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referred to as a multiple-input, multiple-output (MIMQO) wireless communication
system, which includes receive diversity and transmit diversity as special cases of space
diversity. The novel feature of the MIMO system is that, in a rich Rayleigh scattering
environment, it can provide a high spectral efficiency, which may be explained as fol-
lows: The signals radiated simultaneously by the transmit antennas arrive at the input
of each receive antenna in an uncorrelated manner due to the rich scattering mecha-
nism of the channel. The net result is the potential for a spectacular increase in the
spectral efficiency of the wireless link. Most importantly, the spectral efficiency
increases roughly linearly with the number of transmit or receive antennas, whichever
is less. This result assumes that the receiver has knowledge of channel state informa-
tion. The spectral efficiency of the MIMO system can be further enhanced by including
a feedback channel from the transmitter to the receiver, whereby the channel state is
also made available to the transmitter, and with it, the transmitter is enabled to exer-
cise control over the transmitted signal.

Increasing spectral efficiency in the face of multipath fading is one important
motivation for using MIMO transmission schemes. Another important motivation is
the development of space—time codes, whose aim is the joint coding of multiple transmit
antennas so as to provide protection against channel fading, noise, and interference. In
this context, of particular interest is a class of block codes referred to as orthogonal and
generalized complex orthogonal space-time block codes. In this class of codes, the
Alamouti code, characterized by a two-by-two transmission matrix, is the only full-rate
complex orthogonal space-time block code. The Alamouti code satisfies the condition
for complex orthogonality or unitarity in both the spatial and temporal sense. In con-
trast, the generalized complex orthogonal space-time codes can accommodate more
than two transmit antennas; they are therefore capable of providing a larger coding
gain than the Alamouti code for a prescribed bit error rate and total transmission rate
at the expense of a reduced code rate and increased computational complexity. How-
ever, unlike the Alamouti code, the generalized complex orthogonal space-time codes
satisfy the condition for complex orthogonality only in the temporal sense. Accord-
ingly, the complex orthogonal space-time codes, including the Alamouti code and gen-
eralized forms, permit the use of linear receivers.

The complex orthogonal property of the Alamouti code is exploited in the devel-
opment of a differential space—time block coding scheme, which eliminates the need for
channel estimation and thereby simplifies the receiver design. This simplification is,
however, attained at the expense of degradation in receiver performance, compared 1
with the coherent version of the Alamouti code, which assumes knowledge of the
channel state information at the receiver.

Space was also discussed in the context of space-division multiple-access
(SDMA), the mechanization of which relies on the use of highly directional antennas.

SDMA improves system capacity by allowing a greater reuse of the available spectrum
through a combination of two approaches: minimization of the effects of interference
and increased signal strength for both the user terminal and the base station. Advanced
techniques such as phased-array antennas and adaptive antennas, which have been
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researched extensively under the umbrellas of signal processing and radar for more
than three decades, are well suited for implementing the practical requirements of both
approaches.

Under the three theme examples, we discussed three different BLAST architec-
tures issues relating to antenna diversity, spectral efficiency, as well as keyhole chan-
nels. Bach of the BLAST architectures, namely, diagonal-BLAST, vertical-BLAST,
and Turbo-BLAST, offers distinct features of its own. Diagonal-BLAST (D-BLAST)
makes it possible to closely approximate the ergodic channel capacity in a rich scatter-
ing environment and may therefore be viewed as the benchmark BLAST architecture.
But it is impractical, as it suffers from a serious space-time edge wastage. Vertical-
BLAST (V-BLAST) mitigates the computational difficulty problem of D-BLAST at
the expense of a reduced channel capacity. Turbo-BLAST uses a random layered
space-time code at the transmitter and incorporates the turbo coding principle in
designing an iterative receiver. In so doing, Turbo-BLAST offers a significant
improvement in spectral efficiency over V-BLAST, yet the computational complexity
is maintained at a manageable level. In terms of performance, Turbo-BLAST outper-
forms V-BLAST for a prescribed (N,, N,) antenna configuration, but does not perform
as well as D-BLAST.

The different BLAST architectures were discussed in Theme Example 1. The
material presented in Theme Example 2 taught us the following:

e The two basic forms of diversity, namely, transmit diversity and receive diversity,
play complementary roles, with both of them being located at the base station.

e For low SNR and fixed spectral efficiency, V-BLAST outperforms space-time
block codes (STBCs) on {N,, N} antenna configurations with N, >N, .

e Assuming the use of forward error-correction channel codes, a two-by-two
STBC system could provide an adequate performance for wireless communica-
tions at low SNR.

e Diversity order is determined experimentally by measuring the asymptotic slope
of the average frame error rate (or average symbol error rate) plotted versus the
signal-to-noise ratio on a log-log scale.

o MIMO systems provide a trade-off between outage capacity and diversity order,
depending on how the system is configured.

The degenerate occurrence of keyhole channels, discussed in Theme Example 3
arises when the rank of the channel matrix is reduced to unity, in which case the capa-
city of the MIMO link is equivalent to that of a single-input, single-output link operat-
ing at the same signal-to-noise ratio. Fortunately, the physical occurrence of keyhole
channels is a rare phenomenon.

One last comment is in order: the discussion of channel capacity presented in the
chapter focused on single-user MIMO links. Although, indeed, wireless systems in cur-
rent use cater to the needs of multiple users, the focus on single users may be justified
on the following grounds:

e The derivation of MIMO channel capacity is much easier to undertake for single
users than multiple users.
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* Capacity formulas are known for many single-user MIMO cases, whereas the
corresponding multiuser ones are unsolved.

Simply put, very little is known about the channel capacity of multiuser MIMO links,
unless the channel state is known at both the transmitter and receiver.?®

NOTES AND REFERENCES

! For detailed discussions of the receive diversity techniques of selection combining, max-
imal-ratio combining, and square-law combining, see Schwartz et al. (1966), Chapter 10.

2The term “maximal-ratio combiner” was coined in a classic paper on linear diversity
combining techniques by Brennan (1959).

3The three-point exposition presented in Section 6.2.3 on maximal-ratio combining
follows S. Stein in Schwartz (1966), pp. 653-634.

4 For expository discussions of the many facets of MIMO wireless communications,
see the papers by Gesbert et al. (2003), Diggavi et al. (2003), and Goldsmith et al.
(2003). The paper by Diggavi et al. includes an exhaustive list of references to MIMO
wireless communications and related issues. For books on wireless communications
using multiple antennas, see Hottinen et al. (2003) and Vucetic and Yuan (2003).

2 Impulsive noise due to human-made electromagnetic interference is discussed in
Blackard and Rappaport (1993), and Wang and Poor (1999); see also Chapter 2.

®The formula of Eq. (6.56), defining the ergodic capacity of a flat-fading channel, is
derived in Ericson (1970).

" The log-det capacity formula of Eq. (6.59) for MIMO wireless links operating in rich
scattering environments was derived independently by Teletar (1995) and Foschini
(1996); Teletar’s report was published subsequently as a journal article (1999). For a
detailed derivation of the log-det capacity formula, see Appendix G.

8The Gaussian approximation of the probability density function of the instantaneous
channel capacity of a MIMO wireless link, which is governed by the log-det formula, is
discussed in detail in Hochwald et al. (2003).

?The result that at high signal-to-noise ratios the outage probability and frame (burst)
error probability are the same is derived in Zheng and Tse (2002).

OMIMO wireless communications systems incorporating the use of feedback chan-
nels are discussed in Vishwanath et al. (2001), Simon and Moustakas (2003), and
Hochwald et al. (2003). The latter paper introduces the notion of rate feedback by
quantizing the instantaneous channel capacity of the MIMO link.

"'The effect of correlation fading on the channel capacity of MIMO wireless commu-
nications is discussed in Shiu et al. (2000) and Smith et al. (2003).

12 Space-time trellis codes are discussed in Tarokh et al. (1998).

3 The Alamouti code was pioneered by Siavash Alamouti (1998); the code has been
adopted in third-generation (3G) wireless systems, in which it is known as space-time
transmit diversity (STTD).
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4 The generalized space—time orthogonal codes were originated by Tarokh et al.
(1999a,b).

13 The decoding algorithms (written in MATLAB) for the Alamouti code S, and the
orthogonal space-time codes G3, G4, Hs, and H, due to Tarokh et al. are presented
in the Solutions Manual to this book. It should, however, be noted that there are
minor errors in the original decoding algorithms for Hj, and Hy listed in the Appen-
dix to the paper by Tarokh et al. (1998). These errors have been corrected in the per-
tinent MATLAB codes.

16 Differential space-time block coding, based on the Alamouti code, was first
described by Tarokh and Jafarkhani (2000). See also the article by Diggavi et al.
(2002), which combines this form of differential coding with orthogonal frequency-
division multiplexing (OFDM) for signal transmission over fading frequency-selective
channels; OFDM was discussed in Chapter 3.

17 Chapter 3 of Liberti and Rappaport (1999) describes more general models for
phased arrays other than linear and where gain in elevation angle as well as azimuth is
of interest. Chapter 8 of the same book describes various algorithms for adapting the
weighting vector, depending upon the direction of arrival of the signal.

18The circular model for effective scatterers was proposed in Lee (1982).

“In Chapter 7 of Liberti and Rappaport (1999), the single-bounce elliptical model is
described in greater detail. Note that the model does not take into account the effects
of diffraction.

20The D-BLAST architecture was pioneered by Foschini (1996) and discussed further
in the papers by Foschini and Gans (1999) and Foschini et al. (2003).

21 The first experimental results in the V-BLAST architecture were originally reported
in the article by Golden et al. (1999); see also the paper by Foschini et al. (2003), in
which this particular form of BLAST is referred to as horizontal-BLAST, or
H-BLAST.

22The Turbo-BLAST architecture was first described by Sellathurai and Haykin
(1998), with additional results reported subsequently in the papers by the same
authors (2000, 2002, 2003).

BThe experimental results presented in Figs. 6.40 through 6.42 are reproduced from
the paper by Sellathurai and Haykin (2002) with permission of the IEEE.

24 According to deHaas (1927, 1928), the possibility of using antenna diversity for mit-
igating short-term fading effects in radio communications was apparently first discov-
ered in experiments with spaced receiving antennas operating in the high-frequency
(HF) band. For additional historical notes, see Chapter 10 by Seymour Stein in
Schwartz et al. (1966).

23 For definitions of the diversity order and multiplexing gain of MIMO wireless com-
munication systems and the implications of these definitions in terms of system beha-
vior, see Digavi (2003).
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26 Keyhole channels, also dubbed pinhole channels, were described independently by
Gesbert et al. (2002) and Chizhik et al. (2002).

?TThe GBGP model for MIMO wireless links is described in Gesbert et al. (2002).

28 Multiuser MIMO wireless systems are discussed in Diggavi et al. (2003) and Gold-
smith et al. (2003).

ADDITIONAL PROBLEMS
Diversity-on-receive techniques

Problem 6.21 A receive-diversity system uses a selection combiner with two diversity paths.
An outage occurs when the instantaneous signal-to-noise ratio y drops below 0.25,,, where ¥,
is the average signal-to-noise ratio. Determine the probability of outage experienced by the
receiver.

Problem 6.22 The average signal-to-noise ratio in a selection combiner is 20 dB. Compute
the probability that the instantaneous signal-to-noise ratio of the device drops below y= 10 dB
for the following number of receive antennas:

(a) ‘Nr:1
® N,=2
(© N,=3
@ N,=4

Comment on your results.
Problem 6.23 Repeat Problem 6.22 for y= 15 dB.

Problem 6.24 In Section 6.2.2, we derived the optimum values of Eq. (6.18) for complex
weighting factors of the maximal-ratio combiner using the Cauchy-Schwartz inequality. This
problem addresses the same issue, using the standard maximization procedure. To simplify mat-
ters, the number N, of diversity paths is restricted to two, with the complex weighting parameters
denoted by a; and a,.

Let

ap = x+jy, k=12
Then the complex derivative with respect to ay is defined by
LI VSR IR
day 2\ax;, "y,
Applying this formula to the combiner’s output signal-to-noise ratio . of Eq. (6.14), derive
Eq. (6.18).

Problem 6.25 In this problem, we develop an approximate formula for the probability of
error, P,, produced by a maximal-ratio combiner for coherent FSK. We start with Eq. (6.25), and
for small ¥,,,.. we may use the following approximation for the probability density function:

1 N.-1
fl'(}’mrc) = -N‘_—}’mrc
Yoy (Y —=1)!
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(a) Using the conditional probability of error for coherent BFSK, that is,

1

Prob(error | 7,,.c) = 2erfc( %ynm)

derive the approximation

- 1

0 Mt
4 J' erfc(Jj))y dy
1 N, 0

Z(Q]fav) (NV.-1)!

1
where y = iymrc.

(b) Integrating the definite integral by parts and using the definition of the complementary
error function, show that

1 - -
2ﬁr[z7’av] !

(¢) Finally, using the definite integral

obtain the desired approximation

P

e

= 1 N, i
24370

Problem 6.26

(a) Using the approximation for fr(7,,,.) given in Problem 6.25, determine the probability of
symbol error for a maximal-ratio combiner that uses noncoherent BFSK.
(b) Compare your result of part(a) with that of Problem 6.25 for coherent BFSK.

Problem 6.27

(a) Continuing the approximation to f-(y,.), determine the probability of symbol error for
a maximal-ratio combiner that uses coherent BPSK.
(b) Compare your result of part(a) with that of Problem 6.25 for coherent BFSK.

Problem 6.28 As discussed in Section 6.2.3, an equal-gain combiner is a special form of the
maximal-ratio combiner for which the weighting factors are all equal. For convenience of pre-
sentation, the weighting parameters are set to unity. Assuming that the instantaneous signal-to-
noise ratio yis small compared with the average signal-to-noise ratio },,, derive an approximate
formula for the probability density function of y.

Problem 6.29 Compare the performances of the following linear diversity-on-receive
techniques:
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(a) Selection combiner
(b) Maximal-ratio combiner
(¢) Equal-gain combiner

Base the comparison on signal-to-noise improvement, expressed in dB, for N, = 2,3, 4,5, and 6
diversity branches.

Problem 6.30 Show that the maximum-likelihood decision rule for the maximal-ratio
combiner may be formulated in the following equivalent forms:
(a) Choose symbol s; over s, if and only if
S S W 2. 9 2 P .
(o + a’2)|sf| — 8 —y{sj < (o + (xz)‘skl - ¥15% —yisk le#i

(b) Choose symbol s; over sy if and only if

2 2 2 2 2 2 2 2 .
(a1+a2ﬁ1)|sf| +d (ps) < (o + 05— 1)|sp|" +d (v, 5p) k#i

Here, dz(y] ,57) denotes the squared Euclidean distance between the received signal y; and
constellation points s;.

Problem 6.31 It may be argued that, in a rather loose sense, transmit-diversity and receive-
diversity antenna configurations are the dual of each other, as illustrated in Fig. 6.46.

(a) Taking a general viewpoint, justify the mathematical basis for this duality.

; ] S—1
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i
5§
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N
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——< N
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\._‘\;5’
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4 antenna
e
.~ Diversity paths
-
N ——=
Multiple
transmit
antennas

FIGURE 6.46 Diagram for Problem 6.31.
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(b) However, we may cite the example of frequency-division diplexing (FDD), in which, in a
strict sense, the duality depicted in Fig. 6.44 is violated. How is it possible for the violation
to arise in this example?

MIMO Channel Capacity

Problem 6.32 1In this problem, we continue with the solution to Problem 6.9, namely,

)Lav
C—>( jp as N — oo
log 2

where N, = N, = N and 4, is the average eigenvalue of HH' = H'H,
(a) Justify the asymptotic result given in Eq. (6.61)—that is,

E = constant
N

What is the value of the constant?

(b) What conclusion can you draw from the asymptotic result?

Problem 6.33 By and large, the treatment of the ergodic capacity of a MIMO channel, as
presented in Sections 6.3 and 6.5, focused on the assumption that the channel is Rayleigh dis-
tributed. In this problem, we expand on that assumption by considering the channel to be Rician
distributed. In such an environment, we may express the channel matrix as

H = aHg,+H

where Hg, and Hg, denote the specular and scattered components, respectively. To be consistent
with the MIMO model described in Section 6.3, the entries of both Hy, and Hg, have unit ampli-
tude variance, with Hg, being deterministic and Hg, consisting of iid complex Gaussian-distributed
variables with zero mean. The scaling parameter a is related to the Rice K-factor by the formula

K =10log;ga*dB
(a) Considering the case of a pure line of sight (LOS), show that the MIMO channel has the
deterministic capacity
C=logy(1 + N,a’p) bits/s/Hz

where N, is the number of receive antennas and p is the total signal-to-noise ratio at each
receiver input.

(b) Compare the result obtained in part (a) with that pertaining to the pure Rayleigh distri-
buted MIMO channel.

(¢) Explore the more general situation, involving the combined presence of both the specular
and scattered components in the channel matrix H.

Problem 6.34 Suppose that an additive, temporally stationary Gaussian interference v()
corrupts the basic channel model of Eq. (6.48). The interference v(r) has zero mean and correla-
tion matrix R, Evaluate the effect of v(¢) on the ergodic capacity of the MIMO link.

Problem 6.35 Consider a MIMO link for which the channel may be considered to be essen-
tially constant for 7 uses of the channel.
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(a) Starting with the basic channel model of Eq. (6.48), formulate the input—output relation-
ship of this link, with the input described by the N,-by-7 matrix

8= [Sl’ Sz, aaay S’C]
(b) How is the log-det capacity formula of the link correspondingly modified?

Orthogonal Space-Time Block Codes

Problem 6.36 The objective of this problem is to fill in the mathematical details that lie
behind the formulas of Egs. (6.104) and (6.105) for the maximum-likelihood estimates §1and 5.

(a) Starting with Eq. (6.102) for the combiner output y% and using Eq. (6.103) for the proba-
bility density function of the additive complex Gaussian noise ¥ & » formulate the expres-
sion for the likelihood function of transmitted symbol sj, &k = 1,2.

(b) Hence, using the result of part (a), derive the formulas of Egs. (6.103) and (6.104).

Problem 6.37 Figure 6.47 shows the extension of orthogonal space-time codes to the
Alamouti code, using two antennas on transmit and receive. The sequence of signal encoding
and transmissions is identical to that of the single-receiver case of Fig. 6.18. Table 6.5(a) defines
the channels between the transmit and receive antennas. Table 6.5(b) defines the outputs of the
receive antennas at times " and ¢’ + T', where T 'is the symbol duration.

§Ig gl)

—%5 5 .
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antenna 1 l anienna

hy hy hs hy
Receive Receive
antenna 1 antenna 2
0y, E Interference 3, 2 lnterfe]'ence
Wo and noise 1y and noise
| by
Channel By Linear I hy Channel
i . timator
estmiator hy P aeh hy s 2
L i\ 52 hs Vi
Maximum-likelihood decoder

| |

5 8

FIGURE 6.47 Diagram for Problem 6.37.
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TABLE 6.5 Table for Problem 6.36.

(a)

Receive antenna 1 Receive antenna 2
Transmit antenna 1 hy ha
Transmit antenna 2 hy hy
(b)

Receive antenna 1 Receive antenna 2
Time ¢’ 5{] ¥ 3
Timet + T % 5 17:4

(a) Derive expressions for the received signals X1, X5, X3, and Xy, including the respective
additive noise components, in terms of the transmitted symbols.

(b) Derive expressions for the line of combined outputs in terms of the received signals.

(¢) Derive the maximum-likelihood decision rule for the estimates 51 and 52.

Problem 6.38 This problem explores a new interpretation of the Alamouti code. Let

5 = S51)+jsz(.2) t= 1,2

where Sﬁl) and S§2) are both real numbers. The complex entry §; in the two-by-two Alamouti code

is represented by the two-by-two real orthogonal matrix

un 552}

@

=12

Likewise, the complex-conjugated entry §; is represented by the two-by-two real orthogonal
matrix

[y )
T i=1,2
B @

i

(a) Show that the two-by-two complex Alamouti code § is equivalent to the four-by-four real
transmission matrix

Sgl) ng) :Sgl) S(22)
|
A Sgl) :_S(2> sg”
S4 g :_ ______
I
D21 @
|
2 IS 2 1
ORNON o e
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(b) Show that S, is an orthogonal matrix.
(¢) What is the advantage of the complex code 8 over the real code S,?

Problem 6.39

(a) Show that the generalized complex orthogonal space-time codes of Egs. (6.107) and
(6.108) satisty the temporal orthogonality condition

¢le=1

where the superscript t denotes Hermitian transposition and I denotes the identity
matrix.

(b) Likewise, show that the sporadic complex orthogonal space-time codes of Egs. (6.109)
and (6.110) satisfy the temporal orthogonality condition

HH=1

Problem 6.40 Applying the maximum-likelihood decoding rule, derive the optimum
receivers for the generalized complex orthogonal space-time codes of Egs. (6.107) and (6.108).

Problem 6.41 Repeat Problem 6.40 for the sporadic complex orthogonal space—time codes
of Egs. (6.109) and (6.110).

Problem 6.42 Show that the channel capacity of the Alamouti code is equal to the sum of
the channel capacities of two single-input, single-output systems.

Differential Space-Time Block Coding

Problem 6.43 Equation (6.116) defines the input-output matrix relationship of the differ-
ential space-time block coding system described in Section 6.7. Starting with Egs. (6.98) and
(6.99), derive Eq. (6.116).

Problem 6.44 The constellation expansion illustrated in Fig, 6.44 is based on the polar base-
band representation {-1, +1} for BPSK transmissions of the Alamouti code on antennas 1 and 2.
Explore the constellation expansion property of differential space—time coding for the following
two situations:

(a) Frame of reference: dibit 00
(b) Frame of reference: dibit 11

Comment on your results,

Problem 6.45 In this problem, we investigate the use of QPSK for transmission of the
Alamouti code on antennas 1 and 2. The corresponding input block of data will be in the form of
quadbits (i.e., 4-bit blocks). Perform the investigation for each of the two QPSK constellations
depicted in Fig. 6.48. Use 0000 as the frame of reference.

Page 386 of 474




448

Problem 6.46
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FIGURE 6.48 Diagram for Problem 6.44.
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Real

Real

Repeat Problem 6.45 for the frame of reference 1111.

Problem 6.47 In the analyiic study of differential space—time block coding presented in
Section 6.7, we ignored the presence of channel noise. This problem addresses the extension of
Eq. (6.116) by including the effect of channel noise.

(a) Starting with Eq. (6.101), expand the formulas of Eqgs. (6.116) and (6.117) by including the

effect of channel noise modeled as additive white Gaussian noise.

(b) Using the result derived in part (a), expand the formula of Eq. (6.121) by including the

effect of channel noise, which consists of the following components:

(i) Two signal-dependent noise terms

(ii) A multiplicative noise term consisting of the product of two additive white Gauss-
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(c) Show that, when the signal-to-noise ratio is high, the noise term (ii) of part (b) may be
ignored, with the result that the remaining two signal-dependent noise terms (i) double
the average power of noise compared with that experienced in the coherent detection of
the Alamouti code.

Theme Examples

Problem 6.48 In this problem, we repeat Experiment 1 of Section 6.10, but this time we
investigate the effect of increasing signal-to-noise ratio (SNR) on the symbol error rate (SER)
for a prescribed modulation scheme, still operating in a Rayleigh fading environment.

(a) Using 4-PSK for both STBC and V-BLAST, plot the SER versus SNR for the following
antenna configurations:

() N,=2,N,=2
(i) N,=2.N,=4

(b) What conclusions do you draw from the experimental results of part (a)?

Problem 6.49 Continuing with Problem 6.48, suppose the STBC and V-BLAST systems use
4-PSK. This time, however, we wish to display the spectral efficiency in bits/s/Hz versus the
SNR. How would you expect the performance curve of STBC to compare against that of V-
BLAST? Explain.

Problem 6.50 Compare the relative merits of STBC systems versus BLAST systems in
terms of the following issues:

o Capacity

» Diversity order

e Multiplexing gain

e Computational complexity

Problem 6.51 In Chapter 2, we discussed the reciprocity theorem in the context of a
single-input, single-output wireless communication link. Show that the theorem also applies
to Eq. (6.146); that is, show that the channel matrix H of the MIMO link satisfies the Hermitian

property.
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Fourier Theory

A.1 THE FOURIER TRANSFORM'

Let g(r) denote a nonperiodic deterministic signal, expressed as some function of time z.
By definition, the Fourier transform of the signal g(¢) is given by the integral

G() = [ gtyexp(2mf)di (A1)

where j = ./~1, and the variable f denotes frequency. Given the Fourier transform |
G(f), the original signal g(¢) is recovered exactly using the formula for the inverse Fou- \
rier transform:

g(t) = [ G(Nexp(2afiyds (A2)

Note that in Egs. (A.1) and (A.2) we have used a lowercase letter to denote the time
function and an uppercase letter to denote the corresponding frequency function. The |
functions g(r) and G(f) are said to constitute a Fourier-transform pair.

For the Fourier transform of a signal g(7) to exist, it is sufficient, but not neces-
sary, that g(f) satisfy three conditions, known collectively as Dirichlet’s conditions:

1. The function g(¢) is single valued, with a finite number of maxima and minima in
any finite time interval.

2. The function g(7) has a finite number of discontinuities in any finite time interval.

3. The function g(t) is absolutely integrable; that is,

[ leldi<e

‘We may safely ignore the question of the existence of the Fourier transform of a time
function g(¢) when g(¢) is an accurately specified description of a physically realizable
signal. In other words, physical realizability is a sufficient condition for the existence of
a Fourier transform. Indeed, we may go one step further and state that all finite-
energy signals are Fourier transformable.
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The absolute value of the Fourier transform G(f), plotted as a function of fre-
quency f, is referred to as the amplitude spectrum or magnitude spectrum of the signal
g(t). By the same token, the argument of the Fourier transform, plotted as a function
of frequency f, is referred to as the phase spectrum of the signal g(f). The amplitude
spectrum is denoted by |G(f)l and the phase spectrum is denoted by 6(f ). When g(¢) is
a real-valued function of time ¢, the amplitude spectrum IG(f)! is symmetrical about
the origin f = 0, whereas the phase spectrum 6(f) is antisymmetrical about f= 0.

Strictly speaking, the theory of the Fourier transform is applicable only to time
functions that satisfy the Dirichlet conditions. (Among such functions are energy sig-
nals.) However, it would be highly desirable to extend this theory in two ways to include
power signals (i.e., signals whose average power is finite). It turns out that this objective
can be met through the “proper use” of the Dirac delta function, or unit impulse.

The Dirac delta function, denoted by &(¢), is defined as having zero amplitude
everywhere except at r =0, where it is infinitely large in such a way that it contains unit
area under its curve; that is,

o) =0 t#0 (A.3)

and

j‘” S(Hyde = 1 (A.4)

An implication of this pair of relations is that the delta function is an even func-
tion of time; that is, 6(—f) = 6(f). Another important property of the Delta function is
the replication property described by

j“" g(1)8(t—1)dt = g(1) (A.5)
which states that the convolution of any function with the delta function leaves that
function unchanged.

Tables A.1 and A.2 build on the formulas of Egs. (A.1) through (A.5). In partic-
ular, Table A.1 summarizes the properties of the Fourier transform, while Table A.2
lists a set of Fourier-transform pairs.

In the time domain, a linear system (e.g., filter) is described in terms of its impulse
response, defined as the response of the system (with zero initial conditions) to a unit
impulse or delta function &(t) applied to the input of the system at time ¢ =0. If the sys-
tem is fime invariant, then the shape of the impulse response is the same, no matter
when the unit impulse is applied to the system. Thus, assuming that the unit impulse or
delta function is applied at time 7 =0, we may denote the impulse response of a linear
time-invariant system by /(z). Let this system be subjected to an arbitrary excitation
x(1), as in Fig. A.1(a). Then the response y() of the system is determined by the formula

y(f) = j”" x(Dh(t—1)dT
- (A.6)
= j“’ h(T)x(t— 7)dt
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TABLE A1 Summary of Properties of the Fourier Transform:.
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Property

Mathematical Description

1. Linearity

2. Time scaling

3. Duality

4. Time shifting

3. Frequency shifting

6. Area under g(r)

7. Area under G(f)

8. Differentiation in the time domain

9, Integration in the time domain

10. Conjugate functions

11. Multiplication in the time domain

12. Convolution in the fime domain

13. Correlation theorem

14. Rayleigh’s energy theorem

ag () +bgy (D) = aG(f)+bG,{(f)
where a and b are constants

glar) = lg(fj

lal ™ \a
where ¢ is a constant

It gty = G(f),
then G (t) = g(-)

glt~ty) == G(flexp(—f2nfiy)

exp(2nf,0e() = G(f-1f.)
j"" g(ndr = G(O)

20 = {7 G(df
d .
780 = jinfG(f)

! 1 G(0)
[ LEdr = G + T80

If glt) == G(f),
then g%(r) = G¥(-f)

21080 = [T GG/~ Nyda
|7 singyi-0dt =6(£)G,(f)
|7 aings - nydr = GG,

7 Jewlar = [7 1acniar

The formula of Eq. (A.6} is called the convolution integral. Three different time
scales are involved in it: the excitation time 1, response time t, and system-memory time
¢ — 7. Bquation (A.6) is the basis of the time-domain analysis of linear time-invariant
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systems. It states that the present value of the response of a linear time-invariant sys-
tem is the integral over the past history of the input signal, weighted according to the
impulse response of the system. Thus, the impulse response acts as a memory function
for the system.

TABLE A.2 Fourier-Transform Pairs.

Time Function Fourier Transform
rect(%) Tsinc(fT)
. 1 I
sinc(2 W) Z—I/'VreCt(Z—W)
exp(-nt) exp(-f")
]
s I T
T 4= Tsincz( T
0, l¢el=T
(1) 1
1 a(f)
g(t—1y) exp(j27fty)
exp(j2af,1) &(f-1.)
cos (27,1) SL=1)+ 8 +£)]
sin(2f,1) %.[6(,#};) ~8(f+£)]
- L 1 - n
3 ity r 2 5(;”_ To]
] = —oo n = —co
= _ 1 = m m
z x(t—nTy) T z X(.T_O)E[f— Ta)
N = —oco m = —oo
Notes:  §(z) = delta function, or unit impulse

rect(t) = rectangular function of unit amplitude and unit duration centered on the origin
sine(t) = sinc function
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Impulse
x(t) —— response > (1)

h(1t)

(a)

Impulse
x(f) ———> response — y(1;7)
h(gT)

(b)
FIGURE A.1 (a) Linear system. (b) Linear time-varying system.

From Table A.1, we note that when two functions of time are convolved with each
other, the operation of convolution is transformed into the multiplication of the Fourier
transforms of the functions in the frequency domain. Hence, applying this property to
Eq. (A.6), we may express the Fourier transform of the output signal y(¢) as

Y(f) = H(NX(S) (A7)

where X([f) is the Fourier transform of the input signal x(r). The other quantity in Eq.
(A.7), namely, H(f), is called the transfer function of the system. It is formally defined
as the Fourier transform of the impulse response 4(t) and is given by

Hf) = r h(t)exp(—j2mft)dt (A.8)

Thus, the impulse response A(t) provides a time-domain description of a linear time-
invariant system, whereas the transfer function H(f) provides an equivalent descrip-
tion of the system in the frequency domain.

A.2 LINEAR TIME-VARYING SYSTEMS

Consider next the case of a linear time-varying system, exemplified by a wireless
communication channel. As the name implies, the impulse response of a linear time-
varying system depends on the time at which the unit impulse is applied to the input
of the system. We thus denote the impulse response of such a system by A(z;7), where
(t— 1) is the time at which the unit impulse is applied to the system and ¢ is the time at
which the resulting response is measured. (See Fig. A.1(b).) Suppose, then, that an
input signal x(f) is applied to a linear time-varying system with impulse response
h(t;7). Then the resulting response of the system is defined by

(1) = r’ h(tT)x(t - T)dT (A.9)
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where the integration is performed with respect to 7. Correspondingly, the transfer
function of the system is written as H(f.7), which is related to the impulse response
h(t;7) via the Fourier transform through the relationship

H(f1) = jm h(t:7) exp (—j2 7ft)dt (A.10)

Equation (A.8) is a special case of Eq. (A.10) in that, for a linear time-invariant sys-
tem, we have H(f,t) = H(f) for all 7.

A.3 SAMPLING THEOREM

In continuous-wave modulation, the carrier is typically a sinusoidal wave. In pulse
modulation, by contrast, the carrier is a uniform train of pulses that are relatively short
compared with the fundamental period of the carrier. The sampling theorem,
described next, is basic to all the different forms of pulse modulation used in practice.

To set the stage for a statement of the sampling theorem, consider a strictly
band-limited signal x(f) whose frequency content is confined to a bandwidth W: that is,

X(f)=0 for |flzW (A.11)

For such a signal, the sampling theorem may be stated in two parts:

L. The strictly band-limited signal x(¢) is uniquely represented by a set of samples
x(nTy), n=0,%1,42, ..., provided that the sampling rate f;, = 1/ Ty is greater than
twice the highest frequency component of x(); in other words, f;; > 2W.

2. The original signal x(r) is reconstructed from the set of samples x(nT}) for n = 0,
11, £2, .., and T > 1/(2W), without loss of information, by passing this uni-
formly sampled signal through an ideal low-pass construction filter of band-
width W hertz.

For a proof of the sampling theorem, we may invoke the duality property of the Fou-
rier transform. From Table A.1, that duality property states,

If g(t) = G(f), then G(~t) = g(f), where the time function G(~¢) is obtained by
substituting — for f in the Fourier transform G(f) and the frequency function
g(f) is obtained by substituting f for ¢ in the inverse Fourier transform g(r).

From the last entry of Table A.2, we also have the Fourier-transform pair

2 g(t-mTy) = fj 2 G(nfy) 6(f-nfy) (A.12)

H = —co n=—co



Section A.3 Sampling Theorem 485

where fj = 1/T} is the sampling rate and 8(f) is the Dirac delta function defined in the fre-
quency domain. Applying the duality property to Eq. (A.12), invoking the even-function
property of the delta function, and using T} in place of f;, to maintain proper dimen-
sionality in the result, we obtain

Ty Y, GnIpd(t-nTy) = 3 g(f-mfy) (A.13)

n=—co m=—co

To put this relation in the context of the strictly band-limited signal x(r), we set
G(~t) = x(t) and g(f) = X(f), in which case we may recast Eq. (A.13) in the desired
form:

x5() = Ty Y x(nT)8(t-nTy) = 3 X(f-mfy) = X5(/) (A.14)
H=—c M = —co
Figure A2 presents a time—frequency description of Eq. (A.14), assuming that

X(f)=0for Ifl > W and f;, > 2W. Parts (a) and (b) of the figure depict the spectra X(f)
and Xs(f), respectively, where x(f) = X(f) and x5(1) = X;(f).

X(f)

-W 0 W f
(a)

Xs(f)

|
I | |
| I |
I I |
| | |
| | |
| | |
1 1 |

) ~fo w0 W fo 2fo f
2W 2w L—sz <—sz
(b)

FIGURE A.2 (a) Spectrum of a signal x(7) limited to the band ~W < f< W,
(b) Spectrum of the instantaneously sampled signal x5(¢) for a sampling rate f;, > 2W.
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Given the instantaneously sampled signal x(f) and assuming a sampling rate
Jo=2W,how do we use x5(1) to reconstruct the original signal x(¢)? We may do so by
employing a reconstruction system formulated as an ideal low-pass filter of bandwidth
W."To find the output of this filter in response to the sampled signal x5(¢), we proceed
in two stages:

1. Take the Fourier transform of sampled signal x5(f), and limit the spectrum to the

frequency band | f < W permitted by the low-pass reconstruction filter, thereby
obtaining the spectrum

X(f) = T, i x(nTy)exp(2rnTyf)  |fI<W [fl<Ww

n=—c

0 If1>w

(A.15)

2. Take the inverse Fourier transform of the spectrum defined in Eq. (A.15), yield-
ing the original signal

x(0) = |7 X(f)exp(j2nfiydr

guCP>

x(nTy) exp(—jZ;’mTOf)J exp (j2aft)dt

—c0

_ & " sin(27(t —nTy) W) el
-0 2 e 0)( I —nTg) W j
=T, 2 x(nTy)sine (2(¢ - nTy) W)
where the function
sinc (1) = Sn(7A) (A17)
A

is called the sinc function. Equation (A.16) states that, provided that the sampling rate
[y satisfies the condition fi; > 2W, the original signal x(r) may be reconstructed as the
weighted sum of the reconstruction kernel sinc(2Wr), where the nth component of the
sum consists of the time-shifted kernel sinc(2(r —nT,) W), weighted by the correspond-
ing sample x(n 7).

Equation (A.16) verifies part (2) of the sampling theorem. Part (1) of the theo-
rem is, in reality, merely a reformulation of part (2).
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A4 SAMPLED CONVOLUTION THEOREM

Suppose that we have two time functions, x(¢) and A(r), with x(f) limited to the fre-
guency band -W < f < W. The function x(¢) is uniformly sampled at the rate fi > 2W
and then convolved with A(r). The convolution product, denoted by y(¢), may be
viewed as the output of a linear time-invariant system with impulse response h(f),
which is driven by the instantaneously sampled version of x(7). The requirement is to
evaluate (7).

The instantaneously sampled version of x(f) is defined by (see the left-hand side
of BEq. (A.14))

oo

x5(ty = Ty Y x(nT)8(t—nTp) (A.18)

= 00

where T() = 1/f; is the sampling period. The convolution of xg(¢) with k(t) is defined by
the integral

y(t) = j_” h(D)x (¢~ T)dT

Ir

J-_m h(r)[To 2 X(nTg)a(f—”ToT)}df (A.19)

B = o0

7, i x(nTO)f h(D)8 (1~ nTy— T)dr

B o= s

Invoking the replication property of the delta function described by Eq. (A.5), we may
reduce the integral in the last line of Bq. (A.19) to

j"“ h(T)§(t-nTy~ Ddt = h(t-nTy) (A.20)

Accordingly, Eq. (A.19) simplifies to

Y =Ty S x(nTp)kit-nTy) (A.21)

= oo

which is the desired result. Equation (A.21) is a statement of the sampled convolution
theorem:

The convolution of a continuous-time function with the instantaneously sampled
version of a band-limited signal is a scaled version of the convolution sum of two
time series: the original instantaneously sampled signal and the instantaneously
sampled version of the continuous-time function.
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Note that Eq. (A.21) is a generalization of the expression on the left-hand side of
Eq. (A.14), with the impulse response A(r) taking on the role of the delta function (7).

A.5 OUTPUT SAMPLING OF A LINEAR TIME-VARYING CHANNEL

In the case of a linear time-invariant communication channel, it is a straightforward
matter to apply the sampled convolution theorem of Eq. (A.21) to the channel output
in order to proceed with the use of digital signal processing in the receiver. When,
however, the channel is linear, but time varying, as, for example, in wireless communi-
cations, we have to exercise care in the selection of a suitable sampling rate for the
channel output, the reason being that the impulse response of the channel, h(5;7),
depends on a second time variable, namely, 7. The problem is now more complicated,
in that we have a two-dimensional temporal situation to handle, with the two dimen-
sions being defined by both ¢ and 7. For frequency analysis of the channel output and,
therefore, the determination of an appropriate sampling rate, we require the use of a
two-dimensional Fourier transform. Such an analysis is beyond the scope of this book;
the interested reader is referred to Note 2 for further pursual of the sampling rate
required for linear time-varying channels. Suffice it to say, if Wy is the bandwidth (i.e.,
highest frequency component) of the input signal and W is the bandwidth of the
channel time variations, then the sampling rate for the channel output must be larger
than (W;+ W). When the channel is time invariant, W is zero, and this result reduces
to the standard form of the sampling theorem.

A.6 CORRELATION THEOREM

Thus far, we have discussed attention on the Fourier perspectives of two basic signal-
processing operations: filtering (i.e., convolution) and sampling. Another signal-pro-
cessing operation basic to the study of communication systems is correlation. To be
specific, consider a pair of complex-valued signals g;(r) and g,(7), which may exhibit
some degree of similarity in their time behaviors. The similarity is quantified by the
integral

Rip(t) = [7 g1(0gy(t- D)t (A22)

where the asterisk denotes complex conjugation. The function R5(7) is called the
cross-correlation function between g((¢) and g, (¢). The time lag 7 is introduced into one
of the two signals—g»(¢) in the case under consideration here—in order to explore the
similarity between them. To that end, 7 is made variable. Intuitively, if, on the one
hand, g1(¢) and g,(7) are highly similar, then we expect R;,(7) to peak around some
value of 7. If, on the other hand, g((r) and g,(s) are highly dissimilar, then R ,(7)
would be relatively flat over a broad range of values of t.

With Fourier analysis as the subject of interest in this appendix, it is natural that
we consider the Fourier transformation of R,,(7). To pursue this transformation, we
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first use the inverse Fourier transform that defines g(r) in terms of G(f) and thus
rewrite Eq. (A.22) in the form of a double integral (after rearranging terms):

Rip(®) = [ G(N]” gy(t- 1™ dudf (A.23)

nfT

Clearly, Ry,(7) is unchanged by introducing the product of the exponential e?™ andits

complex conjugate ¢ 7277 into the integral in Eq. (A.3), as is shown by

R0 = [~ 6N [ gy-0e T Pa-n] ar  (a29)

Now, the inner integral inside the square brackets in Eq. (A.24) is recognized as the
Fourier transform of g,(¢), which is denoted by G,(f). Accordingly, bearing in
mind the complex conjugation around the square brackets, we may finally simplify
Eq.(A.24) as

Ryy(7) = f’ G(NGy (e ar (A25)

from which we immediately infer that G (f) G;( /) is the Fourier transform of R, (7).
In words, the correlation theorem may be stated as follows:

Given a pair of Fourier-transformable signals g|(t) and g,(t) whose cross-correla-
tion function R (1) is deﬁneg’ by Eq. (A.22), the Fourier transform of Ry,(1) is
defined by the product G(f)G,(f"), where G(f) and G,(f) are the Fourier trans-
forms of g,(t) and g,(1), respectively.

In applying the correlation theorem, careful attention has to be paid to the order and
manner in which the functions g(r) and g,(r) appear in Eq. (A.22) and the correspond-
ing order of subscripts in R,(7).

Moreover, there are some similarities and basic differences between the cross-
correlation and convolution integrals that should be noted:

1. In the convolution integral of Eq. (A.6), the integration is with respect to the
lag variable #. By contrast, the integration in the cross-correlation integral of
Eq. (A.22) is with respect to the time variable 7.

2. When both integrals are transformed into the frequency domain, the result of
each transformation is expressed as a product of two Fourier transforms—but
with a difference. In the case of the convolution integral, the product is simply
equal to the Fourier transforms of the two signals, with the result that convolu-
tion is commutative. In the case of the cross-correlation integral, the Fourier
transform of the particular signal delayed in the correlation process is complex
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conjugated. Consequently, unlike the convolution of two integrals, the cross-cor-
relation is not commutative; that is,

Rip(7) = G{(/)G,(/f) (A.26)

which, in general, is different from
Ryy(7) == Gy(N)Gy(f) (A27)

A.6.1 Autocorrelation Function

When g(1) = g2(t) = g(t), we have the autocorrelation function of the signal g(f),
defined by

Ry(7) = f g(Hg' (t- Dt (A.28)
Correspondingly, Eq. (A.26) reduces to
R(1) = |G(f) (A29)

Note that the autocorrelation function Rg(r) is an even function of the lag 7, as is
shown by

R,(-7) = R(r) forall 7 (A30)

Expanding the pair of relations summarized under Eq. (A.29), we have
P g p q

S = [ R, (D)7 dr (A31)
and

Ry(1) = [ S, (e af (A32)
where we have introduced the definition

S,(/) = 1G(f)* forallf (A33)

The new function Sy(f) is called the energy density spectrum of the signal g(¢). The pair
of equations (A.31) and (A.32) constitute the Wiener—Khintchine relations for signals
with finite energy.

A.7 PARSEVAL'S RELATIONSHIPS
The energy of a complex-valued signal g(t) is defined by

E, = J:O 2 (1) dt (A.34)
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Putting 7= 0 in Eq. (A.28) and using the definition of Eq. (A.34), we readily see that
E, = R, (0) (A35)

which states that the value of the autocorrelation function R,(7) at the origin 7=01s
equal to the energy of the signal g(7).

Putting 7=0 in Eq. (A.32) and using Eqs. (A.34) and (A.35), we obtain Parse-
val’s energy theorem, which states that

[~ letel®ae = [~ 1Gin1ar (A.36)

In words, Parseval’s energy theorem asserts that the energy of a nonperiodic signal
g(7) is equal to the total area under the curve of the energy density spectrum S,(f).

To deal with a periodic signal g(z) of fundamental period 7, we use Parseval’s
power theorem, which states that

1Ty 2 - 2
7,jglg(r)i =% 16, (A.37)

k= oo

where Gy, are the complex Fourier coefficients, in terms of which the periodic signal

gy = ¥ G (A.38)
k=—oo
is defined.
To deal with a periodic signal, we may use Parsevals power theorem to calculate
the average power of the signal. To formulate this theorem, recall that a complex-valued
periodic signal g(f) with fundamental period T'may be expanded into the Fourier series

= =] 2 k.
g0 = Y G mh (A 39)
b= —oo

where
1 T “jZEquOI
- = +1, + . )
G, Tjog(t)e k=0 11,42, (A.40)
are the complex Fourier coefficients. The fundamental frequency of the signal is itself

defined by

fy = % (A.41)

By definition, for the average power of the periodic signal g(f), we have

_dgr 2
P = Tfo[g(t)J dt (A.42)
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Accordingly, Parseval’s power theorem states that we may also evaluate P by using the
formula

P= Y |6 (A43)
k= —o

where the Gy are themselves defined by Eq. (A.40).

Notes and References

! For an authoritative treatment of the many facets of the Fourier transform and its applications,
see Bracewell (1986).

. 2 For a careful discussion of the sampling rate required for linear time-varying systems, see Kailath
(1959) and Médard (1995).
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Bessel Functions

B.1 BESSEL FUNCTIONS OF THE FIRST KIND

Bessel functions of the first kind of integer order v are defined as the solution of the
integral equation

1 = ’
J(2) = = -[0 cos(zsin 68— v8)de
l (B.1)

‘\ o g jTe“’.zwsgcos(vlﬁi)dﬂ
-2
where j is the square root of —1.The special case v = 0 reduces to
W@ =1 in6)d6 B2)
o(2) = = Jocos(251n ) (B.

For a real argument z, the Bessel functions are real valued, continuously differentia-
ble, and bounded in magnitude by unity. The even-numbered Bessel functions are
symmetric and the odd-numbered Bessel functions are antisymmetric.

The Bessel function J (z) may also be expressed as the infinite series

| . &
| e = (3 } 2 RT(v+k+1) (B3)

where I'(k) is the gamma function; for integer values, T'(k+ 1) = k!.
We plot Jy(z) and J;(z) for real-valued z in Fig. B.1. The values of these functions
for a subset of z are given in Table B.1.

Problem B.1 Using the first line of Eq. (B.1), derive the second line of the equation. [ |

493
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FIGURE B.1  Plots of Bessel functions of the first kind, J,(x) and J; (x).

TABLE B.1 Values of Bessel Functions and Modified Bessel Functions of the First Kind.,

x Jolx) Ji(x) Io(x) 1i(x)
0.00 1.0000 0.0000 1.0000 0.0000
0.20 0.9900 0.0995 1.0100 0.1005
0.40 0.9604 0.1960 1.0404 0.2040
0.60 0.9120 0.2867 1.0920 0.3137
0.80 0.8463 0.3688 1.1665 0.4329
1.00 0.7652 0.4401 1.2661 0.5652
1.20 0.6711 0.4983 13937 0.7147
1.40 0.5669 0.5419 1.5534 0.8861
1.60 0.4554 0.5699 1.7500 1.0848
1.80 0.3400 0.5815 1.9896 1.3172
2.00 0.2239 0.5767 1.1796 1.5906
2.20 0.1104 0.5560 2.6291 1.9141
2.40 0.0025 0.5202 3.0493 22981
2.60 —-0.0968 0.4708 315533 2.7554
2.80 ~0.1850 0.4097 4.1573 33011
3.00 -0.2601 0.3391 4.8808 3.9534
3.20 -0.3202 0.2613 5.7472 4.7343
3.40 —-0.3643 0.1792 0.7848 5.6701
3.60 —0.3918 0.0955 8.0277 6.7927
3.80 -0.4026 0.0128 9.5169 3.1404
4,00 —-0.3971 —0.0660 11.3019 9.7595
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B.2 MODIFIED BESSEL FUNCTIONS OF THE FIRST KIND

p—
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Modified Bessel functions of the first kind of integer order v are defined as the solution
of the integral equation

zcosB

I(z) = jlr J:e cos(v0)do (B4)

For the special case v = 0, Eq. (B.4) reduces to
1 7 zcos@
I = s de BS
0@ == o (B5)

For a real argument z, the modified Bessel functions are real valued, continuously dif-
ferentiable, and grow exponentially as Izl increases. The even-numbered modified
Bessel functions are symmetric and the odd-numbered ones are antisymmetric.

The modified Bessel function may also be expressed as the infinite series

)

_ (1Y ¢
Iz = (iz) kgo ATV ks D) LB.o)

We plot Iy(z) and I(z) for real-valued z in Fig. B.2. The values of these functions for a
subset of z are given in Table B.1.

— 11— 1

Modified Bessel Functions of first kind
\ /

FIGURE B.2 Plots of modified Bessel functions of the first kind, /y(z) and /(z).




APPENDIX C

Random Variables and
Random Processes

C.1 SETS, EVENTS, AND PROBABILITY

Probability theory is centered on fundamental principles relating sets. In this appen-
dix, we will consider an abstract space Q that has elements . The space Q may consist
of a finite number of elements, may be countably infinite, such as the set of integers, or
may be uncountable, such as the set of real numbers. We let Z represent all the possi-
ble subsets of Q, including the empty set, @, and the complete set Q.

Probability is a measure on any set Q in Z. Conceptually, if Q represents a set of
elements, or an event, then Prob(Q) is the probability of that event. Empirically, if we
make N observations of this space and determine how many times » out of N trials
that the observations belong to Q, then the empirical definition of the probability of
the event Q is

Prob(0) = lim (n/N) (C.1)

This is intuitively what we think of as probability: what fraction of the time a certain
event occurs,
A probability measure must satisfy three properties:

Prob(Q) = 1;
Prob(&) = 0; (C2)
Prob(4 w B) <Prob(4) + Prob(B) for any 4, B in Z.

In calculations, we are often interested in the conditional probability that an event A
occurs, given that an event B has occurred. This is defined as

Prob[4|B] = E% (C3)

The conditional probability is a probability measure in its own right and satisfies all of
the properties of Eq. (C.2).

496
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Bayes’ theorem allows us to convert between conditioning on one event to condi-
tioning on a different event and is given by

Prob(B|A,)Prob(4.
Prob(4,5) - rob(B|4;)Prob(4;) (C4)

N
Z Prob(B|4;)Prob(4))
f=1 ‘
Bayes’ theorem is often used in inferential analysis, as the expressions for conditional

probability based on some events are often much simpler than those based on other
events.

C.2 RANDOM VARIABLES

A random variable is a mapping from the abstract space € to the real numbers, repre-
sented as X:Q — R, where N is the set of real values. Conceptually, we usually con-
sider X as the physical realization of some unknowable process. For example, X could
be the voltage measured across a resistor due to thermal noise. In that case, (2 could be
the state of all the electrons in the resistor.

A discrete random variable can take on only a discrete set of values. Sometimes
these are denoted as [x;}, where i indexes the possible values of X. For example, the
number of paths in a multipath signal is a discrete random variable; it may take only
the values 1.2.3..... A continuous random variable can take on a continuum of values.
Often, this continuum is the set of real values or the set of nonnegative reals. For
example, thermal noise voltage observed at a specific instant of time is a continuous
random variable.

To characterize the probabilistic behavior of random variables, we simply extend
the set concepts used in the previous section. In the thermal-noise example, we may be
interested in determining the probability that X < x for some value x. We would write
this as Prob(X < x), but its mathematical meaning is

Prob(X <x) = Prob({we Q:X(w)<x}) (C.5)

That is, it is a measure on the set of those @’s such that the random variable maps the
X(w) to a value less than x. Probability is a measure on the underlying abstract set €.
The physical realization is usually more easily understood than the abstract, but

understanding the underlying concepts is often useful for resolving some probability
issues.

| C.3 PROBABILITY DISTRIBUTIONS AND DENSITIES
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The probability that a random variable X is less than a given x is written as
Fy(x) = Prob(X<x) (C.6)

which is called the cumulative distribution function of the random variable X This func-
tion is right continuous and increases monotonically, with F(—e) = 0 and F(ee) = 1.
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A discrete random variable will have a discrete distribution function that consists
of steps at the finite or countable number of points where Prob(X = x;) > 0. A continu-
ous random variable will have a continuous distribution function. If the distribution
function is a continuously differentiable function of x, then we define the probability
density function as

dFy(x)

dx 0

f}((x) =

Probability density functions play an important role in defining the conditional proba-
bilities of continuous random variables. Consider the two joint events X <x and
y <Y <y+ dy. We may use Bayes’ rule to express the conditional probability of the
first event, given the second, as

F (x) = PI’Ob(XSx’yS YS_]/"!‘ 5}))
Apssary Prob(y<Y<y+ dy)

_ Fxylxy+ ) - Fyy(x,¥)
Fy(y+0y)-Fp(y)

1)
r ol ny y (u, v)dudy
= i y

(C8)

)
_[y ' yfy(v)dv
¥

Differentiating Eq. (C.8) with respect to x by using Leibniz’s rule, we may write

y+ oy
J fX,Y(“a v)dv
fXIySYSerSy(x) =2

Jy+3yfy(v)dv

¥y

=fX, Y(IJ’)S)’
Sr()oy

Finally, in the limit, as dy approaches zero, assuming that £}, () # 0, we have

fX, Y(x: ¥)
fy(y)

It is important to note that Eq. (C.9) describes a probability density function of x for a
fixed y.

fX|Y:y(x) = (C9)

C.4 EXPECTATION OF RANDOM VARIABLES

The expected value, or mean value, of a random variable X is written as E[X], where E
is the sratistical expectation operator. For a discrete random variable, the expected
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value of X'is given by
N
E[X] = Z x; Prob(X = x;) (C.10)
i=1
For a continuous random variable that has a probability density function, the expected
value of X is given by

Eix] = j“’ Xy (x)dx (C.11)
If Xy and X, are any two random variables, then
[ ELXY, +X,] = ELX;]+E[X,] (C.12)
and
EloX|] = ¢E[X]] (C.13)

where o is a constant. That is, expectation is a linear operator. In general, if g(X) is any
well-defined function of X, then the expected value of g(X) is given by

N
Elg00] = ¥ g(x)PUX =x,) or Blgln)] = [ glxlydx  (C14)

i=1

depending upon whether the random variable is discrete or continuous, respectively.
Other common statistical parameters of interest are the second moment or mean-
square value

E[X’] = I fi(x)dx (C15)

and the variance
Var(X) = E[{X- E[X])Z] = Jm (I—EEX})ZfX(x)dx (C.16)

An analogous result holds for the discrete case.

C.5 COMMON PROBABILITY DISTRIBUTIONS AND THEIR PROPERTIES

Binomial distribution. Consider a discrete random variable X that can take the values
{ and 1 with probabilities (1 — p) and p, respectively. Suppose N independent observa-
tions of this random variable are made and labeled X; for 1 <i < N. Define the new
random variable

y= Y (C.17)
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Then Y is said to have a binomial disiribution with parameter p; that is,

¥
> NN W
Fy(y) = 2[ .)pN Y1-py  for0<ysN (C.18)
j=0"’
The expected value and variance of Y are Np and Np(1 — p), respectively.

Gaussian distribution. A common continuous random variable is the Gaussian
random variable. The density function of a Gaussian random variable is given by

s _ _(x‘“)z} C.19
f)((x) mcexp{ 20_2 (C19)

where the mean of the Gaussian random variable is ¢ and its variance is 0. The distri-
bution function of a Gaussian random variable does not have a closed-form solution,
but it is usually expressed in terms of the error function as

Fy(x) = J’ic f(s)ds
1 s (C.20)
_ §(1+erf€/§gn x20
L~ By (%) x<0

where the error function is given by (see Appendix E)

2
erflx) = _j_'__ o dz (C21)
T

A linear transformation of a Gaussian random variable is also a Gaussian random
variable. That is, it X7, X5, ..., Xy are Gaussian random variables, then the composite
random variable

Y= 2 b.X, (C.22)
is also a Gaussian random variable. The mean of Y is given by

N
E[Y] = ¥ bE[X)] (C:23)
|

If the {X;} are independent Gaussian random variables, then the variance of Y is given by

N
Var(v) = ¥ b Var(x,) (C24)
=il
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Rayleigh distribution. If X; and X, are zero-mean Gaussian random variables with a
common variance 0'2, then the random variable

R= ¥ +X; (C25)

has a Raleigh distribution given by (see Section C.6)

/20
Prob(R<r) = 1-e r=0 (C.26)
The corresponding probability density function is
2 2
fulr) = Lt '%0 r>0 (C.27)
g

The first and second moments of Y are given by
E[R] = Jga and E[R’] = 20° (C.28)

and the variance of Y is given by (2 — m/2)c”.
Rician distribution. If X| and X, are Gaussian random variables with means y,
and p1, respectively, and a common variance o, then the new random variable

R= [JX]+X (C.29)

has a Rician distribution. The probability density function of R is given by
_r (P+sh2d ) (rs - C30
fR(")—-—ze Ig—i r= (C.30)
o] o

where Iy(-) is the modified Bessel function of order zero (see Appendix B) and
s ,u% + ,u%. There is no known closed-form solution for the distribution function of
a Rician random variable.

Chi-square distribution. If {X;},i=1, ..., N are zero-mean Gaussian random vari-
ables with a common variance ¢“, then the random variable

N
r= 3 X (C31)
i=1
is said to have a Chi-square distribution with N degrees of freedom. The first two
moments of Y are

E[Y] = No° (C32)

and

E(Y}] = 2NG" + N% 6 (C.33)
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When m = N/2 is an integer, the probability density function of Y is given by

—d

fY( ¥) = ‘2ml—ym
(2067) (m-1)!
and the cumulative distribution function of ¥ is given by
m-1
_ —y/26° 1y ¥
FY(y)—l—e 2 F(—ZJ
=0 20

This is one of the most common distribution functions in communications systems
applications. For the case of odd N, there is no closed-form solution for Fy(y).

TRANSFORMATIONS OF RANDOM VARIABLES

Let X; and X, be continuous random variables with a joint probability density func-
tion f}[fl Xz(x1= x,), and consider the transformation defined by

¥ = hy(xy,x5),and yy = hy(xq, X,), (C.34)

which are assumed to be one-to-one and continuously differentiable. The Jacobian of
this transformation is defined by the matrix determinant

dyy 9y
J[yl’yz) . £0 (C35)
X3
aJ’z 8y2
ax1 a.xZ

The joint probability density function of ¥; and ¥, is given by

prz
va YZ(J’Ia}’z) = fX1,X2(x1’ x;) J[ )

KisXp

(C.36)

If the transformations are not one-to-one, then other approaches must be taken. For
example, consider the transformation Y = /X $+X§ The cumulative distribution
function of ¥ is given by

Fy(y) = [[fi, x, (01 x)dny v, (C.37)
A

where A is the set of all (xq,%,) such that ix% + xé <y.If Xj and X, are independent,
zero-mean Gaussian random variables with a variance of unity, then

o 2% 2/2
Fy(y) = (1+) dxdx (C.38)

1
f£ Bon
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If we make the transformations x| = cos@ and x, = r sin6, then Eq. (C.38) becomes

2
1 jy _[Zne"” o
2m Joo (C.39)

)

Il

Fy(y)

=1l-e

This is the Rayleigh distribution described in Section C.5.

C.7 CENTRAL-LIMIT THEOREM

Consider a sequence {X,,} of independent and identically distributed (i.i.d.) random
variables with means E[X;] =m and variances E[(X;-m)?]=0". Let Y, be a new
sequence of random variables defined by the partial sums

n
7, = Y.k, (C.40)
i=1

Let y,, be the mean of Y, and S,, be the variance of Y,,. Define the normalized random
variable

Z, = =Yy i (C.41)

Sn f no

Then the random variable Z, has a distribution that is asymptotically unit normal. That
is, as n becomes large, the distribution of Z,, approaches that of a zero-mean Gaussian
random variable with unit variance. This result is referred to as the central-limit theo-
rem. The theorem also holds if the variables X; are not identically distributed, but
there are some restrictions.

C.8 RANDOM PROCESSES
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A random process is a mapping X:[Q, T] — R, where T represents a time interval
such that X(.,r) is a random variable for each fixed time 7. To distinguish between a ran-
dom variable X and a random process X, we usually write the latter as X(7). If X'is a
discrete random variable for all ¢, then we say that X(¢) is a discrete random process. If
X is a continuous random variable for all ¢, then we say that X(¢) is a continuous ran-
dom process.

For each fixed value of ¢, we speak of the distribution function

Fyy(x) = Prob(X(r) <x) (C.42)
We also speak of the joint distribution function

FX“])XUZ)(XI’ x2) = PI'Ob(X(tl) <x], X(tz) <x2) (C.43)
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For a fixed win Q, the time function X(a, t) is known as a sample function or realiza-
tion of the random process.

C.9 PROPERTIES OF RANDOM PROCESSES

Let X(¢) be a complex random process, and define the autocorrelation function of that
process as

Ry (t,5) = E[X(DX (5)] (C.44)

where the asterisk denotes complex conjugation. That is, the autocorrelation function
is the expectation of the product of two random variables that are parameterized by ¢
and s. Recognizing that R (0) = E[JX(t)IZ], we see that the autocorrelation is a gen-
eralization of the second moment of a random variable. The autocorrelation is a deter-
ministic function.

A process whose joint distribution is invariant with time translation, that is,

Prob(X(#)) <xy,X(T;) <xy,...,X(t,) <x(n))=

(C45)
Prob(X(#; + k) <xy, X(t; + h) <xq,...,X((t, + h) <x,))
is said to be stationary to order n if Eq. (C.46) holds for all 4 and for a particular n.
Many of the random processes dealt with in wireless communications are assumed to
be stationary. A process is said to be wide-sense stationary if

E[X(f)] = constant for all r and Ry (t,5) = Ry (t—5) (C.46)

Random processes whose joint distribution functions are multivariate Gaussian are
referred to as Gaussian random processes. If a Gaussian random process is wide-sense
stationary, then it is also stationary.

C.10 SPECTRA OF RANDOM PROCESSES

In Appendix A, we defined the spectrum of a finite-energy signal x(¢) as the Fourier
transform of that signal. However, in considering a random process X(¢), we have an
ensemble of sample functions. To get around this difficulty, we note that the autocorre-
lation function of a stationary random process, namely, R y(7), satisfies the conditions
of Fourier transformability. Accordingly, we may define the power spectrum or power
spectral density of a random process X(¢) as the Fourier transform of its autocorrela-
tion function Ry(7). Denoting this new parameter by Sy(f), we may thus formally
write

Sty = [ Ry(0e? "z and R (z) = [ S (N (CAT)
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Note that Sx{ f) is measured in watt/Hz. Stated another way, the total area under the
curve of Sy(f), plotted as a function of frequency f, defines the average power of the
process.

The autocorrelation function Ry(7) and power spectral density Sy(f) form a
Fourier-transform pair, which means that the autocorrelation function R y(7) is the
inverse Fourier transform of the power spectral density S x(f). The Fourier transform
pair, linking Sy (f) to Ry(r) and vice versa, is called the Wiener—Khintchine relation
for random processes.

An idealized example of a random process is a special form of noise commonly
referred to as white noise W(t). White noise has the property that it is uncorrelated for
all nonzero time offsets. Consequently, the autocorrelation function of such a process
is defined by a delta function, or

No
Ry(1) = 28(7) (C.48)

where Ny/2 is the two-sided noise density in watt/Hz. The noise is referred to as
“white” because the corresponding power spectrum is flat; that is,

N
SpAf) = TO for all f (C.49)

In other words, white noise contains all frequency components at equal strength, anal-
ogous to white light in the visible part of the spectrum. This relationship does not
make any assumptions about the distribution of the random variable n(f) at time ¢ it
could be Gaussian or otherwise.

Another example of a random process is a random binary wave, defined by

x(t) = b,  tg+nT<t<ty+m+1)T (C.50)

where £ is a random starting time between [0,7] and {b,,] is a sequence of indepen-
dent, zero-mean random variables with values 1. The autocorrelation function of the
process described in Eq. (C.51) is

Ry(t,2+7) = E[x()x(1+ 7)]

E, E,[x()x(t+ 7]

Il

(CBL)

1l

E { 1 g+nT<t<t+r<tyg+(n+1)T
0

0  otherwise

where the expectation E has been split over the two random independent variables f;
and {b,,} and we have used the fact that E[b,,b,,] =0 if n# m . If we evaluate the expec-
tation of Eq. (C.51) over #3, we obtain
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T-71 T'>1>0
Ry(tt+7) =374+1 ~T<1<0
0 otherwise (C.59)

_ {Tglrl le| <T
0 otherwise

Thus, Ry(7) is stationary with a triangular autocorrelation function. The spectrum of
the binary random wave is the Fourier transform of this autocorrelation function:

1l

Sy = [ Ry(e”ar

_ p2sin’(mf7) (C.53)
(mf1)°
77sinc” (£7)

C.11 LINEAR FILTERING OF RANDOM PROCESSES

In communications, we filter signals for various reasons. If the signal is a random pro-
cess, how do we characterize the output? Let y(¢) be the output resulting from apply-
ing a linear time-invariant causal filter /(¢) to a realization of an input random process,
namely, x(¢), as represented by the convolution integral

(1) = j"" h(T)x(t - T)dT = j"" x()h(t— 1)dT (C.54)
This means that the filter is applied to the particular realization x(f) = X(w,t) of the
random process, and that realization is referred as a sample path integral. A sufficient
condition for ¥(f), the random variable composed of {y(@,)}, to be a well-defined ran-
dom variable for all ¢ is that

| I(DIE(X(1- D)l1de< (C.55)
If ¥(7) is well defined, then we may determine the expectation of Y(f) using

E[Y(D)] = EU“’ k(r—r)X(r)de - j‘” h(t— DE[X(7)]dT (C.56)

and similarly for other moments of Y(7). The interchange of the order of integration
and expectation is allowed because both of these operations are linear.

If X(f) is a stationary process with autocorrelation Ry(7) and corresponding
spectral density Sy(f), then the spectral density of the output Y(¢) is given by

Sy(f) = [HAIPS K1) (C.57)
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That is, for stationary random processes, the output power spectral density of a linear
continuous-time filter is equivalent to the product of two quantities: the squared mag-
nitude response of the filter and the input power spectral density. In addition, if the
input is wide-sense stationary and the linear system is time invariant, then the output
will be stationary as well. The spectral relationship of Eq. (C.57) for a stationary ran-
dom process X(f) may be viewed as the counterpart of Eq. (A.7) for a signal x(r) with
finite energy.

Analogous to the result for linear transformations of random variables, we have
the result that if a linear filter has an input which is a Gaussian random process, then
the output will also be a Gaussian random process.

C.12 COMPLEX RANDOM VARIABLES AND PROCESSES

In certain situations, we have to deal with the statistical characterization of complex
random variables and complex random processes. (A case in point is that of the com-
plex baseband representation of a narrowband process considered in the next section.)
When we refer to a complex random variable Z = X +jY, we mean that X and Y are
(real) random variables and they are described by their joint distribution function.

Similarly, if Z(f) = X(¢) +jY(t) is a complex random process, then X(f) and Y{(¢)
are random processes that are characterized by their joint distributions at each time 7.
For example, the autocorrelation of a stationary Z(r) is given by

Ry(7) = E[Z(OZ"(t-1)]
= E[(X(1) +jY())(X(t - 1) —jY (- 1))] _
= E[X()X(t- )]+ E[Y()Y(t- 7)) +j(E[Y(t)X(t—T)]*E[X(f)Y(tff)])( =)
= Ry(1)+ Ry(1)+j(Ryy(7)—Ryy(7)

where

Ryy(7) = E[X(0)¥(1 - 7)] (C.59)

C.13 COMPLEX REPRESENTATION OF NARROWBAND RANDOM PROCESSES

Let X(r) be a narrowband random process centered on some frequency f.. In a manner
similar to that described in Chapter 3, we may introduce a complex baseband process
X(¢) by writing

X(t) = Re[X(t)exp(j2nf,1)] (C.60)

where Re[ ] denotes the real part of the quantity enclosed inside the square brackets.
The complex baseband process X(t) is itself defined by

X(1) = X, (1) + JXp() (C61)
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where Xj(7) is the in-phase component and Xo(t) is the quadrature component. Equiv-
alently, we may express the original process X(r) in terms of these two components as
follows:

X(t) = Xj(t)cos(2nf, 1) - Xy(1)sin(27f, 1) (C.62)
Correspondingly, for sample functions of X(z, ), X;(z, ), and X, o(6 ®), we may write

X(t, w) = X;(t, w)cos(2nf. 1) =X (%, @)sin(27f 1) (C.63)

C.14 STATIONARY AND ERGODICITY

A random process is said to be ergodic if time averages of a sample function are equal
to the corresponding ensemble average (or expectation) at a particular point in time.
Mathematically, for a random process X(7,m), this relationship can be expressed as

ELX(t,, ©)] L2 vt wydt (C.64)
: = lim - , o ;
v T -'-71"/2

li
T— e
where the left-hand side is the ensemble average (i.e., the expectation over all realiza-
tions @ at a particular point in time) and the right-hand side is the time average of the
random process for a particular realization ¢. In many physical applications, it is
assumed that stationary processes are ergodic and that time averages and expectations
can be used interchangeably.

NOTES AND REFERENCES

! For a detailed description of random variables and processes, see Leon-Garcia (1994).
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Matched Filters

D.1 MATCHED-FILTER RECEIVER
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Consider a known signal s(7) corrupted by additive white Gaussian noise w(r), resulting
in the received signal

x(t) = s(t) +w(t) 0<tT (D.1)

What is the optimum receiver for detecting the known signal s(¢) in the received signal
x(1)? To answer this fundamental question, we first note the following two important
points:

1. The power spectral density of white noise, with sample function w(t), is defined
by

N,
S, = 70 for all fin the entire interval —eo<f<e (D.2)

The power spectral density of white noise is illustrated in Fig. D.1(a). For a sta-
tionary random process, the autocorrelation function is the inverse Fourier trans-
form of the power spectral density. (See Appendix C.) It follows, therefore, that
the autocorrelation function of white noise consists of a Dirac delta function
6(7), weighted by Ny/2, as shown in Fig. D.1(b). That is,

R (1) = E[w(T)w(t-1)]

N, (D:3)
S ' a(1)

where E is the statistical expectation operator. Accordingly, any two different
samples of white noise are uncorrelated, no matter how closely together in time
they are taken. If the white noise w(¢) is also Gaussian, then the two samples are
statistically independent. In a sense, white Gaussian noise represents the ultimate
in randomness.
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Sw(f)
Ny/2
0 f
(a)
Ru(f)
Dosr)
0 T
(b)

FIGURE D.1 (a) Power spectrum of the additive white noise W(r).

(b) Autocorrelation function of W(r).

2. Since the signal s(¢) is known and therefore deterministic, it follows that s(r) and

w(f) are as uncorrelated (i.e., dissimilar) as they could ever be.

In light of point 2, we may intuitively state that, for the problem described herein, the
optimum receiver consists of a correlator with two inputs, one being the noisy received
signal x(7) and the other being a locally generated replica of the known signal s(f), as
shown in Fig. D.2. For obvious reasons, this optimum receiver is known as the correla-

tion receiver.,

Another way of constructing the optimum receiver is to use a matched filter,
defined as a linear filter whose impulse response A(z) is a time-reversed, delayed ver-

sion of the known signal s(¢); that is,

h(l):{S(Tgt) 0=
0 otherwise

t
x(1) . det I
0

5(2)

FIGURE D.2 Correlation receiver.

(DA)
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Sample
() T ] atr=1T
atrihEd filter: | . y
h(t) =s(T —1)

FIGURE D.3 Matched-filter receiver.

Figure D.3 shows a matched filter receiver, which consists of a matched filter followed
by a sampler that is activated at the end of the signaling interval 1 =7. The important
point to note here is that the correlation receiver of Fig. D.2 and the matched filter
receiver of Fig. D.3 are equivalent insofar as their overall output samples are con-
cerned. Specifically, for the same input signal and at the end of a signaling interval, the
resulting output samples produced by these two receivers are identical.

OBABILITY OF DETECTION

To detect a signal with a correlation receiver or a matched-filter receiver, the output
sample is compared against a threshold and then a decision is made by the receiver,
depending on whether the threshold is exceeded or not. In so doing, the receiver
makes a decision in favor of one of two hypotheses:

Hypothesis H;: The known signal s(f) is present in the received signal x(f), a
decision that is made when the threshold is exceeded.
Hypothesis Hy: The received signal x(¢) consists solely of noise w(r), a deci-

sion that is made when the threshold is not exceeded.

Clearly, the receiver is subject to errors due to the random behavior of the additive
noise w(t) in the received signal x(f).

To calculate the average probability of error incurred by the receiver, we proceed
by using Eq. (D.1) as the input signal applied to the correlation receiver of Fig. D.2.
The resulting output sample is

T
y = J' x(t)s(t)dt
0

= jr(s(¢)+w(t))s(r)dt
’ (D.5)
T 2 T
- _[ s (t)dt+J' w(t)s(t)dt
0 0
T
= E+J’ w(t)s(t)dt
0
where
B J‘Tsz(r)dr (D.6)
0

is the energy of the known signal s(7).
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Since, by assumption, the white noise w(r) is the sample function of a Gaussian
process W(7), it follows that the receiver output y is the sample of a Gaussian-distributed
random variable Y. To complete the characterization of the receiver output, we need to
determine its mean and variance.

The mean of the random variable Y is

E[Y]

Hy

E+E“§W{t)s(t)dtj
(D.7)

I

T _

E+ Ej [W(6)]s(2)dt
0

= K

where we have used two facts: First, the known signal 5(7) is deterministic and there-
fore unaffected by the expectation operator E. Second, by assumption, the mean of
the white noise process W(t) is zero.

The variance of the random variable Y is

oy = EI(Y-1)"]

E[ f:) I;P Wt W(Ly)s(ty )s(zz)dzldzz] DS8)

T T
j[)JOE[W(rl)W(tz)]s(zl)s(tz)dtldrz
Invoking the use of Eq. (D.2), we may write
No
E[W() (1)1 = 8(11 ~ 1) (D.9)

Substituting Eq. (D.9) into (D.8) yields

5 Nyr.r
o5 = 7j0j0 8(t; — t,)s(t))s(ty)dt, dt,
N(] T o
= o, dn (D.10)
_ NoE
Z

where E is the signal energy.
Putting all the pieces together, we can now say that the correlation receiver
output y is the sample value of a Gaussian-distributed random variable ¥ with mean
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Uy = FE and variance 0'}2, = NyE/2.Accordingly, we may express the probability den-
sity function of the random variable Y as

2
_ 1 _(}’*.Uy)
) Jﬂcyexp( —20% ]

(D.11)

2
=L exp| 0B
[N, E Nob
which is plotted in Fig. D.4.
Let A denote the threshold against which the correlator output y is compared. As
stated previously, when y > A, the receiver decides in favor of hypothesis H;; otherwise

it decides in favor of hypothesis H;;. Accordingly, the conditional probability of error,
given that the known signal s(¢) is present in the receiver input, is defined by

A
Prob(say Hy|H, is true) = J‘ fy)dy (D.12)

which is illustrated graphically in Fig. D.4. Substituting Eq. (ID.11) into (DD.12) yields

Prob(say Hy|H, is true) = ! jl exp 7ﬂ dy (D.13)
oI [ZNGE - NoE
To simplify matters, let
zm I8 (D.14)

which means that

f¥(y)

Conditional
probability of

error, given

that the known signal

s(¢) is present
N
__.__-/

FIGURE D.4 Probability distribution of the correlation receiver output.
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Hence, we may rewrite Eq. (D.13) as

(A-E)/ N E

Prob(say H0|H1 is true) = _j: j exp(—zz)dz
Fi4

—oa

(D.15)
1 o0

2
B exp(—z )dz
Jm -[(E-a,)/ NoE £

At this point in the discussion, we digress briefly to introduce a function that is closely
related to the Gaussian distribution: the error function, defined by

2 qu 2
erf(u) = = jo exp(—z")dz (D.16)

Table E.1 of Appendix E gives values of the error function erf(u) for the argument u
in the interval 0 < u < 3.3. The error function has two useful properties:

1. Symmetry property, described by

erf(-u) = —erf(u) (D.17)
2. Asymptote property, which, for the argument u approaching infinity, is described
by
2. ™ 2
erf(eo) = — exp(-z")dz
Jr Io ? (D.18)
=1

Another function, the complementary error function, is defined by
erfc(u) = 2 Jm exp(—zz)dz (D.19)
Jr du

which is related to the error function by the formula
erfc(u) = 1 —erf(u) (D.20)

We may now reformulate the conditional probability of error of Eq. (D.15) in terms of
the complementary error function by writing

Prob(say HOIH1 is true) = %erfc{E—l] (D.21)

From Eq. (D.21), the following points are noteworthy:

e The signal energy E and noise spectral density N have different physical inter-
pretations, in that E is measured in joules whereas N is measured in watts/hertz;
yet these two units are in fact equal.



Section D.4 Matched Filtering for Complex Signals 515

* Insofar as the signal component is concerned, the probability of error is indepen-
dent of the waveform of the known signal s(f), and the only parameter that mat-
ters is the signal energy E.

* The threshold A is measured in joules.

D.3 ANOTHER PROPERTY OF THE MATCHED FILTER

Equation (D.21) sums up one important property of the matched-filter receiver in the
combined presence of signal and noise at the filter input. For another important prop-
erty of the matched filter, consider the case of a noiseless input. Then, with the input

x(1) = s(1) and the impulse response A(r) = s(T — 1), the resulting filter output is defined
by the convolution integral

(1) = R(T—1)

(D.22)
R(t-T) ifw(r) =0

The integral of Eq. (D.22) is recognized as the deterministic autocorrelation function

of the signal component s(¢) for a lag of T -, namely, R(T —¢). Accordingly, we may
write

(&) = Ry(T—1)

(D.23)
= R(T-1) wt =0

where, in the second line, we have used the fact that the autocorrelation function of
a signal of finite energy is an even function of the lag (see Appendix A). In words,
Eq. (D.23) states that the output of a filter matched to an input signal is equal to the

autocorrelation function of that signal, delayed by an amount equal to the duration of
the signal.

D.4 MATCHED FILTERING FOR COMPLEX SIGNALS

The material presented thus far on matched filtering applies to real-valued signals.
When dealing with complex-valued signals, we make a simple modification to Eq. (D.4).

Specifically, the impulse response of a filter matched to a complex-valued signal s(1) is
defined by

h(t) = {.’F*(T—l') 0T (D24)
0 otherwise

where the asterisk denotes complex conjuction. Except for this minor modification,
everything else presented in the Appendix remains intact.
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Error Function

E.1 DEFINITIONS

The error function, denoted by erf(u), is defined in a number of different ways in the
literature. We shall use the following definition:

2 v 2
erf(u) = =2 exp(—z")dz E.l
= [ exp =) (E.1)
The error function has two useful properties:
1.

erf(—u) = —erf(u) (E.2)

This is known as the symmetry property.
2. As u approaches infinity, erf(u) approaches unity; that is,

% J:exp(—zz)dz =1 (E.3)
i1

This is known as the asymptote property.

The complementary error function is defined by
2 2
erfc(u) = = | exp(-z")dz E.4)
() = 2= [, exp-2) (

The complementary error function is related to the error function as follows:
erfe(u) = 1—erf(u) (E.5)
Table E.1 gives values of the error function erf(u) for u in the range from 0 to 3.3.

516
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TABLE E.1 The Error Function®.

u erf(u) u erf(u)
0.00 0.00000 1.10 0.88021
0.05 0.05637 1.15 0.89612
0.10 0.11246 120 0.91031
0.15 0.16800 125 0.92290
0.20 0.22270 1.30 0.93401
0.25 0.27633 1.35 0.94376
0.30 0.32863 1.40 0.95229
0.35 0.37938 1.45 0.95970
0.40 0.42839 1.5 0.96611
0.45 0.47548 1.55 0.97162
0.50 0.52050 1.6 0.97635
0.55 0.56332 1.65 0.98038
0.60 0.69386 1.70 0.98379
0.65 0.64203 1.75 0.98667
0.70 0.67780 1.80 0.98909
0.75 0.71116 1.85 0.99111
0.80 0.74210 1.90 0.99279
0.85 0.77067 1.95 0.99418
0.90 0.79691 2.00 0.99532
0.95 0.82089 2.50 0.99959
1.00 0.84270 3.00 0.99998
1.05 0.86244 3.30 0.999998

#The error function is tabulated extensively in several references; see for example,
Abramowitz and Stegun (1965, pp. 297-316).

E.2 BOUNDS ON THE COMPLEMENTARY ERROR FUNCTION
Substituting u — x for z in Eq. (E.4), we get

0

erfc(u) = iexp(—uz)J' exp(Zux)exp(—xz)dx
/\/E —00

For any real x, the value of exp(—xz) lies between the successive partial sums of the

power series

2 3
L 6D 6D

T T 3

Therefore, for u > 0, we find, on using (n+ 1) terms of this series, that erfc(u) lies
between the values taken by

2 2 0[ 2 ' x2")
= - 1- e 2ux)d.
A/_j,:cexp( u )-L X+ 3 - exp (2ux)dx

for even n and for odd n. Putting 2ux = —v and using the integral

J'mv”exp(—v)dv = n!
0
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we obtain the following asymptotic expansion for erfc(u), assuming that u > 0:

erfe(u) =

2
exp (—u )[1_ 1 1-3 _ +1-3-5---(2n—1)} (E.6)
Tu 2u2 7 u4 znu2n

For large positive values of , the successive terms of the series on the right-hand side
of Eq. (E.6) decrease very rapidly. We thus deduce two simple bounds on erfc(u), one
lower and the other upper, given by the inequality!

% 2
exp(—u)(, 1 exp(~u")
___,\/7_7:;; [1 _2) <erfe(u) < —J;tu

2u
For large positive u, a second bound on the complementary error function erfe(u) is
obtained by omitting the multiplying factor 1/u in the upper bound of Eq. (E.7):

(E.7)

exp (fuz)
Jr

In Fig. E.1, we have plotted erfc(u), the two bounds defined by Eq. (E.7), and the
upper bound of Eq. (E.8). We see that, for u > 1.5, the bounds on erfc(u), defined by
Eq. (E.7), become increasingly tight.

erfc(u) < (E.8)

E.3 THE Q-FUNCTION

Consider a standardized Gaussian random variable X of zero mean and unit variance.
The probability that an observed value of the random variable X will be greater than v
is given by the Q-function:

1 92 x2
O(v) = = jv eXp(—jj (E.9)

The Q-function defines the area under the standardized Gaussian tail. Inspection of
Egs. (E.4) and (E.9) reveals that the Q-function is related to the complementary error
function as follows:

= Lol
O(v) = ierfc(ﬁ) (E.10)

Conversely, putting u = v, we have

erfe(u) = 20(./2u) (E.11)
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NOTES AND REFERENCES
IThe derivation of Eq. (E.7) follows Blachman (1966).
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MAP Algorithm

SEPARABILITY THEOREM

Following the terminology introduced in Section 4.12.4, let the vectors a(f) and B(r)
denote estimates of the state probabilities in a turbo decoder at time ¢ that are based
on past and future data, respectively. According to the separability theorem, the state
probabilities at time ¢ are related to a(r) and B(7) by

M) = @) B F1
a(s) - Bl (1)

where the numerator is the vector product of a(f) and 8(¢) and the denominator is the
L1 norm of this product, as defined in Section 4.12.

Proof: For any m, for which Prob(s(¢) = m) #0,

A, (1) = Prob(s(t) = m|y)
_ Prob(s(¢) =m,y)
a Prob(y)
_ oy Prob(s(f) = m)
= Prob(y|s(z) = m) Tb(y)—
= Prob(y[l’t]ls(r) =m)- Prob(y[Hl’ Tj?‘g(l) =m)- Pm_}i(;g% (F2)
~ Prob(y[l,t]|s(t) =m) . Prob(y,, 1, p.5(8) = m) Prob(s(t) = m)
~ T Prob(s(1) = m) Prob(s(1) = m) Prob(y)

I

Prob(yy q|¥p+1, 1) )

Prob(s(f) = m|ypy ) - Prob(s(e) = mlyp, .1 79 (Prob(S(t) = m)Prob(y)

where the second and third lines in the development follow from Bayes’ rule, the
fourth line follows from the fact that the decoding process is a Markov process, and
the fifth and sixth lines are further manipulations using Bayes’ rule.
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Often, the a priori probabilities, Prob(s(r) = m}, are independent of m. (In prac-
tice, some of the a priori probabilities in a turbo decoding process may be zero due to
certain features of the trellis—for example, at start-up. In that case, this requirement
applies only to those states whose a priori probabilities are nonzero.) This is usually
the case for a time-invariant trellis, for which the inputs are equiprobable. In that case,
the bracketed term in the last line on the right-hand side is independent of m. Since
the summation of the left-hand side of Eq. (F2) over m must equal unity, it follows
that this bracketed term must normalize the right-hand side to sum to unity. Thus,
when we identify the first and second terms in the product of the last line as (7} and
B(1), we have

My = @) B (E3)
le(t)- Bo)l1

which proves the theorem.
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Capacity of MIMO Links

G.1 PRELIMINARIES'

The purpose of this appendix is to present a derivation of the log-det capacity formula
of Eq. (6.59). To prepare the way for the derivation, we briefly review some basic con-
cepts in information theory.

Consider a continuous random variable X with probability density function
fx(x). The differential entropy of the random variable X, measured in bits, is defined
by

h(X)

|7 fxGolog, fy (x)dx

~E[log, fy(x)] bits

(G.1)

where E is the statistical expectation operator. It is important to note that the symbol
X in the entropy h(X) is not the argument of a function; rather, it merely serves the
purpose of a label for the source of information.

When we have a continuous random vector X consisting of N random variables
X1,X5,..., Xy, we may generalize Eq. (G.1) and define the differential entropy of X as
the N-fold integral

h(X) = |7 fx(x)log, fx(x)dx

= -E[log, fx(x)] bits

(G2)

where fx(x) is the joint probability density function of the random vector X.

The logarithmic description of entropy is evident from both Egs. (G.1) and (G.2).
This particular form of description is in perfect accord with the notion of entropy in
thermodynamics.

Equations (G.1) and (G.2) apply to random data, real or complex. The difference
between these two forms of data manifests itself in the way in which the pertinent
probability density functions are defined, as illustrated in the next example.
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EXAMPLE G.1 Complex Multidimensional Gaussian Distribution

Consider an N-dimensional complex Gaussian-distributed vector X. Each element of X consists
of an in-phase component X y and a quadrature component X, o, so

Xy = X 1+i% o k=12,..,N (G.3)
or, vectorially,
X = X;+/X, (G4)

It is assumed that X has zero mean. The requirement is to determine the differential entropy of
X.
If the components X; and X, are orthogonal—that is, if we have

E[XX[] = O (G.5)

and if they are both Gaussian distributed, then they are statistically independent, or
fx.,, xQ(xp KQ) = fxl(x;)fxg(xgl (G.6)
The in-phase component X and quadrature component X share the same formula for their

joint probability density functions. We therefore make two important observations:

1. The components X; and X have exactly the same entropy.
2. Since the differential entropy is logarithmic in nature, it follows that the differential
entropies of X7 and X, are additive in terms of calculating the differential entropy of X.

Hence, we may write
h(X,) = h(XQ) (G.7)

and
h(X) = h(X)) +h(Xp)

G.8
= 2h(X)) (o=

The joint probability density function of the complex Gaussian vector X with zero mean and
correlation matrix Ry is defined by

1

Sx(x) = —
(2m) det(R,)

e:-:p[—%xTR;1 x) (G.9)
where R;l is the inverse of Ry and det(R,) is the determinant of R,. Substituting Eq. (G.9) into
(G.2), using the fact that the volume under fyx(x) is unity, and then simplifying terms, we get
h(X) = N+ Nlog,(2m) + logz{det(Rx)} bits (G.10)
which is uniquely defined by the correlation matrix R,.
For the special case of a scalar complex Gaussian random variable X, N=1 and Eq.

(G.10) reduces to

h(X) = 1+log,(2n0%) bits X : complex) (G.11)
g2 X
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where oi is the variance of X. If X is real, we have
h(X) = %[1 +log,(270%)] bits (X :real) (G12)

For a given variance oi,, the Gaussian random variable X has the largest differential entropy
attainable by any random variable in its class (i.e., real or complex). A similar remark applies to
a multivariate Gaussian distribution. [ |

For the discussion at hand, we need one other notion: mutual information, which
applies to a pair of related random variables or random vectors. To be specific, con-
sider a pair of random variables X and ¥ with joint probability density function
fx y(x.y). The mutual information between X and Y is defined by

o pes Tx¥(x1y)
1y = [ [ fy yi y)logz[}ﬂ;;T

where fyy(xly) is the conditional probability density function of X, given that ¥ = y.
In words, the mutual information I(X;Y) is a measure of the uncertainty about the ran-
dom variable X that is resolved by observing the second random variable Y.

On the basis of Eq. (G.13), we may derive the following properties of mutual
information that hold in general:

dedy (G.13)

IX:Y) =0 (G.14)

IXY) = I(Y:X) (G.15)

I(X:Y) = h(X) - h(X]|Y) (G.16)
= h(¥) - h(Y]X)

Here, h(X) and (Y are the differential entropies of X and Y, respectively, and
hX|Y) = ~[" [7 [y y(x y)log, fyy (x|y)dxdy (G17)

is the conditional differential entropy of X, given Y.

Formulas similar to Egs. (G.13) through (G.17) apply to a related pair of random
vectors X and Y.

With the definitions of differential entropy, conditional differential entropy, and
mutual information at hand, we are ready to proceed with the derivation of the log-det
capacity formula.

G.2 LOG-DET CAPACITY FORMULA OF MIMO LINK2

Consider a communication link with multiple antennas. Let the N-by-1 vector s
denote the transmitted signal vector and the N,-by-1 vector x denote the received sig-
nal vector. These two vectors are related by the input-output relation of the channel,
namely,

x = Hs+w (G.18)
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where H is the channel matrix of the link and w is the additive channel noise vector.
The vectors s, w, and x are realizations of the random vectors S, W, and X, respectively.
In the rest of this section, the following assumptions are made:

1. The channel is stationary and ergodic.

2. The channel matrix H is made up of i.i.d. Gaussian elements.

The channel state H is known to the receiver, but not the transmitter.
The transmitted signal vector s has zero mean and correlation matrix R,.

The additive channel noise vector w has zero mean and correlation matrix R,

= 7

Both s and w are governed by Gaussian distributions.

With both H and x unknown to the transmitter, the primary issue of interest is to
determine I(s;x, H), which denotes the mutual information between the transmitted
signal vector s and both the received signal vector x and the channel matrix H. Extend-
ing the definition of mutual information given in Eq. (G.13) to the problem at hand,
we write

I(S;:X, H) = J‘J.J.fs‘ X, s x H)Ing

(fsp(,u(s'xy H)
HXS

2= __ |dsdxdH G.19
T 1) )s * W)

where S, X, and # are the respective spaces pertaining to the random vectors S and X
and the matrix H. According to Bayes’ rule, we have

fs,x,u(8: % H) = fg x u(s, x|H)f(H)

We may therefore rewrite Eq. (G.19) in the equivalent form

/s (s|x, H)
[ fH(H){”fs’ x[u(s: x|H)1og2[ﬂ’iﬂ_]dsdedH
H

I(S;X, H)
X5 fx’H(Xs H)

E (s, x|H)log,| ——— ____ |dsdx
HI::.[.-S[J(S,X|H ‘ gZ[ fX,H(x" H)

Egl/(s;x|H)]

where the expectation is with respect to the channel matrix H, and

] fs|x H(S|X, H)]
I(s;x|H) = || fs (s, x|H)log,| ————— |dsdx
] 3[3[ s, x|r (S X| 2[ T a0 )

is the conditional mutual information between the transmitted signal vector s and the
received signal vector x, given the channel matrix H. However, by assumption, the
state of the channel is unknown to the transmitter. It follows, therefore, that insofar as
the receiver is concerned, I(s;x/H) is a random variable—hence the expectation with
respect to H in Eq. (G.20). The quantity resulting from this expectation is deterministic,
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defining the mutual information jointly between the transmitted signal vector s and
both the received signal vector x and the channel matrix H. The result so obtained is
indeed consistent with what we know about the notion of joint mutual information.

Next, applying the vector form of the first line in Eq. (G.16) to the mutual infor-
mation I(s; xIH), we may write

I(s;x|H) = h(x|H)-h(x|s, H) (G21)

where A(xIH) is the conditional differential entropy of the input x, given H, and
h(xls,H) is the conditional differential entropy of the input x, given both s and H. Both
of these entropies are random quantities, as they depend on H.

To proceed further, we now invoke the assumed Gaussian nature of both s and H, in
which case x also assumes a Gaussian description. Under these assumptions, we may use
Eq. (G.10) to express the entropy of the received signal x of dimension N,, given H, as

h(x|H) = Nj_+erog2(2ﬂ:)+log2{det(Rx)} bits (G.22)

where R, is the correlation matrix of x. Recognizing that the transmitted signal vector
s and the channel noise vector w are independent of each other, we find, from Eq.
(G.18), that the correlation matrix of the received signal vector x is given by

R, = E[xx']
= E[(Hs +w)(Hs+w)']
o t
= E[(Hs + H +
[(Hs V:)(s :v )] (G.23)
= E[HssTH 1+ E[ww | because E[sz] =0
= HE[ss |H +R,,
= HRH'+R,,
where
"
R, = E[ss ] (G.24)
and
N
R, = E[ww ] (G.25)
Hence, using Eq. (G.23) in (G.22), we get
h(x|H) = N, + N, log,(27) + log,{det(R,, + HR.H')} bits (G226)
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Next, we note that, since the vectors s and w are independent, and since the sum of w
plus Hs equals x, as indicated in Eq. (G.18), then the conditional differential entropy
of x, given both s and H, is simply equal to the differential entropy of the additive
channel noise vector w:

h(x|s, H) = h(w) (G27)
Again invoking the formula of Eq. (G.10), we have

h(w) = N,+ N, log,(2m) +log,{det(R,)} bits (G.28)

Using Egs. (G.26), (G.27), and (G.28) in Eq. (G.21), we get

I(s:x|H) logz{det(Rw + HRSHH)} —~log,{det(R)}

(G.29)

o [detRy, + HR H")
82 det(R,)

As was remarked previously, the conditional mutual information /(s; x/H) is a random
variable. Hence, using Eq. (G.29) in (G.20), we finally formulate the ergodic capacity
of the MIMO link as the expectation

det(R,, + HR.H™))]
C = Ey|log, TeT(R) bits/s/Hz (G.30)
which is subject to the constraint
max tr[R] <P P = constant transmit power

R

s

where tr[.] denotes the trace operator, which extracts the sum of the diagonal elements
of the enclosed matrix.

Equation (G.30) is the desired log-det formula for the ergodic capacity of the
MIMO link. This formula is of general applicability in that correlations among the ele-
ments of the transmitted signal vector s and among those of the channel noise vector w
are permitted. However, the assumptions made in its derivation involve the Gaussian
aspects of s, H, and w.

One last comment is in order: the white Gaussian input spectrum

S

R, = 0’1,
I3

is not necessarily optimal; nevertheless, its application does yield a lower bound to the
ergodic capacity C.
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G.3 MIMO CAPACITY FOR CHANNEL KNOWN AT THE TRANSMITTER3

The log-det formula of Eq. (G.30) for the ergodic capacity of a MIMO flat-fading
channel assumes that the state of the channel is known only at the receiver. What if the
state is also known perfectly at the transmitter? Then the state of the channel becomes
known to the entire system, which means that we may treat the channel matrix H as a
constant. Hence, unlike the partially known case discussed in Section G.2, there is no
longer the need for invoking the expectation operator in formulating the log-det
capacity. Rather, the problem becomes one of constructing the optimal R, (i.e., the
correlation matrix of the transmitted signal vector s) that maximizes the ergodic
capacity. To simplify the construction procedure, we consider a MIMO link with
N, = N; = N. Accordingly, using the assumption of additive white Gaussian noise with
variance o in the log-det capacity formula of Eq. (G.2), we get

C= logz{det(]N+ %HRSHT]} bits/s/Hz (G31)

Ow

We can now formally postulate the optimization problem at hand as follows:

Maximize the ergodic capacity C of Eq. (G.31) with respect to the correlation
matrix R, subject to two requiremends:

1. Nonnegative definite Ry, which is a necessary requirement for a correlation
matrix.

2. Global power constraint
tr[Rg] = P (G.32)
where P is the total transmit power,

To proceed with construction of the optimal Ry, we first use the determinant identity:

det(I+ AB) = det(I+ BA) (G.33)
Applying this identity to Eq. (G.31) yields
8= log2{ de{lN + %RSHTHJ} bits/s/Hz (G.34)
o,

Diagonalizing the matrix product HTH by invoking the eigendecomposition of a Her-
mitian matrix, we may write

U'H'HU = A (G.35)

where A is a diagonal matrix made up of the eigenvalues of H'H and U is a unitary
matrix whose columns are the associated eigenvectors. (The eigendecomposition of a
Hermitian matrix is discussed in Appendix H.)We may rewrite Eq. (G.35) in the form

H'H = uau' (G.36)
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Substituting Eq. (G.36) into Eq. (G.34), we get

C = 1og2{det[1N+ LZRSUAU*J} bits/s/Hz (G37)

Oyw

Applying the determinant identity of Eq. (G.33) to Eq. (G.37) yields

= 1og2{det[IN ¥ %AU*RSU)}

O

(G.38)

L iy ;
= logz{ det(IN + _ZARS}} bits/s/Hz

Ow

where
R, = U'RU (G.39)
Note that the transformed matrix Ry is nonnegative definite. Note also that

tr[R,] = tr[U'R,U]

Il

tr[UUTR] (G:40)
= tr[Ry]

It follows, therefore, that maximization of the capacity of Eq. (G.38) can be carried

equally well over the transformed correlation matrix R;.

One other important point to note is that any nonnegative definite matrix A sat-
isfies the Hadamard inequality

det(A) < au (G41)
k

where the ay;, are the diagonal elements of the matrix A. Hence, applying this inequal-
ity to the determinant in Eq. (G.38), we may write

N
det[l - %ARSJ < H(1 ¥ %fhh, kk] (G42)
C)'w k=1 O'w

where A, is the kth eigenvalue of the matrix product HH' and 7o g 18 the kth diago-
nal element of the transformed matrix R;. The equality in Eq. (G.42) holds only
when Ry is a diagonal matrix, which is the very condition that maximizes the ergodic
capacity C.
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To proceed further, we now use Eq. (G.38) and Eq. (G.42) with the equality sign
to express the capacity as

1]

N
C ]0g2 H [1 4 ——/’lkr& kk]

k= W

il 1
Z 10g2[1 + —Q"lki's, kk}

B 4 O (G43)

5 {2

k=1 O'w

N
Y logyh + Y logz[/lk +lr§ kkJ

k=1 k=1 Gw

Il

where only the second summation is clearly adjustable. We may therefore reformulate
the optimization problem at hand as follows:

c ; N o ;
Given the set of eigenvalues {Ftk}k: 1 permzfung to the matrix product HH,
determine the optimal set of autocorrelations {rg it _ 1 that maximizes the sum-
mation

£fer3)

W

subject to the constraint

The global power constraint of Eq. (G.44) follows from Eq. (G.40) and the trace
definition

N
R = ¥ 7 (G45)
k=1

The solution to this optimization problem may be determined through the water-filling
procedure, which is well known in information theory.® Effectively, the solution to the
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water-filling problem says that, in a multiple-channel scenario, we transmit more sig-
nal power in the better channels and less signal power in the poorer channels. To be
specific, imagine a vessel whose bottom is defined by the set of N dimensionless dis-

crete levels
2 N
{p - (aw/ﬂu)}
ﬁ“k k=1

and pour “water” into the vessel in an amount corresponding to the total transmit
power P. That power is optimally divided among the N eigenmodes of the MIMO
link in accordance with their corresponding “water levels” in the vessel, as illus-
trated in Fig. G.1 for a MIMO link with N = 6. The “water-fill level”, denoted by the
dimensionless parameter p and indicated by the dashed line in the figure, is chosen
to satisfy the constraint of Eq. (G.44). On the basis of the spatially discrete water-
filling picture portrayed in Fig. G.1, we may now finally postulate the optimal rg ;;,
to be

_ )"
ok = (B2 k=12,.,N (G.46)
k

where the superscript “+” signifies retaining only those terms on the right-hand side of
the equation that are positive (i.e., the terms that pertain to those eigenmodes of the
MIMO link for which the water levels lie below the constant ). Correspondingly, the
maximum value of the capacity of the MIMO link, in accordance with the first line of
Eq. (G.43) and Eq. (G.46), is defined by

N
1 -
G = Zlogz(l o+ —z—lkrs, kkj

k=1 Ow
N 23+
o
- zlogz 1+i27»k{,u—l_wJ (G.47)
k=1 Oy %
N
pAg |
- Soow]
k=1 Ow

where, as stated previously, the constant u is chosen to satisfy the global power con-
straint of Eq. (G.44).

The optimal results of Eqgs. (G.46) and (G.47), assuming that the channel state is
known to both the transmitter and receiver, were derived by considering a MIMO link
with N, =N,= N.
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2
— Cr'lb‘ )
(“ A

Y

0 1 2 3 4 5 6 k

FIGURE G.1 Water-filling interpretation of the optimization procedure. For the example
portrayed in the figure, we have the following source autocorrelation values

(72
w
Fe, 11 = !L""T
1
0_2
- W
Fgo2 = T
2

Ts,55 = H—
Fs66 = 0

All the other nondiagonal elements of the source correlation matrix ﬁs are zero.

NOTES AND REFERENCES
I For a detailed exposition of the many facets of information theory, see Cover and Thomas
(1991).

2The first detailed derivation of the log-det capacity formula for a stationary MIMO link was
presented by Telatar in an AT&T technical memorandum published in 1995 and republished as
a journal paper in 1999.

3 The waterfilling procedure is described in Cover and Thomas (1991).
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Eigendecomposition

H.1 UNITARY TRANSFORMATION OF A HERMITIAN MATRIX"

Consider a square complex matrix R of dimensions M by M. The matrix R is assumed
to be Hermitian; that is,

R' =R (H.1)

where the superscript T denotes Hermitian transposition. With R as the matrix of
interest, the eigenvalue problem is defined by

Rq = Aq (H.2)

where q is an M-by-1 vector and A is a scalar.
In general, there are M distinct values of the scalar A that satisfy Eq. (H.2); these
values are roots of the characteristic equation

det(R—AI) = 0 (H.3)

where L is the M-by-M identity matrix.

Typically, the off-diagonal elements of matrix R are nonzero. The diagonaliza-
tion of R is achieved by expanding on the transformation described in Eq. (H.2). Spe-
cifically, we may write

Q'RQ = A (H.4)
where
A= diag(/ll,/lz,...,/lM) (H.5)
is a diagonal matrix and
Q = [qy, 95,9y (H.6)

is a unitary matrix. The scalars 4, A,,..., 4, constituting the matrix A are called the
eigenvalues of matrix R, and the M-by-1 vectors q. q,,..., q;, constituting the matrix
Q are the associated eigenvectors of R.
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By definition, the unitary matrix Q satisfies the relation

QQ"'=Q'Q =1 (H.7)

In expanded form, we may rewrite Eq. (H.7) as

T =1
q[ qk = { 1 for k=i (HS)
0 for k=i

According to Eq. (H.7), the inverse of the matrix Q, namely, QLis equal to the Her-
mitian transpose of Q, or

-1 1
Q =0 (H.9)
In light of Eqs. (H.5) through (H.9), we may rewrite Eq. (H.4) in the equivalent form
R = QAQ'

(F1.10)

I

ud t
2 A4y
k=1

Equation (H.10) is called the spectral decomposition theorem, which states that the

Hermitian matrix R can be expanded as the linear combination of the rank-one matrix
M

1y : : M ;
products | q;q; , and the corresponding eigenvalues {1, } po Gre the scaling fac-
k=1
tors of the linear combination.

H.2 RELATIONSHIP BETWEEN EIGENDECOMPOSITION AND SINGULAR-
VALUE DECOMPOSITION?

Consider next a rectangular complex matrix A with dimensions L by M. Let the M-by-
M matrix R be related to the matrix A as follows:

AAT for M>1L
R = (H.11)

ATA for M<L

Then, according to the singular-value decomposition (SVD) theorem, the matrix A
may be diagonalized as

u'av = {D 0} (H.12)
00
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where D is a diagonal matrix, the 0’s are null matrices, and U and V are respectively
L-by-L and M-by-M unitary matrices; that is,

U =U (H.13)
and

LAY (H.14)

Specifically, we may make the following statements:

e The diagonal matrix
D = diag(dy, dy, ...,dy), W=min(L,M) (H.15)

defines the singular values of matrix A.
e The unitary matrix

U = [“1’ U2, ey l.lL] (H-lﬁ)

defines the L left-singular vectors of matrix A.
¢ The second unitary matrix

Vo= [v, Vg, . ¥yl (H.17)
defines the M right-singular vectors of matrix A.

Moreover, depending on whether the dimension L is greater than M or the other way
around, we have two different cases in describing the relationships between singular-
value decomposition and eigendecomposition:

Casel. L>M

In this case, the dimension W = M and the singular values dy.d,.....d); are equal to the
square roots of the eigenvalues of the matrix product R = ATA. Correspondingly, the
right-singular vectors vq,v,....,¥)s are the associated eigenvectors.

Case2. L<M

In this second case, the dimension W = L and the singular values d;.dy,...,d; are equal
to the square roots of the eigenvalues of the alternative matrix product R = AA™. Cor-
respondingly, the left-singular vectors uy,u,,...,u; are the associated eigenvectors.

NOTES AND REFERENCES

I The eigendecomposition of a square matrix is discussed in Chapter 5 of Strang (1980). The dis-
cussion presented therein focuses on square matrices that are real.

2 The singular-value decomposition of a rectangular matrix is discussed in Chapter 7 of Strang
(1980). Here again, the discussion focuses on real matrices. The chapter also discusses issues
relating to the computation of eigenvalues.
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APPENDIX I

Adaptive Array Antennas

NEED FOR ADAPTIVITY

The goal of wireless communications is to allow as many users as possible to commu-
nicate reliably without regard to location and mobility. From the discussion presented
in Chapter 2, we find that this goal is seriously impeded by three major channel
impairments:

1. Multipath can cause severe fading due to phase cancellation between different
propagation paths. Fading leads to a reduction in available signal power and
therefore a degraded noise performance at the receiver.

2. Delay spread results from differences in propagation delays among the multi-
ple propagation paths. When the delay spread exceeds about 10% of the sym-
bol duration, the intersymbol interference experienced by the received signal
reaches a significant level, thereby causing a reduction in the attainable data
rate.

3. Cochannel interference arises in cellular systems in which the available frequency
channels are divided into different sets, each of which is assigned to a specific cell
and with several cells in the system using the same set of frequencies. Cochannel
interference limits the system capacity (i.e., the largest possible number of users
that can be reliably served by the system).

Typically, cellular systems use 120° sectorization at each base station, and only one
user accesses a sector of a base station at a given frequency. We may combat the effects
of multipath fading and cochannel interference at the base station by using three iden-
tical, but separate, antenna arrays, one for each sector of the base station. (The com-
pensation of delay spread is considered later in the section.) Figure 1.1 shows the block
diagram of an array signal processor; it is assumed that there are N users whose signals
are received at a particular sector of the base station and that the array for that sector
consists of K identical antenna elements. A particular user is treated as the one of
interest, and the remaining N — 1 users give rise to cochannel interference. In addition
to the cochannel interference, each component of the array signal processor’s input is
corrupted by additive white Gaussian noise (AWGN). The analysis presented herein is
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User of x(n)
interest O——3= | {
my(n)
vi(n) Array
x5(n) processor
my(n) o———> Channel Array _"output
matrix signal y(n)
H ) processor
Interfering ) va(n)
users ’
N\ ¥n(n)
mN-(n) O {

vg(n)
1 Sources
N vimws hélllll;g:‘g' of Receiver
AWGN

FIGURE I.1 Block diagram of array signal processor that involves K antenna elements
and that is being driven by a multipath channel.

for baseband signals, which, in general, are complex valued. This means that both the
channel and the array signal processor require complex characterizations of their own.
The structure depicted in Fig. 1.1 is drawn for one output pertaining to the user of
interest. The array signal processor is duplicated for users at other frequencies at the
base station.(Figure I.1 refers to a situation different from that considered in
Chapter 6 and Appendix G, hence the difference in notation.)

The multipath channel is characterized by the channel matrix, which is denoted
by H. The matrix H has dimensions K-by-N and may therefore be expanded into N
column vectors, as shown by:

H = [hy, hy, ..., hy] (L1)

Column vector h;, i =1,2,...,N is of dimension K, and represents the multipath compo-
nent pertaining to user i.

Given the configuration described in Fig. .1, the goal is to design a linear array
signal processor for the receiver that satisfies two requirements:

1. The cochannel interference produced by the N — 1 interfering users is cancelled.
2. The output signal-to-noise ratio (SNR) for the user of interest is maximized.

Hereafter, these two requirements are referred to as design requirements 1 and 2.

To proceed with this design task, it is assumed that the multipath channel is
described by flat Rayleigh fading. Then, in light of the material presented in Example
6.2, we find that the use of diversity permits the treatment of the column vectors
h,, hs, ..., hy as linearly independent, which is justified, provided that the spacing
between antenna elements of the array is large enough (10 to 20 times the wavelength)

Page 447 of 474




538 Appendix | Adaptive Array Antennas

for independent fading. To simplify the presentation, we suppose that user 1 is the user
of interest and the remaining N — 1 users are responsible for co-channel interference,
as indicated in Fig. I.1. The key design issue is how to find the weight vector, denoted by
w, that characterizes the array signal processor. Toward that end, we may proceed as
tfollows:

1. We choose the K-dimensional weight vector w to be orthogonal to the vectors
h,, hs, ..., hy,, which are associated with the interfering users. This choice fulfills
design requirement 1 (i.e., the cancellation of cochannel interference).

2. To satisfy design requirement 2 (i.e., maximization of the SNR), we will briefly
digress from the issue at hand to introduce the notion of a subspace. Given a
vector space, or just a space, formed by a set of linearly independent vectors, a
subspace of the space is a subset that satisfies two conditions:

(i) If we add any two vectors z; and z; in the subspace, their sum z; and z, is
still in the subspace.

(ii) If we multiply any vector z in the subspace by any scalar a, the multiple az is
still in the subspace.

Define the subspace W.1{h,, hs,...,h w1- Then, returning to the issue of how to
maximize the output SNR for user 1, we first construct a subspace denoted by %/
whose dimension is equal to the difference between the number of antenna ele-
ments and the number of interfering users—that is, K — (N —1) = K — N + 1. Next,
we project the complex conjugate of the channel vector hy (pertaining to user 1)
onto the subspace 7. The projection so computed defines the weight vector w.

EXAMPLE 1.1 Subspace Method for Determining the Weight Vector

To illustrate the two-step subspace method for determining the weight vector w, consider
the simple example of a system involving two users characterized by the channel vectors hy
and hy, and an antenna array consisting of three elements; that is, N = 2 and K = 3. Then, for
this example, the subspace 7/ is two-dimensional, since

K-N+1=3-2+1=2

With user 1 viewed as the user of interest and user 2 viewed as the interferer, we may con-
struct the signal-space diagram shown in Fig. I.2. The subspace ), shown shaded in this figure, is
orthogonal to channel vector hy. The weight vector w of the array signal processor is determined
by the projection of the complex-conjugated channel vector of user 1 (i.e., h{*) onto the sub-
space ™/ as depicted in the figure.

The important conclusion drawn from this discussion is that a linear receiver using
optimum combining with K antenna elements and involving N —1 interfering users has the
same performance as a linear receiver with K — N+ 1 antenna elements, without interference,
independent of the multipath environment. For this equivalence to be realized, we of course
require that K > N — 1. Provided that this condition is satisfied, the receiver cancels the cochan-
nel interference with a diversity improvement equal to K — N + 1, which represents an N- fold
increase in system capacity.
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hy
(Interferer)

h*#
(User of interest)

w
{Weight vector)

~—————— Subspace W

FIGURE 1.2 Signal-space diagram for Example L1, involving a user of interest, a single interferer,
and an antenna array of three elements, The subspace #, shown shaded, is two dimensional in this
example.

The design of an array signal processor in accordance with the two-step subspace pro-
cedure described herein is of the zero-forcing kind. We say this because, given K antenna ele-
ments, the array has enough degrees of freedom to force the output due to the N—1
interfering users, represented by the linearly independent channel vectors hy, ..., hg, to
zero so long as K is greater than N —1. Note also that this procedure includes N=1 (ie., a
single user with no interfering users) as a special case. In this case, the channel matrix con-
sists of vector h; that lies in the subspace %, and the zero-forcing solution w equals hq*. u

The analysis presented thus far has been entirely of a spatial kind that ignores
the effect of delay spread. What if the delay spread is significant compared with the
symbol duration, and cannot, therefore, be ignored? Recognizing that delay-spread is
responsible for intersymbol interference, we may incorporate a linear equalizer in
each antenna branch of the array to compensate for delay spread. The resulting array
signal processor takes the form shown in Fig. I.3, which combines temporal and spatial
processing. Spatial processing is provided by the antenna array, and the temporal pro-
cessing is provided by a bank of finite-duration impulse response (FIR) filters. For
obvious reasons, this structure is called a space—time processor.

1.1.1 Adaptive Antenna Arrays'

The subspace design procedure for the array signal processor in Fig. .1 assumes that
the channel impairments are stationary and that we have knowledge of the channel
matrix H. In reality, however, multipath fading, delay spread, and cochannel interfer-
ence are all nonstationary in their own individual ways. Also, the channel character-
ization may be unknown. To deal with these practical issues, we need to make the
receiving array signal processor in Fig. 1.1 adaptive. Bearing in mind the scope of this
book, we confine the discussion to adaptive spatial processing, assuming that the
delay spread is negligible. We further assume that the multipath fading phenomenon
is slow enough to justify the least-mean-square (LMS) algorithm to perform the
adaptation.
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Element
Z

Element

Aoy FIR filters

array
FIGURE 1.3 Baseband space-time processor. The blocks labeled 77! are unit-delay elements,
with each delay being equal to the symbol period. The filter coefficients are complex valued.
The FIR filters are all assumed to be of length 1.

.1.2 Least-Mean-Square (LMS) Algorithm

Figure 1.4 shows the structure of an adaptive antenna array, in which the output of each
antenna element is multiplied by an adjustable (controllable) weight wy, k=1,2...., K,
and then the weighted elemental outputs of the array are summed to produce the array
output signal, denoted by y. The adaptive antenna array does not require knowledge of
the direction of arrival of the desired signal originating from a user of interest, so long
as the system is supplied with a reference signal, which is correlated with the desired
signal. For example, the reference signal could correspond to a training sequence that
is transmitted on a periodic basis. The output signal of the array is subtracted from the
reference signal, denoted by d, to generate an error signal e, which is used to apply the
appropriate adjustments to the elemental weights of the array. In this way, a feedback
system to control the elemental weights is built into the operation of the antenna array,
thereby making it adaptive to changes in the environment. Note that the block dia-
gram is drawn for baseband processing. In a practical system, a quadrature hybrid is
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FIGURE 1.4 Block diagram of adaptive antenna array.

used for each antenna element of the array to split the complex-valued received signal
at each element into two components: one real and the other imaginary. The use of a
hybrid has been omitted from the figure, to simplify the diagram.

Let x,(n) denote the output of the kth element in the array at discrete time #,
and let wy(n) denote the corresponding value of the weight connected to this element.
Then the output signal of the array (consisting of K antenna elements) is

K
y(n) = Y wy (m)x,(n) (L.2)
k=1

where wi(n)x #(n) is the inner product of the complex-valued quantities wy(n) and
x;(n). Denoting the reference signal as d(n), we may evaluate the error signal as

e(n) = d(n)-y(n) (13)

To optimize the performance of the adaptive antenna array, it is customary to use the
mean-square error

J = Elle(n)|’] (14)
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as the cost function to be minimized. Minimization of the cost function J tends to sup-
press the interfering signals and thereby enhance the desired signal in the array out-
put. The LMS algorithm minimizes the instantaneous value of the cost function J and,
through successive iterations, approaches the minimum mean-square error (MMSE)
(i.e., the optimum solution for the elemental weights) ever more closely. An adaptive
antenna array based on the minimum mean-square error criterion is highly likely to
provide a better solution than one based on the zero-forcing criterion embodied in
the two-step subspace method.
The adjustment applied to the kth elemental weight is

Awy(n) = pe*(m)xy(n) k=1,2,-,K (1.5)
where u is the step-size parameter. The updated value of this weight is
win+1) = wi(n) +Aw,(n) k=12-.K (L.6)

Equations (1.2), (1.3), (1.5) and (1.6), in that order, constitute the complex LMS algo-
rithm.” The algorithm is initiated by setting wy(0) =0 for all k.

The advantages of an adaptive antenna array using the complex LMS algorithm
are threefold:

1. Simplicity of implementation
2. Only a linear growth in complexity with the number of antenna elements
3. Robust performance with respect to disturbances.

However, the system suffers from the following drawbacks:

* A slow rate of convergence, which is typically 10 times the number of adjustable
weights. This limits the use of the complex LMS algorithm to a slow-fading envi-
ronment, for which the Doppler spread is small compared with the reciprocal of
the duration of the observation interval.

* Sensitivity of the convergence behavior to variations in the reference signal and
cochannel interference powers.

These limitations of the complex LMS algorithm can be overcome by using an algo-
rithm known as direct matrix inversion (DMI).? Unlike the LMS algorithm, the DMI
algorithm operates in batch mode, in that the computation of the elemental weights is
based on a batch of L snapshots. The batch size L is chosen as a compromise between
two conflicting requirements:

* The size L should be small enough for the batch of snapshots used in the compu-
tation to be justifiably treated as pseudostationary.

* The size L should be large enough for the computed values of the elemental
weights to approach the MMSE solution.

The DMI algorithm is the optimum combining technique for array antennas deployed
in many base stations today. The algorithm may be reformulated for recursive compu-
tation if desired.*
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When the teletraffic is high, the base stations are ordinarily configured as micro-
cells, which are small cells such as an office floor or a station deployed along a highway
with directional antennas. In such a configuration, there are many inexpensive base
stations in close proximity to each other. The use of adaptive antenna arrays provides
the means for an alternative configuration in which there are fewer (but more expen-
sive) base stations, further apart from each other than in the corresponding microcel-
lular system.

NOTES AND REFERENCES

L For a discussion of adaptive antenna arrays and their theory, design, and applications, see
Compton (1988).

The least-mean-square (LMS) algorithm is discussed Haykin (2002) and Widrow and
Stearns (1985).

3The direct matrix inversion (DMI) algorithm, also referred to as the sample matrix inver-
sion method, is discussed in Compton (1988); see pp. 331-332.

*The recursive least-squares (RLS) algorithm provides an iterative method for implementing
the method of least squares, which lies behind the DMT; for details, see Haykin (2002).
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Coantenna interference (CAI), 358-360,
433
Cochannel cells, 7,73
Cochannel interference, 74, 536
Code:
Alamouti, 377-387, 437
binary, 184
block, 194,222-223
convolutional, 194, 195-214,222
cyclic, 194
Gold, 274-276, 300, 319-320, 331
good, construction of, 187
Hamming, 322
Reed-Solomon, 222
repetition, 322
short, 317-318
space—time, 376-394
space~time block:
differential, 394-404
V-BLAST vs., 427430
sporadic, 390
spreading, 265-279
Turbo, 215-222
Code division, 265

Code rate, 187,194
Code synchronization, 290-292
Code vectors/patterns, 189, 201
Codebook, 189, 192-193
Coded composite transport channel
(CCTRCh), 326
Code-division multiple access, See CDMA
Code-excited LPC, 192-193
Coding, 179
channel, 185, 186, 249
systems, implementation of, 185
Coefficients matrix, 395-396
Coherence bandwidth, 55, 60-61, 62
Coherence spectrum, 60-61
Coherence time, 55,57, 62,208
for a flat-fading channel, 57-58
Coherent binary frequency-shift keying
(BFSK), 158
bit error rate (BER) of, 352-353
Coherent detection, 154,213
Coherent receiver, 158
Collisions, 260
Common probability distributions,
499-502
Communication systems, 2
Commutative property of convolution, 126
Compensated received waveform, and
Viterbi equalization, 231
Complementary cumulative distribution
function, 368
Complementary error function, 140, 514
bounds on, 517-518
Complex analysis, trading for elimination
of carrier frequency, 126
Complex baseband process, 507-508
Complex baseband signal, 181,227
Complex envelope:
of a modulated signal, 123
of N signal rays, 45
Complex Fourier coefficients, 491
Complex Fresnel integral, 28
Complex LMS algorithm, 542
Complex multidimensional Gaussian
distribution, 523-524
Complex orthogonal design, 377
Complex random process, 507
Complex random variable, 507
Complex weighting parameter, linear
combiner, 347-387
Complex-orthogonal matrix, 381
Conditional probability, 496-497
Connectionless service, 455
Connection-oriented service, 455
Constructive interference, 20
Continuous phase modulation (CPM), 172
Continuous random processes, 503-504
Continuous random variable, 497
Continuous-phase frequency-shift keying
(CPFSK), 132,134-135
Continuous-phase modulation, 133-137
Continuous-phase signal, 132
Continuous-wave (CW) modulation, 107
Control channels, 461
Control data, 143



Controlled intersymbol interference, 227

Controlled redundancy, 180
Convolution integral, 481
Convolution operator, 51
Convolutional code, 194, 195-201, 222
constraint length of, 196
example, 197-198
free distance of, 200-201
maximum-likelihood decoding of,
201-203
noise performance of, 212-214
nonsystematic, 196

trellis and state diagrams of, 198-199

Convolutional interleaving, 210-212

Cordless telecommunications, 168-170

Cordless telephones, 168

Correlation, between adjacent samples,

184

Correlation receiver, 510

Correlation theorem, 488490
autocorrelation function, 490

Cost function, 155

CPFSK, See Continuous-phase frequency-

shift keying (CPFSK)
Cross-correlation function, 488

CSMA, See Carrier-sense multiple access

(CSMA)

Cumulative distribution function, 369, 497

Cumulative path metric, 203
Cyclic codes, 194

Cyclic extension, 167

Cyclic prefix, 167-168

Cyclic redundancy check (CRC), 457, 464

code, 194-195

D

Data link layer, 455
Data rate, channel, 194

Data-link layer, 3, 5-8, See also CDMA,;

FDMA; SDMA; TDMA
e-mail, 457
Decoder, 181-182, 186, 192, 240
differential, 402
inner, 421
minimum-distance, 203
outer, 240, 421
two-stage, 240
Viterbi, 205, 209,214, 232
Decoding, 224
joint equalization and, 226, 239-243
Decoding error, 201
Decoding window, 205
DECT (Digital Enhanced Cordless
Telephone), 471
Dedicated physical control channel
(DPCCH), 325
De-fragmentation, indoor LANSs, 469
Deinterleaver, 181-182, 208-210, 240
Delay constraints, 367
Delay spread, 536
power-delay profile, 60
Delay unit, 402
Delta function, 230
Demultiplexing, 419

Dependence on antenna height, 23
Destructive interference, 20
Determinant identity, 528
Deviation ratio, 132, 135
Diagonal matrix, 372, 533, 535
Diagonal-BLAST (D-BLAST), 415,
416-417,438
Diagonalization, 533
Dibit, 112,116
Differential decoder, 402
Differential detection, 152154
Differential encoder, 402
Differential encoding, 153
Differential entropy, 522-524, 526-527
Differential phase-shift keying (DPSK),
402
coherent, 159
Differential space-time block codes,
394-404, 437
defined, 394401
noise performance, 402-404
transmitter and receiver structures, 402
Diffraction, 12, 20,24-28, 30
losses, 28-29
Digital communication systems, 258
Digital modulated signals, 107
Digital speech-coding techniques, 9
Dirac delta function, 51, 480
Direct matrix inversion (DMI), 542
Directional antennas, 340
multipath with, 412415
Directional radiation, 15-18
Directivity, 13,15, 451
Direct-sequence (DS) modulation,
260-265,331
matched-filter receiver, 262-263
performance with interference, 263-265
spreading equation, 260-262
Direct-sequence modulators, 259
Direct-sequence spread spectrum
(DS-SS),263,265,279,331-332
summary of benefits of, 289-290
Direct-sequencing (DS) technique, 259
Dirichlet’s conditions, 479
Discrete Fourier transform (DFT), 164
Discrete power-delay profile, 58-60
Discrete random processes, 503-504
Discrete random variables, 497
Discrete set of values, 184
Distortion, 188
Diversity, 9, 339-340, 438, 451
on both transmit and receive, 340
frequency, 240,324, 339, 451
receive, 340, 438
space, 339-340
time, 240, 339,349
transmit, 328, 340, 438
Diversity gain, 350
Diversity order, 356, 389, 429-433, 438
Diversity-on-receive channel, 366,
426-427
Diversity-on-transmit channel, 366,
426-427
Doppler power spectrum, 57
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Doppler shift, 4247, 51, 55, 208
aircraft Doppler, 43
maximum, 46
Doppler spreading, 55
Double sideband-suppressed carrier
(DSB-SC) modulation, 109-110,
122
Downlink, 143
Downlink limited channels, 79
Ducting, 20
Duplexing, 143
Dynamic channel allocation (DCA), 168

E

Early/late timing, 91
Earth station receiver, 78
Earth station transmitter, 76
Effective area, 14
Efficient signal transmission, 185
Efficient utilization of the allotted
spectrum, 189
Eigendecomposition, 372, 533-535
of a Hermitian matrix, 528-529
of the log-det capacity formula,
374-376
Eigenvalue problem, 533
Eigenvectors, 533
Einstein, Albert, 1
Electromagnetic shadow, 24, 61, 94
Elevation angle, 15
E-mail, as example of seven-layer model,
456457
Encoder, 180, 192
inner, 240
memory in, 194
nonrecursive nonsystematic
convolutional, 223
outer, 240
redundancy in, 186
two-stage, 240
Encoding, 223-224
differential, 153
error-control, 193-195
full-rate space-time, 419
process, 184
End-fire directions, 410
End-to-end delay, 212
Energy density spectrum, 490
Energy detector, 169
Ensemble average, 508
Entropy, 185-186
differential, 522-524, 526-527
Equal-gain combining, 353
Equalization, 179-180
baseband processing for, 227-233
joint, and decoding, 226
Equalizer, 88
Equivalent complex baseband model, 125
Equivalent isotropic radiated power
(EIRP),75
Ergodic processes, 367
random, 508

Page 463 of 474




554 Index

Error burst, 194
Error detection, 193, 194
Error function, 500, 514, 516-519
asymptote property, 514, 516
complementary, bounds on, 517-518
O-function, 518-519
symmetry property, 514, 516
Error minimization, 191
Error signal, 540-541
Error-control coding, 193-195
automatic-repeat request (ARQ)
schemes, 193-194
cyclic redundancy check (CRC) code,
194-195
forward error-correction (FEC) codes,
193
Error-correction techniques, 5
Estimate, of speech signal, 182
Estimated received waveforms, and
Viterbi equalization, 231
Estimated waveform generator, 231-232
Euler’s formula, 123
Even function of time, 480
Even symmetry, 230
Events, 496
Evolution, 452, 454
Excitation generator, 191
Excitation time, 481
Expected value, 498-499
Exponential law, 161
Exponentially distributed squared
amplitude, 343
Extrinsic information transfer (EXIT)
chart, 224
Eye opening, 360
Eye pattern of the received signal, 360

F
Fading, 12
Fading channels, 225, 288-289
Fading wireless channels, 225
Fast fading, 36, 4448
Fast-frequency hopping, 307, 308-310
FBI (Feedback Information) bits, 326
FDMA, 5,74, 103, 132,170-171,258-259,
265,450
adjacent channel interference, 142-144
frequency-domain representation of, 104
and handovers, 466
FEC coding, 9,193, 297-299, 304, 412-413,
428,451,471
and CDMA, 297-299
improved multiple-access performance
with,298-299
Feedback channel, 371
Feedback path, 240
Feedback system, 218
Fessenden, Reginald, 1
Field theory, 271
Finite rate, 188
Finite-duration impulse-response (FIR),
157,190, 539
Finite-state machine (FSM), 195
First Fresnel zone, 27, 28
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First-generation systems, 311
Flat-fading channel, 52,292
coherence time for, 57-58
Flat-flat channels, 52
Flexibility, 452, 454
Flow control, 3, 455
Forward error-correction (FEC) codes,
See FEC coding
Forward estimator of state probabilities,
221
Forward path, 240
Forward-link radio transmissions, 143
Fourier series, 491
Fourier theory, 89, 108, 479-492
Fourier transform, 89, 479-486, 488489,
492, 504-506, 509
properties of, 481
Fourier-transform pair, 479, 482, 485
Fragmentation, indoor LANSs, 469
Frame (burst)-error probability, 371
Frame error rate (FER), 225
Frames, 3,7, 168-169, 180, 192, 205, 225,
234,236-238,249
Framing bits, 234
Free distance, of convolutional code,
200-201
Free-space link budget, 75-76
Free-space path loss, 15
Free-space propagation, 13-19, 30, 94
directional radiation, 15-18
Friis equation, 18-19
isotropic radiation, 13-15
polarization, 19
Free-space transmission, 12
Frequency deviation, 132
Frequency dispersion, 55
Frequency diversity, 240,324,339, 451
Frequency hopping (FH), 177,236-238,
249,259-260, 306,477
principle of, 237
slow frequency hoppers, 260
Frequency independent, 23
Frequency modulation (FM), 108,
130-132, 143,170, 258
Frequency reuse factor, 74
Frequency-division diplex (FDD)
transmissions, 143
Frequency-division diplexer (FDD), 143
Frequency-division multiple access,
See FDMA
Frequency-flat channels, 51, 61, 62
Frequency-flat, slowly fading Rayleigh
channel, 341
Frequency-hopped spread spectrum,
306-310,331-332
advantages of, 306
complex baseband representation of,
307-308
disadvantages of, 306
fast-frequency hopping, 308-310
processing gain, 310
slow-frequency hopping, 308-310
Frequency-hopped spread spectrum
(FH-SS), 306-310

Frequency-hopped systems, 259

Frequency-nonselective channels, 61

Frequency-selective channels, 52, 61, 62,
292

Frequency-selective characteristics, 88

Frequency-shaping pulse, 140

Frequency-shift keying (FSK), 143, 321,
352-354,441-442

Sunde’s FSK, 132

Frequency-spaced, time-spaced
correlation function, 60

Frequently flat, slow fading channel,
161-162

Fresnel zones, 25-27

Fresnel-Kirchhoff parameter, 26-29

Friis equation, 18-19, 75

Full-cosine roll-off pulse, 119

Full-rate space-time encoding, 419

Fully coherent addition, 349

G
Gain, 15
diversity, 350
parabolic antenna, 16
processing, 310
receive antenna, 16
transmit antenna, 15-16
Gaussian density function, 38
Gaussian distribution, 500
Gaussian function, 140
Gaussian monocycle, 89
Gaussian random processes, 504, 507
Gaussian-filtered minimum-shift keying
(GMSK), 139-142, 160, 169, 170,
227,238,249-250
GBGP propagation model, 435
Generalized complex orthogonal designs
of space-time block codes, 377,
389-392,437
Generator polynomial, 196
Generator sequence, 196
Global Positioning Satellite System
(GPSS), 71, 319-320
Global System for Mobile (GSM)
Communications, 2, 236-239, 249,
471472, See GSM
GMSK, See Gaussian-filtered MSK
Gold codes, 274-276, 300, 319-320, 331
autocorrelation/cross-correlation of, 276
generation of, 275
Good codes, construction of, 187
GPRS (General Packet Radio Service),
472
Gray coding, 127, 129, 256, 378, 398
for bijective mapping, 400-401
G/T ratio of a satellite, 75-76
Guard bands, 142
Guard intervals, 167, 168
Guard time, 236

H

Hadamard inequality, 529

Hamming code, 222, 322,333,337

Hamming distance, 200, 202, 203-204, 232,
251



Hamming weight, 200
Handovers, 452-453, 458, 465-467
algorithms, 465-466
blocked call, 465
and CDMA, 466
cell dragging, 466
and control channels, 461
dropped call, 465
and FDMA and TDMA/FDMA
combination systems, 466
hard, 303, 466
mobile assisted, 465
multiple-access considerations, 466-467
ranking, 465
and SDMA,, 466-467
soft, 466
Hermitian transposition, 156, 381
Hertz, Heinrich, 1
HF radio, 2
Hocquenghem (BCH) codes, 222
Hop period, 307
Hop time, 259
Horizontal polarization, 19
Huygen’s principle, 24

I

Ideal reflectors, 434

IEEE 802.11 MAC, 473-475

IEEE 802.11a,473

IEEE 802.11b,473

IEEE standard 802.15.1 (Bluetooth
wireless system), 321-323

Impulse radio, 89-92

advantage of, 92
ultra-wideband, 89-93

Impulse response, 480

Independent block-encoding, 419

Indoor LANS, 469-470

Indoor propagation, 33-35

Industrial, Scientific, and Medical (ISM)
bands, 473

Infinite-time horizon, 367

Information bandwidth, 258

Information capacity theorem, 187-188

Information transmission, 188

Information-bearing signal, 180

Initial digital systems, 311

Inner decoder, 421

Inner encoder, 240

In-phase component, 122,125, 228, 508

Input back-off, 147

Input-output relation of a channel,
524-527

Instantaneous output signal-to-noise ratio,
348

Instantaneously sampled signal, 486

Institute of Electrical and Electronics
Engineers (IEEE), 85-86, 88, 96,
162,219, 328-330

Integrate-and-dump filter, 263

Intercellular interference, 302

Interference, 12, 63-74, 94, See also
Adjacent channel interference
(ACT); Coantenna interference
(CAI); Cochannel interference;
Intersymbol interference (ISI);
Multiple-access interference
(MATI)
ordered serial interference-cancellation
(OSIC) detector, 417418, 433
other-cell, 302-304
Interference-limited systems, 304, 461
Interleavers, 180, 207-215, 240, 316
block, 208-210
channel, 215
convolutional, 210-212
and delay, 209
defined, 207
design, 208
example, 209-210
pseudorandom, 212, 215, 249,419
random, 212
S-constraint, 251
turbo, 215
Intermodulaton distortion, 79
International Telecommunications Union
(ITU), 95-96
Internet, 454
sublayer, 455
Intersymbol interference (ISI), 117, 141,
180,240, 421
controlled, 227
Intersymbol interference problem, 104
Intracellular interference, 302
Inverse discrete Fourier transform
(IDFT), 164
Inverse fast Fourier transform (IFFT)
algorithm, 164-165
Inverse fourth-power law, 23
Inverse law, 161
Inverse mapper, 402
Irreducible (non-factorable) polynomials,
271
Isotropic antenna, 13
effective area of, 14
Isotropic radiation, 13-15
18-95 cell, capacity in (example), 319
18-95 standard, 311-319,471
cellular considerations, 317
downlink CDMA channels, 314-316
main communication channels for, 312
Pilot channel, 313
power control, 316-378
uplink, 318-319
Tterative detection, 215
Tterative detection and decoding (TDD)
process, 421
receiver, 419
Tterative receiver, 240

J
Jacobian of a transformation, 502
Jammer, 310

Joint equalization and decoding, 226,
239-243
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K

Keyhole channels, 341, 433-436
Known pilot symbols, 154

L
Land-mobile wireless communication, 2
Latency, 225-226
power control, 296
Least-mean-square (LMS) algorithm,
539-543
Lee’s model, 412
Left-hand circular polarization, 19
Left-singular values, 373, 535
Limited battery power, mobile radio
terminals, 146
Linear array signal processor, 537
Linear band-pass systems, complex
representation of, 124-126
Linear dependence on information
capacity, 187
Linear equalizer, 539
Linear estimator of fading, 155
Linear independence, 537-538
Linear modulation techniques, 108-116
amplitude modulation, 108-110
binary phase shift-keying, 110-112
offset quadriphase-shift keying
(OQPSK), 114-116
m/4-shifted quadriphase-shift keying,
116
quadriphase-shift keying (QPSK),
112-114
Linear operator, 499
Linear predictive coding (LPC), 189-190
code-excited LPC, 192-193
multipulse excited LPC, 190-192
Linear processing, 377
Linear time-varying channel, output
sampling of, 488
Linear time-varying systems, 483-484
Line-of-sight transmission, 12
Link budget, 13, 19, 35, 75-81, 95
from earth station to satellite, 76-77
equation, 19
free-space, 75-76
satellite-to-mobile terminal, 78-79
terrestrial, 80-81
Link calculations, 75-81
Local area network (LAN), 456, 469
Local propagation effects with mobile
radio, 3648
Local propagation loss, 32-33
Local variations, 30
Lodge, Oliver, 1
Logarithmic dependence on
signal-to-noise ratio, 187
Log-det capacity formula, 365
eigendecomposition of, 374-376
Logical channels, 460
Log-likelihood function, 201-202
Lognormal distribution, 32
Lognormal fading, 36
Lognormal model, 32
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Log-on and log-off messages, 460

Long code, 316

Long-term prediction, 250
synthesis filter, 191

Lossy data compression, 188

M

Macrocells, 412
Magnitude spectrum, 480
MALI, See Multiple-access interference
(MAT)
Man-made noise, 70-71
MAP algorithm, 217, 220, 224
Mapper, 250, 378-379, 387, 402
Marconi, Guglielmo, 1,89, 102
Margin, 79
Markov process, 221
M-ary PSK mapper, 378
M-ary QAM mapper, 378
Mask, 316
Matched filters, 153, 229-230, 509-515
and complex signals, 515
probability of detection, 511-515
receiver, 509-511
Matched-filter receiver, 262-263
Matrix:
coefficients, 395-396
complex-orthogonal, 381
diagonal, 372
singular-value decomposition of,
371-376
transmission, 377, 381, 396
unitary, 372
Maximal diversity order, 432
Maximal-length sequences (m-
sequences), 270-275, 300, 331
properties of, 271-272
Maximal-ratio combining, 346-353
bit error rate of coherent binary FSK,
352-353
outage probability for, 350

Maximum a posteriori probability (MAP)

decoding, 219-222
algorithm, 420
Maximum Doppler shift, 46
Maximum transmit/receive antenna gain,
16
Maximum-likelihood decoding:
of convolutional code, 201-203
rule, 385-387

Maximum-likelihood sequence estimator,

204
Maxwell, James Clerk, 1
Maxwell’s equations, 1, 13, 16, 24
Mean value, 498-499
Mean-square error, 541-542
Mean-square-error (MSE) criterion, 190
Mean-square value, 499
Median-path loss, 30-31
Medium access control (MAC) sublayer,
3,455-456
control channels, 461
logical channels, 460
paging and access channels, 460-461
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physical channels, 460
signaling and protocols, 458461
synchronization and broadcast
channels., 460
traffic channels, 461
Medium-band TDMA, 235
Memory, in encoders, 194
Memoryless binary symmetric channel,
202
Message points, 127
Message vector, 201
Metric, 203
Microcells, 412
Microwave relay systems, 2
Military wireless applications, 475
MIMO channels, See Multiple-input,
multiple-output (MIMO)
channels
MIMO wireless communications, See
Multiple-input, multiple-output
(MIMO) wireless
communications
MIMO links:
capacity for channel known at the
transmitter, 528-532
capacity of, 522-532
log-det capacity formula of, 524-527
Minimum Hamming distance, 200
Minimum mean-square error (MMSE),
542
Minimum reuse pattern, 74
Minimum shift keying (MSK), 133-137,
149-151, 170
coherent, 159
defined, 136
Gaussian-filtered, 139-142
power spectra of signal, 137-139
transition characterization of, 137
Minimum-distance decoder, 203
Mobile switching center (MSC), 465
roles of, 468
Mobile terminals, 36
Modem, 3,455
Modified Bessel function, 41
of order zero, 501

Modified Bessel functions of the first kind,

495
Modulated signal, 105
Modulated signals, analysis of, 123
Modulating signal, 105
Modulation, 103-108, 180182, 451, See
also Direct-sequence (DS)
modulation; Pulse shaping
adjacent channel interference, 144-145
amplitude and angle modulation
processes, 107-108
analog and digital modulation
techniques, 107
comparison of wireless
communications strategies,
148-151
linear channels, 148-150
nonlinear channels, 150-151
defined, 103, 105

linear and nonlinear modulation
processes, 106-107
linear modulated signals and band-pass
systems, complex representation
of, 122-126
linear modulation techniques, 108-116
multicarrier, 88
nonlinear modulation techniques,
130-142
partial-response, 227
power amplifier nonlinearity, 146148
practical benefits, 105-106
wireless local area networks (LANs),
88-89
Modulator, 105
Modulo-2 convolutions, 195
MSK, See Minimum shift keying (MSK)
Multiaccess communications, 455
Multibeam antennas, 8
Multicarrier modulation, 88
Multicarrier transmission, 163
Multicode transmission, 327
Multipath channels, 283-284
Multipath intensity profile, 58
Multipath propagation, 20
Multipath spread, power-delay profile, 60
Multipaths (multiple propagation paths),
12,36-48, 536
with directional antennas, 409412
Doppler shift, 42-44
fast fading, 36, 44-48
Rayleigh fading, 3640
Rician fading, 40-41
slow fading, 36
Multiple access, 106
Multiple-access communications, 3
Multiple-access interference (MAT), 71,
279-283,302, 452-453
Multiple-access noise, 94
Multiple-access strategies:
bandwidth efficiency, 452453
comparison of, 452
diversity, 451
evolution, 452, 454
flexibility, 452, 454
forward error-correction (FEC) coding,
451
handover, 452-453
modulation, 451
multiple-access interference, 452-453
source coding, 451
synchronization, 452-453
system complexity, 452453
user terminal complexity, 452-453
voice and data integration, 452, 454
wireless architectures, 450-454
Multiple-input, multiple-output (MIMO)
channels, 188, 300, 340-341
Multiple-input, multiple-output (MIMQ)
wireless communications,
357-363, 426,437
basic baseband channel model, 360363
basic complex channel model for, 361
coantenna interference (CAI), 358-360



MIMO capacity for channel known at
the receiver, 363-371
capacities of receive and transmit
diversity links, 366-367
channel known at the transmitter, 371
ergodic capacity, 363-366
outage capacity, 367371
space-time codes for, 376-394
Multiple-transmit, multiple-receive
(MTMR) wireless
communications, 357
Multiplier, 402
Multipulse excited LPC, 190-192
Multiuser detection, 299-301, 328
optimum, 301
Mutual information, 524

N

Narrowband, 124-125,226-229, 233,259
random processes, complex
representation of, 507-508
TDMA, 236
wireless communications, spectral
efficiency of, 226-227
Natural redundancy, 180
Near-far problem, 145, 296-297, 462
Network layer, 3,455, 467470
cellular networks, 467468
e-mail, 456
indoor LANSs, 469—470
New degree of freedom, 360
Noise, 11-102, 63-74, 94
in cascaded systems, 68-69
equivalent noise temperature, 66
flat spectral response, 67
impulse, 70-71
man-made, 70-71
multiple-access interference, 71-74
noise figure, 66-67, 70
thermal, 63-66
Noise figure, 66-67
and receiver sensitivity, 67-68
system noise figure calculation, 70
Noise performance, 218-219
of convolutional code, 212-214
Noncoherent binary frequency-shift
keying (BFSK), 159
Noncoherent receiver, 158
Nonlinear modulation techniques, 104,
130-142
binary frequency-shift keying (BFSK),
132-133
continuous-phase modulation, 133-137
frequency modulation (FM), 130-132
minimum shift keying, 133-137
Nonlinearities, presence of, 149
Nonlinearity, 104
Nonrecursive nonsystematic
convolutional encoders, 223
Nonreturn-to-zero (NRZ) binary data
stream, 140
Nonstationary channels, 61
Nonstationary physical process, 190
Nonsystematic convolutional code, 201

Nordic Mobile Telephone (NMT), 2

Normalized reuse distance, 73

N, single-input, single-output (SISO)
channels, 373

N, virtual channels, 373

Nyquist interval, 183

Nyquist pulse shaping, 117-118, 154

Nyquist rate, 183-184

0
Okumura-Hata model, 31, 82-84
Omnidirectional antennas, 8
Open system interconnection (OSI)
reference model, 3, 450, 454457
application layer, 456
data link layer, 455
network layer, 455
peer processes, 454
physical layer, 455
presentation layer, 456
protocol stack, 454
session layer, 456
seven-layer model, example of, 456457
transport layer, 455
and wireless communications, 457-458
wireless data network structure based
on, 468
Open-loop power control, 462463
Ordered serial interference-cancellation
(OSIC) detector, 417418, 433
Orthogonal frequency-division
multiplexing (OFDM), 88, 105,
162-168
cyclic prefix, 167-168
Orthogonal modulation, 354
Orthogonal, use of term, 123
Orthogonal variable spreading factor
(OVSF),269-270, 324
Orthogonality constraint under T-shifts,
121
Orthogonality of messages, 266-267
Orthonormal set, 127, 395
“QOther” filtering, 149
Other-cell interference, 302-304
Outage capacity, MIMO link, 368
Outage probability at rate R, 368
Outer decoder, 240, 421
Outer encoder, 240
Outer-loop power control, 464
Out-of-band transmissions, 71
Qutput back-off, 148
Overhead bits, 234

P

Packetizer, 180

Packets, 180

Pages, 461

Paging and access channels, 460461
Parabolic antenna gain, 16-17
Parseval’s theorem, 263, 490-492
Partial correlation, 291-292
Partial-response modulation, 227
Path-loss exponent, 31
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Pattern-matching operation, 189
Patterns, in codebook, 182
Peak-to-average ratio (PAR), 327
Peer processes, 454,456
Personal communications services (PCSs),
311
Phase distortion, 147,151
Phase modulation, 108, 151, 153-154, 173
Phase spectrum, 480
Phase tree, 135
Phase trellis, 136
Physical channels, 460
Physical layer, 3-4,455
e-mail, 457
Physical models, 11-12, 19-29
Physical propagation models, 94
diffraction, 12, 20, 24-28, 30, 94
free-space propagation, 13-19, 30,94
reflection, 12,20, 30, 94
Piconet, 322
Pilot symbol transmission, 154158
Pinhole channels, See Keyhole channels
Planck’s constant, 64
Plane-Earth propagation equation, 23
Point sink, 14
Point-to-multipoint architecture, 6,7
Polarization, 19
Popoff, A.S., 1
Portable terminals, 36
Power amplifier nonlinearity, 146-148
Power control, 169,294-297, 458, 461-464
closed-loop, 463-464
and control channels, 461
implementation issues, 296
near-far problem (example), 462
open-loop, 462463
outer-loop power control, 464
Power flux density, 13
Power spectral density, 504
Power spectrum, 504
Power-delay profile, 58-60
wireless local area networks (LANs),
86-88
Precise Positioning Service (PPS), 319
Prediction error, 189
Predictive model, 189
Premodulation filter, 117
Presentation layer, 456
e-mail, 456
Principle of analysis by synthesis, 190
Principle of frequency hopping, 237
Principle of reciprocity, 16
Principle of superposition, 107, 131
Probability, 496-497
Probability density functions, 498499
Probability distributions and densities,
497498
Probability of decoding error, 201
Probing signal, 180
Propagation, 11-12
Propagation model, wireless local area
networks (LANs), 85
Propagation-loss exponent, 303
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Protocol stack. 454
Pscudorandom hopping pattern, 259
Pseudorandom interleaver, 212,215
Public mobile telephone systems, 2
Public switched telephone network
(PSTN). 3,454,459
Pulse position modulation, 91
Pulse shaping, 104, 116-122, 149
comparison (example), 121
raised cosine (RC) spectrum for, 104
root raised-cosine, 119-122
Pulse-shaping filter, 139
Puncturing, 215
Pure Aloha, 243-245, 250
Push-to-talk protocol, 6

Q
Q-function, 518-519
Quadbit, 129
Quadrature component, 122, 125, 228, 508
Quadrature demodulator, 180-181,227
Quadriphase-shift keying (QPSK), 127,
149-151, 170,378

coherent, 158
Quality of service (QoS), 3, 455, 465
Quantization, 184, 188
Quasi-static model, 367-368

R
Radial extents, 434
Radio communications, milestones in
development of, 1-2
Radio frequency (RF) power, 146, 207, 238
Radio spectrum, 4, 179, 235, 258, 306, 450,
458,461,475
Raised-cosine (RC) spectrum, 104,
117-118
RAKE receiver, 284-288, 290, 292-294,
304,313,324,332,451-453,470
Raleigh distribution, 501
Random access memory (RAM), 212
Random binary wave, 505
Random interleaving, 212
Random layered space-time (RLST)
coding scheme, 419
Random processes, 503-504
complex random variables and
processes, 507
ergodic, 508
linear filtering of, 506-507
narrowband, complex representation
of, 507-508
properties of, 504
spectra of, 504-506
Random sequences, 276-279
Random variables, 497
expectations of, 498-499
transformations of, 502-503
Random-access channel, 459
Random-access techniques, 243-249
carrier-sense multiple access, 245-248,
250
pure Aloha, 243-245, 250
slotted Aloha, 245, 250, 252
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Range, wireless local area networks
(LANSs), 86
Rate distortion theory, 188-189
Ray tracing, 30, 34
Rayleigh distribution, 501, 503
Rayleigh fading, 36-40, 62, 154,213,537
margin for, 39-40
Rayleigh probability density function, 39
Realization of a random process, 504
Reassociation, 469
Receive antenna gain, 16
Receive diversity, 340, 438
Received signal, 81
Received vector, 201
Receiver, 4
coherent, 158
Earth station, 78
iterative, 240
matched-filter, 262-263
noncoherent, 158
RAKE, 285-288,293, 294, 313
satellite, 77
search, 313
Turbolike. 419
Receiver noise, 4, 63, 70, 75-76, 80-81, 94
Receiver sensitivity, 15
wireless local area networks (LANs),
85-86
Reciprocity, principle of, 16
Reconstruction system, 486
Recursive convolutional code, 216
Recursive systematic convolutional (RSC)
encoders, 223
Redundancy:
controlled, 180
cyelic redundancy check (CRC) code,
194-195
in encoder, 186
natural, 180
and space-time codes, 376
Redundant information, 184, 185
Reed-Solomon codes, 222
Reference signal, 540
Reflection, 12,20, 30
and the plane-earth model, 20-24
Refraction, 12
Regular-pulse excitation, 192
Relative other-cell interference factor, 302
Repetition code, 322
Replication property, 480
Response time, 481
Return path, 193
Reuse distance, 8
Reuse factors, 73
Rich Rayleigh scattering environment,
MIMO channel as, 362, 437
Rician distribution, 41, 444, 501
Rician fading, 40-41, 375
Rician K-factor, 41
Right-hand circular polarization, 19
Right-singular values, 373, 535
Rolloff, 117-118, 149, 150
Roll-off factor, 117-118
Root raised-cosine pulse shaping, 119-122
Routing, 3, 455-456, 458

S
Safety services wireless applications, 475
Sample function of a random process, 504
Sampled convolution theorem, 487-488
Sampling, 182-184
following with coding, 184-185
Sampling rate, 4835
Sampling theorem, 182, 484-486
Satellite receiver, 77
Satellite transmitter, 78
Satellite-to-mobile terminal link budget,
78-79
Scattering effects, 19
S-constraint interleaver, 251
SCORE (Signal Communication by
Orbital Relay Equipment)
satellite, 2
Scramblers, 274
SDMA, 5, 8,103,340, 437,451
and handovers, 466467
and smart antennas, 402-415
Search receiver, 313
Second Fresnel zone, 27
Second moment, 499
Second-generation systems, 311
Sector antennas, 406
Selection combining, 341-346
outage probability (example), 346
scanning version of procedure, 345
Self-sychronizing scrambler, Wi-Fi,
329-330
Separability theorem, 520-521
Separation theorem, 221
Serially concatenated RLST code,
generation of, 419420
Service availability, 33
Service sets, indoor LANs, 469
Session layer, 456
e-mail, 456
Sets, 496
Shadowing, 32, 36,303
Shannon, Claude, 185
Shannon’s information theory, 185-189
channel-coding theorem, 186-187
information capacity theorem, 187-188
rate distortion theory, 188-189
source-coding theorem, 185-186
Short code, 317-318
Side lobes, 16
Signal constellation, 126, 379, 382,
385-387,399,418
Signal distortion, 117
Signal energy, 127, 159-161, 512
Signal estimator, 402
Signal pattern, 126
Signaling channels, 312
Signal-to-interference ratio (SIR), 71
Signal-to-interference-plus-noise ratio,
303-304
Signal-to-noise ratio (SNR), 159, 341-344,
363,537
instantaneous, 343
largest. 341,417



Signature sequence, See Spreading codes
Significant scatterers, 434
Sinc function, 482, 486
Single-bounce elliptical model, 412414
Single-carrier transmission, 123
Single-input, single-output channel, 188
Single-input, single-output (SISO) flat-
fading channel, 364
Single-user MIMO links, 438
Singular-value decomposition of the
channel matrix, 371-376
eigendecomposition of the log-det
capacity formula, 374-376
Singular-value decomposition (SVD)
theorem, 534-535
16-quadrature amplitude modulation
(16-QAM), 129-130
Skywave, 20
Slotted Aloha, 245, 250,252
Slow fading, 36, 39-40, 542
Slow-frequency hopping, 260, 307,
308-310
Smart antennas:
adaptive antennas, 406
advantages of, 406
for mobile applications, 406
antenna arrays, 406412
directional antennas, multipath with,
412-415
examples of, 406
and SDMA, 402-415
sector antennas, 406
switched-beam antennas, 406
Soft handovers, 303, 466
Soft-input, soft-output (SISO) decoding
algorithm, 217,224
Soft-input, soft-output (SISO) detector,
421
Source coding, 184, 188,249,451
with a fidelity criterion, 188
Source decoded output, 181-182
Source signal, 180, 185,229
Source-coding theorem, 185-186
Space diversity, 339-340
forms of, 340
“Space diversity on receive” techniques,
341-357
equal-gain combining, 353
maximal-ratio combining, 346-353
selection combining, 341-346
square-law combining, 353-357
Space-division, multiple-access (SDMA),
See SDMA
Space—time block codes:
differential, 394404
V-BLAST vs.,427-430
Space-time codes, 376-394
Alamouti code, 379-387
basics of, 378-379
defined, 376
design procedures, 377
generalized complex orthogonal
space—time block codes, 388-391

performance comparisons of different
space-time block codes using a
single receiver, 391-394
space—time block code, 376-378
space—time trellis code, 376-377
types of, 376
Space—time deinterleavers and
interleavers, 422
Space-time processor, 539
Spectral decomposition theorem, 534
Spectral efficiency, 144
Speech coding, 189-193
code-excited LPC, 192-193
linear predictive coding (LPC),
189-190
multipulse excited LPC, 190-192
Sporadic codes, 390
Spread spectrum, 2, 8,9
Spreading codes, 265-279
Gold codes, 274-276
autocorrelation/cross-correlation of,
276
maximal-length sequences
(m-sequences), 270-273
orthogonal variable spreading factors
(OVSF),269-270
orthogonality of messages, 266-267
random sequences, 276-279
scramblers, 274
Walsh—-Hadamard sequences, 267270
cross-correlation between, 268-269
Spreading factors, 261, 282, 287-288,
297-298, 323-325
orthogonal variable spreading factor
(OVSEF), 269-270,324
Spreading sequence, 261-262
Spread-spectrum techniques, 258-259
Squared Euclidean distance, 231-232
Square-law combining, 353-357
Staggered QPSK, 115
Standard Positioning Service (SPS),319
State diagram, 199
Stationary/nonstationary channels, 61
Stations (STAs), indoor LANs, 469
Statistical expectation operator, 38,
498-499
Statistical propagation models, 11-12,
30-33,94
local propagation loss, 32-33
median-path loss, 30-31
Step-size parameter, 542
Subcarriers, 163-167
Subframes, 192
Subspace, 538
Sunde’s FSK, 132
Superposition, principle of, 107, 131
Survivor paths, 203
Switched-beam antennas, 406
Symbol energy-to-noise spectral density
ratio, 348
Symbol error rate (SER), 427
Symbol-shaping function, 260-262
Symmetry property, error function, 514,
516
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Synchronization, 5, 180, 452453

and broadcast channels, 460
Synthesis, principle of analysis by, 190
Synthesis filter, 191-192
Synthesizing a modulated signal, 123
System capacity, 536
System complexity, 452-453
Systematic convolutional code, 201
System-memory time, 431

T
Tail bits, 236
Tapped-delay-line (TDL) filter, 190
TCP/IP protocol, 456
TDMA, 5-7, 103, 168,170-171, 179182,
193,233-236, 258-259,265, 450,
469
advantages over FDMA, 234-235
FDMA compared to, 233
medium-band, 235
narrowband, 236
overlaid on FDMA, 235-236
principle of frequency hopping, 237
sampling, 182-184
following with coding, 184185
system, frame efficiency of, 237
wideband, 235
TDMA/FDMA combination systems, and
handovers, 466
Telemetry and control wireless
applications, 476
Telephone switched circuit protocol,
458-459
Terrestrial link budget, 80-81
Terrestrial propagation:
physical models, 19-29
statistical models, 30-33
TFCI (Transport Format Combination
Indicator) bits, 326
Thermal noise, 63-66, 497
Third-generation systems, 311
3-dB baseband beamwidth, 140
3-dB beamwidth, 18
Time average, 508
Time dispersion, 55
Time diversity, 240,339
Time intervals, 179
Time lag, 488
Time-bandwidth product, 140
Time-division duplex (TDD), 168
Time-division multiple access, See TDMA
Time-flat channels, 52, 58, 62
Time-invariant channel, 58
Time-selective channel, 50-52, 58,62
Time-varying channel, 58
Time-varying impulse responses, 54
Time-varying nature, of channel
impairments, 4, 5
TPC (Transmission Power Control) bits,
326
Trace operator, 527
Tracking receiver, 313
Traffic channels, 461
Traffic data bits, 234
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Transceiver, 144
Transfer function, 483
Transition metric computer, 232
Transition metrics, 228
Transmission bandwidth, 258
Transmission matrix, 377, 381, 396
Transmission medium resources, 4
Transmit antenna gain, 15-16
Transmit diversity, 328, 340, 438
Transmit power amplifier, 146
Transmit spectrum, 148
Transmitter, 4
Transport channels, 325
Transport Control Protocol (TCP), 456
Transport layer, 455

e-mail, 456
Turbo codes, 215-222

block sizes, 226

convolutional codes compared to,

223-224

Turbo coding principle, 218,239
Turbo decoding, 216-218
Turbo interleaver, 215
Turbo-BLAST, 251, 415, 419422, 438

experimental performance of V-

BLAST vs., 422-425

Tuarbolike receiver, 419
Turbo-MIMO architecture, 419
Two-dimensional signal constellations, 126
Two-dimensional temporal situation, 488
Two-stage decoder, 240
Two-stage encoder, 240

u

Ultra-wideband (UWB) radio
transmission, 89-90, 93

spectral density of, compared to noise

floor, 91-92

Unconstrained signaling techniques,
376-394

Uncorrelated scattering (US), 56-57

Uniform weighting, antenna pattern with,
409-412

Unique spreading signature, 259

Unit energy, normalized coordinates of,
126

Unit impulse, 51, 480

Unitary matrix, 372, 533-534, 535
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Universal mobile terrestrial
telecommunication systems
(UMTS’s), 323

Uplink, 143

User terminal complexity, 452-453

User terminals (UTs), 5

v

Variance, 499

Vector quantizers, 188

Vector space, 538

Vectors, 188-189

Vertical polarization, 19

Vertical-BLAST (V-BLAST), 415,
417-419, 438

experimental performance of Turbo-

BLAST vs., 422-425

Virtual carrier sense, 469-470

Virtual receive antennas, 434

Virtual transmit antennas, 434

Viterbi algorithm, 203-207, 209, 220, 222,

224,228,231-233,249,377

example, 205

maodifications of, 205

summary of, 204
Viterbi decoder, 205,209, 214,232
Viterbi equalization, 231-233
Viterbi equalizer, 231-232, 249
Voice activation, 304-305
Voice and data integration, 452, 454

W
‘Walsh-Hadamard sequences, 267-270,
318,331
cross-correlation between, 268-269
Waterfall, 159
Water-filling procedure, 530-532
WCDMA, 323-328, 471,472
bandwidth and chip rate, 324
cellular considerations, 327-328
channel types, 325
data rates and spreading factor, 324
downlink, 326-327

forward error-correction (FEC) codes,

324-325
modulation and synchronization, 324
multicode transmission, 327
uplink, 325-326

Weight vector, 409410, 538
subspace method for determining,
538-539
Whip antenna, 80-81
‘White complex Gaussian codebook, 362
‘White Gaussian codebook, 368
White noise, 65,79, 94, 156, 282, 505
Wideband CDMA, See WCDMA
Wideband channels, 62
Wideband TDMA, 235
Wide-sense stationary, 504
Wide-sense stationary uncorrelated
scattering (WSSUS) channels, See
‘WSSUS channels
Wide-sense stationary (WSS), 55
Wiener-Hopf equation, 156
Wiener—Khintchine relations, 490, 505
Wi-Fi, 328-331
Barker sequence, 329
variants, 329-330
Wireless architectures, 450478
multiple-access strategies, 450-454
comparison of, 452
Wireless channel, physical properties of, 8
Wireless communications:
channel-coding strategies for, 222-226
AWGN channel, 225
decoding, 224
encoding, 223-224
fading wireless channels, 225
joint equalization and decoding, 226
latency, 225-226
first generation of systems, 132
Wireless data network standards, 472-473
Wireless local area networks (LANs), 34,
85-89, 162
modulation, 88-89
power-delay profile, 86-88
propagation model, 85
range, 86
receiver sensitivity, 85-86
Wireless telegraphy, 1
Wireless telephone network standards,
470471
WSSUS channels, 54-57, 61

Z

Zero-forcing subspace procedure, 539
Zeroth-order Bessel function, 46



Page 471 of 474



Page 472 of 474




Page 473 of 474



LIBRARY OF CONGRESS

Modern Wireless (ommon, T

SIMON HAYKIN MICHAEL MOHER

The rapid growth of wireless communications and its pervasive use are changing the way we communicate
in some fundamental ways. Modern Wireless Communications distinguishes itself with the treatment of these
techniques in depth and yet in a principled manner that can be taught at the undergraduate level. The order
in which these techniques are treated follows the evolution of spectral utilization of the radio channel. As a
consequence, much of the material in the book is presented in the order in which it was actually developed,
giving students insight into the logic and need for each development.

Features of the Book

Each chapter includes:

« Examples with detailed solutions

= Problems that help the reader develop an improved understanding of the issues, along with the answers

= End-of-chapter problems that provide an abundance of additional examples, whose solutions will further
help the reader develop a deeper understanding of the material covered

» Notes and References that guide the reader to related sources for further reading.

= Theme Examples, which discuss pertinent issues of practical relevance.

Modern Wireless Communications is indispensable both in a course on wireless communications or as a useful
reference for practicing electrical engineers.

Other Books by the Author

Neural Networks: A Comprehensive Foundation, Second Edifion. ISBN: 0-13-273350-1.
Neural Networks represents the first comprehensive treatment of neural networks from an
engineering perspective. Thorough, well-organized, and completely up-to-date, it examines
all the important aspects of this emerging technology and provides broad coverage of the
subject, including the learning process, back propogation, radial basis functions, recurrent
networks, self-organizing systems, modular networks, temporal processing, neurodynamics,
and VLSI implementations. The book includes chapter objectives, computer experiments,
problems, worked examples, a bibliography, photographs, illustrations, and a thorough
glossary to reinforce key concepts. The author's concise and fluid writing style makes the
material more accessible.

ADAITIVI

RISNORIESIN o8 Acaptive Filter Theory, Fourth Edition. 1SBN: 0-13-090126-1.

e The third edition of this highly successful book has been updated and refined fo keep current
with the field and develop concepts in as unified and accessible a manner as possible.
Haykin examines both the mathematical theory behind various linear adaptive filters with
finite-duration impulse response (FIR) and the elements of supervised neural networks.

ISBN 0O-13-022472-3

StudentAid.ed.gov 90000

FUNDING YOUR FUTURE

PEARSON

PlE‘nllﬁe“ Upper Saddle River, N) 07458 “
8 www.prenhall.com olira01300224729

Page 474 of 474



