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Reducing the computations of the SVD array given by Brent and Luk
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Ruhr-Universitét, Departmentof Electrical Engineering
4630 Bochum, West Germany

ABSTRACT

A new,efficient two plane rotations (TPR) method for computing two-sided rotations involved in
singular value decomposition (SVD)is presented. By exploiting the commutative properties of some special
types of 2x2 matrices, we show that a two-sided rotation can be computed by only two planerotations and a
few additions. Moreover, if we use coordinate rotation digital computer (CORDIC) processors to implement
the processing elements (PEs) of the SVD array given by Brent and Luk, the computational overhead of the
diagonal PEs due to angle calculations can be avoided. The resulting SVD array has a homogeneous
structure with identical diagonal and off-diagonal PEs.

1. INTRODUCTION

One important problem in linear algebra and digital signal processing is the SVD. Particular
applications arise in beamforming and direction finding, spectrum analysis, digital image processing etc.
Recently, there is a massive interest in parallel architectures for computing SVD due to the growing
importanceof real-time signal processing and advances in VLSI devices. Brent and Luk2” have shown how
a Jacobi method with parallel ordering can efficiently compute the SVD, and how the method can be
implemented by a two-dimensional systolic array. The method is based on, as commonforall two-sided
approaches, applying a sequence of two-sided rotations to 2x2 submatrices of the original matrix. The
computational complexity is thus determined by how to compute the two-sidedrotations.

Usually, a two-sided rotation is realized by four plane rotations, where two of them are applied from
left to the two column vectors of the 2x2 submatrix and the other ones are applied from right to the row
vectors, respectively. For the diagonal PEs of the SVD array, additional operations for calculating the
rotation angles are required. This leads to an inhomogeneous array architecture containing two different
types of PEs.In this paper, we develop a new TPR methodfor computing two-sided rotations. We show that
the above computational complexity is reduced significantly, and the SVD array becomes homogeneous
when using CORDICprocessors.

The paper is organized as follows. In section 2, we briefly re-examine the Jacobi SVD method and the
SVD array. Then, we develop the TPR methodin section 3. The CORDIC algorithm is described in section
4. Different techniques for scaling correction are discussed, and examples of scaling corrected CORDIC
sequences for different data formats are given. In section 5, an unified CORDIC implementation of all PEs

92 / SPIE Vol. 1152 Advanced Algorithms and Architectures for Signal Processing IV (1989)

 
Page 1 of 15 SAMSUNG EXHIBIT1011

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Page 2 of 15

of the SVDarrayis presented. Finally, some convergence aspects are discussed in section 6.

2. JACOBI SVD METHOD

The SVDof a matrix MeRis given by

M=UZV', (1)

where UeRN™® and VerRN* are orthogonal matrices and LERis a diagonal matrix of singular values.
Based on an extension of the Jacobi eigenvalue algorithm, Kogbetliantz’, Forsythe and Henrici> proposed to
diagonalize M by a sequence of two-sided rotations,

Mo=M,=Muy = UxMyVy (k=0,1,2,-- +). (2)

U, and V, represent rotations in the (i,j)-plane (1Si<jsN). The rotation angles are chosen to annihilate the
elements of My at the positions (i,j) and (j,i). Usually, several sweeps are necessary to complete the SVD,
where a sweep is a sequence of N(N-1)/2 two-sided rotations according to a special ordering of the
N(N-1)/2 different index pairs (i,j). Unfortunately, the best known cyclic orderings, namely, the cyclic row
ordering

(ij) = (1,2), ... , (LN), (2,3), «. » (2,N), «> (N-LN) (3)

and the equivalent cyclic column ordering are not suitable for parallel computations.

Recently, Brent and Luk”? suggested a parallel ordering allowing a high degree of parallelism. It
enables the use of a square systolic array with

[N/2]x[N/2] PEs to implement the Jacobi SVD method
(Figure 1). For doing this, the matrix M is partitioned into
2x2 submatrices. Each PE contains one submatrix and

performs a two-sided rotation B = R(0,)'AR(®,) , (4)
where

am (2 2] ae ie | -= Lan ag) ~Lbg, b22 ©)
denote the input and output matrices, and

cos@ sin@

R®)=|sind cos0 (6)
Fi 1. The SVDma eric ae array given by describes a plane rotation through the angle 8,

respectively. Notice that there are two different
computation modes. In a diagonal PE, the rotation angles

@, and @ are generated to diagonalize the 2x2 submatrix (b;2=b2;=0) stored. We call this the generation
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mode. Then, the rotation angles are propagated to all off-diagonal PEs in the same row and the same
column, in which pure rotations (4) with the received angles are performed. Wecall this the rotation mode.
Clearly, if we directly compute (4) in the rotation mode, we require four plane rotations. For the generation
mode, additional operations for calculating 6, and @, are needed.

3. TPR METHOD FOR COMPUTING TWO-SIDED ROTATIONSNeSEEERLAMONS

In order to develop the TPR method for computing two-sided rotations more efficiently, we first
discuss the commutative properties of two special types, the rotation-type and the reflection-type, of 2x2
matrices, namely,

A =| L§ | | c.ser } and A= i. I | eseR}
Obviously, the plane rotation matrix and the Givensreflection matrix® with c2+s2=1 are two elements of the
sets &™ and «™*, respectively. The following results can be shown by elementary manipulations.

Lemma 1. If Aj #™™ and Aye .«™, then A;Ao=AoA,e M™,

Lemma 2. If Aj M™* and Age #™, then A,Ap=ALA€ 4,

In particular, if we consider two planerotations, we know,

Lemma 3. If R(;) and R(@) are plane rotations described by (6), then R(8,)R(62)=R(6)+6,) and
R(,)"R(O2)=R(0,-0)).

Now,we give a theorem describing the rotation mode of the TPR method.

Theorem. If the 2x2 matrix A and the tworotation angles @, and 62 are given, then the two-sided
rotation (4) can be computed by twoplanerotations, ten additions and four scalings by 1/2:

Pi = (a22 + a3))/2 P2 = (a2 — a31)/2
{a = (a2) —ay)/2 ’ { oo = (a1 + ap)/2 ’ (7)

6_ = 6-6, , 6, = 62+ 0; 7 (8)

fn) = Ref a] = x00[2]ty) = R@ Iq) tp| = R@d|g| » 9)
by = 1 -r big = +t) + ty

(eee aia era ™1+% ° (10)
Proof. Using (7), the input matrix A can be reformulated by

Pi =] | —P2a4: Pi a2 P2

Clearly, R(®;), R(®2) in (4) and A, are elements of #'™ while A, belongs to #™. This leads to the
following expression for the output matrix B by using the lemmas 1-3,

A = A,+A) = |
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RO)"ARO.) = R(O)'A:R(G,) + RO)"A2R(2)w
ll

RQ)"R(O)Ai + RO)"RO)"Ay = R(O2-0))A; + ROz+0))"Ay

—P2 es-q1 T
nie G2 P2Pi

tT -ty Rb

= tq) TY + tg In} °
This completes the proof.

Pisad | qi

A direct consequence of the above theorem shows how a two-sided rotation in the generation mode can

be computed in a similar way.

Corollary. If the 2x2 matrix A is given, we can diagonalize A and calculate the corresponding rotation

angles 0, and 02 by two Cartesian to polar coordinates conversions, eight additions and four scalings by 1/2:

Pi = (a2 + a33)/2 P2 = (a2 — a43)/2 a{a = (a2) —aj)/2 ’” Ve = (a2) + aj2)/2 ’” (11)

ry = sign(p:){p4 + qi 13: = sign(p2){p? + @ ; (12){o. = arctan(q;/Ppi) le, = arctan(q2/p2)
0, = (0,-0)/2 , 0 = (0,+0)/2 , (13)

bi = 1-2, by = +12. (14)

Proof. Regarding equation (10), t;=t2=0 follows directly from bj.=b2);=0.

In equation (12), we choose the rotation through the smaller angle. All vectors lying in the first or the

fourth quadrant are rotated to the positive x-axis, and all vectors lying in the second andthe third quadrant

are rotated to the negative x-axis. For vectors on the y-axis, the rotation direction is arbitrary. Thus, the

generated rotation angles @_ and 6, satisfy |@_|, |®,| < 7/2. This results in

|0,| <7/2 and || <sx/2 (15)
due to (13).

Weremark that Delosme’” has also proposed to use (14) for computing b,; and b22 in the genération
mode. However, he did not recognize the fact that the above approach is generally possible because of the

commutative properties of the rotation-type and the reflection-type of matrices. So, he still requires four

plane rotations for computing a two-sided rotation in the rotation mode.

4. THE CORDIC ALGORITHM

In the previous section, we have seen that the main operations of the TPR-methodare plane rotations

and Cartesian to polar coordinates conversions. Although these operations can be carried out by multiplier-
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adder based processors supported by software or special hardware units, a simpler approach is the use of
dedicated processors that map algorithms more effectively to hardware. The CORDIC processor is a
powerful one for calculating these functions.

The CORDIC algorithm was originally designed by Volder® as an iterative procedure for computing
plane rotations and Cartesian to polar coordinates conversions. It was later generalized and unified by
Walther? enabling a CORDICprocessorto calculate more functions, including hyperbolic functions as well
as multiplications and divisions, in a similar way. In the following, only Volder's CORDIC algorithm is
considered for the sake of simplicity because only trigonometric functions are involved in SVD applications.

The CORDICalgorithm consists of iterative shift-add operations on a three-componentvector,

 Bs | 7 a _ 1 | cos(a.,) -9,sin(a.) *] diayYai y,+0,5.x. “05 C) G;s in(@,) cos(a,) y;
Zi, = 2,-€6.0, (i=0,1,....n-1) , (17)

in whichthe iteration stepsize 0<8.<1 is defined by

6, = tan(a,) = 20, (18)
Theset of integers {S(i)} is called CORDIC sequence. Equation (16) can be interpreted, except for a scaling
factor of

= 1 =
k ~ Cos a, ~ 148° , (19)

as a rotation of (x, ; y)" through the angle a, where o.=11 gives the rotation direction. After n iterations
(16) and (17),the roast data are given by

x cosa -sinw Xo
Yn = sin® cosa Yos (20)
ZO Z) — €& (21)

with the overall scaling factor K = i k; and the cumulative rotation angle o = . 6... Now,if the CORDICsequencesatisfies the following paeeiedace condition
n-1

a- 2asca (i=0,1,....n-2) , (22)* jsitt J cc

we can choose O,=sign(x,y;) or 0,=sign(€z.) to force Y,, OF Z, to zero, provided that the input data x
and Zo lie in the convergence region

n-1 arctan(y,/x fory+0es | yl tar 9,
i=o '

0 Yo

C= (23)
Izo| for z_ +0

Both, plane rotations as well as Cartesian to polar coordinates conversions can be calculated in this way
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