
Page 1 of 5 SAMSUNG EXHIBIT 1043

1992 IEEE

INTERNATIONAL SYMPOSIUM ON

CIRCUITS AND SYSTEMS

Es

Volume 1 of 6

Sheraton Hotel

San Diego, CA
May 10-13, 1992

92CH3139-3

Page 1 of 5 SAMSUNG EXHIBIT 1043
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Page 2 of 5

A Normalization Scheme to Reduce Numerical Errors in Inverse

Tangent Computations on a Fixed-point CORDIC Processor

Kishore Kota

Abstract

CO-ordinate Rotation Digital Computer (CORDIC) Is a unified
arithmetic algorithm that allows efficient VLSI implementation
of several elementary functions. Many sp~cial-purpose systems
for real-time signal processing applications use a fixed-point rep-
resentation of numbers due to the ease of implementation. An
analysis of fixed-point CORDIC in the Y-reduction mode, which
allows computation of the inverse tangent function, shows that
unnormalized input values can result in large numerical errors.
This paper preseuts a method tu integrate ble wormalization op-
eration with CORDIC iterations for efficient implementation in
O(n1*) hardware.

1 Intreduction

The CO-ordinate Rotation Digital Computer (CORDIC) is an
arithmetic technique that allows efficient computation of a vari-
ety of elementary functions. The CORDIC algorithm is attrac-
tive from a hardware point of view since it uses only primitive
operations such as shifts and additions to implement more com-
plex functions including sine, cosine, tangent, arctangent, sinh,
cosh, tanh, arctanh, In and exp. A numberofreal-time signal
processing and image processing algorithms have been developed
to makeefficient use of CORDIC in special-purpose parallel ar-
rays. Interest in CORDIC has spurred recent work to improve
the basic algorithm. Techniques have been developed to increase
the range ot convergence [4], speedup the computation by reduc-
ing the number ofiterations (7] and pipeline the computation
through conventional techniques or through the use of on-line
arithmetic [3].

The basic CORDIC iterations as specified by Walther [9] are:

Liat zy + mbjy;27* (1)

Vier = wer mdz", (2)
Tig. = 2 + 6j;tan727-* (3)

where z;, yj and z; are the states of the variables r, y and = at
the start of the iiteration, 0 <i <n, and 6; € {-1, +1}. The
inverse tangents, a; = tan7!27', are pre-computed and stored
in a table of angles. CORDIC iterations can be performed in
three different modes, hyperbolic, linear or circular, depending
on the choice of m € {-1,0,1}. All results in this paper have
been obtained for the circular mode of CORDIC. The different

functions implemented in this mode are summarized in Table 1.
The computation of interest in this paper is inverse tangent,

which requires CORDIC operation in the vectoring or Y-reduction
mode. The Y-reduction modeis selected by a choice of 6; at each
iteration given by:

1

6 = { 4
The above choice (10] corresponds to the choice of 6;, which trics
to reduce the magnitude of y,; to zero.

if ya; > 0
if vizi< 0. (4)

Joseph R. Cavallaro

Departmentof Electrical & Computer Engineering
Rice University, Houston, TX 77251

244

Z-Reduction (for Vector Rotations, sine, cosine functions)
Initial Values Final values of variables

(29 cos @ + yosin#)/K,

(yo cos @ ~ zqgsin 9)/K,
0

25+ ¥h/Kn
0

Yo
To@ = tan! ()

Table 1: CORDIC Functionality in the Circular Mode

CORDIC has previously been implemented primarily using a

fixed-point representation of the numbers. Designof a floating-
point CORDIC unit requires handling of numerous special cases.
which complicates design (2]. In particular, a floating-point im-
plementation of a system that uses CORDIC requires normaliza-
tion at every stage of computation, which is not necessary with
a fixed-point representation.

2 Error Analysis of CORDIC Y-Reduction

In the study of numerical error in CORDIC,it is convenient to
split the errors due to different factors as an approximation error
and a truncation error [5]. The approximationerroris a result of
the finite number of iterations in an implementation of CORDIC.
A truncationerroris caused by the finite word lengthof the data
paths. The following notation is used in the derivations.

e 2), 9i, 2; represent the values obtained in a real-world im-
plementation of CORDIC. These numbers include the effects
of both approximation errors and truncation errors.

Li, Yi, 2 Tepresent the values that will be obtained in a hy-
pothetical CORDIC unit with infinite precision, where every
iteration uses the same sequence of 6;s used in the compu-
tation of Z,, ¥; and 2,.

© 2, fi, 2; represent the values that should be obtained for the
desired function with infinite precision, as mathematicallydofined.

Let Q[.] denote the quantization operator. The result of the
quantization operator on a vector is defined as the vector ob-
tained through truncation of each vector element. The followin
lemma, relating the vector vn = (tn, yn]? and ¥a = [in,jn]
can be derived from the z and y iterations given by Equation 1
and Equation 2 respectively.

0-7803-0593-0/92 $3.00 1992 IEEE

Page 2 of 5
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Page 3 of 5

0

9

8

7

6

5

4

3

2

No.ofbitsinerror
o-

T

1 1
Value of YO

Figure 1: Error in the computed value of tan~'(1)=tan—(yo/yo)
versus Yo in a CORDIC module without normalization. The error
has been quantized into the number of bits in error. A large
errer is observed for emall values of yg. Thie experiment hao

been performed on a datapath that is 16 bits wide. The selected
range of yo forms about 4th ofthe entire range of yo.

Lemma2.1

n=l

[va — Val < V2e (1435j=0
n-1

I] & (5)inj

Proof This is a result derived by Hu (5]. The quantity ¢ is the
precision of the xy-data path. The scale factor A; is defined as
K, = [Uzhcosa;, The aboverelation holds for fixed-point data
paths. A plot of Dyce (mRs} a versus n shows thatit is very
close to n for all practical values of n such as 16, 32 or 64. Thus
the result reduces to:

|e. —val < /2e(1 +n) (6)

The number of iterations, n, and the width of the data path
are related. Since a wider datapath implies greater precision, an
approximation error that is of the same order, can be achieved
vuly through more iterations.

o

The truncation error due to finite precision of the z datapath can
be quantified by the following lemma.Lemina 2.2

n=-1 n-1

a- >> 6Qlai]= >> bi; where pi =a;-Qlai (7)i=0 1=0

Proof The angle a is defined as a =)-?7) d;a;. Hence, a is
the total angle that is either added to or subtracted from zo in a
hypothetical CORDIC unit withinfinite precision. The resultfol-
lows from definitions of a and u;. If a fixed-point representation
is used, thenall the y;s are bounded above by y, the precision of
the z-data path.

a

Z.L Perturbation in the Computed Value of the In-
verse Tangent

The goal of Y-reduction iterations is to compute the inverse tan-
gent 9 = tan-!(yo/z9). Initially, zo is set to zero and the inverse
tangent is accumulated in z,. The angle actually accumulated
in 2, is wy. This is achieved by performing iterations given by

Page 3 of 5

s
4

2

g
Figure 2: Error in the computed value of tan-'(1) =
tan—! (yo/yo) versus yo in 2 CORDIC module that implements
the partial normalization scheme

Equation 1, Equation 2 and Equation 3 with the choice of 6; at
each iteration given by Equation 4. The convergence property
of the CORDIC algorithmguarantees that J, is reduced to close
to zero. A detailed error analysis |6] of Y-reduction shows that
the approximation error forms an insignificant fraction of the fi-
nal error and does not affect our results. Hence, in this paper
we present a simplified analysis that neglects the approximationerror.

In a hypothetical CORDIC unit with infinite precision, the fol-
lowing relation holds:

Yn = (yo cosa — zosina)/Ky (8)
where a has been defined in lemma 2.2. Let r and @ be defined
as

= ,/rity2- _ »
r zh+yg ; tané . (9)

Equation 8 can now be rewritten as:

Kayan = rsin(@-a)

sin7! (5Vz6 +93

Using lemma 2.1, we can conclude that y, — §, is bounded by
(n+1)/2e. Similarly, using lemma2.2, we can conclude that|y~—
a|, which is the angle |2,, — z,|, is bounded by ny. Substituting
these worst case bounds, we obtain the following relation

in| + np (10)Vr5 +98
Here, @ is the true inverse tangent that is to be evaluated. The
final value accumulated in the » variable, 2, = y, ie the angle
actually obtained. Thus relation (10) gives the numerical error
in inverse tangent calculations.

Figure 1 shows the errors observed in the computation ofin-
voreo tangont for various initial valuce. It chowo that when oy
and yo are close to zero, a large error results. An intuitive ex-
planation of this error is the successively larger right shift in the
CORDIC iterations given by Equation 1 and Equation 2, which
can result in a loss ofall significantbits if rg and yo are not large
enough. A similar problem does not occur in a floating-point
CORDIC module, since in such an implementation the relative

\@-a| =

J@-gl< ie

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Page 4 of 5

error, rather than the absolute error, is bounded at each itera-
tion. Intuitively, the errors in such an implementation have to
be smaller since the initial values are, by definition, always in a
normalized form.

3 Normalization for CORDIC Y-Reduction

Figure 1 shows that a large error in the computed inverse tan-
gent can occurif [Vol is small. However, if the initial values are
bounded below by a value that is in the order of 2, since the
numerator in Equation 10 is hannded ahave hy W,,/9(n + 1,
the error will be bounded. Hence, a lower bound on |¥o|, enforced
through normalization of the input values, can be used to control
the error. If this normalization takes the form of a left shift of
both the inputs. it appears in the final output, +, as a shift and
does not affect the computed inverse tangent, except for better
accuracy.

We observed the above problem when designing a processor(6]
that computes the Singular Value Decomposition (SVD) of a ma-
trix using CORDIC arithmetic [1], In a fixed-point implementa-
tion, when CORDIC is used to perform operations on numbers
obtained in a long chain of calculations, one cannot guarantee
that the numbers are always in a normalized form. A straight-
forward way to eliminate the resulting numerical problemsis to
explicitly normalize the inputs before proceeding with CORDIC.

Implementation of normalization requires hardware to deter-
mine the amount by which components of the vector can be
shifted left, and hardware to implement the shifts. The simplest
implementation uses two leading-zero encoders to determine the
amounts through which each component, #o and jo, need to be
shifted; a comparator to choose the smaller of the twoshifts; and
a barrel shifter to implement the shifts. This generic solution
to achieve normalization incurs an O(1) time penalty and O(n?)
area penalty.

A tradeoff between time and area [8] can be made by imple-
menting a shifter that can shift through selected powers of two,
and performing the desired normalization shift in logn cycles.
Such an approach reduces the complexity of the barrel shifter to
O(nlogn), while the complexity of the leading-zero encoders is
stil O(n*). ‘Lhe implementation is considerably more complex
and incurs a time penalty of O(log n),

Jn this section we present a new normalization technique that
incurs an area penalty of O(n!) but no time penalty. This tech-
nique, which we call partial normalization, achieves the desired

normalization shift as a combination of smaller shifts merged with
the CORDICiterations. At the end of eachiteration, the vari-
ables @; and # are shifted left by a few bits, decided by control
logic, until the desired total shift is achieved. The design goal is
to minimize the maximum shift that needs to be introduced at
any iteration. The normalization shift introduced at every iter-
ation prevents CORDIC from shifting out and losing significant
bits in subsequent iterations. The above scheme results in two
competing processes. The partial normalization scheme can only
implementa total shift that grows linearly as the numberofiter-
ations. CORDIC, however, tends to shift out bits as a square of
the numberof iterations duc to the successively iucceasing shift,
i, at each iteration. The following theorem quantifies this idea.

Theorem 3.1 Let t'=tan7!(§o27/Z927), be the value calcu-
lated by preshifting Zo and to and using an unmodified CORDIC
unit, where q ts an integral mulliple of a constant p. Let t =
tan—"(#o/%o) be the value calculated by using a modified CORDIC
untt and unnormalized initial values. The modified CORDIC unit
initially performs q/p iterations of the form

Sar = Q [is + 6:g:27'] 2” (11)

Page 4 of 5

246

begin
for i:=0 tondo

if (z; < MAX_X and y; < MAX.Y) then
Choose rinder such that

xgshift[zinder] © Wf AX_X and
xpshift|zinder+ J] > MAXX ;

Choose yinder such that

yiashift[yindez] < xfAX¥ and
y2shift[yinder+1] > MAK_Y

inder := min(xindex, yindex):
else

indez := 0;
end

Normalization Shift p := shift(indez']
Perform modified CORDIC Iteration;

end
end

’

Figure 3: Modified CORDIC Iterations, invoked during Y-
reduction when the input is not normalized

(12)

where i is the iteration index and Q{.] is the quantization opera.
tor. This is followed by (n —q/p) unmodified CORDIC iterations.
The two inverse tangents computed, t and t', will be identical if
q < &, where € is an upper bound given by

€ = 2p?

Proof This result is obtained by observing that theleft shift
of p introduced at the end of a CORDICiteration introduces p
zeros in the lower order bits that can be safely shifted out with-
out losing any significant bits. However, as the iteration index
increases, the right shift at each iteration increases, while the
left shift introduced by normalization is a constant. The upper
bound ¢ is the point at which the p js no longersufficient to pre-
vent anyloss of bits. A detailed proofof this result can be found
in a thesis [6].

ie. = Q [si - 64:2-'] 2°,

o
This thevrem slows that if the CORDIC Iterations can be modi-

fied to include a constant left shift p then normalization through
any multiple of p but less than 2p? can be achieved. In practice,
the parameter p can be made a variable, allowing one of several
shifts to be chosen at each iteration. An appropriate choice of
these shifts can achieve any desired total shift.

Suppose pin Equation 11 can be chosen fromatotal of 4 shifts,
and the condition shift(A — 1] > shift{A —2] > +--+ > 0 holds. The
algorithm given in Figure 2, gives a choice of shifts at each it-
eration to normalize the input. The parameters MAX_X and
MAX.Y are the maximum allowed values of zp and yo chosen
to prevent overflow. The required control can be implemented
using combinational logic: a pair of leading scro oncoders and o
comparator to select the smaller shift from the output of the en-
coders. The additional hardware required to implementpartial
normalization is a pair of shifters, which implement a subset of
all the shifts implemented by a complete barrel shifter. Conse-
quently, the leading-zero encoders need to encode very few bits
to determine the appropriate shift.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Page 5 of 5

Normal-
ization
Shifter

.TEESeS
XY-CHIP

ooEncoder Peston
Figure 4: Implementation of the CORDIC Iterations in Hardware

3.1 Choice of a Minimal Set of Shifts

The following is an example of a CORDIC unit with a data-width
w = 16 bits and nr = 16 iterations. The higher order three bits
correspond to one sign bit and two overflow bits. Hence, for
this example, the parameters MAX_X and MAXLYare set to the
values of x and y corresponding to the bit pattern “0010 0000
0000 0000”. The algorithm in figure 3 chooses the largest of
{0,1,3} shifts, such that the resulting bit string after, has three
leading zeros (or leading ones if negative).

« To permit unmodified iterations in a modified CORDIC unit
a shift of zero is necessary > shift[0] = 0
An overall normalization shift of 1 can be achieved only by
choosing p — 1. Thus a shift of 1 is necessary in any imple
mentation = shift(1] = 1.
Multiple iterations with p = 1 can achieve a shift up toa
maximum of 2p? = 2. A shift of 3, however, cannot be
iaipleuimeuted as thace modified CORDIC iterativous with p=
1, since this will result in a loss of significant bits. This
necessitates the inclusion of the shift p = 3 to the set >
shi ft{2] = 3.
The shift p = 3 can achieve any shift up to a maximum

2p* = 18. Since the maximumshift required is 13, the nor-
malization shifter does not have to implement any shift other
than 0, 1 and 3. Any shift, q, which is not a multiple of 3
is performed as shifts of 3 for |q/3] iterations, followed by
qmod 3 iterations with p= 1.

Figure 4 shows a hardware implementation of the CORDIC unit
that includes the above normalization scheme. The numberof
bite in error using such a scleaue is bounded even for siuall initial
values, as shown in Figure 2.

3.2 Cost of Partial Normalization Implementation
Por a CORDIC implementation with the data width of the # and
y datapaths w bits, a shifter with a maximum shift \/w/2 is
required. The shifts at each iteration are obtained from leading-
zero encoders that encode the \/w/2 most significant bits of the
z and y variables. The costs involved in these operations are:

Shifter: The area complexity [8] of the shifter grows as
O(w x MaximumShift required) = O(w x yw) = O(w1),

Page 5 of 5

247

Control Logic: The size of the control logic grows as
O((Maximum Shift required)?) = O(,/") = O(w).

Time Penalty: Since the shifting is performed as part of the
CORDIC iterations, the only time penalty incurred is a de-
crease in the clock rate due to the extra propagation de-
lay caused by the presence of an additional shifter in the
CORDIC data path.

4 Conclusions

An analysis of CORDIC Y-reduction, assuming a fixed-point rep-
resentation of numbers, shows that unnormalized input values
can result in large numerical errors in the computed inverse tan-
gent. The complexity of a floating-point implementation uf the

entire system can be avoided by locally normalizing the values
before using CORDIC. We have implemented the normalization
using a method that integrates it with the CORDIC iterations
resulting in an elegant solution to the problem. This method -
requires only O(n!) extra hardware and does notaffect the la-
tency. We believe this scheme can be extended to the other modes
of CORDIC,

Acknowledgements

This work was supported in part by the National Science Foun-
dation under Research Initiation Award MIP-8909498.

Heferences

(1) J. R. Cavallaro and F. T. Luk. CORDIC Arithmetic for an
SVD Processor. Journal of Parallel and Distributed Com-
puting, 5(3):271-290, June 1988.

J. R. Cavallaro and F. T. Luk. Floating-Point CORDIC
for Matrix Computations. [EEE Int. Conf. on Computer
Design, pages 40-42, October 1988.

(2

M. D. Ercegovac and T. Lang. Redundant and On-
Line CORDIC: Application to Matrix Triangularization and
SVD. IEEE Trans. Computers, 39(6):725-740, June 1990.

X. Hu, R. G. Harber, and 5. C. Bass. Expanding the Range
of the CORDIC Algorithm. [EEE Trans. on Computers,
pages 13-21, Jan. 1991.

Y¥. H. Wu. The Quantization Dffects of the CORDIC Alyu-
rithm. Intl. Conf. on Accoustics, Speech and Signal Process-
ing, pages 1822-1825, April, 1988.

[3]

[4

{5}

kK. Kota. Architectural, Numerical and Implementation Is-
sues in the VLSI Design of an Integrated CORDIC SVD
Processor. Master's thesis, Rice University, Department of
Electrical and Computer Engineering, May 1991.

T. Y. Sung, Y. IL. Hu, and W. J. Yu. Doubly Pipelined
CORDIC Array for Digital Signal Processing Algorithms.
IEEE Int. Conf. on Acoustics, Speech, and Signal Process-
ing, 2:1169-1172, April 1986.

(8} J. D. Ullman. Computational Aspects of VLSI. Computer
Science Press, Rockville, MD, 1984.

(6

[7]

(9] J. S. Walther. A Unified Algorithm for Elementary Func-
tions. AFIPS Spring Joint Computer Conys., pages 379-385,
1971.

(l0] B. Yangand J. F. Béhme. Reducing the Computationsof the
SVD Array Given by Brent and Luk. SPIE Advanced Algo-
rithms and Architectures for Signal Processing, 1152:92-102,
August, 1989.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

