1992 IEEE
INTERNATIONAL SYMPOSIUM ON
CIRCUITS AND SYSTEMS

=

Volume 1 of 6

Sheraton Hotel
San Diego, CA
May 10-13, 1992

92CH3139-3

?CKET

A R M Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

A Normalization Scheme to Reduce Numerical Errors in Inverse
Tangent Computations on a Fixed-point CORDIC Processor

Kishore Kota

Abstract

CO-ordinate Rotation DIgital Computer (CORDIC) Is a unifled
arithmetic algorithm that allows efficient VLSI implementation
of several elementary functions. Many sp~cial-purpose systems
for real-time signal processing applications use a fixed-point rep-
resentation of numbers due to the ease of implementation. An
analysis of fixed-point CORDIC in the Y-reduction mode, which
allows computation of the inverse tangent function, shows that
unnormalized input values can result in large numerical errors.
This paper preseuts a method Lo integrale Lhe normalization op-
eration with CORDIC iterations for efficient implementation in
O(n'®) hardware.

1 Introduction

The CO-ordinate Rotation Dlgital Computer (CORDIC) is an
arithmetic technique that allows efficient computation of a vari-
ety of elementary functions. The CORDIC algorithm is attrac-
tive from a hardware point of view since it uses only primitive
operations such as shifts and additions to implement more com-
plex functions including sine, cosine, tangent, arctangent, sinh,
cosh, tanh, arctanh, In and exp. A number of real-time signal
processing and image processing algorithms have been developed
to make efficient use of CORDIC in special-purpose parallel ar-
rays. Interest in CORDIC has spurred recent work to improve
the basic algorithm. Techniques have been developed to increase
the range ot convergence [4], speedup the computation by reduc-
ing the number of iterations (7] and pipeline the computation
through conventional techniques or through the use of on-line
arithmetic [3].
‘T'he basic CORDIC iterations as specified by Walther |9] are:

Tig 2+ mby2~* (1)
yier = yi— méz2T, (2)
g1 = zi+bitant 270 (3)

where z;, ¥ and z; are the states of the variables z, y and = at
the start of the #*» iteration, 0 < i < n, and §; € {~1,+1}. The
inverse tangents, a; = tan~!2~%, are pre-computed and stored
in a table of angles. CORDIC iterations can be performed in
three different modes, hyperbolic, linear or circular, depending
on the choice of m € {=1,0,1}. All results in this paper have
been obtained for the circular mode of CORDIC. The different
functions implemented in this mode are summarized in Table 1.

The computation of interest in this paper is inverse tangent,
which requires CORDIC operation in the vectorinp or Y-reduction
mode. The Y-reduction mode is selected by a choice of §; at each

iteration given by:
1
§i= { I

The above choice [10] corresponds to the choice of §;, which trics
to reduce the magnitude of y; to zero.

if yizi 2 0
if Yizi < 0.

(4)

Joseph R. Cavallaro

Department of Electrical & Computer Engineering
Rice University, Houston, TX 77251

244

Z-Reduction (for Vector Rotations, sine, cosine functions)
Initial Values Final values of variables

Zo 1) Tn = (zocosf+ yosind)/K,

Yo = o ¥n = (Yyocosl — zgsind)/K,

np = 6 zZn = 0

Y-Reduction (for Inverse Tangent function)
To = Zg In =y 13 + y('.]’f(‘r{“
_ = 0
Yo = ¥ o '
=y 0 o= 9—_tm1"("’n)
Lo

Table 1: CORDIC Functionality in the Circular Mode

CORDIC has previously been implemented primarily using a
fixed-point representation of the numbers. Design of a floating-
point CORDIC unit requires handling of numerous special cases,
which complicates design [2]. In particular, a floating-point im-
plementation of a system that uses CORDIC requires normaliza-
tion at every stage of computation, which is not necessary with
a fixed-point representation.

2 Error Analysis of CORDIC Y-Reduction

In the study of numerical error in CORDIC, it is convenient to
split the errors due to different factors as an approximation error
and a truncation error [5]. The approximation error is a result of
the finite number of iterations in an implementation of CORDIC.
A truncation error is caused by the finite word length of the data
paths. The following notation is used in the derivations.

e &, 3;, Z; represent the values obtained in a real-world im-
plementation of CORDIC. These numbers include the effacts
of both approximation errors and truncation errors.

T, Ui, 2; represent the values that will be obtained in a liy-
pothetical CORDIC unit with infinite precision, where every
iteration uses the same sequence of &;s used in the compu-
tation of £y, ; and #.

* £, §ii, Zi represent the values that should be obtained for the
desired function with infinite precision, as mathematically
dafinad

Let Q[.] denote the guantization operator. The result of the
quantization operator on a vector is defined as the vector ob-
tained through truncation of each vector element. The followin
lenma, relating the vector v, = [2n, ¥ )7 and ¥4 = [&n,iin]
can be derived from the z and y iterations given by Equation 1
and Equation 2 respectively.

DOCKET

_ ARM

0-7803-0593-0/92$3.00 1992 1EEE

Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

B W s L =) 0w O

No. of bits in error

0.1 0.15
Value of YO

0.05 02

Figure 1: Error in the computed value of tan~'{1)=tan~! (yo/0)
versus g in a CORDIC module without normalization. The error
has been quantized into the number of bits in error. A large
error ic observed for emall valuce of yy. Thie experiment has
been performed on a datapath that is 16 bits wide. The selected
range of yp forms about ith of the entire range of yo.

/)

Proof This is a result derived by Hu {5]. The quantity ¢ is the
precision of the xy-data path. The scale factor K is defined as
K = [Tz} cosa;. The above relation holds for fixed-point data
paths. A plot of E [H,_Jl Im versus n shows that it is very
close to n for all pract:cal values of n such as 16, 32 or 64. Thus
the result reduces to:

[#a = Vol < V2e(1 + 1) ()

The number of iterations, n, and the width of the data path
are related. Since a wider datapath implies greater precision, an
approximation error that is of the same order, can be achieved
vuly through more iteratlons.

Lemma 2.1
n-1

IIx

i

n=1

1+

=0

[¥a — val < V2e ( (5)

a
The truncation error due to finite precision of the z datapath can
be quantified by the following lemma.
Leuuna 2.2

a1
a-3Y &Qai] = Eéh where i =0~ Qla] (7)
=0 =0

Proof The angle o is defined as a = 7= §;ai. Hence, a is
the total angle that is either added to or subtracted from zp in a
hypothetical CORDIC unit with infinite precision. The result fol-
lows from definitions of @ and u.. If a fixed-point representation
is used, then all the y;s are bounded above by u, the precision of

the z-data path.
[m]

FPerturbation in the Computed Value of the In-
verse Tangent

The goal of Y-reduction iterations is to compute the inverse tan-
gent @ = tan~!(yo/20). Initially, zo is set to zero and the inverse
tangent is accumulated in Z,. The angle actually accumulated
in 2, is ¢. This is achieved by performing iterations given by

2.1

DOCKET

_ ARM

245

10
9t
8k
B
6l
.8
2 st
0
s af
2 3
2
1 |
.1 X
Value of YO
Figure 2: Error in the computed value of tan-i(1) =

tan=! (yo/yo) versus yo in 2 CORDIC module that implements
the partial normalization scheme

Equation 1, Equation 2 and Equation 3 with the choice of §; at
each iteration given by Equation 4. The convergence property
of the CORDIC algorithm guarantees that §, is reduced to close
to zero. A detailed error analysis [6] of Y-reduction shows that
the approximation error forms an insignificant fraction of the fi-
nal error and does not affect our results. Hence, in this paper
we present a simplified analysis that neglects the approximation
error.
In a hypothetical CORDIC unit with infinite precision, the fol-
lowing relation holds:
= (yocosa — zgsina)/K,

(8)

where @ has been defined in lemma 2.2. Let + and 8 be defined

as
r= /23 + 3% ; tanf = %

rewritten as:

(9)

Equation 8 can now be
Kqya

rsin(f - a)
Inyn

sin~! (—)

V2 +vd
Using lemma 2.1, we can conclude that y, — y, is bounded by
(n+1)vZe. Slmlla,rl}, using lemma 2.2, we can conclude that |-
al, which is the angle |2, — z,|,is bounded by np. Substituting
these worst case bounds, we obtain the following relation

Kl\ﬂ
. )"I—nﬂ

(W% +43

Here, # is the true inverse tangent that is to be evaluated. The
final value accumulated in the » variable, 3, = ¢, ie the angle
actually obtained. Thus relation (10) gives the numerical error
in inverse tangent calculations.

Figure 1 shows the errors observed in the computation of in-
verco tangont for varioue initial values. It chows that when =y
and yp are close to zero, a large error results. An intuitive ex-
planation of this error is the successively larger right shift in the
CORDIC iterations given by Equation 1 and Equation 2, which
can result in a loss of all significant bits if 24 and yo are not large
enough. A similar problem does not occur in a floating-point
CORDIC module, since in such an implementation the relative

18- ol

|6 -l < ‘sin”"II (10)

Find authenticated court documents without watermarks at docketalarm.com.


https://www.docketalarm.com/

error, rather than the absolute error, is bounded at each itera-
tion. Intuitively, the errors in such an implementation have to
be smaller since the initial values are, by definition, always in a
normalized form.

3 Normalization for CORDIC Y-Reduction

Figure 1 shows that a large error in the computed inverse tan-
gent can occur if |vp| is small. However, if the initial values are
bounded below by a value that is in the order of 2™, since the
numeratar in Fqnation 10 is hannded ahave hy K,/7(n 4 1)z,
the error will be bounded. Hence, a lower bound on |¥|, enforced
through normalization of the input values, can be used to control
the error. If this normalization takes the form of a left shift of
both the inputs. it appears in the final output. ¥.., as a shift and
does not affect the computed inverse tangent, except for better
accuracy.

We observed the above problem when designing a processor [6)
that computes the Singular Value Decomposition (SVD) of a ma-
trix using CORDIC arithmetic [1]. In a fixed-point implementa-
tion, when CORDIC is used to perform operations on numbers
obtained in a long chain of calculations, one cannot guarantee
that the numbers are always in a normalized form. A straight-
forward way to eliminate the resulting numerical problems is to
explicitly normalize the inputs before proceeding with CORDIC.

Implementation of normalization requires hardware to deter-
mine the amount by which components of the vector can be
shifted left, and hardware to implement the shifts. The simplest
implementation uses two leading-zero encoders to determine the
amounts through which each component, #, and o, need to be
shifted; a comparator to choose the smaller of the two shifts; and
a barrel shifter to implement the shifts. This generic solution
to achieve normalization incurs an O(1) time penalty and O(n?)
area penalty.

A tradeoff between time and area [§] can be made by imple-
menting a shifter that can shift through selected powers of two,
and performing the desired normalization shift in logn cycles.
Such an approach reduces the complexity of the barrel shifter to
O(nlogn), while the complexity of the leading-zero encoders is
stil U(n*). Lhe implementation is considerably more complex
and incurs a time penalty of O(logn).

In this section we present a new normalization technique that
incurs an area penalty of O(n!®) but no time penalty. This tech-
nique, which we call partial normalization, achieves the desired
normalization shift as a combination of smaller shifts merged with
the CORDIC iterations. At the end of each iteration, the vari-
ables #; and §; are shifted left by a few bits, decided by control
loglc, untll the desired total shift is achieved. The design goal is
to minimize the maximum shift that needs to be introduced at
any iteration. The normalization shift introduced at every iter-
ation prevents CORDIC from shifting out and losing significant
bits in subsequent iterations. The above schieme results in two
compeling processes. The partial nonnalization sclieme can only
implement a total shift that grows linearly as the number of iter-
ations. CORDIC, however, tends to shift out bits as a square of
the number of iterations duc to the succeasively increasiug shilt,
i, at each iteration. The following theorem quantifies this idea.

Theorem 3.1 Let ' = tan~'(§o27/£027), be the value calcu-
lated by preshifting 2o and fio and using an unmodified CORDIC
unit, where q is an integral mulliple of a consiant p. Let t =
tan~'(3o/d¢) be the value calculoted by using a modified CORDIC
unitt and unnormalized initial values. The modified CORDIC unit
initially performs q[p iterations of the form

-t 29

Far = QEi+ 62 (11)

DOCKET

_ ARM

246

begin
for i:=0 ton do
if (z; < MAX X and 3 < MAX.Y) then
Choose rinder such that
z;oshift[zindez] ¢ \AX X and
;‘_zshifl[xinde::-#.f] > MAXX ;
Choose yinder such that
yioshift(yindez] < MAX Y and
y'.zshift[yina'cr-f—i‘] > MAXY
inder := min{ xindex, yindex ):
else
indez := 0;
end
Normalization Shift p := shift(indez]
Perform modified CORDIC Iteration;
end

end

]

Figure 3: Modified CORDIC Iterations, invoked during Y-
reduction when the input is not normalized

Jier = Q [ﬁi - 5.'5:-'2".] 27, (12)
where i is the iteration index and Q] is the quantization apera.
tor. This is followed by (n — q/p) unmodified CORDIC iterations.
The two inverse tangents computed, t and ¥, will be identical if
q < &, where £ is an upper bound given by

£=2p?

Proof This result is obtained by observing that the left shift
of p introduced at the end of a CORDIC iteration introduces p
zeros in the lower order blts that can be safely shifted out with-
out losing any significant bits. However, as the iteration index
increases, the right shift at each iteration increases, while the
left shift introduced by normalization is a constant. The upper
bound ¢ is the point at which the p is no longer sufficient to pre-
vent any loss of bits. A detailed proof of this result can be found
in a thesis [6].
a}

This theviemn shows that I the CORDIC lteratlons can be modi-
fied to include a constant left shift p then normalization through
any multiple of p but less than 2p? can be achieved. In practice,
the parameter p can be made a variable, allowing one of several
shifts to be chosen at each iteration. An appropriate choice of
these shifts can achieve any desired total shift.

Suppose p in Equation 11 can be chosen from a total of A shifts,
and the condition shift(A — 1] > shift[A — 2] > .-+ > 0 helds. The
algorithm given in Figure 3, gives a choice of shifts at each it-
eration to normalize the input. The parameters MAX_X and
MAX.Y are the maximum allowed values of zp and yo chosen
to prevent overflow. The required control can be implemented
ucing eombinstional legic: a pair of leading soro encodcrs and o
comparator to select the smaller shift from the output of the en-
coders. The additional hardware required to implement partial
normalization is a pair of shifters, which implement a subset of
all the shifts implemented by a complete barrel shifter. Conse-
quently, the leading-zero encoders need to encode very few bits
to determine the appropriate shift.

Find authenticated court documents without watermarks at docketalarm.com.


https://www.docketalarm.com/

D
A

Encoder [ [
1 | Normal-
% [ ization
Shifler
XY-CHIP
¥
Shifter

Figure 4: Implementation of the CORDIC Iterations in llardware

3.1 Choice of a Minimal Set of Shifts

The following is an example of a CORDIC unit with a data-width
w = 16 bits and n = 16 iterations. The higher order three bits
correspond to one sign bit and two overflow bits. Ience, for
this example, the parameters MAX X and MAX_Y are set to the
values of £ and y corresponding to the bit pattern “0010 0000
0000 0000". The algorithm in figure 3 chooses the largest of
{0,1,3} shifts, such that the resulting bit string after, has three
leading zeros (or leading ones il negative).

» To permit uninodified iterations in a modified CORDIC unit
a shift of zero is necessary = shift[0] = 0.
An overall normalization shift of 1 can be achieved only by
choosing p — 1. Thus a shift of 1 is nocessary in any imple
mentation = shiff(1] = 1.
Multiple iterations with p = 1 can achieve a shift up to a
maximum of 2p? = 2. A shift of 3, however, cannot be
iwpleweuted as tuee wodified CORDIC iterativns willl p =
1, since this will result in a loss of significant bits. This
necessitates the inclusion of the shift p = 3 to the set =
shiftf2] = 3.
The shift p = 3 can achieve any shift up to a maximumn
2p* = 18. Since the maximum shift required is 13, the nor-
malization shifter does not have to implement any shift other
than 0, L and 3. Any shift, q, which is not a multiple of 3
is performed as shifts of 3 for |g/3] iterations, followed by
qmod 3 iterations with p= 1.
Figure 4 shows a hardware implementation of the CORDIC unit
that includes the above normalization scheme. The number of
bits in error using such a scheme is buunded even fur suall initial

values, as shown in Figure 2.

3.2 Cost of Partial Normalization Implementation

For o CORDIC implementation with the data width of the » and
y datapaths w bits, a shifter with a maximum shift /w/2 is
required. The shifts at each iteration are obtained from leading-
zero encoders that encode the \/w/2 most significant bits of the
z and y variables. The costs involved in these operations are:

Shifter: The area complexity [8] of the shifter grows as
O(w % Maximum Shift required) = O(w x yw) = O{w!S).

OCKET

LARM

247

Control Logic: The size of the control logic grows as

O((Maximum Shift required)?) = O(v/@°) = Ofw).

Time Penalty: Since the shifting is performed as part of the
CORDIC iterations, the only time penalty incurred is a de-
crease in the clock rate due to the extra propagation de-
lay caused by the presence of an additional shifter in the
CORDIC data path.

4 Conclusions

An analysis of CORDIC Y-reduction, assuming a fixed-point rep-
resentation of numbers, shows that unnormalized input values
can result in large numerical errors in the computed inverse tan-
gent. The cemplexity of a floating-point implementation of the
entire system can be avoided by locally normalizing the values
before using CORDIC. We have implemented the normalization
using a method that integrates it with the CORDIC iterations
resulting in an elegant solution to the problem. This method .
requires only O(n!5) extra hardware and does not affect the la-
tency. We believe this scheme can be extended to the other modes
of CORDIC.

Acknowledgements

This work was supported in part by the National Science Foun-
dation under Research Initiation Award MIP-8909498.

Heferences
(1] I. R. Cavallaro and F. T. Luk. CORDIC Arithmetic for an
SVD Processor. Journal of Parallel and Distributed Com-
puting, 5(3):271-290, June 1988.

J. R. Cavallaro and F. T. Luk. Floating-Point CORDIC
for Matrix Computations. [EEE Int. Conf. on Computer
Design, pages 40-42, October 1988.

[3] M. D. Ercegovac and T. Lang. Redundant and On-
Line CORDIC: Application to Matrix Triangularization and
SVD. IEEFE Trans. Computers, 39(6):725-740, June 1990.

X. Hu, R. G. Harber, and 5. C. Bass., Expanding the Range
of the CORDIC Algorithm. [EEE Trans. on Computers,
pages 13-21, Jan. 1991.

Y. H. IIu. The Quantization Dffects of the CORDIC Algo-
rithm. Intl. Conf. on Accoustics, Speech and Signal Process-
ing, pages 1822-1825, April, 198S.

2

[4

(8]

K. Kota. Architectural, Numerical and Implementation Is-
sues in the VLSI Design of an Integrated CORDIC SVD

Processor. Master's thesis, Rice University, Department of
Electrical and Computer Engineering, May 1991.

[7] T. Y. Sung, Y. II. Iy, and I. J. Yu. Doubly Pipelined
CORDIC Array for Digital Signal Processing Algorithms.
IEEE Int. Conf. on Acoustics, Speech, and Signal Process-
ing, 2:1169-1172, April 1986.

(8] J. D. Ullman. Computational Aspects of VLSI. Computer
Science Press, Rockville, MD, 1984.

[9] 1. 5. Walther. A Unified Algorithm for Elementary Func-
tions. AFI[PS Spring Joint Computer Conf., pages 379-353,
1971.

[10] B. Yangand J. F. Béhme. Reducing the Computations of the
SVD Array Given by Brent and Luk. SPIE Advanced Algo-
rithms and Architectures for Signal Processing, 1152:92-102,
August, 1989.

[6

Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

