which is linked to Q-2 (say, What’s the
weather going to be like today in Miami?) by Syn—Syn
links, and Q-2 has an actual answer, then the user and AC
know that a satisfactory actual answer to Q-l may be at Q-2.

Of course, when a question has an actual answer, a
semantic link will still refer to potential answers to that
question.
Questions in Different Lands Can Be Linked

It should be noted that while we say that semantic links
are necessary for handling natural language, AC can enable
users to link natural language questions to questions in lands
where grammar is highly constrained. For example, a natural
language question, What are mortgage rates these days?, can
be linked to a highly constrained question such as: Table of
mortgage rates in the U.S.?, which we imagine is a table of
questions and answers, where there are strict rules that
govern the entering of questions and answers.
People Create Semantic Links

People create links. So, when we say that a link compares
the answers to two questions, we mean it expresses the
opinion of the creator of the link. People, of course can
disagree. There are at least three reasons for such
disagreements, and they are worth discussing, in order to
understand the uses and limits of semantic links.

One reason is that the people have different conditions for
being satisfied. For example, say one person, Paul, enters:

Weather report, Miami? and
National Weather Service report, Miami?
Now Paul might just be looking for any decent weather

report for Miami. He has entered both of these questions in
the sense of synonyms. To him they both refer to basically
the same thing he wants. Now, he realizes that in other
people’s minds there are differences between the two ques-
tions and their potential answers. But in his mind, at the time
he is asking the questions, they are both in search of an
answer in the same set of potential answers. An answer to
either question will satisfy him.

Now, say another person, Steve, enters National Weather
Service report, Miami?. He might not be satisfied by any
decent weather report for Miami. And so, to him the two
questions above may not be synonyms. He might only be
satisfied by an answer that “really fits” the second question.
The Syn—Syn links may not be appropriate for him because
he may have different needs in an answer than Paul. In other
words, the relationship between answers depends on the
needs of a user at the time he is entering questions. So a link
that is appropriate for one person may not be appropriate for
another person, because the people have different needs.

Asecond reason that people disagree about whether a link
is appropriate is that people can disagree about the meaning
of two questions. People will envision different kinds of
potential answers for the questions and thus they will label
the relationship between these potential answers differently.
For example, Photo of a red rose? and Photo of a red, red
rose? might evoke the same image in two people or they may
evoke different images. Paul might think that these questions
should by synonyms of each other while Steve might think
they should have a less specific to more specific relationship.

Athird reason people will disagree about links is that they
will have different ideas about the abstract notions of behind

the links, for these notions are not well defined. Synonym
question, for instance, can mean different things to different
people.

10

15

20

25

30

35

40

45

50

55

60

65

168

Clues, the Main Idea Behind Semantic Links
While there are many kinds of useful semantic links, each

of which has a different reason for being useful, we can give
a general rationale for using most of them (we will meet
some exceptions to this rationale in chapter 26). The ratio-
nale is simply that a semantic link tell s that an answer to one
question might be a satisfactory answer to another question
(recall, for our discussion, “satisfactory” encompasses a
range from, “partially satisfactory” to “better than
expected”).

We say might because here can be great uncertainty in the
information that links give. This uncertainty comes from
several sources. First, a link that is appropriate for one
person might not be appropriate for another person, as
discussed above. In other words, the link may only give
information that a certain percentage of Rex’s agree with.
Second, an actual answer may be disappointing. For
example, Rex may agree that a link is appropriate, in the
sense that the answer to Qx will answer Qy, but he may think
that the actual answer at Qx is unsatisfactory. So, potentially,
an answer to Qx might also answer Qy, but in actuality,
given a particular answer that has been supplied, the answer
does not satisfy Qy, according to a particular Rex. Third, the
semantic relationship may be such that only certain answers
to Qx will also satisfy Qy. For example, only certain answers
to Photo of a rose? will satisfy Photo of a red rose?.

The point here, then, is that a semantic link does not give
definitive information. It gives a clue about whether Qx
describes a satisfactory answer to Qy, for a certain percent-
age of Rex’s. In other words, a link says that Qx has a greater
than 0% chance of describing a satisfactory answer to Qy,
according to a given Rex.

We cannot say in general what the chance will be.
Semantic clues can be anywhere from very unreliable to
very reliable, depending on the type of link. Experience will
tell how reliable certain links are in practice. Of course,
because of their meanings, certain kinds of links should be
more reliable than others in general. For example, two
questions that are linked as Close Synonyms should have a
higher chance of sharing a particular answer than two
questions that are linked as Loose Synonyms.

AC uses the link information, along with other A-stats, to
select matches to present to Rex. For example, say Rex is at
a first question that has no answer, and wants to see a
satisfactory answer. AC might then show a question that has
an answer and is linked to the first question by a Syn—Syn
link. Often AC will select poor matches because the seman-
tic links give uncertain information.

We might call link information probabilistic in the sense
that a semantic link indicates some probability that, for a
given Rex, Qx, describes an answer that also satisfies a
linked Qy. AC can develop probabilities from large samples
of linked questions—registering the satisfaction of users
who have traveled along different links, and who have found
answers through different links. AC can also enable a user to
initially set the probability that the answer to Qx will also
satisfy Qy, and the probability that the answer to Qy will
satisfy Qx.

In general, probability weightings that AC assigns will
depend upon the other A-stats that are involved (and perhaps
upon other factors, such as a user’s past preferences, which
AC can keep track of in certain ways). AC’s matching rules
will “learn” how to use link information to select matches.

We take this topic up further when we discuss how AC can
enable Rex and Sue to travel using semantic links.
The Meaning of “Satisfy a Question”

We will often use the phrase “an answer satisfies a
question”. By this we mean that an answer answers a

|PR2020-00686

Apple EX1019 Page 139

IPR2020-00686
Apple EX1019 Page 140

6,131,085

169

question. We use “satisfies” and “answers” synonymously.
But, what do we mean by these terms? An answer cannot
satisfy a question, it can only satisfy a person.

So, when we say that an answer satisfies a question we
mean that the answer is satisfactory to some percentage of
Rex’s who enter the question. We cannot specify a percent-
age. We also mean that the answer has some probability of
satisfying a particular Rex. We cannot specify a probability.

When we say a “particular”, or a “given” Rex we do not
necessarily mean a random Rex who enters the question. AC
may be able to keep track of the preferences of different
Rex’s, and so, AC can assign different probabilities that an
answer will satisfy different Rex’s. Still, the easiest way to
think of the phrase, “an answer satisfies a question,” is that
an answer has a probability of satisfying a random Rex.

Further, when we say an answer, we may mean a particu-
lar answer supplied by particular Sue, or any answer sup-
plied by a random Sue.

We say that an answer satisfies a question because it is
easier to abbreviate than to include all the qualifications. But
the qualifications are the reality.
Letting Humans Do the “Matching” that a Computer Can’t

Do

In previous chapters, the endless questions problem was
also called the matching up questions problem because the
idea was that we needed to match up all the questions that
referred to, described, the “same” answer. But just as the
word “same” is deceptive, so is the word “match”. No one
has defined what a match is. And no one knows how the

brain does its various and continual matching tasks.
We will use the term match, even though it is deceptive,

because it is convenient and familiar, and we cannot think of
a better one. Yet while we might say we need to match up
questions, let us realize that the task is to determine whether
an answer to one question has a greater than 0% chance of
satisfactorily answering another question. This task is really
what we mean by matching up questions.

Ideally, we want to know the probability but, in practice,
we cannot give any hard probabilities associated with any
links. That’s okay, just the ability to detect the possibility
that two questions share answers is enough to use and buildon.

Except in special, well defined cases, only humans can tell
whether two questions match in such a way. For example, in
general a machine, at the present time, cannot know that an
answer to a question like What’s it going to do outside today
in Miami? may also be an answer to a question like Today’s
weather report in Miami?. But a human, who speaks
English, can know. So, we let humans “match” questions
with semantic links. AC can then select matches based on
the human matches.

We might want a semantic link to indicate a much higher
than 0% chance of a satisfactory—and indeed it might—but
that is not the point. The ability to detect that the answer to
one question may also satisfy another question, and the
ability to explain why, is the key thing.

As noted, the matching is according to the tastes of each
user who creates a match, a link that is. People will disagree
on matches, of course. Happily, they will also agree, which
is why the semantic matching of questions can work.

AC can enable users to confirm a link, or complain about
a link. AC can use such confirmations and complaints to
evaluate the accuracy of links.
Matching Often Non-Commutative and Asymmetric

One counter-intuitive thing about matching, as it is
defined here, is that it is not necessarily commutative. When
we say that Qy matches Qx, or that Qy is a match for Ox,

5

10

15

20

25

30

35

40

45

50

55

60

65

170

we mean that Qy describes answers that might satisfy Qx.
But, we do not necessarily mean that Qx describes answers
that might satisfy Qy.

We have discussed this point before. We emphasize it
because, in everyday language, the term “match” usually
connotes a “commutative” or “symmetric” situation. We
usually think of two things—like two fingerprints, like a
map and a territory, like two puzzle pieces, like two text
strings—as matching each other, commutatively so to speak.
But in AC, two questions may match non-commutatively.
For example, if:

Qx is: What’s the UV index in Miami?, and

Qy is: National Weather Service report for Miami?, then
Qy may be a good match for Qx because answers to Qy

may answer Qx. But, answers to Qx usually will not answer
Qy. Therefore, Qx is not a good match for Qy.

Matching has two directions in AC, one from Qx to Qy,
and the other from Qy to Qx. There are match probabilities
associated with each direction. Thus, in the example above,
it is possible that an answer to Qx will also answer
Qy—there is some chance. But the chance is far greater that
an answer to Qy will answer Qx. If the match probabilities
in both directions are the same or roughly the same, we
might say the questions match symmetrically. If the match
probabilities are significantly different, we might say the
questions match asymmetrically (see section 22.4.)
Matching Multiple Questions Through Question Networks

(Q-Nets)
To solve the endless questions problem, it is not enough

to match up (semantically link) just pairs of questions. The
goal is to “match up” all the questions that might share the
same satisfactory answer (or at least share some of the same
satisfactory answers). This goal will rarely be reached, but
we still must match up as many questions as we can where
the questions might share a satisfactory answer.

The goal of matching up multiple questions is accom-
plished with networks of linked questions, Q-nets. We might
say that a semantic link is the matching of two questions and
a Q-net is the matching up of more than two questions.

Normally a Q-net would be greater than two linked
questions, though we can say that a single question is a Q-net
of one and a pair of questions is a Q-net of two.
(Note on terminology: A Q-net can have actual answers in
the sense that questions in the Q-net can have direct answers.
An d so, a Q-net should perhaps be called a Q-A-net. For
simplicity we will stick with “Q-net,” whether a network of
linked questions includes actual answers or not. Also, when
we say that a Q-net has a satisfactory answer we mean that
an answer that will satisfy a given Rex has been supplied to
some question in the Q-net.)
The Necessity of Linking Questions Indirectly

To semantically match up multiple natural language ques-
tions in AC, users usually must link most of the questions
indirectly. Otherwise, each time a question is entered into
AC, a user would have to see whether or not it matched all
the other questions in AC. Even if AC could somehow find
all questions that were likely matches for a new question, the
user would still have an impractical number of matches to
make.

Taking our seven questions above, let’s say that the first
six have already been entered and are linked, directly or
indirectly, to each other. Now say that the seventh is entered.
A user would have to create six new links in order for the

new question to be directly connected to the all the others.
The practical solution is to link the new question to one of
the existing questions and let the new question then be
indirectly linked to all the others. That is not to say that we

|PR2020-00686

Apple EX1019 Page 140

IPR2020-00686
Apple EX1019 Page 141

6,131,085

171

only link a question to one other, but simply that it is
unfeasible to create direct links to all the “matching” ques-
tions in AC.

We see, again, that where natural language questions are
concerned, the reality is a profusion of similar questions that
have many different relationships with each other. In AC,
most of these relationships must be identified indirectly,
through indirect linkages that is.
(Note on terminology: for convenience, when we say that
questions in a Q-net are linked we mean directly and
indirectly.)

22.3 How and Why Q-Nets Can Work

Let us now elaborate on how the method of making
Q-nets can solve the search problems raised earlier—what
question should Rex enter to find an answer, and what
question should Sue enter to supply an answer to?

Q-nets are a solution because they can become large
enough so that Rex has a reasonable chance of asking a
natural language question that AC will—using best match
algorithms—successfully match against a question in a
Q-net. (When we say successfully, we mean that Rex is
satisfied by the match.) The Q-net, in turn, has a reasonable
chance of having a satisfactory answer, which can be found
by Rex and by AC, using the links (and other A-stats) in the
Q-net.

Entering and Linking of Questions Revisited
A Q-net can grow large by the numerous linkings of

questions by numerous users. In the previous chapter we did
not delve into many variations on how AC can actually
enable users to designate questions to be linked. Here we
will not delve much further because the steps are fairly clear:
AC must enable a user to:

1) designate the two questions to be linked and,
2) to name the relationship between them.
These steps can be accomplished in many ways. Still, we

should review a few of the important variations.
When a user is at a current-Q, AC can present match

candidates. The user can then link the current-Q to one or
more of these. AC can enable the user to select the match

question and designate its relationship with the current-Q by
using a linking tool. AC can also enable the user to zip to the
match question, and name it with a designated link. For
example, AC can enable the user to press a “Syn-Q” button,
followed by a “Zip to” button, followed by a “click” on the
match question. This sequence is a way that AC can enable
the user to go to the match candidate and at the same time
link it by a Syn—Syn link to the question that was the
current-Q. In other words, AC can enable users to travel to
a question on screen while also designating its relationship
with the previous current-Q.

When a user is at a current-C, AC can enable him to enter
a new question to be linked to the current-Q. The current-Q
can remain the current-C, while the new question is stored
as a question that is linked to the current-Q. Normally a
newly entered question does become the current-C, but AC
can also enable the user to choose to stay at a question while
entering new questions to be linked to the question he
remains at This way was covered in the previous chapter. In
FIG. 32, we show this way again, where the user is at Q-l
5000 and then enters two questions, Q-2 5001 and Q-3 5002,
and links them to Q-l, which remains the current-Q.

Another basic way of enabling a user to link two questions
is to enable the user to enter a new question to become the
current-C, and then link the new current-Q to the previous
current-Q. AC can enable the user to make the link when he

enters the new question. For example, if the current-Q is

10

15

20

25

30

35

40

45

50

55

60

65

172

Photo of a red, red rose?, the user might then press a New-Q
button followed by a Syn-Q button and then enter, Photo of
a red rose?. Thus the user calls this new question a synonym
of the previous current-Q. AC then labels both as synonyms
and create a Syn—Syn link between them. In FIG. 32, we
show this way where a user enters Q-l 5003 which is the
current-Q first, and then he enters Q-2 5004 and links it to
Q-l. But in this case, Q-2 becomes the current-Q when it is
entered. The user then enters Q-3 5005 which itself becomes
the current-Q and is linked to Q-2.

This way of linking questions sequentially can be conve-
nient because a natural way that people ask for answers is to
ask a series of questions, until they find a good response. In
the context of AC, Rex’s goal is to look for a question that
may have the answer he is looking for. He may have to ask
a series of questions until he finds an adequately matching
question. For example, he might ask, Why is it easier to
balance on a bike when you’re moving than when you’re
standing still?. If he finds no good match, he might then
enter, Why are you able to balance on a bike when you’re
moving?. If he gets no good match he might then enter,
Physics of balance on a bike?, and so on, until he finds a
match question he is satisfied with.

In looking for answers, it is typical of people to ask a
series, a chain so to speak, of questions, where each question
in the chain has a relationship with the previous and sub-
sequent question. When a person is asking questions in this
natural way, it is usually more natural to make a new
question the current-Q. Thus, AC can enable a user to
describe this relationship of the new question to the preced-
ing question, while making the new question the current-Q.
Growing Q-nets

Let us look at a few of the basic situations by which users
grow Q-nets in order to show how Q-nets can become large.
For simplicity in the discussion, we assume in 1—3 below
that Rex’s are growing a Q-net. Sue’s grow them too, and in
the same way, but Rex’s do more of the job. In 4 below we
explain an important way that only Sue’s grow Q-nets. For
simplicity, we use the two tiny Q-nets below as examples,
and imagine that the Q-nets are only made up of questions
connected by Syn—Syn links (a large Q-net would normally
be made up of questions connected by various links).

Q-Net A What’s the weather going to be like today in
Miami?

What’s it going to do outside in Miami?
How hot is it going to get in Miami?
Q-Net B What does the weather say today in Miami?
NWS report for Miami?
National Weather Service report for Miami?

1. Adding a New Question to an Existing Q-Net
When Rex enters a new question, AC uses best match

algorithms to present tentative matches. Each tentative
match is already part of an existing Q-net in AC. Rex can
then decide whether the new question should be linked to
one of the matches. If Rex decides a link should be made, it
is made, and the new question is added to an existing Q-net
in AC. For example, Rex might enter, Weather report in
Miami today?. This question might be tentatively matched
with National Weather Service report for Miami? in Q-net B
above. If Rex decides to link the two questions as, say,
synonyms, then Rex’s question becomes part of Q-net B.

Another basic way Rex can add to an existing Q-net is to
already be at a question in the Q-net and then enter a new
question and link it to the first question.
2. Joining Two Q-Nets

When Rex is in a Q-net, AC can suggest a tentative match
to the current-Q such that the match candidate is not part of

|PR2020-00686

Apple EX1019 Page 141

IPR2020-00686
Apple EX1019 Page 142

6,131,085

173
the Q-net that Rex is in. Rex can then decide whether the
current-Q should be linked to the tentative match. If he
decides a link should be made, it is made, and the Q-net of
the current-Q is connected to the Q-net of the tentative

match question. Thus two Q-nets are joined. For example, if
Rex is at What’s the weather going to be like today in
Miami? in Q-net A above, and AC suggests a match of
National Weather Service report for Miami? from Q-net B,
and Rex decides to link the current-Q with the match
candidate, then the two Q-nets are connected.

Of course, any time Rex links two questions that are part
of separate Q-nets, he is joining these Q-nets. Questions
from different Q-nets can be shown on screen in a variety of
ways, not just by AC showing a match candidate. For
example, Rex might call up a past question he has asked that
is part of a different Q-net than the one the current-Q is part
of.

3. Making a Mini-Net (a Q-Chain)
Another way Rex can grow a Q-net is to grow his own.

He does this by entering a series of questions all aimed at
finding the same satisfactory answer. For example, Rex may
enter ten questions trying to find out what the weather will
be like in Miami. He can link all these together. Usually he
would do this sequentially so that as he enters a new
question he tells what its relationship is with the previous
question he entered. In this way, Rex can make a “mini-net”
(which we can also call a mini-Q-chain).

Mini-nets will be common because the natural way Rex
will often ask for an answer is with a bunch of related

questions. He keeps asking until he gets a good match in AC,
then he goes to that question. Meanwhile what has happened
is that he has asked, say, ten related questions that are
rephrases or rough synonyms of each other. If one of these
questions is then linked to an existing Q-net, the whole
mini-net is joined to the existing Q-net.

(Making a mini-net is not mechanically different from the
first way above because Rex is creating a Q-net in AC and
then adding to it one question at a time. What is different is
the fact that the mini-net is made up only of his questions,
which then may or may not be connected to a Q-net made
up of other people’s questions.)
4. Adding a New Question and Answer to an Existing Q-Net

When Sue arrives at a question and wants to supply an
answer to it, she may feel that the answer satisfies a
semantically related, new question. So she then enters the
new question, links it to the previous current-Q and then
enters an answer to her new question. The link tells other
users how her answer can satisfy the first question. For
example, if she is at What’s it going to do outside in Miami?
and she wants to supply her answer to a new question, say,
What’s the weather going to do in Miami?, she can enter this
question, link it to the first question, and supply her answer
to the new question.
Large Q-Nets Especially Accessible

Any question can have a direct answer supplied to it. Most
won’t though because it is impractical to supply answers
directly to most questions that have been entered. That’s
because questions are generally easier to create and enter
than answers. (There are ways of enabling Sue’s to supply
an answer to multiple questions quickly, but even so it seems
that questions that have no direct answers will predominate.)
In fact, the largest proportion of questions may be those that
are only entered once and are never found again.

While most questions will not have direct answers, a large
proportion (no one can say what proportion) will have
indirect answers.

A Q-net, then, is made up mostly of questions that are
used to access the Q-net and to travel in the Q-net.

5

10

15

20

25

30

35

40

45

50

55

60

65

174

Rex can ask a bunch of natural language questions in
search of “an” answer and he will often find a reasonable

match for one of the questions in a large Q-net. Why?
Because someone else will probably have asked a similar
question before, and that similar questions will often be in
a large Q-net. The match question often will not have a
direct answer (unless Rex has specified that condition in a
search stat). Thus, a large Q-net enables Rex to accesses it
from one question, a match question, and then find a
satisfactory answer at another question in it, if such an
answer exists.

Let us elaborate a little more on how AC enables Rex and

Sue to travel in a Q-net.

22.4 Traveling Using Semantic Links

(Finding Questions and Answers in Q-Nets)

AC enables Rex and Sue to travel and get answers in the
same ways (though Rex’s actions are registered as demand
information, and Sue’s are not). For simplicity, we will just
refer to Rex. Let us then recap the basics of how Rex can
travel and get answers in AC.

a. Rex can enter a new question or a new Q+. (Recall, one
way that Rex can enter a new question is to be at a
question and then add or edit Q-specs. And one way
that Rex can enter a new Q+ is to be at a question and
then add or edit A-stats, also called search stats.)

b1. Rex can ask AC to show questions that match the
current-Q or Q+. (Recall, AC can show matching Q-A
locations as well as Q-locations.)

b2. Or, Rex can ask AC to output an answer that matches
the current-Q or Q+.

c. If AC shows matching questions, Rex can go to (select)
one of these.

Of course, when we say that Rex travels, it is AC that is
doing the work, finding and showing match questions and
answers based on Rex’s instructions and on its rules for

evaluating matches. When we say that AC evaluates a
question we mean that it examines a Q-string and the
corresponding A-stats (information in the Q-record).
Locating Satisfactory Matches with Semantic Links

What’s new with semantic links is that link information is

another kind of A-stat which can be used by Rex and AC to
locate matches. When we say that Rex uses semantic link
information, we mean in the sense of search stats that Rex
enters. When we say that AC uses semantic links we mean
in the sense of evaluating the links between questions to
locate match questions and answers.

The simplest way to describe how AC evaluates semantic
links is to say that AC uses them as probabilistic screens to
eliminate unsatisfactory match questions, and identify sat-
isfactory ones. However, in reality there are a lot more
factors than links that AC can use to determine whether a

match is satisfactory or not. And many of these factors affect
how AC evaluates the links themselves. In other words,
semantic links are not independent, static probability
screens. Nevertheless, to get the main idea across, we will
pretend that they are, at first. Then, we will add to the
picture.
A Simple View: Semantic Links as Probabilistic Screens

When any two questions, Qx and Qy, are directly linked,
AC assigns two probabilities:

1) the probability that Qx describes an answer, Ax, that
will satisfy Qy, and

2) the probability that Qy describes an answer, Ay, that
will satisfy Qx.

|PR2020-00686

Apple EX1019 Page 142

IPR2020-00686
Apple EX1019 Page 143

6,131,085

175

In other words, a link has two directions. One direction
signifies the probability that Ax will satisfy Qy. The other
direction signifies the probability that Ay will satisfy Qx. Put
another way, if Rex is at Qx, then Qy has a certain prob-
ability of being a satisfactory match, according to Rex.
Conversely, if Rex is at Qy, then Qx has a certain probability,
which may be different, of being a satisfactory match,
according Rex. The differences in probabilities come about
because of the meaning of the links and other factors that AC
can take into consideration.

So, using a semantic link, AC can guess by some assigned
probability whether Ay will satisfy Qx. AC can continue this
guessing process by continuing down a path of links, using
the probability of a match from one question to another to
get a resulting probability between two indirectly linked
questions. From Qx, AC follows a path of linked questions
to find the questions that have the highest chance of being
satisfactory matches to Qx.

We will give an example of a path of four linked
questions, linked sequentially by three different kinds of
links to show what we mean. We will also imagine the match
probabilities that AC assigns initially. As shown in FIG. 33:

Q-l: 5010 What’s the UV index today in Miami? con-
nected by a Syn—Syn link (synonym to synonym) to

Q-2: 5011 How bad are the ultraviolet rays in Miami
today? connected by a LC-MC link (less complete to
more complete) to

Q-3: 5012 Weather report for Miami? connected by
LS-MS link (less specific to more specific) to

Q-4: 5013 National Weather Service report, Miami?
Now we imagine the probabilities that an answer to one

question will satisfy another question. We imagine that:
an answer to Q 4 has a 0.9 5014 chance of satisfying Q-3,
an answer to Q-3 has a 0.7 5015 chance satisfying Q-2,
an answer to Q-2 has a 0.8 5016 chance of satisfying Q-l.
And thus if we multiply from one question to the other, we

get a resulting probability that the answer to Q-4 has a 0.504
(0.9><0.7><0.8) chance of satisfying Q-l.

In other words, an answer to National Weather Service
report, Miami? has a 0.504 chance of satisfying a Rex who
has asked, What’s the UV index today in Miami?. What we
mean by this is that the answer that the average Sue will
supply to Q-4 has a 0.504 chance of satisfying the average
Rex who has asked Q-l.

If we travel along the path in the opposite direction, we
see, very differently, that the answer that the average Sue
will provide to Q-l has very little chance of satisfying the
average Rex who has asked Q-4. We imagine the following
match probabilities:

an answer to Q-l has a 0.8 5017 chance of answering Q-2,
an answer to Q-2 has a 0.01 5018 chance of answering

Q's)

an answer to Q-3 has a 0.1 5019 chance of answering Q-4.
And thus if we multiply from one question to the other, we

get a resulting probability that the answer to Q-l has a
0.0008 chance of satisfying Q-4.

(In FIG. 33, the two directions of links are illustrated in
two ways. On the left side of the figure, we show arrows
pointing from one answer to another. Each arrow has a
number associated with it, signifying the probability that one
answer will be a satisfactory substitute for the answer it is
pointing to. On the right side of the figure, we show arrows
pointing from one question to another. Each arrow has a
number associated with it, signifying the probability that a
user at one question will find a satisfactory answer—missing
or actual—at the question being pointed to.)

10

15

20

25

30

35

40

45

50

55

60

65

176

Eliminating Unsatisfactory Matches
Now, as shown in FIG. 34, let us imagine that Rex 5030

is at Qx 5031, in a large Q-net, which we only show a tiny,
simplified portion of. (For simplicity’s a sake, we do not
show multiple links between questions and we do not show
more than two links per question. In reality, Q-nets can be
vast and within them questions can have, in theory, virtually
unlimited direct links.)

We imagine, further, that Rex asks to see matches. AC
then evaluates the semantic links using Qx as the origin of
the search. The direction of the search is portrayed in the
figure as arrows between questions pointing in one
direction—away from Qx.

Usually, AC will not have a static probability threshold for
deciding upon satisfactory matches. AC will choose some
number of the most likely satisfactory answers. Thus the
threshold depends on the alternatives that AC examines and
on the number of matches that AC chooses.

However, in our toy example, we imagine that AC has a
threshold for declaring a question to be a satisfactory match
of Qx. We imagine that the threshold is a probability of 0.3.
If AC finds that Qy has a 0.3 or greater chance of matching
a Qx, then AC considers Qy to be a satisfactory match
candidate. AC might not show the candidate because there
may be many others, but the point is that the candidate
makes the “first cut” in the selection process.

Each link has a match probability associated with it in a
given direction. For the sake of illustration, we imagine only
two different match probabilities, 0.9 and 0.1, which we
show in the direction out from Qx.

Starting at Qx, AC goes from one question to the next,
seeking matches. AC starts at Qx with an initial probability
of matching Qx of 100%. We will call the probability that a
question will match Qx by the name resulting probability.
Starting with an initial probability of 100%, AC goes from
one question to the next, multiplying conditionally by the
link probabilities to yield resulting probabilities for the
linked questions.

In other words, when AC is at a question Qi, on a path
from Qx, and AC evaluates a directly linked question, Qj,
AC multiplies the resulting probability for Qi by the link
probability, in the direction of Qi. This multiplication gives
the resulting probability for Qj. If Qj is a satisfactory
match-if this resulting probability is above some threshold—
AC “goes to” Qj. Then, AC evaluates the questions linked
directly to Qj.

As shown in FIG. 34, AC identifies numerous satisfactory
matches, signified by the letter “M” 5032, and eliminates
numerous other questions, signified by the letters “NM”
5033. As can be seen, AC eliminates possibilities by not
examining a path in a given direction once it finds that a
question is an unsatisfactory match. For example, a “hub”
question 5034 leads into a non-matching question 5035. AC
then will not examine the next questions 5036, 5037 in that
direction, on that path, because the probability of a match
will be too low, as indicated by the first non-matching
question 5035. (Actually, this rule does not always hold but,
for simplicity’s sake, we assume that it does.) Thus, a search
down a path of questions is cut off by a non- matching
question.

Note though, there can be more than one link (avenue) to
a question, and therefore, even if a search is blocked from
one link, the question may possibly be accessed (found in a
search) from another. Since semantic links do not have any
hard deductive logic defining them, a question that cannot be
accessed by one route will often be accessible by another.
Match Paths (Traveling from AC’s Point of View)

|PR2020-00686

Apple EX1019 Page 143

IPR2020-00686
Apple EX1019 Page 144

6,131,085

177

To explain further, we will give some names to a search
that AC conducts using semantic links.

When AC starts at Qx, the current-Q, and examines
questions sequentially, looking for matches along a series of
linked questions, we say that AC is traveling in the Q-net.
The current-Q is called the origin of the search.

Rex does not see all the questions that AC travels to
(evaluates). Rex only sees the matches that AC chooses to
show to him. Rex may then decide to go to one of these
questions, in which case he jumps from one point in the
Q-net to another (we have also called this process “going to”
or “Zipping to a question”).

In searching for matches, AC can take many paths from
an origin question. We call all the paths that AC takes from
the origin by the name match path, while connected parts of
the total path might be called just paths or sub-paths.

The linked questions in a match path are called stops.
Stops that AC does not show to Rex are called hidden

stops.
Stops that AC does show to Rex are called displayed

stops.

(Since AC can only show a certain number of questions at
a time, only a certain number of stops will be displayed at
first. The rest will be hidden. If Rex asks to scroll through
matches then some of the hidden stops will become
displayed.)

Stops that AC determines are unsatisfactory matches are
called dead stops.

When Rex goes to a displayed stop that is directly linked
to the current-Q Rex is making direct jump.

When Rex goes to a displayed stop that is indirectly
linked to the current-Q, Rex is making an indirect jump.

Thus we have two different perspectives on traveling in a
Q-net: AC’s perspective, in which AC starts from Qx and
examines paths of linked questions; and Rex’s perspective,
in which Rex can jump to matches that AC determines are
best to show.

The Probability Screens Are Not Necessarily Conditional
When AC travels along more than one link on a path, it

does not necessarily multiply the match probabilities asso-
ciated with those links as if they were conditional probabili-
ties. That’s because how the probabilities are evaluated can
depend on many factors. For example, how the links were
created, and by whom, can be important.

Say, for instance, that one person enters ten questions
(Q-l through Q-10) and links them sequentially one after the
other as synonyms. He might think that Q-l is as much a
synonym to Q-10 as it is to Q-2. If AC travels from Q-l to
Q-10, multiplying conditionally from one question to the
next, Q-l and Q-2 will have the highest probability of match,
while Q-l and Q-10 will have the lowest—even though that
might not have been the user’s interpretation. In other
words, in the user’s mind, the synonym relationship between
Q-l and Q-10 might not depend conditionally on Q-l’s
relationships with any of the intermediate questions. On the
other hand, if ten different people enter questions that get
linked sequentially as synonyms, then Q-l and Q-10 might
indeed be the least synonymous (have the lowest probability
of matching). The same evaluation rules should not be used
in both situations.

As AC travels, it might, or might not, multiply condition-
ally from one question to the next. Either way, it will have
rules that adjust probabilities in various ways to suit different
situations. We cannot suggest rules for setting and evaluat-
ing the probabilities associated with links, but only say that
the possible situations are very diverse, and the idea of static,
conditional probability screens does not suffice.

5

10

15

20

25

30

35

40

45

50

55

60

65

178

Dynamic Link Probabilities
The match probabilities associated with either direction of

a link depend on a variety of A-stats. These A-stats change,
and so the match probabilities change.

For example match probabilities can depend on whether
there is more than one link between two questions. If there
is one link and then another is added, for instance, the match
probabilities will likely change.

Particularly important in affecting match probabilities are
A-stats having to do with the usage of links. AC registers the
travel that takes place on a link and the direction of the
travel. When we say travel we mean AC’s travel and Rex’s
jumps. The greater the traffic, in general, the higher prob-
ability that the link gives good information. Therefore, when
a link is traveled on in a given direction, AC can increase the
match probability in that direction. (AC can also decrease
the match probabilities of questions that are not selected by
Rex.)

However, it is also important that AC take into account
whether the traveling was satisfactory. Thus AC also takes
into account what Rex does at a question that he jumps
to—AC registers whether Rex made an o-request, whether
he got an answer, whether he complained about the answer,
whether he traveled to another question, whether he com-
plained about a link, and so on.

“Satisfaction information” can be very important in set-
ting match probabilities (and such information can be crucial
for ranking matches as well). There are different kinds of
satisfaction information, of course, and the differences are
important. For example, an o-request usually denotes more
interest than just a simple es-request (where a user simply
arrives at a question). While we cannot give any rules for
evaluating satisfaction information, the point is that AC
registers more than just travel along links. Any information
that tells whether Rex has been satisfied or not by the
matches shown can be used to alter the match probabilities.
By using this kind of information to set match probabilities,
AC “learns” how to use a Q-net to more successfully select
matches.

As shown in FIG. 35, say Rex 5040 is at Qx 5041, and AC
shows him three direct MS-Q’s: Q-l, Q-2 and Q-3. Now we
imagine that Rex makes a direct jump to Q-3 5042 and that
he makes an o-request at that question. These actions would
indicate a successful match selection, and so AC could
increase the probability that Q-3 is a satisfactory match to
0-1.

The situation is a more complicated when Rex makes an
indirect jump. Here there are intermediate links and
intermediate, hidden stops. And so, AC can have rules for
“strengthening” each link in the path that AC traveled on to
get to the question (the displayed stop) that Rex jumped to.
By “strengthening”, we mean increasing the match prob-
ability in the direction that AC traveled in to get to the
displayed stop. It’s important to note that traveling does not
have to include Rex’s jumps. If Rex asks AC to output an
answer, and that answer is an indirect answer, then AC will
be the only one to travel. AC will travel to the direct question
and get an answer. Moreover, AC will also register whether
Rex is satisfied by the answer or not. If he is satisfied, AC
can increase the match probability of intermediate questions
in the direction of AC’s travel. Conversely, if Rex is
dissatisfied, AC can decrease the match probabilities.

It should be pointed out, though, that rules for increasing
or decreasing match probabilities of intermediate stops
might not be valid, because that AC cannot detect which
probabilities in the intermediate path should be increased or
decreased.

|PR2020-00686

Apple EX1019 Page 144

IPR2020-00686
Apple EX1019 Page 145

6,131,085

179

As an alternative to (or in addition to) strengthening the
probabilities of intermediate links, AC can make a short-cut.
This procedure is discussed next.
Short-cuts

When Rex makes an indirect jump from Qx to Qy, AC
may make an implicit match link between Qx and Qy. When
we say implicit we mean that no user has created the link.
Such a link might only have one direction, from Qx to
Qy—where AC assigns a probability that Qy matches Qx,
but does not assign a probability that Qx matches Qy.

(Any user can create an explicit semantic link. And, if
numerous Rex’s go from Qx to Qy, then it is likely that one
of the Rex’s will link the two questions explicitly. Still, the
point is that AC can by itself make a direct link between Qx
and Qy indicating that Qy is a good match for Qx.)

By making an implicit link between Qx and Qy, AC
bypasses the intermediate stops between the two questions.
In this way, AC builds upon the links in a Q-net by making
its own links. AC can travel on its own links as it would on

any others when it searches for matches. In other words,
rather than evaluate the intermediate questions, AC may just
use short-cuts.

When AC takes a short-cut to Qy, that does not mean that
AC necessarily displays Qy—AC can continue its search
from that stop.

So we see, again, that semantic links create a network that
AC builds upon and “learns” how to use.
Best Matching: Semantic Links Used With Other A-stats

As discussed above, AC can use semantic link informa-
tion to identify a set of questions that have above a certain
chance of being satisfactory matches to the current-Q or Q+.
Yet AC’s task is not only to identify satisfactory matches but
to find the best matches. The ideal is to show Rex the

questions that he would want to see if he knew all the
questions and answers in AC.

So AC’s task is to come up with the best set to be shown,
and scrolled through. AC can accomplish this task by using
A-stats (including, of course, A-A-stats of Q-A-locations)
and its internal matching rules.

Rex may only ask AC to output answers, in which case
Rex only sees an answer or “no answer found.” Still, AC
must look for a best match.

A quick digression is in order about the sequence of
events. The previous discussion may have implied that AC
first finds a set of satisfactory matches using semantic links,
and then culls that list to find best matches. However, this
sequence has only been presented in order to more clearly
explain the role of semantic links. In reality, AC may
evaluate questions using semantic links and other param-
eters at the same time. It may also narrow down best match
candidates using other search parameters before it uses
semantic links. There are innumerable ways of making
searches more efficient. We not concerned with efficient

searching here, but are only trying to get across the main
functions of semantic links.

Therefore, for simplicity’s sake, we will assume that AC
has identified a set satisfactory matches and that it now has
to select best matches from that set. To illustrate, we will
consider another toy example. As shown in FIG. 36, we will
take nine linked questions, and assume that Rex 5050 is at
a current-Q 5051. Further, we assume that AC has identified
all the other questions as satisfactory matches. Finally, we
simplify and assume that AC is looking for one best match.

(The main simplification, actually, is in the number of
satisfactory candidates that AC would consider. In reality,
there could be billions of satisfactory matches for a given
question. Despite such huge numbers, A-stats enable AC to
narrow down a set of matches.)

10

15

20

25

30

35

40

45

50

55

60

65

180
A-stats as Screens

When Rex enters A-stats (search stats) as part of a Q+, he
can specify that they are optional or mandatory. If he
specifies “mandatory” that means that the search stat con-
ditions must be met. AC then screens out all questions and
answers that do not meet these conditions. For example, Rex
might specify that AC only show questions that have actual
answers that are below $0.25. AC screens out all questions
with missing answers, and all questions that have answers
above $0.25. In FIG. 36, such screen would leave only one
question 5052 and answer 5053.

AC will usually screen out questions and answers that do
not match optional search stats as well.

Once AC screens out questions and answers that do not
match search stats, it may still be left with too many matches
to show at once. AC may be in the same situation if Rex has
not entered any search stats. AC must then select matches to
show according its rules for ranking matches that is.

(Another possibility, which we ignore here, is for AC to
ask Rex for more search information.)
A-stats Used to Rank Matches

We cannot give any particular kinds of rules. Selecting
best matches is like selecting contestants for a beauty
pageant—there is usually no rigorous way to compare
different selection criteria. For example, Rex may enter as a
mandatory A-stat. actual answer in, and as optional A-stats:

time entered: after 12:00 PM 5054

price: under $0.20. 5055
Yet, in our figure, there is no question or answer that fits

both these criteria. So which should AC choose? Of course,
we can give no rules. As noted, the best approach to making
matching rules is an evolutionary one, where AC learns to
select matches to show.

(In case we have given the impression that AC must find
“the” best match by ranking all the satisfactory matches, it
should be noted that, in the interest of efficiency, AC will not
necessarily take the time to rank all the satisfactory ques-
tions and actual answers; it might just select the first matches
that it scores as “good enough,” just as humans usually do
when seeking something.)

Below we give some examples of the kinds of A-stats AC
can use in selecting best matches and explain how they can
narrow down choices, when used in default/ranking rules
(this subject taken up further in section 22.5).

Whether an actual answer is supplied directly to a ques-
tion. AC can default to showing questions that have actual
answers supplied to them. In AC, the vast majority of
questions will have no direct answers, and so this default is
an important way of ranking questions.

The time an answer was supplied. Given equivalent
choices, AC may default to showing the most recently
entered answer. There may be, for example, millions of
weather reports, but there is only one that has been entered
most recently.

The POE for an answer. Given equivalent choices, AC
may choose the question that has the highest POE. This
demand factor indicates the answers that are wanted more

than others and enables Rex’s to pool their efforts.
Quality stats about an answer. AC may default to showing

answers that have certain quality characteristics, such a low
refund rate, or a low complaint rate, or positive ratings. We
cannot describe the host of quality ratings that can be applied
to actual answers, but only say that they can be crucial to
determining what match questions and answers are shown.
(Often Rex will specify quality screens.)

Arrival stats for a question. Especially important in
choosing a match are arrival stats for a question—how many

|PR2020-00686

Apple EX1019 Page 145

IPR2020-00686
Apple EX1019 Page 146

6,131,085

181

people have gone to the question as compared to the other
questions being considered. The POE at a question is one
indicator of interest in an answer, but traffic alone to a
question can be pivotal as well. As mentioned, AC will also
take into account whether the travel was satisfactory.

Destination stats for a question. Destination stats are also
valuable for they tell where users have gone to from a
question. Thus, when AC is trying to find matches for a
question, it may default to the most popular destinations
from that question. Again, whether or not the users were
satisfied by those destination is key. (Note: a short-cut link
that AC makes can be looked at as a kind of destination stat.)

Semantic relationship of match candidate relative to the
current-Q. AC may favor questions that have certain rela-
tionships with the current-Q over questions that have other
relationships. For example, AC may choose a “more com-
plete” question to the current-Q over “synonym” question to
the current-Q. The point is simply that the semantic rela-
tionship of a potential best match question to the current-Q
can be used as a default, just as it can be used as an explicit
screen by Rex. (Often, these relationships will be indirect.
We discuss the meaning of indirect semantic relationships
below.)
Aside on Using the “Logic” of Semantic Relationships

What does it mean to say that Rex asks to see questions
that are indirectly linked to the current-Q by a certain kind
of link? If there is more than one link separating two
questions, how is AC to determine the relationship between
the indirect questions? For example, if Rex is at a question
and asks to see synonym questions that are indirectly linked
to the current-C, how can AC find them?

AC can apply the “logic” of the semantic relationships.
Semantic relationships, theoretically, have a logic of sets
behind them. But, since the sets are not well defined, the
logic only works probabilistically. And yet, there are no
standard probabilities. Therefore, there isn’t real logic. Still,
AC can use the theoretical logic behind the relationships.

For example, the synonym to synonym relationship is
commutative in the sense that if Q-A is a synonym to Q-B
then Q-B is a synonym to Q-A. It is also transitive in the
sense that if Q-A is a synonym to Q-B, and Q-B is a
synonym to Q-C, then Q-A is a synonym to Q-C. By
contrast, the less specific and more specific relationship is
not commutative. If Q-A is more specific than Q-B, then
Q-B is not more specific than Q-A. The relationship is
transitive in the sense that if Q-A is more specific than Q-B,
and Q-B is more specific than Q-C, then Q-A is more
specific than Q-C. Most of the semantic relationships
described in the next chapter have a some kind of commu-
tativity and/or transitivity that AC can use to determine—on
a probabilistic basis—the semantic relationship between
indirectly linked questions.

For example, as shown in FIG. 36, if Rex is Q-1, 5051 and
asks to see a more specific questions, AC can use the
Syn—Syn link 5056 and then an LS-MS link 5057 which
leads to a more specific question. From this question, AC can
use LS-MS links 5058 to show Rex other questions that are
even more specific.

Whether or not Rex explicitly states a preference for
questions that have certain semantic relationships to the
current-Q, AC can use the logic of semantic relationships
when evaluating satisfactory match candidates to find best
match candidates. As noted above, AC may favor questions
that have certain kinds of indirect semantic relationships to
the current-Q over other kinds.

Traveling and Getting Answers from Rex’s Point of View
Now we will look, from Rex’s point of view, at how

semantic links can be used to travel in AC and get answers.

10

15

20

25

30

35

40

45

50

55

60

65

182

We will take our toy Q-net of seven questions about the
weather in Miami. For illustration’s sake, we assume that the
seven questions are linked sequentially from top to bottom
by Syn—Syn links. This Q-net is pictured in FIG. 37. We
will assume that Q-5 5101 has an actual answer 5102. In

reality, of course, a Q-net can be vast, with a multitude of
actual answers and a greater multitude of questions.
1. Rex can ask AC to show matches.

As discussed, AC can use link information to find matches
to the current-Q. If Rex 5103 is at Q-2 5104, AC might show,
say, Q-1 5105, Q-5 5101 and Q 6 5107 which AC knows
probabilistically are matches because of the Syn—Syn links.
Once matches are shown, Rex can go to one. Rex may or
may not go to a question that has an actual answer. If he does
go to a question with a direct answer, Rex may ask to have
that answer outputted. This way to get an actual answer was
called the human matched answer output path (HMA output
path) in chapter 5.
2. Rex can enter new Q-specs and ask AC to show matches.

Here Rex is entering a new question, but AC may still use
the Q-net Rex is in to search for matches since the new

question, created by the new Q-specs, is very similar to the
previous current-Q. As above, Rex can go to one of the
matches.

3. Rex can enter A-stats (search stats) and ask AC to show
matches.

Using the Q-net that Rex is in, AC can look for matches
to the Q+. Rex can enter all kinds of A-stats, of course. Rex
can ask to see answers—missing and actual—according to
their popularity, cost, length, timeliness, and so on. As
discussed, A-stats are key to narrowing down choices and to
finding an actual answer. (Rex can ask AC to only show
match questions that have actual answers.)
4. Rex can ask AC to output an answer.

Rex can choose the machine matched answer (MMA)
output path, discussed in chapter 5. AC then searches for the
best answer in the Q-net. At Q-5 5101 AC finds an answer

by using the Syn—Syn links and outputs the answer. So,
because all the questions are linked, directly or indirectly,
with Syn—Syn links, Rex can land at any one of the
questions and let AC find a satisfactory answer through the
links.

5. Rex can enter Q-specs and ask AC to output an answer.
The points made in 4 above apply.

6. Rex can enter A-stats (search stats) and ask AC to outputan answer.

The points made in 4 above apply.
As mentioned above, not only can AC use link informa-

tion implicitly as search information, but Rex can use it
explicitly as well.
7. Rex can ask AC to show questions that are directly linked

to the current-Q. And he can specify the type of link. For
example, he can ask to see direct synonym questions. (If
there are a large number of such questions linked directly
to the current-Q, AC must apply other criteria to deter-
mine which linked questions to show.)

8. Rex can ask AC to show questions that are linked
indirectly to the current-Q. He can specify the type of link
as well. For example, he can ask to see synonyms that are
directly or indirectly linked to the current-Q.

9. Rex can use link information along with other A-stats, for
example, he can ask to see synonym questions with actual
answers under a certain price.
We have been discussing traveling in a single Q-net. But,

the Q-net that Rex is in may not have a satisfactory actual
answer. Therefore, AC can search other Q-nets. Moreover,
AC can enable Rex to specify whether a match should be
sought in the current Q-net or not.

|PR2020-00686

Apple EX1019 Page 146

IPR2020-00686
Apple EX1019 Page 147

6,131,085

183
Q-Net Statistics

AC can give Rex useful information about the Q-net he is
in. This information can help Rex decide whether or not he
should continue pursuing an answer in that Q-net. For
example, AC can tell Rex:

how many questions are in the Q-net,

how many actual answers are in the Q-net,

how many questions are related to the current-Q by a
given kind of relationship (AC will use the logic of
semantic links when the relationships are indirect),

how many satisfactory actual answers AC finds to the
current-Q.

Rex’s Main Search Goal Achieved

So, given a Q-net with an actual answer that satisfies Rex,
Rex does not need to guess the “right” question to ask in
order to find an answer. He can ask any question that AC
matches tentatively to a question in a Q-net. If Rex approves
of the match, he can go to the match question, which means
he is in the Q-net. If that question has no direct answer, he
can ask AC to output the best answer that AC can find in the
Q-net to the current-Q, or Q+. Or, he can ask AC to show

him the question(s) that have the best answer(s) to the
current-Q, or Q+. He can go to one of these match questions,
or ask to see more of them. If he goes to one, he can ask to
have the direct answer outputted. So, whether he uses the
HMA or MMA output path, his basic search problem is
solved.

(We are simplifying above. If Rex is at Qx, a satisfactory
actual answer at Qy may not be findable. We presume above
that a question, Qy, with a satisfactory actual answer, is
adequately linked to Qx in the sense that Qy has a reasonable
chance of being found from Qx, using semantic Links. We
are also simplifying in the sense that we assume that the
answer outputted is satisfactory. In fact, the answer output-
ted might not be satisfactory. If he is at Qx, Rex has a chance
of being satisfied by an actual answer that AC finds at Qy.)

As noted, Rex can travel extensively in the Q-net and see
numerous match questions before he asks to see any answer.
Semantic links enable him to see the best alternatives AC

can find to the current Q. Thus he may find a question that
describes a better answer than he originally envisioned.
Sue’s Main Search Goal Achieved

Conversely, Sue does not need to supply her answer to a
multitude of similar questions that a multitude of Rex’s have
asked. She can supply it to one question, Qy, in a Q-net, and
let Qy (and her answer, Ay) be found through the questions
that are adequately linked to Qy. So, her basic search
problem is also solved.
(Note: We ignore, for now, whether or not Sue’s answer is
better than all the others that can satisfy Rex’s current-Q or
Q+. Our point is just that Sue does not need to supply her
answer to a large number of questions.)

22.5 Searching In the Vast Bazaar

While Rex’s and Sue’s main problem—choosing any
suitable question at all—has been solved in principle, in
practice the profusion of similar questions in a Q-net means
that search problems will still exist. There will be vast
Q-nets with an abundance of satisfactory answers for Rex,
and an abundance of opportunities for Sue. Rex will want to
enter questions that minimize his time traveling to find a
satisfactory answer. And Sue will want to find the most
profitable question(s) she can to supply her answer to.

Vast Q-nets will also present an abundance of mirages for
Rex and Sue—questions with unsatisfactory answers, and
questions that seem to be profitable to answer, yet are not.

10

15

20

25

30

35

40

45

50

55

60

65

184

Metaphorically speaking, AC is a vast bazaar of linked
stalls (signomats). The problem is that a user can only see a
small number of stalls at a time, the number that can fit on
a screen. Behind those that can be seen, there may be
millions of stalls that have potentially satisfying answers. So
how can one find what one is looking for in this vastness?
Using A-Stats

As discussed, the main solution is A-stats. A-stats enable
Rex to identify a satisfactory answer to buy and enable Sue
to identify a profitable answer to supply within a Q-net,
because A-can drastically narrow down the possible match
questions and/or answers.
Aside on the Usefulness of Popularity

It has been noted (in this book and in Book I) that D-info
is important A-stat information which can be used by Rex’s
to find answers, by Sue’s to find profitable questions to
answer, and by AC to select good matches to show to users.
These uses of D-info, of course, apply where Q-nets are
concerned.

It should also be noted that AC can “reinforce” the

popularity of questions by showing popular questions as
matches more than unpopular ones. The relative popularity
of questions depends on the situation. In some cases, a
question might be favored over another by only one request
at first, but then gain in popularity because it is shown more.
The more that people go to a given question, the more AC
can show it over many other suitable alternatives. The same
applies to a Q-A-location.

There are innumerable ways of defining popularity, for
example: most popular answers by actual sales, most popu-
lar by destination that other users have traveled to most from
the current-Q, most popular by highest POE.

What may happen in AC is that even though thousands of
similar questions are entered for a given answer, AC will
match them against a far smaller number of “popular”
questions. In other words, AC may show users certain
questions far more than others, even though there is no great
semantic difference between the questions. That means that
a question may get thousands of questions linked to it, while
a similar question may get only one or two questions linked
to it. For example, there may be thousands of similar
questions linked to Today’s Official National Weather Ser-
vice report for Miami? because this question has proven
popular and the actual answer at the question has satisfied
thousands of users. AC might present this question as a
match for millions of similar questions. And users might
then link many of those questions to this hub question.

Using a question’s popularity as a selection criterion is a
basic way that AC can address the problem of what ques-
tions to show, given a profusion of similar questions. As
noted, the same principle applies to Q-A-locations. Popu-
larity is a basic way of distinguishing one actual answer over
others, or over potential answers.

Thus, taking advantage of popularity is a basic way that
AC can reduce the work load of users. And, it is a basic way
that AC can reduce its own calculation load.

Encouraging Accurate Semantic Links
Accurate semantic links are important to making searches

successful. Yet it can take effort to think about and name the

semantic relationship between two questions. And so, AC
can compensate users for making links.

AC can treat questions and links as investments where a
user is charged rent for storing a question or creating a link,
but is also paid for the use of the question or the link. “Use”
can mean Rex’s or AC’s travel through the question or on
the link. “Use” can also mean that an answer is bought at a
question. Royalties for the question or link can be based on

|PR2020-00686

Apple EX1019 Page 147

IPR2020-00686
Apple EX1019 Page 148

6,131,085

185

connect time charges and/or on the sales of the answer. As
with answers, AC may not charge storage fees, but may
simply pay a supplier when a link, or a question, is used.

Some users might specialize in the making of “accurate
roads” between questions. The benefit of making accurate
links is obvious. But it is not worth the time to make links

unless people will use them. It might only be worthwhile
spending extra time to link popular, high POE, questions.
(AC can include a road building mode that is distinguished
from other modes or is part of supply mode. In this mode,
a user’s actions would not be registered as demand
information.)

AC cannot in general calculate a POE for a link because
Rex’s would not ask for specific links to be made, as they
would ask for answers. AC could tell a user how many
people have specified a certain kind of linked question from
a given question. Alink maker could use this information. In
general, a link maker would have to guess how much a link
would be used, based on the two questions being linked.
Restraining Rules

To making the search task easier, AC can also include
functions for restraining the linking of questions. The idea is
to eliminate links that would not be used.

a. AC can charge users for entering questions.

b. AC can charge users for creating links.

c. AC can have “forgetting” rules, where questions and
links that are not used for a period of time vanish.

d. AC can forbid automated linking, for example, by
limiting a user to creating a maximum number of links
per period of time.

e. AC can have meta-rules that forbid plagiarism. Sue’s
may enter new questions simply to enter copied
answers under them. Thus the prevention plagiarism
can prevent unnecessary duplication of questions and
the links between questions.

Digression on Voice Input and Output
It may seem that the multiple choices created by linked

questions are suited only for screen input and output. But
often people would want to use the system by talking to it,
and often users might not have a screen. For example, user
might want to use a plain old telephone as a terminal. Yet
there is no doubt that choices are much harder to present by
voice because they take time to output.

More important and seemingly difficult is the problem of
entering a question and then facing multiple possible
matches, especially given linked questions. But this problem
can be addressed by using A-stats. For example, say Rex is
at What time does the Louvre open on Tuesday? and AC has
too many questions and answers that can match the question.
He can then add as search stats: Please give me the most
popular answer bought, under 25 cents. With these criteria
added to the Q-string, AC can find a question that is in the
same Q-net as the current-Q, and that has an answer that has
satisfied numerous other users.

(Note: though an answer may originally have been supplied
by text, it can be outputted by text-to-speech functions.)

Where voice recognition and AC are concerned, questions
have an inherent advantage. They are usually short. Thus a
user can enter a question by voice in multiple ways and AC
can look for a best match using the multiple phrasings.
Normally, voice recognition suffers from problems of
interpretation, but because questions are usually short
messages, multiple phrasings can enable the system to find
a good match. Once the system arrives at a good match,
A-stats can be added, especially those specifying the most
popular answers.

10

15

20

25

30

35

40

45

50

55

60

65

186

Note: Answers, even long ones, can be entered by voice if
AC has voice recognition functions. An answer can be
confirmed by the user or “cleaned up” at a later time.

22.6 Semantic Links and Economic Goals

Having glossed over economic issues in the previous
sections of this chapter, we now take up the economic
problems that are posed by the endless questions reality.

We said in chapter 3 that the “organizing goal” of AC is
to make good sales forecasts for answers, and that the
“foundation task” is to count how many people want an
answer. And we said in chapter 4 that the endless questions
reality poses a problem: given that endless questions can
refer to the “same” answer, how do we count how many
people want a given answer? As we said, we need a way to
match up questions that refer to the same answer.

Here we will explore all these notions a bit more. And we
will explain the basis of how semantic links enable AC to
accomplish its task and goal, in the face of the endless
questions reality of natural language.

To see how, we will look at the endless questions reality
from the point of view of Rex’s and Sue’s main economic
goals. These goals are another way of looking at AC’s goal
of making good sales forecasts. That’s because the rationale
behind AC’s main economic goal is to enable Rex and Sue
to fulfill their economic goals. In fact, AC’s goal of making
good sales forecasts for answers can be thought of as a
shorthand way of stating Rex’s and Sue’s goals. So let us
discuss those goals.
Rex’s Goal of Pooling Demand

The previous discussion—which did not focus on the
economics of getting answers in to AC—emphasized that
Rex was looking for an actual answer. In fact, Rex may be
looking for a missing answer. Generally speaking, when he
arrives at a question, he is looking for an answer. If he finds
no satisfactory actual answer at the question, then he is
arriving at the question in order to express demand for a
missing answer.

In doing so, he prefers, if possible, not to be alone. He
would rather pool his demand with as many to her Rex’s as
he can so that:

1. there is a greater reward for the answer, leading to a
greater chance in many cases that the answer will be
supplied, and,

2. the cost for the answer, per Rex, will be less, on
average.

For example, if Rex wants a weather report for Miami, he
would rather not get a report that is gathered just for him. He
would rather have other Rex’s agree to pay for it as well, so
as to share the costs of getting the report.

This goal is fundamental for Rex, and for the economic
efficiency of AC, and yet it poses a problem for Rex (and
AC). Rex’s problem (and AC’s) is to find all the other Rex’s
who want the same answer that he wants. He must do this

by finding the questions they have asked. In other words, his
task is to enter and find questions that not only describe the
answer he wants but that enable him to pool his demand with
that of other people. The problem is that there is no single
question, or small group of questions, for stating what he
wants, and thus, no single question, or small group of
questions, where he can pool demand. What to do then?

Semantic links provide a solution because they enable AC
to pool demand by combining demand information from
linked questions.
Pooling Demand in Q-nets

Q-nets—which are made up of semantically linked
questions, of course—enable Rex to pool his demand with

|PR2020-00686

Apple EX1019 Page 148

IPR2020-00686
Apple EX1019 Page 149

6,131,085

187

other Rex’s. One way Rex can do this by asking to be taken
to a popular question that matches the current-Q. (As noted,
popular can be defined in many ways in AC.) A popular
question may not be in the same Q-net as the current-Q, but
we will assume, for illustration’s sake, that it is. Such a
question may have an actual answer, but we will assume that
it does not because the idea of pooling demand is easier to
think about if no answer has been supplied (as discussed in
chapter 5, a question with an actual answer also has a
missing answer, so users also pool demand on questions with
actual answers).

For example, say Rex has found out, by asking AC, that
no question in the Q-net he is in has a satisfactory answer to
the current-Q. Say Rex is at What’s it going to do outside in
Miami? and only one person one has been there before. Rex
might then ask to be taken to the most popular synonym
question (one that is linked directly or indirectly by Syn—
Syn links to the current-Q). That question might be Weather
report, Miami?, which, say, one thousand people have gone
to previously. By intentionally going to this question, he is
intentionally pooling his demand with that of other people
(though he might have other motives as well).

This kind of straightforward pooling may not be not
necessary. By causing D-info to be registered at a question
that is linked to others, Rex will still be causing D-info to be
registered at those questions which, according to the seman-
tic links, might describe answers that will satisfy Rex’s
current-Q. The D-info of the multiple questions can be
combined to yield a POE for “an” answer to any of the
questions. In other words, a Q-net, or a given part of a Q-net,
can be thought of as a way of collecting demand for ananswer.

That is not to say that every question in a Q-net will refer
to the same answer. Indeed only a tiny fraction of questions
might be satisfied by the same answer. It is up to AC, using
semantic links, and other A-stat information, to identify
which questions might have answers in common. There will
not be clear boundaries about which questions refer to the
same satisfactory answer. In large Q-nets, most questions
will have nothing to do with one another. Only in sub-parts
of a large Q-nets will questions share common answers.
Thus, the principle remains that the demand for an answer
can be pooled in the Q-records of linked questions.

For example, say that Rex arrives at Weather report,
Miami? in the toy Q-net above. D-info registered at this
question can registered at every question in the Q-net—at
least in our toy example. (Normally, we cannot say exactly
how many other questions the D-info will be registered at.)

More precisely we should say that D-info that has been
registered at Qx can be registered at any other Qy in the
Q-net, should the need arise to calculate a POE at Qy. We
cannot say, in general, how many Qx’s AC will pull D-info
from, or how AC will combine the D-info from the Qx’s but
that is not our point here. The point is just that AC can
combine D-info from linked questions, provided AC thinks
that Rex’s who arrive at those linked Qx’s will buy an
answer that is supplied to Qy.

Thus, if Sue is at Qy and wants to know the POE at that
question, AC can pull D-info from Qx. For example, if Sue
is at NWS report for Miami?, AC can give her a POE based
on D-info from Weather report, Miami? and from the other
questions in the Q-net. D-info from Weather report, Miami?
can be used at NWS report for Miami? because if Rex is at
Weather report, Miami? he may get a satisfactory answer
that is a direct answer to NWS report for Miami?.

As can be seen above, while demand is combined from
multiple questions, it is still expressed at individual ques-

10

15

20

25

30

35

40

45

50

55

60

65

188

tions. In other words, Sue must check POE’s at individual

questions. (AC may enable here to select multiple questions
at once and ask for a combined POE. Still, the basis for the

POE’s is individual questions.)
The example above is a little misleading in the sense that

it may give the impression that all linked questions will
show the same POE. In practice, questions in a Q-net will
usually have different combined demand, different POE’s. It
depends on the questions and the links involved. The situ-
ations are highly variable, and D-info can be combined in
innumerable ways, depending on numerous factors. The
matter is taken up further in chapter 25.
(Note: we do not want to give the impression that D-info is
only combined for questions that are in the same Q-net. AC
will combine D-info of Qx and Qy whenever it thinks that
a Rex who is at Qx might get an answer from Qy. It does not
matter if these two questions are in the same Q-net.
However, Q-nets provide a direct way for AC to guess that
a Rex at Qx will get a direct answer to Qy.)
Digression on the Importance of Linking Questions Indi-

rectly
Indirect links allow for a vast number of questions to be

related to each other with respect whether they have answers
in common. AC can then identify whether two questions
might share the same answers, even though those questions
are separated by many links. The importance of these
connections should not be underestimated: they allow large
numbers of people, with AC’s help, to identify common
wants—whether a want is for an answer, a product, or an
action (by a person or a group).

Another word for a want is a goal. With AC’s help, then,
people can use linked questions to identify common goals,
and figure out (project, guess) how much they are collec-
tively willing to pay, in the present and future, for getting
those goals.

The reliability of combined D-info depends on the ques-
tions and links involved, and on the number of links sepa-
rating questions. For example, if two questions are separated
by fifty Syn—Syn links, those two questions may not even
be synonyms of each other. But then again, vast numbers of
questions may be linked much more closely. There will often
develop questions that have numerous other questions feed-
ing into them, which can happen especially when a question
has a good actual answer. Thus a million questions may be
separated by only two or three links. For example, AC might
connect millions of questions to National Weather Service
Report, Miami?, which we might assume has a weather
report that has proven to be satisfactory to millions of users.
Each question linked directly to this “hub” question is
separated from another by only two links, the link that each
has with the hub.

Of course we are just giving an example. Regardless of
the number of links separating questions, the point is that
indirect semantic linkages are a fundamental way of
connecting, melding, matching, collecting, pooling,
agglomerating—many words apply—“a” want that numer-
ous people have in common.

We might say that a question entered by a single person
represents the idea of “I want+a description of the thing that
is wanted.” We might say that linked questions entered and
connected by multiple people represent the idea of “We
want+multiple descriptions of the thing wanted.”

Indirect semantic linkages are not necessary for pooling
demand. They are only necessary, it seems, if natural lan-
guage is to be used.

Exactly how demand is pooled depends on AC’s rules for
evaluating the links and for combining D-info in Q-records.

|PR2020-00686

Apple EX1019 Page 149

IPR2020-00686
Apple EX1019 Page 150

6,131,085

189

Why is this pooling important? Because, in order to have
something produced—be it an answer, a physical product, or
an action—it is often necessary to share costs. Pooling
demand is often essential for finding out how many people
are willing to share the costs of having something produced,
and for showing how much a community wants one thing
versus another.
Sue’s Goal of a Good Sales Forecast

Sue’s goal is to find out how much she is likely to make
for supplying a particular answer. Now the answer may not
be exact, like a single telephone number. It may be some-
what fuzzy, like a weather report in which she is not sure
what details to include. But the point is that she has a certain
answer in mind that she is fairly clear on, and she wants to
find out how much she will get for supplying it.

Sue will decide what to provide based on how much she
thinks she will make. For example, in a weather report, she
will decide whether to include, say, ultraviolet information
based on whether she thinks that including that information
will be profitable. So her task is to envision a possible
answer to provide. Then she must check the POE for it at a
question (or questions) that it satisfies.

Yet if she wants to check the POE for a particular answer,
it will not suffice to see a POE based on demand that is

registered from people who have arrived at just one ques-
tion. She needs to find out (get a good projection of) how
many different questions her answer will satisfy, and more
precisely, how many Rex’s will buy the answer, and how
much each Rex is willing to pay. The way she finds out about
all those Rex’s is through D-info that is registered at all
those different questions that her answer fits. So, we are back
to the problem of finding out all the questions her answer
will satisfy. Then, the D-info of all these questions must be
combined in some way by a POF to yield a total POE for her
answer. Semantic links provide the basis of a solution to
these problems.
AC’s Solution Is to Combine Demand Information from

Linked Questions

AC combines D-info from semantically linked questions
in order to arrive at a POE for a given answer. To see how
this solution can work, we will consider the toy example of
our Q-net of seven questions about the weather in Miami,
which we repeat below. We imagine that it is made up of
only questions that are linked by Syn—Syn links. For
simplicity’s sake, we also assume that none of the questions
has had an answer supplied to it.

1. Weather report, Miami?

2. What’s the weather going to be like today in Miami?

3. What’s it going to do outside in Miami?

4. How hot is it going to get in Miami?

5. What does the weather say today in Miami?
6 . NWS report for Miami?
7. National Weather Service report for Miami?
In order to see how D-info can be combined, let us first

imagine how it came to be registered, how the Q-net was
created. We will imagine that it was created by three Rex’s
who we will call Andy, Bill and Cal. We picture the growth
of the Q-net in FIG. 38 and number each question to signify
when it was entered.

Andy enters Q-l 5201 and AC finds no matches that Andy
thinks are adequate, so Andy does not go to a match. Q-l is
therefore isolated in AC. Andy then presses an “Enter
Syn-Q” button to signify that the next question is a synonym
of the current-Q. Andy then enters Q-2 5202 and AC links
it to Q-l. (Q-2 is now the current-Q.) AC finds no match for
Q-2 that Andy likes. Andy presses “Enter Syn-Q” again and

10

15

20

25

30

35

40

45

50

55

60

65

190

enters Q-3 5203 which gets linked to Q-2. We’ll imagine that
there is no adequate match for Q-3 and that Andy stops, so
there is an isolated Q-net of three questions in AC.

Now Bill enters Q-4 5204 and AC finds no adequate
match. Bill then presses “Enter Syn-Q” and he enters Q-5
which AC links to Q-4. Now, we imagine that AC shows an
adequate match to Q-5 5205 which we imagine is Q-2. Bill
thinks the two questions are good synonyms and so he links
them and he goes to Q-2. He finds that no answer has been
supplied in the Q-net though and so he stops.

Now Cal enters Q-6 5206 and AC finds no adequate
match. Cal then presses “Enter Syn-Q” and he enters Q-7
5207 which AC links to Q-6. Now, we imagine that AC
shows an adequate match to Q-7 which we imagine is Q-l.
Cal thinks the two questions are good synonyms and so he
links them and he goes to Q-l. He finds no answer has been
supplied in the Q-net though and so he stops.

Now what we have is seven questions linked through
Syn—Syn links. We see a total of nine es-requests (recall
from chapter 5 that an es-request is one where a user has
arrived at a question) because Q-l and Q-2 have been
arrived at twice 5208. And finally we see that there are three
different Rex’s (in the figure, the es-requests that the users’
made are represented by the first letters of their names).

To combine D-info, AC needs rules for evaluating the
D-info. These rules can have a great variety, so again we
simplify drastically. For illustration’s sake we say that AC
assumes that the synonyms are “perfect” synonyms which
means that the questions are interchangeable. Under this
assumption, AC checks all the es-requests to determine the
number of different Rex’s who are responsible for them. AC
then bases its POE calculation on the number of different

Rex’s that have arrived at the linked questions. AC does not
base it POE on the total number of es-requests because six
of the es-requests are double counting. They simply signify
that the Rex’s have asked more than one question looking
for the same answer.

So, in order to calculate a POE at a given question—the
POE for an answer to that question—AC not only uses the
D-info registered at that question but also the D-info from
linked questions. Therefore, if Sue is at, say, Q-3, she gets
a POE based on three Rex’s, even though only one Rex 5209
has arrived at Q-3. This count works because we have

assumed that the questions are interchangeable. If a Rex is
at any of the questions, he will be satisfied with Sue’s answer
to Q-3 (presuming her answer is a satisfactory answer to Q-3
according to Rex). Moreover, he will be able to find her
answer from any of the Linked questions. Thus, Sue can
reasonably expect to have sales based on the demand
expressed by three Rex’s and not just one.

Now that is the basic idea, but of course, the situation is
more complicated in practice since questions are not exactly
interchangeable. In chapter 25, we discuss some of the
complications that arise.
Another Digression on the Importance of Linking Questions

Indirectly
As discussed, linking questions indirectly is crucial

because it allows AC to “combine D-info” about potential
customers. Where natural language questions are concerned,
linking questions is crucial for another reason as well: it
allows Sue to see the competition—in other words, it allows
her to identify answers that are alternatives to her answer.

By competition we mean actual answers and potential
answers. We will explain in chapter 25 how AC can use
semantic links to let Sue see the competition. For now, the
point is that indirect linking of questions enables Sue to doso.

|PR2020-00686

Apple EX1019 Page 150

IPR2020-00686
Apple EX1019 Page 151

6,131,085

191

Sue needs to see the competition in order to see if her
answer is better than the competition. She needs to see the
competition to find out if her answer will sell enough to
justify her time in getting and providing it. Thus, identifying
the competition is fundamental for Sue, and for the eco-
nomic efficiency of AC. From AC’s point of view, the goal
is to enable Sue to make as high a return as is economically
efficient (though we cannot define efficiency well). Another
way of putting it is that AC’s goal is to reduce the duplica-
tion of efforts by its users. As discussed, this goal is hard to
define well, yet it is still a central goal. Obviously, in order
to reduce the duplication of efforts, suppliers need to be able
to identify the competition. These matters have been dis-
cussed in chapters 8 and 14.

There is a second critical reason for identifying the
competition: Sue needs to see whether she will have to share
royalties with another answer (or answers)—whether she
will have to pay to use or build upon an existing answer. As
discussed, how much she will make depends on how much
she has to pay to other answers.

Chapter 23

Kinds of Semantic Links Between Questions

In this chapter we describe various kinds of semantic
relationships between questions that can be of use in AC, in
the form of semantic links. We cannot precisely define any
of these relationships. And we cannot be exhaustive; other
useful relationships exist between questions, of course.

The relationships given here are useful for different
reasons, as is best seen from looking at the relationships
themselves. The basic rationale behind them all was given in
the chapter 22.

All the operations for making the links described below
are directly analogous to those described for LS-Q’s and
MS-Q’s in chapter 21. While the meaning of the links is
different, the mechanics of linking remain the same. The
mechanics of linking were also elaborated on in chapter 22,
in the discussion of the growth of Q-nets.

Two questions can be linked by more than one link. That’s
because most of the links are not mutually exclusive. And
it’s because people may think different links are appropriate
between two questions.
A Less Specific Question to a More Specific Question

(LS-MS Link)
We have already discussed this relationship between

questions.
A Synonym Question to a Synonym Question (Syn—Syn

Link)
In this relationship, two questions are meant to describe

the “same” answer, the same set of satisfactory answers. For
example,

Synonym Q: Who wrote “Can’t Buy Me Love”?
Synonym Q: What group wrote the song “Can’t Buy Me

Love”?

AC can enable users to grade synonym questions (Syn-
Q’s) according to how similar their answers are supposed to
be. There might, for example, be two kinds of synonyms
distinguished, a close synonym and a loose synonym.

A close synonym is one where a question is supposed to
ask for the very same answer, or very close to the same
answer as another question. For example, the two questions
above might be considered close synonyms.

Aloose synonym is one where a question is meant to ask
for “roughly” the same answer as another. For example,

Loose Synonym Q: Why is it easier to balance on a bike
when you are moving than when you are standing still?

5

10

15

20

25

30

35

40

45

50

55

60

65

192

Loose Synonym Q: How does balancing on a bike work?
Loose Synonym Q: Why do pennies stay up on their edge

when they are rolling but fall over when they slow
down?

Having at least two different kinds of synonyms seems
useful because of the way that people ask for answers.
Sometimes were are really trying to make as close a para-
phrase as we can. Other times we are just trying to get the
“same” general request across.

What, again, does same mean? Well, when we make a list
of Syn-Q’s, we see that there is no such thing as the exact
same. We might say we “have in mind” the same answer, yet
if we look at the Syn-Q’s and what they describe, we realize
that there is no same answer that they describe; there is only
a variety of satisfactory answers that we call “similar” or
“very similar,” or “the same”. All these terms in quotes are
verbal dodges that allow us to avoid speaking about our lack
of understanding about how we refer to things. We do have
some understanding, of course, it just isn’t very clear or
explainable.

As a practical matter, since we do not have any clear way
of grading the similarity (sameness) of answers, it is the
habits of users that will determine whether any grading of
Syn-Q’s is useful or not.
A Less Complete Question to a M ore Complete Question

(LC-MC Link)
Two questions can have relationship where an answer to

one, the more complete question (MC-Q), is supposed to
always answer the other, the less complete question (LC-Q),
but an answer to the less complete question is not always
supposed to answer the more complete question.

This relationship sounds like the LS-Q to MS-Q relation-
ship of chapter 21. Indeed, an LC-Q can be less specific than
an MC-Q, , but it is not necessarily the case. That is because
in the LC-Q to MC-Q relationship, the content of the two
questions does not have to match, as it does in the LS-Q to
MS-Q relationship. The more complete question does not
necessarily add information to the less complete question.
Superficially the two questions may not even seem to be
about the same things. The user must recognize that the more
complete question describes a situation that somehow can
answer the less complete question. The examples below
demonstrate.

Less Complete Q: Did Elvis write “Can’t Buy Me Love”?
More Complete Q: Who wrote “Can’t Buy Me Love”?
Less Complete Q: Is Johnny in the class?
More Complete Q: What’s a list of all the students in the

class?

Less Complete Q: How far is it to Chicago from Wash-
ington?

More Complete Q: Let me see a Rand McNally roadmap
of the United States?

Less Complete Q: Is Paris the capital of France?
More Complete Q: What does the Encyclopedia Brit-

tanica say about Paris, France?
Less Complete Q: Is it vegetable, animal or mineral?
More Complete Q: What is it?
Less Complete Q: What’s the hypotenuse of a right

triangle with sides of 2 and 3?
More Complete Q: What’s the formula for finding the

hypotenuse of a right triangle, given the two sides?
Less Complete Q: What is the sum of the angles of a

triangle?
More Complete Q: What are the main differences between

Euclidean and non-Euclidean geometry?
Less Complete Q: Whose side were the French on in the

Civil War?

|PR2020-00686

Apple EX1019 Page 151

IPR2020-00686
Apple EX1019 Page 152

6,131,085

193

More Complete Q: Who were the allies of the North and
South in the Civil War?

A Related Question to a Related Question (Rel-Rel Link)
All the semantic links in this chapter tell about some

relationship between two questions. These are general rela-
tionships in that they occur frequently between pairs of
questions that we ask. For example, one question might be
more specific than another. Because we understand the
general idea behind such semantic relationships, we can see
that an answer to one question might be an answer to
another. The names given to the relationships are meant to
describe the ideas behind the relationships, very briefly. The
names are supposed to imply why the answers to on e
question are related to the answers of another.

There are many cases where we cannot describe the
semantic relationship between two questions briefly except
to say that the answer to one question might answer another.
In these cases, we use the poor name, Related Question to
Related Question. The corresponding link we call a Rel-Rel
link. A Rel-Rel link signifies that we cannot briefly and
generally imply why the answer to one question might
answer another question, yet that we can recognize the
possibility. Examples of pairs of Rel—Rel questions, such as
those below, demonstrate.

It is important to note that with Rel-Rel links, as with
certain other semantic the relationship between two ques-
tions can be “one-way” in that the answer to one question
might answer the other question but usually not vice versa.
AC can enable the user to indicate whether the relationship
is one way. For example in the first pair of questions below,
the name of the restaurant may give away the kind food that
the restaurant serves, but the kind of food the restaurant
serves usually will not give away the name of the restaurant.

Related Q: What’s the name of that restaurant on Willow
Street?

Related Q: What kind of food does that restaurant on
Willow Street serve?

Related Q: What’s on the menu of John’s Pizza?

Related Q: How much is a pizza at John’s Pizza?
Related Q: Why should you correct your posture?
Related Q: What does bad posture do to you?
Related Q: Where can you get hologram stickers in the

US?

Related Q: Who sells high security stickers in the US?
Related Q: How does a lawnmower engine work?
Related Q: How does an internal combustion engine

work?

Related Q: Why is it easier to balance on a tightrope when
you’re walking than when you’re standing?

Related Q: Why is it easier to balance on a moving bike
than on a stationary one?

Related Q: What kind of sunglasses block UV rays best?
Related Q: How can you find out how well different

sunglasses block UV rays?
Related Q: What actor has created lots of cool roles like

Lenny and Ratso Rizzo?,
Related Q: What actor starred in The Graduate and

Marathon Man?,

A Full Question to a Partial Question (Full-Partial Link)
Two questions can have a relationship were the answer to

one question, the “partial” question, gives part of the answer
to another, the “full” question.

Many times when we ask a question, we want more of an
answer than we will get. Conversely, many times when we
try to provide an answer, we can only give a partial response.
The link between a “partial” question and a “full” question
can be helpful in showing users what answer to expect from

5

10

15

20

25

30

35

40

45

50

55

60

65

194

a linked question. We might say that the answer to the partial
question is a partially satisfying answer.

As will be further discussed in chapter 24, this link is
especially useful where Sue sees a question and realizes she
can only supply part of the answer. So she enters a new
question, supplies her answer to the new question and then
links the new, “partial” question to the existing “full”
question. For example, the full question might be Why do
you get heart disease?. Sue might enter, One big reason you
get heart disease?, link it as a partial question to the full
question, and then enter her answer to the partial question.
Some more examples of full-Q’s to partialQ’s are:

Full Q: What a good and cheap restaurant?
Partial Q: What’s a cheap restaurant?
Full Q: What’s the architect’s floor plan of this Home

Depot?
Partial Q: What’s a rough sketch of how this Home Depot

is laid out?

Full Q: How do you get to Gary, Indiana from New York
City?

Partial Q: How do you get to Indiana from New York
City?

Full Q: What phone numbers can Thor be found at?
Partial Q: What’s Thor’s office number?

Full Q: How do you make a chocolate chip cookie?
Partial Q: What are the ingredients of a chocolate chip

cookie?

Full Q: Who are our ten largest trading partners?
Partial Q: Who are three of our largest trading partners?
Full-Q: Where can I buy laser cutting tools?
Partial-Q: What’s one directory where you might find

sellers of laser cutting tools?
Full-Q: How do you set up a company officially to do

business in the US?

Partial-Q: A checklist for incorporating your business in
the US?

Special Case Question to General Case Question (Spec-Gen
Link)
Somehow the brain can abstract from example cases a

pattern that is general, that applies to innumerable, similar
examples. We sometimes call the examples special cases.
We sometimes call the general pattern the general case.

Two questions can have a relationship where one question
describes a special case answer and the other describes a
general case answer. Because the general case can often
imply the specific case, an answer to the general case
question can often answer the specific case question. It is
also possible that the answer to the specific case question
will answer the general case question as well, because a
person may give a general answer to the specific case
question.

(In the world of pure logic, the general case solution may
automatically answer the special case question. However, in
the real world of questions and answers logic only works
sometimes. Therefore, we say that the answer to the general
case question may answer the special case question.)

We call a special case question a Spec-Q and a general
case question a Gen-Q. We call the link between them a
Spec-Gen link. Since we often move back and forth from
general case to specific case when we ask questions, a
Spec-Gen link between questions can be useful. Some
examples below demonstrate.

Special Case Q: What’s the hypotenuse of a right triangle
with sides of 2 and 3?

General Case: What’s the formula for finding the hypot-
enuse of a right triangle, given the two sides?

Special Case Q: How can we stop burglary?

|PR2020-00686

Apple EX1019 Page 152

IPR2020-00686
Apple EX1019 Page 153

6,131,085

195

General Case: How can we stop crime?
Special Case Q: How do people become cocaine addicts?
General Case: How do people become addicted to things?
Special Case Q: How can you balance on a bike?
General Case: What is the physics involved in balancing

yourself while moving?
Special Case Q: What causes leukemia?
General Case: What causes cancer?

Special Case Q: Where can I get a chair?
General Case: Where can I get furniture for my apart-

ment?

A Goal Question to Sub-Goal Question (G-g Link)
As discussed in chapter 4, questions can be thought of as

goals. And we know that often we cannot get directly to a
goal, we may have to get to a sub-goal first. Two questions
can have a relationship where the answer to one describes
how to get to a goal, and the answer to the other describes
how to get to a sub-goal of that goal. A sub-goal answer
might be wanted by someone looking for larger goal answer.
And a sub-goal answer may be all that someone can supply.
Thus a Goal to Sub-Goal (Gag) link can be a useful kind of
link to have in AC. Some examples demonstrate.

Goal Q: How do you get to California?
Sub-Goal: Where can you buy a map to California?
Goal Q: How can you stop cancer?
Sub-Goal Q: How can you reach only cancer cells with

drugs?
Goal Q: How can you build a house?
Sub-Goal Q: How can you build up a foundation for a

house?

Goal Q: How can you build a house?
Sub-Goal Q: How can you hire an architect?

Match Link

When a user (especially Rex) is at a current-Q and AC
shows tentative matches, the user can then select a match
and go there. Now, by going to a question, the user does not
necessarily mean that the question is a good match.

AC can include an option whereby the user explicitly
states that the go-to question is a good match for the
current-Q. For example, say Rex enters:

Current-Q: Chess results from Kasparov and Deep Blue
match?and AC presents the following three questions as
tentative matches,

Tentative Match: The score between Kasparov and Deep
Blue?

Tentative Match: Summary of the Kasparov versus Deep
Blue match?

Tentative Match: The complete games between Gary
Kasparov and Deep Blue?

Now, say Rex goes to the first match question. He can
select it, in order to go to it, and then hit a Match Link button
that AC includes to allow him to confirm that the match is

a good one. AC then creates what we will call a confirmed
match link (match link, for short) between the question that
was the current-Q and the selected question that has become
the new current-Q.

This kind of link helps AC determine what matches to
show to other users. In other words, match links enable
humans to validate or invalidate AC’s match choices, which
can then help AC pick future choices.

(Recall from the previous chapter that, regardless of
whether a user confirms a match with a match link, AC can
use traveling information to register user preferences for the
future presentation of matches.)

A match link is like a Syn—Syn link, but a better way of
thinking about it is simply that the two questions that Rex
links are good matches, according to that Rex, at the time he

10

15

20

25

30

35

40

45

50

55

60

65

196

is making the link. Here we mean good matches in the sense
of AC’s goal of selecting matches that Rex most wants to
see, not just synonyms. Match links can help in that respect,
and should not be thought of as narrowly as synonyms.

Rex might not even link that two match questions are
synonyms. The question he goes to might be a better one
than he thought of originally. The idea behind the link is that
the go-to question describes an answer that Rex wants which
is similar to the answer described by the previous question
he was at. For example, taking the chess questions above,
Rex might have wanted originally just to know the score
between Kasparov and Deep Blue, but seeing the second
question, he might have decided that a summary of the
match is a better answer, the answer he really wants after all.

AC can enable users to grade matches on a scale, say
1—10, or it might have a palette of fewer classifications such
as: Great Match, Adequate Match and Poor Match.
(Note: Where the making of match links is concerned, a user
does not have as many options as with other links because
match links are made when a user travels from one question
to another. It is, of course, possible for AC to enable users
to make match links at any time, between any two questions
on screen.)
Rephrase Link

Searching for an answer, Rex will often enter various
questions that might correspond to the “same” answer, or
some of the same answers. He might not specify the rela-
tionship between two such questions except to say that they
are both entered in pursuit of the same answer. AC can
enable him to do this by hitting a “Rephrase” button before
entering a new question. This command signifies that the
new question to be entered is a rephrase of the previous
question entered. The system can then create a rephrase link
between the two questions. The user may further specify the
relationship between the two questions later. Or he may not
and the link would remain to identify the questions as
rephrases of each other.

The advantage of a rephrase link is that it is easier, while
pursuing an answer or a set of related answers, to hit the
Rephrase button rather than think about each question’s
relationship to the previous question asked.

The rephrase link enables Rex to make a mini-net easily
(mini-nets were discussed in chapter 22). The mini-net can
then be joined to a larger Q-net. While other users can ask
to see the rephrase questions linked to a given question, the
main value of a rephrase link is to enable the quick con-
struction of mini-nets which can then be connected to larger
Q-nets and used to feed into those larger Q-nets. Thus,
rephrase questions can enable other users to find their way
into the larger Q-net, presuming that one of the rephrase
questions is found and matched by other users.

To illustrate, we will assume that Rex enters the following
questions and that, after each, AC shows no matches that
Rex likes, until the last question is entered. Each time he
sees no match he likes, he enters a Rephrase command and
enters another question:

Q-1: Why is it easier to balance on a moving bike than on
a stationary one?

Rex presses Rephrase and AC links the next question with
the previous one,

Q-2: Why does a penny stand up while it’s rolling but then
falls down as it slows down?

Rex presses Rephrase and AC links the next question with
the previous one,

Q-3: Why can a tightrope walker balance more easily
while walking than standing?

Rex presses Rephrase and AC links the next question with
the previous one,

|PR2020-00686

Apple EX1019 Page 153

IPR2020-00686
Apple EX1019 Page 154

6,131,085

197

Q-4: What about hopping, why is it easier to stay up when
you’re hopping on one foot than when you’re standing
still?

Rex presses Rephrase and AC links the next question with
the previous one,

Q-5: What’s the general theory of balancing while mov-
ing?

Rex presses the Rephrase and AC links the next question
with the previous one,

Q-6: The physics of balancing on a bike?
Now, we imagine, AC shows a match that Rex likes, say,
Balancing on a bike explained?, and he goes to this question,
which might be part of a large Q-net.

The result of all these questions and rephrase links is that
Rex has created a six question mini-net, a mini Q-chain.
Now, Rex goes to the match question he likes which, we
imagine, is part of a larger Q-net. AC does not automatically
link the mini-net with the larger Q-net; it enables Rex to
create a link. For example, Rex can make a Syn—Syn link
between the last question he entered and the go-to question.

Even if Rex does not make a link, AC still would register
that Rex went to the go-to question from the last question
Rex entered, Q-6. Registering this fact predisposes AC to
showing Q-6 as a match for Balancing on a bike explained?
and further, tells AC that other users might want to travel
along the same path. In fact, as far as showing matches, AC
might weigh traveling information more heavily than
explicit links made by users. As noted, how the information
is weighed depends on rules that will evolve from experi-ence.

Now, imagine that another Rex enters a question that
matches a question in the mini-net. Because of the explicit
link, and/or traveling information, between the mini-net and
the larger Q-net, this other Rex can also gain access to the
larger Q-net.

(Note: Where the making of rephrase links is concerned,
a user does not have as many options as with other links
because rephrase links are made when a user enters a new
question and wants to link it to the previous one. It is, of
course, possible for AC to enable users to make rephrase
links at any time, between any two questions on screen.)
Aside on the Prevention of Double Counting

A brief aside is in order about another important use for
the links discussed. These links, especially the rephrase and
Syn—Syn links, are important for preventing the double
counting of requests. If Rex asks, say, ten questions and
links them all with a Syn—Syn links, AC can evaluate those
request as a single request for an answer. That’s because Rex
is really only looking for one answer. But, if Rex enters these
questions separately, so that they are not linked, AC may
think that Rex has made ten requests for ten different
answers, which can lead to false request counts.

If Rex has not connected his questions, other people
might. So AC can use links that other people make to
identify where Rex may have made more than one request
for the same answer. Generally, where AC detects that two
questions are for the same answer, AC will only count one
request per Rex who has arrived at those questions, even
though a given Rex may have arrived at more than one of
those questions.

But this general idea is crude. How to combine D-info is
a subtle problem. The topic is taken up further in chapter 27,
and even there it is treated superficially. To repeat, the
combining of D-info will require rules based on experience,
not just analysis. The point here is just that AC uses semantic
links not only for adding up requests from different
questions, but also for preventing falsely inflated request
counts.

10

15

20

25

30

35

40

45

50

55

60

65

198

Drawing of Some Screen Options for Making Semantic
Links

As shown in FIG. 40, in addition to enabling users to enter
MS-Q’s AC can include options for entering and designat-
mg:

Less Specific Questions 5470
Synonymous Questions 5471
More Complete Questions 5472
Less Complete Questions 5473
Related Questions 5474.

Rephrase Questions 5475
(Note, buttons for designating the other semantic rela-

tionships described in this chapter are not shown because the
figure was drawn for CIP 2. Obviously, AC can include more
buttons on screen for designating the other semantic links
described.)

Chapter 24
Actual Answer Links

Just as AC can enable users to create semantic links

between questions, it can enable users to create semantic
links between actual answers. We will call these actual

answer links (A—A links). They are a kind ofA—A-stat and
so are recorded in Q-A-records. They are created in between
Q-A-locations.

While Q links compare descriptions of answers, A—A
links compare actual answers themselves. In other words,
while Q links refer to missing and actual answers, A—A
links only refer to particular pairs of actual answers.

A—A links are directly analogous to Q links and share
many of the same characteristics. They both name semantic
relationships. They both have two directions. They both can
be looked at as probabilistic screens (though A—A links
would generally be more reliable because they refer to
particular answers rather than potential answers). They both
are used to combine D-info to yield POE’s for answers.

All the semantic relationships and links described in the
previous chapter, except the Rephrase relationship and link,
have corresponding A—A relationships and A—A links. For
example: synonym answer to synonym answer, less specific
answer to more specific answer, and less complete answer to
more complete answer. The relationships that are the same
as those between questions are the first category of relation-
ships between actual answers. There are two more useful
categories.
Negations of Relationships Between Questions

The relationship between two actual answers may be
different from that described by the Q link, if any, between
the direct questions to those actual answers. Two questions
might be linked as, say, synonyms yet their actual answers
might be very different. For example, How long is Gone
With the Wind? and What’s the length of Gone With the
Wind? might be linked as synonyms, and yet, their actual
answers might be, The movie is three hours long. and, The
book is five hundred pages long These answers would
not be synonyms. The questions would have been inter-
preted differently by different Sue’s. Thus negation links,
such as “not a synonym”, can be useful. Each link in the first
category above has a corresponding negation.

It should be noted that an A—A link that differs from a Q

link does not nullify the Q link; the A—A link simply
describes the relationship between two actual answers to two
questions, while the Q-link still describes the relationship
between potential answers to the two questions.

(Note: Semantic relationships between questions also
have negations but they are not, generally, as useful as are
those that refer to actual answers.)

|PR2020-00686

Apple EX1019 Page 154

IPR2020-00686
Apple EX1019 Page 155

6,131,085

199

Quality Comparison Links
Another category of semantic relationships has to do with

quality comparisons. AC can enable users to make A—A
links that compare the quality of two actual answers. Innu-
merable quality comparison are possible. Better, worse,
more verified, newer, improved, better written, more up-to-
date, higher probability of being true, and so on. A quality
comparison link would normally be made by Sue who wants
to compare her answer to another answer, though Rex could
make one as well. AC would include standard names for

quality comparison links, and would also enable users to
enter custom descriptions that compare two answers.

Quality comparisons include those that describe a
difference, a change, from one answer to another. As dis-
cussed in section 5.2i, AC can enable users to label the
differences between two direct answers to the same question.
Users can do the same thing in comparing two answers to
different questions by using an A—A link. The link can tell
how one answer differs from another.

It should be noted that as long as the direct questions of
two actual answers are linked, AC itself can use quality
statistics in the Q-A-records to compare the actual answers.
Still, explicit A—A links about how two answers compare
can be useful and allow comparisons that users draw them-
selves between two actual answers.

(Note: Quality assertions represented in A—A links are
one way to give a new answer an opportunity to compete
with an “entrenched answer.” Sue can link her new answer’s

Q-A-location to an existing answer’s Q-A-location and
assert in various ways that her answer is better. Such
assertions can be described in an A—A link.)
Mechanics of Linking Actual Answers

To link Q-A-locations, a user needs to identify the Q-A-
locations. A convenient way is for a user to be at one
Q-A-location, and then go to, or create, another and then link
the current Q-A-location to the previous Q-A-location. AC
can enable users to link Q-A-locations in this way.

In order to see actual answers that are linked to a given
Q-A-location, a user must be at the Q-A-location or must be
seeing an actual answer. Either way, AC can enable the user
to call up A—A links, which can then be used to go to other
Q-A locations or to get the corresponding answers them-
selves.

Using A—A-Links
Users and AC use A—A-links for traveling and searching,

just as they can use Q links. Of course, an A—A link will
lead to a Q-A-location rather than just a Q-location.
Confirming or Rejecting a Link

AC can enable users to confirm of reject (challenge) an
A—A link. The same goes for the other kinds of links
described below.

Question to Answer Links (Q-A Links)
Another distinct category of semantic links are links

between a question and an actual answer—between a
Q-location and a Q-A-location. We might call such links
question—answer links (Q-A links).

The important links here are those that negate, or differ,
from what is said in a Q link. That is because, as noted, an
actual answer might not have the relationship to an indirect
question that has been described by the Q link between the
answer’s direct question and the indirect question. As
discussed, while a Q link may reasonably describe the
relationship between potential answers, an actual answer
itself may be different than expected or hoped for.

For example, say
Q-1: What kind of food does that restaurant on Willow

Street serve?

10

15

20

25

30

35

40

45

50

55

60

65

200

is linked by a Rel—Rel link to
Q-2: What’s the name of that restaurant on Willow Street?

And say, Q-1 has no answer and Q-2 has the following
answer: Kramerbooks.

Now, this answer may reveal to some people what food
the restaurant serves, but may not reveal anything to other
people. And so, for some people, the answer to Q-2 will not
answer Q-1. Someone going from Q-1 to Q-2 who is
therefore disappointed by the Rel—Rel link can enter a
negation link (a link that tells someone at Q-1 that the
answer to Q-2 will not satisfy Q-1).

Thus, as with A—A links that are negations, a Q-A
negation link can prevent Rex and AC from using a mis-
leading Q link. Anegation blocks people at Q-1 from getting
a particular answer at Q-2, or from going to Q-2 because of
that answer. (Other answers, if any, at Q-2 may be
satisfactory).

However, it should be noted that negation links do not
block travel with certainty. Just because one person has
entered a negation link does not mean that others will agree
with it. Other people may be satisfied by what a Q link has
described. And AC will register, in various ways, the satis-
faction of these travelers. As with other links, then, a
negation link is one factor that can be used to set match
probabilities in a given direction of travel. As with all
semantic links, a negation link is a clue that AC uses to help
Rex find the questions and answers that will satisfy him best.
Answer to Question Links (A-Q Links)

Another distinct category of semantic links are links
between actual answers and questions—between a Q-A-
location and a Q-location. We might call such links answer-
question links (A-Q links). These can be useful because an
actual answer can naturally lead to a question. In the next
chapter we will see an example of a follow link that connects
an actual answer with a follow-up question. Here we only
describe one example: an improvement request link that
connects an actual answer with a question that describes an
improvement.

As discussed in chapter 6, Rex can enter an improvement
request that is part of a given question yet is not a question
of its own.

Alternatively, Rex can enter an improvement request that
is a question. One way Rex can do this is to be at a question,
see an answer, be dissatisfied and then enter an MS-Q to the
current-Q, the MS-Q describing the improved answer Rex
wants. Another way is for Rex to enter a synonym question
that describes the improved answer he wants.

Yet if Rex doesn’t want a full new answer but just a
“piece” added to an existing actual answer, then he can ask
a question for that piece. For example, if a question is
Weather report, Miami? and the actual answer is a weather
report that does not include a UV index, Rex might be
satisfied with the answer except that he wants to know the
UV index. And so, AC can enable him to enter a question
asking for the UV index and link that question by an
improvement request link to the actual answer (to the
Q-A-location of the actual answer).

UV index for Miami? will be an individual question in AC
with its own Q-record. At the same time, users who get the
direct answer to Weather report, Miami? can see additional
questions—such as UV index for Miami?—that are linked
by improvement request links. Users can then go to these,
and also supply answers to these. The answers to the linked
questions will have their own POE’s.

Having separate questions for improvement requests can
make it easier to calculate POE’s.

(A user can, of course, incorporate an improvement
answer within the answer it improves upon to make a new
actual answer.)

|PR2020-00686

Apple EX1019 Page 155

IPR2020-00686
Apple EX1019 Page 156

6,131,085

201

Chapter 25

Combining Demand Information
How Much Will an Answer Sell?

In the previous chapter we were interested in matching up
questions, based on the idea that the answer to one question
might also be a satisfactory answer to a directly or indirectly
linked question. Here we are interested in something else in
addition to whether an answer will satisfy a question; we are
interested in how much the answer will sell.

Assume a potential supplier (for convenience, we will call
the user just Sue) is at a question in a Q-net. And assume Sue
wants to see the POE for the answer to this question. The
problem is: how can AC combine the D-info from the
Q-records of the questions in the Q-net to arrive at a
reasonably accurate POE.

(We’ll call the question that Sue is at a check question
because she is checking the POE at that point in the Q-net.)

Let us pose the problem in a more simplified way. Given
a check question, Q1, linked to another question, Q2, what
does a request at Q2 foretell for the sales of the answer to
Q1?

Normally a check question will be in a large Q-net, not
just a two question Q-net. So the real problem is what does
the D-info in the Q-records of a large set of linked questions
foretell for sales of the answer to the check question.

Because we are dealing with numerous questions—quite
possibly thousands or millions in a Q-net—certain important
problems arise in calculating the POE for the answer that
Sue potentially intends to supply to the check question. We
will list three key problems and then give some techniques
for dealing with each.

1. Which questions will Sue’s answer satisfy?

2. For which questions, and which Rex’s, will Sue’s
answer be the best answer?

3. What percentage of the answer’s royalties will Sue
have to share with other Sue’s.

These three questions are critical for arriving at a reason-
able POE. Sue’s answer not only has to satisfy multiple
questions (satisfy some fraction of the Rex’s who asked
those questions, that is) but her answer must also be better
than the alternatives that the Rex’s have. Moreover, her POE
depends critically on whether she will owe some other
Sue(s) royalty credit based on the copy/credit rules (the
property rights) of AC.

(Note: At times the emphasis in this chapter will be on
projecting the sales of potential answers, yet just about every
point made applies to projecting the sales of actual answers
as well.)
Rules for Combining the D-info of Linked Questions

Metaphorically, we might think of a question location as
a movie theater, a question as the movie title on the marquis,
a Q-record as the box office, and an answer as a movie. More
often than not, the movie won’t even be showing, it will be
a potential movie. For this metaphor, let’s assume that no
movie is actually showing. Now, when a patron shows up at
the theater, he drops a metaphorical ticket into the box office.
In this special theater, the tickets are actually questionnaires
about how much patrons are willing to pay for the movie.
The robot ticket taker will automatically fill out some of a
ticket and the patron will also fill out some of the ticket. Our
problem is, how does AC project the sales of a given movie
by combining the ticket information from numerous, linked
box offices of different theaters that are showing, or poten-
tially showing, movies with different titles.

As an illustration, FIG. 41 shows a Q-net of nine ques-
tions. “Box offices” are pictured as boxes in the middle of

10

15

20

25

30

35

40

45

50

55

60

65

202

the circles that represent questions. The problem is to figure
out what the “box office” information at one question, say,
Weather Report for Miami? 5500 will foretell for the sales
of an answer to another question, say, National Weather
Service Report, Miami, 100 Words? 5501.

When we say that AC “combines” D-info from different
Q-records, we mean that a POF uses D-info from the
Q-records of multiple, linked questions. Now that is not
telling anything about how a POF might use the D-info
collected from different questions. Still we can’t say many
specific things about how a POF combines D-info.

We can make certain generalizations. For example, we
can say that a POF would use request information on a
probabilistic basis. But that is true regardless of whether the
D-info comes from a check question or from a linked
question. We can say that a POF would include rules for
canceling phantom requests, where a user has arrived at
numerous linked questions but only wants one answer. But
such generalizations don’t tell much. The fact is that POF’s
for Q-nets—POF’s for combining D-info from various
questions—have not been invented yet.

So, in this chapter we will not be focusing on POF’s, but
on how Sue can help AC to arrive at POE’s for answers to
questions in a Q-net.
Sue’s Feedback Can Be Crucial

The main message of this chapter is that Sue’s feedback
can be crucial in helping AC arrive at a POE for Sue’s
answer. How so? Well, to solve the three problems above,
Sue’s human knowledge can be critical.

(In Chapter 9, we discussed Sue’s role in adjusting values
in a POF. Here we are talking about feedback that applies to
Q-nets.)

Recall, AC does not know that Sue’s answer will satisfy
a given question. AC makes a probability judgment based on
averages from large statistical samples. But Sue’s answer is
a particular answer and she can tell better than AC whether
her answer will satisfy particular questions. And so, AC can
enlist Sue’s help in evaluating whether her answer will
actually satisfy the questions in the Q-net that AC guesses it
will satisfy. Sue’s judgment will not be perfect of course,
because she cannot know how many Rex’s her answer will
satisfy ultimately, yet her judgment should, on average, be
better than AC’s.

Moreover, Sue’s knowledge will usually be better than
AC’s in judging whether her answer is better than competing
answers, especially competing actual answers.

Let us first consider Sue’s role in solving problem 1
above, the problem of evaluating how many questions her
answer will satisfy.
Having Sue Sample a Q-net

Sue cannot check every question that AC pulls D-info
from, the Q-net will usually be too big. AC usually must
show her a sample.

For the sake of illustration, let us imagine that Sue’s check
question is in a Q-net made up solely of 10,000 synonym
questions. Let us further imagine that AC assigns Sue’s
answer a 50% probability of answering each individual
question in the Q-net. AC can show Sue a sample of the
questions in this Q-net and ask her what questions she thinks
will satisfied by her answer. She can then mark the questions
that she thinks her answer will satisfy—yielding a percent-
age. AC can then take this percentage and adjust the prob-
ability assumption it has made.

Of course, not all links in a Q-net will be Syn—Syn links.
But the principle remains. AC uses semantic links to come
up with guesses about the probability of an answer satisfying
questions, and Sue helps AC adjust those probability
guesses.

|PR2020-00686

Apple EX1019 Page 156

IPR2020-00686
Apple EX1019 Page 157

6,131,085

203

In showing a sample of a Q-net, AC will probably favor
popular questions. As previously noted, using popular ques-
tions is a key way to reduce not only AC’s calculation load
but the work load of users.

Of course, AC does not assign each question in a Q-net the
same probability of being satisfied by Sue’s answer. AC will
assign differing probabilities to questions based on the
semantic links involved and on a variety of factors. Thus,
AC can arrange questions in a probability distribution. For
example, AC can put questions with a 80—90% chance of
being satisfied in a group.

AC can then show Sue questions grouped by probability
interval and have Sue say what percentage of each group she
thinks will be satisfied.

(AC does not have to present questions grouped by
probability intervals. It can present Sue a mixed bag of
questions that have widely different probabilities assigned to
them.)

Regardless of how AC presents a sample or samples to
Sue, AC must adjust its probability guesses at various
intervals. For example, if AC shows Sue a sample of 100
questions that it thinks have a 10% chance of being satisfied,
and Sue thinks that only 1 of these will be satisfied by her
answer, then AC knows that it has to adjust the its prob-
ability estimate for the interval around 10%, and further that
is has pulled D-info from too many questions in a Q-net.

Thus, Sue’s feedback not only helps AC adjust its prob-
ability estimates for the match candidates it picks, but helps
AC determine how wide it should look for match candidates

in a Q-net. And so, Sue’s feedback can help AC solve
problem 1 above.
Seeing and Analyzing the Competition

In attacking problems 2 and 3, sampling a Q-net is not as
important. Their solution is mostly a matter of seeing the
competition. AC needs to show Sue the most likely com-
petitors to her answer. (Her answer may be potential or
actual.) Sue can then pop back to AC what percentage of
people she think will prefer her answer.

To find the competition, AC would employ various meth-
ods. Primarily, AC would search for answers that are good
matches for the check question. Among these, AC would
show:

a. Actual answers that have high POE’s.
b. New actual answers even if they do not have high

POE’s (an actual answer might not have a high POE
and yet still be an important competitor).

c. Missing answers that have high POE’s.
d. Missing answers that are covered by a reservation

rights (answers that people have committed to supply-
ing that is).

(Note: AC might also show preference data that AC can
enable Rex’s to enter. By preference data we mean that AC
can enable Rex’s to state preferences between answers. This
point has not been discussed previously but it should be
noted, as this kind of information can be important.)

We can think of the contest between Sue’s answer and

other answers as a contest between movies. AC keeps track
of which movies people go to and which movies they prefer
to go to, given choices among movies. Thus, AC can show
Sue the main movies that will compete with hers and she can
respond as to how well she thinks her movie will do.

Competitive answers are a critical factor in a POF. AC
must have default assumptions about how competing
answers will steal sales from Sue’s answer. And yet these
assumptions will usually be crude. Although her estimates
may be crude as well, it is often better for Sue to adjust these
assumptions, at least where the key competitors are con-
cerned.

10

15

20

25

30

35

40

45

50

55

60

65

204

Another important factor is the probability that a new,
better competitor will arrive at some point in time. While
Sue may not have any good ideas about this, she may have
better ideas than AC.

Finally, but not of small importance, is royalty credit.
Seeing alternatives, also is necessary from a credit stand-
point. Sue must see the answers she might owe royalty credit
to. Linked questions enable Sue to see who she might owe
credit to. In addition, if she has entered an answer, they
enable her to spot pirates. AC can alert her when answers are
stealing sales ways from her answer. She can then examine
the competing answers and see whether they owe her credit.

(AC might assume that Sue gets full credit, allowing Sue
to lower that figure if necessary. As discussed, Sue is the one
who needs to assign the credit AC cannot figure out whether
her answer should include royalty citations to another
answer.)
Polling Rex’s

To help solve problems 1 and 2 above, AC can also enable
Sue to poll a sample of Rex’s directly. She can then solicit
their opinions as to whether the answer she is thinking about
supplying will satisfy them, and whether they will prefer it
to the alternatives. She can, of course, ask Rex’s any
relevant D-info, such as how much they are willing to pay
for her planned answer. She can then use this personally
polled D-info to give AC feedback for calculating a POE.

Chapter 26

Follow Questions, Situation Stations and
Elaboration Lists

Quick Recap
Speaking generally, we can say that the purpose of

semantic links is to enable people to describe and find
answers that they mutually want. We accomplish this goal
through semantic links in two general ways. One, in some
cases we take advantage of the way that people naturally ask
questions, for example the fact that they rephrase questions
(and so we have a rephrase link). Two, we enable people to
describe a relationship between two questions where that the
answer to one question might also satisfy the other question,
for example, two synonym questions might have answers incommon.

The point is not to repeat previous material but to say that
AC can also include useful semantic links that describe

semantic relationships between two questions where the
questions do not have any answers in common. We do not
mean the negations of relationships already described, we
mean that additional semantic relationships exist that can
help people find answers they mutually want. We will
describe one such relationship and link below.
Spur Answers to Follow Questions (Spur-Follow Link)

The key, new relationship we have in mind will be called
a spur-follow relationship, and the corresponding link will
be called a spur-follow link (follow link). A question that
follows another question, or follows an answer, will do so
through a follow link, and that question will be called a
follow question. The question or answer that it follows will
be called a spur question or spur answer.

The idea of a follow-Q is a familiar one, the more
conventional term being a follow-up question. In other
words, a follow question is a second question that occurs to
someone who asks a first question. Or, perhaps more
commonly, it is a question that occurs to someone upon
seeing or hearing an answer.

For example, a person might ask, What is the National
Weather Service report for Miami today? and upon getting
the answer might ask a follow-Q, How does the National
Weather Service gather its data?

|PR2020-00686

Apple EX1019 Page 157

IPR2020-00686
Apple EX1019 Page 158

6,131,085

205

A follow-Q is like any other question in that it can be
connected to other questions by any kind of semantic link.
It is a follow-Q only relative to a given spur-Q or spur-A.
The follow link is simply a new link that shows that a
relationship exists between two questions or between an
answer and a question. This link is useful because more than
one person who finds an answer might have the same
follow-Q occur to him. Likewise, more than one person who
asks a question might have the same follow-Q occur to him.
Thus, a follow link can help people describe and find
answers they mutually want.

In order to link two question by a follow link, a user takes
the same basic steps as with linking any other questions.
However, it should be noted that a follow-Q is probably
more often connected to a Q-A-location than a Q-location.

In other words, follow-Q’s probably follow actual answers
more often than questions. So, when a person sees an
answer, he can press a follow-Q button before entering a
question. The question that is entered next would then be
linked to the Q-A-location for the answer, and could be
called up on screen when anyone sees that answer. A
Q-A-location can be connected to any number of follow-
Q’s.

(Note: AC might not show a list of follow-Q’s at a
Q-A-location without also showing the answer. The reason
is that sometimes the follow-Q will give away the answer.
Further, the follow-Q, if it is spurred by the answer, will
have less context without the answer.)
Using D-Info from a Spur Question’s Q-Record

D-info from a spur-Q record, including information about
travel on the follow link, can be useful for estimating the
sales of the answer to the follow-Q. We will call this answer

a follow answer, relative to the spur-Q or spur-A. The D-info
in the Q-record of a spur-Q is used by a POF probabilisti-
cally to help estimate the sales of a follow answer. In other
words, taking our example above, information about usage
of the follow link, along with D-info in the spur-Q’s
Q-record, tells AC that some percentage of people who want
the answer to, What is the National Weather Service report
for Miami today?, will also want the answer to How does the
National Weather Service gather its data?.
Situation Station

Let us return once more to the question, What is a
question?

We have said that a question is a description of an answer.
Another way of looking at a question is to say that a question
is a description of a situation plus a description of a
“missing” part—the missing part being the answer. For
example, you may ask, In this large hardware store, where
is the bathroom?. This question describes a context, the
hardware store you are in, and describes an additional part
that is wanted, the location of the bathroom. Loosely
speaking, we might say that a question is a picture plus a
description of a missing part of the picture that is wanted.

The key thing to realize is that an answer does not stand
alone. An answer fits within a situation that a question
describes. We usually take this aspect of questions for
granted. Questions are often short because we don’t have to
spell out the context. For example, when we are in a store
and we ask an employee, Where’s the bathroom?, we don’t
have to tell the employee that we mean the bathroom in the
store, or that we mean the closest bathroom, or that we mean
by foot, or that we mean a lot of other things. The question
is short, but if we had to spell out all our assumptions the
question would become quite long.

(A question is often unclear because it does not give
enough context. That is why a more specific question is often

5

10

15

20

25

30

35

40

45

50

55

60

65

206

needed. An MS-Q provides more information about context,
about a situation. The point is not to take up MS-Q’s again,
just to see their role from a slightly different angle.)

Now, some questions require only a little description of
context, others require a lot. In normal conversation that is
not a problem because two (or more) people build up a
context in the conversation, while at the same time keeping
track of the context. That is a great feat of intelligence.

To save effort, people can, and do, use a trick called
pronouns. Questions are kept short by the use of pronouns
and by the understanding of the context being discussed. For
example, a patient and a doctor can be discussing the
patient’s sprained ankle, and they can have a conversation
full of questions without repeating the term sprained ankle
and without repeating the many circumstances surrounding
the sprain.

In AC the whole point is to match up questions and so it
is not so simple to use pronouns. The pronouns in the
abbreviated questions must refer to some description that
AC can match. For example, if a person enters, How long
should I rest it?, AC will have no idea that it refers to an
ankle with a grade three sprain that has been described by
numerous symptoms. The person will need to enter a
description of the sprained ankle in order for AC to find a
match. And yet, if a person has a series of questions about
the same context, the same situation, say the ankle with a
grade three sprain, then it is a big nuisance to have to repeat
oneself.

To be user-friendly, AC should not have to make people
who ask a series of questions about the same situation repeat
themselves. In effect, AC should allow them to use pro-
nouns. How though?

The solution is to split a question into two parts: one a
description of the situation, and the other a description of the
missing part of the situation, the answer part.

We will call the description of the situation a situation
station. Why? Because the idea is that people meet
at—travel to, find—a situation and then branch off to
different abbreviated, questions attached to that situation.
We will call these abbreviated questions by the name satel-
lite questions. Answers correspond directly to the satellite-
Q’s, not to situation stations.

Situation stations can be short or long. We will give an
example of a brief one below to illustrate the idea.

Situation Station: I want to start a business selling infor-
mation online and I would like to be able to accept payments
by credit card.

Now, a user can attach a number of satellite Q’s such as:

Who sells the necessary machinery?
How much does it cost to get set-up?
How can you get set up within two weeks?
What kind of credit rating do you need?
What are some tricks for getting approved?

And so on.

A user would enter a situation station and then press a
satellite-Q button in order to enter a satellite-Q to be linked

to the situation station. Auser could also arrive at an existing
a situation station and enter a satellite-Q. Likewise, AC can
enable a user at a satellite-Q to enter a new satellite-Q to be
linked to the same situation station.

AC can take a user to a situation station just as it can take
a user to a question. In order to go to the situation station,
the user may enter a situation station, or the user may enter
a question. The user may or may not have to specify whether
he wants to go to a situation station. He may also identify the
situation part of a regular question and ask AC to find the
best match. There are no hard and fast rules.

|PR2020-00686

Apple EX1019 Page 158

IPR2020-00686
Apple EX1019 Page 159

6,131,085

207

That’s because even though a situation station cannot
have a direct answer, it is very similar to a question and is
treated almost the same way by AC. Therefore:

1. Asituation station is entered like a question, it is stored
like a question, and it can be found like a question. The
satellite questions attached to a situation station are found by
AC using the information in the situation station. Further,
AC can take users either to a situation station or to a

satellite-Q directly.
2. A situation station has a demand record (a record of

people who have traveled to it). This record is not as directly
useful as a question record but it can help users to intuitively
guess roughly how many people might want an answer. For
example, if 100,000 people share the same situation, say a
grade three sprained ankle, then they will have many of the
same questions in common. Knowing that 100,000 people
have arrived at a situation station, a person might be able to
guess that a certain answer pertaining to that situation would
be valuable to numerous people.

(Note, satellite-Q’s would have Q-records just like any
other questions. A satellite-Q is just an abbreviated question.
It includes the situation station part for the purpose of
registering Q-info.)

3. Situation stations can be semantically linked to other
situation stations by the same kinds of links that we have
described previously. Situation stations can also be con-
nected to questions.

Note: Satellite-Q’s can be connected to questions as well.
But, while a satellite-Q can be directly connected to a
regular question by a semantic link, AC would also show the
situation station part of the satellite-Q when a user travels to
the satellite-Q from a linked, regular question.

Questions as Situation Stations

It is important to note that a question itself can be used as
a situation station in the sense that it can be used as context

for a linked, abbreviated question. AC can have means for
letting users designate a question as a situation station
relative to a linked satellite-Q. For example, say a first
question is, What is the best time to have intercourse, if you
want to get pregnant, according to NIH?. Now, a satellite-Q
might be, And who says so at NIH?.

(Obviously, this question can be considered a follow-Q as
well. Follow-Q’s can often be made into satellite-Q’s. But

not all follow-Q’s are satellite-Q’s.)
We saw the idea of a question being used as context for

another question in the discussion of restricted MSQ.
However, the principle is more general and can apply to any
question.

Asecond question that uses the context of a first question
can be looked at in two ways. One way is to think of it as
an MS-Q. This way is appropriate if the questions are
combined in the sense that a user is looking for two answers.
For example, combining the two questions above we get the
single question:

What is the best time to have intercourse, if you want to
get pregnant, according to NIH?, and who says so at
NIH?

This question is compound question, an MS-Q relative to
the first, less specific question.

Usually, a better way to look at a second question that uses
the context of a first question is not as a compound question.
Usually it is better to look at it as its own abbreviated
question, simply as a satellite-Q using the situation
described in the first question. This view seems more natural
because the second question—Who says so at NIH?, in the
example above—is really looking for one answer. By
contrast, a compound MS-Q is really looking for twoanswers.

10

15

20

25

30

35

40

45

50

55

60

65

208

Answers as Situation Stations p As the example above
implies, answers can also be used as situation stations, and
most conveniently, where follow-Q’s are involved. Thus, the
answer to, What is the best time to have intercourse, if you
want to get pregnant, according to NIH?, can be made a
situation station, which can then have satellite questions.
Say the answer is, The week before ovulation. A satellite-Q
might be, Who says so at NIH?.

(As noted, a follow-Q is not necessarily a satellite-Q. In
the case above, How do you know when ovulation occurs?
would be a follow-Q but not a satellite-Q.)
Digression on Multimedia Questions and Situations

A question can include audio as well as visual content (a
point made by James Dix). Thus AC can enable users to
enter “multi-media” questions that include text and sound
and visual content. We do not delve into this possibility
except to say that the description of a situation can obviously
be enhanced by, or may require, audio or visual content. And
we also note that the method of semantic links applies to the
matching of multimedia questions and situations.
Elaboration Lists

Elaboration lists are a simple idea based on the fact that
when we ask a question we often don’t know enough to pose
the question well enough to get a good answer. We see this
most clearly when we have a conversation with an expert,
say a car mechanic. Imagine that your car has broken down
and you’ve been told that your head gasket is blown, and you
want to know what to do. So, you ask a question, What
should I do now that the head gasket is blown on my car?.

Well, to answer this question, a person would need more
context. Your situation must be built up. Thus an expert, the
car mechanic would ask you a series of questions about the
condition of your car. He would ask you to elaborate. The
list of conditions might be called an elaboration list. He
might ask you:

what the make of your car is,
how old the car is,

how many miles it has on it,
whether the engine block is cracked,
how much you want to spend on a repair,
whether you are willing to buy a re-machined replacement

part,
and so on.

Normally, in an everyday, real time conversation, your
situation is described by a back and forth questioning and
answering process. But, AC is not a real-time machine (it
can be in special circumstances) where people engage in
back and forth conversations. An elaboration list substitutes

for that conversational process.
An elaboration list that is attached to a question can help

a user create a more specific question (a more specific
situation) from which the user can get answers.

AC can enable a user to enter an elaboration list to be

linked to a question. So then, when Rex is at an initial
question, What do I do about a blown head gasket?, he can
call up an elaboration list. This list would contain a series of
questions that Rex can fill in. The answers to those questions
can be added to the initial question by Rex. (It is possible to
automate the process so that the answers Rex gives to the
elaboration questions are automatically incorporated into his
initial question.)

Now, why would someone enter an elaboration list? Well,
the person who enters such a list could be paid for the use
of the list. Aperson would normally enter an elaboration list
to be linked to a question when the question is a popular one.
The same elaboration list can be linked to any number of
questions.

|PR2020-00686

Apple EX1019 Page 159

IPR2020-00686
Apple EX1019 Page 160

6,131,085

209

User’s could collaborate in entering the questions in an
elaboration list. That is not really the point here.

The point is that an elaboration list is sort of like a record
of a conversation between a person who wants an answer
and an “expert”. The person will usually ask a question that
is too vague and the expert will usually have to ask the
person various questions to find out what the person needs
to know. These questions, in effect, can be recorded for use
by others. In this way, a new Rex can easily see what to ask
because some other Rex has gone through the process of
finding out what to ask—gone through the process of
building up an adequate description of the situation he wants
an answer about.

Chapter 27

Multi-Lingual Q-nets

This chapter will be brief. It is about how a Q-net can be
used by people speaking different languages and about how
a Q-net can be made up of questions and answers in multiple
languages. The basic ideas are simple. As in Chapter 15, we
will take the case of two languages, English and French,
where English is a central language and French is the
language the is being translated into English.
The Central Language Model Applied to Q-nets

We will first consider how the central language model can
be applied to Q-nets. Let us say Rex, a French speaker, is at
a question in Q-net that is made up of English questions. The
problem is: How can he travel in the Q-net when the
questions are all English.

The central language model can be applied in basically
the same manner as was described in Chapter 15 . Let us say
Rex is at,

What time does the Louvre open?
In fact, he will not be at this question, he will be at the

translation since AC will have presented him a French
translation that he will have selected or confirmed. So, he
will be at, say,

A quelle heure ouvre le Louvre?
Now, let us say that the English question is linked to two

MS-Q’s:

What time does the Louvre open on Saturday? and

What time does the Louvre open on Sunday?
Now, AC simply translates the questions into French and

presents them as MS-Q’s. Rex can then travel to one of these
if he likes. He will find himself at a French question (that has
been translated from the English).

He cannot confirm that the translation is a good one, but
the fact that the question is an MS-Q can give him a good
hint as to whether the translation is any good.

The same principle applies, of course, with other kinds of
linked questions.

Rex can also enter a French question to be linked to an
existing English question. The French question will simply
be translated into English, and then stored and then linked to
the English question.
Adding a Question in a Suburb Language

Now let us say that English is the central language and
that French is a suburb language. The problem then is: How
can AC enable Rex to add French questions to the Q-net.
Again, the solution was in Chapter 15. AC simply makes
translation twins. Thus, when Rex enters a new question in
French, AC stores it in French but also makes and stores an
English translation.

So, when Rex is at a question in a Q-net, he may be able
to go directly to a question that has been originally entered

10

15

20

25

30

35

40

45

50

55

60

65

210

in French, or he may go to a question that has been translated
from the English.

Thus, a Q-net can be built that has questions in multiple
languages.
Entering Answers

Just as the ideas of Chapter 15 hold concerning questions,
they hold concerning answers. AC can store an answer in the
original language it was entered and then can translate it into
a given language on demand. Further, AC can store multiple
language versions of an answer.
Translation Links (trans—trans link)

Where suburb languages are used, another useful seman-
tic link is a translation link. This link is analogous to a
Syn—Syn link in that it tells that two questions in different
languages mean the same thing.

Thus a user can be at a question in one language and press
a translation link button, and then enter a translated version
of the question. AC will then link the two questions by a
translation link.

A translation links gives AC a direct, human route from a
suburb language question to a central language question, and
vice versa. This kind of link can be useful especially where
popular questions are concerned because it is with these that
accurate translations can be especially helpful. (It is pre-
sumed that a person will, on average, make a better trans-
lation than AC.)

(Translation links can also be used where there is no
central language. But we have only briefly described such a
model in Book I.)

Of course, translation links can also be made between
actual answers, but these are implicit when AC stores
different human translated versions of the same answer.

Appendix 1

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. A-1 shows a flow chart of a basic SODB.

FIG. A-2a shows the flow chart of the Request Mode of
a lowest price locator.

FIG. A-2b shows the flow chart of the Supply Mode of a
lowest price locator.

FIG. A-3 shows a flow chart of the steps preceding the
gathering of information on what users are willing to pay for
given data.

FIG. A-3a shows a flow chart of steps for gathering of
information on what users are willing to pay for given data.

FIG. A-3b shows another set of steps for gathering of
information on what users are willing to pay for given data.

FIG. A-3c shows another set of steps for gathering of
information on what users are willing to pay for given data.

FIG. A-3d shows another set of steps for gathering of
information on what users are willing to pay for given data.

DESCRIPTION

The SODB is a data-base system that charges users for the
data they receive and pays royalties to users who input that
data. What differentiates the SODB from other data-bases is

a function that tells users who request data what the esti-
mated royalty value is for supplying the data. The function
keeps track of the rate of requests for the data and from this
rate projects a demand rate. The estimated demand multi-
plied by the royalty rate yields a projected royalty stream. If
a person requests a piece of data that is not in the SODB, the
SODB outputs the projected value of inputting the data. (If
the person finds the data answer is in the SODB, the SODB

|PR2020-00686

Apple EX1019 Page 160

IPR2020-00686
Apple EX1019 Page 161

6,131,085

211

still can output the projected royalties for improving, cor-
recting or updating the data.) Then, if necessary, the SODB
tells users how to input the data. In sum, the SODB is a
powerful feedback system that tells users what data needs
supplying, tells them the financial incentive to supply it, tells
them how to supply it and then pays them for supplying it.
Some Definitions and Comments

Start Mode: The procedure the SODB executes to allow
users to access the SODB and choose between the Request
and Supply Modes. Start Mode is not strictly necessary as
long as its “logging on” functions are part of the Request and
Supply Modes.

Request Mode: The procedure the SODB executes to
provide answers and/or Pay-off estimates to Requestors. In
the Request Mode, a user inputs a question causing the
SODB to search for the corresponding answer. If the answer
is not found, a Pay-off Estimate is outputted. If the answer
is found, the answer is outputted along with the Pay-off
Estimate (see Pay-off Meter) and a Charge is registered to
the user.

Supply Mode: The procedure the SODB executes to allow
users to input answers, potential answers and raw data. User
identification data is registered along with the inputted data
so that the user can be credited with royalties each time the
data is used to supply answers.

Requestor: User who accesses the SODB by Request
Mode seeking an answer. The Requestor owes a Charge if
the answer is found.

Supplier: User who enters the Supply Mode to input an
answer or raw data. The Supplier gets paid a Royalty each
time the answer or the raw data is used by the SODB as
determined by the royalty rules of the SODB.

Check Mode: The procedure the SODB executes to allow
users to check the Pay-off Estimate given data. In this mode,
a user is neither a Requestor nor Supplier though the Check
Mode could be accessed through either the Request or
Supply Modes.

Charge: The amount owed by a Requestor who receives
an answer from the SODB.

Royalty Rules: The rules, embodied in functions, that
determine the amount due to a Supplier of an answer (or of
the raw data that is necessary for an answer), each time that
answer is outputted to a Requestor.

Payments Register: The function the SODB executes to
register payments owed by Requestors and payments due
Suppliers. When an answer is outputted, the Payments
Register registers who is owed a royalty and who owes a
charge for the data used. What the Payments Register
registers depends on the royalty rules of the SODB.

Question: Specific data corresponding to other specific
data called the answer. When entered into the SODB by a
Requestor, causes the SODB to search for the correspondinganswer.

Answer: Specific data corresponding to other specific data
called the question. An answer may be static, for example,
the chemical structure of gasoline does not change. It may
be dynamic, for example, the price gasoline does change.
And, it may be improvable as well, for example, the octane
of gasoline may be more accurately given. An answer may
be long or short. It may have one component or many. For
example, the question, “What are the Chinese restaurants in
Biloxi?” may yield one restaurant or many.

The Correspondence Between a Question and Its Answer:
There can only be one answer for any question, though that
answer may have many components. Of course, a question
may have multiple, even infinite, answers. But, the SODB
requires rules that limit the answers to one, in the following

10

15

20

25

30

35

40

45

50

55

60

65

212

sense: the answer to a question must be a finite set of data
that is outputted to the requestor and charged for. The answer
is what the requestor pays for. (A big problem in defining
“answer” is that no one has come up with a good definition
yet.) In the SODB, users input the answers they deem best.
And users police the accuracy of those answers. The SODB
accepts untrue or approximate answers, for it cannot divine
meanings and truth, but any answer is displaced by a better
answer. Abetter answer is one that, by convention and by the
rules of the SODB, satisfies a question better than the
existing answer. A user may displace one answer with
another. If there is a dispute between users as to which
answer is better, a neutral third party, the Data-Base Man-
ager can be alerted to settle the dispute.

Of course, with many types of questions, whether an
answer is “better ” is not clear by convention. There may be
many, even an infinite number of equally good answers. So,
depending on the type of question, the SODB rules must
limit the possible answers. One rule, for example, may be
that the first answer inputted is considered better than all
equivalent answers. However, no set of rules can capture
truth and therefore, the manager, has final authority to decide
whether an answer is true or not and whether one answer is

better than another. See also Quality Control Functions
below.

Potential Answer: An answer that may become the best
answer in the SODB to a question.

Raw Data: If it has the requisite functions, the SODB can
process raw data to arrive at answers. A piece of raw data
may itself be considered the answer to a question. For
example, the question, “What is the closest McDonalds to
1234 Main Street?,” might require the SODB to have map
coordinates for 1234 Main Street. Therefore, the coordinates
are raw data. And, the coordinates themselves are the answer
to the question, “What are the coordinates of 1234 Main
Street?.” Any answer for one question may be raw data for
answering other questions. (The distinction is largely arti-
ficial between data that is by itself an answer and “raw data”
that is used in calculating an answer. The distinction is
artificial because “raw data” usually answers at least one
question by itself. We will keep this term for now but
probably improve on it in a future application.)

Storing Answers: Usually, the SODB simply lists an
answer under the question it answers. The answer can then
be accessed by simple lookup. Answers can also be stored as
raw data that is processed.

Data-Request: Any search for data initiated by a
Requestor inputting a question. An infinite variety of
searches can be done for data including searches that invoke
functions to yield data. Adata-request and a question can be
considered synonyms. (By infinite searches we mean that
there are infinite possible questions which can involve
infinite different operations for finding or arriving at
answers.)

Classifying a Data-Request: The SODB classifies data
requests in order to differentiate between them and count
them. However, as in any classification system, arbitrary
rules must be established. SODB’s classification of requests
can therefore be infinitely variable.

Data-Use: When the SODB uses a piece of data as an
answer or to arrive at an answer. Data-uses broadly fall into
two types:

a) outputting the data as an answer or as part of an answer,
b) plugging the data into an algorithm that outputs theanswer.

Classifying a Data-Use: As there are infinite algorithms
and infinite types of answers, there are also infinite uses of

|PR2020-00686

Apple EX1019 Page 161

IPR2020-00686
Apple EX1019 Page 162

6,131,085

213

data. The SODB has rules to classify these uses for the
purpose of tallying the uses and paying royalties. For
example the use of pi may be given a different royalty value
than the use of the date of Lincoln’s Birthday or the use of
a passage from Shakespeare. As in classifying data-requests,
there are no hard and fast rules.

Pay-off Meter (POM): The function that is the heart of the
SODB. The POM has three sub-functions:

1) The Demand Meter (D-Meter) which tallies Data-
Requests and Data-Uses over time to come up with an
estimated demand rate for an answer (or for a piece of
raw data),

2) The Pay-off Formula (POF) which takes the demand
rate and calculates a Pay-off Estimate (POE) of the
income a user will get for inputting the answer (or the
data),

3) Input Signal (I-Signal) which outputs the POE and tells
the answer (or the data) that may need inputting and, if
necessary, instructions on how to input the answer (or
the data).

The POM works most simply when the SODB’s answers
are listed under questions and the SODB can find the
answers by simple lookup. For example, a Requestor may
input the questions, “What is Lincoln’s date of birth?.” The
SODB will do a lookup. Initially, the answer will not be in
the SODB. The SODB will then store the question and tally
each lookup. The SODB will also register the time of each
lookup so that the rate of lookups over time will be known.
The rate of lookups (the demand rate) for the answer will be
fed into the POF to yield the POE. The I-Signal outputs this
POE to every Requestor. Since answers are listed under
questions, the I-Signal need not tell what answer need
inputting nor how to input it. It is assumed that Requestors
implicitly know that to enter an answer, they simply access
the Supply Mode, enter the question and then enter the
answer. Once the answer is inputted, the D-Meter still keeps
track of the demand rate because the answer may be wrong.
The POM is then still able to provide Requestors with the
POE for correcting the answer.

When the SODB simply looks up answers, data-requests
and data-uses can be measured by tallying lookups. The
SODB can get more complicated though because the clas-
sification of data-requests and data-uses can get compli-
cated. Furthermore, the demand rate can take into consid-
eration prices of data as well. POM functions are discussed
below, taking into account the issue of classifying data-
requests and data-uses but not the issue of the pricing of
data.

Demand Meter (D)-Meter): The function that tallies data-
requests and data-uses along with the time they take place in
order to calculate the demand rate for a piece of data.

The D-Meter tallies:

a) data that is specifically searched for by name and not
found. For example, a user may request a businesses
phone number which is not in the SODB. This data-
request can be tallied under the business’ name;

b) data that is used but not specifically searched for by
name. For example, a user may request the average
price of airline tickets to Boston. Dozens of prices may
be fed into an averaging function to answer this request.
Each of these prices is used but has not been specifi-
cally requested by name.

c) data that is searched for by name and used (found). In
these cases, the D-Meter only counts once. It does not
count both the search and the find.

As discussed above, there can be an infinite variety of
ways of classifying data-requests and data-uses, therefore,
the D-Meter itself can be infinitely variable.

10

15

20

25

30

35

40

45

50

55

60

65

214

The key to the D-Meter is that it tallies data-requests and
data-uses for data that satisfies two conditions: royalties are
paid on the data and users can be instructed to input the data.
The point of the D-Meter is to measure demand for specific
data so that the demand rate can be fed into the POF which

then yields the value of inputting that data. There would be
no point in tallying requests for data that could not be named
and therefore not be inputted by users.

The D-Meter does not necessarily measure the demand
for all types of data that may be input into the SODB. For
example, it is important to note that the D-Meter cannot
measure the demand for potential answers. But, by measur-
ing the demand for actual answers, the D-Meter can give
users an idea of what the potential value is of inputting a
potential answer. An example will illustrate both this situ-
ation and the issue of classification.

Assume the question inputted by a Requestor is, “What
store has the lowest price on Sony Camcorder #1239?” Say
there are 1,000 requests. Now it may be that ten stores have
the same lowest price. What then is the demand for a given
store? That depends on how the SODB classifies the answer.
The SODB may have a rule that only the first store with the
lowest price can be outputted as the answer. This store
becomes the answer and all royalties go to the inputter of
this store. The SODB in effect turns the data-request into,
“What stores have the lowest price and which among them
was entered first?” Of course, the Requestor does not care
which was entered first but the SODB may have default
assumptions built into it to limit the size and number of
answers outputted. Therefore, all other stores, even though
they have the same lowest price are only potential answers
(the first store may change its price so that another store
takes its place). An inputter of a store with the lowest price
does not know whether that input will generate any royalties
or not. There is no established demand for that store.

On the other hand, the SODB can have a rule, for
example, that all stores with the same price are equally part
of the answer so the answer then has ten components. The
demand rate for the store with the lowest price can then, for
example, be divided by the number of components to arrive
at a demand rate for each component (this calculation may
actually be part of the POF). The classifications can be even
more complicated. The second store inputted may be con-
sidered different from the first, location of the store may
matter, and so on. The point is that the D-Meter tallies
according to what data receives royalties and that depends
on how answers are classified and that can be infinitely
variable.

(Here in this continuation, we will often substitute the
term “demand record” for Demand Meter because the key
idea is that demand information is stored and then sent to the

POF. There may be intermediate functions which calculate
a demand rate (and these can be called part of a “demand
meter”) but that is not the main point. The same functions
can be incorporated into the POF. It is easier to think of the
parts of the Pay-off meter as being storage of demand
information, calculation of a pay-off estimate, and output-
ting of the pay-off estimate. In the parent the issue may have
been confused by having the demand meter do calculations.
Because this application is a combination of the parent and
an addition of new matter, we will use both terms. a future
application will be stick to one way of looking at the steps
of storing demand information and calculating demand.)

Pay-off Formula (POF): The function that calculates a
Pay-off Estimate (POE). The POF projects future demand
for a piece of data based on the demand it has had in the past.
Thus two variables are critical, N, the number of times the

|PR2020-00686

Apple EX1019 Page 162

IPR2020-00686
Apple EX1019 Page 163

6,131,085

215

data has been requested and, T, the times those requests took
place. Based on the rate of requests for a piece of data, the
POF estimates how many future requests there will be and
then multiplies that by a royalty rate to arrive at the POE.
When a piece of data is already in the SODB, the POF uses
the tally, N, of data-requests and data-uses as supplied by the
D-Meter. (This point is elaborated on later in the text.)

Like any equation for a projection, the Pay-off formula
can be infinitely diverse based on historical data and other
factors. For example, the formula would include a histori-
cally based assumption of when demand would end. The
POF may contain estimates not based on the actual demand
rate for a specific piece of data but for pieces of data that are
similar. Regardless of what historical assumptions are built
into it, the POF is always a function of the demand rate. The
values for N and T are plugged into the POF which has the
royalty rate built in.

The royalty rate can, of course, be infinitely variable.
There may be sliding scales for the royalty paid to an answer
for example. And different data-requests and data-uses may
have different royalty rates. (Technically, it is possible for
the POF not to have a royalty rate and only calculate a
projected request rate. In this case, the royalty rate would be
known by users who could do their own calculations.) Also,
the POF must have an arbitrary value for the POE when a
piece of data has been requested zero times or one time. This
value could be an amount or simply a message like, “POE
unknown.”

(Note: the SODB can include multiple Pay-off Formulas
that apply to different types of data)

I-Signal: The function that is the output part of the POM,
the signal that tells Requestors what data is needed, what the
value is of supplying it and how to supply it. When a
Requestor requests an answer not in the SODB, the SODB
outputs the POE. When a Requestor requests an answer that
is in the SODB, the SODB outputs the answer and the POE
for correcting, updating or improving it. (The POE may be
outputted only upon request rather than automatically).

When the I-Signal outputs the POE it may also output the
answer needed or the data needed. Usually, the answer
needed is implicit from the question asked. If raw data is
needed, the data needed may not be implicit from the
question. In this case, if the SODB had the requisite func-
tions for recognizing the data needed, the I-Signal might
output the type of data needed as well. For example, “Need
Answer to, ‘What is the speed of light?’, POE: $2.” Finally,
if necessary, the I-Signal could output instructions on how to
input the data.

The I-Signal may include an alert function whereby a user
can enter ask to be told if the POE for an answer rises above

a threshold amount. The I-Signal can then alert the user if the
threshold is exceeded, for example by sending a message the
the user’s E-mailbox.

A basic SODB includes of the following elements and
procedure as shown in FIG. A-1
SODB Elements

Computing means for executing SODB functions.
SODB Functions

a) inputting, storing, deleting and outputting data.

b) start mode

c) request mode

d) supply mode
e) lookup
f) registering charges
g) registering royalties
h) Pay-off Meter (POM)

10

15

20

25

30

35

40

45

50

55

60

65

216
SODB Procedure

Start Mode

1) User inputs user identification data, SODB stores it
9001

2) User inputs supply or request command 9001, SODB
accesses appropriate mode 9002.

Request Mode

1) Requestor inputs a Question 3, SODB
a) registers date-time of Request 9004
b) executes a look-up 9005.

2) If the SODB has the Answer, it
a) outputs the Answer 9006
b) registers a payment due by the Requestor 9007
c) registers a royalty due to the Supplier 9007
d) adds one to the number of requests for that question

9008, calculates the POF 9009

e) outputs POE 9010.
3) If the SODB does not have the answer it invokes the

POM function which

a) checks if the Question is already stored in the Pay-off
register 9011 (has been asked before)
a1) if no, stores the Question 9012, sets the number

of requests for that question to one 9013, calcu-
lates the POE using the POF 9014

a2) if yes, adds one to the number of requests for that
question 9008, calculates the POE using the POF
9009

b) outputs the POE to the Requestor 9010.
Supply Mode

1) Supplier inputs a question 9015, SODB executes a
look-up 9016 (this lookup is not counted as a data-
request; only lookups in the Request Mode are so
counted in the POM),

2) If the answer is not found, the supplier inputs the
answer 9017, SODB stores the answer to correspond
with the question inputted and stores the Supplier ID
data along with the answer 9018, in order to credit the
Supplier with a royalty each time the Answer is
requested.

3) If the answer is found, the SODB outputs a message
saying the answer is already in the SODB 9019, if the
Supplier intends to correct the existing answer, the
Supplier inputs a command such as, CORRECT 9020,
and the SODB allows the new answer to replace the old
answer 9017 and allow new supplier ID data to replace
the old ID data as well 9018.

(We should correct an oversight here from the parent. The
parent did not mention that the the Supplier can enter an
entirely new question into the SODB and then supply an
answer to that new question. Thus in the procedure above,
if the Supplier’s question is new, the system would store the
question. That these steps were omitted was an oversight but
was also due to the fact that a user could enter a question in
the Request Mode and then enter the answer in the Supply
Mode. The only problem with this is that the answer would
have a single, superfluous request tallied for it.)

These elements and procedure are the heart of the SODB.
The SODB would usually include other useful functions.
Before detailing some of them, an embodiment of the basic
SODB is described, a self-filling telephone directory (the
SFTD). Then an embodiment is described which does more
than lookup answers under questions.

1. The SFTD includes a list of names and corresponding
telephone numbers, initially empty, a computer for storing
the list and functions for inputting data into the list, output-
ting data from the list and looking up data in the list.

|PR2020-00686

Apple EX1019 Page 163

IPR2020-00686
Apple EX1019 Page 164

6,131,085

217

2. The SFTD also has a sign-on function that allows users
to identify themselves for billing and payment purposes. The
SFTD stores the ID data.

3. Users access the SFTD over the phone. The SFI
computer is equipped with phone-interface equipment. The
SFID accepts calls from two lines, a Request line and a
Supply Line. The Request line automatically puts users in
the Request mode, while the Supply Line puts them in the
Supply Mode.

4. Using the Request mode, a Requestor accesses the
SFTD list by spelling a name over the phone into the
SFTD’s computer. Equipped with a speech recognition
function, the SFTD recognizes the request and does a
lookup. Equipped with a speech synthesizer, it then responds
with a speech synthesized answer.

5. If the SFTD has a number corresponding to the name,
it outputs the number and registers the charge due by the
Requestor and the royalty due to the Supplier. One is added
to the POM tally of data-requests, the time of the request is
registered, and a new POE is calculated and outputted along
with the number.

6. If not, the SFTD’s POM is invoked and outputs a POE
to the Requestor. The POM has several functions: a) it
registers the time of the request, b) it checks if the request
has already been stored in the POM register, c)if not, it sets
the request tally to 1, stores the request and defaults the POE
to the message “Insufficient Data to Estimate Pay-off,” d) if
the request is already stored, the POM advances the request
tally by one and then calculates the POE using the POF (let
us assume for illustration’s sake, the POF divides the
number of requests by the time period of those requests and
then assumes that this rate will continue for 4 years. The
formula then multiplies the number of requests over those
four years by the royalty rate per request to arrive at the
POE), e) outputs the POE.

7. A Supplier accesses the SFTD by spelling a name over
the phone into the SFTD. The SFTD’s speech recognition
function recognizes the request and the SFTD does a lookup
to see if a corresponding telephone number is already in the
list. If the number is not in the SFRD, the SFTD allows the
Supplier to enter the number and stores the Supplier ID data
along with the number in order to properly credit royalties.
If the number is already in the SFTD, the SFTD outputs a
voice synthesized message, “Number is already in direc-
tory.” If the number needs correcting, the Supplier then
enters the command, CORRECT. The SFID allows the
Supplier to input the number using the SFTD’s speech
recognition function. The SFTD stores the number to cor-
respond to the question, to the name that is, and also stores
the Supplier’s ID data with the number, in order to properly
credit royalties.

Let us look at another embodiment, a lowest price locator,
as shown in FIGS. A-2a and A-2b.

1. A lowest price locator (LPL) includes a list of product
names and corresponding prices and stores, initially empty,
a computer for storing the list and functions for inputting
data into the list, outputting data from the list, looking up
data in the list and processing data in the list.

2. The LPL also has a sign-on function 9030 that allows
users to identify themselves for billing and payment pur-
poses. The LPL stores the ID data.

3. Users access the LPL over the phone. The LPL com-
puter is equipped with phone-interface equipment. The LPL
accepts calls from two lines, a Request Line and a Supply
Line. The Request line puts users in the Request mode, the
Supply Line puts them in the Supply Mode.

4. Using the Request mode, a Requestor accesses the LPL
list by spelling a full product name over the phone into the

10

15

20

25

30

35

40

45

50

55

60

65

218

LPL’s computer. Equipped with a speech recognition
function, the LPL recognizes the request 9031 and checks
9032 to see if the price is in its data-base.

5. The LPL registers 9033 the time of the request.
6. If LPL finds no list of stores and prices under the

product name, it checks 9034 to see if the price has been
requested before. If not, it stores the request 9035, sets the
request tally to one 9036, calculates the POE 9037 and
outputs the POE 9038. If so, it advances the tally 9039,
calculates the POE 9040 and outputs the POE 9038.

7. If LPL finds a list of stores and prices under the product
name, it checks 9041 for the lowest price. If it finds 9042
more than one store has the same lowest price, it finds 9043
the store whose lowest price was entered first and outputs
9044 that store and its price. If not, it outputs 9044 the single
lowest priced store and its price. It then registers 9045 the
charge owed by the Requestor and the royalty owed the
Supplier. It then advances the request tally 9039, calculates
the POE 9040 and outputs the POE 9038.

Supply Mode
8. ASupplier accesses LPL by the Supply Mode and spells

a product name over the phone into the LPL. The LPL’s
speech recognition function 9050 registers the name and
allows the Supplier to input 9051 a store and price.

9. The LPL registers 9052 the time of the inputting along
with the store and price.

10. The LPL registers 9053 the user’s identification data
along with the store, price and time.

11. The LPL checks 9054 to see if there is list of stores and

prices under that product name. If not, the LPL creates a list
and stores the data in the list.

12. If the LPL already has such a list, the LPL checks 9056
to see if the store inputted matches any store in the list. If not
the store, price, time and user ID data are stored 9057 in the
list. If so, the data just inputted and registered is put in the
list in place 9058 of the data registered with the matching
store.

13. The LPL finds 9059 the lowest price.
14. The LPL checks 9060 to see if there is more than one

lowest price. If not, the single lowest price is held 9061 for
output. If so, the LPL finds the first, lowest price entered
9062 and holds 9061 it for output.
Some Comments on Data Processed in Lists and Tables

As the embodiment above indicates, the SODB is well
suited to collecting data that is processed in what may
generally be referred to as lists and tables. Let us then make
a few comments about such data and how the SODB can be

applied to collect it. Many kinds of answers can only be
found by processing data in a list or table and often that data
can only be collected efficiently by members of a community
rather than a central authority. For example, usually the most
efficient way for an economy to find the lowest price on a
given item is through a system that allows people to feed in
prices to a central list where the prices are sorted to find the
lowest ones. This way is more efficient than having a central
authority call all the sellers of the item in order to check
prices. With a feed-in system, only the low price sellers need
feed in. The SODB is, of course, a feed-in system.

We also note that, because of the nature of data tables, it
is often advantageous for a single entry to include many
sub-elements. For example, in a table of data on companies,
each company entry might have many sub-elements, such as
the name of the company, its telephone number, address,
sales, number of employees, top officers and so forth. Thus
a “single” entry can be used to answer multiple questions.

We also note that when a supplier enters data into a table,
the SODB may suggest that the Supplier enter additional

|PR2020-00686

Apple EX1019 Page 164

IPR2020-00686
Apple EX1019 Page 165

6,131,085

219

data as part of the entry. For instance, a Supplier might
supply the answer to the question, “What is the telephone
number of IBM?” The SODB might then also suggest that
the supplier enter IBM’s address. The SODB could guide the
Supplier in how to enter extra data.
Additional Method For Outputting Pay-Off Estimates

We now describe an additional method the SODB can

include for outputting a POE for data that answers or helps
answer multiple questions. This method can be especially
useful for data that is entered into and processed in lists or
tables, for this type of data is often used to answer multiple
questions.

As discussed in the Definitions section, the demand meter
records multiple data-uses and sends this demand informa-
tion to the POF which then calculates the POE for the
relevant answer or “raw data”. The Definitions section did

not go in depth about how the Demand Meter registers
multiple data-uses. It was understood that each time a piece
of data was used, the use was recorded. Here we will
elaborate on this topic and how multiple data-uses can lead
to multiple POE’s.

Before explaining how the SODB can output multiple
POE’s for an answer that is used for multiple questions, let
us review how the SODB outputs a POE for an answer to a
single question. A question is entered and before any answer
is entered into the system, demand information is recorded
and a POE is calculated for the question. After the corre-
sponding answer is supplied, the demand information and
POE can still be attached to the question or they can be
attached to the answer, or they can be attached to both. It
makes no difference concerning answers that answer one
question.

But where an answer is used to answer multiple questions,
then multiple POE’s can be involved. Demand information
can be stored for and a POE calculated for each question
answered. In other words, the SODB keeps a demand record
and corresponding POE for each question. The SODB can
also keep a separate demand record for the answer itself.
This record would include the demand records and POEs for

all the questions involved.
For example, the answer to the question, “What was the

lowest temperature at the South Pole yesterday?” might
answer other questions, such as, “What was the lowest
temperature on the surface of the earth yesterday?” Thus a
demand record would be kept for both questions and a
separate POE attached to both questions. The temperature
data for the South Pole would also have its own demand

record which could include the records of the two questions
(and other questions the temperature data answers or helps
answer). The POE for the South Pole data could then be
calculated based on a combination of the demand informa-

tion of the various questions involved.
The parent explained that the SODB registers multiple

data uses, but did not illustrate multiple demand records.
They are not illustrated here either, for they are easily
implemented by those skilled in the art.

Now, when it comes time for the SODB to output a POE
in response to a question, the POE can be the POE associated
with the question or it can be the POE associated with the
answer (based on demand information from all the relevant
questions). The Pay-off Formula determines the POE to
output.

But the new point made now is that human common sense
will often be better than a machine rule (POF) for guessing
the projected income for an answer that is used to answer
multiple questions.

For example, the answer to the question, “What is the
lowest price for a Walkman in the world?” might have as the

10

15

20

25

30

35

40

45

50

55

60

65

220

answer, “$25 at Luskins.” Another question that uses the
same data for an answer might be, “What is the price for a
Walkman at Luskins?” Now we will assume that the first

question has a high POE, say $100, because we will assume
that thousands of people want to know what the lowest price
in the world is for a Walkman. And we will assume that the

POE for the second question is low, say 10 cents, because we
will assume that far fewer people ask the price for Walkmans
at Luskins. So the same data, “$25 at Luskins,” has a POE
of $100 when it answers one question and 10 cents when it
answers another.

Now assume that the price changes and the Luskin’s price
rises so that it is no longer the lowest in the world and thus
no longer answers the first question. The remaining POE is
only for the second question, 10 cents. And let us say that the
new price is not in the system yet, and that a Supplier wants
to enter the new price. But the new price may have an
unusually high POE based on the “lowest-price-in-the-
world” question it previously answered. Once the new price
is in the system, the SODB will quickly register a drastic
drop in demand for the Luskin’s price but not until the new
price is in. Aperson however can look at both questions that
the data has answered and determine that the new POE will

be low because the new price will only answer the second
question (we assume the Supplier gets no extra reward for
correcting the answer to the first question).

And so, a useful new feature not disclosed in the parent
is that the SODB can include steps enabling Requestors to
see more projected pay-off information than a single POE.
The SODB can display some or all the information kept in
the demand meter for an answer. Thus, the SODB can
display, for example:

a. all the questions that given data has answered or helped
answer,

b. the actual royalties paid corresponding to each
question,

c. the time periods the royalties were incurred and,
d. the current POE’s for the questions.
If there is a large number of questions, their display can

be ordered in some way, such as by showing the questions
that have generated the most royalties or have the highest
current POE’s. By seeing the questions that the data has
answered or helped answer, the Requestor can see whether
supplying replacement data is worthwhile.

We note that the most common procedure might be for the
SODB to first output the POE for the question that the
Supplier is intentionally answering. The Supplier can usu-
ally signify which question by entering the question first and
then the answer. In the case above, the Supplier would
signify that he was answering the question, “What is the
price of Walkmans at Luskins?” The SODB may then
default to first showing the POE for this question, and then
showing a combined POE and/or the POE’s from other
questions the data might answer.

(We also note that before an answer is in the system, the
SODB can include means for anticipating multiple questions
that an answer might satisfy. For example, a question might
be, “What is the temperature in Moscow today?” The system
might anticipate that the answer to this question can be used
to answer other questions such as, “What is the average
temperature in Moscow this month?” The POE would then
reflect these anticipated data-uses. For the SODB to antici-
pate in this manner requires that the SODB have functions
that identify comparable questions and answers and extrapo-
late demand information and POE’s from them. Further, the
SODB might have functions for identifying and registering
that missing data could have been used to answer multiple

|PR2020-00686

Apple EX1019 Page 165

IPR2020-00686
Apple EX1019 Page 166

6,131,085

221

questions. We do not describe such functions because they
depend on highly specific situations. Users, of course, can
make their own extrapolations.)
Additional Demand Information

We have shown above how the SODB gathers demand
information on which to base a pay-off estimate. However,
we showed only the most basic information being collected,
the number of data-requests and the times of those requests.
It often useful to gather more information. In fact, there is
often a tradeoff between taking the time to gather more
information versus the value of that information for calcu-

lating a more accurate projection of income, the pay-off
estimate.

Formulas for projections have been known to contain
thousands of variables. We will not discuss or describe

nearly that number but we will note here a few more pieces
of demand information that can be useful.

One piece of information that can be useful to register is
whether a Requestor has asked the same question previously.
In many cases repeat requests will mean misleading double
counting of requests. For example, a Requestor might ask
for the final score of a football game ten times before getting
an answer (because the answer has not been entered until the
time of the tenth request). It can therefore be useful for the
SODB to include steps for registering whether a Requestor
is making a repeat request.

In another variation of gathering such information, the
SODB can ask the Requestor whether he has asked for the
same answer before and whether the request is new or is a
“repeat.” Asking the Requestor explicitly can be important
in at least two cases. In one case the system may not record
the Requestors of a given answer. In the other, the Requestor
may know better than a machine based rule whether a
request constitutes double counting or not. For example, a
person might request an answer to the question, “What is the
temperature of the ocean at Ocean City?” The answer can
change rapidly. The Requestor will know if he is his request
is a repeat or if he expects a different answer in each case.
The point is that double counting depends on the situation
and the user’s common sense can be more valuable in

identifying double counting than a machine rule.
Another piece of useful demand information that the

SODB can register is how long users are interested in the
answers they have requested. Many answers are only valu-
able for short periods of time. For example, the SODB might
register dozens of requests for the score of a football game.
From all these requests, the SODB might project a large
POE. However, the SODB does not “know” that almost no
one will be interested in the score shortly after the game in
question is over. For the SODB to “realize” this fact, users
must “tell” it. Thus, the SODB can ask Requestors to input
a time period for which they are interested in an answer.
Even if the data is outputted, the SODB can still ask
Requestors to input this information.

Furthermore, a Requestor could also specify how long he
thought others would be interested in an answer. Now this
opinion is a guess but can still provide valuable information
to the SODB for calculating a projection of future demand.
Taking our football score example, a Requestor can input
that he is interested in the score of the game up until four
o’clock. And he can say that he thinks demand for the score
will taper off at eight o’clock. Say the game ends at 4
o’clock. It is often better for the SODB to register and use
such information than not.

In another variation of this type of demand information,
the SODB might ask users whether they want an answer sent
to them and for how long the order stands. The Requestor

10

15

20

25

30

35

40

45

50

55

60

65

222

would specify the time period that the answer could be sent
until. The Requestor could also cancel the request. (We
presume that the SODB in this case has the capability to
send answers to E-mail boxes.)
Price Tests—Registering More Demand Information

The parent did not delve into the issue of gathering price
information from Requestors. It was assumed that Request-
ors knew the price of the answers they were requesting as,
for instance, a person calling directory assistance or a 1-900
number would know the charges involved. The parent
avoided price because the goal was to describe the core steps
of an SODB. These steps include the gathering demand
information about answers, feeding this information into a
pay-off formula and outputting a pay-off estimate to
Requestors. The key demand information the parent
described (the number of times a question is asked and the
times of those requests) is usually critical for making a
projection of future income. Collecting this information did
not, of course, preclude collecting other information about
the demand for answers. Here we will describe steps for
gathering information about what Requestors are willing to
pay for answers.

Often it is neither practical nor desirable for Requestors to
know the price of answers before the answers are requested.
For example, the price of certain answers may change
rapidly. The price of, say, today’s weather report might be 20
cents while the price of yesterday’s may be 2 cents. As
another example, similar type answers may have very dif-
ferent prices. The phone number of the President’s barber
might cost 5 cents while the phone number of the President’s
private line might cost $5,000.

When the price of answers is not known in advance by
Requestors, it is often useful to gather information on what
Requestors are willing to pay for those answers because this
information can be used by a POF to calculate the POE.

(We also note that gathering information on what
Requestors are willing to pay for answers can be critical for
setting the prices of those answers. We will discuss this issue
in a future application.)

Now since the SODB can’t read minds, it must perform
what we will call price tests. These tests will not reveal
exactly what people are willing to pay, but they seem to be
the best that can be done. There are two fundamental price
tests. One is where the system (seller) offers a price for an
answer and the Requestor (buyer) can accept or reject the
price. The other is where the Requestor offers a price and the
system can accept it, reject it, or simply register it (if the
answer is not in the system, the system usually need not
accept or reject the offer but just record it in the demand
meter and tell the Requestor that the answer is not in the
system).

The world of commerce has evolved a great variety of
price offers and counter offers that can occur in a sale
situation. Earnest money can be pledged, time limits can be
imposed, letters of intent can be written, discounts can be
given, and so forth. Many of these price offers can have
analogues in SODB price tests. Here we will describe
mainly the basics, in which either the system makes an offer
or the Requestor makes an offer. We will include some
important additions but we realize that a great number of
variations are possible.

The basic idea behind the system-offer price test is that the
system can tally total requests along with the acceptance/
rejection rate at a given price. This information is then fed
into the POF. The resulting POE might then be correlated not
only with acceptances but with total requests and with the
acceptance/rejection rate.

|PR2020-00686

Apple EX1019 Page 166

IPR2020-00686
Apple EX1019 Page 167

6,131,085

223

The basic idea behind the Requestor-offer price test is
simply that the system can register what each Requestor says
he will pay. This information is also sent to the POF. The
Requestor’s offer is not necessarily just talk. If the answer is
in the system, the Requestor would usually be charged the
amount offered, if the offer was accepted. Even when the
answer is not in the system, the system can enable the
Requestor to obligate himself to pay the amount offered
provided the answer is entered into the system by a given
time.

For price testing, it can matter if the answer is in the
system or not. For example, take the answer to the question,
“What time does The Rockford Files start tonight?” After
this answer is in the system, the system might have a price
assigned to the answer. But before the answer is in the
system, the system might ask the Requestor to make an offer.
Thus, different price tests can be used before and after the
answer is in. Or, the same price test can be used in either
case. There are four basic possibilities:

Before Answer Is In After Answer Is In

System makes offer
System makes offer
Requestor makes offer
Requestor makes offer

System makes offer
Requestor makes offer
System makes offer
Requestor makes offer

It can also matter if the price test is done before telling the
Requestor whether or not the answer is in the system. Thus
we double the number of possible ways by which price tests
can be done. We will not illustrate all the permutations but
will illustrate enough to get the basic steps across, while
recognizing that variations are possible.

The significance of the price tests differs depending on the
permutations and therefore the SODB can register informa-
tion concerning whether the price test was done before or
after the answer was in the system and whether or not the
Requestor knew if the answer was in the system or not.

We will illustrate some price testing sequences. In the
illustrations we will avoid repeating steps previously shown.
For example, we gloss over the registering of data-requests
and the times of those requests. The point is to show the new
steps for executing price tests and using information from
these tests in a POF for output as a POE. Also, we will
assume that a given question has already been entered and
that a demand record has been created for the question, as
shown in FIG. A-3. The rest of the FIGS. A-3a—3d, show
various price testing sequences. Also, in the figures, the term
“question” will be used in place of “data-request” and
“answer” will be used in place of “data.” Also, when we say
that the system registers a piece of information we mean that
it stores the information in the demand record for the

question being asked.
Finally, note that we also assume that the price offers that

the system makes and the price thresholds that the system
includes can be set in various ways: by the data-base
manager, by the Supplier, by a price setting formula, or by
some combination of these. We do not show the setting of
prices but assume that step is done at the appropriate time in
each case. Price setting will be addressed further in a future
application.

FIG. A-3 shows the basic steps for registering the number
of times a question is asked and the times of those requests.
This demand information is stored in a demand record for

the question and corresponding answer. Price test informa-
tion is also stored in this demand record (in the parent this

10

15

20

25

30

35

40

45

50

55

60

65

224

record was called the Demand Meter). As FIG. A-3 shows,
the SODB inputs 9100 a question, then registers 9101 the
time of the request and checks 9102 to see the question has
been entered previously.

If the question is not found, the system creates 9103 a
demand record for the question and then stores 9104 the time
of the request and sets 9104 the number of requests at 1.

If the question is found, the system stores 9105 the time
of the request and adds 9105 one to the request tally.

The system then goes on to the steps for executing price
tests. We will use the steps above as common preceding
steps for four different price testing sequences. These dif-
ferent sequences are illustrated in FIGS. A-3a—3d. For the
sake of concreteness, let us say that the question we will
have in mind in all these illustrations is, “Who sells security
holograms in the US?”

In FIG. A-3a a price testing sequence is illustrated in
which the system presents 9110 a price to the Requestor. The
system enables 9111 the Requestor to accept or reject the
offer and the system does not tell the Requestor whether or
not the answer is in the system.

If the Requestor rejects the price, the system registers
9112 the rejection at that price, calculates 9118 the POE, and
outputs 9119 the POE.

If the Requestor accepts the price, the system registers
9113 the acceptance at that price, and then checks 9114 to
see if the answer is in the system. If the answer is not found,
the system tells 9115 the Requestor and then calculates and
outputs the POE. If the answer is found, the system outputs
9116 the answer, registers 9117 the charge due to the
Requestor and the royalty due to the Supplier and, calculates
and outputs the POE.

FIG. A-3b shows a different price testing sequence where
the system tells the Requestor whether or not the answer is
in the system before the price tests. Further, the sequence has
both price tests, one where the system makes an offer and the
other where the Requestor makes an offer.

As shown in FIG. A-3b, the system checks 9120 if the
answer is in the system. If the answer is in, the system tells
9121 the Requestor and presents 9122 a price. The system
then enables 9123 the Requestor to accept or reject the price.
As before, if the Requestor rejects the price, the system
registers 9124 the rejection at that price and calculates and
outputs the POE. And, as before, if the

Requestor accepts the price, the system register 9125 the
acceptance at that price, outputs the answer, registers
charges and royalties and calculates and outputs the POE.

Now, if the answer is not in the system, the system tells
9126 the Requestor that answer is not in. The system then
asks 9127 the Requestor to make an offer. Here, as shown,
the system can include steps for enabling the Requestor to
make various offers.

The system can register 9128 a non-binding offer. Here
the Requestor expresses what he says he is willing to pay

The system can register 9129 a binding offer to pay an
amount up until a certain time. In this offer the Requestor not
only states an amount he will pay but states a period of time
his comitment is valid until. This type of offer can be quite
important where certain kinds of answers are concerned.
When binding commitments are involved, the Supplier can
be fairly sure of getting a given amount of money for
supplying a given answer. The system would also add to the
POE based on Requestors who do not make binding com-
mitments.

The system can register 9130 binding offers that include
a commitment of earnest money as a deposit.

(Also shown in FIG. A-3b is a step 9131 for registering
the Requestor’s opinion as to the reasonable price for the

|PR2020-00686

Apple EX1019 Page 167

IPR2020-00686
Apple EX1019 Page 168

6,131,085

225

answer. This opinion is simply the Requestor’s judgement
and not a personal offer. The step is pictured because it can
be important demand information in certain cases. The
Requestor can have this option in other price sequences as
well and can both make an offer and state an opinion.)

Once the system registers the Requestor’s offer, the
system, as usual, calculates and outputs the POE.

FIG. A-3c shows another price testing sequence that
includes both types of price tests. In this sequence, the
Requestor is not told before the price tests whether the
answer is in the system or not. The main new feature here
concerns the Requestor offer. The Requestor is asked to
make an offer when the answer is in the system. In addition
to asking for an offer, the system includes steps for regis-
tering when the Requestor makes an offer and steps for
limiting the number of offers the Requestor can make.

If a Requestor can make unlimited offers when an answer
is in the system, the Requestor will start low and keep going
up. The Requestor will try to discover the system’s threshold
price (“bottom line”). Thus, the system needs to limit the
number of offers the Requestor can make. This concern does
not apply usually when the answer is not in the system
because then the answer may have no price threshold
attached to it.

(It is possible for a Requestor to have a confederate make
an offer in an attempt to find the system’s “bottom line.” But
with answers that cost a small amount this practice is
unlikely or impractical. So, a feature limiting the number of
offers a Requestor can make on an answer can be useful.)

The sequence in FIG. A-3c limits the Requestor to one
offer. (In FIG. A-3d, steps limit the Requestor to one offer
per a set period of time.)

In FIG. A-3c then, the system checks 9140 to see if the
answer if found. If the answer is not in the system, the
system presents 9141 a price to the Requestor and enables
the Requestor to accept or reject the price. The System then
registers 9142, 9143 whether the price is accepted or
rejected and tells 9144 the Requestor that the answer is not
in the system and then calculates and outputs a POE.

If the answer is in the system, the system then checks
9145 whether the Requestor has made a previous offer. If
yes, the system tells 9146 the Requestor that he is ineligible
to make an offer and then, as usual, the system calculates and
outputs a POE.

If the Requestor has not made an offer, the system asks
9147 the Requestor to make an offer. The system then
registers 9148 the offer. The system then accepts or rejects
the offer. If the offer is rejected, the system tells 9149 the
Requestor that the offer is rejected and registers 9150 that
the Requestor has made an offer for this answer. Then, as
usual, the system calculates and outputs a POE. If the offer
is accepted, the system outputs 9151 the answer, registers
the charges and royalties due, and calculates and outputs the
POE.

FIG. A-3d shows a price testing sequence in which only
the Requestor makes offers. Here steps are shown that limit
the Requestor to making one offer per time period. The
point, as mentioned previously, is to limit the number of
offers that a Requestor can make in order to get the
Requestor to make a higher offer. We note in FIG. 3d that if
a Requestor makes an offer before the answer is in the
system then this offer is not subject to a time period
prohibition. The Requestor is free to make a different offer
once the answer is in.

So as FIG. A-3d shows, the system checks 9160 whether
the Requestor has made an offer that has been rejected.

If yes, the system checks 9161 to see if the pre-determined
time period has expired. If not, the system tells 9162 the

10

15

20

25

30

35

40

45

50

55

60

65

226

Requestor that he cannot make another offer and, as usual,
calculates and outputs a POE.

If the time period has expired, the system asks 9163 the
Requestor to make an offer. The system registers 9164 the
offer. The system then checks 9165 to see if the answer is in
the system.

Likewise, if the Requestor has never made an offer before
that has been rejected, the system ask for an offer, registers
the offer and checks to see if the answer is the system.

If the answer is not in the system, the system tells 9166
the Requestor that the answer is not found and, as usual,
calculates and outputs a POE.

If the answer is in the system, the system checks 9167 the
price threshold and accepts or rejects the offer. If the system
rejects the offer, it tells 9168 the Requestor that the offer is
rejected and sets 9169 a time period for when the Requestor
can make another offer for the answer, and, as usual,
calculates and outputs a POE.

If the system accepts the offer, it outputs the answer and
registers charges and royalties and calculates and outputs a
POE.

Brief Note About Price Tests With Price Ranges
Normally a price offer is at a single price. However, the

SODB and Requestors can each present offers as ranges,
especially when an the answer requested is not yet in the
system. For example, marketing research polls that ask
people what they are willing to pay for an item often ask in
terms of price ranges. The point is that information about
price ranges can be more useful than single prices (we also
note the important point that Requestors, and the SODB, can
offer different prices corresponding to different times.).

There is another reason though that the SODB can present
offers in ranges and that is because the nature of the SODB
is such that a user may indeed end up paying a price that is
in a range. Here we have the fundamental idea of projected
price.

The SODB may present a Requestor with a projected
price. For example, the SODB might present an offer
whereby the price of an answer is between 20 cents and
$2.00, with the projected or expected price being 50 cents.
Taking our hologram example, a Supplier who does research
and compiles a list of hologram producers might want to be
rather sure of being compensated for his time in compiling
the list and entering it into the system. He might want, say,
$20. And so, the SODB might set the initial price for the
hologram answer high, in order to better insure that the
Supplier will be paid the $20. Thus the first ten Requestor
might be charged $2 each. However, say another 100
Requestors ask for the same hologram answer. These can be
charged less, say 20 cents each, and the original Requestors
can be rebated an amount. Thus the actual price the original
Requestors pay is not definite, but a projected or expected
price. Just as the system calculates a POE, it can calculate a
projected price.

We will not delve into this idea further here but note that

in certain situations the principle of projected price, like
projected income, is not only fundamental but highly useful
in getting answers into the SODB.
Brief Comments on the Types of Answers Suppliers Can
Enter

In general, we get answers from computers in three ways.
One is by straight look-up, direct correspondence. For
example, if someone asks, “What type of wood are Stradi-
varius violins made out of?” the answer could be stored in

a computer under the question.
Another type of knowledge is what might be called

“algorithmic” in the sense that information is compressed in

|PR2020-00686

Apple EX1019 Page 168

IPR2020-00686
Apple EX1019 Page 169

6,131,085

227

an algorithm. For example, one could ask, “What is the
length of the hypotenuse of a right triangle with sides 3
inches and 4 inches long?” This answer could be stored to
correspond to the question. One could make a huge look-up
table with answers to questions about the lengths of different
hypotenuses. A more efficient way of representing this
information though is by the well known Pythagorean
Theorem which allows you simply to plug in the relevant
numbers and let the computer calculate an answer.

The SODB can be adapted to calculate answers from
algorithms. For example, if 1,000 people ask questions
about the length of the hypotenuses of different triangles, a
user might realize that, rather than answer each of these
questions, she could enter the theorem and enable people to
plug in the appropriate numbers. The user that entered the
formula and the interface allowing people to enter the
numbers could then get the royalties for the questions the
theorem answers.

It is thus possible to enable users to enter formulas and an
interface procedures for Requestors to be able to use the
formulas to get desired answers. The problem is that the
SODB cannot come up with a POE for the algorithm
because doing so requires the intelligence to realize that a
group of different questions can be answered with a single
algorithm.

Likewise with tables of data that is processed; it is
possible to enable Suppliers to enter sets of functions that
create tables such that data can be entered into the tables and

then be processed.
Again, the SODB does not have the intelligence to assign

a POE to such tables+functions. As with algorithmic
answers, we note the possibility of enabling Suppliers to
enter tables+functions and paying Suppliers for the usage of
the tables. While having such features can be quite
important, it is not the main point of the system.

(In the parent we presumed that the tables and functions
can be part of the SODB. After all, there is nothing new in
processing data in tables. What is new in the SODB is how
economic values are attached to given data (whether that
data is in tables or not) to induce users to supply that data.)
Brief Note on the Form of the Invention

Before going on to other features of the invention, it is
worthwhile to pause and discuss the form of the invention.
Because it is to be used by a community of people in
different locations, the invention comprises a network in
which terminals in various locations are used to input data
requests and supply data. The terminals can be anything
from telephones to super computers.

The data itself can be stored centrally or in nodes through-
out the network. For example, certain users might request
the full text of Dracula. Other users might want the film
version of Dracula. And all this data can be stored centrally.
Or the text of Dracula, the book, might be stored in a
computer owned by, say, the Library of Congress, while the
film data might be stored in a computer owned by, say, a film
studio. Because of the added communications costs, highly
decentralized storage of data is not usually the most efficient
method where the SODB is concerned. Nevertheless, real
world concerns might dictate such decentralization. Amovie
studio, for example, might not want to put its copyrighted
movie in someone else’s computer for distribution to the
public.

(One problem in discussing the issue of centralized stor-
age is that the very concept of centralized storage is blurry
in this age of sprawling networks. We will not try to define
the notion crisply here, but will rely on peoples’ intuitive
notions.)

10

15

20

25

30

35

40

45

50

55

60

65

228

While the storage of data itself may be decentralized, the
gathering of demand information about data-requests (and
the calculation and outputting of POE’s) must, in general, be
highly centralized. For example, say we have a data-request,
“How many paintings are in the Louvre?,” and say that a
dozen users request the answer to this question. It does no
good if the twelve data-requests are all registered on differ-
ent systems. There needs to be a central tally showing that
there have been twelve requests for the data. That way the
POE corresponds to the demand of twelve people. Other-
wise the POE in each system would only correspond to one
request.

In fact, the goal of the SODB is to collect the demand for
given data centrally. That way the pay-off for supplying the
data is higher and the data can cost less per user. Moreover,
the more demand for a piece of data, the more likely the data
will be entered into the system. If the demand is decentral-
ized then there is no way to accumulate the demand and that
defeats the purpose of the system. Of course it is conceivable
that the demand could be registered throughout the system
but it would still have to be tallied, matched up, somewhere
to yield a total figure which would then lead to the maximal
POE.

(The economic efficiency of accumulating demand infor-
mation does not mean that a single SODB will store all the
world’s data-requests. An SODB is meant to be used by a
community and a community can be defined narrowly. For
example, a company might have an SODB for its employ-
ees. Data-request demand information would be stored cen-
trally though and not in every employee’s computer.)

We have mentioned that the data itself might be stored in
a decentralized manner. However, if the SODB does not
store data centrally, it must at least store pointers to the data
centrally. For example, if a Requestor asks for a given piece
of data, the SODB must be able to tell if the data is in the
system or not. To do this, a pointer would identify whether
the data was in and where it was located. Thus a data-pointer
is surrogate for the data itself. In the case of decentralized
storage of data then, a Supplier who enters data into the
system would have to enter a pointer centrally while enter-
ing the data into a given storage computer.

It is also possible that the SODB only outputs routing
information to the Requestor but does not make the con-
nection to the storage computer. In this case, the SODB is
really a new kind of signaling mechanism that tells users
where data is stored and tells users the potential pay-off of
storing and selling data. This form of the invention was not
envisioned in the parent and is noted here.

Another aspect of the SODB that can be decentralized is
paying royalties and collecting charges. This can be done at
the nodes where the data is stored. Again, this form of the
invention was not envisioned in the parent but is noted here.
However, even if payments are transacted in a decentralized
manner, payment data would still be sent to the central
SODB location because such data is usually important
demand information to be used in calculating pay-off esti-
mates.

Brief Note on the Importance of the Flexibility of the
Royalty Rules

One of the advantages of the SODB is that the royalty
rules and the POF are infinitely variable. Thus, the system
Manager can adjust the formula to reward certain actions
such as the correcting of answers. We will go into the
importance more in a future application but here we will
note one of the most important consequences, starting up the
system and attaining critical mass.

For many types of fee based data-base systems, the
problem is starting up and gathering enough initial data and

|PR2020-00686

Apple EX1019 Page 169

IPR2020-00686
Apple EX1019 Page 170

6,131,085

229

enough initial customers. This problem is often referred to as
the critical mass problem. The idea is that if enough users
use the system the system will be profitable and self-
perpetuating. But it is a chicken and egg problem, for often
no users can be gotten until the data is in the system.

The beauty of the SODB is that it enables the System
Manager to provide incentives that can jump start the
system. For example, if your plan is to start a lowest price
locating system, a huge obstacle is how to convince thou-
sands of sellers nationwide to feed in their prices so that the
prices can be sorted. We met a similar problem in the very
beginning when we discussed the problem of even keeping
a data-base of telephone numbers up to date. The problems
with a lowest price locator are worse.

If we agree though that people would be interested in
lowest prices we can see that if the system got started it
might be self-perpetuating for buyers would want to check
lowest prices and the low price sellers would, out of self
interest, want to display their prices. So let us assume that
once the system got going it would have value for users.

In order to jump start the system the Manager can adjust
the royalty rules so that the people who are the first to enter
the lowest price of a given item get a share of future income
from all the lowest prices, for that item for a period of time.
For example, say that the item is a Sony Walkman (we’ll
pretend there is just one model in the world). Then the
royalty rules can be set such that the person who enters the
lowest price will get a share of the royalties of all subsequent
lowest prices, for a period of, say, 5 years. Now, if there is
no price in the data-base then the first person to enter the
price is the lowest. That is not a reasonable way to get the
system going. Therefore, the System Manager can set a rule
such that the “first” lowest price Supplier is considered to be
the person who has entered the lowest price that is valid at
a given date and time.

The System Manager can set the royalty rules such that,
for instance, the Supplier of the lowest price for a Walkman
on December 24th, at noon, gets a small share of the
royalties for all lowest prices entered for the next 5 years on
a Walkman. The reward might be, say, $200. Thus the
System Manager can set up a competition to be the lowest
price Supplier on a given date and time. The competition
might last, say a couple of months. At the end of this
competition, a truly low price might be entered and the
system may be off an running for that item.

We are using this illustration just as a representative
example of the advantages of being able to adjust the POF
(the royalty rules really).

There are many other advantages of being able to adjust
the royalty rate and thus the resulting POE’s, but this use
above is the inventor’s favorite.
Additional Functions

An SODB should include more functions than the basic
ones described above. Some useful functions are described
below.

Matching Functions
The SODB is a matching machine in two senses, both

critical. First, it matches questions (data-requests) and keeps
a tally of how many times the same, matching questions
have been asked. Second, it matches answers to questions.
In both types of matching, problems can arise due to the
nature of language and the nature of questions and answers
themselves. Therefore, the SODB should have functions to
increase the chance of accurate matching. Examples of such
approaches are best match algorithms.

a) Infinite Ways to Ask the Same Question
There are multiple, in fact infinite, ways to ask the same

question. Two questions that have the same meaning may

10

15

20

25

30

35

40

45

50

55

60

65

230

not be matchable because they have a different form. And so,
the goal of the SODB is to try to make questions with the
same meaning take on the same form. The SODB can
therefore have a function that takes a Requestor through a
standard input structure so that Requestors have a better
chance of posing Questions in matching forms when the
questions have the same meaning. This structure is easiest
with simple questions such as, “What is the telephone
number of John Smith?” ARequestor might simply input the
name “John Smith,” which would of course, match other
inputs of “John Smith.” This example brings us to the next
problem.

b) Questions Can Have Multiple, and Possibly Infinite,
Answers

To match an answer to a question, there needs to be a
single answer. However, as discussed previously, the phrase
“one answer” is not very clear. An answer can have multiple
components.

For example, the question, “What is John’s telephone
number?” might have an answer that includes multiple
numbers because John might have several numbers.
However, the answer could still be considered a single
answer because the numbers are that person’s numbers,
which is what the requestor asked for. The Requestor though
would not want multiple numbers of various people with the
same name. For example, a person entering “John Smith”
looking for a number might find hundreds of numbers. In
fact, most all questions can have multiple answers, even
seemingly specific questions such as, “What is John’s
weight in pounds?” The answer may be 150 or 150.111 or
150.1111, and then any figure depends on when he was
weighed, with what scale, and so on. To narrow answers
down, we use implicit default assumptions, some of which
we build into our data-bases. In addition to these

assumptions, the key to narrowing possible answers is to
specify enough information in a question to make it highly
likely that only one answer will be given. Specifiers such as
full name, location, ID number, time, source of information
and so on can often narrow the possible answers to one. The
SODB can include a function that asks the Requestor to pose
the question more specifically. The SODB can also include
a function that picks one answer out of a set of equivalent
answers. For example, the answer to the question, “Where is
the lowest price on a certain compact disc?” might be many
places. The SODB might pick one at random.
Quality Control Functions

Quality control of answers in the SODB is essential. The
SODB can have many functions to provide incentives and
sanctions that encourage Suppliers to provide accurate
answers. A general incentive is that a corrected answer will
displace a wrong answer and garner royalties. The SODB
may have rules to define what a wrong answer is but these
rules cannot cover all situations. Disputes may arise as to
whether answers are accurate and these dispute may have to
be settled outside the system by the Manager of the SODB.
Some quality control functions are listed below.

a) The SODB can have a function that stores identification
information about an Answer such as the time it was

supplied and the primary source (the primary source and the
Supplier may or may not be one and the same).

b) The SODB can have a function that allows users to
input a claim that an answer is wrong and send that claim to
the Manager.

c) Auser, Requestor or Supplier, can claim that an answer
was intentionally supplied wrongly. The SODB can have a
function that allows a user to record this claim and send it

to the Manager.

|PR2020-00686

Apple EX1019 Page 170

IPR2020-00686
Apple EX1019 Page 171

6,131,085

231

d) The SODB can have a function that allows a user to
request that a manager inspect an answer. The function can
also register a charge for this inspection.

e) The SODB can have a function that allows the Manager
to register that an answer is wrong and to register that wrong
to a Supplier.

f) The SODB can have function that keeps a record of the
wrong answers a Supplier has provided. This function can
also disqualify a Supplier who has inputted too many wronganswers.

g) The SODB can have a function that charges Suppliers
an amount of money, a penalty, for providing wronganswers.

h) The SODB can have a function that rewards a user who
discovers that an answer is wrong. Such a function can
charge a penalty to the Supplier of the wrong answer and pay
the penalty fee to the discoverer of the incorrect answer.

i) The SODB can have a function that pays Suppliers to
update answers. Let us call such a Supplier an Updater. For
example, a price that was originally entered correctly might
become outdated. A user who discovers this can be paid for
changing the answer to a correct one. The user would be paid
royalties that the new, correct answer would generate.
However, sometimes, when an answer is changed, it may
receive no royalties. This is particularly true with prices and
other time sensitive offers. For example, the answer to the
question “Who sells HP printers for the lowest price?” might
change. The Updater might find out that the current answer
in the SODB is wrong. But the Updater might not be able to
Supply the correct answer. That may have been supplied by
someone else. In these cases, the SODB can have a function
that pays the Updater a share of the Royalties owed to the
Supplier of the new answer and/or of the old answer. Or the
SODB may be able to credit the Updater in other ways, such
as crediting him with free answers.

j) To cheat, a person might have a confederate change an
accurate answer to a wrong one. The person would then
re-enter the answer correctly and claim royalties. The SODB
can have a function such that if an answer reverts to a

previous answer within a given period of time, royalties will
be paid to the Supplier of the previous answer, provided the
previous answer was accurate. With static facts, such as a
person’s birthday or the speed of light, the first person to
supply the answer accurately would usually claim all roy-
alties. With changing facts, such as prices, the time allowed
for reversion could vary depending on the situation.

k) The SODB can have a function that “confirms” answers
by making sure that they are outputted to Requestors only
after having been inputted by more than one Supplier.

l) The SODB can have a function that allows Suppliers to
enter answers only after having entered a passcode.

m) If accessed by voice, the SODB can have a function
that records the Supplier’s voice for identification.

n) The SODB can have a function that audio records the
Supplier receiving an answer from the primary source of that
answer. For example, a Supplier could be getting a price
from a store. In order to insure that the store cannot renege
on this price, the Supplier might want to record the conver-
sation. Thus the SODB can have a call forwarding function
in which the Supplier calls through the SODB, the SODB
connects the Supplier to the store and then also records the
conversation. To reduce recording costs, the recording might
be done randomly.
Deleting Data Function

The SODB can have a function to get rid of “deadwood”
by deleting answers, raw data, data-requests and data-uses
whose demand rate drops too low. For example, the SODB

5

10

15

20

25

30

35

40

45

50

55

60

65

232

can automatically delete any answer that has not been
requested or any question that has not been asked for a
period of time.
User Fee Functions

To offset costs and to encourage efficient use, the SODB
can have a function that charges users for connect time, for
the storage of answers and for any other usage of the
data-base.

Pay-off Meter Functions
a) A user might prefer not to have the POE outputted

automatically but instead upon request. Therefore, the POM
can have a function that allows Requestors to request a POE.

b) A function can be added to the POM that tells not only
the Pay-off Estimate but also an estimated per hour rate.
Thus the Pay-off Formula would have to include an estimate
of the time it takes to input the necessary data. From this
estimate, a per hour estimate follows.

c) The Pay-off Formula can calculate a second POE, one
that is a percentage of the original POE and could be called
a Referral Fee. This fee would be due a person, a Referrer,
who alerted a Supplier to enter an answer. This function
would allow a Supplier to input the name of the Referrer.
The function would then credit royalties to both the Supplier
and the Referrer. These two would normally share the
original royalty amount.

d) The Pay-off Formula can calculate the Pay-off per
component in an answer. There are infinite ways to assign a
value per component. The Pay-off Formula could, for
example, simply take the POE and divide it by the number
of components, x, in an answer. The SODB would also have
a function that tallies the components.

e) As mentioned, the SODB can include steps enabling
Requestors to see more projected pay-off information than a
single POE. The SODB can display some or all the infor-
mation kept in the demand meter for an answer. Of particular
importance, as mentioned in the section on price setting, is
that the system can output a projected demand rate, without
a price or cash pay-off attached to it. Of course, any data in
the demand record (demand meter) can be made available.

f) The Pay-off Formula can allow users to create “what-if”
scenarios, where users plug different values in for key
variables in the POF, such as the price of a answer, the time
period that the answer will be desired, the rate of requests,
and so on. This subject will be taken up in a future
application.
Requestor/Supplier Functions

a) A Requestor may not want to supply certain data
because another Requestor might beat him to the punch.
Therefore, the SODB can have a function that reserves the
right to input the data. The Requestor could enter a
command, such as RESERVE, after hearing the POE for the
data. The function would store the Requestor’s ID data along
with the Requestor’s question. Then, for a period of time, the
SODB would allow only that user to enter the necessary
data. This function would also alert other users that the data
was reserved for that time.

b) A Requestor who becomes a Supplier may not want to
bother re-entering a Question that he previously asked when
in the Request mode. The SODB can then have a function
whereby this user, when in the Request mode, could enter a
command, such as “WILL SUPPLY”, after hearing the POE
for the answer. The function would store the Requestor’s ID
data along with the Question. Then, when the user is in the
Supply mode, the function would, upon a command, such as
PREVIOUS, look-up the last question that the user had
asked. The data inputted by the user would then be stored to
correspond to that Question.

|PR2020-00686

Apple EX1019 Page 171

IPR2020-00686
Apple EX1019 Page 172

6,131,085

233

c) A user who intends to be a Requestor might enter the
Supply Mode, using that mode to check whether an answer
is present in the SODB. (A user can check whether an
answer is present using the Request or Supply Mode.) If the
answer is present, the SODB can have a function that allows
the user to automatically switch modes upon a single com-
mand and have the answer automatically outputted and a
charge registered to the user. This function may seem trivial
but an important issue lies behind it. The SODB is a
feedback system different from other data-bases in that it
forms a tight feedback loop based on royalty incentives
provided to users who normally would pay to receive data.
With certain data-bases, suppliers, who do not pay for
receiving data, may be able to check on the potential royalty
revenue from a piece of data But, for the first time, with an
SODB, this pay-off information is made directly available to
users who are seeking data and who are charged for it if it
is in the data-base. This fact makes a great difference for it
creates a tight, efficient feedback system that is new.
Check Mode

Check mode was mentioned in the the parent briefly. The
basic idea is that a user can check the POE of an answer

without registering as a Requestor or Supplier. Check Mode
is not necessary for a user could always check the POE of
an answer in Supply Mode. With a special Check Mode,
however, the system can enable a user to check multiple
questions at once. Thus the system could enable a user to
conduct a search based on the value of POE’s. Such a search

would probably be too broad but when conducted along with
a keyword search could show users answers that were
potentially high yielding and that the user might be able to
answer. The other reason for Check Mode is that if a

Requestor just wants to check whether an answer is in
without registering demand information, this can be another
way to do it.
Alerts

The system can include different types of alert functions
that alert users as to relevant changes in the status of given
answers. Users can direct the system to send them informa-
tion on such chages. Two key alerts are the following:

1. A POE alert (mentioned in the definitions section under
the I-Signal). In this alert, a user would ask that the POE for
a given answer be sent to the user if the POE rises above a
threshold.

2. Answer Status alerts. In this alert the user ask the

system to send information if an answer has been supplied,
has changed, has been complained about, or has been given
a change of name (has had a new question attached to it).
Both Requestors and Suppliers might be interested in such
information. Requestors might of course want to find out if
an answer is in and Suppliers might want to know if their
answer has been messed with.

Probabilistic Payment Functions
If payments and royalties for data are quite small, it is

very advantageous to use an expected value payment
method (EVPM). An EVPM is described in US. Pat. Nos.
5,085,435 and 5,269,521. Please see this patent for an
explanation of the method.

The main question in an EVPM is how to insure fair bets.
In this case the bets are between the SODB and its users,
both Requestors who owe money and Suppliers who are
owed money. We will take the case of Requestors who owe
money. The principles involved extend to Suppliers. Cheat-
prevention methods are described in the patents above. Two
examples of cheat prevention methods that can be applied to
the SODB are given below.

Numbers Game Method: In the illegal Numbers Game,
results were often determined by one number, for example

10

15

20

25

30

35

40

45

50

55

60

65

234

the last three digits of the handle at the track. Anyone who
picked that number would win. Thus, one number decided
thousands of bets. Likewise the SODB’s Payments Register
can set up EVPM bets with each Requestor. Charges regis-
tered one day can all be decided by the daily lotto number
the next day. For example, assume the stakes are set at
$10.00. The bet then is decided by the last three numbers in
the daily lotto. (See EVPM patent). So, the Payments
Register register the charges owed by all Requestors during
one day. Then the next day, the daily lotto number is
announced. The Payments Register takes this number and
applies it to every bet is made with Requestors on the
previous day.

The only problem with such a method is that it can truly
be feast or famine. For example, assume all charges one day
are 10 cents. The SODB only has a 1% chance of winning
bets if the stakes are $10. Therefore, the SODB stands a 99%
chance of getting nothing and a 1% chance of getting 100
times its money. In order to even out the income stream, the
Payments Register might assign to each Requestor an extra
number to be added to the lotto number. The extra number

might be part of the Requestors ID number, for example.
These extra numbers would be random or nearly so in order
to even out the wins and losses from bets. As long the extra
numbers are agreed upon by Requestors before the lotto
number is announced, all is fair.

Probabilistic Metering Method: Normally, when people
use an on-line data-base or phone system or any usage
sensitive system, there is a metering component that mea-
sures usage and ultimately determines charges. The SODB
has that with its Payment’s Register. However, registering
charges and then billing for them can be a large cost.
Therefore, it would be advantageous to do the metering on
a probabilistic basis by EVPM. For example, the meter
might be off 90 percent of the time but, when on, the charges
applied would be at 10 times the normal rate. The periods of
time the meter is on and off are determined by a random
number supplier that picks a number, in this case an integer
from 1—10.

The SODB’s Payment’s Register can have a Probabilistic
Metering Function (PMF) that randomly determines the time
periods during which the SODB will register charges to
Requestors (and register royalties to Suppliers). The func-
tion is described below.

1. A period of time is broken up into sub-periods. For
example, a day might be broken up into minutes.

2. The probability that the meter will be on during a
sub-period is decided upon by the SODB manager.

3. Each sub-period has assigned to it a random number
that determines whether the meter will be on or off during
that period. The number is chosen by a random number
generator such that the probability of the meter being on is
the probability that the SODB manager has decided on. With
each sub-period having a random number chosen, a
sequence or list of “on’s” and “off’s” is created. This list is
inputted into the PMF.

(The list is supplied by an independent source that gen-
erates the numbers. The independence of the source is
necessary to verify whether or not the SODB’s sequence if
fair.)

5. The PMF has a clock and a sub-function that, upon the
clocks arriving at each sub-period, checks the list to deter-
mine whether the meter should be on or off. The sub-

function turns the meter on and off as determined by the
on/off list.

6. The clock is synchronized to an independent clock so
that fairness can be assured.

|PR2020-00686

Apple EX1019 Page 172

IPR2020-00686
Apple EX1019 Page 173

6,131,085

235

7. When the meter is on, the Payment Register registers
charges and multiplies them by the inverse of the probability
that the meter would be on. Thus, if the meter is to be on 1/10
of the time, the charges would be 10 times normal.

Probabilistic metering by this method offers an efficient
way to insure fair bets and also a way to smooth out the wins
and losses from bets. Perhaps more importantly, it allows
Requestors not to have to input the ID data unless they lose
bets. There is no reason to input one’s identity if one does
not have to pay. Thus the inputting of ID data is eliminated
from the Start mode. This can be a very advantageous for
people in a hurry. It means they only have to identify
themselves for billing purposes when they lose the bets. Of
course, people might not pay if they haven’t identified
themselves. However, in addition to honor, it is possible in
some cases to gather evidence to trace Requestors. It is
possible to capture the Requestor’s voice, for instance, if the
SODB is accessed by voice. If the SODB is accessed by
computer, the computer may be traced.

Appendix 2

Section 2: The Pay-off Estimate

In the system of the parent, it was assumed that when a
question was entered by a Requestor that the Requestor
wanted (was willing to pay something for) the correspond-
ing answer. In the new system of linked questions, this
assumption may no longer hold because the system can
present multiple alternative answers.

Let us pretend for a moment that the system is an ordinary
department store and that you are a buyer. You ask for khaki
pants and the salesperson says, “Well, we may have ten
different styles.” You have a choice of these and you can add
your own custom choice if you want. Now, how would the
store register your demand for each of the different styles if
the only information you give is khaki pants? What if some
or all of those styles weren’t in stock? What if the store had
no idea when any of the styles would come in? What if the
store wasn’t sure of what the price for each would be? What
if you were just looking? Given all these uncertainties, how
is the store to estimate the sales of a given style of khaki
pants? And what if you state a style that is not in stock and
so you buy another? Should the store register demand for the
pants you want or the pants you bought?

This problem of choice is plain with consumer goods like
pants, shoes, shampoo, candy bars and things like that. But
it is the same problem with answers. (The problem of choice
exists for the parent as well but is not usually critical in a
system without linked questions.)

We’ll never perfectly solve the problem of estimating the
sales of alternative choices. In a future application we will
tackle the problem more fully though by introducing the
notion of linked requests where a Requestor links requests
for substitute answers, and possibly states an order of
preference for those answers, and possibly states the total
amount he will pay for the answers.

We do not address the issue of how to assign demand to
alternative direct and indirect answers. Such rules are highly
variable. Here we do say that the system needs to differen-
tiate between Requestors who are just passing through a
question, “just looking,” and those who have an interest in
buying an answer to that question. As in the parent, the
system can register various kinds of demand information
and can ask for this information and/or can gather it auto-
matically. In a system with linked questions, the system
registers demand information (in the demand record of a
question) when a Requestor:

10

15

20

25

30

35

40

45

50

55

60

65

236

1. Enters a question that is not in the system.
2. Enters an MS-Q.

In this case, the system registers demand information in
the MS-Q’s demand record. The system also registers in this
record whether the Requestor enters any other MS-Q’s to be
linked to the same current question. This registering would
occur for each MSQ the Requestor entered for that common
question.

3. Explicitly states he wants an answer.
In this case, the Requestor can show he wants an answer

by selecting the Get Answer command. Of course, he may
end up buying the answer for it might be there. If the system
shows him, in advance of his asking for an answer, whether
or not an answer is in the system for the current question,
then the system needs a command so that the user can
explicitly state that he wants an answer and is not “just
passing through” the question. Thus the system can have a
separate command for indicating that the user wants an
answer even though the answer is not in the system. Rather
than have an extra command, the Get Answer command can
be used here as well. When an answer to the current question
is not in the system, Get Answer would signal the system to
register demand for the answer.
Combination POE’s

Now if an answer is a direct answer to multiple questions
(as shown in FIG. 30a) then the POE for such an answer
would be some combination of the POE’s for all the ques-
tions it corresponds directly to. That is not to say that
determining the POE is simple. We use the term “some
combination” of the POE’s because there are no hard and

fast rules. If the answer is a direct answer to multiple
questions and if these questions have no indirect answers, no
alternative answers, then the issue is more straightforward
and the combined POE might be based on a simple sum. But
when multiple alternatives are involved, no clear rules exist.
Basically though, for the purpose of estimating the future
sales of an answer, multiple question-labels should be
treated like one label because they are just different ways to
ask for the answer.
“Get the POE”

A system may show a POE for a question by default.
Otherwise, the system must include a command for showing
the POE. The system can include a separate “Get POE”
option. When a user selects this option, the system enables
him to see POE information about the current question
including, possibly, information about the POE’s of linked
MS-Q’s. The system can show the average POE and a
maximum POE for linked MS-Q. The system might show
the POE’s of MS-Q’s by default though, along with the
MS-Q’s themselves.
Another Reason AC Works

It may seem that letting people enter MS-Q’s would only
lead to a scattering of individual question throughout the
data-base with no demand accumulating for individual
answers. The situation would be like each buyer of pants
wanting only his own personal style with no single style
gaining enough sales interest for someone to supply the
pants. Yet while users will state their personal preferences
they will also settle for someone else’s style if that is what
is in the “department store” at the time. Further, users have
an incentive to join in common choices so that an answer
will be supplied. Thus, the system enables people to express
their personal preferences and to agree with the preferences
of others, which leads to the most popular styles, in general,
being provided.

Section 3: Searching

The rules for entering MS-Q’s and linking questions make
it possible for a question to be linked to a great number of

|PR2020-00686

Apple EX1019 Page 173

IPR2020-00686
Apple EX1019 Page 174

6,131,085

237

other questions. In fact, the number of links can potentially
explode. The alternative paths thus created can cause con-
fusion for a user who wants to find an answer, or find a good
question. The situation is akin to getting too many “hits”
when searching in a conventional data-base. So the system
can include functions for making searching easier.

These functions can come in two broad types: those that
restrain the linking of questions, and those that use extra
selection criteria for choosing which linked questions to see
and which answers to get from the linked questions.
Restraining Rules (Functions)

Some rules the system can include for restraining the
linking of questions are:

a. Charging users for entering questions.
b. Charging users for creating links.
c. Treating questions and links as investments where a

user is charged rent for storing a question and creating a link,
but is also paid when other users use the questions or the
links. “Use” can mean travelling through the question or on
the link. In other words, questions and links can be treated
like answers in the sense that storing an answer can cost a
Supplier in rent but may garner royalties. Questions and
links in general would have lower rents and royalties thananswers.

d. Forbidding automated linking, for example, by limiting
a user to creating a maximum number of links per period of
time.

e. Forbidding plagiarism.
Extra Search Parameters

When a user is at a question and there are too many linked
questions, particularly MS-Q’s, to be shown at once, the
system can include defaults for determining which MS-Q’s
to show. The system can also enable a user to enter addi-
tional search parameters to choose which MS-Q’s and
answers to see. These choices of parameters and of system
defaults can be the same. So let us first discuss some possible
parameters the system can enable a user to enter.
A User Selects “Get MS-Q’s”

When a user selects the Get MS-Q’s option and there are
too many MS-Q’s to output at once, the system can enable
the user to enter some combination of the following selec-
tion criteria for choosing which MS-Q’s to see:

a. More question information
The user could enter additional information to the current

question, rather than re-enter a whole new question. This
information can then be best matched to the MS-Q’s. (The
system may also add the new information to the current
question and treat the combined information as a new
question and try that new question against the whole data-
base.)

b. Price

The user could specify a price level for the answer he
wants. Thus the MS-Q’s shown would be those that corre-

spond to answers under a certain price. The MS-Q’s might
correspond indirectly to answers at various price levels. In
this case the system could still show an MSQ but only if it
corresponded to some answer below the stated price thresh-
old.

c. Quality control
The user could specify that he wants to see only answers

that have passed certain quality control inspections. In this
case the system would need ways for users to enter reviews
of answers.

d. Length of answer
The user could specify the length of answer he wants.
e. Most popular MS-Q’s by answers bought.
The user could specify that he wants to see the MSQ’s that

correspond to the most popular answers according to those
answers that have actually been bought.

10

15

20

25

30

35

40

45

50

55

60

65

238

f. Most popular MS-Q’s by destination
The user could specify that he wants to see the MS-Q’s

that other users have travelled to most from the current

question.
g. Most popular MS-Q’s by answers wanted
The user could specify that he wants to see the MS-Q’s

that correspond to the most popular answers according to
those answers that have the highest demand (by highest POE
or by highest request rate), though the answers may or may
not be in the system.

h. By direct answers that are in the system
The user could specify that he wants to see the MS-Q’s

that have direct answers (MS-Q’s may have no direct or
indirect answers).
A User Selects “Get Other Questions”

Auser who selects the Get Other Questions option can use
the same selection criteria as those above except, of course,
that the questions he is referring to are not MS-Q’s. The user
can decide whether he wants to see LS-Q’s or questions he
has been previously at. Hence the system can include an
additional criteria, allowing the user to choose questions
according to the type of linked questions he wants to see, for
example, LS-Q’s. (Later, when other types of links are
introduced, this “select-a-link” feature becomes more
important.)
A User Selects “Get Answer”

Auser who selects the Get Answer option can also use the
same criteria above, though in this case the user would not
want questions but answers. If there were no answers, the
system could show MS-Q’s without answers and register
demand for the corresponding answers. If there were
answers, the system would show the answer that best fit the
criteria that the user entered.

System Defaults
Having discussed search parameters that users can enter,

we see that the system can use some combination of these
same criteria as defaults. Of course, the combination
depends on the particular system and the particular questions
involved.

Voice Input and Output
In the discussion of the system for handling natural

language, it may seem that the multiple choices created by
linked questions are suited only for screen input and output.
But often people would want to use the system by talking to
it, and often users might not have a screen. For example, user
might want to use a plain old telephone as a terminal. (In the
grandparent, a self filling telephone directory was described
using phones as terminals.) Yet there is no doubt that choices
are much harder to present by voice because they take time
to output.

That does not affect the entering of answers though.
Answers, even long ones, can be entered voice if the system
has voice recognition functions. An answer can be con-
firmed by the user or “cleaned up” at a later time.

More important and seemingly difficult is the problem of
entering a question and then facing multiple MS-Q’s. But
this problem can be mitigated by using the search criteria
described above. For example, a person can ask the
computer,

What time does the Louvre open on Tuesday?
Please give me the most popular answer bought, under 25

cents.

With these criteria added to a question, the system can
find an MS-Q to the original question and output an answer
to the MS-Q that has satisfied the most people and should
suffice for most users.

Though the answer may originally have been supplied by
text, it can be outputted by text-to-speech functions, or it can
be outputted on screen as well of course.

|PR2020-00686

Apple EX1019 Page 174

IPR2020-00686
Apple EX1019 Page 175

6,131,085

239

Where voice recognition and AC are concerned, questions
have an inherent advantage. They are usually short. Thus a
user can enter a question by voice in multiple ways and the
system can look for a best match using the multiple phras-
ings. Normally, voice recognition suffers from problems of
interpretation, but because questions are usually short
messages, multiple phrasings can enable the system to find
a good match (we will see the same principle involved in
translating questions into other languages). Once the system
arrives at a good match, additional selection criteria can be
applied, espcially those concerning the most popular
answers. Of course, using voice entails limitations, but the
point is that people can find answers even in a system that
has linked questions.

More Kinds of Questions and Links Between
Questions

Let’s recall the foundation task of the system: to count
how many people seek the same answer.

Perhaps we should discuss what the same answer means
to people. But we will not do this. Instead we will just note
that different questions can correspond to the same answer.
We have already noted and discussed this subject somewhat.
Now let us discuss the subject more.

The general idea is that two questions can be related by
whether they correspond to the same answer or whether they
might correspond to the same answer.

We note four types of relationships. Before we explain
these briefly we realize that problems of interpretation will
always exist and so we discuss these relationships as they
would exist in a given user’s mind. This is reasonable
because links between questions are created by individual
users. Other users can then agree with those links or agree
that the interpretations are valid or not.
Less Specific to More Specific

We have already discussed this relationship between
questions.

Synonym to Synonym
Here two questions are meant to ask for the same answer.

Synonym: Who wrote “Can’t Buy Me Love”?

Synonym: What group wrote the song “Can’t Buy Me
Love”?

Less Complete to More Complete
Here an answer to the more complete question will always

answer the less complete question but not always vice versa.

Less Complete: Did Elvis write “Can’t Buy Me Love”?

More Complete: Who wrote “Can’t Buy Me Love”?

Less Complete: Is Johnny in the class?

More Complete: What’s a list of all the students in the
class?

Less Complete: How far is it to Chicago from Washing-
ton?

More Complete: Let me see a Rand McNally roadmap of
the United States?

Less Complete: Is Paris, the City of Lights, in England?

More Complete: What does the Encyclopedia Brittanica
say about Paris?

Related to Related

This is a poor name for the relationship between two
questions where the answer to one question might answer
the other question. The relationship can be one way in that

10

15

20

25

30

35

40

45

50

55

60

65

240

the answer to one question might answer the other question
but not vice versa. Or it can be two way in that the answer
to one question might answer the other question and viceversa.

Related Question: What’s the name of that restaurant on
Willow?

Related Question: What kind of food does that restaurant
on Willow serve?

Related Question: What’s on the menu of John’s Pizza?

Related Question: How much is a pizza at John’s Pizza?

Related Question: Why should you correct your posture?
Related Question: What does bad posture do to you?

Related Question: Where can you get hologram stickers in
the US?

Related Question: Who sells high security stickers in the
US?

Related Question: How does a car engine work?
Related Question: How does an internal combustion

engine work?
(Two questions might have multiple relationships above

in common, for the relationships are not mutually
exclusive.)
Rephrase Link

We point out one more general type link which we will
call a Rephrase Link. Auser searching for an answer might
enter various questions that could correspond to that answer.
He might not further specify the relationship between two
such questions except to say that they are both entered in
pursuit of the same answer. He does this by entering a
rephrase command before entering a new question. This
command signifies that the question is a rephrase of the
previous question. The system can then create a link
between the two questions. The user may further specify the
relationship between the two questions later. Or he may not
and the link would remain to identify the questions as
rephrases of each other.

Just as a user can enter a new question and create a link
between it and another question signifying that the new
question is more specific than the other question, a user can
create the links described above between questions. The
links identify the relationship between two questions.
Because the relationships have to do with whether the
questions have the same answer, the links can help other
users find answers or express interest in the same answers.
As shown in FIG. 31, in addition to enabling users to enter
MS-Q’s the system can include options for entering:
Less Specific Questions 3170
Synonymous Questions 3171
More Complete Questions 3172
Less Complete Questions 3173
Related Questions 3174.

When a user enters one of these he does it relative to the

current question or another selected question. In other
words, the process is directly analogous to entering an
MS-Q. Likewise a user can move to (zip to) one linked
question from another. All the other processes are analogous
to those explained with MS-Q’s.

The purpose of these new links is different though than the
purpose of MS-Q’s. MS-Q’s are meant to solve the Endless
Answers problem. The type of links described above are
above all meant to solve the Matching Up Questions prob-
lem.

|PR2020-00686

Apple EX1019 Page 175

IPR2020-00686
Apple EX1019 Page 176

6,131,085

241

But we should realize that at bottom the problems can
both be viewed as the same in the sense that the idea is to

enable Requestors match up their intentions. (Suppliers may
also need to do this when advertising an answer.) MS-Q’s
help Requestors match up their intentions by allowing
Requestors to better explain their intentions. The links above
enable Requestors to express related intentions. That is to
say that they enable Requestors to express the answer they
want in different ways. Thus the links above can help people
find and match up related intentions. That can help people
find answers and join together in expressing demand foranswers.

TABLE OF CONTENTS

Introduction

Part I The Basic System
Chapter 1 Definitions of Necessary Functions
Chapter 2 Procedure and Physical Elements for a Basic AC

Part II Adapting the System to Collect and Sell a Wide
Range of Answers

Chapter 3 Core Design Principles
Chapter 4 Questions and Answers in the Minds of People
Chapter 5 Questions and Answers in AC
Chapter 6 Registering Demand Information
Chapter 7 Price Setting
Chapter 8 Registering People’s Interest in Supplying

Answers and Registering People’s Rights to Supply
Answers

Chapter 9 The Pay-off Meter
Chapter 10 Royalty Rules
Chapter 11 User Accounts (missing)
Chapter 12 Direct Mail
Chapter 13 Quality Control of Answers Through Labeling
Chapter 14 Property Rights
Chapter 15 Multi-lingual AC
Chapter 16 Form of the Invention

Book II Enabling the System to Accommodate Natural
Language

Book III Enabling the System to Handle a Wide Range of
Jobs
I claim:

1. An answer collection and retrieval system comprising
in combination the following elements and steps:
a computer and database having:

input means for inputting questions and answers corre-
sponding to said questions, along with user identifica-
tion information,

output means for outputting said corresponding answers,
along with projected pay-off estimates,

memory means for storing said questions and correspond-
ing answers,

processing means for comparing questions, finding cor-
responding answers, registering times of inputs, calcu-
lating formulas and registering charges and payments
due to users,

said computer performing the following initial steps:
a. registering said user’s identification information in said

database,

b. registering user’s preference in supplying or retrieving
an answer,

said computer performing the following steps upon the
inputting of a question,
c. if the user prefers to supply said corresponding answer,

looking for said corresponding answer in said database,

10

15

20

25

30

35

40

45

50

55

60

65

242

c1. if corresponding answer is found, outputting a
message telling the user that the answer is already in
the database,

c2. if no corresponding answer is found, allowing the
user to input the answer, storing the corresponding
answer and registering that royalties are due to the
user when said answer is requested,

d. if the user prefers to retrieve answer corresponding to
said question,
d1. registering time and date said question is inputted,
d2. searching to find if the answer corresponding to said

question is in the database,
d2a. if corresponding answer is in the database,

outputting the answer, registering a charge due by
said user who inputted the question and a royalty
due to the user who supplied the answer, adding
one to the number of said questions, calculating a
pay-off formula that projects the estimated royal-
ties due to a user who inputs the correct answer
corresponding to said question, and outputting the
resulting pay-off estimate,

d2b. if no corresponding answer is in the database,
checking if said question is stored in the database,
d2b1. if no, storing the question and setting the

number of said questions to one, and calculat-
ing said pay-off formula,

d2b2. if yes, adding one to the number of said
questions, and calculating said pay-off
formula,

d2b3. outputting the resulting pay-off estimate,
said computer also performing the following steps:

presenting a user who has found a first question with the
option to enter a new, more specific question,

and if the user selects the option to enter a more specific
question,
e. entering the second question,
f. storing the second question,
g. linking it in the database to the first question,
h. labeling the second question as more specific than

the first,
and further,

when a user has found a question, presenting a list of all
the linked, more specific questions, and presenting the
user with the option to select a more specific question
from this list, and if the user selects a more specific
question, presenting this question to the user.

2. An answer collection and retrieval system comprising
in combination the following elements and steps:
a computer and database having:

input means for inputting questions and answers corre-
sponding to said questions, along with user identifica-
tion information,

output means for outputting said corresponding answers,
along with projected pay-off estimates,

memory means for storing said questions and correspond-
ing answers,

processing means for comparing questions, finding cor-
responding answers, registering times of inputs, calcu-
lating formulas and registering charges and payments
due to users,

said computer performing the following initial steps:

a. registering said user’s identification information in said
database,

b. registering user’s preference in supplying or retrieving
an answer,

|PR2020-00686

Apple EX1019 Page 176

IPR2020-00686
Apple EX1019 Page 177

6,131,085

243

said computer performing the following steps upon the
inputting of a question,

c. if the user prefers to supply said corresponding answer,
looking for said corresponding answer in said database,
c1. if corresponding answer is found, outputting a

message telling the user that the answer is already in
the database,

c2. if no corresponding answer is found, allowing the
user to input the answer, storing the corresponding
answer and registering that royalties are due to the
user when said answer is requested,

d. if the user prefers to retrieve answer corresponding to
said question,
d1. registering time and date said question is inputted,
d2. searching to find if the answer corresponding to said

question is in the database,
d2a. if corresponding answer is in the database,

outputting the answer, registering a charge due by
said user who inputted the question and a royalty
due to the user who supplied the answer, adding
one to the number of said questions, calculating a
pay-off formula that projects the estimated royal-
ties due to a user who inputs the correct answer
corresponding to said question, and outputting the
resulting pay-off estimate,

d2b. if no corresponding answer is in the database,
checking if said question is stored in the database,

10

15

20

25

244

d2b1. if no, storing the question and setting the
number of said questions to one, and calculat-
ing said pay-off formula,

d2b2. if yes, adding one to the number of said
questions, and calculating said pay-off
formula,

d2b3. outputting the resulting pay-off estimate,
said computer also performing the following steps:

presenting a user who has found a first question with the
option to enter a new, synonym question,

and if the user selects the option to enter a synonym
question,
e. entering the second question,
f. storing the second question,
g. linking it in the database to the first question,
h. labeling the second question as a synonym to the

first,
and further,

when a user has found a question, presenting a list of all
the linked, synonym questions, and presenting the user
with the option to select a synonym question from this
list, and if the user selects a synonym question, pre-
senting this question to the user.

|PR2020-00686

Apple EX1019 Page 177

