
0_I

001

EICROSOET

/INDowS

Petitioner Exhibit 1031, Page 1



Petitioner Exhibit 1031, Page 2Petitioner Exhibit 1031, Page 2



i..u

Petitioner Exhibit 1031, Page 3

 
PetitionerExhibit 1031, Pageeo

Micrae 4



PUBLISHED BY

Microsoft Press

Division of Microsoft Corporation

One Microsoft Way

Redmond Washington 98052 6399

Copyright 1995 by Microsoft Corporation

All rights reserved No part of the contents of this book may be reprodoced or transmitted

in any form or by any means withoot the written permission of the publisher

Library of Congress Cataloging-in Publication Data

The Windows interface guidelines for software design

cm
Includes index

ISBN 1-55615 679-0

Microsoft Windows Computer file User interfaces Computer

systems Computer software--Development Microsoft

Corporation

QA76 76.W56W553 t995

005.265- dc2O 95 330

CIP

Printed and bound in the United States of America

QEQE

Distributed to the book trade in Canada by Macmillan of Canada division of Canada Publishing

Corporation

CIP catalogue record for this book is available from the British Library

Microsoft Press books are available through booksellers and distributors worldwide Por further

information about international editions contact yoor local Microsoft Corporation office Or

contact Microsoft Press International directly at fax 206 936 7329

Information in this document is subject to change without notice and does not represent commitment on the

part of Microsoft Corporation Companies names and data used in examples herein are fictitious unless

otherwise noted No part of this document may be reproduced or transmitted in any form or by any means
electronic or mechanical for any purpose without the express written permission of Microsoft Corporation

Microsoft may have patents or pending patent applications trademarks copyrights or other intellectual

property rights covering subject matter in this document The furnishing of this document does not give you

any license to these patents trademarks copyrights or other intellectual property rights

Adobe Postscript and 11FF are trademarks of Adobe Systems Inc Apple and TrueType are registered

trademarks of Apple Compoter Inc Borland and Quattro are registered trademarks of Borland International

Inc Frutiger is registered trademark of Eltra Corporation HP and LaserJet are registered trademarks of

Hewlett Packard Company Backup was developed for Microsoft by Colorado Memory Systems Inc

division of Hewlett Packard Company Hyperlerminal is trademark of Hilgraeve Inc and Lotus are

registered trademarks of Lotus Development Corporation Microsoft Microsoft Press Microsoft Press logo

MS MS DOS PowerPoint Visual Basic Windows Windows logo and XENIX are registered trademarks

and Windows NT is trademark of Microsoft Corporation Anal Bodoni Swing and Times New Roman are

registered trademarks of The Monotype Corporation PLC Paintbrush is trademark of Wordstar Atlanta

Technology Center

Petitioner Exhibit 1031, Page 4



Contents

Introduction

Whats New xv

How to Use This Guide xvi

How to Apply the Guidelines xvii

Conventions Used in This Guide xviii

PART FUNDAMENTALS OF DESIGNING USER INTERACTION

at flesigft erirtqiplos
and Metiwliptoqy

User-Centered Design Principles

User in Control

Directness

Consistency

Forgiveness

Feedback

Aesthetics

Simplicity

Design Methodology

Balanced Design Team

The Design Cycle

Usability Assessment in the Design Process 12

Understanding Users 15

Design Tradeoffs 16

Petitioner Exhibit 1031, Page 5



Contents

Chapter Baslu Concepts IF

Data-Centered Design 17

Objects as Metaphor 18

Object Characteristics 18

Relationships 19

Composition 19

Persistence 20

Putting Theory into Practice 20

The Desktop 23

The Taskbar 24

The Start Button 25

Window Buttons 26

The Status Area 26

Icons 26

Windows 28

Mouse Input 29

Mouse Pointers 29

Mouse Actions 31

Keyboard Input 32

Text Keys 33

Access Keys 33

Mode Keys 34

Shortcut Keys 35

Pen Input 37

Pen Pointers 39

Pen Gestures 40

Pen Recognition 41

Ink Input 41

Targeting 42

iv The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 6



Contents

Navigation 43

Mouse and Pen Navigation 44

Keyboard Navigation 44

Selection 45

Selection Feedback 46

Scope of Selection 47

Hierarchical Selection 47

Mouse Selection 48

Pen Selection 55

Keyboard Selection 56

Selection Shortcuts 57

Common Conventions for Supporting Operations 58

Operations for Multiple Selection 58

Default Operations and Shortcut Techniques 59

View Operations 59

Editing Operations 62

Editing Text 62

Handles 63

Transactions 64

Properties 65

Pen-Specific Editing Techniques 66

Transfer Operations 72

Command Method 74

Direct Manipulation Method 77

Transfer Feedback 83

Specialized Transfer Commands 86

Shortcut Keys for Transfer Operations 87

Creation Operations 87

Copy Command 87

New Command 88

Insert Command 88

Using Controls 88

Using Templates 88

Operations on Linked Objects 89

The Windows Interface Guidelines for Software DesignPetitioner Exhibit 1031, Page 7



PART II WINDOWS INTERFACE COMPONENTS

Common Types of Windows 95

Primary Window Components 95

Window Frames 96

Title Bars 96

Title Bar Icons 97

Title Text 98

Title Bar Buttons 101

Basic Window Operations 103

Activating and Deactivating Windows 103

Opening and Closing Windows 104

Moving Windows 106

Resizing Windows 106

Scrolling Windows 109

Splitting Windows 116

Menus Controls and Toolbars

Menus 121

The Menu Bar and Drop-down Menus 121

Cnmmon Drop-dnwn Menus 124

Pop up Menus 126

Pop up Menu Interaction 128

Common Pop-up Menus 129

Cascading Menus 133

Menu Titles 134

Menu Items 135

Controls 140

Buttons 141

List Boxes 149

Text Fields 157

Other General Controls 163

Pen-Specific Controls 169

Toolbars and Status Bars 172

Interaction with Controls in Toolbars and Status Bars 173

Support for User Options 174

Toolbar and Status Bar Controls 175

Common Toolbar Buttons 176

vi The Windows Interface Guidelines fnr Software Design

Contents

Petitioner Exhibit 1031, Page 8



Contents

Chapter Secondary Windows

Characteristics of Secondary Windows 179

Appearance and Behavior 179

Window Placement 183

Modeless vs Modal 183

Default Buttons 184

Navigation in Secondary Windows 185

Validation of Input 187

Property Sheets and Inspectors 187

Property Sheet Interface 188

Property Sheet Commands 190

Closing Property Sheet 191

Property Inspectors 191

Properties of Multiple Selection 192

Properties of Heterogeneous Selection 193

Properties of Grouped Items 193

Dialog Boxes 193

Dialog Box Commands 194

Layout 194

Common Dialog Box Interfaces 195

Palette Windows 207

Message Boxes 209

Title Bar Text 209

Message Box Types 209

Command Buttons in Message Boxes 212

Message Box Text 213

Popup Windows 215

The Windows Interface Guidelines for Software Design viiPetitioner Exhibit 1031, Page 9



PART Ill DESIGN SPECIFICATIONS AND GUIDELINES

Single Document Window Interface 219

Multiple Document Interface 220

Opening and Closing MDI Windows 222

Moving and Sizing \4D1 Windows 223

Switching Between MDI Child Windows 225

MDI Alternatives 225

Workspaces 227

Workbooks 229

Projects 231

Selecting Window Model 233

Presentation of Object or Task 233

Display Layout 234

Data-Centered Design 235

Combination of Alternatives 235

The Registry 237

Registering Application State Information 238

Registering Application Path Information 241

Registering File Extensions 242

Supporting Creation 249

Registering Icons 250

Registering Commands 251

Enabling Printing 253

Registering OLE 253

Registering Shell Extensions 254

Supporting the Quick View Command 256

Registering Sound Events 257

Installation 257

Copying Files 257

Providing Access to Your Application 260

Designing Your Installation Program 260

viii The Windows Interface Guidelines for Software Design

Contents

Petitioner Exhibit 1031, Page 10



Contents

Installing Fonts 262

Installing Your Application on Network 262

Uninstalling Your Application 263

Supporting AutoPlay 264

System Naming Conventions 266

Taskbar Integration 268

Taskbar Window Buttons 268

Status Notification 269

Message Notification 270

Application Desktop Toolbars 271

Full-Screen Display 272

Recycle Bin Integration 273

Control Panel Integration 273

Adding Control Panel Objects 273

Adding to the Passwords Object 273

Plug and Play Support 275

System Settings and Notification 275

Modeless Interaction 276

The Interaction Model 277

Creating OLE Embedded and OLE Linked Objects 279

Transferring Objects 279

Inserting New Objects 285

Displaying Objects 290

Selecting Objects 293

Accessing Commands for Selected Objects 295

Activating Objects 297

Outside-in Activation 297

Inside-out Activation 297

Container Control of Activation 298

OLE Visual Editing of OLE Embedded Objects 300

The Active Hatched Border 304

The Windows Interface Goidelines for Software Design ix
Petitioner Exhibit 1031, Page 11



Contents

Menu Integration 305

Keyboard Interface Integration 308

Toolbars Frame Adornments and Palette Windows 310

Opening OLE Embedded Objects 313

Editing an OLE Linked Object 316

Automatic and Manual Updating 318

Operations and Links 319

Types and Links 320

Link Management 320

Accessing Properties of OLE Objects 321

The Properties Command 321

The Links Command 324

Converting Types 326

Using Handles 329

Undo Operations for Active and Open Objects 330

Displaying Messages 332

ObjectApplication Messages 332

OLE Linked Object Messages 334

Status Line Messages 336

Contextual User Assistance 339

Context Sensitive Help 339

Guidelines for Writing Context-Sensitive Help 342

Tooltips 343

Status Bar Messages 344

Guidelines for Writing Status Bar Messages 345

The Help Command Button 346

Task-Oriented Help 347

Task Topic Windows 347

Guidelines for Writing Task Help Topics 348

Shortcut Buttons 349

The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 12



Contents

Reference Help 350

The Reference Help Window 351

Guidelines for Writing Reference Help 352

The Help Topics Browser 354

The Help Topics Tabs 354

Wizards 358

Guidelines for Designing Wizards 359

Guidelines for Writing Text for Wizard Pages 363

Visual Communication 365

Composition and Organization 366

Color 362

Fonts 370

Dimensionality 371

Design of Visual Elements 372

Basic Border Styles 372

Window Border Style 373

Button Border Styles 374

Field Border Style 375

Status Field Border Style 376

Grouping Border Style 376

Visual States tor Controls 377

Layout 384

Font and Size 384

Capitalization 387

Grouping and Spacing 388

Alignment 389

Placement 389

Design of Graphic Images 390

Icon Design 391

Pointer Design 394

Selection Appearance 395

Highlighting 396

Handles 397

TransferAppearance 398

Open Appearance 399

Animation 400

The Windows Interface Guidehnes for Software Design xi
Petitioner Exhibit 1031, Page 13



Sound 401

Accessibility 403

Types of Disabilities 404

Types of Accessibility Aids 406

Compatibility with Screen Review Utilities 408

The Users Point of Focus 411

Timing and Navigational Interfaces 411

Color 412

Keyboard and Mouse Interface 413

Documentation Packaging and Support 414

Usability Testing 414

Internationalization 415

Text 416

Graphics 417

Keyboards 418

Character Sets 419

Formats 419

Layout 420

References to Unsupported Features 420

Network Computing 421

Leverage System Support 421

Client-Server Applications 421

Shared Data Files 422

Record Processing 422

Telephony 423

Microsoft Exchange 424

Coexisting with Other Information Services 424

Adding Menu Items and Toolbar Buttons 424

Supporting Connections 425

Installing Information Services 425

xli The Windows Interface Guidelines for Software Design

Contents

Petitioner Exhibit 1031, Page 14



Contents

PART IV APPENDIXES

Appendix Mouse Interface Summary

Interaction Guidelines for Common

Unmodified Mouse Actions 429

Interaction Guidelines for Using the SHIFT Key

to Modify Mouse Actions 431

Interaction Guidelines for Using the CTRL Key

to Modify Mouse Actions 435

Appendix Keyboard Interface Summary

Common Navigation Keys 437

Common Shortcut Keys 438

Windows Keys 439

Accessibility Keys 440

Access Key Assignments 441

Appendix Guidelines Summary

General Design 443

Design Process 444

Input and Interaction 444

Windows 445

Control Usage 446

Integration 447

User Assistance 448

Visual Design 448

Sound 449

Accessibility 449

International Users 450

Network Users 450

The Windows Interface Guidelines for Software Design xiiiPetitioner Exhibit 1031, Page 15



International Word Lists 455

Glossary 511

Bibliography 523

Index 527

xiv The Windows Interface Guidelines for Software Design

Contents

Microsoft Windows 3.1 451

Microsoft Windows NT 3.51 453

Petitioner Exhibit 1031, Page 16



Petitioner Exhibit 1031, Page 17Petitioner Exhibit 1031, Page 17



Petitioner Exhibit 1031, Page 18Petitioner Exhibit 1031, Page 18



Introduction

Welcome to The Windows Interface Guidelines for Software Design

an indispensable guide to designing software that runs with the

Microsoft Windows0 operating system The design of your

softwares interface more than anything else affects how user

experiences your product This guide promotes good interface design

and visual and functional consistency within and across Windows-

based applications

Whats New

Continuing the direction set by Microsoft OLE the enhancements in

the Windows user interface provide design evolution from the

basic and graphical to the more object oriented that is from an

application-centered interface to more data centered one In re

sponse developers and designers may need to rethink the interface of

their software the basic components and the respective operations

and properties that apply to them This is important because from

users perspective applications have become less the primary focus

and more the engines behind the objects in the interface Users can

now interact with data without having to think about applications

allowing them to better concentrate on their tasks

When adapting your existing Windows based software make certain

you consider the following important design aspects

Title bar text and icons

Property sheets

Transfer model including drag and drop

Petitioner Exhibit 1031, Page 19



Introduction

Pop-up menus

New controls

Integration with the system

Help interface

OLE embedding and OLE linking

Visual design of windows controls and icons

Window management

Presentation of minimized windows

These elements are covered in depth throughout this guide

How to Use This Guide

This guide is intended for those who are designing and developing

Windows based software It may also be appropriate for those inter

ested in better undertanding of the Windows environment and the

human-computer interface principles it supports The content of the

guide covers the following areas

Basic design principles and process fundamental design phi

losophy assumptions about human behavior design methodol

ogy and concepts embodied in the interface

Interface elements descriptive information about the various

components in the interface as well as when and how to use them

Design details specific information about the details of effec

tive design and style when using the elements of the interface

Additional information summary and quick reference informa

tion bibliography comprehensive word list in numerous lan

guages to assist in product localization and glossary

xviii The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 20



Introduction

This guide focuses ou the design and elements of an applications

user interface Although an occasional technical reference is

included this guide does not generally cover detailed information

about technical implementation or application programming inter

faces APIs because there are many different types of develupment

tools that you can use to develop software for Windows The docu

mentation included with the Microsoft Win32 Software Develop

ment Kit SDK is one source of information about specific APIs

How to Apply the Guidelines

This guide promotes visual and functional consistency within and

across the Windows operating system Although following these

guidelines is encouraged you are free to adopt the guidelines that

best suit your software However by following these guidelines you

enable users to transfer their skills and experience from one task to

the next and to learn new tasks easily In addition evolution toward

data-centered design breaks down the lines between traditional appli

cation domains making inconsistencies in the interface more obvi

ous and distracting to users

Conversely adhering to the design guidelines does not guarantee

usability The guidelines are valuable tools but they must be com

bined with other factors as part of an effecti\ software design pro

cess such as application of design principles task analysis

prototyping and usability evaluation

You may extend these guidelines provided that you do so in the

spirit of the principles on which they are based and maintain rca

sonable level of consistency with the visual and behavioral aspects of

the Windows interface In general avoid adding new elements or

behaviors unless the interface does not otherwise support them More

importantly avoid changing an existing behavior for common ele

ments user builds up expectations about the workings of an inter

face Inconsistencies not only confuse the user they also add

unnecessary complexity

The Windows Interface Guidelines tor Software Design xix
Petitioner Exhibit 1031, Page 21



Introduction

These guidelines supersede those issued for Windows version 3.1 and

all previous releases arid are specific to the development of applica

tions designed for Microsoft Windows Microsoft Windows NTTM

Workstation and Mic cosoft Windows NT Server There is no direct

relationship between these guidelines and those provided for other

operating systems

For more information about special considerations concerning

developing applications for both Windows 95 and Windows NT

operating system see Appendix Supporting Specific Versions

of Windows

Conventions Used in This Guide

The following conventions are used throughout this guide

Convention Indicates

reference tn related tnpics in this guide

or other books that provide more

information about the topic

rI Additional or special information about

LJ the topic

SMALL CAPITAL LETTERS Names of keys on the keybnard fnr

example SHIFT CTRL or ALT

KEYKEY Key combinations for which the user

must press and hold down one key and

then press another for example

CTRLP or ALTF4

Italic text New terms and variable expressions

such as parameters

Bold text Win32 API keywords and registry key

entries

Registry text Examples of registry entries

Optional information

xx The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 22



Petitioner Exhibit 1031, Page 23 



Petitioner Exhibit 1031, Page 24Petitioner Exhibit 1031, Page 24



CHAPTER

Design Principles and

Methodology

well-designed user interface is built on principles and develop

ment process that centers on users and their tasks This chapter sum
marizes the basic principles of the interface design for Microsoft

Windows It also includes techniques and methodologies employed

in an effective human computer interface design process

User-Centered Design Principles

Thc information in this section describcs the dcsign prineiplcs on

which Windows and the guidelines in this book are based You will

find these principles valuable when designing software for Windows

User in Control

An important principle of user interface design is that the user should

always feel in control of the software rather than feeling controlled

by the software This principle has number of implications

The first implication is the operational assumption that the user mi

tiates actions not the computer or software the user plays an

active rather than reactive role You can use techniques to automate

tasks but implement them in way that allows the user to chose or

control the automation

Petitioner Exhibit 1031, Page 25



Chapter Design Principles and Methodology

The second implication is that users because of their widely varying

skills and preferences must be able to personalize aspects of the

interface The system software provides user access to many of these

aspects Your software should reflect user settings for different sys

tem properties such as color fonts or other options

The final implication is that your software should be as interactive

and responsive as possible Avoid modes whenever possible mode

is state that excludes general interaction or otherwise limits the

user to specific interactions When mode is the only or the best

design alternative for example for selecting particular tool in

drawing program make certain the mode is obvious visible the

result of an explicit user choice and easy to cancel

For information about applying the design principle of user in con

trol see Chapter Input Basics and Chapter General Interac

tion Techniques These chapters cover the basic forms of interaction

your software should support

Directness

Design your software so that users can directly manipulate software

representations of information Whether dragging an object to relo

cate it or navigating to location in document users should see

how the aetiosss they take affect the objects oil the sereess Visibility

of information and choices also reduce the users mental workload

Users can recognize command easier than they can recall its syntax

Familiar metaphors provide direct and intuitive interface to user

tasks By allowing users to transfer their knowledge and experience

metaphors make it easier to predict and leam the behaviors of

software-based representations

When using metaphors you need not limit computer-based imple

mentation to its real orld counterpart For example unlike its

paper-based counterpart folder on the Windows desktop can be

used to organize variety of objects such as printers calculators and

other folders Similarly Windows folder can be more easily re

sorted The
purpose

of using metaphor in the interface is to provide

cognitive bridge the metaphor is not an end in itself

The Windows Interface Guidelines for Software Design Petitioner Exhibit 1031, Page 26



Design Principles and Methodology Chapter

Metaphors support user recognition rather than recollection Users

remember meaning associated with familiar object more easily

than they remember the name of particular command

For information about applying the principle of directness and meta

phor see Chapter General Interaction Techniques and Chapter

13 Visual Design These chapters cover respectively the use of

directness in the interface inclnding drag and drop and the use of

metaphors when designing icons or other graphical elements

Consistency

Consistency allows users to transfer existing knowledge to new

tasks learn new things more quickly and focus more on tasks be

cause they need not spend time trying to remember the differences in

interaction By providing sense of stability consistency makes the

interface familiar and predictable

Consistency is important through all aspects of the interface includ

ing names of commands visual presentation of information and

operational behavior To design consistency into software you must

consider several aspects

Consistency within product Present common fnnctions nsing

consistent set of commands and interfaces For example avoid

implementing Copy command that immediately carries out an

operation in one situation but in another presents dialog box that

requires user to type in destination As corollary to this ex

ample use the same command to carry out functions that seem

similar to the user

Consistency within the operating environment By maintaining

high level of consistency between the interaction and interface

conventions provided by Windows your software benefits from

users ability to apply interaction skills they have already learned

Consistency with metaphors If particular behavior is more

characteristic of different object than its metaphor implies the

user may have difficulty learning to associate that behavior

with an object For example an incinerator communicates dif

ferent model than wastebasket for the recoverability of objects

placed it

The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 27



Chapter Design Principles and Methodology

Although applying the principle of consistency is the primary goal

of this guide the follcwing chapters focus on the elements common

to all Windows-based software Chapter Windows Chapter

Menus Controls and Toolbars and Chapter Secondary Win

dows For informatinn about closely integrating your software with

the Windows environment see Chapter 10 Integrating with the

System and Chapter 11 Working with OLE Embedded and OLE
Linked Objects

Forgiveness

Users like to explore an interface and often learn by trial and erron

An effective interface allows for interactive discovery It provides

only appropriate sets of choices and warns users about potential

situations where they may damage the system or data or better

makes actions reversible or recoverable

Even within the best designed interface users can make mistakes

These mistakes can be both physical accidentally pointing to the

wrong command or data and mental making wrong decision

about which command or data to select An effective design avoids

situations that are likely to result in errors It also accommodates

potential user errors and makes it easy for the user to recover

For information about applying the principle of forgiveness see

Chapter 12 User Ass utance which provides information about

supporting discoverability in the interface through the use of contex

tual task-oriented and reference forms of user assistance For infor

mation about designing for the widest range of users see Chapter 14

Special Design Considerations

The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 28



Design Principles and Methndnlngy Chapter

Feedback

Always provide feedback for users actions Visual and sometimes

audio cues should be presented with every user interaction to con

firm that the software is responding to the users input and to com

municate details that distinguish the nature of the action

Effective feedback is timely and is presented as close to the point of

the users interaction as possible Even when the computer is pro

cessing particular task provide the user with information regarding

the state of the process and how to cancel that process if that is an

option Nothing is more disconcerting than dead screen that is

unresponsive to input typical user will tolerate only few seconds

of an unresponsive interface

It is equally important that the type of feedback you use be appro

priate to the task Pointer changes or status bar message can com

municate simple information more complex feedback may require

the display of message box

For information about applying the principle of visual and audio

feedback see Chapter 13 Visual Design and Chapter 14 Special

Design Considerations

Aesthetics

The visual design is an important part of softwares interface

Visual attributes provide valuable impressions and communicate

important cues to the interaction behavior of particular objects At

the same time it is important to remember that
every

visual element

that
appears on the screen potentially competes for the users atten

tion Provide pleasant environment that clearly contributes to the

users understanding of the information presented graphics or

visual designer may be invaluable with this aspect of the design

For information and guidelines related to the aesthetics of your inter

face see Chapter 13 Visual Design This chapter covers every

thing from individual element design to font use and window layout

The Windnws Interface Guidelines fur Snttware Design
Petitioner Exhibit 1031, Page 29



Chapter Design Principles and ethodology

Simplicity

An interface should be simple not simplistic easy to learn and

easy to use It must also provide access to all functionality provided

by an application Maximizing functionality and maintaining sim

plicity work against each other in the interface An effective design

balances these objectives

One way to support simplicity is to reduce the presentation of infor

mation to the minimum required to communicate adequately For

example avoid wordy descriptions for command names or messages

Irrelevant or verbose phrases clutter your design making it difficult

for users to easily extract essential information Another way to

design simple but useful interface is to use natural mappings and

semantics The arrangement and presentation of elements affects

their meaning and association

You can also help users manage complexity by using progressive

disclosure Progressive disclosure involves careful organization of

information so that it is shown only at the appropriate time By hid

ing information presented to the user you reduce the amount of

information to process For example clicking menu displays its

choices the use of dialog boxes can reduce the number of menu

options

Progressive disclosure does not imply using unconventional tech

niques for revealing information such as requiring modifier key as

the only way to access basic functions or forcing the user down

longer sequence of hierarchical interaction This can make an inter

face more complex and cumbersome

For information about applying the principle of simplicity see Chap
ter Menus Controls and Toolbars This chapter discusses pro

gressive disclosure in detail and describes how and when to use the

standard system supplied elements in your interface

The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 30



Design Principles and Methodology Chapter

Design Methodology

Effective interface design is more than just following set of rules

It requires user centered attitude and design methodology It also

involves early planning of the interface and continued work through

the software development process

Balanced Design Team

An important consideration in the design of product is the compo
sition of the team that designs and builds it Always try to balance

disciplines and skills including development visual design writing

human factors and usability assessment Rarely are these character

istics found in single individual so create team of individuals

who specialize in these areas and who can contribute uniquely to the

final design

Ensure that the design team can effectively work and communicate

together Locating them in close proximity or providing them with

common area to work out design details often fosters better commu

nication and interaction

The Design Cycle

An effective user-centered design process involves number of

important phases designing prototyping testing and iterating

The following sections describe these phases

Design

The initial work on softwares design can be the most critical be

cause during this phase you decide the general shape of
your prod

uct If the foundation work is flawed it is difficult to correct

afterwards

This part of the process involves not only defining the objectives and

features for
your product but understanding who

your users are and

their tasks intentions and goals This includes understanding factors

such as their background age gender expertise experience level

physical limitations and special needs their work environment

The Windows Interface Guidelines for Software Design

Petitioner Exhibit 1031, Page 31



Chapter Design Principles and Methodology

equipment social and cultural influences and physical surroundings

and their current task organization the steps required the depen

dencies redundant activities and the output objective An order-

entry system may have very different users and requirements than an

information kiosk

At this point begin defining your conceptual framework to represent

your product with the knowledge and experience of your target audi

ence Ideally you want to create design model that fits the users

conceptual view of the tasks to be performed Consider the basic

organization and different types of metaphors that can be employed

Observing users at their current tasks can provide ideas on effective

metaphors to use

Document your design Committing your planned design to written

format not only provides valuable reference point and form of

communication but often helps make the design more concrete and

reveals issues and gaps

Prototype

After you have defined design model prototype some of the basic

aspects of the design This can be done with pencil and paper
models where you create illustrations of your interface to which

other elements can be attached storyboards comic book-like

sequences of sketches that illustrate specific processes animation

movie-like simulations or operational software using prototyping

tool or normal development tools

prototype is valuable asset in many ways First it provides an

effective tool for communicating the design Second it can help you

define task flow and better visualize the design Finally it provides

low-cost vehicle for getting user input on design This is particu

larly useful early in the design process

The type of prototype you build depends on your goal Function

ality task flow interface operation and documentation are just

some of the different aspects of product that need to be assessed

For example pen and
paper models or storyboards may work when

defining task organization or conceptual ideas Operational proto

types are usually best for the mechanics of user interaction

10 The Windows Interface Guidelines for Software Design

Petitioner Exhibit 1031, Page 32



Design Principles and Methodology Chapter

Consider whether to focus your prototype on breadth or depth The

broader the prototype the more features you should try to include to

gain an understanding about how users react to concepts and organi

zation When your objective is focused more on detailed usage of

particular feature or area of the design use depth oriented prototypes

that include more detail for given feature or task

Test

User-centered design involves the user in the design process Usabil

ity testing design or particular aspect of design provides valu

able information and is key part of products success Usability

testing is different than quality assurance testing in that rather than

find programming defects you assess how well the interface fits user

needs and expectations Of course defects can sometimes affect how

well the interface will fit

There can be different reasons for testing You can use testing to look

for potential problems in proposed design You can also focus on

comparative studies of two or more designs to determine which is

better given specific task or set of tasks

Usability testing provides you not only with task efficiency and

success or-failure data it also can provide you with information

about the users perceptions satisfaction questions and problems

which may be just as significant as the ability to complete particu

lar task

When testing it is important to use participants who fit the profile of

your target audience Using fellow workers from down the hall might

be quick way to find participants but software developers rarely

have the same experience as their customers The section Usability

Assessment in the Design Process provides details about conduct

ing usability test

The Windows Interface Unidelines for Software Design 11
Petitioner Exhibit 1031, Page 33



Chapter Design Principles and Methodology

Iterate

Because testing often uncovers design weaknesses or at least pro
vides additional information you will want to use repeat the entire

process taking shat you have learned and reworking your design or

moving onto reprotot ping and retesting Continue this refining

cycle through the development process until yon are satisfied with

the results

During this iterative process you can begin snbstituting the actnal

application for prototypes as the application code becomes available

However avoid delaying your design cycle waiting for the applica

tion code to be complete enough you can lose valuable time and

input that you could have captured with prototype Moreover by

the time most applications are complete enough for testing it is

difficult to consider significant changes because it becomes easier to

ignore usability defects becanse of the time resources invested In

addition changes at this point may affect the applications delivery

schedule

Usability Assessment in the Design Process

As described in the previous section usability testing is key part of

the design process but testing design prototypes is only one part of

the picture Usability assessment should begin in the early stages of

product development where you can use it to gather data about how

users do their work You then roll your findings back into the design

process As the design progresses usability assessment continnes to

provide valuable input for analyzing initial design concepts and in

the later stages of product development can be used to test specific

prodnct tasks Apply nsability assessment early and often

Consider the users entire experience as part of products usability

The usability assessment should include all of products compo
nents software interface is more than just what shows up on the

screen or in the documentation

12 The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 34



Design Principles and Methodology Chapter

Usability Testing Techniques

Usability testing involves wide range of techniques and investment

of resources including trained specialists working in sound proofed

labs with one-way mirrors and sophisticated recording equipment

However even the simplest investment of an office or conference

room tape recorder stopwatch and notepad can produce benefits

Similarly all tests need not involve great numbers of subjects

More typically quick iterative tests with small well-targeted

sample 6-10 participants can identify 80 to 90 percent of most de

sign problems

Like the design process itself usability testing begins with defining

the target audience and test goals When designing test focus on

tasks not features Fven if
ynur goal i5 testing specific features

remember that your customers will use them within the context of

particular tasks It is also good idea to run pilot test to work out

the bugs of the tasks to be tested and make certain the task scenarios

prototype and equipment work smoothly

When conducting the usability test provide an environment compa
rable to the target setting usually quiet location free from distrac

tions is best Make participants feel comfortable Unless you have

participated yourself you may be surprised by the
pressure many test

participants feel You can alleviate some pressure by explaining the

testing process and equipment to the participants and stating your

objective in testing the software and not them if they become con

fused or frustrated it is not reflection upon them

Allow the user reasonable time to try and work through any difficult

situations Although it is generally best to not interrupt participants

during test they may get stuck or end up in situations that require

intervention This need not necessarily disqualify the test data as

long as the test coordinator carefully guides or hints around prob

lem Give general hints before moving to specific advice For more

difficult situations you may need to stop the test and make adjust

ments Keep in mind that less intervention usually yields better re

sults Always record the techniques and search patterns that users

employ when attempting to work through difficulty and the num
ber and type of hints you have to provide

The Windows Interface Guidelines for Software Design 13
Petitioner Exhibit 1031, Page 35



Chapter Design Principles and Methodology

Ask subjects to think aloud as they work so you can hear what as

sumptions and inferences they are making As the participants work

record the time they take to perform task as well as any problems

they encounter You may also want to follow up the session with

questionnaire that asks the participants to evaluate the product or

tasks they performed

Record the test results using portable tape recorder or better

video camera Since even the best observer can miss details review

ing the data later will prove invaluable Recorded data also allows

more direct comparisons between multiple participants It is usually

risky to base conclusions on observing single subject Recorded

data also allows all the design team to review and evaluate the

results

Whenever possible involve all members of the design team in ob

serving the test and reviewing the results This ensures common

reference point and better design solutions as team members apply

their own insights to what they observe If direct observation is not

possible make the recorded results available to the entire team

Other Assessment Techniques

There are many techniques you can use to gather usability informa

tion In addition to those already mentioned focus groups are

helpful for generating initial ideas or trying out ideas focus group

requires moderator who directs the discussion about aspects of

task or design but allows participants to freely express their opin

ions You can also conduct demonstrations or walkthroughs in

which you take the user through set of sample scenarios and ask

about their impressions along the way In so-called Wizard of Oz
technique testing specialist simulates the interaction of an inter

face Although these latter techniques can be valuable they often

require trained expe -ienced test coordinator

14 The Windows Interface Guidelines for 5oftware Design

Petitioner Exhibit 1031, Page 36



Design Principles and Methndnlngy Chapter

Understanding Users

The design and usability techniques described in the previous sec

tions have been used in the development of Windows and in many of

the guidelines included in this book That process has yielded the

following general characteristics about users Consider these charac

teristics in the design of your software

Beginning Windows users often have difficulty with the mouse

For example dragging and double-clicking are skills that may
take time for beginning mouse users to master Dragging can be

difficult because it requires continued
pressure on the mouse but

ton and involves properly targeting the conect destination

Double clicking is not the same as to separate clicks so many

beginning users have difficulty handling the timing necessary to

distinguish these two actions or they overgeneralize the behavior

to assume that everything needs double-clicking Design your

interface so that double-clicking and dragging are not the only

ways to perform basic tasks allow the user to conduct those tasks

using single click operations

Beginning users often have difficulty with window management

They do not always realize that overlapping windows represent

three dimensional space As result when window is hidden by

another user may assume it no longer exists

Beginning users often have difficulty with file management The

organization of files and folders nested more than two levels is

more difficult to understand because it is not as obvious in the real

world

Intermediate users may understand file hierarchies but have diffi

culty with other aspects of file management such as moving

and copying files This may be because most of their experience

working with files is often from within an application

Advanced or power users want efficiency The challenge in

designing for advanced users is providing for efficiency without

introducing complexity for less experienced users Shortcut

methods are often useful for supporting these users In addition

advanced users may be dependent upon particular interfaces

making it difficult for them to adapt to significant reanangement

or changes in an interface

The Windows Interface Guidelines fnr Software Design 15

Petitioner Exhibit 1031, Page 37



Chapter Design Principles and Methodology

To develop for the widest audience consider international users

and users with disabilities Including these users as part of your

planning and design cycle is rhe best way to ensure that you can

accommodate them

Design Tradeoffs

number of additional factors may affect the design of product

For example marketing considerations may require you to deliver

product with minimal design process or comparative evaluations

may force you to consider additional features Remember that short

cuts and additional features can affect the product There is no

simple equation to determine when design tradeoff is appropriate

So in evaluating the impact consider the following

Every additional feature potentially affects performance

complexity stability maintenance and the support costs of an

application

It is harder to fix design problem after the release of product

because users may adapt or even become dependent on pecu

liarity in the design

Simplicity is not the same as being simplistic Making something

simple to use often requires good deal of work and code

Features implemented by small extension in the application

code do not necessarily have proportional effect in user inter

face For example the primary task is selecting single object

extending it to support selection of multiple objects could make

the frequent simple task more difficult to carry out

16 The Windows Interface Gnidelir es for Software Design

Petitioner Exhibit 1031, Page 38



CHAPTER

Basic Concepts

Microsoft Windows supports the evolution and design of software

from basic graphical user interface to data centered interface that

is better focused on users and their tasks This chapter outlines the

fundamental concepts of data-centered design It covers some of the

basic definitions used throughout this guide and provides the funda

mental model for how to define your interface to fit well within the

Windows environment

Data-Centered Design

Dara-centered design means that the design of the interface supports

model where user can browse for data and edit it directly instead

of having to first locate an appropriate editor or application As

user interacts with data the corresponding commands and tools to

manipulate the data or the view of the data become available to the

user automatically This frees user to focus on the information and

tasks rather than on applications and how applications interact

In this data-centered context document is common unit of data

used in tasks and exchanged between users The use of the term is

not limited to the output of word-processing or spreadsheet appli

cation but it emphasizes that the focus of design is on data rather

than the underlying application

Petitioner Exhibit 1031, Page 39



Chapter Basic Concepts

Objects as Metaphor

well-designed user interface provides an understandable consis

teut framework in which users can work without being coufounded

by the details of the underlying technology To help accomplish this

the design model of the Windows user interface uses the metaphor

of objects This is natural way we interpret and interact with the

world around us In the interface objects not only describe files or

icons but any unit of information including cells paragraphs char

acters and circles and the documents in which they reside

Object Characteristics

Objects whether real world or computer representations have cer

tam characteristics thai help us understand what they are and how

they behave The following concepts describe the aspects and char

acteristics of computer representations

Properties Objects have certain characteristics or attributes

called properties that define their appearance or state for ex

ample color size and modification date Properties are not lim

ited to the external or visible traits of an object They may reflect

the internal or operational state of an object such as an option in

spelli jig
check utility that automatically suggests alteinative

spellings

Operations Things that can be done with or to an object are

considered its operations Moving or copying an object are ex

amples of operations You can expose operations in the interface

through variety of mechanisms including commands and direct

manipulation

Relationships Objects always exist within the context of other

objects The context or relationships that an object may have

often affects the way the object appears or behaves Common

kinds of relationships include collections constraints and

composites

18 The Windows Interface Guidelines tor Software Design Petitioner Exhibit 1031, Page 40



Basic Concepts Chapter

Relationships

The simplest relationship is collection in which objects in set

share common aspect The results of query or multiple selection

of objects are examples of collection The significance of collec

tion is that it enables operations to be applied to set of objects

constraint is stronger relationship between set of objects in that

changing an object in the set affects some other object in the set The

way text box streams text the way drawing application layers its

objects and even the way word-processing application organizes

document into pages are all examples of constraints

When relationship between objects becomes so significant that the

aggregation can be identified as an object itself with its own set of

properties and operations the relationship is called composite

range of cells paragraph and grouped set of drawing objects

are examples of composites

Another common kind of relationship found in the interface is con

tainment container is an object that is the place where other ob

jects exist such as text in document or documents in folder

container often influences the behavior of its content It may add

or suppress
certain properties or operations of an object placed in it

In addition container controls access to its content as well as what

kind of object it will
accept as its content This may affect the results

when transferring objects from one container to another

All these aspects contribute to an objects type descriptive way of

distinguishing or classifying objects Objects of common type have

similar traits and behaviors

Composition

As in the natural world the metaphor of objects implies con

structed environment Objects are compositions of other objects

You can define most tasks supported by applications as specialized

combination or set of relationships between objects text docu

ment is composition of text paragraphs footnotes or other items

table is combination of cells chart is particular organization

of graphics When you define user interaction with objects to be as

consistent as possible at any level you can produce complex con

structions while maintaining small basic set of conventions These

The Windows Interface Guidelines for Software Design 19Petitioner Exhibit 1031, Page 41



Chapter Basic Concepts

conventions can apply throughout the interface increasing ease of

use In addition using composition to model tasks encourages modu

lar component-oriented design This allows objects to be adapted or

recombined for other uses

Persistence

In the natural world objects persist in their existing state unless

changed or destroyed When you use pen to write note you need

not invoke command to ensure that the ink is preserved on the

paper The act of writing implicitly preserves the information This is

the long term direction for objects in the interface as well Although

it is still appropriate to design software that requires explicit user

actions to preserve data consider whether data can be preserved

automatically In addition view state information such as cursor

position scroll position and window size and location should be

preserved so it can be restored when an objects view is reopened

Putting Theory into Practice

Using objects in an interface design does not guarantee usability

But applying object-based concepts does offer greater potential for

well-designed interfacc As with any good user interface design

good user centered design process ensures the success and quality of

the interface

The first step to object-based design should begin as any good de

sign with thorough understanding of what users objectives and

tasks are When doing the task analysis identify the basic compo

nents or objects used in those tasks and the behavior and the charac

teristics that differentiate each kind of object including the

relationships of the objects to each other and to the user Also iden

tify the actions that are performed the objects to which they apply

and the state information or attributes that each object in the task

must preserve display and allow to be edited

Once the analysis is complete you can start identifying the user

interfaces for the objects Define how the objects you identified are

to be presented either as icons or data elements in form Use icons

primarily for representing composite or container objects that need to

be opened into their own windows Attribute or state information

20 The Windows Interface Goidelines for Software Design Petitioner Exhibit 1031, Page 42



Basic Concepts Chapter

should typically be presented as properties of the associated object

most often using property sheets Map behaviors and operations to

specific kinds of interaction such as menu commands direct ma
nipulation or both Make these accessible when the object is se

leeted by the user The information in this guide will help you define

how to apply the interfaces provided by the system

Redesigning an existing Windows 3.1 based application to more

data-centered interface need not require an immediate complete

overhaul You can begin the evolution by adding contextual inter

faces such as pop up menus property sheets and OLE drag and drop

and by following the recommendations for designing your window

title bars and icons

The Windows Interface Guidelines for Software Design 21Petitioner Exhibit 1031, Page 43



Petitioner Exhibit 1031, Page 44Petitioner Exhibit 1031, Page 44



CHAPTER

The Windows
Environment

This chapter provides brief overview of some of the basic elements

inclnded in the Microsoft Windows operating system that allow the

user to control the environment sometimes collectively referred to

as the shell These elements provide not only the backdrop for

users environment but can be landmarks for the users interaction

with your application as well

The Desktop

The desktop represents nsers primary work area it fills the screen

and forms the visual background for all operations as shown in

Figure 3.1 However the desktop is more than just background It

can also be used as convenient location to place objects that are

stored in the file system In addition for computer connected to

network the desktop also serves as private work area through

which user can still browse and access objects remotely located on

the network

Petitioner Exhibit 1031, Page 45



Chapter The Windows Environment

Figure 3.1 The desktop

The Taskbar

Desktop

Status area

The taskbar is special component of the desktop that can be used to

switch between open windows and to access global commands and

other frequently used objects As result it provides home base

an operational anchor for the interface

Like most toolbars the taskbar can be configured For example

user can move the taskbar from its default location and relocate it

along another edge of ihe screen as shown in Figure 3.2 The user

can also configure display options of the taskbar The taskbar can

For more information about

integrating your application

with the taskbar see Chapter 1D

Integrating with the System

-WordPad

Start button Window button Taskbar

24 The Windows Interface Goidelines for Software Design Petitioner Exhibit 1031, Page 46



The Windows Environment Chapter

provide the user access to your application It can also be used to

provide status information even when your application is not active

Because the taskbar is an interface shared across applications be

sure to follow the conventions and guidelines covered in this guide

The Start Button

The Start button at the left side of the taskbar displays special

menu that includes commands for opening or finding files The

Program menu entry automatically includes the Program Manager

entries when the system is installed over Windows 3.1 When install

ing your Windows-based application you also can include an entry

for your application by placing shortcut icon in the systems

Programs folder

trtj

Fig 3.2 Showing the taskbar in another location

The Windows Interface Guidelines for Software Design 25
Petitioner Exhibit 1031, Page 47



Chapter The Windows Environment

Icons

Whenever the user opens primary window button is placed on

the taskbar for that window This button provides the user access to

the cuHunands of that window and convenient interface for switch

ing to that window The taskbar automatically adjusts the size of the

buttons to accommoda as many buttons as possible When the size

of the button requires that the windows title be abbreviated the

taskbar also automatic lly supplies small pop-up window as

shown in Figure 3.3 that displays the full title for the window

When window is minimized the windows button remains on the

taskbar but is removed when the window is closed

On the opposite side of the taskbar from the Start menu is special

status area Your application can place special status or notification

indicators here even when it is not active

Icons may appear on the desktop and in windows Icons are pictorial

representations of objects This
goes beyond the use of icons in Win

dows 3.1 which only represented minimized windows Your soft

ware should provide and register icons for its application file and any

of its associated document or data files

Windows includes number of icons that represent basic objects

such as the following

For more information about

the use of icons see Chap
fer 10 Integrating with the

System For information about

icon design see Chapfer 13
Visual Design

Window Buttons

Figure 3.3 Pop-up window with tull title

Full title of the window

Taskbar buttons can also be used as drag and drop destinations

When the user drags over taskbar button the system activates the

associated window allowing the user to drop within that window

The Status Area

For more information about

drag and drop see Chapter

General lnferacfion Techniques

26 The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 48



The Windows Environment Chapter

Table 3.1 Icons

Icon Type Function

System Folder Provides access to users private storage

My Computer

System Folder Provides access to the network

Netsrork

Neighborhood

Folder Provides organization of files and folders

Folder

Shortcut Provides access to other objects shortcut icon uses the icon of the type

Shortcut to
of file it is linked to overlaid with the link symbol

My Favorite Folder

Saved Search Locates files or folders

All Files

Application Allows browsing of the content of users computer or the network

V/indosn

Esplorer

System Folder Stures deleted icuns

Recycle Bin

System Folder Provides access to properties of installed devices and resources for

Control Panel
example fonts displays and keyboards

The Windows Interface Guidelines for Software Design 27
Petitioner Exhibit 1031, Page 49



Chapter The Windows Environment

Windows

You can open icons into windows Windows provides means of

viewing and editing information and iewing the content and prop

erties of objects You can also use windows to display parameters to

complete commands palettes of controls or messages informing

user of particular situ ation Figure 3.4 demonstrates some of the

different uses for windows

For more information about

windows see Chapter

Windows and Chapter Sec

ondary Windows

Figure 3.4 Different uses ot windows

28 The Windows Interface Guidelires for Software Design
Petitioner Exhibit 1031, Page 50



CHAPTER

Input Basics

user can interact with objects in the interface using different types

of input devices The most common input devices are the mouse the

keyboard and the pen This chapter covers the basic behavior for

these devices it does not exclude other forms of input

Mouse Input

The mouse is primary input device for interacting with objects in

the Microsoft Windows interface Other types of pointing devices

that emulate mouse such as trackballs fall under the general use

of the term mouse

For more information about

interactive techniques such

as navigation selection viewing

editing transfer and creating new

objects see Chapter General In

teraction Techniques

Mouse Pointers

The mouse is operationally linked with graphic on the screen

called the pointer also referred to as the cursor By positioning the

pointer and clicking the buttons on the mouse user can select ob

jects and their operations

As user mos es the pointer across the screen its appearance can

change to provide feedback about particular location operation or

state Table 4.1 lists some common pointer shapes and their uses

Petitioner Exhibit 1031, Page 51



Chapter Input Basics

Table 4.1 Common Poiniters

Shape Screen location

Over must ubjccts

Over text

Over any object or location

Over any screen location

4-4

-t

Available or current action

Pointing selecting or moving

Selecting text

Processing an operation

Processing in the background

application loading but the

pointer is still interactive

Context sensitive Help mode

Zooming view

Resizing an edge vertically

Resizing an edge horizontally

Resizing an edge diagonally

Resizing an edge diagonally

Resizing column

Resizing row

Splitting window or

adjusting split horizontally

Splitting window or

adjusting split vertically

Not availnble as drop target

T1 The system does not provide

lal all of these pointers For

more information about designing

your own pointers see Chapter 13

Visual Design

Over most objects

Inside window

Over sizable edge

Over sizable edge

Over sizable edge

Over sizable edge

Along column gridlines

Along row gridlines

Over
split

box in

vertical scroll bar

Over split box in

horizontal scroll bar

Over any object

30 The Windows Interface Guidelines for Software Design Petitioner Exhibit 1031, Page 52



Input Basics Chapter

Each pointer has particular point called hot spot that de

fines the exact screen location of the mouse The hot spot determines

what object is affected by mouse actions Screen objects can addi

tionally define hot zone the hot zone defines the area the hot spot

must be within to he considered over the object Typically the hot

zone coincides with the borders of an object but it may be larger or

smaller to make user interaction easier

Mouse Actions

Basic mouse actions in the interface use mouse button or button ri For mouse with three but-

By default button is the leftmost mouse button and button is the tons button is the right-

rightmost button The system allows the user to swap the mapping
most button not the center button

of the buttons Button actions typically duplicate functions already

accessible with button but provide those functions more efficiently

The following are the common behaviors performed with the mouse

Action Description

Pointing Positioning the pointer so it points to particular

object on the screen without using the mouse button

Pointing is usually part of preparing for some other

interaction Pointing is often an opportunity to provide

visual cues or other feedback to user

Clicking Positioning the pointer over an object and then pressing

and releasing the mouse button Generally the mouse is

not moved during the click and the mouse button is

quickly released after it is pressed Clicking identifies

selects or activates objects

Double-clicking Positioning the pointer over an object and pressing and

releasing the mouse button twice in rapid succession

Double clicking an object typically invokes its default

operation

Pressing Positioning the pointer over an object and then holding

down the mouse button Pressing is often the beginning

of click or drag operation

Dragging Positiooing the pointer over an object pressing down

the mouse button while holding the mouse button down
and moving the mouse Use dragging for actions such as

selection and direct manipulation of an object

The Windows Interface Guidelines for Software Design 31Petitioner Exhibit 1031, Page 53



Chapter Input Basics

For most mouse interactions pressing the mouse button only identi

fies an operation User feedback is usually provided at this point

Releasing the mouse button activates carries out the operation An

auto-repeat function for example pressing scroll arrow to con

tinuously scroll is an exception

This guide does not cover other mouse behaviors such as chording

pressing multiple mouse buttons simultaneously and multiple-

clicking triple- or quadruple-clicking Because these behaviors

require more user skill they are not generally recommended for basic

operations However you can consider them for special shortcut

operations

Because not every mouse has third button there is no basic action

defined for third middle mouse button It is best to limit the as

signment of operations to this button to those environments where

the availability of third mouse button can be assumed and for

providing redundant or shortcut access to operations supported else

where in the interface When assigning actions to the button you

need to define the behaviors for the actions already described point

ing clicking dragging and double-clicking for this button

Keyboard Input

.Ji The keyboard is primary means of entering or editing text informa

tion However the Windows interface also supports the use of key
board input to navigate toggle modes modify input and as

shortcut to invoke cerl am operations

For more information about

using the keyboard for navi

gation selection and editing see

Chapter General Interaction

Tech iq
ues

32 The Windows Interface Guidelines for Suftware Design
Petitioner Exhibit 1031, Page 54



Input Basics Chapter

Following are the common interactive behaviors performed with the

keyboard

Action Description

Pressing Pressing and releasing key Unlike mouse interaction

keyboard interaction occurs upon the down transition of the

key Pressing typically describes the keyboard interaction

for invoking particular commands or for navigation

Holding Pressing and holding down key Holding typically

describes interaction with keys such as ALT SHIFT and

CTRL that modify the standard behavior of other input

for example another key press or mouse action

Typing Typing input of text information from the keyboard

Text Keys

Text keys include the following

Alphanumeric keys

Punctuation and symbol keys

TAB and ENTER keys

The SPACEBAR

In text-entry contexts pressing text key enters the corresponding

character and typically displays that character on the screen Except

in special views the characters produced by the TAB and ENTER

keys are not usually visible In some contexts text keys can also be

used for navigation or for invoking specific operations

Access Keys

An access key is an alphanumeric key sometimes referred to as

mnemonic that when used in combination with the ALT key navi

gates to and activates control The access key matches one of the

characters in the text label of the control For example pressing

ALTO activates control whose label is Open and whose assigned

access key is Typically access keys are not case sensitive The

effect of activating control depends on the type of control

Most keyboards include two

keys labeled ENTER one on

the main keyboard and one on the

numeric keypad Because these keys

have the same label and on some

keyboards the latter may not be

available assign both keys the

same functionality

The Windows Interface Guidelines for Software Design 33
Petitioner Exhibit 1031, Page 55



Chapter Input Basics

Assign access key characters to controls using the following guide

lines in order of choice

The first letter of the label for the control unless another letter

provides better nmemonic association

distinctive consonant in the label

vowel in the label

Avoid assigning character where the visual indication of the access

key cannot be distinguished from the character Also avoid using

character normally assigned to common function For example

when you include an Apply button reserve the or its local

ized equivalent as the access key for that button In addition do

not assign access keys to the OK and Cancel commands when they

map to the ENTER and ESC keys respectively

Nonunique access key assignments within the same scope access

the first control Depending on the control if the user presses the

access key second time it may or may not access another control

with the same assignment Therefore define an access key to be

unique within the scope of its interaction that is the area in which

the control exists and to which keyboard input is currently being

directed

Controls without explicit labels can use static text controls to create For more information about

labels with assigned access keys Software that supports nonroman static text controls see Chap-

writing system such as Kanji but that mns on standard keyboard ter Menus Controls and

can prefix each control label with an alphabetic roman character as
Toolbars

its access key

Mode Keys

Mode keys change the actions of other keys or other input devices

There are two kinds of mode keys toggle keys and modifier keys

toggle key turns particular mode on or off each time it is pressed

For example pressing the CAPS LOCK key toggles uppercase alpha

betic keys pressing the NUIM LOCK key toggles between numeric and

directional input using the keypad keys

34 The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 56



Input Basics Chapter

Like toggle keys modifier keys change the actions of normal input

Unlike toggle keys however modifier keys establish modes that

remain in effect only while the modifier key is held down Modifier

keys include the SHIFT CTRL and ALT keys Such spring-loaded

mode is often preferable to locked mode because it requires the

user to continuously activate it making it conscious choice and

allowing the user to easily cancel the mode by releasing the key

Because it can be difficult for user to remember multiple modifier

assignments avoid using multiple modifier keys as the primary

means of access to basic operations In some contexts such as envi

ronments that are specific to pen input the keyboard may not be

available Therefore use modifier-based actions only for quick access

to operations that are supported adequately elsewhere in the interface

Shortcut Keys

Shortcut keys also referred to as accelerator keys are keys or key

combinations that when pressed provide quick access to frequently

performed operations CTRLletter combinations and function keys

Fl through F12 are usually the best choices for shortcut keys By

definition shortcut key is keyboard equivalent of functionality

that is supported adequately elsewhere in the interface Therefore

avoid using shortcut key as the only way to access particular

operation

When defining shortcut keys observe the following guidelines

Assign single keys where possible because these keys are the

easiest for the user to perform

Make modified-letter key combinations case insensitive

Use SHIFTkey combinations for actions that extend or comple

ment the actions of the key or key combination used without the

SHIFT key For example ALTTAB switches windows in top-to-

bottom order SHIFT-i-ALTTAB switches windows in reverse order

However avoid SHIFTtext keys because the effect of the SHIFT

key may differ for some international keyboards

Use CTRLkey combinations for actions that represent larger

scale effect For example in text editing contexts HOME moves to

the beginning of line and CTRLHOME moves to the beginning

Function key and modified

function key combinations

may be easier for international us

ers because they have no mnemonic

relationship However there is

tradeoff because function keys are

often more difficult to remember

and to reach For list of the most

common shortcut key assignments

see Appendix Keyboard Interface

Summary

The Windows Interface Guidelines for Software Design 35
Petitioner Exhibit 1031, Page 57



Chapter Input Basics

of the text Use CTRLkey combinations for access to commands

where letter key is used for example CTRLB for bold Re
member that such assignments may be meaningful only for

English-speaking users

Avoid ALTkey combinations because they may conflict with the

standard keyboard ccess for menus and controls The ALTkey

combinations ALTTAB ALTESC and ALTSPACEBAR are

reserved for system use ALTnuinber combinations enter special

characters

Avoid assigning shortcut keys defined in this guide to other opera

tions in your software That is if CTRI is the shortcut for the

Copy command and your application supports the standard copy

operation dont assign CTRLC to another operation

Provide support for allowing the user to change the shortcut key

assignments in your software when possible

Use the ESC key to stop function in process or to cancel direct

manipulation operation It is also usually interpreted as the short

cut key for Cancel button

Some keyboards also support three new keys the Application key

and the two Windows keys The primary use for the Application key

is to display the pop up menu for current selection same as SHIFT

Plo You may also use it with modifier keys for application-specific

functions Pressing either of the Windows keys left or right Windows key and

displays the Start menu These keys are also used by the system as Application key

modifiers for system specific functions Do not use these keys as

modifiers for nonsystem-level functions

36 The Windows Interface Guidelinns for Software Design
Petitioner Exhibit 1031, Page 58



Input Basics Chapter

Pen Input

Systems with Windows pen driver installed support user input

using tapping or writing on the surface of the screen or tablet with

pen and in some cases with finger

Depending on the placement of the pen you can use it for both

pointing and writing For example if you move the pen over menus

or most controls it acts as pointing device Because of the pointing

capabilities of the pen the user can perform most mouse-based op

erations When over text entry or drawing area the pen becomes

writing or drawing tool the pointer changes to pen shape to pro

vide feedback to the user When the tip of the pen touches the input

surface the pen starts inking that is tracing lines on the screen

The user can then draw shapes characters and other patterns these

patterns remain on the screen exactly as drawn or can be recognized

interpreted and redisplayed

The pen can retain the functionality of pointing device such as

mouse even in contexts where it would normally function as writ

ing or drawing tool For example you can use timing to differentiate

operations that is if the user holds the pen tip in the same location

for predetermined period of time different action may be in

ferred However this method is often unreliable or inefficient for

many operations so it may be better to use toolbar buttons to switch

to different modes of operation Choosing particular button allows

the user to define whether to use the pen for entering information

writing or drawing or as pointing device

You can also provide the user with access to other operations using

an action handle An action handle is special graphic displayed for

selection An action handle can be used to support direct manipula

tion operations or to provide access to pop up menus

The GetSystemMetrics func

tion provides access to the

SM PENWINDOWS constant that

indicates when pen is installed

For more information about this

function see the documentation

included in the Microsoft Win32

Software Development Kit SDK

For more information about

action handles see Chapter

General Interaction Techniques

The Windows Interface Guidelines for Software Design 37
Petitioner Exhibit 1031, Page 59



Chapter Input Basics

Following are the fundamental behaviors defined for pen

Positioning and pressing the
tip to the input surface

pen press is equivalent to mouse press and typi

cally identifies particular pen action

Pressing the pen tip on the input surface and lifting it

without moving the pen In general tapping is equiva

lent clicking mouse button Therefore this action

typically selects an object setting text insertion point

or activating button

Pressing and
lifting

the pen tip
twice in rapid succes

sion Double tapping is usually interpreted as the

equivalent to double-clicking mouse button

Pressing the pen tip on the input surface and keeping it

pressed while moving the pen In inking contexts you

can use dragging for the input of pen strokes for writ

ing drawing gestures or for direct manipulation

depending on which is most appropriate for the con

text In noninking contexts it is the equivalent of

mouse drag

user may move the pen

more between taps when

double-tapping than user double-

clicking with mouse As result

you may want to slightly increase

your hot zones for detecting

double-tap when of pen device has

been installed

Some pens include but ons on the pen barrel that can be pressed For

pens that support barrel buttons the following behaviors may be

supported

Action Desciiption

Barrel-tapping Holding down the barrel button of the pen while

tapping Barrel-tapping is equivalent to clicking with

mouse button

Barrel dragging Holding down the barrel button of the pen while

dragging the pen Barrel dragging is equivalent to

dragging with mouse button

Because not all pens support

laTh barrel buttons any behaviors

that you support using barrel but

ton should also be supported by

other techniques in the interface

Action Description

Pressing

Tapping

Double-tapping

Dragging

38 The Windnws Interface Guidelines fnr Software Design
Petitioner Exhibit 1031, Page 60



Input Basics Chapter

Pen input is delimited by the hfting of the pen tip an explicit termi

nation tap such as tapping the pen on another window or as the

completion of gesture or time-out without further input You can

also explicitly define an application-specific recognition time out

Proximity is the ability to detect the position of the pen without it

touching the input surface While Windows provides support for pen

proximity avoid depending on proximity as the exclusive means of

access to basic functions because not all pen hardware supports this

feature Even pen hardware that does support proximity may allow

other non-pen input such as touch input where proximity cannot be

supported

Pen Pointers

For pen tablets as with mouse pointers play an important part in

visually indicating the users location of interaction on the screen

When the input surface is actually screen display pointers may

seem superfluous however they still have an important role to play

Pointers help the pen user select small targets faster Moreover

changes from one pointer to another provide useful feedback about

the actions supported by the object under the pen For example

when the pen moves over resizable border the pointer can change

from pen indicating that writing is possible to resizing pointer

indicating that the border can be dragged to resize the object

Whenever possible include this type of feedback in pen-enabled

applications to help users understand the kinds of supported actions

Following are two common pointers used with the pen

Table 4.2 Pen Painters

Shape Camman usage

Pointing selecting moving and resizing

Writing and drawing

The Windows Interface Goidelines for Software Design 39
Petitioner Exhibit 1031, Page 61



Chapter Input Basics

When the screen is the input surface because pointer may
be partially obscured by the pen or by the users hand you may

need to consider including additional forms of feedback such as

toolbar button states or status bar information to indicate the pens

input state

Pen Gestures

When using the pen for writing certain ink patterns are interpreted
Für more information about

as gestures Using one of these specially drawn symbols invokes
common gestures and their

particular operation such as deleting text or produces nonprinting
interpretation see Chapter Gen

text character such as carriage return or tab For example
eral Interaction Techniques

circled gesture is equivalent to the Cut command After the system

interprets gesture the gestures ink is removed from the display

All gestures include circular stroke to distinguish them from ordi

nary characters Most gestures also operate positionally in other

words they act upon the objects on which they are drawn Determin

ing the position of the specific gesture depends on either the area

surrounded by the gesture or single point the hot spot of the

gesture

Pen gestures usually cannot be combined with ink writing or draw

ing actions within the same recognition sequence For example the

user cannot draw few characters immediately followed by ges

ture followed by more characters

The rapidity of gestural commands is one of the key advantages of

the pen Do not rely on gestures as the only or primary way to per

form commands however because gestures require memorization by

users Regard gestures as quick access shortcut method for opera

tions adequately supported elsewhere in the interface such as in

menus or buttons If the pen extensions are installed you can option

ally place bitmap of the gesture next to the corresponding com

mand in place of the keyboard shortcut text to help the user learn

particular gestures

In addition avoid using gestures when they interfere with common

functionality or make operations with parallel input devices such as

the mouse or keyboard more cumbersome For example although

writing character gesture in list box could be used as way to

40 The Windows Interface Guidelines for Snftware Design
Petitioner Exhibit 1031, Page 62



Input Basics Chapter

scroll automatically within the list it would interfere with the basic

and more frequent user action of selecting an item in the list bet

ter technique is to provide text input field where the user can write

and based on the letters entered scroll the list

Pen Recognition

Recognition is the interpretation of pen strokes into some standard

ized meaning Consider recognition as means to an end not an end

in itself Do not use recognition if it is unnecessary or if it is not the

best interface For example it may be more effective to provide

control that allows user to select date rather than requiring the

user to write it in just so your software can recognize it

Accurate recognition is difficult to achieve but you can greatly im

prove your recognition interface by providing fast easy means to

correct errors For example if you allow users to overwrite charac

ters or choose alternatives they will be less frustrated and find rec

ognition more useful You can also improve recognition by using

context and constraints For example checkbook application can

constrain certain fields to contain only numbers

Ink Input

In some eases for example signatures recognition of pen input

may be unnecessary the ink is sufficient representation of informa

tion Ink is standard data type supported by the Clipboard Con

sider supporting ink entries as input wherever your software accepts

normal text input unless the representation of that input needs to be

interpreted for other operations such as searching or sorting

The Windows Intcrtace Guidelines for Software Design 41
Petitioner Exhibit 1031, Page 63



Chapter Input Basics

Targeting

Targeting or determining where to direct pen input is an important

design factor for pen enabled software For example if the user

gestures over set of objects which objects should be affected If

the user writes text that
spans

several writing areas which text

should be placed in which area In general you use the context of

the input to determine where to apply pen input More specifically

use the following guidelines for targeting gestures on objects

If the user draws the gesture on any part of selection apply the

gesture to the selection

If the user draws the gesture on an object that is not selected

select that object and apply the gesture to that object

If the user does not draw the gesture on any object or selection

but there is selection apply the gesture to that selection

If none of these guidelines applies ignore the gesture

For handwriting you can also use context to determine where to

direct the input Figure 4.1 demonstrates how the proximity of the

text to the text boxes determines the destination of the written text

Share Name 1SK
Loninerit k0 brl be

Figure 4.1 Targeting handwritten input

The systems pen services provide basic support for targeting but

your application can aT so provide additional support For example

your application can define larger inking rectangle than the control

usually provides In addition because your application often knows

the type of input to expect it can use this information to better inter

pret where to target the input

42 The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 64



CHAPTER

General Interaction

Techniques

This chapter covers basic interaction techniques such as navigation

selection viewing editing and creation Many of these techniques

are based on an object-action paradigm in which user identifies an

object and an action to apply to that object By maintaining these

techniques consistently you enable users to transfer their skills to

new tasks

Where applicable support the basic interaction techniques for the

mouse keyboard and pen When adding or extending these basic

techniques consider how the feature or function can be supported

across input devices Techniques for particular device need not be

identical for all devices Instead tailor techniques to optimize the

strengths of particular device In addition make it easy for the user

to switch between devices so that an interaction started with one

device can be completed with another

Navigation

One of the most common ways of identifying or accessing an object

is by navigating to it The following sections include information

about mouse pen and keyboard techniques

Petitioner Exhibit 1031, Page 65



Chapter General Interaction Techniques

Mouse and Pen Navigation

Navigation with the mouse is simple when user moves the mouse

left or right the pointer moves in the corresponding direction on the

screen As the mouse moves away from or toward the user the

pointer moves up or down By moving the mouse the user can move

the pointer to any location on the screen Pen navigation is similar to

mouse navigation except that the user navigates by moving the pen

without touching the input surface

Keyboard Navigation

Keyboard navigation requires user to press specific keys and key For more information about

combinations to move the input focus the indication of where the displaying the input focus

input is being directed to particular location The appearance of see Chapter 13 Visual Design

the input focus varies by context in text it appears as text cursor

or insertion point

Basic Navigation Keys

The navigation keys are the four arrow keys and the HOME END
PAGE UP PAGE DOWN and TAB keys Pressed in combination with

the CTRL key navigation key increases the movement increment

For example where pressing RIGHT ARROW moves right one char

acter in text field pressing CTRLRIGHT ARROW moves right one

word in the text field Table 5.1 lists the common navigation keys

and their functions You can define additional keys for navigation

44 The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 66



General Interaction Techniques Chapter

Table 51 Basic Navigation Keys

Key

LEFT ARROW

RIGHT ARROW

UP ARROW

DOWN ARROW

HOME

END

PAGE UP

PAGE DOWN

TAB

Moves cursor to

Left one unit

Right one unit

Up one unit or line

Down one unit or line

Beginning of line

End of line

Up one screen

previous screen same position

Down one screen

next screen same position

Next field SHIFTTAB

moves in reverse order

CTRLkey moves cursor to

Left one larger unit

Right one larger unit

Up one larger unit

Down one larger unit

Beginning of data or file topmost position

End of data or file bottommost position

Left one screen or previous unit

if left is not meaningful

Right one screen or next unit

if right is not meaningful

Next larger field

Unlike mouse and pen navigation keyboard navigation typically

affects existing selections Optionally you can support the SCROLL

LOCK key to enable scrolling navigation without affecting existing

selections If you do so the keys scroll the appropriate increment

Selection

Selection is the primary means by which the user identifies objects

in the interface Consequently the basic model for selection is one of

the most important aspects of the interface

Selection typically involves an overt action by the user to identify an

object This is known as an explicit selection Once the object is

selected the user can specify an action for the object

There are also situations where the identification of an object can be

derived by inference or implied by context An implicit selection

works most effectively where the association of object and action is

simple and visible For example when the user drags scroll box

the user establishes selection of the scroll box and the action of

For more information about

keyboard navigation in sec

ondary windows such as dialog

boxes see Chapter Secondary

Windows

The Windows Interface Guidelines for Software Design 45Petitioner Exhibit 1031, Page 67



Chapter General Interactinn Techniques

moving at the same time Implicit selection may result from the

relationships of particular object For example selecting character

in text document may implicitly select the paragraph of which the

character is part

selection can consist of single object or multiple objects

Multiple selections can be contiguous where the selection set is

made up of objects that are logically adjacent to each other also

known as range selection disjoint selection set is made up of

objects that are spatially or logically separated

Multiple selections may also be classified as homogeneous or

heterogeneous depending on the type or properties of the selected

objects Even homogeneous selection might have certain aspects in

which it is heterogeneous For example text selection that includes

bold and italic text can be considered homogeneous with respect to

the basic object type characters but heterogeneous with respect to

the values of its font properties The homogeneity or heterogeneity

of selection affects the access of the operations or properties of the

objects in the selection

Selection Feedback

Always provide visual feedback for explicit selections as the user

makes the selection so that the user can tell the effect of the selec

tion operation Display the appropriate selection appearance for each

object included in the selection set The form of selection
appearance

depends on the object and its context

You may not need to provide immediate selection feedback for

implicit selection you can often indicate the effects of implicit selec

tion in other ways For example when the user drags scroll box

the scroll box moves with the pointer Similarly if the effect of

selecting word in paragraph implicitly selects the paragraph you

would not use selection appearance on the entire paragraph but

rather reflect the implicit selection by including the paragraphs

properties when the user chooses the Properties command

For more information about

how to visually render the se

lection appearance of an object see

Chapter 13 Visual Design For

more information about how the

context of an object can affect its

selection appearance see Chapter

11 Working with OLE Embedded

and OLE Linked Objects

46 The Windnws Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 68



General Interaction Techniques Chapter

Scope of Selection

The scope of selection is the area extent or region in which if

other selections are made they will be considered part of the same

selection set For example you can select two document icons in the

same folder window However the selection of these icons is inde

pendent of the selection of the windows scroll bar menu the

window itself or selections made in other windows So the selection

scope of the icons is the area viewed through that window Selec

tions in different scopes are independent of each other For example

selections in one window are typically independent of selections in

other windows Their windows define the scope of each selection

independently The scope of selection is important because you use

it to define the available operations for the selected items and how

the operations are applied

Hierarchical Selection

Range selections typically include objects at the same level How

ever you can also support users elevating range selection to the

next higher level if it extends beyond the immediate containment of

the object but within the same window When the user adjusts the

range
back within the containment of the start of the range retum the

selection to the original level For example extending selection

from within cell in table to the next cell as shown in Figure 5.1

should elevate the selection from the character level to the cell level

adjusting the selection back within the cell should reset the selection

to the character level

P112EEIIREEIIII1

E1eitnciJy Ttiejihone

Figure 5.1 Hierarchical selection

The Windows Interface Guidelines for Software Design 47
Petitioner Exhibit 1031, Page 69



Chapter General Interaction Techniques

Mouse Selection

Selection with the mouse relies on the basic actions of clicking and

dragging In general clicking selects single item or location and

dragging selects single range consisting of all objects logically

included from the button-down to the button-up location If you also

support dragging for object movement use keyboard-modified

mouse selection or region selection to support multiple selection

Basic Selection

Support user selection using either mouse button When the user For more information about

presses the mouse button establish the starting point or anchor the appearance of selection

point of selection Ill while pressing the mouse button the user feedback see Chapter 13 Visual

drags the mouse extend the selection to the object nearest the hot
Des

spot of the pointer If while continuing to hold the mouse button

down the user drags the mouse within the selection reduce the

selection to the object now nearest the pointer Tracking the selection

with the pointer while the mouse button continues to be held down

allows the user to adjust range selection dynamically Use appro

priate selection feedback to indicate the objects included in the

selection

The release of the mouse button ends the selection operation and For more information about

establishes the active end of the selection If the user presses mouse pop-up menus see Chapter

button to make selection display the contextual pop up menu for Menus Controls and Toolbars

the selected objects when the user releases the mouse button

The most common form of selection optimizes for the selection of

single object or single range of objects In such case creating

new selection within the scope of an existing selection for example

within the same area of the window cancels the selection of the

previously selected objects This allows simple selections to be cre

ated quickly and easily

When using this technique reset the selection when the user presses

the mouse button and the pointer hot spot is outside not on any

existing selection If the pointer is over selected item however

dont cancel the former selection Instead determine the appropriate

result according to whether the user pressed mouse button or

48 The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 70



General Interaction Techniques Chapter

If the user presses mouse button and the pointer does not move

from the button down point the effect of the release of the mouse

button is determined by the context of the selection You can support

whichever of the following best fits the nature of the users task

The result may have no effect on the existing selection This is the

most common and safest effect

The object under the pointer may receive some special designa

tion or distinction for example become the next anchor point or

create subselection

The selection can be reset to be only the object under the pointer

If the user pressed mouse button the selection is not affected but

you display pop-up menu for selection

Although selection is typically done by positioning the pointer over

an object it may be inferred based on the logical proximity of an

object to pointer For example when selecting text the user can

place the pointer on the blank area beyond the end of the line and the

resulting selection is inferred as being the end of the line

Selection Adjustment

Selections are adjusted elements added to or removed from the Disjoint selection techniques

selection using keyboard modifiers with the mouse The CTRL key may not apply to all situations

is the disjoint or toggle modifier If the user presses the CTRL key
where you support selection

while making new selection preserve any existing selection within

that scope and reset the anchor point to the new mouse button-down

location Toggle the selection state of the object under the pointer

that is if it is not selected select it if it is already selected unselect it

If selection modified by the CTRL key is made by dragging the

selection state is applied for all objects included by the drag opera

tion from the anchor point to the current pointer location This

means if the first item included during the drag operation is not se

lected select all objects included in the range If the first item in

cluded was already selected unselect it and all the objects included

in the range regardless of their original state

The Windows Interface Guidelines for Software Design 49Petitioner Exhibit 1031, Page 71



Chapter General Interaction Techriiqnes

For example the user can make an initial selection by dragging

Button down Button up

rITiCompact Disc beginning in the

Anchor point Active end

intro di
ri

The user can then
press

the CTRL key and drag to create disjoint

selection resetting the anchor point

CTRLbutton down Button up--.
TheUflTflhl Compact Disc

Anchor pointi

1flpi

The user must press the CTRL key before using the mouse button for

disjoint toggle selection After disjoint selection is initiated it

continues until the user releases the mouse button even if the user

releases the CTRL key before the mouse button

The SHIFT key adjusts or extends single selection or range selec

tion When the user presses the mouse button while holding down

the SHIFT key reset the active end of selection from the anchor

point to the location of the pointer Continue tracking the pointer

resetting the active end as the user drags similar to simple range

drag selection When the user releases the mouse button the selec

tion operation ends You should then set the active end to the object

nearest to the mouse button release point Do not reset the anchor

point It should remain at its current location

Only the selection made from the current anchor point is adjusted

Any other disjoint selections are not affected unless the extent of the

selection overlaps an existing disjoint selection

The effect on the selection state of particular object is based on the

first item included in the selection range If the first item is already

selected select not toggle the selection state of all objects included

in the range otherwise unselect not toggle the selection state of

the objects included

The

in the

Active end

50 The Windows Interface Guidelines fur Software Design
Petitioner Exhibit 1031, Page 72



General Interaction Techniques Chapter

The user must press and hold down the SHIFT key before pressing the

mouse button for the action to be interpreted as adjusting the selec

tion When the user begins adjusting selection by pressing the

SHIFT key continue to track the pointer and adjust the selection

even if the user releases the modifier key until the user releases the

mouse button

Pressing the SHIFT modifier key always adjusts the selection from

the current anchor point This means the user can always adjust

the selection range of single selection or CTRL key modified

disjoint selection For example the user can make range selection

by dragging

Button down Button up

The introduction of the Compact Disc beginning

Anchor point

The same result can be accomplished by making an initial selection

Button down Button up

Disc begiiiuing in the

Anchor point Active end

The user can adjust the selection with the SHIFT key and dragging

SHIFTbutton down Button up

The

Anchor point

in the

Active end

the

Active end

The Windows Interface Guidelines for Software Design 51Petitioner Exhibit 1031, Page 73



Chapter General Interaction Tect niques

The following sequence illustrates how the user can use the SHIFT

key and dragging to adjust disjoint selection The user makes the

initial selection by dragging

The

Button down Button up

I1flCompact Disc beginning in the

Anchor point Active end

intro dii ctio

The user presses
the CTRI key and drags to create disjoint selection

CTRLbutton down Button up

rirliunCompact Disc

Anchor point

beginning

The user can then extend the disjoint selection using the SHIFT key

and dragging This adjusts the selection from the anchor point to the

button down point and tracks the pointer to the button up point

SHIFTbutton down

rillinCompact Disc

Anchor point1

in the

Active end

Button up

beginning in the

Active end

The intro dii di

The intro dii di

52 The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 74



General Interactinn Techniques Chapter

Figure 5.2 shows how these same techniques can be applied within

spreadsheet

The user selects four cells

by dragging from A2 to 53

Anchor point

130

140 150 190

170 190 210

Active end

The user holds down the

SHIFT key and clicks C4

Anchor point

210

Active end

The user holds down the

CTRL key and clicks A6
The user holds down the

SHIFT key and clicks C6

20 40 60

1iI III 111

liIIuI1P4II

140 6Q 190

Anchor point

Figure 5.2 Selection within spreadsheet

The following summarizes the mouse selection operations

Operation Mouse action

Select object range of objects Click drag

Disjoint selection state of noncontiguous

object range of objects

CTRLclick drag

Adjust current selection to object

or range of objects

SHIFTclick drag

For more information about

the mouse interface includ

ing selection behavior see Appen

dix Mouse Interface Summary

151 210

Anchor point Active end

The Windnws Interface Guidelines fnr Software Design 53Petitioner Exhibit 1031, Page 75



Chapter General Interaction Techniques

Region Selection

In ordered or layered contexts in which objects may overlap

user selection can begin on the background sometimes referred to as

white space To determine the
range of the selection in such cases

bounding outline sometimes referred to as marquee is drawn The

outline is typically rectangle but other shapes including freeform

outline are possible

When the user presses the mouse button and moves the pointer

form of selection by dragging display the bounding outline as

shown in Figure 5.3 You set the selection state of objects included

by the outline using the selection guidelines described in the previ

ous sections including operations that use the SHIFT and CTRL

sssodifier keys

New Text

Document

Figure 5.3 Region selection

You can use the contex of your application and the users task to

determine whether an object must be totally enclosed or only inter

sected by the bounding region to be affected by the selection opera

tion Always provide good selection feedback during the operation

to communicate to the user which method you support When the

user releases the mouse button remove the bounding region but

retain the selection feedback

New Text

Document

New Text

Docufflent

54 The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 76



General Interaction Techniques Chapter

Pen Selection

When the pen is being used as the pointing device you can use the

same selection techniques defined for the mouse For example in

text input controls you support user selection of text by dragging

through it Standard pen interfaces also support text selection using

special pen selection handle In discrete object scenarios like draw

ing programs you support selection of individual objects by tapping

or by performing region selection by dragging

In some specialized contexts you can also use press-hold-drag

technique or the lasso-tap gesture to support selection of individual

objects or ranges of objects However avoid implementing these

techniques when it might interfere with primary operations such as

direct manipulation In general consider using pen selection

handle or pen controls that include the selection handles before you

consider these methods

For the press-hold drag technique you switch to selection mode

when the user holds the pen tip at the same location for predefined

time-out Then the user can drag to make selection

Lasso-tap involves making circular gesture around the object then

tapping within the gesture For example in Figure 5.4 making the

lasso-tap gesture selects the word controversial

The president today

signjuc
Lasso gesture

joveraJJill
that

Tap gesture

vou make it illegal

Figure 5.4 lasso-tap gesture

In text contexts base the selection on the extent of the lasso gesture

and the character-word-paragraph granularity of the text elements

covered For example if the user draws the lasso around single

character select only that characteL If the user draws the lasso

around multiple characters within word select the entire word If

the gesture encompasses characters in multiple words select the

range
of words logically included by the gesture This reduces the

need for the user to be precise

For more information about

supporting selection in pen

enabled controls see the Pen

Specific Editing Techniques section

later in this chapter

The Windows Interface Guidelines for Software Design 55Petitioner Exhibit 1031, Page 77



Chapter General Interaction Techniques

Keyboard election

Keyboard selection re ies on the input focus to define selected For more information about

objects The input focus can be an insertion point dotted outline input focus see Chapter 13

box some other cursr or visual indication of the location where Visual Design

the user is directing keyboard input

In some contexts selection may be implicit with navigation When

the user presses navigation key you move the input focus to the

location as defined by the key and automatically select the object at

that location

In other contexts it may be more appropriate to move the input

focus and require the user to make an explicit selection with the

Select key The recommended keyboard Select key is the SPACEBAR

unless this assignment directly conflicts with the specific context

in which case you cart use CTRLSPACEBAR If this conflicts with

your software define another key that best fits the context In some

contexts pressing the Select key may also unselect objects in other

words it will toggle the selection state of an object

Contiguous Selection

In text contexts the user moves the insertion point to the desired

location using the navigation keys Set the anchor point at this loca

tion When the user presses the SHIFT key with any navigation key

or navigation key combinations such as CTRLEND set that loca

tion as the active end of the selection and select all characters be

tween the anchor point and the active end Do not move the anchor

point If the user presses subsequent navigation key cancel the

selection and move the insertion point to the appropriate location

defined by the key If he user presses LEFT ARROW or RIGHT ARROW

keys move the insertian point to the end of the former selection

range If UP ARROW or DOWN ARROW are used move the insertion

point to the previous cr following line at the same relative location

You can use this technique in other contexts such as lists where

objects are logically contiguous However in such situations the

selection state of the objects logically included from the anchor point

to the active end depend on the selection state of the object at or

56 The Windows Interface Guidelines fur Software Design
Petitioner Exhibit 1031, Page 78



General Interaction Techniques Chapter

first traversed from the anchor point For example if the object at

the anchor point is selected then select all the objects in the range

regardless of their current state If the object at the anchor point is

not selected unselect all the items in the range

Disjoint Selection

You use the Select key for supporting disjoint selections The user

uses navigation keys or navigation keys modified by the SHIFT key

to establish the initial selection The user can then use navigation

keys to move to new location and subsequently use the Select key

to create an additional selection

In some situations you may prefer to optimize for selection of

single object or single range In such cases when the user presses

navigation key reset the selection to the location defined by the

navigation key Creating disjoint selection requires supporting the

Add mode key SHIFTFS In this mode you move the insertion

point when the user presses navigation keys without affecting the

existing selections or the anchor point When the user presses the

Select key toggle the selection state at the new location and reset the

anchor point to that object At
any point the user can use the

SHIFTnavigation key combination to adjust the selection from the

current anchor point

When the user presses the Add mode key second time you toggle

out of the mode preserving the selections the user created in Add

mode But now if the user makes any new selections within that

selection scope you return to the single selection optimization

canceling any existing selections and reset the selection to be only

the new selection

Selection Shortcuts

Double-clicking with mouse button and double tapping its pen Double-clicking as short

equivalent is shortcut for the default operation of an object In cut for selection only applies

text contexts it is commonly assigned as shortcut to select word to text In other contexts it may per

V/hen supporting this shortcut select the word and the space follow-
form other operations

ing the word but not the punctuation marks

The Windows Interface Guidelines for Software Design 57
Petitioner Exhibit 1031, Page 79



Chapter General Interaction Techniques

You can define additicnal selection shortcuts or techniques for spe

cialized contexts For example selecting column label may select

the entire column Because shortcnts cannot be generalized across

the nser interface however do not nse them as the only way to per

form selection

Common Conventions for Supporting Operations

There are many ways to support operations for an object including

direct manipulation of the object or its control point handle menu

commands buttons dialog boxes tools or programming Support

for particular technique is not exclusive to other techniques For

example the user can size nindow by using the Size menu com

mand and by dragging its border

Design operations or commands to be contextual or related to the

selected object to which they apply That is determine which

commands or properties or other aspects of an object are made

accessible by the characteristics of the object and its context rela

tionships Often the context of an object may add to or suppress the

traits of the object For example the menu for an object may include

commands defined by the objects type and commands supplied by

the objects current container

Operations for Multiple Selection

When determining which operations to display for multiple selec

tion use an intersection of the operations that apply to the members

of that selection The selections context may add to or filter out the

available operations or commands displayed to the user

It is also possible to determine the effect of an operation for mul

tiple selection based upon particular member of that selection For

example when the user selects set of graphic objects and chooses

an alignment command you can make the operation relative to

particular item identified in the selection

Limit operations on multiple selection to the scope of the selected

objects For example deleting selected word in one window should

not delete selections in other windows unless the windows are

viewing the same selected objects

58 The Windows Interface Guidelines for Software Design

Petitioner Exhibit 1031, Page 80



General Interaction Techniques Chapter

Default Operations and Shortcut Techniques

An object can have default operation default operation is an

operation that is assumed when the user employs shortcut tech

nique such as double-clicking or drag and drop For example

double-clicking folder displays window with the content of the

folder In text editing situations double-clicking selects the word

The behavior differs because the default commands in each case

differ for folder the default command is Open and for text it is

Select Word

Similarly when the user drags and drops an object at new location

with mouse button there must be default operation defined to

determine the result of the operation Dragging and dropping to some

locations can he interpreted as move copy link or some other

operation In this case the drop destination determines the default

operation

Shortcut techniques for default operations provide greater efficiency

in the interface an important factor for more experienced users

However because they typically require more skill or experience and

because not all objects may have default operation defined avoid

shortcut techniques as the exclusive means of performing basic

operation For example even though double-clicking opens folder

icon the Open command appears on its menu

View Operations

Following are some of the common operations associated with view

ing objects Although these operations may not always be used with

all objects when supported they should follow similar conventions

For more information about

supporting default operations

for drag and drop see the Trans

fer Operations section later in this

chapter also see Chapter 11 Work

ing with OLE Embedded and OLE

Linked Objects

Operation Action

Open Opens primary window for an obiect For container

objects such as folders and documents this window

displays the content of the object

Close Closes window

Properties Displays the properties of an object in window

typically in property sheet wiodow

Help Displays window with the contextual Help

information about an object

The Windows Interface Guidelines fnr Software Design 59
Petitioner Exhibit 1031, Page 81



Chapter General Interaction Techniques

When the user opens new window you should display it at the top

of the order of its peer windows and activate it Primary windows

are typically peers with each other Display supplemental or second

ary windows belonging to particular application at the top of their

local order that is the order of the windows of that applica

tion not the order of other primary windows

If the user interacts with another window before the new window

opens the new windov does not appear on top instead it appears

where it would usually be displayed if the user activated another

window For example if the user opens window then opens win

dow window appears on top of window If the user clicks

back in window before window is displayed however window

remains active and at the top of the order window appears

behind window

For more information about

opening windows property

sheets and Help windows see

Chapter Windows Chapter

Secondary Windows and Chap

ter 12 User Assistance respec

tively

Whether opening window allows the user to also edit the informa

tion in that windows view depends on number of factors These

factors can include who the user is the type of view being esed and

the content being viewed

After the user opens window re executing the command that

opened the window should activate the existing window instead of

opening another instance of the window For example if the user

chooses the Properties command for selected object whose prop

erty
sheet is already open the existing property sheet is activated

rather than second window opened

Closing window does not necessarily mean quitting the
processes

associated with the object being viewed For example closing

printers window does not cancel the printing of documents in its

queue Quitting an application closes its windows but closing

window does not necessarily quit an application Similarly you can

use other commands in secondary windows which result in closing

the window for example OK and Cancel However the effect of

closing the window with Close command depends on the context

of the window Avoid assuming that the Close command is the

equivalent of the Cancel command

This guideline applies per

user desktop Two users

opening window for the same ob

ject on network can each see sepa

rate windows for the object from

their individual desktops

60 The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 82



General Interaction Techniques Chapter

If there are changes transacted in window that have not yet been

applied and the user chooses the Close command and those changes

will be lost if not applied display message asking whether the user

wishes to apply or discard the changes or cancel the Close operation

If there are no outstanding changes or if pending changes are retained

for the next time the window is opened remove the window

View Shortcuts

Following are the recommended shortcut techniques for the common

viewing commands

Operation

Opens primary window for an ohject For

container objects such as folders and

documents this window displays the content of

the object

Closes window

Displays window with contextual Help

information

SHIFTF1 Starts context-sensitive Help mode

Double click Carries nut the default command
hutton or FNTFR

ALTdnuble click Displays the properties nf an object in

or ALTENTER window typically in prnperty sheet window

Use double clicking and the ENTER key to open view of an object

when that view command is the default command for the object For

example double-clicking folder
opens

the folders primary win

dow But double clicking sound object plays the sound this is

because the Open command is the default command for folders and

the Play command is the default commaud for sound objects

Shortcut

CTRLO

ALTF4

Fl

For more information on

reserved and recommended

shortcut keys see Appendix

Keyboard Interface Summary

The Windows Interface Guidelines for Software Design 61Petitioner Exhibit 1031, Page 83



Chapter General Interaction Techniques

Editing Operations

Editing involves changing adding removing replading some fun

damental aspect about the composition of an object Not all changes

constitute editing of an object though For example changing the

view of document to an outline or magnified view which has no

effect on the content of the document is not editing The following

sections cover some common interface techniques for editing

objects

Editing Text

Editing text requires that you target the input focus at the text to be

edited For mouse input the input focus always coincides with the

pointer button down location For the pen it is the location of the

pointer when the pen touches the input surface For the keyboard

the input focus is determined with the navigation keys In all cases

the visual indication that text field has the input focus is the pres

ence of the text cursor or insertion point

Inserting Text

Inserting text involves the user placing the insertion point at the

appropriate location and then typing For each character typed your

application should move the insertion point one character to the right

or left depending on the language

If the text field supports multiple lines wordwrap the text that is

automatically move text to the next line as the textual input exceeds

the width of the text entry area

Overtype Mode

Overtype is an optional text entry behavior that operates similarly to

the insertion style of text entry except that you replace existing

characters as new text is entered with one character being re

placed for each new character entered

62 The Windows Interface Guidelines for Snftware Design Petitioner Exhibit 1031, Page 84



General Interaction Techniques Chapter

Use block cursor that appears at the current character position to

support overtype mode as shown in Figure 5.5 This looks the same

as the selection of that character and provides the user with visual

cue about the difference between the text-entry modes

The 13 statistics are complete

Figure 55 An overtype cursor

Use the INSERT key to toggle between the normal insert text-entry

convention and overtype mode

Deleting Text

The DELETE and BACKSPACE keys support deleting text The DE

LETE key deletes the character to the right of the text insertion point

BACKSPACE removes the character to the left In either case move

text in the direction of the deletion to fill the gap this is some

times referred to as auto-joining Do not place deleted text on the

Clipboard For this reason include at least single-level undo opera

tion in these contexts

For text selection when the user presses DELETE or BACKSPACE

remove the entire block of selected text Delete text selections when

new text is entered directly or by transfer command In this case

replace the selected text by the incoming input

Handles

Objects may include special control points called handles You can

use handles to facilitate certain types of operations such as moving

sizing scaling cropping shaping or auto filling The type of handle

you use depends on the type of object For example the title bar acts

as mow handle for windows The borders of the window act as

sizing handles For icons the selected icon acts as its own move

handle In pen enabled controls special handles may appear for

selection and access to the operations available for an object

common form of handle is square box placed at the edge of an

object as shown in Figure 5.6

For more information about

pen handles see the Pen

Specific Editing Techniques section

later in this chapter

The Windows Interface Guidelines for Software Design 63Petitioner Exhibit 1031, Page 85



Chapter General Interaction Techniques

Handle

Figure 5.6 graphic object with handles

When the handles interior is solid the handle implies that it can

perform certain operation such as sizing cropping or scaling If

the handle is hollow the handle does not currently support an

operation You can use such an appearance to indicate selection even

when an operation is not available

Transactions

transaction is unit of change to an object The granularity of

transaction may span from the result of single operation to that of

set of multiple operations In an ideal model transactions are applied

immediately and there is support for rolling back or undoing

transactions Because there are times when this is not practical spe

cific interface conventions have been established for committing

transactions If there are pending transactions in window when it is

closed always prompt the user to ask whether to apply or discard the

transactions

Transactions can be committed at different levels and commitment

made at one level may not imply permanent change For example

the user may change font properties of selection of text but these

text changes may require saving the document file before the changes

are permanent

Use the following commands for committing transactions at the file

level

Command Function

Save Saves all interim edits or checkpoints to disk and begins

new edit ng session

Save As Saves lhe file with all interim edits to new filename and

begins new editing session

Close Prompts the user to save any uncommitted edits If

confirmed the interim edits are saved and the window is

removed

For more information about

the design of handles see

Chapter 13 Visual Design

Use the Save command in

contexts where committing

file transactions applies to transac

tions for an entire file such as

document and are committed at one

time It may not necessarily apply

for transactions committed on an

individual basis such as record

oriented processing

64 The Windows Interface Guidelines for Software Design Petitioner Exhibit 1031, Page 86



General Interaction Techniques Chapter

On level with finer granularity you can use the following com
mands for common handling transactions within file

Command Function

Repeat

Undo

Redo

OK

Apply

Cancel

Duplicates the last/latest user transaction

Reverses the last or specified transaction

Restores the most recent or specified undone

transaction

Commits any pending transactions and removes the

window

Commits any pending transactions but does not remove

the window

Discards any pending transactions and removes the

window

Following are the recommended commands for handling process

transactions

Command Function

Pause Suspends process

Resume Resumes suspended process

Stop Halts process

Properties

Defining and organizing the properties of an applications compo
nents are key part of evolving toward more data-centered design

Commands such as Options Info Summary Info and Format often

describe features that can be redefined as properties of particular

object or objects The Properties command is the common com

mand for accessing the properties of an object when the user

chooses this command display secondary window with the proper

ties of the object

Defining how to provide access to properties for visible or easily

identifiable objects such as selection of text cells or drawing

objects is straightforward It may be more difficult to define how to

access properties of less tangible objects such as paragraphs In

Although you can use the

Cancel command to halt

process Cancel implies that the

state will be restored to what it was

before the process was initiated

For more information about

property sheets see Chapter

Secondary Windows

The Windows Interface Guidelines for Software Design 65
Petitioner Exhibit 1031, Page 87



Chapter General Interaction Techniques

some cases you can include these properties by implication For

example requesting the properties of text selection can also pro

vide access to the properties of the paragraph in which the text selec

tion is included

Another way to provide access to an objects properties is to create

representation of the object For example the properties of page

could be accessed through graphic or other representation of the

page in special area for example the status bar of the window

Yet another technique to consider is to include specific property

entries on the menu of related object For example the pop-up

menu of text selection could include menu entry for paragraph

Or consider using the cascading submenu of the Properties conmTland

für individual menu entries but only if the properties arc not easily

made accessible otherwise Adding entries for individual properties

can easily end up clutl ering menu

The Properties command is not the exclusive means of providing

access to the properties of an object For example folder views

display certain properlies of objects stored in the file system In

addition you can use toolbar controls to display properties of

selected objects

Pen-Specific Editing Techniques

pen is more than just pointing device When standard pen

device is installed the system provides special interfaces and editing

techniques

Editing in Pen-Enabled Controls

If pen is installed the system automatically provides special

interface called the writing tool to make text editing as easy as

possible enhance recognition accuracy and streamline correction of

errors The writing tool interface as shown in Figure 5.7 adds

button to your standard text controls Because this effectively re

duces the visible area of the text box take this into consideration

when designing their size

66 The Windows Interface Guidelines fur Software Design
Petitioner Exhibit 1031, Page 88



General Interaction Techniques Chapter

Writing tool button

Figure 5.7 standard text box with writing tool button

Figure 5.8 shows how you can atso add writing tool support for any

special needs of your software such as multiline text box

14 Mabt St

iiitgfie1d

Figure 5.8 Adding the writing tool button

When the text box control has the focus selection handle appears

as shown in Figure 5.9 The user can drag this handle to make

selection

Selection handle

Figure 5.9 Text box displaying pen selection handle

Tapping the writing tool button with pen or clicking it with

mouse presents special text editing window as shown in Figure

5.10 Within this window the user can write text that is recognized

automatically

The Windows Interface Guidelines for Software Design 67
Petitioner Exhibit 1031, Page 89



Chapter General Interaction Techniques

LS4Lrin.gfie1d

OK

Figure 5.10 Single and rnultiline writing tool windows

In the writing tool editing window each character is displayed

within special cell If the user selects text in the original text field

the writing tool window reflects that selection The user can reset the

selection to an insertion point by tapping between characters This

also displays selection handle that can be dragged to select multiple

characters as shown in Figure 5.11

PJ lJndoJ Glee

Figure 5.11 Selecting text with the selection handle

The user can select single character in its cell by tapping or

double-tapping to select word When the user taps single charac

ter an action handle displays list of alternative characters as

shown in Figure 5.12

1e IT1

iii

il14 1PJa1 in St

HndoJK LJ LJJ

68 The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 90



General Interaction Techniques Chapter

Choosing an alternative replaces the selected character and removes

the list Writing over character or tapping elsewhere also removes

the list The new character replaces the existing one and resets the

selection to an insertion point placed to the left of the new character

The list also includes an item labeled Wordlist When the user

selects this choice the word that contains the character becomes

selected and list of alternatives is displayed as shown in Figure

5.13 This list also appears when the user selects complete word by

double-tapping Choosing an alternative replaces the selected word

Whenever selection exists in the window an action handle appears

the user can use it to perform other operations on the selected items

For example using the action handle moves or copies the selection

by dragging or the pop-up menu for the selection can be accessed by

tapping on the handle as shown in Figure 5.14

For more information about

pop-up menus see Chapter

Menus Controls and Toolbars

Action handle

Figure 5.12 An action handle with list of alternatives

Figure 5.13 Tapping displays list of alternatives

The Windows Interface Guidelines for Software Design 69
Petitioner Exhibit 1031, Page 91



Chapter General Interaction Techniqnes

Action handle

Lfrido

The buttons on the writing tool window provide for scrolling the text

as well as common functions such as Undo Backspace Insert Space

Insert Period and Close for closing the text window multiline

writing tool window includes Insert New Line

The writing tool windaw also provides button for access to an

onscreen keyboard as an alternative to entering characters with the

pen as shown in Figure 5.15 The user taps the button with the cor

responding keyboard glyph on it and the writing tool onscreen key
board pop up window replaces the normal writing tool window

Figure 5.14 Tapping on Ihe handle displays pop-up menu

Figure 5.15 The writing tool onscreen keyboard window

70 The Windnws Interface Gnidelines fnr Software Design
Petitioner Exhibit 1031, Page 92



General Interaction Techniques Chapter

The writing tool remembers its previous use for text input or as

an onscreen keyboard and
opens

in the appropriate editing win

dow when subsequently used In addition note that when the user

displays writing tool window it gets the input focus so avoid

using the loss of input focus to field as an indication that the user is

finished with that field or that all text editing occurs directly within

text box

Pen Editing Gestures

The pen when used as pointing device supports editing techniques

defined for the mouse When used as writing device the pen sup

ports gestures for editing Gestures except for Undo operate posi

tionally acting upon the objects on which they are drawn If the user

draws gesture on an unselected object it applies to that object even

if selection exists elsewhere within the same selection area Any

pending selections become unselected If user draws gesture over

both selected and unselected objects however it applies only to the

selected ones If gesture is drawn over only ne element of the

selection it applies to the entire selection If the gesture is drawn in

empty space on the background it applies to any existing selection

within that selection scope If no selection exists the gesture has

no effect

For most gestures the hot spot of the gesture determines specifically

which object the gesture applies to If the hot spot occurs on any part

of selection it applies to the whole selection

Table 5.2 lists the common pen editing gestures For these gestures

the hot spot of the gesture is the area inside the circle stroke of the

gesture

The Winduws Interface Guidelines for Software Design 71
Petitioner Exhibit 1031, Page 93



Chapter General Interaction Techniques

Table 5.2 Pen Editing Gestures

Gesture Name Operation fl These gestures may be local

ized in certain international

circled check Edit displays the writing tool editing win
versions In Japanese versions the

dow for text Properties for all other objects
circled-k gesture is used to convert

Kana to Kanji

circled Copy

circled-d Delete or Clear

circled-rn Menu

circled New line

circled-p Paste

circled Insert space

circled-t Insert tab

circled Undo

circled Cut

circled Insert text

Transfer Operations

Transfer operations are operations that involve or can be derived

from moving copying and linking objects from one location to

another For example printing an object is form of transfer op
eration because it can be defined as copying an object to printer

Three components make up transfer operation the object to be

transferred the destination of the transfer and the operation to be

performed You can define these components either explicitly or

implicitly depending on which interaction technique you use

72 The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 94



General Interaction Techniques Chapter

The operation defined by transfer is determined by the destination

Because transfer may have several possible interpretations you can

define default operation and other optimal operations based on

information provided by the source of the transfer and the compat

ibility and capabilities of the destination For example attempting to

transfer an object to container can result in one of the following

alternatives

Rejecting the object

Accepting the object

Accepting subset or transformed form of the object for ex

ample extract its content or properties but discard its present

containment or convert the object into new type

Most transfers are based on one of the following three fundamental

operations

Operation Description

Move Relucates ur repositions the selected object Because it does

not change the basic identity of an object move operation

is not the same as copying an object and deleting the

original

Copy Makes duplicate nf an nhject The resulting nhject is

independent of its original Duplication does not always

produce an identical clone Some of the properties of

duplicated object may be different from the original For

example copying an object may result in different name

or creation date Similarly if some component of the object

restricts copying then only the unrestricted elements may

be copied

Link Creates connection between two objects The result is

usually an object in the destination that provides access to

the original

There are two different methods for supporting the basic transfer

interface the command method and the direct manipulation method

The Windows Interface Guidelines for Software Design 73Petitioner Exhibit 1031, Page 95



Chapter General Interaction Techniqoes

Command Method

The command methoc for transferring objects uses the Cut Copy

and Paste commands Place these commands on the Edit drop-down

menu and on the pop-up menu for selected object You can also

include toolbar buttons to support these commands

To transfer an object the user

Makes selection

Chooses either Cut or Copy

Navigates to the destination and sets the insertion location if

appropriate

Chooses Paste operation

Cut removes the selection and transfers it or reference to it to the

Clipboard Copy duplcates the selection or reference to it and

transfers it to the Clipboard Paste completes the transfer operation

For example when the user chooses Cut and Paste remove the se

lection from the source and relocate it to the destination For Copy

and Paste insert an independent duplicate of the selection and leave

the original unaffected When the user chooses Copy and Paste Link

or Paste Shortcut insert an object at the destination that is linked to

the source

Choose form of Paste command that indicates how the object will

be transferred into the destination Use the Paste command by itself

to indicate that the object will be transferred as native content You

can also use alternative forms of the Paste command for other 05
sible transfers using the following general form

74 The Windnws Interface Guidelines for Software Design Petitioner Exhibit 1031, Page 96



General Interaction Techniques Chapter

Pastc name type name to object name For more information about

object names including their

For example Paste Cells as Word Table where name is Cells type name see Chapter 10 Inte

and Word Table is the converted type name grating with the System

The following summarizes common forms of the Paste command

Command Function For more information about

these Paste command forms
Paste Inserts the object on the Clspboard as natsve

and the Paste Special dialog box
content data

see Chapter 11 Working with OLE

Paste name Inserts the object on the Clipboard as an OLE Embedded and OLE Linked Objects

embedded object The OLE embedded object can

be activated directly within the destination

Paste name Inserts the object on the Clipboard as an OLE

as Icon embedded object The OLE embedded object ss

displayed as an icon

Paste Link Inserts data link to the object that was copied to

the Clipboard The objects value is integrated or

transformed as native content within the

destination but remains linked to the original

object so that changes to it are reflected in the

destination

Paste Link to Inserts an OLE linked object displayed as

name picture of the object copied to the Clipboard The

representation is linked to the object copied to the

Clipboard so that any changes tu the original

source object will be reflected in the destination

Paste Shortcut Inserts an OLE linked object displayed as

shortcut icon to the object that was copied to the

Clipboard The representation is linked to the

object copied to the Clipboard so that any

changes to the original source object will be

reflected in the destination

Paste Special Displays dialog box that gives the user explicit

control uer how to insert the ubjcct un the

Clipboard

The Windows Interface Guidelines for Software Design 75Petitioner Exhibit 1031, Page 97



Chapter General Interaction Techniques

Use the destinations context to determine what forms of the Paste

operation to include based on what options it can offer to the user

which in turn may depend on the available forms of the object that

its source location object provides It can also be dependent on the

nature or purpose of the destination For example printer defines

the context of transfers to it

Typically you will need only Paste and Paste Special commands

The Paste command can be dynamically modified to reflect the

destinations default or preferred form by inserting the transferred

object for example as native data or as an OLE embedded object

The Paste Special command can be used to handle any special forms

of transfer Although if the destinations context makes it reason

able to provide fast access to another specialized form of transfer

such as Paste Link you can also include that command

Use the destinations context also to determine the appropriate side

effects of the Paste operation You may also need to consider the

type of object being inserted by the Paste operation and the relation

ship of that type to the destination The following are some common

scenarios

When the user pastes into destination that supports specific

insertion location replace the selection in the destination with the

transferred data For example in text or list contexts where the

selection repiesents spccific insertion location replace the

destinations active selection In text contexts where there is an

insertion location but there is no existing selection place the

insertion point after the inserted object

For destinations with nonordered or ordered contexts where

there is no explicit insertion point add the pasted object and make

it the active selection Also use the destinations context to deter

mine where to place the pasted object Consider any appropriate

user contextual information For example if the user chooses the

Paste command from pop-up menu ou can use the pointers

location when the mouse button is clicked to place the incoming

object If the user supplies no contextual clues place the object at

the location that best fits the context of the destination for

example at the next grid position

76 The Windows Interface Guidelines for Software Design Petitioner Exhibit 1031, Page 98



General Interaction Techniques Chapter

If the new object is automatically connected linked to the active

selection for example table data and graph you may insert the

new object in addition to the selection and make the inserted

object the new selection

You also use context to determine whether to display an OLE em
bedded or OLE linked object as content view or picture of the

objects intemal data or as an icon For example you can decide

what presentation to display based on what Paste operation the user

selects Paste Shortcut implies pasting an OLE link as an icon Simi

larly the Paste Special command includes options that allow the

user to specify how the transferred object should be displayed If

there is no user-supplied preference the destination application de

fines the default For documents you typically display the inserted

OLE object as in its content presentation If icons better fit the con

text of your application make the default Paste operation display the

transferred OLE object as an icon

The execution of Paste command should not affect the content of

the Clipboard This allows data on the Clipboard to be pasted mul

tiple times although subsequent Paste operations should always

result in copies of the original However subsequent Cut or Copy

command replaces the last entry on the Clipboard

Direct Manipulation Method

The command method is useful when transfer operation requires

the user to navigate between source and destination However for

many transfers direct manipulation is natural and quick method In

direct manipulation transfer the user selects and drags an object to

the desired location but because this method requires motor skills

that may be difficult for some users to master avoid using it as the

exclusive transfer method The best interfaces support the transfer

command method for basic operations and direct manipulation trans

fer as shortcut technique

When pen is being used as pointing device or when it drags an

action handle it follows the same conventions as dragging with

mouse button For
pens

with barrel buttons use the barreldrag

action as the equivalent of dragging with mouse button There is

no keyboard interface for direct manipulation transfers

The Windows Interface Guidelines for Software Design 77Petitioner Exhibit 1031, Page 99



Chapter General Interaction Techniques

You can support direct manipulation transfers to any visible object

The object for example window or icon need not be currently

active For example the user can drop an object in an inactive win

dow The drop action activates the window If an inactive object

cannot accept direct manipulation transfer it or its container

should provide feedback to the user

How the transferred object is integrated and displayed in the drop

destination is determined by the destinations context dropped

object can be incorporated either as native data an OLE object

partial form of the object such as its properties or trans

formed object You determine whether to add to or replace an exist

ing selection based on the context of the operation using such

factors as the formats available for the object the destinations

purpose and any user-supplied information such as the specific

location that the user drops or commands or modes that the user

has selected For example an application can supply particular type

of tool for copying the properties of objects

Default Drag and Drop

Default drag and drop transfers an object using mouse button

How the operation is interpreted is determined by what the destina

tion defines as the appropriate default operation As with the com

mand method the destination determines this based on information

about the object and the formats available for the object and the

context of the destination itself Avoid defining destructive opera

tion as the default When that is unavoidable display message box

to confirm the intentions of the user

Using this transfer technique the user can directly transfer objects

between documents defined by your application as well as to system

resources such as folders and printers Support drag and drop follow

ing the same conventions the system supports the user presses but

ton down on an object moves the mouse while holding the button

down and then releases the button at the destination For the pen the

destination is determined by the location where the user lifts the pen

tip from the input surface

78 The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 100



General Interaction Techniques Chapter

The most common default transfer operation is Move but the desti

nation dropped on object can reinterpret the operation to be what

ever is most appropriate Therefore you can define default drag

and drop operation to be another general transfer operation such as

Cupy ur Link destination specific command such as Print or Send

To or even specialized form of transfer such as Copy Properties

Nondefault Drag and Drop

Nondefault drag and drop transfers an object using mouse button

In this case rather than executing default operation the destination

displays pop up menu when the user releases the mouse button as

shown in Figure 5.16 The pop up menu contains the appropriate

transfer completion commands

100.00

r9hFlDH
trpim

He
Copy Here

Link Heta

Cancel

Figure 5.16 nondetault drag and drop operation

The destination always determines which transfer completion com

mands to include on the resulting pop up menu usually factoring in

information about the object supplied by the source location

The form for nondefault drag and drop transfer completion verbs

follows similar conventions as the Paste command Use the common

transfer completion verbs Move Here Copy Here and Link Here

when the object being transferred is native data of the destination

When it is not include the type name You can also display altema

tive completion verbs that communicate the context of the destina

The Windows Interface Guidelines for Software Design 79
Petitioner Exhibit 1031, Page 101



Chapter General Interactinn Techniqnes

tion for example printer displays Print Here command For

commands that support only partial aspect or transformation of

an object use more descriptive indicators for example Copy

Properties Here or Transpose Here

Use the following general form for nondefault drag and drop transfer

commands

Name Ftype name object name Here type name

The following summarizes common forms for nondefault transfer

completion commands

Command Function

Move Here Moves the selected object to the

destination as native content data

Copy Here Creates copy of the selected object in

the destination as native content

Link Here Creates data link between the selected

object and the destination The original

objects value is integrated or

transformed as native data within the

destination but remains linked to the

original object so that changes to it are

reflected in the destination

Move name Here Moves or copies the selected object as an

Copy name Here OLE embedded object The OLE

embedded object is displayed in its

content presentation and can be activated

directly within the destination

Link name Here Creates an OLE linked object displayed

as picture of the selected object The

representation is linked to the selected

object so that any changes to the original

object will be reflected in the destination

80 The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 102



General Interaction Techniques Chapter

Continued

Command Function

Move name Here as Icon

Copy name Here as Icon

Moves or copies the selected object as an

OLE embedded object and displays it as

an icon

Create Shortcut Here Creates an OLE linked object to the

selected object displayed as shortcut

icon The representation is linked to the

selected object so that any changes to the

original object will be reflected in the

destination

Define and appropriately display one of the commands in the pop-up

menu to be the default drag and drop command This is the com

mand that corresponds to the effect of dragging and dropping with

mouse button

Canceling Drag and Drop Transfer

When user drags and drops an object back on itself interpret the

action as cancellation of direct manipulation transfer Similarly

cancel the transfer if the user presses the ESC key during drag trans

fer In addition include Cancel command in the pop-up menu of

nondefault drag and drop action When the user chooses this com

mand cancel the operation

Differentiating Transfer and Selection When Dragging

Because dragging performs both selection and transfer operations

provide convention that allows the user to differentiate between

these operations The convention you use depends on what is most

appropriate in the current context of the object or you can provide

specialized handles for selection or transfer The most common tech

nique uses the location of the pointer at the beginning of the drag

operation If the pointer is within an existing selection interpret the

drag to be transfer operation If the drag begins outside of an exist

ing selection on the backgrounds white space interpret the drag as

selection operation

For more information about

how to display default menu

commands see Chapter 13 Visual

Design

The Windows Interface Guidelines for Software Design 81
Petitioner Exhibit 1031, Page 103



Chapter General Interaction Techniques

Scrolling When Transferring by Dragging

When the user drags and drops an object from one scrollable area

such as window pane or list box to another some tasks may

require transferring the object outside the boundary of the area

Other tasks may involve dragging the object to location not cur

rently in view In this latter case it is convenient to automatically

scroll the area also known as automatic scrolling or autoscroll

when the user drags the object to the edge of that scrollable area

You can accommodate both these behaviors by using the velocity of

the dragging action For example if tbe user is dragging the object

slowly at the edge of the scrollable area you scroll the area if the

object is being dragged quickly do not scroll

To support this technique during drag operation you sample the

pointers position at the beginning of the drag each time the mouse

moves and on an application-set timer every 100 milliseconds rec

ommended If you use OLE drag and drop support you need not set

timer Store each value in an array large enough to hold at least

three samples replacing existing samples with later ones Then cal

culate the pointers velocity based on at least the last two locations

of the pointer

To calculate the velocity sum the distance between the points in

each adjacent sample and divide the total by the sum of the time

elapsed between samples Distance is the absolute value of the dif

ference between the and locations or absxl x2 absyl

y2 Multiply this by 1024 and divide it by the elapsed time to pro
duce the velocity The 1024 multiplier prevents the loss of accuracy

caused by integer division

You also predefine hot zone along the edges of the scrollable area

and scroll time-out value Use twice the width of vertical scroll

bar or height of horizontal scroll bar to determine the width of the

hot zone

During the drag operation scroll the area if the following conditions

are met the user moves the pointer within the hot zone the current

velocity is below certain threshold velocity and the scrollable area

is able to scroll in the direction associated with the hot zone it is in

The recommended threshold velocity is 20 pixels per second These

conventions are illustrated in Figure 5.17

Distance as implemented in

this algorithm is not true Car

tesian distance This implementation

uses an approximation for purposes

of efficiency rather than using the

square root of the sum of the

squares sqrtxl x2A2 yl y2

A2 which is more computationally

expensive

82 The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 104



General Interaction Techniques Chapter

Auto-scroll

hot zone

Figure 5.17 Automatic scrolling based on velocity of draqqing

The amount you scroll depends on the type of information and rea

sonable scrolling distance For example for text you typically scroll

vertically one line at time Consider using the same scrolling

granularity that is provided for the scroll bar arrows

To support continuous scrolling determine what the scroll frequency

you want to support for example four lines per second After

using velocity check to initiate auto-scrolling set timer for

example 100 milliseconds When the timer expires determine how

long it has been since the last time you scrolled If the elapsed time

is greater than your scrolling frequency scroll another unit If not

reset your timer and check again when the timer completes

Transfer Feedback

Because transferring objects is one of the most common user tasks

providing appropriate feedback is an important design factor Incon

sistent or insufficient feedback can result in user confusion

Command Method Transfers

For command method transfer remove the selected object visually

when the user chooses the Cut command If there are special circum

stances that make removing the objects appearance impractical you

can instead display the selected object with special appearance to

inform the user that the Cut command was completed but that the

For more information about

scrolling see Chapter

Windows

For more information about

designing transfer feedback

see Chapter 13 Visual Design

l\

The Windows Interface Guidelines for Software Design 83
Petitioner Exhibit 1031, Page 105



Chapter General Interaction Techniques

objects transfer is pending For example the system displays icons

in checkerboard dither to indicate this state You will also need to

restore the visual state of the object if the user chooses Cut or Copy
for another object before choosing Paste command effectively

canceling the pending Cut command The user will expect Cut to

remove selected object so carefully consider the impact of incon

sistency if you choose this alternate feedback

The Copy command requires no special feedback Paste operation

also requires no further feedback than that already provided by the

insertion of the transferred object However if you did not remove

the display of the object and used an alternate representation when
the user chose the Cut command you must remove it now

Direct Manipulation Transfers

During direct manipulation transfer operation provide visual feed

back for the object the pointer and the destination Specifically

Display the object with selected appearance while the view it

appears in has the focus To indicate that the object is in transfer

state you can optionally display the object with some additional

appearance characteristics For example for move operation

you can use the checkerboard dithered appearance used by the

system to indicate ss hen an icon is Cut Change this visual state

based on the default completion operation supported by the desti

nation the pointer is currently over Retain the representation of

the object at the original location until the user completes the

transfer operation This not only provides visual cue to the

nature of the transfer operation it provides convenient visual

reference point

Display representation of the object that moves with the pointer

Use presentation that provides the user with information about

how the information will appear in the destination and that does

not obscure the coni ext of the insertion location For example

when transferring an object into text context it is important that

the insertion point not be obscured during the drag operation

translucent or outline representation as shown in Figure 5.18

84 The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 106



General Interaction Techniques Chapter

works well because it allows the underlying insertion location to

be seen while also providing information about the size position

and nature of the object being dragged

LJ
FoIdridj

Figure 5.18 Outline and translucent representations tor transfer operations

The objects existing source location provides the transferred

objects initial appearance but any destination can change the

appearance Design the presentation of the object to provide feed

back as to how the object will be integrated by that destination

For example if an object will be embedded as an icon display the

object as an icon If the object will be incorporated as part of the

native content of the destination then the presentation of the object

that the destination displays should reflect that For example if

table being dragged into document will be incorporated as

table the representation could be an outline or translucent form of

the table On the other hand if the table will be converted to text

display the table as representation of text such as translucent

presentation of the first few words in the table

Display the pointer appropriate to the context of the destination

usually used for inserting objects For example when dragging an

object into text editing context such that the object will be in

serted between characters display the usual text editing pointer

sometimes called the I-beam pointer

Display the interpretation of the transfer operation at the lower

right corner of the pointer as shown in Figure 5.19 No additional

glyph is required for move operation Use plus sign when

the transfer is copy operation Use the shortcut arrow graphic for

linking

Figure 5.19 Pointers move copy and link operations

The Windows Interface Guidelines for Software Design 85
Petitioner Exhibit 1031, Page 107



Chapter General Interaction Techniques

Use visual feedback to indicate the receptivity of potential desti

nations You can use selection highlighting and optionally animate

or display representation of the transfer object in the destination

Optionally you can also indicate when destination cannot ac

cept an object by using the no drop pointer shen the pointer is

over it as shown in Figure 5.20

Specialized Transfer Commands

In some contexts particular form of transfer operation may he so

common that introdncing an additional specialized command is

appropriate For example if copying existing objects is frequent

operation you can inc ude Duplicate command Following are

some common specialized transfer commands

Command Function

Delete Removes an object from its container If the object is file

the object is transferred to the Recycle Bin

Clear Removes the content of container

Duplicate Copies the selected object

Print Prints the selected object on the default printer

Send To Displays list of possible transfer destinations and

transfers the selected object to the user selected destination

Delete and Clear are often

used synonymously How

ever they are best differentiated

by applying Delete to an object and

Clear to the container of an object

Figure 5.20 no drop pointer

86 The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 108



General Interactinn Techniques Chapter

Shortcut Keys for Transfer Operations

Following are the defined shortcut techniques for transfer operations

Shortcut Operation

CTRLX Performs Cut command

CTRLC Performs Copy command

CTRLV Performs Paste command

CTRLdrag Toggles the meaning of the default direct manipulation

transfer operation to be copy operation provided the

destination can support the copy operation The modifier

may he used with either mouse button

ESC Cancels drag and drop transfer operation

Because of the wide use of these command shortcut keys throughont

the interface do not reassign them to other commands

Creation Operations

Creating new objects is common user action in the interface

Although applications can provide the context for object creation

avoid considering an applications interface as the exclusive means

of creating new objects Creation is typically based on some pre

defined object or specification and can be supported in the interface

in number of ways

Copy Command

Making copy of an existing object is the fundamental paradigm for

creating new objects Copied objects can be modified and serve as

prototypes for the creation of other new objects The transfer model

conventions define the basic interaction techniques for copying ob

jects Copy and Paste commands and drag and drop manipulation

provide this interface

--
For more information about

reserved and recommended

shortcut key assignments see Ap
pendix Keyboard Interface Sum

mary

The Windows Interface Guidelines for Software Design 87Petitioner Exhibit 1031, Page 109



Chapter General Interaction Techrnqnes

New Command

The New command facilitates the creation of new objects New is

command applied to specific object automatically creating new

instance of the objects type The New command differs from the

Copy and Paste commands in that it is single command that gener

ates new object

Insert Command

The Insert command works similarly to the New command except

that it is applied to container to create new object usually of

specified type in that container In addition to inserting native types

of data use the Insert command to insert objects of different types

By supporting OLE you can support the creation of wide range of

objects In addition objects supported by your application can be

inserted into data files created by other OLE applications

Using Controls

You can use controls to support the automatic creation of new ob

jects For example in drawing application buttons are often used

to specify tools or modes for the creation of new objects such as

drawing particular shapes or controls Buttons can also be used to

insert OLE objects

Using Templates

template is an object that automates the creation of new object

To distinguish its pnrpose display template icon as pad with

the small icon of the type of the object to be created as shown in

Figure 5.21

Figure 5.21 template icon

For more information about

inserting objects see Chap

ter 11 Working with OLE Embed

ded and OLE Linked Objects

For more information about

using buttons to create new

objects see Chapter 11 Working

with OLE Embedded and OLE Linked

Objects

88 The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 110



General Interaction Techniques Chapter

Define the New command as the default operation for template

object this starts the creation process which may either be auto

matic or request specific input from the user Place the newly created

object in the same location as the container of the template If cir

cumstances make that issspractical place tlse object in cossisssun

location such as the desktop or during the creation process include

prompt that allows user to specify some other destination In the

former situation display message box informing the user where the

object will appear

Operations on Linked Objects

link is connection between ts objects that represents or pro
vides access to another object that is in another location in the same

container or in different separate container The components of

this relationship include the link source sometimes referred to as the

referent and the link or linked object sometimes referred to as the

reference linked object often has operations and properties inde

pendent of its source For example linked objects properties can

include attributes like update frequency the path description of its

link source and the appearance of the linked object The containers

in which they reside provide access to and presentation of commands

and properties of linked objects

Links can be presented in various ways in the interface For ex

ample data link propagates value between two objects such as

between two cells in worksheet or series of data in table and

chart Jumps also referred to as hyperlinks provide navigational

access to another object An OLE linked object provides access to

any operation available for its link source and also supplies presen

tation of the link source shortcut icon is link displayed as an

icon

For more information about

OLE linked objects see Chap

ter 11 Working with OLE Embed

ded and OLE Linked Objects For

more information about jumps see

Chapter 12 User Assistance

The Windows Interface Guidelines fnr Software Design 89
Petitioner Exhibit 1031, Page 111



Chapter General Interaction Techniques

When the user transfers linked object store both the absolute and

relative path to its link source The absolute path is the precise de

scription of its location beginning at the root of its hierarchy The

relative path is the description of its location relative to its current

container

The destination of transfer determines whether to use the absolute

or relative path when the user accesses the link source through the

linked object The relative path is the most common default path

However regardless of which path you use if it fails use the alterna

tive path For example if the user copies linked object and its link

source to another location the result is duplicate of the linked

object and the link source The relative path for the duplicate linked

object is the location of the duplicate of the link source The absolute

path for the duplicate linked object is the description of the location

of the initial link source Therefore when the user accesses the dupli

cate of the linked object its inferred connection should be with the

duplicate of the link source If that connection fails for example

because the user deletes the duplicate of the linked source use the

absolute path the connection to the original link source

Optionally you can make the preferred path for linked object

field in the property sF eet for linked object This allows the user to

choose whether to have linked object make use of the absolute or

relative path to its link source

When the user applies link operation to linked object link to the

linked object rather than its linked source That is linking linked

object results in linked object linked to linked object If snch an

operation is not valid or appropriate for example because the

linked object provides no meaningful context then disable any link

commands or options when the user selects linked object

Activation of linked object depends on the kind of link For ex

ample single click can activates jump However single click

only results in selecting data link or an OLE linked object If you

use single click to do anything other than select the linked object

90 The Windows Interface Guidelines for Software Design

Petitioner Exhibit 1031, Page 112



General Interaction Techniques Chapter

distinguish the object by either presenting it as button control

displaying the hand pointer as shown in Figure 5.22 when the user

moves the pointer over the linked object or both These techniques

provide feedback to the user that the clicking involves more than

selection

JISpjgpre oc trons

Using Phone Dialer to dial horn

your computer

Phone Dialer enables you to place

telephone calls hors your computer by

using your modem or another Windoms

telephony device

To start Phone Dialer click here .J

For intormation about hors to use _F Hand pointer

Phone Dialer click the Help menu in

Phone Dialer

Figure 5.22 The hand pointer

The Winduws Interface Guidelines for Software Design 91
Petitioner Exhibit 1031, Page 113



Petitioner Exhibit 1031, Page 114Petitioner Exhibit 1031, Page 114



Petitioner Exhibit 1031, Page 115 



Petitioner Exhibit 1031, Page 116Petitioner Exhibit 1031, Page 116



CHAPTER

Windows

Windows provide the fundamental way user views and interacts

with data Consistency in window design is particularly important

because it enables users to easily transfer their learning skills and

focus on their tasks rather than learn new conventions This chapter

describes the common window types and presents guidelines for

general appearance and operation

Common Types of Windows
Because windows provide access to different types of information

they are classified according to common usage Interacting with

objects typically involves primary window in which most primary

viewing and editing activity takes place In addition multiple

supplemental secondary windows can be included to allow users to

specify parameters or options or to provide more specific details

about the objects or actions included in the primary window

PrimaryWindow Components

typical primary window consists of frame or border which

defines its extent and title bar which identifies what is being

viewed in the window If the viewable content of the window

exceeds the current size of the window scroll bars are used The

window can also include other components like menu bars toolbars

and status bars

For more information about

secondary windows see

Chapter Secondary Windows

Petitioner Exhibit 1031, Page 117



Chapter Windows

Figure 6.1 shows the common components of primary window

Title bar icon

1Title

text Title bar

Window
buttons

Menu bar

Sizing border

Vertical scroll bar

Size Ip

Window Frames

Every window has boundary that defines its shape sizable win

dow has distinct border that provides control points handles for

resizing the window using direct manipulation If the window cannot

be resized the border coincides with the edge of the window

Title Bars

At the top edge of the window inside its border is the title bar also

referred to as the caption or caption bar which extends across the

width of the window The title bar identifies what the window is

viewing It also serves as control point for moving the window and

an access point for commands that apply to the window and its

Status bar

Figure 6.1 primary window

96 The Windows Interface Goidelines for Software Design
Petitioner Exhibit 1031, Page 118



Windows Chapter

associated view For example clicking on the title bar with mouse

button displays the pop-up menu for the window Pressing the

ALTSPACEBAR key combination also displays the pop-up menu for

the window

Title Bar Icons

primary window includes the small version of the objects icon

The small icon appears in the upper left corner of the title bar and

represents the object being viewed in the window If the window

represents tool or utility application that is an application that

does not create load and save its own data files use the small ver

sion of the applications icon in its title bar as shown in Figure 6.2

Alication

icon

If the application creates loads and saves documents or data files

and the window represents the view of one of its files use the icon

that represents its document or data file type in the title bar as

shown in Figure 6.3 Display the data file icon even if the user has

not saved the file yet rather than displaying the application icon and

then the data file icon once the user saves the file

Document icon

For information about how to

register icons for your appli

cation and data file types see Chap

ter 10 Integrating with the System

For more information about design

ing icons see Chapter 13 Visual

Design

Figure 6.3 Document title bar

If an application uses the multiple document interface MDI design

place the applications icon in the parent windows title bar and

place an icon that reflects the applications data file type in the child

windows title bar as shown in Figure 6.4

For more information about

MDI see Chapter Window

Management

Figure 6.2 Tool title bar

The Windows Interface Guidelines for Software Design 97Petitioner Exhibit 1031, Page 119



Chapter Windows

Lth whet

Application icon

File Edi V1e mean Format loots Table Windom Help

Document icon

Figure MDI application and document title bars

However when user maximizes the child window and you hide

its title bar and merge its title information with the parent display

the icon from the child windows title bar in the menu bar of the

parent window If multiple child windows are open within the MDI

parent window display only the icon from the active topmost

child window

When the user clicks the title bar icon with mouse button display

the pop-up menu for the object Typically the menu contains simi

lar set of commands that are available for the icon from which the

window was opened except that Close replaces Open Also define

Close as the default command so when the user double-clicks the

title bar icon the window closes Clicking elsewhere with button

on the title bar displays the pop-up menu for the window

Title Text

The window title text identifies the name of the object being viewed

in the window It should always correspond to the icon of the type

you display in the title bar It should also match the label of the icon

in the file system that represents the object For example if the user

opens
data file named My Document in the resulting window

When the user clicks the title

bar icon with mouse button

the system also displays the pop

up menu for the window However

this behavior is only supported for

backward compatibility with Win

dows 3.1 Avoid documenting it as

the primary way to access the pop

up menu for the window Instead

document the use of button as

the correct way to display the pop

up menu for the window

98 The Windows Interface Goidelines for Software Design
Petitioner Exhibit 1031, Page 120



Windows Chapter

you display the icon for that document type followed by the name of

the data file You may also include the name of the application in

use however if it is used display the name of the data file first

followed by dash and the application name as shown in Figure 6.5

and

Die Liii lnprt Format HelP
cation name differs from the Win-

iiiJ dows 3.1 guidelines The new

convention is better suited for the

Figure 6.5 Title text order document name application name design of data-centered interface

If the window represents tool application that does not create or

edit its own data files such as the Windows Calculator display the

applications name as displayed for the applications icon label in

the title bar If the tool application operates as utility for other files

created by other applications such as special viewer or browser

application where the view displayed is not the primary open

view of the file or where the tool application requires an addi

tional specification to indicate its context such as the Windows

Explorer place the name of the application first then include

dash and the specification text For example the title text of the

Windows Explorer includes the name of the current container dis

played in the browser

For an MDI application use the applications name in the parent

window and the data tiles name in the child windows When the

user maximizes the files child window format the title text follow

ing the same convention as tool application with the applications

name first followed by the data filename as shown in Figure 6.6

The Windows Interface Guidelines tor Software Design 99Petitioner Exhibit 1031, Page 121



Chapter Windows

4Application Name ocument

file Edit View lnS Format Tools Table Window eIp

Figure 6.6 Document follows application name for maximized child window

When the user directly opens an application that displays new data

file supply name for the file and place it in the title bar even if the

user has not saved the file yet Use the type name for example

Document Sheet Chart where is number as in Docu

ment Make certain that the proposed name does not conflict with

an existing name in the current directory Also use this name as the

proposed default filename for the object in the Save As dialog box

If it is impractical or inappropriate to supply default name display

placeholder in the title such as Untitled

Follow the same convention if your application includes New

command that creates new files Avoid prompting the user for

name Instead you cau supply Save As dialog box that allows the

user to confirm or change your proposed name when they save or

close the file or attempt to create new file

Display filename in the title bar exactly as it
appears to the user in

the file system using both
uppercase

and lowercase letters However

avoid displaying the files extension or the path in the title bar This

information is not meaningful for most users and can make it more

difficult for them to identify the file However because the system

provides an option for users to display filename extensions use the

system supplied functions to format filename which will display

the filename appropriately based on the users preference

If your application supports multiple windows for viewing the same

file you may use the title text to distinguish between the views

but use convention that will not be confused as part of the file

name For example you may want to append where represents

the instance of the window as in Document2 Make certain you do

not include this view designation as part of the filename you supply

in the Save As dialog box

For more information about

type names see Chapter 10

Integrating with the System For

more information about the Save As

dialog box see Chapter Second

ary Windows

The GetFilelitle and SHOet

Filelnfo functions automati

cally format names correctly For

more information about these func

tions see the documentation in

cluded in Ihe Microsoft Win32

Software Development Kit SDK

100 The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 122



Windows Chapter

If the name of the displayed object in the window changes for

example when the user edits the name in the objects property sheet

update the title text to reflect that change Always try to maintain

clear association between an object and its open window

The title text and title bar icon should always represent the outmost

container the object that was opened even if the user selects an

embedded object or navigates the internal hierarchy of the object

being viewed in the window If you need an additional specification

to clarify what the user is viewing place this specification after the

filename and separate it clearly from the filename such as enclosing

it in parentheses for example My HardDisk Because the

system now supports long filenames avoid additional specification

whenever possible Complex or verbose additions to the title text

also make it more difficult for the user to easily read and identify

the window

When the width of the window does not allow you to display the For more information about

complete title text yon may abbreviate the title text being careful to abbreviating names see

maintain the essential information that allows the nser to quickly Chapter 10 Integrating with the

identify the window System

Avoid drawing directly into the title bar or adding other controls

Such added items can make reading the name in the title difficult

particularly because the size of the title bar varies with the size of the

window In addition the system uses this area for displaying special

controls For example in some international versions of Windows

the title area provides information or controls associated with the

input of certain languages

Title Bar Buttons

Include command buttons associated with the common commands

of the primary window in the title bar These act as shortcuts to

specific window commands Clicking title bar button with mouse

button invokes the command associated with the command button

Optionally you can also support clicking title bar command button

The Windows Interface Goidelines for Software Design 101Petitioner Exhibit 1031, Page 123



Chapter Windows

with mouse button to display the pop-up menu for the window

For the pen tapping window button invokes its associated com

mand and optionally you may support barrel tapping it or using the

pen menu gesture to display the pop-up menu for the window

In typical situation one or more of the following buttons
appear

in primary window provided that the window supports the respec

tive functions

6.1 Title Bar Buttons

Button Command Operation

Close Closes the window

.rl Minimize Minimizes the window

Maximize Maximizes the window

Restore Restores the window

When displaying these buttons use the following guidelines

When command is not supported by window do not display

its corresponding button

The Close button always appears as the rightmost button Leave

gap between it and any other buttons

The Minimize button always precedes the Maximize button

The Restore button always replaces the Maximize button or the

Minimize button when that command is carried out

T1 The system does not support

IJ the inclusion of the context-

sensitive Help button available for

secondary windows Applications

wishing tu provide this functional

ity can do so by including Help

toolbar button Similarly avoid in

cluding Maximize Minimize and Re

store buttons in the title bars of

secondary windows because those

commands do not apply to those

windows

102 The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 124



Windows Chapter

Basic Window Operations

The basic operations for window include activation and deactiva

tion opening and closing moving sizing scrolling and splitting

The following sections describe these operations

Activating and Deactivating windows

While the system supports the display of multiple windows the user

generally works within single window at time This window is

called the active window The active window is typically at the top

of the window order It is also visually distinguished by its title bar

that is displayed in the active window title color All other windows

are inactive with respect to the users input that is while other win

dows can have ongoing processes only the active window receives

the users input The title bar of an inactive window displays the

system inactive window color Your application can query the
sys

tem for the current values for the active title bar color and the mac

tive title bar color

The user activates primary window by switching to it this macti-

yates any other primary windows To activate window with the

mouse or pen the user clicks or taps on any part of the window

including its interior If the window is minimized the user clicks

taps the button representing the window in the taskbar From the

keyboard the system provides the ALTTAB key combination for

switching between primary windows The SHIFTALTTAB key also

switches between windows but in reverse order The system also

supports ALTESC for switching between windows The reactivation

of window should not affect any pre existing selection within it

the selection and focus are restored to the previously active state

When the user reactivates primary window the window and all

its secondary windows come to the top of the window order and

maintain their relative positions If the user activates secondary

window its primary window comes to the top of the window order

along with the primary windows other secondary windows

For more information about

using the GetSysColor func

tion to access the COLOR ACTIVE

CAPTION and COLOR_INACTIVE-

CAPTION constants see the

documentation included in the

Win 32 30K

The Windows Interface Gnidclincs for Software Design 103Petitioner Exhibit 1031, Page 125



Chapter Windows

When window becomes inactive hide the selection feedback for

example display of highlighting or handles of any selection within

it to prevent confusion over which window is receiving keyboard

input direct manipulation transfer drag and drop is an exception

Here you can display transfer feedback if the pointer is over the

window during the drag operation Do not activate the window

unless the user releases the mouse button the pen tip is lifted in

that window

Opening and Closing Windows

When the user opens primary window include an entry for it on

the taskbar If the window has been opened previously restore the

window to its size and position when it was last closed If possible

and appropriate reinstate the other related view information such as

selection state scroll position and type of view When opening

primary window for the first time open it to reasonable default

size and position as best defined by the object or application For

details about storing state information in the system registry see

Chapter 10 Integrating with the System

Because display resolution and orientation varies your software

should not assume fixed display size but rather adapt to the shape

and size defined by the system If you use standard system interfaces

the system automatically places your windows relative to the current

display configuration

Opening the primary window activates that window and places it at

the top of the window order If the use attempts to open primary

window that is already open within the same desktop activate the

existing window using the following recommendations If the exist

ing window is minimized restore it when you activate it

Only primary windows not

secondary windows should

include an entry on the taskbar

The SetWindowPlacement

function is an example of

system interface that will automati

cally place windows correctly rela

tive to the current display For more

information about this function see

the documentation included in the

Win32 SDK

104 The Windows Interface Guidelines for Software Design Petitioner Exhibit 1031, Page 126



Windows Chapter

File type

Document or data file

Application file

Document file that is

already open in an

MDI application

window

Document file that is

not already open hut

its associated MDI

application is

already running open

Action when repeating an Open operation

Activates the existing window of the object and

displays it at the top of the window order

Displays message box indicating that an open

window of that application already exists and

offers the user the option to switch to the open

window or to open another window Either

choice activates the selected window and brings

it to the top of the window order

Activates the existing window of the file

Its MDI parent window comes to the top of

the window order and the file appears at the

top of the order within its MDI parent

window

Opens new instance of the files associated

MDI application at the top of the window

order and displays the child window for the file

Optionally as an alternative displays message

box indicating that an open window of that

application already exists and offers the user the

option to use the existing window or to open

new parent window

For more information about

MDI see Chapter Window

Management

The user closes primary window by clicking for pen tapping the

screen the Close button in the title bar or choosing the Close com

mand from the windows pop up menu Although the system sup

ports double-clicking with pen double-tapping the screen on the

title bar icon as shortcut for closing the window for compatibility

with previous versions of Windows avoid documenting this as the

primary way to close primary window Instead document the

Close button

When the user chooses the Close command if your application does

not automatically save these changes and pending transactions or

edits that have not yet been saved to file remain display message

asking the user whether to save any changes discard any changes or

cancel the Close operation before closing the window If there are no

pending transactions just close the window Follow this same con

vention for any other command that results in closing the primary

window for example Exit or Shut Down

For more information about

supporting the Close com

mand see Chapter General In

teraction Techniques

The Windows Interface Guidelines for Software Design 105
Petitioner Exhibit 1031, Page 127



Chapter Windows

When closing the primary window close any of its dependent sec

ondary windows as well The design of your application determines

whether closing the primary window also ends the application pro

cesses For example closing the window of text docnment typically

halts any application code or processes remaining for inpntting or

formatting text However closing the window of printer has no

effect on the jobs in the printers queue In both cases closing the

window removes its entry from the taskbar

Moving Windows

The user can move window either by dragging its title bar using

the mouse or pen or by using the Move command on the windows

pop up menn On most configurations an outline representation

muvcs with the puintcr during the upciatiun and the window is

redisplayed in the new location after the completion of the move

The system also provides display property setting that redraws the

window dynamically as it is moved After choosing the Move com

mand the user can move the window with the keyboard interface by

using arrow keys and pressing the ENTER key to end the operation

and establish the windows new location Never allow the nser to

reposition window so that it cannot be accessed

window need not be active before the user can move it The action

nf moving the window implicitly activates it

Moving window may clip or reveal information shown in the win

dow In addition activation can affect the view state of the window

for example the current selection can be displayed However

when the nser moves window avoid making any changes to the

content being viewed in that window

Resizing Windows

Make yonr primary windows resizable unless the information dis

played in the window is fixed such as in the Windows Calculator

program The system provides several conventions that support user

resizing of window

106 The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 128



Windows Chapter

Sizing Borders

The user resizes primary window by dragging the sizing border

with the mouse or pen at the edge of window or by using the Size

command on the windows menu An outline representation of the

window moves with the pointer On some configurations the sys

tem may include display option to dynamically redraw the window

as it is sized After completing the size operation the window as

sumes its new size Using the keyboard the user can size the win

dow by choosing the Size command using the arrow keys and

pressing the ENTER key

window does not need to be active before the user can resize it

The action of sizing the window implicitly makes it active and it

remains active after the sizing operation

When the user resizes window to be smaller you must determine

how to display the information viewed in that window Use the con

text and type of information to help you choose your approach The

most common approach is to clip the information However in other

situations where you want the user to see as much information as

possible you may want to consider using different methods such as

rewrapping or scaling the information Use these variations carefully

because they may not be consistent with the resizing behavior of most

windows In addition avoid these methods when readability or main

taining the structural relationship of the information is important

Although the size of primary window can vary based on the users

preference you can define windows maximum size When defin

ing this size consider the reasonable usage within the window and

the size and orientation of the screen

Maximizing Windows

Although the user may be able to directly resize window to its

maximum size the Maximize command optimizes this operation

Include this command on windows pop-up menu and as the

Maximize command button in the title bar of the window

The Windows Interface Guidelines for Software Design 107
Petitioner Exhibit 1031, Page 129



Chapter Windows

Maximizing window increases the size of the window to its largest

optimnm size The system default setting for the maximum size is as

large as the display exclnding the
space used by the taskbar or other

application-defined desktop toolbars For an MDI child window the

default maximize size fills the parent indow But you can define

the size to be less or in some cases more than the default dimensions

When the user maximizes window replace the Maximize button

with Restore button Then disable the Maximize command and

enable the Restore command on the pop-up menu for the window

Minimizing Windows

Minimizing window reduces it to its smallest size To support this

command include it on the pop-np menu fur the window and as the

Minimize command button in the title bar of the window

For primary windows minimizing removes the window from the

screen but leaves its entry in the taskbar For MDI child windows

the window resizes to minimum size within its parent window

To minimize window the user chooses the Minimize command

from the windows pop-up menu or the Minimize command button

on the title bar

When the user minimizes window disable the Minimize command

on the pop-up menu and enable the Restore command

Restoring Windows

Support the Restore command to restore window to its previous

size and position after the user has maximized or minimized the

window For maximized windows enable this command on the

windows pop-up menu and replace the Maximize button with the

Restore button in the title bar of the window

Because the representation of

minimized windows changed

in Microsoft Windows 95 using an

icon as the way to reflect state in

formation may not be appropriate

As an alternative you may want to

consider creating status indicator

for the taskbar For more informa

tiun about status notification see

Chapter 10 Integrating with the

System

108 The Windows Interface Guidelines for 5oftware Design
Petitioner Exhibit 1031, Page 130



Windows Chapter

For minimized windows also enable the Restore command in the

pop-up menu of the window The user restores minimized primary

window to its former size and position by clicking for pens tapping

the screen on its button in the taskbar that represents the window

selecting the Restore command on the pop up menu of the windows

taskbar button or using the ALTTAB or the SHIFTALTTAB

key combination

Size Grip

When you define sizable window you may include size grip

size grip is special handle for sizing window It is not exclu

sive to the sizing border To size the window the user drags the

grip and the window resizes following the same conventions as the

sizing border

Always locate the size grip in the lower right corner of the window

Typically this means you place the size grip at the right end of

horizontal scroll bar or the bottom of vertical scroll bar However

if you include status bar in the window display the size grip at the

far corner of the status bar instead Never display the size grip in

both locations at the same time

Scrolling Windows

When the information viewed in window exceeds the size of that

window the window should support scrolling Scrolling enables the

user to view portions of the object that are not currently visible in

window Scrolling is commonly supported through the use of scroll

bar scroll bar is rectangular control consisting of scroll arrows

scroll box and scroll bar shaft as shown in Figure 6.7

For more information about

the use of the size grip in

status bar see Chapter Menus

Controls and loolbars

The Windows Interface Guidelines for Software Design 109
Petitioner Exhibit 1031, Page 131



Chapter Windows

Scroll arrow

Scroll box

Scroll arrow

Figure 6.7 Scroll bar and its components

You can include vertical scroll bar horizontal scroll bar or both

Align scroll bar with the vertical or horizontal edge of the window

orientation it supports If the content is never scrollable in particu

lar direction do not include scroll bar for that direction

The common practice is to display scroll bars if the view requires

some scrolling under any circumstances If the window becomes

inactive or resized so that its content does not require scrolling you

should continue to display the scroll bars While removing the scroll

bars when the window is inactive potentially allows the display of

more information and feedback about the state ot the window it also

requires the user to explicitly activate the window to scroll Consis

tently displaying scroll bars provides more stable environment

Scroll Arrows

Scroll arrow buttons appear at each end of scroll bar pointing in

opposite directions away from the center of the scroll bar The scroll

arrows point in the direction that the window moves over the data

When the user clicks for pens tapping the screen scroll arrow

the data in the window moves revealing information in the direction

of the arrow in appropriate increments The granularity of the mere

ment depends on the nature of the content and context but it is typi

cally based on the size of standard element For example you can

Scroll bars are also available

as separate window compo
nents For more information about

scroll bar controls see Chapter

Menus Controls and Toolbars

ri The default system support

lal for scroll bars does not dis

able the scroll arrow buttons when

the region or area is no longer

scrullable in this directiun However

it does provide support for you to

disable the scroll arrow button un
der the appropriate conditions

110 The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 132



Windows Chapter

use one line of text for vertical scrolling one row for spreadsheets

You can also use an increment based fixed unit of measure Which

ever convention you choose maintain the same scrolling increment

throughout window The objective is to provide an increment that

provides smooth but efficient scrolling When window cannot be

scrolled any further in particular direction disable the scroll arrow

corresponding to that direction

When scroll arrow buttons are pressed and held they exhibit spe

cial auto-repeat behavior This action causes the window to continue

scrolling in the associated direction as long as the pointer remains

over the arrow button If the pointer is moved off the arrow button

while the user presses the mouse button the auto-repeat behavior

stops and does not continue unless the pointer is moved back over

the arrow button also when the pen tip is moed off the control

Scroll Box

The scroll box sometimes referred to as the elevator thumb or

slider moves along the scroll bar to indicate how far the visible

portion is from the top for vertical scroll bars or from the left edge

for horizontal scroll bars For example if the current view is in the

middle of document the scroll box in the vertical scroll bar is dis

played in the middle of the scroll bar

The size of the scroll box can vary to reflect the difference between

what is visible in the window and the entire content of the file as

shown in Figure 6.8

The Windows Interface Guidelines for Software Design ill
Petitioner Exhibit 1031, Page 133



Chapter Windows

Figure 6.8 Proportional relationship between scroll box and content

For example if the content of the entire document is visible in

window the scroll box extends the entire length of the scroll bar

and the scroll arrows are disabled Make the minimum size of the

scroll box no smaller than the width of windows sizing border

The user can also scroll window by dragging the scroll box Update

the view continuously as the user moves the scroll box If you cannot

support scrolling at reasonable speed you can scroll the informa

tion at the end of the drag operation as an alternative

If the user starts dragging the scroll box and then moves the pointer

outside of the scroll bar the scroll box returns to its original posi

tion The distance the user can move the pointer off the scroll bar

before the scroll box snaps
back to its original position is propor

tional to the width of the scroll bar If dragging ends at this point the

scroll action is canceled that is no scrolling occurs However if

the user moves the pointer back within the scroll-sensitive area the

scroll box retums to tracking the pointer movement This behavior

allows the user to scroll without having to remain within the scroll

bar and to selectively cancel the initiation of drag-scroll operation

scroll box is an important component

of scroll bar The scroll box indicates

the position of the view within the content

of the document Using proportional

scroll box also allows you to indicate the

sire of the area being viewed with respect

to the total sire of the document That

means that small scroll box indicates

scroll box is an important component

of scroll bar The scroll box indicates

the position of the view within the content

of the document Using proportional

scroll box also allows ysu to indicate the

sire of the area being
viewed with respect

to the total sire of the document That

means that small scroll box indicates

112 The Windows Interface Guidelines for Software Design

Petitioner Exhibit 1031, Page 134



Windows Chapter

Dragging the scroll box to the end of the scroll bar implies scrolling

to the end of that dimension this does not always mean that the area

cannot be scrolled further If your applications document structure

extends beyond the data itself you can interpret dragging the scroll

box to the end of its scroll bar as moving to the end of the data rather

than the end of the structure For example typical spreadsheet

exceeds the data in it that is the spreadsheet may have 65000

rows with data only in the first 50 rows This means you can imple

ment the scroll bar so that dragging the scroll box to the bottom of

the vertical scroll bar scrolls to the last row containing data rather

than the last row of the spreadsheet The user can use the scroll ar

row buttons to scroll further to the end of the structure This situa

tion also illustrates why disabling the scroll arrow buttons can

provide important feedback so that the user can distinguish between

scrolling to the end of data from scrolling to the end of the extent or

structure In the example of the spreadsheet when the user drags the

scroll box to the end of the scroll bar the arrow would still be shown

as enabled because the user can still scroll further but it would be

disabled when the user scrolls to the end of the spreadsheet

Scroll Bar Shaft

The scroll bar shaft not only provides visual context for the scroll

box it also serves as part of the scrolling interface Clicking in the

scroll har shaft should scroll the view an equivalent size of the vis

ible area in the direction of the click For example if the user clicks

in the shaft below the scroll box in vertical scroll bar scroll the

view distance equivalent to the height of the view Where possible

allow overlap from the previous view as shown in Figure 6.9 For

example if the user clicks below the scroll box the bottom line

becomes the top line of scrolled view The same thing applies for

clicking above the scroll box and horizontal scrolling These conven

tions provide the user with common reference point

The Windows Interface Guidelines for Software Design 113
Petitioner Exhibit 1031, Page 135



Chapter Windows

Elle Edit \.ie.t Filter Ioolc Help

bo is cry large or fills the scr

know that you are seeing most or all

document

You can drag the scroll box to scroll th

within the window or pane Clicking

box scrolls the content typically the

scrollable region including the last
lir1

Pressing and holding mouse button with the pointer in the shaft

autu-repeats the serulling actiun If the user moves the pointer out

side the scroll sensitive area while pressing the hutton the scrolling

action stops The user can resume scrolling by moving the pointer

back into the scroll bar area This behavior is similar to the effect of

dragging the scroll box

Automatic Scrolling

The techniques previously summarized describe the explicit ways

for scrolling However the user can also scroll as secondary result

of another user action This type of scrolling is called automatic

scrolling The situations in which to support automatic scrolling

are as follows

When the user begins or adjusts selection and drags it past the

edge of the scroll bar or window scroll the area in the direction of

the drag

When the user drags an object and approaches the edge of

scrollable area scroll the area following the recommended

auto-scroll conventRons covered in Chapter General Interac

tion Techniques Base the scrolling increment on the context of

the destination and if appropriate on the size of the object

being dragged

scroll box is on important con

scroll bar The scroll box indica

position of the view within the

proportional scroll box also allow

the size of the area being viewed

total size of document That mean

Figure 6.9 Scrolling with the scroll bar shaft by screenful

114 The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 136



Windows Chapter

When the user enters text from the keyboard at the edge of win

dow or moves or copies an object into location at the edge of

window the view should scroll to allow the user to focus on the

inserted information The amount to scroll depends on context

For example for text vertically scroll single line at time

When scrolling horizontally scroll in nnits greater than single

character to prevent continuous or uneven scrolling Similarly

when the user transfers graphic object near the edge of the view

base scrolling on the size of the object

If an operation results in selection or moves the cursor scroll the

view to display the new selection For example for Find com

mand that selects matching object scroll the object into view

because usnally the user wants to focus on that location In addi

tion other forms of navigation may cause scrolling For example

completing an entry field in form may result in navigating to the

next field In this case if the field is not visible the form can

scroll to display it

Keyboard Scrolling

Use navigation keys to support scrolling with the keyboard When

the user presses navigation key the cursor moves to the appropriate

location For example in addition to moving the cursor pressing

anow keys at the edge of scrollable area scrolls in the correspond

ing direction Similarly the PAGE UP and PAGE DOWN keys are

comparable to clicking in the scroll bar shaft but they also move

the cursor

Optionally you can use the SCROLL LOCK key to facilitate keyboard

scrolling In this case when the SCROLL LOCK key is toggled on and

the user presses navigation key scroll the view without affecting

the cursor or selection

The Windows Interface Guidelines for Software Design 115Petitioner Exhibit 1031, Page 137



Chapter Windows

Placing Adjacent Controls

It is sometimes convenient to locate controls or status bars adjacent

to scroll bar and position the end of the scroll bar to accommodate

them Take care when placing adjacent elements too many can make

it difficult for users to scroll particularly if you reduce the scroll bar

too much If you need large number of controls consider using

conventional toolbar instead

Splitting Windows

window can be split into two or more separate viewing areas

which are called pane5 For example split window allows the user

to examine two parts of document at the same time You can also

use split window to display different yet simultaneous iews of

the same information as shown in Figure 6.10

My Computer

3k Floppy Aj

5k Floppy

Billboards

Bobbys Sts

.J Business Unit

Color Samples

Estra Templates

Financial Statists

Mailing Lists

_J Old Prograni Files

__J Quarterly Stats

_j Reviems

.J Rollin Account

._J Smith Project

For more information about

toolbars see Chapter

Menus Controls and Toolbars

Panes

Pauls Hard On

Billi

.J Bol

...J Bu
.J nir

Folder

Folder

Folder

Samples

Estra Templates

Financis Statisti

Mailing Lists

Old Program Files

Quarterly

Revierrs

LU RollinAcci

Smith Project

Samples

Sterling Proje

--7t

Folder

Folder

Folder

Folder

Folder

Folder

Folder

Figure 6.10 split window

116 The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 138



Windows Chapter

While you can use split window pane to view the contents of mu
tiple files or containers at the same time displaying these in separate

windows typically allows the user to better identify the files as

individual elements When you need to present views of multiple

files as single task consider sindow management techniques such

as MDI

The panes that appear in split window can he implemented either

as part of windows basic design or as user-configurable option

To support splitting window that is not presplit by design include

split box split box is special control placed adjacent to the end

of scroll bar that splits or adjusts the split of window The size of

the split box should be just large enough for the user to successfully

target it with the pointer the default size of size handle such as the

windows si7ing border is good guideline Locate the split box at

the top of the up arrow button of the vertical scroll bar as shown in

Figure 6.11 or to the left of the left arrow button of horizontal

scroll bar

The user splits window by dragging the split box to the desired

position When the user positions the hot spot of the pointer over

split box change the pointers image to provide feedback and help

the user target the split box While the user drags the split box move

representation of the split box and split bar ith the pointer as

shown in Figure 6.12

Split box

Figure 6.11 Split box location

The Windows Interface Guidelines for Software Design 117
Petitioner Exhibit 1031, Page 139



Chapter Windows

At the end of the drag display visual separator called the split bar

that extends from one side of the window to the other defining the

edge between the resulting panes as shown in Figure 6.12 Base the

size for the split bar to be at minimum the current setting for the

size of window sizing borders This allows you to appropriately

adjust when user adjusts size borders If you display the split box

after the split operation place it adjacent to the split bar

File Edit ie54 In cit not Help

Split

pointer

Splitbar

Figure 6.12 Moving the split bar

You can support dragging the split bar or split box to the end of the

scroll bar to close the split Optionally you can also support double-

clicking or for pens double-tapping as shortcut technique for

splitting the window at some default location for example in the

middle of the window or at the last split location or for removing

the split This technique works best when the resulting window panes

display peer views It amy not be appropriate when the design of the

window requires that it always be displayed as split or for some

types of specialized views

To provide keyboard interface for splitting the window include

Split command on the window or views menu When the user

chooses the Split command split the window in the middle or in

context-defined location Support arrow keys for moving the split

box up or down pressing the ENTER key sets the split at the current

location Pressing the SC key cancels the split mode

118 The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 140



Windows Chapter

You can also use other commands to create split window For ex

ample you can define specialized views that when selected by the

user split window to fixed or variable set of panes Similarly

you can enable the user to remove the split of window by closing

iew pane or by selecting another ies command

When the user splits window add scroll bars if the resulting panes

require scrolling In addition you may need to scroll the information

in panes so that the split bar does not obscure the content over which

it appears Use single scroll bar at the appropriate side of the win

dow for set of panes that scroll together However if the panes

each require independent scrolling scroll bar should appear in each

pane for that purpose For example the vertical scroll bars of set of

panes in horizontally split window are typically controlled separately

When you use split window panes to provide separate views inde

pendently maintain each panes view properties such as view type

and selection state Display only the selection in the active pane

However if the selection state is shared across the panes display

selection in all panes and support selection adjustment across panes

When window is closed save the windows split state that is the

number of splits the place where they appear the scrolled position

in each split and its selection state as part of the view state informa

tion for that window so that it can be restored the next time the win

dow is opened

The Windows Interface Guidelines for Software Design 119
Petitioner Exhibit 1031, Page 141



Petitioner Exhibit 1031, Page 142Petitioner Exhibit 1031, Page 142



CHAPTER

Menus Controls

and Toolbars

Microsoft Windows provides number of interactive components

that make it easy to provide interfaces to carry out commands and

specify values These components also provide consistent structure

and set of interface conventions This chapter describes the interac

tive elements of menus controls and toolbars and how to use them

Menus

Menus list commands available to the user By making commands

visible menus leverage user recognition rather than depending on

user recollection of command names and syntax

There are several types of menus including drop-down menus pop

up menus and cascading menus The following sections cover these

menus in more detail

The Menu Bar and Drop-down Menus

menu bar one of the most common forms of menu interface is

special area displayed across the top of window directly below the

title bar as shown in Figure 7.1 menu bar includes set of en

tries called menu titles Each menu title provides access to drop
down menu composed of collection of menu items or choices

Petitioner Exhibit 1031, Page 143



Chapter Menus Controls and Toolbars

file Edit ttie ln.ert Format Help
--Menu bar

Figure 7.1 menu bar

The content of the me -iu bar and its drop-down menus are deter

mined by the functionality of your application and the context of

users interaction You can also optionally provide user configuration

of the menu structure including hiding the menu bar If you provide

this kind of option supplement the interface with other components

such as pop-up menus handles and toolbars so that user can ac

cess the functionality typically provided by the menu bar

When displayed drop-down menu appears as panel with its menu

items arranged in column While the system supports multiple

columns for drop-down menu avoid this form of presentation be

cause it adds complexty to browsing and interaction of the menu

Drop-down Menu Interaction

When the user chooses menu title it displays its associated drop-

down menu To display drop-down menu with the mouse the user

points to the menu title and presses or clicks mouse button This

action highlights the menu title and opens the menu Tapping the

menu title with pen has the same effect as clicking the mouse

If the user opens menu by pressing the mouse button while the

pointer is over the menu title the user can drag the pointer over

menu items in the drop-down menu As the user drags each menu

item is highlighted tracking the pointer as it moves through the

menu Releasing the mouse button with the pointer over menu item

chooses the command associated with that menu item and the sys

tem removes the drop-down menu If the user moves the pointer off

the menu and then releases the mouse button the menu is canceled

and the drop down menu is removed However if the user moves the

pointer back onto the menu before releasing the mouse button the

tracking resumes and the user can still select menu item

If the user opens menu by clicking on the menu title the menu title

is highlighted and the drop-down menu remains displayed until the

user clicks the mouse again Clicking menu item in the drop-down

menu or dragging over and releasing the mouse button on menu

item chooses the command associated with the menu item and re

122 The windows Interface Guidelines for Software Design

Petitioner Exhibit 1031, Page 144



Menus Cnntrnls and Tnnlbars Chapter

moves the drop-down menu When the system displays drop-down

menu clicking its associated menu title again cancels the menu and

removes the drop down Clicking another menu title also results in

canceling any displayed drop-down menu and displays the menu

associated with that menu title

The keyboard interface for drop-down menus uses the ALT key to

activate the menu bar When the user presses an alphanumeric key

while holding the ALT key or after the ALT key is released the sys

tem displays the drop-down menu whose access key for the menu

title matches the alphanumeric key matching is not case sensitive

Pressing subsequent alphanumeric key chooses the menu item in

the drop-down menu with the matching access character

The user can also use arrow keys to access drop-down menus from

the keyboard When the user presses the ALT key but has not yet

selected drop down menu LEFT ARROW and RIGHT ARROW keys

highlight the previous or next menu title respectively At the end of

the menu bar pressing another arrow key in the corresponding direc

tion wraps the highlight around to the other end of the menu bar

Pressing the ENTER key displays the drop-down menu associated

with the selected menu title If drop-down menu is already dis

played on that menu bar then pressing LEFT ARROW or RIGHT

ARROW navigates the highlight to the next drop down menu in that

direction unless the drop-down menu displays its content in multiple

columns in which case the arrow keys move the highlight to the

next column in that direction and then to the next drop down menu

Pressing UP ARROW or DOWN ARROW in the menu bar also displays

drop-down menu if none is currently open In an open drop-down

menu pressing these keys moves to the next menu item in that direc

tion wrapping the highlight around at the top or bottom If the drop-

down menu has multiple columns then pressing the arrow keys first

wraps the highlight around to the next column

The user can cancel drop-down menu by pressing the ALT key

whenever the menu bar is active This not only closes the drop-down

menu it also deactivates the menu bar Pressing the ESC key also

cancels drop-down menu However the ESC key cancels only the

current menu level For example if drop-down menu is open

pressing ESC closes the drop down menu but leaves its menu title

highlighted Pressing ESC second time unhighlights the menu title

and deactivates the menu bar returning input focus to the content

information in the window

The Windnws Interface Guidelines tnr Snftware Design 123
Petitioner Exhibit 1031, Page 145



Chapter Menus Cnntrols and Toolbars

You can assign shortcut keys to commands in drop-down menus

When the user presses shortcut key associated with command in

the menu the command is carried out immediately Optionally you

can also highlight its menu title but do not display the drop-down

CommonDrop-down Menus

This section describes the conventions for drop-down menus com

monly used in applications While these menus are not required for

all applications apply these guidelines when including these menus

in your softwares interface

The File Menu

The File menu provides an interface for the primary operations that

apply to file Your application should include commands such as

Open Save Send To and Print These commands are often also

included on the pop-up menu of the icon displayed in the title bar of

the window

If your application supports an Exit command place this command

at the bottom of the File menu preceded by menu separator When

the user chooses the Exit command close any open windows and

files and stop any further processing If the object remains active

even when its window is closed fur example like folder or

printer then include the Close command instead of Exit

The Edit Menu

Include general purpose editing commands on the Edit menu These

commands include the Cut Copy and Paste transfer commands

OLE object commands and the following commands if they are

supported

For more information about

the commands in the pop-up

menu for title bar icon see the

section Icon Pop-up Menus later

in this chapter

For more information about

transfer commands see

Chapter General Interaction

Tech niq ues

124 The Windows Interface Guidelines fnr Software Design
Petitioner Exhibit 1031, Page 146



Menus Controls and Toolbars Chapter

Command

Undo

Function

Reverses last action

Repeat

Find and Replace

Delete

Duplicate

Repeats last action

Searches for and substitutes text

Removes the current selection

Creates copy
of the current selection

Include these commands on this menu and on the pop-up menu of

the selected object

The View Menu

Put commands on the View menu that change the users view of data

in the window Include commands on this menu that affect the view

and not the data itself for example Zoom or Outline Also in

clude commands for controlling the display of particular interface

elements in the view for example Show Ruler Also place these

commands on the pop-up menu of the window or pane

The Window Menu

Use the Window menu in multiple document interface-style MDI
applications for commands associated with managing the windows

within an MDI workspace Also include these commands on the pop

up menu of the parent MDI window

The Help Menu

Use the Help menu for commands that provide access to Help infor

mation Include Help Topics command this command provides

access to the Help Topics browser which displays topics included in

your applications Help file Alternatively you can provide indi

vidual commands that access specific pages of the Help Topics

browser such as Contents Index and Find Topic You can also in

clude other user assistance commands on this drop-down menu

For more information about

the design of MDI software

see Chapter Window Manage

ment

For more information about

the Help Topics browser and

support for user assistance see

Chapter 12 User Assistance

The Windows Interface Guidelines for Software Design 125Petitioner Exhibit 1031, Page 147



Chapter Menus Contruls and Tuolbars

If you provide access to copyright and version information for your

application include ar About application name command on this

menu When the user chooses this command display window

containing the applications name version number copyright infor

matinn and any other informational properties related to the applica

tion Display this information in dialog box or alternatively as

copyright page of the property sheet of the applications main ex

ecutable file Do not use an ellipsis at the end of this command

because the resulting window does not require the user to provide

any further parameters

Pop-up Menus

Even if you include menu bar in your softwares interface you

should also support pop up menus Pop up menus proside an effi

cient way for the user to access the operations of objects as shown

in Figure 7.2 Because pop-up menus arc displayed at the pointers

current location they eliminate the need for the user to move the

pointer to the menu bar or toolbar In addition because you popu

late pop-up menus with commands specific to the object or its im
mediate context they reduce the number of commands the user must

browse through Pop up menus also minimize screen clutter because

they are displayed only upon demand and do not require dedicated

screen space

Figure 7.2 pop-up menu

126 The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 148



Menus Controls and Toolbars Chapter

While pop-up menu looks similar to drop-down menu pop up

menu should only contain commands that apply to the selected ob

ject or objects and its context rather than commands grouped by

function For example pop up menu for text selection can in

clude commands for moving and copying the text and access to the

font properties of the text and the paragraph properties of which the

selection is part However keep the size of the pop-up menu as

small as possible by limiting the items on the menu to common

frequent actions It is better to include single Properties command

and allow the user to navigate among properties in the resulting

property sheet than to list individual properties in the pop-up menu

The container or the composition of which selection is part typi

cally supplies the pop-up menu for the selection Similarly the com
mands included on pop-up menu may not always be supplied by

the object itself but rather be combination of those commands

provided by the object and by its current container For example the

pop-up menu for file in folder includes transfer commands In

this case the folder container supplies the commands not the files

Pop-up menus for OLE objects follow these same conventions

Avoid using pop-up menu as the exclusive means to particular

operation At the same time the items in pop-up menu need not be

limited only to commands that are provided in drop down menus

When ordering the commands in pop up menu use the follow

ing guidelines

Place the objects primary commands first for example

commands such as Open Play and Print transfer commands

other commands supported by the object whether provided by

the object or by its context and the Whats This command

when supported

Order the transfer commands as Cut Copy Paste and other spe For more information about

cialized Paste commands transfer commands and the

Properties command see Chapter

Place the Properties command when present as the last command General Interaction Techniques

on the menu
For more information about the

Whats This command see Chap

ter 12 User Assistance

The Windows Interface Guidelines for Software Design 127
Petitioner Exhibit 1031, Page 149



Chapter Menus Controls and Toolbars

Pop-up Menu Interaction

With mouse the user displays pop-up menu by clicking an object

with button The down transition of the mouse button selects the

object Upon the up transition display the menu to the right and

below the hot spot of the pointer adjusted to avoid the menu being

clipped by the edge of the screen

If the pointer is over an existing selection when the user invokes

pop-up menu display the menu that applies to that selection If the

menu is outside selection but within the same selection scope then

establish new selection usually resetting the current selection in

that scope at the button down point and display the menu for the

new selection Dismiss the pop-up menu when the user clicks outside

the menu with button or if the user presses the ESC key

You can support pop-up menus for objects that are implicitly selected

or cannot be directly selected such as scroll bars or items in status

bar When providing pop-up menus for objects such as controls

include commands for the object that the control represents rather

than for the control itself For example scroll bar represents navi

gational view of document so commands might include Beginning

of Document End of Document Next Page and Previous Page But

when control represents itself as an object as in forms layout or

window design environment you can include commands that apply

to the controlfor example commands to move or copy the control

The pen interface uses an action handle in pen-enabled controls to

access the pop up menu for the selection Tapping the action handle

displays the pop-up menu as shown in Figure 7.3

Figure 7.3 Using an action handle to provide pen access to pop-up menus

128 The Windows Interface Guidelines for Software Design
Petitioner Exhibit 1031, Page 150


