
Page 1 of 18 SAMSUNG EXHIBIT 1041

Proceedings of the
International Conference on

APPLICATION SPECIFIC

ARRAY PROCESSORS

September 5-7, 1990 Princeton, New Jersey

Sponsored by
Princeton University

Co-Sponsored by
Industrial Development Board for Northern Ireland

NEC Research Institute

In Cooperation with
IEEE Computer Society

Edited by

Sun-Yuan Kung Earl E. Swartzlander,Jr.
Princeton University University of Texas at Austin

jose A.B. Fortes K. Wojtek Przytula
Purdue University Hughes Research Laboratories

®
IEEE ComputerSociety Press

Los Alamitos, California

Washington « Brussels » Tokyo

Page 1 of 18 SAMSUNG EXHIBIT1041

Page 2 of 18

The papers in this book comprise the proceedings of the meeting mentioned on the
cover and title page. They reflect the authors’ opinions and are published as presented
and without change, in the interests of timely dissemination. Their inclusion in this
publication does not necessarily constitute endorsement by the editors, the IEEE
ComputerSociety Press, or The Institute of Electrical and Electronics Engineers,Inc.

10662 Los Vaqueros Circle
P.O. Box 301Published by @® IEEE Computer Society Press4
Los Alamitos, CA 90720-1264

Copyright © 1990 bythe Institute of Electrical and Electronics Engineers,Inc.

Cover designed by Jack |. Ballestero

Printed In United States of America

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source.
Libraries are permitted to photocopy beyond the limits of U.S. copyright law for private
use of patrons those articles in this volume that carry a code at the bottom ofthefirst
page, provided the per-copy fee indicated In the code is pald through the Copyright
Clearance Center, 29 Congress Street, Salem, MA 01970. Instructors are permitted to
photocopy isolated articles for noncommercial classroom use without fee. For other
copying, reprint or republication permission, write to Director, Publishing Services, IEEE,
345 East 47th Street, New York, NY 10017. All rights reserved.

IEEE Computer Society Press Order Number 2089
Library of Congress Number 90-82602

IEEE Catalog Number 90CH2920-7
ISBN 0-8186-9089-5 (case)

ISBN 0-8186-6089-9 (microfiche)
SAN 264-620X

Additional copies can be ordered from:

(EEE Computer Society Press IEEE Computer Society IEEE Computer Society IEEE Service Center
Customer Service Center 13, Avenue de I'Aquilon Ooshima Building 445 Hoes Lane

10662 Los Vaqueres Circle B-1200 Brussels 2-19-1 Minaml-Acyama, P.O. Box 1331
P.0. Box 3014 BELGIUM Minato-Ku Piscataway, NJ 08856-1331

Los Alamitos, CA 90720-1264 Tokyo 107, JAPAN

THE INSTITUTE OF ELECTRICAL
AND ELECTRONICS ENGINEERS,INC.

iv

Page 2 of 18

Page 3 of 18Page 3 of 18

Table of Contents

Clomcral (Tinie DARAIAGO 658s 4. F WA ioe. 6 0 a ween A ok I es he v
Program Chair's Message eee@eseeteeeeeeeneeeeeenreprtenetereeneeeereeteeeeeeesesaea#»esrvi
POOREI COTE 6k 6 iy Ree la 4K 6 HOTS os eS ET Oe ke vii
RORCue eles 46 sie ob ES Dec OR Wale 4-8 nce viii

Keynote Address: Application-Oriented High Speed Processors: Experiences
PRDECHVES ois F date oleta lee elle BAO. OUD GS USS so 1

Yasuo Kato

Design Methodology

Calculus of Space-Optimal Mappings of Systolic Algorithms on Processor Arrays. . . 4P. Clauss, C. Mongenet, and GR, Perrin 7
A Processor-Time Minimal Systolic Array for Transitive Closure............ 19

PR. Cappello and C.J. Scheiman
Systolic Arra lementation of Nested Loop Programs.e000008 31

J. Bu, E.F. Deprettere, andL. Thiele

Potpourri |

TheoeSystolic Back-Projection Engine (BSSBPE)................ 43. Bayfor
A Database Machine Based on Surrogate Files... . 2.2... eee eee ee 55

S.M. Chung
Systolic Architectures for Decoding Reed Solomon Codes..........00000% $7

J. Nelson, A. Rahman, and E. McQuade
Mapping High-Dimension Wavefront Computations to Silicon,+..78

C.-M. Wu, R.M. Owens, and M_J. Irwin
Systolic Architecture for 2-D Rank Order Filtering,0005 tal Fide BP 90

J.-N. Hwang andJ.-M. Jong
Scheduling Affine Paramterized Recurrences by Means of Variable Dependent
Tinting PUncCti0ns oss 6c seca cos ewes « OES ROOTED s 100

P. Quinton, C. Mauras, S. Rajopadhye, and Y. Saouter
The Logic Description Generator... 00 cere eee ee eee eee eeenas 111

B. Gokhale, A. Kopser, S.P. Lucas, andR.G. Minnich
Recursive Algorithms for AR Spectral Estimation and Their Array Realizations , . , 121

C.-W. Jen and C.-M.Liu

SeeDesigns by Non-Standard Interpretation............ 133
SystolicVLSI Compiler (SVC) for High Performance Vector Quantisation Chips. . 145

J.V. McCanny, Y. Hu, and M. Yan
Extensions to Linear Mapping for Regular Arrays with Complex
Processing Biemonts eieh i aerate easel be’. oho Lew eeeiaald, bongyn 156

J. Rosseel, F. Catthoor, and H. De Man
Design of Run-Time Fault-Tolerant Arrays of Self-Checking Processing Elements , 168

J. Franzen

Special-Purpose Systems

GRAPE: A SeeEen Computer for N-Body Problems........ want UREDJ. Makino,T. Ito, T. Ebisuzaki, and D. Sugimoto

Page 4 of 18

Building Blocks for a New Generation of Application-Specific
CORRNINOS SUSU, ses ike 4 8 6S Fk DO HELEE 05 ECE ENB Oe &190

B. Baxter, G. Cox, T. Gross, H.T. Kung, D. O'Hallaron, C. Peterson,
J. Webb, and P. Wiley

Reconfigurable Vector Register Windows for Fast Matrix Computation on the
ringsSelea eee oe MEG wk ocsemeiea me RRC RUS 202. K. Panda and K. Hwang
Massively Parallel Architecture: Application to Neural Net Emulation and Image
Recomsenguet eteoyieet 2598s Ska Pe eS Gee RS PE214

B. Faure, D. Lattard and G. Mazare
A Real-Time Software Programmable Processor for HDTV and Stereo
Pi ORE at meena Siam & LN eR oe aE oie BR eT 226

T. Nishitani, I. Tamitani, H. Harasaki, and M. Yano

Mapping Applications onto Architectures

Mapping Algorithms Onto the TUT Cellular Array Processor.............. 235
J. Viitanen, T. Korpiharju, J. Takala, and H. Kiminkinen

A 3-D Wafer Scale Architecture for Early Vision Procemng OE as 8S 247
S.T. Toborg

Algorithmic Mapping of Neural Network Models onto Parallel SIMD Machines. . .259
V.K Prasanna Kumar and K.W. Przytula

Implementation of Systolic Moan Using Pipelined Functional Units....... 272M.Valero-Garcta, J.J. Navarro, J.M. Llaberta, and M. Valero
Array Processing on Finite Polynomial RINSE co eH aee ws 4.9K & DeLee Fs 284N. Wigley and G.A. Jullien
Potpourri Il

The RAP: A Ring Array Processor for Layered Network Calculations,........ 296N. licesonJ. Beck, P. Kohn, J. Bilmes, E. Allman, and J. Beer
Linearign for Residue MAppens SR EY Me ST IE Oe rR 309A. Skavantzos and Z.BA Fault-Tolerant Two-Dimensional Aenibe TINGE SF ore le LS A317

J.G. Krammer and H.Arif

Channel Complexity Anal:yale for Reconfigurable VLSI/WSI Processor Arrays, . . 329P.K. Rhee andJH.

Digit-Gerial DSP Archsectorea 3) Ro Ph eG TR ae TR RY 341
K.K. Parhi and C.-Y. Wang

PASIC: A Sensor/Processor Array for EE ViRiOn 26. AR PY tad. 352
K. Chen, P.-E. Danielsson, and A. om

An Analog VLSI Array Processor for Classical and Connectionist AI......... 367

JW.Mills and C.A. Daffinger
Systolic Two-Port Adaptor for High Performance WaveDigital Filtering....... 379

J.V. McCanny and RJ. Singh

An Multilayer Mone Model and Array Processor Implementation.389sect Fu and C.C. Chiaguration of FFT Are A Flow-Driven Approach.008%401aTace.and N. Scarabottolo
Towards the Automated Design of Application Specific Array
Procestars GASAPS) «vs 4. sss 6 86s eee bu po er Ree aes ree 414

AP. Marriott, A.W.G. Duller, R.H. Storer, AR. Thomson, and MR. Pout
Fault-Tolerant Array Processors Using N-and-Half-Track Switches.......... 426

JASN. Jean

x

Page 4 of 18

Page 5 of 18Page 5 of 18

Domain Flow and Streaming Architectures........... Math eer R . » 438
ETL. Omtzigt

An Improved Systolic Extended Euclidean Algorithm for Reed-Solomon
Decoding: Design and Implementation.,........ eae re wees 448

R. Doyle, P. Fitzpatrick, andJ. Nelson

System Bullding Blocks

Digit-Serial VLSI Microarchitecture. .. 1. ee ee ee eee457S.G. Smith, J.G. Payne, andR.R.W. Morgan
CMOS VLSI Lukasiewicz ANTES og nae c tne emcanic pena tae ae aes yobont it469

J.W. Mills and C.A. Daffinger

TyeeS pailsAMisiatye Beanie eh eee ee ee f nape Fw481
ASP Modulees Building Blocks for Appllewice-Sogo Massively ParallelPCIE 8 5 eer crmcvasas triacs cones necienial ne Abe Keen URARVN A OES 493

R.M.Lea

Designing Specific Systolic Arrays with the APII5C Chip...0005.505
P. Frison, E. Gautrin, D. Lavenier, and J.L. Scharbarg

Special-Purpose Systems 2

A Prototype for a Fault-TolerantParallel Diput Signal Process0e, «0. ss es-00 518
B.R. Musicus, A.oeand AJ. WeiaeOoania ere ee inlay SEI EN Sana NTR OR eee530

A VLSi Architecture for Simplified Arithmetic Fourier Transform Algorithm. ..,542
1.8. Reed, M.T. Shih, E. Hendon, TK.aoe:and D.W.TuftsFine Grain System Architectures for Systolic Emulation of NeuralyeAion. 554
U. Ramacher and W. Raab

Programming Environment for a Line Processor SYMPATI-2.........0005 567
P. Fernandez, P. Adam, D. Juvin, andJ.-L. Basille

Potpourri Ill

A Feedback Comerfor the Image Understanding Architecture..........579D. Rana and C.C. Weems
A Design Methodology for Fixed-Size Systolic Arrays. P.S eT REAR EES 591

J. Bu, E.F. Deprettere, and P. Dewilde
A Formal Design Methodology for Parallel Architectures...00000- 603

M.A. Bayoumi and K.M. Elleithy
A Multiple-Level Heterogeneous teafor Image Understanding....... 615D.B Shu, J.G. Nash, and C.C. Weems

EtenSpecific VLSIArchitectures Based on De Bruijn Graphs......... 628
A biaaidatteaagent toaMatrixeaeot onto Local-AccessProcessor ArrayS....... Teeee a ee et:

J.H. Moreno and T. Lang

eoCoprocessor Computer Architecture...+e eee eeee 653
g Pyramids in Array Processors with Pipelined Busses..........+- 665

Z. Guo and R.G. Melhem

Page 6 of 18

Implementation of ANN on RISC Processor Array... ..seeeee eee eee 677

A.Hiraiwa, M.Fujita, S. Kurosu,S. it~and M.InoueSystolic-Based ting Machinery for Radar Signal Processing Studies......689
Sees erB. Cho, T. Greenlay, J. Orlando, C. Deng,

A Systolic Array for Nonlinear Adaptive Filtering and Pattern Recognition......700
J.G. McWhirter, D.S. Broomhead, and TJ. Shepherd

Parallel Algorithm for Traveling Salesman Problem on SIMD Machines Using
rNATION (55 os ies Walk ky Sis ele ww nO eC ae aca bees we et 712

C.S. Jeong andM.H. Kim

The Design of aig-Performance Scalable Architecture foranPURO 6 nk: 0 3.15.3 noses ERT eS 8S GAR Rk BIN 722CT. oroW. Liu,T. Feag and R. Cavin
Testing a Motion Estimator ArraaOi naar ae ie hance pan cane ae ee 734.P. Marnane and W.R. Moore

Systolic Arrays

Spacetime-minimal Systolic Architectures for Gaussian Elimination and theMashaMEOPEN cei ote Werder ek SOR © bee ae ES 746
A. Benaini and Y. Robert

Two-Level Pipelined Implementation of areoke2Block HouseholderTransformation with Application to RLS Algorithm.00 ee eee758
K.J.R. Liu, SF. Hsieh, and K. Yao

Bit-Level Systolic Algorithm for the Symmetric Eigenvalue Problem. 770
J.-M. Delosme

A Practical Runtime Test Method for Parallel Lattice-Gas Automata..........782
R. Squier and K. Steiglitz

A cyanieTend Progranmrane Eatosees 202°, Se i ea ee se794P

AGUTINGRE Sccvicc scr ere ec Cessation save enes a wees sea ee805

xii

Page 6 of 18

Page 7 of 18

This material may be protected by Copyright law [Title 17 U.S. Code}

BIT-LEVEL SYSTOLIC ALGORITHM

FOR THE SYMMETRIC EIGENVALUE PROBLEM

JEAN-MARC DELOSME

Department ofElectrical Engineering
Yale University

An arithmetic algorithm is presented which speeds up the parallel Jacobi method for the
eigen-decomposition of real symmetric matrices. The matrices to which the plane Jacobi
rotations are applied are decomposed into even and odd part, enabling the application of
the rotations from a single side and thus removing some sequentiality from the original
method. The rotations are evaluated and applied in a fully concurrent fashion with the
help of an implicit CORDICalgorithm. In addition, the CORDIC algorithm can perform
rotations with variable resolution, which lead to a significant reduction in the total com-
putation time.

I. INTRODUCTION

The eigenvalue decomposition of a real symmetric matrix or the singular value
decomposition (SVD) of an arbitrary real matrix may be obtained by the Jacobi method
(Jacobi/Kogbetliantz). This method can be parallelized to a high degree [1], [2], result-
ing in a computation time that is approximately linear in the smallest dimension of the
matrix. Furthermore the ratio of parallel to sequential hardware cost is of the same
order as the gain in computation time. Thus, the parallel hardware is exercised with a
fairly high efficiency, essentially independent of the matrix (smallest) dimension.

Although the Jacobi method requires more operations than the justly popular QR
method (Francis/Golub and Kahan), a significantly higher degree of parallelism may be
extracted from it, making it the method of choice for the fast diagonalization, via orthog-
onal transformations, of unstructured dense matrices. Our objective is to determine
extremely fast ways of performing this diagonalization in the context of signal and image
processing. This entails, starting from the Jacobi method and the parallelization scheme
of Brent and Luk, the design of algorithms at a detailed level and the development of
the associated, application-specific, array architectures. In this paper, after analyzing
the elementary mathematical operations in the Jacobi method (i.e. the evaluation and
application of Jacobi rotations), we devise arithmetic algorithms that effect these
mathematical operations with few primitive operations (i.e. few shifts and adds) and
enable the most efficient use of the parallel hardware. Moreover we modify the Jacobi
algorithm in order to reduce the total number of primitive operations for achieving
matrix diagonalization.

By targeting an implementation that is as fast as can be found, we are led to
exploring and exploiting as much as possible the mathematical structure of the problem,
hence to finding arithmetic algorithms better adapted to the problem at hand. Imple-
mentations which match lower data rates can then be generated by a fairly standard
process of sequentialization. By considering the SVD problem, which may be viewed as
a generalization of the symmetric eigenvalue problem, wefirst direct our search for struc-
ture toward fundamental objects and properties. The special features due to symmetry
are exploited in a second phase. Our approach to algorithm design is thus hierarchical:
first the main structure, then the refinements. This way we avoid focusing early on
non-fundamental features and, as a result, being trapped in a local optimum. In fact, in
order to uncover a global solution, we have embedded the problem into a further

770 CH2920-7/90/0000/0770$01.00 © 1990 IEEE

Page 7 of 18

Page 8 of 18

Systolic Arrays 771

generalization: the SVD problem for complez matrices. Although this generalization is
not discussed in this paper(it is presented in [6]), it did guide us in our search.

The parallel Jacobi algorithm of Brent and Lukis briefly described in Section II.
This algorithm exhibits close to maximal parallelism and does it at a close to minimal
communication cost, where ‘close to’ means ‘up to a small constant multiplicative factor’
[7]. It provides the starting point for the process of refinement, taking the above multi-
plicative factors closer to unity, that brings forth our array for the eigen-decomposition
of real symmetric matrices. The Jacobi method is a succession of parallel steps, starting
from an initial square matrix and converging to a diagonal matrix, in which plane rota-
tions are applied on both sides of the 2x2 submatrices of the currentiterate. In Sec-
tion III a mathematical property, the existence of the decomposition of Clifford numbers
into even and odd parts, is shown to enable the application of the rotations from the
sameside, thus leading to a parallel procedure for the evaluation and the application of
the Jacobi rotations. While this procedure would cost many operations if the rotations
were evaluated using the standard arithmetic operations, +, x, /, V, it becomes cheapif
CORDICarithmetic, based on shifts and adds and reviewed in Section IV, is employed.
Our ‘implicit? CORDIC algorithm for the symmetric eigenvalue problem, which does not
compute rotation angles explicitly, is presented in Section V. Evaluation and application
of the rotations may be fully overlapped with this algorithm, a feat which cannot be
achieved with an explicit CORDIC algorithm.

II. ARRAY ARCHITECTURE

The method of Jacobi, first applied to the eigen-decomposition of real symmetric
matrices B = UAU?, with U orthogonal and A real diagonal, was generalized by
Kogbetliantz (1955) to the computation of the SVD of a real rectangular matrix
A =VZU7, where U and V_ have orthonormal columns and © is real diagonal
with positive entries. We shall first expose the general case and then turn to the sym-
metric case, which can be viewed as a special case.

Without loss of generality, A may be assumed to have more rows than columns.
By applying plane, Givens, rotations from the left, A may be decomposed into QB
where Q has orthonormal columns and B is square. Thus the computation of the
SVD of a rectangular matrix A reduces to the SVD computation of an associated
square matrix B, and we can from now on only consider the decomposition of square
matrices B.

Starting from a general real nxn matrix B, the Jacobi method performs a short
sequence of sweeps to bring the matrix to diagonal form. In each sweep n(n-1)/2
pairs of plane rotations are applied to both sides of the matrix to annihilate each of the
n(n-1) off-diagonal elements once. Each pair of rotations may be represented by two
nxn matrices, J;;, applied to the matrix from the right, and J;;, applied to the
matrix from the left, where the couple ij, with 1<i <j <n, is distinct for each pair
in the sweep. Both rotation matrices differ from the identity matrix of order n_ by the
principal submatrix formed at the intersection of the row and columnpairs correspond-
ing to i and j. These principal submatrices have the form

cos @;; sin 8;; cos 6/; -sin 0/;
for J;; and for Jj,

-sin 6;; cos 6;; sin 6/; cos ;;
and the angles @;; and 9;; are selected to zero out simultaneously the ij-th and ji-th
entry of the matrix to which J;; and Jj; are applied.

Page 8 of 18

Page 9 of 18

712 International Conference on Application Specific Array Processors

The simultaneous application of p non-conflicting pairs of rotations, zeroing out
2p entries of the matrix to which they are applied, is called a (parallel) step. For ease
of presentation we shall assume that n_ is even and refer to [1] and [7] for n odd.
Since any partition of the set {1,...,n} into pairs {i,j} has n/2 parts, a maxi-
mally parallel step would apply n/2 pairs of rotations simultaneously. If a sweep is
decomposed into a sequence of such steps, each forcing mn matrix entries to 0,andif for
all the steps in the same sweep the indices ij of the pairs of rotations are distinct, the
number of steps in a sweep is minimal, equal to n-1. Such a scheme may be con-
structed by selecting a cyclic permutation, P, of the indices {2,3,...,n}. By parti-
tioning into contiguous pairs the ordered concatenation {1}US, where S is the
ordered set {2,3,...,n}, a set of pairs, {12; 34; ...;n-1,n }, is obtained whose orderis
induced from the order {1} US. These are the pairs of indices for the pairs of rotations
applied in the first step of a sweep. Next the ordered concatenation {1} U PS is parti-
tioned into contiguous pairs, with order induced by the order {1} U PS, defining the
pairs of indices for the second step. The order {1} U P?S defines the pairs of indices
for the third step, and so on until {1}UP"S for the (n-1)-th step. The following
order is {1}U P""S = {1} US; indeed this is the beginning of the next sweep. We
shall index the pairs at a given step & by a single number J,1< I <n/2; thus Jj;
will alternately be written J, and, in particular, J3, and J, represent the same
matrix at step 1. Brent and Luk haveselected the cyclic permutation

2-3-5 --- +~n-3Bon-lon-n-2- --- 6-4-2,

which has the desirable property that the indices ij in the J-th pair at step k come
from the neighboring pairs at step ‘-1, with indices IJ-1, I,or J+1.

The matrix B is transformed into a diagonal matrix through a sequence of steps,
starting with B y= B and computing at step k

n a /2

B, = iL By il Jj
fel F=1

Although this is not written explicitly, the two sets of rotations {J;,1<I <n/2} and
{J;',1< I <n/2} depend on the step &. Moreover, since the rotations within each
set are disjoint, each set of rotations is applied in parallel. At a high level, the scheme of
Brent and Luk leads directly to a parallel architecture for the SVD, taking the form of a
square array with n/2 processors on a side. Processor JJ holds at the beginning of
step k the 2x2 submatrix of B,_, sitting at the intersection of rows 1 and j and
of columns r and s, where ij and rs are respectively the J-th and J-th pairs of
indices at step k. Each diagonal processor, such as processor JJ or processor JJ,
evaluates the two plane rotations, J; and J;' or J; and Jj, that zero out the two
off-diagonal entries of the submatrix it holds, and updates accordingly the two diagonal
entries. From each diagonal processor a representation of each of the two rotations is
sent either along the column to which the processor belongs, for the rotations applied
from the right such as J; and J,, or along the corresponding row, for the rotations
applied from the left such as J;' and Jj. (The choice of representation per se will be
discussed in Section V.) Each off-diagonal processor, JJ with I] #J, applies Jy
from the right and J;' from the left to the submatrix it holds. Then the entries are
exchanged between neighboring processors in the array in such a way that processor IJ
holds at the beginning of step k+1 the submatrix whose row indices and column
indices are respectively the 7-th and J-th pair of indices at step k +1.

For the symmetric eigenvalue problem, at every step J,’ is imposed to be equal to
Jf, 1<JI<n/2. This reduces the amount of computation to be performed by the
diagonal processors. Moreover, since all the iterates B, are symmetric, the array is
truncated to a triangular array,i.e. all the processors below the diagonal are removed.
Such an array is displayed in Figure 1 for n = 10; the arrows indicate the communica-
tions taking place during the exchanges while the horizontal and vertical links that carry

Page 9 of 18

Page 10 of 18

Systolic Arrays 773

the representations of the rotations are not shown. (Note that the amount of data com-
municated during the exchanges could be reduced to about half, which can be argued to
be minimal [7], if the order used so far, {1}U P* "5 with P the cyclic permutation
of Brent and Luk and & the step number, is kept when & is odd andis replaced by
P({i}U P*+3), where P{1,2,...,n} = {3,4, 1,2, 7,8,5,6,°--}, when k is even.
However this scheme is more complicated to implement.)

f_

Pr ie eee ee fpCoty sty eel le)

Figure 1. Array for the eigen-decomposition of a symmetric matrix of order 10.

III. CLIFFORD ALGEBRA

Weshall consider throughout this section the SVD problem;specialization of the
results to the symmetric eigenvalue problem will come in Section V. A diagonal proces-
sor, II, evaluates the left and right rotations, J;' and J,;, which diagonalize the 2x2
matrix it contains, and computes the new diagonal entries:

cos 6; -sin 6; |: ‘ cos 6; sin 6; zO
sin 6; cos6;|Le d -sin 0; cos 6; od

An off-diagonal processor, IJ, applies from the left the rotation J;' received from pro-
cessor JJ to the matrix it holds, and applies from the right the rotation J, received
from processor JJ:

cos @, sin 6ycos 6; -sin 07 ° bc d sin 6; cos 6; -sin 87 cos Oy

In a search for the niost parallel way of evaluating the rotations and updating the
diagonal entries, and also of applying the rotations, we shall study the structure of the
space of real 2x2 matrices. The underlying structure to be exploited is that of a
Clifford algebra: the Clifford algebra of order 2, C . To introduce this structure, we
start from a vector space over the reals, E 2, of dimension 2; this vector space is a sub-
space of C. The reason for the notation E, is that an Euclidean norm is defined on
the vector space, given by the quadratic form u? 4u,? +u?, where u = (u, u,)

Page 10 of 18

Page 11 of 18

774 International Conference on Application Specific Array Processors

belongs to E . (Note that a Clifford algebra could also be defined starting with a
pseudo-Euclidean form, uj? -u? in two dimensions.) The scalar product of two vec-
tors, u and v, is also an element of C,, defined as u-v 4 (uv + vu)/2 where,
clearly, uv +vu =(u +v)*?-u?-v? isa scalar.

We have not yet defined uv, the Clifford product of the vectors u and v.
Since uv = (uv + vu)/2+(uv —vu)/2, if the exterior product (uv -vu)/24
u A v is defined, then the (Clifford) productis defined: uv = u-v +u A v. It fol-
lows from the definition of the exterior product that v A u =-u A v. Therefore,
selecting an orthogonal basis {e,,e,} of Ej, u A v =(uje,+u e,)A (vje,+
U2@2) = (u,v2—-u42v,)e;A e. Thus, geometrically, u A v_ defines the area of the
parallelogram with sides u and v. Furthermore the product uv is equal to
(u,v, + u2v2)I + (uyv2-u2v,)e,A e, the linear combination of a scalar (propor-
tional to the scalar unit, denoted by I) and a bivector (proportional to e, A e>).

The Clifford algebra C, is defined as the vector space over the reals which is the
closure of E under Clifford multiplication. Already we have found two subspaces of
C,, E 2 and the two-dimensional subspace of the products of vectors. To go further we
would have to formally define, by induction, the product of arbitrary elements of C 5.
Because of a lack of space weshall instead define the product via the shortcut of an iso-
morphism. The isomorphism results from the identification:

1 0 0 1

e 1= }
0 -1 1 0

and Clifford product = matriz product. The reader may check that
1 0

» €&29=

e; =e,e,= | | =I, eye, =I, ee, =(e,e,+e,¢,)/2 = 01,01

hence e, and e, form an orthonormal basis of E. Moreover
01€,A €2 = (e;e2-e€,€,)/2 = | |-1 0

Hence linear combinations of scalars and bivectors are of the form

Pi P2

P = pil + pre, A eg = 9
“P2 Pi

and vectors are of the form

41 42

GQ = 121+ 9282 =
Gq2 -41

Now we observe that any 2x2 real matrix m may be decomposed as p +q:

a b PitP2t42
n= =pt+q= ‘

e d “Pot. Pi-%

with p,= = te, P2= — a= eae and qe. Thus the space of
linear combinations of scalars, vectors and bivectorsis isomorphic to the linear space of
real 2x2 matrices. Since the set of real 2x2 matrices is closed under matrix multipli-
cation, the space of linear combinations of scalars, vectors and bivectors is also closed
under Clifford multiplication and is therefore the whole of the Clifford algebra C9.

Page 11 of 18

Page 12 of 18

Systolic Arrays 715

Upon identifying the real 2x2 matrices with the Clifford algebra C , a decompo-
sition of the real 2x2 matrices into two parts, p and q, has been brought to the
fore. This is an instance of the so-called decomposition of Clifford numbers into even
and odd parts. Indeed a Clifford algebra C,,, built from a vector space E ,,, has for
elements real linear combinations of scalars or 0-vectors, vectors or 1-vectors, bivectors
or 2-vectors, and so on up to m-vectors. Thus any element may be decomposed in a
unique way as the sum of an even part (a linear combination of even vectors) and an
odd part (a linear combination of odd vectors). In other words C,, is the direct sum
of two subspaces, an ‘even’ subspace denoted C *, and an ‘odd’ subspace denoted
C,,- The even subspace is closed under Clifford multiplication, written symbolically
C,;,C+t+=C fF, consequently it is a subalgebra of C,,. The odd subspacesatisfies
C,C,=CF ad C7jCt=CirC, =C,. (Of interest for the SVD computa-
tion of complex matrices is the Clifford algebra C4, isomorphic to the 2" =8 dimen-
sional space—over the reals—of complex 2x2 matrices, and with even subspace the
quaternions and odd subspace the antiquaternions (6].) The even subspace of C, is the
algebra of complez numbers; by extension, the odd subspace of C,, E, may becalled
the subspace of anticomplez numbers.

The units of the even subspace of C2 are elements p = p,I + p.e, Ae, with
unit norm, where the norm is naturally defined as (p? + p2)*. Therefore they can be
written under the form u(@) = cos@I + sin®e, Ae, with 0 < @< 2m, and hence they
are the plane rotations. It is easy to check (and this may also be derived as a special
case of a property of quaternions) that plane rotations commute with even Clifford
numbers and anticommute with odd Clifford numbers:

pu()= u()p , qu(@) = u(-)q

This enables us to pull the Jacobi rotations from the right to the left, both for the
evaluation of the rotations in the diagonal processors and for their application in the
off-diagonal processors:
- evaluation in processor II,

u(-9;)m u(@;) = u(-7) p u(6;) + u(-97)q u(4;)

= u(-0;)u(9;)p + u(-9;)u(-4;)q ,

hence, using the property that u(@) is isomorphic to the complex number exp(i@),

a 0

u(-67)m u(6;) = u(-07+6;)p +u(-9/-6))q =m =||
0d

- application in processor IJ,

u (-97)m u(@;) = u(-f) p u(6z) + u(-97)q u (Iz)

u(-0; + 0;)p +u(-0j-4,)q

hence, by pulling the rotations from the right to the left and exploiting the fact that p
and q_ are fully defined by their first column, the Jacobi rotations may be applied with
2 two-dimensional vector rotations instead of 4.

Representations of u(@,;) and u(-0;) must be computed as intermediate forms
in order to apply the Jacobi rotations and build up the matrices of singular vectors (or
eigenvectors if Bis symmetric) U and V7?as the products, accumulated over then n/2

steps, of the matrices J; and il J;', respectively. The evaluation of these
cag Isl

representations may be performed by finding the rotations u(@;) and u(-6;‘), where
6; 46,-0; and 6+ 46, +6}, that force the second component of the vectors

Page 12 of 18

Page 13 of 18

776 International Conference on Application Specific Array Processors

(py -p>)? and (q1 ial" s respectively, to 0. This approach, exploiting the decompo-
sition of Clifford numbers into even and odd part, has been used on general purpose
computers, using standard arithmetic, from very early on (e.g. Forsythe and Henrici,
1960). However the use of that decomposition for the application of the rotations did
not follow. To understand why we have to place ourselves in the context of machines
using standard arithmetic. We first note that in this context the passage from
Sé, & {u (67), u(-6),1< 1 <n/2} to Sting & {u (07), u (-O7),1 <5 1 < n/2}, and
the passage from Sjig, to Spy 4S {u(8y),u(-05),1<1¢I <n /2}, where
07, 20, -0; and 675 4 6; + 87, are done via the trigonometric formulas for the
tangents of the rotation angles, using the +, x and / operations andalso, for the first
passage, V operations since tangents of half-angles must then be computed. The next
observation is that a rotation is ultimately represented by its cosine and sine in this con-
text and, given an intermediate tangent representation, generating the cosine/sine
representation requires +, x, /, andVoperations. The reason for not exploiting the
decomposition in a sequential setting is now clear: the computation of the cosine/sine
representation of S,,, given the tangent representation of Sdiag Tequires O(n”) +,
x, /, and V operations while the computation of the cosine/sine representation of Seiag
given its tangent representation costs only O(n) +, x, /, and V operations; the halv-
ing of multiplications obtained when performing the two-dimensional vector rotations
using the decomposition does not offset the large increase in +, x, /, and V operations
needed to find the representation of the rotations. The bottom line in a parallel setting
is that the use of the decomposition is not advantageous either, because it saves the time
of the rotation of a two-dimensional vector, i.e. a multiply and add, at the expense of
the time of the computation of tan @j, or tan Oj; given tan@, and tan 0j, i.e. a
multiply and add and a divide. Yet the existence of the decomposition signals something
significant. It removes some sequentiality at the level of the rotation operations and, if
an arithmetic implementation of the rotations is employed that is better adapted to
these operations than the traditional decomposition into + and x (and the derived /
and V) the advantage offered by the decomposition should clearly come out. CORDIC
arithmetic provides the kind of ‘adapted’ implementation we are looking for.

IV. EXPLICIT AND IMPLICIT CORDIC ALGORITHMS

The CORDIC algorithm of Volder (1959) implements a plane rotation as a
sequence of elementary plane rotations. The elementary rotations are rotations with
tangents equal to o;t;, where o; = +1, t; = 2%, 1<i</ and I defines the angu-
lar resolution, 27. Multiplying a two-dimensional vector by an elementary rotation,

1 1 o; t;

Vil + t; -0; t; 1

would be easy to do with two shift-and-adds but for the scaling factor in front of the
matrix. By pulling all the scaling factors together into a single multiplicative constant
(for a given resolution), the basic form of the CORDIC algorithm is obtained:

Explicit CORDICalgorithm for plane rotation
- evaluation of a rotation that forces a vector (z y)* into the form (z’ 0)7

initialization: z;=2, y,; = y, 2,=0, 0, = sign (z,y;)
for 1 <i <l

Zin = Bot Oty;

Vier = — O82; + yi
441 = 2% —o,tan” t; (angles tan’ #; stored ina table)

Page 13 of 18

Page 14 of 18

Systolic Arrays T77

Oi41 = sign (2; y;)
- application of a rotation by an angle z toavector (x y)?

initialization: 2; = 2, yy, =Y, 21 = 2, O = —sign (z,)
for 1 <i <l

Ti+. = z+ ot y;

Mio = ~ Opa + ye
tn = z —o,;tan” f;
Tin. = ~ Sign z;

These two sequences of iterations are both followed by the multiplication by the global
multiplicative constant, decomposed into a minimal-length sequence of shift-and-adds.

The evaluation procedure employs essentially a bisection technique to force y;
toward 0, and concurrently updates the angle ‘counter’ z;. The application procedure
employs the samebisection technique to force the angle to zero, hence decomposing it
into signed increments, and meanwhile rotates the vector by this sequence of increments.

Quite often, and this is true for the Jacobi method, a rotation that is to be applied
is evaluated first, by forcing a vector along the first axis. In such instances it is not
necessary to compute the rotation angle explicitly; the sequence of bits {o;,1< i <1}
also defines the angle, albeit in an implicit fashion. Given such a sequence, determined
by forcing a vector along the first axis, a vector can be rotated by the corresponding
angle with no need for an angle counter. The implicit CORDIC algorithm for plane
totation follows: just remove any reference to the variable z in both evaluation and
application procedures; the sequence {o;,1 <i <1} will be given, instead of the angle
z, for the application procedure. (The implicit algorithm is more fundamental than the
ezplictt one; it can be generalized to the parallel implementation of higher dimensional
rotations while the ezplictt algorithm cannot{5}, [6].)

Vv. CORDIC JACOBI ROTATIONS

The first publication proposing that the CORDIC algorithm for plane rotation be
used to implement the parallel Jacobi algorithm of Brent and Luk followed very closely
the traditional approach, using standard arithmetic [3]. The explicit algorithm is used.
The representation of Sé, in terms of the angles, 9; and 6;*, is computed by rotating
in parallel onto the first axis the first columns of the even and odd parts of the 2x2

submatrices held in the diagonal processors. Recalling a result from Section III, these
columns are formed, quite easily, as (p, -p2)) =2(a+d ec-b)? and
(q1 92)’ = 2(a-d c+)". The representation of $4, in terms of the
angles, 6, and 67, is then obtained by means of additions and single bit shifts:
6, = (0; + 0;)/2, 9; = (0;*-67)/2. The application of the rotations in the off-
diagonal processors is done without the help of the decomposition into even and odd
part, by applying in parallel to the two rows of the 2x2 submatrix held in processor
IJ the rotation of angle @, and then applying in parallel to the two columns of the
result the rotation of angle -0;. The computation of the updated, diagonal, matrices in
the diagonal processors is done similarly, hence diagonal and off-diagonal processors
finish a step at the same time. If we take as time unit the time to effect 2 CORDIC
rotation, this implementation calls for 1 unit to evaluate S,;,, and 2 units to apply the
rotations, totaling 3 units per step.

Yang and Boéhmerecently observed that the explicit CORDIC algorithm enables a
faster implementation of the Jacobi rotations, fully based on the decomposition of 2x2
real matrices into even and odd part. The representation of Sj*, is computed as in [3].
Following [4], the computation of the diagonal entries also exploits the decomposition:

Page 14 of 18

Page 15 of 18Page 15 of 18

7718 International Conference on Application Specific Array Processors

once the first columns of p and q are rotated into (p{ 0)7 and (qj 0)7, the
entries are obtained readily as @ =p; +g; and d =p; -q,- Therepresentation
of S,s in terms of the angles 67, and 675 is obtained byfirst evaluating the angles
6; and 6; as in [3] and then merely adding and subtracting: 07; = 0; -6; and
675 4 0, +6}. The computation of S,,, is definitely much easier than with standard
arithmetic! The application of the rotations in the off-diagonal processors is done by
first decomposing—as done in the diagonal processors—the 2X2 matrix held into a pro-
cessor into even and odd part, m = p +q, then applying in parallel the rotation by
6;, to the first column of P and the rotation by -@j} to the first column of q,
obtaining vectors (p/ -pj)” and (q{/ qz)7, and finally reconstructing the rotated
matrix as a’= pj +q{, b’'=p, +43, ¢’=-pz +42, and d’=p; -q2. This
implementation calls for 1 unit to diagonalize the matrices held in the diagonal proces-
sors and evaluate S,s, , and 1 unit to apply the rotations, totaling 2 units per step. By
better exploiting the mathematical structure than in [3], computation time is reduced by
1/3 with the same hardware.

The use of an ezplicit CORDIC algorithm imposes a degree of sequentiality which
can be avoided in an implementation based on an implicit CORDIC algorithm. With
the ezplicit algorithm the off-diagonal processors can start applying the rotations of a
given step only after the rotation angles have been evaluated in the diagonal processors.
Moreover, because of the exchange between processors, and more specifically between
diagonal and off-diagonal processors, concluding each step, the ‘evaluation’ in the diago-
nal processors and the ‘application’ in the off-diagonal processors cannot be pipelined.
This leads to the 1+ 2 time units per step of [3] and the 1+ 1 time units per step of
[9], with the off-diagonal processors idle during the first time unit. However, as was first
proposed in [4], the evaluation and application may be overlapped if the rotation angles
are computed implicitly, bit by bit, and these bits are sent as soon as computed to the
off-diagonal processors.

Assume an implicit CORDIC algorithm is employed in order to overlap the evalua-
tion of the rotations in the diagonal processors and their application in the off-diagonal
processors. In order to evaluate the rotations, and also to apply them as fast as possible,
the decomposition into even and odd part is used in both diagonal and off-diagonal pro-
cessors. Consider an off-diagonal processor, JJ. To generate an implicit, bit-level,
representation of the angles 6j, = 0, -—0; and 0;5 4 0, + 6}, implicit representations
of 6; and 0} must first be generated, in processors JJ and JI respectively. These
representations are themselves obtained from the bit level representations of {07, 67}
and {6;7,0j+}, using the relations 6, = (87 +63)/2 and 6; = (0;+-6;)/2. Now the
bits, or better ‘digits’, in the implicit representations are coefficients of angles onto the
basis formed by the ‘elementary’ angles tant;. Since t; = 2* these angles are not
commensurable, in the sense that one angle cannot be obtained as a linear combination
of other angles with coefficients that are signed powers of two,i.e. by which a multipli-
cation can easily be performed. This justifies the ‘basis’ denomination employed earlier.
This also implies that if an angle is represented by a sequence o 4S {o;,1<i </}
with o; =+1 and another angle is represented by a sequence o’ 2 {a/,1<i <1}
with o/ = +1, finding a representation of the sum of the two angles by a sequence
ot Af{ot, 1<i <1} with of = +1 is difficult. In particular the computation of oy
depends on the whole sets o and o’. Sequentiality would thus come back to hauntus.
To get around this problem one should pursue the ‘basis’ paradigm and think of the
sequences o and o’ as vectors, with ith component o; and oj respectively. A
representation, o+, of the sum is obtained by merely adding components and definingo;+ = 0; +0, equal to 0 or +2. This construction is denoted ot = 0 +0’, like a
vector addition. In general the components, or digits, in the representations are 0 or
signed powers of two. Thus, if an angle must be divided by two, it should not have
components equal to +1. Since 6; = (0j;+-67)/2 the components of of and oj

Page 16 of 18

Systolic Arrays 779

may, it seems, be taken equal to +1, then of = 2"\(oj*-o7) has components equal to
0 or +1. However this means that on the ith iteration, the elementary rotation would
have tangent 0 or +t;. The scaling factors differ in both cases and, to preserve a con-
stant global scaling, when the tangent is 0 the components of the vector being rotated,
z; and y;, should be multiplied by 1/1 + ¢;*. Unfortunately this cannot be done in a
single iteration with shift-and-add hardware. On the other hand, if the components of
o;/2 and oj'/2 are taken equal to +1, they can be evaluated by rotating along the
first axis the first columns of p and q using an implicit CORDIC algorithm with
‘double’ elementary rotations

1 o;t; 1-t,? o;° 2¢;"1 1 1
11| V1l4+t; —o; t; 1 1+ ¢,? —6;° 2t; 1-t;?

Indeed, the ith elementary rotation rotates by +2tan™t; and hence the process of
rotating with these elementary rotations a vector along the first axis generates the
decomposition {o; = +1,1<% </} of half the angle between the vector and the axis.
Of course, as in the standard algorithm of Section IV, the rotations are applied unscaled
and the multiplication by the constant equal to the the product of the scaling factors,
decomposed into a short sequence of shifts and adds, is applied afterwards. From the
implicit representations o7/2 and oj*/2, with components +1, the implicit representa-
tion of 0; is obtained readily as: oj = oj'/2-o7/2, with components 0 or +1.
Similarly, the representation of 6, is obtained from oj/2 and oj/2 according to:
ao, =a}/2+ 07/2. However, because we use the decomposition into even and odd
part, we are really interested in 97, and 6;5. Their implicit representations are
Ojy = 9; -o;7 and of; =o; + 07 or, in terms of the sequences evaluated by the diag-
onal processors JJ and JJ,

O77 =of[2+ajz/2-of[2+ 07/2 , of; =of/2+oj/2+ of/2-o;/2 .
Therefore the representations have components 0, +2 or +4.

A highly parallel implementation of the parallel Jacobi algorithm of Brent and Luk
for the SVD, based both on the decomposition of 2x2 matrices into even and odd part
and on the use of implicit CORDIC algorithms, may now be described. The algorithm
exploits the decomposition exactly like the algorithm in [9]; the differences are only in
the CORDIC algorithms employed:

- In diagonal processor IJ, the vectors (p, -p,)’ =24%a+d c-b)? and
(q; 92)? =2"%(a-d c-+b)? are formed first. Then, in parallel, the two vectors
are rotated along the first axis with double elementary rotations, thus generating at each
iteration one of the signs in each sequence o;/2 and o;*/2. As soon as evaluated,
both signs are sent (more precisely, propagated in a systolic fashion) to the off-diagonal
processors along both row J andcolumn 7. Thescaling iterations are then applied in
parallel to the two vectors, yielding (p{ 0)? and (q{ 0)?. Finally, the diagonal
entries of the rotated matrix are obtained as @ = pj + qj and d =p; -qj.

- In off-diagonal processor IJ, the vectors (p, —p2)’ =2"(a+d c-b)?
and (q, qa)" =2'"a-d c+b a are formed first. Then, in parallel, the scaling
iterations are applied to the two vectors. (Note that the global scaling factor is the
square of the scaling factor for double elementary rotations, which is itself the square of
the scaling factor of the standard CORDICalgorithms of Section IV.) Before the last
scaling iteration the first sign in each sequence, 07/2, oj'/2, o7/2 and o}/2, reaches
the processor. The sequence of unscaled elementary rotations is then applied simultane-
ously on both vectors; to the p-vector are applied the rotations defined by the com-
ponents of oj, and to the q-vector are applied the rotations defined by the components
of -oj}. Let us denote, locally, by o; the ith component of oj or -ojy; the

Page 16 of 18

Page 17 of 18Page 17 of 18

780 International Conference on Application Specific Array Processors

associated angle is o,;tan't;. If o; = +4 the unscaled elementary rotation matrix is
+4

fe 1 - 6¢;? + t;‘ + (44; - 4t;°)

—t; 1 + (At; + 4t;°) i= 6t;? + t;4

If o; = +2 the unscaled elementary rotation matrix is
+

a6|Fa i-t4 + (2+ 24°)
(1 + t;?) =

~h|4 + (-2t, -2¢,°) 1-4,

If o; = 0, a nil rotation, the unscaled elementary rotation matrix is

0 | 1 + 2t;7 + ¢;‘ 01

(itt?) | 01 0 1 + 2¢,;7 + t;*

Denoting the resulting rotated vectors by (pj -pz)? and (q1 qz)7, the rotated
matrix js eventually constructed as a’=p; +41, 6’=p2 + qi, c’=-P2 +492,
and d'=p; -42-

The diagonal processors consist of two ‘double’ rotation implicit CORDIC modules.
A custom chip implementing such modules has been designed; it operates on 32-bit fixed
point words, with 5 extra guard bits. It has been fabricated with a 24 CMOSprocess
and performs the CORDICiterations at 11 MHz. Its area is slightly smaller than the
area of a chip implementing the method of Yang and Béhme,using the explicit CORDIC
algorithm of Section IV. It requires both 2¢; and 1;? shifters instead of just 4;
shifters; the shifter area is 1.4 times the area of the shifter for the ‘explicit’ method.
However the shifters require less area than the adders, and the adder area for the expli-
cit method is about 1.4 times the area for our method. (To add 3 numbers an array of
3-to-2 carry save adders, whose area is about one tenth of the area of a fast adder,is
used to reduce the numbers to be added to 2). Finally, a ROM is neededto store the
angles tant; in the explicit method.

The off-diagonal processors consist of two ‘quadruple’ rotation implicit CORDIC
modules. The shifter area is about twice that of the diagonal processor modules. The
adder area is slightly larger than that of a diagonal module: 5-to-2 carry save adders
replace 3-to-2 carry save adders and extra wiring is needed to bring in the inputs. The
total area should be about 1.4 times the area of a diagonal module. The cycle time for
an iteration must be about 15 per cent longer than for the standard CORDIC algorithm
used by Yang and Bdhme. However, because of the complete overlap of the application
of the rotations in the off-diagonal processors with their evaluation in the diagonal pro-
cessors, a step requires half as many cycles as with Yang and Bdhme’s method.

In the special case of the symmetric eigenvalue problem a simpler, very elegant,
parallel architecture is obtained. Indeed, the symmetry implies that 6; = 97, hence
6; =0 and only the sums 0; need to be evaluated by the diagonal processors. More
precisely, only the sequence of signs ojt/2 must be generated and sent. The off-
diagonal processors apply rotations defined by the components of

O77 = oy -of = of/2-o7t/2 and of} =o; tof =of/2+ 07/2 .
- In diagonal processor II, consisting of a single double rotation module, the vector

(44 q.)' =2'(a-d 2b yr is formed first. Then the vector is rotated along the
first axis with double elementary rotations, thus generating at each iteration one of the
signs in the sequence o;'/2. As soon as evaluated, each sign is propagated to the off-
diagonal processors along both row I and column J. Thescaling iterations are then
applied to the vector, yielding (qi 0)’. Finally, the diagonal entries of the rotated

Page 18 of 18

Systolic Arrays 781

matrix are obtained as @ = 2"(a + d)+q{ and d =2(a +d)-qj.
- In off-diagonal processor IJ , consisting of two double rotation modules, the vectors

(pi -p2)’ =2"atd c-b)” and (qi 92)" =2%a-d c+b)" are
formed first. Then, in parallel, the scaling iterations are applied to the two vectors. (The
global scaling factor is the square of the scaling factor for the standard CORDICalgo-
rithm.) Before the last scaling iteration the first sign in each sequence, oj'/2 and
o}/2, reaches the processor. The sequence of unscaled elementary rotations is then
applied simultaneously on both vectors; to the p-vector are applied the rotations defined
by the components of a7; and to the q-vector are applied the rotations defined by the
components of -oj$. These components, denoted locally by o;, can only take three
values: 0 and +2. If o; = +2 the unscaled elementary rotation matrix is

£2
py 1-%t;? «£24;

Shs +(-2t,) 1-t,?

If o; = 0, a nil rotation, the unscaled elementary rotation matrix is

i 4 1a? 8
(1 + t;?) =

01 C1247

Only one module type, the implicit double rotation module already designed,is
needed. Moreover, thanks to the implicit nature of the algorithm, rotations with vari-
able angular resolution [5], [8] can easily be evaluated and applied,still in a fully parallel
way. By starting from a low resolution and increasing the resolution in later steps, the
number of CORDIC iterations per step may be decreased significantly with almost no
increase in the total numberofsteps.

ACKNOWLEDGEMENTS

The work presented in this paper has been supported by the Defense Advanced Research
Projects Agency under contract N00014-88-K-0573.

REFERENCES

(1) RP. Brent and F.T. Luk, ”The Solution of Singular Value and Symmetric Eigenvalue Prob-
lems on Multiprocessor Arrays,” SIAM J. Sci. Statist. Comput., Vol. 6, pp. 69-84, Jan. 1985.

(2] RP. Brent, F.T. Luk and C. Van Loan, "Computation of the Singular Value Decomposition
Using Mesh-Connected Processors,” J. VESI & Comp. Syst., Vol. 1, No. 3, pp. 242-270, 1985.

(3) J.R. Cavallaro and F.T. Luk, ” Architectures for a CORDIC SVD processor,” Real Time Sig-
nal Processing IX, Proc. SPIE, Vol. 698, Aug. 1986.

[4] J.-M. Delosme, ”A Processor for Two-dimensional Symmetric Eigenvalue and Singular Value
Arrays,” Proc. 21st Asilomar Conf. on Circuits, Systems and Computers, Pacific Grove, CA,
pp. 217-221, Nov. 1987.

[5] J.-M. Delosme, "CORDIC Algorithms: Theory and Extensions,” Advanced Algorithms and
Architectures for Signal Processing IV, Proc. SPIE 1152, pp. 131-145, Aug. 1989.

[6] J.-M. Delosme, ”Parallel Computation of Real and Complex SVD Using Implicit CORDIC
Arithmetic,” Proc. 2nd Workshop on SVD and Signal Processing, June 1990 (forthcoming
book, Elsevier Science Publishers).

[7] G.R. Gao and S.J. Thomas, ”An Optimal Parallel Jacobi-Like Solution Method for the
Singular Value Decomposition,” JEEE Int. Conf. on Parallel Processing, pp. 47-53, 1988.

[8] F.T. Luk and D.E. Schimmel, ”A Novel Bit-Level Algorithm for the Symmetric Eigenvalue
Problem,” contributed presentation, 1989 SIAM Annual Meeting, San Diego, July 1989.

[9] B. Yang and J.F. B&hme, ”Reducing the Computations of the SVD Array Given by Brent
and Luk,” Adv. Algor. & Arch. for Stg. Proc. IV, Proc. SPIE 1152, pp. 92-102, Aug. 1989.

Page 18 of 18

