
Page 1 of 18 SAMSUNG EXHIBIT 1041

Proceedings of the

International Conference on

APPLICATION SPECIFIC

ARRAY PROCESSORS

September 5- 7, 1990 Princeton, New Jersey

Sponsored by
Princeton University

Co-Sponsored by
Industrial Development Board for Northern Ireland

NEG Reseamh Institute

In Cooperation with
IEEE Computer Society

Edited by

Sun-Yuan Kung Earl E. Swartzlander, Jr.
Princeton University University of Texas at Austin

lose A.B. Fortes K. Woitek Przytula
Purdue University Hughes Research Laboratories

©
IEEE Computer Society Press

Los Alomltos, Colifornio

Washington - Brussels - Tokyo

Page 1 of 18 SAMSUNG EXHIBIT 1041

Page 2 of 18

The papers In this book comprise the proceedings of the meeting mentioned on the
cover and title page. They reflect the authors' opinions and are ptblished as presented
and without change. In the Interests oi timely dissemination. Their Inclusion In this
publication does not necessarily constitute endorsement by the editors. the IEEE
Computer Society Press. or The Institute of Electrical and Electronics Engineers. Inc.

Published by IEEE Computer Society Press
10662 Lee Vaqueros Circle
9.0. Box 3014
Los Alamltos. CA 90720-1264

Copyright c 1990 by the Institute of Electrical and Electronics Engineers. Inc.

Cover designed by Jack I. Ballestero

Printed In United States of America

Copyright and Reprint Permissions: Abstracting Is permitted with credit to the source.
Ubraries are permitted to photocopy beyond the limits of U.S. Wm law tor private
use of patrons those articles In this volume that carry a code at the bottom of the first
page. provided the per-copy tee Indicated In the code Is paid through the Copyright
Clearance Center. 29 Congress Street. Salem. MA 01970. Instructors are permitted to
photocopy isolated articles tor noncommercial classroom use without fee. For other

copying. reprint or republication permission. write to Director. Publishing Services. IEEE.
345 East 47th Sheet. New York. NY 10017. All rights reserved.

IEEE Computer Society Press Order Number 2089
Library of Congress Number 90-82602

IEEE Catalog Number 900H2920-T
ISBN 0-8186-9089-5 (case)

ISBN 0-8186-6089-9 (microfiche)
SAN 264-620):

Additional copies can be ordered from:

I! Emitter Society Prue IEEE Computer Sodom IEEE Compuur Society IEEE Santos Conn
menu-cm ta.Avenuodsi'Aqr.iion Datum-mu 445mm

use: l.- qulerChi $1200 Brussels 2-19-1 "semi-Myrna. P.O. Barr rest

so. In!“ BELGIUM mats-Kn Plucstswsy. NJ 08005-1331
Lnllllltltu. or. “I'll-1204 Tokyo 107. JAPAN

“-15 INSTITUTE OF ELECTRICAL
am ELECTRONICS ENGINEERS. M.

iv

Page 2 of 18

Page 3 of 18Page 3 of 18

Table of Contents

General Chair's Message v
WMWBMWOUOIOOI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIVi
Piogram Committee vii
Refereesviii

K note Addrm: Application-Oriented High Speed Processms: Experiences
Perspectives .. 1

Yasuo Karo

Design Methodology

CalculusofSpace-OptimalMsppin sofSystolicAlgorithmsonProcessm-An's s. . .4
P. Clams. C. Mongener. and .R. Pen-in y

A Processor-Time Minimal Systolic Array for Transitive Closure 19
PR. Cappello and CJ. Scheiimu

Systolic Arm lemmtion of Nested Loop Programs 31
J. Bu, 1“. epreuere, andL. Thick

Potpourri I

The Bit-Serial S ' Back-Projection Engine (BSSBPE) 43.3033?»
A Database Machine Based on Surrogate Files55

SM. Chung
Systolic Architectures for Decoding Reed Solomon Codes67

J. Nelson. A. Rahman. and E. McQuade

MappingI-li -DimensionWavefrontComputstionstoSilicon.78
C.- . u, RM. Owens, andMJ. Irwin

Systolic Architecture for 2-D Rank Order Filtering , 90
1.4%ng omit-M. Jong

Scheduling Affine Paramterizied Recm'rences by Means of Variable Dependent
Timing Functions .. I“)

P. Quinton, C. Maxims. S. Rajopadlore. and Y. Saaurer
The 'c Description Generator 111

.B. Golchale, A. Kopser, 81’. Lucas, and 12.6. Minnlch

Recursive orithms for AR Spectral Estimation andTheir Array Realizations. . .121
C.- . an and C.-M. Llu

Analyai’nflarsmetriaed Designs by Non-Standard Interpretation 133
Systolic-VLSI Compiler (SVC) for High Performance Vector Quantization Chips . . 14s

J.V. McCanny, Y. Hit, and M. You
Extensions to Linear Mapping for Regular Arrays with Complex
Processing Elements 156

J. Rasseel, F. Carrhoor, and H. De Man

Design of Run-Time Fault-Tolerant Arrays of Self-Giecking Processing Elements . 168
J. Franzen

Special-Purpose Systems

GRAPE: A Special—We ComputerforN-Body Problems 180J. Hakim, 121:0,- . Ebi’suzaki, and D. Stigmata

Page 4 of 18

Building Blocks for a New Generation of Application-Specific
Computing Systems190

B. Barter, G. Cox. T. Gross, 1LT. Kung, D. O'Hallaron. C. Peterson.
J. Webb. and P. Wiley

Reconfigurable Vector Register Windows for Fast Matrix Computation on the

Orthogmal Multiprocessor202. K. Panda and K. Hwarrg
Massively Parallel Architecture: Application to Neural Net Emulation and Image
Reconstruction ..214

3. Force, D. We! and G. Mame

A Real-Time Software Programmable Processor for HDTV and Stereo
Scope Si .. 226

T. ishi '. I. Tanitani, H. Harasakr‘, andM. Yano

Mapping Appllcatlons onto Architecture.

Mapping Algorithms Onto the TUT Cellular Array Processor 235
J. Viiarrren, T. Korpiharju, J. Takala, and H. Klminla’uen

A 3-D Wafer Scale Architecture fu- Early Vision Processing 247
SI. Tobarg

Algorithmic Mappin of Neural Network Models onto Parallel SIMD Machines . . .259
VIPrasam mand KW. Pnytula

Implementation of Systolic Al orithms Using Pipelined Functional Units 2'72
M. Valera-Garcia, JJ. avarro, JM. Llaberta, and M. Valera

Array Processing on Finite Polynomial Rings 234
N. Wigley and GA. Jullien

Potpourri II

The RAP: A Ring Array Processor for Layered Network Calculations 296
N. Morgan, J. Beck, P. Kohu, J. Bilmes, E. Altman, and J. Beer

Linear Arrays for Residue Ma 309
A. Skavaurzos and 2.8. '

A Fault-Tolerant Trio-Dimensional Sorting Network 317
LG. Krmner and H. Ard‘

Channel Complexity Anal sis for Reconfigurable VLSI/WSI Processor Arrays . . . 329
PK. Rhee andHi. im

Digit-Serial DSP Architectures 341
XX. Parhl and C.-Y. Wang

PASIC: A SensorlProcessm' Array for purer Vision 352
X. Chen, P.-E. Danielsson, WA. on:

An Analog VLSI Arra Processor for Classical and Connectionist AI 367

J.W. Mills and .A. DangerSystolic Two-Port Adaptor for gh Performance Wave Digital Filtering 379
J.V. £1ch and RJ. Sing}:

An Multilayer Neural Model and Array Processor Implementation389
.C. Fu and CC. Chiang

Reconfiguration of WT Arrays: A Flow-Driven Approach401
A. Anrola and N. Scarabortola

Towards the Automated Design of Application Specific Array
Processors (ASAPS) 414

AP. Marriott. A.W.G. Driller. RH. Srorer, AR. Thomon, and MR. Pour

Fault-Tolerant Array Processors Using N-and-Half-Track Switches 426
J.S.N. Jean

1:

Page 4 of 18

Page 5 of 18Page 5 of 18

DomainFlowandStreaming Architectures.433
E.T.L. Omnigt

An Improved Systolic Extended Euclidean Algorithm for Reed-Solomon
Decoding: Design andlmplementation448

R. Doyle, P. Fitzrmrlck. andJ. Nelson

System Bulldlng Blocks

Digit-Serial VLSI Microarchitecttue457
S.G. Smith, J.G. Payne. and R.W. Morgan

CMOSVLSILuitasiewicz Arrays.......469
JW. MillsaadCA. D n er

DynamicS stolrgkr‘kssociative Mgemmy Chip481v

ASP Modules: Building Blocks for Application-Specific Massively Parallel
Processors ... 493

RM. Lea

Designing Specific Systolic Arrays with the APIISC Chip505
P. Frlson. E. Gaum'n, D. Lavenier. and JL. Scharbarg

Special-Purpose Systems 2

A Prototype for a Fault-Tolerant Parallel Digital Signal Processor 518
BR. Minions, A. Aliphas. and AJ. Wei

Byte-Serial Convolvers530
L. Dadda

A VLSI Architecture for Simplified Arithmetic Fourier Transform Algorithm. 542

LS. Reed, MT. Shih, E. Hendon, TXTmflfaand D.WMFine Grain System Architectures for Systolic Em tion of NeuralmAlgmithms” .554
U. Rancher and W. Raab

ProgramminggEnvir-onment for a Line Processor SYMPATI-2567RFernandez. P. Adam. D. Juvin. and].-L. Basilio

Potpourrl III

A Feedback Concentrator for the Image Understanding Architecture579
D. Ram and C.C. Wear»:

A Design Methodology for Fixed-Size Systolic Arrays. 591
J. Bu, E.F. Deprettcre, and P. Dewilde

A Formal Design Methodology for Parallel Architectures 603
M. A. BayoumiandKM. Elleithy

A Multiple-Level Heterogeneous Architecture for Image Understanding. 615
0.33M. J..G Nash,gymcc. Weems

Application Specific VLSI Architectures Based on De Bruijn Graphs 628
D.K. Pradhan

A Graph-Based Approach to Map Matrix Algorithms onto Local-AccessProcessorArrays641
JH Moreno and 1".ng

ApplicatiggSpecific Coprocessor Computer Architecture 653Y

Embedding Pyramidsin Array Processors with Pipelined Basses 665
Z. Guo and 12.6. Melhem

Page 6 of 18

Implementation of ANN on RISC Processtn' Array 677
A. Hirat’wa, M. Fajita. S. Kurosu, S. Arlsm. and M. Incite

Systolic--Based ting Machinery for Radar Signal Processing Studies689
S. HayfinJ’ eber, 8. Che T. GreenlayJ. Orlando, C. Deng.
andR Mann

A Systolic Arm for Nonlinear Adaptive Filming and Pattern Recognition700
J..G Me hitter DS. Broomltead andTJ.Shepherd

Parallel Algta'itlnn for Traveling Salesman Problem on SIMD Machines Using
Simulated Annealing 712

CS. Jeans audMH. Kim
The Design of a High--Performancc Scalable Architecture for

Image ProcessingwA licationa 722CT. Gray.W u, ‘1'. Hughes, and R. Gavin

Testin a Motion Estimator Array 734.P. Montana and WR. core

Systollc Arrays

Spacedme-minimal SyStolic Architectures for Gaussian Elimination and the
Algebraic Path Problem 746

A. Bennie! and Y. Robert

Two-Level Pipelined Implementation of Systolic Block Householder
hansfos'mation with A lication to RLS Algorithm758

KJR. Lita. SF. sick andK. Yao

Bit-Level Systolic Algorithm for the Symmetric Eigenvalue Problem 770
J.-M. Belem

A Practical Rumime Test Method for Parallel Lattice-Gas Automate782

R. Squier MK. Steiglirz .
A Systolic Array Programming language794

PS. Tseng

Author Index ...805

xii

Page 6 of 18

Page 7 of 18

l'his maI-rlisl may be Wotecled 17v Copyright law [Title 17 0.51062]

BIT-LEVEL SYSTOLIC ALGORITHM

FOR THE SYMMETRIC EIGENVALUE PROBLEM

JEAN-MARC DELOSME

Department of Electrical Engineering
Yale University

An arithmetic algorithm is presented which speeds up the parallel Jacobi method for the
eigen-decomposition of real symmetric matrices, The matrices to which the plane Jacobi
rotations are applied are decomposed into even and odd part, enabling the application of
the rotations from a single side and thus removing some sequentiality from the original
method. The rotations are evaluated and applied in a fully concurrent fashion with the
help of an implicit CORDIC algorithm. In addition, the 0012ch algorithm can perform
rotations with variable resolution, which lead to a significant reduction in the total com-
putation time.

I. INTRODUCTION

The eigenvalue decomposition of a real symmetric matrix or the singular value
decomposition (SVD) of an arbitrary real matrix may be obtained by the Jacobi method
(Jacobi/Kogbetliantz). This method can be parallelized to a high degree [1], {2], result-
ing in a computation time that is approximately linear in the smallest dimension of the
matrix. Furthermore the ratio of parallel to sequential hardware cost is of the same
order as the gain in computation time. Thus, the parallel hardware is exercised with a
fairly high efficiency, essentially independent of the matrix (smallest) dimension.

Although the Jacobi method requires more Operations than the justly popular QR
method (Francis/Golub and Kahan), a significantly higher degree of parallelism may be
extracted from it, making it the method of choice for the fast diagonalization, via orthog-
onal transformations, of unstructured dense matrices. Our objective is to determine
extremely fast ways of performing this diagonalization in the context of signal and image
processing. This entails, starting from the Jacobi method and the parallelization scheme
of Brent and Luis, the design of algorithms at a detailed level and the development of
the associated, application-specific, array architectures. In this paper, after analyzing
the elementary mathematical operations in the Jacobi method (i.e. the evaluation and
application of Jacobi rotations), we devise arithmetic algorithms that efl'ect these
mathematical operations with few primitive operations (i.e. few shifts and adds) and
enable the most ellicient use of the parallel hardware. Moreover we modify the Jacobi
algorithm in order to reduce the total number of primitive operations for achieving
matrix diagonalization.

By targeting an implementation that is as fast as can be found, we are led to
exploring and exploiting as much as possible the mathematical structure of the problem,
hence to finding arithmetic algorithms better adapted to the problem at hand. Imple-
mentations which match lower data rates can then be generated by a fairly stande
process of sequentialization. By considering the SVD problem, which may be viewed as
a generalization of the symmetric eigenvalue problem, we first direct our search for struc-
ture toward fundamental objects and properties. The special features due to symmetry
are exploited in a second phase. Our approach to algorithm design is thus hierarchical:
first the main structure, then the refinements. This way we avoid focusing early on
non-fundamental features and, as a result, being trapped in a local optimum. In fact, in
order to uncover a global solution, we have embedded the problem into a. further

7‘70 CH2920-7190l0000l0770$01.00 0 1990 IEEE

Page 7 of 18

Page 8 of 18

Systolic Arrays 771

generalization: the SVD problem for complex matrices. Although this generalization is
not discussed in this paper (it is premented in [6]), it did guide us in our search.

The parallel Jacobi algorithm of Brent and Luk is briefly described in Section II.
This algorithm exhibits close to maximal parallelism and does it at a close to minimal
communication cost, where ‘close to’ means ‘up to a small constant multiplicative factor’
[7]. It provides the starting point for the process of refinement, taking the above multi-
plicative factors closer to unity, that brings forth our array for the eigen-decomposition
of real symmetric matrices. The Jacobi method is a succession of parallel steps, starting
from an initial square matrix and converging to a diagonal matrix, in which plane rota-
tions are applied on both sides of the 2x2 submatrices of the current iterate. In Sec-
tion III a mathematical property, the existence of the decomposition of Clifford numbers
into even and odd parts, is shown to enable the application of the rotations from the
same side, thus leading to a parallel procedure for the evaluation and the application of
the Jacobi rotations. While this procedure would cost many operations if the rotations
were evaluated using the standard arithmetic operations, :l:, x, I, \/, it becomes cheap if
CORDIC arithmetic, based on shifts and adds and reviewed in Section IV, is employed.
Our ‘implicit’ CORDIC algorithm for the symmetric eigenvalue problem, which does not
compute rotation angles explicitly, is presented in Section V. Evaluation and application
of the rotations may be fully overlapped with this algorithm, a feat which cannot be
achieved with an explicit CORDIC algorithm.

II. ARRAY ARCHITECTURE

The method of Jacobi, first applied to the eigen-decomposition of real symmetric
matrices B = UAUT, with U orthogonal and A real diagonal, was generalized by
Kogbetliantz (1955) to the computation of the SVD of a real rectangular matrix
A = VEUT, where U and V have orthonormal columns and E is real diagonal
with positive entries. We shall first expose the general case and then turn to the sym-
metric case, which can be viewed as a special case.

Without loss of generality, A may be assumed to have more rows than columns.
By applying plane, Givens, rotations from the left, A may be decomposed into QB
where Q has orthonormal columns and B is square. Thus the computation of the
SVD of a. rectangular matrix A reduces to the SVD computation of an associated
square matrix B, and we can from now on only consider the decomposition of square
matrices B.

Starting from a general real it Kn matrix B , the Jacobi method performs a short
sequence of sweeps to bring the matrix to diagonal form. In each sweep n(n—1)/2
pairs of plane rotations are applied to both sides of the matrix to annihilate each of the
n(n —1) off-diagonal elements once. Each pair of rotations may be represented by two
a xn matrices, J”, applied to the matrix from the right, and 3,}, applied to the
matrix from the left, where the couple ij, with 1 g i < j S n , is distinct for each pair
in the sweep. Both rotation matrices differ from the identity matrix of order n by the
principal submatrix formed at the intersection of the row and column pairs correspond-
ing to i and j. These principal submatrices have the form

cos 0;,- sin 9,,» cos 9,3,- -sin 0:}
for J,-,- and for Ji}.

-sin 9,,- cos 0,,- sin 9:, cos 9:,-

and the angles 9,,- and 6"— are selected to zero out simultaneously the ij -th and ji -th
entry of the matrix to which 1,3 and .12; are applied.

Page 8 of 18

Page 9 of 18

772 - lmematianal Conference on Application Specific Array Processor:

The simultaneous application of p non-conflicting pairs of rotations, zeroing out

2p entries of the matrix to which they are applied, is called a (parallel) step. For ease
of presentation we shall assume that n is even and refer to [1] and [7] for n odd.
Since any partition of the set {1, ..., 1:} into pairs {i, 1'} has 11/2 parts, a maxi-
mally parallel step would apply n/2 pairs of rotations simultaneously. If a sweep is

decomposed into a sequence of such steps, each forcing n matrix entries to 0, and if for
all the steps in the same sweep the indices if of the pairs of rotations are distinct, the

number of steps in a sweep is minimal, equal to n—l. Such a scheme may be con-
structed by selecting a cyclic permutation, P, of the indices {2,3, ..., n}. By parti-
tioning into contiguous pairs the ordered concatenation {1} U S, where S is the
ordered set {2, 3, ..., n }, a set of pairs, {12; 34; ..., n —l,n }, is obtained whose order is
induced from the order {1} U S . These are the pairs of indices for the pairs of rotations
applied in the first step of a sweep. Next the ordered concatenation {l} U PS is parti-
tioned into contiguous pairs, with order induced by the order {1} U PS, defining the
pairs of indices for the second step. The order {1} U P23 defines the pairs of indices
for the third step, and so on until {1} U P"'35' for the (n—1)-th step. The following
order is {1]- U Pfi'lS = {1}U S; indeed this is the beginning of the next sweep. We
shall index the pairs at a given step i: by a single number I, 1 g I g n [2; thus J“
will alternately be written J, and, in particular, J34 and J; represent the same

matrix at step 1. Brent and Lu]: have selected the cyclic permutation

2-v3—r5 an-3—tn-1—rn—in-2—9 6-+4—>2,

which has the desirable property that the indioes ij in the I—th pair at step b come
from the neighboring pairs at step kwl, with indices I—l, I, or I+1.

The matrix B is transformed into a diagonal matrix through a. sequence of steps,
starting with 80 = B and computing at step i:n n 2

3s = fiJI'Bt-i Ill J1-
! = 1 I = 1

Although this is not written explicitly, the two sets of rotations {JD 1 5 I 5 n [2} and
{Jfi 1 5 I 5 11/2} depend on the step 1:. Moreover, since the rotations within each
set are disjoint, each set of rotations is applied in parallel. At a high level, the scheme of

Brent and Lot: leads directly to a parallel architecture for the SVD, taking the form of a

square array with n [2 processors on a side. Processor IJ holds at the beginning of

step It the 2x2 submatrix of B,“ sitting at the intersection of rows 1‘ and j and
of columns r and s , where ij and rs are respectively the Lib and J-th pairs of

indices at step it. Each diagonal processor, such as processor II or processor JJ ,

evaluates the two plane rotations, J; and J" or 11 and J}, that zero out the two
off-diagonal entries of the submatrix it holds, and updates accordingly the two diagonal
entries. From each diagonal processor a representation of each of the two rotations is

sent either along the column to which the procmsor belongs, for the rotations applied

from the right such as J; and J}, or along the corresponding row, for the rotations

applied from the left such as J" and JJ'. (The choice of representation per as will be
discussed in Section V.) Each off-diagonal processor, U with I 94: J , applies J;
from the right and J;' from the left to the submatrix it holds. Then the entries are
exchanged between neighboring processors in the array in such a way that processor 1.]

holds at the beginning of step k+1 the submatrix whose row indices and column
indices are respectively the I -th and J-th pair of indices at step 1: +1.

For the symmetric eigenvalue problem, at every step J” is imposed to be equal to
J11, 1 S I S n/2. This reduces the amount of computation to be performed by the
diagonal processors. Moreover, since all the iterates B; are symmetric, the array is
truncated to a triangular array, is. all the processors below the diagonal are removed.

Such an array is displayed in Figure l for n = 10; the arrows indicate the communica-
tions taking place during the exchanges while the horizontal and vertical links that carry

Page 9 of 18

Page 10 of 18

Systolic Arrays T73

the representations of the rotations are not shown. (Note that the amount of data com-
municated during the exchanges could be reduced to about half, which can be argued to
be minimal [7], if the order used so far, {1} U PFIS with P the cyclic permutation
c~_f Brent and Luk and k _the step number, is kept when k is odd and is replaced by
P({1} u PHS), where P{1,2, ...,n} = {3, 4, 1, 2, 7, s, 5,6, - - - }, when I.- is even.
However this scheme is more complicated to implement.)

{f—

|_*r—-.l#i‘—. «+0I

("fl-Pi ids-In IT:5
iv“ :«j' XI \

J i ix! Ix
{Lb—yak,

fi—.)
1

“is. _n

a$31
\

x.)

Figure 1. Array for the sign-decomposition of a symmetric matrix of order 10.

III. CLIFFORD ALGEBRA

We shall consider throughout this section the SVD problem; specialization of the

results to the symmetric eigenvalue probiem will come in Section V. A diagonal proces-
sor, II , evaluates the left and right rotations, J;' and J1, which diagonalize the 2x2
matrix it contains, and computes the new diagonal entries:

case; —sin9} r b] c060; sinfl; a 0
sin 8; cos 0} c :1 -sin 9; cos 9; o 3

An off-diagonal processor, IJ , applies from the left the rotation J” received from pro-
cessor H to the matrix it holds, and applies from the right the rotation I; received
from processor JJ :

c060} ~sin9} [a b c030; sine;
sin 91" cos 0} c :1 —sin 0; cos 9;

In a search for the niost parallel way of evaluating the rotations and updating the
diagonal entries, and also of applying the rotations, we shall study the structure of the
space of real 2X2 matrices. The underlying structure to be exploited is that of 3.
Clifford algebra: the Clifl’ord algebra of order 2, C3. To introduce this structure, we

start from a vector space over the reels, E2, of dimension 2; this vector space is a sub-
space of 0,. The reason for the notation E 2 is that an Euclidean norm is defined on
the vector space, given by the quadratic form n 2 2 u}: + “22, where u = (11, in)

Page 10 of 18

Page 11 of 18

774 International Conference on Application Specific Array Processors

belongs to E2. (Note that 3. Clifford algebra could also be defined starting with a
pseudo-Euclidean form, u 13 — u,2 in two dimensions.) The scalar product of Wm vec-
tors, u and v , is also an element of C3, defined as u ' v 2 (uv + vu)/2 where,
clearly, uv +vu =(u +vr)'-u’—u2 isascalar.

We have not yet defined In , the Ciifi'ord product of the vectors 1: and v.
Since IN = (uv +vu)/2 + (uv —vu ”2, if the exterior product (uv —1m)[2 2
u A v is defined, then the (Clifford) product is defined: uv = u . v + u A v . It fol-
lows from the definition of the exterior product that v A u = — u A v . Therefore,
selecting an orthogonal basis {even} of 3,, u A v = (u1e1+ uze,)/\ (ule1+
”283) = (u1c2~ u2u1)e1/\ e2. Thus, geometrically, u A v defines the area of the
parallelogram with sides I: and v. Furthermore the product uv is equal to
(n 1131 + up”)! + (u 192 — uzul)e1;\ eg, the linear combination of a scalar (propor-
tional to the scalar unit, denoted by I) and a bisector (proportional to e 1 A e2).

The Clifford algebra. C, is defined as the vector space over the reels which is the
closure of E 3 under Clifford multiplication. Already we have found two subspaces of
C 3, E 3 and the two-dimensional subspace of the products of vectors. To go further We
would have to formally define, by induction, the product of arbitrary elements of Ca.
Because of a lack of space we shall instead define the product via the shortcut of an iso-
morphism. The isomorphism results from the identification:

1 0 0 l

e l = g
0 —1 1 0

and Cliflord product 2 metric product. The reader may check that
1 0

1 e2:

9'12 =ei‘eizi J =1: e2'32=1: 31‘82=(eiez+3291)/2=01-0 1

hence 21 and e, form an orthonormal basis of E3. Moreover
U 1

e1A‘52=(‘51°2"e'231)/2= i i-1 0

Hence linear combinations of scalars and bivectors are of the form

Pi P:

p =p11 +P2¢1A¢2= .
‘P2 P1

and vectors are of the form

91 92

q = 9191+9'292 -
‘12 ‘91

Now We observe that any 2x2 real matrix In may be decomposedas p +q

a b P1+¥1 P2+42

m = = p +q : ,
C d ‘Ps‘Hl's PI'QI

with pl: rig-d. Pn= b2—c, 91: 02-d’ and 93: 5:6. Thus the space of
linear combinations of scalars, vectors and bivectors is isomorphic to the linear space of
real 2x2 matrices. Since the set of real 2x2 matrices is closed under matrix multipli-
cation, the space of linear combinations of scalars. vectors and bivectors is also closed
under Clifl‘ord multiplication and is therefore the whole of the Clifford algebra C 2.

Page 11 of 18

Page 12 of 18

systolic Arrays 775

Upon identifying the real 2x2 matrices with the Clifl'ord algebra C 2, a decompo-
sition of the real 2x2 matrices into two parts, p and q, has been brought to the
fore. This is an instance of the so-called decomposition of Clifford numbers into even
and odd parts. Indeed a Clifford algebra C m , built from a vector space E m , has for
elements real linear combinations of scalars or iii-vectors, vectors or l-vectors, bivectors
or 2-vectors, and so on up to m-vectors. Thus any element may be decomposed in a.
unique way as the sum of an even part (a linear combination of even vectors) and an
odd part (a linear combination of odd vectors). In other words C m is the direct sum
of two subspaces, an ‘even' subspace denoted C at, and an ‘odd’ subspace denoted
C '. The even subspace is closed under Ciifl'ord multiplication, written symbolically
C 3 C ,I = C +, consequently it is a subalgebra of Cm. The odd subspace satisfies
C J, C ,; = C3 and C ,;C J; = C $0,; = C ,;. (Of interest for the SVD computa-
tion of complex matrices is the Clifford algebra. C 3, isomorphic to the 2'" = 8 dimen-
sional space—over the reels—of complex 2x2 matrices, and with even subspace the
quoterm'ons and odd subspace the antiquatemions [6].) The even subspace of C 2 is the
algebra of complex numbers; by extension, the odd subspace of C 2, E 2, may be called
the subspace of onticomplez numbers.

The units of the even subspace of C, are elements 1: = p1 I + p, e1 A e 2 with
unit norm, where the norm is naturally defined as (p I: + P32)5. Therefore they can be
written under the form It (0) = c050 I + sinfl e1 A82, with 0 S 0 < 211', and hence they
are the plane rotations. It is easy to check (and this may also be derived as a special
case of a property of quaternions) that plane rotations commute with even Clifford
numbers and anticommute with odd Clifford numbers:

p u(0) = 11(9):), qu(9) — 11(-6001

This enaqu us to pull the Jacobi rotations from the right to the left, both for the
evaluation of the rotations in the diagonal processors and for their application in the
off-diagonal processors:

- evaluation in processor H ,

“(-39!“ “(91) = “(-90? “(90+ “(-939 “(91)

= “(—9i)“(51)P + “(-Qilui—srm .

hence, using the property that u (0) is isomorphic to the complex number exp(r‘ 9),

E 0

"(43m um = u(—9:'+9;)p ”Hi—01):: = r1: = _
0 d

- application in processor H ,

“(-9”!!! 1.(it!) = Ill-9})? “(91H “Hilq “(9.1)

= “(-9!+9;)p +u(-9i-9J)q

hence, by pulling the rotations from the right to the left and exploiting the fact that p
and q are fully defined by their first column, the Jacobi rotations may be applied with
2 two-dimensional vector rotations instead of 4.

Representations of u (9;) and u (4}) must be computed as intermediate forms
in order to apply the Jacobi rotations and build up the matrices of singular vectors (or

eigenvectors if B is symmetric) U and2 lr"T as the products, accumulated over theI ’

steps, of the matrices J, and JI', respectively. The evaluation of these
I =1 I =1

representations may be performed by finding the rotations u (0;) and u (-flf), where
3f 9 0; —91' and 0;" g 0; + 9;, that force the second component of the vectors

Page 12 of 18

Page 13 of 18

776 International Corference on Application Specific Array Processors

(p, —p ,)T and (q, qflr, respectively, to 0. This approach, exploiting the decompo-
sition of Clifford numbers into even and odd part, has been used on general purpose
computers, using standard arithmetic, from very early on (eg. Forsythe and Henrici,
1960). However the use of that decomposition for the application of the rotations did
not follow. To understand why we have to place ourselves in the context of machines
using standard arithmetic. We first note that in this context the pass e from
5,; e {u (0;), u (-sf), 1 5 I 5 n [2} to 3“,, e {u (8,). u (-915). 1 5 I S n 2}, and
the passage from S“. to S,” 2 {11 (0,3), 14—013), 1 g I 7‘: J 5 11/2}, where
9,} Q 9, —9f and 9,3 Q 0,: + 3}, are done via the trigonometric formulas for the
tangents of the rotation angles, using the :t, x and / operations and also, for the first
passage, \/ operations since tangents of half-angles must then be computed. The next
observation is that a rotation is ultimately represented by its cosine and sine in this con-
text and, given an intermediate tan ent representation, generating the cosine/sine
representation requires +, x, f, and operations. The reason for not exploiting the
decomposition in a sequential setting is now clear: the computation of the cosine/sine
representation of S,” given the tangent representation of 34,-“, requires 001’) :l:,
x, l, and w/ operations while the computation of the cosine/sine representation of Son
given its tangent representation costs only O(n) 4-, x, f, and t/ operations; the halv-
ing of multiplications obtained when performing the two-dimensional vector rotations
using the decomposition does not offset the large increase in :i:, x, f, and \/ operations
needed to find the representation of the rotations. The bottom line in a. parallel setting
is that the use of the decomposition is not advantageous either, because it saves the time
of the rotation of a two-dimensional vector, Le. a multiply and add, at the expense of
the time of the computation of tan 0f, or tan 9,3 given tan 0; and tan 9;, tie. a
multiply and add and a divide. Yet the existence of the decomposition signals something
significant. It removes some sequentiality at the level of the rotation operations and, if
an arithmetic implementation of the rotations is employed that is better adapted to
these operations than the traditional decomposition into :1: and x (and the derived /
and V) the advantage offered by the decomposition should clearly come out. CORDIC
arithmetic provides the kind of ‘adapted‘ implementation we are looking for.

IV. EXPLICIT AND IMPLICI'I‘ CORDIC ALGORITHMS

The CORDIC algorithm of Volder (1959) implements a plane rotation as a.
sequence of elementary plane rotations. The elementary rotations are rotations with
tangents equal to 03,-, where a,- =: it, t,- = 2", 19’s! and 1 defines the angu-
lar resolution, 2" . Multiplying a two-dimensional vector by an elementary rotation,

1 1 U,- ‘5

"1+ ‘1. ‘0'.- ti 1 I!

would be easy to do with two shift—and-adds but for the scaling factor in front of the
matrix. By pulling all the scaling factors together into a. single multiplicative constant
(for a given resolution), the basic form of the CORDIC algorithm is obtained:

Explicit CORDIC algorithm for plane rotation
- evaluation of a rotation that forces a vector (x y) into the form (:r' (1)1"

initialization: z, = z, y, = 1;, 21:0, 0, 2 sign (2,“)
for 1 5 i 5!

31+: = 3i + Git-'9;

92+: = “Ortiz; + iii
2,.” = z, — oitan‘ t,- (angles tan'1 1,- stored in a table)

Page 13 of 18

Page 14 of 18

systolic Arrays 777

01+: = Sign (31'1“)

- application of a rotation by an angle 2 to a vector (1: 31)?

initialization: 1:1 = z, y] = y. 21 = z, 0'1 = —sign (31)
for 151’ Si

3i+1 = 3i + 01' ‘1'5'1'

yi+1 = “flit-'3; + 91
z£+1 = 1; —o,-tan' ti

”1+1 = —sign it

These two sequences of iterations are both followed by the multiplication by the global

multiplicative constant, decomposed into a minimal-length sequence of shift-and-adds.

The evaluation procedure employs essentially a bisection technique to force y,

toward 0, and concurrently updates the angle ‘counter’ 25,-. The application procedure

employs the same bisection technique to force the angle to zero, hence decomposing it

into signed increments, and meanwhile rotates the vector by this sequence of increments.

Quite often, and this is true for the Jacobi method, a rotation that is to be applied

is evaluated first, by forcing a vector along the first axis. In such instances it is not
necessary to compute the rotation angle explicitly; the sequence of bits {0,- , 1 g i S i}

also defines the angle, albeit in an implicit fashion. Given such a sequence, determined
by forcing a vector along the first axis, a vector can be rotated by the corresponding
angle with no need for an angle counter. The implicit CORDIC algorithm for plane
rotation followa: just remove any reference to the variable 1: in both evaluation and

application procedures; the sequence {0,- , 1 5 i S l } will be given, instead of the angle
2 , for the application procedure. (The implicit algorithm is more fundamental than the
explicit one; it can be generalized to the parallel implementation of higher dimensional

rotations while the explicit algorithm cannot [5], [6].)

V. CORDIC JACOBI ROTATIONS

The first publication proposing that the CORDIC algorithm for plane rotation he

used to implement the parallel Jacobi algorithm of Brent and Lnk followed very closely
the traditional approach,a:using standard arithmetic [3]. The explicit algorithm1s used
The representation of Sh, in terms of the angles, 9,? and 91+ , is computed by rotating
in parallel onto the first axis the first columns of the even and odd parts of the 2x2

submatrices held in the diagonal processors. Recalling}:result from Section 111, these
columns are formed}: quite easily, as (191 -p2) 2‘1(0 + d c - b)T and
(91 “)1" = 2‘l(o - c + b)T. The representation of 5“,, in terms of the
angles +0, and 9;,dis then obtained by means of additions and single bit shifts:
91 = (9? +0f)/2, Of-— (PF -0f)/2. The application of the rotations in the oil'-
diagonal processors is done without the help of the decomposition into even and odd

part, by applying in parallel to the two rows of the 2x2 submatrix held in processor

H the rotation of angle 9; and then applying in parallel to the two columns of the
result the rotation of angle 4}. The computation of the updated, diagonal, matrices in
the diagonal processors is done similarly, hence diagonal and off-diagonal processors
finish a step at the same time. If we take as time unit the time to effect a CORDIC

rotation, this implementation calls for 1 unit to evaluate S“. and 2 units to apply the
rotations, totaling 3 units per step.

Yang and Bmae recently observed that the explicit CORDIC algorithm enables a

faster implementation of the Jacobi rotations, fully based on the decomposition of 2x2
real matrices into even and odd part. The representation of Sfi is computed as in [3].
Following [4], the computation of the diagonal entries also exp cite the decomposition:

Page 14 of 18

Page 15 of 18Page 15 of 18

TIS International Carference on Application Specific Array Processors

once the first columns of p and q are rotated intg (pf (3)7 and (91" 0)T, the
entries are obtained readily as E = pf + q,’ and d = p1" — of. The representation
of 3,,” in terms of the angles 95 and 9,? is obtained by first evaluating the angles
9,: and 9} as in [3] and then merely adding and subtracting: 0;} = 9; —6;’ and
91"] g 0; + 9}. The computation of S,” is definitely much easier than with standard
arithmetic! The application of the rotations in the oil-diagonal processors is done by
first decomposing—as done in the diagonal processors—the 2x2 matrix held into a pro-
cessor into even and odd part, at = p + q , then applying in parallel the rotation by

9f; to the first column of p and the rotation by 45 to the first column of q ,
obtaining vectors (P1; 193') and (of gar, and finally reconstructing the rotated
matrix as a’=p1’ +915 b'=p£ +925. c’=-pg’ +6. and d'=p{ -v2’- This
implementation calls for 1 unit to diagonalize the matrices held in the diagonal proces-
sors and evaluate S,” , and 1 unit to apply the rotations, totaling 2 units per step. By
better exploiting the mathematical structure than in [3], computation time is reduced by
1/3 with the same hardware.

The use of an explicit CORDIC algorithm imposes a degree of sequentiality which
can be avoided in an implementation based on an implicit CORDIC algorithm. With
the explicit algorithm the off-diagonal processors can start applying the rotations of a
given step only after the rotation angles have been evaluated in the diagonal processors.
Moreover, because of the exchange between processors, and more specifically between
diagonal and oil-diagonal processors, concluding each step, the ‘evaluation’ in the diago-
nal processors and the ‘application‘ in the off-diagonal processors cannot be pipelined.
This leads to the 1 + 2 time units per step of [3] and the 1 + 1 time units per step of
[9], with the off-diagonal processors idle during the first time unit. However, as was first
proposed in [4], the evaluation and application may be overlapped if the rotation angles
are computed implicitly, bit by bit, and these bits are sent as soon as computed to the
off-diagonal processors.

Assume an implicit CORDIC algorithm is employed in order to overlap the evalua-
tion of the rotatiOns in the diagonal processors and their application in the oil-diagonal
processors. In order to evaluate the rotations, and also to apply them as fast as possible,
the decomposition into even and odd part is used in both diagonal and off-diagonal pro-
cessors. Consider an off-diagonal processor, H . To generate an implicit, bit-level,
representation of the angles 0,3 = 9; — 0} and 9,3 3 9,; + 91', implicit representations
of 9'; and 0; must first be generated, in processors JJ and II respectively. These
representations are themselves obtained from the bit level representations of {8}, 0}}
and {0f, 9?}, using the relations 9; = (9? + 9})[2 and 0} = (01?" — 9f)/2. Now the
bits, or better ‘digits’, in the implicit representations are coeflicients of angles onto the
basis formed by the ‘elementary’ angles tan'l t,. Since t, = 2" these angles are not
commensurable, in the sense that one angle cannot be obtained as a linear combination
of other angles with coefficients that are signed powers of two, is. by which a multipli-
cation can easily be performed. This justifies the ‘basis’ denomination employed earlier.
This also implies that if an angle is represented by a sequence a 9 {o,-,1 5i 5 l}
with o,- = i1 and another angle is represented by a sequence ar’ 2 {05,1 5 i S l}
with of = :|:1, finding a. representation of the sum of the two angles by a sequence
0+ g {on-fl 1 g i S l} with 0,! = :l:1 is diflicult. In particular the computation of 01+
depends on the whole sets a and o’. Sequentiality would thus come back to haunt us.
To get around this problem one should pursue the ‘basis‘ paradigm and think of the
sequences a and a" as vectors, with ith component a,- and of respectively. A

representation, 0+, of the sum is obtained by merely adding components and defining
a, = a,- +a,-’, equal to 0 or 1:2. This construction is denoted 0+ = o + 0’, like a.
vector addition. In general the components, or digits, in the representations are 0 or
signed powers of two. Thus, if an angle must be divided by two, it should not have
components equal to :|:1. Since 01’ = (0f— 9;)” the components of of and of

Page 16 of 18

systolic Arrays 779

may, it seems, be taken equal to :|:1, then a} = 2-Way?" — of) has components equal to
0 or :izl. However this means that on the i th iteration, the elementary rotation would

have tangent 0 or :hti. The scaling factors differ in both cases and, to preserve a con-
stant global scaling, when the tangent is D the components of the vector being rotated,

a; and y,- , should be multiplied by #1 + k}. Unfortunately this cannot be done in a
single iteration with shift-and-add hardware. 0n the other hand, if the components of

eff/2 and off/2 are taken equal to :tl, they can be evaluated by rotating along the
first axis the first columns of p and q using an implicit CORDIC algorithm with
‘double’ elementary rotations

2

1 cr-t- 1—1-2 o,-2t,—il 1 I1

lvl‘l'ti _diti 1 1+tt'2 ‘0,”2“ l—tia
Indeed, the i th elementary rotation rotates by 2&2 tan'l t, and hence the process of
rotating with these elementary rotations a vector along the first axis generates the

decomposition {0,- = :lrl, 1 5 i 5 I} of half the angle between the vector and the axis.

Of course, as in the standard algorithm of Section IV, the rotations are applied unsealed
and the multiplication by the constant equal to the the product of the scaling factors,
decomposed into a short sequence of shifts and adds, is applied afterwards. From the

implicit representations (if/2 and ail/2, with components :hl,the implicit representa-
tion of 9; is obtained readily as: a; = offl—crffl, with components 0 or :l:1.
Similarly, the representation of 9; is obtained from 05/2 and (If/2 according to:
a; = (If/2 + affl. However, because we use the decomposition into even and odd
part, we are really interested in 9;} and 9,3. Their implicit representations are
a!) = a; — a} and of} = ch + a} or, in terms of the sequences evaluated by the diag-
onal processors H and JJ ,

05 = «of/2 + raj/2 — oil/2 4- off? , 0,3 = (If/2 + Gift! + of]? —of/2 .

Therefore the representations have components 0, i2 or 5:4.

A highly parallel implementation of the parallel Jacobi algorithm of Brent and Luk
for the SVD, based both on the decomposition of 2x2 matrices into even and odd part

and on the use of implicit CORDIC algorithms, may now be described. The algorithm
exploits the decomposition exactly like the algorithm in [9]; the differences are only in
the CORDIC algorithms employed:

- In diagonal processor II, the vectors (p1 -p,)T = 2'1(0 + d c — b)T and
((11 92)? = 2"(a — d c + b)T are formed first. Then, in parallel, the two vectors
are rotated along the first axis with double elementary rotations, thus generating at each
iteration one of the signs in each mquence of/2 and turf/2. As soon as evaluated,
both signs are sent (more precisely, propagated in a. systolic fashion) to the off—diagonal
processors along both row I and column I . The scaling iterations are then applied in

parallel to the two vectors, yielding (111' 0)T and (q 1' 0)T._Finally, the diagonal
entries of the rotated matrix are obtained as E : pf + q{ and d = pf # ql'.

- In tag—diagonal processor U, the vectors (p1 —pg)T = 2-1(a +d c —b)T
and (q; Q2)T = 2'1(a - d c + b)T are formed first. Then, in parallel, the scaling
iterations are applied to the two vectors. (Note that the global scaling factor is the
square of the scaling factor for double elementary rotations, which is itself the square of

the scaling {actor of the standard CORDIC algorithms of Section IV.) Before the last
scaling iteration the first sign in each sequence, (rt—{2, ail/2, (If/2 and Off/2, reaches
the processor. The sequence of unsealed elementary rotations is then applied simultane-

ously on both vectors; to the p-vector are applied the rotations defined by the com-

ponents of 0,} and to the q-vector are applied the rotations defined by the components

of stiff. Let us denote, locally, by a,- the ith component of ofi, or wfi; the

Page 16 of 18

Page 17 of 18Page 17 of 18

780 Intenmdonal Conference on Application Specb‘lc Array Processors

associated angle is oitan‘lt, . If a, = i4 the unsealed elementary rotation matrix is
$4

1 t, 1-st,’+ 1,‘ 1 (4t,- —4t,3)

_ti 1 d: (‘4‘, 'I' 4ti3) 1 — 6“: + f,"

If a,- = t2 the unsealed elementary rotation matrix is
:h 2

1 t,- 1— t,‘ 1- (2t,- + 2:?)
(1 + if) =

‘t.’ 1 :I: (—2:,— —2t,-3) 1 — r,‘

If a, = 0, a nil rotation, the unscaled elementary rotation matrix is
1 o 1 + 2:,2 + t,‘ o

(1 + 3&3)2 =
0 1 o 1 + 21,-? + 1,4

Denoting the resulting rotated vectors by (p1ll 135')? and (q; q;)T, the rotated
matrix is eventually constructed as o’ = p," + (11', b' = p," + 92", c' = a p; + q,:,
and d' = pi - vi-

The diagonal processors consist of two ‘double’ rotation implicit CORDIC modules.
A custom chip implementing such modules has been designed; it operates on 32-bit fixed
point words, with 5 extra guard bits. It has been fabricated with a 2n CMOS process
and performs the CORDIC iterations at 11 MHz. lts area is slightly smaller than the
area of a chip implementing the method of Yang and Bmae, using the explicit CORDIC
algorithm of Section IV. It requires both 2!, and 1,2 shifters instead of just t,-
shifters; the shifter area is 1.4 times the area of the shifter for the ‘explicit’ method.
However the shifters require less area than the adders, and the adder area for the expli-
cit method is abOut 1.4 times the area for our method. [To add 3 numbers an array of
3-to-2 carry save adders, whose area is about one tenth of the area of a fast adder, is
used to reduce the numbers to be added to 2). Finally, a ROM is needed to store the
angles tan“ 1,- in the explicit method.

The off—diagonal processors consist of two 'quadruple’ rotation implicit CORDIC
modules. The shifter area is about twice that of the diagonal processor modules. The
adder area is slightly larger than that of a diagonal module: 5-to-2 carry save adders
replace 3-to-2 carry save adders and extra wiring is needed to bring in the inputs. The
total area should be about 1.4 times the area of a diagonal module. The cycle time for
an iteration must be about 15 per cent longer than for the standard CORDIC algorithm
used by Yang and Bmae. However, because of the complete overlap of the application
of the rotations in the off-diagonal processors with their evaluation in the diagonal pro-
cessors, a step requires half as many cycles as with Yang and Bahme‘s method.

In the special case of the symmetric eigenvalue problem a simpler, very elegant,
parallel architecture is obtained. Indeed, the symmetry implies that 9," = 0,, hence
9;" = 0 and only the sums 91+ need to be evaluated by the diagonal processors. More
precisely, only the sequence of signs of/Z must be generated and sent. The oil‘-
diagonal processors apply rotations defined by the components of

of; = a; -of = of/2—aF/2 and 0;} = a; + of = (If/2 + (If/2.
- In diagonal processor H consisting of a single double rotation module, the vector

(qrl 9,)? = 2"(a — d 25)1. is formed first. Then the vector is rotated along the
first axis with double elementary rotations, thus generating at each iteration one of the
signs in the sequence or,"/2. As soon as evaluated, each sign is propagated to the off-
diagonal processors along both row I and column I . The scaling iterations are then
applied to the vector, yielding (ql' 0)T. Finally, the diagonal entries of the rotated

Page 18 of 18

55»:ch Arrays 781

matrix are obtained as a = 2'1(a + (I) + of and d = 2'10: + d) — of.
- In 0 diagonal processor IJ , consisting of two double rotation modules, the vectors

(p. -r:) =2"(a +d c —b)T and (,, n)" =2"(« —d c +6)T a...
formed first. Then, in parallel, the scaling iterations are applied to the two vectors. (The

global scaling factor is the square of the scaling factor for the standard CORDIC algo-
rithm.) Beiore the last scaling iteration the first sign in each sequence, oil/2 and
Off/2, reaches the processor. The sequence of unscaled elementary rotations is then
applied simultaneously on both vectors; to the p -vector are applied the rotations defined

by the components of of} and to the q-vector are applied the rotations defined by the
components of —afi. These components, denoted locally by d,- , can only take three
values: 0 and i2. II o,- = :|:2 the unsealed elementary rotation matrix is

1:2

1 t, 1 — t,“ in,

4a 1 :I: (—21,) 1- t,”

If or,- = 0, a nil rotation, the unsealed elementary rotation matrix is

1 o 1 + r,“ o
(1 + :9) =

0 1 o 1 + r,“

Only one module type, the implicit double rotation module already designed, is

needed. Moreover, thanks to the implicit nature of the algorithm, rotations with vari-

able angular resolution [5], [8] can easily be evaluated and applied, still in a fully parallel
way. By starting from a low resolution and increasing the resolution in later steps, the
number of CORDIC iterations per step may be decreased significantly with almost no
increase in the total number of steps.

ACKNOWLEDGEMENTS

The work presented in this paper has been supported by the Defense Advanced Research
Projects Agency under contract N00014-88—K-0573.

REFERENCES

[1] RP. Brent and RT. Luk, ”The Solution of Singular Value and Symmetric Eigenvalue Prob-
lems on Multiprocessor Arrays,” SIAM J. Sci. Storm. Comp-1., Vol. 6, pp. 69-84, Jan. 1985.

[2] RP. Brent, RT. Lu): and C. Van Loan, “Computation of the Singular Value Decomposition
Using Mesh-Connected Processors,” J. VLSI 5 Comp. Spat, Vol. 1, No. 3, pp. 242-270, 1985.

[3] 1R. Cavallaro and F.T. Luk, ”Architectures for a CORDIC SVD processor," Real Time Sig-
nal Processing IX, Proc. SPIE, Vol. 698, Aug. 1986.

[4] J.—M. Delosme, ”A Processor for Two-dimensional Symmetric Eigenvalue and Singular Value
Arrays,” Proc. 2131 Asilomar Conf. on Circuits, Systems and Computers, Pacific Grove, CA,
pp. 217-221, Nov. 1987.

[5] J.-M. Delosrne, ”CORDIC Algorithm: Theory and Extensions,” Advanced Algorithms and
Architectures for Signal Processing IV, Proc. SPIE ”52, pp. 131-145, Aug. 1989.

[6] J.—M. Delosme, ”Parallel Computation of Real and Complex SVD Using Implicit CORDIC
Arithmetic,” Proc. 2nd Workshop on SVD and Signal Processing, June 1990 (forthcoming
book, Elsevier Science Publishers).

[7] G.R. Gao and SJ. Thomas, ”An Optimal Parallel Jacobi-Like Solution Method for the
Singular Value Decomposition,” IEEE Int. Conf. on Parallel Processing, pp. 47-53, 1988.

[3] RT. Luk and 0.151. Schimmel, ”A Novel Bit~Levcl Algorithm for the Symmetric Eigenvalue
Problem,” contributed presentation, 198.9 SIAM Annual Meeting, San Diego, July 1989.

[9] B. Yang and J.F. Bbhme, ”Reducing the Computations of the SVD Array Given by Brent
and Luk,” Adv. Alger. 8 Arch. for Sig. Proc. IV, Proc. SPIE 1152, pp. 92—102, Aug. 1989.

Page 18 of 18

