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ELIMINATING INVARIANCES BY

PREPROCESSING FOR KERNEL-BASED
METHODS

FIELD OF THE INVENTION

This invention relates generally to a class of problems
falling within what is known as “kernel-based methods.”

BACKGROUNDOF THE INVENTION

Pattern recognition, regression estimates, density estima-
tion are a few examples of a class of problems that are
analyzed using kernel-based methods. The latter are illus-
tratively described herein in the context of pattern recogni-
tion. However, it should be noted that the inventive concept
(described below)is not limited to pattern recognition and is
applicable to kernel-based methods in general (of which
support-vector-machines are an example).

In pattern recognition, it is known in the art to use a
recognizer having a support-vector-machine (SVM)archi-
tecture. The SVM is viewed as mapping an input image onto
a decision plane. The output of the SVM is typically a
numerical result, the value of which is associated with
whether, or not, the input image has been recognized as a
particular type of image.

As avery general example, consider a 16 pixel by 16 pixel
imageof a tree. In this context, an SVM recognition system
is first “trained” with a set of known imagesofa tree. Kor
example, the SVM system could betrained on 1000different
tree images, each image represented by 256 pixels. °
Subsequently, during operation, or testing, the SVM system
classifies input images using the training data generated
from the 1000 knowntree images. ‘The SVM system indi-
cates classification of an input image as the desiredtree if,
¢.g., the output, or result, of the SVM is a positive number.

Unfortunately, in the above example, the recognizer may
have to deal not only with a particular type of tree image, but
also with translates of that tree image. For example,a tree
imagethat is shifted in the vertical direction—butis still the
same tree. To some extent this kind oftranslation can be

dealt with by using tree imagesthat represent such a vertical
shift. However, the SVM system isstill trained to predefined
images, it’s just that some of these predefined images are
used lo represent translations of the image (as opposed to,
e.g., different types of trees).

SUMMARYOF THE INVENTION

A kernel-based method and apparatus includes a
preprocessor, which operates on an input data in such a way
as to provide invariance under some symmetry transforma-
tion.

In an embodimentof the invention, a pattern recognizer
includes a preprocessor and a support vector machine
(SVM). Thelatter is trained to recognize a particular set of
images. The preprocessor operates on an input image in such
a way as to provide local translation invariance. In
particular, the preprocessor mapsa particular input image,
and its translate, to two points in the decision plane of the
SVM, whose difference is independentof the original data.
As a result, the recognizer has built-in local invariance and
does not require training the SVM to translated versions of
the images.

In accordance with a feature of the invention, the size of
the preprocessed imageis less than the size of the original
image. In other words, the SVM operates on less data than
required in the prior art. Thus, the inventive concept enables
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the SVM to operate more efficiently in terms of, e.g.,
memory size, and training time, yet classify more patterns
than in the prior art for a given-size SVM.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 showsanillustrative flow chart in accordance with

the principles of the invention;
FIG. 2 showsa block diagram ofa portion of a recognition

system embodying the principles of the invention;

FIG. 3 shows an illustrative method for training the
system of FIG. 2 in accordance with the principles of the
invention; and

FIG. 4 shown an illustrative method for operating the
system of FIG. 2 in accordance with the principles of the
invention.

DETAILED DESCRIPTION

Before describing an illustrative embodiment of the
invention, the inventive conceptitself is described. (Other
than the inventive concept, it is assumed that the reader is
familiar with mathematical notation used to generally rep-
resent kernel-based methods as knownintheart.) Also, the
inventive conceptis illustratively described in the context of
pattern recognition. However, the inventive conceptis appli-
cable to all kernel-based methods. Some examples of the
classes of problems covered by kernel-based methods are:
regression estimates, density estimation, etc.
Introduction

As used herein, “kernel-based methods” means methods
which approximate an unknown function G(x) by F(x),
where F(x) has the form:

Fa)= » QgK (Dg. X) +b, ag, DE Rix eR", Dg € R” (bq

and where a,, b, and P,, are parameters that are to be
determined from empirical data by a training procedure, and
K is a kernel function, whose form is usually chosen in
advance. Additive models (e.g., see T. J. Hastie and R. J.
Tibshirani, Generalized Additive Models, Chapman and
Hall, 1st edition, 1990), Radial Basis Functions (¢.g., see M.
J.D. Powell, Radial basis functions for multivariable inter-

5 polation: A review, In Algorithms for Approximation, J. C.
Mason and M. G. Cox (Eds.), pages 143-167, Oxford
Clarendon Press, 1987; F. Girosi, M. Jones, and T. Poggio,
Regularization theory and neural networks architectures,
Neural Computation, 7(2):219-269, 1995; and C. M.
Bishop, Neural Networks for Pattern Recognition, Claren-
don Press, Oxford, 1995; and Support Vector Machines(e.g.,
see C. Cortes and V. Vapnik, Support vector networks,
Machine Learning, 20:273-297, 1995; and V. Vapnik, The
Nature ofStatistical Learning Theory, Springer Verlag, New
York 1995) are examples of such methods. Pattern
recognition, regression estimation, density estimation, and
operator inversion are examples of problems tackled with
these approaches (¢.g., see A. Smola, V. Vapnik, S.
Golowich, Support vector method for function
approximation, regression estimation, and signal processing,
Advances in Neural Information Processing Systems, 9,
1996). Thus for example in the density estimation case, x is
a point (in a vector space) at which the probability density
is required, and F(x) is the approximationto that density; for
the classification case, x is a test pattern to be classified, and
sgn(F(x)) gives the corresponding label. Similarly, for pat-
tern recognition, an SVMisfirst trained to recognizea target
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