
Page 1 of 5 SAMSUNG EXHIBIT 1043

1992 IEEE

INTERNATIONAL SYMPOSIUM ON

CIRCUITS AND SYSTEMS

5

Volume 1 of 6

Sheraton Hotel

San Diego, CA

May 10-13, 1992

92CH3139-3

Page 1 of 5 SAMSUNG EXHIBIT 1043

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Page 2 of 5

A Normalization Scheme to Reduce Numerical Errors in Inverse

Tangent Computations on a Fixed-point CORDIC Processor

Kisbore Kota

Abstract

ISO-ordinate Rotation Dlgtal Computer (COMIC) is a unified
arithmetic algorithm that allows efficient V'LSI implementation
of several elementary functions. Many spncial-purpose systems
for real-time signal processing applications use a. fixed-point rep
resentation of numbers due to the ease of implementation. An
analysis of fixed-point CORDIC in the Y-reduction mode. which
allows computation of the inverse tangent function. shows that
unnornialized input values can result in large numerical errors.
This paper Pres-ileum: a methud LU lute-251:“: the riurulaflimntiuu up-
eration with CORDIC iterations for efficient implementation in
00.215) hardware.

1 Introduction

The CO-ordinate Rotation Dlgital Computer (CORDIC) is an
arithmetic technique that allows efficient computation of a. vari-
ety of elementary functions. The CORDIC algorithm is attrac-
tive from a hardware point of view since it uses only primitive
operations such as shifts and additions to implement more com-
plex functions including sine, cosine. tangent, arctangent, sinll.
cosh, tanh, arctanh, 1n and exp. A number of real-time signal
processing and image processing algorithms have been developed
to make efficient use of CORDIC in special-purpose parallel ar-
rays. interest in CORDIC has spurred recent work to improve
the basic algorithm. Techniques have been developed to increase
the range of convergence [4], speedup the computation by reduc-
ing the number of iterations [T] and pipeline the computation
through conventional techniques or through the use of on-line
arithmetic [3].

The basic CORDIC iterations as specified by Walther [9] are:

2;,“ : £i+1116;y[2_i (1)

Hm In - mattr‘l'fi . l2}
2;.“ z.- + Egan—12“ (I!)

where r;, y.‘ and z.- are the states of the variables I, y and 3 at

the start of the 2"” iteration. 0 <Ii < re and 6.- E {—1.+1]. The
inverse tangents, o, = tan" 2". are pie-computed and stored
in a table of angles. CORDIC iterations can he performed in
three different modes, hyperbolic, linear or circular, depending
on the choice of m E {-I.0.1}. All results in this paper have
been obtained for the circular mode of CORDIC. The different

functions implemented in this mode are summarized in Table I.
The computation of interest in this paper is inverse tangent,

which requires CORDIC operation in the restoring or Y—mn‘ucir'on
mode. The Y-reduction mode is selected by a choice ofti; at each
iteration given by:

1

a; = { _1
The above choice [10] corresponds to the choice of 5;, which tries
to reduce the magnitude of y.- to zero.

if yiz.‘ 2 0
if 91:; < 0. {4)

Joseph R. Cavallaro

Department of Electrical .9; Computer Engineering
Rice University, Houston, TX 77251

244

Z-Reduction (for Vector Rotations, sine. cosine functions}
Initial Values Final values of variables

(to coed + ygsindlfh’n

{3.1342039 - :0 sin Lin/Kn

Table l: CORDIC Functionality in the Circular Mode

CORDIC has previously been implemented primarily using a
fixed-point representation of the numbers. Design of a floating-
point CORDIC unit requires handling of numerous special cases.
which complicates design [2]. In particular, a floating-point im-
plementation of a. system that uses CORDIC requires normaliza-
tion at every stage of computation. which is not necessary with
a fixed-point representation.

2 Error Analysis of CORDIC Y-Reduction

In the study of numerical error in CURDIC, it is convenient to
split the errors due to different. factors as an approximation error
and a truncation error [5]. The approximation error is a result of
the finite number ofiterations in an implementation olCORDlC.
A truncation error is caused by the finite word length of the data
paths. The following notation is used in the derivations.

o 23;» lit. 5; represent the values obtained in a realvworld im—
plementation ofCORDlC. These numbers include the effects
of both approximation errors and truncation errors.

A 2;, y“ 2; represent the values that will be obtained in a hy-
pothetical CORDIC unit with infinite precision, where every
iteration uses the same sequence of 6,-3 used in the compu-
tation orig, 5“,- nnd 2‘.

o 2", fig, 5.- represent the values that should be obtained for the
desired function with infinite precision, as mathematicallydefined.

Let Q[] denote the quantization operator. The result of the
quantization operator on a vector is defined as the vector ob-
tained through truncation of each vector element. The followin

lemma, relating the vector v“ = [em ifan and in. = [sum]
can be derived from the c and y iterations given by Equation 1
and Equation '2 respectively.

0-7803-0593-W92 $3.00 1992 IEEE

Page 2 of 5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Page 3 of 5

L-

.5
§In1..
O
6
z Nuaum-ommc

Figure : Error in the computed value of tan “(1]=tan‘1(ya/yo)
versus yo in a. CORDIC module without normalization. The error
has been quantized into the number of bits in error. A large
error is observed fol: small values of ya. This unporimunt lion

been performed on a datapath that is 16 bits wide. The selected
range of ya forms about ith of the entire range of ya.

Lemma 2.1

11—1

lvn—vni<\/§r (ll-E,'_a "in1-,-

Pmof This is a result derived by Hu {5]. The quantity 6 is the
precision of the icy-data path. The Scale factor K; is defined as
Xi = {12;}, cos 0;. The above relation holds for fixed-point data

paths. A plot of 5:6 [UL-,1 Kri versus in shows that it is very
close to n. for all practical values of n such as 16, 32 or 64. Thus
the result reduces to:

I?-—Vq|(x/§€(l-i-n) (a)

The number of iterations, n, and the width of the data. path
are related. Since a wider datapath implies greater precision, an
approximation error that is of the same order, can be achieved
only through more iterations.

CI

The truncation error due to finite precision of the z datapath can
be quantified by the following lemma.Lcuuuq 2.2

n—l 11—1

0 -): 5rQlail = Z 5% Where in = 0i - Q [or] [7]t=0 i=0

Proof The angle or is defined as o = 293-01 dim. Hence, a is
the total angle that is either added to or subtracted from so in a
hypothetical CORDIC unit with infinite precision. The result fol-
low from definitions of o: and in. If a fixedwoint representation
is used. then all the pigs are bounded above by p, the precision of
the z-dala path.

D

2.1 Perturbation 1n the lLlorrtpui'ocl Value of the in-
verse Tangent

The goal of Y-reduction iterations is to compute the inverse tan.
gent 9 = tan-1(po/zo). Initially, 20 is set to zero and the inverse
tangent is accumulated in 2‘... The angle actually accumulated
in 2,, is to. This is achieved by performing iterations given by

Page 3 of 5

245

_.G

i.5

g

2' HNwhmm-thfl
Figure ‘2: Error in the computed value of tan—l0) =
tan-1 {yo/yo) versus ya in a CORDIC module that implements
the partial normalization scheme

Equation 1. Equation 2 and Equation 3 with the choice of 6,- at
each iteration given by Equation 4. The convergence property
of the CORDIC algorithgguarantees that 5",, is reduced to close
to zero. A detailed error analysis [6] oi Y-reduction shows that
the approximation error forms an insignificant fraction of the li-
nal error and does not affect our results. Hence, in this paper
we present a. simplified analysis that neglects the approximationEl‘l'Dl'.

In a hypothetical CORDIC unit with infinite precision, the fol-
lowing relation holds:

y“ = (yocoso—zgsinafllfn (8)
where or has been defined in lemma 2.2. Let r and 3 be defined
as

_. i2 2 . __-W
:- 30+?o , tanfl o. (9)

Equation 8 can now be rewritten as:

Knyn = rsinfli' — l1]

sin‘1(—I‘"3")WE + lid

Using lemma 2.1, we can conclude that y" — I}: is bounded by
[n+1]\/‘Z£, Similarly, using lemma. 2.2, we can conclude that Itpi
oI, which is the angle {in — znl, is bounded by M1. Substituting
these worst case bounds, we obtain the following relation

sin"'II (“K"y")i/13+ vi
Here, 3 is the true inverse tangent that is to be evaluated. The
final value accumulated in the 1 variabla, 5,. = rp, is the angle
actually obtained. Thus relation {10} fives the numerical error
in inverse tangent calculations.

Figure 1 shows the errors observed in the computation of in-
vma langonl for various: initial Valued. II. ohowo that when 47"
and ya are close to zero, a large error results. An intuitive ex-
planation of this error is the successively larger right shift in the
CORDIC iterations given by Equation 1 and Equation 2, which
can result in a loss of all significant bits if an and ya are not large
enough. A similar problem does not occur in a floating-point
CORDIC module, since in such an implementation the relative

[9-04

I3 - wl < + M: (10)

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Page 4 of 5

error, rather than the absolute error, is bounded at each itera-
tion. Intuitiveiy, the errors in such an implementation have to
be smaller since the initial values are, by definition, always in a.
normalized form.

3 Normalization for CORDIC Y-Reduction

Figure 1 shows that a large error in the computed inverse tan-
gent can occur if [vol is small. However, if the initial values are
bounded below by a value that is in the order of 2":, since the
nlirneratnr in Equation in is hounded ahmm hp lint/'30 4. 1):.
the error will be bounded. Hence, a. lower bound on [sigh enforced
through normalization of the input values, can be used to control
the error. If this normalization takes the form of a left shift of
both the inputs. it appears in the final output. 9... as a shift and
does not afi'ect the computed inverse tangent, except for better
accuracy.

“he observed the above problem when designing a processor [ii]
that computes the Singular Value Decomposition [SVD) of a. ma
trix using CORDIC arithmetic [i]. In a. fixedvpoint implementa—
tion, when CORDIC is used to perform operations on numbers
obtained in a long chain of calculations, one cannot guarantee
that the numbers are always in a normalized form. A straight-
forward way to eliminate the resulting numerical problems is to
explicitly normalize the inputs before proceeding With CORDIC.

Implementation of normalization requires hardware to deter—
mine the amount by which components of the vector can be
shifted left, and hardware to implement the shifts. The simplest
implementation uses two leading—zero encoders to determine the
amounts through which each component, 520 and in, need to be
shifted: a comparator to choose the smaller of the two shifts: and
a. barrel shifter to implement the shifts. This generic solution
to achieve normalization incurs an 0(1) time penalty and 001:}
area penalty.

A tradeofi' between time and area. [8] can be made by imple-
menting a shifter that can shift through selected powers of two.
and performing the desired normalization shift in logic cycles.
Such an approach reduces the complexity of the barrel shifter to
0(n logo), while the complexity of the leading-zero encoders is
still Uiu‘}. 'l'he Implementation is considerably more complex
and incurs a time penalty of Oflog n).

In this section we present a new normalization technique that
incurs an area penalty of0(n]‘5) but no time penalty. This liECll‘
nique, which we call partial normalisation, achieva the desired

normalization shift as a combination of smaller shi its merged with
the CORDIC iterations. At the and of each iteration, the sari:
ables i,- and 3}. are shifted left by a. few hits, decided by control
logic, until the desired total shift is achieved. The design goal is
to minimize the maximum shift that needs to be introduced at
any iteration. The normalization shift introduced at every iter-
ation prevents CORDIC from shifting out and. losing significant
bits in subsequent iterations. The above scheme results iti two
competing processes. The partial normalization scheme can only
implement a. total shift that grows linearly as the number ofiter-
atioris. CORDIC, however, tends to shift out bits as a square of
the number of iteration: due: to the oucccaaivdy humming aliift,
i, at each iteration. The following theorem quantifies this idea.

Theorem 3.1 Let t" tan-‘(jo2'fio29L be the value calcu-
lated til." Dreshifiinn :50 and fig and using an unmodified CUR DIE
unit. where q is an integral multiple of a constant p. Let I :
tan—lfgfrg/tio) be the value calculated by using a modified CGRDIC
unit and unnormob'zeo’ initial values. The modified CORDIC unit
initially performs nfp iterations of the form

i.“ = Mimosa" 2” (11)

Page 4 of 5

245

begin
fori:=0tondo

“(at < MAXK and y; 1: MARX) then
Choose cinder such that

zesffiftlmdfll < MALX and

zizshifllrinder-Fl] > MAXI ;
CHOOSE yfnde: such that

trashifllyinderl c MAJLY and

inShiftlyindcr+1l > NleJl! ;
index := min{ xindex. yinrfmr):

else
index :: I]:

end

Normalization Shift p := shiftiindex]
Perform modified CORDIC Iteration:

end
end

Figure 3: Modified CORDIC Iterations, invoked during Y-
reduction when the input is not normalized

(12]

where 1' is the iteration indies: rmrf OH is the qrmni'i'mri‘nn Dram.
tor. This isfoiiotued by (n ~q/p} unmodified CORDIC iterations.
The two inverse tangents computed. t and t", will be identical if
q < E, tuber-e E is an upper bound given by

5:21]?

Proof This result is obtained by observing that the left shift
ofp introduced at the end of a CORDIC iteration introduces p
zeros in the lower order bits that can be safely shifted out With-
out losing any significant bits. However, as the iteration index
increases. the right shift at each iteration increases, while the
left shift introd uced by normalization is a constant. The upper
bound 4 is the point at which the p is no longer sulTicient to pre
vent any loss of hits. A detailed proof of this result can be found
in a thesis [6]

ili+l = Qifii-fiiifl'ilz”,

D
Tlfio tltculmll allows that if the 6011ch Iterations can be modi-

fied to include a. constant left shift p then normalization through
any multiple of p but less than 2;)2 can be achieved. In practice,
the parameter p can be made a variable, allowing one of several
shifts to be chosen at each iteration. An appropriate choice of
these shifts can achieve any desired total shift.

Suppose p in Equation 11 can be chosen from a. total of). shifts,
and the condition shiftfl - L] > shiftli — 2} > 2 0 holds. The
algorithm given in Figure 3, give: or choice of shifts at each it.-
eratiou to normalize the input. The parameters MAXJC and
MAXI are the maximum allowed values of so and yo chosen
to prevent overflow. The required control can be implemented
using combinational logic: a. pair of leading sore encodes-o and. n.
comparator to select the smaller shift from the output of the en-
coders. The additional hardware required to implement partial
normalization 'n a pair of shifters, which implement a subset of
all the shifts implemented by a complete barrel shifter. Conse-
quently, the leading-zero encoders need to encode very few bits
to determine the appropriate shift.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Page 5 of 5

‘orma -

L .
T

Iml... ‘orrnn -
nation

H Shifter
Figure 4: Implementation ofthe CORDIC Iterations in Hardware

3.1 Choice of a Minimal Set of Shifts

The following is an example ofa. CORDIC unit with a data‘width
in = 16 bits and n = 16 iterations. The higher order three hits
correspond to one Sign bit and two overflow bits. Hence. for
this example. the parameters MAXJC and MAPLY are set to the
values of I and y corresponding to the hit patio“: “0010 0000
00-00 0000". The algorithm in figure 3 chooses the largest of
{0.1.3} shifts, such that the resulting bit string alter. has three
leading zeros (or leading ones if negative}.

0 To permit unmodified iterations in a, modified CORDIC unit
a. shift of zero is necessary :> shifth’l] = 0.

o An overall normalization shift of 1 can be achieved only by
chucking 3) no 1. Thus a shift of 1 is necessary in any inlplo
mentarion =9 shift[l] = 1.

a Multiple iterations with p = 1 can achieve a shift up to a.
maximum of 2p2 2. A shift of 3. however, cannot be
iuipleiueiitctl a.» Line: inudiliml CORDIC iteration; wiLh p :
1, since this will result in a loss of significant bits. This
necessitates the inclusion of the shift p = 3 to the set ::r
shiftp} = 3.

u The shirt 1) 2 .3 can achieve any shift up to a. maximum

2})2 = is. Since the maximum shiit required is 13. the nor-
mali ration shifter does not have to implemen t any shift other
than D, 1 and 3. Any shift, q, which is not a. multiple ol 3
is performed as shifts 013 for erf3] iterations, followed by
q rnod3 ilerations with p 2 1.

Figure 4 shows a hardware implementation of the CORDIC unit
that includes the above normalization scheme. The number of
lJlI-b in 51101 trains bLLLlI. n achuruc in lruurulctl. over: for entail initial
values. as shown in Figure 2.

3.2 Cost of Partial Normalization Inlplementation
For :- CORDIC implementation will: the data. width of the a and.
y datapaths to hits. a shifter with a. maximum shift «1112': is
required. The shifts at each iteration are obtained from leading-
zero encoders that encode the Jun?) most significant bits of the
.1: and y mriables. The costs involved in these operations are:

Shifter: The area. complexity [S] of the shifter grows as
Olw x Maximum Shift required) = 0(w >< fl) = Ofwl's].

Page 5 of 5

247

Control Logic: The size of the control logic grows as
O[(Maximum Shift required?) 2 Ohflu‘?) = 0(w}.

Time. Penalty: Since the shifting is performed as part of the
CORDIC iterations. the only time penalty incurred is a de-
crease in the clock rate due to the extra propagation the
lay caused by the presence of an additional shifter in the
CORDIC data. path.

4 Conclusions

An analysis of CORDIC Y—rednction, assuming a fixed-point rep-
resentation of numbers. shows that unnorrnalized input values
can result in large numerical errors in the computed inverse tan-
gent. The complexity of a. floating-point implenmntotiun of the

entire system can be avoided by locally normalizing the values
before using CORDIC. We have implemented the normalization
using a. method that integrates it with the CORDIC iterations
resulting in an elegant solution to the problem. This method.
requires only 001”) extra hardware and does not afl'cct the la-
tency. We believe this scheme can be extended to the other modes
of CORDIC.

Acknowledgements

This work was supported in part by the National Science Foun-
dation under Research Initiation Award NIP-8909498.

References

[1] J. R. Cavallaro and F. T. Luk. CORDIC Arithmetic for an
SVD Processor. Journal of Parallel and Distributed Com-
nutina. 5(3l:271—290. June 1988.

[2] J. R. Cavallaro and F. T. Luk. Floating—Point CORDIC
for Matrix Computations. lEEE Int. Confi on Computer
Design, pages 40-42, October 1988.

M. D. Ercegovac and T. Lang. Redundant and 011-
Line CORD 1C: Application to Matrix 'I'riangularization and
SVD. IEEE Trans. Computers, 39(5):?‘25—740. June 1990.

X. Hu, R. G. Harber, and S. C. Bass. Expanding the Range
of the CORDIC Algorithm. IEEE Trims. on Computers.
pages 13-21. Jan. 1991.

Y. H. H“. The Quantization Effect: of thc CORDIC Alger
rithm. In“. Conf. on .rlccouslics, Speech and Signal Process-
frir, pages 1322-1825, April, 1983.

[3|

[4]

[5i

Ii. Kola. Architectural. Numerical and Implementation Is-
sues in the VLSI Design of an Integrated CORDIC SVD
Processor. Master’s thesis, Rice University, Department of
Electrical and Computer Engineering, May 1991.

[Lil

[T] T. Y. Sung, Y. 11. Ho, and ll. .1. Yu. Doubly Pipelinod
CORDIC Array for Digital Signal Processing Algorithms.
IEEE Int. Conf. on Acoustics, Speech, and Signal Process-
ing, 21169-1172, April 1986.

[3} J. D. Ullman. Computational Aspects of VLSl'. Computer
Science Prms, Rocltville, MD, 1984.

[9] l. S. Walther. A Unified Algorithm for Elementary Func-
tions. AFIPSJpr-mg Jain: Computer Cont. pages dis—J56,
1971.

[10] B. Yang and J. F. B'ohme. Reducing the Computations of the
SVD Array Given by Brent and Luk. SPIE Advanced Algo-
rithms and Architecture: for Signal Processing. 1152112402.
August, 1939.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

