
Page 1 of 106 SAMSUNG EXHIBIT 1042

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computerprinter.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignmentcan adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed,a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upperleft-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure andis included in
reduced form at the back of the book.

Photographs includedin the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographsorillustrations
appearingin this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road. Ann Arbor, MI 48106-1346 USA
313/761-4700 800/521-0600

Page 1 of 106 SAMSUNG EXHIBIT 1042

Page 2 of 106Page 2 of 106

Page 3 of 106

Order Number 1845319

Architectural, numerical and implementation issues in the VLSI
design of an integrated CORDIC-SVD processor

Kota, Kishore, M.S.

Rice University, 1991

U-M-I
300 N, Zeeb Rd.
Ann Arbor, MI 48106

Page 3 of 106

Page 4 of 106Page 4 of 106

Page 5 of 106

RICE UNIVERSITY

Architectural, Numerical and Implementation
Issues in the VLSI Design of an Integrated

CORDIC-SVD Processor

by

Kishore Kota

A THESIS SUBMITTED

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE

Master of Science

APPROVED, THESIS COMMITTEE:

aJwatt R. Cavallaro, Chairman
Assistant Professor

Electrical and Computer Engineering

K Bett
Drj John K. Bennett,
Assistant Professor

Electrical and Computer Engineering

Associate Professor

Electrical and Computer Engineering

Houston, Texas

April, 1991

Page 5 of 106

Page 6 of 106

Architectural, Numerical and Implementation
Issues in the VLSI Design of an Integrated

CORDIC-SVD Processor

Kishore Kota

Abstract

This thesis describes the design of a systolic array for computing the Singular Value

Decomposition (SVD) based on the Brent, Luk, Van Loan array. The use of COor-

dinate Rotation Dlgital Computer (CORDIC) arithmetic results in an efficient VLSI

implementation of the processor that forms the basic unit of the array. A six-chip

custom VLSI chip set for the processor was initially designed, fabricated in a 2.0

CMOSn-well process, and tested. The CORDIC Array Process Element (CAPE), a

single chip implementation, incorporates several enhancements based on a detailed

error analysis of fixed-point CORDIC. The analysis indicates a need to normalizein-

put values for inverse tangent computations. This scheme was implemented using a

novel method that has O(n'*) hardware complexity. Use of previous techniques to

implement such a normalization would require O(n?) hardware. Enhanced architec-

tures, which reduce idle time in the array either through pipelining or by improving

on a broadcast technique, are also presented.

Page 6 of 106

Page 7 of 106

Acknowledgments

Special thanks are due to Dr. Joe Cavallaro for being the motivation and a constant

driving force behind this work. I am especially thankful to him for being a good

friend and just being there when I needed him most. I would also like to thank Dr.

John Bennett and Dr. Peter Varman for serving on the committee and having the

patience to deal with me.

Myfriend and constant companion “yo” Hemkumar deserves special praise for

all those enlightening discussions and valuable comments, which on more than one

occasion prevented me from taking the wrong decisions. Thanks are due to my

roommate, Raghu, for his constant, but often futile efforts at waking me up. But for

him I would have slept through the entire semester without a care. Thanks to the

Common Pool for allowing me to work through even the most difficult times without

compromising on the food. Special thanks to my office-mates Jay Greenwood and

Jim Carson. The office would not be half as lively without them.

Finally I am eternally indebted to my mother and father. Even when they are

halfway across the world, nothing is possible without their blessings.

- Page 7 of 106

Page 8 of 106

To my Grandfather,

For his one statement that has been the driving force through the years:

“|. hope for the best, but be prepared for the worst...”

Page 8 of 106

Page 9 of 106

Contents

Abstract ii

Acknowledgments | iti

List of Tables viii

List of Illustrations ix

Introduction 1

1.1 Systolic ArraysforSVD 2... eeee ee 2

1.2 Contributions of the thesis... 2... ee ee ee eee 3

1.3 Overview of the thesis .. 0... 0... eee ee ee ee 3

SVD Array Architecture 5

2.1 Introduction...ee ee ee ee ee 5

2.2 TheSVD-Jacobi Method 0.0. ee eee eee 6

2.3 Direct 2-Angle Method ... 1... 2. eee ee ee es 8

2.4 Architecturefor2x2SVD......... ee eee ee ee ee ee es 12

CORDIC Techniques 14

3.1 Introduction... .. eeeees 14

3.2 CORDIC Algorithms .. 0... ee ee ee ee ees 15

3.3 CORDIC Operation in the Circular Mode .. 1.2... 20+ eevee 16

3.3.1 CORDIC Z-Reduction .. 0... 0... 2 ee eee ee ee 19

~ Page 9 of 106

Page 10 of 106

3.3.2

3.3.3 Modified Y-Reduction for the SVD processor.

3.4 Scale Factor Correction... . 0. eeee ee ee

3.5 Error Analysis of CORDIC Iterations22000

3.6 Error Analysis of CORDIC Z-Reduction0. 0005

3.6.1 Error Introduced by X and Y Iterations

3.6.2 Error Introduced by Z Iterations2.2048.%

3.6.3 Effects of perturbations in@ 0. ee ee

3.7 Error Analysis of CORDIC Y-Reduction-.0 0005

3.7.1 Error Introduced by X and Y Iterations

3.7.2 Error Introduced by Z Iterations 0.00. eens

3.7.3 Perturbation in the Inverse Tangent200-

3.8 Normalization for CORDIC Y-Reduction...............,

3.8.1 Single Cycle Normalization...00005

3.8.2 Partial Normalization...---2--4008,

3.8.3 Choice of a Minimal Set of Shifts24.

3.8.4 Cost of Partial Normalization Implementation

3.9 Summary 2... . ec ee te ee eee

CORDIC Y-Reduction 2.2.0... 0. eee ee eee

4 The CORDIC-SVD Processor Architecture

4.1 Introduction. 2...eeee ee

4.2 Architecture of the Prototype0. 00000 e eae

4.2.1 Designofthe XY-Chip....... ce ue ue renee ewes

4.2.2 Design of the Z-Chip 1... eee eee ee et ee

4.2.3 Design of the Intra-Chip 2... 00 eee eee ee

4.2.4 Design of the Inter-Chip0 0000 eee eeee

Page 10 of 106

vi

20

22

23

23

25

26

28

29

30

31

32

32

33

35

36

39

43

43

46

46

46

48

50

50

54

Page 11 of 106

4.3 The CORDIC Array Processor Element..............+.-.

4.4 Issues in Loading the Array . 1... eee ee ee ee

4.4.1 Data Loading in CAPE............ 0.000202 eee

5 Architectures to Improve Processor Utilization
5.1 Introduction. 2...eeeee

5.2 Architecture for Systolic Starting 2... ee eee eee

5.3 Architecturefor fast SVD .. 1... ee ee ee ee te et ee

5.4 Architecture for Collection of U and V Matrices00 00s

6 VLSI Implementation Issues

6.1 Design Methodology 0... eee ee ee ee es

6.2 Reducing Skews in Control Signals 2.1... .. eee eee eens

6.3 Design ofan Adder... 1... eeee es

6.4 Testing... 1... ee ee ee ee ee ees

7 Conclusions

7.1 Summary ..weee ee ee

7.2 Future Work... 2...eete ee ees

Bibliography

: Page 11 of 106

Vil

55

60

61

64

64

65

70

73

75

75

18

79

80

85

85

87

88

Page 12 of 106

Tables

2.1 Parallel Ordering ©... ceee ee ee es 8

3.1 CORDIC Functionality in the Circular Mode.004. 19

3.2 Total Shifts Using a Novel Normalization Scheme 41

3.3 Summary and Comparison of Error Analysis005 44

6.1 A list of some of the problemsin the 6-chip prototype......... 81

6.2 Breakdown of clock cycles for the various sub-tasks in the 6-chip

prototype 2.ee 83

6.3 Breakdown of clock cycles for the various sub-tasks in CAPE 83

Vili

. Page 12 of 106

Page 13 of 106

2.1

2.2

3.1

3.2

3.3

3.4

3.5

3.6

3.7

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Page 13 of 106

Illustrations

The Brent-Luk-Van Loan SVD Array... .. 0.2.0... 00000048

Snapshots of Brent-Luk-Van Loan SVD Array0.04

Rotation of a vector 6...ee

Implementation of the CORDIC Iterations in Hardware........

Rotation of a vector in Y-Reduction. .. 6... eevee eee es

Error in Y-Reduction Without Normalization00..

Algorithm to Invoke Modified CORDIC Iterations

Implementation of the CORDICIterations in Hardware........

Error in Y-Reduction With Partial Normalization ...,......0..

Block Diagram of the 6-chip Prototype CORDIC-SVD Processor . . .

Die Photograph of the XY-Chip .. 2... 6. ee ee ee ee es

Die Photograph of the Z-Chip .. 1... ce ee ee eee ee ee

Block Diagram of the Intra-Chip .. 1... 0. ee eee ee eens

Die Photograph of the Intra-Chip .. 1... 2... - eee eee eee

Block Diagram of Inter-Chip... 0... ee ee eee ee eee

Die Photograph of the Inter-Chip 0... 00 e uae

Internal Architectureof CAPE... 1.1... eee eee ees

ix

9

ll

18

21

34

40

4]

42

47

49

51

52

53

55

56

58

Page 14 of 106

4.9

5.1

5.2

5.3

5.4

5.5

6.1

6.2

6.3

Page 14 of 106

A Combined DSP-VLSI Array for Robotics... .. ‘beeen wanes 62

Interconnection of Control Signals for Systolic Starting 66

Interconnection of Data Lines for Systolic Starting. 67

Snapshots of a Systolic Starting scheme... 2.0000 ee 69

Hardware Required for Fast SVD .. 2... 2... ee ee ee eee 71

Snapshots of an Array Computing U andV-44. 73

Plot of the completed Single Chip Implementation. 77

Clock Generation with Large Skew 0. eee uuu eee 78

Clock Generation with Small Skew0. 000 eee 78

Page 15 of 106

Chapter 1

Introduction

Rapid advances made in VLSI and WSI technologies have led the way to an entirely

different approach to computerdesignforreal-time applications, using special-purpose

architectures with custom chips. By migrating some of the highly compute-intensive

tasks to special-purpose hardware, performance which is typically in the realm of

supercomputers, can be obtained at only a fraction of the cost. High-level Computer-

Aided Design (CAD) tools for VLSI silicon compilation, allow fast prototyping of

custom processors by reducing the tedium of VLSI design. Special-purpose architec-

tures are not burdened by the problemsassociated with general computers and can

map the algorithmic needs of a problem to hardware. Extensive parallelism, pipelin-

ing and use of special arithmetic techniques tailored for the specific application lead

to designs very different from conventional computers.

Systolic and wavefront arrays form a class of special-purpose architectures that

hold considerable promise for real-time computations. Systolic arrays are character-

ized by “multiple use of each data item, extensive concurrency, a few types of simple

cells and a simple and regular data and controlflow between neighbors” [21]. Systolic

arrays typically consist of only a few types of simple processors, allowing easy proto-

typing. The near-neighbor communication associated with systolic arrays results in

short interconnections that allow higher operating speeds even in large arrays. Thus,

systolic arrays offer the potential for scaling to very large arrays. Numerical problems

. Page 15 of 106

Page 16 of 106

involving large matrices benefit from this property of systolic arrays.

Manyreal-time signal processing, image processing and robotics applicationsre-

quire fast computations involving large matrices. The high throughput required in

these applications can in general, be obtained only through special-purpose archi-

tectures. A computationally complex numerical problem, which has evoked a lot of

interest is the Singular Value Decomposition (SVD) [15]. It is generally acknowl-

edged that the SVD is the only generally reliable method for determining the rank

of a matrix numerically. Solutions to the complex problems encountered in real-time

processing, which use the SVD,exhibit a high degree of numerical stability. SVD tech-

niques handle rank deficiency andill-conditioning of matrices elegantly, obviating the

need for special handling of these cases. The SVD is a very useful tool, for example,

in analyzing data matrices from sensor arrays for adaptive beamforming [30], and low

rank approximations to matrices in image enhancement [2]. The wide variety of ap-

plications for the SVD coupled with its computational complexity justify dedicating

hardware to this computation.

1.1 Systolic Arrays for SVD

The SVD problem has evoked a lot of attention in the past decade. Numerousarchi-

tectures and algorithms were proposed for computing the SVD in an efficient manner.

The Hestenes’ method using Jacobi transformations has been a popular choice among

researchers, due to the concurrencyit allows in the computation of the SVD. Numerous

algorithms and architectures for the SVD were proposed by Luk [24, 26, 25, 23]. Brent,

Luk and Van Loan [5] presented an expandable square array of simple processors to

compute the SVD. A processor architecture for the Brent, Luk and Van Loan array,

using CORDIC techniques, was presented by Cavallaro [8].

Page 16 of 106

Page 17 of 106

1.2 Contributions of the thesis

A detailed study of the numerical accuracy of fixed-point CORDIC modules is provided

in this thesis. This analysis indicates a need to normalize the values for CORDIC Y-

reduction in order to achieve meaningful results. A novel normalization scheme for

fixed-point CORDIC Y-reduction that reduces the hardware complexity is developed.

This thesis is chiefly concerned with the issues relating to the VLSI implemen-

tation of the CORDIC-SVD array proposed by Cavallaro. Many of the lower-level

architectural issues that are not relevant at the higher levels assume a new signifi-

cance when trying to implement the array. Elegant solutions have been foundforall

the problems encountered in the design process.

An integrated VLSI chip to implement the 2 x 2 SVD processor element, which

serves as the basic unit of the SVD array, has been designed. A new internal archi-

tecture has been developed within the constraints imposed by VLSI.

Numerous array architectures that improve on the previous architectures were

developed as part of this research. These schemes can used in future implementations

as improvements to the current design.

1.3. Overview of the thesis

Chapter 2 presents the SVD algorithm and the array proposed by Brent, Luk and Van

Loan [5]. A discussion of the CORDIC-SVD processor is also provided. Chapter 3

reviews the CORDIC arithmetic technique and then presents an improved analysis

of the numerical accuracy of fixed-point CORDIC. Chapter 4 presents the improve-

ments made to the architecture of the single chip VLSI implementation of the SVD

processor over the various sub-units that constitute the prototype SVD processor.

Chapter 5 presents improvements to the array architecture and the impact of these

Page 17 of 106

Page 18 of 106

on the processor design. These improvements include schemes for systolic starting

and architectures that reduce idle time in the array, to achieve higher throughput.

~Page 18 of 106

Page 19 of 106

Chapter 2

SVD Array Architecture

2.1 Introduction

This chapter introduces the principles that govern the efficient computation of the

Singular Value Decomposition (SVD)in a parallel array. A major portion of the work

in this thesis is based on the Brent, Luk and Van Loan [5] array for computing the

SVD. Later sections of this chapter provideinsight into the operation ofthis array.

The SVD has proved to be an important matrix decomposition with theoretical

and practical significance. The canonical representation of a matrix provided by the

SVD is very useful in determining its properties. The SVD [15] of a p x p matrix A is

defined as

A=ULV?, (2.1)

where,

U and V are orthogonal matrices of dimension p x p, and

& = diag(o1,02,-++, ap) is a diagonal matrix of singular values.

The columnsof U andVare called the left and the right singular vectors respectively.

The SVD is a compute intensive operation requiring O(p*) time on a sequential

computer, For example, the SVD of an 8 x 8 matrix on a SUN 3/60 requires about

1 second of CPU time using LINPACK [12], a library of linear algebra routines. A

typical real-time application, the inverse kinematics engine of a robot, requires the

- Page 19 of 106

Page 20 of 106

computation of the SVD of an 8 x 8 matrix every 400ysec. This is precisely the class

of applications where the use of dedicated arrays is attractive. With a square array

of processors it is possible to reduce the time complexity for the SVD to O(plog p).

2.2 The SVD-Jacobi Method

The Jacobi method to compute the SVD is a popular algorithm for parallel imple-

mentation, due to the concurrency it introduces to the problem. Thealgorithm is

based on the use of orthogonal transformations, called Jacobi Rotations * to selec-

tively reduce a given matrix element to zero. A Jacobi rotation by an angle @ in the

ij plane, is a p x p matrix, J(2, 7,9), where,

Jaa = 1 V(a # 23),

sin6 , (2.2)

jit = —sind, jj; = cosé,

tI
ji = cos, fiz

and all other j,, = 0.

Intuitively, a Jacobi rotation is an identity matrix with four of its elements replaced

by a vector rotation matrix as shown below:

J(i,j,0) = : 2.3(155,9) 0 ~— sin @ cos @ 0] 7 (2.3)

0 0 0 1

i J

The parameters i and jselect the matrix element that is to be reduced to zero,

while the parameter @ is computed using a few matrix elements. Since very few

lalso called Givens Rotations or simply plane rotations

- Page 20 of 106

Page 21 of 106

matrix elements are required to compute the entire transformation, local computation

is possible by storing all the required data in the registers of a single processor. In

addition, pre-multiplication with a Jacobi rotation matrix, called left-sided rotation,

modifies only the i** and j** rows, while a right-sided rotation affects only the it*

and 7** columns. This introduces concurrency, since computations which use the

unmodified data elements can be performed in parallel.

The SVDalgorithm consists of a sequence of orthogonal ? Jacobi transformations,

chosen to diagonalize the given matrix. The algorithm to compute the SVDis iterative

and can be written as

Ao = A, (2.4)

Angry = UPAV, = Juli, 7,01)? Ande(i, J, Or)» (2.5)

Appropriate choice of the 2-sided rotations can force A; to converge to the diagonal

matrix of singular values £. The matrix of left singular vectors is obtained as a

product of the left rotations U;,, while the matrix of right singular vectors is obtained

as a productof the right-sided rotations. At each iteration k,a left rotation of 4 and

a right rotation of 9, in the plane 7j are chosen to reduce the twooff-diagonal elements

a;; and a;; of A, to zero. A sweep consists of n(n — 1)/2 iterations that reduce every

pair of off-diagonal elements to zero. Several sweeps are required to actually reduce

the initial matrix to a diagonal matrix. The sequence, in which the off-diagonal pairs

are annihilated within each sweep is chosen apriori according to some fixed ordering.

Forsythe-Henrici [14] proved that the algorithm converges for the cyclic-by-rows and

cyclic-by-columns ordering. However, these orderings do not allow decoupling of

successive iterations, thereby restricting the parallelism achievable. Brent and Luk [4]

introduced the parallel ordering that does not suffer from this drawback.

24 matrix is orthogonal when its transpose equals the inverse

Page 21 of 106

Page 22 of 106

(1,2) (3,4) (5,6) (7,8)
(1,4) (2,6) (3,8) (5,7)
(1,6) (4,8) (2,7) (3,5)
(1,8) (6,7) (4,5) (2,3)
(1,7) (8,5) (6,3) (4,2)
(1,5) (7,3) (8,2) (6,4)
(1,3) (5,2) (7,4) (8,6)

Table 2.1: Parallel Ordering data exchange with 8 elements. This is the
ordering used when eight chess players have to play a round-robin tour-
nament, each player playing one gamea day.

An iteration that annihilates a1, and az does not affect any of the terms required

for annihilating a33 and a4q, allowing the two sets of rotation angles to be computed

concurrently. Thus parallel ordering allows decoupling of the computation of the

Jacobi transformationsofall the iterations in a single row of the ordering (Table 2.1).

Brent, Luk and Van Loan [5] proposed a square array of processors based on this

scheme. The ordering has an additional property that it requires only near-neighbor

communication in an array and is hence amenable to systolic implementation.

2.3 Direct 2-Angle Method

The Brent, Luk and Van Loan systolic array [5] consists of a p/2 x p/2 array of

processors (Figure 2.1) to compute the SVD of a px p matrix. The matrix dimension,

p, is assumed to be even. Each processor stores a 2 x 2 submatrix and has the ability

to compute the SVD of a 2 x 2 matrix. The special structure of the Jacobi rotation

matrix allows computing the angles for a p x p two-sided rotation in termsof a basic

2 x 2 rotation. The application of the transformation on a p x p matrix can also be

expressed as a set of 2 x 2 transformations. Thus the 2 x 2 SVD formsthe basic step

for the p x p SVD.

Page 22 of 106

Page 23 of 106

Figure 2.1: The Brent-Luk-Van Loan SVD Array for Computing the SVD
of an 8 x 8 Matrix

Page 23 of 106

Page 24 of 106

10

A 2x2 SVD can be described as

a b vi 0od RG) = | (2.6)0

where 9 and 6, are the left and right rotation angles, respectively. The rotation

R(O1)"
matrix is

cos@ sin#@

; (2.7)R(0) =
-—sin@ cos

e(]
The angles 6; and 6, necessary to diagonalize the matrix M can be shown to be

and the input matrix is

the inverse tangents of the data elements of W:

 4, + A = tan7! [=] ’d—a

6,—0; = tan =| (2.8)
Theleft and right rotation angles in equation 2.5 can be computed using the

ay ai;

equations 2.8 on a 2 x 2 matrix formed by | | It may be noted that the p/2
aj, 3;

diagonal processors store precisely the matrices required for p/2 successive iterations,

correspondingto a single row of parallel ordering in Table 2.1. All the transformations

that annihilate the off-diagonal elements in the diagonal processors are independent

and hence can be computed in parallel. An update of the entire array requires theleft

angles to be propagated from a diagonal processor to all the processors on the same

row, and the right angle to be propagated to all the processors on the same column.

This propagation is systolic. The update of the matrix is followed by a permutation

of the rows and the columnsof the matrix according to the parallel ordering. An 8-

connected meshis required to perform this data exchange. The permutation results in

the next set of sub-matrices, required to compute the new set of angles, to be formed

Page 24 of 106

Page 25 of 106

ll

Figure 2.2: Snapshots of the Brent-Luk-Van Loan SVD Array Showing
Diagonal Wavesof Activity

at the diagonal processors. Since the diagonal processors require data only from their

diagonal neighbors, new computation can start as soon as these neighbors complete

their portion of the computation. Thus, the updates of the matrix, corresponding

to separate iterations in equation 2.5 are pipelined. This leads to diagonal waves of

activity originating at the main diagonal and propagating outwards. This is shown

in Figure 2.2. The various steps in the operation of this array are listed below:

e The p/2 diagonal processors compute the required transformation angles using

the 2 x 2 sub-matrix stored in them.

e Each diagonal processor propagates the left angle, which it computed,to its east

and west neighbor. Similarly the right rotation angles are propagated north and

south,

Page 25 of 106

Page 26 of 106

12

e The non-diagonal processors receive the left and right angles and apply the 2-

sided transformation to their sub-matrices. After the computation, they forward

the left and right rotation angles to the processor next in the row or column.

e Processor P22 in Figure 2.1 receivesits next set of data elements from processors

P11, P33, P13 and P31. Hence, it has to wait till processors P31 and P13 finish

their computations. Similarly, all the other diagonal processors need to wait

for their diagonal neighbors to complete the transformations before exchanging

data. Exchangeof data in different parts of the array is staggered in time.

e After the data exchange, a new set of angles is computed by the diagonal pro-

cessors and the same sequence of operations is repeated.

Each diagonal processor requires (p-1) iterations to complete a sweep. The number

of sweeps required for convergence is O(log p). For most matrices up to a size of

100 x 100, the algorithm has been observed to converge within 10 sweeps. Since

each iteration for a diagonal processor is completed in constant time, the total SVD

requires O(plog p).

2.4 Architecture for 2x 2SVD

The array proposed by Brent, Luk and Van Loan was converted into an architecture

suitable for VLSI implementation by Cavallaro and Luk [8]. By using CORDICarith-

metic, a simple architecture suitable for systolic implementation was developed. The

basic functionality required in each processoris:

e Ability to compute inverse tangents is required for the computation of the 2-

sided transformations from matrix data,

Page 26 of 106

Page 27 of 106

13

e Ability to perform 2-sided rotations of a 2 x 2 matrix that is required when

performing the transformation,

e Control to perform the parallel ordering data exchange.

CORDIC allowsefficient implementation of the required arithmetic operations in

hardware. Chapter 3 discusses the CORDIC algorithm in depth. The architecture of

the individual processor element is discussed in Chapter 4.

Page 28 of 106

Chapter 3

CORDIC Techniques

3.1 Introduction

In a special-purpose VLSI processor it is not necessary to include a general purpose

Arithmetic and Logic Unit (ALU). An efficient design with optimal area and time

complexity can be obtained by using special arithmetic techniques that map the

desired computations to simplified hardware. The CORDIC technique allowsefficient

implementation of functions, like vector rotations and inverse tangents, in hardware.

These constitute the principal computations in the SVD algorithm. Additional ALU

operations (addition, subtraction and divide-by-2) required for the SVD are more

basic operations and can reuse the adders andshifters that constitute the CORDIC

modules.

The Coordinate Rotation Digital Computer (CORDIC) technique wasinitially de-

veloped by Volder [35] as an algorithm to solve the trignometric relationships that

arise in navigation problems. Involving only a fixed sequence of additions or subtrac-

tions, and binary shifts, this scheme was used to quickly and systematically approx-

imate the value of a trignometric function or its inverse. This algorithm was later

unified for several elementary functions by Walther [36]. The algorithm has been used

extensively in a numberofcalculators [16] to perform multiplications, divisions, to

calculate square roots, to evaluate sine, cosine, tangent, arctangent, sinh, cosh, tanh,

arctanh, In and exp functions, and to convert between binary and mixed radix num-

14

Page 28 of 106

Page 29 of 106

15

ber systems [10].

3.2 CORDIC Algorithms

A variety of functions are computed in CORDIC by approximating a given angle

in terms of a sequence of fixed angles. The algorithm for such an approximation

is iterative and always converges in a fixed numberofiterations. The basic result

of CORDIC concerns the convergence of the algorithm and is discussed in depth by

Walther [36]. The convergence theorem states the conditions that affect convergence

and essentially gives an algorithm for such an approximation. The theorem is restated

here. Walther [36] gives the proof for this theorem.

Theorem 3.1 (Convergence of CORDIC) Suppose

Yo 2 ¥1 2 $2 2°+-2 Yn> 0,

is a finite sequence of real numbers such that

n=1

gis DY) opt n1 for0Sign—l,
jeitl

and supposer is a real number such that
n-1

Irs oe;
j=0

If so = 0, and si41 = 3; + d:y;, for 0 <i <n —1, where

1, ifr>s3;

-l, ifr<4s;,

then,
n-1

lr — se] S$ D0 ps +on-1, forOSksn-l,
j=k

and so in particular |r — sn] < ppt.

~ Page 29 of 106

Page 30 of 106

16

If js represent angles, the theorem provides a simple algorithm for approximating

any angler, in termsof a set of fixed angles y;, with a small error (~,_1. The versatility

of the CORDIC algorithm allows its use in several different modes: linear, circular

and hyperbolic. The principal mode of interest in the CORDIC-SVD processoris the

circular mode of CORDIC, duetoits ability to compute vector rotations and inverse

tangents efficiently.

3.3>CORDIC Operation in the Circular Mode

The anticlockwise rotation of a vector [Z;, 9; 7 through an angle a; (Figure 3.1)

Eigy cosa; sina; Z;
= . (3.1)

Fiat —sina; cosa; OF
The same relation can be rewritten as

Ti41 SEC A; 1 tana;||z;
= . (3.2)

Fi-1 SEC Q; — tan a; 1 Vi

All computations in the circular mode of CORDIC involve a fized number ofiter-

is given by

ations, which are similar to equation 3.2, but for a scaling,

x; + 6;y; tan a; (3.3)Tit1

Vir y; — 6:2; tana;, (3.4)

where 2; and y; are states of variables x and y at the start of the 7 iteration,

0<2z<n,and 6; € {-1,+1}. The values z, and y, are the values obtained at the

end of the CORDICiterations and differ from the desired values Z, and g, due to a

scaling as shown in Figure 3.1. Along with the z and y iterations, iterations of the

form

Zinn = 2; + 6:0; (3.5)

Page 30 of 106

Page 31 of 106

17

(Xy, Yn)
Figure 3.1: Rotation of a vector

are performed on a variable z to store different states of an angle. The angles a; are

chosen to be tan~!(2-'), which reduces equation 3.3 and equation 3.4 to

Ti+. = ay + 6:y;27' (3.6)

Yinr = Ye — 52,274 (3.7)

These iterations, called the z and the y iterations, can be implemented as simple

additions or subtractions, and shifts. The angles a; are stored in a ROM,allowing the

z iterations, given by equation 3.5, to be implemented as additions or subtractions.

The actual hardware required to implement these iterations in hardware is shown in

Figure 3.2.

Rotation of a vector through any angle @ is achieved by decomposing the angle

as a sum of ajs, using the CORDIC convergence theorem, and rotating the initial

vector through this sequence of angles. Different functions are implemented by a

different choice of 6; at each iteration. If 6; is chosen to force theinitial zg to 0, it

~Page 31 of 106

Page 32 of 106

Control
Unit
PLA

Figure 3.2: Implementation of the CORDIC Iterations in Hardware

: Page 32 of 106

18

Page 33 of 106

19

. Initial Values . . Functions|Operation|for Variables Final values for variables
= Ip = (x9 cos 0 + yocos9)/Ky Vector

Z-Reduction Yn = (—aosin@ + yocos 6)/K,, Rotations,
sine, cosine

(
Zn = O

Inverse

) Tangents
= 03 + y3/Kn
= 0

= = tan7? (#To

Y-Reduction
Table 3.1: CORDIC Functionality in the Circular Mode

is termed Rotation or Z-reduction. This is used to perform efficient vector rotations

given an initial angle. A choice of 6;s to reduce the initial yo to 0 is called Vectoring

or Y-reduction. Iterations of this form allow the computation of the inverse tangent

function. Table 3.1 summarizes the various operations performed in the CORDIC

circular mode, as they pertain to the SVD processor.

3.3.1 CORDIC Z-Reduction

Given an initial vector [%0, fo]” = [o, yol” and an angle zo = 0, through which to

rotate, the rotated vector can be obtained by rotating the initial vector through a

sequence offixed angles a; given by a; = tan7!(27'), This results in the following

iterative equations

Dign = 2 + byyi27'

Yarn yi ~ 62527

Zi41, = zi — d;0;, (3.8)

Page 33 of 106

Page 34 of 106

20

where,

a; = tan7!(27')

1 if2z;>0

-1 if 2; <0.

Each iteration for z; and y; corresponds to either a clockwise or an anticlockwise

rotation of [z;,y;]’ through the angle a;, and a scaling with sec(a;), The CORDIC

iterations for z; correspond to a decomposition of the initial angle in terms of a set

of fixed angles, a;, as given by Theorem 3.1.

After n iterations, the vector [tn, yn)’ is a clockwise rotation of [zo, yo}” through

an angle 4 and a scaling by 1/,. Figure 3.1 illustrates x, and y, scaled with respect

to the desired values , and j,. This can be expressed as

Ln cos sin8|[2o/Ky| ~ |, mT in 89)
where [X,, the constant scale factor, is given by equation 3.10,

n=1

K, = [[cosa. (3.10)
i=0

This scale factor is independentof the actual 6;s chosen at each step, and converges

to = 0.607 for large n. A post-processing step is required to eliminate thescale factor.

An algorithm for scale-factor correction is described in Section 3.4. Z-reduction can

be used to computethe cosine andsineofthe initial angle 8, by choosing special cases

for the initial vector[xo,yo]’-

3.3.2 CORDIC Y-Reduction

CORDICis used in the Y-reduction mode for inverse tangent computations. The

decomposition of an angle, according to Theorem 3.1, requires only the knowledge

of the sign of the angle at that iteration and not the actual magnitude. In the

Page 34 of 106

Page 35 of 106

21

Figure 3.3: Rotation of a vector in Y-Reduction

computation of tan-!(yo/zo), the same information is obtained from the y component

of the vector at each iteration. As shown in Figure 3.3, if 6; > 0, y; > 0 and vice

versa. The function tan~'(yg/z9) is computed by rotating theinitial vector through

successively smaller angles a;, the direction of rotation at each step chosen to reduce

the y-component of the vector to zero. The total angle, through which the vector

has been rotated is accumulated in the z-register. The CORDIC convergence theorem

forces the accumulated angle to within tan~'(2-") of tan-'(yo/zo). Using the initial

values [%0, fo]? = (zo, yol” and zp = 0, the following CORDIC iterations can be used

to compute the value of tan7!(yo/zo):

Tien = 2+ 6yi27!

Yer = yi — 62,27

Zi41 = 2 + 6;c%, (3.11)

; Page 35 of 106

Page 36 of 106

22

where,

a; = tan1(2-*),

1 ify; >0
6; = (3.12)

-1 ify<0.

After n iterations, rn = 1/23 +y3/Kn, yn © 0 and z, = tan71(yo/ao). If the

radius 1/73 + yis desired, a scale factor correction step is necessary. Thefinal vector

(@n, Yn) is the initial vector (ro, yo) rotated through tan~!(yo/xo) and scaled.

3.3.3. Modified Y-Reduction for the SVD processor

If 6; is chosen according to equation 3.12, the y-reduction iterations do not converge

for negative values of z;. This restricts the initial vectors to lie in the first and

fourth quadrants. This is a restriction that cannot be ensured at all steps of the

SVD algorithm. Although alternate algorithms utilize the final value of x, [38], in

this SVD processor only the inverse tangent is required. This allows scaling both zo

and yo with a constant, without affecting the computed value. Thus a simple pre-

processing step [8], which negates both zo and yp,if xo is negative, can be used to

map the vectors from third and second quadrants to the first and fourth quadrants

respectively. A different method of choosing the 6;s extends the convergence of the

CORDIC module and hence obviates the need for this pre-processing step. This

alternate choice [38] of 6; is given by equation 3.13,

1 if ri > 06 = we (3.13)
-1 if yit; < 0.

This choice of 6; is implemented using a single exclusive-or gate to find the XOR of

the sign-bits of z; and y;. This is considerably simpler than an implementation using

pre-processing.

Page 36 of 106

Page 37 of 106

23

3.4 Scale Factor Correction

There have been numerous approachesto scale factor correction in the literature (36,

16, 1, 11]. Most approaches require special iterations of a form similar, but not

identical, to the CORDIC iterations. It is important to reduce the numberof these

iterations to the minimum,since scale factor correction may be regarded as overhead.

Mostscale factor correction algorithms approximate the value of I, as

Td ~ 2’),
jes

whereJis a set of values obtained empirically. The cardinality of the set J is typically

at least n/4 and in some cases as large as n. An alternate algorithm (equation 3.14),

which is more regular and hence usefulfor different values of n is applicable after two

complete CORDICrotations. By the end of two CORDIC rotations, the variables z,

and yn are scaled by K?. The scheme[8] to eliminate the factor of K? requires only

[n/4] scale factor correction iterations after two CORDIC rotations of n iterations

each and, hence, is cheaper than the otherscale factor correction algorithms,

2K? = TI(1 —2°-¥), (3.14)
ged

where J = {1,3,5,-+-,2[n/4] —1}. The scale factor iterations are given by

Bigr = 2;— 2,27

Yer = w—y2?, (3.15)

where, j = 2,6,10---,4[n/4] —2. At the end of these iterations, the factor of 2 in

equation 3.14 is eliminated by a simple right shift.

3.5 Error Analysis of CORDIC Iterations

Any numerical schemehasto be resilient to truncation errors at every stage of com-

putation in order to justify its implementation in a computer. Error analysis is the

Page 37 of 106

Page 38 of 106

24

acid test to determine whether a numerical algorithm is suitable for implementation.

Manyalgorithms that are mathematically accurate, fail in the presence of truncation

errors. While finite precision presents insurmountable problems to somealgorithms,

it results in only a boundederror in some others. A detailed study of these errors is

necessary to interpret the results and guarantee a certain degree of accuracy.

Although CORDIChas been used previously, muchof the analysis of its numerical

accuracy has been ad hoc. Walther [36] claimed that a precision of n bits can be

achieved if the internal representation used is n + log, n bits. This analysis neglects

any interaction between the various iterations and considers only the effect of the finite

precision of the x and y data paths. Walther studied CORDICfor a floating-point

implementation and pointed out that it is necessary to use a normalized representation

to achieve this precision. Johnsson [18] attempted to obtain a closer bound on the

error caused by z and y iterations, while still neglecting the interaction between the

various iterations. This analysis showed that the internal representation of L bits

guarantees an accuracy of x bits, if,

L>n+log,(2n — L —-3). (3.16)

This is again n + log, n bits internal representation to obtain the desired precision

of n bits. Both the analyses neglect the effect of the z iterations on the the x and y

iterations and vice versa.

A more detailed error analysis for fixed-point CORDIC modules is presented by

Duryea [13]. He shows that the error for Z-reduction is bounded as:

lén — fn] < anon $ 2-1) (3.17)
where, n is the numberof iterations and ¢ is the bit precision of 2, y and z. In

addition, he shows that the error in the computed value of inverse tangentis:

[bn — On| <(m+1)2-% 4 Q-@-)) (3.18)

Page 38 of 106

Page 39 of 106

25

This error bound, however, does not account for the effect of unnormalized zo and

yo, which is the main source of error in Y-reduction.

An exact analysis of the various errors involved in CORDIC is presented in Sections

3.6 and 3.7. For a finite number ofiterations, CORDIC computes an approximate

value of the desired functions even with infinite precision. Thus an erroris inherently

associated with the computations. This error is usually very small. Additional errors

occur dueto thefinite-precision representation of the different variables. The analysis

presented in this thesis uses the following notation to represent the different values

of the variables z, y and z:

e 2;, ;, 2; represent the actual values obtained due to CORDICiterations, assum-

ing finite-precision arithmetic in a real-world implementation of CORDIC,

® Z;, Yj, 2; represent the values that will be obtained if the same CORDICit-

erations that were performed in the previous case, are performed on numbers

represented with infinite-precision,

© Z;, 9, Z; represent the values that should be obtained for the desired function

with infinite precision, as mathematically defined.

3.6 Error Analysis of CORDIC Z-Reduction

Let the initial values for z, y and z be 20, yo, 29 = 9. Each CORDICiteration for z

and y is of the form,

Lig = ai + biyi27!

vier = yi — 605274

Finally after n iterations,

In = (xocosa+yosina)/K, (3.19)

Page 39 of 106

Page 40 of 106

26

Yn = (yocosa — zgsina)/K,, (3.20)

where,

In = TI COS Q;
i=0

a; = tan7!(27')

a= > 6:03. (3.21)
?=0

The sequence of 6,s is exactly the same as what would be obtained in a real-

world implementation of CORDIC,using the same initial conditions. The angle a is

an approximation of #. Since the z and y iterations implement a rotation through

tan~! (2~') by shifting the variables, they achieve a rotation through exactly a;. The

finite-precision representation of x; and y;, however, causes a truncation error in their

computation. Let the actual values of 2; and y; obtained at the end of each iteration

be Bi, Yi.

3.6.1 Error Introduced by X and Y Iterations

Suppose z and y are represented with ¢, bits and z and y are interpreted as fractions,

without anyloss of generality. Since the numbers are truncated after the right shift,

the addition and subtraction operations result in a truncation error not exceeding

2-%, Accordingly,

£, = 20 + boyo2™? = 11

Hi = Yo + bo292~° = 1

The second iteration results in a truncation error due to the right shift,

Bo = 21 + byr27! + Mer = 22 + fer

J2= 91 + &21271 + py = Yet by,

Page 40 of 106

Page 41 of 106

27

where,

[Hxal, lHy1| < 2-4,

Using these values in the next iteration results in,

é3 = 2+ 82227? + pre

= @o+ S2y227? + (fxr + fy! 5227?) + Hx2

= 23+ (Met + Hyb2277) + pre.

Continuing this for n iterations, we obtain

By = On + Ey (3.22)

dn = Yn + €y, (3.23)

where,

lel ley] << 278 [L + (1 + 6(a-1)27"-Y) +

(1 + (na1)27PY) (1b (nnny27-)) +

(1+ (nay2-M—Y)(1 + Finny)... (1 + 61274)

< 2HL + (+270) +

(142°D)(1 4 2-9) $$

(1+ 2-@-Y)(1 + 2-9) (1 4 274)]

2 2-" (n).

The upper bound is obtained by considering the maximum value for the right

hand side of the above relation, which occurs when all 6; = +1. The sum of the

product terms is approximately n. Hence, the finite precision representation of the x

and y causes an error in approximately logn bits.

Page 41 of 106

Page 42 of 106

28

3.6.2 Error Introduced by Z Iterations

Let £; be thefinite-precision approximation of a;, then assuming fixed point imple-

mentation,

a = B+ Uri, |p2i| < 27%, (3.24)

where (3; is assumed to be represented by tz bits. The value A; is the actual value

of tan~!(2-') stored in the ROM. Theerror in representation of the angle a;, due to

finite precision is p;.

Each iteration of CORDIC for the z variable is of the form

Ziti = 2; — 6:6}.

The sequenceof (js satisfies the conditions required by Theorem 3.1, in spite of the

errors, and hence causes the z iterations to converge. The absence of any shifting

in the z iterations implies exact arithmetic, since no bits are truncated. The only

deviation of >> 6;8; from the angle @ is a consequence of the CORDIC approximation.

Accordingly, from the convergence properties of CORDIC,

Zn Ss Bn=1)
n-1

Zg=6= >- 6:8; +7, lyl S$ Ba-1
i=0

Theorem 3.1 governs the maximumerror + possible in this expression to be less than

the smallest angle Gn_1. Coupling the finite-precision approximation error in the

representation of a; with this relation, gives a bound on the deviation of the angle a

from the desired angle 6. The angle a, is the angle through whichthe vector [xo, yo]”

is actually rotated. Using equations 3.21 and 3.24:
n-1 n-1

0 = Yo bai — So bipai +7
i=0 i=0

n=1

= a—)> bipai +7- (3.25)
i=0

Page42 of 106

Page 43 of 106

29

Substituting the bounds on + and jg; and choosing 5; = —1, the error in the angle

la — 9| is,

la — O| < Bay + 27? = tan7!(2-@—))) 4 n2-#2 wIQ-(-D 4 nQ-# (3.26)

Equation 3.26 gives the error that could be caused in the z iterations in the worst

case.

3.6.3 Effects of perturbations in @

Combining results from equations 3.19, 3.22, 3.25, a relation can be derived between

what weobtain, [%n, #n]’, and what we expect, (Zn, Gn]". The expected values can be

expressed in terms of exact equationsas,

Z, = (xocos6 + yosind)/K, (3.27)

Yn = (yocos? —zosin6)/K,. (3.28)

Assuming that the error A9 = |a — 6| is small, the error in 7, and §, can be obtained

through differentiation as

 Bin (~aysin8 + 49005 0)/Ky = Go) Ka (3.29)
oh = (—yosin ? — ro cos 0)/K, = —Fn/Kn. (3.30)

An approximation that can be madeif the error in the angles is smallis,

OFn
06

Gn
06

Aé

Agn &

Aijin © DO.

Observing that the derivatives are always less than 1 yields,

|Z, — In| < Ad

; Page 43 of 106

Page 44 of 106

30

lgn — Yn| < Ad.

Substituting the maximum errors for AQ, x, and y,, an upper bound on the actual

observed error is obtained:

[én — nl, |In — Gal < (Bn-1 +227?) + €,

< (27-2) 4 227%) + (n)a-4, (3.31)

This error is bounded for all values of |zo| and |yo|. Hence, this error can be

eliminated by increasing the data-width to include extra bits as guard bits. The error

bound obtained here is nearly the same as that given by equation 3.17. However,

equation 3.31 separates the effects of the z, y iterations and the z iterations allowing

a study of different componentsof the error.

For the prototype implementation, t; = 15, tg = 15 and n = 16. Thusthe erroris

given by,

Observed Error < (27** + (16) 27*°) + (16) 27'5

< (33)278

The error predicted by this relation is pessimistic and may never occur in practice.

It is reasonable to include log, 32 = 5 guard bits to correct theerror.

3.7 Error Analysis of CORDIC Y-Reduction

Let the initial values for 2, y and z be zo, yo, 2 = 0. Each CORDICiteration for z

and y is of the form,

Din = Tj + 6:27!

Yirr = Yi — aj2*,

Page 44 of 106

Page 45 of 106

31

Finally after n iterations the equationsyield,

(29 cos a + yosina)/K, (3.32)Ty
I

Yn (yo cosa — zosina)/Kn, (3.33)

where,
n-1

KK, = I cos Q;
i=0

a; = tan7!(2-‘)

a= ¥ fia. (3.34)
i=0

The sequence of é;s is exactly the same as what would be obtained in a real-world

implementation of CORDIC, using the sameinitial conditions. The angle a is an

approximation of 6, the inverse tangent accumulated in the z-variable. Since # and

y iterations implement a rotation through tan-!(2-') by shifting the variables, they

achieve a rotation through exactly a;. The finite-precision representation of zr; and

yi, however, causes a truncation error in their computation. Let the actual values of

z,; and y; obtained at the end of each iteration be 3;, 9;.

3.7.1 Error Introduced by X and Y Iterations

This analysis is identical to that for Z-reduction in Section 3.6.1. The error boundis

given by:

En = In + Ex (3.35)

Gn =Yn te, ~0 (3.36)

lez|, ley] < 27"(n). (3.37)

| Page 45 of 106

Page 46 of 106

32

3.7.2 Error Introduced by Z Iterations

Let (; be the finite-precision approximation of a;; then assuming fixed point imple-

mentation,

a; = Bit wai, |uail < 27%,

where G4; is assumed to be represented bytz bits .

Each iteration of CORDIC for the z variableis of the following form:

Finn = Bi + 5:8;

n-1 n=1

So 6:0; — > Sp23
i=D i=0

n—-1

a- > Sipai. (3.38)
i=0

The maximumdeviation of the computedresult 9, from the angle through which the

2
li

vectoris rotated a is given by,

la — | < n2-*. (3.39)

3.7.3 Perturbation in the Inverse Tangent

If « and y could be represented with infinite precision, then y,, is related to theinitial

values as

Yn = (yocosa — zosina)/K,. (3.40)

Let r and » be defined as

tan = 2
? Zo.

- Page 46 of 106

Page 47 of 106

33

Equation 3.40 can now be rewritten as:

Knyn = rsinycosa—rsinacosy

Knyn :
=== = sinfy-a)
V2 + ¥6

{Kaunle—ea| = sin@! (Se): 28 + ¥5
K, in n=1“itn + >> b:pai-lo —O| < sin7!

Vtit+ys/ i=0

Substituting all the maximum errors from Equations 3.37 and 3.39, weget,

2nK,27-%

23 + 96
lp-A < +n2-", (3.41)

Here,y is the true inverse tangent that is to be evaluated. The final value accumulated

in the z variable, z, = 0, is the angle actually obtained. Thus relation 3.41 gives

the numerical error in inverse tangent calculations. However, this relation does not

provide a constant boundforall zg and yo. In the worst case, x9 and yp are close to

zero, resulting in a large error.

3.8 Normalization for CORDIC Y-Reduction

Equation 3.31 gives an upper bound ontheerror introduced by Z-reduction. This

upper boundallowseliminationofall the effects of the error by increasing the number

of digits in the internal representation of the z and y. A similar upper bound does

not exist for Y-reduction. This is reflected by relation 3.41, where small values of

Zo and yo result in a very large right-hand-side in the relation. Figure 3.4 shows

the large errors observed in a prototype fixed-point CORDIC module when both zg

and yo are small. An identical analysis of Y-reduction using floating-point data-

paths shows that the error remains boundedforall possible inputs. Floating-point

Page 47 of 106

Page 48 of 106

34

3=

4es
°

ui

0.4 0.5

Initial Value of YO

Figure 3.4: Error in the computed value of tan~1(1) = tan! (yo/yo) over
the entire range of yo in a CORDIC module without normalization. The
error has been quantized into the numberof bits in error. A large error
is observed for small values of yo. For very large yo, the large error is due
to overflow. In the SVD problem, by choosing small values for the initial
matrix, the values at all subsequent iterations can be keptsufficiently small
as to avoid overflow. This experiment has been performed on a datapath
that is 16 bits wide.

Page 48 of 106

Page 49 of 106

35

arithmetic implies normalization at every stage of computation, which preventsa loss

of significant digits during Y-reduction iterations. The same effect can be achieved in

fixed-point CORDIC by normalizing the initial values, zo and yo, before performing

the CORDIC iterations.

Normalization involves increasing the absolute magnitude of zo and yp by multiply-

ing them with the maximum powerof 2 that does not cause the subsequent CORDIC

iterations to result in an overflow. Since both z and y are shifted by the same amount,

the inverse tangent is not affected and no post-processing is required. If x and y are

represented by 7, bits, normalization tries to increase « and y until the third most

significant bit is a 1. In the worst case, the two most significant bits are reserved to

avoid overflow, since every step of Y-reduction, results in an increase in the magnitude

of z;. In the worst case, 29 = yo, which results in t, = V2/Knao © 1.6468/2.

3.8.1 Single Cycle Normalization

If normalization is performed as a pre-processing step, it is necessary to reduce the

number of cycles required. A single cycle normalization pre-processing step would

require the following components:

Barrel Shifter: To handle any shift up to (¢; — 2) in a single cycle, a barrel shifter

is required. The area complexity of such a shifter is O(t?). A shifter with a few

selected shifts would suffice if more cycles are allowed for normalization.

Leading Zero Encoder: The normalization shifts are determined by the number of

leading-zerosin both zo and yo; the register with fewer leading zeros determining

the shift. For a single cycle implementation, this takes the form of a (t; —2) bit

leading-zero encoder, since (¢; — 2) is the maximum shift that will be ever be

encountered. The area complexity of this encoder is O(t;”). Implementations

Page 49 of 106

Page 50 of 106

36

that allow more cycles for normalization would require smaller leading-zero

encoders.

The hardware complexity of implementing normalization in a single-step is O(t,?).

An implementation with no associated time penalty and a low area complexity is

described in the next section.

3.8.2 Partial Normalization

The large error in inverse tangent computation occurs due to a loss of significant

digits caused by the right shift associated with each iteration. If both zp and yo are

small, then the maximum value of 2, is also small. Thus after only a few iterations

of the form,

ay + 6:y;27° (3.42)Vipd

Vier = yj; — 60:27", (3.43)

the right shift, 2, results in a complete loss of significant bits. Hence, the values

of a; and y; remain unaffected by further iterations. Pre-normalization avoids this

situation byartificially increasing the magnitudes of ro and yp.

The following scheme,called Partial Normalization, provides a low overhead solu-

tion to the normalization problem andis applicable to fixed-point CORDIC modules.

Partial normalization reduces the hardware complexity by making normalization a

part of the CORDIC iterations. Some of the initial CORDIC iterations are modified

to include a small left shift of the results:

Cit (xj + iy;:27')2? (3.44)

vier = (ys — 5)0;27')2, (3.45)

Page 50 of 106

Page 51 of 106

37

This small shift introduces zeros in the low order bits, which are then shifted out

in further CORDIC iterations. By keeping this shift a small integer, the hardware

complexity of the shifter can be reduced. However,since the right shift, 7, increases

at eachiteration, the magnitude oftheleft shift, 7, should be large enough to prevent

any loss of bits before normalization is complete. Using this technique, a small left

shift can be used to simulate the effect of pre-normalization. The following theorem

quantifies this idea.

Theorem 3.2 Let t’ = arctan(yo2*/a92*), be the value calculated by

preshifting zo and yo and using an unmodified CORDIC unit, where k is

an integral multiple of a constant j. Let ¢ = arctan(yo/ao) be the value

calculated by using a modified CORDIC unit and unnormalized initial

values. The modified CORDIC unit initially performs k/7 iterations of

the form

ign = (a; + 6yi27')2!

Yin = (ys — 6y0;27')2%,

where 2 is the iteration index, followed by (n — k/7) unmodified CORDIC

iterations. The two inverse tangents computed, ¢ and ¢’, will be identical

if k < KX’, where X is an upper bound given by

K =2;?

Proof Let z/ and y! be the intermediate values obtained in the computation of t’

and a; and y; be the intermediate values obtained in the computation of ¢t. Since a

left shift of 7 is introduced in each modified CORDICiteration, the desired shift of k

requires k/j cycles to achieve. The two results are guaranteed to be identical if the

following conditions hold:

_ Page 51 of 106

Page 52 of 106

38

1, At every iteration 1 < k/j, x; and y; are multiples of 2" where m; > 7. This

condition prevents any loss of bits due to the right shift of i in a CORDIC

iteration 7, when i < k/j,

2. In the computation of ¢’, a similar condition should hold for x} and yf for at

least k/j cycles.

The proof for this theorem first finds the maximum total shift, K, which can be

achieved with modified iterations given a constant j, and then showsthat for any k

that is a multiple of 7 and less than K, condition 2 holds.

For the modified CORDIC module, at any iteration 0 <i < k/j , 2; and y; are

multiples of 2where

ym - (24)
~ 90+142+..+(i=1)

Imposing the condition required to avoid any loss of bits,

2IVmj

(2
i(i—1)/2
“G—1ji- He=)) 2

2

9iIV

IA Qj —1.

Thus, the maximum numberofiterations, for which no bits are lost is given by 2].

The maximumachievable total shift is K = (2j)j = 2;?.

If k < 27? and is a multiple of j, then, in the computation of t’, at the k/jth

iteration (viz,z = k/j — 1), x’ and y’ are multiples of 27 where

q=k- d41 4243404 (F—2)],

Page 52 of 106

Page 53 of 106

39

Thus, no bits will be lost in the computation of ¢’ within the first k/7 iterations, if

the condition ¢ > k/j —1 is true. Solving this inequality,

q 2 k/j-1

k < 237.

This is exactly the condition k < K; hence condition 2 holds.

Thus K = 27? is the upper bound such that if k < K,t/ =t. O

This theorem showsthat if a constant shift of 7 is introduced in the CORDIC itera-

tions, then any overall shift that is a multiple of j but less than 272 can be achieved.

In practice, the parameter 7 can be made a variable, allowing one of several shifts

to be chosen at each iteration. An appropriate choice of these shifts can achieve any

desired total shift.

Suppose j in equation 3.44 and 3.45 can be chosen fromatotal of J shifts, shift[J—

1] > shift[J — 2] > -.- > 1, if & is the desired shift, then the algorithm given

in Figure 3.5, gives a choice of shifts at each iteration to normalize the input. This

control can be implemented using combinationallogic; a pair of leading-zero encoders

and a comparatorto select the smaller shift from the output of the encoders.

3.8.3 Choice of a Minimal Set of Shifts

The following is an example of a CORDIC unit with a data-width ¢,; = 15 bits and

n = 16 iterations.

e An overall shift of 1 can be achieved only by making j = 1. Thus a shift of 1 is

necessary in any implementation.

7 Page 53 of 106

Page 54 of 106

40

begin
for 7 := 0 ton do

begin

Choose maximum sindes such that 2,2Shift[zindez] . 0.25;
Choose maximum yindes such that y,2shiftlyindez] < 0.25;
index := min(xindex, yindex);
Perform a modified CORDIC Iteration with j := indez;

end

end

Figure 3.5: Modified CORDIC Iterations, invoked during Y-reduction
when the input is not normalized

e Multiple iterations with j = 1 can achieve any shift up to a maximum of 27? = 2.

A shift of 3, however, cannot be implemented as three iterations with 7 = 1,

since this will result in a loss of significant bits. Hence, a shift of 3 requires a

single iteration with 7 = 3 that necessitates the inclusion of the shift j = 3.

e The shift 7 = 3 can achieve any shift up to a maximum 27? = 18 as given by

Table 3.2. Since the maximum shift required is 13, the normalization shifter

does not have to implement any shift other than 0, 1 and 3. Any shift that is

not a multiple of 3 is performed as shifts of 3 for |k/3] iterations, followed by

iterations with j = 1 to achieve the remaining shift.

Figure 3.6 shows a hardware implementation of the CORDIC unit that includes the

above normalization scheme. The numberof bits in error using such a schemeis

bounded even for smallinitial values, as shown in Figure 3.7.

Page 54 of 106

Page 55 of 106

4)

Normal-
ization

Shifter
Barrel
Shifter

Normal-
XY-CHIP —| ization

Barrel |
Shifter

Figure 3.6: Implementation of the CORDIC Iterations in Hardware

 Shift introduced in each CORDIC Maximumshift that can be

iteration achieved

j
1 2

2 8

3 18

4 32

Table 3.2: Total shifts that can be achieved with a small shift in each

iteration, as part of a novel normalization scheme

Page 55 of 106

Page 56 of 106

42

Z5

g
5
fs

0. is nD 0.25
Initial Value of YO

Figure 3.7: Error in the computed value of tan~!(yo/yo) over the entire
range of yo in a CORDIC module that implements the partial normaliza-
tion scheme

"Page 56 of 106

Page 57 of 106

43

3.8.4 Cost of Partial Normalization Implementation

For a CORDIC implementation with the data width of the z and y datapaths 7, bits,

a shifter with a maximum shift ,/t,/2 is required. The shifts at each iteration are

obtained from leading-zero encoders that encode the ,/t,/2 most significant bits of

the x and y variables. The hardware costs involved in these operations are:

Shifter: The area complexity [34] of the shifter grows as

O(t; x Maximum Shift required) = O(t, x /41) = O(t,1").

Control Logic: Thesize of the control logic grows as O((Maximum Shift required)”)

= O(Vii") = O(t1).

Time Penalty: The shifting is performed as part of the CORDIC iterations. Thus,

the only time penalty is the decrease in the clock rate due to the extra prop-

agation delay caused by the presence of the shifter in the CORDIC data path.

This effect can be neglected for most cases. Hence, this scheme does not require

any extra clock cycles.

3.9 Summary

CORDICis an efficient technique to implement inverse tangent and vector ro-

tation computations in hardware. Rotation of a vector is implemented as several

iterations of rotations through a setof fixed angles given by a; = tan~1(27'), where

1 =0,1,2,---,(n —1), is the iteration count. These rotations reduce to the following

iterative relations:

Cig = 2; + :y;27'

Yisr = ye — 62,27!

Zig = 2% + 6:0

Page 57 of 106

Page 58 of 106

44

Y-Reduction

Z-Reduction Maximum Errorin

Maximum Error in computed value computed value of
of vector rotation (Numberof bits)|tan=! (yo/ao) (Numberof

bits)

Walther

(L —n), where

L > n+tlog,(2n —L —3)
Johnsson

Duryea log [zna-* 4 2-61 log [(n + 1)2-* + 2-0-0]

2nK,27-4Section 3.5 logs [(2-m-» + nQ-'?) + (n)2-4] log, | n + oo]V2 + ¥8

Table 3.3: Summary and Comparison of the maximum errors obtained
from previous methods

These relations can be implemented using simple structures: adders, shifters and a

small ROM table of angles. The direction of rotation, 5;, of each iteration is deter-

mined by the data and the function that is to be evaluated. If 6;s are chosen to

reduce the initial zo to zero, it is termed Z-reduction, and is used to compute vector

rotations. On the other hand, a choice which reduces theinitial yo to zero, is called

Y-reduction and is used to compute inverse tangents. A detailed error analysis takes

into account the errors due to the finite-precision representation in both the z, y

iterations and the z iterations. Table 3.3 gives a summary of the error bounds given

by present and previous methods. The analysis indicates that normalization of the

input values is required for Y-reduction to bound the errors. Hardware complexity

Page 58 of 106

Page 59 of 106

45

of a normalization scheme would be O(n*) using generic techniques. If the required

total left shift is performed as severaliterations of small shifts, however, it is possible

to perform normalization as a part of the CORDICiterations. The modified CORDIC

iterations are:

Zigt = (a; + d:y:27')2? (3.46)

Yinr = (ys — 60,27*)2!, (3.47)

A constant shift of 7 can be used to perform anyleft shift up to 2)? through several

iterations. A shifter with multiple values of 7 is required in an actual implementation.

Such a partial normalization scheme reduces the hardware complexity to O(n?*), with

no associated time penalty.

Page 59 of 106

Page 60 of 106

Chapter 4

The CORDIC-SVD Processor Architecture

4.1 Introduction

The SVD algorithm discussed in Chapter 2 and the CORDIC algorithm described

in Chapter 3 form the basis for the design of the CORDIC-SVD processor. The

processor has been designed in two phases. Initially, a six chip prototype of the

processor was designed. Once the basic blocks were identified, they were designed,

fabricated and tested independently by different design groups. The prototype was

built of TinyChips, fabricated by MOSIS, which are cost effective and serve as a proof

of concept. Implementation of the processor as a chip set provided controllability and

observability that was essential at that stage of design. This prototype served as a

means of exhaustively testing every aspect of the design, which was not possible with

simulation.

The second phase involved designing a single chip version of the processor. This

chip utilized many of the basic blocks from the six-chip prototype, in an enhanced

architecture. The single chip version utilized better layout techniques using higher

level design tools. Someof the low level VLSI layoutissues are discussed in Chapter6.

4.2 Architecture of the Prototype

The basic structure of the CORDIC SVD processor was discussed by Cavallaro[6].

46

Page 60of 106

Page 61 of 106

47

Cordic Module 0 Cordic Module 1

XY-Chip | XY-Chip

INTRACHIP

Control for 2-sided rotations

and inverse tangents

INTERCHIP

Systolic Control for 1/0
Figure 4.1: Block Diagram of the 6-chip Prototype CORDIC-SVD
Processor

Page 61 of 106

Page 62 of 106

48

This architecture, shown in Figure 4.1, consists of four distinct modules that have

been implemented in four different TinyChips. Two of the chips, the zy-chip and

the z-chip, together form one CORDIC module. Maximal parallelism is achieved

in the computation of the 2 x 2 SVD by including two CORDIC modules in the

processor. The control and interconnection for the SVD processor was implemented

in two separate chips. The intraconiroller chip is used to provide all the internal

control necessary to implement the computation of the 2 x 2 SVD. Thesystolic array

control is provided by the intercontroller chip. A hierarchical control mechanism

provides a way to effectively shield the low level control details from the higherlevel

controllers. At each level the controllers provide a set of macros to the controller next

in the hierarchy. In addition, this separation of control allowsa degree of concurrency

not possible with a single controller. The next few sections describe the individual

chips in greater detail.

4.2.1 Design of the XY-Chip

Figure 3.6 on page 41 showsthe basic blocks required in an implementation of a

fixed point CORDIC processor. The xy-chip implements the z and y data paths of a

single CORDIC module. Each path consists of a 16-bit register, a 16-bit barrel shifter

implementing all right shifts up to 15, a 16-bit ripple-carry adder with associated

temporary latches at the inputs, and a data switch to implement the cross-coupling

implied by the x and y CORDICiterations (Equation 3.4 on page 16). Either CORDIC

iterations or scale factor correction iterations are possible on the data stored in the

registers. The absence of any on-chip control allows an external controller complete

flexibility of the numberof iterations as well as the nature of each iteration. Read and

write access to the z and y registers is possible independent of computation. Several

Page 62 of 106

Page 63 of 106Page 63 of 106

a

aeFaRTE’
Figure 4.2: Die Photograph of the XY-Chip

49

Page 64 of 106

50

versions of the xy-chip have beenfabricated [7]. Figure 4.2 shows a die photograph

of the xy-chip.

4.2.2 Design of the Z-Chip

The z-chip complements the xy-chip to form a complete 16-bit fixed point imple-

mentation of the CORDIC module. It implements the z data path that consists of

a 16-bit z-register, a carry-lookahead adder and a ROM table of 16 angles. It also

implements a controller to provideall the control signals for the zy datapaths in the

xy-chip and the z datapath in the z-chip. This controller allows use of the CORDIC

module in five modes: Z-reduction, Y-reduction, scale factor correction, single add

and subtract, and divide-by-two. These are the only ALU operations required in the

computation of the SVD, which allowed fine tuning the controller to perform these

operations. The design of this chip was completed by Szeto [33] Figure 4.3 shows a

die photograph of the z-chip.

4.2.3. Design of the Intra-Chip

The intra-chip controls data movement between a register bank and two CORDIC

modules, and sequences the ALU primitives provided by the z-chip on the matrix

data to implement a 2 x 2 SVD.It allows operation in three modes corresponding to

processor behavior in three different positions in the array. If the processor is on the

main diagonal of the array, it computes theleft and right angles and then uses these

angles to diagonalize a 2 x 2 submatrix. The processors P00, P11, P22 and P33 in

Figure 2.1 on page 9 are examples of such a processor. Any off-diagonal processor only

transforms a 2 x 2 submatrix with the angles received from the previous processors.

However,if a processoris diagonally a multiple of three away from the main diagonal,

for example processor P03, in addition to the transformation, a delay equal to the

Page 64 of 106

Page 65 of 106

Figure 4.3: Die Photograph of the Z-Chip

Page 65 of 106

Page 66 of 106

52

Serial Data Serial Data

from Interchip to Interchip
—> Shift Register

Logical Zero

Tri-State Buffer

Data Bus

Internal Controls

CORDICStart

Register | CORDIC Done
Intra-Controller » CORDIC Opcode

10 Intra Start

Registers Intra Done

Operation Code

Figure 4.4: Block Diagram of the Intra-Chip

Page 66 of 106

Page 67 of 106

53.

is

a

a | =
i ; y 1 * 4

- “te ee

yt in)3

oy
Figure 4.5: Die Photograph of the Intra-Chip

Page 67 of 106

Page 68 of 106

54

time it takes to compute the anglesis included. The delay is necessary to maintain

synchronization between all the processors due to the wavefront nature of the array.

These three modes allow the same processor to be used in any position of the array

in spite of the required heterogeneity. The aforementioned storageis a register bank

consisting of ten registers implemented in the intra-chip. A 16-bit bus interconnects

these registers and the two CORDIC modules. A block diagram of the intra-chip is

shownin Figure 4.4. Figure 4.5 shows a die photograph of the intra-chip.

4.2.4 Design of the Inter-Chip

The inter-chip contains the controller that exercises the highest level of control in

the processor. As a communication agent, it implements the systolic array control

for the SVD processor. The parallel ordering data exchange [5], which provides a new

pair of data elements at the main diagonal to be annihilated, is implemented in this

chip. A set of six shift registers, as shown in Figure 4.6, is used as communication

buffers to store a copy of the data to be exchanged with the other processors while

the intra-chip operates concurrently on its own private copy of the data.

Interprocessor communication is through a set of eightserial links. Four of these

links are hardwired to exchange data with the diagonal neighbors. Four other links

serve to systolically propagate the left angles horizontally and the right angles ver-

tically. Since the SVD algorithm is compute bound, the bandwidth provided by the

serial links is sufficient for the data interchange. In addition, pin limitations prohibit

implementation of parallel ports to communicate with neighboring processors. Data

is exchanged synchronously between processors. Data is shifted out to the neighbor-

ing processor and simultaneously shifted in from it. Synchronization in the array is

of utmost importance since no other form of synchronization is provided. This is in

accordance with the definition of systolic arrays [21] that emphasizes exploiting the

Page 68 of 106

Page 69 of 106

55

Serlal Data Scrial Data
from Intra-Chip to Intra-Chip

zt
eeet
artesteenf
See=

” Shift Reslterhb a aot.
a etord. ~ShiftRegister y keecoder

Inter-Chip Array Control
Operation Code INTER-CHIP Signals

Figure 4.6: Block Diagram of Inter-Chip

special-purpose nature of the array to eliminate the overhead of synchronization. In

the prototype, pin limitations forced a serial link for communication of data with the

intra-chip. The inter-chip controller also allows initialization of the array by loading

the matrix data. The inter-chip was designed by Szeto [3] Figure 4.7 shows a die

photograph of the inter-chip.

4.3 The CORDIC Array Processor Element

The CORDIC array processor element (CAPE)is a single chip implementation of the

CORDIC SVDprocessor [17]. This chip incorporates elegant solutions to the problems

encountered in the six-chip prototype. CAPEalso includes additional details necessary

to construct a workingsystolic array. CAPEessentially consists of the same basic cells

Page 69 of 106

Page 70 of 106

56

eeeeee

Hl, Lre eaeeretia on|AblTosoH-4 FTo5i afkbe ch=acue ;RESF 4oteda.
e

ibe, iwee
i,

epgti
ieneener:

Figure 4.7: Die Photograph of the Inter-Chip

Page 70 of 106

Page 71 of 106

57

as the prototype. Manyof the architectural enhancements were made to reduce the

communication required within the chip. A completely new loading scheme was added

to facilitate easy interface with a variety of hosts. The next few paragraphs describe

the details of all these improvements.

A study of the prototype CORDICunits indicated that better numerical accuracy

could be achieved with some modifications to the modules as described in Chapter3.

To improve the numerical accuracyof the inverse tangent calculations, a normalization

shifter was included in each of the z and y data paths. These shifters are activated

during Y-reduction by two leading zero encoders that monitor the magnitude of the

zand y data. Simulations indicate that this scheme provides several extra bits of

accuracy in many cases.

The CORDIC modules in the prototype converge only for vectors in the first and

fourth quadrants while operating in the Y-reduction mode. The modified scheme uses

the exclusive-or of the sign bits of the « and y registers to control the next iteration.

This effectively increases the range of convergence for the CORDIC modules. In

addition, the above scheme adds symmetry to the z and y data paths since they

cannot be distinguished externally. This allows the same CORDIC module to rotate a

vector in either clockwise or anticlockwise direction. Some data movementis rendered

unnecessary by the above method, for example, if the data to be used in the next

computation already resides in the z and y registers in the wrong order, since the

definition of the z and y registers can be interchanged, no data movementis required.

The z-chip was modified to allow mapping the z, y and z registers as part of the

register bank. This allowsreuse of the dataleft in the registers by a previous computa-

tion, which is important when attempting to cut down the communication overhead.

A study of the prototype SVD processor showed that there was a large overhead in-

curred in moving data to the appropriate registers between computations. A double

- Page 71 of 106

Page 72 of 106

58

External Bus

Intra-
Controller Controller

Internal BusO.

aETTeedFTLReeeETHeeee 14 k

a , eee Aerie

Serial Shifter 0

hifter Banils ae|S E

Internal Busl

Figure 4.8: Internal Architecture of CAPE

bus architecture, as shown in Figure 4.8, was used to minimize this communication.

A separate CORDIC module is hardwired to communicate on each bus. Theset of

six registers is split into two banks that can communicate with either bus allowing

simultaneous access to two different registers. The numberof registers required in

the architecture was reduced from ten to six due to mapping of the CORDICregisters

as general purpose registers. The double bus allows concurrent data movement to

the two CORDIC modules, which reduces communication cycles by half. Using the

double bus architecture did not cause an increase in the area of the chip. This was a

/ Page 72 of 106

Page 73 of 106

59

result of the reduction in thesize of the intra-chip controller to half its original size.

This corresponds to a reduction in the numberof states due to greater concurrency

provided by the architecture.

Special cases that occur in the SVD computation require extra hardware. Two

zero comparators were included to detect the case tan~1(0/0). This is an invalid

computation on the CORDIC modules that return a code equivalent to the floating-

point NaN. The SVD algorithm allows such computed angles to be replaced by zero.

The zero comparators compare the data on the bus with zero and return a control

signal to the intra-chip controller to handle this special case. A literal constant zero

can be driven onto either bus and hence into any register. This allows forcing a

register to store a zero to handle special cases.

The inter-chip has been modified to handle an improved array loading scheme. The

prototype did not make any special provision to efficiently load the array. Since CAPE

is to be used in a systolic array in a real system, the interface with the host has been

refined. A parallel port has been included along with the requisite handshakesignals.

The controller implements an asynchronous loading schemethat allows interfacing

with a host running at an independent clockrate.

The prototype inter-chip was pin limited and hence forced to communicate with

the intra-chip throughaserial link. This restriction is no longer valid in the single

chip implementation. Consequently, this serial link was replaced with an internal

parallel bus that reduces the time to exchange data items between the intra-chip and

the inter-chip. The rest of the inter-chip was redesigned with only minor changes.

7 Page 73 of 106

Page 74 of 106

60

4.4 Issues in Loading the Array

Data loading is a key issue in the design of a systolic array. Systolic architectures

typically include data loading as part of the algorithm. Data is continually loaded

as new results are unloaded. A systolic loading scheme increases the throughput

of the array by pipelining several different computations. An important problem
in the design of any pipeline is to keep the pipe full at all times, since it affects

the throughput. The time taken to fill or empty a pipeline is analogous to the non-

parallelizable section of a program, whichlimits the speedup that can be achieved just

by increasing the numberof processors [32]. In a systolic array, computation typically

begins in a subset of the processors and then propagates to other processors. The

goal of a loading schemeis to overlap communication and computation to the largest

degree possible by loading the processors in the order that the data is required.

In the SVDarray, asillustrated by Figure 2.2 on page 11, computation starts at

the main diagonal and propagates as diagonal waves of activity towards the corners

of the array. Consequently, a systolic loading scheme should load the main diagonal

as early as possible and continue with the other super and sub-diagonals at a rate

that is not slower than the rate of computation. The computation of the SVD in the

array takes O(plog p) time, where each sweep takes O(p) time. Since all the array

data is required in one sweep, the loading algorithm has to be at least O(p). Since,

the matrix data itself does not propagate systolically as part of the SVD algorithm,

currently, the loading algorithm and the SVD algorithm are independent.

In a square array, it is necessary to load a total of O({p*) data elements. Thus

any O(p) loading algorithm requires O(p) entry points. Hence, it is not possible

to build a scalable SVD array with a constant numberof entry points. This is not

a problem, however, in somereal-time processing applications. Some applications

~Page 74 of 106

Page 75 of 106

61

combine analog sensors with each processor, such that data is loaded directly from

the sensor to the processor, providing O(n?) entry points. In such an application,

loading is not a problem.

The simplest loading scheme involves loading the array a column at a time.

Assuming that the data is loaded from theleft edge, the data for the right edge

is loaded first, and as new columnsare loaded, the previous columnsare systolically

propagated right. This is an O(p) loading algorithm. However, the main diagonalis

not loadedtill the entire array has been loaded and hence does not allow any overlap

of communication with computation.

A systolic loading scheme that starts at the diagonal, needs to load the main

diagonal, followed by the next super and sub diagonals and so on. This scheme

requires each processor to know exactly whereit is located in the array, so it can

propagate the correct numberofelements to the right and left. The algorithm requires

O(p) time to load. However, this loading scheme requires a complex control to load

and unload the array. The main drawbackis that it requires multiple parallel ports

in each processor, which is a problem due to pin limitations.

4.4.1 Data Loading in CAPE

In CAPE multiple buses are used to load the array (Figure 4.9) in time O(p).

All the processors on a row are connected by a bus. Only one processor is enabled

permanently, while the others are daisy-chained. After loading an appropriate number

of words, the currently enabled processor enables the next processor in the chain. The

array consists of p/2 entry points, one at each of the diagonal processors. The host

has to provide the data in the correct order, which depends on how the processors

have been chained.

| Page 75 of 106

Page 76 of 106

62

Hex-CAPE en CAPE
a

PKK
Pe NL

CAPE

KRXX

a

a.

CORDIC Systolic Processor Array (CSPA)

Figure 4.9: A square array of CAPE chips connected to a host, a linear
array of DSP processors, for Robotics

_Page 76 of 106

Page 77 of 106

63

In large arrays global connections will limit the clock rate due to long paths.

This problem has been avoided in CAPE by using an asynchronous handshake to

load data into the processors. This decouples the speed of loading from the speed of

computation. The array can run at a clock independent of the speed at which the

array can be loaded. Since the processors havea fixed latency to acknowledge,it is

possible to load the diagonal processor and start computation before the entire array

has been loaded. Asynchronousloading allows the array to be interfaced with a host

running at an independent clock speed. For very large arrays, the speed at which the

array can be loaded reduces. Whensuchalimit is reached, the speed of computation

can be decreased to achieve a graceful degradation as the size of the array increases.

This chapter described the design of the CORDIC-SVD processor. Several en-

hancements can be made to the SVD array, with minor modifications to the design

of the processor. Some of these alternative array designs are described in the next

chapter.

Page 77 of 106

Page 78 of 106

Chapter 5

Architectures to Improve Processor Utilization

5.1 Introduction

In a system with a large numberof processors, keeping them busyatall times presents

a formidable task, leading to intervals when processors wait for some other event to

occur in the system. Sometimes, however, this idle time can be used for tasks nor-

mally regarded as overhead. An exampleofthis is the fault-tolerance reconfiguration

scheme [9] proposed by Cavallaro, where the idle processors backup the functionality

of a neighboring faulty processor. Use of this time for fault-detection is yet another

example. However, if a higher throughput is desired, it would be possible to reduce

the idle time by pipelining several different computations. Idle time is of concern in

the CORDIC-SVDarray, since at any given time two-thirds of the processorsareidle.

This chapter focuses on methods to eliminate the idle time or to utilize it to

perform some useful computations. An array, in which the angles from the diagonal

processors are broadcast along a rowor column, can attain a speedup close to 100%

over the current design. A variation of this scheme that avoids the broadcast and yet

achieves the same speedupis discussed in Section 5.3. This architecture can be useful

to achieve a higher throughput if only the singular values need to be computed by

the array.

Manyapplications require the complete SVD decomposition including the left and

the right singular vectors. A modification to the current array design allows the

64

- Page 78 of 106

Page 79 of 106

65

complete decomposition to be computed in the same time that it takes to compute

the singular values. The impact of this algorithm on the design of the processoris

discussed in Section 5.4.

A systolic array, by definition, does not require any globally synchronous control

signals, except perhapsthe clock. Many arrays require a globally connected start sig-

nal to achievesynchronization between a large subset of the processors. Section 5.2

discusses an architectural alternative that avoids such a signal, allowing greater scal-

ability.

5.2 Architecture for Systolic Starting

The CORDIC-SVD processor has been designed assuming a global start signal

to synchronize all the processors on the main diagonal. This type of a signal is

omnipresent in most systolic array designs to facilitate easy understanding of the

timing issues in the array. In most arrays, the processors retain a certain degree

of simplicity that allows elimination of these signals by skewing the computations

among processors, after the initial design phase. The SVD processor is no exception

and lendsitself to this sort of skewing, permitting a system start signal that has a

constant fan-out independentof the size of the array. A start to the diagonal processor

P00 in Figure 5.1 is propagated diagonally, with a clock cycle delay at each processor.

Consequently, the diagonal processors are no longer in unison. This affects the timing

requirements of the rest of the array. Special care is required while interconnecting

the control and data-paths of the various processors, which were hitherto relatively

easy to comprehend. Delays have to be inserted at the appropriate places to solve

timing problems.

Page 79 of 106

Page 80 of 106

Figure 5.1: Interconnection of Control Signals for Systolic Starting

Page 80 of 106

S : Start
W1:; Waitl
W2: Wait2
D: Caledone

D1: Calcdone Delayed by One clock cycle

66

Page 81 of 106

67

: Left angle receive or transmit

: Delayed left angle transmit

: Right angle receive or transmit

: Delayed right angle transmit

Figure 5.2: Interconnection of Data Lines for Systolic Starting

Page 81 of 106

Page 82 of 106

68

Figure 5.1 and 5.2 show an interconnection for the CORDIC-SVD processor that

results in a consistent operation. The most important modification made to the SVD

processor is the introduction ofa clock cycle delay in a few selected signals and data

links. In addition to a normal done signal, a signal delayed by one clock cycle, called

the delayed done, is required to maintain coherence at the right and bottom edges

of the array. Angle transmission from the diagonal processors to the east and west

neighbors is skewed. The angle transmitted east is delayed one clock cycle to account

for the skew in the computation along the diagonal. Such a delay is not required

in the angle transmitted west. A similar delay is required in the angle transmitted

south but not in the angle transmitted north, The only other change required in

the processor is to delay the exchange of data with the south-east processor by one

cycle. All other control signals and data exchanges in the current design remain

unmodified. An interconnection of these modified processors, as shown in Figure 5.1

and 5.2, achieves the goal of eliminating the global start signal. Modification of the

above schemeto eliminate global signals in other arrays requires a careful study of

the timing dependencies, but, is nevertheless straightforward.

Figure 5.3 shows snapshots of array taken at various time instants and helpsil-

lustrate the inner working of the array. The processors that are highlighted, are the

processors which are computing at the given time instant. The highlighted commu-

nication links indicate an exchange of data during that cycle. The communication

is assumed to take only one clock cycle for simplicity, but the analysis can easily be

extended for more cycles. Some of the salient features of this figure are:

e The start signal to processors P00 is provided at time instant tl. This signalis

propagated systolically down the diagonal resulting in processors P00, P11, P22,

P33 starting computations at time t1+1, t1+2, t1+3 and t1+4 respectively,

Page 82 of 106

Page 83 of 106

69

Time Step: tl+2z&wEBETime Step:tl

Time Step: t2 Time Step: t1+3TimeStep:t2+1

Time Step: t2+4Time Step: t2+3

_Time Step: 3+
Figure 5.3: Snapshots of a Systolic Starting scheme

~ Page 83 of 106

Page 84 of 106

70

Processor POO completes its computations at time t2. However, it delays

the transmission of the angles to processors P01 and P10 by oneclock cycle.

Processor P11 stops computing at time t2+1 and immediately starts sending

out the angles to processors P01 and P10 completing the rendezvous of the

left and right angles at the processors P01 and P10. The same sequence of

operations continues all along the diagonal. Thus processors P01, P10, P21,

P12, P32, P23 start computing at time t2+2, t2+2, t2+3, t2+3, t2+4, +244,

respectively.

Processors P01 and P10finishfirst at t3. The diagonal processor P00 on receiv-

ing the waitl signal, exchanges matrix element a, but delays exchanging data

element d by one clock cycle. This allowsit to synchronize with processor P11,

which receives its waitl at t3+1 and shifts out its matrix data element a, which

it exchanges with the data element d of processor P00. The same sequence

continues down the diagonal.

Using a systolic starting scheme requires an extra n/2 clock cycles to finish, as com-

pared to the schemewith global start. The extra cycles form an insignificant portion

of the total time, 0.02% for an 8 x 8 matrix, and hence do not affect the performance

of the array.

5.3 Architecture for fast SVD

Many applications utilizing the SVD require only the singular values of a matrix.

Often, some parameter of the matrix, like the 2-norm or the Frobenius-norm [15],

is desired and can be evaluated from the knowledge of the singular values alone.

Rank determination and condition estimation problems, too, require only the singular

Page 84 of 106

Page 85 of 106

71

values. Hence, a speedup in the computation ofthe singular values alone, can be useful

in such applications.

A simple mechanism for reducing the idle time in an array is to use broadcast. If

the diagonal processors compute the angles, which are then broadcast along the row

or column, the actual 2-sided rotations can then be computed byall the processors

in unison, followed by the data exchange. Such a scheme would permit the diagonal

processors to compute the angles every 34 CORDICcycles as opposed to 73 CORDIC

cycles in the current design. This results in an array that is twice as fast as the

current design. In small arrays, of the order of 10 x 10, broadcast of angles is a

viable solution. However,for scalability, this broadcast can be easily converted into

a systolic scheme using the techniques described in Section 5.2.

Angle In §
Shift Register

) Angle Out
Figure 5.4: Hardware required to allow serial propagation of angles with
only a clock cycle delay

The broadcast in the array is avoided by skewing the operations of adjacent pro-

cessors along a row or a column by one clock cycle. A simple hardware “trick” shown

in Figure 5.4 can be used to pass an angle downa row or a column with only a single

clock cycle delay. Using this scheme, the array operation reduces to the following

algorithm:

Page 85 of 106

Page 86 of 106

72

e The diagonal processors compute a newset of angles.

e The angles are propagated down the rows and columnswith only a clock cycle

delay between the angles received by adjacent processors. Thus every processor

mimics the operation of the previous processor with a single clock cycle delay.

e After a processor finishes receiving the angles, it starts the 2-sided rotation.

Thus all the processors compute the 2-sided rotation with a single clock cycle

delay. This constant delay allows elimination of the watt! and wait2 signals.

In CAPE,the control signals, watt and wait2, indicate the end of computation

one diagonal and two diagonals away, respectively.

e Every processor that completes a rotation can start data exchange with the

following rules:

— After one clock cycle delay, the processor can begin exchange of data,

which it should on receiving watt!,

- After two clock cycles delay, the processor can begin exchange of data,

which it should on receiving wazi2.

e After the data exchange the entire process is started again.

A systolic starting schemeas described in the previous section can be used to eliminate

the global start signal. This introduces additional skews in the array. Special care

is required when exchanging data at the boundaries of the array. An extra bit of

information is required by every processor to determineif it is on the boundary.

Page 86 of 106

Page 87 of 106

73

5.4 Architecture for Collection of U and V Matrices

Major Cycle 1 Major Cycle 2 Major Cycle 3

Figure 5.5: Snapshots of an Array Computing U and V

In spite of the assertions made in Section 5.3, many applications do require the

computation of the left and right singular vectors for further processing. An example

of such an application is the inverse kinematics engine for a robot, the RICE-OBOT

1, which relies on the singular values and the vectors for singularity avoidance. A

rather surprising result obtained while studying waysto utilize the idle timeis that

it is possible to compute the U and V matrices along with the singular values in the

samearray in about the same timethatit takes to compute the singular values alone.

The Jacobi algorithm for computing the SVD applies a sequenceof left and right

orthogonal transformationsto the original matrix to diagonalize it. The productof the

left transformationsis the final U shown in equation 2.5. Similarly, the productof all

Page 87 of 106

Page 88 of 106

74

the right transformations is the transpose of V. Thus computation of U corresponds

to applying the left transformation alone to the U that has been accumulated. The

computation of V is analogous; it involves updating the accumulated V with a right

transformation. The matrices U and V can be stored as 2 x 2 matrices in each

processor, in extra banks of registers provided to store them.

If the CORDIC module does not provide a single-sided scale factor correction,it

is necessary to compute the U and V updates as 2-sided transformations, in order to

perform a 2-sided scale factor correction.

cos@; sind] [uy usa cos6; sin®;] [uy wel fl 0

—sin® cos}|ue wee ~—sin® cosé;||us we} {0 1

cos# sin&|][un ure cos0sin0~ ee aa i "| ml
The missing rotation can be simulated as a rotation with an angle zero, followed by a

2-sided scale factor correction. Theidle time in the processors corresponds to twosuch

identical operations in the other processors. Hence, the computation of U and V can

be interleaved with the computation of the singular values. This architecture requires

eight extra registers in each processor and modified intra and inter-controllers.

The data elements of the U and V matrices have to be exchanged between pro-

cessors in a manneridentical to the exchange of the data elements of the principal

matrix. Figure 5.5 shows snapshots taken of this array and illustrates the manner, in

which the three separate waves of computation are interleaved.

Page 88 of 106

Page 89 of 106

Chapter 6

VLSI Implementation Issues

6.1 Design Methodology

A structured VLSI design approachfollowing the Mead and Conway methodology (27,

37] was used in the design of all the chips for the CORDIC-SVD processor. Static

complementary (CMOS) logic was used to simplify design. In addition, a formal two-

phase clocking strategy was imposed [19, 20] to allow proper functionality independent

of the propagation delays.

All the chips comprising the prototype were developed using the Magic[29] layout

editor and other VLSI tools from the University of California, Berkeley. Magic allows

a hierarchical design, which facilitates layout in a a bit-slice manner. Programmable

Logic Arrays (PLAs), used as controllers, were generated automatically from a high

level description. All the other cells were custom designed. Magic provides limited

routing facilities, which are sufficient for small chips. A large chip like CAPE, however,

cannot utilize this facility. The amount of custom design involved in this approach

makes design using Magic a time consuming operation.

The term Silicon Compilation has been coinedfor high level CAD tools that allow

generation of VLSI chips almost completely from a high-level description, like VHDL.

An alternate set of CAD programs, Octtools, allows this kind of a design. Octtools

[31] take an object-oriented approach to VLSI design. This allows extensive functional

simulation of an unplaced, unrouted chip, generated from a high level description.

75

Page 89 of 106

Page 90 of 106

76

Actual placement and routing of the chip can be postponed until the description

is completely debugged. The different modules are generated from the high-level

description of the cells, using libraries of standard elementary cells. A placement

tool, based on the simulated annealing technique, finds an optimal placementof the

modules to minimize a variety of costs, like wire length and chip area. Finally, a

routing package physically routes these cells. Additional post-processing steps reduce

the number of vias and compact the layout to satisfy the minimum spacing rules.

Design using these tools can reduce the tedium of VLSI design considerably.

Thesingle chip, CAPE,utilized the advanced placement and routing features pro-

vided by Octtools. Most of the modules were scavenged from the original prototype,

and modified to improve performance, using the Magic editor. These modules were

then converted to Octtools format to place and route the final chip. This routed chip

was then converted back to Magic formatfor final placement and routing of the pads.

Functional simulation was performed using the switch-level simulators estm and

irsim. Longest path delays were identified with crystal. Detailed simulation at the

circuit level was performed for critical cells using spice. The circuit design of some of

the cells was modified to allow functional simulation using the switch-level simulators.

For instance, an extra inverter was included to buffer the output of each latch to

prevent back-propagation and allow functional simulation. This simulation is essential

to eliminate any design errors, since fabrication is a costly process.

The six-chip prototype was designed as four TinyChips, fabricated on 2200 x 2200u

die using a 2u CMOS n-well process. The transistor count for the different chips varied

between 4500 and 6000 transistors. The single chip version, CAPE, was designed on a

6900 x 5600die and contained about 26000 transistors. A plot of this chip is shown

in Figure 6.1.

_Page 90 of 106

Page 91 of 106

(7

y
(dPo

areas

Lanepa ati) LB eeepanperceat Racks
ionImplementatiingle ChipPlot of the completed S16Figure

Page 91 of 106

Page 92 of 106

78

6.2 Reducing Skews in Control Signals

The modules that constitute the chip, when described at thecircuit level, require the

logical complement of most of the control signals along with the original signals. Some

signals, for instance the clock signals, have a heavyresistive and capacitive (RC) load

on the signal lines, due to the large numberofcells that require them. Hence the

structures required to drive these signals require careful design to prevent large skews

between the signals and their complements, which can cause incorrect operation. A

circuit as shown in Figure 6.2, which consists of two inverters in tandem, can cause

a large skew between the transitionsof the signal and its complement. The large RC

load results in a large switching time that affects the input of the second stage, which

itself is heavily loaded, thus, resulting in a large skew. An alternate design as shown

in Figure 6.3 avoids this situation by controlling the skew between the inputs of two

inverters, which generate the signal and its complement. An additional inverter is

required to invert one of these input signals. However, this inverter is connected to

the input of only one inverter, resulting in a fast switching. Thus the skew in the

inputs of the drivers is small. Assuming a large, but nearly equal, load on the signal

and its complement, thefinal skews will be small. Static CMOS design, by definition,

requires every structure to be associated with an identical complementary structure.

clockbar
(Large Load)

dlockin
clock

(Large Load)

clockin

(Small
Load)

Generation of theFigure 6.3:Figure 6.2: Generation of the
heavily loaded clock and its com-
plement results in a large skew

- Page 92 of 106

heavily loaded clock and its com-
plement results in a small skew

Page 93 of 106

79

Thoughthis nearly doubles the transistor count, it leads to a more symmetrical design

that can be compact. It also leads to the desirable property of an almost identical

RC load on any signal and its complement.

Circuits that need to drive a large load can be designed with widertransistors.

This causes the transistors to switch faster since the resistance is reduced by a factor

that is greater than the increase in the capacitance. This is true only up to a certain

maximum size, after which the propagation delay increases again. These techniques

were used to reduce the skews of numerouscontrolsignals.

6.3 Design of an Adder

To obtain a simple design with minimal area complexity, ripple carry adders were

used in the CORDIC units. However, a poorly designed adder can result in a large

propagation delay, affecting the overall clock rate. The adder used in the prototype

chips was modified to reduce this propagation delay when used in CAPE.

In a ripple carry adder, the longest path occurs from the carry-in of the adder

to the carry-out. Reducing the delay from one stage of the adder to the next can

significantly improve the speed of operation of the adder. To reduce the propagation

delay of the carry througha single stage, the minimum numberoflevels of logic should

be used to generate the carry-out of that stage. Using wider transistors can further

reduce this delay. Since PMOS transistors are twice as slow as NMOS, thelogic should

be designed to contain the minimal number of PMOStransistors in series. Reducing

the load seen by the carry-out from a previous stage can further reduce propagation

delay. This reduction can be effected by using pseudo-NMOSlogic. The use of pseudo-

NMOSlogic increases powerdissipation, but this is negligible compared to the power

Page 93 of 106

Page 94 of 106

80

dissipation of the entire chip. The longest delay in the adder used in CAPE was

reduced by half by using these techniques.

6.4 Testing

PC-based high speed test equipment, Omnilab from Orion Instruments [28], was used

in verifying operation of the chips. This tester allows testing up to a frequency of 17

MHz, which corresponds to a clock frequency of 4.25 MHz for the chip, due to the

two-phase clocking strategy. All the six chips, which constitute the SVD processor,

operate at the maximum test frequency.

Verifying correct functionality of the sub-units of the SVD processor was thepri-

mary goalof the testing process. The chips were tested with the same vectors, which

were used for simulation. The testing exposed several errors in the design of the pro-

totype. Table 6.1 lists the most significant of these errors. The errors are categorized

as design errors or architecture problems. The design errors occurred due to the in-

dependentdesign of the various units. These were primarily errors in the interaction

between different units, which could beverified only after fabrication. The architec-

ture problems, on the other hand, required further research to determine a low-cost

solution, The numerical accuracy problem encountered in Y-reduction belongs to the

latter class of problems. The error observed in practice was larger than expected and

required the detailed analysis described in Chapter 3. The analysis indicated that

normalization could solve the accuracy problem.

A C-language library of routines was created to use the CORDIC module as a

co-processor for an IBM PC. A parallel 1/0 card on an IBM PC-AT was used to

communicate with the CORDIC processor. The design of the prototype requires ini-

tial matrix data to be loaded synchronously. After an initial start signal, a different

- Page 94 of 106

Page 95 of 106

81

Width of the Z-Datapath Two bits are required before the binary point in
order to represent all angles from —7/2 to 1/2.
The representation of the angles stored in the
ROMhad to be changed accordingly.
From equations 2.8, the sum and difference of the
left and right angles is obtained. The computation
of 6; and 6, can be executed in the following order:

1, Compute (0,+,) and ()-6,)

2. Compute (9 + 0,)/2 and (0 — 0,)/2)

Calculation of angles

 3. Compute 6, and 9,
 In the prototype the shift was performed after 20;

and 26, were computed from the sum and thedif-
ference, resulting in an overflow if the numbers
are too large. This effectively reduced the range
of all angles to —1/4 to 7/4. This problem was
corrected in the single chip.

Architectural Problems

Convergence of Y-reduction|Negative values of zo prevent the Y-reduction it-
erations from converging. A different choice of 6;s
forces convergence.

Accuracy A careful study was necessary to determine the
numberof significant bits that could be guaran-
teed by the processor. The error analysis is de-
scribed in Chapter 3.

Computation of tan- A careful examination of the SVD algorithm indi-
cates that this problem can be corrected by replac-
ing the angle with a zero angle. Zero comparators
were used to detect this condition and correctit.

Table 6.1: A list of some of the problems in the 6-chip prototype

Page 95 of 106

Page 96 of 106

82

data element is expected on the bus on each successive clock cycle. This prohibits

generation of the processor clock from the PC clock. The solution to the clock gen-

eration problem in the prototype was to generate the clock using the parallel ports.

The program generates a clock for the processor by treating it as a control signal,

requiring four separate writes to the parallel port for each clock cycle. This interface

was helpful in performing an exhaustive test of the CORDIC processor. A program,

which performs a simulation of the CORDIC module at the bit-level, was written to

generate the expected results for the exhaustive tests. Discrepancies in the outputs

were used to determine design errors.

Data loading in CAPE was modified to be asynchronous, solving the interface

problem by allowing the array to operate at a rate independent of the PC clock.

Asynchrony, however, introduces an additional problem. In an asynchronous system,

a data transition at the same instant as a clock transition can result in metastability.

In such a state the output voltages remain undefined for a prolonged period of time.

Onesolution to the metastability problem is to design flip-flops that are resilient

to this problem [22]. The same effect can be achieved externally. Typically, the

TTL MSI flipflops in the F-series have a very small metastability window and hence

decrease the probability of the occurrence of the problem. Using more of these chips

in series can further reduce this probability. The latter approach was preferred in

CAPEdueto its simplicity.

Study of the prototype helped identify those factors that affect performance. Com-

munication within the chip was identified as the main source of overhead. The extra

clock cycles associated with this communication were eliminated in the single chip im-

plementation by using an enhancedarchitecture. These enhancements were described

in Chapter 4. Table 6.2 shows a breakdown of the various communication costs in a

single computation cycle. A computation cycle in the table corresponds to the time

Page 96 of 106

Page 97 of 106

83

 Total clock cycles between each wave of activity = 857

PercentageNumberof

Sub-task clock cycles of the whole
cycle

Computation

Intra-chip to Inter-chip Communication

Movementof data within the chip
Systolic Communication

Table 6.2: Breakdownof clock cycles for the various sub-tasks in the 6-chip
prototype

 Total clock cycles between each waveof activity = 260

Percentage
Sub-task Number of of the whole

clock cycles cycle
Computation

Intra-chip to Inter-chip Communication

Movementof data within the chip
Systolic Communication

Table 6.3: Breakdown of clock cycles for the various sub-tasks in CAPE

Page 97 of 106

Page 98 of 106

84

required by three consecutive diagonals to complete computation. In the prototype,

the principal communication cost was due to an unavoidableseriallink connecting the

intra-chip and inter-chip. This cost was reduced to a small fraction in the single chip

design through the use of a parallel bus. Reducing inter-processor communication

would require use of parallel ports to transmit data between processors. However,

use of parallel ports in CAPE is not currently feasible due to pin limitations. The

internal communication, however, was reduced to half through the use of a double

bus architecture as described in Chapter 4.

Page 98 of 106

Page 99 of 106

Chapter 7

Conclusions

7.1 Summary

This thesis presented the issues involved in the VLSI implementation of a systolic

array to compute the SVD of a matrix, using CORDIC arithmetic techniques. Imple-

mentation of the CORDIC-SVD processor was carried out in two phases, Initially, a

prototype of the processor, composed of 6 chips, was developed. This required the

design of four custom MOSIS TinyChips. Testing of this prototype revealed several

architectural problems. Elegant solutions to all these problems, which were presented

in this thesis, were incorporated in CAPE,the single chip implementation.

The primary factor, which affected performance of the processor was the large

overhead incurred in moving data between the modules within the chip. In CAPE,

several changes were made to reduce this communication overhead. Since the CORDIC

modules in the 6-chip prototype used dedicated registers to operate, there was a need

to move the data to these registers for all arithmetic operations. In CAPE, these

registers were made part of the register set, eliminating the intermediate communi-

cation step when data had to be moved from a general register to these dedicated

registers. Another architectural improvement was a two-bus architecture, which was

developed to reduce the communication by half. Additional modifications helped to

further reduce the communication.

85

Page 99 of 106

Page 100 of 106

86

Another important problem encountered in the prototype was numerical accuracy

of the fixed-point CORDIC modules. Previous analyses of CORDIC neglected the

interaction between the z, y iterations and the z iterations. Consequently, the effects

of unnormalized zo and yo on the results of Y-reduction were not noticed. This

thesis presented a methodology to perform a detailed analysis of numerical error in

any mode of CORDIC. Examples which determine pessimistic bounds for Z-reduction

and Y-reduction were also presented. Although a bound on the error was found for

Z-reduction, no such bound could be found for Y-reduction. The analysis, however,

showedthat a normalization of the initial values for Y-reduction was required to force

such a bound. A normalization scheme with low time penalty requires O(n?) area

to implement using conventional techniques. This area was reduced to O(n!) by

performing the overall shift as small shifts, which are implemented as part of the

CORDICiterations. A detailed analysis of this novel method, which reduces the area

complexity with no associated time penalty, was presented in this thesis.

Several improvements and new features were developed, which can be incorporated

with small changes to the current processor design. A systolic starting scheme was

developed to eliminate a global start signal. This schemeallows greater scalability

and presents a method that can be used to achieve the same effect in other systolic

arrays. An architecture, which results in a speedup of 100% over the current design

was also developed. This scheme provides a way to achieve the performance gain

obtained through broadcast, without the global connections that prevent scalability.

The performance gain is achieved by eliminating idle time in the array. An alternate

schemeto utilize the idle time in the array was also developed. This schemepipelines

the computation of the U and V matrices along with the singular values, to compute

all the three matrices in the time it currently takes to compute the SVD alone.

Page 100 of 106

Page 101 of 106

87

7.2 Future Work

The error analysis of fixed-point CORDICindicates that floating-point CORDIC would

provide better numerical accuracy, since the normalization is already a part of float-

ing-point arithmetic. Future implementations of CORDIC using floating-point units

can achieve better numerical accuracy.

Most commercial chips implement a Test Access Port (TAP) to provide observ-

ability and controllability during manufacturing testing. A similar TAP is often used

on printed circuit boards. IEEE standard 1149.1 defines the TAP protocol. It appears

that an approach similar to TAP can be used to implement run time fault detection.

Adherence to a standard would allow circuits with different types of components

to interact and cooperate to detect faults in the system. Designing a complete sys-

tolic array that incorporates fault-tolerance can provide someinsight to implementing

fault-tolerance in general-purpose systems.

Since the SVD array requires O(p?) processors, large arrays would benefit from
higher levels of integration. Wafer-Scale Integration can provide the desired degree

of integration. A problem that requires further study is the design of the array as

an interconnection of modules, where each module is composedof several processors.

The numberof pins on a wafer package limit the numberof interconnections between

these modules.

Currently, WSI technologies require special post-processing steps, like laser repair,

to disconnect the faulty processors on the wafer. Fault tolerance techniques developed

for arrays of this nature can be used in WSI to eliminate the post-processing.

Page101 of 106

Page 102 of 106

Bibliography

(1] H. M. Ahmed. Signal Processing Algorithms and Architectures. PhD thesis,

Dept. of Electrical Engineering, Stanford Univ., Stanford, CA, June 1982.

[2] H. C. Andrews and C. L. Patterson. Singular Value Decompositions and Digital

Image Processing. JEEE Trans. Acoustics, Speech, and Signal Processing, ASSP-

24(1):26-53, February 1976.

J. Barnaby, B. On, and P. Szeto. A Systolic I/O Controller for the CORDIC-SVD=&

Processor. Technical Report ELEC 560, Rice University, December 1989.

[4] R. P. Brent and F. T. Luk. The Solution of Singular Value Problems Using

Systolic Arrays. Proc. SPIE Real-Time Signal Processing, 495(VII):7-12, August

1984. |

[5] R. P. Brent, F. T. Luk, and C. F. Van Loan. Computation of the Singular

Value Decomposition Using Mesh-Connected Processors. Journal of VESI and

Computer Systems, 1(3):242-270, 1985.

(6) J. R. Cavallaro. VESI CORDIC Processor Architectures for the Singular Value

Decomposition. PhD thesis, School of Electrical Engineering, Cornell Univ.,

Ithaca, NY, August 1988.

[7] J. R. Cavallaro, M. P. Keleher, R. H. Price, and G. S. Thomas. VLSI

Implementation of a CORDIC SVD Processor. Proc. 8th Biennial Univer-

88

Page 102 of 106

Page 103 of 106

89

sity/Government/Industry Microelectronics Symposium, pages 256-260, June

1989.

[8] J. R. Cavallaro and F. T. Luk. CORDIC Arithmetic for an SVD Processor.

Journal of Parallel and Distributed Computing, 5(3):271-290, June 1988.

[9] J. R. Cavallaro, C. D. Near, and M. U. Uyar. Fault-Tolerant VLSI Processor Ar-

ray for the SVD. IEEE Int. Conf. on Computer Design, pages 176-180, October

1989,

[10] D. Daggett. Decimal-Binary Conversions in CORDIC. IRE Transactions on

Electronic Computers, EC-8(3):335-339, Sept. 1959.

[11] J. M. Delosme. VLSI Implementation of Rotations in Pseudo-Euclidean Spaces.

IEEE Int. Conf. Acoustics, Speech and Signal Processing, 2:927-930, April 1983.

[12] J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart. Chapter 11:

The Singular Value Decomposition. In Linpack Users’ Guide, pages 11.1-11.23.

SIAM,Philadelphia, PA, 1979.

[13] R. A. Duryea. Finite Precision Arithmetic in Singular Value Decomposition

Processors. PhD thesis, School of Electrical Engineering, Cornell Univ., Ithaca,

NY, August 1987.

[14] G. E, Forsythe and P. Henrici. The Cyclic Jacobi Method for Computing the

Principal Values of a Complex Matrix. Transactions of the American Mathemat-

ical Society, 94(1):1-23, January 1960.

[15] G. H. Golub and C. F. Van Loan, Matriz Computations, Second Edition. Johns

Hopkins Univ. Press, Baltimore, MD, 1989.

Page 103 of 106 —

Page 104 of 106

90

[16] G. L. Haviland and A. A. Tuszynski. A CORDIC Arithmetic Processor Chip.

IEEE Trans. Computers, C-29(2):68-79, Feb. 1980.

[17] N. D. Hemkumar, K. Kota, and J. R. Cavallaro. CAPE-VLSI Implementation

of a Systolic Processor Array: Architecture, Design and Testing. In Ninth Bi-

ennial University/Government/Industry Microelectronics Symposium, June 1991

(to appear).

[18] S. L. Johnsson and VY. Krishnaswamy. Floating-Point CORDIC. Technical Re-

port YALEU/DCS/RR-473, Dept. of Computer Science, Yale Univ., New Haven,

CT, April 1986.

[19] K. Karplus. Exclusion Constraints, A New Application of Graph Algorithms

To VLSI Design. Advanced Research in VLSI, Proc. 4th MIT Conference, pages

123-139, April 1986.

[20] K. Karplus. A Formal Model for MOS Clocking Disciplines. Technical Report

TR 84-632, Dept. of Computer Science, Cornell Univ., Ithaca, NY, August 1984.

(21) H. T. Kung. WhySystolic Architectures? [EEE Computer, 15(1):37-46, January

1982.

{22] Lee-Sup Kim and Robert W. Dutton. Metastability of CMOS Latch/Flip-Flop.

IEEE Journal of Solid-State Circuits, 25(4):942-951, August 1990.

[23] F. T. Luk. Architectures for Computing Eigenvalues and SVDs. Proc. SPIE

Highly Parallel Signal Processing Architectures, 614.

[24] F. T. Luk. A Parallel Method for Computing the Generalized Singular Value

Decomposition. Journal of Parallel and Distributed Computing, 2:250-260, 1985.

Page 104 of 106

Page 105 of 106

91

[25] F.T. Luk. A Triangular Processor Array for Computing Singular Values. Journal

of Linear Algebra and Its Applications, 77:259-273, 1986.

[26] F. T. Luk. Computing the Singular Value Decomposition on the ILLIAC IV.

ACM Transactions on Mathematical Software, 6(4):524-539, December 1980.

[27] C. A. Mead and L. A. Conway. Introduction to VLSI Systems. Addison-Wesley,

Reading, MA, 1980.

(28] Orion Instruments. The OmniLab?™” User’s Manual. Menlo Park, CA, June

1990.

(29] J. K. Ousterhout, G. T. Hamachi, R. N. Mayo, W. S. Scott, and G. S. Taylor.

Magic, a VLSI Layout System. ACM/IEEE 21st Design Automation Conference,

pages 152-159, June 1984.

(30} L. H. Sibul. Application of Singular Value Decomposition to Adaptive Beamform-

ing. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, 2:33.11.1-33.11.4,

March 1984.

[31] R. Spickelmier. Octtools Distribution, Release 4.0. ERL/UC Berkeley Memoran-

dum, August 1990.

[32] H. S. Stone. High-Performance Computer Architecture. Addison-Wesley, July

1989.

[33] P. Szeto. Design of a Z-controller for the CORDIC-SVD Processor. Technical

Report ELEC 590, Rice University, May 1990.

[34] J. D. Ullman. Computational Aspects of VLSI. Computer Science Press,

Rockville, MD, 1984.

- Page 105 of 106

Page 106 of 106

92

[35] J. Volder. The CORDIC Trigonometric Computing Technique. JRE Trans.

Electronic Computers, EC-8(3):330-334, Sept. 1959.

[36] J. S. Walther. A Unified Algorithm for Elementary Functions. AFIPS Spring

Joint Computer Conf., pages 379-385, 1971.

[37] N. H. E. Weste and K. Eshraghian. Principles of CMOS VLSI Design. Addison-

Wesley Publishing Company, Reading, MA, 1985.

[38] B. Yang and J. F. Bohme. Reducing the computations of the SVD array given

by Brent and Luk. SPIE Advanced Algorithms and Architectures for Signal

Processing, 1152:92-102, 1989.

Page 106 of 106

