
Page 1 of 10 SAMSUNG EXHIBIT 1044

1010 lt-Ll-ZE TRANSACTIONS ON COMPUTERS. VOL. 41, NO. 8. AUGUST 1992

Constant-Factor Redundant CORDIC

for Angle Calculation and Rotation
Jeong—A Lee, Member. IEEE, and Tomas Lang

Abstract-'— We develop a Constant-Factor Redundant-CORDIC
(CFR-CORDICJ scheme, where the scale factor is forced to be
constant while computing an angle for plane rotations. The di-
rection of rotation is determined from an estimate of the Sign and
convergence is assured by suitably placed correcting iterations.
Moreover, the number of iterations in the CORDIC rotation
unit is reduced by about 25 % by expressing the direction of the
rotation in radix-2 and radix-4, and conversion to conventional
representation is done on-the-tly. We estimate the performance of
CPR-CORDIC and compare it with previously proposed schemes
and show that it provides a similar execution time as redundant
CORDIC with a variable scaling factor, with a significant saving
in area.

Index Terms—Angle calculation and rotation, constant scale
factor, CORDIC, digital signal processing, matrix computations,
matrix ti'iangularization, redundant arithmetic.

I. INTRODUCTION

ODERN digital signal processing requires the solution
of systems of linear equations and the computation of

eigenvalues, cigenvectors, singular values, and singular vectors
[1]. Basic algorithms for these computations are matrix trian—
gularization and singular value decomposition [2]. Since these
applications are computationally intensive and require real-

time response, parallel algorithms and pipelined and parallel
architectures have been proposed to achieve high throughput
[3]—[7]. In particular, linear, triangular, and mesh-connected

arrays are very suitable because these matrix algorithms can

be effectively mapped onto these arrays [8], [3], [5]. The key
operations of these parallel algorithms are the computation of
2 x 2 rotation matrices (rotation angles) and their application
to appropriate submatrices. The rotation angle is computed
in boundary or diagonal processors and broadcast to other
processors where the rotations are performed. One calculation
approach is to compute the sine and cosine of the angle

{by means of a sequence of operations involving squaring,
addition, multiplication. square root, and division) and then

Manuscript received November I. l99l: revised February 18. 1992.. This
work was done while the authors were at the Computer Science Department.
U.C.L.A., and was supported in part by the NSF Grant MIP—RSBMO
Composite Operations Using Orr-Line Arithmetic for Application-.S'pecrfic Par,
all?! Architectures: .4. fgort‘t‘hms, Design. and Experiments? Studios. Based on
“Matrix Triangulariration by Fixed—Point Redundant CORDIC with a Constant
Scale Factor" by J. Lee and T. Lang which appeared in Proceedings of SPIE
Conference on Advanced Signal Processing Algorithms, Architectures, and
Implementation. vol. 1348, pp. 430—447. San Diego, CA. July 1990.

J. Lee is wilh the Department of Electrical Engineering. University of
Houston, Houston. TX TT204—4i93.

T. Lang is with the Computer Architecture Department, Universital Poll-lees
nica dc Cataiunya. Barcelona. Spain.

IEEE Log Numbver 9201909.

to perform the rotations by multiplications and additions. The
main drawback of this approach is that the angle calculation
requires a long sequence of operations resulting in a large
number of modules and a long execution time.

Another approach is to use the CORDIC algorithm [9],

[10], which is utilized directly both to calculate the angle

and to perform the rotations. It is characterized by its simple
and regular architecture, which mainly consists of shifters and
adders and is, therefore, well suited for VLSI implementation

[ll]—[13].

The CORDIC algorithm is relatively slow because each
iteration requires an addition. A solution is to use a redundant

number representation (for example, carry-save or signed—
digit) to achieve carry-free addition. This can be applied di-
rectly to the rotation mode; however, for the angle-calculation
mode it is necessary to detect the sign of the redundant

representation, which is slow. In a sequential implementation
of CORDIC, this sign detection can be done in parallel with

the variable shifting. On the other hand, in an unfolded
implementation the variable shifters are replaced by wired

connections, resulting in lower delay (and a higher throughput
if the implementation is pipelincd). In such a case, the sign

detection is in the critical path and degrades the performance.
In [14] a scheme was developed, Similar to what has been
standard [or other recurrences such as division and square

root, in which an estimate of the sign is used. This approach

produces a significant speedup for matrix computations but

complicates the scaling required for rotation.

In this paper we develop a Constant-Factor Redundant-
CORDIC (CFR—CORDIC) scheme for the angle calculation
and rotation application. The scale factor is forced to be

constant while computing the angles, so that the scaling for
the associated rotations is performed as in the nonredundant

CORDIC case. The approach, which is based on sign esti-
mation and additional iterations to assure convergence, is an
extension of that proposed in [15] for the calculation of sine
and cosine. The angle calculation and rotation application is

more complicated because the sign estimation is affected by
the interdependence of the two CORDIC recurrence equations
and because of the scaling required in the rotation.

We also propose a scheme to reduce by about 25% the
number of iterations in the CORDIC rotation unit. This is

achieved by expressing the direction of rotation in radix—2 and
radix-4 {this can be used in both nonredundant and redundant
CORDIC]. Moreover, the transformation of the rotated output

into nonredundant representation is done on-the-fly during

the iterations, using an extension of the approach presented

OBIS—93409230100 © 1992 IEEE

Page 1 of 10 SAMSUNG EXHIBIT 1044

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Page 2 of 10

LEE AND LRN'G: (“ONS'l'K‘tNT-FACFOR REDUNDANT CORDIC‘

in [16]. The method here is more complex because of the
iteration structure of the rotation. Finally, we discuss tradeoffs

in the implementation, evaluate an estimate of performance
and compare with previously proposed schemes. For matrix

triangularization, we estimate that the execution time is similar
to that of redundant CORDIC with variable scale factor, at

significant savings in area.

1]. REVIEW OF CORDIC SCHEMES

We briefly review the Conventional (nonredundant) and
redundant CORDIC schemes [10]. [14] to compute an angle
and perform rotations.

A. Nonrert‘undam CORDIC

Angie calculationfvectorirtg mode): The angle 0 :

ton—1 [YulllMXaEUD in nebil precision is obtained from Z,,[rr]
using the following recurrence equations with Z,,[()] = 0.

X, [i + l] : Xu[z'.1+ o;2_iYu[-i]

up + l] = r; [it _ era-trap]

xii-+1] = 2n] + Mario“) (1)

where Xaitl] is assumed positive and the direction of the
rotation is obtained as

Of +1’_ —l

Rorarion(rorrtring-mode): To perform a plane rotation on

the input vector [X,.[O].l"..[0]) by an angle (6 : 240]} the
following recurrence equations are used:

Xrfi + 15 _ Xr[i] + ar2“"l’r[t]

r1. [-2 + 1] : r3. [r1] — 042’*.X',[r3]

if 1-1. [i] 3 o
if Yup] < o. [2)

2,.[r + 1] = arr-r] + Jinan—1&4) (3)

where

._ at it are] 3 Ua“ F { +1 if an] < 0. (4)
The recurrence equations are the same for both angle and
rotation modes.

Rotation with angle or decomposed form: Note that for an
application in which an angle is calculated by the vectoring
mode and then this angle is used for rotation, it is not necessary
to implement the Z recurrences in any of the two modes,
since the angle can be used in its o—decomposed form. This

is the type of application we have in mind, so that we do not

include the Z recurrences in the sequel and the rr for rotation is

obtained from the angle calculation. The general architecture
of these applications is shown in Fig. l.

in both operation modes. the iteration time corresponds to
the delay of the variable shifter plus the delay of the adder.
If the recurrences are unfolded, the variable shifter is replaced
by wiring, which reduces the iteration time to the delay of

the adder. Moreover, the unfolded implementation can he

pipelined to increase the throughput.

Scaring: Since the CORDIC rotation changes the length of
the vector, to maintain the same length of the input vector

Page 2 of 10

ll|l7I

mwedvccwr

Rotation uni:

(X and Y rec.)
(cr .d.)

Fig. 1. General archilccture for matrix computations with CORDIC.

(X,.101.Y,.[l}]). the following CORDIC scaling operation is
necessary, where (.e“.y”} is the rotated vector.

IR = J— X" [n] where
3) R K Yr in]

n— l n - l

K : fl mimics—t") -: H Jig—Ema: (5)i=0 5:0

Note that K is constant for nonredundant CORDIC since

a"? = l for all i.
The scaling operation can be done by multiplication by

UK. However, as proposed in [l7]i[l9] it might be simpler
to include scaling iterations of the form X..[i] a. X.,.['i] ::
2‘-lX,.lil and leil «— rapt i rims and repetitions of
CORDIC iterations to make the scaling factor equal to a power

of two (really 1 or 2) and perform the scaling by shifting.
For an efficient implementation. the total number of these
additional iterations need to be minimized: solutions have been

found that require about 25% more iterations to force K to be
2 or i [19], [20].

B. Redundant CORDIC

To reduce the iteration time, it is possible to use a redundant

representation {for example carry—save or signed-digit) and
the corresponding (carry-free) adder. In the development that
follows we consider the signed—digit case; the carry—save
alternative is similar. We now discuss the effect that the use

of the redundant representation has on the angle computation
and on the rotation.

Angie computation: To compute or from the redundant
representation, a sign detection is required. which is slow;
however, in a sequential (not unfolded) implementation this

sign detection is not in the critical path since it can be

performed in parallel with the variable shifter. On the other
hand, for an unfolded implementation, since the shifters are
eliminated, the delay of this sign detection determines the

iteration time. In [14] a scheme was proposed that computes (it,-
based on an estimate of Hi]. This requires the modification of
the recurrence and selection function to determine the direction

of rotation. By making Wit] : 2‘Y,,[i] we get from (1),

mt + 1] 2 mt] + Fri-Q’fiWI'i]

W[r. + 1] = grit-tr] _ an}, [in [6)

The value of Fr,- is obtained from Wnli], an estimate produced
by truncating Wit] to one fractional (signed) bit. It is shown in
[14} that to assure convergence the value of c’r, has to belong

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Page 3 of 10

1018

to the set {—l,[l.1} and

1 if Wit-I 2%
a.- z 0 if nip: 2 n (7)

—1 if W[i] 5 —%

where Xc[tl] and Ya[[]] (W[[]]) are fractional values, one of

them is normalized, and Xa[(}] > 0. With these conditions, a

normalized Xa[l] is obtained, that is, 1/2 5 Xn[1] < 2.
Rotation: Redundant adders can be used for the iterations.

No (it is calculated since it is obtained from the angle calcu-
lation.

Scaling: The same scaling operation for rotation as in

nonredundant CORDIC has to be performed. However, in
this redundant CORDIC approach, the scale factor K is

not a constant as [7,- E {r1._0.1}. Therefore, K must be
computed for each tit-decomposed angle. This calculation can

be performed in two steps [14]: 1) K2 computation using

P[j+ l] : Plj]+|&j|2_2jPLj] with initial condition PM = 1
and 2) K = x/F The K computation can be overlapped with
the angle computation, so it does not increase the computation

time. However, a division operation is needed for the final
scaling operation.

it was estimated that this scheme produces a speedup of 4.5
for matrix triangularization and of 4 for SVD, when compared

with the nonredundant scheme [14].

III. CONSTANT—FACTOR REDUNDANT CORDIC

To reduce the implementation cost of redundant CORDIC,

especially for the scale factor calculation and the scaling

operation, there is a need to develop a redundant CORDIC
scheme with a constant scale factor. This is achieved if 6 is

restricted to the set {—1, 1}. However, since to eliminate the
delay of exact sign detection, & is obtained from an estimate

of Yap], this does not assure convergence. We now discuss
how to modify the scheme to assure convergence, first in the
calculation of the sine and cosine functions (a review of a

scheme proposed in [15]) and then in angle calculationtrotation
mode (a new scheme).

A. Sine and Cosine Calculations

in [15] a correcting iteration scheme is used to have a

constant scale factor when redundant CORDIC computes

the cosine and sine functions. For these computations, the
recurrences (3) are used and Er,- is obtained as in (4), except

that an estimate of Z[i] is utilized. Because of this estimate,
to assure convergence it is necessary to repeat some iterations,

called correcting iterations. These repetitions are done at fixed

intervals, where the frequency of repetition depends on the
precision of the estimate.

This approach could be directly extended to perform ro—
tations by decomposing the given angle. However, it is not

directly applicable when the angle is computed as tan—1(a/b)
and this angle is used in decomposed form for the rotations.
We develop the required modifications now.

Page 3 of 10

[EEE TRANSACTIONS ON COMPUTERS. VOL. 41. N0. 8, AUGUST 1902

B. Angie CoicuiationiRotation

In the case of angle calculation, the problem of having a

constant scale factor is more complicated because the direction

of the rotation is obtained from an estimate of Y},[i.] and it is

necessary to deal with the inter-dependency of the recurrences
of X and Y. To use the estimate effectively, we utilize the

modified recurrences of expressions (6). However, to achieve a
constant scaling factor, instead of the rir—selection of expression

(7), we use

. {1175:
—1

where WE] is an estimate obtained by truncating the signed-
digit representation of W[i] to the ith fractional bit. As before,
this requires Xa[1] 2 1/2, which is achieved in the same
manner.

The use of this 5 selection does not assure convergence

because W[i.] can attain values outside the bound required
for convergence. We now compute the convergence bound,
determine the amount by which W [i] can surpass this bound
because of the 6-selection used, and show how correcting
iterations can restore the bound.

Theorem 3.] (Bound): When the direction of the angle a,-

is obtained using the exact sign, that is,

o-— 1.,_ _1

W[i] is bounded as follows [14]:

if nip] 2 0
if Wli] < 0 (8)

ifW[i] 20
if wn] <0

|W[-i]| < 2X[i].

Proof: Since o,_1 is determined by the sign of W[i— 1],
the largest magnitude of W[i] is obtained when W[t' — 1] = 0

(03-4 = 1) in

W[i] = 2(Wli ~ 1] — ois1X[i — 1]).

Thus,

|W[i]] < 2X[i.— 1].

As shown in [21], X[i] g X[i + 1] for all i. Thus,

|W[i]| < 2X[i _ 1] g 2m]. :

Fig. 2 shows the bound of Theorem 3.1. This bound cannot be
maintained with the selection function of the CFR—CORDIC

scheme [expression (8)], as shown by the following lemma.
Lewmma 3.1: Assume that W [p] satisfies the bound of

Theorem 3.1, that is |W[p]| < 2X[p]. If tip is determined

from W[p] where W[p] is computed using 1 fractional bits of

Who], then Wk) + 1] satisfies the new bound

—2X[p+ 1] — 2324(1 + 2—21’]< W[p +114. 2X[p+ 1].

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Page 4 of 10

LEE AND LANG: CONSTANT-FACTOR REDL'NDANT CORDIC

Wti]

wp—n

-ZX[i] -2X[i-l] 0 2X[i-ll 211m

Fig. 2. Convergence hound,

Proof: Three regions of sz] need to be considered.
Case a): WLp] > 0 (5p 2 1).

In signed-digit number system, if Who] > 0 then W[p] > 0.
since Whit] is computed using 1 fractional bits of Wlp] Thus,

63, = 0-,, = 1. From Theorem 3.1,]W[p +1]| < 2X[p +1].
Case b): who] 2 0 tap : 1),

[1' Wm] : D then —2_E < [rt/[p] < 2‘1 We divide this region
into two. In the first, when —2_t < W[p] < 0, 0,, : —1 (not

equal to a), From the recurrence,

W]-p+l]=2(]—W[p X]p])

X]p+l]:X[p]+22pmp].

Consequently,

WLD + 1] : 21m] _ 2{X[p +1]— 2-2pm“)

: —2X[p + 1] + 2W[p](1+ 2—2?)

and for the most negative value of W[p]

Wlp + 1] > —2th + 1] — 2 :1 2—‘(1 + 2—29).

011 the other hand, when 0 < W[_p] < 2" then 17,, : Er, : 1.

Thus, from Theorem 3.1, |W[p + 1]] < 2X[p + 1].
Case e): W [p] < 0

Similar to case a), 6,, = 0,, : —1. Thus, from the Theorem

3.1, iW[p + 1]| < 2X[p +1].
From a), b), and c), the proof is done. El

Fig. 3 shows the case when W by + 1] is out of the bound

due to the use of an estimate, W[p]. Once Wle'] is outside
of the bound required for convergence, the amount outside of
the bound accumulates in the foIIOwing iterations, as shown

in the following lemma.

Lemma 3.2: 1f72X@+]]72a2—‘(1+2‘2P) < W[p+1] <
72X[p + 1], then the bound of iteration W[p + k] where
k: = {2.3.---} becomes

—2XLD+ k] — 21-10 + 2—23”) < Mp + 1] < —2X[p+ 1:].

Proof by induction:
1) Basis condition for k : 2,

Since —2X[p + 1] — 2 at 24(1 + 2—2?) < W[p +1] <
—2X[p+ 1], we obtain tit/[p + 1] < 0. Thus, a,“ = —1.
From the lower bound and the recurrence, we have

W[p —— 2] > 2(—2X[p + 1] —2 112—11 +2—2P) + le+ 1])

W’Lp —— 2] > 2(—X[p + 2] — 2—2111“)th +1]

— 2 , 2—‘(1 + 2411)]

who * 2] > —2X[p + 211 22—’(1 + 241’].

Page 4 of 10

JUN

2W[p] 2‘1Pt1wm

4

—2X[p] —2X[p+l] 72 0 1X[p+l] 2X[p]

Fig. 3, Out of the bound due to the use of an estimate.

From the upper bound and the recurrence we have

W11» + 21< 2t—2X1p+ 11+ ti +111 = 21—ti + 111

Who + 2] < 2(—X['p + 2] — 2-2<P+UW[p + 1])

< —2X[p + 2].

Thus,

—2X[p+2]— 221 (1+2 2")<W[p+2]<——2XL;;+2].

2) Induction step. Assume that it is true when k z i and

prove that it is true when k = 1' + 1.
By assumption,

—2X[p +1] — 2"—*(1 + 241’) < W[p+ 1:] < —2X]p +12].

Therefore, W[p + if] < 0 and 6,,“- = —1. From lower bound
of assumption and from recurrence,

W[p+ 2' + 1] > 2(A2XL11+1] — 21"(1+2‘2P) + X[p+'i])

W[p +1+ 1] > 2(—X[p+ 1' + 1] — 2—2(P+”W[p +1]

— 2*-*(1 + 2-2?»

th+1+11> —2X[p+ i + 1] — 2"11—‘(1 + 2—29).

From upper bound of assumption and from recurrence,

W[p+i+1] < 2(—2Xfi1+1‘]+X[p+i]) = 2(—X|p+1‘])

W[p+ 1: + 1] < 2(—X[p +1+ 1] — 2—2meVLu-t— 1])

< —2X]p + 1' + 1].

Thus,

—2X]]J +1+ 1] — 2"+1**(1 + 2’2?)

< Wlp+t+ 1] < —2X[p+1'+1].

Therefore, from 1) and 2), the proof is done. CI

Fig. 4 shows the bound of W[p + 2] to explain how the
amount outside of the bound accumulates once Wk) + 1] is
out of the bound.

To recover the original bound of]W[i + 1]] < 2X[i + l], a

correcting iteration needs to be performed. The same angle of

the previous iteration is used for the correcting iteration, i. e.,
2' instead of 25+1):5 used with Y[i + 1] as shown below.

X011: + 1] = 1([1‘ + 1] + (35'2’EY[1‘+ t]

YC{1‘+ 1] : 11-1 + 1] — a?2-*‘.vr[z' + 1].

The corresponding shifted recurrence becomes

X" [1: + 1] =

WC[1+ 1] =

X[i + 1] + 592-21—111/[1 + 1]

W[1'+ 1] — 26,-0X[1'+1].

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Page 5 of 10

lllill

axing] -2X[p+1] 0 2X[p+1]. 2le+2]

Fig. 4. Accumulating the amount outside of the bound.

The direction of the angle of is determined from Witt-1]
instead of tilt]. However, notice that the same selection
function in (8) is used for this iteration. Fig. 5 shows the case

where a correcting iteration recovers the bound of Theorem
3.1. The next theorem determines the frequency of correcting

iterations required.

Theorem 3.2: Assume that ll‘l’ip“ < 2X[pi and the di—

rection of the angle, aw“ is determined from the estimate

l-i-’[p+k] for all k. 1ft fractional bits are used in the estimate,
then a maximum of t’. a l iterations can be done before a

correcting iteration to recover the convergence bound.

Proof: Let us assume that k iterations are performed after
the path iteration. From Lemma 3.2, the bound of W[p + it] is
expanded as follows due to the use of estimate

—‘2X[‘p + M _ 2"”(1 + 2-”) < WLD + k] < ext” + k].

If it‘l'ip + is“ < 2X[-p + k}. then it satisfies the bound of
Theorem 3.] and a correcting iteration is not needed to recover
the hound.

Since we are interested in finding out how many iterations

can be performed before recovering the bound by a correcting
iteration, we need to consider the case when Wit? + k] is in
the following range:

—2X[p + t] — 2*'-t(1+ 24!); 4 mp + k] < —-2X[p+ at.

in this case, op“. : -—l_sincc W[p+ k] < 0. By applying the
correcting iteration. Wc'lp + k] becomes

ltd-"hi + it] = My + t] + 2X[p + a] > _2*'—'{i + 241’).

To recover the bound of Theorem 3.1, we need to find it

satisfying the following inequality.

|— ilk—’[l + 2-2pm z. 2m) + it].

Therefore,

'3le + kl

(t + 2—31“).

The value of it: is determined by considering the smallest

possible value of the right—hand side. For this, we consider the

smallest value of 2X[])+ is] and the largest of (1 + 2’2”), i.e.,
we should consider the smallest value of p. Since we assume

that the input ”[0] is in conventional number representation,
the direction of the angle do is correct, regardless of the use
of an estimate. Thus, the smallest if) to consider is 1. Now we

want to determine the smallest value of X [p+ kl. In [22] it is

shown that the smallest value of Xfin + k] is 3/8. Therefore,

2*“f <

2K“ J-Lii" .

R—l‘< —l0gU—+g—Jfl% (log;
log ‘2 log ‘2'

Page 5 of 10

lLiEl; 'I'HANSNL'TIDNS ON COMPUTERS, VOL. 4t, N0 8. AUGUST 1992

C
Wli+l]

axiom] o 2xn+n

Fig. 5. Recovering the convergence heund by a correcting iteration.

Thus, the largest integer it becomes 1‘. e 1. El
As indicated by Theorem 3.2, a correcting iteration puts W

inside the convergence bound, if it was outside of the bound
before this iteration. However, as shown in the next lemma,

this correcting iteration might take W out of the bound if it
was inside the bound before.

Lemma 3.3: If]Wii + 1“ < ‘ZXii + 1]. the bound after a
correcting iteration

WCl-i + 1] ~ Wi-i+1]— 2af‘xn + 1]

becomes

~2‘r — 2X[.r:+1]< Wait + 1] < 2m + 1].

Proof: The proof is very similar to that of Lemma 3.1
and is omitted. El

From Lemma 3.2, Theorem 3.2, and Lemma 3.3, we obtain
the following corollary.

Corollary ii: If t fractional bits are used for the estimate,
then the interval between correcting iterations should be less

than or equal to (t — 2). l:
The fact that a correcting iteration does not have to be

included exactly every (if?) iterations provides flexibility and

helps to minimize the number of additional iterations required
to avoid an explicit sealing operation. Also, note that it is

possible to repeat a correcting iteration more than once if it
helps to minimize the total number of iterations for a certain
K. This additional correcting iterations should not be counted
as one of the iterations of CORDIC when determining the

index of the next correcting iteration.

Since the frequency of correcting iterations is determined by
it, to reduce their number it is necessary to increase 5. However,
this makes the or selection slower. Consequently, the value of
t has to be chosen to reduce the overall execution time,

C. Reducing the Number of Correcting iterations

From the previous discussion we can determine the mini-
mum numbcr of correcting iterations required. We now show
that it is sufficient to have only one correcting iteration in the

second half, if for that part the deselection of expression (7)

is used. That is, we split the iterations of CORDIC (for -i : t)

to 1' : rt — 1} into two groups as follows:

1) Selection function for t] g i 5 tit/2

- , 1 if Wit] 2 it(If; — . r, .
*1 1f W [t] < 0.

As shown earlier. correcting iterations must be included for

convergence for this group and the number of fractional
bits used for W[-.€] determines the frequency of correcting
iterations.

(9)

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

