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referred to as a multiple-input, multiple-output (MIMO) wireless communication

system, which includes receive diversity and transmit diversity as special cases of space

diversity. The novel feature of the MlMO system is that, in a rich Rayleigh scattering

environment, it can provide a high spectral efficiency, which may be explained as fol-

lows: The signals radiated simultaneously by the transmit antennas arrive at the input

of each receive antenna in an uncorrelated manner due to the rich scattering mecha-

nism of the channel. The net result is the potential for a spectacular increase in the

spectral efficiency of the wireless link. Most importantly, the spectral efficiency

increases roughly linearly with the number of transmit or receive antennas, whichever

is less. This result assumes that the receiver has knowledge of channel state informa-

tion.The spectral efficiency of the MIMO system can be further enhanced by including

a feedback channel from the transmitter to the receiver, whereby the channel state is
also made available to the transmitter, and with it, the transmitter is enabled to exer-

cise control over the transmitted signal.

Increasing spectral efficiency in the face of multipath fading is one important

motivation for using MIMO transmission schemes. Another important motivation is

the development of space—time codes, whose aim is the joint coding of multiple transmit

antennas so as to provide protection against channel fading, noise, and interference. In

this context, of particular interest is a class of block codes referred to as orthogonal and

generalized complex orthogonal space-lime block codes. In this Class of codes, the

Alamouti code, characterized by a two—by—two transmission matrix, is the only full—rate

complex orthogonal space—time block code. The Alamouti code satisfies the condition

for complex orthogonality or unitafity in both the spatial and temporal sense. In con—

trast, the generalized complex orthogonal space—time codes can accommodate more

than two transmit antennas; they are therefore capable of providing a larger coding

gain than the Alamouti code for a prescribed bit error rate and total transmission rate

at the expense of a reduced code rate and increased computational complexity. How-

ever, unlike the Alamouti code. the generalized complex orthogonal space—time codes

satisfy the condition for complex orthogonality only in the temporal sense. Accord-

ingly, the complex orthogonal spaceitime codes, including the Alamouti code and gen-

eralized forms, permit the use of linear receivers.

The complex orthogonal property of the Alamouti code is exploited in the devel-

opment of a differential Space—time block coding scheme, which eliminates the need for .

channel estimation and thereby simplifies the receiver design. This simplification is,

however, attained at the expense of degradation in receiver performance, compared

with the coherent version of the Alamouti code, which assumes knowledge of the
channel state information at the receiver.

Space was also discussed in the context of space-division multiple-access

(SDMA), the mechanization of which relies on the use of highly directional antennas.

SDMA improves system capacity by allowing a greater reuse of the available spectrum

through a combination of two approaches: minimization of the effects of interference

and increased signal strength for both the user terminal and the base station. Advanced

techniques such as phased—array antennas and adaptive antennas, which have been
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researched extensively under the umbrellas of signal processing and radar for more

than three decades, are well suited for implementing the practical requirements of both

approaches.

Under the three theme examples, we discussed three different BLAST architec-

tures issues relating to antenna diversity, spectral efficiency, as well as keyhole chan—
nels. Each of the BLAST architectures, namely, diagonal-BLAST, vertical-BLAST,

and TurbOHBLAST, offers distinct features of its own. Diagonal-BLAST (D-BLAST)

makes it possible to closely approximate the ergodic channel capacity in a rich scatter-

ing environment and may therefore be viewed as the benchmark BLAST architecture.
But it is impractical, as it suffers from a serious space—time edge wastage. Vertical-
BLAST (V—BLAST) mitigates the computational difficulty problem of D-BLAST at
the expense of a reduced channel capacity. Turbo-BLAST uses a random layered

space—time code at the transmitter and incorporates the turbo coding principle in
designing an iterative receiver. In so doing, Turbo-BLAST offers a significant
improvement in spectral efficiency over V—BLAST, yet the computational complexity
is maintained at a manageable level. In terms of performance, Turbo—BLAST outper—

forms V—BLAST for a prescribed (NI, Nr) antenna configuration, but does not perform
as well as D-BLAST.

The different BLAST architectures were discussed in Theme Example 1. The

material presented in Theme Example 2 taught us the following:

. The two basic forms of diversity, namely, transmit diversity and receive diversity,

play complementary roles, with both of them being located at the base station.

0 For low SNR and fixed spectral efficiency, V—BLAST outperforms space—time

block codes (STBCs) on {NV NF} antenna configurations with N, > N:-

0 Assuming the use of forward error-correction channel codes, a two-by-two

STBC system could provide an adequate performance for wireless communica-
tions at low SNR.

0 Diversity order is determined experimentally by measuring the asymptotic slope
of the average frame error rate (or average symbol error rate) plotted versus the

signal-to-noise ratio on a log-log scale.

0 MIMO systems provide a trade-off between outage capacity and diversity order,

depending on how the system is configured.

The degenerate occurrence of keyhole channels, discussed in Theme Example 3
arises when the rank of the channel matrix is reduced to unity, in which case the capa-

city of the MIMO link is equivalent to that of a single-input, single—output link operat-

ing at the same signal—to-noise ratio. Fortunately, the physical occurrence of keyhole
channels is a rare phenomenon.

One last comment is in order: the discussion of channel capacity presented in the

chapter focused on single-user MIMO links. Although, indeed, wireless systems in cur—
rent use cater to the needs of multiple users, the focus on single users may be justified

on the following grounds:

0 The derivation of MIMO channel capacity is much easier to undertake for single

users than multiple users.
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' Capacity formulas are known for many single-user MIMO cases, whereas the

corresponding multiuser ones are unsolved.

Simply put, very little is known about the channel capacity of multiuser MIMO links.
unless the channel state is known at both the transmitter and receiver.28

NOTES AND REFERENCES

Page 378 of 474

1 For detailed discussions of the receive diversity techniques of selection combining, max-
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4For expository discussions of the many facets of MIMO wireless communications.
see the papers by Gesbert et al. (2003), Diggavi et a1. (2003), and Goldsmith et a1.
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dix to the paper by Tarokh et al. (1998). These errors have been corrected in the per-
tinent MATLAB codes.

16Differential space—time block coding, based on the Alamouti code, was first
described by Tarokh and Jafarkhani (2000). See also the article by Diggavi et al.

(2002), which combines this form of differential coding with orthogonal frequency—

division multiplexing (OFDM) for signal transmission over fading frequency-selective

channels; OFDM was discussed in Chapter 3.
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igating short-term fading effects in radio communications was apparently first discov-

ered in experiments with spaced receiving antennas operating in the high-frequency

(HF) hand. For additional historical notes, see Chapter 10 by Seymour Stein in
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Gesbert et al. (2002) and Chizhik et a1. (2002).

27 The GBGP model for MIMO wireless links is described in Gesbert et al. (2002).

28 Multiuser MIMO wireless systems are discussed in Diggavi et al. (2003) and Gold-
smith et a1. (2003).

ADDITIONAL PROBLEMS

Page 380 of 474

Diversity-on-receive techniques

Problem 6.21 A receive-diversity system uses a selection combiner with two diversity paths.
An outage occurs when the instantaneous signal-to-noise ratio ydrops below 0.25 yaw where y“
is the average signaluto—noise ratio. Determine the probability of outage experienced by the
receiver.

Problem 6.22 The average signal-to-noise ratio in a selection combiner is 20 dB. Compute
the probability that the instantaneous signal-to-noise ratio of the device drops below 7: 10 dB
for the following number of receive antennas:

(a) N,:1

(b) N,:2

(c) N,:3

(d) N,=4
Comment on your results.

Problem 6.23 Repeat Problem 6.22 for y: 15 dB.

Problem 6.24 In Section 6.2.2. we derived the optimum values of Eq. (6.18) for complex
weighting factors of the maximal-ratio combiner using the Cauchy~Schwartz inequality. This
problem addresses the same issue, using the standard maximization procedure. To simplify mat-

ters, the number N, of diversity paths is restricted to two, with the complex weighting parameters

denoted by (11 and (12.
Let

ck : xk +jyk It = 1, 2

Then the complex derivative with respect to ak is defined by

3 1(8 . a jat: = _ — +.)'— k 3 112
dark 2 axk ayk

 

Applying this formula to the combiner’s output signal-townoise ratio ye of Eq. (6.14), derive
Eq. (6.18).

Problem 6.25 In this problem, we develop an approximate formula for the probability of
error, Pg, produced by a maximal-ratio combiner for coherent FSK. We start with Eq. (6.25), and
for small ymrc, we may use the following approximation for the probability density function:

1 Nr—l

fru’mrc) = 'Nr—ymrc
yav(N,.— l)!
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(:1) Using the conditional probability of error for coherent BFSK, that is,

Prob(errorlymrc} = éerfc[ éynm)

derive the approximation
—1

PE aéjmerfc(Jj))yN dy
21 MN 1.0(gr...) { ,— ).

Wherey = 27mm
(1)) Integrating the definite integral by parts and using the definition of the complementary

error function, show that

Pg: —'[:ein)12&[% :averN!
(0) Finally, using the definite integral

obtain the desired approximation

PB:
—N_f
wea

Problem 6.26

(:1) Using the approximation for jflymm) given in Problem 6.25, determine the probability of
symbol error for a maximal-ratio combiner that uses noncoherent BFSK.

(b) Compare your result of part(a) with that of Problem 6.25 for coherent BFSK.

Problem 6.27

(a) Continuing the approximation to fl—(ymrc), determine the probability of symbol error for
a maximal-ratio combiner that uses coherent BPSK.

(b) Compare your result of part(a) with that of Problem 6.25 for coherent BFSK.

Problem 6.28 As discussed in Section 6.2.3, an equal-gain combiner is a special form of the
maximal-ratio combiner for which the weighting factors are all equal. For convenience of pre—
sentation, the weighting parameters are set to unity. Assuming that the instantaneous signal-to-
noise ratio ’yis small compared with the average Signal-tonoise ratio yaw derive an approximate
formula for the probability density function of 9!.

Problem 6.29 Compare the performances of the following linear diversity-on-receive
techniques:
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(a) Selection combiner

(b) Maximal-ratio combiner

(c) Equal—gain combiner

Base the comparison on signal-to—noise improvement, expressed in dB, for Nr 2 2, 3, 4, 5, and 6
diversity branches.

Problem 6.30 Show that the maximum-likelihood decision rule for the maximal-ratio
combiner may be formulated in the following equivalent forms:

(a) Choose symbol s,- over 3k if and only if

2 2 2 ,. 2 2 2 .5. . .
(a1+a’2)|sf| —ylsi‘—y{s£<(061+a2)iskl “y13k_yi5k kit

(b) Choose symbol si over sk if and only if

2 2 2 2 2 2 2 2 .
(al+a2a1)|sf| +d (y1,si)<(a1+a2—1)sk| +d (3235,?) kit 

Here, £12021 ,si) denotes the squared Euclidean distance between the received signal yl and
constellation points sf.

Problem 6.31 It may be argued that, in a rather loose sense, transmit—diversity and receive—
diversity antenna configurations are the dual of each other, as illustrated in Fig. 6.46.

(3) Taking a general Viewpoint, justify the mathematical basis for this duality.
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FIGURE 6.46 Diagram for Problem 6.31.
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(1]) However, we may cite the example of frequency~divisi0n diplexing (FDD), in which, in a
strict sense, the duality depicted in Fig. 6.44 is violated. How is it possible for the violation
to arise in this example?

MIMO Channel Capacity

Problem 6.32 In this problem, we continue with the solution to Problem 6.9, namely,

 
lav

C—>[10 ij asNeoog2

where NI = N, = N and 1a,, is the average eigenvalue of HHI : HIH,

(a) Justify the asymptotic result given in Eq. (6.61)7that is,

E 2 constantN

What is the value of the constant?

(b) What conclusion can you draw from the asymptotic result?

Problem 6.33 By and large, the treatment of the ergodic capacity of a MIMO channel, as
presented in Sections 6.3 and 6.5, focused on the assumption that the channel is Rayleigh dis-
tributed. In this problem, we expand on that assumption by considering the channel to be Rician
distributed. In such an environment, we may express the channel matrix as

H = ans}, +HSC

where HEP and HSC denote the specular and scattered components, respectively To be consistent

with the MIMO model described in Section 6.3, the entries of both HSp and HSC have unit amplia
tude variance, with HSp being deterministic and H35 consisting of iid complex Gaussian-distributed
variables with zero mean.The scaling parameter a is related to the Rice K~factor by the formula

K = 1010g10a2dB

(:1) Considering the case of a pure line of sight (LOS), Show that the MIMO channel has the
deterministic capacity

C = log2(1 + Maip) bits/s/Hz

Where Nr is the number of receive antennas and p is the total signalutornoise ratio at each
receiver input.

(b) Compare the result obtained in part (a) with that pertaining to the pure Rayleigh distria
buted MIMO channel.

(c) Explore the more general situation, involving the combined presence of both the specular
and scattered components in the channel matrix H.

Problem 6.34 Suppose that an additive, temporaliy stationary Gaussian interference v(t)
corrupts the basic channel model of Eq. (6.48). The interference v(r) has zero mean and correla—

tion matrix RV. Evaluate the effect of v(t) on the ergodic capacity of the MIMO link.

Problem 6.35 Consider a MIMO iink for which the channel may be considered to be essenv
tially constant for ’6 uses of the channel.
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(3) Starting with the basic channel model of Eq. (6.48), formulate the input—output relation-
ship of this link, with the input described by the Nr-by-i: matrix

= [51, 529 “'5 ST]

(b) How is the log-det capacity formula of the link correspondingly modified?

Orthogonal Space-Time Block Codes

Problem 6.36 The objective of this problem is to fill in the mathematical details that lie

behind the formulas of Eqs. (6.104) and (6.105) for the maximum-likelihood estimates s1 and s2.

(a) Starting with Eq. (6.102) for the combiner output 51k and using Eq. (6.103) for the proba-
bility density function of the additive complex Gaussian noise \7k, formulate the expres
sion for the likelihood function of transmitted symbol Sk , k : 1,2.

(h) Hence, using the result of part (a), derive the formulas of Eqs. (6.103) and (6.104).

Problem 637 Figure 6.47 shows the extension of orthogonal spacektime codes to the
Alamouti code, using two antennas on transmit and receive. The sequence of signal encoding
and transmissions is identical to that of the single-receiver case of Fig. 6.18. Table 6.5(a) defines
the channels between the transmit and receive antennas. Tabie 6.5(b) defines the outputs of the
receive antennas at times t’ and t' + T, where T is the symbol duration.

Er. i2,

is: ‘s? ,

Transmit * Transmit. ant

antenna 1 l ‘ enna 2

kl kg {13 m

Receive Receive

 
 
 

 
 

 

antenna 1 antenna 2

 @lnterference@and noise
Interference

93nd noise 104

”and
e§?:1:;t?:l‘_ Linear estimatorcombiner

Maximum-likelihood decoder

 

  
 

 

 
 

 

 
 

 

 
a, 3,

FIGURE 6.47 Diagram for Problem 637.
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TABLE 6.5 Table for Problem 6.36.

 

 

 

 

 

(3)

Receive antenna 1 Receive antenna 2

Transmit antenna 1 I11 I13

Transmit antenna 2 hg 114
(13)

Receive antenna 1 Receive antenna 2

Time f 5r] 3C3

Time I + T 5&2 3:4 

(a) Derive expressions for the received signals 5:1, 17:2,}:3, and 564, including the respective
additive noise components, in terms of the transmitted symbols.

0)) Derive expressions for the line of combined outputs in terms of the received signals.

(c) Derive the maximum-likelihood decision rule for the estimates E1 and E2.

Problem 6.38 This problem explores a new interpretation of the Alamouti code. Let

3;- = SE1) +13?) 1': 1,2
2 w . .

where SE“ and SE ) are both real numbersThe complex entry S:- in the twoeby-two Alamouti code
is represented by the two-by-two real orthogonal matrix

(1) (2)

Si Si : = 1, 2
(2) so)_Si 1

Likewise, the complex~conjugated entry E? is represented by the two-by-two real orthogonal
matrix

(1) (1)

SI" Si i = 1, 2

3‘.” s?)i

(a) Show that the two-by—two complex Alamouti code S is equivalent to the four-by—four real
transmission matrix

551) $52) :Sgll S(22)l

S4 = ______ :_ _____I

-39) 532) .ng 1552)l'
2 l l 2 1

elf—3;) ‘ 5(1) Si )
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(b) Show that S4 is an orthogonal matrix.

(c) What is the advantage of the complex code S over the real code S4?

Problem 6.39

(a) Show that the generalized complex orthogonal space-time codes of Eqs. (6.107) and
(6.108) satisfy the temporal orthogonality condition

GTG=I

where the superscript 1' denotes Hermitian transposition and 1 denotes the identitymatrix.

(1)) Likewise, show that the sporadic complex orthogonal space-time codes of Eqs. (6.109)
and (6.110) satisfy the temporal orthogonality condition

H+H=I

Problem 5.40 Applying the maximum-likelihood decoding rule, derive the optimum
receivers for the generalized complex orthogonal space—time codes of Eqs. (6.107) and (6.108).

Problem 6.41 Repeat Problem 6.40 for the sporadic complex orthogonal space—time codes
of Eqs. (6.109) and (6.110).

Problem 6.42 Show that the channel capacity of the Alamouti code is equal to the sum of
the channel capacities of two single-input, single-output systems.

Differential Space—Time Block Coding

Problem 6.43 Equation (6.116) defines the inputioutput matrix relationship of the differ-
ential space—time block coding system described in Section 6.7. Starting with Eqs. (6.98) and
(6.99), derive Eq. (6.116).

Problem 6.44 The constellation expansion illustrated in Fig. 6.44 is based on the polar base—
band representation {-1, +1} for BPSK transmissions of the Alamouti code on antennas 1 and 2.

Explore the constellation expansion property of differential spaceitime coding for the followingtwo situations:

(a) Frame of reference: dibit 00

(b) Frame of reference: dibit 11

Comment on your results.

Problem 6.45 In this problem, we investigate the use of QPSK for transmission of the
Alamouti code on antennas 1 and 2. The corresponding input block of data will be in the form of
quadbits (i.e., 4—bit blocks). Perform the investigation for each of the two QPSK constellations
depicted in Fig. 6.48. Use 0000 as the frame of reference.
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Imaginary

Real  
Imaginary

Real 
(b)

FIGURE 6.48 Diagram for Problem 6.44.

Problem 6.46 Repeat Problem 6.45 for the frame of reference 1111.

Problem 6.47 In the analytic study of differential space—time block coding presented in
Section 6.7, we ignored the presence of channel noise. This problem addresses the extension of
Eq. (6.116) by including the effect of channel noise.

(a) Starting with Eq. (6.101), expand the formulas of Eqs. (6.116) and (6.117) by including the
effect of channel noise modeled as additive White Gaussian noise.

(b) Using the result derived in part (a), expand the formula of Eq. (6.121) by including the
effect of channel noise, which consists of the following components:

(i) Two signal-dependent noise terms

(ii) A multiplicative noise term consisting of the product of two additive white Gauss
ian noise terms
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(c) Show that, when the signal-to-noise ratio is high, the noise term (ii) of part (b) may be
ignored, with the result that the remaining two signal—dependent noise terms (i) double
the average power of noise compared with that experienced in the coherent detection of
the Alamouti code.

Theme Examples

Problem 5.48 In this problem, we repeat Experiment 1 of Section 6.10, but this time we
investigate the effect of increasing signal—to—noise ratio (SNR) on the symbol error rate (SER)
for a preseribed modulation scheme, still operating in a Rayleigh fading environment.

(21) Using 4-PSK for both STBC and V-BLAST, plot the SER versus SNR for the following
antenna configurations:

filelM=2

m)M:am:4

(b) What conclusions do you draw from the experimental results of part (a)?

Problem 6.49 Continuing with Problem 6.48, suppose the STBC and V~BLAST systems use
4-PSK. This time, however, we wish to cliSplay the spectral efficiency in bits/s/Hz versus the
SNR. How would you expect the performance curve of STBC to compare against that of V-
BLAST? Explain.

Problem 6.50 Compare the relative merits of STBC systems versus BLAST systems in
terms of the following issues:

' Capacity
0 Diversity order
. Multiplexing gain

- Computational complexity

Problem 6.51 In Chapter 2, we discussed the reciprocity theorem in the context of a
single-input, single-output wireless communication link. Show that the theorem also applies

to Eq. (6.146); that is, show that the channel matrix H of the MIMO link satisfies the Hermitian
property.
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Fourier Theory

A.1 THE FOURIER TRANSFORMI

Let g(t) denote a nonperiodic deterministic signal, expressed as some function of time t.

By definition, the Fourier transform of the signal g(t) is given by the integral

G0) = f g(t)eXp(—127rfi)dt (A.1)

where j = fl, and the variable f denotes frequency. Given the Fourier transform
GU), the original signal g(t) is recovered exactly using the formula for the inverse Fou-
rier transform:

gm = f Gmexpoznfiidr (A2)

Note that in Eqs. (A.1) and (A2) we have used a lowercase letter to denote the time

function and an uppercase letter to denote the corresponding frequency function. The

functions g(t) and GU" ) are said to constitute a Fourier-transform pair.
For the Fourier transform of a signal g(t) to exist, it is sufficient, but not neces-

sary, that g(r) satisfy three conditions, known collectively as Dirichlet’s conditions:

1. The function g(t) is single valued, with a finite number of maxima and minima in

any finite time interval.

2. The function g(i‘) has a finite number of discontinuities in any finite time interval.

3. The function g0) is absolutely integrable; that is,

f” Igmldzw

We may safely ignore the question of the existence of the Fourier transform of a time

function g(t) when g(t) is an accurately specified description of a physically realizable

signal. In other words, physical realizability is a sufficient condition for the existence of

a Fourier transform. Indeed, we may go one step further and state that all finite-

energy signals are Fourier transformable.

479
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Appendix A Fourier Theory

The absolute value of the Fourier transform G(f ), plotted as a function of fre-

quency f, is referred to as the amplitude spectrum or magnitude spectrum of the signal
g(t). By the same token, the argument of the Fourier transform, plotted as a function

of frequency f; is referred to as the phase spectrum of the signal 5(1). The amplitude
spectrum is denoted by lG(f )l and the phase spectrum is denoted by 9(f ).When g(t) is
a realuvalued function of time I, the amplitude spectrum |G(f)l is symmetrical about
the origin f: 0, whereas the phase spectrum 9(f ) is antisymmetrical aboutf: 0.

Strictly speaking, the theory of the Fourier transform is applicable only to time

functions that satisfy the Dirichlet conditions. (Among such functions are energy sig-
nals.) However, it would be highly desirable to extend this theory in two ways to include
power signals (i.e., signals whose average power is finite). It turns out that this objective
can be met through the “proper use” of the Dirac delta function, or unit impulse.

The Dirac delta function, denoted by 6(t), is defined as having zero amplitude
everywhere except at t: 0, Where it is infinitely large in such a way that it contains unit
area under its curve; that is,

6(t) = 0 t¢0 (A3)
and

f” 5(t)dt = 1 (A4)

An implication of this pair of relations is that the delta function is an even fanc—
tion of time; that is, 6(—t) : 6(1). Another important property of the Delta function is
the replication property described by

I” g(f)5(t—’C)d‘c = g(t) (A5)

which states that the convolution of any function with the delta function leaves that
function unchanged.

Tables A.1 and A2 build on the formulas of Eqs. (A1) through (A5). In partic_
ular, Table A1 summarizes the properties of the Fourier transform, while Table A2
lists a set of Fourier-transform pairs.

In the time domain, a linear system (e.g., filter) is described in terms of its impulse
response, defined as the response of the system (with zero initial conditions) to a unit
impulse or delta function 5(t) applied to the input of the system at time t:0. If the sys-
tem is time invariant, then the shape of the impulse response is the same, no matter

when the unit impulse is applied to the system. Thus, assuming that the unit impulse 0r
delta function is applied at time t=0, we may denote the impulse response of a linear
time—invariant system by Mr). Let this system be subjected to an arbitrary excitation
x(r), as in Fig. A.1(a). Then the response y(t) of the system is determined by the formula

y(t) = I“ ante—oer
(A6)

= I” hump new
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TAB LE A.1 Summary of Properties of the Fourier Transform.  

Property Mathematical Description 

1. Linearity

2. Time scaling

3. Duality

4. Time shifting

5. Frequency shifting

6. Area under g0)

7. Area under GO")

8. Differentiation in the time domain

 
9. Integration in the time domain92:”‘1t.

10. Con§ugate functionsl¥mfis‘3§2¥§&fi;§m‘i39122}?
  

 
11. Multiplication in the time domain

12. Convolution in the time domain

rWe!»X.
13. Correlation theorem

:4. Rayleigh’s energy theorem
 

 

dart!) + £3320") : aG1(f} + bGztf)
where a and b are constants

gums? igff]ial a
where a is a constant

if g(t) :Gif),

then G (I) saw—3: g(—f)

gusto) :«f G(f)eXp(-j2fift0)

expijMfctlgm : (Hf-fa)

f” and: = Gm)

gm) = [:06de

digit) «are jznme

I _.. 1 G(O)
Legion ‘— W00") +760)

If at!) $3“ th).

then g*(i) {:3 G*(wf)

g1(t)g2(tl :: f Gamma—ms

I°° sneeze—rm #0100626)

waglitmfifiindr = G1{f)G:(f)

immigmlzdr = f iG(f)i2df

 

    
 

The formula of Eq. (A6) is cailed the convolution integral. Three different time

scales are involved in it: the excitation time 1“, response time t, and system-memory time

t— 1'. Equation (A6) is the basis of the timeudomain analysis of linear time-invariant $sts42s”<“WWWAW".amssssm.*v .
    

{
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systems. It states that the present value of the response of a linear time-invariant sys-

tem is the integral over the past history of the input signal, weighted according to the

impulse response of the systemThus, the impulse response acts as a memory function

for the system.

TABLE A2 Fourier—Transfonn Pairs.

Time Function Fourier Transform

rectG] Tsinc(fT)

. 1 f
smc(2 Wt) WreCt(2—W)

exp (4:?) exp(—Irf2)

III1 fl _, T
T M < TsinczUT)

0, In 2 2"

6(1) 1

1 5U)

g(t~ to) EXPUZWflo)

exp (j2 Irfct) 5(f-fc)

cos(2flfct) %[6(f—fc) + 6mm]

sin(2:rfct) lifter—J2) — 60%)]

m . 1 m n

. Z 5(1—1T0) f0 2 6(f—TD]1 = —m n = —00

M _ l m m m

,2. massif—s
Notes: 6(t) : delta function, or unit impulse

rect(r) = rectangular function of unit amplitude and unit duration centered on the origin
sinc(r) = sine function
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Impulse
x (r) response y(t)

hm 
  
 

Impulse
response

Mar)
m) ——> WW) 

 
(bl

FIGURE A.1 (a) Linear system. (b) Linear time-varying system.

From Table A1, we note that when two functions of time are convolved with each

other, the operation of convolution is transformed into the multiplication of the Fourier
transforms of the functions in the frequency domain. Hence, applying this property to
Eq. (AG), we may express the Fourier transform of the output signal y(t) as

Y0”) = H(f)X(f) (A7)

where X0“) is the Fourier transform of the input signal x(r). The other quantity in Eq.
(A7), namely, H(f), is called the transfer function of the system. It is formally defined
as the Fourier transform of the impulse response h(t) and is given by

H(f) = I” h(t)exp(—j2nft)d£ (AB)

Thus, the impulse response h(r) provides a time-domain description of a linear time-

invariant system, whereas the transfer function HQ) provides an equivalent descrip—
tion of the system in the frequency domain.

A.2 LINEAR TIME-VARYING SYSTEMS

Consider next the case of a linear time-varying system, exemplified by a wireless
communication channel. As the name implies, the impulse response of a linear time-

varying system depends on the time at which the unit impulse is applied to the input

of the system. We thus denote the impulse response of such a system by h(r;r), where
(t — 1:) is the time at which the unit impulse is applied to the system and tis the time at

which the resulting response is measured. (See Fig.A.1(b).) Suppose, then, that an

input signal x(t) is applied to a linear time»varying system with impulse response
[10:17). Then the resulting response of the system is defined by

y(f) = f” h(r;t)x(t—r)dt' (A9)

L—_
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where the integration is performed with respect to r. Correspondingly, the transfer

function of the system is written as H(fgt'), which is related to the impulse response
h(t;t‘) Via the Fourier transform through the relationship

H(f;r) = [m h(t;r)exp(~j27rji)dt (A10)

Equation (AB) is a special case of Eq. (A10) in that, for a linear time-invariant sys-
tem, we have H(f;r) = H(f) for all T.

A3 SAMPLING THEOREM

Page 394 of 474

In continuous-wave modulation, the carrier is typically a sinusoidal wave. In pulse
modulation, by contrast, the carrier is a uniform train of pulses that are relatively short
compared with the fundamental period of the carrier. The sampling theorem,
described next, is basic to all the different forms of pulse modulation used in practice.

To set the stage for a statement of the sampling theorem, consider a strictly
band—limited signal x(t) whose frequency content is confined to a bandwidth W; that is,

X(f) = 0 for If] 2W (All)

For such a signal, the sampling theorem may be stated in two parts:

1. The strictly band-limited signal x(t) is uniquely represented by a set of samples
x(n T0), in = 0, i1, i2, ..., provided that the sampling rate f0 = 1/ T0 is greater than
twice the highest frequency component of x(t); in other words, f0 > 2W.

2. The original signal x(r) is reconstructed from the set of samples x(nT0) for n = 0,
i1, i2, and To > 1/(2W), without loss of information, by passing this uni-
formly sampled signal through an ideal low-pass construction filter of band-
width W hertz.

For a proof of the sampling theorem, We may invoke the duality property of the Fou-
rier transform. From Table A.l , that duality property states,

If g0) : G(f), then 6(4):) : g(f), where the time function Ger) is obtained by
substituting —t for f in the Fourier transform G(f) and the frequency function
g(f) is obtained by substituting f for r in the inverse Fourier transform g(r).

From the last entry of Table A.2, we also have the Fourier-transform pair

2 3(f—mT0) :f0 2 GU’lfolaffinfg) (A12)
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where f0 : LTD is the sampling rate and 6(f) is the Dirac delta function defined in the fre-

quency domain. Applying the duality property to Eq. (A12), invoking the even»function
property of the delta function, and using T0 in place of f0 to maintain proper dimen-
sionality in the result, we obtain

T0 2 Gt———nT0)5(t nTU) ‘2 2 gtf— mfg) (A13)fl=—°€' mzkm

To put this relation in the context of the strictly band-limited signal x(r), we set
G(—t) = x(t) and g(f) = X(f), in which case we may recast Eq. (A.13) in the desired
form:

x5(t)-_ T0 2 x(nT0)5(t— nTo) : z X(f— mfi))-_ X50”) (A14)n=~=a m=_:=o

FigureA.2 presents a time—frequency description of Eq. (A14), assuming that
X(f) = 0 for Ifl > W and f0 > 2W. Parts (21) and (b) of the figure depict the spectra X(f)
and X5(f), respectively, where x(t) :— X(f) and x 5(1) 2 X5 (f).

X0“)

7W 0 W f

(a)

Xatf)

AAAL354 L334 LAW ml
(13}

FIGURE A.2 (a) Spectrum of a signal x(r) limited to the band 7W Sf< W.
(b) Spectrum of the instantaneously sampled signal x5(t) for a sampling rate f” > 2W.
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Given the instantaneously sampled signal x50) and assuming a sampling rate
f0 > 2W, how do we use 355 (I) to reconstruct the original signal x(r)? We may do so by
employing a reconstruction system formulated as an ideal low-pass filter of bandwidth

W. To find the output of this filter in response to the sampled signal x50), we proceed
in two stages:

1. Take the Fourier transform of sampled signal x5(t), and limit the spectrum to the
frequency band if i S W permitted by the low-pass reconstruction filter, thereby
obtaining the spectrum

X(f) = TO i x(nTO)exp(—j2:mT0f) [fISW [fISW”2—90

0 lfl>W

(A15)

2. Take the inverse Fourier transform of the spectrum defined in Eq. (A15), yield-
ing the original signal

x(0 = jm Arjdexprjzafiyfi

 

WF‘W(T) czrn (2am: X 6X — 7C 6 7?.

(W 0,122; no p1 no XPJ
, (A.16)

_ °° sm(27r(r—nT0)W)

“ T0 :4 ”Cami 2n(t—nT0)W ]

= To 2 x(nT0)sinc(2(t—nT0)W)

Where the function

sinc(/l) = 5111”” (A.17)m1

is called the sine function. Equation (A16) states that, provided that the sampling rate
fl] satisfies the condition f0 > 2W, the original signal x(r) may be reconstructed as the
weighted sum of the reconstruction kernel sinc(2Wt), where the nth component of the
sum consists of the time-shifted kernel sinc(2(r , nT0)W), weighted by the correspond-
in g sample x(n T0).

Equation (A16) verifies part (2) of the sampling theorem. Part (1) of the theo-
rem is, in reality, merely a reformulation of part (2).
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A.4 SAMPLED CONVOLUTiON THEOREM

Suppose that we have two time functions, x(t) and h(t), with x(t) limited to the fre—

quency band -—W < f < W. The function x(t) is uniformly sampled at the rate f0 > 2W

and then convolved with h(t). The convolution product, denoted by y(t), may be

viewed as the output of a linear time-invariant system with impulse response h(t),
which is driven by the instantaneously sampled version of x(t). The requirement is to

evaluate y(t).

The instantaneously sampled version of x(t) is defined by (see the leftwhand side

of Eq. (A.l4))
on

x5“) a To Z x(nT0)5(t—nT0) (A.18)n=-°°

 
where T0 = llfo is the sampling period. The convolution of I50) with h(t) is defined by
the integral

y(t) = I“ h(t')x5(twt)d1:—00

II

E h(T)[T0 Z x(nT0)5(t—nTDT)]dT (A19)n=mm  
To i x(nT0)f h(t)5(tunTO—t)dtnz—eo

Invoking the replication property of the delta function described by Eq. (A5), We may

reduce the integral in the last line of Eq. (A19) to

I” MUM—Hoe out : h(t—nT0) (A20)-00

“swamp,”WW-MsamwmmxwmmwwWMMsiw.wwwve=9w>tw4mwstwww.mkwv‘w ||

l Accordingly, Eq. (A19) simplifies to

y(t) = To 2 x(nT0)h(t_nT0) (A21)
4.. nzem

 
which is the desired result. Equation (A.21) is a statement of the sampled convolution
theorem:

The convolution of a continuous-time function with the instantaneously sampled

version of a band-limited signal is a scaled version of the convolution sum of twa

time series: the original instantaneously sampled signal and the instantaneously

sampled version of the continuous-time function.
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Note that Eq. (A21) is a generalization of the expression on the left-hand side of

Eq. (A14), with the impulse response h(t) taking on the role of the delta function 5(t).

A.5 OUTPUT SAMPLING OF A LINEAR TIME-VARYING CHANNEL

In the case of a linear time-invariant communication channel, it is a straightforward

matter to apply the sampled convolution theorem of Eq. (A21) to the channel output
in order to proceed with the use of digital signal processing in the receiver. When,

however, the channel is linear, but time varying, as, for example, in wireless communi—

cations, we have to exercise care in the selection of a suitable sampling rate for the

channel output, the reason being that the impulse response of the channel, h(t;1:),

depends on a second time variable, namely, 1'. The problem is now more complicated,
in that we have a [wordimcnsional temporal situation to handle, with the two dimen-

sions being defined by both I and t. For frequency analysis of the channel output and,
therefore, the determination of an appropriate sampling rate, we require the use of a

two-dimensional Fourier transform. Such an analysis is beyond the scope of this book;

the interested reader is referred to Note 2 for further pursual of the sampling rate
required for linear time-varying channels. Suffice it to say, if W1 is the bandwidth (i.e.,
highest frequency component) of the input signal and WC is the bandwidth of the

channel time variations, then the sampling rate for the channel output must be larger
than (W; Jr WC). When the channel is time invariant, WC is zero, and this result reduces
to the standard form of the sampling theorem.

A.6 CORRELATION THEOREM

Thus far, we have discussed attention on the Fourier perspectives of two basic signal

processing operations: filtering (i.e., convolution) and sampling. Another signal-pro-
cessing operation basic to the study of communication systems is correlation. To be

specific, consider a pair of complex-valued signals g1(r) and g2(.f), which may exhibit

some degree of similarity in their time behaviors. The similarity is quantified by the
integral

Rum : ganglia—ed: (A22)

where the asterisk denotes complex conjugation. The function R12”) is called the
cross-correlation function betWeen g1(i) and g2(t). The time log t is introduced into one

of the two signals—3,120) in the case under consideration hereein order to explore the

similarity between them. To that end, 1' is made variable. lntuitively, if, on the one

hand, g1(t) and g2(t) are highly similar, then we expect Run") to peak around some
value of 1'. if, on the other hand, g1(t) and g2(t) are highly dissimilar, then R12( I)
would be relatively flat over a broad range of values of 1.

With Fourier analysis as the subject of interest in this appendix, it is natural that

we consider the Fourier transformation of Run). To pursue this transformation, we
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first use the inverse Fourier transform that defines g(t) in terms of GU) and thus

rewrite Eq, (A22) in the form of a double integral (after rearranging terms):

1212(1) = f” Gl(f)-[m g:(ter)ej2flfldtdf (A23)

an
Clearly, Rum“) is unchanged by introducing the product of the exponential .ej2 and its
complex conjugate e‘jz’ifi into the integral in Eq. (A3), as is shown by

Rum = jfmG,(.r)efl”-”Uf gztr— ne’lm"“fld(:— 1)] df (A24)

Now, the inner integral inside the square brackets in Eq. (A24) is recognized as the

Fourier transform of g2(t), which is denoted by G20“). Accordingly, bearing in

mind the complex conjugation around the square brackets, we may finally simplify

Eq, (A24) as

3212(1) = f" G1(f)G:(fiefl’mdf (A25)

from which we immediately infer that Gt(f) G;f) is the Fourier transform of R12( 1).
In words, the correlation theorem may be stated as follows:

Given a pair of Fourier-transformable signals g1“) and 3'20) whose cross-correla-

tion function R120) is defined by Eq. (A22), the Fourier transform of 1212(1) is

defined by the product G l(f) G:(f ), where G1(f ) and G2(f) are the Fourier trans-
forms ofgl (t) and gzfi), respectively.

In applying the correlation theorem, careful attention has to be paid to the order and

manner in which the functions g1(r) and g2(r) appear in Eq. (A.22) and the correspond-

ing order of subscripts in R12( 1').
Moreover, there are some similarities and basic differences between the cross-

correlation and convolution integrals that should be noted:

1. In the convolution integral of Eq. (A6), the integration is with respect to the

lag variable t. By contrast, the integration in the cross-correlation integral of

Eq. (A22) is with respect to the time variable 1'.

2. When both integrals are transformed into the frequency domain, the result of

each transformation is expressed as a product of two Fourier transforms—but

with a difference. In the case of the convolution integral, the product is simply

equal to the Fourier transforms of the two signals, with the result that convolu-

tion is commutative. In the case of the cross-correlation integral, the Fourier

transform of the particular signal delayed in the correlation process is complex
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conjugated. Consequently, unlike the convolution of two integrals, the cross-cor-
relation is not commutative; that is,

Rum) = Gamay”) (A26)

which, in general, is different from

1221(1) :~ 02006”; (f) (M?)

A.6.1 Autocorrelation Function

When 31(r)=g2(t)=g(r), we have the autocorrelation function of the signal g(r),
defined by

Rgm = Ragga—m: (A28)

Correspondingly, Eq. (A26) reduces to

Rgm = 10ml2 (A29)

Note that the autocorrelation function Rg(r) is an even function of the lag T, as is
shown by

Rg(—1') = Rgm for all 1' (A.30)

Expanding the pair of relations summarized under Eq. (A.29), we have

Sg(f) = :Rgme‘fl’rf’dz (A31)

and

Rgm = K3 (fleflmaff (A32)
where we have introduced the definition

sg(f) = |G(f))2 for allf (A33)

The new function Sg(f) is called the energy density spectrum of the signal g(t). The pair
of equations (A31) and (A32) constitute the Wiener—Khintchine relations for signals
with finite energy.

A.7 PARSEVAL'S RELATIONSHIPS

The energy of a complex-valued signal g(t) is defined by

Eg = J:|g(z)|2d: (A34)
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Putting rm 0 in Eq. (A28) and using the definition of Eq. (A34), we readily see that

Eg = Rg(0) (A35)

which states that the value of the autocorrelation function Rg(t) at the origin 1': 0 is
equai to the energy of the signal g(t).

Putting 1:0 in Eq. (A32) and using Eqs. (AB4) and (A35), we obtain Parse-
vaf’s energy theorem, which states that

flingdt = J:FG(f)l2df (4.36)

In words, Parseval’s energy theorem asserts that the energy of a nonperiodic signal

g(t) is equal to the total area under the curve of the energy density spectrum Sg(f).
To deal with a periodic signal 3(1) of fundamental period T, we use Parseval’s

pOWer theorem, which states that
m

1 T 2 2

flolgon a: = kEWle‘ (A37)

where Gk are the complex Fourier coeficienrs, in terms of which the periodic signal

g(r) : Z erflm/T (A38)
kzioa

is defined.

To deal with a periodic signal, we may use Parsevol’s power theorem to calculate

the average power of the signal. To formulate this theorem, recall that a complex~valued

periodic signal g(r) with fundamental period Tmay be expanded into the Fourier series
on

g(t) = 2 er (A39)

where

G — IT I k-0+1+2 A40k—_0g(t)e — ,_,..,... (.)

are the complex Fourier coefiicients. The fundamental frequency of the signal is itself

defined by

f0 = _ (A41)

By definition, for the average power of the periodic signal g(t), we have

_ 1 r 2
P _ Tfoigw at (A42)
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Accordingly, Parseval’s power theorem states that we may also evaluate P by using the
formula

P = i ,ka (A43)
k = —Dc

Where the Gk are themselves defined by Eq. (A40).

Notes and References

1 For an authoritative treatment of the many facets of the Fourier transform and its applications,
see Bracewell (1986).

2 For a careful discussion of the sampling rate required for linear time—varying systems, see Kailath
(1959) and Médard (1995).
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APPENDIXB

‘ Bessel Functions

B.1 BESSEL FUNCTIONS OF THE FIRST KIND

Bessel functions of the first kind of integer order v are defined as the solution of the

integral equation

1. 7? .

Jv(z) = 7—: I cos(zsm64v9)d90

(RI)

- fv ”ejzcosgcoswmdfl— a L,

where j is the square root of —1.The special case v = 0 reduces to

J )— 1 n ' 9 d9 132)0(2 — 2—: Jocos(251n ) ( .

For a real argument 2:, the Bessel functions are real valued, continuously differentia-

ble, and bounded in magnitude by unity. The even-numbered Bessel functions are

symmetric and the odd—numbered Bessel functions are antisymmetric.

The Bessel function JV(z) may also be expressed as the infinite series

(21122)"
_ 1 V °°

JV”) ‘ lzzl g0 m (B3)

 
Where l"(k) is the gamma function; for integer values, I‘Uc-I- 1) = id.

We plot 10(2) and 11(z) for real~valued z in Fig. RI. The values of these functions

for a subset of z are given in Table B.1.

Problem 3.1 Using the first line of Eq. (Bl), derive the second line of the equation. I

493 
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1.5

1.0
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0.0Besselfunctionsoffirstkind
 

0.5  
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—10 —8 *6 *4 —2 0 2 4 6 8 10

)6

FIGURE 8.1 Plots of Bessel functions of the first kind,]n(x) and J1(x).

TABLE B.1 Values of Bessel Functions and Modified Bessel Functions of the First Kind.  

  x 1006) 1106) 1006) 110?)
0.00 1.0000 0.0000 1.0000 0.0000

0.20 0.9900 0.0995 1.0100 0.1005

0.40 0.9604 0.1960 1.0404 0.2040

0.60 0.9120 0.2867 1.0920 0.3137

0.80 0.8463 0.3688 1.1665 0.4329

1.00 0.7652 0.4401 1.2661 0.5652

1.20 0.6711 0.4983 1.3937 0.7147

1.40 0.5669 0.5419 1.5534 0.8861

1.60 0.4554 0.5699 1.7500 1.0848

1.80 0.3400 0.5815 1.9896 1.3172

2.00 0.2239 0.5767 1.1796 1.5906
2.20 0.1104 0.5560 2.6291 1.9141

2.40 0.0025 0.5202 3.0493 2.2981

2.60 —0.0968 0.4708 3.5533 2.7554

2.80 40.1850 0.4097 4.1573 3.3011

3.00 —0.2601 0.3391 4.8808 3.9534

3.20 —0.3202 0.2613 5.7472 4.7343

3.40 70.3643 0.1792 6.7848 5.6701

3.60 —0.3918 0.0955 8.0277 6.7927

3.80 90.4026 0.0128 9.5169 8.1404

4.00 —0.3971 —0.0660 11.3019 9.7595  
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3.2 MODIFIED BESSEL FUNCTIONS OF THE FIRST KIND

Page 405 of 474

Modified Bessel functions ofthe first kind ofinteger order v are defined as the solution

of the integral equation

Iv(z) = 1
’7 zcose

x I e cos(v6)d6 (3.4)O

For the special case 1/ = 0, Eq. (34) reduces to

_ 1 ’5 zcos6
10(2) _ 7.: Joe d6 (13.5)

For a real argument 2, the modified Bessel functions are real valued, continuously dif-

ferentiable, and grow exponentially as lzl increases. The even-numbered modified

Bessel functions are symmetric and the odd-numbered ones are antisymmetric.

The modified Bessel function may also be expressed as the infinite series

Giff
_ 1 V °°

IV“) ‘ [52) 2:10 W (3'6)
We plot 10(z) and 11(2) for real—valued z in Fig. B2. The values of these functions for a

subset of z are given in Table B.1.

 

 

 

  ModifiedBesselFunctionsoffirstkind
 

  
FIGURE B.2 Plots of modified Bessel functions of the first kind, 10(2) and 11(2).
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APPENQIXC

Random Variables and

Random Processes

C.1 SETS, EVENTS, AND PROBABILITY

Probability theory is centered on fundamental principles relating sets. In this appen-
dix, we will consider an abstract space (2 that has elements a). The space 9 may consist
of a finite number of elements, may be countably infinite, such as the set of integers, or
may be uncountable, such as the set of real numbers. We let 3 represent all the possi-
ble subsets of Q, including the empty set, 25 , and the complete set 9.

Probability is a measure on any set Q in E. Conceptually, if Q represents a set of
elements, or an event, then Prob(Q) is the probability of that event. Empirically, if we
make N observations of this space and determine how many times 14 out of N trials

that the observations belong to Q, then the empirical definition of the probability of
the event Q is

Prob(Q) = Nlim (n/N) ((3.1)

This is intuitively what we think of as probability: what fraction of the time a certain
event occurs.

A probability measure must satisfy three properties:

Prob(£2) = 1;

ProbUZl) = 0; (C2)

Prob(A u B) S Prob(A) + Prob(B) for any A, B in E.

In calculations, we are often interested in the conditional probability that an event A
occurs, given that an event B has occurred. This is defined as

Prob [A I B] = 3% (C3)

The conditional probability is a probability measure in its own right and satisfies all of
the properties of Eq. (C2).

496
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Bayes’ theorem allows us to convert between conditioning on one event to condi-

tioning on a different event and is given by

Prob(B [A I.)Prob(Al-)
Prob(Ar.|B) = (04}N

Z Prob(B|Aj)Prob(A}.)
.i = 1 ‘

Bayes’ theorem is often used in inferential analysis, as the expressions for conditional

probability based on some events are often much simpler than those based on other
events.

C.2 RAN DOM VARIABLES

C.3 PR
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A random variable is a mapping from the abstract space £2 to the real numbers, repre-

sented as X:9 —> 5K, where ER is the set of real values. Conceptually, we usually cen-

sider X as the physical realization of some unknowable process. For example, X could

be the voltage measured across a resistor due to thermal noise. In that case, £2 could be
the state of all the electmns in the resistor.

A discrete random variable can take on only a discrete set of values. Sometimes

these are denoted as {xi}, where i indexes the possible values of X. For example, the

number of paths in a multipath signal is a discrete random Variable; it may take Only
the values 1,2,3,.... A continuous random variable can take on a continuum of values.

Often, this continuum is the set of real values or the set of nonnegative reals. For

example, thermal noise voltage observed at a specific instant of time is a continuous
random variable.

To characterize the probabilistic behavior of random variables, we simply extend

the set concepts used in the previous section. In the thermal-noise example, we may be

interested in determining the probability that X S x for some value x. We would write

this as Prob(X S x), but its mathematical meaning is

Ptob(XSx) = Prob({aJE Q:X(a)) Sx}) (CS)

That is, it is a measure on the set of those ads such that the random variable maps the

X(to) to a value less than x. Probability is a measure on the underlying abstract set 9.

The physical realization is usually more easily understood than the abstract, but

understanding the underlying concepts is often useful for resolving some probability
lssues.

OBABILITY DISTRIBUTIONS AND DENSITIES

The probability that a random variable X is less than a given 1: is written as

Fxm = Prob(XS x) (06)

which is called the cumulative distribution function of the random variable X. This func-

tion is right continuous and increases monotonically. with F(—oo) = 0 and F( oo) = 1.
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A discrete random variable will have a discrete distribution function that consists

of steps at the finite or countable number of points where Prob(X : xi) > 0. A continu—
ous random variable will have a continuous distribution function. If the distribution

function is a continuously differentiable function of x, then we define the probability

density function as

dFth)
dx (0.7)
 

fx(x) :

Probability density functions play an important role in defining the conditional proba-

bilities of continuous random variables. Consider the two joint events X fix and

y 5 Y3 y + 5y. We may use Bayes’ rule to express the conditional probability of the
first event, given the second, as

F (x) Prob(XSx,y S YSy + 5y)
XIySYSera)’ Prob(ySYSy+5}/)

FXybc, y + 5y) — FXYUJ)

Fm» + 5y) —Fy(y)

Jy+ 5y4,, y fX, flu, v)duciv

Iy+ any(v)dvy

((3.8)

Differentiating Eq. ((3.8) with respect to x by using Leibniz’s rule, we may write

y+5y

J fX, y(“>V)dV_ y

fXIySYSy+5y(x)_ Jy+5yy fy(v)dv

zfX' y(x:J’)6y
fyty)5y

Finally, in the limit, as 6y approaches zero, assuming that fYQy) st 0, we have

fX, 1/05: Y)

fyO")

It is important to note that Eq. (C9) describes a probability density function of x for a
fixed y.

fXIY:y(x) = ((3-9)

C.4 EXPECTATION OF RANDOM VARIABLES

The expected value, or mean value, of a random variable X is written as E[X], where E

is the statistical expectation operator. For a discrete random variable, the expected

Page 408 of 474



Page 409 of 474

Section (2.5 Common Probability Distributions and Their Properties 499

value of X is given by

N

E[X} = z xiPronf = xi) (C10)
1' = 1

For a continuous random variable that has a probability density function, the expected

value of X is given by

13m x f” fo(x)dx ((1.11)I _

If X1 and X2 are any two random variables, then

E[X1+X2] 2 E[X1]+E{X2} (C12)

and

 
E[aX1] = 0:12er] (0.13)

Where 0t is a constantThat is, expectation is a linear operator. In general, if g(X) is any

Well-defined function of X, then the expected value of g(X) is given by
N

Elg(X)l = Ewan/rm) or E[g(X)] = f” gel-mired): ((114) .i
13:} .<

depending upon whether the random variable is discrete or continuous, respectively.

Other common statistical parameters of interest are the second moment or mean—

square value
 

E[X2} = I” xzfX(x)dx ((3.15)
 

and the variance

VaI(X) 2 E[(X—E[X])2] a r (x—EEXllzfX(X)dx (C16)

egaxszpsiawmg_:_s;;=_>3r»samuamvaemew‘.:sarsmézam‘sgamesmsaasaaaasmnaaamagaaaeswarawwwv«passe-magnew;_--Mn.,
An analogous result holds for the discrete case.

C.5 COMMON PROBABILITY DISTRIBUTIONS AND THEIR PROPERTfES

Binomial distribution. Cousider a discrete random variable X that can take the values

0 and 1 with probabilities (I — p) and p, respectively. Suppose N independent observa-

tions of this random variable are made and labeled Xi for 1 g i S. N. Define the new
random variable

usage;gmaaaz-xO-Mefisgzfi£MW$1£$X§QL¥<=KQQ§T§£¢§W§§KFS§£E
 r = 2 Xi (017)

fifl1xfi§eimvzsxgs§5§>myt
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Then Y is said to have a binomial distribution with parameter p; that is,

y

FY00 = 2 [ijN‘yu—pfl forOSySN ((1.18)
i=0 J

The expected vaiue and variance of Y are Np and Np(1 — p), respectively.
Gaussian distribution. A common continuous random variable is the Gaussian

random variable. The density function of a Gaussian random variable is given by

2

eXp{—(x ‘ ‘2‘) } (c.19)20'
fx(x) =

  

21m

where the mean of the Gaussian random variable is ti and its variance is 62.1116 distri-
bution function of a Gaussian random variable does not have a closed-form solution,

but it is usually expressed in terms of the error function as

FX(x) = If jX(s)ds

= iil + “(23) x 2 0 (€20)
l—FX(—x) x<0

 

Where the error function is given by (see Appendix E)

2 _22
erflx) = _ 8 d2 (C21)

7: 0

A linear transformation of a Gaussian random variable is also a Gaussian random

variable. That is, if X1, X2, ..., XN are Gaussian random variables, then the composite
random variable

Y = E biXi (C22)
1' = 1

is also a Gaussian random variable. The mean of Yis given by

N

E[Y] = 2 bjE[Xi] (C23)
i=1

If the [Xi} are independent Gaussian random variables, then the variance of Y is given by

N

Var(Y) = 2 bEVaflXi) (C24)
1' = 1
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Rayleigh distribution. If X1 and X2 are zero-mean Gaussian random variables with a
common variance 0'2, then the random variable

R = Xf+X§ (C25)

has a Raleigh distribution given by (see Section C6)

42/202
Prob(R <r) = 1—8 r20 (C26)

The corresponding probability density function is
2 2

Mr) = if" ’2“ r 2 0 (C27)or

The first and second moments of Y are given by

E[R] = £0 and E[R2] = 202 (C28)
and the variance of Y is given by (2 — 73/2)o'2.

Rician distribution. If X1 and X2 are Gaussian random variables with means #1

and #2, respectively, and a common variance 0', then the new random variable

R : Xi +X§ (C29)

has a Rician distribution. The probability density function of R is given by
2 2 2

r —(t‘ + S )/20‘ 1'3

fR(r) 2 _2e 10(7) r20 (C30)0' 0'

where 100 is the modified Bessel function of order zero (see Appendix B) and

s = ”11+ lug. There is no known closed-form solution for the distribution function of
a Rician random variable.

Chi-square distribution. If EX1-), i= 1, ..., N are zero-mean Gaussian tandem vari-
ables with a common variance 0' , then the random variable

N

r = 2 x? (C31)
i= 1

is said to have a Chi-square distribution with N degrees of freedom. The first two
moments of Y are

Em = N02 (C32)
and

E[Y2] = 2No4+N2cr4 (C33)
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When m = N/Z is an integer, the probability density function of Y is given by

1 71

fY( y) = ‘zm—ym
(2 0' ) (m H 1)!

and the cumulative distribution function of Y is given by

/20'2 ”1—1 1 y k_ ’y

firm—1‘3 E ai—zi
k=0 20

This is one of the most common distribution functions in communications systems

applications. For the case of odd N, there is no closed-form solution for FY(y).

C.6 TRANSFORMATIONS OF RANDOM VARIABLES
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Let XI and X2 be continuous random variables with a joint probability density func-

tion fig X2051, x2), and consider the transformation defined by

y] = h1(x1,x2),and J’z = h2(x1,x2), (C34)

which are assumed to be one-to-one and continuously differentiableThe Jacobian of

this transformation is defined by the matrix determinant

 

ayl ayl

JUNE) = #0 (0.35)xl’xz
3,112 dyz

8x1 3x2

The joint probability density function of Y] and Y2 is given by

y ,y

J[ i 2)X? 1‘2

If the transformations are not one-to—one, then other approaches must be taken. For

example, consider the transformation Y : X?+X§. The cumulative distribution
function of Y is given by

 

fY1,r2(yi=Y2) = fX13X2(x1,x2) (C36)  

my) = jjab X2(x1,x2)dx1dx2 ((2.37)
A

where A is the set of all (X1962) such that ix? + x: S y. If X1 and X2 are independent,
zero-mean Gaussian random variables with a variance of unity, then

—(x? + x§)/21
F ( j — _ d dx C38Y y I; 2 e X] 2 ( )



Page 413 of 474

C.7 CE

 
Page 413 of 474

Section C.8 Random Processes 503

If we make the transformations in = r c059 and x2 = r sin 6, then Eq. (C38) becomes
2

i If fine" ”rdrda
2” 0 0 (C39)

_ 1 _ {PE/2

FYU)

This is the Rayleigh distributi0n described in Section C.5.

NTRAL—LIMIT THEOREM

Consider a sequence {Kn} of independent and identically distributed (i.i.d.) random

variables with means E[Xi] 2m and variances E[(Xt--m)2] 2 0’2. Let Y“ be a new
sequence of random variables defined by the partial sums

r = 2X1. ((3.40)

Let an be the mean of Yn and Sn be the variance of Yn. Define the normalized random
variable

  

z": " 1:2 5 (C41)
5,, I: no

Then the random variable Zn has a distribution that is asymptotically unit normal. That

is, as 11 becomes large, the distribution of Zn approaches that of a zero-mean Gaussian
random variable with unit variance. This result is referred to as the central-limit theo-

rem. The theorem also holds if the variables X!- are not identically distributed, but
there are some restrictions.

C.8 RAN DOM PROCESSES

A random process is a mapping X:[9, T] —> Eli, where T represents a time interval

such that X(.,t) is a random variable for each fixed time LTo distinguish between a ran-

dom variable X and a random process X, we usually write the latter as X(I). If X is a

discrete random variable for all t, then we say that X(t) is a discrete random process. If

X is a continuous random variable for all t, then we say that X0) is a continuous ran-

dom process.

For each fixed value of t, we Speak of the distributiOn function

FX(,)(x) = Prob(X(t) <x) (C42)

We also speak of the joint distribution function

FX(£])XU2)(x1’ I2) = PI'Ob(X(t1) <93], X(t2) (x2) ((3.43)
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For a fixed a) in $2, the time function X(a), i) is known as a sample function or realiza-

tion of the random process.

C.9 PROPERTIES OF RANDOM PROCESSES

Let X(t) be a complex random process, and define the autocorrelation function of that
process as

RX(1, 5) = E[X(t)X$(s)] (044)

where the asterisk denotes complex conjugation. That is the autocorrelation function

is the expectation of the product of two razndom variables that are parameterized by t
and s. Recognizing that RX(0)-— EHXU)!2 ]a we see that the autocorrelationIS a gen—
eralization of the second moment of a random variable The autocorrclationis a deter-

ministic function.

A process whose joint distribution is invariant with time translation, that is.

Prob(X(tl) <x1,X(T2) <x2,...,X(tn) <x(n)):
(C45)

Prob()((tl + h)<xl,X(12 + h) <x2,...,X((tn + h) < x")}

is said to be stationary to order n if Eq‘ (C46) holds for all h and for a particular n.

Many of the random processes dealt with in wireless communications are assumed to

be stationary. A process is said to be wide—sense stationary if

E[X(i‘)] =constant for alliand RX(t,s) = RXURS) (C46)

Random processes whose joint distribution functions are multivariate Gaussian are

referred to as Gaussian random processes. If a Gaussian random process is wide-sense

stationary, then it is also stationary.

C.1O SPECTRA OF RANDOM PROCESSES
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In Appendix A, we defined the spectrum of a finite-energy signal x(1) as the Fourier

transform of that signal. However, in considering a random process X(t), we have an

ensemble of sample functions. To get around this difficulty, we note that the autocorre-

lation function of a stationary random process, namely, RX(r). satisfies the conditions

of Fourier transformability. Accordingly, we may define the power spectrum or power

spectral density of a random process X(t) as the Fourier transform of its autocorrela—

tion function RX(T). Denoting this new parameter by 3X0“), we may thus formally
write

sXm = f” Rani-”Email: and erz) = I” 53mgjz’rfidf (C47)
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Note that SX( f) is measured in watt/Hz. Stated another way, the total area under the

curve of SX(f), plotted as a function of frequency )3 defines the average power of the
process.

The autocorrelation function RX(r) and power spectral density SX( f) form a

Fourier-transform pair, which means that the autocorrelation function RX(r) is the

inverse Fourier transform of the power spectral density SX(f). The Fourier transform

pair, linking SX(f) to RX('r) and vice versa, is called the Wiener—Khintchine relation
for random processes.

An idealized example of a random process is a special form of noise commonly

referred to as white noise W(I). White noise has the property that it is uncorrelated for

all nonzero time offsets. Consequently, the autocorrelation function of such a process
is defined by a delta function, or

No
thr) = 75(7) ((3-48)

where [Va/2 is the two-sided noise density in watt/Hz. The noise is referred to as

“white” because the corresponding power spectrum is flat; that is,

SWU‘) = I; for all f (0.49)

In other words, white noise contains all frequency components at equal strength, anal-

ogous to white light in the visible part of the spectrum. This relationship does not

make any assumptions about the distribution of the random variable n(t) at time t; it
could be Gaussian or otherwise.

Another example of a random process is a random binary wave, defined by

I“) = b” r0+nT<t<t0+(n+l)T (C50)

where to is a random starting time between [OJ] and {bnl is a sequence of indepem
dent, zero-mean random variables with values i1. The autocorrelation function of the

process described in Eq. (C.51) is

RXU, :+ 1') Emma + n]

EIUEb[x(t)x(t+ 1)]
ll

(C51)
fl

Eri 1 tO+nT<r<r+ r<r0+(n+1)1"D
0 otherwise

where the expectation E has been split over the two random independent variables to

and {13,1} and we have used the fact that Elbnbm] = 0 if n at m . If we evaluate the expec-

tation of Eq. (C51) over to, we obtain
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T—r T>r>0

RXU‘Ji'T) = T+r —T<1:SO

0 otherwise (C52)

2 {mm m <1"0 otherwise

Thus, RX(1') is stationary with a triangular autocorrelation function. The spectrum of
the binary random wave is the Fourier transform of this autocorrelation function:

[I

SX(f) [0 RX(r)e’jz”fidz

r2 sin2(7rfT) ((153)
(m2

r2 sine2 (fT)

[I

(2.11 LINEAR FILTERING OF RANDOM PROCESSES
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In communications, we filter signals for various reasons. If the signal is a random pro—
cess, how do we characterize the output? Let y(t) be the output resulting from apply-
ing a linear time-invariant causal filter Mt) to a realization of an input random process,
namely, x(t), as represented by the convolution integral

y(t) = f“ h(r)x(t—r)dr = f” amused: (0.54)

This means that the filter is applied to the particular realization x(r) =X(cu,t) of the
random process, and that realization is referred as a sample path integral. A sufficient
condition for Y0), the random variable composed of [y(a),t)}, to be a well-defined ran-
dom variable for all r is that

I“ lh(r)|E[lX(t—r)l]dr<oo ((3.55)

If Y(t) is well defined, then we may determine the expectation of Y(t) using

E[Y(r)] = EU” Magnum] = I” h(t—r)E[X(T)]dr (CS6)
and similarly for other moments of Y(1'). The interchange of the order of integration
and expectation is allowed because both of these operations are linear.

If X([) is a stationary process with autocorrelation RX(r) and corresponding
spectral density SX(f), then the spectral density of the output Y0) is given by

SM) = |H(f)lZSX(f) (057)
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That is, for stationary random processes, the output power spectral density of a linear

continuous-time filter is equivalent to the product of two quantities: the squared mag-

nitude response of the filter and the input power spectral density. In addition, if the

input is wide-sense stationary and the linear system is time invariant, then the output

will be stationary as well. The spectral relationship of Eq. ((2.57) for a stationary ran—

dom process X(I) may be viewed as the counterpart of Eq. (A.7) for a signal x(t) with

finite energy.

Analogous to the result for linear transformations of random variables, we have

the result that if a linear filter has an input which is a Gaussian random process, then

the output will als0 be a Gaussian random process.

C.12 COMPLEX RANDOM VARIABLES AND PROCESSES

In certain situations, we have to deal with the statistical characterization of complex

random variables and complex random processes. (A case in point is that of the com-

plex baseband representation of a narrowband process considered in the next section.)

When we refer to a complex random variable Z = X + jY, we mean that X and Y are

(real) random variables and they are described by their joint distribution function.

Similarly, if Z(t) =X(t) +jY(t) is a complex random process, then X(t) and Y(t)

are random processes that are characterized by their joint distributions at each time t.

For example, the autocorreiation of a stationary Z(r) is given by

122(1) = E[Z{t)Z*(t—r)]
= E[(X(f) +jY(t))(X(t- 1') -jY(l— T))]

= ElXU‘)X(t , 15)] + ElYitlYU— Tl] +j(E[Y(t)X(t— 1)] ‘ E[X(t)Y(t e ’01)

= RX(‘€)+ Ry(f)+j(RYX(T)-ny(f))

(C58)

where

an”) = among—1)] (C59)

C.13 COMPLEX REPRESENTATION OF NARROWBAND RANDOM PROCESSES
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Let X(t) be a narrowband random process centered on some frequency fc. In a manner

similar to that described in Chapter 3, we may introduce a complex baseband process
X(t) by writing

X(t) = Re [5(a) exp (1'22:me (060)

where Re[v] denotes the real part of the quantity enclosed inside the square brackets.
The complex baseband process X(t) is itself defined by

in) = X1(t) +jXQ(t) (C61)
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where X16) is the «in-phase component and XQU) is the quadrature component. Equiv—
alently, we may express the original process X(t) in terms of these two components as
follows:

X(t) = X10) cos(2rrfct) —XQ(I) sin(27rfct) (C62)

Correspondingly, for sample functions of X(I, to), X10, (0), and XQ(t, cu), we may write

X(t, to) = X10, cu)cos(2itj;t) 4X90, (0) sin(27rfct) (C63)

C14 STATIONARY AND ERGODICITY

      
A random process is said to be ergodic if time averages of a sample function are equal
to the corresponding ensemble average (or expectation) at a particular point in time.
Mathematically, for a random process X(t,n)), this relationship can be expressed as

_ 1 1'72
E[X(t0,w)] = 11m _ X(r,a))dt ((3.64)

T—>oo T 7T/2

where the left-hand side is the ensemble average (i.e., the expectation over all realiza—
tions on at a particular point in time) and the right-hand side is the time average of the
random process for a particular realization £00. In many physical applications, it is
assumed that stationary processes are ergodic and that time averages and expectations
can be used interchangeably.

NOTES AND REFERENCES

1 For a detailed description of random variables and processes, see Leon-Garcia (1994).
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Matched Filters

D.1 MATCHED-FILTER RECEIVER

Consider a known signal s(t) corrupted by additive white Gaussian noise w(t), resulting

in the received signal

x(t) =S(t)+w(t) 09s T (D1)

What is the optimum receiver for detecting the known signal s(t) in the received signal

x(t)? To answer this fundamental question, we first note the following two important

points:

 
l. The power Spectral density of white noise, with sample function w(r), is defined

by

N

Sw(f) = 30 for all fin the entire interval —oo <f< oo (D2)

The power spectral density of white noise is illustrated in Fig. D.1(a). For a sta—

tionary random process, the autocorrelation function is the inverse Fourier trans«

form of the power spectral density. (See Appendix C.) It follows, therefore, that
the autocorrelation function of white noise consists of a Dirac delta function

6(1), weighted by [VD/2, as shown in Fig. D.1(b). That is,

RWH) = E[w(t)w(t— 1)]

N0 (D3)
= ?5(1)

where E is the statistical expectation operator. Accordingly, any two different

samples of white noise are uncorrelated, no matter how closely together in time

they are taken. If the white noise w(t) is also Gaussian, then the two samples are

statistically independent. In a sense, white Gaussian noise represents the ultimate
in randomness.

509
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SWU)

N02

0 f
(a)

RWU}

@sm

0 'r

(b)

FIGURE D.1 (a) Power spectrum of the additive white noise WU).
(b) Autocorrelation function of W0).

2. Since the signal 5(1) is known and therefore deterministic, it follows that s(t) and
w(t) are as uncorrelated (i.e., dissimilar) as they could ever be.

In light of point 2, we may intuitively state that, for the problem described herein, the
optimum receiver consists of a correlator with two inputs, one being the noisy received
signal x(t) and the other being a locally generated replica of the known signal 30:), as
shown in Fig. D2. For obvious reasons, this optimum receiver is known as the correla—
tion receiver.

Another way of constructing the optimum receiver is to use a matched filter,
defined as a linear filter whose impulse response h(t) is a time-reversed, delayed ver—
sion of the known signal s(t); that is,

h“) ___ { S(Tet) OSIST (DA)0 otherwise

 
s(t)

FIGURE D.2 Correlation receiver.
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Sample
at r = T

x(t) Matched filter: \.
h(r) : s(T , r) ' y

FIGURE D.3 Matched-filler receiver.

Figure D.3 shows a matched filter receiver, which consists of a matched filter followed

by a sampler that is activated at the end of the signaling interval t=T. The important

point to note here is that the correlation receiver of Fig. D2 and the matched filter

receiver of Fig. D.3 are equivalent insofar as their overall output samples are con-

cerned. Specifically, for the same input signal and at the end of a signaling interval, the

resulting output samples produced by these two receivers are identical.

OBABILITY OF DETECTION

To detect a signal with a correlation receiver or a matched-filter receiver, the output

sample is compared against a threshold and then a decisi0n is made by the receiver,

depending on whether the threshold is exceeded or not. In so doing, the receiver

makes a decision in favor of one of two hypotheses:

Hypothesis H1: The known signal 3(1) is present in the received signal x((), a
decision that is made when the threshold is exceeded.

Hypothesis H0: The received signal 1450) consists solely of noise w(r), a deci-
sion that is made when the threshold is not exceeded.

Clearly, the receiver is subject to errors due to the random behavior of the additive

noise w(t) in the received signal x(t).

To calculate the average probability of error incurred by the receiver, we proceed

by using Eq. (D.1) as the input signal applied to the correlation receiver of Fig. D2.

The resulting output sample is
T

y = J- x(t)s(t)dtO

= IT(s(t)+w(t))s(t)dt
0 (D5)
T 2 T

= I s (t)dt+J' w(t)s(t)dt0 0

T

= E+I w(t)s(t)dt0

where

E = :52(t)dt (D6)
is the energy of the known signal 5(t).



Page 422 of 474

 
512

Page 422 of 474

Appendix D Matched Filters

Since, by assumption, the white noise w(r) is the sample function of a Gaussian
process WU), it follows that the receiver output y is the sample of a Gaussian-distributed

random variable Y. To complete the characterization of the receiver output, we need to
determine its mean and variance.

The mean of the random variable Y is

luv: ElY]

E + EU: manna]
(D7)T _

= 5+ EJ [W(t)Js(t)dtO

= E

where we have used two facts: First, the known signal 50‘) is deterministic and there-

fore unaffected by the expectation operator E. Second, by assumption, the mean of
the white noise process W(t) is zero.

The variance of the random variable Y is

a?» = EttYwa]
7” T

= EDD-[0W(t1)W(t2)s(t])s(tz)dtldt2] (D8)

= IgjjmW01)W(r2)]s(zl)s(r2)dtldr2

Invoking the use of Eq. (D2), we may write

N0
E{W(t1)W(t2}] = 7601—12) (D9)

Substituting Eq. (D9) into (D8) yields

N r T0
= _ 5t —r r t dt d0r ZIOJO (1 flmimz) 1 ’2

(13.10)
H

fl H H V 53: H

where E is the signal energy.

Putting all the pieces together, we can now say that the correlation receiver
output y is the sample value of a Gaussian—distributed random variable Ywith mean
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fly : E and variance 0% = NOE/2 .Accordingly, we may express the probability den-
sity function of the random variable Y as

2

_ 1 _(}”.uy)frU’) MGYCXP[ —20'i]
 

(D11)
  

2

1 exp _(y -E)
inNOE NOE

which is plotted in Fig. D.4.

Let 1 denote the threshold against which the correlator output y is compared. As

stated previously, when y > A the receiver decides in favor of hypothesis H1; otherwise

it decides in favor of hypothesis H0. Accordingly, the conditional probability of error,

given that the known signal S(.t) is present in the receiver input, is defined by

a

Prob(say Hop;1 is true) = J‘ fY(y)dy (D12)

which is illustrated graphically in Fig. D.4. Substituting Eq. (D11) into (D12) yields

  

Prob(say H |H is true) : 1 J1 exp 4071132 dy (D 13)
0 1 W05 m NOE

To simplify matters, let

2 = H (13.14)

which means that

fYO)

 
 
 
 
 

 

Conditional

probability of
error, given
that the known signal
5(1‘) is present
(i.e., y > A)

FIGURE D.4 Probability distribution of the correlation receiver output.
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Hence, we may rewrite Eq. (D13) as

1—5" / N E

Prob(say H H is true) = .1— ( ) 0 exp(—zz)dz
O 1 Afr—E _90

(D15)

- 1 exp(—zz)dz_ E; Ins—w NOE

At this point in the discussion, we digress briefly to introduce a function that is closely

related to the Gaussian distribution: the error function, defined by

_ 2 u 2

erf(u) _ W: (0 exp(—z )dz (D16)

Table E.1 of Appendix E gives values of the error function erf(u) for the argument u

in the interval 0 S u S 3.3.The error function has two useful properties:

1. Symmetry property, described by

erf(—u) = —erf(u) (D.17)

2. Asymptote property, which, for the argument it approaching infinity, is described
by

2 °° 2
erf(oo) = _ ex (—2 )dzfir J.0 p (D18)

= 1

Another function, the complementary error function, is defined by

erfc(u) = i re exp(—zz)dz (D.19)
£1: :1

which is related to the error function by the formula

erfc(u) = 1 — erf(u) (D20)

We may now reformulate the conditional probability of error of Eq. (D15) in terms of

the complementary error function by writing

Prob(say HOIH1 is true) = %erfc[E-A] (D21)
 

From Eq. (D21), the following points are noteworthy:

0 The signal energy E and noise spectral density N0 have different physical inter—

pretations, in that E is measured in joules whereas N0 is measured in wattsthertz;
yet these two units are in fact equal.
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- Insofar as the signal component is concerned, the probability of error is indepen-
dent of the waveform of the known signal 30‘), and the only parameter that mat-
ters is the signal energy E.

0 The threshold 3. is measured in joules.

D.3 ANOTHER PROPERTY OF THE MATCHED FILTER

Equation (D21) sums up one important property of the matched-filter receiver in the

combined presence of signal and noise at the filter input. For another important prop-
erty of the matched filter, consider the case of a noiseless input. Then, with the input
x(t) = s(t) and the impulse response Mt) = s(T — t), the resulting filter output is defined
by the convolution integral

y“) = R504)
(D22)

= REG—T) t'fw(t) = 0

The integral of Eq. (D22) is recognized as the deterministic autocorrelation function

of the signal component 3(t) for a lag of T — t, namely, RS(T— t). Accordingly, we may
write

ya) = Rsrt—a
(D23)

= RS(T— t) wt 2 0

where, in the second line, we have used the fact that the autocorrelation function of

a signal of finite energy is an even function of the lag (see Appendix A). In words,
Eq. (D23) states that-the output of a filter matched to an input signal is equal to the
autocorrelation function of that signal, delayed by an amount equal to the duration of
the Signal.

D.4 MATCHED FILTERING FOR COMPLEX SIGNALS

The material presented thus far on matched filtering applies to real-valued signals.
When dealing with compleXavalued signals, we make a simple modification to Eq. (D.4).
Specifically, the impulse response of a filter matched to a complex-valued signal 5(t) is
defined by

Ill“) : {5*(T—l) OSIST (D24)0 otherwise

where the asterisk denotes complex conjuction. Except for this minor modification,
everything else presented in the Appendix remains intact.
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Error Function 
E.1 DEFINITIONS

The errorfunction, denoted by erf(u), is defined in a number of different ways in the
literature. We shall use the following definition:

, _ 2 u 2

an”) _ .5 J0 exppz )dz (13.1)

The error function has two useful properties:

1.

erf(—u) = —erf(u) (E.2)

This is known as the symmetry property.

2. As at approaches infinity, erf(u) approaches unity; that is,

% J:exp(—zz)dz = 1 (E3)71:

This is known as the asymptote property.

The complementary error function is defined by

erfc(u) = % [wexpczzmz (13.4)71' u

The complementary error function is related to the error function as follows:

erfc(u) = 1 —erf(u) (E5)

Table 13.1 gives values of the error function erf(u) for u in the range from 0 to 3.3.

516
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TAB LE E.‘l The Error Functiona.
 

 u erf(u) u. erf(u)
0.00 0.00000 1.10 0.88021
0.05 0.05637 1.15 0.89612
0.10 0.11246 1.20 0.91031
0.15 0.16800 1.25 0.92290
0.20 0.22270 1.30 0.93401
0.25 0.27633 1.35 0.94376
0.30 0.32863 1.40 0.95229
0.35 0.37938 1.45 0.95970
0.40 0.42839 1.5 0.96611
0.45 0.47548 1.55 0.97162
0.50 0.52050 1.6 0.97635
0.55 0.56332 1.65 0.98038
0.60 0.69386 1.70 0.98379
0.65 0.64203 1.75 0.98667
0.70 0.67780 1.80 0.98909
0.75 0.71116 1.85 0.99111
0.80 0.74210 1.90 0.99279
0.85 0.77067 1.95 0.99418
0.90 0.79691 2.00 0.99532
0.95 0.82089 2.50 0.99959
1.00 0.84270 3.00 0.99998
1.05 0.86244 3.30 0.999998

3The error function is tabulated extensively in several references: see for example,
Abramowitz and Stegun [1965, pp. 297—316).

E.2 BOUNDS ON THE COMPLEMENTARY ERROR FUNCTION

Substituting u — x for z in Eq. (E4), we get
0

erfc(u) = iexmiuz)! exp(2ux)exp(—x2)dx
JR 750

For any real x, the value of exp(—x2) lies between the successive partial sums of the
power series

2 + (fo (fox

fi 2! 3!

Therefore, for u > 0, We find, on using (:1 + 1) terms of this series, that erfc(n) lies
between the values taken by

  

0 4 211

£6Xp(—u2)-[ [1—x2+xjv ix_')exp(2ux)dxI; as n.

for even :1 and for odd n. Putting 2ux = —v and using the integral

vanexp(—v)dv = n!0
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we obtain the following asymptotic expansion for erfc(a), assuming that a > 0:

2

erfc(a)=§§M 1—i+l'_—...iwi__l) (E6)
«fl—W 2112 22a4 2,1142”

For large positive values of a, the successive terms of the series on the right-hand side
of Eq. (E6) decrease very rapidly. We thus deduce two simple bounds on erfc(a), one
lower and the other upper, given by the inequality1

exp (—a2)[1 _ 1 exp (4242)f _2) < erfc(a) <7m 21.:

For large positive a, a second bound on the complementary error function erfc(a) is
obtained by omitting the multiplying factor 1/a in the upper bound of Eq. (E7):

(E7)S'flt

exp(,u2)

fir

In Fig. E1, we have plotted erfc(u), the two bounds defined by Eq. (E7), and the
upper bound of Eq. (ES). We see that, for a 3 1.5, the bounds on erfc(u), defined by
Eq. (E7), become increasingly tight.

erfc(a) < (E8)

E3 THE O-FUNCTION

Consider a standardized Gaussian random variable X of zero mean and unit variance.

The probability that an observed value of the random variable X will be greater than 1)
is given by the Q-fanction:

_ 1 °° _x2
gm—Efi adj) we

The Q-fimction defines the area under the Standardized Gaussian tail. Inspection of
Eqs. (E4) and (E9) reveals that the Qufunction is related to the complementary error
function as follows:

_ 1 ‘0

Q(v) _ fiendfij (£1.10)
Conversely, putting a = v, we have

erfc(u) = 2Q(fiu) (13.11)
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102

100

10—1

 
10—2

Er£c(u),EabeledcurveD,andbounds
bec?w 
10*4 '51

0 05 1 15 2 25 ;;
Argument u 3' '

FIGURE E.1 The complementary errer function erfc(u) and its bounds:

—u2 - i1- 

 

Curve A: e
«5m

Curve B: e (1 — “—2) fIf“ Zu .

9—": El;
Curve C: _...._ 5;

J17: :

Curve D: erfc{u)

 NOTES AND REFERENCES

1The derivation of Eq. (E7) folfows Blachman (1966).     
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MAP Algorithm

E1 SEPARABILITYTHEOREM

Following the terminology introduced in Section 4.12.4a let the vectors ar(t) and BU)
denote estimates of the state probabilities in a turbo decoder at time t that are based

on past and future data, respectively. According to the separability theorem, the state
probabilities at time t are related to (140) and 30) by

Mr) : M (E1)
Ham - 3(1)”;

where the numerator is the vector product of 010‘) and 30) and the denominator is the
L1 norm of this product, as defined in Section 4.12.

Proof: For any m, for which Prob(s(t) = m) :2 0,

1mm = Prob(s(t) = m|y)

Prob(s(t) = m, y)

Pr0b(y)

_ ‘ _ 'Prob(s(t) = m)
4 Pr0b(y|s(t) — m) T130?)—

= Prob(y[11!]ls(r) = m) . Prob(y[t+17 Trim) = m) -W (E2)
n Pr0b(y[1,r1|5(‘) = m) _ Pr0b(y[t+1,n>s(0 = m) _ Prob(s(t) : m)
' Prob(s(t) = m) Pr0b(s(t} = m) Prob(y)
II

PT0b(y[1,leyn+1,r]) JProm“) = mlylLtJ) ' Prom”) : mlyIHL 71) '[W
where the second and third lines in the development follow from Bayes’ rule, the
fourth line follows from the fact that the decoding process is a Markov process, and
the fifth and sixth lines are further manipulations using Bayes’ rule.

520
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Often, the a priori probabilities, Prob(s(t) : m), are independent of m. (In prac-
tice, some of the a priori probabilities in a turbo decoding process may be zero due to
certain features of the trellis—for example, at start-up. In that case, this requirement
applies only to those states whose a priori probabilities are nonzero.) This is usually
the case for a time-invariant trellis, for which the inputs are equiprobable. In that cases
the bracketed term in the last line on the right-hand side is independent of m. Since
the summation of the left-hand side of Eq. (F2) over m must equal unity, it follows
that this bracketed term must normaiize the right-hand side to sum to unity. Thus,
when we identify the first and second terms in the product of the last iine as 04(1) and
[30), we have

Mr) 2 3% (E3)
Matt) - Btfllli

which proves the theorem.
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Capacity of MIMO Links

G.1 PRELIMINARIES‘I

522
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The purpose of this appendix is to present a derivation of the log-det capacity formula

of Eq. (6.59). To prepare the way for the derivation, we briefly review some basic con-

cepts in information theory.

Consider a continuous random variable X with probability density function

fX(x). The differential entropy of the random variable X, measured in bits, is defined
by

MX) —j_°° fX(x)10g2fX(x)dx

4E[log2fX (x)] bits

(G1)

where E is the statistical expectation operator. It is important to note that the symbol

X in the entropy h(X) is not the argument of a function; rather, it merely serves the
purpose of a label for the source of information.

When we have a continuous random vector X consisting of N random variables

X1,X2,...,XN, we may generalize Eq. (6.1) and define the differential entropy of X as
the N-fold integral

hm = f fx(X)10g2fx(X)dX

= ~E[log2fx(x)] bits
((3.2)

where fX(x) is the joint probability density function of the random vector X.

The logarithmic description of entropy is evident from both Eqs. (G.1) and (G2).

This particular form of description is in perfect accord with the notion of entropy in
thermodynamics.

Equations (G1) and ((3.2) apply to random data, real or complex. The difference

between these two forms of data manifests itself in the way in which the pertinent

probability density functions are defined, as illustrated in the next example.
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EXAMPLE 6.1 Complex Multidimensional Gaussian Distribution

Consider an Nndimensional complex Gaussian-distributed vector X. Each element of X consists

of an in—phase component Xk,I and a quadrature component Xk,Qa so

Xk = X," I+ij.Q k = 1,2....,N ((3.3)

or, vectorially,

x = x,+ij (0.4)

It is assumed that X has zero mean. The requirement is to determine the differential entropy of
X.

If the components X, and X9 are orthogonal—that is, if we have

Eix,xg1 = o (0.5)

and if they are both Gaussian distributed, then they are statistically independent, or

fxpruP IQ) = erlfxflfoUQ) (0-6)

The in-phase component X] and quadrature component XQ share the same formula for their
joint probability density functions. We therefore make two important observations:

1. The components X; and XQ have exactly the same entropy.
2. Since the differential entropy is logarithmic in nature, it follows that the differential

entropies of X1 and XQ are additive in terms of calculating the differential entropy of X.

Hence, we may write

MK!) 2 11(XQ) (6.7)
and

h(X) = h(x1)+h(xQ)

= 2h(X,)
((3-8)

The joint probability density function of the complex Gaussian vector X with zero mean and
correlation matrix Rx is defined by

l 1 r 4
—__exp —_x Rx x (6.9)(2n)Ndet(Rx) [ 2 )fxix) =

where R: is the inverse of RK and det(Rx) is the determinant of Rx. Substituting Eq. (G9) into
(G2), using the fact that the volume under fx(x) is unity, and then simplifying terms, we get

h(X) = N+Nlog2(27r) + log2{det(Rx)} bits ((3.10)

which is uniquely defined by the correlation matrix Rx.

For the special case of a scalar complex Gaussian random variable X. N = 1 and Eq.
((3.10) reduces to

 
h(X) = 1 +10 (27:02) bits chomplex) (on)32 X
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where a: is the variance of X. If X is real, we have

i100 : at + iogzrzmin bits (X: real) (G12)

For a given variance 0%,, the Gaussian random variable X has the largest differential entropy
attainable by any random variable in its class (i.e., real or complex). A similar remark applies to
a multivariate Gaussian distribution. I

For the discussion at hand, we need one other notion: mutual information, which

applies to a pair of related random variables or random vectors. To be specific, con-
sider a pair of random variables X and Y with joint probability density function
fX’ Y(x, y). The mutual information between X and Y is defined by

o. a. f (Xiy)

loan = L. La, Yo. Y)1032[%
where fX|Y(x!y) is the conditional probability density function of X, given that Y: y.
In words, the mutual information I(X;Y) is a measure of the uncertainty about the ran-
dom Variable X that is resolved by observing the second random variable Y.

On the basis of Eq. ((3.13), we may derive the following properties of mutual
information that hold in general:

}aa» (612

rear) 2 0 ((3.14)

roar) = I(Y;X) (G.15)

1(X;Y) = h(X)—h(XlYl (G16)
= kin—Win

Here, h(X) and MD are the differential entropies of X and Y, respectively, and

mm = {1f IX, Y(x,y)10g2fxiy(Xiy)dxdy (6.17)

is the conditional differential entropy of X, given Y.

Formulas similar to Eqs. (G.13) through (GI?) apply to a related pair of random
vectors X and Y.

With the definitions of differential entropy, conditional differential entropy, and

mutual information at hand, we are ready to proceed with the derivation of the log-det
capacity formula.

6.2 LOG-DET CAPACITY FORMULA 0F MIMO LINK2

Page 434 of 474

Consider a communication link with multiple antennas. Let the NI—by-l vector 5
denote the transmitted signal vector and the Nr-by-l vector x denote the received sig-
nal vector. These two vectors are related by the inputioutput relation of the channel,
namely,

1: 2 HS + w ((3.18)
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where H is the channel matrix of the link and w is the additive channel noise vector.

The vectors s, w, and x are realizations of the random vect0rs S, W, and X, respectively.

In the rest of this section, the following assumptions are made:

1. The channel is stationary and ergodic.

2. The channel matrix H is made up of i.i.d. Gaussian elements.

The channel state H is known to the receiver, but not the transmitter.

The transmitted signal vector s has zero mean and correlation matrix R5.

The additive channel noise vector w has zero mean and correlation matrix R“,

. Both 5 and w are governed by Gaussian distributions.
OKUIPDJ

With both H and x unknown to the transmitter, the primary issue of interest is to

determine I(s; x, H), which denotes the mutual information between the transmitted

signal vector 3 and both the received signal vector x and the channel matrix H. Extend-

ing the definition of mutual information given in Eq. ((3.13) to the problem at hand,
we write

I(S;X, H) = J‘J-Jifs, x,]g[(5: X, H)log2[fsli-lislx: H)5-055

_..__ d d dH (3.19fX,H(x,H) is x ( )
where 5,x, and at are the respective spaces pertaining to the random vectors S and X

and the matrix H. According to Bayes’ rule, we have

f-S, X, H(s’ X, H) : f5, X|H(S’ le)fI-[(H)

We may therefore rewrite Eq. (0.19) in the equivalent form

f (Six, H)

IfH(H)[HfS,X|H(s’XIH)1°gz[fl£H—]d5dx]dfl:H’
[(ng, H)

X5 fx,H(X, H)

. fslx 110“!)th (6'20)
E , H l ’—_.. d dalarm“ x+ )ogzi ..
EH[1(S;XIH)]

where the expectation is with respect to the channel matrix H, and

. fS|X 1.](Slxs I‘D]I(s;x H) = j, (s, x H)log __’__ dsdxi Q s,X|H i 2[ fXHU, H)

 
is the conditional mutual information between the transmitted signal vector 5 and the

received signal vector it, given the channel matrix H. However, by assumption, the
state of the channel is unknown to the transmitter. It follows, therefore, that insofar as

the receiver is concerned, I(s;x|H) is a random variable—hence the expectation with

respect to H in Eq. (G.20).The quantity resulting from this expectation is deterministic,
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defining the mutual information jointly between the transmitted signal vector 3 and
both the received signal vector x and the channel matrix H. The result so obtained is

indeed consistent with what we know about the notion of joint mutual information.

Next, applying the vector form of the first line in Eq. (G.16) to the mutual infor-
mation 1(5; XIH), we may write

I(s;x|H) = h(xiH)—h(xis, H) (G.21)

where h(xiH) is the conditional differential entropy of the input x, given H, and
h(xls,H) is the conditional differential entropy of the input X, given both s and H. Both
of these entropies are random quantities, as they depend on H.

To proceed further,we now invoke the assumed Gaussian nature of both 5 and H, in

which case x also assumes a Gaussian description. Under these assumptions, we may use

Eq. (G10) to express the entropy of the received signal at of dimension N,, given H, as

h(x|H) = Nj_+erog2(2n:)+log2{det(Rx)} bits (G22)

where Rx is the correlation matrix of x. Recognizing that the transmitted signal vector
5 and the channel noise vector w are independent of each other, we find, from Eq.
(G18), that the correlation matrix of the received signal vector x is given by

Rx = E[XX+]

= E[(Hs+w)(Hs+w)*]
‘l' ‘i’ 1'

= E H + H +

[( 5 arms :VH (G23)
= E[Hss+H ]+E[ww ] because E[sw+] = 0

= HEiss+jH++Rw

= HRSH++RW

where

+

Rs = E[ss ] ((3.24)

and

+

Rw = Eiww ] (G25)

Hence, using Eq. ((3.23) in (G22), we get

h(le) = Nr+erog2(27:)+log2{det(Rw+HRSI-IT)} bits (G26)
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Next, we note that, since the vectors 5 and w are independent, and since the sum of w

plus Hs equals x, as indicated in Eq. ((3.18), then the conditional differential entropy

of x, given both 5 and H, is simply equal to the differential entropy of the additive
channel noise vector w:

h(x| s, H) = h(w) (G27)

Again invoking the formula of Eq. (G.10), We have

h(w) = Nr+erog2(23r)+log2{det(Rw)} bits (G28)

Using Eqs (G26), (G27), and (G28) in Eq. (G21), we get

I(s;x|H) log2{det(Rw + HRSHH)} — log2{det(Rw)}
((3.29)

ll det(Rw + HRsI-IH)
ogz det(Rw)

As was remarked previously, the conditional mutual information 1(s; xiH) is a random

variable. Hence, using Eq. (G29) in (G20), we finally formulate the ergodic capacity

of the MIMO link as the expectation

 
det(Rw + HRSHH) ,

C 2 EH logz W b1ts/s/Hz (G30)

which is subject to the constraint

max tr[Rs] S P P = constant transmit power
RS

where tr[.] denotes the trace operator, which extracts the sum of the diagonal elements
of the enclosed matrix.

Equation (G30) is the desired log-det formula for the ergodic capacity of the

MIMO link.This formula is of general applicability in that correlations among the ele-

ments of the transmitted signal vector 5 and among those of the channel noise vector w

are permitted. However, the assumptions made in its derivation involve the Gaussian

aspects of s, H, and W.

One last comment is in order: the white Gaussian input spectrum

2

R5 = USINI

is not necessarily optimal; nevertheless, its application does yield a lower bound to the

ergodic capacity C.
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G3 MIMO CAPACITY FOR CHANNEL KNOWN AT THE TRllliNSMl'I'I'ER3
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The log-det formula of Eq. (G30) for the ergodic capacity of a MIMO fiat-fading
channel assumes that the state of the channel is known only at the receiver. What if the

state is also known perfectly at the transmitter? Then the state of the channel becomes

known to the entire system, which means that we may treat the channel matrix H as a

constant. Hence, unlike the partially known case discussed in Section G2, there is no

longer the need for invoking the expectation operator in formulating the log-det
capacity. Rather, the problem becomes one of constructing the optimal R5 (i.e., the
correlation matrix of the transmitted signal vector 5) that maximizes the ergodic
capacity. To simplify the construction procedure, we consider a MIMO link with

N, : NI 2 lg Accordingly, using the assumption of additive white Gaussian noise with
variance ow in the log-det capacity formula of Eq. (G2), we get

C = log2{det[IN+ iZHRsH*]} bitsls/Hz (6.31)
6w

We can now formally postulate the optimization problem at hand as follows:

Maximize the ergodic capacity C of Eq. (G31) with respect to the correlation
matrix Rs, subject to two requirements:

1. Nonnegative definite RS, which is a necessary requirement for a correlation
matrix.

2. Global power constraint

tr[Rs] = P ((3.32)

where P is the total transmit power.

To proceed with construction of the optimal RS, we first use the determinant identity:

det(I+AB) = det(I+BA) (G33)

Applying this identity to Eq. (G31) yields

C = 10g2{de:(1N + izasalaj} bits/ssz ((134)
ow

Diagonalizing the matrix product I-ITH by invoking the eigendecomposition of a Her-
mitian matrix, we may write

UTHTHU = A ((3.35)

where A is a diagonal matrix made up of the eigenvalues of HJFH and U is a unitary
matrix whose columns are the associated eigenvectors. (The eigendecomposition of a
Hermitian matrix is discussed in Appendix H.)We may rewrite Eq. (G35) in the form

HlH = UAUJF (G36)
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Substituting Eq. (G36) into Eq. (0.34), we get

C = log2{det[lN+ LZRSUAnlj} bitsls/Hz ((3.37)
“W

Applying the determinant identity of Eq. (G33) to Eq. (G37) yields

C = log2{det[IN + iZAUTRSUJ}
0w

1 — .

= log2{det[lN + TARSH bitsfsin
Ouw

(G38)

where

is = UTRSU ((3.39)

Note that the transformed matrix is is nonnegative definite. Note also that

unis] trnfRsU]

= tr[UU+Rs] (6.40)

= tr[Rs]

It follows, therefore, that maximization of the capacity of Eq. (G38) can be carried

equally well over the transformed correlation matrix fis.
One other important point to note is that any nonnegative definite matrix A sat-

isfies the Hadamard inequality

det(A) s Hakk (G41)1:

 
where the “Ark are the diagonal elements of the matrix A. Hence, applying this inequal-

ity to the determinant in Eq. ((3.38), we may write

N
1 — 1 -

det[IN + 7AM] s [[[1 + 7/113}, kit] (G42)
0w i=1 0'“;

where ilk is the kth eigenvalue of the matrix product HHAr and PS H: is the kth diago-
nal element of the transformed matrix 1—13. The equality in Eci. (G42) holds only
when 1—15 is a diagonal matrix, which is the very condition that maximizes the ergodic
capacity C.
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To proceed further, we now use Eq. (G38) and Eq. (G42) with the equality Sign

to express the capacity as

N
1 _

C = logz H [1 + 71km, [ck]
k=l OW

N 1
2 log2[1 + “54'ka, kk]

1:21 o'w

N
,1 1 ,

Z log2{ftk[fik + 71/5415)}
k=1 ‘5W

N N 1 1
X logzlk+ 2 log2[itk + TPS’kk]

k:1 k2} Ow

((3.43)

I]

where only the second summation is clearly adjustable. We may therefore reformulate

the optimization problem at hand as follows:

. . N . . .

Gwen the set of eigenvalues {itk}k_ 1 pertaining to the matrix product HHl,. . ‘ . — N . .

determine the optimal set ofautocorrelattons {rs’ kid} 2 1 that maxtmtzes the sum—
motion

N 1 1
E [/1— + ThJck]

Iczl k 0-w

subject to the constraint

N

k 2 1

The global power constraint of Eq. (G44) follows from Eq. (G40) and the trace
definition

N

tr[fis] = 2 is!“ ((3.45)
16:1

The solution to this optimization problem may be determined through the water-filling

procedure, which is well known in information theory.3 Effectively, the solution to the
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water-filling problem says that, in a multiple-channel scenario, we transmit more sig—

nal power in the better channels and less signal power in the poorer channels. To be

specific, imagine a vessel whose bottom is defined by the set of N dimensionless dis-
crete levels

2 N

{i1 — (Ow/4)}A}: k=1

and pour “water” into the vessel in an amount corresponding to the total transmit

power P. That power is optimally divided among the N eigenmodes of the MIMO

link in accordance with their corresponding “water levels” in the vessel, as illus-

trated in Fig. G.1 for a MIMO link with N = 6.'l'he “water-fill level", denoted by the

dimensionless parameter p and indicated by the dashed line in the figure, is chosen

to satisfy the constraint of Eq. (G44). On the basis of the spatially discrete water-

filling picture portrayed in Fig. G.1, we may now finally postulate the optimal 3-5, kk
to be

0'2 +

P3, H, = [ — if] k: 1,2,...,N (G46)

where the superscript “+” signifies retaining only those terms on the right-hand side of

the equation that are positive (i.e., the terms that pertain to those eigenmodes of the

MIMO link for which the water levels lie below the constant p). Correspondingly, the

maxirrmm vaIUe of the capacity of the MIMO link, in accordance with the first line of

Eq. (G43) and Eq. (G46), is defined by

 
k=1 0.W

N 2 +o-

= zlogz 1+i27tk[lu—l_w] (G47)
i=1 c’w 1‘

N
M +

= 2104—2")
[:21 0w

where, as stated previously, the constant ,u is chosen to satisfy the global power con-

straint of Eq. (G44).

The optimal results of Eqs. ((3.46) and (G47), assuming that the channel state is

known to both the transmitter and receiver, were derived by considering a MIMO link

with N, = N, = N.
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O 1 2 3 4 5 6 k

FIGURE G.1 Water—filling interpretation of the optimization procedure. For the example
portrayed in the figure, we have the following source autocorrelation values

2

1I 5,11 :U
6W

1:

o_2\V

“ a
1‘s, 22

rs, 33 = 0
2

0w

fs,44 : #‘1—4
2

0'7 _ W

r355 — #71—5

rs.66: 0

All the other nondiagona] elements of the source correlation matrix is are zero.

NOTES AND REFERENCES

Page 442 of 474

1For a detailed exposition of the many facets of information theory, see Cover and Thomas
(1991).

21hr: first detailed derivation of the Iog~det capacity formula for a stationary MIMO link was
presented by Telatar in an AT&T technical memorandum published in 1995 and republished as
a journal paper in 1999.

3The waterfilling procedure is described in Cover and Thomas (1991).
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Eigendecomposition

H.1 UNITARY TRANSFORMATION OF A HERMITIAN MATRIX1

Consider a square complex matrix R of dimensions M by M. The matrix R is assumed
to be Hermitian; that is,

RT = R (H.1)

where the superscript t denotes Hermitian transposition. With R as the matrix of

interest, the eigenvalue problem is defined by

Rq = lq (H2)

where q is an M-by-l vector and A is a scalar.

In general, there are M distinct values of the scalar A that satisfy Eq. (1-1.2); these

values are roots of the characteristic equation

det(R —,u) = 0 (RB)

where I is the M—by—M identity matrix.

Typically, the off-diagonal elements of matrix R are nonzero. The diagonaliza-

tion of R is achieved by expanding on the transformation described in Eq. (H2). Spe-

cifically, we may write

QlRQ = A (HA)
where

A = diag(/11,/12,...,}LM) (H5)

is a diagonal matrix and

Q = lq1:¢l21---:‘1Ml (PI-6)

is a unitary matrix. The scalars 111, 3.2,. . ., ILM constituting the matrix A are called the

eigenvalues of matrix R, and the M—by—l vectors q1, q2,..., qM constituting the matrix
Q are the associated eigenvectors of R.

533
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By definition, the unitary matrix Q satisfies the relation

QQT : QlQ = 1 (H?)

In expanded form, we may rewrite Eq. (H7) as

1' = '

q! qk = { 1 for k 1 (H8)0 for kit

According to Eq. (H7), the inverse of the matrix Q, namely, Q4, is equal to the Her—
mitian transpose of Q, or

0‘1 = 0“ (H9)

In light of Eqs. (H5) through (HQ), we may rewrite Eq. (H.4) in the equivalent form

R = QAQT

: E hquq; (H10)
kzl

Equation (H10) is called the spectral decomposition theorem, which states that the

Hermitiart matrix R can be expanded as the linear combination of the rank-one matrixr'l/I
+ . . .

products {qqu} , and the corresponding eigenvalues {1k}kM= 1 are the scaling fac-k : 1

tors of the linear combination.

H.2 RELATIONSHIP BETWEEN EIGENDECOMPOSITION AND SINGULAR—

VALUE DECOMPOSITION2

Consider next a rectangular complex matrix A with dimensions L by M. Let the M-by-
M matrix R be related to the matrix A as follows:

MCf for M212
R = (H11)

ATA for M<L

Then, according to the singularwaiue decomposition (SVD) theorem, the matrix A

may be diagonalized as

UlAV = [D 0] (H12)0 0
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where D is a diagonal matrix, the 0‘s are null matrices, and U and V are respectively

L-by—L and M-by—M unitary matrices; that is,

U = U (H.13)

and

V = V‘ (H.14)

Specifically, we may make the following statements:

- The diagonal matrix

D = diag(d1, d2, ..., dW) , W = min(L,M) (H15)

defines the singular values of matrix A.

0 The unitary matrix

U = ['11, “2, ..., UL] (1-1-16)

defines the L left—singular vectors of matrix A.

0 The second unitary matrix

V = [v1, v2, ..., vM] (H17)

 
defines the M right-singular vectors of matrix A.

Moreover, depending on whether the dimension L is greater than M or the other way

around, we have two different cases in describing the relationships between singular-

value decomposition and eigendecomposition:

Case 1. L > M

In this case, the dimension W = M and the singular values d1,d2,...,dM are equal to the

square roots of the eigenvalues of the matrix product R = AJ‘A. Correspondingly, the
right-singular vectors v1,v2,...,vM are the associated eigenvectors.

Case 2. L < M

In this second case, the dimension W = L and the singular values d1,d1,...,dL are equal

to the square roots of the eigenvalues of the alternative matrix product R = AA". Cor»
respondingly, the left—singular vectors u]_,u2,...,uL are the associated eigenvectors.

NOTES AND REFERENCES

1The eigendecomposition of a Square matrix is discussed in Chapter 5 of Strang (1980).The dis-
cussion presented therein focuses on square matrices that are real.

2The singular—value decomposition of a rectangular matrix is discussed in Chapter 7 of Strang
(1980). Here again, the discussion focuses on real matrices. The chapter also discusses issues
relating to the computation of eigenvalues.
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APPENDIXI

Adaptive Array Antennas

1.1 NEED FOR ADAPTIVITY

The goal of wireless communications is to allow as many users as possible to commu-

nicate reliably without regard to location and mobility. From the discussion presented
in Chapter 2, we find that this goal is seriously impeded by three major channel
impairments:

1. Multipath can cause severe fading due to phase cancellation between different

propagation paths. Fading leads to a reduction in available signal power and
therefore a degraded noise performance at the receiver.

2. Delay spread results from differences in propagation delays among the multi-

ple propagation paths. When the delay spread exceeds about 10% of the sym-

bol duration, the intersymbol interference experienced by the received signal
reaches a significant level, thereby causing a reduction in the attainable data
rate.

3. Cochannel interference arises in cellular systems in which the available frequency

channels are divided into different sets, each of which is assigned to a specific cell

and with several cells in the system using the same set of frequencies. Cochannel

interference limits the system capacity (i.e., the largest possible number of users

that can be reliably served by the system).

Typically, cellular systems use 1200 sectorization at each base station, and only one
user accesses a sector of a base station at a given frequency. We may combat the effects

of multipath fading and cochannel interference at the base station by using three iden-

tical, but separate, antenna arrays, one for each sector of the base station. (The com-
pensation of delay spread is considered later in the section.) Figure 1.1 shows the block

diagram of an array signal processor; it is assumed that there are N users whose signals

are received at a particular sector of the base station and that the array for that sector

consists of K identical antenna elements. A particular user is treated as the one of

interest, and the remaining N - 1 users give rise to cochannel interference. In addition

to the cochannel interference, each component of the array signal processor’s input is

corrupted by additive white Gaussian noise (AWGN). The analysis presented herein is

536
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for independent fading. To simplify the presentation, we suppose that user 1 is the user

of interest and the remaining N — 1 users are responsible for co-channel interference,

as indicated in Fig. L1. The key design issue is how to find the weight vector, denoted by

w, that characterizes the array signal processor. Toward that end, we may proceed as
follows:

1. We choose the K—dimensional weight vector w to be orthogonal to the vectors

“2: h3, hN, which are associated with the interfering users. This choice fulfills
design requirement 1 (i.e., the cancellation of cochannel interference).

2. To satisfy design requirement 2 (i.e., maximization of the SNR), we will briefly
digress from the issue at hand to introduce the notion of a subspace. Given a

vector space, or just a space, formed by a set of linearly independent vectors, a
subspace of the space is a subset that satisfies two conditions:

(i) If we add any two vectors :1 and 22 in the subspace, their sum 21 and 22 is
still in the subspace.

(ii) If we multiply any vector 2 in the subspace by any scalar a, the multiple on is
still in the subspace.

Define the subspace W1{h2, h3, h N'}- Then, returning to the issue of how to
maximize the output SNR for user 1, we first construct a subspace denoted by 'W
whose dimension is equal to the difference between the number of antenna ele-

ments and the number of interfering users—that is, K a (N — 1) : K — N + 1. Next,

we project the complex conjugate of the channel vector hi (pertaining to user 1)
onto the subspace W. The projection so computed defines the weight vector w.

EXAMPLE l.‘l Subspace Method for Determining the Weight Vector

To illustrate the two~step subspace method for determining the weight vector w, consider

the simple example of a system involving two users characterized by the channel vectors [11
and h, and an antenna array consisting of three elements; that is, N 2 2 and K = 3. Then, for
this example, the subspace ‘W is two-dimensional, since

K~N+1=3—2+l:2

With user 1 viewed as the user of interest and user 2 viewed as the interferer, we may con—

struct the signal-space diagram shown in Fig. 1.2. The subspace W, shown shaded in this figure, is
orthogonal to channel vector 112. The weight vector w of the array signal processor is determined
by the projection of the complex-conjugated channel vector of user 1 (i.e., 111*) onto the sub-
space ‘W, as depicted in the figure.

The important conclusion drawn from this discussion is that a linear receiver using
optimum combining with K antenna elements and involving N —1 interfering users has the
same performance as a linear receiver with K —N + l antenna elements, without interference,

independent of the multipath environment. For this equivalence to be realized, we of course
require that K > N — 1. Provided that this condition is satisfied, the receiver cancels the cochan—

nel interference with a diversity improvement equal to K — N + 1, which represents an N— fold
increase in system capacity.
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11:
(Interferer)  
 

 

hl *
{User of interest)

 

 

w

(Weight vector)
 

 
«1— Subspace W

FIGURE LZ Signal-space diagram for Exampie 1.1, involving a user of interest, a single interferer,
and an antenna array of three elements. The subspace ‘W, shown shaded, is two dimensional in this
example.

The design of an array signal processor in accordance with the two-step subspace pro;
cedure described herein is of the zero-forcing kind. We say this because, given K antenna ele-
ments, the array has enough degrees of freedom to force the output due to the N —1

interfering users, represented by the linearly independent channel vectors hz, ..., hK, to
zero so long as K is greater than N — 1. Note also that this procedure includes N =1 (i.e., a
single user with no interfering users) as a special case. In this case, the channel matrix con—

sists of vector hl that lies in the subspace 'W, and the zero-forcing solution w equals hT *. I

The analysis presented thus far has been entirely of a spatial kind that ignores
the effect of delay spread. What if the delay spread is significant compared with the
symbol duration, and cannot, therefore, be ignored? Recognizing that delay-spread is
responsible for intersymbol interference, we may incorporate a linear equalizer in
each antenna branch of the array to compensate for delay spread. The resulting array
signal processor takes the form shown in Fig. 1.3, which combines temporal and spatial
processing. Spatial processing is provided by the antenna array, and the temporal pro-
cessing is provided by a bank of finite-duration impulse response (FIR) filters. For
obvious reasons, this structure is called a space—time processor.

|.1.1 Adaptive Antenna Arrays1

The subspace design procedure for the array signal processor in Fig. 1.1 assumes that
the channel impairments are stationary and that we have knowledge of the channel
matrix H. In reality, however, multipath fading, delay spread, and cochannel interfer-
ence are all nonsmtionary in their own individual ways. Also, the channel character-
ization may be unknown. To deal with these practical issues, we need to make the

receiving array signal processor in Fig. 1.1 adaptive. Bearing in mind the scope of this
book, we confine the discussion to adaptive spatial processing, assuming that the
delay spread is negligible. We further assume that the multipath fading phenomenon
is slow enough to justify the Ienst—mean~square (LMS) algorithm to perform the
adaptation.
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Element

2

 
Element

  
 

Antenna
array

FIR filters

FIGURE |.3 Baseband spaceitime processor. The blocks labeled 2‘1 are unitudelay elements,
with each delay being equal to the symbol periodThe filter coefficients are complex valued.
The FIR filters are all assumed to be of length L.

|.1.2 Least-Mean-Square (LMS) Algorithm

Figure 1.4 shows the structure of an adaptive antenna array, in which the output of each
antenna element is multiplied by an adjustable (controllable) weight wk, k = 1,2,...,K,
and then the weighted elemental outputs of the array are summed to produce the array
output signal, denoted by y. The adaptive antenna array does not require knowledge of
the direction of arrival of the desired signal originating from a user of interest, so long
as the system is supplied with a reference signal, which is correlated with the desired

signal. For example, the reference signal could correspond to a training sequence that
is transmitted on a periodic basis. The output signal of the array is subtracted from the

reference signal, denoted by d, to generate an error signal 6, which is used to apply the
appropriate adjustments to the elemental weights of the array. In this way, a feedback
system to control the elemental weights is built into the operation of the antenna array,
thereby making it adaptive to changes in the environment. Note that the block dia-

gram is draWn for baseband processing. In a practical system, a quadrature hybrid is
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Array of Array output
K J10?)

antenna
elements   
 

  
control

algorithm

Reference signal
(101)

FIGURE |.4 Block diagram of adaptive antenna array.

used for each antenna element of the array to split the complex-valued received signal

at each element into two components: one real and the other imaginary. The use of a

hybrid has been omitted from the figure, to simplify the diagram.

Let xk(n) denote the output of the kth element in the array at discrete time n,

and let wk(n) denote the corresponding value of the weight connected to this element.

Then the output signal of the array (consisting of K antenna elements) is

K

W!) = Z w:(n)xk(n) (1'2)
k=1

where w:(n)x[C(11) is the inner product of the complex-valued quantities wk(n) and
xk(n). Denoting the reference signal as d(n), we may evaluate the error signal as

dH)=dUD*yw) 03)

To optimize the performance of the adaptive antenna array, it is customary to use the
mean—square error

J=Ewmfi1 0%
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as the cost function to be minimized. Minimization of the cost function J tends to sup-
press the interfering signals and thereby enhance the desired signal in the array out—
put. The LMS algorithm minimizes the instantaneous value of the cost function J and,

through successive iterations, approaches the minimum mean-square error (MMSE)
(i.e., the optimum solution for the elemental weights) ever more closely. An adaptive

antenna array based on the minimum mean-square error criterion is highly likely to
provide a better solution than one based on the zero-forcing criterion embodied in
the two-step subspace method.

The adjustment applied to the kth elemental weight is

Awk(n) = #e*(n)xk(n) k 1, 2, ‘--, K (1.5)

where ,u is the step-size parameter. The updated value of this weight is

wk(n + 1) = wk(n) + Awk(n) k : I, 2, ---, K (1.6)

Equations (I.2) (1.3), (1.5) and (I6), in that order, constitute the complex LMS algo-
rithm.2 The algorithm1s initiated by setting wk(0)= 0 for all k.

The advantages of an adaptive antenna array using the complex LMS algorithm
are threefold:

1. Simplicity of implementation

2. Only a linear growth in complexity with the number of antenna elements

3. Robust performance with respect to disturbances.

However, the system suffers from the following drawbacks:

0 A slow rate of convergence, which is typically 10 times the number of adjustable

weights. This limits the use of the complex LMS algorithm to a slow-fading envi-
ronment, for which the Doppler spread is small compared with the reciprocal of
the duration of the observation interval.

- Sensitivity of. the convergence behavior to variations in the reference signal and
cochannel interference powers.

These limitations of the complex LMS algorithm can be overcome by using an algo-
rithm known as direct matrix Inversion (DMI).3 Unlike the LMS algorithm the DMI
algorithm operates in batch mode, in that the computation of the elemental weights15
based on a batch of L snapshots. The batch size L is chosen as a compromise between
two conflicting requirements:

0 The size L should be small enough for the batch of snapshots used in the compu-
tation to be justifiably treated as pseudostationary.

I The size L should be large enough for the computed values of the elemental
weights to approach the MMSE solution.

The DMI algorithm is the optimum combining technique for array antennas deployed
in many base stations today. The algorithm may be reformulated for recursive compu-
tation if desired.4
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When the teletraffic is high, the base stations are ordinarily configured as micro-

cells, which are small cells such as an office floor or a station deployed along a highway

with directional antennas. In such a configuration, there are many inexpensive base

stations in close proximity to each other. The use of adaptive antenna arrays provides

the means for an alternative configuration in which there are fewer (but more expen-

sive) base stations, further apart from each other than in the corresponding microcel-
lular system.

NOTES AND REFERENCES

Page 453 of 474

1For a discussion of adaptive antenna arrays and their theory, design, and applications, see
Compton (1988).

2The least-mean—square (LMS) algorithm is discussed Haykin (2002) and Widrow and
Stearns (1985).

3 The direct matrix inversion (DMD algorithm, also referred to as the sample matrix inver-
sion method, is discussed in Compton (1988); see pp. 331—332.

4The recursive least-squares (RLS) algorithm provides an iterative method for implementing
the method of least squares, which lies behind the DMI; for details, see Haykin (2002).
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distortion, 4
encoder, 180

redundancy in, 186
equalizer. 2.40
interleavers, 215, 240

Channel estimation,105, 150, 157,18fL
132, 2294234, 249, 260. 2927294

baseband processing for, 227—233
and tracking, 151—158

differential detection, 152-154
pilot symbol transmission, 154—158

Channel matrix. 525
Channel models for wireless

communications, 11—12
Channel noise, 158—160
Channel state information (C81), 243
Channelcoding strategies, 222—226

AWGN channel, 225
decoding, 224
encoding, 223—224
fading wireless channels, 225
joint equalization and decoding, 226
latency, 225—226
for wireless commonications, 2227226

Channel-coding theorem, 186—187
Characteristic equation, 533
Characteristic wave impedance of free

space, 21
Chips. 261
Chi-square distribution, 501-502

with N degrees of freedom, 501
Chi-square random variable. 362
Chi-square with 2N, degrees of freedom,

349
Clarke model, 45, 47
Classical block interleaver, 208—209
Closed-loop optimization procedure, 192
Closed-loop power control, 3164634164
Closing the link, use of term, 19
Clusters, 73
Coantenna interference (CAI), 358—360,

433
Cochanncl cells, 7, 73
Cochannel interference, 74, 536
Code:

Alamouti, 377—387, 437
binary, 184
block, 194, 222—223
canyolutional, 194, 195-214, 222
cyclic, 194
Gold, 274—276, 300, 319—320, 331
good, construction of, 187
Hamming, 322
Reed—Solomon, 222
repetition, 322
short, 317—318
spaceitimc, 376—394
space~time block:

differential, 394—404
V—B LAST vs, 427—430

sporadic, 390
spreading, 265—279
Turbo, 215—222

Code division. 265

Code rate, 187,194
Code synchronization, 290—292
Code vectorsfpatterns, 189, 201
Codebook,189, 192—193
Coded composite transport channel

(CCTRCh), 326
Code-division multiple access. See CDMA
Code-excited LPC, 192—193
Coding, 179

channe|.185.186, 249
systems, implementation of, 185

Coefficients matrix, 3954396
Coherence bandwidth, 55, 60451, 62
Coherence spectrum, 60—61
Coherence time. 55. 57, 62, 208

for a flat-fading channel, 5758
Coherent binary frequency-shift keying

(BFSK), 158
bit error rate (BER) of, 352-353

Coherent detection, 154, 213
Coherent receiver, 158
Collisions, 260
Common probability distributions,

499—502

Communication systems, 2
Commutative property of convolution, 126
Compensated received waveform, and

Viterbi equalization, 231
Complementary cumulative distribution

function, 368
Complementary error function, 140, 514

bounds on. 517—518
Complex analysis, trading for elimination

of carrier frequency, 126
Complex baseband process, 507—508
Complex baseband signal, 181, 227
Complex envelope:

of a modulated signal. 123
of N signal rays, 45

Complex Fourier coefficients, 491
Complex Fresnel integral, 28
Complex LMS algorithm, 542
Complex multidimensional Gaussian

distribution, 523—524
Complex orthogonal design, 377
Complex random process, 507
Complex random variable, 507
Complex weighting parameter, linear

combiner, 347—387
Complex-orthogonal matrix, 381
Conditional probability. 496—497
Connectionless service, 455
Connection-oriented service, 455
Constructive interference, 20
Continuous phase modulation (CPM), 172
Continuous random processes, 503—504
Continuous random variable, 497
Continuousrphase frequency-shift keying

(CPFSK). 132, 134435
Continuousrphase modulation, 1334137
Continuous-phase signal, 132
Continuous-wave (CW) modulation, 107
Control channels, 461
Control data, 143
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Controlled intersymbol interference, 227
Controlled redundancy, 180
Convolution integral,481
Convolution operator, 51
Convolutional code, 194, 195—201,222

constraint length of, 196
example, 1977198
free distance of, 200—201
maximum-iikelihood decoding of,

201—203

noise performance of, 212—214
nonsystematic, 196
trellis and state diagrams of, 1987199

Convolutional interleaving, 2104212
Cordless telecommunications, 168—170
Cordless telephones, 168
Correlation, between adjacent samples,

184
Correlation receiver, 510
Correlation theorem, 488—490

autocorrelation function, 490
Cost function, 155
CPFSK, See Continuous-phase frequency-

shift keying (CPFSK)
Cross-correlation function, 488
CSMA, See Carrier—sense multiple access

(CSMA)
Cumulative distribution function, 369, 497
Cumulative path metric, 203
Cyclic codes, 194
Cyclic extension, 167
Cyclic prefix, 167—168
Cyclic redundancy check (CRC), 457, 464

code, 194—195

D

Data link layer, 455
Data rate, channel, 194
Datailink layer, 3, 578, See also CDMA;

FDMA; SDMA; TDMA
email, 457

Decoder, 181—182, 186, 192,240
differential, 402
inner, 421.
minimum-distance, 203
outer, 240, 421
twoestage, Z40
Viterbi, 205, 209, 214, 232

Decoding, 224
joint equalization and, 226, 239—243

Decoding error, 201
Decoding window, 205
DECT (Digital Enhanced Cordless

Telephone), 471
Dedicated physical controi channel

{DPCCH), 325
Deifragnientation, indoor LANS, 469
Deinterleaver, 1814182, 208-210, 240
Delay constraints, 36?
Delay spread, 536

power-delay profile, 60
Delay unit, 402
Delta function, 230
Demultiplexing, 419
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Dependence on antenna height,23
Destructive interference, 20
Determinant identity, 528
Deviation ratio, 132, 135
Diagonal matrix, 372, 533, 535
Diagonal-BLAST (D-BLAST), 415,

416—417,438
Diagonalization, 533
Dibit,112,116
Differential decoder, 402
Differential detection, 1524154
Differential encoder, 402
Differential encoding, 153
Differential entropy, 522—524, 526—527
Differential phase-shift keying (DPSK),

402
coherent, 159

Differential spaceutime block codes,
39H04, 437

defined, 394—401
noise performance, 402—404
transmitter and receiver structures, 402

Diffraction, 12, 20, 24—28, 30
losses, 28—29

Digital communication systems, 258
Digital modulated signals, 107
Digital speech-coding techniques, 9
Dirac delta function, 51, 480
Direct matrix inversion (DMl), 542
Directional antennas, 340

multipath with, 412—415
Directional radiation, 1571.8
Directivity, 13, 15, 451
Direct-sequence (DS) modulation,

263265, 331
matched-filter receiver, 2624263
performance with interference, 263—265
spreading equation, 260—262

Direct-sequence modulators, 259
Direct—sequence spread spectrum

(BS-SS], 263, 265, 279, 331—332
summary of benefits of, 289—290

Direct-sequencing (DS) technique, 259
Dirichlet’s Conditions, 479
Discrete Fourier transform (DPT), 164
Discrete power-delay profile, 58—60
Discrete random processes, 503—504
Discrete random variables, 497
Discrete set of values, 184
Distortion, 188
Diversity. 9, 3397340, 438, 451

on both transmit and receive, 340
frequency, 240, 324, 339, 451
receive, 340, 438
space, 339—340
time, 240, 339, 349
transmit, 328, 340, 438

Diversity gain, 350
Diversity order, 356, 389, 4294133, 438
Diversity-on-receive channel, 366,426—427

Diversityuonutransrnit channel, 366,
426427

Doppler power spectrum, 57

Index 553

Doppler shift, 4247, 51, 55, 208
aircraft Doppler, 43
maximum, 46

Doppler spreading, 55
Double sidebandisuppressed carrier

(DSBisC) modulation, 109410,
122

Downlink, 143
Downlink limited channels, 79
Ducting, 20
Duplexing, 143
Dynamic channel aflocation (DCA). 168

E

Earlyflate timing, 91
Earth station receiver, 78
Earth station transmitter, 76
Effective area, 14
Efficient signal transmission, 185
Efficient utilization of the allotted

spectrum, 189
Eigendecomposition, 372, 533—535

of a Hermitian matrix, 5284529
of the logrdet capacity formula,

374—376

Eigenvalue problem, 533
Eigenvcctors, 533
Einstein, Albert, .1
Electromagnetic shadow, 24, 61., 94
Elevation angie, 15
E—mail, as example of sevenwlayer model,

456—457

Encoder, 180, 192
inner, 240
memory in, 194
nonrecursive nonsystematic

convolutional, 223
outer, 240
redundancy in, 186
two-stage, 240

Encoding, 2234224
differential, 153
error-control, 193—195
fulImrate spacertime, 419
process, 184

End-fire directions, 410
End-to-end delay, 212
Energy density spectrum, 490
Energy detector, 169
Ensembie average,508
Entropy, 185—186

differential, 522—524, 526—527
Equal-gain combining, 353
Equalization, 1794180

baseband processing for, 2274233
joint, and decoding, 226

Equalizer, 88
Equivalent complex baseband model, 125
Equivalent isotropic radiated power

(E1 RP) , 75
Ergodic processes, 36?

random, 508
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Error burst, 194
Error detection, 193, 194
Error function. 500, 514, 516k519

asymptote property, 514, 516
complementary, bounds on, 517518
Qefunction, 518—519
symmetry property, 514, 516

Error minimization, 191
Error signal, 5409541
Error-control coding, 193—195

automatic-repeat request (ARQ)
schemes. 193494

cyclic redundancy check (CRC) code,1944195

forward error—correction (FEC) codes,193

Error—correction techniques, 5
Estimate, of speech signal, 182
Estimated received waveforms, and

Viterbi equalization, 231
Estimated waveform generator, 2314232
Euler's formula, 123
Even function of time, 480
Even symmetry, 230
Events, 496
Evolution, 452, 454
Excitation generator, 191
Excitation time, 481
Expected value, 498—499
Exponential law, 161
Exponentially distributed squared

amplitude, 343
Extrinsic inform ation transfer (EXIT)

chart, 224
Eye opening, 360
Eye pattern of the received signal, 360

F

Fading, 12
Fading channels, 225, 288—289
Fading wireless channels, 225
Fast fading, 36, 44—48
Fast-frequency hopping, 307, 308—310
F81 (Feedback Information) bits, 326
FDMA,5,74,103,132,1704171258—259,

265, 450
adjacent channel interference, 142—144
frequencyedomain representation of, 104
and handovers, 466

FEC ending, 9, 193, 2974299, 304, 412—413,
428, 451, 471

and CDMA, 2974299
improved multipleeaccess performance

with, 2984299
Feedback channel, 371
Feedback path, 240
Feedback system, 218
Fessenden, Reginald, 1
Field theory, 271
Finite rate, 188
Finite—duration impuise~response (FIR),

157, 190, 539
Finite-state machine (FSM), 195
First Fresnel zone, 27,28
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Firstegeneration systems, 311
Flatefading channel, 52, 292

coherence time for, 57—58
Flat—fiat channels, 52
Flexibility, 452, 454
Flow control, 3, 455
Forward error-correction (FEC) codes,

Sec FEC coding
Forward estimator of state probabilities,221

Forward path, 240
Forward-link radio transmissions, 143
Fourier series, 491
Fourier theory, 89, 108, 4794192
Fourier transform, 89, 479—486, 488—489,

492, 5044506, 509
properties of, 481

Fourier-transform pair, 479, 482, 485
Fragmentation, indoor LANs, 469
Frame (burst)~crror probability, 371
Frame error rate (FER), 225
Frames, 3, 7, 169169, 180, 192,205, 225,

234, 2364238, 249
Framing bits, 234
Free distance, of convolutionai code,

2004201

Free-space link budget, 75—76
Free—space path loss, 15
Free—space prepagation, 13—19, 30. 94

directional radiation, 15—18
Friis equation, 184.9
isotropic radiation, 13415
polarization, 19

Free-space transmission, 12
Frequency deviation, 132
Frequency dispersion, 55
Frequency diversity, 240, 324, 339, 451
Frequency hopping (PH), 177, 236—238,

249, 259—260, 306, 477
principle of, 237
slow frequency hoppers, 260

Frequency independent, 23
Frequency modulation (FM), 108,

133132, 143, 170, 258
Frequency reuse factor, 74
Frequency-division dipiex (FDD)

transmissions, 143
Frequency-division diplexer (FDD), 143
Frequency-division multiple access,

See FDMA
Frequency-flat channels, 51, 61, 62
Frequency-flat, siowly fading Rayleigh

channel, 341
Frequency—hopped spread spectrum,

306—310, 3314332
advantages of, 306
complex baseband representation of,307—308

disadvantages of, 306
fast-frequency hopping, 308310
processing gain, 310
slow-frequency hopping, 3084310

Frequency-hopped spread spectrum
(FHeSS), 306—310

Frequency~hopped systems, 259
Frequency—nonsclcctive channels, 6]
Frequency-selective channels, 52, 61., 62,292

Frequencyeselective characteristics, 88
Frequency—shaping pulse, 140
Frequency-shift keying (FSK), 143, 321,

352—354, 441-442
Sundc’s FSK,132

Frequency—spaced, tilneespaced
correlation function, 60

Frequently Hat, slow fading channel,161—1 62
Fresnel zones, 25—27
FresneleKirchbcff parameter, 2&29
Friis equation,18419, 75
Full-cosine roll—off puisc, 119
Fullerate space-time encoding, 419
Fully coherent addition, 349

G
Gain, 15

diversity, 350
parabolic antenna, .16
processing, 310
receive antenna, 16
transmit antenna, 15416

Gaussian density function. 38
Gaussian distribution, 500
Gaussian function. 140
Gaussian monocycle. 89
Gaussian random processes. 504, 507
Gaussianafiltered minimum-shift keying

(GMSK), 139m142,160,169,170,
227, 238. 249—250

GB GP propagation model. 435
Generalized complex orthogonal designs

of space—time block codes, 377,
389—392, 437

Generator polynomial, 196
Generator sequence, 196
Global Positioning Satellite System

{GPSS}, 71, 319—320
Giobal System for Mobile (GSM)

Communications, 2, 236—239, 249,
4714172, See GSM

GMSK, See Gaussianefiltered MSK
Goid codes, 274—276, 300, 3194320, 331

autocorrelationi‘cross-correiation of, 276
generation of, 275

Good codes, construction of. i87
GPRS (General Packet Radio Service),472

Gray coding, 127, 129, 256, 378, 398
for bijective mapping, 400—401

G/T ratio of a satellite, 75476
Guard hands, 142
Guard intervals, 167, 168
Guard time, 236

H

Hadamard inequality, 529
Hamming code, 222, 322, 333, 337
Hamming distance, 200, 202, 2034204, 232,

251
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Hamming weight, 200
Handovers, 452—453, 458, 465—467

algorithms, 4654166
blocked call, 465
and CDMA, 466
celi dragging, 466
and control channels, 461
dropped ca]1,465
and FDMA and TDMAIFDMA

combination systems, 466
hard, 303, 466
mobile assisted, 465
multipleeaccess considerations, 466467
ranking, 465
and SDMA, 4664167
soft. 466

Hermitian transposition, 156, 381
Hertz, Heinrich, 1
HF radio, 62
Hocquenghem (B CH) codes, 222
Hop period, 307
Hop time, 259
Horizontal polarization. 19
Huygen’s principle, 24

I

Ideal reflectors, 434
IEEE 802.11 MAC,473475
IEEE 802.11a, 473
IEEE 802116473
iEEE standard 80215.1 (Bluetooth

Wireless system), 321—323
Impulse radio, 89—92

advantage of, 92
ultra-wideband, 89—93

Impuise response, 480
Independent block-encoding, 419
Indoor LANs, 4694170
Indoor propagation, 33—35
Industrial, Scientific, and Medical (ISM)

bands, 473
Infinite-time horizon, 367
Information bandwidth, 258
Information capacity theorem, 187—188
Information transmission, 188
Information-bearing signal, 180
Initial digital systems, 311
Inner decoder, 421
Inner encoder, 240
In-phasc component, 122, 125, 228, 508
Input back—off, 147
Inputioutput relation of a channel,

5247527

Instantaneous output signal—to-noise ratio,
348

Instantaneousiy sampled signal, 486
Institute of Electrical and Electronics

Engineers (IEEE), 854:6, 88, 96,
162, 219, 3287330

Integrate-and-dump filter, 263
Intercellular interference, 302
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Interference, 12, 63774, 94, See also
Adjacent Channel interference
(AC1); Coantenna interference
(CA1); Cochannel interference;
Intersyrnbol interference (151);
Multiple-access interference
{MAI}

ordered serial interference-cancellation

{031(3) detector, 4174118, 433
othericell, 3027304

Interferencealimited systems, 304, 461
Interioavers, 180, 2077215, 240, 316

block, 208—210
channel, 215
convolutional, 210—212
and delay, 209
defined, 207
design. 208
example, 209L210
pseudorandom, 2.12, 215, 249, 419
random, 212
S—constraint, 251
turbo, 215

Intermodulaton distortion, 79
International Telecommunications Union

(1TU),95u96
Internet, 454

sublayer, 455
Intersymbol interference (151), 1.17, 141,

180, 240, 421
controlled, 227

Intersymbol interference problem. 104
Intracellular interference, 302
Inverse discrete Fourier transform

(IDF’T), 164
Inverse fast Fourier transform (IFFT)

algorithm, 164—165
Inverse fourth-power law, 23
Inverse law, 161
Inverse mapper, 402
lrreducible (non—factorable) polynomials,

271

Isotropic antenna, 13
effective area of, 14

Isotropic radiation, 13—15
18-95 ceil, capacity in (example), 319
13-95 standard, 311—319, 471

cellular considerations, 317
downlink CDMA channels, 314—316
main communication channels for, 312
Pilot channel, 3.13
power control, 31€k378
uplink, 3187319

Iterative detection, 215
Iterative detection and decoding (IDD)

process, 421
receiver, 419

Iterative receiver, 240

J
Jacobian of a transformation, 502
Jamnier, 310
Joint equalization and decoding, 226,

2397243
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K

Keyhole channels, 341. 433—436
Known piiot symbols. 154

L

Landimohile wireless communication, 2
Latency, 2257226

power control,296
Leastwmeanesquarc (LMS) algorithm,

5397543
Lee’s model, 412
Left-hand circular pol arization. 1.9
Left-singular vaiues, 373, 535
Limited battery power, mobile radio

terminals. 146

Linear array signal processor, 537
Linear band-pass systems, complex

representation of, 124—126
Linear dependence on information

capacity, 187
Linear equalizer, 539
Linear estimator of fading, 155
Linear independence, 5377538
Linear modulation techniques, 1087116

amplitude modulation, 108410
binary phase Shiftekeying, 11(H 12
offset quadriphaseeshift keying

(OQPSK),114—116
n14-shifted quadriphase-shjft keying,

116

quadriphase—shift keying (QPSK),
112—114

Linear operator, 499
Linear predictive coding (LPC), 189—190

cochcxcited LPC, 1927193
multipulse excited LPC, 19CL192

Linear processing, 377
Linear timeevarying channel, output

sampling of, 488
Linear time-varying systems, 4834184
Line-of-sight transmission, 12
Link budget, 13, 19, 35, 75—81, 95

from earth station to satellite. 76—77

equation, 19
free-space, 75—76
satellite-to—mobile terminal, 78—79
terrestrial, 80—81

Link calculations, 75—81
Local area network (LAN), 456. 469
Local propagation effects with mobile

radio, 3641-8
Local propagation loss, 32733
Local variations, 30
Lodge, Oliver, .1
Logarithmic dependence on

signal-to-noisc ratio, 187'
Log—det capacity formula, 365

eigendecomposition of, 374—376
Logical channels, 460
Log-likelihood function, 201—202
Lognormal distribution, 32
Lognormal fading, 36
Lognormal model, 32
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Legion and log-off mcssages,460
Long code, 316
Long-term prediction, 250

synthesis filter, 191
Lossy data compression, 188

M

Macrocells, 412
Magnitude spectrum, 480
MAI, See Multiplciaccess interference

(MAI)
Man-made noise, 70471.
MAP algorithm, 217, 220, 224
Mapper, 250, 378—379, 387, 402
Marconi, Guglielmo, l, 89, 102
Margin, 79
Markov process, 221
M-ary PSK mapper. 378
M—ary QAM mapper, 378
Mask. 316
Matched filters, 153, 229—230, 5094515

and complex signals, 515
probability of detection, 511—515
receiver, 509—5 11

Matchedafilter receiver, 2624263
Matrix:

coefficients, 395—396
complex-orthogonal, 381
diagonal, 372
singular-value decomposition of,371—376
transmission, 377, 381, 396
unitary, 372

Maximal diversity order, 432
Maximal-length Sequences (m-

sequences), 270—275, 300, 331
properties of. 2714272

Maxim al-ratio combining, 346-353
bit error rate of coherent binary FSK,352—353

outage probability for, 350
Maximum a posteriori probability (MAP)

decoding. 219—222
algorithm, 420

Maximum Doppler shift, 46
Maximum transinitfreceive antenna gain,16

Maximum—likelihood decoding:
of couvolutional code. 2017203
rule, 3854387

Maximumilikeiibood sequence estimator,204

Maxwell, James Clerk. 1
Maxwell’s equations, 1, 13. 16, 24
Mean value, 498499
Mean‘square error, 5414542
MeanesquaIc-crror (MSE) criterion, 190
Mean~square value. 499
Median-path loss, 30—31
Medium access control (MAC) sublayer,3, 455456

control channels, 461
logical channels, 460
paging and access channels, 460—461
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physical channels, 460
signaling and protocols, 458—461
synchronization and broadcast

channels, 460
traffic channels, 461

Medium-band TDMA, 235
Memory, in encoders, 194
Memoryless binary symmetric channel,202

Message points, 127
Message vector, 201
Metric, 203
Microeells, 412
Microwave relay systems, 2
Military wireless applications, 475
MIMO channels, See Multiple-input,

multiple-output (MIMO)channels

MIMO wireless communications, See
Multiple-input, multiple-output:
(MIMO) wireless
communications

MIMO links:

capacity for channel known at the
transmitter. 528—532

capacity of, 5224532
log-det capacity formula of, 5244527

Minimum Hamming distance, 200
Minimum meanisquarc error (MMSE),542

Minimum reuse pattern. 74
Minimum shift keying (MSK), 133—137,

1497151, 170
coherent, 159
defined, 136
Gaussian-filtered, 139—142
power spectra of signal, 137—139
transition characterization of, 137

Minimum-distance decoder, 203
Mobile switching center (MSC), 465

roies of, 468
Mobile terminals, 36
Modem, 3, 455
Modified Bessel function, 41

of order zero, 501
Modified Bessel functions of the first kind,495

Modulated signal, 105
Modulated signals, analysis of, 123
Modulating signal, 105
Modulation, 1(134108,180—182,451,Sce

also Direct-sequence (DS)
modulation; Pulse shaping

adjacent channel interference, 144—145
amplitude and angle modulation

processes, 107—108
analog and digital modulation

techniques, 107
comparison of wireless

communications strategies.148—1 51

linear channels, 148—150
nonlinear channels, 150—151

defined, 103. 105

linear and nonlinear modulation
processes, 106—107

linear modulated signals and band-pass
systems, complex representation
of, 122—126

linear modulation techniques, 108—116
multicarrier, 88
nonlinear modulation techniques,130-142

partial—response, 227
power amplifier nonlinean'ty, 146—148
practical benefits, 105—106

wireless local area networks (LANs),88489
Modulator, 105
Modulo-Z convolutions, 195

MSK, $86 Minimum shift keying (MSK)
Multiaccess communications, 455
Multibearn antennas, 8
Multicarrier modulation, 88
Multicarrier transmission, 163
Multicodc transmission, 327
Multipath channels, 283—284
Multipath intensity profile, 58
Multipath propagation, 20
Multipath spread, power-delay profile, 60
Multipaths (multiple propagation paths},

12, 3648, 536
with directional antennas, 409—412
Doppler shift, 4244
fast fading, 36, 44—48
Rayleigh fading, 36—40
Rician fading, 40—41
slow fading, 36

Multiple access, 106
Multiple—access communications, 3
Multiple—access interference (MAI), 71,

279—283, 302, 452—453
Multiple—access noise, 94
Multiple-access strategies:

bandwidth efficiency, 452453
comparison of, 452
diversity, 45].
evolution, 452, 454
flexibility, 452, 454
forward errormcorrection (FEC) coding,451

handover, 452453
modulation, 451
multiple-access interference, 452453
source coding, 45]
synchronization, 452453
system complexity, 452453
user terminal complexity, 452—453
voice and data integration, 452, 454
wireless architectures, 450454

Multiple-input, multiple—output (MIMO)
channels, 188, 300, 34CL341

Multiple-input, multiple—output (MIMO)
wireless communications,
3574363, 426, 437

basic baseband channel model, 360363
basic complex channel model for, 361
coantenna interference (CAI), 358-360
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MIMO capacity [or channel known at
the receiver, 363—371

capacities of receive and transmit
diversity links, 366—367

channel known at the transmitter, 371
ergodic capacity, 363466
outage capacity, 3677371

Spacertime codes for, 3767394
MultipleAtransmit, multiple-receive

(M'I‘MR) wireless
corn munications, 357

Multiplier, 402.
Mullipulse excited LPC, 190—192
Multiuser detection, 299—301, 328

optimum, 301
Mutual information, 524

N
Narrowband, 124—125, 226—229, 233, 259

random processes, complex
representation of, 507—508

TDMA, 236
Wireless communications, spectral

efficiency of, 226-227
Natural redundancy, 180
Nearrfar problem, 145, 2967297, 462
Network layer, 3, 455, 467—470

cellular networks, 467—468
e-mail, 456
indoor LANs, 469—470

New degree of freedom, 360
Noise, 11—102, 63—74, 94

in cascaded systems, 68439
equivalent noise temperature, 66
flat spectral response, 67
impulse, 70471
man-made, 70—71
multiple-access interference, 71—74
noise figure, 66—67. 70
thermal, 63—66

Noise figure, 66—67
and receiver sensitivity, 67768
system noise figure calculation, 70

Noise performance, 21&219
of convolutional code, 212-214

Noncoherent binary frequency-shift
keying (BFSK), 159

Noncoherent receiver, 158
Nonlinear modulation techniques, 104,

1304142

binary frequency-shift keying (BFSK),
1327133

continuous-phase modulation, 133—137
frequency modulation (FM), 130—132
minimum shift keying, 133—137

Nonlinearities. presence of, 149
Nonlinearity, 104
Nonrecursive nonsysternatic

convolutional encoders, 223
Nonreturn-to-zero (NRZ) binary data

stream, 140
Nonstationary channels, 61
Nonstationary physical process, 190
NDnSystematic convolutional code, 201
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Nordic Mobile Telephone (NMT), 2
Normalized reuse distance. 73

N, single-input. single-output (8150)
channels, 373

N, virtual channels, 373
Nyquist interval, 183
Nyquist pulse shaping, 117—118, 154
Nyquist rate, 183—184

0
OkumurauHata model. 31, 82484
Omnidirectional antennas, 8
Open system interconnection (OSI)

reference model, 3, 450, 454—457
application layer, 456
data link layer, 455
network layer, 455
peer processes, 454
physical layer, 455
presentation layer, 456
protocol stack,454
session layer, 456
sevenrlayer mode]. example of, 4564157
transport layer, 455
and wireless communications, 4574158
wireless data network structure based

on, 468
Open—loop power control, 462—463
Ordered serial interference-cancella[ion

(051C) detector, 417—418, 433
Orthogonal frequency—division

multiplexing (OFDM), 88, 105,1627168

cyclic prefix, 1677168
Orthogonal modulation, 354-
Orthogonal, use of term, 123
Orthogonal variable spreading factor

(ovsr). 269470, 324
Orthogonality constraint under T—shifts,

121

Orthogonality of messages, 266—267
Orthonornial set. 127, 395
“Other” filtering, 149
Other—cell interference, 302—304
Outage capacity, MIMO link, 368
Outage probability at rate R, 368
Outer decoder, 240, 421
Outer encoder, 240
Outer~loop power control, 464
Outeofeband transmissions, 71
Output backioft', 148
Overhead hits, 234

P

Packetizer, 180
Packets, 180
Pages, 461
Paging and access channels,460—461
Parabolic antenna gain, 16—17
Parseval’s theorem, 263, 490—492
Partial correlation, 291—292
Partial-response modulation, 227
Path-loss exponent. 31
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Pattern-matching operation, 189
Patterns, in codehook,189
Peak-to-average ratio (PAR),327
Peer processes, 454, 456
Personal communications services (PCSs),

311
Phase distortion, 147, 151
Phase modulation, 108,151, 153-154, 173
Phase spectrum, 480
Phase tree, 135
Phase trellis, 136
Physical channels, 460
Physical layer, 34, 455

e-mail, 457
Physical models, 11712, 19-29
Physical propagation models, 94

diffraction, 12, 20, 24728, 30, 94
freehspace propagation, 13719, 30, 94
reflection, 12, 20, 30, 94

Piconet, 322
Pilot symbol transmission, 154158
Pinhole channels, See Keyhole channels
Planck’s constant, 64
Planeanrth propagation equation, 23
Point sink, 14
Pointvtommultipoint architecture, 6, 7
Polarization. 19

Popoff, A. 3., 1
Portable terminals, 36
Power amplifier nonlinearity, 1467148
Power control, 1692949297, 458, 461464

closed-loop, 4634464
and control channels, 461
implementation issues, 296
near-far problem (example), 462
open-loop, 462—463
outer-loop power control, 464

Power flux density. 13
Power spectral density, 504
Power spectrum, 504
Power-delay profile, 58—60

wireless local area networks (LANs),
86—88

Precise Positioning Service (PPS), 319
Prediction error, 189
Predictive model, 189
Premodulation filter, 117
Presentation layer, 456

e-mail, 456
Principle of analysis by synthesis, 190
Principle of frequency hopping, 237
Principle of reciprocity, 16
Principle of superposition, 107, 131
Probability, 496497
Probability density functions, 498—499
Probability distributions and densities,

49741-98

Probability of decoding error,201
Probing signal, 180
Propagation, 11712
Propagation mode], wireless local area

networks (LANS), 85
Propagation-loss exponent, 303
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Protocol stack. 454

Pseudorandom hopping pattern. 259
Pseudorandom interleaver, 212. 215
Public mobile telephone systems. 2
Public switched telephone network

(PSTN). 3, 454, 459
Pulse position modulation. 91
Pulse shaping, 104, 116—122, 149

comparison (example). 121
raised cosine (RC) spectrum for, 104
root raised-cosine, .1 19-122

Pulsarshaping filter. 139
Puncturing, 215
Pure Aloha. 243—245. 250
Push-to—talk protocol. 6

Q
Qtunction, 518-619
Quadbit, 129
Quadrature component, ”122, 125. 228. 508
Quadrature demodulator, 18thl1, 227
Quadriphaseeshift keying (QPSK),127,

1497151,170, 378
coherent. 158

Quality of service (005), 3, 455, 465
Quantization, 184, 188
Quasi-static model, 367368

R

Radial extents, 434
Radio communications, milestones in

development of, 172
Radio frequency (RF) power, 146. 207, 238
Radio spectrum, 4. 179, 235, 258. 306, 450,

458. 461, 475
Raised—cosine (RC) spectrum, 104.1174118

RAKE receiver, 2847288. 290. 292—294,
304, 313, 324, 332, 451—453. 470

Raleigh distribution, 501
Random access memory (RAM), 212
Random binary wave, 505
Random interleaving, 212
Random layered space—time (RLST)

coding scheme. 419
Random processes, 503-504

complex random variables and
processes, 507

ergodic, 508
linear filtering of. 5064507
narrowband. complex representation

of, 507—508
properties 01,504-
spectra of. 504506

Random sequences. 276—279
Random variables. 497

expectations of, 498499
transformations of. 5024503

Randonraccess channel,459
Random-access techniques. 2434249

carrier-sense multiple access, 2454248.250

pure Aloha. 2434245, 250
slotted Aloha. 245, 250, 252
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Range, wireless local area networks
(LANs), 86

Rate distortion theory. 188A 89
Ray tracing, 3t}, 34
Rayleigh distribution, 501, 503
Rayleigh fading, 36—40, 62, 154. 213. 537

margin for, 39-40
Rayleigh probability density function. 39
Realization of a random process, 504
Reassoeiation, 469
Receive antenna gain, 16
Receive diversity, 340, 438
Received signal, 81
Received vector, 201
Receiver, 4

coherent. 158
Earth station. 78
iterative. 240
matched-filter, 262—263
noncoherent, 158
RAKE. 285—288, 293. 294. 313
satellite, 77
search, 313
Turbolikc, 419

Receiver noise. 4. 63, 70, 75776, 80451. 94
Receiver sensitivity: 15

wireless local area networks (LANs).85—86

Reciprocity. principle of. 16
Reconstruction system, 486
Recursive convolutional code, 216
Recursive systematic convolutional (RSC)encoders, 223
Redundancy:

controfled. 180

cyclic redundancy check (CRC) code.194—195
in encoder,186
natural, 180
and space—time codes, 376

Redundant information, 184, 185
Reed—Solomon codes, 222
Reference signal, 540
Reflection. 12. 20, 30

and the planeiearth model, 20424
Refraction, 12
Regular-pulse excitation. 192
Relative other-cell interference factor, 302
Repetition code,322
Replication property, 480
Response time, 481
Return path, 193
Reuse distance, 8
Reuse factors. 73

Rich Rayleigh scattering environment,
MIMO channel as, 362, 437

Rician distribution. 41, 444, 501
Rician fading. 4041, 375
Rician waactor.41

Rightvhand circular polarization, 19
Right-singular values, 373,535
Rolloffl117—118,149,150
Roll-off factor, ”1177118
Root raised-cosine pulse shaping, 1194122
Routing, 3, 455—456, 458

S

Safety services wireless applications, 475
Sample function of a random process. 504
Sampled convolution theorem, 4874188
Sampling.1824184

following with coding, 184-185
Sampling rate, 485
Sampling theorem. 182. 484—486
Satellite receiver. 77
Satellite transmitter. 78

Satelliteito-mobile terminal link budget,78—79

Scattering effects. 19
S~constraint interleaver, 251
SCORE (Signal Communication by

Orbital Relay Equipment)
satellite, 2

Scramblers, 274
SDMA, 5. 8, 103. 340, 437, 451

and handovers, 466—467
and smart antennas, 402—415

Search receiver, 313
Second Fresnel zone, 27
Second moment, 499
Second—generation systems, 31 1
Sector antennas, 406
Selection combining, 341—346

outage probability (example), 346
scanning version of procedure, 345

Self—sychronizing scrambler, WiiFi,
32.97330

Separability theorem, 520w521
Separation theorem, 221
Serially concatenated RLS'I' code,

generation of, 419—420
Service availability,33
Service sets, indoor LANs. 469
Session layer. 456

e-mai1.456
Sets, 496
Shadowing, 32, 36, 303
Shannon. Claude. 185

Shannon’s information theory, 1854189
channelwcoding theorem, 18Fr187
information capacity theorem, 187—1815
rate distortion theory. 1887189
source~coding theorem, 1857186

Short code, 317—318
Side lobes, 16
Signal constellation, 126, 37.9. 382,

385—387, 399. 418
Signal dislortion.117
Signal energy, 127', 1594161 , 512
Signal estimator, 402
Signal pattern. 126
Signaling channels. 312
Signal-to—interferenee ratio (SIR), 71
Signal-to-interfereneciplus-noise ratio,303—304

Signal—to—noise ratio (SNR),159, 341—344,363. 537
instantaneous, 343
largest. 341, 417
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Signature sequence, See Spreading codes
Significant scatterers, 434
Sine function, 482, 486
Single-bounce elliptical model, 412—414
Singleicarrier transmission, 123
Single-input, single-output channel, 188
Single-input, single-output (SISO) flat-

fading channel, 364
Single—user MIMO links, 438
Singular-value decomposition of the

channel matrix, 371—376
eigendecomposition of the logldet

capacity formula, 3747376
Singular-value decomposition (SVD)

theorem, 534—535
16-quadrature amplitude modulation

(16-QAM),129—130
Skywave, 20
Slotted Aloha, 245, 250, 252
Slow fading, 36, 39—40, 542
Slow-frequency hopping, 260, 307,

308—310
Smart antennas:

adaptive antennas, 406
advantages of, 406

for mobile applications, 406
antenna arrays, 406—412
directional antennas, multipath with,

412—415

examples of, 406
and SDMA, 402—415
sector antennas, 406
switchedwbeam antennas, 406

Soft handovers, 303, 466
Soft-input, soft-output (SISO) decoding

algorithm, 217', 224
Soft-input, soft-output (SISO) detector,

421

Source coding, 184, 188, 249, 451
with a fidelity criterion, 188

Source decoded output, 181482
Source signal, 180, 185,229
Source—coding theorem, 185—186
Space diversity, 339—340

forms of, 340
“Space diversity on receive” techniques,

341—357

equal—gain combining, 353
maximal-ratio combining, 346—353
seiection combining, 341—346
squareilaw combining, 353—357

Space—division, multipleiaccess (SDMA),
See SDMA

Space—time block codes:
differential, 394—404
V—BLAST vs, 427—430

Spaceitime codes, 376—394
Alamouti code, 3797387
basics of, 3784379
defined, 376
design procedures, 377
generalized complex orthogonal

space—time block codes, 388—391
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performance comparisons of different
space-time block codes using a
single receiver, 3917394

spaceitime block code, 376F378
Spaceitime trellis code, 3767377
types of, 376

Spaceitirne deinterleavers and
interleavers, 422

Space-time processor, 539
Spectral decomposition theorem, 534
Spectral efficiency, 144
Speech coding, 1897193

codeiexcited LPC, 1924193
linear predictive coding (LPC),1897190

multipulse excited LPC, 190—192
Sporadic codes, 390
Spread spectrum,2, 8, 9
Spreading codes, 265—279

Gold codes, 274—276
autocorrelationlcross-correlation of,

276

maximal-length sequences
(rn—sequences}, 270—273

orthogonal variable spreading factors
(ovsr), 269—270

orthogonality of messages, 266-267l
random sequences, 276—279
scramblers, 274
Walsh—Hadamard sequences, 2677270

cross-correlation between, 26&269
Spreading factors, 261, 282, 2877288,

297—298, 323w325
orthogonal variable spreading factor

(OVSF), 269—270, 324
Spreading sequence, 261-262
Spread-spectrum techniques, 2587259
Squared Euclidean distance, 2317232
Square-law combining, 3537357
Staggered QPSK, 115
Standard Positioning Service (SP3), 319
State diagram, 199
Stationaryfnnnstationary channels, 61
Stations (STAs), indoor LANs, 469
Statistical expectation operator. 38,498499

Statistical propagation models, 11—12,
30733, 94

local propagation loss, 32433
medianapath loss, 3(L31

Stepusize parameter, 542
Subcarriers, 163—167
Subframes, 192
Subspace, 538
Sunde’s FSK, 132
Superposition, principle of, 107, 131
Survivor paths, 203
Switched—beam antennas, 406
Symbol enorgy—to—noise spectral density

ratio, 348
Symbol error rate (SER),427
Symbol—shaping function, 260—262
Symmetry property, error function, 514,516
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Synchronization, 5, 180. 452—453
and broadcast channels, 460

Synthesis, principle of analysis by, 190
Synthesis filter, 191—192
Synthesizing a modulated signal, 123
System capacity, 536
System complexity, 4524153
Systematic convolutional code, 201
Systemimemory time, 481

T
Tail bits, 236

Tapped-delay-line (TDL) filter. 190
TCPIIP protocol, 456
TDMA, 5—7,103,168,17071713797182,

193, 233—236, 258w259, 265, 450,
469

advantages over FDMA, 23L235
FDMA compared to, 233
medium-hand, 235
narrowband, 236
overlaid on FDMA,235—236
principle of frequency hopping, 237'
sampling, 182—184

following with coding, 184485
system, frame efficiency of, 237
wideband, 235

TDMAJ‘FDMA combination systems, and
handovers, 466

Telemetry and control wireless
applications, 476

Telephone switched circuit protocol,
458459

Terrestrial link budget, 80—81
Terrestrial propagation:

physical models, l9~29
statistical models, 30733

TFCI (Transport Format Combination
Indicator) hits, 326

Thermal noise, 63466,497
Thirdigcneration systems, 31 1
341B baseband beamwidth. 140
3-dB heamwidth, 18
Time average, 508
Time dispersion, 55
Time diversity, 240, 339
Time intervals, 179
Time lag, 488
Time-bandwidth product, 140
Time—division duplex (TDD), 168
Time—division multiple access, See TDMA
Time-flat channels, 52,58, 62
Timevinvariant channel, 58
Timeiselcctive channel, 50—52, 58. 62
Time-varying channel, 58
Time—varying impulse responses, 54
Time-varying nature. of channel

impairments, 4, 5
TPC (Transmission Power Control) bits,326

Trace operator, 527
Tracking receiver, 313
Traffic channels, 461
Traffic data bits, 234
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Transceiver, l44
Transfer function, 483
Transition metric computer, 232
Transition metrics, 228
Transmission bandwidth, 258
Transmission matrix, 377, 381, 396
Transmission medium resources, 4
Transmit antenna gain, 15—16
Transmit diversity, 328, 340, 438
Transmit power amplifier, 146
Transmit Spectrum, I48
Transmitter, 4
Transport channels, 325
Transport Control Protocol (TCP), 456
Transport layer. 455

e-rnail, 456
Turbo codes. 2157222

block sizes, 226
convolutional codes compared to,

223—224

Turbo coding principle. 218, 239
Turbo decoding, 2167218
Turbo interleaver. 215
Turbo-BLAST. 251, 4.1 S, 41 9—422, 438

experimental performance of V7
BLAST vs. 4224125

Turbolikc receiver, 419
TurboeMIMO architecture, 419
Two-dimensional signal constellations, 126
Two-dime nsional temporal situation, 488
Two-stage decoder, 240
Two-stage encoder, 240

U

Ultraewideband (UWB) radio
transmission, 89—90. 93

spectral density of, compared to noise
floor, 91—92

Unconstraincd signaling techniques,373394

Uncorrelated scattering (US). 56—57
Uniform weighting, antenna pattern with,

409—412

Unique spreading signature, 259
Unit energy, normalized coordinates of,

126

Unit impulse, 51, 480
Unitary matrix, 372, 533—534, 535
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Universal mobile terrestrial
telecommunication systems
(UMTS‘S), 323

Uplink. 143
User terminal complexity, 452—453
User terminals (UTs),5

V
Variance, 499
Vector quantizcrs, 188
Vector space, 538
Vectors. 188—189

Vertical polarization, 19
Vertical-BLAST (V—BLAST), 415,

417411438
experimental performance of Turbo—

BLAST vs., 42425
Virtual carrier sense, 469—470
Virtual receive antennas. 434
Virtual transmit antennas. 434
Viterbi algorithm, 203401209, 220. 222.

224, 228, 231—233, 249, 377
example, 205
modifications of, 205
summary of, 204

Viterbi decoder. 205, 209, 214, 232
Viterbi equalization, 231—233
Viterbi equalizer, 231—232, 249
Voice activation, 304—305
Voice and data integration, 452. 454

W

Walsh—Hadamard sequences, 2677270,
318, 331

cross—correlation between, 2687269
Waterfall. 159

Water-filling procedure, 530—532
WCDMA, 3237328. 471, 472

bandwidth and chip rate. 324
cellular considerations, 327—328
channel types. 325
data rates and spreading factor. 324
downlink, 326—327

forward error-correction (FEC) codes.3244325

modulation and synchronization, 324
multicodc transmission, 32?
uplink, 3257326

 
Weight vector, 409-410, 538

subspace method for determining,538—539

Whip antenna, 80—81
White complex Gaussian codebook, 362
White Gaussian codebook, 368
White noise, 65, 79, 94, 156, 282, 505
Wideban d CDMA, See WCDMA
Widcband channels, 62
Wideband TDMA. 235
Wideusense stationary, 504
Wideuscnse stationary uncorrelated

scattering {WSSUS) channels, SeeWSSUS channels

Wide-sense stationary (W38), 55
Wiener—Hopf equation, 156
Wicner—Khintchine relations, 490, 505
Wi—Fi, 328—33]

Barker sequence. 329
variants, 329—330

Wireless architectures, 450—478
multiple-access strategies, 450—454

comparison of, 452
Wireless channel, physical properties of, 8
Wireless communications:

channel-coding strategies for, 222—226
AWGN channel, 225
decoding, 224
encoding, 2237224
fading wireless channels, 225
joint equalization and decoding, 226
latency, 2257226

first generation of systems, 132
Wireless data network standards, 472—473
Wireless local area networks (LANs). 34.

35—89, 162
modulation, 88—89
power-delay profile, 86—88
propagation model, 85
range, 86
receiver sensitivity, 85-86

Wireless telcgt‘aphy, 1
Wireless telephone network standards.

470—471
WSSUS Channels, 54437, 61

Z

Zcroiorcing subspace procedure, 539
Zerothuordcr Bessel function, 46
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