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referred to as a muttiple-input, multiple-output (MIMO) wireless communication
system, which includes receive diversity and transmit diversity as special cases of space
diversity. The novel feature of the MIMO systemis that, in a rich Rayleigh scattering
environment, it can provide a high spectral efficiency, which may be explainedasfol-
lows: The signals radiated simultaneously by the transmit antennasarrive at the input
of each receive antenna in an uncorrelated mannerdueto the rich scattering mecha-
nism of the channel. The net result is the potential for a spectacular increase in the
spectral efficiency of the wireless link. Most importantly, the spectral efficiency
increases roughly linearly with the numberof transmit or receive antennas, whichever
is less. This result assumes that the receiver has knowledge of channel state informa-
tion. The spectralefficiency of the MIMOsystem can be further enhanced byincluding
a feedback channel from the transmitter to the receiver, whereby the channelstate is
also made available to the transmitter, and with it, the transmitter is enabled to exer-

cise control over the transmitted signal.
Increasing spectral efficiency in the face of multipath fading is one important

motivation for using MIMOtransmission schemes. Another important motivation is
the developmentof space-time codes, whose aim is the joint coding of multiple transmit
antennas so as to provide protection against channel fading, noise, and interference. In
this context, of particular interest is a class of block codes referred to as orthogonal and
generalized complex orthogonal space-time block codes. In this class of codes, the
Alamouti code, characterized by a two-by-two transmission matrix, is the only full-rate
complex orthogonal space-time block code. The Alamouti codesatisfies the condition
for complex orthogonality or unitarity in both the spatial and temporal sense. In con-
trast, the generalized complex orthogonal space-time codes can accommodate more
than two transmit antennas; they are therefore capable of providing a larger coding
gain than the Alamouti code for a prescribed bit error rate and total transmission rate
at the expense of a reduced code rate and increased computational complexity. How-
ever, unlike the Alamouti code, the generalized complex orthogonal space-time codes
satisfy the condition for complex orthogonality only in the temporal sense. Accord-
ingly, the complex orthogonal space-time codes,including the Alamouti code and gen-
eralized forms, permit the use of linear receivers.

The complex orthogonal property of the Alamouti codeis exploited in the devel-
opmentof a differential space-time block coding scheme, which eliminates the need for
channel estimation and thereby simplifies the receiver design. This simplification is,
however, attained at the expense of degradation in receiver performance, compared
with the coherent version of the Alamouti code, which assumes knowledge of the
channelstate information at the receiver.

Space was also discussed in the context of space-division multiple-access
(SDMA), the mechanization of which relies on the use of highly directional antennas.
SDMAimproves system capacity by allowing a greater reuse of the available spectrum
through a combination of two approaches: minimization of the effects of interference
and increased signal strength for both the user terminal and the base station. Advanced
techniques such as phased-array antennas and adaptive antennas, which have been
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researched extensively under the umbrellas of signal processing and radar for more
than three decades, are well suited for implementing the practical requirements of both
approaches.

Underthe three theme examples, we discussed three different BLAST architec-
tures issues relating to antenna diversity, spectral efficiency, as well as keyhole chan-
nels. Each of the BLAST architectures, namely, diagonal-BLAST, vertical-BLAST,
and Turbo-BLAST,offers distinct features of its own. Diagonal-BLAST (D-BLAST)
makesit possible to closely approximate the ergodic channelcapacity in a rich scatter-
ing environment and maytherefore be viewed as the benchmark BLASTarchitecture.
Butit is impractical, as it suffers from a serious space-time edge wastage. Vertical-
BLAST (V-BLAST) mitigates the computational difficulty problem of D-BLASTat
the expense of a reduced channel capacity. Turbo-BLAST uses a random layered
space-time code at the transmitter and incorporates the turbo coding principle in
designing an iterative receiver. In so doing, Turbo-BLAST offers a significant
improvementin spectral efficiency over V-BLAST,yet the computational complexity
is maintained at a manageable level. In terms of performance, Turbo-BLAST outper-
forms V-BLASTfor a prescribed (N,, N,) antenna configuration, but does not perform
as well as D-BLAST.

The different BLAST architectures were discussed in Theme Example 1. The

material presented in Theme Example 2 taughtus the following:
e The twobasic formsofdiversity, namely, transmit diversity and receive diversity,

play complementaryroles, with both of them being locatedat the basestation.
e For low SNR and fixed spectral efficiency, V-BLAST outperforms space-time

block codes (STBCs) on {N,, N,} antenna configurations with N,.>N,.
e Assuming the use of forward error-correction channel codes, a two-by-two

STBC system could provide an adequate performance for wireless communica-
tions at low SNR.

e Diversity order is determined experimentally by measuring the asymptotic slope
of the average frameerror rate (or average symbolerror rate) plotted versus the
signal-to-noise ratio on a log-log scale.

° MIMOsystemsprovide a trade-off between outage capacity and diversity order,
depending on howthe system is configured.

The degenerate occurrence of keyhole channels, discussed in Theme Example 3
arises when the rank of the channel matrix is reduced to unity, in which case the capa-
city of the MIMOlinkis equivalent to that of a single-input, single-output link operat-
ing at the samesignal-to-noise ratio, Fortunately, the physical occurrence of keyhole
channels is a rare phenomenon.

Onelast commentis in order: the discussion of channel capacity presented in the
chapter focused on single-user MIMOlinks. Although,indeed, wireless systems in cur-
rent use cater to the needs of multiple users, the focus on single users may bejustified
on the following grounds:

e The derivation of MIMO channelcapacity is much easier to undertakefor single
users than multiple users.
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e Capacity formulas are known for many single-user MIMOcases, whereas the
corresponding multiuser ones are unsolved.

Simply put, very little is known about the channel capacity of multiuser MIMOlinks,
unless the channel state is knownat both the transmitter and receiver.”°
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| For detailed discussions of the receive diversity techniquesofselection combining, max-
imal-ratio combining, and square-law combining, see Schwartzetal. (1966), Chapter 10.

? The term “maximal-ratio combiner” was coined inaclassic paperon linear diversity
combining techniques by Brennan (1959).
3 The three-point exposition presented in Section 6.2.3 on maximal-ratio combining
follows S. Stein in Schwartz (1966), pp. 653-654.

‘For expository discussions of the many facets of MIMO wireless communications,
see the papers by Gesbert et al. (2003), Diggavi et al. (2003), and Goldsmith et al.
(2003). The paper by Diggaviet al. includes an exhaustive list of references to MIMO
wireless communications and related issues. For books on wireless communications

using multiple antennas, see Hottinen et al. (2003) and Vucetic and Yuan (2003).
Impulsive noise due to human-made electromagnetic interference is discussed in

Blackard and Rappaport (1993), and Wang and Poor(1999); see also Chapter 2.

©The formula of Eq. (6.56), defining the ergodic capacity of a flat-fading channel,is
derived in Ericson (1970).

1 The log-det capacity formula of Eq. (6.59) for MIMOwireless links operating in rich
scattering environments was derived independently by Teletar (1995) and Foschini
(1996); Teletar’s report was published subsequently as a journal article (1999). For a
detailed derivation of the log-det capacity formula, see Appendix G.

8 The Gaussian approximation of the probability density function of the instantaneous
channel capacity of a MIMOwirelesslink, which is governed by the log-det formula,is
discussed in detail in Hochwald etal. (2003).

° The result that at high signal-to-noise ratios the outage probability and frame (burst)
error probability are the sameis derived in Zheng and Tse (2002).

!0MIMOwireless communications systems incorporating the use of feedback chan-
nels are discussed in Vishwanath et al. (2001), Simon and Moustakas (2003), and
Hochwald et al. (2003). The latter paper introduces the notion of rate feedback by
quantizing the instantaneous channel capacity of the MIMO link.

' The effect of correlation fading on the channel capacity of MIMO wireless commu-
nicationsis discussed in Shiu et al. (2000) and Smith et al. (2003).

i2 Space-timetrellis codes are discussed in Tarokhet al. (1998).
The Alamouti code was pioneered by Siavash Alamouti (1998); the code has been
adopted in third-generation (3G) wireless systems, in which it is known as space-time
transmit diversity (STTD).
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4The generalized space-time orthogonal codes were originated by Tarokh etal.
(1999a,b).

15 The decoding algorithms (written in MATLAB)for the Alamouti code S, and the
orthogonal space-time codes G3, Gy, H3, and Hy due to Tarokhet al. are presented
in the Solutions Manual to this book. It should, however, be noted that there are
minor errors in the original decoding algorithms for Hz, and Hy listed in the Appen-
dix to the paper by Tarokhetal. (1998). These errors have been corrected in the per-
tinent MATLABcodes.

16 Differential space-time block coding, based on the Alamouti code, was first
described by Tarokh and Jafarkhani (2000). See also the article by Diggavi et al.
(2002), which combines this form of differential coding with orthogonal frequency-
division multiplexing (OFDM)for signal transmission over fading frequency-selective
channels; OFDM wasdiscussed in Chapter3.

'7 Chapter 3 of Liberti and Rappaport (1999) describes more general models for
phased arrays other than linear and wheregain in elevation angle as well as azimuthis
of interest. Chapter 8 of the same book describes various algorithms for adapting the
weighting vector, depending upon the direction ofarrival of the signal.

18-The circular model for effective scatterers was proposed in Lee (1982).

'° Tn Chapter 7 of Liberti and Rappaport (1999), the single-bounceelliptical modelis
described in greater detail. Note that the model does not take into accountthe effects
of diffraction.

20 The D-BLASTarchitecture was pioneered by Foschini (1996) and discussed further
in the papers by Foschini and Gans (1999) and Foschinietal. (2003).

? Thefirst experimentalresults in the V-BLASTarchitecture wereoriginally reported
in the article by Golden et al. (1999); see also the paper by Foschini et al. (2003), in
which this particular form of BLAST is referred to as horizontal-BLAST, or
H-BLAST.

22The Turbo-BLASTarchitecture wasfirst described by Sellathurai and Haykin
(1998), with additional results reported subsequently in the papers by the same
authors (2000, 2002, 2003).

3 The experimental results presented in Figs. 6.40 through 6.42 are reproduced from
the paper by Sellathurai and Haykin (2002) with permission of the IEEE.

74 According to deHaas (1927, 1928), the possibility of using antenna diversity for mit-
igating short-term fading effects in radio communications was apparently first discov-
ered in experiments with spaced receiving antennas operating in the high-frequency
(HF) band. For additional historical notes, see Chapter 10 by Seymour Stein in
Schwartz et al. (1966).

25 For definitions of the diversity order and multiplexing gain of MIMO wireless com-
munication systems and the implications of these definitions in terms of system beha-
vior, see Digavi (2003).
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°6 Keyhole channels, also dubbed pinhole channels, were described independently by
Gesbertet al. (2002) and Chizhik et al. (2002).

27 The GBGP model for MIMOwirelesslinks is described in Gesbertet al. (2002).
78 Multiuser MIMOwireless systems are discussed in Diggaviet al. (2003) and Gold-
smith etal. (2003).
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Diversity-on-receive techniques

Problem 6.21 A receive-diversity system uses a selection combiner with two diversity paths.
An outage occurs when the instantaneoussignal-to-noise ratio ydrops below 0.25 y,,,, where y,,
is the average signal-to-noise ratio. Determine the probability of outage experienced by the
receiver.

Problem 6.22 Theaveragesignal-to-noise ratio in a selection combiner is 20 dB. Compute
the probability that the instantaneous signal-to-noise ratio of the device drops below y= 10 dB
for the following number of receive antennas:

(a) N,=1

(b) N,=2

(c) N,=3

(d) N,=4
Comment on yourresults.

Problem 6.23 Repeat Problem 6.22 for y= 15 dB.

Problem 6.24 In Section 6.2.2, we derived the optimum values of Eq. (6.18) for complex
weighting factors of the maximal-ratio combiner using the Cauchy—Schwartz inequality. This
problem addresses the sameissue, using the standard maximization procedure. To simplify mat-
ters, the numberN, of diversity pathsis restricted to two, with the complex weighting parameters
denoted by a, and ap.

Let

ay = XyetjVy k= 1,2

Then the complex derivative with respect to a, is defined by

FUP2) parsda, 2\dx, “OY,

Applying this formula to the combiner’s output signal-to-noise ratio y, of Eq. (6.14), derive
Eq. (6.18).

Problem 6.25 In this problem, we develop an approximate formula for the probability of
error, P,, produced by a maximal-ratio combiner for coherent FSK. We start with Eq. (6.25), and
for small ¥);., we may use the following approximation for the probability density function:

1 N,-1

Sré mre) = VYYmre
¥3(N,—1)!
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(a) Using the conditional probability of error for coherent BFSK,thatis,

1

Prob(error|¥pyrc) = yerfe( + Yaxc)
derive the approximation

Ee 1 Sa Nill
J erfe(/y)y dy1 N, 0aftan) (N,-1)!

1

where yp = 5 Vinre"
(b) Integrating the definite integral by parts and using the definition of the complementary

error function, show that

1 —

Pe=§—rey ow
2d(5 Ye) N,!

(c) Finally, using the definite integral

obtain the desired approximation

Pé
* 1 WN, A

2Je(5%)
Problem 6.26

(a) Using the approximation for /,(y,,,.) given in Problem 6.25, determine the probability of
symbol error for a maximal-ratio combiner that uses noncoherent BFSK.

(b) Compare yourresult of part(a) with that of Problem 6.25 for coherent BFSK.

Problem 6.27

(a) Continuing the approximation to f-(Ym;,), determine the probability of symbol error for
a maximal-ratio combiner that uses coherent BPSK.

(b) Compare yourresult of part(a) with that of Problem 6.25 for coherent BFSK.

Problem 6.28 Asdiscussed in Section 6.2.3, an equal-gain combineris a special form of the
maximal-ratio combiner for which the weighting factors are all equal. For convenience of pre-
sentation, the weighting parameters are set to unity. Assuming that the instantaneoussignal-to-
noise ratio yis small compared with the average signal-to-noise ratio y,,, derive an approximate
formula for the probability density function of y.

Problem 6.29 Compare the performances of the following linear diversity-on-receive
techniques:
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(a) Selection combiner

(b) Maximal-ratio combiner

(c) Equal-gain combiner

Base the comparison on signal-to-noise improvement, expressed in dB, for N, = 2,3, 4,5, and 6
diversity branches.

Problem 6.30 Show that the maximum-likelihood decision rule for the maximal-ratio
combiner may be formulated in the following equivalent forms:

(a) Choose symbols; over s, if and only if

2, Bo 2 a Bioyoi 2 et '
(a, + 05)]s;| ~¥18} —Y15; < (G4 + O})| 54 — VS -ViSy k#i

(b) Choose symbol 5; over s, if and only if

2. 2 Qin. oD 2 2 i. .
(a+ 05 -1)|5,|" +d" (11, 8,) < (a + a -1) 5,| +4 (py 5) k#i 

Here, Hy, .§;) denotes the squared Euclidean distance betweenthe received signal y, and
constellation points s;.

Problem 6.31 It may be argued that,in a rather loose sense, transmit-diversity and receive-
diversity antenna configurationsare the dual of each other, asillustrated in Fig. 6.46.

(a) Taking a general viewpoint,justify the mathematicalbasis for this duality.
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FIGURE 6.46 Diagram for Problem 6.31.
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(b) However, we may cite the example of frequency-division diplexing (FDD), in which, in a
strict sense, the duality depicted in Fig. 6.44 is violated. How is it possible for the violation
to arise in this example?

MIMO Channel Capacity

Problem 6.32 In this problem, we continue with the solution to Problem 6.9, namely,

 Aay3 } as N —log ,2

where N, = N, = N andA,,is the average eigenvalue of HH’ = H'H,

(a) Justify the asymptotic result given in Eq. (6.61)—thatis,

c 2 constant
N

Whatis the value of the constant?

(b) What conclusion can you draw from the asymptotic result?

Problem 6.33 Byandlarge, the treatment of the ergodic capacity of a MIMO channel, as
presented in Sections 6.3 and 6.5, focused on the assumption that the channel is Rayleigh dis-
tributed. In this problem, we expand on that assumption by considering the channel to be Rician
distributed. In such an environment, we may express the channel matrix as

H = oH,,+H,,

where H.,, and H,, denote the specular and scattered components, respectively. To be consistent
with the MIMO modeldescribedin Section 6.3, the entries of both H,, and H,, have unit ampli-
tude variance, with H,, being deterministic and H,, consisting of iid complex Gaussian-distributed
variables with zero mean. The scaling parameter a is related to the Rice K-factor by the formula

K = 10log,)a°dB

(a) Considering the case of a pureline of sight (LOS), show that the MIMO channelhas the
deterministic capacity

C=log,(1 + N,a’p)_ bits/s/Hz

where N,.is the numberof receive antennas andpis the total signal-to-noise ratio at each
receiver input.

(b) Compare the result obtained in part (a) with that pertaining to the pure Rayleigh distri-
buted MIMOchannel.

(c) Explore the more general situation, involving the combined presence of both the specular
and scattered components in the channel matrix H.

Problem 6.34 Suppose that an additive, temporally stationary Gaussian interference v(¢)
corrupts the basic channel modelof Eq.(6.48). The interference v(t) has zero mean and correla-
tion matrix R,, Evaluate the effect of v(t) on the ergodic capacity of the MIMOlink.

Problem 6.35 Consider a MIMOlink for which the channel may be considered to be essen-
tially constant for tT uses of the channel.
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(a) Starting with the basic channel model of Eq. (6.48), formulate the input-output relation-
ship ofthis link, with the input described by the N,-by-t matrix

S = [S1, S85, wees s,]

(b) Howis the log-det capacity formula of the link correspondingly modified?

Orthogonal Space-Time Block Codes

Problem 6.36 The objective of this problem is to fill in the mathematical details that lie
behind the formulas of Eqs. (6.104) and (6.105) for the maximum-likelihood estimates $1 and $9.

(a) Starting with Eq. (6.102) for the combiner output yx and using Eq. (6.103) for the proba-
bility density function of the additive complex Gaussian noise % ;> formulate the expres-
sion for the likelihood function of transmitted symbol sj; & = 1,2.

(b) Hence, using the result of part (a), derive the formulas of Eqs. (6.103) and (6.104).

Problem 6.37 Figure 6.47 shows the extension of orthogonal space-time codes to the
Alamouti code, using two antennas on transmit and receive. The sequence ofsignal encoding
and transmissionsis identical to that of the single-receiver case of Fig. 6.18. Table 6.5(a) defines
the channels between the transmit and receive antennas. Table 6.5(b) defines the outputs of the
receive antennasat times f’ and f’ + 7’, where T is the symbol duration.

51. 82,id ie

~ $2 5] .. a

Transmit I Tipaaca
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antenna 1 antenna 2 
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FIGURE 6.47 Diagram for Problem 6.37.
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TABLE 6.5 ‘Table for Problem 6.36.

(a) 

 

 

 

 

Receive antenna | Receive antenna 2

Transmit antenna 1 hy hy
Transmit antenna 2 hy hg
(b)

Receive antenna 1 Receive antenna 2

Time X, ¥3

Time (+7 x5 4 

(a) Derive expressions for the received signals ¥1, 2, ¥3, and X4, including the respective
additive noise components, in termsof the transmitted symbols.

(b) Derive expressionsfor the line of combined outputs in termsof the received signals.
(c) Derive the maximum-likelihood decision rule for the estimates 5, and 5.

Problem 6.38 This problem explores a newinterpretation of the Alamouti code. Let

5; = sh) js?) B= 1y2
where a and 5?) are both real numbers. The complex entry &; in the two-by-two Alamouti code
is represented by the two-by-two real orthogonal matrix

(1) (2)S: Ss;

, : i=1,2
(2) (4)

Uy

Likewise, the complex-conjugated entry §; is represented by the two-by-two real orthogonal
matrix

(1) (1)Se —s;

f : i= 12

2I

(a) Show that the two-by-two complex Alamouti code§ is equivalent to the four-by-four real
transmission matrix

A 3) te Ww|

(2) (1) (2) (1)
“Sp 87° | 8) 89

Sy base a —_——
I

6) $2 |2)I
2 1) | 2 1

52)| ne ff)
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(b) Show that S, is an orthogonal matrix.

(c) Whatis the advantage of the complex code S$ over the real code $4?

Problem 6.39

(a) Show that the generalized complex orthogonal space-time codes of Eqs. (6.107) and
(6.108) satisfy the temporal orthogonality condition

c'eé =1

where the superscript t denotes Hermitian transposition and I denotes the identity
matrix.

(b) Likewise, show that the sporadic complex orthogonal space-time codes of Eqs. (6.109)
and (6.110) satisfy the temporal orthogonality condition

HH =I

Problem 6.40 Applying the maximum-likelihood decoding rule, derive the optimum
receivers for the generalized complex orthogonal space-time codes of Eqs. (6.107) and (6.108).

Problem 6.41 Repeat Problem 6.40 for the sporadic complex orthogonal space-time codes
of Eqs. (6.109) and (6.110).

Problem 6.42 Show that the channel capacity of the Alamouti code is equal to the sum of
the channelcapacities of two single-input, single-output systems.

Differential Space-Time Block Coding

Problem 6.43 Equation (6.116) defines the input-output matrix relationship of the differ-
ential space-time block coding system described in Section 6.7. Starting with Eqs. (6.98) and
(6.99), derive Eq. (6.116).

Problem 6.44 The constellation expansionillustrated in Fig. 6.44 is based on the polar base-
band representation {-1, +1} for BPSK transmissions of the Alamouti code on antennas 1 and 2.
Explorethe constellation expansion property of differential spacetime codingfor the following
two situations:

(a) Frameof reference:dibit 00

(b) Frameof reference: dibit 11

Comment on yourresults.

Problem 6.45 In this problem, we investigate the use of QPSK for transmission of the
Alamouti code on antennas 1 and 2. The corresponding inputblock of data will be in the form of
quadbits(i.e., 4-bit blocks). Perform the investigation for each of the two OPSK constellations
depicted in Fig. 6.48. Use 0000 as the frameof reference.
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Imaginary

Real 
Imaginary

Real 
(b)

FIGURE 6.48 Diagram for Problem 6.44.

Problem 6.46 Repeat Problem 6.45 for the frame of reference 1111.

Problem 6.47 In the analytic study of differential space-time block coding presented in
Section 6.7, we ignored the presence of channel noise. This problem addresses the extension of
Eg. (6.116) by including the effect of channel noise.

(a) Starting with Eq. (6.101), expand the formulas of Eqs. (6.116) and (6.117) by including the
effect of channel noise modeled as additive white Gaussian noise.

(b) Using the result derived in part (a), expand the formula of Eq. (6.121) by including the
effect of channel noise, which consists of the following components:

(i) Two signal-dependent noise terms

(ii) A multiplicative noise term consisting of the product of two additive white Gauss-
ian noise terms
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(c) Show that, when the signal-to-noise ratio is high, the noise term (ii) of part (b) may be
ignored, with the result that the remaining two signal-dependent noise terms (i) double
the average power of noise compared with that experienced in the coherent detection of
the Alamouti code.

Theme Examples

Problem 6.48 In this problem, we repeat Experiment 1 of Section 6.10, but this time we
investigate the effect of increasing signal-to-noise ratio (SNR) on the symbol error rate (SER)
for a prescribed modulation scheme,still operating in a Rayleigh fading environment.

(a) Using 4-PSK for both STBC and V-BLAST,plot the SER versus SNR for the following
antenna configurations:

(i) N,=2,N,=2
(ii) N,=2,N,=4

(b) What conclusions do you draw from the experimental results of part (a)?

Problem 6.49 Continuing with Problem 6.48, suppose the STBC and V-BLASTsystemsuse
4-PSK. This time, however, we wish to display the spectral efficiency in bits/s/Hz versus the
SNR. How would you expect the performance curve of STBC to compare against that of V-
BLAST? Explain.

Problem 6.50 Compare the relative merits of STBC systems versus BLAST systems in
terms of the following issues:

® Capacity
e Diversity order
e Multiplexing gain
*« Computational complexity

Problem 6.51 In Chapter 2, we discussed the reciprocity theorem in the context of a
single-input, single-output wireless communication link. Show that the theorem also applies
to Eq. (6.146); that is, show that the channel matrix H of the MIMO linksatisfies the Hermitian
property.
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Fourier Theory

A.1 THE FOURIER TRANSFORM’

Let g(t) denote a nonperiodic deterministic signal, expressed as some function of timet.
By definition, the Fourier transform of the signal g(t) is given by the integral

Gf) = J g(dexp(j2afrar (A.1)
where j = ./—1, and the variable f denotes frequency. Given the Fourier transform
G(f), the original signal g(¢) is recovered exactly using the formulafor the inverse Fou-
rier transform:

a(t) = | G(fexp(j2afiaf (A.2)
Note that in Eqs. (A.1) and (A.2) we have used a lowercase letter to denote the time
function and an uppercaseletter to denote the corresponding frequency function. The
functions g(t) and G(f) are said to constitute a Fourier-transform pair.

For the Fourier transform of a signal g(f) to exist, it is sufficient, but not neces-
sary, that g(¢) satisfy three conditions, knowncollectively as Dirichlet’s conditions:

1. The function g(t) is single valued, with a finite number of maxima and minima in
any finite time interval.

2. The function g(t) has a finite numberof discontinuities in any finite timeinterval.

3. The function g(t) is absolutely integrable; thatis,

[- le@lat<e
We may safely ignore the question of the existence of the Fourier transform of a time
function g(t) when g(t) is an accurately specified description of a physically realizable
signal. In other words, physical realizability is a sufficient condition for the existence of
a Fourier transform. Indeed, we may go one step further and state that all finite-
energy signals are Fourier transformable.

479
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The absolute value of the Fourier transform G(f), plotted as a function of fre-
quencyf, is referred to as the amplitude spectrum or magnitude spectrum of the signal
g(t). By the same token, the argumentof the Fourier transform,plotted as a function
of frequencyf, is referred to as the phase spectrum of the signal g(t). The amplitude
spectrum is denoted by |G(/)| and the phase spectrum is denoted by 6(f). When g(*) is
a real-valued function of time f, the amplitude spectrum IG(f)| is symmetrical about
the origin f= 0, whereas the phase spectrum @(f ) is antisymmetrical about f= 0.

Strictly speaking, the theory of the Fourier transform is applicable only to time
functions that satisfy the Dirichlet conditions. (Among such functions are energy sig-
nals.) However,it would be highly desirable to extendthis theory in two ways to include
powersignals(i.c., signals whose average poweris finite). It turns out that this objective
can be met through the “proper use”of the Dirac delta function, or unit impulse.

The Dirac delta function, denoted by 6(¢), is defined as having zero amplitude
everywhere except at t=0, whereitis infinitely large in such a way thatit contains unit
area underits curve; thatis,

a(t) = 0 t#0 (A.3)
and

Pr &(A)dt = 1 (A.A)
An implication of this pair of relations is that the delta function is an even func-

tion oftime; that is, 6(-f) = 6(¢). Another important property of the Delta functionis
the replication property described by

[- g(t) d(t-T)dt = g(t) (A.5)
which states that the convolution of any function with the delta function leaves that
function unchanged.

Tables A.1 and A.2 build on the formulas of Eqs. (A.1) through (A.5). In partic-
ular, Table A.1 summarizes the properties of the Fourier transform, while Table A.2
lists a set of Fourier-transform pairs.

In the time domain,a linear system (e.g., filter) is described in termsofits impulse
response, defined as the response of the system (with zero initial conditions) to a unit
impulse or delta function 6(t) applied to the input of the system at time t =0.If the sys-
tem is time invariant, then the shape of the impulse response is the same, no matter
when the unit impulse is applied to the system. Thus, assuming that the unit impulse or
delta function is applied at time t=0, we may denote the impulse responseof a linear
time-invariant system by h(¢). Let this system be subjected to an arbitrary excitation
x(t), as in Fig. A.1(a). Then the responsey(t) of the system is determined by the formula

y(t) = i x(T)A(t—t)dt
(A.6)

= r A(t)x(t—t)dt
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TABLE A.1 Summary of Properties of the Fourier Transform.  

Property Mathematical Description 

1. Linearity

2. Time scaling

3. Duality

4. Timeshifting

3. Frequency shifting

6. Area underg(r)

7, Area under G(f)

8. Differentiation in the time domain

9, Integration in the time domain

10. Conjugate functions

11. Multiplication in the time domain

12. Convolution in the time domain

13. Correlation theorem

i4. Rayleigh’s energy theorem
 

 

ag(t)+ bgo(t) == aG,(f)+bG,(f )
where @ and b are constants

gaye taf)lal" \a
where ais a constant

it g(t} = GS),

then G(t) => g(-/)

B(t~ty) == G(flexp (-/2nfiq)

exp(j2af,oe(t) == Gf-f,)

rr git)dt = G(0)

(0) = [" GNaF

d i.
aol) = JemfGtys)

t 1 G(0)
Od = GN) + HS)

If gtt) = GCP),

then g*(f) == GF(-f)

(ant) = [GANG(f- Ada

fo sigg(t- dat =G(f)G/)

[aioesdt = GNGY)

[lear = J" iecnPar

The formula of Eq. (A.6)is called the convolution integral. Three different time
scales are involved init: the excitation time t response time t, and system-memory time
¢—t, Equation (A.6)is the basis of the time-domain analysis of linear time-invariant

|
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systems. It states that the present value of the response of a linear time-invariant sys-
tem is the integral over the past history of the input signal, weighted according to the
impulse response of the system. Thus, the impulse response acts as a memory function
for the system.

TABLE A.2 Fourier-Transform Pairs.

Time Function Fourier Transform

t .

reet( Tsinc(fT)
. 1 fsinc(2 Wr) apeS)

exp(-2r) exp(-af”)

|¢|tet, TT las Tsine”(ST)
0, \@)2T7

5(t) 1

1 5(/)

g(t—tg) exp(j27ft9)

exp (j2af,1) Of-f,)

cos (22f,) HOFF.) ++4]

sin (27,1) zlS-f)- 6F+f)1

— =f 1o< nL &e-i%) 7,2 4(t-7)] = —oo = —so

= 1 < m m
x(t—nT) ai — |6| f-—, 2 a >th) ( r)

Notes: 4(¢) = delta function, or unit impulse
rect(t) = rectangular function of unit amplitude and unit duration centered on the origin
sinc(t) = sinc function
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A(t) 
 
 

Impulse
response

hur)
A): —_—> y(tT) 

 
(b)

FIGURE A.1_ (a) Linear system. (b) Linear time-varying system.

From Table A.1, we note that when twofunctions of time are convolved with each

other, the operation of convolutionis transformed into the multiplication of the Fourier
transformsof the functions in the frequency domain. Hence, applying this property to
Eq. (A.6), we may express the Fourier transform of the outputsignal y(t) as

¥(f) = A(AX(P) (A.7)

where X(f) is the Fourier transform of the input signal x(t). The other quantity in Eq.
(A.7), namely, H(f), is called the transfer function of the system.It is formally defined
as the Fourier transform of the impulse response A(t) and is given by

| Hf = [ h(t)exp(—j2.nft)dt (A.8)

    
Thus, the impulse response A(t) provides a time-domain description of a linear time-
invariant system, whereas the transfer function H(f) provides an equivalent descrip-
tion of the system in the frequency domain.

A.2 LINEAR TIME-VARYING SYSTEMS

 
Consider next the case of a linear time-varying system, exemplified by a wireless
communication channel. As the name implies, the impulse responseof a linear time-
varying system depends on the time at which the unit impulse is applied to the input
of the system. We thus denote the impulse response of such a system by A(t;t), where
(t— 1) is the time at which the unit impulse is applied to the system andris the time at
which the resulting response is measured. (See Fig. A.1(b).) Suppose, then, that an
input signal x(¢) is applied to a linear time-varying system with impulse response
h(t;t). Then the resulting response of the system is defined by

| y(t) = [ A(t;t)x(t— Ddt (A.9)

Po
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where the integration is performed with respect to t. Correspondingly, the transfer
function of the system is written as H(f,t), which is related to the impulse response
(t,t) via the Fourier transform throughtherelationship

H(ft) = I h(t;t) exp(—j2.nft)dt (A.10)

Equation (A.8) is a special case of Eq. (A.10) in that, for a linear time-invariant sys-
tem, we have H(t) = A(f) forall .

A.3 SAMPLING THEOREM

Page 394 of 474

In continuous-wave modulation, the carrier is typically a sinusoidal wave. In pulse
modulation,by contrast, the carrier is a uniform train of pulses thatare relatively short
compared with the fundamental period of the carrier. The sampling theorem,
described next,is basic to all the different forms of pulse modulation usedin practice.

To set the stage for a statement of the sampling theorem, consider a strictly
band-limited signal x(t) whose frequency contentis confined to a bandwidth W: thatis,

X(f)=0 for |f/2W (A.11)

For suchasignal, the sampling theorem may bestated in twoparts:

1. Thestrictly band-limited signal x(t) is uniquely represented by a set of samples
x(nTo), n= 0, +1, +2, ..., provided that the sampling rate fy = 1/ To is greater than
twice the highest frequency componentofx(#); in other words, fy > 2W.

2. Theoriginalsignal x(t) is reconstructed from the set of samples x(nT) for n = 0,
+1, #2, ..., and Ty > 1/(2W), without loss of information, by passing this uni-
formly sampled signal through an ideal low-pass construction filter of band-
width W hertz.

For a proof of the sampling theorem, we may invokethe duality property of the Fou-
rier transform. From Table A.1, that duality property states,

If g(t) = G(f), then G(-t) = g(f), where the time function G(—2)is obtained by
substituting —t for fin the Fourier transform G(f) and the frequency function
g(f) is obtainedby substituting f for rin the inverse Fourier transform g(t).

From thelast entry of Table A.2, we also have the Fourier-transform pair

¥ g(t—mTy) = fo » G(nfy) 6f—nfo) (A.12)
co n= co
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wherefo = 1/Tp is the sampling rate and 6(f) is the Dirac delta function definedin the fre-
quency domain. Applying the duality property to Eq. (A.12), invoking the even-function
property of the delta function, and using Tp in place of f) to maintain proper dimen-
sionality in the result, we obtain

Ty S) G-nT))6(t-nT) = DY g(f-mfy) (A.13)
n=-co m= so

To put this relation in the context of the strictly band-limited signal x(t), we set
G(—t) = x(t) and g(f) = X(f), in which case we may recast Eq. (A.13) in the desired
form:

x3(t) = Ty ¥ x(nTy)(t—nTy) = ¥ X(f-mfy) = X5(f) (A.14)
A= oo mM = —co

Figure A.2 presents a time-frequency description of Eq. (A.14), assuming that
X(f) =0 for |fi > W and fo > 2W. Parts (a) and (b) of the figure depict the spectra X(f)
and X's(f), respectively, where x(t) == X(f) and x3(t) — X;(f).

A(f)

wow f

(a)

Xf)

/\_L\ LA
av ba av] baw

(b)

FIGURE A.2 (a) Spectrum of a signalx(r) limited to the band —W <f< W.
(b) Spectrum ofthe instantaneously sampled signalxs(r) for a samplingrate fy > 2W.
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Given the instantaneously sampled signal xs(t) and assuming a sampling rate
Jo > 2W, how do we use x(¢) to reconstruct the original signal x(t)? We may do so by
employing a reconstruction system formulated as an ideal low-passfilter of bandwidth
W. To find the output ofthis filter in response to the sampledsignal x5(t), we proceed
in two stages:

1. Take the Fourier transform of sampled signal x(t), and limit the spectrum to the
frequency band| f| < W permitted by the low-pass reconstructionfilter, thereby
obtaining the spectrum

X(f) = Ty x x(nTp)exp(—j2mnTyf) |fl<W |flsw
hn = —0o

0 lfi>W

(A.15)

2. Take the inverse Fourier transform of the spectrum defined in Eq. (A.15), yield-
ing the originalsignal

x(t) = [" X(Nexp(2afndt
oo

= = e. T

_ 7 se m sin (2m(t—nT))W) iit~ “0 2 me ol 2m —nT,)W

= Tp y x(nTp)sinc (2(¢-nT,)W)

wherethe function

sinc(A) = Sin(7A) (A.17)
TA

is called the sinc function, Equation (A.16) states that, provided that the sampling rate
fg satisfies the condition f, > 2W, the original signal x(t) may be reconstructed as the
weighted sum of the reconstruction kernel sinc(2W/), where the nth component of the
sum consists of the time-shifted kernel sinc(2(t —nT))W), weighted by the correspond-
ing sample x(#T().

Equation (A.16) verifies part (2) of the sampling theorem.Part (1) of the theo-
rem is, in reality, merely a reformulation of part (2).

Page 396 of 474



Page 397 of 474

Section A.4 Sampled Convoiution Theorem 487

AA SAMPLED CONVOLUTION THEOREM
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Suppose that we have two time functions, x(t) and A(4, with x(¢) limited to the fre-
quency band —W < f< W. The function x(f) is uniformly sampled at the rate fp > 2W
and then convolved with A(). The convolution product, denoted by y(), may be
viewed as the output of a linear time-invariant system with impulse response (¢),
which is driven by the instantaneously sampled version of x(z). The requirement is to
evaluate y(i).

The instantaneously sampled version of x(f) is defined by (see the left-hand side
of Eq. (A.14))

oo

xs(t) = Ty ¥ x(nT))d(t-nTp) (A.18)A= oo

where 7p = 1/fp is the sampling period. The convolution of xs(t) with A(#) is defined by
the integral

y(t) = I A(t)xg(t~ T)dt
I I Mo) s HOTB=nT) (A.19)7Ao= oo

Ty x x(nTo)f A(D)6(t-nTy—Tdti = oa

Invoking the replication property of the delta function described by Eq. (A.5), we may
reduce the integral in thelast line of Eq. (A.19) to

i- h(t) 8(t—nTy~ T)dt = A(t—nTy) (A.20)

Accordingly, Eq. (A.19) simplifies to

y() = Ty YS x(nTyh(e~nTy) (A.21)
= oo

which is the desired result. Equation (A.21) is a statement of the sampled convolution
theorem:

The convolution of a continuous-time function with the instantaneously sampled
version of a band-limited signalis a scaled version of the convolution sum of two
time series: the original instantaneously sampled signal and the instantaneously
sampled version of the continuous-time function.
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Note that Eq. (A.21) is a generalization of the expression on theleft-handside of
Eq. (A.14), with the impulse responseA(¢) taking on the role of the delta function 8(r).

A.5 OUTPUT SAMPLING OF A LINEAR TIME-VARYING CHANNEL

In the case of a linear time-invariant communication channel, it is a straightforward
matter to apply the sampled convolution theorem of Eq. (A.21) to the channel output
in order to proceed with the use of digital signal processing in the receiver. When,
however, the channelis linear, but time varying, as, for example, in wireless communi-
cations, we have to exercise care in the selection of a suitable sampling rate for the
channel output, the reason being that the impulse response of the channel, h(t;7),
depends on a second time variable, namely, t. The problem is now more complicated,
in that we have a two-dimensional temporal situation to handle, with the two dimen-
sions being defined by both f and t. For frequency analysis of the channel output and,
therefore, the determination of an appropriate sampling rate, we require the use of a
two-dimensional Fourier transform. Such an analysis is beyond the scope of this book;
the interested reader is referred to Note 2 for further pursual of the sampling rate
required forlinear time-varying channels. Suffice it to say, if W; is the bandwidth (ie.,
highest frequency component) of the input signal and We is the bandwidth of the
channel time variations, then the sampling rate for the channel output must be larger
than (W; + W). Whenthe channelis time invariant, W¢ is zero, and this result reduces
to the standard form of the sampling theorem.

A.6 CORRELATION THEOREM

Thus far, we have discussed attention on the Fourier perspectives of two basic signal-
processing operations: filtering (i.e., convolution) and sampling. Another signal-pro-
cessing operation basic to the study of communication systems is correlation. To be
specific, consider a pair of complex-valued signals g,(t) and g>(t), which may exhibit
some degree of similarity in their time behaviors. The similarity is quantified by the
integral

R(t) = [™gy (Ngg(t- Dat (A.22)

where the asterisk denotes complex conjugation. The function Rj2(7) is called the
cross-correlation function between g1(t) and g9(ft). Thetime lag t is introduced into one
of the two signals—g,(f) in the case under consideration here—in order to explore the
similarity between them. To that end, t is made variable. Intuitively, if, on the one
hand, g;(t) and g(t) are highly similar, then we expect R,,(t) to peak around some
value of t. If, on the other hand, gi(t) and g,(t) are highly dissimilar, then R,>(1)
would berelatively flat over a broad range of valuesoft.

With Fourier analysis as the subject of interest in this appendix,it is natural that
we consider the Fourier transformation of R(t). To pursue this transformation, we
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first use the inverse Fourier transform that defines g(r) in terms of G(f) and thus
rewrite Eq. (A.22) in the form of a double integral (after rearranging terms):

Ri3(t) = r Gant” gy(t- neaap (A.23)
nfClearly, R,»(t) is unchangedby introducing the product of the exponential el? and its

complex conjugate e/?%/* into the integral in Eq. (A.3), as is shown by

Ry) =fGNeTI" grne?Pace] df (A.24)

Now,the inner integral inside the square brackets in Eq. (A.24) is recognized as the
Fourier transform of go(t), which is denoted by G2(f). Accordingly, bearing in
mind the complex conjugation around the square brackets, we mayfinally simplify
Eq. (A.24) as

jinfeRy(t) = f° G(NGNe “af (A.25)

from which we immediately infer that G,(/) G(J) is the Fourier transform of R,(7).
In words, the correlation theorem may be stated as follows:

Given a pair of Fourier-transformable signals g)(t) and g(t) whose cross-correla-
tion function R,(t) is defined by Eq. (A.22), the Fourier transform of R1() is
defined by the product G,(/f) Gof ), where G1(f ) and Go(f) are the Fourier trans-
forms ofg)(t) and g5(t), respectively.

Tn applying the correlation theorem, careful attention has to be paid to the order and
mannerin which the functions g(r) and go(t) appear in Eq. (A.22) and the correspond-
ing orderof subscripts in Rj5(7).

Moreover, there are some similarities and basic differences between the cross-

correlation and convolution integrals that should be noted:

1. In the convolution integral of Eq. (A.6), the integration is with respect to the
lag variable t. By contrast, the integration in the cross-correlation integral of
Eq. (A.22) is with respect to the time variable t.

2. When bothintegrals are transformed into the frequency domain, the result of
each transformation is expressed as a product of two Fourier transforms—but
with a difference. In the case of the convolution integral, the product is simply
equal to the Fourier transforms of the two signals, with the result that convolu-
tion is commutative. In the case of the cross-correlation integral, the Fourier
transform of the particular signal delayed in the correlation process is complex
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conjugated. Consequently, unlike the convolution of two integrals, the cross-cor-
relation is not commutative; thatis,

Ry(t) = G4NN) (A.26)

which, in general, is different from

Ry (1) = G(NG) (A.27)

A.6.1 Autocorrelation Function

When gj(t) =g2(t)= g(t), we have the autocorrelation function of the signal g(t),
defined by

R,(t) = fC g(t)g" (t— t)dt (A.28)
Correspondingly, Eq. (A.26) reduces to

R(t) = Gf)!’ (A.29)
Note that the autocorrelation function R, (7) is an even function of the lag 1,as is
shown by

R,(-1) = R,(7) for all t (A.30)

Expanding the pair of relations summarized under Eq. (A.29), we haveP g P q

Sf) = f° R(nerde (A.31)
and

R,(2) = [7SNe af (A.32)
where we have introduced the definition

2

Sf) = IG(f)|" for all£ (A.33)

The new function § is called the energy density spectrum ofthe signal g(t). The pair2 &Y gnal § P
of equations (A.31) and (A.32) constitute the Wiener-Khintchine relations for signals
with finite energy.

A.7 PARSEVAL'S RELATIONSHIPS

The energy of a complex-valued signalg(t) is defined by

E, = I le(2)|"dt (A.34)
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Putting t= 0 in Eq. (A.28) and using the definition of Eq. (A.34), we readily see that

E, = R,(0) (A.35)

which states that the value of the autocorrelation function R,(t) at the origin T=0 is
equal to the energy of the signal g(?).

Putting t=0 in Eq. (A.32) and using Eqs. (A.34) and (A.35), we obtain Parse-
val’s energy theorem, which states that

[Tlgwl’ae = Pe lecnra (A36)
In words, Parseval’s energy theorem asserts that the energy of a nonperiodic signal
g(t) is equal to the total area under the curve of the energy density spectrum 5,(f).

To deal with a periodic signal g(7) of fundamental period 7, we use Parseval’s
power theorem, which states that

1pty 2 - 2
7,60 d= ¥ 1G, (A.37)ooo

where G, are the complex Fourier coefficients, in terms of which the periodic signal

2e(f) = Ss Gel (A.38)
k= eo

is defined.

To deal with a periodic signal, we may use Parseval’s power theorem to calculate
the average powerofthe signal. To formulate this theorem,recall that a complex-valued
periodic signal g(f) with fundamental period T may be expandedinto the Fourier series

ox i? icf.

a= SY Ge *ie! (A.39)
k= —co

where

1 ~farkfot
C= 5 jee k= 0, 41,42, ... (A.40)

are the complex Fourier coefficients. The fundamental frequency of the signalis itself
defined by

fy = ; (A.41)
By definition, for the average powerof the periodic signal g(7), we have

_ irr 2
Ps ; 80! dt (A.42)
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Accordingly, Parseval’s power theorem states that we mayalso evaluate P by using the
formula

P= ¥ |G, (A.43)
pa.

where the G;, are themselves defined by Eq. (A.40).

Notes and References

‘For an authoritative treatmentof the manyfacets of the Fourier transform andits applications,
see Bracewell (1986).

? For a carefuldiscussion of the sampling rate required forlinear time-varying systems, see Kailath
(1959) and Médard (1995).
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APPENDIX  B

Bessel Functions

B.1 BESSEL FUNCTIONS OF THEFIRST KIND

Bessel functions of the first kind of integer order v are defined as the solution of the
integral equation

J(z) = : f,cos(esind— vaydo
(B.1)

= i *788cos (ya)d0“Ff

where / is the square root of —1. The special case v = 0 reduces to

ko =i’ in @)d0 B2)(Zz) = = J, cos(sin ) (B.
For a real argument z, the Bessel functions are real valued, continuously differentia-
ble, and bounded in magnitude by unity. The even-numbered Bessel functions are
symmetric and the odd-numbered Bessel functions are antisymmetric.

The Bessel function J,,(z) may also be expressedas the infinite series

Cr)(1,(2) = (52) 2. APs (B3)

 
where (4) is the gamma function; for integer values, [(k+1) = &!.

Weplot J/p(z) and J;(z) for real-valued z in Fig. B.1. The values of these functions
for a subset of z are given in Table B.1.

Problem B.1 Usingthefirst line of Eq. (B.1), derive the secondline of the equation. a

493 
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FIGURE B.1 Plots of Bessel functionsofthefirst kind, Jy(x) and J,(x).

TABLE B.1 Values of Bessel Functions and Modified Bessel Functionsof the First Kind.  

  x Jol) Jy (x) Iga) L(x)
0.00 1.0000 0.0000 1.0000 0.0000

0.20 0.9900 0.0995 1.0100 0.1005

0.40 0.9604 0.1960 1.0404 0.2040

0.60 0.9120 0.2867 1.0920 0.3137

0.80 0.8463 0.3688 1.1665 0.4329

1.00 0.7652 0.4401 1.2661 0.5652

1.20 0.6711 0.4983 1.3937 0.7147

1.40 0.5669 0.5419 1.5534 0.8861

1.60 0.4554 0.5699 1.7500 1.0848

1.80 0.3400 0.5815 1.9896 1.3172

2.00 0.2239 0.5767 1.1796 1.5906
2.20 0.1104 0.5560 2.6291 1.9141

2.40 0.0025 0.5202 3.0493 2.2981

2.60 —0.0968 0.4708 3:5533 2.7554

2.80 ~0.1850 0.4097 4.1573 3.3011

3.00 —0.2601 0.3391 4.8808 3.9534

3.20 0.3202 0.2613 5.7472 4.7343

3.40 —0.3643 0.1792 6.7848 5.6701

3.60 0.3918 0.0955 8.0277 6.7927

3.80 —0.4026 0.0128 9.5169 8.1404

4.00 —0.3971 —0.0660 11.3019 9.7595  
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B.2 MODIFIED BESSEL FUNCTIONSOFTHE FIRST KIND

Page 405 of 474

Modified Bessel functions of the first kind ofinteger order v are defined as the solution
of the integral equation

1 ¢# zcosé

12) = = Je cos(v@)d0 (B.4)
For the special case v = 0, Eq. (B.4) reduces to

1 ¢* zcosé
I = = do B.5o@=5 fie (BS)

For a real argument z, the modified Bessel functions are real valued, continuously dif-
ferentiable, and grow exponentially as |zl increases. The even-numbered modified
Bessel functions are symmetric and the odd-numbered onesare antisymmetric.

The modified Bessel function may also be expressed as theinfinite series

Ge)(lve1G) = (52) 2, WTWFEsT (B68)
Weplot Jo(z) and J,(z) for real-valued z in Fig. B.2. The values of these functions for a
subset of z are given in Table B.1.

ASE
 

     ModifiedBesselFunctionsoffirstkind
 

 
FIGURE B.2 Plots of modified Bessel functionsofthefirst kind, Jp(z) and /,(z).
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APPENDIX C

Random Variables and

Random Processes

C.1 SETS, EVENTS, AND PROBABILITY

Probability theory is centered on fundamentalprinciples relating sets. In this appen-
dix, we will consider an abstract space © that has elements @. The space Q mayconsist
of a finite number of elements, may be countablyinfinite, such as the set of integers, or
may be uncountable, such as the set of real numbers. We let = representall the possi-
ble subsets of Q, including the empty set, @, and the complete set Q.

Probability is a measure on any set Q in 5. Conceptually, if Q represents a set of
elements, or an event, then Prob(Q)is the probability of that event. Empirically, if we
make N observations of this space and determine how many times n out ofNtrials
that the observations belong to Q, then the empirical definition of the probability of
the event QO is

Prob(Q) = lim (n/N) (C.1)

This is intuitively what we think of as probability: what fraction of the time a certain
event occurs,

A probability measure mustsatisfy three properties:

Prob(Q)=1;

Prob(@)=0; (C2)

Prob(A U B) < Prob(4) + Prob(B) for any A, B in &.

In calculations, we are often interested in the conditional probability that an event A
occurs, given that an event B has occurred. This is defined as

Prob[4|B] =a (C3)
The conditional probability is a probability measurein its own right and satisfies all of
the properties of Eq. (C.2),

496
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Bayes’ theorem allows us to convert between conditioning on one event to condi-
tioning on a different event andis given by

Prob(B|4,)Prob(4,)
Prob(4,|B) = (C4)N

¥ Prob(B|4,)Prob(4;)
j=l .

Bayes’ theorem is often used in inferential analysis, as the expressions for conditional
probability based on some events are often much simpler than those based on other
events.

C.2 RANDOM VARIABLES

C.3 PR
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A random variable is a mapping from the abstract space © to the real numbers,repre-
sented as ¥:22 3K, where K is the set of real values. Conceptually, we usually con-
sider X as the physical realization of some unknowable process. For example, X¥ could
be the voltage measured acrossa resistor due to thermal noise. In that case, 2 could be
the state of all the electrons in the resistor.

A discrete random variable can take on only a discrete set of values. Sometimes
these are denoted as {x;|, where i indexes the possible values of X. For example, the
numberof paths in a multipath signal is a discrete random variable; it may take only
the values 1,2,3,.... A continuous random variable can take on a continuum of values.

Often, this continuum is the set of real values or the set of nonnegative reals, For
example, thermal noise voltage observed at a specific instant of time is a continuous
random variable.

To characterize the probabilistic behavior of random variables, we simply extend
the set concepts used in the previous section. In the thermal-noise example, we may be
interested in determining the probability that X < x for some value x. We would write
this as Prob(X < x), but its mathematical meaning is

Prob(¥ <x) = Prob({@e Q:X(@) <x}) (C5)

Thatis, it is a measure on the set of those w’s such that the random variable maps the
X(q) to a value less than x. Probability is a measure on the underlying abstract set Q.
The physical realization is usually more easily understood than the abstract, but
understanding the underlying concepts is often useful for resolving some probability
issues.

OBABILITY DISTRIBUTIONS AND DENSITIES

The probability that a random variable X is less than a given x is written as

Fy(x) = Prob(Xs x) (C6)

whichis called the curnulative distribution function of the random variable x’. This func-
tion is right continuous and increases monotonically, with F(—se) = 0 and F() = 1.

 



Page 408 of 474

 
498 Appendix C Random Variables and Random Processes

A discrete random variable will have a discrete distribution function that consists

of steps at the finite or countable numberof points where ProbCX = x;) > 0. A continu-
ous random variable will have a continuous distribution function. If the distribution

function is a continuously differentiable function of x, then we define the probability
density function as

dFy(x)
F(X) = ax (C7)
 

Probability density functions play an importantrole in defining the conditional proba-
bilities of continuous random variables. Consider the two joint events X¥ <x and
y<Ysy+ dy. We may use Bayes’ rule to express the conditional probability of the
first event, given the second, as

Prob(X<x, ys ¥<y+ dy)
Prob(y < ¥<y+ dy)

_ FyyGyt Oy) — Fyy(x, y)
Fy (y+ oy)-Fy(v)

Fyy< ¥<y+ dy) =

(C8)
6

I ee “fe y (4, v)dudv
=eex

y+ Oy
f Sy (dvy

Differentiating Eq. (C.8) with respect to x by using Leibniz’s rule, we may write

y+ dy
éae y(u, v)dv

Frys Y¥<yt+ 5y(*) = ———————
J ty()dva

Sy yy y) oy
Fy (vy) 6y

Finally, in the limit, as by approacheszero, assuming that f}(v) #0, we have

SfXY (x, ¥)
Frage)! SS C9mY =Y F/O) eo

It is important to note that Eq. (C.9) describes a probability density function of x for a
fixed y.

C.4 EXPECTATION OF RANDOM VARIABLES

The expected value, or mean value, of a random variable X is written as ELX], where E
is the statistical expectation operator. For a discrete random variable, the expected
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value of X'is given by
N

ELX] = s x, Prob(X = x;) (C.10)
i=l

For a continuous random variable that has a probability density function, the expected
value of X'is given by

ELX] = Pr xfy(xd (CAL)
If X, and X> are any two random variables, then

ELX, +49] = ELY,]+ELX)] (C.12)

and

 
E[aX,] = eELY,] (C13)

where is a constant.Thatis, expectation is a linear operator. In general, if g-X) is any
well-defined function of X, then the expected value of g(X) is given by

N |

Elg(X)] = s g(x)P(X =x,) or Efg(X)] = i} R(Xfy(eax {C.14) -
i=l _ :

depending upon whether the random variable is discrete or continuous, respectively.
Other common statistical parameters of interest are the second moment or mean-
square value

 
ELX} = [7 xf@ae (C.15)

and the variance

 
Var(X) = E[(X-ELX])’] = i (x- ELYfydx (C.16)

hegESSRPPSIRNEaERIREpnteccorneaae
An analogous result holds for the discrete case.

c.5 COMMON PROBABILITY DISTRIBUTIONS AND THEIR PROPERTIES

Binomial distribution. Considet a discrete random variable X that can take the values

0 and 1 with probabilities (1 — p) and p, respectively. Suppose N independent observa-
tions of this random variable are made and labeled X; for 1 <i< N. Define the new
random variable

saeeseanNNGaoEeOREN
 

N

y= PX, (C.17)
i=i

eRe

Page 409 of 474



Page 410 of 474

 
500

Page 410 of 474

Appendix C Random Variables and Random Processes

ThenY is said to have a binomialdistribution with parameterp;thatis,
y
YON ye

Fy(y) = > ps *1-py—for0<ys<N (C.18)
j=07

The expected value and variance of Y are Np and Np(1 — p), respectively.
Gaussian distribution. A common continuous random variable is the Gaussian

random variable. The density function of a Gaussian random variable is given by

 a 4. 0| C19Fy (x) eo aa (C.19)
where the mean of the Gaussian random variable is andits variance is o”. The distri-
bution function of a Gaussian random variable does not have a closed-form solution,
but it is usually expressed in termsof the error function as

Py (x)
il

Jfe(sdas

a(t rer)=|1l+er x20
2: /20

1-Fy(-x) x<O0

(C20) 

wherethe error function is given by (see Appendix E)

_ 2 2erf(x) = = I,edz (C21)
A linear transformation of a Gaussian random variable is also a Gaussian random

variable. Thatis, if X1, Xo,.... X) are Gaussian random variables, then the composite
random variable

Y= bX, (C.22)

is also a Gaussian random variable. The mean of Y is given by

N

E[Y] = ¥ b,E[X,] (C.23)
i=l

If the {X;} are independent Gaussian random variables, then the variance of Y is given by

x 2
Var(Y) = » b; Var(X;) (C.24)

i= 1
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Rayleigh distribution. If X, and X> are zero-mean Gaussian random variables with a
common variance o”, then the random variable

R= |X +X5 (C.25)
has a Raleigh distribution given by (see Section C.6)

-/20°
Prob(R <r) = 1-e r2=0 (C.26)

The corresponding probability density functionis

-H/20z

f(r) = =e r20 (C.27)
o

Thefirst and second momentsof Y are given by

E[R] = fo and E[R’] = 20° (C.28)
and the variance ofY is given by (2 — 2/2)o”.

Rician distribution. If X, and X> are Gaussian random variables with means Ly,
and py, respectively, and a commonvariance o, then the new random variable

R= JXi+X (C29)
has a Rician distribution. The probability density function of R is given by

2 2 2
ro -(4+s°)/20 FSSpl’) = =e 1(3) r20 (C.30)oO o

where J)(-) is the modified Bessel function of order zero (see Appendix B) and

# =:u, + uw. There is no known closed-form solution for the distribution function of
a Rician random variable.

Chi-square distribution. If LX,i],i=1,..., N are zero-mean Gaussian random vari-
ables with a commonvariance o*, then the random variable

N

r= 5% (C31)
i=1

is said to have a Chi-square distribution with N degrees of freedom. The first two
moments of Y are

E[Y] = No’ (C32)
and

E[Y’] = 2No'+N’o" (C.33)
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When m = N/2 is an integer, the probability density function of Y is given by

1 -1

Syl y=+"
(20°) (m-1)!

and the cumulative distribution function of Y is given by

/26° vs lf» k_ weFy) = 1-8" YY (2)
RED 20

This is one of the most commondistribution functions in communications systems
applications. For the case of odd N, there is no closed-form solution for Fy(y).

C.6 TRANSFORMATIONS OF RANDOM VARIABLES

Let X;, and X> be continuous random variables with a joint probability density func-

tion ty, x, Ab X5),and consider the transformation defined by
Vy = Ay (ey, X>), and yy = Ay (xq, x), (C.34)

which are assumed to be one-to-one and continuously differentiable.The Jacobian of
this transformation 1s defined by the matrix determinant

 

dy, oy

s(2%2) = #0 (C.35)
A199

Oy OV

Ox, IX

Thejoint probability density function of Y; and Y%is given by

vpy

u( 1 2)
AyD

If the transformations are not one-to-one, then_other approaches must be taken. For

example, consider the transformation Y = Xn Xe. The cumulative distribution

 

Fy,, ¥,(¥ Ya) = fy,xj*2) (C.36)  

function of Y is given by

Fy(y) = [[fy, x, G1 x2)ary dey (C37)
A

where A is the set of all (x1,x) such that Ixy + x, <y. If X, and X> are independent,
zero-mean Gaussian random variables with a variance of unity, then

(x4 +x5)/21
Fy(y) = ee dx, dx C.38y y J) 5 & X4 AX ( )
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If we makethe transformations x; =r cos@ and x2 =r sin@, then Eq. (C.38) becomes

Y pom _-?/2

Fy(y) = = Rn at *yarae c20)
-41- svt

This is the Rayleigh distribution described in Section C.S.

C.7 CENTRAL-LIMIT THEOREM
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Consider a sequence {X,,} of independent and identically distributed (iid.) random
variables with means E[X,]=m and variances E[(X;—m)*]= 07. Let Y,, be a new
sequence of random variables defined by the partial sums

n

Y, = ¥ x; (C40)
ted

Let y,, be the mean of Y,, and S,, be the variance of Y,,. Define the normalized random
variable

  

z= r= y : (C.41)
5, no

Then the random variable Z, has a distribution that is asymptotically unit normal. That
is, as n becomeslarge,the distribution of Z,, approaches that of a zero-mean Gaussian
random variable with unit variance. This result is referred to as the central-limit theo-

rem. The theorem also holds if the variables X; are not identically distributed, but
there are somerestrictions.

C8 RANDOM PROCESSES

A random process is a mapping 4:[Q, T] ~ ‘K%, where T represents a time interval
such that X(.,f) is arandom variable for each fixed time ¢. To distinguish between a ran-
dom variable X and a random process X, we usually write the latter as X(t). If X is a
discrete random variable for all ¢, then we say that X(¢) is a discrete random process. If
X is a continuous random variable forall ¢, then we say that X(f) is a continuous ran-
dom process.

For eachfixed value of t, we speak of the distribution function

Fyp(x) = Prob(X(t) <x) (C.42)

Wealso speak of the joint distribution function

Fryx(yy Ov X9) = Prob(X(t,) <X4; X(ty) <X>) (C43)
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For a fixed win Q,the time function X(@, t) is known as a sample function or realiza-
tion of the random process.

C.9 PROPERTIES OF RANDOM PROCESSES

Let X(¢) be a complex random process, and define the autocorrelation function of that
process as

Ry(t, s) = ELX()X(s)] (C.44)

where the asterisk denotes complex conjugation. That is, the autocorrelation function
is the expectation of the product of two random variables that are parameterized by rt
and s. Recognizing that Ry(0) = E[|X(s)|"], we see that the autocorrelation is a gen-
eralization of the second momentof a random variable. The autocorrelationis a deter-

ministic function.

A process whosejoint distribution is invariant with time translation,thatis,

Prob(X(t,) <x1,X(79) <X9,...,4(6,) < x(1) =
(C45)

Prob(X(t, +4) <x1,X(t, +h) <Xx5,..., X(t, +h) <x,))

is said to be stationary to order n if Eq. (C.46) holds for all h and for a particular n.
Manyof the random processes dealt with in wireless communications are assumed to
be stationary. A processis said to be wide-sense stationary if

E|X(t)] =constantfor alltand Ry(t,s) = Ry(t-s) (C46)

Random processes whose joint distribution functions are multivariate Gaussian are
referred to as Gaussian random processes. If a Gaussian random process is wide-sense
stationary,then it is also stationary.

C.10 SPECTRA OF RANDOM PROCESSES
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In Appendix A, we defined the spectrum of a finite-energy signal x(7) as the Fourier
transform of that signal. However, in considering a random process X(t), we have an
ensemble of sample functions. To get around thisdifficulty, we note that the autocorre-
lation function of a stationary random process, namely, Ry(‘), satisfies the conditions
of Fourier transformability. Accordingly, we may define the power spectrum or power
spectral density of a random process X(t) as the Fourier transform of its autocorrela-
tion function Ry(t). Denoting this new parameter by Sy(f), we may thus formally
write

Sy(f) = ir Ry(ner™"dr and Ry(z) = i Sofieap (C.47)
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Note that Sy{f) is measured in watt/Hz. Stated another way, the total area under the
curve of Sy(f), plotted as a function of frequency f defines the average powerof the
process.

The autocorrelation function Ry(t) and power spectral density Sy(f) form a
Fourier-transform pair, which meansthat the autocorrelation function Ry(t) is the
inverse Fourier transform of the powerspectral density Sy(f). The Fourier transform
pair, linking Sy(f) to Ry(t) and vice versa, is called the Wiener—Khintchine relation
for random processes.

An idealized example of a random processis a special form of noise commonly
referred to as white noise W(t). White noise has the property that it is uncorrelated for
all nonzero time offsets. Consequently, the autocorrelation function of such a process
is defined by a delta function, or

No
Ry) = =17) (C.48)

where No/2 is the two-sided noise density in watt/Hz. The noise is referred to as
“white” because the corresponding power spectrum isflat; thatis,

Sy) = = forall f (C.49)
In other words, white noise contains all frequency components at equal strength, anal-
ogous to white light in the visible part of the spectrum. This relationship does not
make any assumptions about the distribution of the random variable n(f) at time &it
could be Gaussian or otherwise.

Another example of a random processis a random binary wave, defined by

x(t) = 5, ty+nT<t<tgt(n+1)T (C.S0)

where fp is a random starting time between [0,7] and {b,,} is a sequence of indepen-
dent, zero-mean random variables with values +1. The autocorrelation function of the

process described in Eq. (C.51) is

Ry(tt+7) = Elx(Ox(t+ 0]

E,E,[x()a(¢+ 0]
ll

(CSD)
Il E,| 1 tytnT<t<t+t<tg+(n+1)T0

Q otherwise

where the expectation E has been split over the two random independentvariablesfg
and {b,,} and we have usedthefact that E[b,,b,,| =0 if 1 # m. If we evaluate the expec-
tation of Eq. (C.51) overfg, we obtain
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T-t T>t>0

Ry(4t+) =4 747 —T<1<0

0 otherwise (C53)

_ {t- lel <70 otherwise

Thus, Ry(t) is stationary with a triangular autocorrelation function. The spectrum of
the binary random waveis the Fourier transform of this autocorrelation function:

Il
SyN)=fo Ryle?ae

_ p2sin(af) (C.53)
(afTY

= T’ sine’ (fT)

C.11 LINEAR FILTERING OF RANDOM PROCESSES

In communications,wefilter signals for various reasons.If the signal is a random pro-
cess, how do we characterize the output? Let y(¢) be the outputresulting from apply-
ing a linear time-invariantcausalfilter h(t) to a realization of an input random process,
namely, x(¢), as represented by the convolution integral

y(t) = I A(t)x(t— dt = i x(T)A(t— dt (C.54)
This means that the filter is applied to the particular realization x(¢) = X(a@,t) of the
random process, and that realization is referred as a sample path integral. A sufficient
condition for ¥(r), the random variable composedof {y(a@,f)}, to be a well-defined ran-
dom variable forall fis that

I |A( 2)|E[|X(t— 1) ]dt< © (C.55)
If Y(z) is well defined, then we may determine the expectation of Y(t) using

E[Y(s)] = Ef” h(t — t)X( ndr| - Pr h(t— T)ELX(1)]dt (C.56)
and similarly for other moments of Y(t). The interchange of the order of integration
and expectationis allowed because both of these operationsare linear.

If X(f) is a stationary process with autocorrelation Ry(t) and corresponding
spectral density Sy(/), then the spectral density of the output Y(t) is given by

Sy(f) = AAS) (C.57)
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That is, for stationary random processes, the output powerspectral density of a linear
continuous-timefilter is equivalent to the product of two quantities: the squared mag-
nitude response of the filter and the input power spectral density. In addition,if the
input is wide-sense stationary and the linear system is time invariant, then the output
will be stationary as well. The spectral relationship of Eq. (C.57) for a stationary ran-
dom process X(t) may be viewed as the counterpart of Eq. (A.7) for a signal x(f) with
finite energy.

Analogousto the result for linear transformations of random variables, we have
the result that if a linear filter has an input which is a Gaussian random process, then
the output will also be a Gaussian random process.

C.12 COMPLEX RANDOM VARIABLES AND PROCESSES

In certain situations, we have to deal with the statistical characterization of complex
random variables and complex random processes. (A case in pointis that of the com-
plex baseband representation of a narrowband process consideredin the next section.)
When werefer to a complex random variable Z = X + j7Y, we mean that XY and Y are
(real) random variables and they are described by their joint distribution function.

Similarly, if Z(.) = X(t) +jY(d) is a complex random process, then X(t) and Y(t)
are random processes that are characterized by their joint distributions at each time ¢.
For example, the autocorrelation of a stationary Z(f) is given by

R(t) = E[Z(t)Z"(t-1)]

= E[(X(t) +/Y())(X(t- 1) -JV(t- 7))] ee= E[X(t)X(t— 1)] + ELY(OY(t- 7] +j(ELY(OX(t- 91 - ELKO Y(t— 91) ee)
= Ry(t)+Ry(t) +7(Ryy(1)—Ryy(2)

where

Ryy(t) = EL) ¥(t- 9] (C.59)

C.13 COMPLEX REPRESENTATION OF NARROWBAND RANDOM PROCESSES
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Let X(t) be a narrowband random process centered on somefrequencyf... In a manner
similar to that described in Chapter 3, we may introduce a complex baseband process
X(t) by writing

X(t) = ReLX(t)exp(j2af,0)] (C.60)

where Re[-] denotes the real part of the quantity enclosed inside the square brackets.
The complex baseband process X(t) is itself defined by

X(t) = X,(t)+iXo(t) (C.61)
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where X7(f) is the in-phase component and Xo(0)is the quadrature component. Equiv-
alently, we may expressthe original process X(¢) in terms of these two componentsas
follows:

X(t) = X;(t)cos(2zf,t) ~ Xo (1) sin (2 7/,1) (C.62)

Correspondingly, for sample functions of X(t,@), X;(t,@), and Xgit, @), we may write

X(t, @) = X(t, @)cos (2nf.) ~Xo(t, @)sin(2 7,0) (C.63)

C.14 STATIONARY AND ERGODICITY

      
A random processis said to be ergodic if time averages of a sample function are equal
to the corresponding ensemble average (or expectation) at a particular pointin time.
Mathematically, for a random process X(t,@), this relationship can be expressed as

ELX(ty, )]=lim 1 [7 xis, wyat (C.64)‘ = lim <= Oo_ Too T I
wheretheleft-hand side is the ensemble average(i.e., the expectation overall realiza-
tions @ at a particular pointin time) and the right-handsideis the time average of the
random process for a particular realization @. In many physical applications, it is
assumed that stationary processes are ergodic andthattime averages and expectations
can be used interchangeably.

NOTES AND REFERENCES

1 For a detailed description of random variables and processes, see Leon-Garcia (1994).
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Matched Filters

D.1 MATCHED-FILTER RECEIVER

Consider a knownsignal s(t) corrupted by additive white Gaussian noise w(r), resulting
in the received signal

x(t) = s(t)+ w(t) O<tsT (D.1)

Whatis the optimum receiver for detecting the knownsignals(t) in the received signal
x(t)? To answer this fundamental question, we first note the following two important

 
points:

1. The powerspectral density of white noise, with sample function w(t), is defined
by

No ‘ si
Sf) = > for all fin the entire interval -co<f<co (D.2)

The powerspectral density of white noise is illustrated in Fig. D.1(a). For a sta-
tionary random process, the autocorrelation function is the inverse Fourier trans-
form of the power spectral density. (See Appendix C.) It follows, therefore, that
the autocorrelation function of white noise consists of a Dirac delta function

6(t), weighted by No/2, as shown in Fig. D.1(b). Thatis,

R,(4) = E[w(t)w(t- 7)]

No (D.3)
Eng 6(T)

where E is the statistical expectation operator. Accordingly, any two different
samples of white noise are uncorrelated, no matter how closely together in time
they are taken.If the white noise w(¢) is also Gaussian, then the two samples are
statistically independent. In a sense, white Gaussian noise represents the ultimate
in randomness.

509
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Swf)

Nol2

0 f
(a)

Ry(f)

Soar)

0 T

(b)

FIGURE D.1 (a) Powerspectrum ofthe additive white noise W(1).
(b) Autocorrelation function of W(t).

2. Since thesignals(t) is known and therefore deterministic, it follows that s(t) and
w(t) are as uncorrelated(i.e., dissimilar) as they could everbe.

In light of point 2, we mayintuitively state that, for the problem described herein, the
optimum receiverconsists of a correlator with two inputs, one being the noisy received
signal x(t) and the other beinga locally generated replica of the known signal s(t), as
shownin Fig. D.2. For obvious reasons, this optimum receiver is known as the correla-
tion receiver.

Another way of constructing the optimum receiver is to use a matchedfilter,
defined asa linearfilter whose impulse response A(t) is a time-reversed, delayed ver-
sion of the knownsignals(£); thatis,

A(t) = s(T-tf) O<srt<T (D.4)
0 otherwise

 
s(t)

FIGURE D.2 Correlation receiver.
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Sample
atr=T

x(0) Matchedfilter: aS
A(t) = s(T — 1) ¥

FIGURE D.3  Matched-filter receiver.

Figure D.3 shows a matched filter receiver, which consists of a matchedfilter followed
by a sampler that is activated at the end of the signaling interval t=T. The important
point to note here is that the correlation receiver of Fig. D.2 and the matchedfilter
receiver of Fig.D.3 are equivalent insofar as their overall output samples are con-
cerned. Specifically, for the same input signal and at the end of a signaling interval, the
resulting output samples produced by these two receivers are identical.

OBABILITY OF DETECTION

To detect a signal with a correlation receiver or a matched-filter receiver, the output
sample is compared against a threshold and then a decision is made bythe receiver,
depending on whether the threshold is exceeded or not. In so doing, the receiver
makes a decision in favor of one of two hypotheses:

Hypothesis H;: The knownsignal s(f) is presentin the received signal x(t), a
decision that is made when the threshold is exceeded.

Hypothesis Ho: The received signal x(t) consists solely of noise w(r), a deci-
sion that is made when the threshold is not exceeded.

Clearly, the receiver is subject to errors due to the random behavior of the additive
noise w(f) in the received signal x(r).

To calculate the average probability of error incurred by the receiver, we proceed
by using Eq. (D.1) as the input signal applied to the correlation receiver of Fig. D.2.
The resulting output sample is

T

y= i} x(t)s(t)dt0

= [wo+ we@ys(oat
° (D5)
T 92 T

- J 5 (t)dt + [ w(t)s(t)dt0 0

T

= E+] w(t)s(t)dt0

where

oo fwat (D6)0

is the energy of the knownsignals(t).
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Since, by assumption, the white noise w(f) is the sample function of a Gaussian
process W(7), it follows that the receiver output y is the sample of a Gaussian-distributed
random variable ¥. To complete the characterization of the receiver output, we needto
determine its mean and variance.

The meanof the random variableYis

Hy = ELLY]

E+ Elf W(o)s(W)at]
(D7)

T

= E+ E| [ W(t) |s (dt0

=f

where we have used two facts: First, the knownsignal s(t) is deterministic and there-
fore unaffected by the expectation operator E. Second, by assumption, the mean of
the white noise process W(t) is zero.

The variance of the random variable Y is

oy = EL(¥—py)"]

F|[iW(t,)W(ty)s(t, )s(t)altdt (D8)
ToT

JJ EEeDIst)s(t)dtat
Invoking the use of Eq. (D.2), we may write

No
ELM) M()1 = Alt ty) (D.9)

Substituting Eq. (D.9) into (D.8) yields

2 _ Nopt (tr
y= lode A(t, — t)s(t1)5(ty) dt, dt,

No T 2
= fsae, (D.10)
_ Nok

“2

whereEFis the signal energy.
Putting all the pieces together, we can now say that the correlation receiver

output y is the sample value of a Gaussian-distributed random variable Y with mean
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Hy = E and variance oF = NjE/2. Accordingly, we may express the probability den-
sity function of the random variable Y as

2

_ i _O~ Hy)fo) aaoe|
205

 

(D.11)
  

2

= | exp] _-Y-*)
[RNgE NoE

whichis plotted in Fig. D.4.
Let A denote the threshold against which the correlator output y is compared. As

stated previously, when y > A, the receiver decides in favor of hypothesis H); otherwise
it decides in favor of hypothesis Hy. Accordingly, the conditional probability of error,
given that the knownsignal s(Z) is present in the receiver input,is defined by

a

Prob(say Hy|H, is true) = | fylv)dy (D.12)
whichis illustrated graphically in Fig. D.4. Substituting Eq. (D.11) into (D.12) yields

 Prob(say H|, is true) = 1 i exp (=) dy (D.13)om TNE o-~ Noe
To simplify matters, let

we LOE (D.14)
[NoE

which meansthat

dz = _ay_

fry)

 
 
 
 
 

 

Conditional

probability of
error, given
that the knownsignal
s(t) is present
(i.e.,y > A) ty--—--———-———--——-+4-—-—-

FIGURE D.4_ Probability distribution of the correlation receiver output.
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Hence, we may rewrite Eq. (D.13) as

A-E)/ JNoE
Prob(say H,|H, is true) = eS AN exp(—z”)dz

0 1 nt a
(D.15)

t exp(-z”)dzTn — NoE
Atthis point in the discussion, we digress briefly to introduce a function that is closely
related to the Gaussian distribution: the error function, defined by

_ 2 fu 2
erf(u) = = J exp(-z’ )dz (D.16)

Table E.1 of Appendix E gives values of the error function erf(u) for the argument u
in the interval 0 < u <3.3. The error function has two useful properties:

1. Symmetry property, described by

erf(—u) = —erf(u) (D.17)

2. Asymptote property, which, for the argument « approachinginfinity, is described
by

2 2
erf(co) = — exp(-z )dzJn J, (D.18)

=1

Anotherfunction, the complementary error function, is defined by

erfe(u) = = fo exp(2°)az (D.19)Tw *u

whichis related to the error function by the formula

erfc(u) = 1—erf(u) (D.20)

We may now reformulate the conditional probability of error of Eq. (D.15) in terms of
the complementary error function by writing

 Prob(say Ay| Ay is true) = sereEe | (D.21)
Nv 'O

From Eq. (D.21), the following points are noteworthy:

e The signal energy E and noise spectral density Ng have different physical inter-
pretations, in that £ is measured in joules whereas Nog is measured in watts/hertz;
yet these two units are in fact equal.
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° Insofar as the signal componentis concerned, the probability of erroris indepen-
dent of the waveform of the knownsignal s(¢), and the only parameter that mat-
ters is the signal energy E.

* The threshold A is measuredin joules.

D.3 ANOTHER PROPERTY OF THE MATCHED FILTER

Equation (D.21) sums up one important property of the matched-filter receiver in the
combined presence ofsignal and noiseat the filter input. For another important prop-
erty of the matchedfilter, consider the case of a noiseless input. Then, with the input
x(t) = s(t) and the impulse response A(t) = s(T — 2), the resultingfilter output is defined
by the convolution integral

y(t) = R(T)
(D.22)

R,t-T) ifw(t) =0

The integral of Eq. (D.22) is recognized as the deterministic autocorrelation function
of the signal components(f) for a lag of T -t, namely, R,(T — 1). Accordingly, we may
write

V(t) = R(T-1t)
(D.23)

= R(T-1) wt = 0

where, in the second line, we have used the fact that the autocorrelation function of
a signal of finite energy is an even function of the lag (see Appendix A). In words,
Eq. (D.23) states that the outputofa filter matched to an input signal is equal to the
autocorrelation function of that signal, delayed by an amount equalto the duration of
the signal.

D.4 MATCHED FILTERING FOR COMPLEX SIGNALS

The material presented thus far on matched filtering applies to real-valued signals.
Whendealing with complex-valued signals, we make a simple modification to Eq. (D.A).
Specifically, the impulse response ofa filter matched to a complex-valuedsignals(¢) is
defined by

A(t) = {sr-0 O<1<T (D.24)0 otherwise

where the asterisk denotes complex conjuction. Except for this minor modification,
everything else presented in the Appendix remainsintact.

Page 425 of 474



Page 426 of 474

 
APPENDIX €E

Error Function 
E.1 DEFINITIONS

The error function, denoted by erf(u), is defined in a numberof different ways in the
literature. We shall use the following definition:

voy . 2 ft 2
erf(u) = z J, exp (—z’ )dz (E.1)

The error function has two useful properties:

1.

erf(—u) = —erf(u) (E.2)

This is knownas the symmetry property.
2. As u approachesinfinity, erf(u) approachesunity; thatis,

7 f,oxae = (E.3)™

This is known as the asymptote property.

The complementary error functionis defined by

2 2
erfe(u) = —|exp(—z’ )dz E.4)(u)=Jexpe) (

The complementaryerror functionis related to the error function as follows:

erfe(u) = 1—erf(u) (E.5)

Table E.1 gives values of the error function erf(u) for u in the range from 0 to 3.3.

316
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TABLE E.1 The Error Function*.
 

 u erf(u) u erf(z)
0.00 0.00000 1.10 0.88021
0.05 0.05637 1.15 0.89612
0.10 0.11246 1.20 0.91031
0.15 0.16800 125 0.92290
0.20 0.22270 1.30 0.93401
0.25 0.27633 1.35 0.94376
0.30 0.32863 1.40 0.95229
0.35 0.37938 1.45 0.95970
0.40 0.42839 1.5 0.96611
0.45 0.47548 1.55 0.97162
0.50 0.52050 1.6 0.97635
0.55 0.56332 1.65 0.98038
0.60 0.69386 1.70 0.98379
0.65 0.64203 1.75 0.98667
0.70 0.67780 1.80 0.98909
0.75 0.71116 1.85 0.99111
0.80 0.74210 1.90 0.99279
0.85 0.77067 1:95 0.99418
0.90 0.79691 2.00 0,99532
0.95 0.82089 2.50 0.99959
1.00 0.84270 3.00 0.99998
1.05 0.86244 3.30 0.999998

*The error function is tabulated extensively in several references, see for example,
Abramowitz and Stegun (1965, pp. 297-316).

E.2 BOUNDS ON THE COMPLEMENTARY ERROR FUNCTION

Substituting u — x for z in Eq.(E.4), we get
0

erfce(u) = = exp(-u")| exp (2ux) exp (—x")dxnt —oo

For any real x, the value of exp(—x’) lies between the successive partial sums of the
powerseries

2 3

1,@)
“To 3!

Therefore, for u > 0, we find, on using (+1) terms of this series, that erfe(i) lies
between the values taken by

2 2 "( 2x! == - 1- =, = the 2ux)d.Fort u yf xo + 5 a exp (2ux)dx
for even n and for odd n. Putting 2ux =—v and usingtheintegral

Jv"exp-vjav = n!0
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we obtain the following asymptotic expansion for erfc(u), assuming that u > 0:

2

erfo(u) = SP4LBa3Sno) (E.6)
Tu Qu ou 2u

Forlarge positive values of u, the successive termsof the series on the right-handside
of Eq. (E.6) decrease very rapidly. We thus deduce two simple bounds on erfc(u), one
lowerandthe other upper, given by the inequality!

exp ane1 exp (—u")—, |<erfe(u) <amu 52)
For large positive u, a second bound on the complementary error function erfc(u) is
obtained by omitting the multiplying factor 1/u in the upper bound of Eq.(E.7):

(E.7)Tu

exp(-u’)
erfe(u) < (E.8)ra

In Fig. E.1, we have plotted erfc(w), the two bounds defined by Eq. (E.7), and the
upper bound of Eq. (E.8). We see that, for u > 1.5, the bounds on erfc(w), defined by
Eq. (E.7), becomeincreasingly tight.

E.3 THE Q-FUNCTION

Page 428 of 474

Consider a standardized Gaussian random variable X of zero mean and unit variance.
The probability that an observedvalue of the random variable X will be greater than v
is given by the Q-function:

1 oe “Q(v) = a J, exp(-5) (E.9)
The Q-function defines the area under the standardized Gaussian tail. Inspection of
Eqs. (E.4) and (E.9) reveals that the Q-functionis related to the complementary error
function as follows:

= ‘terwal'Q(v) = derte(=) (E.10)
Conversely, putting u = v, we have

erfc(u) = 20(./2u) (E.11)
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10?

qo! *

10°  
=

osErfc(u),labeledcurveD,andbounds fr5

10-3
 

10~4 |
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Argumentu oi

FIGURE E.1 The complementaryerror function erfe(w) andits bounds: od
 

 

Curve A: 2
afTu

Curve B: £ (1 - +)wu 2u

-u" A |
Curve C: : |7 :

Curve D: erfc(u}  NOTES AND REFERENCES

‘The derivation of Eq. (E.7) follows Blachman (1966).     
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APPENDIX_ F

MAPAlgorithm

F.1 SEPARABILITY THEOREM

Following the terminology introduced in Section 4.12.4, let the vectors a(t) and B(t)
denote estimates of the state probabilities in a turbo decoderat time ¢ that are based
on past and future data, respectively. According to the separability theorem, the state
probabilities at time ¢ are related to a(t) and B(1) by

a(t) = OBO (F.1)
lect) - BCol,

where the numeratoris the vector productof a(t) and A(t) and the denominatoris the
ZL, norm ofthis product, as defined in Section 4.12.

Proof: For any m, for which Prob(s(t) = m) #0,

A,,(t) = Prob(s(t) = mly)

_ Prob(s(t) =m, y)
Prob(y)

_ “(¢) — mw), Prob(s(t) = m)
= Prob(y|s(t) = m) —Prebay

= Prob(yy1, y|9() =m)- Prob(yy, 4.4, rps(t) =m)- wee (F.2)
_ Prob(yr1,q/s() =m) Prob(y;,41,78() = ™) Prob(s(t) = m)
~~ Prob(s(f) =m) Prob(s(f) = m) Prob(y)

Prob(yey, |¥pe+1, 1)= Prob(s(1) = mlyi1, 4) Prob(s(¢) = mlyyy 44, 7) (one
where the second and third lines in the development follow from Bayes’ rule, the
fourth line follows from the fact that the decoding process is a Markov process, and
the fifth and sixth lines are further manipulations using Bayes’rule.

520
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Often, the a priori probabilities, Prob(s(¢) = m), are independent of m.(In prac-
tice, some of the a priori probabilities in a turbo decoding process may be zero dueto
certain features of the trellis—for example,at start-up. In that case, this requirement
applies only to those states whose a priori probabilities are nonzero.) This is usually
the case for a time-invarianttrellis, for which the inputs are equiprobable. In that case,
the bracketed term in the last line on the right-handside is independent of m. Since
the summation of the left-hand side of Eq. (F-2) over m must equal unity, it follows
that this bracketed term must normalize the right-hand side to sum to unity. Thus,
when weidentify the first and second termsin the product of the last line as a(t} and
B(2), we have

At) = 29-BO(E3)
lett) - BOOM1

which proves the theorem.
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APPENDIX G

Capacity of MIMO Links

G.1 PRELIMINARIES!

522
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The purposeof this appendix is to present a derivation of the log-det capacity formula
of Eq.(6.59). To prepare the way for the derivation, we briefly review some basic con-
cepts in information theory.

Consider a continuous random variable X with probability density function
fx(x). The differential entropy of the random variable X, measuredin bits, is defined
by

W(X) = ~[™ fy(logyfy(x)dx
-E[log,f,-(x)] bits

ia

whereEis the statistical expectation operator.It is important to note that the symbol
X in the entropy h(X) is not the argumentof a function; rather, it merely serves the
purposeofa label for the source of information.

When we have a continuous random vector X consisting of N random variables
X1,X9,....Xy, We May generalize Eq. (G.1) and define the differential entropy of X as
the N-fold integral

W(X) = -|" fx(slog,fy(x)dx
= -E[log,4,(x)] bits

(G2)

where fx(x) is the joint probability density function of the random vector X.
The logarithmic description of entropy is evident from both Eqs. (G.1) and (G.2).

This particular form of description is in perfect accord with the notion of entropy in
thermodynamics.

Equations (G.1) and (G.2) apply to random data, real or complex. The difference
between these two forms of data manifests itself in the way in which the pertinent
probability density functions are defined,as illustrated in the next example.
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EXAMPLE G.1 Complex Multidimensional Gaussian Distribution

Consider an N-dimensional complex Gaussian-distributed vector X. Each element of X consists

of an in-phase component X;,; and a quadrature component Xx9, so

X, = Xe t+IX, 9 = 122... (G3)

or, vectorially,

X = X/+jXo (G4)

It is assumed that X has zero mean. The requirementis to determine the differential entropy of

* If the components X; and Xg are orthogonal—thatis, if we have
E(X/Xo] = 0 (G5)

and if they are both Gaussian distributed, then they arestatistically independent, or

Fx,x(Xp XQ) = FxXDfx(Xo) (G6)

The in-phase component X; and quadrature component Xg share the same formula fortheir
joint probability density functions. We therefore make two important observations:

1. The components X; and Xg have exactly the same entropy.
2. Since the differential entropy is logarithmic in nature, it follows that the differential

entropies of X; and XQ are additive in termsof calculating the differential entropy of X.

Hence, we maywrite

A(X;) = h(Xo) (G.7)
and

h(X) = h(X,) +h(Xo) G8= 2h(X,) (G8)
The joint probability density function of the complex Gaussian vector X with zero mean and
correlation matrix R, is defined by

1 1, Hl
——_.———-exp|--x R, x (G.9)(2nydet(R,) ( 4x(x) =

where R,’ is the inverse of R, and det(R,) is the determinant of R,. Substituting Eq. (G.9) into
(G.2), using the fact that the volume underf(x) is unity, and then simplifying terms, we get

h(X) = N+Nlog,(27) + log,{det(R,)} bits (G.10)

which is uniquely defined by the correlation matrix R,.
For the special case of a scalar complex Gaussian random variable X, N=1 and Eq.

(G.10) reduces to

 
h(X) = 1+log,(2x0%) bits X: complex) (G.11)B2 xX.
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where Oy is the variance of X.If X is real, we have

h(X) = su +log,(2x0,)] bits (X : real) (G.12)
For a given variance Oy, the Gaussian random variable X has the largest differential entropy
attainable by any random variablein its class (i-e., real or complex). A similar remark applies to
a multivariate Gaussian distribution. a

For the discussion at hand, we need one other notion: mutual information, which
applies to a pair of related random variables or random vectors. To be specific, con-
sider a pair of random variables XY and Y with joint probability density function
fy, y(,y). The mutualinformation between X andY is defined by

= fyyly)OY) = f- [ifx eivice,
where fy\y(«ly) is the conditional probability density function of X, given that Y = y.
In words, the mutual information /(X;Y) is a measure of the uncertainty aboutthe ran-
dom variable X that is resolved by observing the second random variable Y.

On the basis of Eq. (G.13), we may derive the following properties of mutual
information that hold in general:

Jew (G.13)

I(X:Y) = 0 (G.14)

I(X;Y) = I(¥:X) (G.15)

I(X;Y) = h(X) - h(X|¥) (G16)
= A(Y)-H(Y|X)

Here, h(X) and h(Y) are the differential entropies of X and Y, respectively, and

W(X|Y) = -]" [fy vs vlogsfy yly)dedy (G.17)
is the conditional differential entropy of X, given Y.

Formulassimilar to Eqs. (G.13) through (G.17) applyto a related pair of random
vectors X and Y.

With the definitions of differential entropy, conditional differential entropy, and
mutual information at hand, we are ready to proceedwith the derivation of the log-det
capacity formula.

G.2 LOG-DET CAPACITY FORMULA OF MIMO LINK2

Page 434 of 474

Consider a communication link with multiple antennas. Let the N,-by-1 vector s
denote the transmitted signal vector and the N,-by-1 vector x denote the received sig-
nal vector. These two vectors are related by the input-outputrelation of the channel,
namely,

x = Hs+w (G.18)
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where H is the channel matrix of the link and w is the additive channel noise vector.

The vectors s, w, and x are realizations of the random vectors S, W, and X, respectively.
In the rest of this section, the following assumptions are made:

1. The channelis stationary and ergodic.

2. The channel matrix H is made upof i.i.d. Gaussian elements.
. The channel state H is knownto the receiver, but not the transmitter.3

4, The transmitted signal vector s has zero mean and correlation matrix Ry.
5. The additive channel noise vector w has zero mean andcorrelation matrix Ry.
6 - Boths and ware governed by Gaussian distributions.

With both H and x unknownto the transmitter, the primary issue of interest is to
determine J(s;x,H), which denotes the mutual information between the transmitted
signal vector s and both the received signal vector x and the channel matrix H. Extend-
ing the definition of mutual information given in Eq. (G.13) to the problem at hand,
we write

I(S;X, H) = Shs. X, H(S: X H)log,eeH)
HXS

a sidsdxdH G9Fx us WD) Jo * ee
where S$, X, and # are the respective spaces pertaining to the random vectors $§ and X
and the matrix H. According to Bayes’ rule, we have

fs, Xx, H(S; x, H) = Ts, x|H(S> x|H)/q(A)

We may therefore rewrite Eq. (G.19) in the equivalent form

Js\x, u(8|%, H) ]I(S:X, H) = [f_(H RBS|egy ||(SH)=[fia |ffx x| oe Fey |"
Igix, 4(S1% ~| (G.20)E (s, x|H)log,| ———_______ |dsadxwJJxm | ef Ca

Eql/(s:x|H)]

where the expectation is with respect to the channel matrix H, and

, Fgix H(3|% ~|I(s;x|H) =||fo (s, x|H)log,| ———_—_____ |dsdx| IJ 8, X|H(S> X| { Fx uO

 
is the conditional mutual information between the transmitted signal vector s and the
received signal vector x, given the channel matrix H. However, by assumption, the
state of the channel is unknownto the transmitter. It follows, therefore, that insofar as

the receiver is concerned,/(s;xlH) is a random variable—hence the expectation with
respect to H in Eq. (G.20). The quantity resulting from this expectation is deterministic,
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defining the mutual information jointly between the transmitted signal vector s and
both the received signal vector x and the channel matrix H. Theresult so obtainedis
indeed consistent with what we know aboutthe notion of joint mutual information.

Next, applying the vector form ofthefirst line in Eq. (G.16) to the mutualinfor-
mation J(s; xlH), we may write

I(s;x|H) = h(x|H)—h(x|s, H) (G.21)

where /(xlH) is the conditional differential entropy of the input x, given H, and
h(xls,H)is the conditional differential entropyof the input x, given both s and H. Both
of these entropies are random quantities, as they depend on H.

To proceed further, we now invoke the assumed Gaussian nature of both s and H, in
which case x also assumes a Gaussian description. Under these assumptions, we may use
Eq. (G.10) to express the entropy of the received signal x of dimension N,, given H, as

h(x|H) = N,.+ N,log(2) + log,{det(R,)} bits (G.22)

where R, is the correlation matrix of x. Recognizing that the transmitted signal vector
s and the channel noise vector w are independentof each other, wefind, from Eq.
(G.18), that the correlation matrix of the receivedsignal vectorx is given by

R, = Elxx’]

= E[(Hs + w)(Hs + w)"]
Tact t

= E[(Hs + H +

[(Hs ve . )] (G23)
= E[Hss'H |+£[ww ]_ because E[sw’] =0

= HE[ss]H'+R,

= HR,H'+R,

where

‘
R, = E[ss"] (G.24)

and

‘

R, = E[ww ] (G.25)

Hence,using Eq. (G.23) in (G.22), we get

h(x|H) = N,+N,log,(2z) + log,{det(R,, +HR,H')} bits (G.26)
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Next, we note that, since the vectors s and w are independent, and since the sum of w
plus Hs equals x, as indicated in Eq. (G.18), then the conditional differential entropy
of x, given both s and H,is simply equal to the differential entropy of the additive
channel noise vector w:

h(x|s, H) = h(w) (G.27)

Again invoking the formula of Eq. (G.10), we have

h(w) = N,+N,log,(2m) + log,{det(R,,)} bits (G.28)

Using Eqs. (G.26), (G.27), and (G.28) in Eq. (G.21), we get

1(s:x|H) logs]det, +HR,H”} —log,{det(R,)}
(G.29)

WW Joo,{4etRw + HR,H”)
nea det(R,,)

As was remarked previously, the conditional mutual information /(s; xlH) is a random
variable. Hence, using Eq. (G.29) in (G.20), we finally formulate the ergodic capacity
of the MIMOlink as the expectation

 
det(R,, +HR,H”))]

C = Ey| log, ——ae(R,) bits/s/Hz (G.30)

which is subject to the constraint

max tr[R,] <P P=constant transmit power
R8

wheretr[.] denotes the trace operator, which extracts the sum of the diagonal elements
of the enclosed matrix.

Equation (G.30) is the desired log-det formula for the ergodic capacity of the
MIMOlink. This formula is of general applicability in that correlations amongtheele-
ments of the transmitted signal vector s and amongthoseof the channel noise vector w
are permitted. However, the assumptions madeinits derivation involve the Gaussian
aspects of s, H, and w.

Onelast commentis in order: the white Gaussian input spectrum

2

R, = O,1y

is not necessarily optimal; nevertheless, its application does yield a lower boundto the
ergodic capacity C.
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G.3. MIMO CAPACITY FOR CHANNEL KNOWNAT THE TRANSMITTER?

Page 438 of 474

The log-det formula of Eq. (G.30) for the ergodic capacity of a MIMOflat-fading
channel assumesthat the state of the channel is known only at the receiver. Whatif the
state is also knownperfectly at the transmitter? Then the state of the channel becomes
knownto the entire system, which meansthat we maytreat the channel matrix H as a
constant. Hence, unlike the partially known case discussed in Section G.2, there is no
longer the need for invoking the expectation operator in formulating the log-det
capacity. Rather, the problem becomes one of constructing the optimal R, (i.e., the
correlation matrix of the transmitted signal vector s) that maximizes the ergodic
capacity. To simplify the construction procedure, we consider a MIMO link with
N,=N,=N. Accordingly, using the assumption of additive white Gaussian noise with
variance o,, in the log-det capacity formula of Eq. (G.2), weget

C= oesy+ +nr,n'| bits/s/Hz (G31)
Ow

Wecan now formally postulate the optimization problem at handas follows:

Maximize the ergodic capacity C of Eg. (G.31) with respect to the correlation
matrix Ry, subject to two requirements:

1. Nonnegative definite R,, which is a necessary requirement for a correlation
matrix.

2. Global power constraint

tr[R,] = P (G.32)

where P is the total transmit power.

To proceed with construction of the optimal R,, we first use the determinantidentity:

det(I+ AB) = det(I+ BA) (G.33)

Applying this identity to Eq. (G.31) yields

ae log}tet + Eras| bits/s/Hz (G.34)
O.,

Diagonalizing the matrix product HTH by invoking the eigendecomposition of a Her-
mitian matrix, we may write

u'H'HU = A (G.35)
where A is a diagonal matrix made up ofthe eigenvalues of H'H and U is a unitary
matrix whose columnsare the associated eigenvectors. (The eigendecomposition of a
Hermitian matrix is discussed in Appendix H.)We may rewrite Eq. (G.35) in the form

H'H = UAU' (G.36)
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Substituting Eq. (G.36) into Eq. (G.34), we get

C= ote4ruau')| bits/s/Hz (G.37)
Ow

Applying the determinantidentity of Eq. (G.33) to Eq. (G.37) yields

Cs oeey+ Lav'ru}}w

(G.38)

= lotsttt + 4aR,]| bits/s/Hz
OW

where

R, = U'R,U (G39)

Note that the transformed matrix R, is nonnegative definite. Note also that

tr[R,] = tr[U'R,U]

= tr[UU'Rg] (G.40)
= tr[R,]

It follows, therefore, that maximization of the capacity of Eq. (G.38) can be carried
equally well over the transformedcorrelation matrix R,.

Oneother important point to note is that any nonnegative definite matrix A sat-
isfies the Hadamard inequality

det(A) <[Jag, (G41)
k

 
where the a;,; are the diagonal elements of the matrix A. Hence, applying this inequal-
ity to the determinantin Eq. (G.38), we may write

N

ctvt Lan] < H|: + As, u] (G42)
Ow k=1 Ow

whereA, is the kth eigenvalue of the matrix product HHand 7, x 1S the kth diago-
nal element of the transformed matrix R,. The equality in Eq. (G.42) holds only
when R,is a diagonal matrix, whichis the very condition that maximizes the ergodic
capacity C.
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To proceed further, we now use Eq. (G.38) and Eq. (G.42) with the equality sign
to express the capacity as

ll
N

Cc log, I(+4bd Fir..
k= Ow

- 1y oe + ahs, |
bee fe Tee (G43)

Featsauk=1 oy

> log,a,+ ¥tony2 +44, _=1 k=1 Oy
ll

where only the second summationis clearly adjustable. We may therefore reformulate
the optimization problem at handas follows:

8“ ‘ N es 5

Given the set of eigenvalues {Aj}, i pertaining to the matrix product HH",
determine the optimal set ofautocorrelations {r,x4}, — 1 that maximizes the sum-
mation

subject to the constraint

The global power constraint of Eq. (G.44) follows from Eq. (G.40) and the trace
definition

N

IR] = YFip (G45)
k= 1

Thesolution to this optimization problem may be determined through the water-filling
procedure, which is well known in information theory.’ Effectively, the solution to the
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water-filling problem says that, in a multiple-channel scenario, we transmit moresig-
nal powerin the better channels and less signal power in the poorer channels. To be
specific, imagine a vessel whose bottom is defined by the set of N dimensionless dis-
crete levels

2 N

fe -ealA, k=1

and pour “water” into the vessel in an amount corresponding to the total transmit
power P. That poweris optimally divided among the N eigenmodes of the MIMO
link in accordance with their corresponding “water levels” in the vessel, as illus-
trated in Fig. G.1 for a MIMOlink with N = 6, The “water-fill level”, denoted by the
dimensionless parameter pw and indicated by the dashedline in the figure, is chosen
to satisfy the constraint of Eq. (G.44). On the basis of the spatially discrete water-
filling picture portrayed in Fig. G.1, we may nowfinally postulate the optimal r,,,
to be

Oo,
24

Fee = [-2 k=1,2,...,N (G.46)> Ay

where the superscript “+”signifies retaining only those terms on the right-handside of
the equation that are positive (i.e., the terms that pertain to those eigenmodesof the
MIMOlink for which the water levels lie below the constant 1). Correspondingly, the
maximum value of the capacity of the MIMOlink,in accordance with the first line of
Eq. (G.43) and Eq. (G.46), is defined by

N
l iCe 3oe + sels, us]

 
k=1 ow

N 2\+o.

= ¥ log, 1+a(n (G.47)
k=l Ow -

N
HA, \*= Soe

k=1 w

where, as stated previously, the constant y is chosen to satisfy the global power con-
straint of Eq. (G.44).

The optimal results of Eqs. (G.46) and (G.47), assuming that the channel state is
known to both the transmitter and receiver, were derived by considering a MIMOlink
with N,=N,= N.
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0 1 2

FIGURE G.1 Water-filling interpretation of the optimization procedure. For the example
portrayedin the figure, we have the following source autocorrelation values

All the other nondiagonal elements of the source correlation matrix R, are zero.

NOTES AND REFERENCES

For a detailed exposition of the many facets of information theory, see Cover and Thomas
(1991).

? The first detailed derivation of the log-det capacity formula for a stationary MIMO link was
presented by Telatar in an AT&T technical memorandum published in 1995 and republished as
a journal paperin 1999.

>The waterfilling procedure is described in Cover and Thomas(1991).
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Eigendecomposition

H.1 UNITARY TRANSFORMATIONOF A HERMITIAN MATRIX’

Consider a square complex matrix R of dimensions M by M.'The matrix R is assumed
to be Hermitian; thatis,

R'=R (H.1)
where the superscript t denotes Hermitian transposition. With R as the matrix of
interest, the eigenvalue problem is defined by

Rq = Aq (H.2)

where q is an M-by-1 vector and Aisascalar.
In general, there are M distinct values of the scalar A that satisfy Eq. (H.2); these

values are roots of the characteristic equation

det(R-AL) = 0 (H.3)

where I is the M-by-M identity matrix.
Typically, the off-diagonal elements of matrix R are nonzero. The diagenaliza-

tion of R is achieved by expanding on the transformation described in Eq. (H.2). Spe-
cifically, we may write

Q'RQ=A (H.4)
where

A = diag(Ay, Ay,.-.s Agy) (H.5)

is a diagonal matrix and

Q = [44, 49,---5 yy] (H.6)

is a unitary matrix. The scalars A,, A,,...,A,, constituting the matrix A are called the
eigenvalues of matrix R, and the M-by-1 vectors q,, q5,--., q,y constituting the matrix
Q are the associated eigenvectors of R.

533
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Bydefinition, the unitary matrix Q satisfies the relation

QQ’ = Q'Q=1 (H.7)

In expanded form, we may rewrite Eq. (H.7) as

Tt =]
q; q; = 1 fork=i (H.8)

O for k#i

According to Eq. (H.7), the inverse of the matrix Q, namely, Q") is equal to the Her-
mitian transpose of Q,or

-1 t
Q =Q (H.9)

In light of Eqs. (H.5) through (H.9), we may rewrite Eq. (H.4) in the equivalent form

R = QAQ'
(H.10)Il _ t

¥ Ae:
k=1

Equation (H.10) is called the spectral decomposition theorem, which states that the

Hermitian matrix R can be expanded as the linear combination of the rank-one matrixM

productsa , and the corresponding eigenvalues {aghy 1 are the scaling fac-k=1

tors of the linear combination.

H.2 RELATIONSHIP BETWEEN EIGENDECOMPOSITION AND SINGULAR-

VALUE DECOMPOSITION?

Consider next a rectangular complex matrix A with dimensions L by M. Let the M-by-
M matrix R be related to the matrix A as follows:

AA’ for MEL
R= (H.11)

ATA for M<L

Then, according to the singular-value decomposition (SVD) theorem, the matrix A
may be diagonalized as

U'AV = P , (H.12)00
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where D is a diagonal matrix, the 0’s are null matrices, and U and V are respectively
L-by-L and M-by-M unitary matrices; thatis,

uU =U (H.13)

and

vay" (H.14)
Specifically, we may make the following statements:

e The diagonal matrix

D = diag(d),d>,...,dy), W=min(L,M) (H.15)

defines the singular values of matrix A.

e The unitary matrix

U = [u,, U, wees u,] (H.16)

defines the L left-singular vectors of matrix A.

e The second unitary matrix

V = [Vq, Vo. «++ Vagl (H.17)

 
defines the M right-singular vectors of matrix A.

Moreover, depending on whether the dimension L is greater than M or the other way
around, we have two different cases in describing the relationships between singular-
value decomposition and eigendecomposition:

Case l. L>M

In this case, the dimension W = M andthe singular values d,db,....djy are equal to the
square roots of the eigenvalues of the matrix product R = ATA. Correspondingly,the
right-singular vectors Vj,V9,...,Vjg are the associated eigenvectors.

Case 2. L< M

In this second case, the dimension W = LF andthe singular values d,dj,....d7, are equal
to the square roots of the eigenvaluesof the alternative matrix product R = AAT. Cor-
respondingly,the left-singular vectors uy,Up,...,uy, are the associated eigenvectors.

NOTES AND REFERENCES

! The eigendecomposition of a square matrix is discussed in Chapter 5 of Strang (1980). The dis-
cussion presented therein focuses on square matrices that are real.

? The singular-value decomposition of a rectangular matrix is discussed in Chapter 7 of Strang
(1980). Here again, the discussion focuses on real matrices. The chapter also discusses issues
relating to the computation of eigenvalues.
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APPENDIX 1

Adaptive Array Antennas

1.1. NEED FOR ADAPTIVITY

The goal of wireless communicationsis to allow as many users as possible to commu-
nicate reliably without regard to location and mobility. From the discussion presented
in Chapter 2, we find that this goal is seriously impeded by three major channel
impairments:

1. Multipath can cause severe fading due to phase cancellation between different
propagation paths. Fading leads to a reduction in available signal power and
therefore a degraded noise performanceat the receiver.

2. Delay spread results from differences in propagation delays among the multi-
ple propagation paths. When the delay spread exceeds about 10% of the sym-
bol duration, the intersymbol interference experienced by the received signal
reaches a significant level, thereby causing a reduction in the attainable data
rate.

3. Cochannel interferencearises in cellular systems in which the available frequency
channels are dividedinto different sets, each of whichis assigned to a specific cell
and with severalcells in the system using the sameset of frequencies. Cochannel
interference limits the system capacity (i.e., the largest possible number of users
that can be reliably served by the system).

Typically, cellular systems use 120° sectorization at each base station, and only one
user accesses a sector of a base station at a given frequency. We may combattheeffects
of multipath fading and cochannelinterference at the base station by using three iden-
tical, but separate, antenna arrays, one for each sector of the base station. (The com-
pensation of delay spread is consideredlaterin the section.) Figure I.1 shows the block
diagram of an array signal processor;it is assumed that there are N users whosesignals
are receivedat a particular sector of the base station and that the array for that sector
consists of K identical antenna elements. A particular user is treated as the one of
interest, and the remaining N — 1 usersgive rise to cochannelinterference. In addition
to the cochannelinterference, each componentof the array signal processor’s input is
corrupted by additive white Gaussian noise (AWGN). The analysis presented herein is

536
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FIGURE I.1 Block diagram of array signal processor that involves K antenna elements
and that is being driven by a multipath channel.

for basebandsignals, which, in general, are complex valued. This means that both the
channel and the array signal processor require complex characterizations of their own.
The structure depicted in Fig. 1.1 is drawn for one output pertaining to the user of
interest. The array signal processor is duplicated for users at other frequencies at the
base station.(Figure I.1 refers to a situation different from that considered in
Chapter 6 and Appendix G,hence the difference in notation.)

The multipath channel is characterized by the channel matrix, which is denoted
by H. The matrix H has dimensions K-by-N and may therefore be expanded into N
columnvectors, as shown by:

H = [hy, hy, ..., hy] (1.1)

Column vectorh,, i= 1,2,...,N is of dimension K, and represents the multipath compo-
nent pertaining to useri.

Given the configuration described in Fig. I.1, the goal is to design a linear array
signal processor for the receiverthat satisfies two requirements:

1. The cochannel interference produced by the N — 1 interfering users is cancelled.
2. The output signal-to-noise ratio (SNR)for the user of interest is maximized.

Hereafter, these two requirements are referred to as design requirements 1 and2.
To proceed with this design task, it is assumed that the multipath channel is

described by flat Rayleigh fading. Then,in light of the material presented in Example
6.2, we find that the use of diversity permits the treatment of the column vectors
h5, hg, ..., hy, as linearly independent, which is justified, provided that the spacing
between antenna elementsof the arrayis large enough (10 to 20 times the wavelength)
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for independentfading. To simplify the presentation, we supposethat user 1 is the user
of interest and the remaining N — 1 users are responsible for co-channelinterference,
as indicatedin Fig. I.1. The key design issue is how to find the weight vector, denoted by
w, that characterizes the array signal processor. Toward that end, we may proceed as
follows:

1. We choose the K-dimensional weight vector w to be orthogonal to the vectors
h,, h;, ..., yy, which are associated with the interfering users. This choice fulfills
design requirement1(i.e., the cancellation of cochannel interference).

2. To satisfy design requirement2 (i.e., maximization of the SNR), we will briefly
digress from the issue at hand to introduce the notion of a subspace. Given a
vector space, or just a space, formed bya set of linearly independentvectors, a
subspace of the space is a subset that satisfies two conditions:
(i) If we add any two vectors z, and z> in the subspace, their sum z, and z, is

still in the subspace.

(ii) If we multiply any vector z in the subspace by anyscalar a, the multipleaz is
still in the subspace.

Define the subspace WL{h,, h3,..., hvJ- Then, returning to the issue of how to
maximize the output SNRforuser 1, we first construct a subspace denoted by W
whose dimensionis equalto the difference between the numberof antennaele-
ments and the numberofinterfering users—thatis, K -(N-1)=K-—N+1.Next,
we project the complex conjugate of the channel vector h; (pertaining to user 1)
onto the subspace 7/ The projection so computed defines the weight vector w.

EXAMPLEI.1 Subspace Method for Determining the Weight Vector

To illustrate the two-step subspace method for determining the weight vector w, consider
the simple example of a system involving two users characterized by the channel vectors hy
and hy, and an antenna array consisting of three elements; that is, N = 2 and K = 3. Then, for
this example, the subspace 1 is two-dimensional, since

K-N+1=3-24+1=2

With user 1 viewed as the user of interest and user 2 viewed as the interferer, we may con-
struct the signal-space diagram shown in Fig. I.2. The subspace W, shown shadedin thisfigure,is
orthogonal to channel vector hy. The weight vector w of the array signal processoris determined
by the projection of the complex-conjugated channel vector of user 1 (i.e., hy*) onto the sub-
space Was depicted in the figure.

The important conclusion drawn from this discussion is that a linear receiver using
optimum combining with K antenna elements and involving N—1 interfering users has the
same performance as a linear receiver with K— N-+1 antenna elements, without interference,
independent of the multipath environment. For this equivalence to be realized, we of course
require that K > N—1. Provided that this condition is satisfied, the receiver cancels the cochan-
nel interference with a diversity improvement equal to K — N+ 1, which represents an N- fold
increase in system capacity.
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hy
(Interferer) 
 
 

h,*
(Userofinterest)

w

(Weight vector) 
 ———_——— Subspace W

FIGURE |.2 Signal-space diagram for Example I.1, involving a userofinterest, a single interferer,
and an antenna array of three elements, The subspace #, shown shaded,is two dimensionalin this
example.

The design of an array signal processor in accordance with the two-step subspace pro-
cedure described herein is of the zero-forcing kind. We say this because, given K antennaele-
ments, the array has enough degrees of freedom to force the output due to the N-1
interfering users, represented by the linearly independent channel vectors hy, ..., hy, to
zero so long as K is greater than N—1. Note also that this procedure includes N=1 (ie., a
single user with no interfering users) as a special case. In this case, the channel matrix con-
sists of vector hy thatlies in the subspace W/ andthe zero-forcing solution w equals hy*. a

The analysis presented thus far has been entirely of a spatial kind that ignores
the effect of delay spread. What if the delay spread is significant compared with the
symbolduration, and cannot, therefore, be ignored? Recognizing that delay-spread is
responsible for intersymbol interference, we may incorporate a linear equalizer in
each antennabranch of the array to compensate for delay spread. Theresulting array
signal processortakes the form shownin Fig. I.3, which combines temporalandspatial
processing. Spatial processing is provided by the antennaarray, and the temporal pro-
cessing is provided by a bank of finite-duration impulse response (FIR)filters. For
obvious reasons,this structureis called a space-time processor.

1.1.1 Adaptive Antenna Arrays’

The subspace design procedure for the array signal processorin Fig. I.1 assumesthat
the channel impairments are stationary and that we have knowledge of the channel
matrix H.In reality, however, multipath fading, delay spread, and cochannelinterfer-
ence are all nonstationary in their own individual ways. Also, the channel character-
ization may be unknown. To deal with these practical issues, we need to make the
receiving array signal processor in Fig. I.1 adaptive. Bearing in mind the scope ofthis
book, we confine the discussion to adaptive spatial processing, assuming that the
delay spreadis negligible. We further assume that the multipath fading phenomenon
is slow enough to justify the least-mean-square (LMS) algorithm to perform the
adaptation.
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Antenna
array
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FIGURE I.3. Baseband space-time processor. The blocks labeled z! are unit-delay elements,
with each delay being equal to the symbolperiod. Thefilter coefficients are complex valued.
The FIR filters are all assumedto beof length L.

1.1.2 Least-Mean-Square (LMS) Algorithm

Figure 1.4 showsthe structure of an adaptive antenna array, in which the output of each
antenna elementis multiplied by an adjustable (controllable) weight w,, k= 1,2....,K,
and then the weighted elemental outputsof the array are summedto produce the array
output signal, denoted by y. The adaptive antennaarray does not require knowledge of
the direction of arrival of the desired signal originating from a user ofinterest, so long
as the system is supplied with a reference signal, which is correlated with the desired
signal. For example, the reference signal could correspond to a training sequencethat
is transmitted on a periodicbasis. The output signal of the array is subtracted from the
reference signal, denoted by d, to generate an error signale, which is used to apply the
appropriate adjustments to the elemental weights of the array. In this way, a feedback
system to control the elemental weightsis built into the operation of the antennaarray,
thereby making it adaptive to changes in the environment. Note that the block dia-
gram is drawnfor basebandprocessing. In a practical system, a quadrature hybrid is
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Array of Array output
K yn)

antenna
elements  
  

  
Weight-
control

algorithm

Reference signal
d(n)

FIGURE 1.4 Block diagram of adaptive antennaarray.

used for each antenna elementof the array to split the complex-valued received signal
at each element into two components: one real and the other imaginary. The use of a
hybrid has been omitted from thefigure, to simplify the diagram.

Let x,(m) denote the output of the kth element in the array at discrete time n,
and let w,(n) denote the corresponding value of the weight connectedto this element.
Then the output signal of the array (consisting of K antenna elements) is

K

yny= >} w,(n)x,(7) (1.2)
k=1

where wy (n)x;(7) is the inner product of the complex-valued quantities w;,() and
x)(n). Denoting the reference signal as d(n), we may evaluate the error signal as

e(n) = d(n)—y(n) (1.3)

To optimize the performance of the adaptive antennaarray, it is customary to use the
Mmean-Square error

J = Elle(n)l"] (L4)
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as the cost function to be minimized. Minimization of the cost function J tends to sup-
press the interfering signals and thereby enhance the desired signal in the array out-
put. The LMSalgorithm minimizes the instantaneous value of the cost function J and,
through successive iterations, approaches the minimum mean-square error (MMSE)
(i.e., the optimum solution for the elemental weights) ever moreclosely. An adaptive
antenna array based on the minimum mean-squareerrorcriterion is highly likely to
provide a better solution than one based on the zero-forcing criterion embodied in
the two-step subspace method.

The adjustment applied to the kth elemental weightis

Aw,(m) = be*(n)x,(n) kk = 1,2,°°-,K (1.5)

wherey is the step-size parameter. The updated value ofthis weight is

w,(a+1) = wy(n) + Aw,(n) k= 1,2,-°,K (1.6)

Equatians (1.2), (1.3), (5) and (1.6), in that order, constitute the complex LMSalgo-
rithm.’ The algorithmis initiated by setting w,(0) =0 for all k.

The advantages of an adaptive antenna array using the complex LMSalgorithm
are threefold:

1, Simplicity of implementation

2. Only a linear growth in complexity with the numberof antenna elements

3. Robust performance with respect to disturbances.

However,the system suffers from the following drawbacks:

¢ A slow rate of convergence,whichis typically 10 times the numberof adjustable
weights, This limits the use of the complex LMSalgorithm to a slow-fading envi-
ronment, for which the Doppler spread is small compared with the reciprocal of
the duration of the observation interval.

e Sensitivity of the convergence behavior to variations in the reference signal and
cochannel interference powers.

These limitations of the complex LMS algorithm can be overcomeby using an algo-
rithm known asdirect matrix inversion (DMI).° Unlike the LMS algorithm, the DMI
algorithm operates in batch mode, in that the computation of the elemental weights is
based on a batch of L snapshots. The batchsize L is chosen as a compromise between
two conflicting requirements:

¢ The size L should be small enough for the batch of snapshots used in the compu-
tation to be justifiably treated as pseudostationary.

° The size L should be large enough for the computed values of the elemental
weights to approach the MMSEsolution.

The DMIalgorithm is the optimum combining techniquefor array antennas deployed
in many base stations today. The algorithm may be reformulated for recursive compu-
tation if desired.*
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Whentheteletraffic is high, the base stations are ordinarily configured as micro-
cells, which are small cells such as an office floor or a station deployed along a highway
with directional antennas. In such a configuration, there are many inexpensive base
stations in close proximity to each other. The use of adaptive antennaarrays provides
the meansfor an alternative configuration in which there are fewer (but more expen-
sive) base stations, further apart from each other than in the corresponding microcel-
lular system.

NOTES AND REFERENCES

Page 453 of 474

For a discussion of adaptive antenna arrays and their theory, design, and applications, see
Compton (1988).

* The least-mean-square (LMS) algorithm is discussed Haykin (2002) and Widrow and
Stearns (1985).

>The direct matrix inversion (DMI) algorithm, also referred to as the sample matrix inver-
sion method,is discussed in Compton (1988); see pp. 331-332.
“The recursive least-squares (RLS) algorithm provides an iterative method for implementing
the methodof least squares, which lies behind the DMI; for details, see Haykin (2002).
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latency, 225-226
for wireless communications, 222-226

Channel-coding theorem, 186-187
Characteristic equation, 533
Characteristic wave impedanceof free

space, 21
Chips, 261
Chi-square distribution, 501-502

with N degrees of freedom, 501
Chi-square randomvariable, 362
Chi-square with 2N, degrees of freedom,

349
Clarke model, 45, 47
Classical block interleaver, 208-209
Closed-loop optimization procedure, 192
Closed-loop powercontrol, 316, 463-464
Closing the link, use of term, 19
Clusters, 73
Coantennainterference (CAI), 358-360,

433
Cochannelcells, 7,73
Cochannelinterference, 74, 536
Code:

Alamouti, 377-387, 437
binary, 184
block, 194, 222-223
convolutional, 194, 195-214, 222
cyclic, 194
Gold, 274-276, 300, 319-320,331
good, construction of, 187
Hamming, 322
Reed-Solomon, 222
repetition, 322
short, 317-318
space-time, 376-394
space-time block:

differential, 394-404
V-BLASTvs., 427-430

sporadic, 390
spreading, 265-279
Turbo, 215-222

Codedivision, 265

Coderate, 187, 194
Code synchronization, 290-292
Code vectors/patterns, 189, 201
Codebook,189, 192-193
Coded composite transport channel

(CCTRCh),326
Code-division multiple access, See CDMA
Code-excited LPC, 192-193
Coding, 179

channel, 185, 186, 249
systems, implementationof, 185

Coefficients matrix, 395-396
Coherence bandwidth, 55, 60-61, 62
Coherence spectrum, 60-61
Coherence time, 55, 57, 62, 208

for a flat-fading channel, 57-58
Coherent binary frequency-shift keying

(BFSK), 158
bit error rate (BER)of, 352-353

Coherentdetection, 154, 213.
Coherentreceiver, 158
Collisions, 260
Commonprobability distributions,

499-502

Communication systems, 2
Commutative property of convolution, 126
Compensated received waveform, and

Viterbi equalization, 231
Complementary cumulative distribution

function, 368
Complementary error function, 140, 514

bounds on, 517-518
Complexanalysis, trading for elimination

of carrier frequency, 126
Complex baseband process, 507-508
Complex basebandsignal, 181,227
Complex envelope:

of a modulatedsignal, 123
of N signalrays, 45

Complex Fourier coefficients, 491
Complex Fresnelintegral, 28
Complex LMSalgorithm, 542
Complex multidimensional Gaussian

distribution, 523-524
Complex orthogonal design, 377
Complex random process, 507
Complex random variable, 507
Complex weighting parameter,linear

combiner, 347-387
Complex-orthogonal matrix, 381
Conditional probability, 496-497
Connectionless service, 455
Connection-oriented service, 455
Constructive interference, 20
Continuous phase modulation (CPM), 172
Continuous random processes, 503-504
Continuous random variable, 497
Continuous-phase frequency-shift keying

(CPFSK), 132, 134-135
Continuous-phase modulation, 133-137
Continuous-phasesignal, 132
Continuous-wave (CW) modulation, 107
Control channels, 461
Control data, 143
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Controlled intersymbolinterference, 227
Controlled redundancy, 180
Convolution integral, 481
Convolution operator, 51
Convolutional code, 194, 195-201, 222

constraint length of, 196
example, 197-198
free distance of, 200-201
maximum-likelihood decoding of,

201-203

noise performance of, 212-214
nonsystematic, 196
trellis and state diagramsof, 198-199

Convolutional interleaving, 210-212
Cordless telecommunications, 168-170
Cordless telephones, 168
Correlation, between adjacent samples,

184
Correlation receiver, 510
Correlation theorem, 488-490

autocorrelation function, 490
Cost function, 155
CPFSK,See Continuous-phase frequency-

shift keying (CPFSK)
Cross-correlation function, 488
CSMA,See Carrier-sense multiple access

(CSMA)
Cumulative distribution function, 369, 497
Cumulative path metric, 203
Cyclic codes, 194
Cyclic extension, 167
Cyclic prefix, 167-168
Cyclic redundancy check (CRC), 457, 464

code, 194-195

D

Datalink layer, 455
Datarate, channel, 194
Data-link layer, 3, 5-8, See also CDMA;

FDMA; SDMA; TDMA
e-mail, 457

Decoder, 181-182, 186, 192, 240
differential, 402
inner, 421
minimum-distance, 203
outer, 240, 421
two-stage, 240
Viterbi, 205, 209, 214, 232

Decoding, 224
joint equalization and, 226, 239-243

Decoding error, 201
Decoding window, 205
DECT(Digital Enhanced Cordless

Telephone), 471
Dedicated physical control channel

(DPCCH),325
De-fragmentation, indoor LANs, 469
Deinterleaver, 181-182, 208-210, 240
Delay constraints, 367
Delay spread, 536

power-delay profile, 60
Delay unit, 402
Delta function, 230
Demultiplexing, 419
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Dependence on antennaheight, 23
Destructive interference, 20
Determinantidentity, 528
Deviation ratio, 132,135
Diagonal matrix, 372, 533, 535
Diagonal-BLAST (D-BLAST), 415,

416-417, 438
Diagonalization, 533
Dibit, 112,116
Differential decoder, 402
Differential detection, 152-154
Differential encoder, 402
Differential encoding, 153
Differential entropy, 522-524, 526-527
Differential phase-shift keying (DPSK),

402
coherent, 159

Differential space-time block codes,
394-404, 437

defined, 394-401
noise performance, 402-404
transmitter and receiver structures, 402

Diffraction, 12, 20, 24-28, 30
losses, 28-29

Digital communication systems, 258
Digital modulated signals, 107
Digital speech-coding techniques, 9
Dirac delta function, 51, 480
Direct matrix inversion (DMI), 542
Directional antennas, 340

multipath with, 412-415
Directional radiation, 15-18
Directivity, 13, 15, 451
Direct-sequence (DS) modulation,

260-265, 331
matched-filter receiver, 262-263
performancewith interference, 263-265
spreading equation, 260-262

Direct-sequence modulators, 259
Direct-sequence spread spectrum

(DS-SS), 263, 265, 279, 331-332
summary of benefits of, 289-290

Direct-sequencing (DS) technique, 259
Dirichlet’s conditions, 479
Discrete Fourier transform (DFT), 164
Discrete power-delay profile, 58-60
Discrete random processes, 503-504
Discrete random variables, 497
Discrete set of values, 184
Distortion, 188
Diversity, 9, 339-340, 438, 451

on both transmit and receive, 340
frequency, 240, 324, 339, 451
receive, 340, 438
space, 339-340
time, 240, 339, 349
transmit, 328, 340, 438

Diversity gain, 350
Diversity order, 356, 389, 429-433, 438
Diversity-on-receive channel, 366,426-427

Diversity-on-transmit channel, 366,
426-427

Doppler power spectrum, 57

Index 553

Dopplershift, 42-47, 51, 55, 208
aircraft Doppler, 43
maximum, 46

Doppler spreading,55
Double sideband-suppressed carrier

(DSB-SC) modulation, 109-110,
122

Downlink, 143
Downlink limited channels, 79
Ducting, 20
Duplexing, 143
Dynamic channelallocation (DCA), 168

E

Early/late timing, 91
Earth station receiver, 78
Earth station transmitter, 76
Effective area, 14
Efficient signal transmission, 185
Efficient utilization of the allotted

spectrum, 189
Eigendecomposition, 372, 533-535

of a Hermitian matrix, 528-529
ofthe log-det capacity formula,

374-376

Eigenvalue problem, 533
Eigenvectors, 533
Einstein, Albert, 1
Electromagnetic shadow, 24, 61, 94
Elevation angle, 15
E-mail, as example of seven-layer model,

456-457

Encoder, 180, 192
inner, 240
memory in, 194
nonrecursive nonsystematic

convolutional, 223
outer, 240
redundancyin, 186
two-stage, 240

Encoding, 223-224
differential, 153
error-control, 193-195
full-rate space-time, 419
process, 184

End-fire directions, 410
End-to-end delay, 212
Energy density spectrum, 490
Energy detector, 169
Ensemble average, 508
Entropy, 185-186

differential, 522-524, 526-527
Equal-gain combining, 353
Equalization, 179-180

baseband processing for, 227-233
joint, and decoding, 226

Equalizer, 88
Equivalent complex baseband model, 125
Equivalent isotropic radiated power

(EIRP), 75
Ergodic processes, 367

random, 508
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Error burst, 194
Error detection, 193, 194
Error function, 500, 514, 516-519

asymptote property, 514, 516
complementary, bounds on, 517-518
O-function, 518-519
symmetry property, 514, 516

Error minimization, 191
Errorsignal, 540-541
Error-control coding, 193-195

automatic-repeat request (ARQ)
schemes, 193-194

cyclic redundancy check (CRC) code,194-195

forward error-correction (FEC) codes,193

Error-correction techniques, 5
Estimate, of speechsignal, 182
Estimated received waveforms, and

Viterbi equalization, 231
Estimated waveform generator, 231-232
Euler’s formula, 123
Even function of time, 480
Even symmetry, 230
Events, 496
Evolution, 452, 454
Excitation generator, 191
Excitation time, 481
Expected value, 498-499
Exponential law, 161
Exponentially distributed squared

amplitude, 343
Extrinsic information transfer (EXIT)

chart, 224
Eye opening, 360
Eyepattern of the received signal, 360

F

Fading, 12
Fading channels, 225, 288-289
Fading wireless channels, 225
Fast fading, 36, 44-48
Fast-frequency hopping, 307, 308-310
FBI (Feedback Information) bits, 326
FDMA,5,74, 103, 132, 170-171, 258-259,

265, 450
adjacent channel interference, 142-144
frequency-domain representation of, 104
and handovers, 466

FECcoding, 9, 193, 297-299, 304, 412-413,
428, 451,471

and CDMA,297-299
improved multiple-access performance

with, 298-299
Feedback channel, 371
Feedback path, 240
Feedback system, 218
Fessenden, Reginald,1
Field theory, 271
Finite rate, 188
Finite-duration impulse-response (FIR),

157, 190, 539
Finite-state machine (FSM), 195
First Fresnel zone, 27, 28
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First-generation systems, 311
Flat-fading channel, 52,292

coherence time for, 57-58
Flat-flat channels, 52
Flexibility, 452, 454
Flow control, 3, 455
Forward error-correction (FEC) codes,

See FEC coding
Forward estimator of state probabilities,221

Forward path, 240
Forward-link radio transmissions, 143
Fourierseries, 491
Fourier theory, 89, 108, 479-492
Fourier transform, 89, 479-486, 488-489.

492, 504-506, 509
properties of, 481

Fourier-transform pair, 479, 482, 485
Fragmentation, indoor LANs, 469
Frame(burst)-error probability, 371
Frameerror rate (FER), 225
Frames, 3, 7, 168-169, 180, 192, 205, 225,

234, 236-238,249
Framingbits, 234
Free distance, of convolutional code,

200-201

Free-spacelink budget, 75-76
Free-spacepath loss, 15
Free-space propagation, 13-19, 30, 94

directionalradiation, 15-18
Friis equation, 18-19
isotropic radiation, 13-15
polarization, 19

Free-space transmission,12
Frequency deviation, 132
Frequency dispersion, 55
Frequencydiversity, 240, 324,339, 451
Frequency hopping (FH), 177, 236-238,

249, 259-260, 306, 477
principle of, 237
slow frequency hoppers, 260

Frequency independent, 23
Frequency modulation (FM), 108,

130-132, 143, 170, 258
Frequency reuse factor, 74
Frequency-division diplex (FDD)

transmissions, 143
Frequency-division diplexer (FDD), 143
Frequency-division multiple access,

See FDMA
Frequency-flat channels, 51, 61, 62
Frequency-flat, slowly fading Rayleigh

channel, 341
Frequency-hopped spread spectrum,

306-310, 331-332
advantages of, 306
complex baseband representationof,307-308

disadvantagesof, 306
fast-frequency hopping, 308-310
processing gain, 310
slow-frequency hopping, 308-310

Frequency-hopped spread spectrum
(FH-SS), 306-310

Frequency-hopped systems, 259
Frequency-nonselective channels, 61
Frequency-selective channels,52, 61, 62,292

Frequency-selective characteristics, 88
Frequency-shaping pulse, 140
Frequency-shift keying (FSK), 143, 321,

352-354, 441-442
Sunde’s FSK, 132

Frequency-spaced,time-spaced
correlation function, 60

Frequently flat, slow fading channel,161-162
Fresnel zones, 25-27
Fresnel-Kirchhoff parameter, 26-29
Friis equation, 18-19, 75
Full-cosineroll-off pulse, 119
Full-rate space-time encoding, 419
Fully coherentaddition, 349

G
Gain, 15

diversity, 350
parabolic antenna, 16
processing, 310
receive antenna, 16
transmit antenna, 15-16

Gaussian density function, 38
Gaussian distribution, 500
Gaussian function, 140
Gaussian monocycle, 89
Gaussian random processes, 504, 507
Gaussian-filtered minimum-shift keying

(GMSK), 139-142, 160, 169, 170,
227,238, 249-250

GBGPpropagation model, 435
Generalized complex orthogonal designs

of space-time block codes, 377,
389-392, 437

Generator polynomial, 196
Generator sequence, 196
GlobalPositioning Satellite System

(GPSS), 71, 319-320
Global System for Mobile (GSM)

Communications,2, 236-239, 249,
471472, See GSM

GMSK,See Gaussian-filtered MSK
Gold codes, 274-276, 300, 319-320, 331

autocorrelation/cross-correlation of, 276
generation of, 275

Good codes, construction of, 187
GPRS(General Packet Radio Service),472

Gray coding, 127, 129, 256, 378, 398
for bijective mapping, 400-401

G/T ratio ofa satellite, 75-76
Guard bands, 142
Guard intervals, 167, 168
Guard time, 236

H

Hadamardinequality, 529
Hamming code, 222, 322, 333, 337
Hammingdistance, 200, 202, 203-204, 232,

251
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Hamming weight, 200
Handovers, 452-453, 458, 465-467

algorithms, 465-466
blocked call, 465
and CDMA,466
cell dragging, 466
and control channels, 461
dropped call, 465
and FDMA and TDMA/FDMA

combination systems, 466
hard, 303, 466
mobile assisted, 465
multiple-access considerations, 466-467
ranking, 465
and SDMA,466-467
soft, 466

Hermitian transposition, 156, 381
Hertz, Heinrich, 1
HFradio, 62
Hocquenghem (BCH) codes, 222
Hop period, 307
Hoptime, 259
Horizontal polarization, 19
Huygen’s principle, 24

I

Ideal reflectors, 434
IEEE 802.11 MAC, 473-475
IEEE 802.1 1a, 473
IEEE 802.11b, 473
IEEE standard 802.15.1 (Bluetooth

wireless system), 321-323
Impulse radio, 89-92

advantage of, 92
ultra-wideband, 89-93

Impulse response, 480
Independent block-encoding, 419
Indoor LANs, 469-470
Indoor propagation, 33-35
Industrial, Scientific, and Medical (ISM)

bands, 473
Infinite-time horizon, 367
Information bandwidth, 258
Information capacity theorem, 187-188
Information transmission, 188
Information-bearing signal, 180
Initial digital systems, 311
Inner decoder, 421
Inner encoder, 240
In-phase component, 122, 125, 228, 508
Input back-off, 147
Input-outputrelation of a channel,

524-527

Instantaneous outputsignal-to-noise ratio,
348

Instantaneously sampledsignal, 486
Institute of Electrical and Electronics

Engineers (IEEE), 85-86, 88, 96,
162, 219, 328-330

Integrate-and-dumpfilter, 263
Intercellular interference, 302
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Interference, 12, 63-74, 94, See also
Adjacent channelinterference
(ACI); Coantennainterference
(CAI); Cochannel interference;
Intersymbolinterference (ISI);
Multiple-access interference
(MAT)

ordered serial interference-cancellation

(OSIC) detector, 417-418, 433
other-cell, 302-304

Interference-limited systems, 304, 461
Interleavers, 180, 207-215, 240, 316

block, 208-210
channel, 215
convolutional, 210-212
and delay, 209
defined, 207
design, 208
example, 209-210
pseudorandom, 212, 215, 249, 419
random, 212
S-constraint, 251
turbo, 215

Intermodulaton distortion, 79
International Telecommunications Union

(ITU), 95-96
Internet, 454

sublayer, 455
Intersymbolinterference (ISI), 117, 141,

180, 240, 421
controlled, 227

Intersymbol interference problem, 104
Intracellular interference, 302
Inverse discrete Fourier transform

(IDFT), 164
Inverse fast Fourier transform (IFFT)

algorithm, 164-165
Inverse fourth-powerlaw, 23
Inverse law, 161
Inverse mapper, 402
Irreducible (non-factorable) polynomials,

271

Isotropic antenna,13
effective area of, 14

Isotropic radiation, 13-15
1S-95 cell, capacity in (example), 319
18-95 standard, 311-319, 471

cellular considerations, 317
downlink CDMAchannels, 314-316
main communication channels for, 312
Pilot channel, 313
power control, 316-378
uplink, 318-319

Iterative detection, 215
Iterative detection and decoding (IDD)

process, 421
receiver, 419

Iterative receiver, 240

J
Jacobian of a transformation, 502
Jammer, 310
Joint equalization and decoding,226,

239-243
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K

Keyhole channels, 341, 433-436
Knownpilot symbols, 154

L

Land-mobile wireless communication, 2
Latency, 225-226

power control, 296
Least-mean-square (LMS) algorithm,

539-543
Lee’s model, 412
Left-hand circular polarization, 19
Left-singular values, 373,535
Limited battery power, mobile radio

terminals, 146

Linear array signal processor, 537
Linear band-pass systems, complex

representation of, 124-126
Linear dependence on information

capacity, 187
Linear equalizer, 539
Linear estimatorof fading, 155
Linear independence, 537-538
Linear modulation techniques, 108-116

amplitude modulation, 108-110
binary phaseshift-keying, 110-112
offset quadriphase-shift keying

(OQPSK), 114-116
m/4-shifted quadriphase-shift keying,

116

quadriphase-shift keying (QPSK),
112-114

Linear operator, 499
Linear predictive coding (LPC), 189-190

code-excited LPC, 192-193
multipulse excited LPC, 190-192

Linear processing, 377
Linear time-varying channel, output

sampling of, 488
Linear time-varying systems, 483-484
Line-of-sight transmission, 12
Link budget, 13, 19, 35, 75-81, 95

from earth station to satellite, 76-77

equation, 19
free-space, 75-76
satellite-to-mobile terminal, 78-79
terrestrial, 80-81

Link calculations, 75-81
Local area network (LAN), 456, 469
Local propagation effects with mobile

radio, 36-48
Local propagationloss, 32-33
Local variations, 30
Lodge, Oliver, 1
Logarithmic dependence on

signal-to-noise ratio, 187
Log-det capacity formula, 365

eigendecomposition of, 374-376
Logical channels, 460
Log-likelihood function, 201-202
Lognormaldistribution, 32
Lognormalfading, 36
Lognormal model, 32
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Log-on and log-off messages, 460
Long code, 316
Long-term prediction, 250

synthesisfilter, 191
Lossy data compression, 188

M

Macrocells, 412
Magnitude spectrum, 480
MAI, See Multiple-access interference

(MAT)
Man-madenoise, 70-71
MAPalgorithm, 217, 220, 224
Mapper,250, 378-379,387, 402
Marconi, Guglielmo,1, 89,102
Margin, 79
Markovprocess, 221
M-ary PSK mapper, 378
M-ary OAM mapper, 378
Mask, 316
Matchedfilters, 153, 229-230, 509-515

and complexsignals, 515
probability of detection, 511-515
receiver, 509-511

Matched-filter receiver, 262-263
Matrix:

coefficients, 395-396
complex-orthogonal, 381
diagonal, 372
singular-value decomposition of,371-376
transmission, 377, 381, 396
unitary, 372

Maximaldiversity order, 432
Maximal-length sequences (m-

sequences), 270-275, 300, 331
properties of, 271-272

Maximal-ratio combining, 346-353
bit error rate of coherent binary FSK,352-353

outage probability for, 350
Maximuma posteriori probability (MAP)

decoding, 219-222
algorithm, 420

Maximum Dopplershift, 46
Maximum transmit/receive antenna gain,16

Maximum-likelihood decoding:
of convolutional code, 201-203
rule, 385-387

Maximum-likelihood sequenceestimator,204

Maxwell, James Clerk, 1
Maxwell’s equations, 1, 13, 16, 24
Meanvalue, 498-499
Mean-square error, 541-542
Mean-square-error (MSE) criterion, 190
Mean-squarevalue, 499
Median-pathloss, 30-31
Mediumaccess control (MAC) sublayer,3, 455-456

control channels, 461
logical channels, 460
paging and access channels, 460-461
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physical channels, 460
signaling and protocols, 458-461
synchronization and broadcast

channels., 460
traffic channels, 461

Medium-band TDMA,235
Memory, in encoders, 194
Memoryless binary symmetric channel,202

Messagepoints, 127
Messagevector, 201
Metric, 203
Microcells, 412
Microwave relay systems, 2
Military wireless applications, 475
MIMOchannels, See Multiple-input,

multiple-output (MIMO)channels

MIMOwireless communications, See
Multiple-input, multiple-output
(MIMO)wireless
communications

MIMOlinks:

capacity for channel known at the
transmitter, 528-532

capacity of, 522-532
log-det capacity formula of, 524-527

Minimum Hammingdistance, 200
Minimum mean-square error (MMSE),542

Minimum reuse pattern, 74
Minimum shift keying (MSK), 133-137,

149-151, 170
coherent, 159
defined, 136
Gaussian-filtered, 139-142
powerspectra ofsignal, 137-139
transition characterization of, 137

Minimum-distance decoder, 203
Mobile switching center (MSC), 465

roles of, 468
Mobile terminals, 36
Modem,3, 455
Modified Bessel function, 41

of order zero, 501
Modified Bessel functionsofthefirst kind,495

Modulatedsignal, 105
Modulatedsignals, analysis of, 123
Modulatingsignal, 105
Modulation, 103-108, 180-182, 451, See

also Direct-sequence (DS)
modulation; Pulse shaping

adjacent channel interference, 144-145
amplitude and angle modulation

processes, 107-108
analog and digital modulation

techniques, 107
comparison of wireless

communicationsstrategies,148-151

linear channels, 148-150
nonlinear channels, 150-151

defined, 103, 105

linear and nonlinear modulation
processes, 106-107

linear modulated signals and band-pass
systems, complex representation
of, 122-126

linear modulation techniques, 108-116
multicarrier, 88
nonlinear modulation techniques,130-142

partial-response, 227
power amplifier nonlinearity, 146-148
practical benefits, 105-106

wireless local area networks (LANs),88-89
Modulator, 105
Modulo-2 convolutions, 195
MSK,See Minimumshift keying (MSK)
Multiaccess communications, 455
Multibeam antennas,8
Multicarrier modulation, 88
Multicarrier transmission, 163
Multicode transmission, 327
Multipath channels, 283-284
Multipath intensity profile, 58
Multipath propagation, 20
Multipath spread, power-delay profile, 60
Multipaths (multiple propagation paths),

12, 36-48, 536
with directional antennas, 409-412
Dopplershift, 42-44
fast fading, 36, 44-48
Rayleigh fading, 36-40
Rician fading, 40-41
slow fading, 36

Multiple access, 106
Multiple-access communications, 3
Multiple-access interference (MAI),71,

279-283, 302, 452-453
Multiple-access noise, 94
Multiple-access strategies:

bandwidthefficiency, 452-453
comparison of, 452
diversity, 451
evolution, 452, 454
flexibility, 452, 454
forward error-correction (FEC) coding,451

handover, 452-453
modulation, 451
multiple-access interference, 452-453
source coding, 451
synchronization, 452-453
system complexity, 452-453
user terminal complexity, 452-453
voice and data integration,452, 454
wireless architectures, 450-454

Multiple-input, multiple-output (MIMO)
channels, 188, 300, 340-341

Multiple-input, multiple-output (MIMO)
wireless communications,
357-363, 426, 437

basic baseband channel model, 360-363
basic complex channel modelfor, 361
coantennainterference (CAT), 358-360
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MIMOcapacity for channel known at
the receiver, 363-371

capacities of receive and transmit
diversity links, 366-367

channel knownat the transmitter, 371
ergodic capacity, 363-366
outage capacity, 367-371

space-time codesfor, 376-394
Multiple-transmit, multiple-receive

(MTMR)wireless
communications, 357

Multiplier, 402
Multipulse excited LPC, 190-192
Multiuser detection, 299-301, 328

optimum, 301
Mutual information, 524

N
Narrowband, 124-125, 226-229, 233, 259

random processes, complex
representation of, 507-508

TDMA,236
wireless communications, spectral

efficiency of, 226-227
Natural redundancy, 180
Near-far problem, 145, 296-297, 462
Networklayer, 3, 455, 467-470

cellular networks, 467-468
e-mail, 456
indoor LANs, 469-470

New degree of freedom, 360
Noise, 11-102, 63-74, 94

in cascaded systems, 68-69
equivalent noise temperature, 66
flat spectral response, 67
impulse, 70-71
man-made, 70-71
multiple-access interference, 71-74
noise figure, 66-67, 70
thermal, 63-66

Noise figure, 66-67
and receiver sensitivity, 67-68
system noise figure calculation, 70

Noise performance, 218-219
of convolutional code, 212-214

Noncoherent binary frequency-shift
keying (BFSK), 159

Noncoherent receiver, 158
Nonlinear modulation techniques, 104,

130-142

binary frequency-shift keying (BFSK),
132-133

continuous-phase modulation, 133-137
frequency modulation (FM), 130-132
minimum shift keying, 133-137

Nonlinearities, presence of, 149
Nonlinearity, 104
Nonrecursive nonsystematic

convolutional encoders, 223
Nonreturn-to-zero (NRZ) binary data

stream, 140
Nonstationary channels, 61
Nonstationary physical process, 190
Nonsystematic convolutional code, 201
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Nordic Mobile Telephone (NMT), 2
Normalized reuse distance, 73

N,single-input, single-output (SISO)
channels, 373

N,virtual channels, 373
Nyquist interval, 183
Nyquist pulse shaping, 117-118, 154
Nyquist rate, 183-184

oO
Okumura-Hata model, 31, 82-84
Omnidirectional antennas, 8
Open system interconnection (OSI)

reference model, 3, 450, 454-457
applicationlayer, 456
data link layer, 455
network layer, 455
peer processes, 454
physical layer, 455
presentation layer, 456
protocol stack, 454
sessionlayer, 456
seven-layer model, example of, 456-457
transportlayer, 455
and wireless communications, 457-458
wireless data network structure based

on, 468
Open-loop powercontrol, 462-463
Orderedserial interference-cancellation

(OSIC) detector, 417-418, 433
Orthogonal frequency-division

multiplexing (OFDM), 88, 105,162-168

cyclic prefix, 167-168
Orthogonal modulation, 354
Orthogonal, use of term, 123
Orthogonal variable spreading factor

(OVSF), 269-270, 324
Orthogonality constraint under T-shifts,

121

Orthogonality of messages, 266-267
Orthonormalset, 127, 395
“Other”filtering, 149
Other-cell interference, 302-304
Outage capacity, MIMOlink, 368
Outage probability at rate R, 368
Outer decoder, 240, 421
Outer encoder, 240
Outer-loop powercontrol, 464
Out-of-band transmissions, 71
Output back-off, 148
Overheadbits, 234

P

Packetizer, 180
Packets, 180
Pages, 461
Paging and access channels, 460-461
Parabolic antenna gain, 16-17
Parseval’s theorem, 263, 490-492
Partial correlation, 291-292
Partial-response modulation, 227
Path-loss exponent, 31
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Pattern-matching operation, 189
Patterns, in codebook, 189
Peak-to-average ratio (PAR), 327
Peer processes, 454, 456
Personal communications services (PCSs),

311
Phasedistortion, 147,151
Phase modulation, 108, 151, 153-154, 173
Phase spectrum, 480
Phasetree, 135
Phasetrellis, 136
Physical channels, 460
Physical layer, 3-4, 455

e-mail, 457
Physical models, 11-12, 19-29
Physical propagation models, 94

diffraction, 12, 20, 2428, 30, 94
free-space propagation, 13-19, 30, 94
reflection, 12, 20, 30, 94

Piconet, 322
Pilot symbol transmission, 154—158
Pinhole channels, See Keyhole channels
Planck’s constant, 64
Plane-Earth propagation equation, 23
Pointsink, 14
Point-to-multipoint architecture, 6,7
Polarization, 19

Popoff, A. S.,1
Portable terminals, 36
Power amplifier nonlinearity, 146-148
Powercontrol, 169, 294-297, 458, 461-464

closed-loop, 463-464
and control channels, 461
implementationissues, 296
near-far problem (example), 462
open-loop, 462-463
outer-loop powercontrol, 464

Powerflux density, 13
Powerspectral density, 504
Power spectrum, 504
Power-delay profile, 58-60

wireless local area networks (LANs),
86-88

Precise Positioning Service (PPS), 319
Prediction error, 189
Predictive model, 189
Premodulation filter, 117
Presentation layer, 456

e-mail, 456
Principle of analysis by synthesis, 190
Principle of frequency hopping, 237
Principle of reciprocity, 16
Principle of superposition, 107, 131
Probability, 496-497
Probability density functions, 498-499
Probability distributions and densities,

497-498

Probability of decoding error, 201
Probingsignal, 180
Propagation, 11-12
Propagation model, wireless local area

networks (LANs), 85
Propagation-loss exponent, 303
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Protocol stack, 454

Pseudorandom hoppingpattern, 259
Pseudorandom interleaver, 212, 215
Public mobile telephone systems, 2
Public switched telephone network

(PSTN), 3, 454, 459
Pulse position modulation, 91
Pulse shaping, 104, 116-122, 149

comparison (example), 121
raised cosine (RC) spectrum for, 104
root raised-cosine, 119-122

Pulse-shapingfilter, 139
Puncturing, 215
Pure Aloha, 243-245, 250
Push-to-talk protocol, 6

Q
O-function, 518-519
Quadbit, 129
Quadrature component, 122, 125, 228, 508
Quadrature demodulator, 180-181, 227
Quadriphase-shift keying (QPSK), 127,

149-151, 170,378
coherent, 158

Quality of service (QoS), 3, 455,465
Quantization, 184, 188
Quasi-static model, 367-368

R

Radial extents, 434
Radio communications, milestones in

developmentof, 1-2
Radio frequency (RF) power, 146,207, 238
Radio spectrum,4, 179, 235, 258, 306, 450,

458, 461, 475
Raised-cosine (RC) spectrum, 104,117-118

RAKEreceiver, 284-288, 290, 292-294,
304, 313, 324, 332, 451-453, 470

Raleigh distribution, 501
Random access memory (RAM), 212
Random binary wave, 505
Random interleaving, 212
Randomlayered space-time (RLST)

coding scheme, 419
Randomprocesses, 503-504

complex random variables and
processes, 507

ergodic, 508
linearfiltering of, 506-507
narrowband, complex representation

of, 507-508
properties of, 504
spectra of, 504—506

Random sequences, 276-279
Random variables, 497

expectations of, 498-499
transformationsof, 502-503

Random-access channel, 459
Random-access techniques, 243-249

carrier-sense multiple access, 245-248,250

pure Aloha, 243-245, 250
slotted Aloha, 245, 250, 252
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Range,wireless local area networks
(LANs), 86

Rate distortion theory, 188-189
Ray tracing, 30, 34
Rayleigh distribution, 501, 503
Rayleigh fading, 36-40, 62, 154,213,537

margin for, 39-40
Rayleigh probability density function, 39
Realization of a random process, 504
Reassociation, 469
Receive antennagain, 16
Receive diversity, 340, 438
Receivedsignal, 81
Received vector, 201
Receiver, 4

coherent,158
Earth station, 78
iterative, 240
matched-filter, 262-263
noncoherent, 158
RAKE,285-288, 293, 294, 313
satellite, 77
search, 313
Turbolike, 419

Receivernoise, 4, 63, 70, 75-76, 80-81, 94
Receiversensitivity, 15

wireless local area networks (LANs),85-86

Reciprocity, principle of, 16
Reconstruction system, 486
Recursive convolutional code, 216
Recursive systematic convolutional (RSC)encoders, 223
Redundancy:

controlled, 180

cyclic redundancy check (CRC) code,194-195
in encoder, 186
natural, 180
and space-time codes, 376

Redundantinformation, 184, 185
Reed-Solomoncodes, 222
Reference signal, 540
Reflection, 12, 20, 30

andthe plane-earth model, 20-24
Refraction, 12
Regular-pulse excitation, 192
Relative other-cell interference factor, 302
Repetition code, 322
Replication property, 480
Responsetime, 481
Return path, 193
Reusedistance,8
Reuse factors, 73

Rich Rayleigh scattering environment,
MIMOchannelas, 362, 437

Rician distribution, 41, 444, 501
Rician fading, 40-41, 375
Rician K-factor, 41

Right-handcircular polarization, 19
Right-singular values, 373, 535
Rolloff, 117-118, 149, 150
Roll-off factor, 117-118
Root raised-cosine pulse shaping, 119-122
Routing, 3, 455-456, 458

8

Safety services wireless applications, 475
Sample function of a random process, 504
Sampled convolution theorem, 487-488
Sampling, 182-184

following with coding, 184-185
Sampling rate, 485
Sampling theorem,182, 484-486
Satellite receiver, 77
Satellite transmitter, 78

Satellite-to-mobile terminallink budget,78-719

Scattering effects, 19
S-constraint interleaver, 251
SCORE(Signal Communication by

Orbital Relay Equipment)
satellite, 2

Scramblers, 274
SDMA,5,8, 103, 340, 437, 451

and handovers, 466-467
and smart antennas, 402-415

Search receiver, 313
Second Fresnel zone, 27
Second moment, 499
Second-generation systems, 311
Sector antennas, 406
Selection combining, 341-346

outage probability (example), 346
scanning version of procedure, 345

Self-sychronizing scrambler, Wi-Fi,
329-330

Separability theorem, 520-521
Separation theorem, 221
Serially concatenated RLSTcode,

generation of, 419-420
Service availability, 33
Service sets, indoor LANs, 469
Session layer, 456

e-mail, 456
Sets, 496
Shadowing,32, 36, 303
Shannon, Claude, 185

Shannon’s information theory, 185-189
channel-coding theorem, 186-187
information capacity theorem, 187-188
rate distortion theory, 188-189
source-coding theorem, 185-186

Short code, 317-318
Side lobes, 16
Signal constellation, 126, 379, 382,

385-387, 399, 418
Signal distortion, 117
Signal energy, 127, 159-161, 512
Signal estimator, 402
Signal pattern, 126
Signaling channels, 312
Signal-to-interferenceratio (SIR), 71
Signal-to-interference-plus-noise ratio,303-304

Signal-to-noise ratio (SNR), 159, 341-344,363, 537
instantaneous, 343
largest, 341,417
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Signature sequence, See Spreading codes
Significant scatterers, 434
Sine function, 482, 486
Single-bounce elliptical model, 412-414
Single-carrier transmission, 123
Single-input, single-output channel, 188
Single-input, single-output (SISO) flat-

fading channel, 364
Single-user MIMO links, 438
Singular-value decomposition of the

channel matrix, 371-376
eigendecomposition of the log-det

capacity formula, 374-376
Singular-value decomposition (SVD)

theorem, 534-535
16-quadrature amplitude modulation

(16-QAM), 129-130
Skywave, 20
Slotted Aloha, 245, 250, 252
Slow fading, 36, 39-40, 542
Slow-frequency hopping, 260, 307,

308-310
Smart antennas:

adaptive antennas, 406
advantages of, 406

for mobile applications, 406
antennaarrays, 406-412
directional antennas, multipath with,

412-415

examples of, 406
and SDMA,402-415
sector antennas, 406
switched-beam antennas, 406

Soft handovers, 303, 466
Soft-input, soft-output (SISO) decoding

algorithm, 217, 224
Soft-input, soft-output (SISO) detector,

421

Source coding, 184, 188, 249, 451
with a fidelity criterion, 188

Source decoded output, 181-182
Source signal, 180, 185, 229
Source-coding theorem, 185-186
Space diversity, 339-340

forms of, 340
“Space diversity on receive” techniques,

341-357

equal-gain combining, 353
maximal-ratio combining, 346-353
selection combining, 341-346
square-law combining, 353-357

Space-division, multiple-access (SDMA),
See SDMA

Space-time block codes:
differential, 394-404
V-BLASTvs., 427-430

Space-time codes, 376-394
Alamouti code, 379-387
basics of, 378-379
defined, 376
design procedures, 377
generalized complex orthogonal

space-time block codes, 388-391
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performance comparisonsofdifferent
space-time block codes using a
single receiver, 391-394

space-time block code, 376-378
space-timetrellis code, 376-377
types of, 376

Spacetime deinterleavers and
interleavers, 422

Space-time processor, 539
Spectral decomposition theorem, 534
Spectral efficiency, 144
Speech coding, 189-193

code-excited LPC, 192-193
linear predictive coding (LPC),189-190

multipulse excited LPC, 190-192
Sporadic codes, 390
Spread spectrum, 2, 8,9
Spreading codes, 265-279

Gold codes, 274-276
autocorrelation/cross-correlationof,

276

maximal-length sequences
(m-sequences), 270-273

orthogonalvariable spreading factors
(OVSF), 269-270

orthogonality of messages, 266-267
random sequences, 276-279
scramblers, 274
Walsh—Hadamard sequences, 267-270

cross-correlation between, 268-269
Spreading factors, 261, 282, 287-288,

297-298, 323-325
orthogonalvariable spreading factor

(OVSF), 269-270, 324
Spreading sequence, 261-262
Spread-spectrum techniques, 258-259
Squared Euclidean distance, 231-232
Square-law combining, 353-357
Staggered OPSK, 115
Standard Positioning Service (SPS), 319
State diagram, 199
Stationary/nonstationary channels, 61
Stations (STAs), indoor LANs, 469
Statistical expectation operator, 38,498-499

Statistical propagation models, 11-12,
30-33, 94

local propagation loss, 32-33
median-path loss, 30-31

Step-size parameter, 542
Subcarriers, 163-167
Subframes, 192
Subspace, 538
Sunde’s FSK, 132
Superposition, principle of, 107, 131
Survivor paths, 203
Switched-beam antennas, 406
Symbol energy-to-noise spectral density

ratio, 348
Symbolerror rate (SER), 427
Symbol-shaping function, 260-262
Symmetry property, error function, 514,516

Index 559

Synchronization,5, 180, 452-453
and broadcast channels, 460

Synthesis, principle of analysis by, 190
Synthesisfilter, 191-192
Synthesizing a modulated signal, 123
System capacity, 536
System complexity, 452-453
Systematic convolutional code, 201
System-memorytime, 481

T
Tail bits, 236

Tapped-delay-line (TDL)filter, 190
TCP/IP protocol, 456
TDMA,5-7, 103, 168, 170-171, 179-182,

193, 233-236, 258-259, 265, 450,
469

advantages over FOMA,234-235
FDMAcomparedto, 233
medium-band, 235
narrowband, 236
overlaid on FDOMA,235-236
principle of frequency hopping, 237
sampling, 182-184

following with coding, 184-185
system, frameefficiency of, 237
wideband, 235

TDMA/FDMAcombination systems, and
handovers, 466

Telemetry and control wireless
applications, 476

Telephone switched circuit protocol,
458-459

Terrestrial link budget, 80-81
Terrestrial propagation:

physical models, 19-29
statistical models, 30-33

TFCI (Transport Format Combination
Indicator) bits, 326

Thermal noise, 63-66, 497
Third-generation systems, 311
3-dB baseband beamwidth, 140
3-dB beamwidth,18
Time average, 508
Time dispersion, 55
Timediversity, 240, 339
Timeintervals, 179
Timelag, 488
Time-bandwidth product, 140
Time-division duplex (TDD), 168
Time-division multiple access, See TDMA
Time-flat channels, 52, 58, 62
Time-invariant channel, 58
Time-selective channel, 50-52, 58, 62
Time-varying channel, 58
Time-varying impulse responses, 54
Time-varying nature, of channel

impairments, 4, 5
TPC (Transmission Power Control) bits,326

Trace operator, 527
Tracking receiver, 313
Traffic channels, 461
Traffic data bits, 234
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Transceiver, 144
Transfer function, 483
Transition metric computer, 232
‘Transition metrics, 228
Transmission bandwidth, 258
Transmission matrix, 377, 381, 396
Transmission medium resources, 4
Transmit antenna gain, 15-16
Transmit diversity, 328, 340, 438
‘Transmit power amplifier, 146
Transmit spectrum, 148
Transmitter, 4
Transport channels, 325
Transport Control Protocol (TCP), 456
Transport layer, 455

e-mail, 456
Turbo codes, 215-222

block sizes, 226
convolutional codes compared to,

223-224

Turbo coding principle, 218, 239
Turbo decoding, 216-218
Turbointerleaver, 215
Turbo-BLAST,251, 415, 419-422, 438

experimental performance of V-
BLASTvs., 422-425

Turbolike receiver, 419
‘Turbo-MIMOarchitecture, 419
Two-dimensionalsignal constellations, 126
Two-dimensional temporalsituation, 488
Two-stage decoder, 240
Two-stage encoder, 240

U

Ultra-wideband (UWB)radio
transmission, 89-90, 93

spectral density of, compared to noise
floor, 91-92

Unconstrainedsignaling techniques,376-394

Uncorrelated scattering (US), 56-57
Uniform weighting, antennapattern with,

409-412

Unique spreading signature, 259
Unit energy, normalized coordinates of,

126

Unit impulse, 51, 480
Unitary matrix, 372, 533-534, 535
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Universal mobile terrestrial
telecommunication systems
(UMTS’s), 323

Uplink, 143
User terminal complexity, 452-453
User terminals (UTs), 5

Vv
Variance, 499
Vector quantizers, 188
Vector space, 538
Vectors, 188-189

Vertical polarization, 19
Vertical-BLAST (V-BLAST), 415,

417-419, 438
experimental performance of Turbo-

BLASTvs., 422-425
Virtual carrier sense, 469-470
Virtual receive antennas, 434
Virtual transmit antennas, 434
Viterbi algorithm, 203-207, 209, 220, 222,

224, 228, 231-233, 249, 377
example, 205
modifications of, 205
summary of, 204

Viterbi decoder, 205, 209, 214, 232
Viterbi equalization, 231-233
Viterbi equalizer, 231-232, 249
‘Voice activation, 304-305
Voice and data integration, 452, 454

Ww

Walsh-Hadamard sequences, 267-270,
318, 331

cross-correlation between, 268-269
Waterfall, 159

Water-filling procedure, 530-532
WCDMA,323-328, 471, 472

bandwidth and chip rate, 324
cellular considerations, 327-328
channel types, 325
data rates and spreading factor, 324
downlink, 326-327

forward error-correction (FEC) codes,324-325

modulation and synchronization, 324
multicode transmission, 327
uplink, 325-326

 
Weight vector, 409-410, 538

subspace method for determining,538-539

Whip antenna, 80-81
White complex Gaussian codebook, 362
White Gaussian codebook, 368
White noise, 65, 79, 94, 156, 282, 505
Wideband CDMA,See WCDMA
Wideband channels, 62
Wideband TDMA,235
Wide-sensestationary, 504
Wide-sense stationary uncorrelated

scattering (WSSUS) channels, SeeWSSUSchannels

Wide-sense stationary (WSS), 55
Wiener-Hopf equation, 156
Wiener—-Khintchine relations, 490, 505
Wi-Fi, 328-331

Barker sequence, 329
variants, 329-330

Wireless architectures, 450-478
multiple-access strategies, 450-454

comparison of, 452
Wireless channel, physical properties of, 8
Wireless communications:

channel-codingstrategies for, 222-226
AWGNchannel, 225
decoding, 224
encoding, 223-224
fading wireless channels, 225
joint equalization and decoding, 226
latency, 225-226

first generation of systems, 132
Wireless data network standards, 472-473
Wireless local area networks (LANs), 34,

85-89, 162
modulation, 88-89
power-delay profile, 86-88
propagation model,85
range, 86
receiver sensitivity, 85-86

Wireless telegraphy, 1
Wireless telephone network standards,

470-471
WSSUSchannels, 54-57, 61

Zz

Zero-forcing subspace procedure, 539
Zeroth-order Bessel function, 46
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