［図2］

（図3）
【図12】

〔図10】
［図13】
【図21】

（图4］

【図7】

INTEL－ 1004
Page 262 of 539

【図5】

INTEL－ 1004
Page 263 of 539

〔図8〕

［図11］

（図26）

［図9］

【図23】

ロフィールドコード

［図271

INTEL－ 1004
Page 265 of 539

【図14】

［図15］

a）Blcok旗別子た用いない置合

【図17】

0001	CHE
0010	UA CIIN
0011	CON
0100	UA＿CON
0101	DISC
0110	UA DISC
0111	RS
1000	RR
1100	BLOCK 0
1101	HLOCK＿1

［図16】

INTEL－ 1004
Page 267 of 539

［図28】
［図29］
［図30］

EMPTY フレーム程成团

Uフレーム检成関

FCI フレーム䔩成図

INTEL－ 1004
Page 268 of 539

［図20］

【図31】

Iフレーム据成园

INTEL－ 1004
Page 269 of 539

フロントベージの続き
 ン林式会社内
（72）発明者 松岡 伸介
東京都中央区八丁堀2丁目12－7 ユニデ こ栋式会社内

PIPE LINE PARALLEL PROCESSOR USING MULTI-THREAD

Publication number: JP2001236221 (A)
Publication date: 2001-08-31
Inventor(s): SHINDOKEISUKE +
Applicant(s): SI-INDO KEISUKE +
Classification:

- international: G06F12/08; G06F12/10; G06F12/12; G06F9/30; G06F9/34; G06F9/38; G06F9/46; G06F12/08; G06F12/10; G06F12/12; G06F9/30; G06F9/34; G06F9/38; G06F9/46; (IPC1-7): G06F12/O8; G06F12/10; G06F12/12; G06F9/30; G06F9/34; G06F9/38; G06F9/46
- European:

Application number: JP20D0004269620000221
Priority number(s): JP20000042696 20000221

Abstract of JP 2001236221 (A)
PROBLEM TO BE SOLVED: To esiablish both frequency performance and parallel performance by shortening memory wiring in a system for successively operating plural threads by arithmetic units arranged in a row in a processor using a multithread program, and to prevent inter-node data transfer interrupting the parallel processing performance and waiting through synchronization. SOLUTION: PIural caches for storing data are loaded on a processor carried by patent gazefte 1999-287662, and each cache is connected to several arithmetic executing units. The contents of the cache are transferred and duplicated according to the progress of threads. When the contents of the cache can not completely transferred, one thread is executed by a single arithmetic executing unit. Moreover, access to the designated address is detected by using a virtual storage mechanism and the shared mechanism of the caches, and the threads are resumed.

Data supplied from the espacenet database .-. Worldwide

（54）【発明の名称】マルチスレッドを利用するバイブライン椾列ブロセッサ
（57）【要約】
【課題】マルチスレッドブログラムを暞用するブロセッ サにおいて，一列に並んた演算ユニットで複数のスレッ ゲを順に動作させる方式において，メモリ醁線を短樎し て周波数性能と並列性能を両立させる。 きらに並列题理性能を阻書するノード間デー夕朁送と，同期による待ち あわせを趯決する。
【解決手段】特許広報平9－287662に記载された ブロセッサに，データを格納するキャッシュを㩰数搭哉 し，そうぞれのキャッジュを数個の演算寞行ユニットと結合する。キャッシュの内容はスレッドの進行にあわせ て転送して掑製する。キャッシュの内容を枟送しきれな い場合は，1つめスレッドを単一の演算笑行ユニットで実行する。気らに，仮想記憶機㮉とキャッシュの共有機梢を用いて，指定したアドレスへのアクセスを桷出して スレッドを再開させる。

INTEL－ 1004
Page 272 of 539

【特許請求の範囲】
【請求項1】数値演算ユニット，レジスタファイル，命令メモリ，データキャッシュメモリを複数個内部に有
し，複数のスレッドおよびプロセスを同時に利用する事 を特徴とするプロセッサにおいて，レジスタファイルが持つ各スレッドごとのレジスタ値等の状態を，常に陊接 する演算ユニットに伝達することを特徴とするプロセッ サ（以下PMT方式プロセッサと称する）において，プ ログラムカウンタ，スタックポインタ値，スレッド識別番号，プライオリティー値で構成されるスレッドの情報 を示す値を複数格納するスレッド情報格納手段を有し， スレッド情報格納手段から1つのスレッドを選択して，命令メモリおよび演算ユニットにスレッドの情報を伝送 するスレッド発行手段を有し，スレッド発行手段におい て，スレッドの持つプライオリティー値を比較し，最も優先度が大きいスレッドの情報を優先的に命令メモリお よび演算ユニットに伝達することを特徵とするプロセッ サ。
【請求項2】請求項1の特徵を持つプロセッサにおい
て，演算ユニットが実行する命令のプログラムカウンタ値を保存する手段を有し，次に新規に発行する候補のス レッドが同じ命令アドレスを利用するかどうかを比較 し，前に実行したスレッドと命令が一致したスレッドを優先的に選択して出力するための手段を有することを特鬥とするプロセッサ。
【請求項3】PMT方式ブロセッサにおいて，状態を伝達すべき隣接する演算ユニットが別のスレッドの処理を優先的に行うことを感知して，その時だけスレッドの状態を隣接演算ユニットに伝達せずに同一の演算ユニット で処理を行うことを特徴とするプロセッサ。
【請求項4】PMT方式プロセッサにおいて，複数のス レッドがそれそれ利用するレジスタの値を複数のレジス タバンクに同時に格納するレジスタファイルを有し，各 レジスタバンクの内の1つを同時に利用し，スレッドの進行に応じてレジスタバンクの内容を隣接する別のレジ スタファイルに䡌送することを特徴とするプロセッサ。【請求項5】PMT方式プロセッサにおいて，現在実行 しているスレッドを中断し，待機状態のスレッドを実行 する操作が必要な際に，実行しているレジスタファイル の値を演算ユニットに伝送する代市りに，レジスタファ イルの別のレジスタバンクに格納されている待機状態の レジスタ値を演算ユニットに伝達し，別のスレッドの演算を即座に行うことを特徵とするプロセッサ。【請求項6】請求項5の特徵を持つプロセッサにおい て，レジスタファイルにレジスタ状照が格悩されていな いスレッドを実行する際に限り，レジスタファイルの内容をスタックポインタ値の示すメモリから自動的に読み出すことを特徴とし，現在レジスタファイルに格媇され ていて利用されないスレッドの状態をスタックポインタ値の示すメモリに自動的に書き出すことを特徴とするプ

ロセッサ。
【請求項7】PMT方式プロセッサにおける，1つのス レッドが利用するレジスタの値をメモリに保存する特別 な分肢命令において，分岐命令の時点のスレッドのレジ スタ値をレジスタファイルに保持することを特徵とし，保存されたレジスタの值を読み込む特別な分岐命令にお いて，レジスタファイルに保持されていたスレッドの状㹮を利用することを特徴とするプロセッサ。
【請求項8】PMT方式プロセッサにおいて，複数のス レッド識別番号及びスタックポインタ値をまとめて格納 することを特徴とするスレッド自動発行機構を有し，ス レッド発行命令によってスレッドを発行する際に，格納 されたスレッド識別番号及びスタックフレームを自動的 に割り当てることを特徴とするPMT型ブロセッサ。
【請求項9】請求項4に記載された特徴を持つプロセッ サにおいて，1つのレジスタファイルが複数の演算ユニ ットで共有され，レジスタファイルが複数の演算ユニッ トから1つを選択してデータを伝送することを特徴とす る転送手段を有し，レジスタファイルの内容を缶接する レジスタファイルに複数回に分けて転送することを特徴 とするブロセッサ。
【請求項10】PMT方式プロセッサの演算ユニットに おいて，値の一部の演算を行う部分演算ユニットを複数個有し，それぞれの部分演算ユニット内部に，部分演算 ユニットにおける結果値と完全な演算を行った場合の結果値とが一致しないことを検出するオーバーフロー検出手段を有し，さらに完全な演算を行うための1つの完全演算ユニットを複数の部分演算ユニットに接続し，部分演算ユニットのオーバーフロー検出手段の演算結果の不一致の検出によって，完全演算ユニットに部分演算ユニ ットで利用した値を転送して演算を再度行うことを特徵 とするプロセッサ。
【請求項11】PMT方式プロセッサにおいて，分岐後 のプログラムカウンタ値が演算結果によって動的に変更 され，分岐後のプログラムカウンタ值が傩率的に予測で きる条件分岐命令において，分岐後に実行されると予測 される命令を格納する命令キャッシュを有し，命令キャ ッシュに分岐の結果を判別するための情報を有し，実際 に分岐が実行された際に予測した分岐結果との一致を確認し，不一致の場合はスレッドを中断してスレッド発行 ユニットに正しい分岐結果を転送することを特徵とする プロセッサ。
【請求項12】PMT方式プロセッサにおいて，複数の演算ユニットを複数のブロックに分配し，ブロックごと に専属の一次キャッシュメモリを有し，ブロック内の演算ユニット全てと接続して，データアクセスを行うこと を特徴とし，さらに1つ以上の二次キャッシュメモリを有し，複数の一次キャッシュメモリと接続して，互いに データアクセスを行うことを特徴とするプロセッサ。
【請求項13】PMT方式ブロセッサにおいて，スレッ

ドが書きこんだメモリ内容をスレッド自身がメモリから読み出して利用する際に，利用するメモリ内容を複数の キャッシュメモリの間で転送することを特徴とし，複数 のキャッシュメモリ間の転送はスレッドの進行と同じ方向，速度で伝達することを特徴とし，スレッドの進行に データの伝達か間に合わない場合はスレッドを停止させ ることを特徴とするブロセッサ。
【請求項14】PMT方式プロセッサにおいて，プロセ ッサ内部に1つ以上のキャッシュメモリを有し，個々の キャッシュメモリをざらに複数のメモリバンクに分割 し，それぞれのメモリバンクへのアクセス数を制限する ことを特嵿とし，同時にメモリバンクへのアクセスを行 うことを特徴とし，さらに，複数のメモリバンクの選択 のためにメモリアドレスを利用することを特徴とし，同 じキャッシュへの複数のアクセスが存在した場合は，1 つのアクセスだけを行い，他のアクセスを保持して後で行うことを特徴とするプロセッサ。
【請求項15】請求項12に記載された特微を持つプロ セッサにおいて，キャッシュメモリ内部に，キャッシュ メモりの内容の共有状怠を指定するためのディレクトリ と呼ばれる情報を有し，個別のキャッシュメモリは，別 のキャッシュメモリから内部のデータを読め出された場合に，データのコピーを持つキャッシュメモリを特定す る情報をディレクトリに設定することを特徴とし，同時 に，別のキャッシュメモリから取得したデータをキャッ シュメモリに格納する際に，データのオリジナルを持つ キャッシュメモリを特定する情報をディンクトリに設定 することを特徴とし，キャッシュメモリへの書き込みの際に，ディレクトリの内容を利用して，同じアドレスの データのコピーを持つキャッシュメモリにたけデータの書き込なを通知することを特徵とするプロセッサ。
【請求項16】PMT方式プロセッサにおいて，ある命令が利用するデータを別の命令が再度利用する際に，デ一夕を再利用する命令を実行する演算ユニットを特定す るデータフロー予測情報を命令メモりに格的することを特徵とし，データフロー予測情報を持つ命令が実行され たときに，データフロー予測情報て指定された演算ユニ ットにデータをあらかじめ転送することを特徴とするプ ロセッサ。
【請求項17】請求項16の特徴を持つつ゚ロセッサにお いて，あるスレッドのデータキャッシュアクセスミスの際に，データの実体のあるデータキャッシュからデータ を読み込むと同時に，読み出しを行ったデータキャッシ ュに要求元の演算ユニットを特定する値を転送し，読み出しを行ったデータキャッシュに対応する命令メモリ に，演算コニットを特定する値を含むデータフロー予測情報を書き込むことを特徴とするプロセッサ。
【請求項18】命令キャッシュメモリを複数有するPM T方式プロセッサにおいて，あるスレッドが，次に実行 すべき命令を检索するためにキャッシュメモリにアクセ

スを行い，命令が格的されている命令キャッシュメモリ を下位のキャッシュのディレクトリ情報から特定し，前記命令キャッシュメモリに接続された演算ユニットにス レッドを移動することを特徵とし，複数のスレッドが同一の命令キャッシュメモリを利用することを特徵とする プロセッサ。
【請求項19】PMT方式プロセッサにおいて，キャッ シュメモリのアドレスを仮想アドレスとすることで，キ ヤッシュメモリ上にはないデータへのアクセスに限って仮想記譩機構にデータを伝送し，仮想アドレスを物理ア ドレスに変換して物理アドレスメモリに書き戻すことを特徴とするプロセッサ。
【請求項20】PMT方式プロセッサにおいて，アドレ ス値をスカして，格納きれたアドレス値に対する特定の スレッドを生起することを特徴とするデータフロー同期検出ユニットを有し，キャッシからの読み込み要求に対 して，データフロー同期㛟出ユニットが指定したアドレ スとの一致を判定し，一致するアドレスを合む場合はキ ヤッシュに共有状厽を示す値を設定することを特隻とす るプロセッサ。
【請求項21】請求項20の特徴を持つプロセッサにおう いて，データキャッシュ内部で共有状鴌に設定されてい るアドレスへのアクセスに対して，ディレクトリの示す ユニットにアクセスを通知することで，最終的にデータ フロー同期ユニットにアドレス値を伝達することを特徵 とし，データフロー同期ユニットが伝達されたアドレス値に対応するスレッドを生起することを特墔とするプロ セッサ。
【請求項22】PMT方式プロセッサにおいて，スレッ ドは同期命令の発行時に停止し，他のすべてのスレッド の，同期命令実行前に行われたストア命令のデータ転送 を待ち，すべてのデータが自身のキャッシュに転送ざれ た時点でスレッドを再開することを特徴とするプロセッ サ。
【請求項23】請求項21のプロセッサにおいて，特定 アドレスへのアクセスを検出する命令の発行によって，自分のスレッドの状憼をデータフロー同期ユニットに自動的に伝達し，データフロー同期ユニットにおける特定 のアドレスへのアクセスの桧出によって自分のスレッド を再開することを特徵とするPMT型プロセッサ。【請求項24】PMT方式プロセッサにおいて，1つの
 を有し，複数のローカル仮想記憶機構かグローパル仮想記憶の値の一部を有することを特徴とし，グローバル板想記檍機桠の値の改変に対して複数のローカル仮想記億梫構に対して改変を伝達することを特徴とするプロセッ サ。
【請求項25】PMT方式プロセッサにおいて，内部の ユニット間で伝達する制御信号を，伝送先を示すアドレ ス値とともにまとめたパケットを利用して転送すること

を特徵とし，複数の制御信号を入力して，複数の制御信号の中加ら伝送相手に応じて選択して出力するパケット ルーターを䙡数有し，ある演算ユニットからの要求を， パケットに変換して複数のパケットルーターが中継し，目的のユニットに伝達することを特徴とし，1つのユニ ット間配線を複数の制御信号で共有することを特徴とす るプロセッサ。
【請求項26】請求項25に記載された特徴を持つプロ セッサにおいて，スレッドが特定のユニットに制御信号 を発信して，伝達したユニットから制御信号を受信する制御パケットにおいて，制御パケットをスレッドの進行方向と同一方向のパケットルーターに対して伝達するこ とを特徴とし，制御パケットの伝達がスレッドの進行に間に合わないことを検出した場合は，該当するスレッド を即座に停止させることを特徴とするパケットルータ一。
【請求項27】請求項25に記載された特攸を持つプロ セッサにおいて，特定の制御信号パケットの要求に対し て，該当する回路ユニットは要求された内部状態を改変，あるいは読み出して，制御信号を送信したユニット に対して内部状態を転送することを特璂とするプロセッ サ。
【請求項28】PMT方式プロセッサを褑数個利用して連結するシステムを構築する際に，プロセッサ間の転送方向を固定として，ブロセッサのスレッドの状態，デー夕をそのまま別のPMT方式ブロセッサに伝送し，シス テム全体でスレッドを巡回させることを特徴とするPM T方式プロセッサ。
【請求項29】請求項28に記载された特徴を持つプロ セッサにおいて，直接連結されていないプロセッサ間で独自にデータ転送を行うためのショートカットバスを設 け，遠距離のプロセッサ間の伝送にショートカットバス を用いることを特徴とするプロセッサ。
【請求項30】請求項25．に記載された特徴を持つパケ ットルーターを有し，請求項27に記載された特徴を持 つPMT方式プロセッサにおいて，複数のプロセッサの全てのユニットをアドレス値で一意に特定する手段を持 ち，スレッドの発行する制御信号パケットを，制御信号 パケットの転送先アドレス値に応じて，外部のプロセッ サ内部の該当するユニットに伝達することを特徴とする プロセッサ。
【請求項31】請求項30に記載された特徴を持つプロ セッサにおいて，それぞれのプロセッサが独自にメモリ を接続することを特徴とし，各プロセッサが持つ仮想記憶機構の内部に，指定されたページが外部のプロセッサ のデータのコピーを格㖕していることを示す共有情報を有することを特徴とし，プロセッサ内部からデータを読 み込む際に，読み込みアドレスが仮想記憶機構によって共有状態を示す場合には，プロセッサ外にデータ読み込 み要求を行うことを特徴とし，プロセッサ内部からデー

夕を書きこむ際に，書きこみアドレスが仮想記憶機構に よって共有状態を示す場合には，プロセッサ外にデータ の書きこみを通知することを特徴とするプロセッサ。【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は，ソフトウェアによ って動的に機能を変更できるプロセッサに属し，特にス レッドと呼ばれる単位で分割されたソフトウェアを利用 するプロセッサに属する。
【従来例】（半導体技術の進化とマイクロプロセッサの性能向上）
【0002】半導体技術の進化により，ここ 20 年はト ランジスタ，配線の微細化が常に同じペースで進んでき た。DRAMのようにトランジスタ数がそのまま容量に つながる素子では，単に微細化によって素子数が増える だけで，微細化と同じペースで性能を向上できた。【0003】ところが，マイクロブロセッサに代表され る論理LSIに関しては，性能向上には2つの方法があ る。1つは動作周波数の向上。そしてもう 1 つは動作周波数あたりの仕事量である。
【0004】まず，微細化によってトランジスタのスイ ッチング速度の向上し，前者の動作周波数の向上が可能 になった。さらに，後者の動作周波数あたりの仕事量の増加は，利用できるトランジスタの増加により，覞模の大きい高速レイテンシ回路，およびスーパースカラなど の並列方式の採用が可能になったことで実現できた。
【0005】これまでは，マイクロプロセッサはこの2 つの要素によって飛羅的な性能向上を可能にした。しか し，この 2 つの要素が，特に後者が限界を迎えつつあ る。この限界を打破しなけれぼ，今後のマイクロプロセ ッサの性能向上は見込めない。

【0006】（配線のリスクの相対的増加）

【0007】近年の半導体の微細化技術，プロセスの進歩により，トランジスタの動作速度は飛躍的に增大し， その大きさ，消費電力も飛䠰的に減少した。これによっ て，少なくともトランジスタ単位では，従来では考えら れない周波数の動作が可能になった。
【0008】しかし，配線の遅延時間はそれほど改善さ れてはいない。配線長は，トランジスタのサイズに比例 して高速化するわけではない。さらに，微細化された分 だけトランジスタの数を増やす場合は配線幄延はかえつ て増大する。この傾向は深刻に受け止められてきてお り，配線が最小となるユニット配置を行うことは常識と なっている。配線自体のプロセスによる改善も行われて いる。多層配線やCu配線などがそれである。しかし， それだけでは拡大を続けるトランジスタと配線の速度差 を埋めることはできない。
【0009】今後は，配線遅延の増加を押さえて動作周波数の向上比率を維持するためには，常に回路全体に最短配線するという考え方を改め，レイテンシ性能を低下

させてでも最短距䧸の配線で伝送することが必要とな る。

【0010】（データ転送スループットとデータ転送レ イテンシ）
【0011】データ転送性能の向上には，データ枟送ス ループットの向上とデータ転送レイテンシの短縮の双方 が必要になる。前者のデータの転送スループットの增加 は比較的たやすい。それに対して，転送レイテンシは性能低下を押さえるのが精一杯で，数倍以上の改善は見込 めない。
【0012】レイテンシ向上の方法としては，キャッシ ユ，プリフェッチなどによる確率的な方法があるが，そ れは回路規模を必要とする割にたいした性能向上を果た せない。演算能力と低速なメモリとのレイテンシの開き は拡大の一途をたどり，キャッシュミスにおけるペナル ティーを相対的に増大させ，最終的には処理時間のほと んどすべてを占めることになる。ということは，なんら かの形でレイテンジ隠開することが必須になる。
【0013】そのために現在はアウトオブオーダースー バースカラ，VLIWという方式が存在する。データの ロードが終わっていなくても，データの必要のない命令 を先に動作させるプロセッサである。だが，この方式は先に実行させることができる命令を発見する回路が巨大 になりすぎ，周波数性能向上に限界がある。
【0014】よって，レイテンシの隠瞥は今後さらに重要になる。だが，アウトオブオーダースーパースカラや VLIWなどの命令レベル並列では，現在以上のレイテ ンシ隠蔽は不可能である。
【0015】（演算ユニットの使用頻度のばらつきと共有）
【0016】マイクロプロセッサには，加算，論理演
算，シフト，分岐，ロードストア，乗算，除算，浮動小数点演算，SIMD型演算，SIMDデータのスれ替え
処理など，多くの処理が必要とされる。これらの動作の実現には，それぞれ専用の回路を設けるのが一番効率が良い。ところが，マイクロプロセッサはこれらの全てを同時に必要とするわけではない。楾動率が低いユニット も多く存在する。
【0017】このマイクロプロセッサを同時に複数使用 する方式を，マルチプロセッサと㭔ぶ。現在のマルチプ ロセッサでは，これらの演算ユニットが全て複数搭載さ れる。ということは，全体としてはほとんど楾動してい ない回路が増加することになる。仮に，マルチプロセッ サの間であまり使用されない演算ユニットを共有できれ ぼ，システム全体の回路の利用効率を高めることがで き，本当に数の必要な演算ユニットを增やすことができ る。
【0018】（消費電力の増大）
【0019】近年のマイクロプロセッサの動作周波数の向上によって，消費電力は飛䠰的に増大した。その増大

を抑制するために，動作電圧を低減させ，低い電圧で性能を維持するための回路技術が開発された。しかし，回路素子数，周波数性能はさらに向上を続けるものと考え られる。さらなる低消費電力の手段が必要になる。【0020】CMOS回路は，信号のレベルが変化する ときに電力を消費する。ということは，信号のレベルの変化の少ない回路がもっとも消費電力の低い回路とな
る。回路構成のレベルでは，演算ユニットやクロック信号制御など，信号変化を低減する手段が多く利用されて いる。しかし今後は，さらに上位のアーキテクチャにお いても，最小の電力で演算を行うための手段が必要にな ると考えられる。
【0021】回路的に考えると，同じ仕事を連続して行 うことができれば，回路の状態の変動も最小限となり，
動作する回路も最小限となる。そして，トランジスタ数 あたりの性能が向上できれば，逆にいえぼ性能あたりの消費電力が低減できるということである。
【0022】（演算内容の巨大化，分散化）
【0023】前の演算の終了を待ち，その結果を利用し て演算を行うことを，デー夕依存関係と呼ぶ。互いにデ一夕依存関係のある演算は原理的に同時実行ができず，並列化を阻害する最大の要因である。いかなる方式もこ れを解消することはできない。
【0024】ソフトウェアの構造上，このデータ依存関係がもっとも大きいのは連続した命令の近傍であり，現在のスーパースカラやVLI Wに代表される，命令レベ ル並列の対象とされる部分である。すなわち，命令レベ ル並列はもっとも並列化しにくい部分をあえて並列化す る方法であり，性能向上に限界が生じる。
【0025】一般的に仕事の単位をうまく分割できれ ば，分業が奻率が良いのは言うまでもない。そして，巨大なソフトウェアでは，その動作内容が全て密接に結合 し，全ての命令，データが同じ確率で利用されるという ことはありえない。現に，ソフトウェアは，オブジェク トと呼ばれる独立性の高い単位で分割できることは良く知られている。
【0026】（データスループットの爆発的な増大）
【0027】メディア処理は，巨大なデータ転送能力を要求し，キャッシュの内部で実行できない代表的な処理 である。この処理の多くは巨大なデータ転送スループッ トを要求する。それに対して，メディア処理は全体とし てはさしてレイテンジを要求しない。要求されるレイテ ンシはどんなに小さくても1ミリ秒程度がせいぜいであ る。レイテンシを儀性にして並列処理を行うのにこれほ ど向いた用途はない。
【0028】局所的なレイテンシがそのまま総和される現在のプロセッサの方式では，プロセッサバスのレイテ ンシがそのまま加算され，全体の性能向上も頭うちにな る。それに対して，レイテンシをなんらかの手段で隠体 することができれぼ，メモリアクセスの並列化などの方

法によってスループットを確保することができる。その ためにマルチスレッドと呼ばれるソフトウェアモデルを導入して，レイテンシの累積を防止する。スレッド単体 のレイテンシが多少大きくてもメディア処理に要求され るレイテンシよりはるかに小さいため，結果的にメディ ア処理に要求される性能を全て満足することができる。【0029】（演算の繰り返しの増加）
【0030】長時間動作するプログラムは，その全ての洔間に渡ってまったく違う命令を実行することは考えら れない。そのため，長い時間の動作の中では，何らかの形で同じコードを再利用して同じ動作を繰り返している ことになる。
【0031】この㑑向を利用することにより，同じ動作 を行う部分を同時にまとめて実行することで，同じ動作 で共有される命令メモリ，データメモリなどの資源を共有することができる。しかも，まったく同じ動作を洔間的にわずかにずらして実行することにより，同じ資源を同洔に利用することも簡单に防ぐことができる。
【0032】（I Pユニットの内蔵と，それを結合する性能の要求）
【0033】汎用ブロセッサは，32ビットなどの桁の多い数値演算や，大容量メモリ全域を利用した処理，動的に変わる処理に関しては他の手段では実現不可能な性能を発揮できる。しかし，少数の複傕なビット処理演算 に開しては依然として弱く，目的に応じて最道化された回路の方が常に性能が上である。ということは，システ ム全体の性能向上のためには，依然として良く利用され るビット演算を担う回路，IP回路を内蔵することか望 ましい。
【0034】ところが，IP回路は，その前後の動作が なければ十分な性能が発揮できない。I P回路同士を直接連結すると，その回路の動作の種類を制限することに なる。プログラマブルでかつ高速なアプリケーションの動作を実現するためには，椱数の最小限度のI P 回路 と，IP間のデータの中継を行う十分な演算処理能力が最良の組みあわせである。
【0035】（スーバースカラ，VLIW方式）
【0036】スーパースカラ方式，VLIW方式は，命令レベル並列とよばれ，同時に複数の命令を実行するこ とで，性能を向上させることを狙った方式である。
【0037】まず，スーパースカラ方式は，被数の命令 の竩みあわせを自動的に抽出してくれる方式である。と ころが，自動的に抽出できる命令の範囲，命令ウィンド ウねは限定されており，特に，条件分岐命令の後に実行さ れる命令の抽出が非常に難しい。そのため，プログラム全体の並列性を生かすことができず，隣接した数营の命令を実行するのがせいぜいである。
【0038】図2に，従来のプロセッサ例としてVLI W方式のプロセッサの棤造模式図を示す。VLIW方式 は，この命令の抽出の手間をコンパイラに任せ，並列可

能な命令を明示して命令メモりに格糔する方法である。 しかし，並列化の対象となるのはプログラム内部で稣接 した数個の命令であることには変わりない。
【0039】201は䙡数の命令を同時に格納する命令 キャッシュである。命令発行ユニット208は，命令キ ヤッシュ201から同洔に榡数の命令を読み込み，送ら れた命令を実行できる演算ユニットにそれぞれ命令を分配する。演算ユニット202，演算ユニット203，分岐ユニット204，ロードストアユニット205は，同時に独立した動作ができる。演算ユニット202，演算 ユニット203は，共有レジスタファイル206から複数の値を取り出して演算を行い，結果をレジスタファイ ル206に返す。分岐ユニット204は，命令キャッシ ュ201に対してPCアドレスを変更させる。ロードス トアユニット205は，データキャッシュ207からレ ジスタファイル206にデータを読み込む。あるいは逆 に，レジスタファイル206の値をデータキャッシュ2 07 に転送する。
【0040】（マルチプロセッサ方式）
【0041】図3に，従来例としてマルキプロセッサ方式を示す。マルチプロセッサ方式は，既存のパイプライ ン，スーバースカラ，VLIWのいずれかの方式で作成 されたプロセッサを襀数接続して利用する方法である。飽和しつつある命令レベル並列を補うために用いられ る。
【0042】そのために，ソフトウェアをプロセス，あ るいはスレッドとよばれる独立した単位に分割して，そ れぞれのプロセッサに割り当てる。それぞれのプロセッ サはそれぞれ独立したスレッドを実行することで，命令 レベル並列に対して演算ユニット間の通信を抑制するこ とができる。
〔0043】図3にマルチプロセッサの構造を示す。プ ロセッサ301，302，303，304は，共有バス 305 に接続される。プロセッサ306，307，30 8 も同様に共有バス 309 に接続される。共有バス30 5には二次キャッシュ310か接続され，プロセッサ3 01 のメモりは基本的には二次キャッシュ310から取得する。2つの二次キャッシ310，311は，共有メ モリバス312に接続され，二次キャッシュとメインメ モリ313の内容を同一にする。
【0044】プロセッサ301～304，306～30 8は，それぞれ独自に命令動作を行い，命令，データを メインメモリ313からキャッシュを介して取得する。他のプロセッサと同一アドレスのデータを共有しない限 り，プロセッサ間通信は行われない。
【0045】これらのプロセッサ，二次キャッシュ31 0，311は，半導体のチップに全て搭载することが可能である。半導体チップの微細化によって，同ビコスト でもより多くの回路の搭裁が可能になったため，複数の プロセッサを1つのチップに搭載することで，コストに

対する性能を向上させることになる。
【0046】（従来のPMT方式）
【0047】図4に，命令レベル方式，およびマルチプ ロセッサ方式の欠点を解消するための㧿来の方式を示 す。以下，この方式をPMT方式と呼称する。PMT方式についての詳細は特許広報平9－287662に記載 されている。
【0048】このPMT方式は，前述のマルチプロセッ サ方式で利用されるプロセス，スレッドをほぼそのまま用いる。そして，演算ユニット間の通信を最小限にする ことにより，演算ユニットの増加に対して周波数性能の低下を抑制し，動作周波数を維持しつつ大量の演算ユニ ットの搭載を可能にし，飛躍的な性能向上を可能にす
る。さらに，演算ユニットなどの回路を可能な限り共有 することによって，最小の回路規模で最大の並列規模を達成できる。
【発明が解決しようとする課題】
【0049】（VLIW方式の欠点）
【0050】VLIW方式の欠点を示す。まず，命令レ ベル並列は，プログラムの局所的な領域だけで実行でき る命令を選択する方式である。理由は，プログラムはそ の場の演算結果によって命令の流れが頻筧に変更される ため，演算が終了するまで次に実行すべき命令を特定す ることはできない。それをある程度克服するために分岐予湘と呼ばれる機構があるが，それでも複数の分岐の先 を予測することは難しい。そのため，命令キャッシュ3 01 の幅を広げても，同時に実行できる命令をプログラ ムから大量に選択できないため，性能向上率が飽和す る。
【0051】さらに，複数のデータ体存関係が発生する ということは，それらの命令の間のデータの自由な転送 が必要になるということである。一般的に，命令実行ユ ニットのN倍の増加に対して，実行ユニット間の配袙の遅延時間はN倍以上，回路規模はNの二乗の規模で増加 する。そのため，命令実行を增やしても，それ以上に周波数性能が低下するというデメリットが生じる。
【0052】以上の理由によってVLIW方式は性能向上に限界がある。
【0053】そのため，命令発行ユニット208の幅を広げるのはあきらめて，複数の明示的に独立したスレッ ドを1つのプロセッサで同洔に実行するのも必要と考え られるようになった。そのため，小規模なVLIWを複数搭載し，個々のVLIWで個別のスレッドをそれぞれ動作させるという方法が考案されている。ところがそれ では，次に述べるマルチプロセッサ方式の問題が発生す る。
【0054】（マルチプロセッサ方式の欠点）
【0055】次に，マルチプロセッサ方式の4つの欠点 を示す。
【0056】まず，マルチプロセッサでは，負荷の高い

プロセッサから負荷の低いプロセッサへプロセス，ある いはスレッドを移すのに非常に時間がかかる（以下，こ のプロセス，スレッドの移動をプロセス移住，スレッド移住と呼ぶ）。
【0057】次に，マルチブロセッサにはプロセッサ間通信が必要になる。複数のプロセス，スレッドがまった く独立したデータを利用することはまれであるためであ る。ところが，1つのデータを全てのプロセッサが利用 すると，デー夕通信の量はプロセッサの数にほぼ比例し て増加する。そして，通信の量が増えるということは，単体のプロセッサから見てもメモリのアクセスが通信，同期によって制限されることになり，単体のプロセッサ においても，システム全体においても性能が飽和する。【0058】次の問題は，プロセッサ間の同期である。 あるプロセスがほかのプロセスの特定の処理を待つため に停止し，別のプロセスからの処理終了の伝達によって再開するのが同期である。このための最も原始的な手法 は，待ち状態のプロセスが定期的に別のブロセスの状態 を監視することである（スピンロックと呼ばれる）。し かし，これでは待ち状態のプロセスがプロセッサ，メモ リバスなどの資源を占有するために非常に効率が悪い。 そのために，OSLベルのソフトウェアで同期処理を管理する方法などがあるが，そのためのソフトウェア処理 が大規模な並列における性能向上を阻害するという問題 がある。
【0059】最後に，マルチプロセッサは，メモリ，複数の演算ユニットをすべて搭載するプロセッサを，さら に複数搭載する。そのため，それぞれの演算ユニット， メモりの稼動率にもかかわらず，すべてのコビーがプロ セッサの数だけ搭載されることになる。そのため，回路規模の点で無駄が多い。
【0060】（従来のPMT方式の欠点）
【0061】PMT方式は，以上で述べた，VLIWに代表される命令レベル方式の性能の限界，およびマルチ プロセッサ方式の回路規模的な欠点を解消するための方式である。
【0062】まず，複数のスレッドを常に全てのユニッ トで巡回させることで，スレッド発行ユニットを演算ユ ニット間で共有できる。さらに，全てのスレッドを空い た演算ユニットに対して即座に発行することができ，ス レッドを中断した場合も，スレッドの移住を行わなくて もその場で再開が可能である。これによって，レイテン シを隠蔵するためのスレッドの切り替えを高速に行うこ とができる。
【0063】複数のスレッドを動作させる際には，デー タキャッシュの内容を共有することが多い。そのため， スレッド間で同じデータキャッシュを共有することで，全てのキャッシュへ同じデータを転送する必要が皿くな り，ブロードキャスト型のデータの転送を最小限にする ことができる。

【0064】同じ種頪のスレッドは，同じ命令，データ メモリ，演算ユニットを利用する㑑问か強い。この性質 を利用して，1つの命令キャッシュ，データキャッシ ユ，特殊演算ユニットを複数のスレッドから共有させる ことで回路を削减することができる。
【0065】たが，従来例に挙げた図4のPMT方式に は，以下の欠点がある。
【0066】まず，コンテキストスイッチのために，メ モリにレジスタの値の退避が常に必要になる。キャッシ ュミスのように，もとの演算ユニットでスレッドを再開 できるような処理では，演算ユニットにレジスタを保持 しておけば，スレッドの移住は必要ない。そのために，複数のスレッドを同時に管理するレジスタファイルが必要になる。
〔00671次に，分岐命令ごとにコンテキストスイッ チが必要になる。理由は，命令アドレスに対して，実行 される演算ユニットが常に決定されているために，命令 アドレスが昇順に実行されない場合はスレッドの移動が必要になるためである。分岐命令はソフトウェア全体で 4分の1を占めるともいわれるため，このようなスレッ ドの移動は大きく性能を低下させる。ソフトウェアのイ ンライン展開によってある程度分岐を減少させることは可能であるが，汎用的なソフトウェアで性能が出る構造 か望ましい。
【00681次に，命令アドレスによって実行される演算ユニットが決定されるため，命令の眍置によっては演算ユニットの稳動率にバラ付きが生じる。同じようにソ フトウェアのインライン展開でうまく大半の演算ユニッ トを利用することはできるが，汎用的なソフトウェアで負荷分散が出来る構造が理想的である。
【0069】従来のPMT方式では，キャッシュ間でデ一タのコビーを持たせないために，全ての実行ユニット が全てのキャッシュメモリと接続するように配線させる必要がある。そのため，実行ユニットのN倍の增大にし
 する現在では，このような配線は碓実に周波数性能を低下させる。ところが，性能向上の為には実行ユニットを増加させることが不可欠である。そのため，キャッシュ のコピーを各実行ユニットに持たせる必要があり，キャ ッシュ間の内容の整合性を取るハードウェアを実装する必要がある。
【0070】従来のPMT方式では，キャッシュのコピ一を一切行わないため，全てのキャッシュのアクセスは順序が入れ変わることはない。ところが，キャッシュの コビーを持たせる構造にすると，キャッシュのアクセス順序を保持できなくなる。そのため，新たなハードウェ アによる同期敛構によって，キャッシュのアクセス順序 を保証する必要がある。
【0071】最後に，全てのスレッドは全ての資源に無制限にアクセス可能であり，同時に独立したプロセスを

動作させることができない。そのためには仮想記憶機構 によるプロセス間保雍の実装が必要である。ところが， キャッシュメモリを分散させると，仮想記憶機棤しまキャ ッシュメモリの数ざけ必要になる。キャッシュメモリは複数のプロセスが湝在するため，単体の仮想記憶の容量 も増大する。更に，仮想記憶機構を分散させると仮想記憶の規模が皦大なものになる。
【0072】以上が従来のPMT方式の欠点である。P MT方式の持つ長所を維持しつつ，これらの欠点を解消 するのが本発明の目的である。
【倸題を解決するための手段】
【作用】
〔0073】（コンテキストスイッチ）
【0074】本発明のプロセッサはマルチスレッドを利用する。マルチスレッドは大規模なレイテンシを㖨幤ま る唯一の方法と言ってよい。このマルチスレッドの管理 は，従来のマルチブロセッサなどではOSの仕事となっ ているが，それがスレッドの数に比例して処理時間を増大させて，マルチスレッドの長所をほとんど発揮できな い要因となっている。ハードウェアで極力マルチスレッ ド動作を実現するのが望ましい。
【0075】図16にマルチプロセッサにおけるマルチ スレッドの実行列を示す。スレッドAからスレッドBへ の切り替えを行うスケジューリングは，常にプロセッサ の資源を消費する。さらに，キャッシュミスの期間に は，他のスレッドの動作ができず，各プロセッサはアイ ドリング状態となる。
【0076】図17に，本発明のプロセッサにおけるマ ルチスレッドの実行例を示す。本発明のプロセッサで は，䙢数のスレッドがストールしない限り。スケジュー リングを全てハードウェアで行うため，常に演算ユニッ トを実際の動作に利用することができる。キャッシュミ スの場合も，別のスレッドかかわりに動作まることがで きる。キャッシュのスれ替え動作が路了した後は，別の任意のスレッドのストールによって，スレッドを再開す ることができる。
【0077】結綸として，本発明のプロセッサは，マル チプロセッサ方式に対してコンテキストスイッチ，スケ ジューリングの時間が不要である。さらに，本発明のプ ロセッサはあららゆるスレッドの待ち洔間に他のスレッド が動作可能であり，どんなに並列度を上げても演算資源 をほぼ常時利用することができる。これは，現在の命令 レベル並列では，数並列程度でも演算資源の利用率が半分以下であるのと対照的である。
【0078】複数のスレッドを同時に動かす際には，待 ち状態のスレッドの中から演算龍力に相当する数のスレ ッドを選択することが必要になる。スレッドには，例外 や割り込み要求の応答など，即座に実行を要求されるも のと，比較的実行遅延が脬されるものとが混在してい る。このため，スレッドの優先順位を設け，それを自動

的に選択する機構が必要になる。
【0079】本発明のプロセッサにおけるスレッドは1 6段階のプライオリティーを有する。スレッド発行ユニ ットは，実行待機状態のスレッドを格納し，スレッドの プライオリティーをハードウェアで判定して選択して，同洔に1つのスレッドを発行する。また，既存のスレッ ドよりもバッファ上のスレッドの優先度が高い場合は，無条件で既存のスレッドを休止して新規のスレッドを発行する。プライオリティーが同一の場合はとくに優先制御，頁荷分散制御を行う必要はない。
【0080】なお，実行ユニットの楾傎率が高く，新規 のスレッドを発行できない場合は，橉接するスレッド発行ユニットに順にスレッド状態を転送する。
【0081】スレッド発行ユニットが発行すべきスレッ ドを選択する際に，前に実行したスレッドと共通の命令 を利用するものが理想的である。理由は，命令が同一で あれば利用するデータも同じである確率が高いこと。そ して，命令などの状態が等しければ，制御回路などの状態の変更が最小限となり，状態信号が変化しなければC MOS回路の特質上消費電力が最小となるためである。
【0082】そのために，前に発行したスレッドの命令 アドレスを控えておく。そして，次に発行するスレッド の命令アドレスと，控えておいた前のスレッドの命令ア ドレスを比較し，同一であればスレッドを即座に発行す る。アドレスが同一でない場合は，今のスレッドとプラ イオリティーが同一以上のスレッドがない場合に限り用意したスレッドを発行する。
【0083】PMT方式では，そのままではスレッドの ライン間の移動によって演算ユニットの間で頁荷のばら つきが生じる。そのため，ある演算ユニットは負荷が極端に高く，どうしてもほかのスレッドの要求を受け付け られない状態が発生する。そういう場合は，空いた1つ の演算ユニットを有効活用するために，その演算ユニッ トを単一プロセッサとみなしてスレッドの実行を行う （今後，この動作を局所SMP実行モードと称する）。 こうして，PMT方式とSMP方式を混在させて，スレ ッドが充填されない演算ユニットを最大限に活用する。 プライオリティーの高い別のスレッドの要求によって，局所SMP実行モードは解除される。
【0084】スレッド発行ユニットが 4 つの演算ユニッ トで共有される場合は，局所SMP実行モードは4つの演算ユニットを順に利用して行う。この場合，4つのス レッドが同時に動作することになるが，相互の演算ユニ ット間のレジスタ，データ転送は不要である。【0085】コンテキストスイッチを高速化するため に，㧿来のPMT方式にあったレジスタのメモリへの待避の必要性をなくす。そのために，レジスタファイルに は複数のスレッドの情報を共存させ，そのうちの1つだ けを利用する。コンテキストスイッチは，利用するレジ スタファイルのバンクを切り替えるだけで良く，即座に

スレッドを切り替えることができる。
【0086】PMT方式では，スレッドは基本的には一定方向に移動する。しかし，命令，データの共有を実現 するためには，すでに命令が保持してある演算ユニット にスレッドを移すことが望ましい。あるいは，すでに負荷の高い演算ユニットに到達したときは，頁荷の低いラ インに移動する必要がある。そのために，演算ユニット間でスレッドを移動させる，スレッド移住機構を設け る。スレッド移住は以下の手順で行う。
【0087】（1）実行ユニットからストール要求。同時にレジスタバンクを別のスレッドに切り替える。
【0088】（2）スレッド発行ユニットは待機してあ るスレッドを供給。
【0089】（3）データキャッシュにレジスタの内容 を退避。直接二次キャッシュに対して送られる。
【0090】（4）目的のノードにスレッド情報転送。
【0091】（5）データキャッシュ階層を通って，目的のノードに近い二次キャッシュからレジスタの読み込 みを行う。データキャッシュ間の䡌送は，後述のキャッ シュコヒーレンシ機構を用いる。
【0092】なお，本発明では，負荷分散のためのスレ ッドの移住は基本的には不要である。待ち状態のスレッ ドは一定場所にとどまっていれば，いつかは他のスレッ ドが使用していない空いたバイブラインが流れてくるた めである。
【0093】図22に，スレッド移住における動作を示 す。横軸は演算ユニットの列であり，䋃軸は時間経過で ある。斜線が固別のスレッドの実行を示す。
【0094】7番の演算ユニットへのスレッドの移住に よって，7番加ら10番の演算ユニットはメモリからレ ジスタを読み込む。11晋の演算ユニットから実際のス レッドが再閆される。
【0095】プライオリティーの低いスレッドは，7番 の演算ユニットがプライオリティーの高い別のスレッド によって占有されたことを検出して，2番の演算ユニッ
トの時点でスレッドを停止させる。3番から6番の演算 ユニットではレジスタ状態をメモリに待避する。7番の演算ユニットから別のスレッドの移住が始まる。
【0096】一般的にサブルーチンコールでは，それま でのレジスタをスタックに保持して，リターンの直前に退避したレジスタを読み込む操作が必要になる。本発明 のプロセッサでは，サブルーチンコールはレジスタを隣接転送する際に，元のレジスタを破乗せずに，サブルー チンコールを実行した演算ユニットのレジスタバンクに保持しておくだけで実現できる。そしてリターンはその保持されていたレジスタバンクを再利用して，帰り値を示す1つのレジスタだけを代入すれば良い。
【0097】図20に，サブルーチンコールの動作例を示す。CALL命令がサブルーチンへの分岐，RET命令がサブルーチン終了を示す命令である。

【0098】CALL命令のように，元の命令アドレス に戻り，元のスタックの値を利用する処理においては， CALL命令の位置にレジスタ値を残しておくだけで良 い。レジスタはコール先の命令にも複製されて継承され る。
【 0 0 9 9】RET命令の実行によって，帰り値だけが CALL命令に送られる。それ以外のレジスタは，元の レジスタの値をそのまま利用すればよい。
【0100】保持してあるレジスタバンクをほかのスレ ッドが利用するときは，前述のスレッド移住機構におけ るレジスタ同期機構によって，自動的にメモリへの退避 が行われる。
【0101】割り込みユニットやTLBは，蓄積された スレッドIDをスレッド発行ユニットに伝達し，指定さ れたスレッドを動作させることができる。
【0102】そして，TLBからのスレッド生起は，ペ ージフォルトなどのTLB例外によるコンテキストスイ ッチを高速化するとともに，OSカーネルサービスの並列化を実現する。
〔0103】本発明のプロセッサは大量のスレッドを利用する。そのためには，現在進行しているスレッドの演算能力を極力利用せずに，大量のスレッドを発行しなく てはならない。そのために，スレッドが必要なスレッド ID，スタックなどの情報（スレッド構造体と呼ぶ）は ハードウェアで管理して，スレッドの生成によって自動的に転送する。実装としては，まとめてスレッドIDと スタックポインタを格納するバッファだけを設ける。バ ッファの内容の管理はまとめてソフトウェアで行う。
【0104】スレッドを発行する場合は，スレッドバッ ファから空き状態のスレッド構造体を要求する。スレッ ドバッファにスレッド構造体が無い場合は，現在のスタ ックボインタをそのまま返し，これ以上マルチスレッド で実行できないことをプログラムに通達する。
〔0105】こうして，スレッド発行命令は新規のスレ ッド構造体を取得する命令だけで済むようになり，スレ ッド発行におけるソフトウェアオーバーヘッドを削減で きる。
〔0106】（演算バイプライン）
【0107】本発明のプロセッサは，レジスタファイル を縴接する複数の演算ユニットで共有する。4つの演算 ユニットでレジスタファイルを共有する場合は，4つの レジスタファイルと 4 つの演算ユニットとの間で自由に アクセスするためのクロスバ接続バスを設ける。
【0108】こうして，従来のPMT方式が常にすべて のレジスタの値を紼接するユニットに転送を必要とした のに対して，階接するレジスタファイルへの転送を数ク ロックに1回に抑制することができる。
【0109】レジスタファイルには複数のスレッドの情報が混在するが，一度に送るのは1つのスレッドのさら に4分の1の内容で十分となり，実行ユニット全体で

も，1つのスレッド分のレジスタ転送だけで良い。
【0110】なお，同一の命令を利用するスレッドを連続して動作させている場合は，転送する信号の変化はス レッド間のレジスタ値の違いだけとなる。この違いだけ がCMOS回路における消費電力となる。
【0111】本発明のプロセッサは浮動小数点演算ユニ ットを搭载することができるが，このユニットは整数演算に比べてレイテンシが大きくなるという特徴がある。 その間，依存関係のない別の整数演算命令を実行するこ とで，浮動小数点演算のレイテンシを隠蔽できる。
【0112】同一の命令を用いるスレッドを連続動作さ せる場合では，長レイテンシ演算も1つのユニットを使 いまわすことになる。この場合は，1クロック分の演算 が終了した時点で，隣接する別の長レイテンシ演算ユニ ットに中間値を渡し，並行して演算を行う。こうして，長レイテンシ演算のスループットを向上させる。
【0113】本発明のプロセッサは，一般的なパイプラ インプロセッサと同じく，パイプラインを停止するパイ プラインストールを発生する機能を有する。ただし，パ イプラインプロセッサと違う点は，ストールする対象が単独のスレッドに限られ，ほとんどの種類のストールの間に待ち状態の別のスレッドを再開できる点である。
【0114】パイプラインストールは，一般的にはある スレッドの要求する演算ユニット，あるいは転送バスな どの資源を取得できなかった場合に発生する。そして， ストール状態のスレッドは，その原因が解決された時点 で，プライオリティーの低い別のスレッドの動作を中断 することができる。
〔0115】バイブラインストールは，すでに実行して しまった演算内容を1，2命令分キャンセルする必要が －ある。たとえばロード命令に対して，ロード命令が利用 するキャッシュへのインバリッドの伝達が間に合わなか った場合，そのロード命令を無効にする必要がある。【0116】図21は，パイプラインストールの動作例 である。スレッドAのEXステージの実行が失敗して，別のEX＇ステージによる実行が必要になる。スレッド Aの待避したパイプラインスロットには，前にパイプラ インストールを起こした別のスレッドが入り込み，結果 を格种する。
【0117】EX＇の具体的な動作は64ビット演算や浮動小数点除算などである。演算自体は数クロックで終了し，再開待ち状態となる。スレッドEのパイプライン ストールによって，スレッドEのかわりにスレッドAが入り込み，スレッドAの命令を終了させる。
【0118】パイブライストールごとにスレッドを切り替えることによって，パイプラインを間断無く動作させ ることができる。ただし，パイプラインストールが発生 した命令が，前にパイプラインストールが発生した命令 より後である場合は，パイプラインに空きが生じる。た だしその幅は最大4クロックである。しかも，同一命令

を利用するスレッドを連続動作させる場合は，パイプラ インストールを起こす命令も同一である碓窂が高いた め，大きなペナルティーにはならない。
【0119】（ディレクトリ方式階層キャッシュ）
【0120】大量の演算ユニットを搭载するには，それ に対応するだけのデータ転送能力が必要になる。ところ が，1つのメモリから大量のデータを供給することは不可能である。何らかの形でメモリを分散するしかない。 ところが，本発明の方式では，全ての演算ユニットから全てのメモリを高速に参照する必要がある。そのため に，分散したメモリの間でコピーを持つ必要がある。
【0121】分散されたメモリは，本来のメモリのコピ一を自動的に格納するキャッシュの形態を取る。このと き，キャッシュ間で同ビデータのコビーを持つ場合は， あるキャッシュへの書きこみを，別のキャッシュへと転送しなくてはならない。このコピー間のデータの整合性 を取る機構を，キャッシュコヒーレンシ機構と呼ぶ。【0122］ところが，キャッシュの数か増大すると， キャッシュの間の転送量も増大し，配線の量，運延時間 も増大する。キャッシュ間で接続されるバス信号の数を最小限度にし，かつキャッシュ間の転送スループットを確保するために，階層型キャッシュ構造を取る。
〔0123】演算ユニットには専用の一次キャッシュが接続され，複数の一次キャッシュに対して1つの二次キ ヤッシュが接続される。遠距䧸の一次キャッシュへの転送に関しては，二次キャッシュを介して転送される。一次キャッシュとニ次キャッシュの間のデータバスの接続 はクロスバ接続であり，転送スループットを碓保する。 ただし，クロスバ接続の組みあわせは4つ程度に限定 し，配線規模の增大を防ぐ。
〔0124］本発明のプロセッサにおいては，隣接しな いキャッシュ間の転送は即座には行われない。二次キャ ッシュにいったん格納されてから伝達される。
【0125】ここで，データの書きこみを行ったスレッ ド自身が同じデータを読み込さ場合を考える。キャッシ ユ間の転逆が間に合わなければ，自分自身のデータも読 めないことになる。しかし，キャッシュ間の転送はスレ ッドの進行に間に合えば良いため，多少のレイテンシの暒れは許される。
〔0126］特に，二次キャッシュ間の長踝離配線，大容量の二次キャッシュは動作レイテンシが運くなる傾向 がある。ところが，二次キャッシュアクセスを長距離の演算ユニットの間の転送に用いれば，その距噰の間のス レッドの進行に間に合えば良いため，キャッシュ動作レ イテンシを隠蔽できる。
【01271異なるスレッド間では，スレッド間の同期 を行わない限りデータの即座な転送を保証する必要はな い。同期を行う場合は後述する。
【0128】 二次キャッシュは䙡数の一次キャッシュ， そして烈接する二次キャッシュ，三次キャッシュからの

要求をすべて受理することになる。これらの転送スルー プットは辟大なものとなり，同時に複数の要求を受理し なくてはならない。しかし，同時に複数の要求を完全に受理できる，マルチポートのメモリ回路は規模も大き く，速度も遅い㑑向がある。
【0129】そのために，一次キャッシュは複数のロー ドストアユニットに接続する。逆に1つのロードストア ユニットからは，複数の一次キャッシュをアドレスによ って選択する。二次以上のキャッシュは複数のバンクに分割し，同栐にアクセスするアドレスによってバンクを選択する。同時に同ビンンクへのアクセスが重なった場合は，片方のアクセスを停止させる必要がある。ただ し，本発明のプロセッサのキャッシュ間のデータ伝送 は，スレッドの進行に間に合えば良いため，多少の重突 による運れは言午容ざれる。この横棤によって，碓率的に多ボートのキャッシュに近いスループットを碓保でき る。
〔0130］データのコビーを持つ別のキャッシュを特定するためには，バススヌープ方式とディレクトリ弑 の 2 つの方法がある。バススヌープ方式は，共有の可能性のあるデータを共通のバスに出力し，全てのプロセッ サが共有状態かどうかを判定する方式である。このバス スヌープ方式の利点は，共有判定のための外部回路が単純であること，複数のプロセッサへの同時転送が可能で あることである。欠点は，すべての外部メモリアクセス がメモリバスを占有して，全体の転送スループット性能 を低下させる点と，すべてのプロセッサが自身のキャッ シュをアクセスしてコピーを持つかどうかのチェックを行う必要があるという点である。市販されているスーパ ースカラ型マイクロプロセッサはバススヌープ拭を採用することが多い。
〔0131】これに対して本発明のプロセッサは，デー タの転送スループットが重要であり，かつデータの転送相手を限定する必要がある。そのため，共有するプロセ ッサを明示的に指定するティィクトリ方式を採用する。 ディレクトリ方式は，キャッシュの内部にデータの共有相手を特定するための情報を持つ。
〔0132】図23にディレクトリ方式階層キャッシュ のロードにおうるる挙動を示す。演算コニットからのロー トの場合，一次キャッシュ内部にデータがない場合に限 り，二次キャッシュから一次キャッシュに向けてデータ を転送し，二次キャッシュに共有状態を設定する。すで に二次キャッシュのデータが共有状態となっている場合 は，ディレクトリビットの示す一次キャッシュに対して共有状態を設定する。
【0133】図24は，ディレクトリ方式階層キャッシ コのストアにおける挙動である。一次キャッシュへの書 きこみの際に，一次キャッシュのエントリが共有状態と なっている場合は二次キャッシュに書きこみを通達す る。二次キャッシュはディレクトリビットの示す共有相

手に対してのみ，直接キャッシュエントリの無効化（イ ンバリッド）を通知する。
【0134】ディレクトリの指定により，一次キャッシ ュには確実にデータのコピーがあることが判明するた め，一次キャッシュのタグの比較を行う必要なく，直接書き込みを行うことができる。ただし，セットアソシア ティブキャッシュの場合は，ディレクトリビットは単体 のキャッシュ内部のどのバンクにデータが格納されてい るかを指定する必要がある。
【0135】同じ命令を利用するスレッドは，たとえア クセスするアドレスが異なっても命令間のデータの流れ は等しい場合が多い。レジスタの場合は明示的にプログ ラムで示されるが，メモリに対しても同じことが言え
る。特に，スタック，ヒープなどを利用する命令では，
アドレスは異なっても命令間のデータの流れは等しい場合が多い。
【0136】本発明のプロセッサでは，同一スレッド内部でのキャッシュミスを極力減らすために，たとえキャ ッシュの共有情報がなくても，ストアされたデータを可能な限り事前にロード命令に渡す必要がある。
【0137】そのために，命令アドレスに対してデータ フロー予測情報と呼ふ情報を設ける。データフロー予測情報がマークされた命令は，ロード，ストア命令で使用 したのデータを自動的に次のロード命令に伝達する。そ のために，データフロー予測情報には，伝達先のキャッ シュを侍定する値が格納される。データフロー予測情報 は，命令によって明示的に組み込むことも，自動的にプ ロセッサが書きこむことも可能である。
【0138】データフロー予測情報は，プログラムで明示的に記述するのが間単だが，既存のソフトウェアとの互換性，そして条件によってデータアドレスが動的に変更される場合に対処するために，ハードウェアで自動的 に設定するのが望ましい。
【0139】図19に，データフロー予測情報の書きこ み動作を示す。ロードストアユニット1907におけ
る，最初の命令実行でキャッシュミスを起こした命令
は，キャッシュの共有状龍からデータの実体の位置を知 る。そして，データの実体のあるキャッシュ1904か らデータを取得すると同洔に，データの実体を持つキャ ッシュ1904に向けて，自分の演算ユニット1906 を示す値を送る。こうして，データの実体のあるキャッ シュ1904は命令キャッシュ1901にデータフロー予測情報を書きこむ。
【0140】（命令キャッシュ）
【0141】本発明のプロセッサでは，複数のスレッド が同じ命令を利用し，同じ命令は同じ演算ユニット，デ ータキャッシュを利用するのが望ましい。そのために
は，発行されたスレッドがブログラムカウンタから命令 キャッシュの場所を特定し，自由にスレッドを移動させ ることが必要になる。

【0142】図18は，分岐によるスレッド移住の方法 を示す模式図である。一次キャッシュ1803などに格納された命令は，二次キャッシュ1801に格納された ディレクトリに共有状態を設定する。命令キャッシュ1 808 の命令キャッシュミスか，分岐命令 1806 によ る要求によって二次キャッシュ1801にアクセスした スレッドは，ディレクトリビットによって該当する命令 が格䟜されている命令キャッシュ1802の位置を知 り，その命令キャッシュに向けてスレッドを移住させ る。
【0143】どの命令キャッシュにも命令が格納されて いない場合は，スレッドの情報を動かさずに，分岐命令 の直後，あるいはキャッシュミスを起こしたキャッシュ 1808に対してスレッドを再発行を行う。二次キャッ シュ1801あるいは外部メモリから取得した命令は，命令キャッシュ1808に格納されて，スレッドを再開 する。次に同一の命令を実行する場合には，命令キャッ シュ1808にすでに分岐先の命令が格納されていて，分岐のペナルティーも発生しない。
【0144】スレッド管理ユニット1807が，他の優先順位の高いスレッドが充満していて空きがない場合 は，やはりスレッドの移住を行う。その場合は，スレッ ド管理ユニットからの通信で，スレッドの頁荷の低いス レッド管理ユニット1809を探し出し，スレッドを移住させる。
〔0145】この機構によって，同一命令を最大限に再利用することができる。さらに，従来のPMT方式と異 なり，スレッドは命令アドレスにかかわりなく，自由に演算ユニットに分配できる。
【0146】本発明のプロセッサは，厳密な分岐命令に スレッドの移住が必要であるため，分岥命令の実行の頻発を避ける必要がある。分岐はマルチスレッドによって隠絿は可能であるが，スレッドの発行能力には上限があ るためである。
【0147】そのために，命令アドレスとは無関係に命令を配置する。格納される命令の順序は，確率的に命令 が実行されると予測される朊序である。そして，予測さ れた分岐方向を示す分岐予湘情報をキャッシュのタグメ モりに配置する。分岐予測情報は演算ユニットに送ら れ，分岐命令の実行結果と照合されて不一致の場合はス レッドを停止させる。
【0148】キャッシュのタグメモリに次の命令アドレ スを示す値を置くことで，分岐命令の実行前に陊接する命令キャッシュから命令を取得させることもできる。こ の機構によって，PC相対分岥だけではなく，レジスタ の示すアドレスへの分岐を予測することもできる。【0149】同時に，前述のデータフロー同期情報も命令キャッシュのタグメモリに格納する。これによって，同じ命令を利用する限りは，すべてのスレッドから1つ の分岐予測，データフロー予測情報を共有することがで

きる。
【0150】図13に，本発明の命令キャッシュにおけ るタグメモリの構造を示す。命令キャッシュにはそれぞ れ命令ごとに数ビットの分妓予測情報，あるいはばータ フロー予測情報が格納されている。発行された命令が分岐命令の場合は，分㞳予測情報として使用し，発行され た命令がロードストア命令の場合は，データフロー予測情報として利用する。命令ごとの予剆情報のビット幅 は，実行ユニットの数から決定される。データフローユ ニットが目的とする実行ユニットを特定するためであ る。
【0151】また，分岥命令の実行とは独立して次の命令キャッシュのアドレスを特定するために，次の命令ア ドレスを示す値が格納されている。この値によって，条件分岥だけではなく，オブジェクト指向言語の仮想䦎数 に代表される，レジスタ値への分岐も予測することがで きる。
【0152】（仮想記憶と同期）
【0153】仮想記憶ユニットは，可能であれば全ての演算ユニットから共有することが望ましい。理由は，複数のブロセスが共存する場合は，要求される仮想記憶の エントリの数も増大するためである。更に，仮想記憶ユ ニットが分散した場合は，その内容のほとんどが重複す るためである。
【0154】本発明のプロセッサは，内蔵するキャッシ ユをすべて仮想空間で管理する。メモリへのアクセスの時だけ，物理アドレスに変換するためにグローバルTL Bを用いる。
【0155】仮想キャッシュは，䙡数のプロセスが共存 するために，異なるプロセス空間のキャッシュをアクセ スしない機構が必要になる。そのために，キャッシュの タグメモリにはプロセスIDの情報を持たせ，キャッシ ユヒットの確認ごとにプロセスIDの一致碓認を行う。【0156】（データフロー同期）
【0157】一般的にマルチスレッドの同期は，あるス レッドからの書き込みをトリガにして直接別のスレッド を起動する方式がもつとも単純かつ有効である。この方式はデータフロー方式とよばれ，プログラムモデルから見てもっとも単純な方式である。プログラム上では，あ るアドレスへのデータライトを自動的に感知してスレッ ドを再開するように設定するだけである。
【0158】この機構の実装のために，仮想記憶とデー タキャッシュに特別な機構を設ける。仮想記憶には，あ るアドレスのライトアクセスが方った場合にスレッドを生起する情報を書き込んでおく。そのアドレスを含むデ ータメモリをデータキャッシュに読み込む際に，データ フロー参照がある情報も同時に取得する。
【0159】データキャッシュ側には共有ビットを書き込むだけとなる。形としては，TLBのデータフロー同期エントリとデータを共有するという形になる。これに

よって，各キャッシュエントリにはデータフロー同期情報を持たせる必要はない。前述のディレクトリ共有機構 で十分であり，TLBから二次キャッシュに向けてデー タフロー同期の開始を伝達する。
【0160】厳密なメモリ共有機粠では，ある時点での共有メモリの状態は，どのプロセッサから見ても同じで あることが要求される。ところが，この厳密なメモリ共有は，キャッシュの搭載や，メモリの階層分割によって現実には不可能になりつつある。そのため，近年ではプ ロセッサの仕様の方を変更し，同期命令前後のデータア クセスの順序だけを維持するように定義を変えた。プロ セッサの種類によって細かい違いはあるが，基本的には これをルーズコンシステンシと呼ぶ。
【0161】本発明のプロセッサでは，同期命令は他の演算ユニットからのデータの書きこみを待ち，すべて到達した時点でスレッドを再開する。ところが，遠距㒀の演算ユニットには制御信号が即座に届かないため，同期命令までに実行されたストアかどうかの判定は厳密には不可能である。
【0162】そのために，同期命令における「同時」の定義を変更する。たとえ実時間では後に実行されたスト ア命令も，同期命令の再開までに伝達が間に合った場合 には時勢的に前だとみなす。
【0163】そして，同期とは，PMTバイプラインを一周回分待ち合わせて，他のスレッドの，「同時」の時間以前に実行された全てのストアを受理するまで待つこ ととする。これによって，単体のスレッドの場合と同じ く，全てのスレッドのデータ転送はスレッドの移動に間 に合えば良い。パイプラインが一周した時点でスレッド を再開させるが，その時点では同期命令「以前」の全て のストアは実行され，再開地点以降のデータキャッシュ に格納されている。
【0164】この方法によって，全てのスレッドにわた って，同期変数の前後のメモリアクセスの順序を保持す ることができる。なおかつ，同期中に他のスレッドの動作が可能になり，性能へのペナルティーも陻蔽できる。
【0165】図25に本発明のブロセッサにおける同期 の動作を示す。スレッドBからのStoreAは，スレ ッドAのLoadAで読み込むことが出来る。スレッド AのSYNC命令より実時間的には後に実行されている にもかかわらず，SYNC命令の再開までにキャッシュ の伝達が終了しているためである。仮想時間的に前かど うかの判断基準は，前のSYNC命令のパイプラインの到達よりも早いかどうかで決定すれば十分である。こう して，複数のSYNC命令間で，SYNC命令前後のデ一夕格納順序を保つことができる。
【0166】さらに，従来のプロセッサと異なり，SY NC命令で他のスレッドを止める必要はなく，SYNC命令の伝達もスレッドと同し速度で伝達すれば十分であ る。

【0167】図26に，ソフトウェアモデルから見た同期の動作について示す。スレッドAのSYNC命令の前 に実行されたスレッドBのStoreAは，仮想時間で は前に実行されたSYNC命令のさらに前に行われてい るため，スレッドAから読で込むことができる。
［0168】スレッド間の同期は，同期変数へのアクセ スに対して，明示的にOSのソフトウェアによるスケジ ューラを起孰して管理することが多い。しかし，前述の データフロー同期機輔を自動的に利用すれば最も高速で ある。
［0169］具体的には，あるデータをロードする同期命令の実行によって，データフロー同期ユニットにその スレッドの状息とロードアドレスを輯送する。スレッド はその時点でスリーブする。データのストアはデータフ ロー同期コニットとディレクトリ方式キャッシュコヒー レンシによって判定されて，待ち状態のスレッドを直接起こすことができる。
〔0170】（パケット制御信号）
〔01711）既存のスーパースカラ，VLIW方式に代表される命令しベル方式では，信号は可能な限り速く伝達することを要求される。ところが，回路規模が大きく なるとそれは現実的には不可能になる。理由は主に3つ ある。まず，微細化が進むと，配線運延の比率が大きく なる。さらに回路規模が大きくなると，回路間の配絔が爆発的に增大する。さらに，周波数が高くなると，隣接 する配線間のクロストークやグラウンドバウンスが問題 となる。前者の対処としては，配線を短縮するか，配線周の距毓を大きくとりシールドする必要が出てくる。後者の対処には，電源配線を配線に対して最適化して，電流ループの大きさを最小限にする必要がある。
［0172］それに対して，PMT方式は，榉接するユ ニットを除き，制御信号の伝達は多少の幄れか許され る。ということは，長距睢の信号伝達に使用される信号線を，複数の信号が共有することができる。こうして，長距離の配線の本数を最小限にする。
〔0173］更に，長趾辞の配線は一気に送ってしまう のではなく，中継する回路で受け止めてシフトレジスタ的に順に送ることができる。こうして，1クロックの間 で伝送するのはルーター間の距㐬だけで消み，制御信号 か動作周波数の向上を阻害することは無くなる。中継の ためのルーター戸ラッチの規模が大きくなるという欠点 はあるが，それは半導体のプロセスの向上の恩恵をその まま⿳一由八夊心㇒十 けることが出来て，相対的な影響は少なくなる。〔0174】個々の配線を最小限の長さにして，信号伝送の多少の幄れを許容することにより，その配線のドラ イブを行うトランジスタの駆動電流を不必要に上げる必要がなくなり，信号の高周波成分の增加を抑制すること ができる。これはクロストークやグランドバウンスなど の抑制につながり，これらの対策に必要な回路の増加を防ぐこともできる。

〔0175】遅延時間に関しては，PMT方式の陊接ユ ニット以外の転送レイテンシを許容する特性によって問題にならなくなる。こうして，並列度を維持し，回路規模を最小限に維持しながら周波数性能の向上を可能にす る。
〔0176】パケット制御信号は，データ転送などの目的ではアドレス，データとともに送られる。すなわち， アドレス，データを転送するパケットは，アドレスバ ス，データバスの空きをスレッドバッファで待ち合わせ ることになる。これによって，各バスのアービトレーシ ョンはパケットルーターがー括して処理することができ る。
〔0177】本発明のプロセッサは，命令キャッシュ，演算ユニット，外部インターフェースなどのユニットご とにパケットルーターを随所に配置し，遠距離の制御信号の伝達の中継を行う。パケットルーターには，複数の パケットルーターと送受信を行うためのバスを持ち，必要に応じてデータバスなどの補助的なバスを並行して設 ける。
〔0178】個々のパケットルーターは一意の番号を割 り振られる。番号はスレッドの進行方向にあわせて昇順 に割り振られ，付随するバス信号，伝達先のユニットに よって一意にルーティングの方法も決定される。
【0179】このパケット制御信号によって，粦接する ユニットを除く全てのユニットへの制御が行われる。
〔0180】本発明のプロセッサにおけるパケットは，到達予定時間の情報をパケット情報に含む。この時間と パケットルーターの持つタイミングカウンタを照合する ことにより，パケットが予定通り伝達されているかどう かを判定する。
〔0181】パケットか運滞している場合は，並行して走るスレッドに対して即座にパイプラインストールを要求して，スレッドを止める。パケット運延の例外処理を発行して，OSレベルのソフトウェアが対処を行ってス レッドを再開させる。
【0182】本発明のプロセッサは，各ユニットの内部状態を全ての演算ユニットから監視，改変することを可能にする。そのために，演算ユニットからの要求をパケ ットに変換し，パケットルーターを利用して順次伝達す る。伝達先のユニットは，内部状態を合んだパケットを送信元の演算ユニットに伝送する。なお，ロードのため のレイテンシは無論マルチスレッドで噮莎される。〔0183】（プロセッサ間通信）
〔0184】本発明のプロセッサをを複数利用する際に，本発明の内部の演算ユニットと同じように，プロセッサ をリング状に連結すれば，プロセッサ間転送スルーブッ トを最大にすることができる。これによって，1つのス レッドは複数のプロセッサにわたつて展開することがで き，命令，データ共有の利点を最大限に生かすことがで きる。

【0185】だが，本発明のプロセッサの内部と同じ く，データの転送にはパイプラインの筦接転送だけでは なく遠距離の転送も考えられる。リング方式転送の欠点 は遠距雄に伝送するのか難しいという点である。そのた めに，遠距離の演算ユニット間同士でショートカットパ スで伝送することは，全体の転送速度を大きく向上させ る。
【0186】このような転送はレイテンシ時間が增大す るものであるが，複数のブロセッサ間での通信はそれら の間のパイプライン全てを通過する時間で行われれば良 いため，数十クロック以上のレイテンシが許される。こ のため，プロセッサ外の低速インターフェースには最適 である。
【0187】本発明のプロセッサでは制御信号をパケッ ト化しているため，同じ制御信号を複数のプロセッサに分配できる。ユニットを指定するための識別コードを拡張し，全てのプロセッサを一意に表現することで，マル キプロセッサに向けて自由に制御信号パケットを伝送で きる。
〔01．88】本発明のプロセッサを複数利用する際に は，個々のプロセッサに個別にメモリを接続する。各プ ロセッサがデータの実体の場所を特定するために，個々 のプロセッサが持つ仮想記憶を利用する。この場合，仮想記憶のエントリはそれぞれコピーを持つことになり， キャッシュと同じ共有管理を行うことになる。そのため に，仮想記憶には共有状態を示すビットを設ける。ただ し，オリジナルは常にメモリに接続された仮想記憶とな る。
〔0189】仮想記憶の改変の際には，キャッシュのフ ラッシュと同時に，他の仮想記憶に改変を直接伝達す る。改変を伝達された仮想記憶は，共有状態に応じてそ れぞれキャッシュのフラッシュを実行する。
【0190】本発明のプロセッサ同士で，データの共有 がある場合は，仮想記愔のページ単位でデータの共有情報を設定する。キャッシュラインごとのビットを持つこ とができないため，ページ全体が共有状態の場合はその都度内部キャッシュのタグにアクセスして碓認する必要 がある。
〔0191］まず，プロセッサから外部にロードストア要求を行うケースについて述べる。まず，ロード命令で は，キャッシュにエントリがない場合，あるいはTLB に対して共有状態が指定されている場合は，TLBを介 してプロセッサ外部からデータを取得する。TLBにア クセスを行い，ローカルメモリではなく外部のメモリと データを共有している場合は，プロセッサ外部にリード要求を出す。
【0192】ストア命令では，二次キャッシュにTLB への共有状態か設定されていることにより，TLBへの アクセスを行う。共有状態に設定されている場合は，デ ータのコピーの興効化（インバリッド）を通達する。

【0193】次に，プロセッサ外部からロード要求を受理した場合について述べる。受理した仮想アドレスに対 して内部のTLBへのアクセスを行う。内部キャッシュ で共有状態に設定されている場合は，内部のキャッシュ に仮想アドレスでアクセスして，プロセッサ外部にデー夕を伝達する。
【0194】次に，プロセッサ外部からインバリッド要求を受理した場合も，同様に受理した仮想アドレスに対 して内部のTLBへのアクセスを行う。内部キャッシュ で共有状態に設定されている場合は，内部のキャッシュ に仮想アドレスでアクセスして，内部キャッシュにイン バリッドを伝達する。
【0195】なお，TLBのエントリがない場合は，O Sによる仮想記憶処理を行う。

【実施例】

【0196】（第一実施例）
【0197】図1に，本発明の第一実施例を示す。10 1は本発明のプロセッサである。
【0198】命令発行ユニット10．2は，スレッド発行 ユニット103，命令キャッシュ104を内蔵する。ス レッド発行ユニット103は，命令キャッシュ104に プログラムポインタ値を伝達して，実行ユニット105 に実行すべき命令を伝送する。
【0199】実行コニット105は，4つの共有レジス タファイル106と，4つの16ビット演算ユニット1 07 と，複数の特殊演算ユニット108から構成され る，共有レジスタファイル106と16ビット演算ユニ ット107，および特殊演算ユニット108は，オペラ ンドクロスババスで相互に接続されている。スレッドの レジスタ値などの状態は全て，隣接する実行ユニット1 05 に伝送される。ただし，従来のPMT方式と異な り，1つのスレッドの状想は4クロックで転送される。末端に到達した状態は，スレッド状腎信号132によっ て最初の実行ユニットに伝送される。実行ユニットから のスレッド生成，分岐発行は，分岐発行制御信号 10
9，134によってスレッド発行ユニット103に伝達 される。
【0200】一次データキャッシュ111は8つ搭載さ れ，そのうちの4つが1つの実行ユニット105に接続 されている。接続にはクロスババスが使用され，同時に 4つの一次データキャッシュへの任意のアクセスを可能 にしている。ただし，同じデータキャッシュへの複数の アクセスがかち合った場合には，1つのアクセスだけを行い，他のアクセスを行ったスレッドをストールさせ る。なお，従来のPMT方式と異なり，4つの一次キャ ッシュはアドレス値によって特定でき，1つのスレッド からすべてのバンクに自由にアクセスできる。
【0201】4つの一次データキャッシュ111～11 4は，1つのアクセスバッファ115に接続され，䇟接 するライトバッファと，やはり偝接する二次キャッシュ

116 へのデータのやり取りを行う。
【0202】二次キャッシュ116は，2つの一次キャ ッジュからのアクセスバッファ115，131と，TL Bなどのに接続されたアクセスバッファ117から要求 を受理する。二次キャッシュユニット116は一次キャ ッシュと異なり，命令もデータも格納する。そして，二次キャッシュも複数の要求を受理するために複数のバン クに分けられてる。
【0203】アクセスバッファ117は，二次キャッシ ュ116からの要求によって外部とのアクセスを行う際 に，データのバッファリングを行う。
【0204】新規スレッド発行ユニット127は，割り込み信号126の入力に応じて，内部に蓄積した待機状態のスレッドを発行する。あるいは，実行ユニット10 5からの直接のスレッド生成要求によってスレッドを発行する。そのために，スレッド発行ユニット127は， スレッド発行ユニット103に向けてスレッド発行制御信号133を出力する。
【0205】グローバルTLB120は，仮想アドレス信号の物理アドレスに変換し，物理アドレスをローカル メモリインターフェース122に伝送する。外部バスは基本的には仮想アドレスであることに注意。
【0206】ローカルメモリインターフェース122
は，グローバルTLB120からの要求に応じて，ロー カルメモリバス信号123を通じて外部メモリとのデー タアクセスを行う。 I／Oもローカルメモリインターフ ェース1．22によってアクセスできる。
【0207】共有バスインターフェース124は，共有 バス信号125を通じて他のブロセッサに対してデータ を送受信する。共有バス信号125から受理されたロー カルメモリアクセス要求に対して，グローバルTLB1 20 でプロセッサ内部でデータを共有しているかどうか の判定を行う。
【0208】（第二実施例）
【0209】図5に，本発明の第二の害施例の模式図を示す。
【0210】501は本発明の第二の実施例のプロセッ サである。命令発行ユニット102と，実行ユニット1 05と，4つの一次キャッシュ111，二次キャッシュ 116 は陛接して配置される。この組が全体に8つ配置 されることで，この第二実施例のプロセッサは32のス レッドを同時に動作させることができる。本発明のブロ セッサには，ユニットの搭載数に上限はない。
【0211】この第二実施例の個々のユニットは，本発明の第一の実施例に搭載されているユニットとほとんど共通であり，ユニットの組み合わせがだけが異なる。
【0212】前段プロセッサ接続インターフェース50 2は，別のプロセッサからのデータ転送を受理する。実 アドレスで要求されたアクセスを，TLB120を用い て内部のキャッシュ，ローカルメモリで共有されている

かどうかを判定する。
【0213】I Pユニット504はソフトウェアよりも ハードウェアの方が効率が良い処理を行うためのユニッ トである。これらはそれぞれ演算ユニットの近傍に配置 される。演算ユニットはI Pユニットの出力データをソ フトウェアで即座に整形するため，I Pとプロセッサ間 の転送が最小限になる。
【0214】2つのローカルメモリインターフェース1 22は，二次キャッシュからのメモリアクセス要求を受理して同時にメモリとのアクセスを行う。アクセスの前 にはグローバルTLB120を利用して物理アドレスへ の変換を行う。
【0215】I／Oバスインターフェース510はブロ セッサに直接接続されたローカルなI／O へのインター フェースである。
【0216】新規スレッド発行ユニット127は，スレ ッド発行命令の要求に応じてスレッド発行を行うととも に，割り込み信号126，ソフトウェア例外などの要求 に応じて休眠状態のスレッドを生起する。
【0217】この実施例のプロセッサは，通常のマルチ スレッドブログラムを利用して，浮動小数点命令を含め て32並列動作を可能にしながら，規模的には単一プロ セッサの8倍強の素子数で実現できる。個々のキャッシ ュは小容量だが，全てのキャッシュの内容を全てのスレ ッドから共有することができるので，個々のスレッドが 1 つの高速大容量キャッシュを持つのに等しい。
【0218】（命令発行ユニット）
【0219】図6は，命令発行ユニット102の内部構造の模式図である。
【0220】パケットルーター601は，スレッドを制御する制御パケット信号603を受理し，このスレッド発行ユニットで受理可能であるかを判定する。
【0221】制御パケット信号の内容がスレッドの受理 の場合は，プライオリティー選択ユニット604に制御信号を伝達する。制御信号の内容がキャッシュの直接制御の場合は命令キャッシュ制御ユニット605に制御信号を伝達する。制御信号の内容がローカルTLB制御の場合は，命令ローカルTLBユニット607に制御信号 を伝達する。さらに，スレッド移住の要求である場合 は，スレッド移住ユニット620に制御信号を伝達す る。
【0222】待ち状態スレッドが一杯などの理由でパケ ット制御を受理できない場合は，別の隣接するパケット ルーターに，制御パケット信号619を通じて伝送す る。
【0223】プライオリティー選択ユニット604は，待ち状態スレッドバッファ618の中から，実行可能状態でかつ最もプライオリティー値の高いスレッドを1つ選択する。ただし，キャッシュミスなどで実行できない状㦔のスレッドは選択されない。このプライオリティー

選択ユニット604は，待ち状態のスレッドの数に対し て爆発的に規模を増大させるため，待ち状態スレッドバ ッファ618の数を増やしすぎないことが求められる。 そのために，パケットルータ602では，待ち状龍のス レッドを1つのスレッド発行ユニットに集中させない制御が行われる。
【0224】本実施例では，命令キャッシュだけは物理空間キャッシュとする。異なるプロセス空間に属する命令を共有するためである。命令キャッシュはキャッシュ制御ユニット605，キャッシュタグメモリ606，命令TLB607，キャッシュデータメモリ608で構成 される。
【0225】キャッシュ制御ユニット605は，スレッ ドごとの命令キャッシュアクセスを実行し，パケットル ーター602を介して要求される命令キャッシュへの直接アクセスを実行する。さらに，パケットルーター60 2からのグローバルTLBの改変によるTLB607の エントリの無効化も行うことができる。
【0226】キャッシュタグメモリ606には，全ての物理アドレスが格納され，さらに，分岐予測，データフ ロー予測情報が格納される。
【0227】スレッド状想制御ユニット609は，キャ ッシュのヒットチェックを行う。命令TLB607によ って変換された物理アドレスと，命令キャッシュタグ 6 06 の結果が一致すれば，キャッシュはヒットしたこと になる。その場合は，4つ分の命令を命令メモリ616 から取得して命令順序アライナ614に伝達して実行可能な状態にしておく。
【0228】スレッド状態制御ユニット609は，前の命令発行ユニットの出したスレッド状態信号608を受理する。前のスレッドよりも待ち状態のプライオリティ一が高い場合は，無条件でスレッドを発行する。前のス レッドかない場合は，前に実行した命令と同じ命令を使 ラスレッドが待機状態であれば，待機状態のスレッドを優先して発行する。命令アドレスが一致しない場合は， キャッシュから取得しておいた命令を発行する。発行し たスレッドの状態は，隣接する命令発行ユニットにスレ ッド状態信号615で伝達される。
【0229】命令順序アライナ614は，蓄積された4 つのスレッドのそれぞれ 4 つの命令を，1クロックづつ ずらして出力する。命令の種類によって配置を変えるよ うなことはしない。
【0230】スレッド状態制御ユニット609は，内部 に格納された現在のスレッドのPCと，新規に発行され るスレッドのPCを比較し，一致するようならば，命令順序アライナ614に蓄積された命令の再利用を要求す る。こうして，スレッドは同一の優先順位である限り，同じ命令を使用するものが㴍先的に実行される。
【0231】スレッド移住制御ユニット620は，演算 ユニットで発生した分岐，スレッド発行を示す分岐要求

信号613を受理する。自身の命令キャッシュに格納さ れていない場合は，パケットルーター602からキャッ シュの要求を行う。他に命令をすでにキャッシュした命令発行ユニットがあれば，スレッドの移住を行うために スレッド状態をパケットルーター602に伝送する。【0232】命令バス信号617には，二次キャッシュ 116 からリプレースされる命令が送られる。取得した命令は，命令キャッシュのデータメモリ 616 に格納さ れる。取得した命令は，スレッドが空き次第即座に発行 される。
【0233】命令メモリは，命令アドレスと独立した命令を順に格納することができる。そのため，予測された分岐先を含めた命令の動作順に格納される。この機構を実現するために，命令キャッシュタグメモリ606はす べてのアドレスビットを含み，キャッシュヒット時にす べてのアドレスの比較を行う。
【0234】この機構を使用すると，同じ命令を使用 し，同じ分岐方向を採択するスレッドは，命令キャッシ ュに常にヒットすることになり，命令リプレース時間だ けでなく，分岐ベナルティ一時間すら削隇することがで きる。この榞構は，同一の動作をする大量のスレッドで最大の効果を発揮する。
【0235】なお，この分破予測が的中したかどうかを確認するために，命令TAGメモりには予想される分岐方向のビットを持たせる。レジスタ内容への分岐につい ては命令キャッシュタグメモリ 606 から発行された次 の命令アドレスを使用する。命令キャッシュのインデッ クスは，直前の命令キャッシュのインデックス値を常に使用する。インデックス値の算出は，スレッド発行時，命令キャッシュミスヒット時にのみ行われる。
【0236】同一の構造のスレッドでは，スレッド内部 で同じ命令間でデータの受け渡しが行われる場合が多 い。ただし，すべてのスレッドで同じアドレスを利用し てデータを受け渡す場合もあれば，レジスタに対する相対アドレスを使用する場合もある。スタック，ヒープを用いる一般的な場合では，むしろ後者が多い。そのよう な場合では，データキャッシュ間の転送が必要になる。【0237】そのために，命令間でデータの授受がある という予測ビットを設ける。データフロー予測ビット は，その命令が書き込んだデータアドレスを，自動的に別のラインに送ることを可能にする。
【0238】データフロー予測ビットには，バリッドビ ットとともに，送り先の演算ユニットを示す「ライン番号」を格納しておく。データのアドレスではないことに注意する。
【0239】データキャッシュミスで，データの実体を検索する際にやってきたパケットは，一次データキャッ シュのヒットを検出することで，一次データキャッシュ に聯接する命令キャッシュに向かってデータフロー予測 ビットを書き込んでいく。そのために，データキャッシ

ュミスパケットには，データキャッシュミスの発生した演算ユニットの識别晋号が伝達される。
【0240】なお，1つのライト命令に対して，複数の リード命令が同じデータを参照する場合は，リード命令同士の転送となる。そのために，データフロー予測ビッ トはロード命令にも必要になる。
【0241】分岐命令とロードストア命令は同侍に利用 されないため，データフロー予測ビットと分岐予測ビッ トは共用きれ，命令デコード結果によって使い分けられ る。
【0242】スレッド間で共有するデータが多い場合
は，PMT方式が優れる。それに対して，自身のスレッ ド内部の転送量が大きく，スレッド間で共有するデータ か沙ない場合は，SMP方式が優れる。これらの双方の長所を取り入れるために，SMP 実行モードを設ける。
〔0243】SMP実行モードは粍接する命令発行ユニ ット102の員荷が高く，データキャッシュのトランザ クションの負荷が高い場合に，同じスレッド発行ユニッ トで連続して1つのスレッドを管理するモードである。本発明の実施例では，1つのスレッド発行ユニットで4 つのスレッドを動作できる。
【0244】SMP実行モードでは，スレッド状悘を隣接する命令発行ユニット102に伝達せず，次のPCア ドレスを自身のキャッシュ制御ユニット605で利用す る。キャッシュ制御ユニット605は，キャッシュから 4命令を取得して，命令順序アライナ614に送る。
〔0245］他の演算ユニット，キャッシュとのキャッ シュコヒーレンシや同期は，PMTモードと同し階層キ ャッシュコヒーレンシ機構を用いて行われる。すなわ ち，本発明のプロセッサは，SMPモードでは佰層キャ ッシュの共有メモリマルチプロセッサそのものとして機能する。
【0246】（演算ユニット）
【0247】図7は，4並列実行ユニット105の内部構造を示す模式図である。
【0248】命令デコードユニット703は，命令発行 ユニットから送られた命令 727 をデコードし，各演算 ユニットを制御する。同洔に，4つのプログラムカウン タをインクリメントする。分肢命令が実行された場合 は，演算コニットで算出された分岐後のプログラムカウ ンタを利用する。更新されたプログラムカウンタは，隣接する命令デコードユニットに伝達される。
【0249】双方の実施例では，実行ユニット内部に は，レジスタファイル704を4つ搭載している。1つ のレジスタファイルは4つの演算ユニットて共有され る。そして同時に1つの演算コニットに対してのみレジ スタを供給する。
【0250】レジスタファイル704は，コンテキスト スイッチに対応するために4つのバンクを持つ。そし て，レジスタファイル704は，隣接レジスタ忶送を4

クロックで完了する。そのため，一般的なRISCプロ セッサと同じ3つのリードポートと，隣接転送用の2つ のレジスタリードライトの機能を持つ。現在実行中のス レッドが3つのリードポートを利用している間，さらに 2つのレジスタを出力し，鄁接する4並列実行ユニット 105 に転送する。そして，隣接する4並列実行ユニッ ト105内部の，レジスタファイル704のうちの利用 されていないバンクが，2つのレジスタの値を受け収つ て書きこむ。
【0251】こうして，レジスタファイル704は，現行のスーバースカラプロセッサよりも少ないポート数で実現でき，アクセスのための荱延時間を增加させないで済む。
［0252】オペランドクロスバスイッチ706は，4 つのレジスタファイル 704 の値を，それぞれの演算ユ ニットに分配する。3つのオペランドを持つレジスタを 4組分配する。受理する演算ユニット側には4スカのセ レクタが3つ配置される。
【0253】演算ユニットで算出された演算結果は，即座にレジスタファイル704に伝達することはない。演算結果フォワーディング717を利用して結果を利用す る演算ユニットに伝達する。そして，レジスタファイル 704 への書き戻しは，オペランドショートカット信号 722 によって䉂接する演算ユニット105のレジスタ ファイルに伝達される。
【0254】整数演算ユニット708は，フラグ判定， 16 ビットの範囲内での算術，シフト演算，分岐アドレ ス生成などを行う。 4 並列実行ユニット 105 内部に 4 つ配置され，それぞれが独自にスレッドの命令実行を行 う。
【0255】この整数濥算ユニットは16ビット程度の加算器，シフタ，そして 16 ビットを超えた演算が䘕わ れたことを感知する回路で構成される。これは演算ライ ンごとに実証される。
－0256】16ビットを超える析の変更が発生する演算は，パイプラインをストールして，共有64ビット演算コニット710を利用して再計算を行う。64ビット演算ユニットは16ビットの4倍以上の回路が必要にな るため，16ビット演算ユニットとオーバーフロー検出回路の組み合わせを利用し，それを4つ搭載して代用し ても全体の演算ユニット数，回路規模あたりの性能を增 やすことができる。
【0257】この方法が全体の性能をかえって向上させ ることができるのは，本発明の方式がマルチスレッドに よって十分な並列処理を行うことができるという前提に よる。VLIW方式などの命令レベル並列では，並列動作可能な命令が並列度より少ない場合が多く，このよう なペナルティーは絶対に許されない。
【0258】分岐ユニット721は分岐予測の判定と，分吱の発行，およびスレッドの発行制御を行う。ただ

し，分岐アドレスを算出するのは整数演算ユニット71 8による。実際の分皮は4命令に1回程度の頻度で実行 される佰向が強いので，4つのスレッドで共有される。 ［0259］分岐ユニット721は，分岐予測情報との照合を行い，一致した場合は自身のアドレス情報だけを更新する。分岐予測非成立の場合は，スレッド発行ユニ ットに分吱要求を伝達すると同洔に，別の待ち状態のス レッドに切り替える。コンテキストスイッチは即座に行 われ，実行ユニットの待ち時間はない。
【0260】基本的に，分岐後の処理は直後の実行ユニ ットで実行される。分肢予測か的中する場合は，自動的 に分肢後の命令が次の実行ユニットに伝送される。
【0261】ただし，キャッシュミスの場合は，キャッ シュの共有状態を確認することで，すでに命令が格納さ れている実行ユニットを検索する。発見された場合は， その実行ユニットにスレッドを移住させる。基本的にス レッドの移住には全てのレジスタファイルの転送が必要 となる。ただし，データのほうはデータキャッシュコヒ ーレンシ機構が自動的に働くので必要はない。
〔0262】関数からのリターンの場合は，スレッドを呼び出し元の実行ユニットに移住させる。ただし，渡す レジスタは1つの返り値のみである。スタックの退避，復帰は自動的に行われるので転送は必要ない。
－0263】SMPモードは，直後の演算ユニットで待 ちあわせているスレッドのプライオリティーが高く，さ らに後続のスレッドの顀荷が低い場合に発生する。空い た演算ユニットを有効に利用するための手段である。
【0264】レジスタ同期ユニット723は，レジスタ内容の隣接ユニットへの転送と，スレッドの移住のため のメモリへの自動読み書きを行う。
【0265】スレッドの移住は，1つのバンクのレジス夕の内容をそつくり他のスレッドに入れ替える作業であ る。実施例1のプロセッサにおいて，スレッド移住には合計4クロックを要する。
【0266】スレッドの移住には，メモリを介してレジ スタの値を伝達する。スタックポインタから利用すべき メモリアドレスを演算ユニット708で算出し，現在の レジスタをロードストアコニット713に送る。新規の スレッドに対しても，スタックポインタからアドレスを算出し，ロードストアユニット713から新規のレジス タセットを読み込む。レジスタ退漒の際には，ロードス トアコニット713のアドレスバスもデータ転送に利用 する。同時に4つのスレッド移住を行うため，8つのレ ジスタを同時に枟送する能力を有する。
〔0267】浮動小数点加算ユニット719，浮動小数点乗算ユニット712は，整数演算ユニットと異なり，精度が常に一定であり，動作が組かく決定されているの で，倍精度の演算ユニットの機能のすべてを実装する必要がある。ただし，浮動小数点命令の出現頻度を考慮し て，1つの実行ユニット108ごとに，浮動小数点加算

ユニット719と，乗算と加算を同時に行う浮動小数点乗算ユニット712が1つづつ配置される。【0268】なお，これらのレイテンシの長い演算は，複数のスレッドが同峙に利用する。演算中は，これらの共有演算ユニットの内部にスレッドの情報が格納ざれ，結果の値とともに整数演算ユニットに伝達される。〔0269】除算ユニット718は，除算，平方根など の，時間のかかり，かつ出現頑度の低い浮動小数点演算 を行う。除算，平方根の演算は乗算と異なり，現実的な規模でパイプライン化して高速化する手段はない。その ため，1つの演算あたり数クロックのスループット時間 が必要になる。そして，1つの除算ユニット718は，除算命令の，出現頻度を考虑して，4つのスレッドて共有 される。
【0270】ロードストアユニット713は，4つのロ ードストア命令の実行を同時に行い，8ワード分の転送能力を持つ。4つの溑算ユニット 705 からの要求を受理してロードストアを行うとともに，待ち状態のスレッ ドのロードを実行する機能を持つ。
【0271】バイト単位の転送をワードに符号に応じて拹張する操作，あるいはその逆もこのユニットで行われ る。
〔0272】ロードストアユニット713には，4つの データキャッシュカ接続され，アクセスを行うアドレス によって使い分ける。データのアクセスは，同時に被数 のユニットのアクセスを可能にする。そのために，4つ のアドレス，データバスを互いにクロスハ接続する。
〔0273］同じ一次キャッシュへのアクセスがかちあ った場合は，優先度の低いスレッドを停止して，ロード の実行を待つ。キャッシュミスの場合も同樣である。
〔0274】ロードの衝突，キャッシュミスによるスレ ッドの停止の場合には，停止したスレッドの代わりに，前に停止してロードの終了したスレッドを再開する。
〔0275】なお，前にロード，あるいはストアしたデ一夕と，同じアドレスを利用するロード命令が直後に存在する場合は，データキャッシュへのアクセスを行わず に，同じデータを渡す。通常のプロセッサのライトバッ ファと異なり，渡す対象は同一スレッドでなくても良 い。この機構に9よって，同一の命令を利用するスレッ ドの連続動作させる際のデータキャッシュアクセスが最小限となる。
【0276】演算結果フォワーディングユニット717 は，実行ユニット105内部の演算ユニット間のデータ の受け浪しを行う。同洔に，長時間演算ユニットを利用 する必要のある命令では，揹接する実行ユニット105 に途中経過のレジスタ値を渡す。この機糗によって，除算などの時間のかかる命令をパイプライン動作させるこ とができる。同一の除算などの命令を利用するスレッド が連続する場合のスループット性能を高めるためであ る。

【0277】（データキャッシュュニット）
【0278】本発明のプロセッサは，データキャッシュ のスルーブット碓保，遠距離の一次キャッシュ間の埵送 のために，階層キャッシュ櫣造を取る。岂らに，スレッ ド間の仮想記憶機棤の共有のために，データキャッシュ は基本的に仮想アドレスとしている。
102791データキャッシュは話大きスループットを要求されるため，擬似的に蕧数の要求を受理する栱造と する。もして，キャッシュ内部のデータの共有管理のた めに，ディレクトリ方式キャッシェコヒーレンシを探用 する。ディレクトリ方式はデータアクセスのレイテンシ に劣るが，褀数のキャッシュの要求に対応しやすい方式 である，ディレクトリ方式の詳絴については，文献1の P679からの記載を参照のこと。
102801文献1：Computer Archit echture a Quantitative Ap proach Second Edition
著者：John L Hennessy，David
A Patterson
出版社：Morgan Kaufmann Publi shers，Inc．
【0281】図8に，本発明の第一の実施例における一次データキャッシュ111，二次キャッシュ116の接続関係模式図を示す。
【0282】4並列実行ユニット105たは，一次デー タキャッシュ111が4つ接続される。4つの一次デー タキャッシュ111は，すべてが1つの二次キャッシュ 116 に接続される。な极，二次キャッシュはデータ，命令の双方を格納ずる。
【0283】803は一次データキャッシュのタグであ る． 806 は，二次キャッシュのタグである。
【0284］データキャッシュは仮想アドレス空間を利用し，複数のプロセスが混在するため，異なったブロセ入空間のエントリが混在する。そのため，タグメモリ内部にはプロセス空間のIDが配置され，一敖比較の時に アドレスとともに欵牧される。さらに，タグメモリ内部 には共有先を特定する共有ビットを有する。
【0285】一次データキャッシュ111，二次キャッ シュ116は，アドレスの下位で分割したバンクを持 ち，䧤接する転送は同時に，そして，連続するアトレス は枚改のキャッシュバンクが同時にアクセスさせること を可能にする。二次キャッシュタグメモリ806，二次 キャッシュデータメモリバンク807も，アドレスに対 して分割され，複数のアクセスを同時に受理する。
【0286】データキャッシュ制湛ユニット802は，
キャッシュミスの場合に適切なキャッシュからデータを要求する。さらに，デー夕転送の要求に応じて，適切な キャッシュにデータを転送する，さらに，内部のキャッ シュの共有状態を管理子る。
【0287】実行ユニット105がー次データキャッシ

ユ111への読み込みを行うケースについて説明する。一次キャッシュデータメモリ804からデータを読み込 むと同洔に，一次キャッシュタグメモリ803に対して アクセスを行う。一䡙的なキャッシュと同じく，タグメ モりの境み出し内容が要求されたアドレスと一致しない場合，あるいはなのエントリが楽効となっている場合， データキャッシェミスとする。をの場合，スレッドに対 してストールを要求し，二次キャッシュ116からデー夕を要求する。
【0288】実行ユニット105が一次データキャッシ ュ111への書きこみを行うケースについては，まずー次キャッシュタグメモリ803だけに対してアクセスを行う。アドレスが一配してが，該当するデータが共有状既に指定されている場合は，二次キャッシュ116に対してインバリッド要求を発行する。
【0289】一次データキャッシュタグ803には，2 ビットの共有情報を倉む。继接する一次キャッシュへの共有状急と，それ以外のキャッシュとの共有状態であ る．
【0290】アクセスバッファ115は，一次データキ ャッシュ111から二次キャッシュ116へのアクセス が不可能である場合に，アクセス情報およびスレッドの情報を蓄積する。あるいば，二次キャッシュ116から一次キャッシュ111へのインバリッド伝達の蒂禎にも用いられる。
【0291】アクセスバッファ115は，一次キャッシ ユ111からの興接䎐送要求を受理し，二次キャッシュ 116 を通さずず舜接するアクセスバッファ131にデ ータを送信することも行う。
10292】同時に，アクセスバッファ117からデー夕を受理して，一次キャッシュュ16内部の共有状䭒を諷べる。共有状態であれば，データを格洮するか，該当 する一次キャッシュ111に伝送する。
【0293】二次キャッシュ116は，一次キャッシュ 111加らのキャッシュアクセスを受理するととむに，隣接する二次キャッシュ，さらにメモリインターフェー ス，あるいは実施例には存在しないが三次キャッシュか らの要求を受け，適切な相乎にアクセス要求等を送出す る。
【0294】なお，本発明のプロセッサでは，データの㭛送やインバリッドの伝燵は，スレッドの伝送速度に間 に合えぼ十分である。SMP方式と異なり，階局バス間 の転送レイテンシは演算ユニットの秝軹率とはほとんど関倸がない。そして，インバリッド伝違の方向も常に一定であり，転送スルーブットの䧸保も可能になる。【0295】図14に，本発明のキャッシュにおける夕 グメモりの櫣造を示す。一次キャッシェ111，二次キ ャッシュ116はともに仮想空間であるため，タグフド レスの一致比較だけでは不十分であり，ブロセスIDの …致の判定が必要である。

10296】ディレクトリ方式キャッシュの実装のため に，共有状態を示すビットを設ける。一次キャッシュ
は，䋅接する一次キャッシュと，ニ次キャッシュの2つ の転送先が考えられるため，2ビットの共有情報を利用 する。
【0297】二次キャッシュタグ806には，6ビット の共有情報を含む。隣接する二次キャッシュへの共有状㮩と，4つの一次キャッシュへの共有状態4ビットと，三次キャッシュ，TLBユニットなどへの共有状態1ビ ットで搆成される。
【0298】（仮想記憶機構）
【0299】仮想記憶機粯は，内部表記のアドレス表記 を実際のメモリアドレスに対応させ，内部表記のアドレ ス以上の実メモリ空間を扱うことを可能にする。また，複数のプロセス空間の間の保護，およびメモりに存在し ないメモリ空間の判定を行う。この仮想記憶の変撸を効率的に行うためのバッファが，TLBユニット120で ある。
【0 300】本発明の方式では，この仮想記憶焳搆にも以下の特徴がある。
【0301】（1）TLBは演算コニットのある一定の集団ごとにそれぞれ専局のものを置く。
【0302】（2）キャッシュは仮想アドレスとし，実際のメモリのアクセスの直前まで仮想空間の変換を行わ ない。
〔0303】（3）TLBの改変は，キャッシュにコピ一があるにもかかわらず，TLBエントリのない状態を作り出す可能性がある。
【0304】（4）スレッド間の高速同期のための，デ ータフロー同期の根栱を提供する。
〔0305】複数のTLBを所持する場合は，TLB間 で互いにコピーを持たせることになる。だが，オリジナ ルのエントリは常にメモリバンクに専属の1つとする。 そのため，TLBの改変の際は，常にメモリバンクに専属のTLBに対して行う。オーナーであるTLBは，共有しているすべてのTLBに向かってページの興効化 （インバリッド）を伝達する。
【0306】図9に，本発明の実施例におけるTLBユ ニット120の内部栱造の模式図を示す。
【0307】仮想アドレス902は，TLBタグメモリ 903，TLBデータメモリ909に入力される。構造的にはセットアソシアティブのキャッシュと同じであ る。TLBタグメモリ903は仮想アドレス902の内容と比䡈器904で比較され，一致した場合のみTLB データメモリ904の内容を使用する。本㬰施例では， 4ウェイセットアソシアティブ方式で実装することでタ グメモリ，データメモリを4つ使用して，TLBのヒッ ト率を向上させている。まったくページが一致するもの がない場合は，ページフォルト例外発生ユニット905

【0308】仮想アドレスに相当するページがTLBユ ニット901内部に存在する場合は，TLBデータメモ リ904の内容のうちの1つが，物理アドレスとして選択ざれる。変換されたアドレスは，物理アドレス信号9 06 から出力される。
【0309】本発明におけるTLBにはもう一つの役割 がある：それは，データフロー同期と呼ばれる，指定し たアドレスへのデータアクセスを自動的に検出する機能 である。TLBエントリメモリ909には，アドレスの完全な—致を比較するための仮想アドレスが格新されて おり，ページの一致によってデータフロー比較器908 に伝達される。仮想アドレスが完全に一致した場合は， データフロー同期発生ユニット907によって，登録さ れたスレッドが生起される。一致比輐のマスクビットに よるアドレス領域の指定も可能である。
【0310】図15に，本発明のプロセッサにおけるT LBユニットのエントリを示す。通常のTLBと同じ く，変換後の物理アトレス，ページごとの保護情報など を持ち，複数のプロセス空間を混在させせるめのプロセ スIDを持つ。
【0311】通常のTLBと異なるのは，二次キャッシ ュや他のブロセッサへの共有情報を6ビット格納してい ることと，データフロー同期のための一致比較アドレ ス，一致比僌施囲のビットを持ち，さらに，データフロ ーの検出で生起すバきスレッドIDを格納していること の 2 点である。
［0312］本発明においてTLBユニットは，キャッ シュのディレクトリ共有情報を示す最上位のエントリで もある。二次キャッシュの全て，ローカルメモリ，そし てプロセッサ外部への共有を示すビットをそれぞれ持 つ。
【0313】そのため，二次キャッシュ同士やメモリへ のデータ転送や，二次キャッシュからプロセッサ外部へ のインバリッド要求などは，まずほTLBに要求され る。TLBでは，TLBエントリの持つ6ビットの共有情報に従って，4つのニ次キャッシュ，プロセッサの持 つローカルメモリ，及びプロセッサ外部に直接伝達され る。
【0314】制御言号パケットルーター910は，TL Bへの書きこみを受理するとともに，データフロー一致 やページミスによる例外スレッドを発行し，スレッドパ ケット911に向けて伝達する。
【0315】（外部インターフェースユニット）
【0316】本発明のプロセッサは，襍数のプロセッサ を接続して利用するために以下の特徴を持つ。
【0317】（1）スレッドを自動的に複数のプロセッ サに分配する。
【0318】（2）各プロセッサにそれぞれローカルメ モりを接続する。
【0319】（3）各プロセッサ間のアクセスは仮想ア

ドレス空間とする
【0320】本発明のプロセッサでは複数のメモリを接続し，それらを全て 1 つのスレッドの仮想アドレス空間 からアクセスすることを可能にする。
【0321】図10に，データキヤッシュと外部を接続 するTLB120，ローカルメモリインターフェース1
22，プロセッサ間インターフェースユニット124の接続関係の模式図を示す。
【0322】本発明のプロセッサにおいて，基本的には物理アドレスは，TLBユニット120とローカルメモ リインターフェース122の間だけで利用される。物理 アドレス専用信号1009が相互に接続される。
【0323】本発明のプロセッサにおいては，割り込み は最優先プライオリティーを持つスレッドの発行として処理される。リアルタイム性能は，スレッド制御ユニッ トによるプライオリティー制御によって確保できる。本発明のプロセッサは，プライオリティーの高いスレッド にいつでも動作を移すことができるためである。
【0324】本発明のプロセッサはマルチスレッドを前提としているため，複数のプロセッサ間でスレッドを発行するのにソフトウェア上の追加はほとんど必要ない。少なくともユーザーレベルのソフトウェアでは無改造で複数のプロセッサにスレッドを分配できる。
【0325】マルチプロセッサインターフェース124 は，メモリアクセスバス125とともに，制御パケット バス1007を有する。プロセッサ内部の制御パケット信号1012は，そのままプロセッサ外部に出力するこ とができる。
【0326】マルチプロセッサインターフェース124 は，TLBによって該当する仮想アドレスがプロセッサ間共有状態を示す場合に，内部からの仮想アドレスを共有バス信号 125 に対して出力し，スレッド状態101 2を制御パケットバス1007に出力する。
【0327】本発明のプロセッサは，外部の共有バス信号125からの仮想アドレスの受信によっても，TLB 120 へのアクセスを行う。プロセッサ内部にデータの コビーがある場合は，TLB120のエントリが存在 し，二次キャッシュへのアクセスによってデータの実体 のあるキャッシュの場所も階層的に特定することができ る。TLBのエントリが存在しない場合には，OSによ る仮想記憶処理によって本来の物理アドレス，メモリバ ンクの所在を特定することになる。
【0328】（制御信号パケット）制御信号をパケット化して伝達する方式は，制御信号をエンコードするこ
と，複数の経路の眍線を共有することで，制御信号の配線の規模，長さを最小限にできる。さらに，複数の信号 のタイミング制御を，同一の回路で行うことで単純にす ることができる。その欠点は，伝達のためのレイテンシ が劣ること，パケットを中継するパケットルータの回路規模が大きいことである。

【0329】ところが，本発明の方式では，即座に制御信号を伝達する必要があるのは隣接するユニットにかぎ られる。それ以外の制御信号は，スレッドのパイプライ ン進行にあわせて伝達すれば十分である。すなわち，パ ケット制御方式の欠点であるレイテンシは問題ではなく なる。そして，パケットルーターの回路的な規模の増大 も局所的なものであるため，配線短縮の効果の方が大き い。
【0330】図11に，個々のパケットルータの内部構造の模式図を示す。パケットルーターは以下の3つの機能を持つ。
【0331】（1）パケットに応じてユニットの制御を行う
【0332】（2）パケットの目的地，情報量に応じ
て，襍数のパケットルーターのうちの1つを選択してパ ケットを送り出す。
【0333】（3）パケットのタイミングをチェックし て，スレッドの進行に対して遅れていれぼスレッドをス トールする。
【0334】1101はパケットルーターである。受信 した1102パケット信号を，コマンドデコーダー11 03 が解釈する。パケットをこのパケットルーター11 01 で即座に利用する場合は，制御信号デコーダー 11 04 にバケット信号を入力する。制御信号デコーダ11 04 は，デコード結果と，パケットルーターのあるユニ ットの状態信号1105に応じて，個別のステートマシ ン1106を動作させ，ユニットの制御をローカル制御信号1107で行う。制御信号デコーダ1104，ロー カルステートマシン1106の構造はユニットごとに異 なる。
【0335】パケットを中継する場合は，まず，タイミ ングチェッカ1112でパケットが時間どおりに到達し ているかどうかを判定する。時間に遅れている場合はス レッドスト一ル要求信号1111でパケットを要求した スレッドを停止する。パケットバッファ1108に蓄積 する。パケットが時間以内に到達している場合は，パケ ット出力ユニット1110て襍数のパケットバスのうち の1つを選択してパケットを出力する。
【0336】パケットの送信先は最終的な送信先に応じ て静的に決定できる。トラフィックに応じた動的な経路制御などを行うわけではないため，一般的なネットワー クで行うような最適な経路制御の必要はない。
【0337】図12に，本発明の第一実施例におけるパ ケットルーターの配置を示す。
【0338】パケットルーターは大まかなユニット，バ スバッファごとに設置され，ユニットの制御を行う。パ ケット制御信号線は隣接したパケットルーターの間のみ に配線される。
【0339】パケット制御信号は，スレッドのパイプラ インの進行に従って伝送される。たとえば，演算ユニッ

トからTLBユニットへの書き込みを要求した場合は， キャッシュコニットのルーターを通過して伝達される。再送の中継に時間がかかるため，転送は数クロックを要 する。ただし，枟送の間に別のスレッドの動作が可能で ある。
〔0340】この棵構によって，最小限の配線で並列数 に見合うだけの数の制御信号を送ることができる。
〔0341】図27に，制御パケット信号の倒を示す。 すべての制御パケットは，32ビット程度のC P（Co ntrolPacket）信号を持つ。
【0342】ControlPacketには，バケッ トの機能を示すPacketCommand，パケット のパラメータを示すValueFieldを持つ。Re questorUnitは要求元，Targetuni tは伝達先のユニットを示す。
【0343］RemainingTimeはパケットが時間内に伝達されたがどうかの確認を行うための値であ る。この値をデクリメントすることで，バケットの進行 か間に合っているかどうかの判定を行う。UserLe velは，制御パケットの特権しベルを示す。
〔0344】スレッドの情報が必要なパケットは，やは り32ビット程度のTI信号が付加される。TIにはつ゚ ロセス，スレッドIDと，スレッドの優先順位，ユーザ ーレベルが格納されている。
【0345】この2つに加えて，アドレス，データ，P C（プログラムカウンタ），SP（スタックポインタ） などの値が付加される。TIとPC，SPによって，ス レッドのすべての情報か管理される。CPとアドレス， データが通常の内部バストランザクションに利用され
る。なお，制御パケット信号の仕㨾は，スレッド状想転送，データ転送などの目的によって変えることもでき，
共用することもできる。
【発明の効果】
〔0346］（回路規模）
〔0347】基本的に，プロセッサに求められる性能は周波数性能と並列性能の積である。しかし，利用目的に よっては，コストあたりの性能，および消費電力あたり の性能も求められる。本発明の方式は，回路の組みあわ せによってそれらのいずれにも最適な構成にできること を示す。
【0348】今後のプロセッサの速度は，配線幄延にほ ぽ比例して決定される。半導体のプロセスの進化に従 い，回路の局所的な運延時間は縮小傾何がある。しか し，それには配線もトランジスタと同じオーダーで絔小 するという前提条件が必要である。そのため，回路の大規模化によって配線が縮小されない場合は，微細化にも かかわらず周波数性能の向上は不可能になる。そのた め，チップ全体の配線を行わないようにして，配線のオ ーダーを増加させないことが，周波数性能の向上を維持 するために不可欠である。

〔0349】配線の規模は，データ秐送幅と転送相手の数で决まる。データ転送幅のN倍の増加に対して，配袙 の規模はN倍に比例して増大する。遅延の増大はわずか である。それに対して，枟送相手のN倍の増加に対して は，配線の規模はNの二乗に比例して增加する。そし て，荱延も N倍て増加する。そのため，枟送相手を増や すことより，枟送湢を増やすことの方が遥かに容易であ る。
〔0350】本発明のプロセッサは，バスの階層化によ って転送相手の組みあわせを常に4つ程度に制限してい る。この規模は現行のインオーダースーバースカラ方式 プロセッサと同程度である。これ以上の一対一接続の配線は行わないため，いくら並列度か增加しても，周波数性能を阻害する配缐長の増加か発生することはない。〔0351】シフトレジスタ型忶送は，自由な耺送能力，比較的高いビークバンド幅，バスのアービトレーシ ョンの容易さという長所があるが，欠点としてはレイテ ンシ性能が最低となる。このレイテンシ性能の低下を隠薉するためにマルチスレッドを利用する。
【0352】表1に，VLIW方式，SMP方式，本発明のPMT方式ごとの回路規模，幄延時間の比較の表を示す。
【0353】VLIW方式は，並列规模の增大に対して周波数性能を著しく低下させる。マルチプロセッサ方式 は，周波数性能は維持できるが，回路規模の增大が大き い。それに対して本発明のPMT方式は，メモリ，演算 ユニットの共有によって，最小限の回路規模で並列性能 を増加させることができる。
【0354】（ユニット稼滴率加ら見た性能向上）
〔0355】本発明の方式は，単体のスレッドのレイテ ンシ性能ではほかかのパイプラインプロセッサに劣るが，複数のスレットの動作全体で性能を稼ぐことができる。 そのため，全体の性能はすべてのスレッドの和である大域的な処理性能で判断されなければならない。さらに本発明の方式は，演算ユニットなどの楾動率を最大にする ことで，回路規模に対する全体の性能を最大にできる。 それに対して，ほかの方式の多くは回路規模を增加する ほと演算ユニットなどの悸動率が下がる佰向がある。以下，演算ユニットなどの棲動率が他の方式に対して高い ことを示す。
【0356】表2は，本発明の方式と，SMP方式との各状況に対する演算ユニットの停止期間の比烄の表であ る。
【0357】本発明の方式は，自由な命令配置能力と，局所SMPモード機能によって，あらゆる演算コニット をほぼ常に動作させることができる。従来のPMT方式 が命令の配置に命令アドレスの制限があったのと対照的 である。
〔0358】本発明のプロセッサは，例外の発生頻度が スレッド発行ユニットの供給能力を超えない限り，ほと

んど全てのペナルティーを隠蔽することができる。すな わち，スレッドが十分供給されている限り，本発明の方式はVLIW，マルチプロセッサ方式よりも演算ユニッ トの嫁動率で兴る。しかも，それはスレッドが独立に並列動作できる限り，演算ユニットの数に比例して性能を向上できる。
【0359】マルチプロセッサ方式は，コンテキストス イッチにOSの介在が必要である。さらに，スレッドを別のプロセッサに移して再開させる「スレッドの移住」 に，すべての状態をキャッシュコヒーレンシで転送する必要がある。この動作には，約100クロック以上の間 プロセッサのバスを占有するため，数千クロック以上の レイテンシを筜蔽するのでなければ意味がない。さら に，スレッドを再開するには，動作しているスレッドが OSを呼び出して，各スレッドに対して再開条件が整つ ているかどうかを確認しなければならない。
【0360】次に，マルチプロセッサ方式にコンテキス トスイッチ機能をハードウェアで実装して自動的に行う ことを考える。それでも，すべてのプロセッサに大量の スレッド，そしてそれら全てのスレッドの状態と，完全 なスケジューリングハードウェアを同時に搭哉する必要 がある。さらに，スレッドの移住には大量のプロセッサ間転送が必要になり，オーバーヘッドは削減できない。
【0361】以上の結論として，マルチプロセッサ方式 とレイテンシ隠蔽機構は両立しにくい。
【0362】本発明の方式は，コンテキストスイッチは ハードウェアで実装される。本発明の方式は，すべての スレッドの空きスロットが1 つのスケジューリングハー ドウェアを通るので，どの空き状態のノードにも即座に スレッドを供給できる。
【0363】さらに，本発明の方式では，停止していた スレッドは，基本的には停止した時と同じノードで再開 することができる。この場合は状態の転送が一切必要な く，そのノードが空いた時点で即座にスレッドを再開で きる。このため，スレッドの移住をほとんど行わずに，最適なスレッドの負荷分散が可能になる。
【0364】さらに，同期変数の待ち合わせに関して
も，同期変数のアクセスによってバスを止めることはな
い。更に，データフロー同期を利用すれば，スケジュー リングの必要も同期変数の碓認も必要ない。この機能に よって本発明のプロセッサはマルチスレッドのオーバー ヘッドをなくし，マルチスレッドをあらゆるレイテンシ の隠萑に使用することを可能にしている。
【0365】本発明の方式における唯一のSMP方式に対する短所は，パイプライン間のスレッドの移住であ る。しかし，スレッドの移住の頻度はバイブラインを長 くすることによって減少させることができる。
【0366】最小限のキャッシュ容量でスレッドの稼動率を上げるためには，同じ命令やデータを利用するスレ ッドを集中して実行すれば良い。それは同じ工程の仕事

を集中して行うほうが効率が良いことを意味する。本発明の方式は，命令，データキャッシュミスの管理によっ て，ある程度は自然にこの共有の形になる。
【0367】本発明の方式は，隣接する演算ユニットに全てのレジスタ状態を転送するかわり，共有するデータ の転送量が減るPMT方式を基本とする。それに加え て，レジスタ状態を転送しない代わりに，共有するデー夕の転送量が最大となるSMP方式も可能にする。
【0368】PMT方式では，命令の間のデータ転送ス ループットは，近傍の命令間ほど多く必要とされ，命令間が遠距離になるほど減少する傾向にある。それに対し て，スレッド間のデータ転送のためのスループットは， スレッド間のデータの共有が多く，並列度が増大するほ ど拡大する。理由は，1つのデータを大量のプロセッサ がほぼ独立して参照するためである。そのために，SM P方式ではメモリバス稼働率に著しい偏りが生じる。
【0369】PMT方式は，スレッド間のデータ転送の スループットを最小限にする方式である。よって，どん なに並列度を上げて，かつ同じデータを共有しても，局所的なデータバスのデータスループットの増加を抑制す ることができる。すなわち，データの共有とスケーラブ ルな並列性能向上を同時に実現することができる。
【0370】それに対して，SMP方式は，スレッド間 の転送には弱いが，単体の演算ユニットだけで実行がで きるという長所がある。そのため，独立したスレッドの実行では，SMP方式を利用するほうがメモリバスの稼働率が最小となる。
【0371】本発明の方式は，データキャッシュ間の転送量によって自動的にPMT方式，SMP方式を使い分 け，常にメモリバス稼働率を最小にすることができる。【0372】一般的に，キャッシュの容量が増大すれ ば，それだけキャッシュミスの確率が減少して全体の性能を上げることができる。しかし，キャッシュの容量の増大はキャッシュアクセスの速度低下を招く。そのため には，キャッシュを分割するのが望ましいが，複数のキ ヤッシュへの接続はやはり配線運延による速度低下を招 く。理想的なキャッシュ容量増大の方法は，キャッシュ と演算ユニットを直結させて，それを組にして大量に配置することである。しかし，従来のマルチプロセッサ方式では，キャッシュを襍数持たせても，複数のキャッシ ュのほとんどに同じ内容を格納する必要があり，キャッ シュの容量増大の効果を見込むことはできない。【0373】それに対して，本発明の方式では，PMT方式を利用する限りは，複数のキャッシュへの同じデー夕の複製を抑制することができ，キャッシュの容量を増大させてヒット率を向上させることができる。さらに， スレッドの中で何度も利用するデータ，あるいはスレッ ドの中で発生したデータについても，データを利用する キャッシュに対してのみ直接データを送るため，データ の複製が最小限で斉西。

〔0374】（命令，データ，演算ユニットの共有）
【0375】現在のプロセッサでは，命令メモりの内容 はプログラムのロード時に決定され，まず改変されるこ とはない。それを許すと，命令の読み込み，動作順序が保証されない現在のブロセッサでは動作が保証されない ためである。
〔0376】そのため，命令メモりはアドレスに対して必ず同じ値が読み出され，他のスレッドからの改変のおう それもまずない。ということは，同じ命令メモりを利用 するスレッドはすべて1つの命令を利用できれば効率的 である。PMT方式の作用によって，1つの命令は連続 してパイプライン状に動作する大量のスレッドから参照 できる。そのため，本発明の方式はオンチップマルチプ ロセッサなどに比較して命令のメモリサイズ，リプレー スに要求されるメモリスループットが揺かに小さい。
［03771本発明の方式では，バイプラインの動作を止める分岐命令，データキャッシュミスは，マルチスレ ッドによってある程度は源蔽できる。しかし，スレッド発行ユニットの供給能力を超えるほど頻発する場合は，本発明の方式でもやはりパイプラインを停止することに なり，性能を低下させる。そのため，命令に置かれた予測情報を用いて，そのペナルティーを極力賕少するのが望ましい。
〔0378】本発明の方式は，1つの命令を全てのスレ ッドが共有できる。そして，分岐予測情報，データフロ一予測情報は，命令列の内容，すなわち命令アドレスに依存し，個別のスレッドの状態にほとんど体存しない。 ということは，これらの予側情報は1つあれば全てのス レッドから共有できる。
〔0379】マルチプロセッサ間データ転送は，プロセ ッサの数が増加するにしたがって局所的にも増大し，個々のプロセッサのバス転送性能を使用し，マルチプロセ ッサにおいてスケーラブルな性能向上を阻害する。
【0380】プログラムで利用するデータには，細かい数値の相違はあるものの，80\％の部分のプログラムで 20% の部分のデータを利用するという経験則がある。 たとえば，キャッシュはこの経験則を利用するものであ る。ということは，1つのプログラムを分割したスレッ ドも，その多くは同じデータを利用することになるのは当然である。この性質を利用するために，まったく違う スレッドが同じテータを利用する方法を提供する。【03811データは同じ命令が同じようなデータを利用するケース，あるいはまったく違うデータを利用する 2つのケースが考えられる。当然データの共有の効率は命令ほどではないが，大まかなデータブロックに対して は共有できるケースが多い。そのために，データキャッ シュを分散配置し，複数のスレッドから共有させる。
〔0382］これによって，データキャッシュの共有と大容量化を同時に実現し，結果的に単体スレッドから見 た一次キャッシュの容量を増加させることができる。無

論，一次キャッシュ間の転送量は増加するが，それはス ループットのみの増大であり，比較的実装しやすい。【03831本発明の方式では階接する4つ程度の演算 ユニットが1つのスレッド発行ユニットを共有する。こ れは，分岵，例外によるスレッドの切り替えの頻度が数命令に一回という前提によるものである。
【0384】待ち状態のスレッドは，この4つの同洔実行されているスレッドのうちの，どのスレッドが停止し ても即座に発行できる。
【0385】さらに，演算ユニットの列の長さの增加，分岐予測などによってスレッドの移住の頻度が減れば， スレッド発行ユニットの程剧率も相対的に減少する。【0386】そして，本発明の方式では細かいスレッド の切り替えのためのスレッドの移住も必要ない。レジス タ，データキャッシュの内容は，常にスレッドが停止し た場所に待機されており，スレッドの空きスロットを待 つだけで盹座に実行を開始できる。
【0387】SMP方式では，キャッシュレイテンシ隠荍のためには，すべてのプロセッサがそれぞれ実行可能 な待ちスレッドを待栱させておく必要がある。あるい は，梦接するいくつかのプロセッサに対してスレッド発行を行わせることになる。このことは，大量のブロセッ サに対して任意のスレッドを高速に発行することか灘し いことを意味する。
【0388】本発明の方式では，各スレッド発行ユニッ トを，すべてのスレッドがパイプラインとして通過する ことによって共有させる。このため，すべてのづロセッ サが特ち状態のスレッドを有することなく高速コンテキ ストスイッチを可能にする。データキャッシュや特殊演算ユニットの結果などを取得し，再開する準備が整った スレッドは，常に空いたあらゆるスレッドスロットに対 して発行される。
【0389】（IPユニットの共有）
【0390】IPユニット間のデータの転送能力を最大 にするには，I P ユニット間を信号で直結するのが最も簡単である。だが，それでは全体で1つの機能しか実現 できない。
【0391】次に考えられる手段は，それぞれIPコニ ットの周にマイクロプロセッサをそれぞれ置くことであ る。しかしこれでは，プログラムがIPの結合ことに分散されることになり，処理が一樣にならないという欠点 がある。
【0392】さらに次に考えられるのは，IPユニット とマルチプロセッサをクロスバスイッチで結合する方法 である。これならば，共有バスよりは搙れた転送能力が碓保できる。しかしクロスバスイッチは回路規模が（M個のプロセッサ，N個のIPユニットユニットに対し て）MとNの積のオーダーでで増加する方式であり，大規模並列には向かない。さらに，そのために切り替えの レイテンシ時間が遅く，自由でかつ動的な転送には向か

ない。
【0393】本発明の方式は，各ノードに対してIPュ ニットを接続して，I Pユニット間の通信能力をノード間のデータ通信能力で確保する。I Pユニット間のデー夕の整形は，PMTの各演算ユニットがそれぞれ独立し て行い，IPユニットへの入力の負荷が低い場合はすぐ に別の用途に転用できる。
【0394】I Pユニットの転送能力が単体の演算ユニ ットの転送能力を超えるほど高い場合には，近傍の複数 の演算ユニットを利用して転送し，その先の演算ユニッ トでデータを整形することができる。このような場合で は特に，マルチプロセッサ＋クロスバスイッチ方式より圧倒的にIPユニットからの転送性能を稼ぐことができ る。
【0395】本発明の方式では，IPユニットはソフト ウェアでは特殊命令，あるいはシステムアクセス命令と して使用することができ，その配置に制限はない。実際 のI Pユニットの分散配置に対しては，スレッドの移住機構が自動的に対応することもできる。I Pユニット間 のデータ転送は，PMT方式が持つレジスタ隣接䎐送， キャッシュコヒーレンシ機構で行う。こうして，同じソ フトウェアで自由なI Pユニットの組み合わせに効率良 く対応することができる。
【0396】（消費電力予測）
【0397】CMOS回路は，信号の変化のときに電力 を消費する。信号が変化しなければ電力をほとんど消書 しない。
【0398】ところで，本発明の方式は，同一のスレッ ドを連続して動作させるときは，その供給される命令，演算ユニットの状態は完全に同一である。さらに，利用 するレジスタファイル，データバス，データキャッシュ とのバス通信の内容もスレッド間の違いは少ない。とい うことは，同じスレッドをまとめて実行する時には，各 スレッド間のわずかな動作の違いだけが消費電力にな
る。それに対して，通常のプロセッサでは，各命令ごと にすべての回路の状態か変わるため，すべての回路の半分近くの信号が変化し，消費電力となる。
【0399】結論としては，本発明の方式のプロセッサ は，同一の命令，データを利用したスレッドの連続動作 が可能な場合は，現行のバイプライン方式プロセッサよ りも低い消費電力で同じ性能を発揮できる。アーキテク チャのレベルでこれ以上の低消費電力の手段は考えられ ない。
【0400】表1の記載のように，本発明のプロセッサ は，マルチプロセッサ，VLIW方式に対して，性能に対する回路規笑が最小である。理由は，PMT方式は命令，データ，演算ユニットの共有を行うためである。性能に対する回路規模が最小であるということは，そのま ま性能に対する消費電力が最小であるということを意味 する。

【0401】さらに，本発明の方式は，性能に対する配線長も最小である。今後の半煎体の消費電力は，配線容量の充放電が大半を占めることになると予想されるた め，配線が最小であるということはそのまま消費電力の削減に相がる。
【0402】さらに，前述した同一命令を利用するスレ ッドの連続動作による電力削減とあいまって，本発明の方式は，プログラム可能な回路において，最小の電力で実際の演算を行う方法であるといえる。ただし，本発明 の方式は局所的にはS M P 方式に近い動作モードも持つ ため，その部分はSMP方式と同じ消費電力になる。し かし，本発明の方式は可能な限りPMT方式で演算を行 おうとするため，演算性能に対する消費電力は常に最小 になる。

【図面の簡単な説明】

【図1】本発明の構造を用いたプロセッサの構造模式図 （第一実施例）
【図2】従来のVLIW方式のプロセッサの構造模式図
【図3】従来のマルチプロセッサ方式のプロセッサシス テムの構造模式図
【図4】従来のPMT方式のプロセッサの棈造模式図
【図5】本発明の構造を用いたブロセッサの構造模式図 （第二実施例）
【図6】命令発行ユニットの内部構造模式図
【図7】最大4つのスレッドを同洔に実行する，実行ユ ニットの内部棈造模式図
【図8】一次，二次キャッシュの接続関係を示す構造模式図
【図9】TLBユニットの内部構造模式図
【図10〕TLBと外部インターフェースの接続関係を示方構造模式図
【図11】パケットルーターの内部桃造模式図
【図12】本発明の第一実旅例における，パケットルー ターの配置図。
【図13】命令キャッシュタダメモリの1ラインごとの内容
【図14】データキャッシュタグメモリの1ラインごと の内容
【図15】TLBユニットの1エントリごとの内容
【図16】従来のマルチブロセッサにおける，スレッド の動作例
【図17】本発明のプロセッサにおける，スレッドの動作例
【図18】分岐命令実行における，命令発行ユニットの選択方法を示す概念図
【図19】命令キャッシュのもつ予測情報の書き込み，利用方法を示す概念図
【図20】各種分岐命令の実行概念図
【図21】1つの演算ユニットにおける，パイプライン動作概念図
（ 27 ））01－236221（P2001－236221A）

402 命令発行制御
403 PCラッチ
404 命令メモリ
405 演算ユニット
406 データバスクロスバスイッチ
407 データメモリ
408 外部インターフェース
409 演算要素
501 本発明の第二実施例のプロセッサ
502 前段外部プロセッサインターフェース
503 ショートカットバスインターフェース
504 I Pユニット
510 I／Oバスインターフェース
511 次段外部プロセッサインターフェース
602 パケットルータ
603 制御パケット信号
604 プライオリティー選択ユニット
605 命令キャッシュ制御ユニット
606 命令キャッシュタグメモリ
607 命令ローカルTLB
608 スレッド状態信号
609 スレッド状態制御ユニット
610 スレッド状態信号
611 分岐，データフロー予測信号
612 命令信号
613 分吱要求信号
614 命令順序アライナ
615 スレッド状態信号
616 命令キャッシュデータメモリ
617 命令リプレースバス
618 待ち状態スレッド状態バッファ
619 制御パケット信号
620 スレッド移住制御ユニット
702 プログラムカウンタ信号
703 命令デコードユニット
704 レジスタファイル
705 レジスタ転送バス信号
706 オペランド転送クロスババス
707 オペランドショートカット信号
70816 ビット整数演算ユニット
709 結果ショートカットバス信号
71064 ビット整数演算ユニット
712 浮動小数点加算＋乗算ユニット
713 ロードストアユニット
714 アドレスバス信号
715 データバス信号
716 レジスタ待避バス信号
717 演算結果フォワーディングタニット
718 浮動小数点除算ユニット
719 浮動小数点加算ユニット
（28））01－236221（P2001－236221A）

720 結果ショートカットバス信号
721 分岥ユニット
722 オペランドショートカット信号
723 レジスタ同期ユニット
724 レジス夕法送バス信号
725 プログラムカウンタバス信号
726 分岥発行バケット信号
802 一次キャッシュ制御
803 一次キャッシュタグメモリ
804 一次キャッシュデータメモリ
805 二次キャッシュ制御
806 二次キャッシュタグメモリ
807 二次キャッシェデータメモり
902 仮想アドレス信号
903 TLBタグメモリ
904 アドレス比較器
905 ベージフォルト発生ユニット
906 物理フドレス信号
907 ベージトラップ・データフロー同期発生ユニッ
ト
908 TLBエントリメモリ
909 制枇信号パケットルータ
910 ベージフラッシュシーケンサ
911 スレッドバケット
1001 データバス信号
1004 スレッドバケットバッファ
1007 スレッドバケット信号

【図2】

1009 物理アドレス信号
1011 制御パケット信号
1012 スレッド発行バケット信号
1013 㒈想アドレス
1101 制㣨パケットル一タ
1102 制御パケッット信号
1103 制断コマンドデコーダ
1104 制镺信号デコーダ
1105 ローカル状態信号
1106 ローカル制御ユコット
1107 ローカル制鄉信号
1108 制御パケットバッファ
1109 制御パケット信号
1110 制御パケット出力ユニット
1111 スレッドストール言号
1112 制御パケットタイミンダチェッカ
$1201 ~ 1211$ 制㗅バケットルータ
1801 二次キャッシュ
1802，1804，1807，1809 スレッド管
理ユユット
1803，1805，1808 命命キャッシュ
1806 彷技コニット
1901，1905 命命キャッシュ
1902，1906 実行ユニット
1903 分畦ユニット
1904，1908 データキャッシュ
1907 ロードストアユニット

〔図3】

【図13〕

Insturgton Cache

〔図1〕

［㔷4］

【図5】

［図6】

INTEL－ 1004
Page 300 of 539
（図7）

［図9］

【図10】

【図11】

【図14】

【図16】

INTEL－ 1004
Page 302 of 539

［図17）

［図19】

［図221
［図23］

INTEL－ 1004
Page 303 of 539

（図24）

【図25】

［図26］

【図27】

		Y	
$12 / 10$	310	310 B	
$12 / 12$		$12 / 10$	A
		$12 / 12$	A

Fターム（参考）5B005 JJ13 KK13 LL01 LL11 MM02
MM03 MM32 NN31 PP21 UU32 5B013 AA01 AA05 AA11 BB01 BB18 CC06 CC13 DD04 DD05
5B033 AA02 AA03 AA04 AA13 AA14
AA15 BE05 CA01 CA09 DA04
DA14 DA17 DB02 DB03 DB06
DB12 DD01 DE07
5 B098 AA02 AA10 DD01 DD03 FF01
GA05 GC03 GD02 GD03 GD12 GD14 HH07

Electronic Acknowledgement Receipt	
EFS ID:	8136815
Application Number:	12836364
International Application Number:	
Confirmation Number:	2050
Title of Invention:	RECONFIGURABLE SEQUENCER STRUCTURE
First Named Inventor/Applicant Name:	Martin Vorbach
Customer Number:	26646
Filer:	Aaron Grunberger/Eunice Chang
Filer Authorized By:	Aaron Grunberger
Attorney Docket Number:	2885/139
Receipt Date:	02-AUG-2010
Filing Date:	14-JUL-2010
Time Stamp:	15:52:59
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with	Payment	no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1	Information Disclosure Statement (IDS) Filed (SB/08)	2885-139-SuppIDS.pdf	376455	no	3
			f608d1e0dae269bf6da549038acc8536fd3 a401		
Warnings:					
Information:			INTEL - 1004		

This is not an USPTO supplied IDS fillable form					
2	Foreign Reference	jp7182167.pdf	3848851	no	27
			9457611 d 505 d 472 c 078 ac 203 1ba14209dd 34 fb 03		
Warnings:					
Information:					
3	Foreign Reference	jp7182160.pdf	7234266	no	47
			15 ecticeld		
Warnings:					
Information:					
4	Foreign Reference	jp8106443.pdf	835987	no	7
Warnings:					
Information:					
5	Foreign Reference	jp9237284.pdf	851886	no	7
			$411336 e 8 c 3 f 112 \mathrm{~d} 6233 \mathrm{~cd} 9 \mathrm{ea} 4 \mathrm{~d} 2 \mathrm{fe} 083 \mathrm{e} 17 \mathrm{e}$ 85 ad		
Warnings:					
Information:					
6	Foreign Reference	jp1146187.pdf	3256385	no	26
Warnings:					
Information:					
7	Foreign Reference	jp2001236221.pdf	5288911	no	35
Warnings:					
Information:					
8	NPL Documents	hauser-dissertation-pt1.pdf	8121866	no	90
			$35 \mathrm{cb} 31640 \mathrm{~b} 1 \mathrm{~d} 3 \mathrm{~b} 37 \mathrm{cf} 54 \mathrm{beca5} 2 \mathrm{a} 103 \mathrm{~d} 0 \mathrm{~d} 26$ dbfea		
Warnings:					
Information:					
9	NPL Documents	hauser-dissertation-pt2.pdf	7854385	no	90
Warnings:					
Information:					
10	NPL Documents	hauser-dissertation-pt3.pdf	6008091	no	75

Warnings:					
Information:					
11	NPL Documents	hauser-garp-architecture.pdf	4660068	no	56
			0c82ccab86dbe99f97c50a5558843384494 194ff		
Warnings:					
Information:					
12	NPL Documents	venkatachalam.pdf	3576330	no	24
			959da867e98cdb5a5f98f5ed2de694bc690 4 f893		
Warnings:					
Information:					
13	NPL Documents	Mar28-07-VirtexIIPRO-Pt-1of-4. pdf	20871527	no	140
			$\underset{\substack{\text { 63080954c5f93b3045232aboc8c2752543 } \\ 5 c l e}}{ }$ scle		
Warnings:					
Information:					
14	NPL Documents	Mar28-07-VirtexIIPRO-Pt-2-of-4. pdf	17838292	no	140
			e522fb83810fae296c79084ac945dee65140 d3f6		
Warnings:					
Information:					
15	NPL Documents	Mar28-07-VirtexIIPRO-Pt-3-of-4. pdf	21287377	no	141
			706019abad 18-3e338a77055950eceeff17a		
Warnings:					
Information:					
16	NPL Documents	Mar28-07-VirtexIIPRO-Pt-4-of-4. pdf	21700442	no	139
Warnings:					
Information:					
17	NPL Documents	XilinxPR4-2-Disclosure.pdf	667082	no	9
			a439082c4582deb6afd8c87b712d8ab $14 a$		
Warnings:					
Information:					
18	NPL Documents	Xilinx-PR4-1Disclosure.pdf	670307	no	9
			$785495 b 71$ e26e55bd3bda1e93da4d63efc afd67		
Warnings:					
Information:					
19	NPL Documents	DefendantPR4-2- ClaimChartExtrEvidence.pdf	2361962	$\begin{aligned} & \text { no } \\ & -\mathbf{1 0 0 4} \end{aligned}$	19
			$99 f f 3 a c 0 b 6 d 07 b 33914 b 45 e b 0 c 99 b 19492$ $260 d a$		

Warnings:					
Information:					
20	NPL Documents	PACTPR4-1-ListofClaimTerms. pdf	\square	no	7
Warnings:					
Information:					
21	NPL Documents	PACTPR4-2-ClaimsConExtEv. pdf	1627327 7820573c2eb9f546d32e7b13ba63031877	no	16
Warnings:					
Information:					
22	NPL Documents	ExtrEvidenceExhibit-Part-1.pdf		no	46
Warnings:					
Information:					
23	NPL Documents	ExtrEvidenceExhibit-Part-2.pdf		no	38
Warnings:					
Information:					
24	NPL Documents	ExtrEvidenceExhibit-Part-3.pdf		no	54
Warning					
Informa					
25	NPL Documents	ExtrEvidenceExhibit-Part-4.pdf		no	27
Warning					
Informa					
26	NPL Documents	ExtrEvidenceExhibit-Part-5.pdf		no	77
Warning					
Informa					
27	NPL Documents	ExtrEvidenceExhibit-Part-6.pdf		no	24
Warnings:					
Information:					
28	NPL Documents	ExtrEvidenceExhibit-Part-7.pdf		no	61

| Warnings: |
| :--- | :--- |
| Information: |
| Total Files Size (in bytes): |
| This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, |
| characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a |
| Post Card, as described in MPEP 503. |
| New Applications Under 35 U.S.C. 111 |

U.S. DEPARTMENT OF COMMERCE			
PATENT AND TRADEMARK OFFICE			
RESPONSE TO NOTICE TO FILE	$\mathbf{2 8 8 5} / \mathbf{1 3 9}$	$\mathbf{2 0 5 0}$	
CORRECTED APPLICATION PAPERS -			
FILING DATE GRANTED			
Application Number	Fling Date		
$\mathbf{1 2 / 8 3 6 , 3 6 4}$	July 14, 2010	Unaminer	Unassigned
Invention Title	$\mathbf{2 8 2 7}$		
RECONFIGURABLE Unit			

Address to:
Mail Stop: Missing Parts
Commissioner for Patents
Alexandria, VA 22313-1450

I hereby certify that this correspondence is being electronically transmitted via ESF-Web addressed to: Mail Stop: Amendment, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on
Date: September 22, 2010
Signature: /Eunice K. Chang/
Eunice K. Chang

Sir:

1. To complete the filing requirements for the above-referenced application under 37 C.F.R. § 1.51, enclosed please find the following for submission:
2. A copy of the Notice to File Corrected Application Papers dated August 2, 2010,
3. A substitute specification (clean copy), and
4. A substitute specification (mark-up copy).

No new matter has been added.

Dated: September 22, 2010
Respectfully submitted,
By: /Aaron Grunberger/
Aaron Grunberger, Reg. No. 59,210
KENYON \& KENYON LLP
One Broadway
New York, N.Y. 10004
(212) 425-7200 (telephone)
(212) 425-5288 (facsimile)

CUSTOMER NO. 26646

Date Mailed: 08/02/2010

NOTICE TO FILE CORRECTED APPLICATION PAPERS

Filing Date Granted

An application number and filing date have been accorded to this application. The application is informal since it does not comply with the regulations for the reason(s) indicated below. Applicant is given TWO MONTHS from the date of this Notice within which to correct the informalities indicated below. Extensions of time may be obtained by filing a petition accompanied by the extension fee under the provisions of 37 CFR 1.136(a).
The required item(s) identified below must be timely submitted to avoid abandonment:

- A substitute specification excluding claims in compliance with 37 CFR 1.52,1.121(b)(3), and 1.125 is required. The substitute specification must be submitted with markings and be accompanied by a clean version (without markings) as set forth in 37 CFR 1.125 (c) and a statement that the substitute specification contains no new matter (see 37 CFR $1.125(\mathrm{~b})$). Since a preliminary amendment was present on the filing date of the application and such amendment is part of the original disclosure of the application, the substitute specification must include all of the desired changes made in the preliminary amendment. See 37 CFR 1.115 and 1.215.

Applicant is cautioned that correction of the above items may cause the specification and drawings page count to exceed 100 pages. If the specification and drawings exceed 100 pages, applicant will need to submit the required application size fee.

Replies should be mailed to:

> Mail Stop Missing Parts Commissioner for Patents
> P.O. Box 1450
> Alexandria VA $22313-1450$

Registered users of EFS-Web may alternatively submit their reply to this notice via EFS-Web. https://sportal.uspto.gov/authenticate/AuthenticateUserLocalEPF.html
For more information about EFS-Web please call the USPTO Electronic Business Center at 1-866-217-9197 or visit our website at http://www.uspto gov/ebc.

If you are not using EFS-Web to submit your reply, you must include a copy of this notice.

/masfaw/

[^0]Cross-Reference to Related Applications

This application is a continuation of U.S. Patent Application Serial No. 12/541,299, filed on August 14, 2009, which is a continuation of and claims priority to U.S. Patent Application Serial No. 12/082,073, filed on April 7, 2008, which is a continuation of and claims priority to U.S. Patent Application Serial No. 10/526,595, filed on January 9, 2006, which was the National Stage of International Application Serial No. PCT/EP03/38599, filed on September 8, 2003, which claims benefit of and priority to German Patent Application Serial No. DE 10241 812.8, filed on September 6, 2002, the entire contents of each of which are expressly incorporated herein by reference thereto.

Description
The present invention relates to a cell element field and a method for operating same. The present invention thus relates in particular to recionfigurable data processing architectures.

The term reconfigurable architecture is understood to refer to units (VPUs) having a plurality of elements whose function and/or interconnection is variable during run time. These elements may include arithmetic logic units, FPGA areas, input/output cells, memory cells, analog modules, etc. Units of this type are known by the term VPU, for example. These typically include arithmetic and/or logic and/or analog and/or memory and/or interconnecting modules and/or communicative peripheral modules (IOs), typically referred to as PAEs, which are arranged in one or more dimensions and are linked together directly or by one or more bus systems. PAEs are arranged in
any configuration, mixture and hierarchy, the system being known as a PAE array or, for short, a PA. A configuring unit may be assigned to the PAE. In addition to VPU units, in principle systolic arrays, neural networks, multiprocessor systems, processors having multiple arithmetic units and/or logic cells, interconnection and network modules such as crossbar circuits, etc., as well as FPGAs, DPGAs, transputers, etc., are also known

It should be pointed out that essential aspects of VPU technology are described in the following protective rights of the same applicant as well as in the particular follow-up applications to the protective rights listed here:

P 4416 881.0-53, DE 19781412.3 , DE 19781 483.2, DE 19654 846.2-53, DE 19654 593.5-53, DE 19704 044.6-53, DE 198 80 129.7, DE 19861 088.2-53, DE 19980 312.9, PCT/DE 00/01869, DE 10036 627.9-33, DE 10028 397.7, DE $10110530.4, \mathrm{DE} 10111$ 014.6, PCT/EP 00/10516, EP $01102674.7, \mathrm{DE} 10206$ 856.9, 60/317, 876, DE 10202044.2 , DE 10129 237.6-53, DE 10139 170.6.

It should be pointed out that the documents listed above are incorporated in particular with regard to particulars and details of the interconnection, configuration, embodiment of architecture elements, trigger methods, etc., for disclosure purposes.

The architecture has considerable advantages in comparison with traditional processor architectures inasmuch as data processing is performed in a manner having a large proportion of parallel and/or vectorial data processing steps. However, the advantages of this architecture in comparison with other processor units, coprocessor units or data processing units in general are not as great when the advantages of
interconnection and of the given processor architectonic particulars are no longer achievable to the full extent.

This is the case in particular when data processing steps that are traditionally best mappable on sequencer structures are to be executed. It is desirable to design and use the reconfigurable architecture in such a way that even those data processing steps which are typically particularly suitable for being executed using sequencers are executable particularly rapidly and efficiently.

The object of the present invention is to provide a novel device and a novel method for commercial application.

The method of achieving this object is claimed independently. Preferred embodiments are characterized in the subclaims.

According to a first essential aspect of the present invention, in the case of a cell element field whose function and/or interconnection is reconfigurable in particular during run time without interfering with unreconfigured elements for data processing with coarsely granular function cell elements in particular for execution of algebraic and/or logic functions and memory cell means for receiving, storing and/or outputting information, it is proposed that function cellmemory cell combinations be formed in which a control connection to the memory means is managed by the function cell means. This control connection is for making the address and/or data input/output from the memory controllable through the particular function cell, typically an $A L U-P A E$. It is thus possible to indicate, for example, whether the next item of information transmitted is to be handled as an address or as data and whether read and/or write access is necessary. This transfer of data from the memory cell, i.e., the memory cell means, which may be a RAM-PAE, for example, to the function cell means, which may be an $A L U-P A E$, for example, then makes
it possible for new commands that are to be executed by the ALU to be loadable into the latter. It should be pointed out that function cell means and memory cell means may be combined by integration into a structural unit. In such a case it is possible to use a single bus connection to input data into the memory cell means and/or the ALU. Suitable input registers and/or output registers may then be provided and, if desired, additional data registers and/or configuration registers different from the former may also be provided as memory cell. means.

It should also be pointed out that it is possible to construct a cell element field containing a plurality of different cells and/or cell groups, strips or similar regular patterns being preferably provided with the different cells because these permit a very regular arrangement while facilitating the design equally in terms of hardware design and operation. With such a strip-like arrangement or other regular layout of a small plurality of different cell elements, for example, elements having integrated function cell means-memory cell means combinations, i.e., cells in which function cell means and memory cell means are integrated according to the present invention, are provided centrally in the field, where typically only a few different program steps are to be executed within a sequencer structure because, as has been recognized, this provides very good results for traditional data stream applications, while more complex sequencer structures may be constructed at the edges of the field where, for example, an ALU-PAE which represents a separate unit possibly may be provided in addition to a separate RAM-PAE and optionally a number of I/O-PAEs using, i.e., arranging appropriate control lines or connections thereof because frequently more memory is needed there, e.g., to temporarily store results generated in the field central area of the cell
element field and/or for datastreaming, to pre-enter and/or process data needed thereby.

When cells that integrate memory cell means and function cell means are provided, e.g., in the center of the field, a small memory may then be provided there for different commands to be executed by the function cell means such as the ALU. It is possible here in particular to separate the command memory and/or the configuration memory from a data memory, and it is possible to design the function memory to be so large that alternatively, one of several, e.g., two different sequences may be executed. The particular sequence to be executed may occur in response to results generated in the cell and/or control signals such as carry signals, overflow signals, and/or trigger signals arriving from the outside. In this way, this arrangement may also be used for wave reconfiguration methods.

In this way it is possible to construct a sequencer structure in a cell element field by providing a dedicated control connection controlled by function cells in a dedicated manner between function cell and function cell means and memory cell and/or memory cell means with only two elements connected by suitable buses without requiring additional measures and/or design changes otherwise. Data, addresses, program steps, etc., may be stored in the memory cell in a manner known per se from traditional processors. Since both elements, if properly configured, may also be used in another way, this yields a particularly efficient design which is particularly adaptable to sequencer structures as well as vectorial and/or parallelizable structures. Parallelization may thus be supported merely via suitable PAE configurations, i.e., by providing PAEs that operate in two different spatial directions and/or via cell units equipped with data throughput registers.

It is clear here that a plurality of sequencer type structures may be constructed in the reconfigurable cell element field by using only two cells in a cell element field, namely the function cell and the information processing cell. This is advantageous inasmuch as a number of different tasks that are different from one another per se must often be executed in data processing, e.g., in a multitasking-capable operating system. A plurality of such tasks must then be executed effectively and simultaneously in a single cell element field. The advantages of real time applications are obvious. Furthermore it is also possible to operate the individual sequencer structures that are constructed in a cell element field, providing the control connection according to the present invention, at different clock rates, e.g., to lower power consumption by executing lower priority tasks at a slower rate. It is also possible to execute sequencer type program parts in the field in parallel or vectorially in execution of algorithms that are largely parallel per se and vice versa.

Typically, however, it is preferable for sequencer-type structures to be clocked at a higher rate in the cell element field, whether they are sequencer-type structures having an area connected to neighboring cells or buses or whether they are combinations of spatially differentiable separate and separately useable function cell elements such as ALU-PAEs and memory cell elements such as RAM-PAEs. This has the advantage that sequential program parts, which are very difficult to parallelize in any case, may be used in a general data flow processing without any negative effect on the overall data processing. Examples of this include, e.g., a HUFFMANN coding which is executable much better sequentially than in parallel and which also plays an important role for applications such as MPEG4 coding, but in this case the essential other parts of
the MPEG4 coding are also easily parallelizable. Parallel data processing is then used for most parts of an algorithm and a sequential processing block is provided therein. An increase in the clock frequency in the sequencer range by a factor of 2 to 4 is typically sufficient.

It should be pointed out that instead of a strip arrangement of different cell elements, another grouping, in particular a multidimensional grouping, may also be selected.

The cell element field having the cells whose function and/or interconnection is configurable may obviously form a processor, a coprocessor and/or a microcontroller and/or a parallel plurality of combinations thereof.

The function cells are typically formed as arithmetic logic units, which may be in particular coarsely granular elements but may also be provided with a fine granular state machine, for example. In a particularly preferred exemplary embodiment, the ALUs are extended ALUs (EALUs) as described in previous patent applications of the present applicant. An extension may include in particular the control line check, command decoder unit, etc., if necessary.

The memory cells may store data and/or information in a volatile and/or nonvolatile form. When information stored in the memory cells, whether program steps, addresses for access to data or data stored in a register-type form, i.e., a heap is stored as volatile data, a complete reconfiguration may take place during run time. Alternatively it is possible to provide nonvolatile memory cells. The nonvolatile memory cells may be provided as an EEPROM area and the like, where a rudimentary BIOS program that is to be executed on boot-up of the system is stored. This permits booting up a data processing system without additional components. A nonvolatile data memory may also be provided if it is decided for reasons
of cost and/or space that the same program parts are always to be executed repeatedly, and it is also possible to alternate among such fixed program parts during operation, e.g., in the manner of a wave reconfiguration. The possibilities of providing and using such nonvolatile memories are the object of other protective rights of the present applicant. It is possible to store both volatile and nonvolatile data in the memory cells, e.g., for permanent storage of a BIOS program, and nevertheless be able to use the memory cell for other purposes.

The memory cell is preferably designed to be able to store a sufficient variety of data to be executed and/or program parts to be executed. It should be pointed out here that these program parts may be designed as program steps, each specifying what an individual PAE, in particular the assigned PAE, i.e., in particular the function cell controlling the memory cell, is to do in the next step, and they may also include entire configurations for field areas or other fields. In such a case, it is readily possible for the sequencer structure that has been created to issue a command on the basis of which cell element field areas are reconfigured. The function cell triggering this configuration then operates as a load logic at the same time. It should be pointed out that the configuration of other cells may in turn be accomplished in such a way that sequencer type data processing is performed there and it is in turn possible in these fields to configure and/or reconfigure other cells in the course of program [execution]. This results in an iterative configuration of cell element areas, and nesting of programs having sequencer structures and parallel structures is possible, these structures being nested one inside the other like babushka dolls. It should be pointed out that access to additional cell element fields outside of an individual integrated module is
possible through input/output cells in particular, which may massively increase the total computation performance. It is possible in particular when configurations occur in a code part of a sequencer structure configured into a cell element field to perform, if necessary, the configuration requirements on an assigned cell element field which is managed only by the particular sequencer structure and/or such requirements may be issued to a configuration master unit to ensure that there is uniform occupancy of all cell element fields. This therefore results in a quasi-subprogram call by transferring the required configurations to cells or load logics. This is regarded as independently patentable. It should be pointed out that the cells, if they themselves have responsibility for configuration of other cell element field areas, may be provided with FILMO structures and the like implemented in hardware or software to ensure proper reconfiguration. The possibility of writing to memory cells while executing instructions, thereby altering the code, i.e., the program to be executed, should be pointed out. In a particularly preferred variant, however, this type of self-modification (SM) is suppressed by appropriate control via the function cell.

It is possible for the memory cell to send the information stored in it directly or indirectly to a bus leading to the function cell in response to the triggering of the function cell controlling it. Indirect output may be accomplished in particular when the two cells are adjacent and the information requested by the triggering must arrive at the ALU-PAE via a bus segment that is not directly connectable to the output of the memory cell. In such a case the memory cell may output data onto this bus system in particular via backward registers. It is therefore preferable if at least one memory

[^1]cell and/or function cell has such a backward register, which may be situated in the information path between the memory cell and function cell. In such a case, these registers need not necessarily be provided with additional functionalities, although this is readily conceivable, e.g., when data is requested from the memory cell for further processing, corresponding to a traditional LOAD of a typical microprocessor for altering the data even before it is loaded into the PAE, e.g., to implement a LOAD++ command. Data conduction through PAEs having ALUs and the like operating in the reverse direction should be mentioned.

The memory cell is preferably situated to receive information from the function cell controlling it, information saving via an input/output cell and/or a cell that does not control the memory cell also being possible. In particular when data is to be written into the memory cell from an input/output cell, it is preferable if this input/output cell (I/O-PAE) is also controlled by the function cell. The address at which information to be written into the memory cell or, if necessary, to also be transmitted directly to the function cell (PAE) is to be read, may also be transferred to the I/OPAE from the ALU-PAE. In this connection it should be pointed out that this address may be determined via an address translation table, an address translation buffer or an MMU type structure in the I/O-PAE. In such a case, this yields the full functionalities of typical microprocessors. It should also be pointed out that an I/O functionality may also be integrated with a function cell means, a memory cell means and/or a function cell means-memory cell means combination.

In a preferred variant, at least one input-output means is thus assigned to the combination of function cells and memory cells, whether as an integrated function cell and a memory cell combination or as a function cell and/or memory cell
combination composed of separate units, the input/output means being used to transmit information to and/or receive information from an external unit, another function cell, function cell memory cell combination and/or memory cells.

5 The input-output unit is preferably likewise designed for receiving control commands from the function cell and/or the function cell means.

In a preferred variant, the control connection is designed to transmit some and preferably all of the following commands:

DATA WRITE INTERNAL, DATA WRITE EXTERNAL DATA READ EXTERNAL, ADDRESS POINTER WRITE INTERNAL, ADDRESS POINTER WRITE EXTERNAL, ADDRESS POINTER READ INTERNAL, ADDRESS POINTER READ EXTERNAL, PROGRAM POINTER WRITE INTERNAL, PROGRAM POINTER WRITE EXTERNAL, PROGRAM POINTER READ INTERNAL, PROGRAM POINTER READ EXTERNAL, STACK POINTER WRITE INTERNAL, STACK POINTER WRITE EXTERNAL, STACK POINTER READ INTERNAL, STACK POINTER READ EXTERNAL, PUSH, POP, PROGRAM POINTER INCREMENT.

This may be accomplished through a corresponding bit width of the control line and an associated decoding at the receivers. The particular required control means and decoding means may be provided inexpensively and with no problems. As it shows, a
practically complete sequencer capability of the arrangement is obtained with these commands. It should also be pointed out that a general-purpose processor data processing unit is obtained in this way.

The system is typically selected so that the function cell is the only one able to access the control connection and/or a bus segment, i.e., bus system functioning as the control connection as a master. The result is thus a system in which the control line functions as a command line such as that provided in traditional processors.

The function cell and the memory cell, i.e., I / O cell, are preferably adjacent to one another. The term "adjacent" may be understood preferably as the cells being situated directly side by side. "Directly" means in particular a combination of such cells to form integrated units which are provided repeatedly on the cell element field, i.e., as part of same to form the field. This may mean an integral unit of memory cells and logic cells. Alternatively, they are at least close together. The system of the function cells and memory cells in integrated, i.e., close, proximity to one another thus ensures that there are no latency times, or at least no significant latency times, between triggering and data input of the required information in the function cell, merely because the connections between the cells are too long. This is understood to be "direct." If latency times must be taken into account, pipelining may then also be provided in the sequencer structures. This is particularly important in the case of systems with very high clock rates. It should be pointed out that it is readily possible to provide cell units clocked at a suitably high frequency such as those known in the related art per se which are also able to access suitable memory cells with appropriate speed. In such a case, e.g., when architecture elements that are known per se are used for the
function cells, reconfigurability of the function cell element and the corresponding interconnections must be provided. In a particularly preferred variant, the function cells, the information providing cells such as memory cells, I/O cells and the like are arranged multidimensionally, in particular in the manner of a matrix, i.e., on grid points of a multidimensional grid, etc. If there is a regular structure, as is the case there, information, i.e., operands, configurations, trigger signals, etc., is typically supplied to a cell from a first row, while data, trigger signals and other information is dispensed in a row beneath that. In such a case, it is preferable if the cells are situated in one and the same row and the information transfer from the information-providing cell into the required input into the function cell may then take place via a backward register. The possibility of using the registers for pipelining should also be mentioned.

Patent protection is also claimed for a method for operating a cell element field, in particular a multidimensional cell element field having function cells for execution of algebraic and/or logic functions and information-providing cells, in particular memory cells and/or input/output cells for receiving and/or outputting and/or storing information, at least one of the function cells outputting control commands to at least one information-providing cell, information for the function cell being provided there in response to the control commands, and the function cell being designed to perform the additional data processing in response to the information thus provided to thereby process data in the manner of a sequencer at least from time to time.

Sequencer-type data processing is thus made possible in a reconfigurable field by output of the control commands to the memory cell of the sequencer structure. The commands which may
be output as control commands by the function cell permit a sequencer type operation such as that known from traditional processors. It should be pointed out that it is readily possible to implement only parts of the aforementioned commands but nevertheless ensure data processing that is completely of the sequencer type.

The present invention is described in greater detail below and as an example on the basis of the drawing, in which:

Fig. 1 shows a cell element field according to the present invention,

Fig. 2a shows a detail thereof,

Figs. 2b, c show the detail from Figure 2a during various data processing times,

Fig. 3
shows an alternative embodiment of the detail from Figure 2,

Fig. 4
shows a particularly preferred variant of the detail,

Fig. 5 shows an example of the function folding onto a function cell-memory cell combination according to the present invention,

Fig. 6a shows an example of sequential parallel data processing

Fig. 6b shows a particularly preferred exemplary embodiment of the present invention

Fig. 7 shows an alternative to a function folding unit.

According to Figure 1, a cell element field 1 for data processing includes function cell means 2 for execution of arithmetic and/or logic functions and memory cell means 3 for receiving, storing and/or outputting information, a control connection 4 connecting function cells 2 to memory cells 3.

Cell element field 1 is freely configurable in the interconnection of elements 2, 3, 4, namely without interfering with ongoing operation of cell element parts that are not to be reconfigured. The connections may be configured by switching bus systems 5 as necessary. In addition, the particular functions of function cells 2 are configurable. The function cells are arithmetic logic units extended by certain circuits that permit reconfiguration, e.g., state machines, interface circuit for communication with external load logic 6, etc. Reference is made to the corresponding previous applications of the present applicant.

Cell elements 2, 3 of cell element field 1 are arranged twodimensionally in rows and columns, one memory cell 3 being situated directly next to a function cell 2 with three memory cell-function cell pairs per row, the function cells and memory cells being interconnected by control connections 4. Function cells and memory cells 2,3 , or the combination thereof have inputs which are connected to the bus system above the row in which the particular cell element is located to receive data therefrom. In addition, cells 2,3 have outputs which output data to bus system 5 below the row. As explained below, each memory cell 3 is also provided with a backward register (BW) through which data from the bus below a row may be guided through to the bus above the particular row.

Memory cell means 3 preferably has at least three memory areas, namely a data area, a program memory area and a stack area, etc. However, in other variants of the present invention
it may be adequate provide only two areas, namely a data memory and a program area memory, each optionally forming part of a memory cell means. It is possible in particular to perform not simply a separation of a memory that is identical in terms of hardware and is homogeneous per se into different areas but instead to provide memory areas that are actually separated physically, i.e., in terms of hardware technology. In particular the memory width and/or depth may also be adapted to the particular requirements. When a memory is designed in such a way that it has a program area and a data area in operation, it is preferable to design this memory, i.e., memory area for simultaneous access to data and program memory areas, e.g., as a dual port memory. It may also be possible to provide closely connected memory areas, in particular within a memory cell means-function cell means combination formed into an integrated area as a pure cache memory into which data from remote memory sites is preloaded for rapid access during data processing.

Except for control connections 4 and the particular circuits within the function cells (ALU in Figure 2) and/or memory cells (RAM in Figure 2), the cell element field for data processing in Figure 1 is a traditional cell element field such as that which is known and conventional with reconfigurable data processing systems, e.g., a VPU according to XPP technology of the present applicant. In particular, the cell element field of Figure 1 may be operated in the known way, so it has the corresponding circuits for wave reconfiguration, for debugging, transferring trigger signals, etc.

The first distinguishing features of the cell element field of the present invention are derived from control connection 4 and the corresponding circuit, which are described in greater detail below with reference to Figures $2 a$ through $2 c$. It
should be pointed out that whereas in Figure 1, a control connection 4 always leads from a function cell element located farther to the left to a memory cell located farther to the right, specifically only and exactly to one such memory cell, it is also plausibly possible to provide a configurable interconnection for the control lines to be able to address either memory cells situated elsewhere and/or more than one memory cell, if necessary, when there is a great memory demand for information to be received, stored and/or output by the memory cells. For reasons of comprehensibility, however, only individual control connections which are provided in a fixed manner are referred to in Figures 1 and 2, which greatly simplifies understanding of the present invention. The control connection is also substitutable if necessary by traditional lines, assuming the proper protocols are available.

Figure 2 shows function cell 2 as an ALU and function cell 3 as a RAM. Above the row in which the cells are located runs bus 5a, connecting backward register 3 a mentioned above to inputs 3 b of the memory cell and 2 b of the $A L U$. The bus system running below the cell is labeled as 5 c and only the relevant segments of bus system $5 a, 5 b$ are shown here. It is apparent that bus system 5b alternatively receives data from an output $2 c$ of ALU 2, an output 3 C of RAM 3 and carries data into input 3a1 of the backward register.

ALU 2 at the same time has additional inputs and outputs 2al, $2 a 2$ which may be connected to other bus segments and over which the $A L U$ receives data such as operands and outputs results.

Control connection 4 is permanently under control of the extended circuits of the $A L U$ and represents here a connection over which a plurality of bits may be transferred. The width of control connection 4 is selected so that at least the
following control commands may be transmitted to the memory cell: DATA WRITE, DATA READ, ADDRESS POINTER WRITE, ADDRESS POINTER READ, PROGRAM POINTER WRITE, PROGRAM POINTER READ, PROGRAM POINTER INCREMENT, STACK POINTER WRITE, STACK POINTER READ, PUSH, POP. Memory cell 3 at the same time has at least three memory areas, namely a stack area, a heap area and a program area. Each area is assigned its own pointer via which it is determined to which area of the stack, the heap and the program area there will be read or write access in each case.

Bus 5a is used jointly by units 2 and 3 in time multiplex. This is indicated in Figures 2b, 2c. Figure 2b illustrates a situation in which data may be sent from output $2 a 2$ of ALU-PAE to the input of the RAM cell via the backward register, whereas the concurrently existing but unused connection between output 3 c of the RAM to bus 5 b and the connection between the output of backward register $B W$ to input $2 b$ of the ALU-PAE at the point in time of Figure $2 b$ is of no importance, which is why this is indicated with dashed lines. In contrast, Figure 2 c shows a point in time at which memory cell 3 supplies information via its output $3 c$ and the backward register to input $2 b$ of $A L U-P A E 2$ from the stack, heap or program memory area via control line 4 , while the output of $A L U-P A E 2 c$ is inactive and no signal is received at input $3 b$ of the RAM-PAE. For this reason, the corresponding connections are indicated with dash-dot lines and are thus depicted as being inactive.

Within RAM cell 3, a circuit 3 d is provided in which the information received via control line 4 and/or control line bus segment 4 is decoded.

The present invention is used as follows:

First, ALU 2 receives configuration information from a central load logic, as is already known in the related art. The
transfer of information may take place in a manner known per se using the RDY/ACK protocol and the like. Reference is made to the possibility of providing a FILMO memory, etc., with the load logic to permit a proper configuration of the system.

Simultaneously with the data for configuring ALU 2, a series of data is transmitted from the load logic, representing a program, i.e., program part to be executed in the manner of a sequencer. Reference is made in this regard only as an example to Figure $6 a$ in which the HUFFMANN coding is depicted as a central sequential part of an MPEG4 coding which is performed in the manner of data flow per se. The ALU therefore outputs a corresponding command to line 4 during its configuration, this command setting the program pointer for writing at a preselected value within the RAM. The load logic then supplies data received by the ALU over output 2 c and via bus 5 bl and backward register $3 a$, the data going from there to input $3 b$ of RAM-PAE 3. According to the control command on control line 4, data is then written from unit $3 d$ to the program memory location indicated. This is repeated until all the program parts received by the load logic in configuration have been stored in memory cell 3. When the configuration of the ALU is then concluded, the ALU will request the next program steps to be executed by it in the manner of a sequencer by outputting the corresponding commands on control line 4 and will receive the program steps via output 3c, bus 5b, the backward register OE RAM-PAE 3 and bus $5 a$ at its input. During program execution, situations may occur in which jumps are necessary within the program memory area, data must be loaded into the $A L U-P A E$ from the RAM-PAE, data must be stored in the stack, etc. The communication in this regard between the ALU-PAE and RAM-PAE is accomplished via control line 4 so that the ALU-PAE is able to execute decoding at any point in time. Moreover, as in a traditional microprocessor, data from a stack or another

RAM memory area may be received and in addition, data may also be received in the $A L U-P A E$ from the outside as operands.

The program sequence preconfigured in the RAM-PAE by the load logic is executed here. At the same time, command decoding is performed in the $A L U-P A E$ as is necessary per se. This is done with the same circuits per se as those used already for decoding the commands received by the load logic.

At any point in time control line 4 is controlled via the ALU so that the RAM cell always exactly follows the type of memory access specified by the ALU. This ensures that regardless of the time multiplex use of bus elements 5 a , b the elements present in the sequencer structure are instructed at all times whether addresses for data or codes to be retrieved or to be written is on the buses or whether and if so where data is to be written, etc.

The system shown with respect to Figure 2 may be extended or modified in different ways. The variants depicted in Figures 3, 4 and 6 are particularly relevant.

According to Figure 3 , not only a backward register is provided on the RAM-PAE for connecting upper buses and lower buses, but also a forward register is provided on the RAM-PAE and forward and backward registers are provided on the ALUPAE. As indicated by the multiple arrows, these may receive data from other units such as external hosts, external peripherals such as hard drives, main memories and the like and/or from other sequencer structures, PAEs, RAM-PAEs, etc., and send data to them. When an appropriate request command for new program parts from the sequencer structure formed by the ALU-PAE and the RAM-PAE is sent out, it is possible to process program blocks in the sequencer structure which are much larger than those storable in the RAM-PAE. This is an enormous
advantage in particular in complex data processing tasks, jumps over wide areas, in particular in subprograms, etc.

Figure 4 shows an even more preferred variant where the ALUPAE communicates not only with a RAM-PAE but also at the same time with an input/output PAE which is designed to provide an interface circuit for communication with external components such as hard drives, other XPP-VPUs, external processors and coprocessors, etc. The ALU-PAE is in turn the unit which operates as the master for the control connection referred to as "CMD" and the buses are in turn used in multiplex mode. Here again, data may be transferred from the bus below the row to the bus above the row through the backward register.

The system shown in Figure 4 permits particularly easy external access to information stored in the RAM-PAE memory cell and thus allows an adaptation of the sequencer structure to existing traditional CPU technologies and their operating methods to an even greater extent inasmuch as address translation means, memory management units (MMU functions) and the like may be implemented in the input-output cell. The RAMPAE may function here as a cache, for example, but in particular as a preloaded cache.

It should be pointed out that multiple sequencer structures may be configured into one and the same field at the same time; that function cells, memory cells and, if necessary, input-output cells may optionally be configured for sequencer structures and/or [in] a traditional manner for XPP technology and that it is readily possible for one ALU to output data to another ALU, which configures it as a sequencer and/or makes it part of a cell element field with which a certain configuration is executed. In this way, the load logic may then also become dispensable, if necessary.

According to Figure 6, two embodiments of the present invention are combined in one and the same cell element field, namely at the edges of sequencers formed by two PAEs, namely by one RAM-PAE and one ALU-PAE, and in the interior sequencers formed by integrated RAM-ALU-PAEs as integrated function cellmemory cell units, where it is possible to form only part of the cells inside the field as combination cells.

Figure 5 shows at the right (Figure 5c) a function cell-memory cell means combination.

According to Figure 5c, a function cell-memory cell means combination labeled as 50 in general includes bus connections, i.e., bus inputs 51 for the input of operand data and configuration data and, as is preferably also possible here in particular, trigger signals (not shown) and the like and a bus output 52 for output of corresponding data and/or signals.

Within the function cell means-memory cell means combination, an ALU 53 is provided as well as input registers Rio through Ri3 for operand data and trigger signal input registers (not shown). Configuration data registers Rc0 through Rc7 for configuration data, i.e., ALU code data, result data registers Rd0'-Rd3' and output registers Ro0 through Ro3 for results, i.e., trigger signals to be output. Registers Rc and Rd for the configuration data, i.e., opcode data, are triggered by AIU 53 via control command lines 4 and supply data over suitable data lines to the $A L U$ and/or receive result data from it. It is also possible to supply information directly from bus 51 and/or input registers Ri directly to the output registers, i.e., bus 52, exactly as information may be supplied from data registers Rdo-Rd3 not only to the ALU, but also to the output registers. If necessary, connections may be provided between memory areas Rd and Rc , e.g., for implementation of the possibility of self-modifying codes.

Configuration data area Rco through Rc7 has a control unit which makes it possible to work in parts of the area, in particular in repeated cycles and/or through jumps. For example, in a first partial configuration, commands in Rco through Rc3 may be executed repeatedly, and alternatively configuration commands in Rc4 through Rc7 may be executed, e.g., on receipt of an appropriate different trigger signal over bus line 51. This ensures executability of a wave configuration. It should be pointed out that the configuration commands input are typically only instructions to the ALU but do not define complete bus connections, etc.

The unit described above, illustrated in Figure 5, is designed here to be operated with a quadruple clock pulse, like a normal PAE without memory cell means and/or control signal lines 4.

To process data sequencer-style in a data flow in the function folding unit designed in this way, data flow graphs and/or areas according to Figure 5 a are created at first for preselected algorithms. Memory areas Rco are then assigned to each operation to be executed in the graph; incoming data into the graph partial area is assigned to internal input registers Rio; the interim results are assigned to memories Rdo through Rd3 and the output results are assigned to registers Ro. With this assignment, the graph area is executable on the function folding unit. This results more or less in a data flowsequencer transformation by this hardware.

It should be mentioned in this context that it will be preferable in general to use the system of the present invention in such a way that first a data flow graph and a control flow graph are created for a data processing program using a compiler and then a corresponding partitioning is performed; the pieces obtained by the partitioning may then be
executed partially or entirely on sequencer units such as those which may be formed according to the present invention, for example. This more or less achieves data processing in the manner of data flow progressing from one cell to the next, but effects a sequential execution within the cell(s). This is advantageous when the clock frequency is to be increased because of the extremely high computation power of a system to be able to reduce the area and/or number of cells. It should also be pointed out that it is possible to perform this transformation like transition from a purely data flow type of data processing to data flow processing with local sequential parts in such a way that an iterative process is carried out, e.g., in such a manner that first a first partitioning is performed, and if it is then found in the subsequent "rolling up" of the partitioned parts on sequencer units that the resources available on the sequencers or at other sites, for example, are not sufficient, another partitioning taking this into account may be performed and a new "rolling up" may be performed. If extensive use of the function folding units is desired, the number of registers may be increased, if necessary.

It should also be pointed out that the registers in this case may be interpreted as memory cell means or parts thereof. It is apparent that by increasing the memory cell areas, more complex tasks may be arranged in particular in a sequencer fashion but significant parts of important algorithms may be executed with the small sizes indicated and this may be done with high efficiency.

In the present example, the function folding units are preferably formed in such a way that data may be shifted through them without being processed in the ALU. This may be utilized to achieve path balancing in which data packets must be executed via different branches and then recombined without
having to use forward registers such as those known from the architecture of the present applicant. At the same time and/or alternatively, it is possible for the direction of data flow not to run strictly in one direction in the cell element field through an appropriate orientation of a few function cell means, memory cell means, or function folding units but instead to have the data flow run in two opposite directions. Thus, for example, in each even row the ALUs receive their input operands from the left side and in each uneven row the AuUs receive their input operands from the right.

If data must be sent repeatedly through the field, such an arrangement is advantageous, e.g., in the case of unrolled looped bodies, etc. The alternating arrangement need not be strict. For certain applications, other geometries may be selected. For example, a different direction of flow may be selected for the middle of the field than at the edges, etc. The arrangement of function cell units of the same direction of flow side by side may be advantageous with respect to the bus connections. It should be pointed out that the arrangement in opposite directions of multiple directional function cells in one field and the resulting improved data processing independently of providing a control line or the like are regarded as inventive.

Figure 7 shows an alternative to the function folding unit shown in Figure 5.

RECONFIGURABLE SEQUENCER STRUCTURE

Cross-Reference to Related Applications

This application is a continuation of U.S. Patent Application Serial No. 12/541,299, filed on August 14, 2009, which is a continuation of and claims priority to U.S. Patent Application Serial No. 12/082,073, filed on April 7, 2008, which is a continuation of and claims priority to U.S. Patent Application Serial No. $10 / 526,595$, filed on January 9, 2006 , which was the National Stage of International Application Serial No. PCT/EP03/38599, filed on September 8, 2003, which claims benefit of and priority to German Patent Application Serial No. DE 10241 812.8, filed on September 6, 2002, the entire contents of each of which are expressly incorporated herein by reference thereto.

Description

The present invention relates to a cell element field and a method for operating same. The present invention thus relates in particular to reconfigurable data processing architectures.

The term reconfigurable architecture is understood to refer to units (VPUs) having a plurality of elements whose function and/or interconnection is variable during run time. These elements may include arithmetic logic units, FPGA areas, input/output cells, memory cells, analog modules, etc. Units Of this type are known by the term VPU, for example. These typically include arithmetic and/or logic and/or analog and/or memory and/or interconnecting modules and/or communicative peripheral modules (IOs), typically referred to as PAEs, which are arranged in one or more dimensions and are linked together directly or by one or more bus systems. PAEs are arranged in
any configuration, mixture and hierarchy, the system being known as a PAE array or, for short, a PA. A configuring unit may be assigned to the PAE. In addition to VPU units, in principle systolic arrays, neural networks, multiprocessor systems, processors having multiple arithmetic units and/or logic cells, interconnection and network modules such as crossbar circuits, etc., as well as FPGAs, DPGAs, transputers, etc., are also known

It should be pointed out that essential aspects of VPU technology are described in the following protective rights of the same applicant as well as in the particular follow-up applications to the protective rights listed here:

```
P 44 16 881.0-53, DE 197 81 412.3, DE 197 81 483.2,
DE 196 54 846.2-53, DE 196 54 593.5-53, DE 197 04 044.6-53,
DE 198 80 129.7, DE 198 61 088.2-53, DE 199 80 312.9,
PCT/DE 00/01869, DE 100 36 627.9-33, DE 100 28 397.7,
DE 101 10 530.4, DE 101 11 014.6, PCT/EP 00/10516,
EP 01 102 674.7, DE 102 06 856.9, 60/317,876, DE 102 02 044.2,
DE 101 29 237.6-53, DE 101 39 170.6.
```

It should be pointed out that the documents listed above are incorporated in particular with regard to particulars and details of the interconnection, configuration, embodiment of architecture elements, trigger methods, etc., for disclosure purposes.

The architecture has considerable advantages in comparison with traditional processor architectures inasmuch as data processing is performed in a manner having a large proportion of parallel and/or vectorial data processing steps. However, the advantages of this architecture in comparison with other processor units, coprocessor units or data processing units in general are not as great when the advantages of
interconnection and of the given processor architectonic particulars are no longer achievable to the full extent.

This is the case in particular when data processing steps that are traditionally best mappable on sequencer structures are to be executed. It is desirable to design and use the reconfigurable architecture in such a way that even those data processing steps which are typically particularly suitable for being executed using sequencers are executable particularly rapidly and efficiently.

The object of the present invention is to provide a novel device and a novel method for commercial application.

The method of achieving this object is claimed independently. Preferred embodiments are characterized in the subclaims.

According to a first essential aspect of the present invention, in the case of a cell element field whose function and/or interconnection is reconfigurable in particular during run time without interfering: with unreconfigured elements for data processing with coarsely granular function cell elements in particular for execution of algebraic and/or logic functions and memory cell means for receiving, storing and/or outputting information, it is proposed that function cellmemory cell combinations be formed in which a control connection to the memory means is managed by the function cell means. This control connection is for making the address and/or data input/output from the memory controllable through the particular function cell, typically an ALU-PAE. It is thus possible to indicate, for example, whether the next item of information transmitted is to be handled as an address or as data and whether read and/or write access is necessary. This transfer of data from the memory cell, i.e., the memory cell means, which may be a RAM-PAE, for example, to the function cell means, which may be an ALU-PAE, for example, then makes
it possible for new commands that are to be executed by the ALU to be loadable into the latter. It should be pointed out that function cell means and memory cell means may be combined by integration into a structural unit. In such a case it is possible to use a single bus connection to input data into the memory cell means and/or the ALU. Suitable input registers and/or output registers may then be provided and, if desired, additional data registers and/or configuration registers different from the former may also be provided as memory cell means.

It should also be pointed out that it is possible to construct a cell element field containing a plurality of different cells and/or cell groups, strips or similar regular patterns being preferably provided with the different cells because these permit a very regular arrangement while facilitating the design equally in terms of hardware design and operation. With such a strip-like arrangement or other regular layout of a small plurality of different cell elements, for example, elements having integrated function cell means-memory cell means combinations, i.e., cells in which function celf means and memory cell means are integrated according to the present invention, are provided centrally in the field, where typically only a few different program steps are to be executed within a sequencer structure because, as has been recognized, this provides very good results for traditional data stream applications, while more complex sequencer structures may be constructed at the edges of the field where, for example, an ALU-PAE which represents a separate unit possibly may be provided in addition to a separate RAM-PAE and optionally a number of I/O-PAEs using, i.e., arranging appropriate control lines or connections thereof because frequently more memory is needed there, e.g., to temporarily store results generated in the field central area of the cell
element field and/or for datastreaming, to pre-enter and/or process data needed thereby.

When cells that integrate memory cell means and function cell means are provided, e.g., in the center of the field, a small memory may then be provided there for different commands to be executed by the function cell means such as the ALU. It is possible here in particular to separate the command memory and/or the configuration memory from a data memory, and it is possible to design the function memory to be so large that alternatively, one of several, e.g., two different sequences may be executed. The particular sequence to be executed may occur in response to results generated in the cell and/or control signals such as carry signals, overflow signals, and/or trigger signals arriving from the outside. In this way, this arrangement may also be used for wave reconfiguration methods.

In this way it is possible to construct a sequencer structure in a cell element field by providing a dedicated control connection controlled by function cells in a dedicated manner between function cell and function cell means and memory cell and/or memory cell means with only two elements connected by suitable buses without requiring additional measures and/or design changes otherwise. Data, addresses, program steps, etc., may be stored in the memory cell in a manner known per se from traditional processors. Since both elements, if properly configured, may also be used in another way, this yields a particularly efficient design which is particularly adaptable to sequencer structures as well as vectorial and/or parallelizable structures. Parallelization may thus be supported merely via suitable PAE configurations, i.e., by providing PAEs that operate in two different spatial directions and/or via cell units equipped with data throughput registers.

It is clear here that a plurality of sequencer type structures may be constructed in the reconfigurable cell element field by using only two cells in a cell element field, namely the function cell and the information processing cell. This is advantageous inasmuch as a number of different tasks that are different from one another per se must often be executed in data processing, e.g., in a multitasking-capable operating system. A plurality of such tasks must then be executed effectively and simultaneously in a single cell element field. The advantages of real time applications are obvious. Furthermore it is also possible to operate the individual sequencer structures that are constructed in a cell element field, providing the control connection according to the present invention, at different clock rates, e.g., to lower power consumption by executing lower priority tasks at a slower rate. It is also possible to execute sequencer type program parts in the field in parallel or vectorially in execution of algorithms that are largely parallel per se and vice versa.

Typically, however, it is preferable for sequencer-type structures to be clocked at a higher rate in the cell element field, whether they are sequencer-type structures having an area connected to neighboring cells or buses or whether they are combinations of spatially differentiable separate and separately useable function cell elements such as ALU-PAEs and memory cell elements such as RAM-PAEs. This has the advantage that sequential program parts, which are very difficult to parallelize in any case, may be used in a general data flow processing without any negative effect on the overall data processing. Examples of this include, e.g., a HUFFMANN coding which is executable much better sequentially than in parallel and which also plays an important role for applications such as MPEG4 coding, but in this case the essential other parts of
the MPEG4 coding are also easily parallelizable. Parallel data processing is then used for most parts of an algorithm and a sequential processing block is provided therein. An increase in the clock frequency in the sequencer range by a factor of 2 to 4 is typically sufficient.

It should be pointed out that instead of a strip arrangement of different cell elements, another grouping, in particular a multidimensional grouping, may also be selected.

The cell element field having the cells whose function and/or interconnection is configurable may obviously form a processor, a coprocessor and/or a microcontroller and/or a parallel plurality of combinations thereof.

The function cells are typically formed as arithmetic logic units, which may be in particular coarsely granular elements but may also be provided with a fine granular state machine, for example. In a particularly preferred exemplary embodiment, the ALUs are extended ALUs (EALUs) as described in previous patent applications of the present applicant. An extension may include in particular the control line check, command decoder unit, etc., if necessary.

The memory cells may store data and/or information in a volatile and/or nonvolatile form. When information stored in the memory cells, whether program steps, addresses for access to data or data stored in a register-type form, i.e., a heap is stored as volatile data, a complete reconfiguration may take place during run time. Alternatively it is possible to provide nonvolatile memory cells. The nonvolatile memory cells may be provided as an EEPROM area and the like, where a rudimentary BIOS program that is to be executed on boot-up of the system is stored. This permits booting up a data processing system without additional components. A nonvolatile data memory may also be provided if it is decided for reasons
of cost and/or space that the same program parts are always to be executed repeatedly, and it is also possible to alternate among such fixed program parts during operation, e.g., in the manner of a wave reconfiguration. The possibilities of providing and using such nonvolatile memories are the object of other protective rights of the present applicant. It is possible to store both volatile and nonvolatile data in the memory cells, e.g., for permanent storage of a BIOS program, and nevertheless be able to use the memory cell for other purposes.

The memory cell is preferably designed to be able to store a sufficient variety of data to be executed and/or program parts to be executed. It should be pointed out here that these program parts may be designed as program steps, each specifying what an individual PAE, in particular the assigned PAE, i.e., in particular the function cell controlling the memory cell, is to do in the next step, and they may also include entire configurations for field areas or other fields. In such a case, it is readily possible for the sequencer. structure that has been created to issue a command on the basis of which cell element field areas are reconfigured. The function cell triggering this configuration then operates as a load logic at the same time. It should be pointed out that the configuration of other cells may in turn be accomplished in such a way that sequencer type data processing is performed there and it is in turn possible in these fields to configure and/or reconfigure other cells in the course of program [execution]. This results in an iterative configuration of cell element areas, and nesting of programs having sequencer structures and parallel structures is possible, these structures being nested one inside the other like babushka dolls. It should be pointed out that access to additional cell element fields outside of an individual integrated module is
possible through input/output cells in particular, which may massively increase the total computation performance. It is possible in particular when configurations occur in a code part of a sequencer structure configured into a cell element field to perform, if necessary, the configuration requirements on an assigned cell element field which is managed only by the particular sequencer structure and/or such requirements may be issued to a configuration master unit to ensure that there is uniform occupancy of all cell element fields. This therefore results in a quasi-subprogram call by transferring the required configurations to cells or load logics. This is regarded as independently patentable. It should be pointed out that the cells, if they themselves have responsibility for configuration of other cell element field areas, may be provided with FILMO structures and the like implemented in hardware or software to ensure proper reconfiguration. The possibility of writing to memory cells while executing instructions, thereby altering the code, i.e., the program to be executed, should be pointed out. In a particularly preferred variant, however, this type of self-modification (SM) is suppressed by appropriate control via the function cell.

It is possible for the memory cell to send the information stored in it directly or indirectly to a bus leading to the function cell in response to the triggering. of the function cell controlling it. Indirect output may be accomplished in particular when the two cells are adjacent and the information requested by the triggering must arrive at the ALU-PAE via a bus segment that is not directly connectable to the output of the memory cell. In such a case the memory cell may output data onto this bus system in particular via backward registers. It is therefore preferable if at least one ${ }^{1}$ memory

[^2]cell and/or function cell has such a backward register, which may be situated in the information path between the memory cell and function cell. In such a case, these registers need not necessarily be provided with additional functionalities, although this is readily conceivable, e.g., when data is requested from the memory cell for further processing, corresponding to a traditional LOAD of a typical microprocessor for altering the data even before it is loaded into the PAE, e.g., to implement a LOAD++ command. Data conduction through PAEs having ALUs and the like operating in the reverse direction should be mentioned.

The memory cell is preferably situated to receive information from the function cell controlling it, information saving via an input/output cell and/or a cell that does not control the memory cell also being possible. In particular when data is to be written into the memory cell from an input/output cell, it is preferable if this input/output cell (I/O-PAE) is also controlled by the function cell. The address at which information to be written into the memory cell or, if necessary, to also be transmitted directly to the function cell (PAE) is to be read, may also be transferred to the I/OPAE from the ALU-PAE. In this connection it should be pointed out that this address may be determined via an address translation table, an address translation buffer or an MMU type structure in the I/O-PAE. In such a case, this yields the full functionalities of typical microprocessors. It should also be pointed out that an I/O functionality may also be integrated with a function cell means, a memory cell means and/or a function cell means-memory cell means combination.

In a preferred variant, at least one input-output means is thus assigned to the combination of function cells and memory cells, whether as an integrated function cell and a memory cell combination or as a function cell and/or memory cell
combination composed of separate units, the input/output means being used to transmit information to and/or receive information from an external unit, another function cell, function cell memory cell combination and/or memory cells.

The input-output unit is preferably likewise designed for receiving control commands from the function cell and/or the function cell means.

In a preferred variant, the control connection is designed to transmit some and preferably all of the following commands:

OPCODE FETCH, DATA WRITE INTERNAL, DATA WRITE EXTERNAL DATA READ EXTERNAL, ADDRESS POINTER WRITE INTERNAL, ADDRESS POINTER WRITE EXTERNAL, ADDRESS POINTER READ INTERNAL, ADDRESS POINTER READ EXTERNAL, PROGRAM POINTER WRITE INTERNAL, PROGRAM POINTER WRITE EXTERNAL, PROGRAM POINTER READ INTERNAL, PROGRAM POINTER READ EXTERNAL, STACK POINTER WRITE INTERNAL, STACK POINTER WRITE EXTERNAL, STACK POINTER READ INTERNAL, STACK POINTER READ EXTERNAL, PUSH, POP, PROGRAM POINTER INCREMENT.

This may be accomplished through a corresponding bit width of the control line and an associated decoding at the receivers. The particular required control means and decoding means may be provided inexpensively and with no problems. As it shows, a
practically complete sequencer capability of the arrangement is obtained with these commands. It should also be pointed out that a general-purpose processor data processing unit is obtained in this way.

The system is typically selected so that the function cell is the only one able to access the control connection and/or a bus segment, i.e., bus system functioning as the control connection as a master. The result is thus a system in which the control line functions as a command line such as that provided in traditional processors.

The function cell and the memory cell, i.e., $1 / 0$ cell, are preferably adjacent to one another. The term "adjacent" may be understood preferably as the cells being situated directly side by side. "Directly" means in particular a combination of such cells to form integrated units which are provided repeatedly on the cell element field, i.e., as part of same to form the field. This may mean an integral unit of memory cells and logic cells. Alternatively, they are at least close together. The system of the function cells and memory cells in integrated, i.e., close, proximity to one another thus ensures that there are no latency times, or at least no significant latency times, between triggering and data imput of the required information in the function cell, merely because the connections between the cells are too long. This is understood to be "direct." If latency times must be taken into account, pipelining may then also be provided in the sequencer structures. This is particularly important in the case of systems with very high clock rates. It should be pointed out that it is readily poasible to provide cell units clocked at a suitably high frequency such as those known in the related art per se which are also able to access suitable memory cells with appropriate speed. In such a case, e.g., when architecture elements that are known per se are used for the
function cells, reconfigurability of the function cell element and the corresponding interconnections must be provided. In a particularly preferred variant, the function cells, the information providing cells such as memory cells, I/O cells and the like are arranged multidimensionally, in particular in the manner of a matrix, i.e., on grid points of a multidimensional grid, etc. If there is a regular structure, as is the case there, information, i.e., operands, configurations, trigger signals, etc., is typically supplied to a cell from a first row, while data, trigger signals and other information is dispensed in a row beneath that. In such a case, it is preferable if the cells are situated in one and the same row and the information transfer from the information-providing cell into the required input into the function cell may then take place via a backward register. The possibility of using the registers for pipelining should also be mentioned.

Patent protection is also claimed for a method for operating a cell element field, in particular a multidimensional cell element field having function cells for execution of algebraic and/or logic functions and information-providing cells, in particular memory cells and/or input/output cells for receiving and/or outputting and/or storing information, at least one of the function cells outputting control commands to at least one information-providing cell, information for the function cell being provided there in response to the control commands, and the function cell being designed to perform the additional data processing in response to the information thus provided to thereby process data in the manner of a sequencer at least from time to time.

Sequencer-type data processing is thus made possible in a reconfigurable field by output of the control commands to the memory cell of the sequencer structure. The commands which may
be output as control commands by the function cell permit a sequencer type operation such as that known from traditional processors. It should be pointed out that it is readily possible to implement only parts of the aforementioned commands but nevertheless ensure data processing that is completely of the sequencer type.

The present invention is described in greater detail below and as an example on the basis of the drawing, in which:

Fig. 1

Fig. 2a

Figs. 2b, C

Fig. 3

Fig. 4

Fig. 5

Fig. 6a shows an example of sequential parallel data processing

Fig. 6b shows a particularly preferred exemplary embodiment of the present invention
shows an alternative to a function folding unit.

According to Figure 1, a cell element field 1 for data processing includes function cell means 2 for execution of arithmetic and/or logic functions and memory cell means 3 for receiving, storing and/or outputting information, a control connection 4 connecting function cells 2 to memory cells 3.

Cell element field 1 is freely configurable in the interconnection of elements $2,3,4$, namely without interfering with ongoing operation of cell element parts that are not to be reconfigured. The connections may be configured by switching bus systems 5 as necessary. In addition, the particular functions of function cells 2 are configurable. The function cells are arithmetic logic units extended by certain circuits that permit reconfiguration, e.g., state machines, interface circuit for communication with external load logic 6, etc. Reference is made to the corresponding previous applications of the present applicant.

Cell elements 2,3 of cell element field 1 are arranged twodimensionally in rows and columns, one memory cell 3 being situated directly next to a function cell 2 with three memory cell-function cell pairs per row, the function cells and memory cells being interconnected by control connections 4. Function cells and memory cells 2,3 , or the combination thereof have inputs which are connected to the bus system above the row in which the particular cell element is located to receive data therefrom. In addition, cells 2 , 3 have outputs which output data to bus system 5 below the row. As explained below, each memory cell 3 is also provided with a backward register (BW) through which data from the bus below a row may be guided through to the bus above the particular row.

Memory cell means 3 preferably has at least three memory areas, namely a data area, a program memory area and a stack area, etc. However, in other variants of the present invention
it may be adequate provide only two areas, namely a data memory and a program area memory, each optionally forming part of a memory cell means. It is possible in particular to perform not simply a separation of a memory that is identical in terms of hardware and is homogeneous per se into different areas but instead to provide memory areas that are actually separated physically, i.e., in terms of hardware technology. In particular the memory width and/or depth may also be adapted to the particular requirements. When a memory is designed in such a way that it has a program area and a data area in operation, it is preferable to design this memory, i.e., memary area for simultaneous access to data and program memory areas, e.g., as a dual port memory. It may also be possible to provide closely connected memory areas, in particular within a memory cell means-function cell means combination formed into an integrated area as a pure cache memory into which data from remote memory sites is preloaded for rapid access during data processing.

Except for control connections 4 and the particular circuits within the function cells (ALU in Figure 2) and/or memory cells (RAM in Figure 2), the cell element field for data processing in Figure 1 is a traditional cell element field such as that which is known and conventional with reconfigurable data processing systems, e.g., a VPU according to XPP technology of the present applicant. In particular, the cell element field of Figure 1 may be operated in the known way, so it has the corresponding circuits for wave reconfiguration, for debugging, transferring trigger signals, etc.

The first distinguishing features of the cell element field of the present invention are derived from control connection 4 and the corresponding circuit, which are described in greater detail below with reference to Figures $2 a$ through 2 c . It
should be pointed out that whereas in Figure 1, a control connection 4 always leads from a function cell element located farther to the left to a memory cell located farther to the right, specifically only and exactly to one such memory cell, it is also plausibly possible to provide a configurable interconnection for the control lines to be able to address either memory cells situated elsewhere and/or more than one memory cell, if necessary, when there is a great memory demand for information to be received, stored and/or output by the memory cells. For reasons of comprehensibility, however, only individual control. connections which are provided in a fixed manner are referred to in Figures 1 and 2, which greatly simplifies understanding of the present invention. The control connection is also substitutable if necessary by traditional lines, assuming the proper protocols are available.

Figure 2 shows function cell 2 as an ALU and function cell 3 as a RAM. Above the row in which the cells are located runs bus 5a, connecting backward register 3a mentioned above to inputs 3 b of the memory cell and 2 b of the ALU. The bus system running below the cell is labeled as 5c and only the relevant segments of bus system 5a, 5 b are shown here. It is apparent that bus system 5b alternatively receives data from an output $2 c$ of ALU 2, an output $3 c$ of RAM 3 and carries data into input 3a1 of the backward register.

ALU 2 at the same time has additional inputs and outputs 2a1, $2 a 2$ which may be connected to other bus segments and over which the ALU receives data such as operands and outputs results.

Control connection 4 is permanently under control of the extended circuits of the $A L U$ and represents here a connection over which a plurality of bits may be transferred. The width of control connection 4 is selected so that at least the
following control commands may be transmitted to the memory cell: DATA WRITE, DATA READ, ADDRESS POINTER WRITE, ADDRESS POINTER READ, PROGRAM POINTER WRITE, PROGRAM POINTER READ, PROGRAM POINTER INCREMENT, STACK POINTER WRITE, STACK POINTER READ, PUSH, POP. Memory cell 3 at the same time has at least three memory areas, namely a stack area, a heap area and a program area. Each area is assigned its own pointer via which it is determined to which area of the stack, the heap and the program area there will be read or write access in each case.

Bus 5a is used jointly by units 2 and 3 in time multiplex. This is indicated in Figures 2b, 2c. Figure 2 b illustrates a situation in which data may be sent from output $2 a 2$ of ALU-PAE to the input of the RAM cell via the backward register, whereas the concurrently existing but unused connection between output 3 c of the RAM to bus 5 b and the connection between the output of backward register BW to input 2 b of the ALU-PAE at the point in time of Figure $2 b$ is of no importance, which is why this is indicated with dashed lines. In contrast, Figure 2c shows a point in time at which memory cell 3 supplies information via its output $3 c$ and the backward register to input 2 b of ALU-PAE 2 from the stack, heap or program memory area via control line 4 , while the output of ALU-PAE 2c is inactive and no signal is received at input 3b of the RAM-PAE. For this reason, the corresponding connections are indicated with dash-dot lines and are thus depicted as being inactive.

Within RAM cell 3, a circuit 3d is provided in which the information received via control line 4 and/or control line bus segment 4 is decoded.

The present invention is used as follows:

First, ALU 2 receives configuration information from a central load logic, as is already known in the related art. The
transfer of information may take place in a manner known per se using the RDY/ACK protocol and the like. Reference is made to the possibility of providing a FILMO memory, etc., with the load logic to permit a proper configuration of the system.

Simultaneously with the data for configuring ALU 2, a series of data is transmitted from the load logic, representing a program, i.e., program part to be executed in the manner of a sequencer. Reference is made in this regard only as an example to Figure 6a in which the HUFFMANN coding is depicted as a central sequential part of an MPEG4 coding which is performed in the manner of data flow per se. The ALU therefore outputs a corresponding command to line 4 during its configuration, this command setting the program pointer for writing at a preselected value within the RAM. The load logic then supplies data received by the ALU over output 2 C and via bus 5 bl and backward register $3 a$, the data going from there to input $3 b$ of RAM-PAE 3. According to the control command on control line 4, data is then written from unit $3 d$ to the program memory location indicated. This is repeated until all the program parts received by the load logic in configuration have been stored in memory cell 3. When the configuration of the ALU is then concluded, the ALU will request the next program steps to be executed by it in the manner of a sequencer by outputting the corresponding commands on control line 4 and will receive the program steps via output 3 c , bus 5b, the backward register of RAM-PAE 3 and bus 5a at its input. During program execution, situations may occur in which jumps are necessary within the program memory area, data must be loaded into the ALU-PAE from the RAM-PAE, data must be stored in the stack, etc. The communication in this regard between the ALU-PAE and RAM-PAE is accomplished via control line 4 so that the ALU-PAE is able to execute decoding at any point in time. Moreover, as in a traditional microprocessor, data from a stack or another

RAM memory area may be received and in addition, data may also be received in the ALU-PAE from the outside as operands.

The program sequence preconfigured in the RAM-PAE by the load logic is executed here. At the same time, command decoding is performed in the $A L U-P A E$ as is necessary per se. This is done with the same circuits per se as those used already for decoding the commands received by the load logic.

At any point in time control line 4 is controlled via the ALU so that the RAM cell always exactly follows the type of memory access specified by the ALU. This ensures that regardless of the time multiplex use of bus elements 5a, b the elements present in the sequencer structure are instructed at all times whether addresses for data or codes to be retrieved or to be written is on the buses or whether and if so where data is to be written, etc.

The system shown with respect to Figure 2 may be extended or modified in different ways. The variants depicted in Figures 3, 4 and 6 are particularly relevant.

According to Figure 3, not only a backward register is provided on the RAM-PAE for connecting upper buses and lower buses, but also a forward register is provided on the RAM-PAE and forward and backward registers are provided on the ALU$P A E$. As indicated by the multiple arrows, these may receive data from other units such as external hosts, external peripherals such as hard drives, main memories and the like and/or from other sequencer structures, PAEs, RAM-PAEs, etc., and send data to them. When an appropriate request command for new program parts from the sequencer structure formed by the ALU-PAF and the RAM-PAE is sent out, it is possible to process program blocks in the sequencer structure which are much larger than those storable in the RAM-PAE. This is an enormous
advantage in particular in complex data processing tasks, jumps over wide areas, in particular in subprograms, etc.

Figure 4 shows an even more preferred variant where the ALUPAE communicates not only with a RAM-PAE but also at the same time with an input/output PAE which is designed to provide an interface circuit for communication with external components such as hard drives, other XPP-VPUs, external processors and coprocessors, etc. The ALU-PAE is in turn the unit which operates as the master for the control connection referred to as "CMD" and the buses are in turn used in multiplex mode. Here again, data may be transferred from the bus below the row to the bus above the row through the backward register.

The system shown in Figure 4 permits particularly easy external access to information stored in the RAM-PAE memory cell and thus allows an adaptation of the sequencer structure to existing traditional CPU technologies and their operating methods to an even greater extent inasmuch as address translation means, memory management units (MMU functions) and the like may be implemented in the input-output cell. The RAMPAE may function here as a cache, for example, but in particular as a preloaded cache.

It should be pointed out that multiple sequencer structures may be configured into one and the same field at the same time; that function cells, memory cells and, if necessary, input-output cells may optionally be configured for sequencer structures and/or [in] a traditional manner for XPP technology and that it is readily possible for one ALU to output data to another ALU, which configures it as a sequencer and/or makes it part of a cell element field with which a certain configuration is executed. In this way, the load logic may then also become dispensable, if necessary.

According to Figure 6, two embodiments of the present invention are combined in one and the same cell element field, namely at the edges of sequencers formed by two PAEs, namely by one RAM-PAE and one ALU-PAE, and in the interior sequencers formed by integrated RAM-ALU-PAEs as integrated function cellmemory cell units, where it is possible to form only part of the cells inside the field as combination cells.

Figure 5 shows at the right (Figure 5c) a function cell-memory cell means combination.

According to Figure 5c, a function cell-memory cell means combination labeled as 50 in general includes bus connections, i.e., bus inputs 51 for the input of operand data and configuration data and, as is preferably also possible here in particular, trigger signals (not shown) and the like and a bus output 52 for output of corresponding data and/or signals.

Within the function cell means-memory cell means combination, an ALU 53 is provided as well as input registers Rio through Ri3 for operand data and trigger signal input registers (not shown). Configuration data registers Rc0 through Rc7 for configuration data, i.e., ALU code data, result data registers Rdo'-Rd3' and output registers Ro0 through Ro3 for results, i.e., trigger signals to be output. Registers Rc and Rd for the configuration data, i.e., opcode data, are triggered by ALU 53 via control command lines 4 and supply data over suitable data lines to the ALU and/or receive result data from it. It is also possible to supply information directly from bus 51 and/or input registers Ri directly to the output registers, i.e., bus 52, exactly as information may be supplied from data registers Rdo-Rd3 not only to the ALU, but also to the output registers. If necessary, connections may be provided between memory areas Rd and $\mathrm{Rc}, \mathrm{e} . \mathrm{g} .$, for implementation of the possibility of self-modifying codes.

Configuration data area Rco through Rc7 has a control unit which makes it possible to work in parts of the area, in particular in repeated cycles and/or through jumps. For example, in a first partial configuration, commands in Rco through Rc3 may be executed repeatedly, and alternatively configuration commands in Rc4 through Rc7 may be executed, e.g., on receipt of an appropriate different trigger signal over bus line 51. This ensures executability of a wave configuration. It should be pointed out that the configuration commands input are typically only instructions to the ALU but do not define complete bus connections, etc.

The unit described above, illustrated in Figure 5, is designed here to be operated with a quadruple clock pulse, like a normal PAE without memory cell means and/or control signal lines 4.

To process data sequencer-style in a data flow in the function folding unit designed in this way, data flow graphs and/or areas according to Figure $5 a$ are created at first for preselected algorithms. Memory areas Rc0 are then assigned to each operation to be executed in the graph; incoming data into the graph partial area is assigned to internal input registers Rio; the interim results are assigned to memories Rdo through Rd3 and the output results are assigned to registers Ro. With this assignment, the graph area is executable on the function folding unit. This results more or less in a data flowsequencer transformation by this hardware.

It should be mentioned in this context that it will be preferable in general to use the system of the present invention in such a way that first a data flow graph and a control flow graph are created for a data processing program using a compiler and then a corresponding partitioning is performed; the pieces obtained by the partitioning may then be
executed partially or entirely on sequencer units such as those which may be formed according to the present invention, for example. This more or less achieves data processing in the manner of data flow progressing from one cell to the next, but effects a sequential execution within the cell(s). This is advantageous when the clock frequency is to be increased because of the extremely high computation power of a system to be able to reduce the area and/or number of cells. It should also be pointed out that it is possible to perform this transformation like transition from a purely data flow type of data processing to data flow processing with local sequential parts in such a way that an iterative process is carried out, e.g., in such a manner that first a first partitioning is performed, and if it is then found in the subsequent "rolling up" of the partitioned parts on sequencer units that the resources available on the sequencers or at other sites, for example, are not sufficient, another partitioning taking this into account may be performed and a new "rolling up" may be performed. If extensive use of the function folding units is desired, the number of registers may be increased, if necessary.

It should also be pointed out that the registers in this case may be interpreted as memory cell means or parts thereof. It is apparent that by increasing the memory cell areas, more complex tasks may be arranged in particular in a sequencer fashion but significant parts of important algorithms may be executed with the small sizes indicated and this may be done with high efficiency.

In the present example, the function folding units are preferably formed in such a way that data may be shifted through them without being processed in the ALU. This may be utilized to achieve path balancing in which data packets must be executed via different branches and then recombined without
having to use forward registers such as those known from the architecture of the present applicant. At the same time and/or alternatively, it is possible for the direction of data flow not to run strictly in one direction in the cell element field through an appropriate orientation of a few function cell means, memory cell means, or function folding units but instead to have the data flow run in two opposite directions. Thus, for example, in each even row the ALUs receive their input operands from the left side and in each uneven row the ALUs receive their input operands from the right.

If data must be sent repeatedly through the field, such an arrangement is advantageous, e.g., in the case of unrolled looped bodies, etc. The alternating arrangement need not be strict. For certain applications, other geometries may be selected. For example, a different direction of flow may be selected for the middle of the field than at the edges, etc. The arrangement of function cell units of the same direction of flow side by side may be advantageous with respect to the bus connections. It should be pointed out that the arrangement in opposite directions of multiple directional function cells in one field and the resulting improved data processing independently of providing a control line or the like are regarded as inventive.

Figure 7 shows an alternative to the function folding unit shown in Figure 5.

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE			
INFORMATION DISCLOSURE STATEMENT		Docket Number: 2885/139	Confirmation Number: 2050
Application Number $12 / 836,364$	Filing Date July 14, 2010	Examiner Unassigned	$\begin{aligned} & \hline \text { Art Unit } \\ & 2827 \end{aligned}$
Invention Title RECONFIGURABLE SEQUENCER STRUCTURE		Inventors Martin VOR	$\mathbf{A C H}$

Commissioner for Patents
I hereby cerify that this correspondence is being electronically ransmitted to the United States Patent and Trademark Olfice via the P.O. Box 1450

Alexandria, VA 22313-1450 Office electronic filing system on
Date: Seplember 22, 2010
Signature: Eunice K. Chang/
Eunice K. Chang
Sir:
Pursuant to 37 CFR $\S 1.56$, the attention of the Patent and Trademark Office is hereby directed to the reference(s) listed on the attached PTO-1449. It is respectfully requested that the information be expressly considered during the prosecution of this application, and that the reference(s) be made of record therein and appear among the "References Cited" on any patent to issue therefrom. The filing of this Information Disclosure Statement and the enclosed PTO Form No. 1449, shall not be construed as an admission that the information cited is prior art, or is considered to be material to patentability as defined in 37 C.F.R. § 1.56(b). The paragraphs marked below are applicable. It is believed that no fees other than those indicated below are due, but authorization is hereby given to charge any additional fees due, or to credit any overpayment, to Kenyon \& Kenyon LLP, deposit account 11-0600.
$\boxed{\text { 1. This Information Disclosure Statement is being filed (a) within three months }}$ of the filing date of a national application other than a continued prosecution application under 37 C.F.R. §1.53(d), (b) within three months of the date of entry of the national stage as set forth in 37 C.F.R. $\S 1.491 \mathrm{~m}$ an international application, (c) before the mailing date of a first Office Action on the merits in the present application, OR (d) before the mailing of a first office action after filing of a request for continued examination. No certification or fee is required.
2. This Information Disclosure Statement is being filed more than three months after the U.S. filing date AND after the mailing date of the first Office Action on the merits, but before the mailing date of a final action, Notice of Allowance, or any action that otherwise closes prosecution.
\square a. I hereby certify that each item of information contained in this Information Disclosure Statement was first cited in a communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of this Information Disclosure Statement. 37 CFR §1.97(e)(1).
$\square \quad$ b. I hereby certify that no item of information in this Information Disclosure Statement was eited in a communication from a foreign patent office in a counterpart foreign application or, to my knowledge after making reasonable inquiry, was known to any individual designated in $37 \mathrm{CFR} \S 1.56$ (c) more tban three months prior to the filing of this Information Disclosure Statement. 37 CFR §1.97(e)(2).
$\square \quad$ c. The required fee of $\$ 180.00$ under 37 CFR $\S 1.17(p)$ is being paid by credit card to ensure consideration of the disclosed information. Any additional fees may be charged to Deposit Account No. 11-0600 of Kenyon \& Kenyon LLP

ख 3. English-language Abstracts of the non-English language references are attached hereto.

Respectfully submitted,
Date: September 22, 2010
/Aaron Grunberger/
Aaron Grunberger
Reg. No. 59,210

KENYON \& KENYON LLP
One Broadway
New York, NY 20004
(212) 425-7200 telephone
(212) 425-5288 facsimile

CUSTOMER NUMBER 26646

INFORMATION DISCLOSURE STATEMENT BY APPLICANTS PTO-1449	Attorney Docket No. 2885/139	Serial No. 12/836,364
	$\begin{aligned} & \text { Applicant(s) } \\ & \text { VORBACH } \end{aligned}$	
	Filing Date July 14, 2010	Group Art Unit 2827

U.S. PATENT DOCUMENTS

EXAMINER'S INITIALS	PATENT/ PUBLICATION NUMBER	PATENT/PUBLICATION DATE	NAME	CLASS	SUBCLASS	FILING DATE
	90/010,450		Vorbach et al.			$\begin{gathered} \text { March } 27, \\ 2009 \end{gathered}$
	6,173,419	January 9, 2001	Barnett			
	6,668,237	December 23, 2003	Guccione et al.			
	6,836,842	December 28, 2004	Guccione et al.			
	2002/0010853	January 24, 2002	Trimberger et al.			
	2002/0152060	October 17, 2002	Tseng			

FOREIGN PATENT DOCUMENTS

EXAMINER'S INITIALS	DOCUMENT NUMBER	DATE	COUNTRY	CLASS	SUBCLASS	YES	NO
	1044571	February 16,1989	Japan				AbANSLATION

OTHER DOCUMENTS

EXAMINER'S INITIALS	AUTHOR, TITLE, DATE, PERTINENT PAGES, ETC.
	Ballagh et al., "Java Debug Hardware Models Using JBits," $8^{\text {br }}$ Reconfigurable Architectures Workshop, 2001, 8 pages.
	Bellows et al., "Designing Run-Time Reconfigurable Systems with JHDL," Journal of VLSI Signal Processing 28, Kluwer Academic Publishers, The Netherlands 2001, pp. 29-45.
	Guccione et al., "JBits: Java based interface for reconfigurable computing," Xilinx, Inc., San Jose, CA, 1999, 9 pages.
	Price et al., "Debug ofReconfigurable Systems," Xilinx, Inc., San Jose, CA, Proceedings of SPIE, 2000, pp. 181-187.
	Sundararajan et al., "Testing FPGA Devices Using JBits," Proc. MAPLD 2001, Maryland, USA, Katz (ed.), NASA, CA, 8 pages.

EXAMINER: 1nitial if citation considered, whether or not citation is in conformance with M.P.E.P. 609; draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

INTER-PROCESSOR COUPLING SYSTEM

Publigation number: JP1044571 (A)
publication date: 1989-02-16
Inventor(s): KAWVAMURA RYOSAKU +
Applieant(s): OMRON TATEISI ELECTRONICS CO +
Classincation:

- international: G06F13/38; G06F15/16; G06F15/167; G06F5/06; G06F13/38; G06F15/16; G06F5/06; (IPG1-7): G06F13/38; G06F15/16; G06F5/06
- European:

Applitation number: JP19870201105 19870812
Priority number(s): JP19870201105 19870812

Abstract of JP 1044571 (A)
PURPOSETO Improve coupling efficiency by couping between the 1 st and 2 nd processors. through an FIFO capable of shifting two or more data in a parallel state by the prescribed number of steps. CONSTITUTION:The FIFO memory 3 capable of shifting two 1-byte data in the parallel state by wo steps is connected between the system bus 1A of the processor A and the system bus 1B of the processor B. A write control circuit 6A controls data writing from the processor A to writing side latches $4 A, 5 A$ and data writing from the latches 4 A . 5A to the FIFO memory 3. A read control circuit 6B controls data reading from the FJFO memory 3 to reading side latches $4 B, 5 B$, and when the latches $4 \mathrm{~B}, 5 \mathrm{~B}$ are emptied, two byte data are reac out from an area pointed out by a reading pointer $7 B$ and written in the latches $4 \mathrm{~B}, 5 \mathrm{~B}$.

Data supplied from the espacenet database - Worldwide

Gint，Cl．	
G OG F	$15 / 15$
	$1 / 06$.
	$13 / 38$

320
340

庁内洛理燔号
$Y-6745-5 B$
$Z=7230-5 B$
$C=8840-5 B$
（3）公阴 哹和64年（1989）2月18日

（2）絓 极 环62－201105

（2）発 阴 考 $\boldsymbol{\prime}$
皃•作

内

（10）出 明 人 立石筧怓株式会社

この発門な，マルデブロセッサシステムに好河
7．発明の名思
プロセササ間体台方式

（1）第10フロせyサシステムム第2のフロや

 リ本极は，
既1のアロセササシステムのアドレス安開内のア
 は第2のブロセッサシステムのアドレス蚛悶内の

（笔明の分か）

かブロセッサ階詁合方式に閉さる。
《我图の娲要》
この肴明では，䍖 1 のフロセササシステムと第 2 がロセッサシステムとの問を，2以上のデー

－徙来，マルチフロせッサシステム爱に䧟用され

 が一艆的である。

しかしながら，この供広交有メモり为式にあっ

分に保保でほないことっ片方のフロセッサか其有

サは井有メモリをアクセスごきないこと，我連入

 そことなとの問道就があった。
また，第6图に示むれるように，关有メモリ内

 ること，一方のプロセッサか持ち估列处理中の潅

点があった，

〈笎明の目的〉

要がある牾合だあ，共有アドレスな岡が少なくて

 て枹方のデロせッサが間样にアグンスを行なそこ とができ，交らに杸敬のデーかの悵变を聞一ダ

に㧍して相方のでロせッサが同群にアクセスを行
一タイミングら行い興るという朝累がある。

《军触列の旅明》

この如てか，プロセッサAからブロセッサ日に娰し，2聞の1バイトデー各をFIFOXもり3
 すなわ屶，第才图において，ブロせりサAかシ ステムハス1Aとフロセッサ日のシステムハス1

 けられていか。 このFIFOXEり3の入力㭖各データホードト には1バイト筧成からなるテッチ4A，5Aが掂䧕きれており，これのあラッチ4 A ，5Aにはプ ロせシサAのアドレス聓問所のアドレスが䛌け付 けられている。
取を提供することにあるの

《発明の解成と财果》

この発明は上配の自的を選成するために，厏1 のプロセッサシステムと第2のフロセッサシステ

 ば第2のブロセッサシスデムのアドンス堅聞内の フドレスを新付け，
实FさFOメモりを道宜にシフトさせるととに より，第てあブロセンサシステムから符2のフロ せッサシステムムと2以上のデーダ並列かつ販

 する必要が志る甸合にも，共有アドレス空䦖が少

－ 4 －

 されており，これらのラゅチ4B，5Bに゙も向楼 にして，フロせッサアのアドリス空間内かアドし スが制り付的られてい各。
 に対ずすブロセッサAからのデーダ田込みすがず゙出処かラッチ4月，5AからF1FOXモリ3内

國艺込水なンタ7Aて示されるFIFOXモリ3
 4A，5Aは荤クリアきそる。

 ると，自㽖的に気出れインタ7日で示きれる下！

引 はよろになる「てかる。

次に，以上の様成よりなるシズテムの哑作を，

 クリフモれている。

 2B总およせ第2 C圈に示されるように，由込制

第2C四に示をれるよりに，デッす4 A ，5A

 A．5Aのデータは，自物的に安込れかりす7 て示をそるFIFOXもり3内のエリア入と，第
 4A．5Aの内管は皮クリアすれる。

－ 7 －

口せッサA行からブロセッサ日则へと㖇运させる

 あ4ハイト分を配保ちることがせきる。＂。
モして，ごのバッファリンゲ䘫開の大をぎは，
加することがそを，唗来の共祖メもり方式め古う
 よって，䀠限されること沁なくなる。

 と広る。
出すことのできスデータがFIFOXテリ内に家
解させても皇い。
 2相のけハメトデーかを出もたFIFOXもり3 から职出すことが可能であるといることは，珫出湖のラッチム日，5Bへ既に恪納されているとい うことを管婞す不。

 れるFIFOXㄷ․

 －B－

フロせンサの璺圧这度在間上させることがなる
 チツブタデータハス杪8ビット，チッブ内データ ハス娰8ビット（8 ノ 8 ）のマネクロフロせyサ MC6809と，チュブ外データハス婦8ビット，
 マケクロブロセうサ F 8018日を本方甙により婟合したすのである。
 1 「イトメ5 1 2股のFIFOXモリチッフ（网
 シー紋IDT72015／L，IOT72025
 れを汉方向灵たでれぞれ段睘している。
偻って，欢方向について204日 512×2 －2Mバート トの共梢メモりを綃つことになる。
 タマインロプセササのアドいス密間64Kバ トを六銫に上回るものであるにも拘らす，MC6 809 のアがレス空間の中で呂，4Kズイトしか
－ 10 －

使㘡しているか。
ずなすた，アドレス笁閭の中てねザか4Kハイ

第4図は，ブロセッサAからフロセッサ日へ裡
斈示すフローがャートで百る。

导りからブロセッサ日へ割汸みが兆生する回路を路けてい学の

 けである。

 リテップて苦名。

1A，〕B…システムなス
3…FIFOXもり

6日…蓜出别解回路

$78 \cdots$ 结出ボインタ
B \cdots 虾边据生回路

第2E図腎2F 図

第2G図

第 3 図

第 4 閣

第 6 図

－396－

INTEL－ 1004
Page 375 of 539

【部門区务】算 8 部門惐3区分
（罂行日）卉成日年（1994）2月18日
［公開番号］特鷘平】－44571
［公開日］耻成1年（1889）2月16日

［国搂将许分敋第5版）

GC6F | $15 / 16$ | 320 ソ $8860-56$ |
| ---: | ---: |
| $5 / 06$ | $Z 9189-58$ |
| $13 / 38$ | $340 \subset 9072-58$ |

C

丁跳組止雨

4牧5作5月25П

1．梆の走示

C．
2． 3 矿の多解

4．代比 人 干10I

的 析 相
2．56『アが标

 トレス数がけは，

㒄的である。

データとジつト点せらことによって，簡 1 のずロ

 あで市る。

この附せは，ブロせッ少Aならプロせッサロに

点がぁった。

 けられている。

 けられでい吾。

 スが期り付けられている。

込むようになさきれてい号。

 クリプされている。

 モり3内の次に哲送守れるがきエリアを西すこと となる。
このとき，B俐のデータ逃现方齿によっでは，

 ヂッブ内データバス幅16ビット（3ノ16）の マイ゙タロブロせャサ180188空梀觔朋の夷施

 めば，インデリレイテッドテハィステッノロ ジー紂tDT7201 SノL．IDt7202

時って，双方間についで204B×512×2 ー2Mバイトの圌がメモりな扬つことぼなる。

使四していない。
すなぁち，アイドレス空門のりでわずかくKバイ トを汉が間のF1FO9に机当でることによって，
䋇㤟を枵さいる。

気4必任，プロセッザAからブロたッザBへ移

形けている。

 けておる。

 ッブせある。

1 A」 1 B…システムバス
ぶ．．F！FO丈氏リ

4B．5B…統山湖テュチ

7 A以寄边相インま

8•湖边柺尘囲艮

Electronic Acknowledgement Receipt	
EFS ID:	8472322
Application Number:	12836364
International Application Number:	
Confirmation Number:	2050
Title of Invention:	RECONFIGURABLE SEQUENCER STRUCTURE
First Named Inventor/Applicant Name:	Martin Vorbach
Customer Number:	26646
Filer:	Aaron Grunberger/Eunice Chang
Filer Authorized By:	Aaron Grunberger
Attorney Docket Number:	2885/139
Receipt Date:	22-SEP-2010
Filing Date:	14-JUL-2010
Time Stamp:	13:59:53
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with	ayment	no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	$\begin{gathered} \text { Multi } \\ \text { Part /.zip } \end{gathered}$	Pages (if appl.)
1	Applicant Response to Pre-Exam Formalities Notice	2885-139- RespNotCorrApPapers.pdf	5745435	no	53
Warnings:					
Information:			INTEL - 1004		

2	Information Disclosure Statement (IDS) Filed (SB/08)	2885-139-SuppIDS.pdf	345810	no	3
Warnings:					
Information:					
This is not an USPTO supplied IDS fillable form					
3	Foreign Reference	JP-10-44571.pdf	1174951	no	13
			129d4bf69b0e3c8253fb12adc4ad4ace2c6 dec61		
Warnings:					
Information:					
4	NPL Documents	ballagh-java-debug.pdf	922621	no	8
			94fifi5ccc7d dd86ace4721352e9ed38bbff		
Warnings:					
Information:					
5	NPL Documents	bellows-run-time.pdf	2178440	no	17
			a804cea225303b86c8b1b3cffbobf8236e42 9 e 58		
Warnings:					
Information:					
6	NPL Documents	guccione-jbits.pdf	1407855	no	9
			2c7773a7993da4ack 29ab6814b32549701b		
Warnings:					
Information:					
7	NPL Documents	price-debug.pdf	1377139	no	7
			610285 fd 9 dff 7 bf 948 e 004434 b 3 ea 6 dbe 421 $79 f 8$		
Warnings:					
Information:					
8	NPL Documents	sundararajan-fpga.pdf	1091182	no	8
			Of8356abcd510f885edd2e79913be585fba2		
Warnings:					
Information:					
Total Files Size (in bytes):			14243433		

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.
Alexan
www usptiony ride 22313-1450

Date Mailed: 10/04/2010

Receipt is acknowledged of this non-provisional patent application. The application will be taken up for examination in due course. Applicant will be notified as to the results of the examination. Any correspondence concerning the application must include the following identification information: the U.S. APPLICATION NUMBER, FILING DATE, NAME OF APPLICANT, and TITLE OF INVENTION. Fees transmitted by check or draft are subject to collection. Please verify the accuracy of the data presented on this receipt. If an error is noted on this Filing Receipt, please submit a written request for a Filing Receipt Correction. Please provide a copy of this Filing Receipt with the changes noted thereon. If you received a "Notice to File Missing Parts" for this application, please submit any corrections to this Filing Receipt with your reply to the Notice. When the USPTO processes the reply to the Notice, the USPTO will generate another Filing Receipt incorporating the requested corrections

Applicant(s)

Martin Vorbach, Munich, GERMANY;
Power of Attorney: The patent practitioners associated with Customer Number 26646
Domestic Priority data as claimed by applicant
This application is a CON of $12 / 541,29908 / 14 / 2009$ PAT 7,782,087
which is a CON of 12/082,073 04/07/2008 PAT 7,602,214
which is a CON of 10/526,595 01/09/2006 PAT 7,394,284
which is a 371 of PCT/EP03/38599 09/08/2003

Foreign Applications

GERMANY 10241 812.8 09/06/2002
GERMANY 10315295.4 04/04/2003
GERMANY 10321834.3 05/15/2003
EUROPEAN PATENT OFFICE (EPO) 03019428.6 08/28/2003

Request to Retrieve - This application either claims priority to one or more applications filed in an intellectual property Office that participates in the Priority Document Exchange (PDX) program or contains a proper Request to Retrieve Electronic Priority Application(s) (PTO/SB/38 or its equivalent). Consequently, the USPTO will attempt to electronically retrieve these priority documents.

If Required, Foreign Filing License Granted: 07/26/2010

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is US 12/836,364
Projected Publication Date: 01/13/2011

RECONFIGURABLE SEQUENGER STRUCTURE

Preliminary Class

365

PROTECTING YOUR INVENTION OUTSIDE THE UNITED STATES

Since the rights granted by a U.S. patent extend only throughout the territory of the United States and have no effect in a foreign country, an inventor who wishes patent protection in another country must apply for a patent in a specific country or in regional patent offices. Applicants may wish to consider the filing of an international application under the Patent Cooperation Treaty (PCT). An international (PCT) application generally has the same effect as a regular national patent application in each PCT-member country. The PCT process simplifies the filing of patent applications on the same invention in member countries, but does not result in a grant of "an international patent" and does not eliminate the need of applicants to file additional documents and fees in countries where patent protection is desired.

Almost every country has its own patent law, and a person desiring a patent in a particular country must make an application for patent in that country in accordance with its particular laws. Since the laws of many countries differ in various respects from the patent law of the United States, applicants are advised to seek guidance from specific foreign countries to ensure that patent rights are not lost prematurely.

Applicants also are advised that in the case of inventions made in the United States, the Director of the USPTO must issue a license before applicants can apply for a patent in a foreign country. The filing of a U.S. patent application serves as a request for a foreign filing license. The application's filing receipt contains further information and guidance as to the status of applicant's license for foreign filing.

Applicants may wish to consult the USPTO booklet, "General Information Concerning Patents" (specifically, the section entitled "Treaties and Foreign Patents") for more information on timeframes and deadlines for filing foreign patent applications. The guide is available either by contacting the USPTO Contact Center at 800-786-9199, or it can be viewed on the USPTO website at http://www.uspto.gov/web/offices/pac/doc/general/index.html.

For information on preventing theft of your intellectual property (patents, trademarks and copyrights), you may wish to consult the U.S. Government website, http://www.stopfakes.gov. Part of a Department of Commerce initiative, this website includes self-help "toolkits" giving innovators guidance on how to protect intellectual property in specific countries such as China, Korea and Mexico. For questions regarding patent enforcement issues, applicants may call the U.S. Government hotline at 1-866-999-HALT (1-866-999-4158).

LICENSE FOR FOREIGN FILING UNDER

Title 35, United States Code, Section 184
Title 37, Code of Federal Regulations, 5.11 \& 5.15

GRANTED

The applicant has been granted a license under 35 U.S.C. 184, if the phrase "IF REQUIRED, FOREIGN FILING LICENSE GRANTED" followed by a date appears on this form. Such licenses are issued in all applications where the conditions for issuance of a license have been met, regardless of whether or not a license may be required as set forth in 37 CFR 5.15. The scope and limitations of this license are set forth in 37 CFR 5.15(a) unless an earlier license has been issued under 37 CFR $5.15(\mathrm{~b})$. The license is subject to revocation upon written notification. The date indicated is the effective date of the license, unless an earlier license of similar scope has been granted under 37 CFR 5.13 or 5.14.

This license is to be retained by the licensee and may be used at any time on or after the effective date thereof unless it is revoked. This license is automatically transferred to any related applications(s) filed under 37 CFR 1.53(d). This license is not retroactive.

The grant of a license does not in any way lessen the responsibility of a licensee for the security of the subject matter as imposed by any Government contract or the provisions of existing laws relating to espionage and the national security or the export of technical data. Licensees should apprise themselves of current regulations especially with respect to certain countries, of other agencies, particularly the Office of Defense Trade Controls, Department of State (with respect to Arms, Munitions and Implements of War (22 CFR 121-128)); the Bureau of Industry and Security, Department of Commerce (15 CFR parts 730-774); the Office of Foreign AssetsControl, Department of Treasury (31 CFR Parts 500+) and the Department of Energy.

NOT GRANTED

No license under 35 U.S.C. 184 has been granted at this time, if the phrase "IF REQUIRED, FOREIGN FILING LICENSE GRANTED" DOES NOT appear on this form. Applicant may still petition for a license under 37 CFR 5.12, if a license is desired before the expiration of 6 months from the filing date of the application. If 6 months has lapsed from the filing date of this application and the licensee has not received any indication of a secrecy order under 35 U.S.C. 181, the licensee may foreign file the application pursuant to 37 CFR 5.15(b).

European Patent Office

Office européen des brevets

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europăischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application conformes à la version described on the following initialement deposee de page, as originally filed.

Les documents fixés à cette attestation sont la demande de brevet europeen specifiee à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet \mathbf{n}°

Der Präsıdent des Europäıschen Patentamts:
Im Auftrag
For the President of the European Patent Office
Le Président de t'Othce europeen des brevets p.o.

R C van Dijk

```
Anmeldung Nr:
Application no.: 03019428.6
Demande no:
```

```
Anme1der/Applicant(s)/Demandeur(s):
```

Anme1der/Applicant(s)/Demandeur(s):
PACT XPP Technologies AG
Muthmannstrasse 1
80939 München
ALLEMAGNE

```

\section*{Anmeldetag:}

Date of filing: 28.08.03 Date de dépôt:
Bezeichnung der Erfindung/Title of the invention/Titre de l'invention:
(Falls die Bezefchnung der Erfindung nicht angegeben ist, siehe Beschrefbung.
If no title is shown please refer to the description.
Si aucun titre n'est indiqué se referer a la description.)
Device and method for data processing
In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s)
revendiquee(s)
Staat/Tag/Aktenzefchen/State/Date/File no./Pays/Date/Numéro de dépót:

\section*{Internationale Patentklassifikation/International Patent Classification/ Classffication internationale des brevets:}

G06F9/00

An Anmeldetag benannte Vertragstaaten/Contracting states designated at date of f11/ng/Etats contractants désignees lors du depôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR LI

\section*{1 Overview of changes vs. XPP V2.0}

\subsection*{1.1 ALU-PAE Architecture}

A PAE comprises 4 input ports and 4 output ports. Embedded with each PAE is the FREG path newly named DF with its dataflow capabilities, like MERGE, SWAP, DEMUX as well as ELUT.

2 input ports RiO and Ri1 are directly connected to the ALU. Two output ports receive the ALU results.
Ri2 and Ri3 are typically fed to the DF path which output is Ro2 and Ro3.
Afternatively Ri 2 and Ri 3 can serve as inputs for the ALU as well. This extension is needed to provide a suitable amount of ALU inputs it Function Folding (as described later) is used. In this mode Ro2 and Ro3 serve as additional outputs.

Associated to each data register ( Ri or Ro) is an event port (Ei or Eo).
It is to decide whether an additional data and event bypass BRiO-1, BEIO-1 is implemented. The decision depends on how often Function Folding will be used and how many inputs and outputs are required in average.


\subsection*{1.1.1 Other extensions}

SIMD operation is implemented in the ALUs to support 8 and 16 bit wide data words for i.e. graphics and imaging.

Saturation is supported for ADD/SUB/MUL instructions for i.e. voice, video and imaging algorithms.

\subsection*{1.2 Function Folding}

\subsection*{1.2.1 Basics and Input/output paradigms}

Within this chapter the basic operation paradigms of the XPP architecture are repeated for a better understanding based on Petri-Nets. In addition the Petri-Nets will be enhanced for a better understanding of the subsequently described changes of the current XPP architecture.

Each PAEs operates as a data flow node as defined by Perti-Nets. A Petri-Net supports a calculation of mutiple inputs and produces one single output. Special for a Perti-Net is, that the operation is delayed until all inputs are available.

For the XPP technology this means:
1. all necessary data is available
2. all necessary events are available

The quantity of data and events is defined by the data and control flow, the availability is displayed at runtime by the handshake protocol RDY/ACK.


The thick arbor indicates the operation, the dot on the right side indicates that the operation is delayed until all inputs are available.

Enhancing the basic methodology function folding supports multiple operations maybe even sequential - instead of one, defined as a Cycle. Important is, that the basics of Petri-Nets keep unchanged.


Typical PAE-like Petri-Nets consume one input packet per one operation. For sequential operation multiple reads of the same input packet are supported. However, the interface model again keeps unchanged.

Data duplication occurs in the output path of the Petri-Net, which does not influence the operation basios again.


\subsection*{1.2.2 Method of Function Folding}

One of the most important extensions is the capability to fold multiple PAE functions onto on PAE and execute them in a sequential manner. It is important to understand that the intention is not to support sequential processing or even microcontroller capabilities at all. The intention of Function Folding is just to take multiple dataflow operations and map them on a single PAE, using a register structure instead of a network between each function.

The goal is to save silicon area by rising to clock frequency locally in the PAEs. An additiontal expectation is to save power since the busses operate at a fraction of the clock frequencies of the PAEs. Data transfers over the busses, which consume much power, are reduced.


PACT -• ••

The internal registers can be implemented in two different ways:

\section*{1. dataflow model}

Each register ( \(r^{\prime}\) ) has a valid bit which is set as soon as data has been written into the register and reset after the data has been read. Data cannot be written if valid is set, data can not be read if valid is not set. This approach implements a \(100 \%\) compatible dataflow behaviour.
2. sequencer model

The registers have no associated valid bits. The PAE operates as a sequencer, whereas at the edges of the PAE (the bus connects) the paradigm is changed to the XPP-like dataflow behaviour.

Even if at first the dataflow model seems preferable, it has major down sides. One is that a high amount of register is needed to implement each data path and data duplication is quite complicated and not efficient. Another is that sometimes a limited sequential operation simplifies programming and hardware effort.
Therefore it is assumed consecutively that sequencer model is implemented. Since pure dataflow can be folded using automatic tools the programmer should stay within the dataflow paradigm and not be confused with the additional capabilities. Automatic tools must take care i.e. while register allocation that the paradigm is not violated.

The following figure shows that using sequencer model only 2 registers (instead of 4 ) are required:


XPP V2 function PAE trequency 50 WHz Bus frequency 50 \(\mathrm{HH}+\)


10 allocation Pregister allocatlon
STEP
STEP 2
STEP 3
STEP 3b

PACT

For allowing complex function like i.e. address generation as well as algorithms like "IMEG"-like data stream operations the PAE has not only 4 instruction registers implemented but 8 , whereas the maximum bus-clock vs. PAE-clock ration is limited to a factor of 4 for usual function foiding.

It is expected that the size of the new PAE supporting Function Fuiuling will increase by max. \(25 \%\). On the other hand 4 PAEs are reduced to 1.

Assuming that in average not the optimum but only about 3 functions can be folded onto a single PAE a XPP64 could be replaced by a XPP21. Taking the larger PAEs into account the functionality of a XPP64 V2.0 should be executable on a XPP V2.2 with an area of less than half.

\subsection*{1.3 Array Structure}

The V2.0 structure of the PAEs consumes much area for FREG and BREG and their associated bus interfaces. In addition feed backs through the FREGs require the insertion of registers into the feedback path, which result not only in an increased latency but also in a negative impact onto the throughput and performance of the \(X P P\).

A new PAE structure and arrangement is proposed with the expectation to minimize latency and optimize the bus interconnect structure to achieve an optimized area.

The V2.2 PAE structure does not include BREGs any more. As a replacement the ALUs are alternating flipped horizontally which leads to improved placement and routing capabilities especially for feedback paths i.e. of loops.
Each PAE contains now two ALUs and two BP paths, one from top to boltom and one flipped from bottom to top.


\subsection*{1.4 Bus modifications}

Within this chapter are optimizations described which reduce the required area and the amount of busses. However, this modifications are only proposals yet, since the have to be evaluated based on real algonithms. It is planed to compose a questionnaire to collect the necessary input from the application programmes.

\subsection*{1.4.1 Nexexi neiğínbour}

In V2.0 architecture a direct horizontal data path between two PAEs block a vertical data bus. This effect increases the required vertical busses within a XPP and drives cost unnecessarily.

Therefore in V2.2 a direct feed path between horizontal PAEs is proposed.

\subsection*{1.4.2 Removal of registers in busses}

In V2.0 are registers implemented in the vertical busses which can be switched on by configuration for longer paths. This registers can furthermore be preloaded by configuration which requires a significant amount of silicon area.

It is proposed not to implement registers in the busses any more, but to use an enhanced DF or Bypass (PB) part within the PAEs which is able to reroute a path to the same bus using the DF or BP internal registers instead:


It is to evaluate
a) how many resources are saved for the busses and how many are needed for the PAEs
b) how often must registers be inserted, are 1 or max. 2 paths enough per PAE (limit is two since DF/BP offers max. 2 inputs)

\subsection*{1.4.3 Shifting \(n: 1,1: n\) capabilities from busses to PAEs}

In V2.0 \(\mathrm{n}: 1\) and 1:n transitions are supported by the busses which requires a significant amount of resources i.e. for the sample-and-hold stage of the handshake signais.

Depending on the size of \(n\) two different capabilities are provided with the new PAE structure:
\[
\begin{array}{ll}
n \leq 2 & \text { The required operations are done within the DF path of the PAE } \\
2 \leq n \leq 4 & \text { The ALU path is required since } 4 \text { ports are necessary } \\
n>4 & \text { Multiple ALUs have to be combined }
\end{array}
\]

This method saves a significant amount of static resources in silicon but requires dedicated PAE resources at runtime.

It is therefore to evaluate
c) how much silicon area is saved per bus
d) how often occurs \(n=2,2 \leq n \leq 4, n>4\)
e) the ratio between saved silicon area and required PAE
resources

PACT

\subsection*{1.5 FSM in RAM-PAEs}

In the V2.0 architecture implementing control structures is very costly, a lot of resources are required and programming is quite difficult.

However memories can be used for a simple FSMs implementation. The following enhancement of the RAM-PAEs offers a cheap end easy to program solution for many of the known control issues, including HDTV.


Basically the RAM-PAE is enhanced by an feedback from the data output to the address input through a register (FF) to supply subsequent address within each stage. Furthermore additional address inputs from the PAE array can cause conditional jumps, data output will generate event signals for the PAE array. Associated counters which can be reloaded and stepped by the memory output generate address input for conditional jumps (i.e. end of line, end of frame of a video picture).
At typical RAM-PAE implementation has about 16-32 data bits but only 8-12 address bits. To optimize the range of input vectors it is therefore suggestive to insert some multiplexers at the address inputs to select between multiple vectors, whereas the multiplexers are controlled by some of the output data bits.

The implementation for a XPP having 24bit wide data busses is sketched in the next figure. 4 event inputs are used as input, as well as the lower for bits of input port Rio. 3 counters are implemented, 4 events are generated as well as the lower 10 bits of the Roo port.

The memory organisation is as follows:
                6 counter control (shared with 4 additional next address)
                    4 output


Please not that the typical memory mode of the RAM-PAE is not sketched in the block diagram above.

The width of the counters is according to the bus width of the data busses.

For a 16 bit implementation it is suggested to use the carry signal of the counters as their own reload signal (auto reload), also some of the multiplexers are not driven by the memory but "hard wired" by the configuration.

The proposed memory organisation is as follows:
8 address bits
16 data bits (16 used)
4 next address
4 multiplexer selectors
3 counter control (shared with 3 additional next address)
4 output


Actually the RAM-PAEs are not scaleable any more since the 16-bit implementation is different from the 24-bit implementation. It is to decide whether the striped down 16-bit implementation is used for 24-0iti also.

\subsection*{1.6 IOAG interface}

\subsection*{1.6.1 Address Generators and bit reversal addressing}

Implemented within the 10 interfaces are address generators to support 1 to 3 dimensional addressing directly without any ALU-PAE resources. The address generation is done by 3 counters, each of them has configurable base address, length and step width.
The first counter (CNT1) has a step input to be controlled by the array of ALU-PAEs. Its carry is connected to the step input of CNT2, which carry again is connected to the step input of CNT3.
Each counter generates carry if the value is equal to the configured length. Immediately with carry the counter is reset to its configured base address.

One input is dedicated for addresses from the array of ALU-PAEs which can be added to the values of the counters. If one or more counters are not used they are configured to be zero.

In addition CNT1 supports generation of bit reversal addressing by supplying multiple carty modes.


\subsection*{1.6.2 Support for different word width}

In general it is necessary to support multiple word width within the PAE array. 8 and 16 bit wide data words are preferred for a lot of algorithms i.e. graphics. In addition to the already described SIMD operation, the IOAG allows the split and merge of such smaller data words.

Since the new PAE structure allows 4 input and 4 output ports, the IOAG can support word splitting and merging as follows:
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{\(1 / 00\)} & \multicolumn{1}{|c|}{ I/O 1 } & \multicolumn{1}{|c|}{\(1 / 02\)} & a \\
\hline \begin{tabular}{l}
\(16 / 24 / 32\)-bit data \\
word
\end{tabular} & & & address \\
\hline 16 -bit data word & 16 -bit data word & & address \\
\hline 8 -bit data word & 8 -bit data word & 8 -bit data word & address \\
\hline
\end{tabular}

Input ports are merged within the IOAG for word writes to the IO.
For output ports the read word is split according to the contigured word width.

\subsection*{1.7 XPP / \(\mu \mathrm{P}\) coupling}

For a closed coupling of a \(\mu \mathrm{P}\) and a XPP a cache and register interface would be the preferable structure for high level tools like C-compilers. However such a close coupling is expected not to be doable in a very first step.

Two different kind of couplings are necessary for a tight coupling:
a) memory coupling for large data streams: The most convenient method with the highest performance is a direct cache coupling, whereas an AMBA based memory coupling will be sufficient for the beginning (to be discussed with ATAIR)
b) register coupling for small data and irregular MAC operations: Preferable is aC direct coupling into the processors registers with an implicit synchronisation in the OF-stage of the processor pipeline. However coupling via load/store- or in/out-commands as external registers is acceptable with the penalty of a higher latency which causes some performance limitation (already agreed with ATAIR)

\section*{2 Specification of ALU-PAE}

\subsection*{2.1 Overview}

The ALU-PAE comprises 3 paths:
ALU arithmetic, logic and data flow handling
DF data flow handling and bypass
BP bypass
Each of the paths contains 2 data busses and 1 event bus. The busses of the DF path can be rerouted to the ALU path by configuration.

\subsection*{2.2 ALU path Registers}

The ALU path comprises 12 data registers:
Ri0-3 Input data register 0-3 from bus
Rvo-3 Virtual output data register 0-3 to bus
Rd0-3 Internal general purpose register 0-3
Ei0-3 Event input 0-3 from bus
Evo-3 Virtual event output register 0-3 to bus
Fu, FvFlag \(u\) and \(v\) according to the V2.0 PAE

Note: Ri2 and Ri3 belong typically to the DF path, but can be allocated for the ALU by configuration.

\section*{Eight instruction registers are implemented, each of them is 16 bit wide according to} the opcode format.

Rc0-7 Instruction registers

Three special purpose registers are implemented:
Ric Loop Counter, configured by CM, not accessible through ALU-PAE itself. Will be decremented according to JL opcode. Is reloaded after value 0 is reached.
Rjb Jump-Back register to define the number of used entries in Rc[0..7]. It is not accessible through ALU-PAE itself.
If Rpp is equal to Rjb , Rpp is immediately reset to 0 . The jump back can be bound to a condition i.e. an incoming event. If the condition is missing, the jump back will be delayed.
Rpp Program pointer

\subsection*{2.3 Data duplication and multiple input reads}

Since Function Folding can operate in a purely data stream mode as well as in a sequential mode (see 1.2) it is useful to support Ri reads in dataflow mode (single
read only) and sequential mode (multiple read). The according protocols are described below:

Each input register Ri can be configured to work in one of two different modes:

\section*{Dataflow Mode}

This is the standard protocol of the V2.0 implementation:
A data packet is taken read from the bus if the register is empty, an ACK handshake is generated. If the register is not empty ACK the data is not latched and ACK is not generated.
If the register contains data, it can be read once. Immediately with the read access the register is marked as empty. An empty register cannot be read.

Simplified the protocol is defined as follows:
\begin{tabular}{ll} 
RDY \& empty & \(\rightarrow\) full \\
RDY \& full & \(\rightarrow\) ACK \\
& \(\rightarrow\) notACK \\
READ \& empty & \(\rightarrow\) stall \\
READ \& full & \(\rightarrow\) read data \\
& \(\rightarrow\) empty
\end{tabular}

Please note: pipeline effects are not taken into account in this description and protocol.

\section*{Sequencer Mode}

The input interface is according to the bus protocol definition: A data packet is taken read from the bus if the register is empty, an ACK handshake is generated. If the register is not empty ACK the data is not latched and ACK is not generated. If the register contains data it can be read multiple times during a sequence. A sequence is defined from Rpp = 0 to Rpp = Rjb. During this time no new data can be written into the register. Simultaneously with the reset of Rpp to 0 the register content is cleared an new data is accepted from the bus.

Simplified the protocol is defined as follows:
\begin{tabular}{ll} 
RDY \& empty & \(\rightarrow\) full \\
RDY \& full & \(\rightarrow\) nCK \\
READ \& empty & \(\rightarrow\) stall \\
READ \& full & \(\rightarrow\) read data \\
(Rpp == Rjb) & \(\rightarrow\) empty
\end{tabular}

Please note: pipeline effects are not taken into account in this description and protocol.

\subsection*{2.4 Data register and event handling}

Data registers are directly addressed, each data register can be individually selected. Since a two address opcode form is used, register operations follow the rule op \(r_{a} \leftarrow\) \(r_{a} r_{b}\). An virtual output register is selected by adding 'out' behind the opcode. The result will be stored in \(r_{a}\) and copied to the virtual output register \(r_{v}\) as well according to the rule op out ( \(r_{v}, r_{a}\) ) \(\leftarrow r_{a} r_{b}\).
Please note, accessing input and (virtual) output registers follow the rules defined in chapter 2.3.

\section*{Rotating Select}

Under normal conditions data and events are read one time according to the principles of Petri-Nets. Therefore for most applications a one time access per Cycle is sufficient. Also per definition one data or event is generated by a Petri-Net per channel and Cycle.

If Function Folding is done in a sequential manner synchronisation is achieved by using WAIT and SKIP commands. If multiple accesses to an event are required it can be copied by the READE instruction to the \(u\) or \(v\) flags which can be used successively for multiple commands.

The Rotating Select starts on the first access to events with the event E0, steps with the second access over E1 and E2, to E3 (at the fourth access) and restarts with the fifth access at E0 again.
\begin{tabular}{|l|l|l|l|l|}
\hline \begin{tabular}{l} 
Reset or \\
Rpp \(==\) Rjb
\end{tabular} & \begin{tabular}{l} 
after 1st \\
event access
\end{tabular} & \begin{tabular}{l} 
after 2nd \\
event access
\end{tabular} & \begin{tabular}{l} 
after 3rd \\
event access
\end{tabular} & \begin{tabular}{l} 
after 4th \\
event access
\end{tabular} \\
\hline E0 & E1 & E2 & E3 & continue with E0 \\
\hline
\end{tabular}

Rotating select is supported for reading events and writing events with an explicit rotation counter for each read and write. Writing to events copies the value to the \(u\) flag at the same time, et \((v)\) and ee(v) causes copying to the \(v\) flag.

For each opcode E0 and the internal flags \(u\) and \(v\) can be selected explicitly by the following selection modes. E0 can therefore be easy used as for multiple write event accesses per Cycle since there is no need to use the rotating select mode for E0 for most of the opcodes:
\(\begin{array}{ll}\text { et (event target) } & \text { eventt (event target) } \\ \text { es (event source) } & \text { events (event source) }\end{array}\)
es (event source)
\begin{tabular}{|l|l|}
\hline 00 & Internal u \\
\hline 01 & Internal v \\
\hline 10 & External Ev0 \\
\hline 11 & \begin{tabular}{l} 
Rotating select: \\
External next
\end{tabular} \\
(Ev0/Ev1/EV2.0/EV2.2) \\
and internal u flag
\end{tabular}
\begin{tabular}{|l|l|}
\hline 000 & Internal u \\
\hline 001 & Internal v \\
\hline 010 & Ev0 \\
\hline 011 & Ev1 \\
\hline 100 & EV2.0 \\
\hline 101 & EV2.2 \\
\hline 110 & \\
\hline 111 & \begin{tabular}{l} 
Rotating select: \\
External next
\end{tabular} \\
\hline
\end{tabular}

Event Enable enables or disables writing a flag to an virtual event output. However the flag will be set in the internal \(u\) or \(v\) register anyhow.
ee (event enable)
\begin{tabular}{|l|l|}
\hline 0 & Internal v or u \\
\hline 1 & Internal v or u \& \\
& Rotating select: \\
External next \\
(Ev0/Ev1/EV2.0/EV2.2) \\
and internal v or u flag
\end{tabular}\(\quad\).

\section*{Event sources}

Instructions offering only ALU internal flags as source for the operations:
- SAT

The event addressing supports the selection between the \(u\) and \(v\) flag.
Instructions allowing directly addressed event sources using eventt and events:
- WAIT, SKIP, READE, WRITEE
- MERGE, DEMUX, SWAP

Instructions offering limited addressed event sources and rotating event select (et, es):
- SHL, SHR, DSHL, DSHR, DSHRU
- ADD, ADDC, SUB, SUBC

\section*{Event targets}

Some instructions operate using rotating event select only (et, es):
- NOT, SORT, SORTU, CLZ, CLZU, AND, OR, XOR, EQ, CMP, CMPU

Some instructions support Event Enable only (ee):
- SHL, SHR, DSHL, DSHR, DSHRU
- ADD, ADDC, SUB, SUBC

\subsection*{2.4.1 n:1 Transitions}

1:n transitions are not supported within the busses any more. Alternatively simple writes to multiple output registers Ro and event outputs Eo are supported. The Virtual Output registers (Rv) and Virtual Event (Ev) are translated to real Output registers (Ro) and real Events (Eo), whereas a virtual register can be mapped to multiple output registers.

To achieve this a configurable translation table is implemented for both data registers and event registers:
\begin{tabular}{|l|l|l|l|l|}
\hline \begin{tabular}{l} 
Rv \\
Ev
\end{tabular} & \begin{tabular}{l} 
Ro0 \\
Eo0
\end{tabular} & \begin{tabular}{l} 
Ro1 \\
Eo1
\end{tabular} & \begin{tabular}{l} 
Ro2 \\
Eo2
\end{tabular} & \begin{tabular}{l} 
Ro3 \\
Eo3
\end{tabular} \\
\hline 0 & & & & \\
\hline 1 & & & & \\
\hline 2 & & & & \\
\hline 3 & & & \\
\hline
\end{tabular}

\section*{Example:}

Rivo mapped to Ro0, Ro1
Rv1 mapped to Ro2
RV2.0 mapped to Ro3
RV2.2 unused
\begin{tabular}{|l|l|l|l|l|}
\hline RV & Ro0 & Ro1 & Ro2 & Ro3 \\
\hline 0 & 1 & 1 & 0 & 0 \\
\hline 1 & 0 & 0 & 1 & 0 \\
\hline 2 & 0 & 0 & 0 & 1 \\
\hline 3 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

\subsection*{2.4.2 Accessing input and output registers (Ri/Rv) and events (Ei/Ev)}

Independently from the opcode accessing input or output registers or events is defined as follows:

Reading an input register:
\begin{tabular}{|l|l|}
\hline Register staĩus & Operation \\
\hline empty & wait for data \\
\hline full & read data and continue operation \\
\hline
\end{tabular}

Writing to an output register:
\begin{tabular}{|l|l|}
\hline Register status & Operation \\
\hline empty & write data to register \\
\hline full & wait until register is cleared and can accept new data \\
\hline
\end{tabular}

\subsection*{2.5 Opcode format}

To achieve a small opcode size a two address code is used. The basic operation is:
\[
\mathrm{Op} \mathrm{r}_{\mathrm{a}} \leftarrow \mathrm{r}_{\mathrm{a}}, \mathrm{r}_{\mathrm{b}}
\]

Source registers can be Ri and Rd, target registers are Rv and Rd. A typical operation targets only Rd registers. If the source register for \(\mathrm{r}_{\mathrm{a}}\) is Ri[x] the target register will be Rd[ x\(]\).
The translation is shown is the following table:
\begin{tabular}{|l|l|}
\hline Target & Source \(\mathrm{ra}_{\mathrm{a}}\) \\
\hline RdO & RdO \\
\hline Rd 1 & Rd1 \\
\hline Rd2 & Rd2 \\
\hline Rd3 & Rd3 \\
\hline RdO & Ri0 \\
\hline Rd 1 & Ri1 \\
\hline Rd2 & Ri2 \\
\hline Rd3 & Ri3 \\
\hline
\end{tabular}

Each operation can target a Virtual Output Register Rv by adding an out tag as a target identifier to the opcode:
\[
\text { op out } \mathrm{r}_{\mathrm{a}} \leftarrow \mathrm{r}_{\mathrm{a}}, \mathrm{r}_{\mathrm{b}}
\]

The transfer is now \(\operatorname{Ri}[x]\) or \(\operatorname{Rd}[x]\) to \(\operatorname{Rv}[x]\) as shown in the table below:
\begin{tabular}{|l|l|}
\hline Target & Source \(\mathrm{r}_{\mathrm{a}}\) \\
\hline Rvo & RdO \\
\hline Rv1 & Rd1 \\
\hline RV2.0 & Rd2 \\
\hline RV2.2 & Rd3 \\
\hline Rv0 & Ri0 \\
\hline Rv1 & Ri1 \\
\hline RV2.0 & Ri2 \\
\hline RV2.2 & Ri3 \\
\hline
\end{tabular}

The opcode format is 16 bit wide, the standard formats are:

\subsection*{2.6 Clock}

The PAE can operate at a configurable clock frequency of
1x Bus Clock
2x Bus Clock
4x Bus Clock
[8x Bus Clock]

\subsection*{2.7 The DF path}

The DataFlow path comprises the data registers Ri2\&3 and Ro2\&3 as well as the events Ei2\&3 and Eo2\&3. Each of the data registers Ri[ \(n\) ] is combined with an event \(E[n]\) whereas the according busses support different routings.

By configuration each data path and its associated event can be dedicated to the ALU path.

The DF path supports numerous instructions, whereas the instruction is selected by configuration and only one of them can be performed during a configuration, function folding is not available.

The following instructions are implemented:
1. ADD, SUB
2. NOT, AND, OR, XOR
3. SHL, SHR, DSHL, DSHR, DSHRU
4. EQ, CMP, CMPU
5. MERGE, DEMUX, SWAP
6. SORT, SORTU
7. ELUT

\subsection*{2.8 The BP path}

The ByPass path is a simple horizontal network between the input data registers BRi0\&1 and events BEi0\&1 to the output registers BRo0\&1 and events BEo0\&1.

\section*{3 Input Output Address Generators (IOAG)}

The IOAGs are located in the RAM-PAEs and share the same registers to the busses. An IOAG comprises 3 counters with forwarded carries. The values of the counters and an immediate address input from the array are added to generate the address. One counter offers reverse carry capabilities.

\subsection*{3.1 Adressing modes}

Several addressing modes are supported by the IOAG to support typical DSP-like addressing:
\(\left.\begin{array}{ll}\text { Mode } & \begin{array}{l}\text { Description } \\
\text { Immediate }\end{array} \\
\text { xD counting } & \begin{array}{l}\text { Address generated by the PAE array } \\
\text { Multidimensional addressing using IOAG internal } \\
\text { counters }\end{array} \\
\text { xD means 1D, 2D, 3D }\end{array}\right\}\)\begin{tabular}{l} 
xD circular \\
Multidimensional addressing using IOAG internal \\
counters, after overflow counters reload with base
\end{tabular}

\subsection*{3.1.1 Immediate Addressing}

The address is generated in the array and directly fed through the adder to the address output. All counters are disabled and set to 0 .

\subsection*{3.1.2 xD counting}

Counters are enabled depending on the required dimension ( \(x\)-dimensions require \(x\) counters). For each counter a base address and the step width as well as the maximum address are configured. Each carry is forwarded to the next higher and enabled counter; after carry the counter is reloaded with the start address. A carry at the highest enabled counter generates an event, counting stops.

\subsection*{3.1.3 xD circular}

The operation is exactly the same as for xD counting, with the difference that a carry at the highest enabled counter generates an event, all counters are reloaded to their base address and continue counting.

\subsection*{3.1.4 Stack}

One counter (CNT1) is used to decrement after data writes and increment after data reads. The base value of the counter can either be configured (base address) or loaded by the PAE array.

\subsection*{3.1.5 Reverse carry}

Typically carry is forwarded from LSB to MSB. Forwarding the carry to the opposite direction (reverse carry) allows generating address patterns which are very well suited for applications like FFT and the like. The carry is discarded at MSB.

For using reverse carry a value larger than LSB must be added to the actual value to count, wherefore the STEP register is used.

Example:
BASE \(=0 h\)
STEP = 1000b
\begin{tabular}{|l|l|}
\hline Step & Counter Value \\
\hline 1 & \(\mathrm{~b} 0 \ldots . .00000\) \\
\hline 2 & \(\mathrm{~b} 0 \ldots . .01000\) \\
\hline 3 & \(\mathrm{~b} 0 \ldots 00100\) \\
\hline 4 & \(\mathrm{b0} \ldots . .01100\) \\
\hline 5 & \(\mathrm{~b} 0 \ldots . .00010\) \\
\hline\(\ldots\) & \(\ldots\) \\
\hline 16 & \(\mathrm{b0} 0 . .01111\) \\
\hline 17 & \(\mathrm{bO} . .00000\) \\
\hline
\end{tabular}

The counter is implemented to allow reverse carry at least for STEP values of \(-2,-1\), +1 , +2.

\section*{Appendix A OpCodes}

\section*{Notation:}

Registers

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & & & Rd0\& 1 & Rdo & 10 \\
\hline & \multirow{3}{*}{Target Identifier} & & Rd2\&3 & Rd2 & 11 \\
\hline tid & & \multirow[t]{2}{*}{1} & 0 0 In & \multicolumn{2}{|l|}{Internal Register} \\
\hline & & & \[
\begin{array}{l|l}
\hline 1 & \begin{array}{l}
\text { Int } \\
\hline
\end{array} \\
\hline
\end{array}
\] & \multicolumn{2}{|l|}{Internal \& External Register} \\
\hline val & Value & 1 & \multicolumn{3}{|l|}{one bit value} \\
\hline \multirow[t]{4}{*}{valx} & \multirow[t]{4}{*}{Value including don't care} & \multirow[t]{4}{*}{2} & \multicolumn{2}{|l|}{00} & 0 \\
\hline & & & \multicolumn{2}{|l|}{01} & 1 \\
\hline & & & \multicolumn{2}{|l|}{10} & X \\
\hline & & & \multicolumn{2}{|l|}{11} & X \\
\hline \multirow[t]{4}{*}{val2} & \multirow[t]{4}{*}{2 bit value} & \multirow[t]{4}{*}{2} & \multicolumn{2}{|l|}{00} & 00 \\
\hline & & & \multicolumn{2}{|l|}{01} & 01 \\
\hline & & & \multicolumn{2}{|l|}{10} & 10 \\
\hline & & & \multicolumn{2}{|l|}{11} & 11 \\
\hline \multirow[t]{2}{*}{u/v} & \multirow[t]{2}{*}{Select flag register Fu or Fv} & \multirow[t]{2}{*}{1} & \multicolumn{3}{|l|}{\begin{tabular}{|l|l|}
\hline 0 & \(F u\) \\
\hline
\end{tabular}} \\
\hline & & & 1 & \multicolumn{2}{|l|}{FV} \\
\hline \multirow[t]{4}{*}{et} & \multirow[t]{4}{*}{event target} & \multirow[t]{4}{*}{2} & \multicolumn{2}{|l|}{00} & Internal u \\
\hline & & & \multicolumn{2}{|l|}{01} & Internal V \\
\hline & & & \multicolumn{2}{|l|}{10} & External E0 \\
\hline & & & \multicolumn{2}{|l|}{11} & External next (E1/E2/E3) \\
\hline \multirow[t]{4}{*}{es} & \multirow[t]{4}{*}{event source} & \multirow[t]{4}{*}{2} & \multicolumn{2}{|l|}{00} & Internal u \\
\hline & & & \multicolumn{2}{|l|}{01} & Internal v \\
\hline & & & \multicolumn{2}{|l|}{10} & External E0 \\
\hline & & & \multicolumn{2}{|l|}{11} & \begin{tabular}{l}
External next \\
(E1/E2/E3)
\end{tabular} \\
\hline \multirow[t]{8}{*}{event} & \multirow[t]{8}{*}{event target (or source)} & \multirow[t]{8}{*}{3} & \multicolumn{2}{|l|}{000} & Internal u \\
\hline & & & \multicolumn{2}{|l|}{001} & Internal v \\
\hline & & & \multicolumn{2}{|l|}{010} & EO \\
\hline & & & \multicolumn{2}{|l|}{011} & E1 \\
\hline & & & \multicolumn{2}{|l|}{100} & E2 \\
\hline & & & \multicolumn{2}{|l|}{101} & E3 \\
\hline & & & \multicolumn{3}{|l|}{110} \\
\hline & & & 111 & \multicolumn{2}{|r|}{External next
(E1/E2/E3)} \\
\hline \multirow[t]{2}{*}{ee} & \multirow[t]{2}{*}{event enable} & \multirow[t]{2}{*}{2} & 0 & \multicolumn{2}{|l|}{Internal} \\
\hline & & & 1 & \multicolumn{2}{|l|}{Internal \& External next (E1/E2/E3)} \\
\hline
\end{tabular}

PACT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 0123456 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & IF & OF & Comment \\
\hline \[
\begin{aligned}
& \text { NOP } \\
& 000000
\end{aligned}
\] & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & No Operation \\
\hline \[
\begin{aligned}
& \text { READ } \\
& 000000
\end{aligned}
\] & 0 & targ & & 0 & sourc & e_i & 0 & 1 & 0 & & & Read packet from input port \\
\hline \begin{tabular}{l}
WRITE \\
000000
\end{tabular} & 1 & targ & & 0 & & urce & & 1 & 0 & & & Write packet to output port \\
\hline \[
\begin{aligned}
& \text { MOVE } \\
& 000000 \\
& \hline
\end{aligned}
\] & 0 & targ & & 1 & sourc & e_r & 0 & 1 & 0 & & & Move data between register \\
\hline LOAD
\[
000000
\] & 1 & targ & & 1 & 0 & 0 & 0 & 1 & 0 & & & Load register with constant \\
\hline \multicolumn{10}{|c|}{constant} & & & \\
\hline \[
\begin{aligned}
& \text { SAT } \\
& 000000
\end{aligned}
\] & 0 & targ & t_r & 0 & 0 & 0 & 1 & 0 & 0 & U & & \begin{tabular}{l}
Saturate if carry \\
'0 if previous command was SUBC \\
' 1 if previous command was ADDC
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { SETUV } \\
& 000000
\end{aligned}
\] & 0 & val & \(u / v\) & 0 & 0 & 1 & 1 & 0 & 0 & & UN & Set Flags uf and \(\mathbf{v}\) \\
\hline \[
\begin{aligned}
& \text { SWAPUV } \\
& 000000
\end{aligned}
\] & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & & UN & Swap \(u\) and \(v\) flag \\
\hline \[
\begin{aligned}
& \text { NOT } \\
& 000000
\end{aligned}
\] & tid & & arget & & 1 & e & & 0 & 0 & & U & \\
\hline \[
\begin{array}{|l|}
\hline J R \\
000000
\end{array}
\] & \multicolumn{7}{|c|}{adr7} & 0 & 1 & & & Jump relative \\
\hline \[
\begin{aligned}
& \text { JL } \\
& 000000
\end{aligned}
\] & \multicolumn{7}{|c|}{adr7} & 1 & 1 & & & Jump relative if RIc is not zero \\
\hline MERGE 000001 & tid & targ & t_p & \multicolumn{5}{|l|}{source_p event} & 0 & U & & \\
\hline \[
\begin{aligned}
& \text { DEMUX } \\
& 000001
\end{aligned}
\] & tid & targ & t_p & \multicolumn{5}{|l|}{source_p event} & 1 & U & & \\
\hline \[
\begin{aligned}
& \text { SWAP } \\
& 000010
\end{aligned}
\] & tid & targ & t_p & \multicolumn{5}{|l|}{source_p event} & 0 & U & & \\
\hline WAIT 000010 & 0 & & & 0 & 0 & \multicolumn{3}{|c|}{event} & 1 & U & & Wait for incoming event \\
\hline \[
\begin{aligned}
& \text { SKIP } \\
& 000010
\end{aligned}
\] & 0 & & & 0 & 1 & \multicolumn{3}{|c|}{event} & 1 & U & & Wait for incoming event \\
\hline \[
\begin{aligned}
& \hline \text { EOPTR } \\
& 000010
\end{aligned}
\] & 0 & & & 1 & 0 & 0 & 0 & 0 & 1 & & & Set event output pointer \\
\hline EIPTR & & & & & & & & & & & & Set event input pointer \\
\hline
\end{tabular}
\[
\because
\]

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 012345 & 6 & \(7{ }^{7} 8\) & 9 & 10 & 11 & 12 & 13 & 14 & 15 & IF & OF & Comment \\
\hline \[
\begin{aligned}
& \hline \text { SHL } \\
& 100000
\end{aligned}
\] & tid & r_pair_t & & source & & e & & ee(u) & ee(v) & \(\mathbf{U}\) & UN & \\
\hline \[
\begin{aligned}
& \text { SHR } \\
& 100001
\end{aligned}
\] & tid & r_pair_t & & source & & e & \(s\) & ee(u) & ee(v) & U & UN & \\
\hline \[
\begin{aligned}
& \hline \text { DSHL } \\
& 100010
\end{aligned}
\] & tid & r_pair_t & & source & & es & & ee(u) & ee(v) & \(\mathbf{U}\) & UN & \\
\hline DSHR & tid & & & & & & & & & & & \\
\hline 100011 & & r_pair_t & & source & & e & s & ee(u) & ee(v) & U & \(\mathbf{U N}\) & \\
\hline \[
\begin{aligned}
& \hline \text { DSHRU } \\
& 101000
\end{aligned}
\] & tid & r_pair_t & & source & & es & & ee(u) & ee(v) & U & \(\mathbf{U N}\) & \\
\hline \[
\begin{aligned}
& \text { ASI } \\
& 101001 \\
& 101010 \\
& 101011 \\
& 101100 \\
& 101101 \\
& 101110
\end{aligned}
\] & & & & & - & & & & & & & Application specific instructions \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 01234 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & if & OF & Comment \\
\hline \begin{tabular}{l} 
ADD \\
11000
\end{tabular} & tid & target & source & es & ee(u) & ee(v) & U & UN & \\
\hline \begin{tabular}{l} 
ADDC \\
11001
\end{tabular} & tid & target & source & es & ee(u) & ee(v) & U & UN & \\
\hline \begin{tabular}{l} 
SUB \\
11010
\end{tabular} & tid & target & source & es & ee(u) & ee(v) & \(U\) & UN & \\
\hline \begin{tabular}{l} 
SUBC \\
11011
\end{tabular} & tid & target & source & es & ee(u) & ee(v) & \(U\) & UN & \\
\hline
\end{tabular}

\section*{European Patent Application}
Applicant: PACT XPP Technologies AG

Muthmannstrasse 1

Claims
1. A data processing unit having a plurality of cells, in particular coarse-grained logic cells, interconnected and/or interconnectable for data processing wherein at least one cell, preferably a number of cells have instruction storage means for storing instructions to be executed so as that said coarse-grained cells form a plurality of sequencers within said array.
2. A method for operating data processing in an array comprising a plurality of logic cells, in particular coarsegrained logic cells interconnected and/or interconnectable for data processing, wherein data are transferred into cells from an input and/or from other cells via busses, characterised in that at least some of the busses are used for effecting a configuration of said
cells, in particular during runtime and/or without effecting cells not to be configured.
3. Method according to claim 2, wherein said busses are used with a frequency different from the frequency of data processing in at least some of the cells.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE} \\
\hline \multicolumn{2}{|l|}{INFORMATION DISCLOSURE STATEMENT} & \begin{tabular}{l}
Docket Number: \\
2885/139
\end{tabular} & Confirmation Number: 2050 \\
\hline \begin{tabular}{l}
Application Number \\
12/836,364
\end{tabular} & \[
\begin{aligned}
& \hline \text { Filing Date } \\
& \text { July 14, } 2010
\end{aligned}
\] & \begin{tabular}{l}
Examiner \\
Don P. Le
\end{tabular} & \[
\begin{aligned}
& \hline \text { Art Unit } \\
& 2819
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Invention Title \\
RECONFIGURABLE SEQUENCER STRUCTURE
\end{tabular}} & \begin{tabular}{l}
Inventors \\
Martin VOR
\end{tabular} & \[
\mathrm{ACH}
\] \\
\hline
\end{tabular}

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

> I hereby certify that this correspondence is being electronically transmitted to the United States Patent and Trademark Office via the Office electronic filing system on Date: October 25,2010 Signature: \(\frac{\text { Eunice K. Chang/ }}{\text { Eunice K. Chang }}\)

Sir:
Pursuant to 37 CFR § 1.56, the attention of the Patent and Trademark Office is hereby directed to the reference(s) listed on the attached PTO-1449. It is respectfully requested that the information be expressly considered during the prosecution of this application, and that the reference(s) be made of record therein and appear among the "References Cited" on any patent to issue therefrom. The filing of this Information Disclosure Statement and the enclosed PTO Form No. 1449, shall not be construed as an admission that the information cited is prior art, or is considered to be material to patentability as defined in 37 C.F.R. § 1.56 (b). The paragraphs marked below are applicable. It is believed that no fees other than those indicated below are due, but authorization is hereby given to charge any additional fees due, or to credit any overpayment, to Kenyon \& Kenyon LLP, deposit account 11-0600.
\(\boxed{\text { 1. This Information Disclosure Statement is being filed (a) within three months }}\) of the filing date of a national application other than a continued prosecution application under 37 C.F.R. \(\S 1.53\) (d), (b) within three months of the date of entry of the national stage as set forth in 37 C.F.R. § 1.491 in an international application, (c) before the mailing date of a first Office Action on the merits in the present application, OR (d) before the mailing of a first office action after filing of a request for continued examination. No certification or fee is required.
2. This Information Disclosure Statement is being filed more than three months after the U.S. filing date AND after the mailing date of the first Office Action on the merits, but before the mailing date of a final action, Notice of Allowance, or any action that otherwise closes prosecution.
\(\square \quad\) a. I hereby certify that each item of information contained in this Information Disclosure Statement was first cited in a communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of this Information Disclosure Statement. 37 CFR §1.97(e)(1).
\(\square \quad\) b. I hereby certify that no item of information in this Information Disclosure Statement was cited in a communication from a foreign patent office in a counterpart foreign application or, to my knowledge after making reasonable inquiry, was known to any individual designated in 37 CFR §1.56(c) more than three months prior to the filing of this Information Disclosure Statement. 37 CFR §1.97(e)(2).
\(\square \quad\) c. The required fee of \(\$ 180.00\) under 37 CFR \(\S 1.17(\mathrm{p})\) is being paid by credit card to ensure consideration of the disclosed information. Any additional fees may be charged to Deposit Account No. 11-0600 of Kenyon \& Kenyon LLP
3. Since this application was filed after June 30, 2003, copies of U.S. references are not included.

\author{
Respectfully submitted, \\ AAaron Grunberger/ \\ Aaron Grunberger \\ Reg. No. 59,210
}

Kenyon \& KEnyon Llp
One Broadway
New York, NY 20004
(212) 425-7200 telephone
(212) 425-5288 facsimile

CUSTOMER NUMBER 26646
\begin{tabular}{|c|c|c|}
\hline \multirow{3}{*}{INFORMATION DISCLOSURE STATEMENT BY APPLICANTS РТО-1449} & Attorney Docket No. 2885/139 & Serial No.
\[
12 / 836,364
\] \\
\hline & \[
\begin{aligned}
& \text { Applicant(s) } \\
& \text { VORBACH }
\end{aligned}
\] & \\
\hline & \begin{tabular}{l}
Filing Date \\
July 14, 2010
\end{tabular} & Group Art Unit 2819 \\
\hline
\end{tabular}
U.S. PATENT DOCUMENTS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline EXAMINER'S
INITLALS & PATENT/ PUBLICATION NUMBER & PATENT/PUBLICATION
DATE & NAME & CLASS & SUBCLASS & FILING DATE \\
\hline & 4,151,611 & Apri1 24, 1979 & Sugawara et al. & & & \\
\hline & 5,036,493 & July 30, 1991 & Nielsen & & & \\
\hline & 5,568,624 & Qctober 22, 1996 & Sites et al. & & & \\
\hline & 5,581,734 & December 3, 1996 & DiBrino et al. & & & \\
\hline & 6,078,736 & June 20, 2000 & Guccione & & & \\
\hline & 6,212,544 & April 3,2001 & Borkenhagen et al. & & & \\
\hline - & 6,624,819 & September 23, 2003 & Lewis & & & \\
\hline & 6,725,334 & April 20, 2004 & Barroso et al. & & & \\
\hline & 7,759,968 & Jujy 20, 2010 & Hussein et al. & & & \\
\hline & 2002/0099759 & July 25, 2002 & Gootherts & & & \\
\hline & 2003/0154349 & August 14, 2003 & Berg et al. & & & \\
\hline & 2007/0083730 & April 12,2007 & Vorbachetal. & & & \\
\hline
\end{tabular}

FOREIGN PATENT DOCUMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
EXAMINER'S \\
INITIALS
\end{tabular} & \begin{tabular}{c} 
DOCUMENT \\
NUMBER
\end{tabular} & DATE & COUNTRY & CLASS & SUBCLASS & YES & NO \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

\section*{OTHER DOCUMENTS}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{c} 
EXAMINER'S \\
INITIALS
\end{tabular} & \multicolumn{1}{c|}{ AUTHOR, TITLE, DATE, PERTINENT PAGES, ETC. } \\
\hline & Culfer, D.E; Singh, J.P., "Parallel Computer Architecture," Page, 17, 1999, Morgan Kaufmann, San Francisco, CA USA, XP002477559. \\
\hline & Short, Kenneth L., Microprocessors and Programmed Logic, Prentice Hall, Inc, New Jersey 1981, p. 34. \\
\hline & Webster's Ninth New Collegiate Dictionary, Merriam-Webster, Inc., 1990, page 332 (definition of "dedicated"). \\
\hline
\end{tabular}

\footnotetext{
EXAMINER: Initial if citation considered, whether or not citation is in conformance with M.P.E.P. 609; draw line through citation if not in conformance and not
} considered. Include copy of this form with next commmication to applicant.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Electronic Acknowledgement Receipt} \\
\hline EFS ID: & 8692757 \\
\hline Application Number: & 12836364 \\
\hline International Application Number: & \\
\hline Confirmation Number: & 2050 \\
\hline Title of Invention: & RECONFIGURABLE SEQUENCER STRUCTURE \\
\hline First Named Inventor/Applicant Name: & Martin Vorbach \\
\hline Customer Number: & 26646 \\
\hline Filer: & Aaron Grunberger/Eunice Chang \\
\hline Filer Authorized By: & Aaron Grunberger \\
\hline Attorney Docket Number: & 2885/139 \\
\hline Receipt Date: & 25-OCT-2010 \\
\hline Filing Date: & 14-JUL-2010 \\
\hline Time Stamp: & 14:16:49 \\
\hline Application Type: & Utility under 35 USC 111(a) \\
\hline
\end{tabular}

\section*{Payment information:}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Submitted with Payment} & \multicolumn{4}{|l|}{no} \\
\hline \multicolumn{6}{|l|}{File Listing:} \\
\hline Document Number & Document Description & File Name & File Size(Bytes)/ Message Digest & Multi Part /.zip & Pages (if appl.) \\
\hline \multirow{2}{*}{1} & \multirow[t]{2}{*}{Information Disclosure Statement (IDS) Filed (SB/08)} & \multirow{2}{*}{2885-139-SuppIDS.pdf} & 345793 & \multirow{2}{*}{no} & \multirow{2}{*}{3} \\
\hline & & & 4a449959:5591 le72356245152dfd60126d0 e8e2a & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{3}{|l|}{Information:} & \multicolumn{3}{|c|}{INTEL-1004} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{This is not an USPTO supplied IDS fillable form} \\
\hline \multicolumn{2}{|l|}{\multirow{2}{*}{2}} & \multirow{2}{*}{NPL Documents} & \multirow{2}{*}{Culler-et-al-Pg-17.pdf} & 118705 & \multirow{2}{*}{no} & \multirow{2}{*}{1} \\
\hline & & & & \(563 \mathrm{dfd} 755 \mathrm{eb} 476 \mathrm{~d} 2957 f 9 f 424706006571 \mathrm{~d}\) 89725 & & \\
\hline \multicolumn{7}{|l|}{Warnings:} \\
\hline \multicolumn{7}{|l|}{Information:} \\
\hline & & \multirow{2}{*}{NPL Documents} & \multirow[b]{2}{*}{\begin{tabular}{l}
Short-Kenneth- \\
Microprocessors-Logic.pdf
\end{tabular}} & 640057 & \multirow{2}{*}{no} & \multirow{2}{*}{4} \\
\hline & & & & O154d704c313ceaaboba41beffifi09ad34 96821 & & \\
\hline \multicolumn{7}{|l|}{Warnings:} \\
\hline \multicolumn{7}{|l|}{Information:} \\
\hline & & \multirow{2}{*}{NPL Documents} & \multirow{2}{*}{Websters-DEDICATED.pdf} & 366255 & \multirow{2}{*}{no} & \multirow{2}{*}{3} \\
\hline & & & & 68bfobacadobb445569774b48efd83d98es & & \\
\hline \multicolumn{7}{|l|}{Warnings:} \\
\hline \multicolumn{7}{|l|}{Information:} \\
\hline \multicolumn{4}{|r|}{Total Files Size (in bytes)} & \multicolumn{2}{|c|}{1470810} & \\
\hline \multicolumn{7}{|l|}{This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.} \\
\hline \multicolumn{7}{|l|}{New Applications Under 35 U.S.C. 111} \\
\hline \multicolumn{7}{|l|}{If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.} \\
\hline \multicolumn{7}{|l|}{National Stage of an International Application under 35 U.S.C. 371} \\
\hline \multicolumn{7}{|l|}{If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.} \\
\hline \multicolumn{7}{|l|}{New International Application Filed with the USPTO as a Receiving Office} \\
\hline \multicolumn{7}{|l|}{If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.} \\
\hline
\end{tabular}

\title{
NOTICE OF ALLOWANCE AND FEE(S) DUE
}

\author{
266+6 75\% 11/132910 \\ KENYON \& KENYON LLP \\ ONE BROADWAY \\ NEW YORK, NY 10004
}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ EXAMINER } \\
\hline \multicolumn{2}{|c|}{ LE, DON P } \\
\hline ART UNTI & PAPER NUMBER \\
\hline 2814 \\
DATE MAILED: \(11 / 12 / 2010\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline APPL[CAT]ON NO. & FILINく̇DATE & FIR:T NAMED INVENTOR & ATTORNEY DOCKET NO. & CONFIRMATION NO. \\
\hline 12/836,364 & \(07 / 14 / 2010\) & Marlin Vorbach & 2885/139 & 2050 \\
\hline
\end{tabular}

TITLE OF INVENTION: RECONTIGURADLE SEQUENCER STRLCTURD
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline APPLN. TYPE & SMALL ENTIT & ISSILTELDIE & PIBLICATION FLE DUL & PREV. PAID ISSITE ITE & TOTAL RELig dir & DATL DIT \\
\hline nonprovisional & YES & \$755 & \$300 & 80 & \$1055 & 02/14/2011 \\
\hline
\end{tabular}

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT. PROSECITION ON THE MERITS IS CLOSED. THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS. TIIS APPLICATION IS SUBJECT TO WITHDRAWAL FROM ISSUE AT THE INITIATIVE OF TIIE OFFICE OR UPON PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308.

THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHIN THREE MONTHS FROM THE MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORY PERIOD CANNOT BE EXTENDED. SEE 35 U.S.C. 151. THE ISSUE FEE DUE INDICATED ABOVE DOES NOT REFLECT A CREDIT FOR ANY PREVIOUSLY PAID ISSUE FEE IN THIS APPLICATION. IF AN ISSUE FEE HAS PREVIOLISLY BEEN PAID IN THIS APPLICATION (AS SHOWN ABOVE). THE RETURN OF PART B OF THIS FORM WILL BE CONSIDERED A REQUEST TO REAPPLY THE PREVIOUSLY PAID ISSUE FEE TOWARD THE ISSUE FEE NOW DUE.

\section*{HIOW TO REPLY TO TIIIS NOTICE:}
I. Review the SMALL ENTITY status shown above.

If the SMALL ENTITY is shown as YES, verify your current SMALL ENTITY status:
A. If the status is the same, pay the TOTAL FEE(S) DUE shown above.
B. If the status above is to be removed, check box 5 b on Part B Fec(s) Transmittal and pay the PUBLICATION FEE (if reqnired) and twice the amount of the ISSUE FEE shown above, or

If the SMALL ENTITY is shown as NO:
A. Pay TOTAL FEE(S) DUE shown above, or
B. If applicant clamed SMALL ENTITY status belore, or is now claiming SMALL ENTITY status, check box 5a on Part B - Fec(s) Transmittal and pay the PUBLICATION FEE (if required) and \(1 / 2\) the ISSUE FEE shown above.
II. PART B - FEE(S) TRANSMITTAL, or its equivalent, must be completed and returned to the United States Patent and Trademark Office (USPTO) with your ISSUE FEE and PUBLICATION FEE (if required). If you are charging the fee(s) to your deposit account, section " \(\mathbf{4 b}\) " of Part B - Fee(s) Transmittal should be completed and an extra copy of the form should be submitted. If an equivalent of Part B is filed, a request to reapply a previonsly paid issue fee must be clearly made, and delays in processing may occur due to the difficulty in recognizing the paper as an equivalent of Part \(B\).
III. All communications regarding this application must give the application number. Please durect all communications prior to issuance to Mail Stop ISSUE FEE unless advised to the contrary.

IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of maintenance lices. It is patentee's responsibility to ensure timely payment of maintenance lees when due.

\title{
PART B - FEE(S) TRANSMITTAL
}

\section*{Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE \\ Commissioner for Patents \\ P.O. Box 1450 \\ Alexandria, Virginia 22313-1450 \\ or Fax (571)-273-2885}

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications.

CURRENT CORRESPONDENCE ADDRESS (Note: Use Block 1 for any change of address)
\(26646 \quad 7590 \quad 11 / 12 / 2010\)

\section*{KENYON \& KENYON LLP}

ONE BROADWAY
NEW YORK, NY 10004

Note: A certificate of mailing can only be used for domestic mailings of the Fee(s) Transmittal. This certificate cannot be used for any other accompanying papers. Each additional paper, such as an assignment or formal drawing, must have its own certificate of mailing or transmission.

\section*{Certificate of Mailing or Transmission}

I hereby certify that this Fee(s) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope addressed to the Mail Stop ISSUE FEE address above, or being facsimile transmitted to the USPTO (571) 273-2885, on the date indicated below.
\begin{tabular}{|rr|}
\hline & (Depositor's name) \\
\hline & (Signature) \\
\hline & (Date) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline APPLICATION NO. & FILING DATE & FIRST NAMED INVENTOR & ATTORNEY DOCKET NO. & CONFIRMATION NO. \\
\hline \(12 / 836,364\) & \(07 / 14 / 2010\) & Martin Vorbach & \(2885 / 139\)
\end{tabular}

TITLE OF INVENTION: RECONFIGURABLE SEQUENCER STRUCTURE
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline APPLN. TYPE & SMALL ENTITY & ISSUE FEE DUE & PUBLICATION FEE DUE & PREV. PAID ISSUE FEE & TOTAL FEE(S) DUE & DATE DUE \\
\hline nonprovisional & YES & \$755 & \$300 & \$0 & \$1055 & 02/14/2011 \\
\hline & & ART UNIT & CLASS-SUBCLASS & & & \\
\hline & & 2819 & 326-038000 & & & \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
1. Change of correspondence address or indication of "Fee Address" (37 CFR 1.363). \\
Change of correspondence address (or Change of Correspondence Address form \(\mathrm{PTO} / \mathrm{SB} / 122\) ) attached.
"Fee Address" indication (or "Fee Address" Indication form PTO/SB/47; Rev 03-02 or more recent) attached. Use of a Customer Number is required.
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
2. For printing on the patent front page, list \\
(1) the names of up to 3 registered patent attorneys or agents OR, alternatively,
\end{tabular}} & \begin{tabular}{cc} 
& 1 \\
a & 2 \\
is & 3
\end{tabular} & \\
\hline
\end{tabular}
3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment.
(A) NAME OF ASSIGNEE
(B) RESIDENCE: (CITY and STATE OR COUNTRY)

Please check the appropriate assignee category or categories (will not be printed on the patent) : \(\quad\) Individual \(\quad\) Corporation or other private group entity \(\quad \square\) Government
4a. The following fee(s) are submitted:
\(\square\) Issue Fee
\(\square\) Publication Fee (No small entity discount permitted)
\(\square\) Advance Order - \# of Copies
5. Change in Entity Status (from status indicated above)

\section*{\(\square\) a. Applicant claims SMALL ENTITY status. See 37 CFR 1.27.}

NOTE: The Issue Fee and Publication Fee (if required) will not be accepted from anyone other than the applicant; a registered attorney or agent; or the assignee or other party in interest as shown by the records of the United States Patent and Trademark Office.

\section*{Authorized Signature}
\(\qquad\)
Typed or printed name \(\qquad\)
Date
Registration No.
This collection of information is required by 37 CFR 1.311. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450.
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.
```

[NITED STATES DEPARTMENT OF COMMERCE
Linited States Patent and Trademark ollice
Address: COMMISSIONER FOR PATENTS
F.O. Box 1450
Alexamotia Vugmia -23। 2.14.5
www usplogok

```
\begin{tabular}{|c|c|c|c|c|}
\hline APPLECATION NO. & FILIN \({ }^{\text {d }}\) DatE & FIRST NAMED INVENTOR & ATTORNEY' DOCKET NO. & CONFIRMATION NO. \\
\hline 12/836,36-1 & \(07 / 14 / 2010\) & Martin Verbach & 2885/139 & 2050 \\
\hline \(266+6\) & 11/12 & & EXA & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
KENYON \& KENYON LLP \\
ONE BROADWAY \\
NEW YORK, NY 10004
\end{tabular}}} & \multicolumn{2}{|c|}{LE, DONP} \\
\hline & & & ARTUNTI & PAPER NUMIBER \\
\hline & & & \begin{tabular}{l}
\[
2814
\] \\
DATE MAILED; 11/12/20
\end{tabular} & \\
\hline
\end{tabular}

Determination of Patent Term Adjustment under 35 U.S.C. 154 (b) (application filed on or after May 29, 2000)

The Patent Term Adjustment to date is 0 day(s). If the issue fee is paid on the date that is three months after the mailing date of tbis notice and tbe patent issues on the Tuesday before the date that is 28 weeks (six and a half months) after the mailing date of this notice, the Patent Term Adjustment will be 0 day(s).

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair,uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Customer Service Center of the Office of Patent Publication at 1-(888)-786-0101 or (571)-272-4200.
\begin{tabular}{|c|l|l|l|}
\hline \multirow{3}{*}{ Notice of A/Iowability } & Application No. & Applicant(s) \\
& \(12 / 836,364\) & VORBACH, MARTIN \\
\cline { 2 - 4 } & Examiner & Art Unit & \\
& Don P. Le & 2819 \\
\hline
\end{tabular}
-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address-All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included herewith (or previously mailed), a Notice of Allowance (PTOL-85) or other appropriate communication will be mailed in due course. THIS NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT RIGHTS. This application is subject to withdrawal from issue at the initiative of the Office or upon petition by the applicant. See 37 CFR 1.313 and MPEP 1308.
1. \(\boxtimes\) This communication is responsive to document filed \(7 / 14 / 2010\).
2. \(\boxtimes\) The allowed claim(s) is/are 18-47.
3. \(\boxtimes\) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a) \(\boxtimes\) All
b)Some*
c)None of the:
1. \(\boxtimes\) Certified copies of the priority documents have been received.
2.Certified copies of the priority documents have been received in Application No. \(\qquad\) .
3.Copies of the certified copies of the priority documents have been received in this national stage application from the International Bureau (PCT Rule 17.2(a)).
* Certified copies not received: \(\qquad\) —.

Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file a reply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application.
THIS THREE-MONTH PERIOD IS NOT EXTENDABLE.
4.A SUBSTITUTE OATH OR DECLARATION must be submitted. Note the attached EXAMINER'S AMENDMENT or NOTICE OF INFORMAL PATENT APPLICATION (PTO-152) which gives reason(s) why the oath or declaration is deficient.
5. \(\square\) CORRECTED DRAWINGS ( as "replacement sheets") must be submitted.
(a) \(\square\) including changes required by the Notice of Draftsperson's Patent Drawing Review (PTO-948) attached
1) \(\square\) hereto or 2) \(\square\) to Paper No./Mail Date \(\qquad\) -
(b) \(\square\) including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No./Mail Date \(\qquad\) .

Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d).
6. \(\square\) DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.

Attachment(s)
1. \(\boxtimes\) Notice of References Cited (PTO-892)
2. \(\square\) Notice of Draftperson's Patent Drawing Review (PTO-948)
3. \(\boxtimes\) Information Disclosure Statements (PTO/SB/08),

Paper No./Mail Date See Continuation Sheet
4.Examiner's Comment Regarding Requirement for Deposit of Biological Material
5.Notice of Informal Patent Application
6.Interview Summary (PTO-413), Paper No./Mail Date \(\qquad\) .
7.Examiner's Amendment/Comment
8. \(\boxtimes\) Examiner's Statement of Reasons for Allowance
9. \(\square\) Other \(\qquad\) .

Continuation of Attachment(s) 3. Information Disclosure Statements (PTO/SB/08), Paper No./Mail Date: 7/14/2010, 7/14/2010, 8/2/2010, 9/22/2010, 10/25/2010.

\section*{Allowable Subject Matter}
1. Claims 18-47 are allowed.
2. The following is an examiner's statement of reasons for allowance:

With respect to claim 18, the prior art does not teach a multi-processor chip, comprising: a plurality of data processing cells, each adapted for sequentially executing at least one of algebraic and logic functions and having: at least one arithmetic logic trait; at least one data register file; a program pointer; and at least one instruction decoder; a plurality of memory cells; at least one interface unit; at least one Memory Management Unit (MMU); and a bus system for interconnecting the plurality of data processing cells, the plurality of memory cells, and the at least one interface trait; wherein the bus system is adapted for programmably interconnecting at runtime at least one of data processing cells and memory cells with at least one of memory cells and one or more of the at least one interface unit.

Any comments considered necessary by applicant must be submitted no later than the payment of the issue fee and, to avoid processing delays, should preferably accompany the issue fee. Such submissions should be clearly labeled "Comments on Statement of Reasons for Allowance."
3. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Don P. Le whose telephone number is 571-272-1806. The examiner can normally be reached on 7AM - 5PM.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Barnie Rexford can be reached on 571-272-1812. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.
/Don P Le/
Primary Examiner, Art Unit 2819
11/7/2010
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Notice of References Cited} & Application/Control No.
12/836,364 & \multicolumn{2}{|l|}{Applicant(s)/Patent Under Reexamination VORBACH, MARTIN} \\
\hline & Examiner Don P. Le & \[
\begin{array}{|l|}
\hline \text { Art Unit } \\
2819
\end{array}
\] & Page 1 of 1 \\
\hline
\end{tabular}
U.S. PATENT DOCUMENTS
\begin{tabular}{|c|c|l|l|l|c|}
\hline\(*\) & & \begin{tabular}{c} 
Document Number \\
Country Code-Number-Kind Code
\end{tabular} & \begin{tabular}{c} 
Date \\
MM-YYYY
\end{tabular} & Name & Classification \\
\hline\(*\) & A & US-2008/0313383 & \(12-2008\) & Morita et al. & \(711 / 6\) \\
\hline\(*\) & B & US-2005/0091468 & \(04-2005\) & Morita et al. & \(711 / 202\) \\
\hline & C & US- & & & \\
\hline & D & US- & & & \\
\hline & E & US- & & & \\
\hline & F & US- & & & \\
\hline & G & US- & & & \\
\hline & H & US- & & & \\
\hline & I & US- & & & \\
\hline & J & US- & & & \\
\hline & K & US- & & & \\
\hline & L & US- & & & \\
\hline & M & US- & & & \\
\hline
\end{tabular}

FOREIGN PATENT DOCUMENTS
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline\(*\) & & \begin{tabular}{c} 
Document Number \\
Country Code-Number-Kind Code
\end{tabular} & \begin{tabular}{c} 
Date \\
MM-YYYY
\end{tabular} & Country & Name & Classification \\
\hline & N & & & & & \\
\hline & O & & & & & \\
\hline & P & & & & & \\
\hline & Q & & & & & \\
\hline & R & & & & \\
\hline & S & & & & \\
\hline & T & & & & \\
\hline
\end{tabular}

NON-PATENT DOCUMENTS
\begin{tabular}{|l|l|l|}
\hline\(*\) & & Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages) \\
\hline & & \\
& U & \\
\hline & & \\
& & \\
& & \\
\hline & & \\
\hline
\end{tabular}
*A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a).)
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.

\section*{EAST Search History}

\section*{EAST Search History (Prior Art)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Ref
\# & Hits & Search Query & DBs & Default Operator & Plurals & Time Stamp \\
\hline L1 & 17 & register and pointer and MMU and runtime and (memory adj cell) and arithmetic and interface and interconnect & \begin{tabular}{l}
US-PGPUB; USPAT; \\
USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB
\end{tabular} & OR & ON & \[
\begin{aligned}
& 2010 / 11 / 07 \\
& 07: 24
\end{aligned}
\] \\
\hline L2 & 36 & register and pointer and MMU and runtime and (memory adj cell) & \begin{tabular}{l}
US PGPUB; USPAT; \\
USOCR; FPRS; EPO; JPO; DERWENT; \\
IBM_TDB
\end{tabular} & OR & ON & \[
\begin{aligned}
& 2010 / 11 / 07 \\
& 07: 51
\end{aligned}
\] \\
\hline L3 & 3792 & runtime and (programmable adj logic) & \begin{tabular}{l}
US-PGPUB; USPAT; \\
USOCR; FPRS; \\
EPO; JPO; \\
DERWENT; \\
IBM TDB
\end{tabular} & OR & ON & \[
\begin{aligned}
& 2010 / 11 / 07 \\
& 07: 52
\end{aligned}
\] \\
\hline L4 & 461 & 3 and arithmetic & \begin{tabular}{l}
US-PGPUB; USPAT; \\
USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB
\end{tabular} & OR & ON & \[
\begin{aligned}
& 2010 / 11 / 07 \\
& 07: 52
\end{aligned}
\] \\
\hline L5 & 201 & 4 and pointer & US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB & OR & ON & \[
\begin{aligned}
& 2010 / 11 / 07 \\
& 07: 52
\end{aligned}
\] \\
\hline
\end{tabular}

11/7/2010 7:52:44 AM
C: \(\backslash\) Documents and Settings \(\backslash\) dle \(1 \backslash\) My Documents EAST \(\backslash\) Workspaces default.wsp
\begin{tabular}{|c|c|c|}
\hline Search Notes & Application/Control No.
\[
12836364
\] & \begin{tabular}{l}
Applicant(s)/Patent Under Reexamination \\
VORBACH, MARTIN
\end{tabular} \\
\hline  & \begin{tabular}{l}
Examiner \\
Don P Le
\end{tabular} & Art Unit
\[
2819
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|c|c|}
\hline \multicolumn{5}{|c|}{ SEARCHED } \\
\hline Class & Subclass & Date & Examiner \\
\hline 326 & \(37-41,46\) & \(11 / / 20105\) & dl \\
\hline
\end{tabular}

\section*{SEARCH NOTES}
\begin{tabular}{|l|c|c|}
\hline Search Notes & Date & Examiner \\
\hline east + interference & \(11 / 7 / 2010\) & dl \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ INTERFERENCE SEARCH } \\
\hline Class & & Subclass & Date \\
\hline & see search notes & & \(11 / 7 / 2010\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\multicolumn{2}{l}{} \\
\hline Attorney Docket No. & \multicolumn{1}{l|}{ Serial No. } \\
\(2885 / 139\) & \(12 / 836,364\) \\
\hline Applicant(s) & \\
VORBACH & \\
\hline Filing Date & Group Ar Unit \\
July 14,2010 & 2827 \\
\hline
\end{tabular}

\section*{INFORMATION DISCLOSURE} STATEMENT BY APPLICANTS PTO-1449
U.S. PATENT DOCUMENTS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline EXAMINER'S
INITIALS & PATENT/ PUBLICATION NUMBER & PATENT/PUBLICATION
DATE & NAME & CLASS & SUBCLASS & FILING DATE \\
\hline & 90\%010,450 & & Vorbach et al. & & & \[
\begin{aligned}
& \text { March } 27, \\
& 2009
\end{aligned}
\] \\
\hline & 6,173,419 & January 9, 2001 & Bamett & & & \\
\hline & 6,668,237 & December 23, 2003 & Guccione etal. & & & \\
\hline & 6,836,842 & December 28,2004 & Guccione etal. & & & \\
\hline & 2002/0010853 & January 24, 2002 & Trimberger et al. & & & \\
\hline & 2002/0152060 & October 17, 2002 & Tseng & & & \\
\hline
\end{tabular}

\section*{FOREIGN PATENT DOCUMENTS}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{EXAMINER'S INITIALS} & \multirow[t]{2}{*}{DOCUMENT
NUMBER} & \multirow[b]{2}{*}{DATE} & \multirow[b]{2}{*}{COUNTRY} & \multirow[b]{2}{*}{CLASS} & \multirow[b]{2}{*}{SUBCLASS} & \multicolumn{2}{|l|}{TRANSLATION} \\
\hline & & & & & & YES & NO \\
\hline & 1044571 & February 16, 1989 & Japan & & & Abstract & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

OTHER DOCUMENTS
\begin{tabular}{|c|c|}
\hline EXAMINER'S
INTTIALS & AUTHOR, TITLE, DATE, PERTINENT PAGES, ETC. \\
\hline & Ballagh etal., "Java Debug Hardware Models Using JBits," 8 年 Reconfigurable Architectures Workshop, 2001, 8 pages. \\
\hline & Bellows et al,, "Designing Run-Time Reconfigurable Systems with JHDL," Journal of VLSI Signal Processing 28, Kluwer Academic Publishers, The Netherlands, 2001, pp. 29-45. \\
\hline & Guccione et al., "Jits: Java based interface for reconfigurable computing," Xilinx, Inc., San Jose, CA, 1999, 9 pages. \\
\hline & Price et al., "Debug ofReconfigurable Systems," Xilinx, Inc., San Jose, CA, Proceedings of SPIE, 2000, pp. 181-187. \\
\hline & Sundararajan et al., "Testing FPGA Devices Using JBits," Proc. MAPLD 2001, Maryland, USA, Katz (ed.), NASA, CA, 8 pages. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline EXAMINER \(/\) DON Le/ & DATE CONSIDERED \(\quad 1 / 06 / 2010\) \\
\hline \begin{tabular}{l} 
EXAMINER: Initial if citation considered, whether or not citation is in conformance witl M.P.E.P. 609 ; draw line through citation if not in conformance and not \\
considered. Include copy of this form with next commenication to applicant.
\end{tabular} \\
\hline
\end{tabular}

Page 1
ALL REFERENCES CONSIDERED EXCEPT WHERE LIMFPEIHROdGG. /D.L./
Page 431 of 539

INFORMATION DISCLOSURE STATEMENT BY APPLICANTS PTO-1449
\begin{tabular}{|c|c|}
\hline Attomey Docker No 2885/139 & Serial No.
\[
12 / 836,364
\] \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Applicant(s) \\
VORBACH
\end{tabular}} \\
\hline \begin{tabular}{l}
Filing Date \\
July 14, 2010
\end{tabular} & Group An Unit
\[
2819
\] \\
\hline
\end{tabular}

\section*{U.S. PATENT DOCUMENTS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline EXAMINER'S
INITIALS & PATENT/ PUBLICATION NUMBER & PATENT/PUBLICATION
DATE & NAME & CLASS & SUBCLASS & FILING
DATE \\
\hline & 4,151,611 & April 24, 1979 & Sugawara et al. & & & \\
\hline & 5,036,493 & July 30, 1991 & Nielsen & & & \\
\hline & 5,568,624 & October 22, 1996 & Sites et al. & & & \\
\hline & 5,581,734 & December 3,1996 & DiBrinoet al. & & & \\
\hline & 6,078,736 & June 20, 2000 & Guccione & & & \\
\hline & \(6,212,544\) & April 3, 2001 & Borkenhagen et al. & & & \\
\hline . & 6,624,819 & September 23, 2003 & Lewis & & & \\
\hline & 6,725,334 & April 20, 2004 & Barroso et al. & & & \\
\hline & 7,759,968 & July 20, 2010 & Hussein et al. & & & \\
\hline & \(2002 / 0099759\) & July 25, 2002 & Gootherts & & & \\
\hline & 2003/0154349 & August 14, 2003 & Berg et al. & & & \\
\hline & 2007/0083730 & April 12, 200 ? & Vorbach et al. & & & \\
\hline
\end{tabular}

\section*{FOREIGN PATENT DOCUMENTS}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
EXAMINER'S \\
INITIALS
\end{tabular} & \begin{tabular}{c} 
DOCUMENT \\
NUMBER
\end{tabular} & DATE & COUNTRY & CLASS & SUBCLASS & YES & NO \\
\hline & & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

\section*{OTHER DOCUMENTS}
\begin{tabular}{|c|l|}
\hline \begin{tabular}{c} 
EXAMINER'S \\
INITIALS
\end{tabular} & \\
\hline & Culler, D.E; Singh, J.P, "Parallel Computer Architecture," Page 17, 1999, Morgan Kaufmann, San Francisco, CA USA, XP002477559. \\
\hline & Shor, Kenneth L., Microprocessors and Programmed Logic, Prentice Hall, Inc., New Jersey 1981, p. 34. \\
\hline & Webster's Ninth New Collegiate Dictionary, Merriam-Webster, Inc., 1990, page 332 (definition of "dedicated"). \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline EXAMINER & DON Le/ & DATE CONSIDERED \\
\hline \begin{tabular}{l} 
EXAMINER: Initial if citation considered, whether or not citation is in conformance with M.P.E.P. 609 ; draw line through citation if not in conformance and not \\
considered. Include copy of this form with next communication to applicant.
\end{tabular} \\
\hline
\end{tabular}

Page 1
\begin{tabular}{|c|c|c|}
\hline Issue Classification & Application/Control No.
\[
12836364
\] & Applicant(s)/Patent Under Reexamination VORBACH, MARTIN \\
\hline  & \begin{tabular}{l}
Examiner \\
Don P Le
\end{tabular} & Art Unit 2819 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\square\) & \multicolumn{7}{|l|}{Claims renumbered in the same order as presented by applicant} & \(\square\) & \multicolumn{2}{|c|}{CPA} & T.D. & \multicolumn{2}{|r|}{\(\square \quad \mathrm{R}\)} & \multicolumn{2}{|c|}{R.1.47} \\
\hline Final & Original & Final & Origina) & Final & Original & Final & Original & Final & Oricinal & Final & Original & Final & Original & Final & Original \\
\hline & 1 & & \(1 ?\) & 16 & 33 & & & & & & & & & & \\
\hline & 2 & 1 & 18 & 17 & 34 & & & & & & & & & & \\
\hline & 3 & 2 & 19 & 18 & 35 & & & & & & & & & & \\
\hline & 4 & 3 & 20 & 19 & 36 & & & & & & & & & & \\
\hline & 5 & 4 & 21 & 20 & 37 & & & & & & & & & & \\
\hline & 6 & 5 & 22 & 21 & 38 & & & & & & & & & & \\
\hline & 7 & 6 & 23 & 22 & 39 & & & & & & & & & & \\
\hline & 8 & 7 & 24 & 23 & 40 & & & & & & & & & & \\
\hline & 9 & 8 & 25 & 24 & 41 & & & & & & & & & & \\
\hline & 10 & 9 & 26 & 25 & 42 & & & & & & & & & & \\
\hline & 11 & 10 & 27 & 26 & 43 & & & & & & & & & & \\
\hline & 12 & 11 & 28 & 27 & 44 & & & & & & & & & & \\
\hline & 13 & 12 & 29 & 28 & 45 & & & & & & & & & & \\
\hline & 14 & 13 & So & 29 & 46 & & & & & & & & & & \\
\hline & 15 & 14 & 31 & 30 & 47 & & & & & & & & & & \\
\hline & 16 & 15 & 32 & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|lc|c|c|}
\hline NONE & & \multicolumn{2}{|c|}{ Total Claims Allowed: } \\
(Assistant Examiner) & (Date) & \multicolumn{2}{|c|}{30} \\
\hline \begin{tabular}{l} 
Don PLe \(i\) \\
Primary Examiner, Art Unit 2819 \\
(Primary Examiner)
\end{tabular} & \(11 / 07 / 2010\) & O.G. Print Claim(s) & O.G. Print Figure \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow{3}{*}{INFORMATION DISCLOSURE STATEMENT BY APPLICANTS PTO-1449} & \begin{tabular}{l}
Attorney Docket No. \\
2885/139
\end{tabular} & \begin{tabular}{l}
Serial No \\
Unassigned
\end{tabular} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
Applicant(s) \\
VORBACH
\end{tabular}} \\
\hline & \begin{tabular}{l}
Filing Date \\
Herewith
\end{tabular} & Group Art Unit Unassigned \\
\hline
\end{tabular}
U.S. PATENT DOCUMENTS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline EXAMINER'S
INITIALS & PATENT/ PUBLICATION NUMBER & PATENT/PUBLICATION
DATE & NAME & CLASS & SUBCLASS & \[
\begin{gathered}
\text { FILING } \\
\text { DATE } \\
\hline
\end{gathered}
\] \\
\hline & RE34363 & August 31, 1993 & Freeman & & & \\
\hline & RE34,444 & November 16, 1993 & Kaplinsky & & & \\
\hline & RE37,195 & May 29, 2001 & Kean & & & \\
\hline & 60/109,417 & November 18, 1998 & Jefferson et al. & & & \\
\hline & 2,067,477 & January 12, 1937 & J.B. Cooper & & & \\
\hline & 3,242,998 & March 29, 1966 & C.H. Gubbins & & & \\
\hline & 3,681,578 & August 1, 1972 & Stevens & & & \\
\hline & 3,757,608 & September 11,1973 & Willner & & & \\
\hline & 3,855,577 & December 17,1974 & Vandierendonck & & & \\
\hline & 4,233,667 & November 11, 1980 & Devine et al. & & & \\
\hline & 4,414,547 & November 8, 1983 & Knapp et al. & & & \\
\hline & 4,489,857 & February 6, 1986 & Agrawal et al. & & & \\
\hline & 4,498,134 & February 5, 1985 & Hansen et al. & & & \\
\hline & 4,498,172 & February 5, 1985 & Bhavsar & & & \\
\hline & 4,566,102 & January 21, 1986 & Hefner & & & \\
\hline & 4,571,736 & February 18, 1986 & Agrawal et al. & & & \\
\hline & 4,590,583 & May 20, 1986 & Miller & & & \\
\hline & 4,591,979 & May 27, 1986 & Iwashita & & & \\
\hline & *4,623,997 & November 18, 1986 & Tulpule & & & \\
\hline & 4,663,706 & May 5, 1987 & Allen et al. & & & \\
\hline & 4,667,190 & May 19, 1987 & Fant etal. & & & \\
\hline & 4,682,284 & Juiy 21, 1987 & Schrofer & & & \\
\hline & 4,706,216 & November 10, 1987 & Carter & & & \\
\hline & 4,720,778 & January 19, 1988 & Hall et al. & & & \\
\hline & 4,720,780 & January 19, 1988 & Dolecek & & & \\
\hline & 4,739,474 & April 19, 1988 & Holsztynski & & & \\
\hline & 4,761,755 & August 2, 1988 & Ardini et al. & & & \\
\hline & 4,811,214 & March 7, 1989 & Nosenchuck et al. & & & \\
\hline & 4,852,043 & July 25, 1989 & Guest & & & \\
\hline & 4,852,048 & July 25, 1989 & Morton & & & \\
\hline & 4,860,201 & August 22, 1989 & Stolfo et al. & & & \\
\hline & 4,870, 302 & September 26, 1989 & Freeman & & & \\
\hline & 4,882,687 & November 21, 1989 & Gordon & & & \\
\hline & 4,884,231 & November 28, 1989 & Mor et al. & & & \\
\hline & 4,891,810 & January 2, 1990 & de Corlieu et al. & & & \\
\hline & 4,901,268 & February 13, 1990 & Judd & & & \\
\hline & 4,910,665 & March 20, 1990 & Mattheyses et al. & & & \\
\hline & 4,918,440 & April 17, 1990 & Furtek et al. & & & \\
\hline
\end{tabular}

\title{
INFORMATION DISCLOSURE
STATEMENT BY APPLICANTS
PTO-1449
}

Attorney Docket No. 2885/139

Serial No.

Applicant(s)
VORBACH
\begin{tabular}{|l|l|}
\hline Filing Date & Group Art Unit \\
Herewith & Unassigned \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline EXAMINER'S
INITIALS & PATENT PUBLICATION NUMBER & PATENT/PUBLICATION
DATE & NAME & CLASS & SUBCLASS & FILING DATE \\
\hline & 4,959,781 & September 25, 1990 & Rubinstein et al. & & & \\
\hline & 4,967,340 & October 30, 1990 & Dawes & & & \\
\hline & 4,972,31.4 & November 20,1990 & Getzinger et al. & & & \\
\hline & 5,010,401 & April 23, 1991 & Murakami et al. & & & \\
\hline & 5,014,193 & May 7, 1991 & Garner et al. & & & \\
\hline & 5,015,884 & May 14, 1991 & Agrawal et al. & & & \\
\hline & 5,021,947 & June 4, 1991 & Campbell et al. & & & \\
\hline & 5,023,775 & June 11, 1991 & Poret & & & \\
\hline & 5,034,914 & July 23, 1991 & Osterlund & & & \\
\hline & 5,041,924 & August 20, 1991 & Blackborow et al. & & & \\
\hline & 5,043,978 & August 27, 1991 & Nagler et al. & & & \\
\hline & 5,047,924 & September 10, 1991 & Fujioka et al. & & & \\
\hline & 5,065,308 & Novernber 12, 1991 & Evans & & & \\
\hline & 5,072,178 & December 10, 1991 & Matsumoto & & & \\
\hline & 5,081,375 & January 14, 1992 & Pickett et al. & & & \\
\hline & 5,099,447 & March 24, 1992 & Myszewski & & & \\
\hline & 5,109,503 & April 28, 1992 & Cruickshank et al. & & & \\
\hline & 5,113,498 & May 12, 1992 & Evan etal. & & & \\
\hline & 5,115,510 & May 19, 1992 & Okamoto et al. & & & \\
\hline & 5,123,109 & June 16, 1992 & Hillis & & & \\
\hline & 5,125,801 & June 30, 1992 & Nabity et al. & & & \\
\hline & 5,128,559 & July 7, 1992 & Steele & & & \\
\hline & 5,142,469 & August 25, 1992 & Weisenborn & & & \\
\hline & 5,144,166 & September 1, 1992 & Camarota et al. & & & \\
\hline & 5,193,202 & March 9, 1993 & Jackson et al. & & & \\
\hline & 5,203,005 & April 13, 1993 & Horst & & & \\
\hline & 5,204,935 & April 20, 1993 & Mihara et al. & & & \\
\hline & 5,208,491 & May 4, 1993 & Ebeling et al. & & & \\
\hline & 5,212,716 & May 18, 1993 & Ferraiolo et al. & & & \\
\hline & *5,212,777 & May 18, 1993 & Gove et al. & & & \\
\hline & 5,218,302 & June 8, 1993 & Locwe et al. & & & \\
\hline & 5,226,122 & July 6, 1993 & Thayer et al. & & & \\
\hline & 5,233,539 & August 3, 1993 & Agrawal et al. & & & \\
\hline & 5,237,686 & August 17, 1993 & Asano et al. & & & \\
\hline & 5,247,689 & September 21, 1993 & Ewert & & & \\
\hline & 5,274,593 & December 28, 1993 & Procbsting & & & \\
\hline & 5,276,836 & January 4, 1994 & Fukumaru et al. & & & \\
\hline & 5,287,472 & February 15, 1994 & Horst & & & \\
\hline & 5,287,532 & February 15, 1994 & Hunt & & & \\
\hline
\end{tabular}

\title{
INFORMATION DISCLOSURE
STATEMENT BY APPLICANTS
PTO-1449
}

Attorney Docket No. 2885/139

Applicant(s)
VORBACH
Filing Date Herewith

Serial No.
Unassigned

Group Art Unit Unassigned
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline EXAMINER'S
INITIALS & PATENT/ PUBLICATION NUMBER & PATENT/PUBLICATION
DATE & NAME & CLASS & SUBCLASS & FILING \\
\hline & 5,294,119 & March 15, 1994 & Vincent etal. & & & \\
\hline & 5,301,284 & April 5, 1994 & Estes et al. & & & \\
\hline & 5,301,344 & April 5, 1994 & Kolchinsky & & & \\
\hline & 5,303,172 & April 12, 1994 & Magar et al. & & & \\
\hline & 5,311,079 & May 10,1994 & Ditlow et al. & & & \\
\hline & 5,327,125 & July 5, 1994 & Iwase etal. & & & \\
\hline & 5,336,950 & August 9, 1994 & Popli et al. & & & \\
\hline & 5,343,406 & August 30, 1994 & Freeman et al. & & & \\
\hline & 5,347,639 & September 13, 1994 & Rechtschaffen et al. & & & \\
\hline & 5,349,193 & September 20, 1994 & Mott et al. & & & \\
\hline & 5,353,432 & October 4, 1994 & Richek et al. & & & \\
\hline & 5,361,373 & November 1, 1994 & Gilson & & & \\
\hline & 5,379,444 & January 3, 1995 & Mumme & & & \\
\hline & 5,392,437 & February 21, 1995 & Matter et al. & & & \\
\hline & 5,408,643 & April 18, 1995 & Katayose & & & \\
\hline & 5,410,723 & April 25, 1995 & Schmidt et al. & & & \\
\hline & 5,412,795 & May 2,1995 & Larson & & & \\
\hline & 5,418,952 & May 23, 1995 & Morley et al. & & & \\
\hline & 5,418,953 & May 1995 & Hunt et al. & & & \\
\hline & 5,421,019 & May 30, 1995 & Holsztynski et al. & & & \\
\hline & 5,422,823 & June 6, 1995 & Agrawal et al. & & & \\
\hline & 5,425,036 & June 13, 1995 & Liuetal. & & & \\
\hline & 5,426,378 & June 20, 1995 & Ong & & & \\
\hline & 5,428,526 & June 27, 1995 & Flood et al. & & & \\
\hline & 5,430,687 & July 4, 1995 & Hung et al. & & & \\
\hline & 5,440,245 & August 8, 1995 & Galbraith et al. & & & \\
\hline & 5,440,538 & August 15, 1995 & Olsen et al. & & & \\
\hline & 5,442,790 & August 15, 1995 & Nosenchuck & & & \\
\hline & 5,444,394 & August 22, 1995 & Watson et al. & & & \\
\hline & 5,448,186 & September 5, 1995 & Kawata & & & \\
\hline & 5,455,525 & October 3, 1995 & Ho et al. & & & \\
\hline & 5,457,644 & October 10, 1995 & McCollum & & & \\
\hline & 5,465,375 & November 7,1995 & Thepaut et al. & & & \\
\hline & 5,469,003 & Novermber 21, 1995 & Kean & & & \\
\hline & 5,473,266 & December 5, 1995 & Ahanin et al. & & & \\
\hline & 5,473,267 & December 5, 1995 & Stansfield & & & \\
\hline & 5,475,583 & December 12,1995 & Bock et al. & & & \\
\hline & 5,475,803 & December 12, 1995 & Stearns et al. & & & \\
\hline & 5,475,856 & December 12, 1995 & Kogge & & & \\
\hline
\end{tabular}
INFORMATION DISCLOSURE
STATEMENT BY APPLICANTS
PTO-1449
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Attorney Docket No. \\
\(2885 / 139\)
\end{tabular} & \begin{tabular}{l} 
Serial No. \\
Unassigned
\end{tabular} \\
\hline \begin{tabular}{l} 
Applicant(s) \\
VORBACH
\end{tabular} & \\
\hline \begin{tabular}{l} 
Filing Date \\
Herewith
\end{tabular} & \begin{tabular}{l} 
Group Art Unit \\
Unassigned
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline EXAMINER'S
INITIALS & PATENT/ PUBLICATION NUMBER & PATENT/PUBLICATION
DATE & NAME & CLASS & SUBCLASS & FILING DATE \\
\hline & 5,477,525 & December 19, 1995 & Masanobu Okabe & & & \\
\hline & 5,483,620 & January 9, 1996 & Pechanek et al. & & & \\
\hline & - 5,485,103 & January 16, 1996 & Pedersen et al. & & & \\
\hline & 5,485,104 & January 16, 1996 & Agrawal et al. & & & \\
\hline & 5,489,857 & February 6, 1996 & Agrawal et al. & & & \\
\hline & 5,491,353 & February 13, 1996 & Kcan & & & \\
\hline & 5,493,239 & February 20, 1996 & Zlotrick & & & \\
\hline & 5,497,498 & March 5, 1996 & Taylor & & & \\
\hline & 5,506,998 & April 9, 1996 & Kato et al. & & & \\
\hline & 5,510,730 & April 23, 1996 & El Gamal et al. & & & \\
\hline & 5,511,173 & April 23, 1996 & Yamaura et al. & & & \\
\hline & 5,513,366 & April 30, 1996 & Agarwal et al. & & & \\
\hline & 5,521,837 & May 28, 1996 & Frankle et al. & & & \\
\hline & 5,522,083 & May 28, 1996 & Gove et al. & & & \\
\hline & 5,525,971 & June 11, 1996 & Flynn & & & \\
\hline & 5,530,873 & June 25, 1996 & Takano & & & \\
\hline & 5,530,946 & June 25, 1996 & Bouvier et al. & & & \\
\hline & 5,532,693 & July 2, 1996 & Winters et al. & & & \\
\hline & 5,532,957 & July 2, 1996 & Malhi & & & \\
\hline & 5,535,406 & July 9, 1996 & Kolchinsky & & & \\
\hline & 5,537,057 & July 16, 1996 & Leong et al. & & & \\
\hline & 5,537,580 & July 16, 1996 & Giomi et al. & & & \\
\hline & 5,537,601 & July 16, 1996 & Kimura et al. & & & \\
\hline & 5,541,530 & July 30, 1996 & Cliff etal. & & & \\
\hline & 5,544,336 & August 6, 1996 & Kato etal. & & & \\
\hline & 5,548,773 & August 20, 1996 & Kemeny et al. & & & \\
\hline & 5,550,782 & August 27, 1996 & Cliff et al. & & & \\
\hline & 5,555,434 & Septermber 10, 1996 & Carlstedt & & & \\
\hline & 5,559,450 & September 24, 1996 & Ngai et al. & & & \\
\hline & 5,561,738 & October 1,1996 & Kinerk et al. & & & \\
\hline & 5,570,040 & October 29, 1996 & Lytle et al. & & & \\
\hline & *5,572,710 & November 5,1996 & Asano et al. & & & \\
\hline & 5,574,930 & November 12,1996 & Halverson Jr. et al. & & & \\
\hline & 5,581,731 & December 3, 1996 & King et al. & & & \\
\hline & 5,583,450 & December 10, 1996 & Trimberger et al. & & & \\
\hline & 5,586,044 & December 17, 1996 & Agrawal et al. & & & \\
\hline & 5,587,921 & December 24, 1996 & Agrawal et al. & & & \\
\hline & 5,588,152 & December 24, 1996 & Dapp et al. & & & \\
\hline & 5,590,345 & December 31, 1996 & Barker et al. & & & \\
\hline
\end{tabular}

\title{
INFORMATION DISCLOSURE
STATEMENT BY APPLICANTS
PTO-1449
}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Attomey Docket No. \\
\(2885 / 139\)
\end{tabular} & \begin{tabular}{l} 
Serial No. \\
Unassigned
\end{tabular} \\
\hline \begin{tabular}{l} 
Applicant(s) \\
VORBACH
\end{tabular} \\
\hline \begin{tabular}{l} 
Filing Date \\
Herewith
\end{tabular} & \begin{tabular}{l} 
Group Art Unit \\
\end{tabular}
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline EXAMINER'S
INITIALS & PATENT/ PUBLICATION NUMBER & PATENT/PUBLICATION
DATE & NAME & CLASS & SUBCLASS & FILING DATE \\
\hline & 5,590,348 & December 31, 1996 & Phillips et al. & & & \\
\hline & 5,596,742 & January 21, 1997 & Agarwal et al. & & & \\
\hline & 5,600,265 & February 4, 1997 & El Gamal Abbas et al. & & & \\
\hline & 5,600,845 & February 4, 1997 & Gilson & & & \\
\hline & *5,606,698 & February 25, 1997 & Powell & & & \\
\hline & 5,611,049 & March 11, 1997 & Pitts & & & \\
\hline & 5,617,547 & April 1, 1997 & Feeney et al. & & & \\
\hline & 5,625,806 & April 29, 1997 & Kromer & & & \\
\hline & 5,625,836 & April 29, 1997 & Barker et al. & & & \\
\hline & *5,627,992 & May 6, 1997 & Baror & & & \\
\hline & 5,634,131 & May 27, 1997 & Matter et al. & & & \\
\hline & *5,646,544 & July 8, 1997 & ladanza & & & \\
\hline & 5,646,545 & July 8, 1997 & Trimberger et al. & & & \\
\hline & 5,649,176 & July 15, 1997 & Selvidge et al. & & & \\
\hline & 5,649,179 & July 15, 1997 & Steenstra et al. & & & \\
\hline & 5,652,529 & July 29, 1997 & Gould et al. & & & \\
\hline & 5,652,894 & July 29, 1997 & Hu et al. & & & \\
\hline & 5,655,069 & August 5, 1997 & Ogawara et al. & & & \\
\hline & 5,655,124 & August 5, 1997 & Lin & & & \\
\hline & 5,657,330 & August 12, 1997 & Matsumoto & & & \\
\hline & *5,659,785 & August 19, 1997 & Pechanek et al. & & & \\
\hline & 5,659,797 & August 19, 1997 & Zandveld et al. & & & \\
\hline & 5,675,743 & October 7, 1997 & Mavity & & & \\
\hline & 5,675,757 & October 7, 1997 & Davidson et al. & & & \\
\hline & 5,680,583 & October 21, 1997 & Kuijsten & & & \\
\hline & 5,694,602 & December 2, 1997 & Smith & & & \\
\hline & *5,696,791 & December 9, 1997 & Yeung & & & \\
\hline & 5,706,482 & January 6, 1998 & Matsushima et al. & & & \\
\hline & 5,713,037 & January 27, 1998 & Wilkinson et al. & & & \\
\hline & 5,717,943 & February 10, 1998 & Barker et al. & & & \\
\hline & 5,732,209 & March 24, 1998 & Vigil et al. & & & \\
\hline & 5,734,921 & March 31, 1998 & Dapp et al. & & & \\
\hline & 5,737,516 & April 7, 1998 & Circello et al. & & & \\
\hline & 5,737,565 & April 7, 1998 & Mayfield & & & \\
\hline & 5,742,180 & April 21, 1998 & Detton et al. & & & \\
\hline & 5,745,734 & April 28, 1998 & Craft et al. & & & \\
\hline & 5,748,872 & May 5, 1998 & Norman & & & \\
\hline & 5,748,979 & May 5, 1998 & Trimberger & & & \\
\hline & 5,752,035 & May 12, 1998 & Trimberger & & & \\
\hline
\end{tabular}

\title{
INFORMATION DISCLOSURE
STATEMENT BY APPLICANTS
PTO-1449
}

Attorney Docket No.
2885/139
Serial No.
Unassigned
Applicant(s)
VORBACH
\begin{tabular}{l|l} 
Filing Date & Group Art Unit \\
Herewith & Unassigned \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline EXAMINER'S INITIALS & PATENT/ PUBLICATION NUMBER & PATENT/PUBLICATION
DATE & NAME & CLASS & SUBCLASS & \[
\begin{gathered}
\text { FILING } \\
\text { DATE }
\end{gathered}
\] \\
\hline & 5,754,459 & May 19, 1998 & Telikepalli & & & \\
\hline & 5,754,820 & May 19, 1998 & Yamagami & & & \\
\hline & 5,754,827 & May 19, 1998 & Barbier et al. & & & \\
\hline & 5,754,871 & May 19, 1998 & Wilkinson et al. & & & \\
\hline & 5,760,602 & June 2, 1998 & Tan & & & \\
\hline & 5,761,484 & June 2, 1998 & Agarwal et al. & & & \\
\hline & 5,773,994 & June 30, 1998 & Jones & & & \\
\hline & 5,778,439 & July 7, 1998 & Timberger et al. & & & \\
\hline & 5,781,756 & July 14, 1998 & Hung & & & \\
\hline & 5,784,636 & July 21, 1998 & Rupp & & & \\
\hline & 5,794,059 & August 11, 1998 & Barker et al. & & & \\
\hline & 5,794,062 & August 11, 1998 & Baxter & & & \\
\hline & 5,801,715 & September 1, 1998 & Norman & & & \\
\hline & 5,802,290 & September 1,1998 & Casselman & & & \\
\hline & *5,804,986 & September 8, 1998 & Jones & & & \\
\hline & 5,815,715 & September 29, 1998 & Kayhan & & & \\
\hline & *5,815,726 & September 29, 1998 & Cliff & & & \\
\hline & 5,821,774 & October 13, 1998 & Veytsman et al. & & & \\
\hline & 5,828,229 & October 27, 1998 & Cliff et al. & & & \\
\hline & 5,828,858 & October 27, 1998 & Athanas et al. & & & \\
\hline & 5,831,448 & November 3, 1998 & Kean & & & \\
\hline & 5,838,165 & Novernber 17,1998 & Chatter & & & \\
\hline & 5,841,973 & November 24, 1998 & Cooke et al. & & & \\
\hline & 5,844,422 & December 1, 1998 & Trimberger et al. & & & \\
\hline & 5,844,888 & December 1, 1998 & Narjijka & & & \\
\hline & 5,848,238 & December 8, 1998 & Shimomura et al. & & & \\
\hline & 5,854,918 & December 29, 1998 & Baxter & & & \\
\hline & 5,857,097 & January 5, 1999 & Henzinger et al. & & & \\
\hline & 5,859,544 & January 12, 1999 & Norman & & & \\
\hline & 5,860,119 & January 12, 1999 & Dockser & & & \\
\hline & 5,862,403 & January 19, 1999 & Kanai etal. & & & \\
\hline & 5,865,239 & February 2, 1999 & Carr & & & \\
\hline & 5,867,691 & February 2, 1999 & Shiraishi & & & \\
\hline & 5,867,723 & February 2, 1999 & Peters et al. & & & \\
\hline & 5,870,620 & February 9, 1999 & Kadosumi et al. & & & \\
\hline & 5,884,075 & March 16, 1999 & Hester et al. & & & \\
\hline & 5,887,162 & March 23, 1999 & Williams et al. & & & \\
\hline & 5,887,165 & March 23, 1999 & Martel et al. & & & \\
\hline & 5,889,533 & March 30, 1999 & Lee & & & \\
\hline
\end{tabular}

ALL REFERENCES CONSIDERED EXCEPT WHERE PRINE PEETHRTOOKGH. /D.L./
Page 439 of 539

\title{
INFORMATION DISCLOSURE
STATEMENT BY APPLICANTS
PTO-1449
}

Attorney Docket No.
Serial No.
2885/139
Unassigned
Applicant(s)
VORBACH
\begin{tabular}{l|l} 
Filing Date & Group Art Unit
\end{tabular}
Herewith Unassigned
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline EXAMINER'S
INITIALS & PATENT/ PUBLICATION NUMBER & PATENT/PUBLICATION
DATE & NAME & CLASS & SUBCLASS & FILING DATE \\
\hline & 5,889,982 & March 30, 1999 & Rodgers et al. & & & \\
\hline & 5,892,370 & April 6, 1999 & Eaton et al. & & & \\
\hline & 5,892,961 & April 6, 1999 & Trimberger & & & \\
\hline & 5,892,962 & April 6, 1999 & Cloutier & & & \\
\hline & 5,901,279 & May 4, 1999 & Davis Ill & & & \\
\hline & 5,915,123 & June 22, 1999 & Mirsky et al. & & & \\
\hline & 5,924,119 & July 13, 1999 & Sindhu et al. & & & \\
\hline & 5,926,638 & July 20, 1999 & Inoue, Masaharu & & & \\
\hline & 5,927,423 & July 27, 1999 & Wada et al. & & & \\
\hline & 5,933,023 & August 3, 1999 & Young & & & \\
\hline & 5,933,642 & August 3, 1999 & Baxter et al. & & & \\
\hline & 5,936,424 & April 10,1999 & Young et al. & & & \\
\hline & 5,943,242 & August 24, 1999 & Vorbach et al. & & & \\
\hline & 5,956,518 & September 21, 1999 & DeHon et al. & & & \\
\hline & 5,960,193 & Septermber 28, 1999 & Guttag et al. & & & \\
\hline & 5,960,200 & September 28, 1999 & Eager et al. & & & \\
\hline & 5,966,143 & October 12, 1999 & Breternitz, Jr. & & & \\
\hline & 5,966,534 & October 12, 1999 & Cooke et al. & & & \\
\hline & 5,970,254 & October 19, 1999 & Cooke et al. & & & \\
\hline & 5,978,260 & November 2, 1999 & Trimberger et al. & & & \\
\hline & 5,978,583 & November 2, 1999 & Ekanadham et al. & & & \\
\hline & 5,996,083 & November 30,1999 & Gupta et al. & & & \\
\hline & 5,999,990 & December 7, 1999 & Sharrit et al. & & & \\
\hline & 6,003,143 & December 14, 1999 & Kimet al. & & & \\
\hline & 6,011,407 & January 4, 2000 & New & & & \\
\hline & 6,014,509 & January 11, 2000 & Furtek et al. & & & \\
\hline & 6,020,758 & February 1, 2000 & Patel et al. & & & \\
\hline & 6,020,760 & February 1, 2000 & Sample et al. & & & \\
\hline & 6,021,490 & February 1, 2000 & Vorbach et al. & & & \\
\hline & 6,023,564 & February 8, 2000 & Trimberger & & & \\
\hline & 6,023,742 & February 8, 2000 & Ebeling ctal. & & & \\
\hline & 6,026,481 & February 15, 2000 & New et al. & & & \\
\hline & 6,034,538 & March 7, 2000 & Abramovici & & & \\
\hline & 6,035,371 & March 7, 2000 & Magloire & & & \\
\hline & 6,038,650 & March 14, 2000 & Vorbach et al. & & & \\
\hline & 6,038,656 & March 14, 2000 & Cummings et al. & & & \\
\hline & 6,044,030 & March 28,2000 & Zheng et al. & & & \\
\hline & 6,047,115 & April 4, 2000 & Mohan et al. & & & \\
\hline & 6,049,222 & April 11, 2000 & Lawman & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{INFORMATION DISCLOSURE STATEMENT BY APPLICANTS РТО-1449}} & Attorney Docket No. 2885/139 & \multicolumn{3}{|l|}{Serial No. Unassigned} \\
\hline & & & \multicolumn{4}{|c|}{\begin{tabular}{l}
Applicant(s) \\
VORBACH
\end{tabular}} \\
\hline & & & \begin{tabular}{l}
Filing Date \\
Herewith
\end{tabular} & \multicolumn{3}{|l|}{Group Art Unit Unassigned} \\
\hline EXAMINER'S INITIALS & \begin{tabular}{l}
PATENT/ \\
PUBLICATION \\
NUMBER
\end{tabular} & PATENT/PUBLICATION
DATE & NAME & CLASS & SUBCLASS & \[
\begin{gathered}
\text { FILING } \\
\text { DATE }
\end{gathered}
\] \\
\hline & *6,049,866 & April 11, 2000 & Earl & & & \\
\hline & 6,052,773 & April 18, 2000 & DeHon et al. & & & \\
\hline & 6,054,873 & April 25, 2000 & Laramie & & & \\
\hline & 6,055,619 & April 25, 2000 & North et al. & & & \\
\hline & 6,058,469 & May 2, 2000 & Baxter & & & \\
\hline & 6,076,157 & June 13,2000 & Borkenhagen et al. & & & \\
\hline & 6,077,315 & June 20,2000 & Greenbaum et a. & & & \\
\hline & 6,081,903 & June 27, 2000 & Vorbach et al. & & & \\
\hline & 6,084,429 & July 4, 2000 & Trimberger & & & \\
\hline & 6,085,317 & July 4, 2000 & Smith & & & \\
\hline & 6,086,628 & July 11, 2000 & Dave et al. & & & \\
\hline & 6,088,795 & July 11, 2000 & Vorbach et al. & & & \\
\hline & 6,092,174 & July 18, 2000 & Roussakov & & & \\
\hline & 6,105,105 & August 15, 2000 & Trimberger et al. & & & \\
\hline & 6,105,106 & August 15,2000 & Manning & & & \\
\hline & 6,108,760 & August 22, 2000 & Mirsky et al. & & & \\
\hline . & 6,118,724 & September 12,2000 & Higginbottom & & & \\
\hline & 6,119,181 & September 12, 2000 & Vorbach et al. & & & \\
\hline & 6,122,719 & September 19,2000 & Mirsky et al. & & & \\
\hline & 6,125,408 & September 26,2000 & McGee et al. & & & \\
\hline & 6,127,908 & October 3, 2000 & Bozler et al. & & & \\
\hline & 6,134,166 & October 17, 2000 & Lytle et al. & & & \\
\hline & 6,137,307 & October 24, 2000 & Iwanczuk et al. & & & \\
\hline & *6,144,220 & November 7, 2000 & Young & & & \\
\hline & 6,150,837 & November 21, 2000 & Beal et al. & & & \\
\hline & 6,150,839 & November 21, 2000 & New et al. & & & \\
\hline & 6,154,048 & November 28, 2000 & Iwanczuk et al. & & & \\
\hline & 6,154,049 & November 28, 2000 & New & & & \\
\hline & 6,157,214 & December 5, 2000 & Marshall & & & \\
\hline & 6,170,051 & January 2, 2001 & Dowling, Eric M. & & & \\
\hline & 6,172,520 & January 9, 2001 & Lawman et al. & & & \\
\hline & 6,173,434 & January 9, 2001 & Wirthlin et al. & & & \\
\hline & 6,185,256 & February 6, 2001 & Saito et al. & & & \\
\hline & 6,185,731 & February 6, 2001 & Maeda et al. & & & \\
\hline & 6,188,240 & February 13, 2001 & Nakaya & & & \\
\hline & 6,188,650 & February 13, 2001 & Hamada et al. & & & \\
\hline & 6,198,304 & March 6, 2001 & Sasalci & & & \\
\hline & 6,201,406 & March 13, 2001 & Iwanczuk et al. & & & \\
\hline & 6,202,182 & March 13, 2001 & Abramovici et al. & & & \\
\hline
\end{tabular}

\title{
INFORMATION DISCLOSURE
STATEMENT BY APPLICANTS
PTO-1449
}

Attorney Docket No.
Serial No.
2885/139
Unassigned
Applicant(s)
VORBACH
\begin{tabular}{|l|l|}
\hline Filing Date & Group Art Unit \\
Herewith & Unassigned \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline EXAMINER'S
INITIALS & PATENI/ publication NUMBER & PATENT/PUBLICATION
DATE & NAME & CLASS & SUBCLASS & FILING DATE \\
\hline & 6,204,687 & March 20, 2001 & Schultz et al. & & & \\
\hline & 6,211,697 & April 3, 2001 & Lien et al. & & & \\
\hline & 6,212,650 & April 3, 2001 & Guccione, Steven A. & & & \\
\hline & 6,215,326 & April 10, 2001 & Jefferson et al. & & & \\
\hline & 6,216,223 & April 10, 2001 & Revilla et al. & & & \\
\hline & 6,219,833 & April 17,2001 & Solomon et al. & & & \\
\hline & 6,230,307 & May 8,2001 & Davis et al. & & & \\
\hline & 6,240,502 & May 29, 2001 & Panwaret al. & & & \\
\hline & 6,243,808 & June 5, 2001 & Wang & & & \\
\hline & 6,247,147 & June 12, 2001 & Beenstra & & & \\
\hline & 6,252,792 & June 26, 2001 & Marshall et al. & & & \\
\hline & 6,256,724 & July 3,2001 & Hocevar et al. & & & \\
\hline & 6,260,179 & July 10, 2001 & Ohsawa etal. & & & \\
\hline & 6,262,908 & July 17, 2001 & Marshall et al. & & & \\
\hline & 6,263,430 & July 17, 2001 & Trimberger et al. & & & \\
\hline & 6,266,760 & July 24,2001 & DeHon et al. & & & \\
\hline & 6,279,077 & August 21, 2001 & Nasserbakhtet al. & & & \\
\hline & 6,282,627 & August 28, 2001 & Wong et al. & & & \\
\hline & 6,282,701 & August 28, 2001 & Wygodny et al. & & & \\
\hline & 6,285,624 & September 4, 2001 & Chen & & & \\
\hline & 6,286,134 & September 4, 2001 & Click, Jr. et al. & & & \\
\hline & 6,288,566 & September 11, 2001 & Hanrahan et al. & & & \\
\hline & 6,289,440 & September 11, 2001 & Casselman & & & \\
\hline & \%6,298,396 & October 2, 2001 & Loyer et al. & & & \\
\hline & 6,298,472 & October 2, 2001 & Phillips et al. & & & \\
\hline & 6,301,706 & Ostober 9, 2001 & Mastennikov et al. & & & \\
\hline & 6,311,200 & October 30, 2001 & Hanrahan et al. & & & \\
\hline & 6,311,265 & October 30, 2001 & Beckerle et al. & & & \\
\hline & 6,321,366 & November 20, 2001 & Tseng et ai. & & & \\
\hline & 6,321,373 & November 20, 2001 & Ekanadham et al. & & & \\
\hline & 6,338,106 & January 8,2002 & Vorbachet al. & & & \\
\hline & 6,341,318 & January 22, 2002 & Dalchil & & & \\
\hline & 6,347,346 & February 12, 2002 & Taylor & & & \\
\hline & 6,349,346 & February 19, 2002 & Hanrahan et al. & & & \\
\hline & 6,353,841 & March 5, 2002 & Marshall et al. & & & \\
\hline & 6,362,650 & March 26, 2002 & Now et al. & & & \\
\hline & 6,370,596 & April 9, 2002 & Dakhil & & & \\
\hline & 6,373,779 & April 16, 2002 & Pang etal. & & & \\
\hline & 6,374,286 & April 16, 2002 & Gee & & & \\
\hline
\end{tabular}

\title{
INFORMATION DISCLOSURE
STATEMENT BY APPLICANTS PTO-1449
} Attomey Docket No. 2885/139

Scrial No.

Applicant(s)
VORBACH
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline EXAMINER'S
INITIALS & \begin{tabular}{l}
PATENT/ \\
PUBLICATION NUMBER
\end{tabular} & PATENT/PUBLICATION
DATE & NAME & CLASS & SUBCLASS & FILING DATE \\
\hline & 6,378,068 & April 23, 2002 & Foster et al. & & & \\
\hline & 6,381,624 & April 30, 2002 & Colon-Bonet et al. & & & \\
\hline & 6,389,379 & May 14, 2002 & Linetal. & & & \\
\hline & 6,389,579 & May 14, 2002 & Phillips et al. & & & \\
\hline & 6,392,912 & May 21, 2002 & Hanrahan et al. & & & \\
\hline & 6,398,383 & June 4, 2002 & Huang, Yu-Hwei & & & \\
\hline & 6,400,601 & June 4, 2002 & Sudo et al. & & & \\
\hline & 6,404,224 & June 11, 2002 & Azegami et al. & & & \\
\hline & 6,405,299 & June 11, 2002 & Vorbach et al. & & & \\
\hline & 6,421,809 & July 16, 2002 & Wuytack et al. & & & \\
\hline & 6,421,817 & July 16, 2002 & Mohan et al. & & & \\
\hline & 6,425,054 & July 23, 2002 & Nguyen & & & \\
\hline & 6,425,068 & July 23, 2002 & Vorbach & & & \\
\hline & *6,426,649 & July 30, 2002 & Fu et al. & & & \\
\hline & *6,427,156 & July 30, 2002 & Chapman et al. & & & \\
\hline & 6,430,309 & August 6, 2002 & Pressman et al. & & & \\
\hline & 6,434,642 & August 13, 2002 & Camilleri et al. & & & \\
\hline & *6,434,672 & August 13, 2002 & Gaither & & & \\
\hline & 6,434,695 & August 13, 2002 & Esfahani et al. & & & \\
\hline & 6,434,699 & August 13, 2002 & Jones et al. & & & \\
\hline & 6,435,054 & October 10, 2000 & Nguyen & & & \\
\hline & 6,437,441 & August 20, 2002 & Yamamoto & & & \\
\hline & 6,438,747 & August 20, 2002 & Schreiber et al. & & & \\
\hline & 6,457,116 & September 24, 2002 & Mirsky et al. & & & \\
\hline & 6,476,634 & November 5, 2002 & Bilski & & & \\
\hline & 6,477,643 & November 5, 2002 & Vorbach et al. & & & \\
\hline & 6,480,937 & November 12, 2002 & Vorbach et al. & & & \\
\hline & 6,480,954 & November 12, 2002 & Trimberger et al. & & & \\
\hline & 6,483,343 & November 19, 2002 & Faith et al. & & & \\
\hline & 6,487,709 & November 26, 2002 & Keller et al. & & & \\
\hline & 6,490,695 & December 3, 2002 & Zagorski et al. & & & \\
\hline & 6,496,971 & December 17, 2002 & Lesea et al. & & & \\
\hline & 6,504,398 & January 7, 2003 & Vorbach & & & \\
\hline & 6,507,898 & January 14, 2003 & Gibson et al. & & & \\
\hline & 6,507,947 & January 14, 2003 & Schreiber et al. & & & \\
\hline & *6,512,804 & January 28, 2003 & Johnson et al. & & & \\
\hline
\end{tabular}

\title{
INFORMATION DISCLOSURE
STATEMENT BY APPLICANTS
PTO-1449
}
\begin{tabular}{|l|l|}
\begin{tabular}{l} 
Attorney Docket No. \\
\(2885 / 139\)
\end{tabular} & \begin{tabular}{l} 
Serial No. \\
Unassigned
\end{tabular} \\
\hline \begin{tabular}{l} 
Applicant(s) \\
VORBACHI
\end{tabular} \\
\hline \begin{tabular}{l} 
Filing Date \\
Herewith
\end{tabular} & \begin{tabular}{l} 
Group Art Unit \\
Unassigned
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline EXAMINER'S INITIALS & PATENT/ PUBLICATION NUMBER & PATENT/PUBLICATION
DATE & NAME & CLASS & SUBCLASS & \begin{tabular}{l}
FILING \\
DATE
\end{tabular} \\
\hline & 6,513,077 & January 28, 2003 & Vorbach et al. & & & \\
\hline & 6,516,382 & February 4, 2003 & Manning & & & \\
\hline & 6,518,787 & February 11, 2003 & Allegrucci et al. & & & \\
\hline & 6,519,674 & February 11, 2003 & Lam et al. & & & \\
\hline & 6,523,107 & February 18, 2003 & Stansfield et al. & & & \\
\hline & 6,525,678 & February 25, 2003 & Veenstra et al. & & & \\
\hline & 6,526,520 & February 25, 2003 & Vorbach et al. & & & \\
\hline & 6,538,468 & March 25, 2003 & Moore & & & \\
\hline & 6,538,470 & March 25, 2003 & Langhammer et al. & & & \\
\hline & 6,539,415 & March 25, 2003 & Mercs & & & \\
\hline & 6,539,438 & March 25, 2003 & Ledzius et al. & & & \\
\hline & 6,539,477 & March 25, 2003 & Seawright & & & \\
\hline & 6,542,844 & April 1, 2003 & Hanna & & & \\
\hline & 6,542,394 & April 1, 2003 & Marshall et al. & & & \\
\hline & 6,542,998 & April 1, 2003 & Vorbach & & & \\
\hline & *6,553,395 & April 22, 2003 & Marshall et al. & & & \\
\hline & *6,553,479 & April 22, 2003 & Mirsky et al. & & & \\
\hline & *6,567,834 & May 20, 2003 & Marshall et al. & & & \\
\hline & 6,571,381 & May 27, 2003 & Vorbach et al. & & & \\
\hline & 6,587,939 & July 1, 2003 & Takano & & & \\
\hline & *6,598,128 & July 22, 2003 & Yoshioka et al. & & & \\
\hline & *6,606,704 & August 12, 2003 & Adiletta et al. & & & \\
\hline & 6,631,487 & October 7, 2003 & Abramovici et al. & & & \\
\hline & 6,633,181 & October 14, 2003 & Rupp & & & \\
\hline & 6,657,457 & December 2, 2003 & Hanrahan et al. & & & \\
\hline & 6,658,564 & December 2, 2003 & Smith et al. & & & \\
\hline & 6,665,758 & December 16, 2003 & Frazier et al. & & & \\
\hline & 6,687,788 & February 3, 2004 & Vorbach et al. & & & \\
\hline & 6,697,979 & February 24, 2004 & Vorbach et al. & & & \\
\hline & 6,704,816 & March 9, 2004 & Burke, David & & & \\
\hline & 6,708,325 & March 16, 2004 & Cooke et al. & & & \\
\hline & 6,717,436 & April 6, 2004 & Kress et al. & & & \\
\hline & 6,721,830 & April 13, 2004 & Vorbach et al. & & & \\
\hline
\end{tabular}

\title{
INFORMATION DISCLOSURE
STATEMENT BY APPLICANTS PTO-1449
}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline EXAMINER'S INITIALS & PATENT/ PUBLICATION NUMBER & PATENT/PUBLICATION
DATE & NAME & CLASS & SUBCLASS & FILING DATE \\
\hline & 6,728,871 & April 27, 2004 & Vorbach et al. & & & \\
\hline & *6,745,317 & June 1, 2004 & Mirsky et al. & & & \\
\hline & 6,748,440 & June 8, 2004 & Lisitsa et al. & & & \\
\hline & *6,751,722 & June 15, 2004 & Mirsky et al. & & & \\
\hline & 6,754,805 & June 22, 2004 & Yujen Juan & & & \\
\hline & 6,757,847 & June 29, 2004 & Farkash et al. & & & \\
\hline & 6,757,892 & June 29, 2004 & Gokhale et al. & & & \\
\hline & 6,782,445 & August 24, 2004 & Olgiati et al. & & & \\
\hline & 6,785,826 & August 31, 2004 & Durham et al. & & & \\
\hline & 6,802,026 & October 5, 2004 & Patterson et al. & & & \\
\hline & 6,803,787 & October 12, 2004 & Wicker, Jr. & & & \\
\hline & 6,820,188 & November 16, 2004 & Stansfield et al. & & & \\
\hline & 6,829,697 & December 7, 2004 & Davis et al. & & & \\
\hline & 6,847,370 & January 25, 2005 & Baldwin et al. & & & \\
\hline & 6,868,476 & March 22, 2005 & Rosenbluth & & & \\
\hline & 6,871,341 & March 22, 2005 & Shyr & & & \\
\hline & 6,874,108 & March 29, 2005 & Abramovici et al. & & & \\
\hline & 6,886,092 & April 26, 2005 & Douglass et al. & & & \\
\hline & 6,901,502 & May 31, 2005 & Yano et al. & & & \\
\hline & 6,928,523 & August 9, 2005 & Yamada, Akira & & & \\
\hline & 6,961,924 & November 1, 2005 & Bates et al. & & & \\
\hline & *6,975,138 & December 13, 2005 & Pani et al. & & & \\
\hline & 6,977,649 & December 20, 2005 & Baldwin et al. & & & \\
\hline & 7,000,161 & February 14, 2006 & Allen et al. & & & \\
\hline & 7,007,096 & February 28, 2006 & Lisitsa et al. & & & \\
\hline & 7,010,667 & March 7, 2006 & Vorbach et al. & & & \\
\hline & 7,028,107 & April 11, 2006 & Vorbach et al. & & & \\
\hline & 7,038,952 & May 2, 2006 & Zack et al. & & & \\
\hline & 7,043,416 & May 9, 2006 & Lin & & & \\
\hline & 7,210,129 & April 24, 2007 & May et al. & & & \\
\hline & 7,216,204 & May 8, 2007 & Rosenbluth & & & \\
\hline & 7,237,087 & June 26, 2007 & Vorbach et al. & & & \\
\hline & 7,249,351 & July 24, 2007 & Songer et al. & & & \\
\hline
\end{tabular}

\title{
INFORMATION DISCLOSURE
STATEMENT BY APPLICANTS PTO-1449
}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline EXAMINER'S
INITIALS & PATENT/ PUBLICATION NUMPER & PATENT/PUBLICATION
DATE & NAME & CLASS & SUBCLASS & \[
\begin{aligned}
& \text { FILING } \\
& \text { DATE }
\end{aligned}
\] \\
\hline & 7,254,649 & August 7, 2007 & Subramanian et al. & & & \\
\hline \(\because\) & 7,340,596 & March 4, 2008 & Crosland et at. & & & \\
\hline & 7,346,644 & March 18, 2008 & Langhammer et al. & & & \\
\hline & 7,350,178 & March 25, 2008 & Crosland et al. & & & \\
\hline & *7,382,156 & June 3, 2008 & Panietal. & & & \\
\hline & 7,595,659 & September 29, 2009 & Vorbach et al. & & & \\
\hline & 7,650,448 & January 19, 2010 & Vorbach et al. & & & \\
\hline & 2001/0001860 & May 24, 2001 & Bieu & & & \\
\hline & 20010010074 & July 26, 2001 & Nishihara et al. & & & \\
\hline & 2001/018733 & October 18, 2001 & Fujii et al. & & & \\
\hline & 2001/0032305 & October 18, 2001 & Barry & & & \\
\hline & 2001/0003834 & June 14, 2001 & Shimonishi & & & \\
\hline & \(2002 / 0103839\) & August 1, 2002 & Ozawa & & & \\
\hline & 2002/083308 & June 27, 2002 & Pereira et al. & & & \\
\hline & 2002/0038414 & March 28, 2002 & Taylor & & & \\
\hline & 2002/0045952 & April 18, 2002 & Blemel & & & \\
\hline & 2002/124238 & September 5,2002 & Metzgen & & & \\
\hline & 2002/0138716 & September 26, 2002 & Paut etal. & & & \\
\hline & 2002/013861 & August 30, 2001 & Adiletta et al. & & & \\
\hline & 2002/0143505 & October 3, 2002 & Drusinsky & & & \\
\hline & 2002/0144229 & October 3, 2002 & Hanrahan & & & \\
\hline & *2002/0156962 & October 24, 2002 & Chopra etal. & & & \\
\hline & 2002/0165886 & November 7, 2002 & Lam. & & & \\
\hline & 2003/0001615 & January 2, 2003 & Sueyoshi et al. & & & \\
\hline & 2003/0014743 & January 16, 2003 & Cooke ct al. & & & \\
\hline & 2003/0046607 & March 6, 2003 & Vorbach & & & \\
\hline & 2003/0056085 & March 2, 2003 & Vorbach & & & \\
\hline & 2003/0052711 & March 20, 2003 & Taylor & & & \\
\hline & 2003/0055861 & March 20, 2003 & Laietal. & & & \\
\hline & 2003/0056091 & March 20, 2003 & Greenberg & & & \\
\hline & 2003/0056202 & March 20, 2003 & Vorbach & & & \\
\hline & 2003/0061542 & March 27, 2003 & Bates et al. & & & \\
\hline & 2003/062922 & April 3, 2003 & Douglass et al. & & & \\
\hline & 2003/0086300 & May 8, 2003 & Noyes et al. & & & \\
\hline & 2003/0093662 & May 15.2003 & Vorbach et al. & & & \\
\hline & 2003/0097513 & May 22, 2003 & Vorbach et al. & & & \\
\hline & 2003/0123579 & July 3, 2003 & Safavi et al. & & & \\
\hline & 2003/0135686 & July 17, 2003 & Vorbach et al. & & & \\
\hline
\end{tabular}

\title{
INFORMATION DISCLOSURE
STATEMENT BY APPLICANTS PTO-1449
}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline EXAMINER'S
INITIALS & PATENT/ PUBLICATION NUMBER & PATENT/PUBLICATION
DATE & NAME & CLASS & SUBCLASS & \[
\begin{aligned}
& \text { FILING } \\
& \text { DATE }
\end{aligned}
\] \\
\hline & 2003/0192032 & October 9, 2003 & Andrade etal. & & & \\
\hline & 2004/0015899 & January 22, 2004 & May et al. & & & \\
\hline & 2004/0025005 & February 5, 2004 & Vorbach et al. & & & \\
\hline & *2004/0039880 & February 26, 2004 & Pentkovski et al. & & & \\
\hline & 2004/0078548 & April 22, 2004 & Claydon ct al. & & & \\
\hline & 2004/0168099 & August 26, 2004 & Vorbachetal. & & & \\
\hline & 2004/0199688 & October 7, 2004 & Vorbachet al. & & & \\
\hline & 2005/066213 & March 24, 2005 & Vorbach et al. & & & \\
\hline & 2005/0144210 & June 30, 2005 & Simkins et al. & & & \\
\hline & 2005/0144212 & Junte 30, 2005 & Simkins et al. & & & \\
\hline & 2005/0144215 & June 30, 2005 & Simkins et al. & & & \\
\hline & 2006/0130096 & October 12,2006 & Thendean et al. & & & \\
\hline & 2006/0230094 & Octuber 12,2006 & Simkins et al. & & & \\
\hline & 2009/0085603 & April 2, 2009 & Paul etal. & & & \\
\hline
\end{tabular}

FOREIGN PATENT DOCUMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{EXAMINER'S initials} & \multirow[t]{2}{*}{DOCUMENT NUMBER} & \multirow[b]{2}{*}{DATE} & \multirow[b]{2}{*}{COUNTRY} & \multirow[b]{2}{*}{CLASS} & \multirow[b]{2}{*}{subclass} & \multicolumn{2}{|l|}{TRANSLATION} \\
\hline & & & & & & YES & NO \\
\hline & 0208457 & January 14, 1987 & EPO & & & & \\
\hline & 0221360 & May 13, 1987 & EPO & & & & \\
\hline & 0398552 & November 22, 1990 & EPO & & & & \\
\hline & 0428327 & May 22,1991 & EPO & & & & \\
\hline & 0463721 & January 2, 1992 & EPO & & & & \\
\hline & 0477809 & April 1, 1992 & EPO & & & & \\
\hline & 0485690 & May 20, 1992 & EPO & & & & \\
\hline & 0497029 & August 5,1992 & EPO & & & & \\
\hline & 0539595 & May 5, 1993 & EPO & & & & \\
\hline & 0628917 & December 14, 1994 & EPO & & & & \\
\hline & 0678985 & October 25:1995 & EPO & & & & \\
\hline & 0686915 & December 13, 1995 & EPO & & & & \\
\hline & 0696001 & Decemiler 5, 2001 & EPO & & & & \\
\hline & 0707269 & April 17, 1996 & EPO & & & & \\
\hline & 0726532 & August 14, 1996 & EPO & & & & \\
\hline & 0735685 & October 2, 1996 & EPO & & & & \\
\hline & 0746106 & December 4, 1996 & EPO & & & & \\
\hline & 0748051 & December 11, 1996 & EPO & & & & \\
\hline & 0926594 & June 30, 1999 & EPO & & & & \\
\hline & 1061439 & December 20, 2000 & EPO & & & & \\
\hline
\end{tabular}

ALL REFERENCES CONSIDERED EXCEPT WHERE LININELHROOGGH. /D.L./
Page 447 of 539
\begin{tabular}{|c|c|c|}
\hline \multirow{3}{*}{INFORMATION DISCLOSURE STATEMENT BY APPLICANTS PTO-1449} & Allomey Docket No.
\[
2885 / 139
\] & \begin{tabular}{l}
Seria! No. \\
Unassigned
\end{tabular} \\
\hline & \begin{tabular}{l}
Applicant(s) \\
VORBACH
\end{tabular} & \\
\hline & \begin{tabular}{l}
Filing Date \\
Herewith
\end{tabular} & \begin{tabular}{l}
Group Art Unit \\
Unassigned
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{EXAMINER'S
INITIALS} & \multirow[b]{2}{*}{DOCUMENT NUMBER} & \multirow[b]{2}{*}{DATE} & \multirow[b]{2}{*}{COUNTRY} & \multirow[b]{2}{*}{CLASS} & \multirow[b]{2}{*}{SUBCLASS} & \multicolumn{2}{|l|}{TRANSLATION} \\
\hline & & & & & & YES & NO \\
\hline & 1102674 & May 30, 2001 & EPO & & & & \\
\hline & 1115204 & July 11, 2001 & EPO & & & English & \\
\hline & 1146432 & October 17, 2001 & EPO & & & & \\
\hline & 1669885 & June 14, 2006 & EPO & & & Abstract & \\
\hline & 2752466 & February 20, 1998 & France & & & Englisi equivalent: USP 6,425,054 cited above & \\
\hline & 42.21278 & Ianuary 5, 1994 & Germany & & & & \\
\hline & 4416881 & November 17. 1994 & Germany & & & Abstract & \\
\hline & 3855673 & November 20, 1996 & Germany & & & Abstract Only & \\
\hline & 10028397 & December 20, 2001 & Germany & & & & \\
\hline & 10036627 & Feloruary 14,2002 & Germany & & & & \\
\hline & 10129237 & April 18, 2002 & Germany & & & & \\
\hline & 10204044 & August 14, 2003 & Germany & & & & \\
\hline & 19651075 & June 10, 1998 & Germany & & & Abstract & \\
\hline & 19654593 & Juty 2, 1998 & Germany & & & & \\
\hline & 19654595 & July 2, 1998 & Germany & & & Abstract & \\
\hline & 19654846 & July 9, 1998 & Germany & & & & \\
\hline & 19704044 & August 13, 1998 & Germany & & & & \\
\hline & 19704728 & August 13, 1998 & Germany & & & Abstract & \\
\hline & 19704742 & September 24, 1998 & Germany & & & & \\
\hline & 19807872 & August 26, 1999 & Germany & & & & \\
\hline & 19822776 & March 25, 1999 & Germany & & & Abstract & \\
\hline & 19861088 & February 10, 2000 & Germany & & & & \\
\hline & 19926538 & Decermber 14,2000 & Germany & & & Abstract & \\
\hline & 2304438 & March 19, 1997 & United Kingdom & & & English & \\
\hline & WO90/04835 & May 3, 1990 & PCT & & & & \\
\hline & W090/11648 & October 4, 1990 & PCT & & & & \\
\hline & W092/01987 & February 6, 1992 & PCT & & & & \\
\hline & W093/11503 & June 10, 1993 & PCT & & & & \\
\hline & W094/06077 & March 17, 1994 & PCT & & & & \\
\hline & W094/08399 & April 14, 1994 & PCT & & & & \\
\hline & WO95/00161 & January 5,1995 & PCT & & & & \\
\hline & W095/26001 & September 28, 1995 & PCT & & & & \\
\hline & W098/10517 & March 12, 1998 & PCT & & & & \\
\hline & WO9B/26356 & June 18, 1998 & PCT & & & & \\
\hline & W098/28697 & July 2, 1998 & PCT & & & & \\
\hline & W098/29952 & July 9, 1998 & PCT & & & & \\
\hline
\end{tabular}

Page 15
ALL REFERENCES CONSIDERED EXCEPT WHERE LINPEIHRO日GH. /D.L./

Receipt date: 07/14/2010
12836364 - GAU: 2819
INFORMATION DISCLOSURE
STATEMENT BY APPLICANTS
PTO-1449

Attorney Docket No. \(\quad\) Serial No.
2885/139
Unassigned
Applicant(s)
VORBACH
\begin{tabular}{l|l} 
Filing Date & Group Ar Unit \\
Herewith & Unassigned
\end{tabular}


Page 16
ALL REFERENCES CONSIDERED EXCEPT WHERE LIWFETHP1O04GH. /D.L./

INFORMATION DISCLOSURE STATEMENT BY APPLICANTS PTO-1449
\begin{tabular}{l|l} 
Attomey Docket No. & Serial No. \\
\(2885 / 139\) & Unassigned \\
\hline
\end{tabular}

Applicant(s)
VORBACH
\begin{tabular}{l|l} 
Filing Date & Group Art Unit \\
\hline
\end{tabular}
Herewith

Unassigned
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{EXAMINER'S
INITIALS} & \multirow[t]{2}{*}{DOCUMENT
NUMBER} & \multirow[b]{2}{*}{DATE} & \multirow[b]{2}{*}{COUNTRY} & \multirow[b]{2}{*}{CLASS} & \multirow[b]{2}{*}{SUBCLASS} & \multicolumn{2}{|l|}{TRANSLATION} \\
\hline & & & & & & YES & NO \\
\hline & 5-276007 & October 22, 1993 & Japan & & & Abstract & \\
\hline & 6 -266605 & Setember 22, 1994 & Japan & & & Abstract & \\
\hline & 7-086921 & March 31, 1995 & Japan & & & Abstract & \\
\hline & 8-101761 & April 16,1996 & Japan & & & Abstract & \\
\hline & 8-102492 & April 16, 1996 & Japan & & & Abstract & \\
\hline & 8-148989 & June 7, 1995 & Japan & & & Abstract & \\
\hline & 8-221164 & August 30, 1996 & Japan & & & Abstract & \\
\hline & 8-250685 & September 27, 1996 & Japan & & & Abstract & \\
\hline & 9-294069 & November 11, 1997 & Japan & & & Abstract & \\
\hline & 2-130023 & May 18, 1990 & Japan & & & Abstract & \\
\hline & 11-184718 & July 9, 1999 & Japan & & & Abstract & \\
\hline & 11-307725 & November 5, 1999 & Japan & & & Abstract \& Partial Translation & \\
\hline & 2000-076066 & March 14, 2000 & Japan & & & Abstract & \\
\hline & 2000-181566 & Jụne 30, 2000 & Japan & & & Computer Translation & \\
\hline & 2000-311156 & November 7, 2000 & Japan & & & Abstract & \\
\hline & 9-27745 & January 28, 1997 & Japan & & & Abstract & \\
\hline & 05-509184 & December 16, 2003 & Japan & & & English Equivalent = USP 5,193,202 cited above & \\
\hline & 08069447 & March 12, 1996 & Japan & & & Abstract & \\
\hline & 2001-167066 & June 22, 2001 & Japan & & & Abstract & \\
\hline & 2001-500682 & January 16,2001 & Japan & & & Abstract & \\
\hline & 2000-201066 & July 18, 2000 & Japan & & & Abstract & \\
\hline & *3-961028 & August 15, 2007 & Japan & & & Abstract & \\
\hline & *2001-510650 & July 31, 2001 & Japan & & & Abstract only & \\
\hline & *2002-0033457 & January 31, 2002 & Japan & & & Abstract & \\
\hline
\end{tabular}

\section*{OTHER DOCUMENTS}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{c} 
EXAMINER'S \\
INITIALS
\end{tabular} & \multicolumn{1}{c|}{ AUTHOR, TITLE, DATE, PERTINENT PAGES, ETC. } \\
\hline & Abnous et al., "Ultra-Low-Power Domain-Specific Multimedia Processors," U.C. Berkeley, 1996 IEEE, pp. 461-470. \\
\hline & \begin{tabular}{l} 
Abnous, A., ct al., "The Pleiades Architecture," Chapter I of The Application of Programmable DSPs in Mobile Communications, A. \\
Gatherer and A. Auslander, Ed., Wiley, 2002, pp. 1-33.
\end{tabular} \\
\hline & Ade, et al., "Minimum Memory Buffers in DSP Applications," Electronics Letters, vol. 30, No. 6, March 17, 1994, pp. 469-471. \\
\hline & \begin{tabular}{l} 
Advanced RISC Machines, "Introduction to AMBA,", October I996, Section 1, pp. 1-7.
\end{tabular} \\
\hline & \begin{tabular}{l} 
Albaharna, O.T. et al., "On the Viability of FPGA-Based Integrated Coprocessors," Dept. of Electrical and Electronic Engineering, Imperial \\
College of Science, London, 1999 IEEE, pp. 206-215.
\end{tabular} \\
\hline
\end{tabular}

Page 17
ALL REFERENCES CONSIDERED EXCEPT WHERE LINEDETHROUGH. ID.L./

INFORMATION DISCLOSURE STATEMENT BY APPLICANTS PTO-1449

Attorney Docket No.
2885/139
Applicant(s)
VORBACH

\section*{Filing Date \\ Herewith}

\section*{Serial No.}

Unassigned

Group Arl Unit Unassigned
\begin{tabular}{|c|c|}
\hline EXAMINER'S & AUTHOR, TYTLE, DATE, PERTINENT PAGES, ETC. \\
\hline & Alippi, et al., "Determining the Optimurn Extended Instruction Set Architecture for Application Specific Reconfigurable VLIW CPUs," IEEE, 2001, pp. 50-56. \\
\hline & Altera, "A.PEX 20K Programmable Logic Device Family," Altera Corporation Data Shect, March 2004, ver. 5.t, PP. 1-117. \\
\hline & Altera, "Flex 8000 Programmable Logic Device Family," Attera Corporation product description, January 2003, pp. 1-62. \\
\hline & Allera, "Flex 10K Embedded Programmable Logic Device Family," Allera Corporation product description, Junuary 2003, Pp. 1-128. \\
\hline & *Altera, "2. TriMatrix Embedded Memory Blocks in Stratix \& Stratix GX Devices," Altera Corporation, July 2005, 28 pages. \\
\hline & *Alteri, "APEX II Programmable Logic Device Famity," Altera Corporation Data Shect, August 2002, Ver. 3.0, 99 pages. \\
\hline & Arabi, ct al., "PLD Integrates Dedicated High-speed Data Buffering, Complex State machine, and Fast Decode Array," conference record on WESCON '93, Sep. 28, 1993, pp. 432-436. \\
\hline & ARM, "The Architecture for the Dipital World," hap://www, arm.comproducts/March 18, 2009, 3 pages. \\
\hline & ARM, "The Architecture for the Digital World; Milestones," hitp://www arm.com/aboutarm/milestones.html March 18, 2009, 5 pages. \\
\hline & Asari, K. et al., "FeRAM circuit technology for system on a chip," Proceedings First NASA/DoD Workshop on Evolvable Havduare (1999), pp. 193-197. \\
\hline & Athanas, "A Functional Reconfigurable Architechure and Compiler for Adoptive Computing," IEEE 1993, pages 49-55. \\
\hline & Athanas, et al., "An Adaptive Hardware Macline Architecture and Corrpiler for Dynamic Processor Recongifugation," IEEE, Laboratory for Engineering man/Machine Systerns Division of Engineering, Box D, Brown University, Providence, Rhode Island, 1991, pages 397-400. \\
\hline & Athanas et al., "Processor Reconffguration Through Instruction-Set Metarnorphosis,", 1993 , IEEE Computers, pp. 11-18. \\
\hline & Atmel, 5 -K-50k Gates Coprocessor FPGA with Free Ram, Data Sheet, July 2006, 55 pages. \\
\hline & Atmel, FPGA-based FIR Filter Application Note, September 1999, 10 pages. \\
\hline & Atmel, "An Introduction to DSP Applications using the AT40K, FPGA," FPGA Application Engineering, San Jose, CA, April 2004, 15 pages. \\
\hline & Atmel, Configurable Logic Design \& Application Book, Atrnel Corporation, 1995, pp. 2-19 through 2-25. \\
\hline & Atmel, Field Programmable Gate Array Configuration Guide, AT6000 Series Configuration Data Sheet, September 1999, pp. 1-20. \\
\hline & Bacon, D. et al., "Compiler Transfarmations for High-Performance Computing," ACM Computing Surveys, 26(4):325-420 (1994) \\
\hline & Bakkes, P.J., et al., "Mixing Fixedu and Recontigurable Logic for Array Provessing." Depl of Electrical and Electronic Engineering, University of Stellenbosch, South Africa, 1996 1EEE, pp. 118-125. \\
\hline & Baumgarte, V. et al., PACT XPP "A Self-reconfigurable Data Processing Architecture," PACT Info. GMBH, Munchen Gerrmany, 2001, 7 pages. \\
\hline & Beck et al., "From control now to data fow," TR 89-1050, October 1989, Dept. of Computer Science, Cornell University, lthaca, NY, pp. 125. \\
\hline & Becker, J. et al., "Architecture, Memory and Interface Technology Integration of an Industriai/Acadernic Conifgurable Systern-on-Chip (CSoC)," IEEE Computer Society Annual Workshop on VLSI (WVLSI 2003), (February 2003) \\
\hline & Becker et al., "Automatic Parallelism Exploitation for FPL-Based Accelerators," 1998, Proc. 31 st Annual Hawaii International Conference on System Sciences, pp. 169-178. \\
\hline & Becker, J., "Configurable Systems-on-Chip (CSoC)," (Invited '1utorial), Proc. of 9th Proc. of XV Brazilian Symposium on Integrated Circuit, Design (SBCCI 2002), (September 2002) \\
\hline & Becker, J. et al., "Parallelization in Co-compilation for Contigurable Accelerators - a Host/accelerator Partitioning Compilation Method," Proccedings of Asia and South Pacific Design Automation Conference, Yokohama, Japan, February 10-13, 1998, 11 pages. \\
\hline & *Becker, J., "A Partitionlmg Compiler for Computers with Xputer-based Accelerators," 1997, Kaiserslautern University, 326 pp. \\
\hline & Bitner, "Wormhole Run-time Reconfiguration: Conceplualization and VLSI Design of a High Performance Computing Systern," Dissertation, January 23, 1997, pp. I-XX, 1-415. \\
\hline & *"BlueGene/L-Hardware Architecture Overview," BlueGone/L design team, IBM Research, October 17, 2003 slide presentntion, pp. 1-23. \\
\hline & *"BlueGene/L: the next generation of scalable supercomputer," Klssel et al., Lawrence Livermore National Laboratory, Livermore, California, November 18, 2002, 29 pages. \\
\hline & *BIueGene Project Upulate, January 2002, 18M slide presentation, 20 pages. \\
\hline
\end{tabular}

\title{
INFORMATION DISCLOSURE STATEMENT BY APPLICANTS PTO-1449
}

Serial No.
Unassigned
\begin{tabular}{l|l|}
\hline \begin{tabular}{l} 
Applicant(s) \\
VORBACH
\end{tabular} \\
\hline Filing Date & Group Art Unit \\
Herewith & Unassigned \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline EXAMINER'S mitials & AUTHOR, TITLE, DATE, PERTINENT PAGES, ETC. \\
\hline & *DlueGene/L, "An Overview of the BlueGene/L Supercomputer," The BlueGene/L Team, lBM and Lawrence Livermore National Laboratory, 2002 ILEE. PP. 1-22. \\
\hline & Bratt, A, "Motorola field programmable analogue artays, present hardware and future trends," Motorola Programmable Technology Centre, Gadbrook Business Centre, Northwich, Cheshire, 1998, The Institute of Electrical Engineers, IEE. Savoy Place, London, pp. 1-5. \\
\hline & Cadambi, el al, "Managing Pipelinc-reconfigurable FPGAs," ACM, 1998, pp. 55-64. \\
\hline & Callahan, et al., "The Gapp Architecture and C Compiler," Computer, Aprit 2000, pages 62-69. \\
\hline & Cardoso, J.M.P. et al., "A novel algorithm combining temporal partitioning and sharing of functional units," University of Algarve, Faro, Portugal, 2001 IEEE, pp. :-10. \\
\hline & Cardoso, Joao M.P. and Markus Weinhardt, "XPP-VC: A C Compiler with Temporal Partitioning for the PACT-XPP Architeclure," FieldProgramnzable Logic and Applications. Reconfigurable Computing is Going Mainstream, \(12{ }^{\text {th }}\) International Conference FPL 2002, Proceedings (Lecture Notes in Computer Science, Vol. 2438) Springer-Verlag Herlin, Germany, 2002, pp. 864-874. \\
\hline & Cardoso, J.M.P. "Compilation of Java \({ }^{T M}\) Algorithrns onto Reconfigurable Computing Systems with Exploitation of Operation-Level Parallelism," Ph.D. Thesis, Universidade Tecnica de Lisboa (UTL), Lisbon, Poriugal October 2000 (Table of Contents and English Abstract only). \\
\hline & Cardoso, J.M.P., et al., "Compilation and Temporal Partitioning for a Coarse-Grain Reconfigurable Architecture," New Algorithrns, Architectures and Applications for Reconfigurable Computing, LYSACHT, P. \& ROSENTIEL, W. eds., (2005) pp. 105-1 15. \\
\hline & \begin{tabular}{l}
Cardoso, J.M.P., et al., "Maero-Based Hardware Compilation of Java \({ }^{\text {TM }}\) Bytecodes into a Dynamic Reconfigurable Computing Systern," Field-Programmable Custom Computing Machines (1999) FCCM '99. Proccedings. Seventh Annual IEEE Symposium on NAPA Yalley, \\

\end{tabular} \\
\hline & Chaudhry, G.M. ct al., "Separated caches and buses for multiprocessor system," Circuits and Systens, 1993; Proveedings of the \(36^{\text {th }}\) Midwest Symposiam on Detroit, MJ, USA, 16-18 August 1993, New York, NY IEEE, 16 August 1993, Pages 1113-1116, XP010119918 ISBN: 0-7803-1760-2. \\
\hline & Chen et al., "A reconfigurable multiprocessor IC for rapid prototyping of algorithmic-specific high-speed DSP data paths," IEEE Joumal of Solid-State Circuits, Vol. 27, No. 12, December 1992, pp. 1895-1904. \\
\hline & Clearspeed, CSX Processor Architecture, Whitcpaper, PN-1110-0702, 2007, pp. I-15, www.clearspeed.com. \\
\hline & Clearspeed, CSX Processor Architecture, Whitepaper, PN-1110-0306, 2006, pp. 1-14, www.clearspeed,com. \\
\hline & Compton, K. et al., "Configurable Computing: A Survey of Systems and Sotware," Northwestem University, Dept. of ECE, Technical Report, 1999, (XP-002315148), 39 pages. \\
\hline & Cook, Jeffrey J., "The Amalgam Compiler In frastructure," Thesis at the University of IJtinois at Ubana-Champaign (2004) Chapter 7 \& Appendix \(G\). \\
\hline & Cronquist, D, et al., Architecture Design of Reconfigurable Pipelined Datapaths," Department of Compater Science and Engineering, University of Washington, Seattle, WA, Proceedings of the \(20^{\text {th }}\) Anniversary Conference an Advanced Researeh in VSLI, 1999, pp. 1-15. \\
\hline & Culler, D.E; Singh, J.P., "Parallel Computer Architecoure," Pages 434-437, 1999, Morgan Kaufmann, San Francisco, CA USA, XP002477559. \\
\hline & DeHon, A., "DPGA Utilization and Application," MIT Artificiat Intelligence Laboratory, Proceedings of the Fourth Intemational ACM Symposium on Field-Progremmable Gate Arrays (FPGA '96), IEEE Computer Society, PP. 1-7. \\
\hline & DeHon, Andre, "Reconfigurable Architectures for General-Purpose Computing," Massachusetts Institute of Technology, Technical Report AITR-1586, October 1996 (1996-10), XP002445054, Cambridge, MA, pp. 1-353. \\
\hline & Del Corso et aj., "Microcomputer Buses and Links," Academic Press Inc. Ltd., 1986, pp. 138-143, 277-285. \\
\hline & Diniz, P., et al., "Automatic Synthesis of Data Storage and Control Structures for FPGA-based Computing Engines," 2000, IEEE, pages 91100. \\
\hline & Diniz, P., et al., "A behavioral synthesis estimation interface for conligurable computing," University of Southern Califormia, Marina Del Rey, CA, 2001 IEEE, pp. 1-2. \\
\hline & Donandt, "Improving Response Time of Prograrnmable Logic Controllers by use of a Boolean Coprocessor," AEG Research Institute Berlin, IEEE, 1989, pages 4-167-4-169. \\
\hline & Dutt, et al., "If Software is King for Systems-in-Silicon, What's New in Compilers?," lEEE, 1997, pp. 322-325. \\
\hline & Ebeling, C. et al., "Mapping Applications to the RaPiD Configurable Architecture," Department of Computer Science and Engineering, University of Washington, Seattle, WA, FPGAs for Custom Computing Machines, I997. Proceedings., The 5th Anmual IEEE Symposiurn, Publication Date: 16-18 Apr 1997, 10 pages. \\
\hline
\end{tabular}

Serial No.
Unassigned
Applicant(s)
VORBACH

Herewith

\section*{Group Art Unit Unassigned}
\begin{tabular}{|c|c|}
\hline EXAMINER'S
INITIALS & AUTHOR, TITLE, DATE, PERTINENT PAGES, ETC. \\
\hline & *Epstein, Dave, "IBM Extends DSP Performance with Mfnxt," Meroprncessor Report, Vol. 9, No. 16 (MieroDesign Resources), December 4, 1995, pp. 1 4 [XL0029013]. \\
\hline & Equator, Pixels to Packets, Enabling Mufti-Format High Definition Video, Equator Technologies BSP-15 Product Brief, whw.equator.com, 2001, 4 pages. \\
\hline & Fawcett, B.K., "Map, Place and Route: The Key to High-Density PLD implementation," Wescon Conference, IEEE Center (7 November 1995) pp. 292-297. \\
\hline & Ferrante, J. et al., "The Program Dependence Graph and its Use in Optimization ACM Transactions on Programming Languages and Systems," July 1987, USA, [online] Bd. 9, Nr., 3, pages 319-349, XP002 56651 ISSN: 0164-0935 ACM Digital Library. \\
\hline & Fineberg, S, et al., "Experimental Analysis of a Mixed-Mode Parallel Architecture Using Bitonic Sequence Sorting," Journal of Parallel and Distributed Computing, VoI. 11, No. 3, March 1991, pages 239-251. \\
\hline & Fomaciari, et al., System-level power evaluation metrics, 1997 Proceedings of the \(2^{\text {mu }}\) Annual IEEE Intemational Conference on Innovative Systems in Silicon, Now York, NY, October 1997, pp. 323-330. \\
\hline & Forstner, "Wer Zuerst Kommt, Mahlt Zuerst!: Teit 3: Einsatzgebiete und Anwendungbeispiele von FFFO-Speichern," Elektronik, August 2000, pases 104-109. \\
\hline & Franklin, Manoj et al., "A Fill-Unit Approach to Multiple Instruction Issue," Proceedings of the Annual Intemational Symposium on Microarchitecture, November 1994, pp. 162-171. \\
\hline & Frecseale Slide Presentation, An Introduction to Motorola's RCF (Reconfigurable Compute Fubric) Technelogy, Presented by Frank David, Launched by Freescale Semiconductor, inc., 2004, 39 pages. \\
\hline & *Galanis, M.D. et al., *Accelerating Applications by Mapping Critical Kernels on Coarse-Grain Reconfigurable Hardware in Hybrid Systems," Proceedings of the \(13^{\text {th }}\) Annual IEEE Symposhum on Field-Programmable Custom Computing Miachines, 2005,2 pages. \\
\hline & Genius, D. et al., "A Case for Array Merging in Memory Hierarchies," Proceedings of the 9th International Workshop on Compilers for Parallèl Computers, CPC'01 (June 2001), 10 pages. \\
\hline & Goklaale, M.B.et al., "Automatic Allocation of Arrays to Memories in FPGA processors with Multiple Memory Banks," Field-Programmable Custom Computing Machines, 1999, 1EEE, 6 pages. \\
\hline & *Guo, Z. et alr, "A Cumpiler Intermediate Representation for Reconfgurable Fabrics," University of California, Riversite, Dept. of Electrical Engineering, IEEE 2006, 4 pages. \\
\hline & \({ }^{*}\) Gwennap, Linlcy, "P6 Underscores Intel's Lead," Microprocessor Report, Vol. 9., No. 2, February 16, 1995 (MieroDesign Resources), p. 1 and pp. 6-15. \\
\hline & *Gwennap, Linley, "Intel's P6 Bus Designed for Multiprocessing," Microprocessor Report, Vol. 9, No. 7 (MieroDesign Resources), May 30, 1995, p.1 and pp. 6-10. \\
\hline & Hammes, Jeff et al., "Cameron: High Level Language Compilation for Reconfigurable Systems," Department of Computer Science, Colorado State University, Conference on Parallel Architectures and Compilation Techniques, October 12-16, 1999, 9 pages. \\
\hline & Hartensteir, R. et al., "A new FPGA architecuure for word-oriented datapaths," Proc. FPL'94, Springer LNCS, September 1994, pp. 144-155. \\
\hline & Harrenstein, R., "Coarse grain reconfigurable architectures," Design Automation Conference, 2001, Proceedings of the ASP-DAC 2001 Asia and South Pacific, January 30 - February 2, 2001, IEEE 30 January 2001, pp. 564-569. \\
\hline & *Hartenstein et al., "Parallelizing Compilation for a Novel Data-Parallel Architecture," 1995, PCAT-94, Parnllel Computing: Technology and Practice, 13 pp . \\
\hline & *Hartenstein et al., "A Two-Level Co-Design Framework for Xputer-based Data-driven Reconfigurable Accelerators," 1997, Proceedings of the Thirtieth Annual Hawaii International Conference on System Sciences, 10 pp . \\
\hline & Hastie et al," "The implementation of hardware subroutines on field programmable gate arrays," Custom Integrated Circuits Conference, 1990, Proceedings of the IEEE 1990, May 16, 1990, pp. 31.3.1-31.4.3 (3 pages). \\
\hline & Hauck, "The Roles of FPGAs in Reprogrammable Systems," IEEE, April 1998, pp. 615-638. \\
\hline & Hauser, J.R., et al. "Garp: A MIPS Processor with a Reconigurable Coprocessor," University of Califomia, Berkeley, IEEE, 1997, pages 24-33. \\
\hline & Hedge, S.J., "3D WASP Devices for On-ine Signal and Data Processing," 1994, International Conference on Wafer Scale Integration, pages 11-21. \\
\hline & Hendrich, N., et al., "Silicon Compilation and Rapid Prototyping of Microprogrammed VLSl-Cirevits with MiMOLA and SOLO 1400," Microprocessing \& Microprogramming (September 1992) vol. 35(1-5), pp. 287-294. \\
\hline & *Huang, Libo et al., "A New Architecture for Multiple-Precision Flaating-Paint Multiply~Add Fused Unit Design," School of Computer National University of Defense Technology, China, IEEE 2007, 8 pages. \\
\hline
\end{tabular}

Page 20

Attorney Docket No.
2885/139
Applicant(s)
VORBACH
\begin{tabular}{l|l} 
Filing Date & Group Art Unit \\
Herewith & Unassigned
\end{tabular}
\begin{tabular}{|c|c|}
\hline EXAMINER'S InITIALS & AUTHOR, TITLE, DATE, PERTINENT PAGES, ETC. \\
\hline & Hwang, K., "Advanced Computer Architeclure - Parallelism, Scalability, Programmability," 1993, McGraw-Hill, Inc., pp. 348-355. \\
\hline & Hwang, K., "Computer Architecture and Paralitel Processing," Data Flow Computers and VLSI Computations, XP-002418655, 1985 McGraw-Hill, Chapter 10, pp. 732-807. \\
\hline & Hwang, L. et al., "Min-cut Repfication in Partitioued Networks," IEEE Transactions on Conputer-Aided Design of Integrated Circuils and Systems, [online] Prd. 14, Nr. 1, Jnnuary 1995, pages 96-106, XP00053228 USA ISSN: 0278-0070 JEEE Xplore. \\
\hline & IBM Technical Disclusure Bulletin, IBM Corp., New York, XP000424878, Bd. 36, Nr. 11, 1 November 1993, pp. 335-336. \\
\hline & "IEEE Standard Test Access Port and Boundary-Scan Architecture," IEEE Std. 1149.1-1990. 1993, pp. 1-127. \\
\hline & *IMEC, "ADRES multimedia processor \& 3MF multimedia platform," Transferable IP, MMEC Technology Description, (Applicants believe the date to be Octaber 2005), 2 pages. \\
\hline & Inside DSP, "Ambric Discloses Mossively Parallel Architecbure," August 23, 2006, HTTP://insidedsp.com/abid/64/aricleType/ArticleVitw/aticleid/155/Defa..., 2 pages. \\
\hline & Intel, Intel MXP5800/MXP5400 Digital Media Processors, Architecture Overview, June 2004, Revision 2.4, pp. 1-24. \\
\hline & *Intel, "Pentium Pro Family Deyeloper's Manual, Volume 3: Operating System Writer's Guida," Intcl Corporation, December 1995, [submitted in 4 PDF files: Part I, Part II, Part MII and Part IV), 458 pages. \\
\hline & Iseli, C.,et al. "A C 4 Compiler for FPGA Custom Execution Units Synthesis," IEEE, 1995, pp. 173-179. \\
\hline & Isshiki, Tsuyoshi, et al., "Bit-Serial Pipeline Synthesis for Multi-FPGA Systems with C++ Desitn Capture," 1996 IEEE, pp. 38-47. \\
\hline &  \\
\hline & Janlsch, Axel et al., 'A Case Study on Hardware/Sonware Partitioning," Royal Institute or Technology, Kista, Sweden, April 10, 1994, IEEE, pp. 111-118. \\
\hline & Jantsch, Axel et al., "Hardware/Software Partitioning and Minimizing Mermory Interface Traffic," Electronic Systern Design Laboratory, Royal Institute of Technology, ESDLab, Electrum 229, S-16440 Kista, Sweden (April 1994), pp. 226-231. \\
\hline & *Jo, Manhwee et al., "Implementation of Floating-Point Operations for 3D Graphies on a Coarse-Grained Reconfigurable Architecture," Design Altomation Laboratory, School of EE/CS, Scoul National University, Korea, IEEE 2007, pp-127-130. \\
\hline & John, L., et al., "A Dynamicaliy Reconfigurable Interconnect for Array Processors," Vol. 6, No. 1, March 1998, IEEE, pages 150-157. \\
\hline & \begin{tabular}{l}
*Kanter, David, "NYIDIA's GT200: Inside a Parallel Processor," \\

\end{tabular} \\
\hline & Kastrup, B., "Automatic Hardware Synthesis for a Hybrid Reconfigurable CPU Featuring Philips CPLDs," Proceedings of the PACT Workshop on Reconfigurable Conputing, 1998, pp. 5-10. \\
\hline & Kaul, M., et al., "An automated ternporal partitioning and loop fission approach of FPGA based reconfigurable synthesis of DSP applications," University of Cincinnati, Cincinnati, OH, ACM 1999, pp. 616-622. \\
\hline & Kean, T.A., "Configurable Logic: A Dynamically Programmable Cellular Architecture and its VLSI Implementation," University of Edinburgh (Dissertation) 1988, pp. 1-286 \\
\hline & Kean, T., et al., "A Fast Constant Coefficient Multiplier for the XC6200," Xilinx, lnc., Lecture Notes in Computer Science, Vol. 1142, Proceedings of the \(6^{\text {WI }}\) International Workshop of Ficid-Programmable Logic, 1996, 7 pages. \\
\hline & Kim et al., "A Reconfigurable Muitifunction Computing Cache Architecture," IEEE Transactions on Very Large Scale Integration (VLSI) Systerns Volume 9, Issuc 4, Aug 2001 Page(s):509-523. \\
\hline & Knittel, Gunter, "A PCI-compatible FPGA-Coprocessor for 2D/3D Irnage Processing," University of Turgingen, Germany, 1996 IEEE, pp. 136-145. \\
\hline & Koch, Ardreas et al., "High-Level-Language Compilation for Reconfigurable Computers," Proceedings of European Worksilop on Reconfigurabie Communication-Centric SOCS (June 2005) 8 pages. \\
\hline & Koch, \(\Lambda\)., et al., "Practical Experiences with the SPARXIL Co-Processor," 1998, IEEE, pages 394-398, \\
\hline & Koren et al., "A dala-driven VLSI array for arbitrary algorithms," IEEE Computer Society, Long Beach, CA Vol, 21, No. 10, 1 October 1988, pp. 30-34. \\
\hline & Kung, "Deadlock Avoidance for Systolic Communication," 1988 Conference Proceedings of the \(15^{\text {th }}\) Annual Intemational Symposium on Computer Architecture, May 30, 1998, pp. 252-260. \\
\hline & Lange, H. et al., "Memory access schemes for configurable proccssors," Ficld-Programmablc Logic and Applications, Intermational Workshop, FPL, 27 August 2000, pages 615-625, XP02283963. \\
\hline
\end{tabular}

Page 21
\begin{tabular}{l|l|}
\begin{tabular}{l} 
Attomey Docket No. \\
\(2885 / 139\)
\end{tabular} & \begin{tabular}{l} 
Serial No. \\
Unassigned
\end{tabular} \\
\hline Applicant(s) \\
VORBACH & \multicolumn{2}{|c}{} \\
\hline Filing Date & Group Ar Unit \\
Herewith & Unassigned \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline EXAMINER'S
NNITIALS & AUTHOR, TITIE, DATE, PERTINENT PAGES, ETC. \\
\hline & Larselı, S. et al.. "Increasing and Detecling Memrory Address Congruence." Proceedings of the 2002 IEEE Intemational Conference on Parallel Architectures and Compilation Techniques (PACTO2), pp. 1-12 (September 2002). \\
\hline & Lee et al., "A new distribution network based on concrolled swiching elements and its applications," IEEE/ACT Trans. of Networking, Vol. 3, No. 1, pp. 70-81, February 1995. \\
\hline & Lee, R. B., et al., "Multimedia extensions for general-puppose processors," IEEE Workshop on Signal Processing Systems, SIPS 97 - Design and Implenentation (1997), pp. 9-23. \\
\hline & Lec, Jong-eun et al., "Reconfigurable ALU Array Architecture with Conditional Execution," International Soe. Design Conference (ISOOC) [online] October 25, 2004, Seoul, Korea, 5 pages. \\
\hline & Lee, Ming-Hau et al., "Designs and Implementation of the MorphoSys Reconfigurable Computing Processors," The Journal of VLSI Signal Processing, Kluwer Acadennic Publishers, BO, Vol. 24, No. 2-3, 2 March 2000, pp. 1-29. \\
\hline & Ling, X," "WASMII: An MPLD with Data-Driven Control on a Virual Hardware," Journat of Supercomputing, Kluwer Acdemic Publishers, Dordirecht, Netherlands, 1995, pp. 253-276. \\
\hline & Ling et al., "WASMII: A Multifunction Programmable Logic Device (MPLD) with Data Driven Control," The Transactions of the Institutc of Electronics, Information and Communication Engineers, 25 April 1994, Vol. J77-D-1, Nr. 4, pp. 309-317. [This references is in Chinese, but slould be comparable in conlent to the Ling et at. reference abovet. \\
\hline & Mano, M.M., "Digital Design," by Prentice Hall, hnc., Englewood Cliffs, New Jersty 07632, 1984, pp. 119-125, 154-161. \\
\hline & Margolus, N ., " A П FPGA architecture for DRAM-based systolic compulations," Boston University Center for Computational Science and MIT Artificial Intelligence Laboratory, IEEE 1997, pp. 2-11. \\
\hline & Maxfield,C., "Logic that Mutales While-U-Wait," EDN (Bur. Ed) (USA), EDN (European Edition), 7 November 1996, Cahners Publishing, USA, pp. 137-140, 142. \\
\hline & Mei, Bingfeng et al., "Adres: An Afchitecture with Tightly Coupled VLiw Processor and Coarse-Grained Reconfigurable Matrix," Proc. Field-Programmable Logic and Applications (FPL03), Springer, 2003, pp, 61-70. \\
\hline & Mei, Bingfeng, "A Coarse-Grained Reconfigurable Architecture Template and lts Compilation Techniques," Katholeike Universiteit Leuven, PhD Thesis, January 2005, IMEC vzw, Universitair Micro-Electronica Centrum, Belgium, pp. 1-195 (and Table of Contents). \\
\hline & Mei, Bingfeng, et al., "Design and Optingization of Dymamically Reconnigurable Embedded Systerns," IMEC vzw, 2003, Beigium, 7 pages, http://www.imec.befreconfigurable/pdf/ICERSA_01_design.pdf. \\
\hline & Miller, M.J., et al., "High-Speed FIFOs Contend with Widely Differing Data Rates: Dual-port RAM Buffer and Dual-pointer System Provide Rapid, High-density Data Storage and Refuce Overhead," Computer Design, September 1, 1985, pages 83-86. \\
\hline & Mirsky, E. DeHon, "MATRIX: A Reconfigurable Computing Architecture with Configurable Instruction Distribution and Deployable Resources," Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines, 1996, pp. 157-166. \\
\hline & Miyamori, T. et al.. "REMARC: Reconfigurable Multimedia Array Coprocessor," Computer Systems Laboratory, Stanford University, Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field programmable gate arrays, February 22-25, 1998, Monterey, California, United States, pp. 1-12. \\
\hline & Moraes, F., et al., "A Physical Synthesis Design Flow Based on Virtual Cormponents," XV Conference on Design of Circuits and integrated Systems (November 2000) 6 pages. \\
\hline & Muchnick, \(\mathrm{S}_{\text {t, }}\) "Advanced Compiler Design and Implementation" (Morgan Knufmann 1997) Table of Contents, 11 pages. \\
\hline & Murphy, C., "Virtual Hardware Using Dynamic Reconfigurable Field Programmable Gate Arrays," Engineering Development Centre, Liverpool John Moores University, UK, GERI Annual Research Symposium 2005, 8 pages. \\
\hline & Myers, G. "Advances in Computer Architecture," Wiley-Interscience Publication, 2nd ed., John Wiley \& Sons, Inc., 1978, Pp. 463-494. \\
\hline & Nageldinger, U., "Design-Space Exploration for Coarse Grained Reconfigurable Architectures," (Dissertation) Universitaet Kaiserslautern, 2000, Chapter 2, pp. 19-45, \\
\hline & Neumann, T, et al., "A Generic Library for Adaptive Computing Environments," Field Programmable Logic and Applications, 1 th International Conference, FPL 2001, Proceedings (Lecture Notes in Computer Science, vol. 2147) (2001) pp, 503-512. \\
\hline & Nilsson, et al, "The Scalable Tree Protocol - A Cache Coherence Approaches for Large-Scale Multiprocessors," IEEE, Pp- 498-506, December 1992. \\
\hline & Norman, R.S., "Hyperchip Business Summary, The Opportunity," January 31, 2000, pages I-3. \\
\hline & Olukotun, K, "The Case for a Single-Chip Microprocessor," ACM Sigplan Notices, ACM, Association for Computing Machimery \({ }_{r}\) New York, Vol. 31, No. 9, September 1996 (1996-09-00) pp. 2-1 1. \\
\hline & Ozawa, Motokazu et al., "A Cascade ALU Architecture for Asynchronous Super-Scalar Processors," IEICE Transactions on Electronics, Electronics Socitty, Tokyo, Japan, Vol. E84-C, No. 2, February 2001, pp. 229-237. \\
\hline
\end{tabular}

Page 22
\begin{tabular}{|l|l|}
\multicolumn{2}{|c|}{\(\quad\) 12836364-GAU:28 } \\
\begin{tabular}{l} 
Attomey Docket No. \\
\(2885 / 139\)
\end{tabular} & \begin{tabular}{l} 
Serial No. \\
Unassigned
\end{tabular} \\
\hline \begin{tabular}{ll} 
Applicant(s) \\
VORBACH
\end{tabular} \\
\hline \begin{tabular}{ll} 
Filing Date \\
Herewith
\end{tabular} & \\
\hline
\end{tabular}

\title{
INFORMATION DISCLOSURE STATEMENT BY APPLICANTS PTO-1449
}
\begin{tabular}{|c|c|}
\hline EXAMINER'S
NNITIALS & AUTHOR, TITLE, DATE, PERTINENT PAGES, ETC. \\
\hline & PACT Corporation, "The XPP Communication System," Technical Report 15 (2000), pp. 1-16. \\
\hline & Parhami, B., "Parallel Counters for Signed Binary Signals," Signals, Systems and Computers, 1989, Twenty-Third Asilomar Conference, Volume 1, pp. \(513-516\). \\
\hline & PCI Local Bus Specification, Production Version, Revision 2.1, June I, Porlland, OR, 1995, pp. 1-281. \\
\hline & Piotrowski, A., "IEC-BUS, Die Funktionsweise des IEC-Bus unde seine Anwendung in Geraten und Systemen," 1987, Franzis-Verlag GmbH, München, \(\mathrm{pp} .20-25\). \\
\hline & Pirsch, P. et al., "VLSI implementations of image and video muitimedia processing systems." IEEE Transactions on Circuits and Systems for Video Technology, vol. 8, no. 7, Nov. 1998, pp. 878-891. \\
\hline & Quenot, G.M., ct ai., "A Reconfiggurable Compute Engine for Real-Time Vision Automata Protocyping," Laborabire Sysceme de Perception, DGA/Etablissement Technique Central de l'Armement, France, 1994 IEEE, pp. 91-100. \\
\hline & Razdan et al., A High-Performance Microarchitecture with Hardware-Programunable Funclional Unils, Micro-27, Proceedings of the 27 \({ }^{\text {h }}\) Annual Intermational Sympasium on Microarchitecture, IEEE Computer Society and Association for Computing Machinery, Novernber 30 December 2, 1994, pp. 172-180. \\
\hline & Ryo, A., "Auszug aus Handbuch der Informationsverarbeitung," ed. Information Processing Society of Japan, Information Processing Handbook, New Edition, Software Information Center, Ohmsha, Dscember 1998, 4 pages. [Translation provided] \\
\hline & Saleeba, M. "A Sełf-Contained Dymamically Reconfigarable Processor Architecture," Sixteenth Australian Computer Science Conference, ASCS-16, QLD, Australia, February, 1993, pp. 59-70. \\
\hline & Saleeba, Z.M.G., "A Self-Reconfiguring Computer System," Deparment of Computer Science, Monash University (Dissertation) 1998, pp.
1-306. \\
\hline & Salefski, B. et al., "Re-configurable computing in wireless," Annual ACM IEEE Design Automation Conference: Procecdings of the 38th conference on Design automation (2001) pp. 178-183. \\
\hline & Schrrit, et al., "Hidden Markov Modeling and Fuzzy Controllers in FPGAs, FPGAs for Custom Conmputing Machines," 1995; Proceedings, EEE Symposium in Napa Valley, CA, April 1995, pp. 214-221. \\
\hline & Schmidt, H. et al, "Behavioral synthesis for FGPA-based cornputing," Camegie Mclion University, Piltsburgh, PA, 1994 IEEE, Pp. \(125-132\). \\
\hline & Schmidı, U. et al., "Datawave: A Single-Chip Multiprocessor for Video Applications," IEEE Micro, vol. 11, no. 3, May/fune 1991, pp. 22-
25, 88-94. \\
\hline & Schonfeld, M., et al., "The LISA Design Environment for the Synthesis of Array Processors Including Memories for the Data Transfer and Fault Tolerance by Reconfiguration and Coding Techniques," 3 . VLSI Signal Processing Systems for Signal, Image, and Video Technology, ( 1 October 1995) vol. 11(1/2), pp. 51-74. \\
\hline & Shin, D., et al., "C-based Interactive RTL Design Methodology," Technical Report CECS-03-42 (December 2003) pp. t-16. \\
\hline & Shirazi, et al., "Quantitative analysis of floating point arithmetic on FPGA bascd custom computing machines," IEEE Symposium on FPGAs for Custom Computing Machines, IEEE Computer Society Press, Apill 19-21, 1995, pp. 155-162. \\
\hline & Siemers, C., "Rechenfabrik Ansaetze Fuet Extrem Parallele Prozessoren," Verlag Heinze Heise GmbH., Hannover, DE No. 15, July 16, 2001, pages 170-179. \\
\hline & \begin{tabular}{l}
Sienners et al., "The \(>S\) Sputcr: A Novel Micoarchitecture Mode for Execution inside Superscalar and VLrw Processors Using \\
Reconfigurable Hardware," Australien Computer Science Communications, Volume 20, No. 4, Computer Architecture, Proceedings of the \(3^{\text {rid }}\) Australian Computer Architecture Conference, Perth, John Mortis, Ed., February 2-3, 1998, pp. 169-178.
\end{tabular} \\
\hline & Simunic, et al., Source Code Optimization and Profiling of Fnergy Consumntion in Embedded Systems, Proceedings of the 13 \(3^{\text {ul }}\) Intemationat Symposium on System Synthesis, September 2000, pp. 193-198. \\
\hline & Singh, H. et al., "MorphnSys: An Integrated Reconfigurable System for Data.Parallel Computation-Intensive Applications," University of California, Ivine, CA. and Federal University of Rio de Janciro, Brazil, 2000, IEEE Transactions on Computers, Pp. 1-35. \\
\hline & Skokan, Z.E., "Programmable logic machine (A programmable cell array)," IEEE Joumal of Solid-State Circuits, Vol. 18, Issue 5, October 1983, pp. 572-578. \\
\hline & Sondervan, J., "Retiming and logic synthesis," Electronic Engineering (January 1993) vol. 65(793), pp. 33, 35-36. \\
\hline & Soni, M., "VLSI Implementation of a Wormhoie Run-time Reconfigurable Processor," June 2001, (Masters Thesis)Virginia Polytechnic Institute and State University, 88 pages. \\
\hline & Sueyoshi, T, "Present Status and Problems of the Reconfigurable Computing Systerns Toward the Computer Evoluhion," Department of Artiftial Intelligence, Kyushi Institute of Technology, Fukuoka, Japan; Institute of Electonics, Information and Communication Engincers, Vol. 96, No. 426, EEICE Technical Report (1996), pp. 111-119 [English Abstract Only] \\
\hline & Sutton et al., "A Multiprocessor DSP System Using PADDI-2," U.C. Berkeley, 1998 ACM, Pp. 62-65. \\
\hline
\end{tabular}

Page 23

\title{
INFORMATION DISCLOSURE STATEMENT BY APPLICANTS PTO-1449
}

Attomey Docket No.
2885/139
Scrial No.
Unassigned
Applicant(s)
VORBACH
Filing Date Herewith

Group Art Unit Unassigned
\begin{tabular}{|c|c|}
\hline EXAMINER'S
INITIALS & AUTHOR, TITLE, DATE, PERTINENT PAGES, ETC. \\
\hline & Tau, E., et al., "A First Generation DPGA Implementation," EPD'95, pp. 138-143. \\
\hline & Tenca, A.F., et al., "A Variable Long-Precision Arithmetic Unit Design for Reconfigurable Coprocessor Architectures," University of Califomia, Los Angeles, 1998, pages 216-225. \\
\hline & The XPP White Paper, Release 2.1, PACT - A Technical Perspective, March 27, 2002, pages 1-27. \\
\hline & TMS320C54X DSP: CPU and Peripherals, Texas ]nstruments, 1996, 25 pages. \\
\hline & TMS320C54x DSP: Mnemonic Instruction Set, Texas Instruments, 1996, 342 pages. \\
\hline & Tsutsui, A., et al., "YARDS: FPGA/MPU Hybrid Architecture for Telecommunication Data Processing," NTT Optical Network Systerns Laboratories, Јарал, 1997 ACM, pp. 93-99. \\
\hline & Vasell et al., "The Function Processor: A Data+Driven Processor Array for Irregutar Computations," Cbalmers University of Technology, Sweden, 1992, pp. 1-21. \\
\hline & Villasenor, et al., "Configurable Computing Solutions for Automatic Target Recognition," LEEE, 1996 pp. \(70-79\). \\
\hline & Villasenor, el al., "Configurable Computing," Scientific, American, Vol. 276, No. 6, June 1997, pp. 66-71. \\
\hline & Villasenor, et al., "Express Letters Video Communications Using Rapidiy Reconfigurable Hardware," EEE Transactions an Cirezits and Systems for Video Technology, IEEE, Inc., NY, December 1995, pp, 565-567. \\
\hline & Wada, et al., "A Performance Evaluation of Tree-based Coherent Distributed Shared Memory," Proceedings of the Pacific RIM Conference on Communications, Comput and Signal Processing, Victoria, May 19-21, 1993, pp. 390-393. \\
\hline & Waingold, E., et al., 'Baring it all to software: Raw machines," IEEE Computer, September 1997, at 86-93. \\
\hline & Wcinhardt, M, "Compilation Methods for Structure-programmable Computers," dissertation, ISBN 3-89722-011-3, 1997. [TABLE OF CONTENTS AND ENGLISH ABSTRACT PROVIDED] \\
\hline & Weinhardt, Markus et al., "Pipeline Vectorization for Reconfigurable Systems," 1999, IEEE, pages 52-62. \\
\hline & Weinhardt, Markus et al., "Pipeline Vectorization," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sysrems, Vol. 20, No. 2, February 2001, pp. 234-248. \\
\hline & Weinhardt, Markus et al., "Memory Access Optimization for Reconfigurahle Systeris," IEEE Provedings Computers and Digilal Techniques, 48(3) (May 2001), FP. 1-16. \\
\hline & Wittig, et al, "OneChip: An FPGA Processor with Reconfigurable Logic," IEEE, 1996, pp. 126-135. \\
\hline & Wolfe, M. et al, "High Performance Compilcrs for Parallel Computing" (Addison-Wesley 1996) Table of Contents, 11 pages. \\
\hline & Wu, et al., "A New Cache Directory Scheme," IEEE, PP. 466-472, June 1996. \\
\hline & \(\mathrm{Xu}_{1} \mathrm{H}\). et al., "Parallel QR. Factorization on a Block Data Flow Architecture," Conference Proceeding Article, March 1, 1992, pages 332-336. \\
\hline & XILINX, "Logic Celf Array Farnilies: XC4000, XC4000A and XC4000H," 1994, product description, pp. 2-7, 2-9, 2-14, 2-15, 8-16, and 9. 14. \\
\hline & XILINX, "Spartan and SpartanXL, Families Field Programmable Gate Artays," January 1999, Xilinx, pp. 4-3 through 4-70. \\
\hline & XILINX, "The Programmable Logic Data Book," 1994, Section 2, pp.1-231, Section 8, pp. 1, 23-25, 29, 45-52, 169-172. \\
\hline & XILINX, "XC6200 Field Prograrmable Gate Arrays," April 24, 1997, Xilinx product description, pp. 1-73. \\
\hline & XILINX, "XC3000 Series Field Programmable Gate Arrays," November 6, 1998, Xilinx product description, pp. \({ }^{\text {a }}\)-76. \\
\hline & XILINX, "XC4000E and XC4000X Series Field Programmable Gate Altays," May 14, 1999, Xilinx product description, pp. 1-68. \\
\hline & XII.INX, "Virtex-E i . 8 V Extended Memory Field Programmable Gate Arrays," Juty 17, 2002, Xilinx Production Product Specification, pp. 1-118. \\
\hline & XILINX, "Virtex-II and Virtex-U Pro X FPGA User Guide," March 28, 2007, Xilinx user guide, pp. 1-559. \\
\hline & XILINX, "Virtex-II and Virtex-II Pro X FPGA Platform FPGAs: Complete Data Sheet," (v4.6) March 5, 2007, pp. 1-302. \\
\hline & XILINX, "Virtex-II Platform FPGAs: Complete Data Sheet," (v3.5) November 5, 2007. pp.1-226. \\
\hline & XILINX, "Virlex-E 1.8 V Extended Mcmory Field Programmable Gate Arrays," (v22) September 10, 2002, Xilinx Production Product Specification, pp. 1-52. \\
\hline & *XILINX, White Paper 370: (Virtex-6 and Sparlan-G FPGA Families) "Reducing Switching Power with Intelligent Clack Gating" Frederic Rivoallon, May 3, 2010, pp. 1-5. \\
\hline
\end{tabular}

Page 24

\title{
Receipt date: 07/14/2010 \\ INFORMATION DISCLOSURE STATEMENT BY APPLICANTS PTO-1449
}
\begin{tabular}{|c|c|}
\hline Attorney Docket No. 2885/139 & \begin{tabular}{l}
Serial No. \\
Unassigned
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Applicant(s) \\
VORBACH
\end{tabular}} \\
\hline Filing Date Herewith & \begin{tabular}{l}
Group Art Unit \\
Unassigned
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline EXAMINER'S
INITIALS & AUTHOR, TITLE, DATE, PERTINEN'T PAGES, ETC. \\
\hline & *XILINX, White Paper 298: (Spartan-6 and Virtex-6 Devices) "Power Consumption at 40 and 50 man," Matt Klein, April 13, 2009, pp. 1-21. \\
\hline & Ye, Z.A. et al., "A C-Compiler for a Processor With a Reconfigurable Functional Unit," FPGA 2000 ACM/SIGNA International Symposium on Field Programmable Gale Arrays, Monterey, CA Feb 9-11, 2000, pp. 95-100. \\
\hline & Yeung, A. et al., "A data-driven architecture for tapid protolyping of high throughput DSP algorithms." Dept. of Electrical Engineering and Computer Sciences, Univ. of California, Berkeley, USA, Proceedings VLSI Signal Processing Workshop, IEEE Press, pp. 225-234, Napa, October 1992. \\
\hline & Yeung, A. et al., "A reconfigurable data-driven multiprocessor architecture for rapid prototyping of high throughput DSP algorithms," Dept. of Electrical Engineering and Computer Sciences, Univ. of California, Berkeley, USA, pp. 169-178, IEEE 1993. \\
\hline & Zhang, et al., "Architrectural Evaluation of Flexible Digital Signal Processing for Wireless Receivers, Signais, Systems and Corrputers," 2000; Conference Record of the Thirty-Fourth Asilomar Conforence, Bd. 1, 29 Octobcr 2000, pp. 78-83. \\
\hline & Zhang, et al, "A 1-V Heterogeneous Reconfigurable DSP IC for Wireless Baseband Digital Signal Processing," IEEE Journal of Solid-State Circuits, Vol. 35, No. 11, November 2000, pp. 1697-1704. \\
\hline & Zhang et al., "Abstract: Low-Power Heterogeneous Reconfigurable Digital Signal Processors with Energy-Efficient Intercomect Network," U.C. Berkeley (2004), pp. 1-120. \\
\hline & Zima, H. et ni., "Supercompilers for parallel and vector cornputers" (Addison-Wesley 1991) Table of Contents, 5 pages. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline EXAMINER & /DOn Le/ \\
\hline \begin{tabular}{l} 
EXAMINER: Initial if citation considered, whether or fot citation is in conformance with M.P. E.P. 609 ; draw line through citation if not in conformance and not \\
considered. Include copy of this form with next commumication to applicant.
\end{tabular} \\
\hline
\end{tabular}

\section*{BIB DATA SHEET}

> UNITEDSTATES DEPARTMENT OF COMMERCE United States Patent and Trademark Oflice Address: COMMISSIONER FOR PATENTS PO Fan 1.150
Alexaudial. Vinkinial こ. 3131450
wave usplog goy

CONFIRMATION NO. 2050


\title{
INFORMATION DISCLOSURE STATEMENT BY APPLICANTS PTO-1449
}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Attomey Docket No. \\
\(2885 / 139\)
\end{tabular} & \begin{tabular}{l} 
Serial No. \\
\(12 / 836,364\)
\end{tabular} \\
\hline \begin{tabular}{l} 
Applicant(s) \\
VORBACH
\end{tabular} \\
\hline \begin{tabular}{l} 
Filing Date \\
July 14,2010
\end{tabular} & \begin{tabular}{l} 
Group Art Unit \\
2827
\end{tabular} \\
\hline
\end{tabular}
U.S. PATENT DOCUMENTS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline EXAMINER'S
INITIALS NITIALS & PATENT/ PUBLICATION NUMBER & PATENT/PUBLICATION
DATE & NAME & CLASS & SUBCLASS & \begin{tabular}{l}
FILING \\
DATE
\end{tabular} \\
\hline & 90/010,979 & May 4, 2010 (filing date) & Vorbach et al. & & & \\
\hline & 90/011,087 & July 8, 2010 (filing date) & Vorbach et al. & & & \\
\hline
\end{tabular}

\section*{FOREIGN PATENT DOCUMENTS}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{EXAMINER'S
INITIALS} & \multirow[t]{2}{*}{DOCUMENT
NUMBER} & \multirow[b]{2}{*}{DATE} & \multirow[b]{2}{*}{COUNTRY} & \multirow[b]{2}{*}{CLASS} & \multirow[b]{2}{*}{SUBCLASS} & \multicolumn{2}{|l|}{TRANSLATION} \\
\hline & & & & & & YES & NO \\
\hline & 7-182167 & July 21, 1995 & Japan & & & Abstract & \\
\hline & 7-182160 & July 21, 1995 & Japan & & & Abstract & \\
\hline & 8-106443 & April 23, 1996 & Japan & & & Abstract & \\
\hline & 9-237284 & Septernber 9, 1997 & Japan & & & Abstract & \\
\hline & 11-046187 & February 16, 1999 & Japan & & & Abstract & \\
\hline & 2001-236221 & August 31, 2001 & Japan & & & Abstract & \\
\hline
\end{tabular}

\section*{OTHER DOCUMENTS}
\begin{tabular}{|c|c|}
\hline EXAMINER'S
INITIALS & AUTHOR, TITLE, DATE, PERTINENT PAGES, ETC. \\
\hline & Hauser, John Reid, (Dissertation) "Augmenting A Microprocessor with Reconfigurable Hardware," University of California, Berkeley, Fall 2000,255 pages. (submitted in 3 PDFs, Parts 1-3) \\
\hline & Hauser, John R., "The Garp Architecture," University of California at Berkeley, Computer Science Division, October 1997, pp. 1-55. \\
\hline & Venkatachalarn et al., "A highly flexible, distributed multiprocessor architecture for network processing," Computer Networks, The International Journal of Computer and Telecommunications Networking, Vol. 41, No. 5, April 5, 2003, pp. 563-568. \\
\hline & XILINX, "Virtex-II and Virtex-II Pro X FPGA User Guide," March 28, 2007, Xilinx user guide, pp. 1-559. \\
\hline & Xilinx, Inc.'s and Avnet, Inc.'s Disclosure Pursuant to P.R. 4-2; PACT XPP TECHNOLOGIES, AG. V. XILINX, INC. and AVNET, INC., Case No. 2:07-cv-00563-TJW-CE, U.S. District Court for the Eastern District of Texas, Dec. 28, 2007, 4 pages. \\
\hline & Xilinx, Inc.'s and Avnet, Inc.'s Disclosure Pursuant to P.R. 4-1; PACT XPP TECHNOLOGIES, AG. V. XILINX, INC. and ALNET, INC., Case No. 2:07-cv-00563-TIW-CE, U.S. District Court for the Eastern District of Texas, Dec. 28, 2007, 9 pages. \\
\hline & Defendant's Claim Construction Chart for P.R. 4-2 Constructions and Extrinsic Evidence for Terms Proposcd by Defendants, PACTXPP TECHNOLOGIES, AG. V. XILINX, INC. and AVNET, INC., Case No. 2:07-cv-00563-TJW-CE, U.S. District Court for the Eastem District of Texas, Dec. 28, 2007, pp. 1-19. \\
\hline & PACT's P.R. 4-1 List of Claim Terms for Construction, PACT XPP TECHNOLOGIES, AG. V. XILINX, INC. and AVNET, INC., Case No. 2:07-cv-00563-TJW-CE, U.S. District Court for the Eastern District of Texas, Dec. 28, 2007, pp. 1-7. \\
\hline & PACT's P.R. 4-2 Preliminary Claim Constructions and Extrinsic Evidence, PACTXPP TECHNOLOGIES, AG. V. XILINX, INC. and AVNET. INC., Case No. 2:07-cv-00563-TJW-CE, U.S. District Court for the Eastern District of Texas, Dec. 28, 2007, pp. 1-16, and EXHIBITS re EXTRINSIC EVIDENCE Parts in seven (7) separate additional PDF files (Parts 1-7). \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ EXAMINER } & DON Le/ \\
\hline \begin{tabular}{l} 
EXAMINER: Initial if citation considcred, whether or not citation is in conformance with M.P.E.P. 609 ; draw line through citation if not in conformance and not \\
considered. Include copy of this form with next communication to applicant.
\end{tabular} \\
\hline
\end{tabular}

EXAMNNER: Initial if citation considcred, whether or not citation is in conformance with M.P.E.P. 609; draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Page 460 of 539
\begin{tabular}{|c|c|c|}
\hline Index of Claims & Application/Control No.
\[
12836364
\] & \begin{tabular}{l}
Applicant(s)/Patent Under Reexamination \\
VORBACH, MARTIN
\end{tabular} \\
\hline  & \begin{tabular}{l}
Examiner \\
Don P Le
\end{tabular} & Art Unit
\[
2819
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline\(\checkmark\) & Rejected \\
\hline\(=\) & Allowed \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline- & Cancelled \\
\hline\(\div\) & Restricted \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline\(N\) & Non-Elected \\
\hline \(\mathbf{I}\) & Interference \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline A & Appeal \\
\hline O & Objected \\
\hline
\end{tabular}


INTEL - 1004
Page 461 of 539
\begin{tabular}{|c|c|c|}
\hline Index of Claims & Application/Control No.
\[
12836364
\] & \begin{tabular}{l}
Applicant(s)/Patent Under Reexamination \\
VORBACH, MARTIN
\end{tabular} \\
\hline  & \begin{tabular}{l}
Examiner \\
Don P Le
\end{tabular} & Art Unit 2819 \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline\(\checkmark\) & Rejected \\
\hline\(=\) & Allowed \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline- & Cancelled \\
\hline\(\div\) & Restricted \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline\(N\) & Non-Elected \\
\hline \(\mathbf{I}\) & Interference \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline A & Appeal \\
\hline O & Objected \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\square\) Clain & numbere & in the same & order as pre & esented by a & applicant & & \(\square\) & CPA & \(\square\) & т.d. & \(\square\) & R.1.47 \\
\hline \multicolumn{2}{|c|}{CLAIM} & \multicolumn{11}{|c|}{DATE} \\
\hline Final & Original & 11/07/2010 & & & & & & & & & & \\
\hline 20 & 37 & = & & & & & & & & & & \\
\hline 21 & 38 & = & & & & & & & & & & \\
\hline 22 & 39 & = & & & & & & & & & & \\
\hline 23 & 40 & = & & & & & & & & & & \\
\hline 24 & 41 & = & & & & & & & & & & \\
\hline 25 & 42 & = & & & & & & & & & & \\
\hline 26 & 43 & = & & & & & & & & & & \\
\hline 27 & 44 & = & & & & & & & & & & \\
\hline 28 & 45 & = & & & & & & & & & & \\
\hline 29 & 45 & \(=\) & & & & & & & & & & \\
\hline 30 & 47 & \(=\) & & & & & & & & & & \\
\hline
\end{tabular}

Application No.
Unassigned
Applicant(s)
VORBACH
\begin{tabular}{l|l} 
Filing Date & Group Art Unit \\
Herewith & Unassigned
\end{tabular}

\section*{U.S. PATENT DOCUMENTS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline EXAMINER'S
INITIALS & & & & CLASS & SUBCLASS & \[
\begin{aligned}
& \text { FILING } \\
& \text { DATE }
\end{aligned}
\] \\
\hline & 4,791,603 & Dec 13, 1988 & Henry & & & \\
\hline & 4,992,933 & Feb 12, 1991 & Taylor & & & \\
\hline & 5,036,473 & Jut 30, 1991 & Buts et al. & & & \\
\hline & 5,055,997 & Oct 8,1991 & Sluijter etal. & & & \\
\hline & 5,103,311 & Apr 7, 1992 & Sluijiter et al. & & & \\
\hline & 5,212,777 & May 18, 1993 & Goveetal. & & & \\
\hline & 5,243,238 & Scp 7, 1993 & Kcan & & & \\
\hline & 5,287,511 & Feb 15.1994 & Robinson et al. & & & \\
\hline & 5,355,508 & Oct 11, 1994 & Kan & & & \\
\hline & 5,365,125 & Nov 15, 1994 & Goetting et al. & & & \\
\hline & 5,386,154 & Janl 31, 1995 & Goetting et al. & & & \\
\hline & 5,386,518 & Jan 31, 1995 & Reagle et al. & & & \\
\hline & 5,450,022 & Sep 12, 1995 & New & & & \\
\hline & 5,504,439 & Apr 2, 1996 & Tavana & & & \\
\hline & 5,600,597 & Feb 4, 1997 & Kean et al. & & & \\
\hline & 5,608,342 & Mar 4, 1997 & Trimberger & & & \\
\hline & 5,617,577 & Apr 1, 1997 & Barker et al. & & & \\
\hline & 5,619,720 & Apr 8,1997 & Garde et al. & & & \\
\hline & 5,635,851 & Jun 3, 1997 & Tavana & & & \\
\hline & 5,642,058 & Jun 24, 1997 & Trimberger et al. & & & \\
\hline & 5,656,950 & Aug 12,1997 & Duong et al. & & & \\
\hline & 5,659,785 & Aug 19, 1997 & Pechanek et al. & & & \\
\hline & 5,675,262 & Oct 7, 1997 & Doung et al. & & & \\
\hline & 5,682,491 & Oct 28, 1997 & Pechanek et al. & & & \\
\hline & 5,687,325 & Nov 11, 1997 & Chang & & & \\
\hline & 5,705,938 & Jan 6, 1998 & Kean & & & \\
\hline & 5,687,325 & Nov 11, 1997 & Chang & & & \\
\hline & 5,696,976 & Dec 9, 1997 & Nizar et al. & & & \\
\hline & 5,701,091 & Dec 23,2997 & Kean & & & \\
\hline & 5,705,938 & Jan 6, 1998 & Kеап & & & \\
\hline & 5,734,869 & Mar 31, 1998 & Chen & & & \\
\hline & 5,815,004 & Sep 29, 1998 & Trimberger et al. & & & \\
\hline & 5,857,109 & Jan 5, 1999 & Taylor & & & \\
\hline & 5,859,544 & Jan 12, 1999 & Norman & & & \\
\hline & 5,870,620 & Feb 9, 1999 & Kadosumil etal. & & & \\
\hline & 5,894,565 & Apr 13, 1999 & Furtek et al. & & & \\
\hline & 6,023,564 & Feb 8, 2000 & Trimberger & & & \\
\hline & 6,128,720 & Oct 3, 2000 & Pechanek et al. & & & \\
\hline & 6,145,072 & Nov 7, 2000 & Shams et al. & & & \\
\hline
\end{tabular}

Page 1
ALL REFERENCES CONSIDERED EXCEPT WHERE LIMFPEIHRO64GH. /D.L./
Page 463 of 539

\section*{INFORMATION DISCLOSURE STATEMENT BY APPLICANT(S) РTO-1449}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
EXAMINER'S \\
INITIALS
\end{tabular} & & & & CLASS & SUBCLASS & FILING \\
DATE \\
\hline & \(6,178,494\) & Jan 23,2001 & & & \\
\hline & \(6,405,185\) & Jun 11,2002 & Casselman & Pechanek et al. & & \\
\hline
\end{tabular}

FOREIGN PATENT DOCUMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{EXAMINER'S InITIALS} & \multirow[t]{2}{*}{DOCUMENT NUMBER} & \multirow[b]{2}{*}{DATE} & \multirow[b]{2}{*}{COUNTRY} & \multirow[b]{2}{*}{CLASS} & \multirow[b]{2}{*}{SUBCLASS} & \multicolumn{2}{|l|}{TRANSLATION} \\
\hline & & & & & & YES & NO \\
\hline & 0638867 A 2 & Aug 11, 1994 & EPO & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

\section*{OTHER DOCUMENTS}
\begin{tabular}{|c|c|}
\hline EXAMINER'S
INITIALS & AUTHOR, TITLE, DATE, PERTINENT PAGES, ETC. \\
\hline & Agarwal, A., et al., "APRIL: A Processor Architecture for Multiprocessing," Laboratory for Computer Science, MIT, Cambridge, M.A, IEEE 1990, pp. 104-114. \\
\hline & Almasi and Gottlieb, Highly Parallel Computing, The Benjamin/Cummings Publishing Company, Inc., Redwood City, CA, 1989, 3 pages (Fig. 4.1). \\
\hline & Advanced RISC Machines Ltd (ARM), "AMBA - Advanced Microcontroller Bus Architecture Specification," (Document Number ARM IHI 0001 C ), September 1995,72 pages. \\
\hline & Alfke, Peter; New, Bemie, Xilinx \(\triangle\) pplication Note, "Additional XC3000 Data," XAPP 024.000, 1994, pp. 8-11 through 8-20. \\
\hline & Alfke, Peter; New, Bemie, Xilinx Application Note, "Adders, Subtracters and Accumulators in XC3000," XAPP 022.000, 1994, pp. 8-98 through 8-104. \\
\hline & Alfke, Peter, Xilinx Application Note, "Megabit FIFO in Two Chips: One LCA Device and One DRAM," XAPP 030.000, 1994, pp. 8-148 through 8-1.50. \\
\hline & Alfke, Peter, Xilinx Application Note, "Dymamic Reconfiguration," XAPP 093, Novernber 10, 1997, pp. 13-45 through 13-46. \\
\hline & Alfke, Peter; New, Bernie, Xilinx Application Note, "Implementing Slate Machines in LCA Devices," XAPP 027.001, 1994, pp. 8-169 through 8-172. \\
\hline & Algotronix, Ltd., CAL64K Preliminary Data Sheet, April 1989, pp. 1-24. \\
\hline & Algotronix, Ltd., CAL4096 Datasheet, 1992, pp. 1-53. \\
\hline & Algotronix, Ltd., CHS2x4 User Manual, "CHA \(2 \times 4\) Custom Computer," 1991, pp.1-38. \\
\hline & Allaire, Bill; Fischer, Bud, Xilinx Application Note, "Block Adaptive Filter," XAPP 055, August 15, 1996 (Version 1.0), pp. 1-10. \\
\hline & Altora Application Note (73), "Implementing FIR Filters in FLEX Devices," Altera Corporation, February 1998, ver. 1.01, pp. 1-23. \\
\hline & Athanas, P. (Thesis), "An adaptive machine architecture and compiler for dynamic processor reconfiguration," Brown University 1992, pp. 1-157. \\
\hline & Berkeley Design Technology, Inc., Buyer's Guide to DSP Processors, 1995, Fremont, CA., pp. 673-698. \\
\hline & Bittner, R. et al., "Colt: An Experiment in Wormhole Run-Time Reconfiguration," Bradley Department of Electrical and Computer Engineering, Blacksburg, VA, SPIE - International Society for Optical Enginecring, Vol. 2914/187, Novernber 1996, Boston, MA, pp. 187194. \\
\hline & Camilleri, Nick; Lockhard, Chris, Xilinx Application Note, "Improving XC4000 Design Perfortnance," XAPP 043.000, 1994, pp. 8-21 throuph 8-35. \\
\hline & Cartier, Lois, Xilinx Application Note, "System Design with New XC4000EX 1/O Features," February 21, 1996.pp. 1-8. \\
\hline & Chen, D., Thesis) "Progranumable arithmetic devices for high speed digital signal processing," U. Califormia Berkeley 1992, pp. 1-175. \\
\hline & Churcher, S., et al., "The XC6200 FastMap TM Processor Interface," Xilinx, inc., August 1995, pp. 1-8. \\
\hline & Cowie, Beth, Xilinx Application Note, "High Performance, Low Area, Interpolator Design for the XC6200," XAPP 081, May 7, 1997 (Version 1.0), pp. 1-10. \\
\hline
\end{tabular}

Page 2

\section*{INFORMATION DISCLOSURE STATEMENT BY APPLICANT(S) РТО-1449}

\section*{Attorney Docket No.}

Applicant(s)
VORBACH
\begin{tabular}{l|l}
\begin{tabular}{l} 
Filing Date \\
Herewith
\end{tabular} & \begin{tabular}{l} 
Group Art Unit \\
Unassigned
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline EXAMINER'S INITIALS & AUTHOR, TITLE, DATE, PERTINENT PAGES, ETC. \\
\hline & Duncan, Ann, Xiliax.Application Note "A32x16 Reconfigurable Correlator for the XC6200," XAPP 084, July 25, 1997 (Version 1.0), pp. 1 14. \\
\hline & Ebeling, C., et ail., "RaPiD - Reconfigurable Pipefined Datapath," Dept. of Computer Science and Engineering, U. Washington, 1996, pp. 126-135. \\
\hline & Epstein, D., "JBM Extends DSP Performance with Mfast - Powerful Chip Uses Mesh Archislecture to Accelerate Graphics, Video," 1995 MicroDesign Resources, Vol. 9, No. 16, December 4, 1995, pp. 231-236. \\
\hline & Fawcett, B., "New SRAM-Based FPGA Architectures Address New Applications," Xilinx, Inc. San jose, CA, November 1995, pp. 231-236. \\
\hline & Goslin, G; Newgard, B, Xilinx Application Note, "16-Tap, 8-Bit FIR Filter Applications Guide," November 21, 1994, pp. 1-5. \\
\hline & Iwanczuk, Roman, Xilinx Application Note, "Using the XC4000 RAM Capability," XAPP 031.000, 1994, pp. 8-127 through 8-138. \\
\hline & Knapp, Steven, "Using Programmable Logic to Accelerale DSP Functions," Xilinx, Inc., 1995, pp. 1-8. \\
\hline & New, Bernie, Xilinx Application Note, "Accelerating Loadable Counters in SC4000," XAPP 023.001, 1994, pp. 8-82 through 8-85. \\
\hline & New, Bernie, XXilinx. Application Note, "Boundary Scan Emulator for XC3000," XAPP 007.001, 1994, pp. 8-53 through 8-59. \\
\hline & New, Bernie, Xilinx Application Note, "Ultra-Fast Synchronous Counters," XAPP 014.001, 1994, pp. 8-78 through 8-81. \\
\hline & New, Bermie, Xilinx Anolication Note "Using the Dedicated Carry Logic in XC4000," XAPP. \(013.001,1994\), pp. 8-105 throngh 8-115. \\
\hline & New, Bemic, Xilinx Application Note, "Complex Digital Waveform Generator," XAPP 008.002, 1994, pp. 8-163 through 8-164. \\
\hline & New, Bernie, Xilinx Application Note, "Bus-Structured Serial Input-Output Device," XAPP 010.001, 1994, pp. 8-181 through 8-182. \\
\hline & Ridgeway, David, Xilinx Application Note, "Designing Complex 2-Dimensional Convolution Filters," XAPP 037.000, 1994, pp. 8-175 through 8-177. \\
\hline & Rowson, J., etal., "Second-generation cormpilers optimize semicustom circuits," Electronic Desijen, February 19, 1987, pp. 92-96. \\
\hline & Schewel, J., "A Hardware/Software Co-Design System using Configurable Computing Technology," Virtual Computer Corporation, Reseda, CA, JEEE 1998, pp. 620-625. \\
\hline & Segers, Dennis, Xilinx Memorandum, "MIKE - Product Description and MRD," June 8, 1994, pp. 1-29. \\
\hline & Texas Instruments, "TMS320C8x System-Level Symopsis," September 1995, 75 pages. \\
\hline & Texas Inslturments. "TMS320C80 Digital Signal Processor," Data Sheel, Digital Signal Processing Solutions 1997, 171 pages. \\
\hline & Texas Instruments, "TMS320C80 (MVP) Parallel Processor," User's Guide, Dipital Signal Pracessing Products 1995, 73 pages. \\
\hline & Trainor, D.W., et al., "Implementation of the 2D DCT Using A Xilinx XC6264 FPGA," 1997, IEEE Workshop of Signal Processing Systems SiPS 97, pp. 541-550. \\
\hline & Trimberger, S, (Ed.) et al., "Field-Programmable Gatc Array Technology," 1994, Kiuwcr Acadcrnic Press, pp. 1-258 (and the Titte Page, Table of Contents, and Preface) [274 pages total]. \\
\hline & Trimberger, S., "A Reprogrammable Gate Array and Applications," LEEE 1993, Proceedings of the IEEE, Vol. 81, No. 7, July 1993, pp. 1030-1041. \\
\hline & Trimberger, S., et al., "A Time-Multiplexed FPGA," Xitinx, Inc., 1997 IEEE, pp. 22-28. \\
\hline & Ujiveri, Dan, Xilinx Application Note, "Digital Mixer in an XC7272," XAPP 035.002, 1994, p. 1. \\
\hline & Veendrick, H., et al., "A 1.5 GIPS video signal processor (VSP)," Philips Research Laboratories, The Netherlands, IEEE 1994 Custom Intograted Circuits Conference, pp. 95-98. \\
\hline & Wikie, Bill, Xilinx Application Note, "Interfacing XC6200 To Microprocessors (TMS320C50 Example)," XAPP 064, October 9, 1996 (Version 1.1), pp. 1-9. \\
\hline & Wilkie, Bill, Xilinx Application Note, "Interfacing XC6200 To Microprocessors (MC6B020 Example)," XAPP 063, Oclober 9, 1996 (Version 1.1). pp. 1-8. \\
\hline & XCELL, Issue 18, Third Quarter 1995, "Introducing three naw FPGA Families!"; "Introducing the XC6200 FPGA Architecture: The First FPGA Atchitecture Optimized for Coprocessing in Embedded System Applications," 40 pages. \\
\hline & Xilinx Application Note, Advanced Product Specification, 'XC6200 Field Programmable Gate Arrays," June 1, 1996 (Version 1.0), pp. 4-253-4-286. \\
\hline & Xilinx Application Note, "A Fast Constant Coefficient Multiplier for the XC6200," XAPP 082, August 24, 1997 (Version 1.0), pp. 1-5. \\
\hline & Xilinx Technical Data, "XC5200 Logic Cell Amray Family," Preliminary (v1.0), April 1995, pp. 1-43. \\
\hline
\end{tabular}

Page 3

\title{
Receipt date: 07/14/2010
}

12836364 ~ GAU: 2819
\begin{tabular}{|c|c|c|}
\hline \multirow{3}{*}{INFORMATION DISCLOSURE STATEMENT BY APPLICANT(S) PTO-1449} & Attomey Docket No
\[
2885 / 139
\] & \begin{tabular}{l}
Application No. \\
Unassigned
\end{tabular} \\
\hline & \begin{tabular}{l}
Applicant(s) \\
VORBACH
\end{tabular} & \\
\hline & Filing Date Herewith & Group Art Unit Unassigned \\
\hline
\end{tabular}

AUTHOR, TITLE, DATE, PERTINENT PAGES, ETC.
Xilinx Data Book, "The Programmable Logic Data Book," 1996,909 pages.
Xilinx, Series 6000 User's Guide, June 26, 1997, 223 pages.
Yeung, K., (Thesis) "A Data-Driven Multiprocessor Architecture for High Throughput Digital Signal Processing," Electronics Research Laboratory, I. C. Califormia Berkeley, July 10, 1995, pp. 1-153.

Yeung, L., et al., "A 2.4GOPS Data-Driven Reconfigurable Multiprocessor IC for DSP," Dept of EECS, U. Califormia Berkeley, 1995 IEEE International Solid State Circuits Conference, pp. 108-110.

ZILOG Preliminary Product Specification, "Z86C95 CMOS Z8 Digital Signal Processor," 1992, pp. 1-82.
ŻlLOG Preliminary Product Specification, "Z89120 Z89920 (ROMless) 16-Bit Mixed Sigual Prucessor," 1992, pp. 1-82.
Defendants' Invalidity Contentions in PACT XPP Technologies, AG v. XILINX, Inc., et al., (E.D. Texas Dec. 28, 2007) (No. 2:07cv563)., including Exhibits \(A\) through \(K\) in separate \(P D F\) files.
\begin{tabular}{|l|l|l|}
\hline EXAMINER \(\quad\) DONLe/ & DATE CONSIDERED & \(11 / 06 / 2010\) \\
\hline
\end{tabular}

EXAMINER: Initial if citation considered, whether or mot citation is in conformance with M.P.E.P. 609; draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Page 4

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}
\begin{tabular}{lll} 
Inventor(s) & \(:\) & Martin VORBACH \\
Serial No. & \(:\) & \(12 / 836,364\) \\
Filing Date & \(:\) & July 14, 2010 \\
For & \(:\) & MULTI-CORE PROCESSING SYSTEM (as amended) \\
Group Art Unit & \(:\) & 2819 \\
Examiner & \(:\) & Don P. Le \\
Confirmation No. & \(:\) & 2050
\end{tabular}

Mail Stop Issue Fee
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

I hereby certify this correspondence is being electronically transmitted to the United States Patent and Trademark Office via the Office electronic filing system on December 17, 2010.

Signature: /Eunice K. Chang/ Eunice K. Chang

\section*{AMENDMENT UNDER 37 C.F.R. \(\$ 1.312\)}

SIR:
A Notice of Allowance for the above-identified application was mailed on November 12, 2010. Please amend the application under 37 C.F.R. \(\S 1.312\) as follows:

Amendments to the Specification begin on page 2 of this paper.

Remarks begin on page 3 of this paper.
U.S. Patent Application No. 12/836,364

Attorney Docket No. 2885/139

\section*{Rule 312 Amendment}

\section*{Amendments to the Specification:}

Please replace the title of the specification on page 1 with the following title:
--MULTI-CORE PROCESSING SYSTEM--.

\section*{REMARKS}

The title of the specification has been amended. No new subject matter has been introduced. Approval and entry are respectfully requested.

While no fee is believed to be due, the Commissioner is authorized to charge any fees or credit any overpayment to the deposit account of Kenyon \& Kenyon LLP, Deposit Account No. 11-0600. The Examiner is invited to contact the undersigned to discuss any matter concerning this application.

> Respectfully submitted, KENYON \& KENYON LLP

Date: December 17, 2010
By: /Aaron Grunberger/
Aaron Grunberger
Reg. No. 59,210
One Broadway
New York, New York 10004
(212) 425-7200 (phone)
(212) 425-5288 (facsimile)

CUSTOMER NO.: 26646
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Electronic Acknowledgement Receipt} \\
\hline EFS ID: & 9064125 \\
\hline Application Number: & 12836364 \\
\hline International Application Number: & \\
\hline Confirmation Number: & 2050 \\
\hline Title of Invention: & RECONFIGURABLE SEQUENCER STRUCTURE \\
\hline First Named Inventor/Applicant Name: & Martin Vorbach \\
\hline Customer Number: & 26646 \\
\hline Filer: & Aaron Grunberger/Eunice Chang \\
\hline Filer Authorized By: & Aaron Grunberger \\
\hline Attorney Docket Number: & 2885/139 \\
\hline Receipt Date: & 17-DEC-2010 \\
\hline Filing Date: & 14-JUL-2010 \\
\hline Time Stamp: & 15:44:30 \\
\hline Application Type: & Utility under 35 USC 111(a) \\
\hline
\end{tabular}

\section*{Payment information:}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Submitted with & Payment & \multicolumn{4}{|l|}{no} \\
\hline \multicolumn{6}{|l|}{File Listing:} \\
\hline Document Number & Document Description & File Name & File Size(Bytes)/ Message Digest & Multi Part /.zip & Pages (if appl.) \\
\hline \multirow{2}{*}{1} & \multirow[t]{2}{*}{Amendment after Notice of Allowance (Rule 312)} & \multirow{2}{*}{2885-139-Rule312amd.pdf} & 149630 & \multirow{2}{*}{no} & \multirow{2}{*}{3} \\
\hline & & &  & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{3}{|l|}{Information:} & \multicolumn{3}{|c|}{INTEL-1004} \\
\hline
\end{tabular}

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

\section*{New International Application Filed with the USPTO as a Receiving Office}

If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{3}{*}{INFORMATION DISCLOSURE STATEMENT BY APPLICANTS PTO-1449} & Attomey Docket No. 2885/139 & \begin{tabular}{l}
Serial No. \\
Unassigned
\end{tabular} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
Applicant(s) \\
VORBACH
\end{tabular}} \\
\hline & Filing Date Herewith & Group Art Unit Unassigned \\
\hline
\end{tabular}

L:S. PATENT DOCUMENTS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline EXAMINER'S & PATENT/ PUBLICATION NTTMBER & \(\underset{\text { PATENT/PUBLICATION }}{\text { DATE }}\) & NAME & CLASS & SUBCLASS & FILING DATE \\
\hline & RE34363 & August 31, 1993 & Freemas & & & \\
\hline & RE34,444 & Novernber 16, 1993 & Kaplinsky & & & \\
\hline & RE37,195 & May 29, 2001 & Kean & & & \\
\hline & 60/109,417 & November 18, 1998 & Jeffersonetal. & & & \\
\hline & 2,067,477 & January 12, 1937 & J.B. Cooper & & & \\
\hline & 3,242,998 & March 29, 1966 & C.H. Gubbins & & & \\
\hline & 3,681,578 & August 1,1972 & Stevens & & & \\
\hline & 3,757,608 & September 11, 1973 & Willmer & & & \\
\hline & 3,855,577 & December 17, 1974 & Vandiercndonck & & & \\
\hline & 4,233,667 & November 11, 1980 & Devine ettol. & & & \\
\hline & 4,414,547 & November 8,1983 & Knapp etal. & & & \\
\hline &  & February 6, 1986 & Arrawal et al & & 4571736 & \\
\hline & 4,498, 134 & February 5, 1985 & Hansen etal. & & & \\
\hline & 4,498, 172 & February 5, 1985 & Bhaysar & & & \\
\hline & 4,566,102 & January 21, 1986 & Heffer & & & \\
\hline & 4,571,736 & February 18, 1986 & Agrawal et al. & & & \\
\hline & 4,590,583 & May 20, 1986 & Milier & & & \\
\hline & 4,591,979 & May 27, 1986 & Iwashita & . & & \\
\hline & *1,623,997 & November 18, 1986 & Tuppule & & & \\
\hline & 4,663,706 & May 5, 1987 & Alten elal. & & & \\
\hline & 4,667,190 & May 19,1987 & Fantetal. & & & \\
\hline & 4,682,284 & July 21, 1987 & Schtofer & & & \\
\hline & 4,706,216 & Novesmber 10, 1987 & Canter & & & \\
\hline & 4,720,778 & January 19, 1988 & Hallet al. & & & \\
\hline & 4,720,780 & January 19, 1988 & Dolecek & & & \\
\hline & 4,739,474 & April 19.1988 & Holsztymski & & & \\
\hline & 4.761 .755 & August 21988 & Ardinietal & & & \\
\hline & 4,811,214 & March 7, 1989 & Nosenchuck et a]. & & & \\
\hline & 4,852,043 & July 25, 1989 & Guest & & & \\
\hline & 4,852,048 & July 25, 1989 & Morton & & & \\
\hline & 4,860,201 & Augusi 22, 1989 & Stolfoct al. & & & \\
\hline & 4,870,302 & September 26,1989 & Freeman & & & \\
\hline & 4,882,687 & November 21, 1989 & Gordon & & & \\
\hline & 4,884,231 & November 28, 1989 & Moretal. & & & \\
\hline & 4,891,810 & January 2,1990 & de Corlitu etal. & & & \\
\hline & 4,901,268 & Februaty 13,1990 & Judd & & & \\
\hline & 4,910,665 & March 20, 1990 & Matheyses et al. & & & \\
\hline & 4,918,440 & April 17, 1990 & Furtek et al. & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{3}{*}{INFORMATION DISCLOSURE STATEMENT BY APPLICANTS PTO-1449} & \begin{tabular}{l}
Attorney Docket No \\
2885/139
\end{tabular} & \begin{tabular}{l}
Serial No. \\
Unassigned
\end{tabular} \\
\hline & \begin{tabular}{l}
Applicant(s) \\
VORBACH
\end{tabular} & \\
\hline & \begin{tabular}{l}
Tiling Date \\
Herewith
\end{tabular} & Group Art Unit Unassigned \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline EXAMINER'S
INITIALS & \begin{tabular}{l}
PATENT/ \\
PUBLICATION NUMBER
\end{tabular} & PATENT/PUBLICATION
DATE. & NAME & CLASS & SUBCLASS & \[
\begin{aligned}
& \text { PLING } \\
& \text { DATE }
\end{aligned}
\] \\
\hline & 5,754,459 & May 19, 1998 & Telikepelli & & & \\
\hline & 5,754,820 & May 19, 1998 & Yamogami & & & \\
\hline & 5,754,827 & May 19, 1998 & Barbier et al. & & & \\
\hline & 5,754,871 & May 19, 1998 & Wilkinsonet at. & & & \\
\hline & 5,760,602. & June 2, 1998 & Ton & & & \\
\hline & 5,761,484 & June 2, 1998 & Agarwal et al. & & & \\
\hline & 5,773,994 & June 30, 1998 & Jones & & & \\
\hline & 5,778,439 & July 7, 1998 & Timberger etal. & & & \\
\hline & 5,781,756 & Suly 14, 1998 & Hung & & & \\
\hline & 5,784,636 & July 21, 1998 & Rupp & & & \\
\hline & 5,794,059 & August [1, 1998 & Barker et al. & & & \\
\hline & 5,794,062 & August 11, 1998 & Baxter & & & \\
\hline & 5,801,715 & September 1,1998 & Norman & & & \\
\hline & 5,802,290 & September 1,1998 & Casselman & & & \\
\hline & *5,804,986 & Septeraber 8, 1998 & Jones. & & & \\
\hline & 5,815.715 & September 29,1998 & Kaydan & & & \\
\hline & *5,815,726 & September 29, 1998 & Cliif & & & \\
\hline & 5,521, 774 & October 13, 1998 & Veytsman etal. & & & \\
\hline & 5,828,279 & October 27, 1998 & Cliffetal. & & & \\
\hline & 5,828,858 & October 27, 1998 & Athenss etal. & & & \\
\hline & 5,831,44B & November 3, 1998 & Kcan & & & \\
\hline & 3,838,165 & Novemiber 17,1998 & Chatter & & & \\
\hline & 5,841,973 & Novermber 24, 1998 & - Coeke et al. & Kessler & & \\
\hline & 5,844,422 & December 1, 1998 & Trimberger et al. & & & \\
\hline & 5,844,888 & December 1,1998 & Anerijigz & Markkolac & Irietal & \\
\hline & 5,848,238, & December 8, 1998 & Shimumura ei al. & & & \\
\hline & 5,854,918 & Decermber 29, 1998 & Baxicr & & & \\
\hline & 5,857,097 & January 5, 1009 & Henzinger et al. & & & \\
\hline & 5,859,544 & Januasy 12,1999 & Norman & & , & \\
\hline & 5,860,119 & January 12, 1999 & Dockser & & & \\
\hline & 5.862,403 & January 19, 1999 & Kanai et al. & & & \\
\hline & 5,865,239 & February 2, 1999 & Carr & & & \\
\hline & 5,867,691 & Fcbruary 2, 1999 & Shiruishi & & & \\
\hline & 5,867,723 & February. 2,1999 & Peters et al. & & & \\
\hline & 5,870,620 & February 9, 1999 & Kadosumi et al. & & & \\
\hline & 5,884,075 & March 16, 1999 & Hester et al. & & & \\
\hline & 5,887,162 & March 23, 1999 & Williams et al. & & & \\
\hline & 5,887,165 & March 23, 1999 & Martel et al. & & & \\
\hline & 5,889, 533 & March 30, 1999 & Lee & & & \\
\hline
\end{tabular}

Receipt date: 07/14/2010
12836364 - GAU: 2819
INFORMATION DISCLOSURE
STATEMENT BY APPLICANTS
PTO-1449
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Attomey Docket No. \\
\(2885 / 139\)
\end{tabular} & \begin{tabular}{l} 
Scrial No. \\
Unassigned
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l} 
Applicant(s) \\
VORBACH
\end{tabular}} \\
\hline \begin{tabular}{l} 
Filing Date \\
Herewith
\end{tabular} & \begin{tabular}{l} 
Group Arr Unit \\
Unassigned
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline EXAMINER'S & \begin{tabular}{l}
Patent: \\
PUBLICATION NUMBER
\end{tabular} & PATENT/PUBLICATION
DATE & NAME & CLASS & SUBCLASS & \[
\begin{aligned}
& \text { FILING } \\
& \text { DATE } \\
& \hline
\end{aligned}
\] \\
\hline & 5,889,982 & March 30, 1999 & Rodgers etal. & & & \\
\hline & 5,892,370 & April 6, 1999 & Ezton et al. & & & \\
\hline & 5,892,961 & April 6, 1999 & Trimberger & & & \\
\hline & 5,892,962 & April 6.1999 & Cloutier & & & \\
\hline & 5,901,279 & May 4, 1999 & Davis III & & & \\
\hline & 5,915,123 & June 22, 1999 & Mirsky et al. & & & \\
\hline & 5,924,119 & July 13, 1999 & Sindluet al. & & & \\
\hline & 5,926,638 & July 20, 1099 & Inoue, Masalaru & & & \\
\hline & 5,927,423 & July 27, 1999 & Wada etal. & & & \\
\hline & 5,933,023 & August 3, 1999 & Young & & & \\
\hline & 5,933,642 & August 3,1999 & Baxter et al. & & & \\
\hline & 5,936,424 & AUG, Aprit 40,1999 & Young et al. & & & \\
\hline & 5,943,242 & \(\checkmark\) August 24, 1999 & Vorbach etal. & & & \\
\hline & 5,956,518 & September 21,1999 & Deforelal. & . & & \\
\hline & 5,960.193 & September 28, 1999 & Guttaget al. & & & \\
\hline & 5,960,200 & September 28, 1999 & Eager etal. & & & \\
\hline & 5,966,143 & October 12, 1999 & Breternita, Jr . & & & \\
\hline & 5,966,534 & October 12, 1999 & Cooke el al & & & \\
\hline & 5,970,254 & Ociober 19, 1999 & Cooke elal. & & & \\
\hline & 5,978,260 & November 2, 1999 & Trimberger et al. & & & \\
\hline & 5,978,583 & November 2, 1999 & Ekenadhamet al. & & & \\
\hline & 5,996,083 & November 30,1999 & Guptaetal. & & & \\
\hline & 5,999,990 & Decermber 7, 1999 & Sharrit etal. & & & \\
\hline & 6,003,143 & December 14, 1999 & Kimetal. & & & \\
\hline & 6,011,407 & January 4, 2000 & Ncw & & & \\
\hline & 6,014,509 & January 11, 2000 & Furtck et al. & & & \\
\hline & 6,020,758 & Fcbruary 1, 2000 & Patel et al. & & & \\
\hline & 6,020,760 & February 1, 2000 & Sample et al. & & & \\
\hline & 0,021,490 & February 1, 2000 & Vorbach etal. & & & \\
\hline & 6,023,564 & February 8, 2000 & Trimberger & . & & \\
\hline & 6,023,742 & February 8,2000 & Ebeling et al. & & & \\
\hline & 6,026,48! & February 15, 2000 & Neweral. & & & \\
\hline & 6,034,538 & March 7,2000 & Abramovici & & & \\
\hline & 6,035,371 & March 7, 2000 & Magloirt & & & \\
\hline & 6,038,650 & March 14, 2000 & Vorbachetal. & & & \\
\hline & 6,038,656 & March 14, 2000 & Cummings et al. & & & \\
\hline & 6,044,030 & March 28, 2000 & Zhengetal. & & & \\
\hline & 6,047,115 & April 4, 2000 & Mohan etal. & & & \\
\hline & 6,049,272 & April 11, 2000 & Lemman & & & \\
\hline
\end{tabular}

ALL REFERENCES CONSIDERED EXCEPT WHERE LINED THROUGH. /D.L.
INTEL-1004
Page 474 of 539

\title{

}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Aromey Docket No. \\
\(2885 / 139\)
\end{tabular} & \begin{tabular}{l} 
Serial No. \\
Unassigned
\end{tabular} \\
\hline \begin{tabular}{l|l|} 
Applicant(s) \\
VORBACH
\end{tabular} \\
\hline \begin{tabular}{l} 
Filing Date \\
Herewith
\end{tabular} & \begin{tabular}{l} 
Grour Art Unit \\
Unassigned
\end{tabular} \\
\hline
\end{tabular}

INFORMATION DISCLOSURE
STATEMENT BY APPLICANTS
PTO-1449

Serial No.
2885/139
Unassigned
Applicant(s)
VORBACH
Filing Datc Herewith

Group Ar Unit Unassigned
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline EXAMINER'S INITIALS & PATENT/ PUBLICATION NUMBER & PATENT/PUELICATION
DATE & NAME & CLASS & SUBCLASS & \[
\begin{gathered}
\text { FILING } \\
\text { DATE }
\end{gathered}
\] \\
\hline & 7,254,649 & August 7, 2007 & Subramanian et al. & & , & \\
\hline . & 7,340,546 & March 4, 2008 & Crosland etal. & & & \\
\hline & 7,346,644 & March 18, 2008 & Langhammer el al. & & & \(\because\) \\
\hline & 7,350,178 & March 25, 2008 & Crosland et al. & & & \\
\hline & *7,382,156 & June 3, 2008 & Panietal. & & & \\
\hline & 7,595,659 & September 29,2009 & Vorbach et al. & & & \\
\hline & 7,650,448 & January 19,2010 & \(V\) orbach et al. & & & \\
\hline & 2001/0001860 & May 24, 2001 & Bieu & & & \\
\hline & 200170010074 & July 26, 2001 & Nishihara et al & & & \\
\hline & 2001/018733 & \% \(194,-\operatorname{coctret} 48,2001\) & Fujii ct al. & & & \\
\hline & 2001/0032305 & October 18, 2001 & Bany & & & \\
\hline & 2001/0003834 & June 14, 2001 & Shimonishi & & & \\
\hline & 2002\%0103839 & August 1, 2002 & Ozawa & & & \\
\hline & 2002/083308 & June 27, 2002 & Pereira et al. & , & & \\
\hline & 2002\%0038414 & March 28, 2002 & Teylor & , & & \\
\hline & 2002/0045952 & April 18,2002 & Blame? & & & \\
\hline & 2002/124238 & September 5, 2002 & Metzgen & & & \\
\hline & 20020138716 & September 26, 2002 & Master pewter al. & & - & \\
\hline & 2002013861 & Atrgest \(30-2001\) & Adiletta et al. & & 5102002 & \\
\hline & 2002\%0143505 & October 3,2002 & Diusinsky & & . & \\
\hline & 2002/0144229 & October 3, 2002 & Hanrahan & & & \\
\hline & *2002/0156962 & October 24, 2002 & Chopra et al. & & & \\
\hline & 2002/0165886 & November 7, 2002 & Lam & & & \\
\hline & 2003/0001615 & Jamuary 2, 2003 & Sueyoshi et al. & & & \\
\hline & \(2003 / 0014743\) & January 16,2003 & Cooke etal. & & , & \\
\hline & 2003/0046607 & March 6, 2003 & Vorbachet'al, & & & \\
\hline & 2003/0056085 & March 2, 2003 & Vorbach & & & \\
\hline & 2003/0052711 & March 20, 2003 & Taylor & & & \\
\hline & 2003/005586] & Manch 20, 2003 & Lai elal. & & & \\
\hline & 2003/0056091 & March 20, 2003 & Grecnberg & & & \\
\hline & 2003/0056202 & March 20, 2003 & vorbach et al & & & \\
\hline & 2003/0061542 & March 27, 2003 & Bates et al. & & & \\
\hline & 2003/062922 & April 3, 2003 & Douglass et al. & & & \\
\hline & 200340086300 & May 8, 2003 & Noyes et al. & & & \\
\hline & 2003/0093662 & May 15,2003 & Vorbach et al. & & & \\
\hline & 2003/0097513 & May 22, 2003 & Vorbach et al. & & & - \\
\hline & 2003/0123579 & July 3,2003 & Safavi et al. & & & \\
\hline & 2003/0135686 & July 17, 2003 & Vorbach et al. & & & ' \\
\hline
\end{tabular}

\section*{ALL REFERENCES CONSIDERED EXCEPT WHERE Lage 13 LN THROUGH. /D.L./}

\title{
INFORMATION DISCLOSURE
STATEMENT BY APPLICANTS
PTO-1449
}

Attorney Docket No.
2885/139
Serial No.
Unassigned


FOREIGN PATENT DOCUMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{EXAMINER'S
INITIALS} & \multirow[b]{2}{*}{DOCUMENT NUMBER} & \multirow[b]{2}{*}{DATE} & \multirow[b]{2}{*}{COUNTRY} & \multirow[b]{2}{*}{CLASS} & \multirow[b]{2}{*}{Subclass} & \multicolumn{2}{|l|}{TRANSLATION} \\
\hline & & & & & & YES & No \\
\hline & 0208457 & January 14, 1987 & EPO & & & & \\
\hline & 0221360 & May 13, 1987 & EPO & & & & \\
\hline & 0398552 & November 22, 1990 & EPO & & & & \\
\hline & 0428327 & May 22, 1991 & EPO & & & & \\
\hline & 0463721 & January 2, 1992 & EPO & & & & \\
\hline & 0477809 & April 1,1992 & EPO & & & & \\
\hline & 0485690 & May 20, 1992 & EPO & & & & \\
\hline & 0497029 & August 5, 1992 & EPO. & & & & \\
\hline & 0539595 & May 5, 1993 & EPO & & & & \\
\hline & 0628917 & December 14, 1994 & EPO & & & & \\
\hline & 0678985 & October 25, 1995 & EPO & & & & \\
\hline & 0686915 & December 13, 1995 & EPO & & & & \\
\hline & 0696001 & December 5, 2001 & EPO & & & & \\
\hline & 0707269 & April 17, 1996 & EPO & & & & \\
\hline & 0726532 & August 14, 1996 & EPO & & & & \\
\hline & 0735585 & Qctaber 2, 1996 & EPO & & & & \\
\hline & 0746106 & Decermber 4, 1996 & EPO & & & & \\
\hline & 0748051 & Decerrber 11, 1996 & EPO & & & & \\
\hline & 0.926594 & June 30, 1999 & EPO & & & & \\
\hline & 1061439. & December 20, 2000 & EPO & & & & \\
\hline
\end{tabular}

United States Patent and Trademark Office
INITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Oflice - dkress: COMMISSIONER FOR 13ATENTS Adkress: COMMISSION
PU, Box 1450 )

PU, Box 1450
Alexaudri3, Vugina 22312-1430)
www.usporogivg


Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.
\begin{tabular}{|lll|}
\hline & Application No. & Applicant(s) \\
Response to Rule 312 Communication & \(12 / 836,364\) & VORBACH, MARTIN \\
\cline { 2 - 3 } & Examiner & Art Unit \\
& Don P. Le & 2819 \\
\hline
\end{tabular}
-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address -
1. \(\boxtimes\) The amendment filed on 17 December 2010 under 37 CFR 1.312 has been considered, and has been:
a) \(\boxtimes\) entered.
b)entered as directed to matters of form not affecting the scope of the invention.
c)disapproved because the amendment was filed after the payment of the issue fee.

Any amendment filed after the date the issue fee is paid must be accompanied by a petition under 37 CFR 1.313(c)(1) and the required fee to withdraw the application from issue.
d)disapproved. See explanation below.
e)entered in part. See explanation below.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
\begin{tabular}{lll} 
Inventor(s) & \(:\) & Martin VORBACH \\
Serial No. & \(:\) & \(12 / 836,364\) \\
Filing Date & \(:\) & July 14, 2010 \\
For & \(:\) & MULTI-CORE PROCESSING SYSTEM (as amended) \\
Group Art Unit & \(:\) & 2819 \\
Examiner & \(:\) & Don P. Le \\
Confirmation No. & \(:\) & 2050
\end{tabular}

Mail Stop Issue Fee
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

> I hereby certify this correspondence is being electronically transmitted to the United States Patent and Trademark Office via the Office electronic filing system on December 17, 2010 .
> Signature: /Eunice K. Chang/
> Eunice K. Chang

AMENDMENT UNDER 37 C.F.R. \(\$ 1.312\)
SIR:
A Notice of Allowance for the above-identified application was mailed on November 12, 2010. Please amend the application under 37 C.F.R. \(\S 1.312\) as follows:

Amendments to the Specification begin on page 2 of this paper.

Remarks begin on page 3 of this paper.

Bib Data Sheet
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SERIAL NUMBER
\(12 / 836,364\) & \begin{tabular}{l}
\[
\begin{gathered}
\text { FILING OR 371(c) } \\
\text { DATE } \\
07 / 14 / 2010
\end{gathered}
\] \\
RULE
\end{tabular} & & \[
\begin{gathered}
\text { CLASS } \\
326
\end{gathered}
\] & \[
\begin{array}{r}
\text { GROUP AR1 } \\
2819
\end{array}
\] & & ATTORNEY DOCKET NO. 2885/139 \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
APPLICANTS \\
Martin Voウtach, Munich, GERMANY;
\end{tabular}} \\
\hline \multicolumn{7}{|l|}{This application is a CON of \(12 / 541,299\) 08/14/2009 PAT 7,782,087 which is a CON of 12/082,073 04/07/2008 PAT 7,602,214 which is a CON of 10/526,595 01/09/2006 PAT 7,394,284 which is a 371 of \(\mathrm{PCT} / E P 03 / 3859909 / 08 / 2003\)} \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
GERMANY 10241812.8 09/06/2002 \\
GERMANY 10315295.4 04/04/2003 \\
GERMANY 10321 834.305/15/2003 \\
EUROPEAN PATENT OFFICE (EPO) 03019428.6 08/28/2003
\end{tabular}} \\
\hline \multicolumn{7}{|l|}{IF REQUIRED, FOREIGN FILING LICENSE GRANTED
**
**
07/26/2010 SMALL ENTITY **} \\
\hline \begin{tabular}{l}
Foreign Priority claimed \\
35 USC 119 (a-d) conditions met \\
Verified and Acknowledged
\end{tabular} & \[
\begin{aligned}
& \square_{\text {yes }} \square_{\text {no }} \\
& \square \square_{\text {yes }} \square \\
& \text { Allownoe }
\end{aligned}
\] & \begin{tabular}{l}
after \\
Initials
\end{tabular} & STATE OR COUNTRY GERMANY & SHEETS DRAWING 6 & TOTAL
CLAIMS 30 & INDEPENDENT CLAIMS 1 \\
\hline
\end{tabular}

ADDRESS
26646
TITLE
MULTI-CORE PROCESSING SYSTEM
\begin{tabular}{|c|c|c|}
\hline \multirow{6}{*}{\[
\begin{gathered}
\text { FILING FEE } \\
\text { RECEIVED } \\
722
\end{gathered}
\]} & \multirow{6}{*}{FEES: Authority has been given in Paper No. \(\qquad\) to charge/credit DEPOSIT ACCOUNT No. \(\qquad\) for following:} & \(\square\) All Fees \\
\hline & & 1.16 Fees ( Filing) \\
\hline & & 1.17 Fees (Processing Ext. of time) \\
\hline & & 1.18 Fees (Issue) \\
\hline & & \(\square\) Other \\
\hline & & \(\square\) Credit \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{United States Patent and Trademark Office} \\
\hline APPLICATIONNIMBER & FIIING OR 37ICCIDATE & FIRST NAMED APPLICANT & ATTY. DOCKET NO/TITE \\
\hline \multirow[t]{2}{*}{12/836,364} & \multirow[t]{2}{*}{07/14/2010} & \multirow[t]{2}{*}{Marrin Vorbach} & 2885/139 \\
\hline & & & CONFIRMATION NO. 2050 \\
\hline \multicolumn{2}{|l|}{26646} & \multicolumn{2}{|r|}{PUBLICATION NOTICE} \\
\hline \multicolumn{2}{|l|}{KENYON \& KENYON LLP} & \multicolumn{2}{|r|}{\multirow[t]{3}{*}{|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||}} \\
\hline \multirow[t]{2}{*}{ONE BROADWAY
NEW YORK, NY 10004} & & & \\
\hline & & & \\
\hline
\end{tabular}

\section*{Title:MULTI-CORE PROCESSING SYSTEM}

Publication No.US-2011-0006805-A1
Publication Date:01/13/2011

\section*{NOTICE OF PUBLICATION OF APPLICATION}

The above-identified application will be electronically published as a patent application publication pursuant to 37 CFR 1.211, et seq. The patent application publication number and publication date are set forth above.

The publication may be accessed through the USPTO's publically available Searchable Databases via the Internet at www.uspto.gov. The direct link to access the publication is currently http://www.uspto gov/patt//.

The publication process established by the Office does not provide for mailing a copy of the publication to applicant. A copy of the publication may be obtained from the Office upon payment of the appropriate fee set forth in 37 CFR 1.19(a)(1). Orders for copies of patent application publications are handled by the USPTO's Office of Public Records. The Office of Public Records can be reached by telephone at (703) 308-9726 or (800) 972-6382, by facsimile at (703) 305-8759, by mail addressed to the United States Patent and Trademark Office, Office of Public Records, Alexandria, VA 22313-1450 or via the Internet.

In addition, information on the status of the application, including the mailing date of Office actions and the dates of receipt of correspondence filed in the Office, may also be accessed via the Internet through the Patent Electronic Business Center at www uspto gov using the public side of the Patent Application Information and Retrieval (PAIR) system. The direct link to access this status information is currently http://pair uspto.govi. Prior to publication, such status information is confidential and may only be obtained by applicant using the private side of PAIR.

Further assistance in electronically accessing the publication, or about PAIR, is available by calling the Patent Electronic Business Center at 1-866-217-9197.

Office of Data Managment, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE} \\
\hline \multicolumn{2}{|l|}{INFORMATION DISCLOSURE STATEMENT} & \[
\begin{aligned}
& \text { Docket Number: } \\
& \mathbf{2 8 8 5 / 1 3 9}
\end{aligned}
\] & Confirmation Number: 2050 \\
\hline Application Number 12/836,364 & \[
\begin{aligned}
& \hline \text { Filing Date } \\
& \text { July 14, } 2010 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Examiner \\
Don P. Le
\end{tabular} & \[
\begin{aligned}
& \text { Art Unit } \\
& 2819
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Invention Title \\
MULTI-CORE PROCESSING SYSTEM
\end{tabular}} & \begin{tabular}{l}
Inventors \\
Martin VOR
\end{tabular} & \[
\mathrm{ACH}
\] \\
\hline
\end{tabular}

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

Sir:

I hereby certify that this correspondence is being electronically transmitted to the United States Patent and Trademark Office via the Office electronic filing system on
Date: February 9, 2011
Signature: /Eunice K. Chang/
Eunice K. Chang

Pursuant to 37 CFR § 1.56, the attention of the Patent and Trademark Office is hereby directed to the reference(s) listed on the attached PTO-1449. It is respectfully requested that the information be expressly considered during the prosecution of this application, and that the reference(s) be made of record therein and appear among the "References Cited" on any patent to issue therefrom. The filing of this Information Disclosure Statement and the enclosed PTO Form No. 1449, shall not be construed as an admission that the information cited is prior art, or is considered to be material to patentability as defined in 37 C.F.R. § 1.56(b). The paragraphs marked below are applicable. It is believed that no fees other than those indicated below are due, but authorization is hereby given to charge any additional fees due, or to credit any overpayment, to Kenyon \& Kenyon LLP, deposit account 11-0600.

囚 1. This Information Disclosure Statement is being filed (a) within three months of the filing date of a national application other than a continued prosecution application under 37 C.F.R. § 1.53 (d), (b) within three months of the date of entry of the national stage as set forth in 37 C.F.R. § 1.491 in an international application, (c) before the mailing date of a first Office Action on the merits in the present application, OR (d) before the mailing of a first office action after filing of a request for continued examination. No certification or fee is required.
\(\square \quad\) 2. This Information Disclosure Statement is being filed more than three months after the U.S. filing date AND after the mailing date of the first Office Action on the merits, but before the mailing date of a final action, Notice of Allowance, or any action that otherwise closes prosecution.
\(\square\) a. I hereby certify that each item of information contained in this Information Disclosure Statement was first cited in a communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of this Information Disclosure Statement. 37 CFR §1.97(e)(1).
\(\square \quad\) b. I hereby certify that no item of information in this Information Disclosure Statement was cited in a communication from a foreign patent office in a counterpart foreign application or, to my knowledge after making reasonable inquiry, was known to any individual designated in 37 CFR §1.56(c) more than three months prior to the filing of this Information Disclosure Statement. 37 CFR §1.97(e)(2).
\(\square \quad\) c. The required fee of \(\$ 180.00\) under 37 CFR \(\S 1.17(p)\) is being paid by credit card to ensure consideration of the disclosed information. Any additional fees may be charged to Deposit Account No. 11-0600 of Kenyon \& Kenyon LLP

凹 3. Since this application was filed after June 30, 2003, copies of U.S. references are not included.

\author{
Date: February 9. 2011 \\ KENYON \& KENYON LLP \\ One Broadway \\ New York, NY 20004 \\ (212) 425-7200 telephone \\ (212) 425-5288 facsimile \\ CUSTOMER NUMBER 26646
}

Respectfully submitted,
/Aaron Grunberger/
Aaron Grunberger
Reg. No. 59,210
\begin{tabular}{|c|l|l|}
\hline & \begin{tabular}{l} 
Attorney Docket No. \\
\(2885 / 139\)
\end{tabular} & \begin{tabular}{l} 
Serial No. \\
INFORMATION DISCLOSURE
\end{tabular} \\
\cline { 2 - 3 } STATEMENT BY APPLICANTS & Applicant(s) \\
VORBACH & \\
\cline { 2 - 4 } & FTO-1449 & \begin{tabular}{l} 
Filing Date \\
July 14,2010
\end{tabular} \\
\hline
\end{tabular}

\section*{U.S. PATENT DOCUMENTS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline EXAMINER'S
INITIALS & PATENT/ PUBLICATION NUMBER & PATENT/PUBLICATION
DATE & NAME & CLASS & SUBCLASS & FILING DATE \\
\hline & 3,753,008 & August 14, 1973 & Guarnaschelli & & & \\
\hline & 4,594,682 & June 10, 1986 & Drimak & & & \\
\hline & 5,995,048 & Novermber 30, 1999 & Cherabuddi et al. & & & \\
\hline & 6,260,114 & July 10, 2001 & Schug & & & \\
\hline & 6,496,902 & December 17, 2002 & Faanes et al. & & & \\
\hline & 2002/0073282 & June 13, 2002 & Chauvel et al. & & & \\
\hline & 2003/0070059 & April 10, 2003 & Dally et al. & & & \\
\hline & 2005/0091468 & April 28, 2005 & Morita et al. & & & \\
\hline & 2008/0313383 & December 18,2008 & Morita et al. & & & \\
\hline
\end{tabular}

\section*{FOREIGN PATENT DOCUMENTS}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
EXAMINER'S \\
INITIALS
\end{tabular} & \begin{tabular}{c} 
DOCUMENT \\
NUMBER
\end{tabular} & DATE & COUNTRY & CLASS & SUBCLASS & TRANSLATION \\
\hline & & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

\section*{OTHER DOCUMENTS}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{c} 
EXAMINER'S \\
INITIALS
\end{tabular} & \multicolumn{1}{c|}{ AUTHOR, TITLE, DATE, PERTINENT PAGES, ETC. } \\
\hline & ARM Limited, "ARM Architecture Reference Manual," December 6, 2000, pp. A10-6-A10-7. \\
\hline & \begin{tabular}{l} 
Li, Zhiyuan, et al., "Configuration prefetching techniques for partial reconfigurabie coprocessor with relocation and defragmentation," \\
International Symposium on Field Programmable Gate Arrays, February 1, 2002, pp. 187-195.
\end{tabular} \\
\hline & \begin{tabular}{l} 
Melvin, Stephen et al., "Hardware Support for Large Atomic Units in Dynamically Scheduled Machines," Computer Science Division, \\
University of Califormia, Berkeley, IEEE (1988), pp. 60-63.
\end{tabular} \\
\hline & \begin{tabular}{l} 
Roterberg, Eric., et al., "Trace Cache: a Low Latency Approach to High Bandwidth Instruction Fetching," Proceedings of the 29" Annual \\
Internatinoal Symposium on Michoarchitecture, Paris, France, IEEE (1996), 12 pages.
\end{tabular} \\
\hline
\end{tabular}

\section*{EXAMINER}

\section*{DATE CONSIDERED}

\footnotetext{
EXAMINER: Initial if citation considered, whether or not citation is in conformance with M.P.E.P. 609; draw line through citation if not in conformance and not
} considered. Include copy of this form with next communication to applicant.
\begin{tabular}{|l|l|}
\hline Application Number: & 12836364 \\
\hline & \\
\hline & \\
& Filing Date: \\
\hline & \\
\hline Title of Invention: & MULTI-CORE PROCESSING SYSTEM \\
\hline First Named Inventor/Applicant Name: & \\
\hline Filer: & Martin Vorbach \\
\hline Attorney Docket Number: & Aaron Grunberger/Eunice Chang \\
\hline
\end{tabular}

Filed as Small Entity
Utility under 35 USC 111 (a) Filing Fees
\begin{tabular}{|c|c|c|c|c|}
\hline Description & Fee Code & Quantity & Amount & Sub-Total in USD(\$) \\
\hline \multicolumn{5}{|l|}{Basic Filing:} \\
\hline \multicolumn{5}{|l|}{Pages:} \\
\hline \multicolumn{5}{|l|}{Claims:} \\
\hline Claims in excess of 20 & 2202 & 30 & 26 & 780 \\
\hline \multicolumn{5}{|l|}{Miscellaneous-Filing:} \\
\hline \multicolumn{5}{|l|}{Petition:} \\
\hline \multicolumn{5}{|l|}{Patent-Appeals-and-Interference:} \\
\hline \multicolumn{5}{|l|}{Post-Allowance-and-Post-Issuance:} \\
\hline Extension-of-Time: & & & INT & 1004 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|}
\hline Description & Fee Code & Quantity & Amount & \begin{tabular}{c} 
Sub-Total in \\
USD(\$)
\end{tabular} \\
\hline Miscellaneous: \\
\hline Request for continued examination & 2801 & 1 & 405 & 405 \\
\hline \multicolumn{6}{|c|}{} \\
\hline \multicolumn{6}{|c|}{ Total in USD (\$) } & \(\mathbf{1 1 8 5}\) \\
\hline
\end{tabular}

INTEL - 1004
Page 487 of 539
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Electronic Acknowledgement Receipt} \\
\hline EFS ID: & 9410079 \\
\hline Application Number: & 12836364 \\
\hline International Application Number: & \\
\hline Confirmation Number: & 2050 \\
\hline Title of Invention: & MULTI-CORE PROCESSING SYSTEM \\
\hline First Named Inventor/Applicant Name: & Martin Vorbach \\
\hline Customer Number: & 26646 \\
\hline Filer: & Aaron Grunberger/Eunice Chang \\
\hline Filer Authorized By: & Aaron Grunberger \\
\hline Attorney Docket Number: & 2885/139 \\
\hline Receipt Date: & 09-FEB-2011 \\
\hline Filing Date: & 14-JUL-2010 \\
\hline Time Stamp: & 16:06:00 \\
\hline Application Type: & Utility under 35 USC 111(a) \\
\hline
\end{tabular}

\section*{Payment information:}
\begin{tabular}{|c|c|}
\hline Submitted with Payment & yes \\
\hline Payment Type & Credit Card \\
\hline Payment was successfully received in RAM & \$1185 \\
\hline RAM confirmation Number & 2836 \\
\hline Deposit Account & 110600 \\
\hline Authorized User & GRUNBERGER,AARON \\
\hline \multicolumn{2}{|l|}{The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: Charge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees) Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination RNTYEsing feas 004} \\
\hline
\end{tabular}

Charge any Additional Fees required under 37 C.F.R. Section 1.19 (Document supply fees)
Charge any Additional Fees required under 37 C.F.R. Section 1.20 (Post Issuance fees)
Charge any Additional Fees required under 37 C.F.R. Section 1.21 (Miscellaneous fees and charges)

\section*{File Listing:}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Document Number & Document Description & File Name & File Size(Bytes)/ Message Digest & Multi Part /.zip & Pages (if appl.) \\
\hline \multirow{2}{*}{1} & \multirow[t]{2}{*}{} & \multirow{2}{*}{2885-139-RCEandIDS.pdf} & 1490599 & \multirow{2}{*}{yes} & \multirow{2}{*}{14} \\
\hline & & & \begin{tabular}{l}
ee892776bffcci734ffobdb6356d3707204 \\
\(3 с 67\)
\end{tabular} & & \\
\hline & \multicolumn{5}{|c|}{Multipart Description/PDF files in .zip description} \\
\hline & \multicolumn{2}{|c|}{Document Description} & Start & \multicolumn{2}{|c|}{End} \\
\hline & \multicolumn{2}{|l|}{Request for Continued Examination (RCE)} & 1 & \multicolumn{2}{|c|}{1} \\
\hline & \multicolumn{2}{|c|}{Transmittal Letter} & 2 & \multicolumn{2}{|c|}{2} \\
\hline & \multicolumn{2}{|l|}{Amendment Submitted/Entered with Filing of CPA/RCE} & 3 & \multicolumn{2}{|c|}{11} \\
\hline & \multicolumn{2}{|l|}{Information Disclosure Statement (IDS) Filed (SB/08)} & 12 & \multicolumn{2}{|c|}{14} \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{2} & \multirow{2}{*}{NPL Documents} & \multirow{2}{*}{ARM.pdf} & 550641 & \multirow{2}{*}{no} & \multirow{2}{*}{4} \\
\hline & & &  & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{3} & \multirow{2}{*}{NPL Documents} & \multirow{2}{*}{ZhiyuanLi.pdf} & 1636282 & \multirow{2}{*}{no} & \multirow{2}{*}{9} \\
\hline & & &  & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{4} & \multirow{2}{*}{NPL Documents} & \multirow{2}{*}{Melvin-et-al.pdf} & 526078 & \multirow{2}{*}{no} & \multirow{2}{*}{4} \\
\hline & & &  & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{5} & \multirow{2}{*}{NPL Documents} & \multirow{2}{*}{Rotenberg-et-al.pdf} & 2080890 & \multirow{2}{*}{no} & \multirow{2}{*}{12} \\
\hline & & & \begin{tabular}{l}
515 faa \(4 \mathrm{e} 5 \mathrm{a0005}\) c7d90aefa220612cccc 718 e \\
6564
\end{tabular} & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{6} & \multirow{2}{*}{Fee Worksheet (PTO-875)} & \multirow{2}{*}{fee-info.pdf} & 31962 & \multirow{2}{*}{no} & \multirow{2}{*}{2} \\
\hline & & & \(75 f 66799 c 6 d 625 a 9 e c 263 b 2733377 \mathrm{fb} d 25 f\) 676 e & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multicolumn{4}{|r|}{Total Files Size (in bytes): 63} & \multicolumn{2}{|c|}{6316452} \\
\hline \multicolumn{6}{|l|}{This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.} \\
\hline \multicolumn{6}{|l|}{New Applications Under 35 U.S.C. 111} \\
\hline \multicolumn{6}{|l|}{If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.} \\
\hline \multicolumn{6}{|l|}{National Stage of an International Application under 35 U.S.C. 371} \\
\hline \multicolumn{6}{|l|}{If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.} \\
\hline \multicolumn{6}{|l|}{New International Application Filed with the USPTO as a Receiving Office} \\
\hline \multicolumn{6}{|l|}{If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.} \\
\hline
\end{tabular}

Under the Paperwork Reduction Act of 1895 , no Defsons are required to respond to a collection of infornation zniess it contains avald OMB conirod number.
\begin{tabular}{|c|c|c|}
\hline Request & Application Number & 121836,364 \\
\hline & Filing Date & July 14, 2010 \\
\hline Transmittal & First Named inventor & Martin VORGACH \\
\hline Address to: Mail Stop RCE & Art Unit & 2819 \\
\hline Commissioner for Patents & Examiner Name & Don P. Le \\
\hline Alexandria, VA 22313-1450 & Attorney Docket Number & 28851139 \\
\hline
\end{tabular}

This is a Request for Continued Examination (RCE) under 37 CFR 1.114 of the above-identifled application. Request for Continued Examination (RCE) practice under 37 CFR 7,114 does not apply to any uillity or plant application filed prior to June 8 , 1995, or to any design application. See Instruction Sheet for RCEs (not to be submitted to the USPTO) on page 2.
1. SSubmission required under 37 CFR 1. 114 Note: If the RCE is proper, any previously filed unemtered amendments and amendments enclosed with the RCE will be entered in the order in which they were filed unless applicant insinucts otherwise. If applicant does not wish to have any previously filed unentered amendment(s) entered, applicant musi request non-eniry of such amendment(s).
a.

Previously submitted, If a final Office action is outstanding, any amendments filed after the final Office action may be considered as a submission even if this box is not checked.
1. \(\square\) Consider the arguments in the Appeal Brief or Reply Brief previously flied on \(\qquad\)
li.

Other
b.

\section*{Enclosed}
i. \(\quad\) A mendment/Reply
Affidavit(s)/Declaration(s)
iii. \(\sqrt{ }\) information Disclosure Statement (IDS)
iv.

Other Amendment Transmiltal
2. Misceflaneous
a. \(\square\)

Suspension of action on the above-identified application is requested under 37 CFR 1.103 (c) for a period of \(\qquad\) months. (Period of suspension shail not exceed 3 months; Fee under 37 CFR 1.17 (i) required)
b. Other \(\qquad\)
The RCE fee under 37 CFR 1.17 (e) is required by 37 CFR 1.114 when the RCE is fled.
The Director is hereby authorized to charge the following fees, any underpayment of fees, or credit any overpayments, to Deposit Account No. \(\qquad\) A.

RCE fee required under 37 CFR 1.17(e)
\(i\).
Extension of time fee ( 37 CFR 1.136 and 1.17 )
iii.

Other Claim fees as listed on Amendment Transmiltal
b. Check in the amount of \$ \(\qquad\) enclosed
c. \(\sqrt{7}\) Payment by credit card (Form PTC-2038 enclossd)

WARNING: Information on thls form may become public. Credit card Information should not be included on this form. Provide credit card information and authorization on PTO-2038.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT REQUIRED} \\
\hline Signature & /Aaron Grunberger/ & Date & February 9, 2011 \\
\hline Neme (Prinitype) & Aaron Grunberger & Registration No. & 59,210 \\
\hline \multicolumn{4}{|c|}{CERTIFICATE OF MALING OR TRÄNSWISSION} \\
\hline \multicolumn{4}{|l|}{thereby carlify that this correspondence is being depositad with the United States Postal Service with suticient postage as first class man in an enverope addrossed to: Mail Stop RCE, Commissioner for Patents, P. O. Box 1450, Alexandria, VA 22313-1450 or facsimite transmitted to the U.S. Patern and Tradernark Office on the date shown below.} \\
\hline Signature & VIA EFS WES & & \\
\hline Name (Prinitype) & & Qate February & \\
\hline
\end{tabular}

This collection of information is required by 37 CFR 1.114 . The informalion is required to obtain or refain a benefit by the public which is tofile (and by the USPTO to process) ar: application. Confidentiality is govemed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This coflection is estimated to take 12 minutes to complete, including galhering, preparing, and submitting the compteted application form to the USPTO. Time wilt vary depending upon the individual case. Any comments on the amount or time you require to complete this form andfor suggestions for reducing this burden, shoutd be sent to the Chief information Officer, U.S. Falert and Tradamark Office, U.S. Depariment of Commerce, P.O. Box 1450, Ale xandria, VA 22313-1450. DO NOTSE ND FEES OR COMPLETED FORMS TO THIS add ress. SEND TO: Mail Stop RCE, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE} \\
\hline \multicolumn{2}{|l|}{AMENDMENT TRANSMITTAL LETTER} & \multicolumn{2}{|l|}{Docket Number:
2885/139} \\
\hline \[
\begin{aligned}
& \text { Application Number } \\
& 12 / 836,364
\end{aligned}
\] & \begin{tabular}{l}
Filing Date \\
July 14, 2010
\end{tabular} & \begin{tabular}{l}
Examiner \\
Don P. Le
\end{tabular} & \[
\begin{aligned}
& \text { Art Unit } \\
& 2819
\end{aligned}
\] \\
\hline Invention Title MULTI-CORE & CESSING SYSTEM & \begin{tabular}{l}
lnventors \\
Martin VO
\end{tabular} & \\
\hline
\end{tabular}

\section*{Mail Stop RCE}

Commissioner for Patents
P.O. Box 1450

Alexandra, VA 22313-1450

I hereby certify that Utis correspondence is being electronically deposited to the following via EFS Web: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on
Date: February 9, 2011
Signature: /Eunice K. Chaned
Eunice K. Clang

\section*{Sir:}
1. Transmitted herewith for filing is an Amendment for the above-identified patent application.
2. The filing fee has been calculated after entry of the accompanying Amendment as shown below:

3. The additional claim fees of \(\$ 780.00\) is being paid by credit card.

Respectfully submitted,
Date: February 9, 2011
By: /Aaron Grunberger/
Aaron Grunberger
Reg. No. 59,210
One Broadway
New York, NY 10004
(212) 425-7200

CUSTOMER NUMBER 26646

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}
\begin{tabular}{lll} 
Applicant(s) & \(:\) & Martin VORBACH \\
Serial No. & \(:\) & \(12 / 836,364\) \\
Filed & \(:\) & July 14, 2010 \\
For & \(:\) & MULTI-CORE PROCESSING SYSTEM \\
Examiner & \(:\) & Don P. Le \\
Group Art Unit & \(:\) & 2819 \\
Confirmation No. & \(:\) & 2050 \\
Customer No. & \(:\) & 26646
\end{tabular}

\section*{Mail Stop RCE}

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
I hereby certify that this correspondence is being electronically
transmitted to the United States Patent and Trademark Office via the
Office electronic filing system on February 9, 2011.
Signature: Eunice K. Chang/
Eunice K. Chang

\section*{RCE AMENDMENT}

SIR:
Pursuant to the filing of a Request for Continued Examination (RCE), please amend the above-captioned application without prejudice (of which claims 18 to 47 have been allowed) as follows:

Amendments to the Claims are found in the listing of claims, which begins on page 2 of this paper.

Remarks begin on page 9 of this paper.

\section*{Amendments to the Claims:}

This listing of claims will replace all prior versions, and listings, of claims in the application:

\section*{Listing of Claims:}

1-17. (Canceled).
18. (Previously Presented) A multi-processor chip, comprising:
a plurality of data processing cells, each adapted for sequentially executing at least one of algebraic and logic functions and having:
at least one arithmetic logic unit;
at least one data register file;
a program pointer; and
at least one instruction decoder;
a plurality of memory cells;
at least one interface unit;
at least one Memory Management Unit (MMU); and
a bus system for interconnecting the plurality of data processing cells, the plurality of memory cells, and the at least one interface unit;
wherein the bus system is adapted for programmably interconnecting at runtime at least one of data processing cells and memory cells with at least one of memory cells and one or more of the at least one interface unit.
19. (Previously Presented) The multi-processor chip according to claim 18, wherein at least some of the memory cells are cache memories.
20. (Previously Presented) The multi-processor chip according to claim 19, wherein at least some of the cache memories are preloadable.
21. (Previously Presented) The multi-processor chip according to claim 18, wherein at least some of the memory cells are adapted to operate as a data stack.
22. (Previously Presented) The multi-processor chip according to claim 18, wherein at least some of the memory cells are adapted to operate as a data heap.
23. (Previously Presented) The multi-processor chip according to claim 18, wherein at least some of the memory cells are adapted to operate as a code memory.
24. (Previously Presented) The multi-processor chip according to claim 18, wherein at least some of the memory cells are adapted to operate as at least two of a data stack, a data heap, and a code memory.
25. (Previously Presented) The multi-processor chip according to claim 18, wherein at least some of the memory cells are adapted to operate as at least two of a data stack, a data heap, a code memory, and a cache.
26. (Previously Presented) The multi-processor chip according to claim 18, wherein at least some of the memory cells are adapted to operate as a data stack, a data heap, and a code memory.
27. (Previously Presented) The multi-processor chip according to claim 18, wherein the data processing cells are adapted to connect simultaneously to a plurality of at least one of cells and units of at least one of the memory cells, the data processing cells, and the at least one interface units.
28. (Previously Presented) The multi-processor chip according to claim 18, wherein cells of the data processing cells are adapted to connect simultaneously to other cells of the data processing cells and to a plurality of at least one of cells and units of at least one of the memory cells, the data processing cells, and the at least one interface units.
29. (Previously Presented) The multi-processor chip according to claim 18, wherein the bus system is adapted to interconnect a data processing cell simultaneously to a plurality of at least one of cells and units of at least one of the memory cells, others of the data processing cells, and the at least one interface units.
30. (Previously Presented) The multi-processor chip according to claim 18, wherein the bus system is adapted to interconnect a plurality of data processing cells simultaneously to a plurality of at least one of cells and units of at least one of the memory cells and the interface units.
31. (Previously Presented) The multi-processor chip according to claim 18, wherein the data processing cells are adapted to access a plurality of the memory cells.
U.S. Pat. App. Ser. No. 12/836,364

Attorney Docket No. 02885/139
RCE Amendment
32. (Previously Presented) The multi-processor chip according to claim 18, wherein the data processing cells are adapted to address a plurality of the memory cells.
33. (Previously Presented) The multi-processor chip according to claim 18, wherein the data processing cells are adapted to transfer commands to the memory cells.
34. (Previously Presented) The multi-processor chip according to claim 18, wherein the data processing cells are adapted to transfer commands to the at least one interface unit.
35. (Previously Presented) The multi-processor chip according to claim 18, wherein the data processing cells are adapted to transfer commands to memory cells and interface units.
36. (Previously Presented) The multi-processor chip according to claim 18, wherein at least one of the memory cells is adapted to store data in a non-volatile manner.
37. (Previously Presented) The multi-processor chip according to claim 18, wherein the multi-processor chip is adapted for video-processing.
38. (Previously Presented) The multi-processor chip according to claim 18, wherein at least some of at least one of the data processing cells, the memory cells, and the at least one interface unit operate at different clock rates for lowering power consumption.
39. (Previously Presented) The multi-processor chip according to claim 18, wherein the at least one MMU is implemented in the at least one interface unit.
40. (Previously Presented) The multi-processor chip according to claim 18, wherein at least one of the at least one interface unit has an implemented one of the at least one MMU.
41. (Previously Presented) The multi-processor chip according to claim 18, wherein the processing cells are connected to those of the memory cells that are in close proximity to the processing cells.
42. (Previously Presented) The multi-processor chip according to claim 18, wherein the processing cells are connected to the memory cells such that there is minimal latency times for data access.
U.S. Pat. App. Ser. No. 12/836,364

Attorney Docket No. 02885/139
RCE Amendment
43. (Previously Presented) The multi-processor chip according to claim 18, wherein data transmission between processing cells and memory cells is optimized for low latency times.
44. (Previously Presented) The multi-processor chip according to claim 18, wherein the processing cells access the memory cells in a manner that minimizes latency times for data access.
45. (Previously Presented) The multi-processor chip according to claim 18, wherein the processing cells are arranged with the memory cells in a manner that minimizes latency times for data access.
46. (Previously Presented) The multi-processor chip according to claim 18, wherein the processing cells connect to memory cells such that latency times for data access are minimized.
47. (Previously Presented) The multi-processor chip according to claim 18, wherein data is transmitted in a pipelined manner between the processing cells and the memory cells.
48. (New) A multi-processor chip, comprising:
a plurality of data processing cells, each adapted for sequentially executing at least one of algebraic and logic functions and having:
at least one arithmetic logic unit;
at least one data register file;
a program pointer; and
at least one instruction decoder;
a plurality of memory cells;
at least one interface unit;
at least one Memory Management Unit (MMU); and
a bus system for interconnecting the plurality of data processing cells, the plurality of memory cells, and the at least one interface unit;
wherein the bus system is adapted for dynamically interconnecting at runtime at least one of data processing cells and memory cells with at least one of memory cells and one or more of the at least one interface unit.
U.S. Pat. App. Ser. No. 12/836,364

Attorney Docket No. 02885/139
RCE Amendment
49. (New) The multi-processor chip according to claim 48, wherein at least some of the memory cells are cache memories.
50. (New) The multi-processor chip according to claim 49, wherein at least some of the cache memories are preloadable.
51. (New) The multi-processor chip according to claim 48, wherein at least some of the memory cells are adapted to operate as a data stack.
52. (New) The multi-processor chip according to claim 48, wherein at least some of the memory cells are adapted to operate as a data heap.
53. (New) The multi-processor chip according to claim 48, wherein at least some of the memory cells are adapted to operate as a code memory.
54. (New) The multi-processor chip according to claim 48, wherein at least some of the memory cells are adapted to operate as at least two of a data stack, a data heap, and a code memory.
55. (New) The multi-processor chip according to claim 48, wherein at least some of the memory cells are adapted to operate as at least two of a data stack, a data heap, a code memory, and a cache.
56. (New) The mụlti-processor chip according to claim 48, wherein at leaṣt some of the memory cells are adapted to operate as a data stack, a data heap, and a code memory.
57. (New) The multi-processor chip according to claim 48, wherein the data processing cells are adapted to connect simultaneously to a plurality of at least one of cells and units of at least one of the memory cells, the data processing cells, and the at least one interface units.
58. (New) The multi-processor chip according to claim 48, wherein cells of the data processing cells are adapted to connect simultaneously to other cells of the data processing cells and to a plurality of at least one of cells and units of at least one of the memory cells, the data processing cells, and the at least one interface units.
U.S. Pat. App. Ser. No. 12/836,364

Attorney Docket No. 02885/139
RCE Amendment
59. (New) The multi-processor chip according to claim 48, wherein the bus system is adapted to interconnect a data processing cell simultaneously to a plurality of at least one of cells and units of at least one of the memory cells, others of the data processing cells, and the at least one interface units.
60. (New) The multi-processor chip according to claim 48, wherein the bus system is adapted to interconnect a plurality of data processing cells simultaneously to a plurality of at least one of cells and units of at least one of the memory cells and the interface units.
61. (New) The multi-processor chip according to claim 48, wherein the data processing cells are adapted to access a plurality of the memory cells.
62. (New) The multi-processor chip according to claim 48, wherein the data processing cells are adapted to address a plurality of the memory cells.
63. (New) The multi-processor chip according to claim 48, wherein the data processing cells are adapted to transfer commands to the memory cells.
64. (New) The multi-processor chip according to claim 48, wherein the data processing cells are adapted to transfer commands to the at least one interface unit.
65. (New) The multi-processor chip according to claim 48, wherein the data processing cells are adapted to transfer commands to memory cells and interface units.
66. (New) The multi-processor chip according to claim 48, wherein at least one of the memory cells is adapted to store data in a non-volatile manner.
67. (New) The multi-processor chip according to claim 48, wherein the multiprocessor chip is adapted for video-processing.
68. (New) The multi-processor chip according to claim 48, wherein at least some of at least one of the data processing cells, the memory cells, and the at least one interface unit operate at different clock rates for lowering power consumption.
69. (New) The multi-processor chip according to claim 48, wherein the at least one MMU is implemented in the at least one interface unit.

\title{
U.S. Pat. App. Ser. No. 12/836,364 \\ Attorney Docket No. 02885/139 \\ RCE Amendment
}
70. (New) The multi-processor chip according to claim 48, wherein at least one of the at least one interface unit has an implemented one of the at least one MMU.
71. (New) The multi-processor chip according to claim 48, wherein the processing cells are connected to those of the memory cells that are in close proximity to the processing cells.
72. (New) The multi-processor chip according to claim 48, wherein the processing cells are connected to the memory cells such that there is minimal latency times for data access.
73. (New) The multi-processor chip according to claim 48, wherein data transmission between processing cells and memory cells is optimized for low latency times.
74. (New) The multi-processor chip according to claim 48, wherein the processing cells access the memory cells in a manner that minimizes latency times for data access.
75. (New) The multi-processor chip according to claim 48, wherein the processing cells are arranged with the memory cells in a manner that minimizes latency times for data access.
76. (New) The multi-processor chip according to claim 48, wherein the processing cells connect to memory cells such that latency times for data access are minimized.
77. (New) The multi-processor chip according to claim 48, wherein data is transmitted in a pipelined manner between the processing cells and the memory cells.

\title{
U.S. Pat. App. Ser. No. 12/836,364 \\ Attorney Docket No. 02885/139 \\ RCE Amendment
}

\section*{REMARKS}

With the addition of new claims 48 to 77 , claims 18 to 77 are currently pending in the present application, since claims 1 to 17 were previously canceled. No new matter has been entered. Approval and entry are respectfully requested.

Claims 18 to 47 were previously allowed. It is respectfully submitted that all of the presently pending claims are allowable. Prompt consideration and allowance of the present application are therefore earnestly solicited.

Dated: February 9, 2011

Respectfully submitted,
By: Aaron Grunberger/
Aaron Grunberger
Reg. No. 59,210
KENYON \& KENYON LLP
One Broadway
New York, New York 10004
(212) 425-7200

CUSTOMER NO 26646


This colleclion of information is required by 37 CFR 116 The information is requifed to oblan of retain a benefit by the public which is to lile fand by the USPTO to process) an applcation. Conlidentiality is governed by 35 U.S.C. 122 and 37 CFA 1.14 This collection is estimated to take 12 minutes to complele including galhering. preparing. and submitting the completed application form to the USPTC. Time will vary depending upon the individual case Any comments on the amount of time you require to complete this form andior suggestions for reducing thus burden, should be sent to the Chiet informalion Olicer. U. S. Palent and Trademark Olice U S Department of Commerce P.O. Box 1450. Alexandria. VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

\title{
NOTICE OF ALLOWANCE AND FEE(S) DUE
}

\author{
 \\ KENYON \& KENYON LLP \\ ONE BROADWAY \\ NEW YORK, NY 10004
}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ EXAMINER } \\
\hline \multicolumn{2}{|c|}{ LE, DONP } \\
\hline ARTITNTT & PAPFR NITMRER \\
\hline 2819 & \\
\hline
\end{tabular}

DATL MAILED; 02/28/2011
\begin{tabular}{|c|c|c|c|c|}
\hline APPLICATIONNO. & FILING DATE & FRST NAMEI INVENTOR & ATTORNEYDOCKET NO. & CONFIRMATION NO. \\
\hline 12/636,36-1 & \(07 / 14 / 2010\) & Marlin Verbach & 2885/13) & 2050 \\
\hline
\end{tabular}

TITLE OF INVEVTION: MULTI-CORE PROCESSING SYSTEM
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline APPLN TYPE & SMALLL ENTITY & ISSTEFEE 〕UUE: & PUTBLICATIONIEE DUE & 1PREV. PAID ISSUTE FEE & FOTAL FEESSIDUE & DATE DUE \\
\hline nomprovisional & YES & \$755 & \$300 & 80 & \$1055 & 05/31/2011 \\
\hline
\end{tabular}

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT. PROSECUTION ON THE MERITS IS CLOSED. THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS. TIIS APPLICATION IS SUBJECT TO WITHDRAWAL FROM ISSUE AT THE INITIATIVE OF TIIE OFFICE OR UPON PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308.

THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHIN THREE MONTHS FROM THE MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORY PERIOD CANNOT BE EXTENDED, SEE 35 U.S.C. 151. THE ISSUE FEE DUE INDICATED ABOVE DOES NOT REFLECT A CREDIT FOR ANY PREVIOUSLY PAID ISSUE EEE IN THIS ADPLICATION. IF AN ISSUE FEE HAS PREVIOLISLY BEEN PAID IN THIS APPLICATION (AS SHOWN ABOVE), THE RETURN OF PART B OF THIS FORM WILL BE CONSIDERED A REQUEST TO REAPPLY THE PREVIOUSLY PAID ISSUE FEE TOWARD THE ISSUE FEE NOW DUE.

\section*{IIOW TO REPLY TO TIIS NOTICE:}
I. Review the SMALL ENTITY status shown above.

If the SMALL ENTITY is showu as YES, verify your curreut SMALL ENTITY status:
A. If the status is the same, pay the TOTAL FEE(S) DUE shown above.
B. If the status above is to be removed, check box 5 b on Part B Fce(s) Transmittal and pay the PUBLICATION FEE (if required) and twice the amount of the ISSUE FEE shown above, or

If the SMALL ENTITY is showu as NO:
A. Pay TOTAL FEE(S) DUE showu above, or
B. If applicant claimed SMALL ENTITY status betore, or is uow claiming SMALL ENTITY status, check box 5 a on Part B-Fee(s) Transmittal and pay the PUBLLCATION FEE (if required) and \(1 / 2\) the ISSUE FEE shown above.
II. PART B - FEE(S) TRANSMITTAL, or its equivalent, nust he completed and returned to the United States Patent and Trademark Office (USPTO) with your ISSUE FEE and PUBLICATION FEE (if required). If you are charging the fee(s) to your deposit account, section " 4 h " of Part B - Fce(s) Transmittal should be completed and an extra copy of the form should be subnitted. If an equivalent of Part B is filed, a request to reapply a previously paid issue fee must be clearly made, and delays in processing may occur due to the difficulty in recognizing the paper as an equivalent of Part B.
III. All commumications regarding this application must give the application number. Please direct all communications prior to issuance to Mail Stop ISSUE FEE unless advised to the contrary.

IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of maintenance lees. It is patentee's responsibility to ensure timely payment of maintenance lees when due.

\section*{Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE \\ Commissioner for Patents \\ P.O. Box 1450 \\ Alexandria, Virginia 22313-1450 \\ or Fax (571)-273-2885}

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications.

CURRENT CORRESPONDENCE ADDRESS (Note: Use Block 1 for any change of address) Note: A certificate of mailing can only be used for domestic mailings of the Fee(s) Transmittal. This certificate cannot be used for any other accompanying papers. Each additional paper, such as an assignment or formal drawing, must have its own certificate of mailing or transmission.

\section*{Certificate of Mailing or Transmission}

I hereby certify that this Fee(s) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope addressed to the Mail Stop ISSUE FEE address above, or being facsimile transmitted to the USPTO (571) 273-2885, on the date indicated below.
\begin{tabular}{|rr|}
\hline & (Depositor's name) \\
\hline (Signature) \\
\hline (Date) \\
\hline
\end{tabular}
```

26646
KENYON \& KENYON LLP
ONE BROADWAY NEW YORK, NY 10004
0

```

02/28/2011
\begin{tabular}{|c|c|c|c|c|}
\hline APPLICATION NO. & IILING DATE & FIRST NAMED INVENTOR & ATTORNEY DOCKET NO. & CONTIICMATKN NO. \\
\hline 12/836,364 & 07/14/2010 & Martin Verhach & 2885/139 & 2050 \\
\hline \({ }^{2} 6646\) & \multicolumn{2}{|l|}{} & \multicolumn{2}{|c|}{ExAMINER} \\
\hline \multicolumn{3}{|l|}{KENYON \& KENYON LLP} & \multicolumn{2}{|c|}{LE, DON P} \\
\hline \multicolumn{5}{|l|}{ONE BROADWAY} \\
\hline \multicolumn{3}{|l|}{NEW YORK, NY 10004} & ARTINTT & PAPFR NITMRER \\
\hline & & & \multicolumn{2}{|l|}{2819} \\
\hline & & & DATL MAILLD; 02/28/201 & \\
\hline
\end{tabular}

Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)
(application filed on or after May 29, 2000)
The Patent Term Adjustment to date is 0 day(s). If the issue fee is paid on the date that is three months after the mailing date of this notice and the patent issues on the Tuesday before the date that is 28 weeks (six and a half months) alter the mailing date of this notice, the Patent Term Adjustment will be 0 day(s).

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Customer Service Center of the Office of Patent Publication at 1-(888)-786-0101 or (571)-272-4200.

\section*{Privacy Act Statement}

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:
1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. \(552 \mathrm{a}(\mathrm{m})\).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.
\begin{tabular}{|c|l|l|l|}
\hline \multirow{3}{*}{ Notice of A/IOWability } & Application No. & \multicolumn{1}{|l|}{ Applicant(s) } \\
& \(12 / 836,364\) & VORBACH, MARTIN \\
\cline { 2 - 4 } & Examiner & Art Unit & \\
& Don P. Le & 2819 & \\
\hline
\end{tabular}
-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address-All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included herewith (or previously mailed), a Notice of Allowance (PTOL-85) or other appropriate communication will be mailed in due course. THIS NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT RIGHTS. This application is subject to withdrawal from issue at the initiative of the Office or upon petition by the applicant. See 37 CFR 1.313 and MPEP 1308.
1. \(\boxtimes\) This communication is responsive to RCE filed 2/9/2011.
2. \(\boxtimes\) The allowed claim(s) is/are 18-77.
3. \(\boxtimes\) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a) \(\boxtimes\) All
b)
\(\square\) Some*
c)None of the:
1. \(\boxtimes\) Certified copies of the priority documents have been received.
2.Certified copies of the priority documents have been received in Application No. \(\qquad\) .
3.Copies of the certified copies of the priority documents have been received in this national stage application from the International Bureau (PCT Rule 17.2(a)).
* Certified copies not received: \(\qquad\) _.

Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file a reply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application.
THIS THREE-MONTH PERIOD IS NOT EXTENDABLE.
4. \(\square\) A SUBSTITUTE OATH OR DECLARATION must be submitted. Note the attached EXAMINER'S AMENDMENT or NOTICE OF INFORMAL PATENT APPLICATION (PTO-152) which gives reason(s) why the oath or declaration is deficient.
5. \(\square\) CORRECTED DRAWINGS ( as "replacement sheets") must be submitted.
(a) \(\square\) including changes required by the Notice of Draftsperson's Patent Drawing Review (PTO-948) attached 1) \(\square\) hereto or 2) \(\square\) to Paper No./Mail Date \(\qquad\) _.
(b) \(\square\) including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No./Mail Date \(\qquad\) .

Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d).
6.
\(\square\) DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.

Attachment(s)
1. \(\square\) Notice of References Cited (PTO-892)
2. \(\square\) \(\square\) Notice of Draftperson's Patent Drawing Review (PTO-948)
3. \(\boxtimes\) Information Disclosure Statements (PTO/SB/08), Paper No./Mail Date 2/9/2011
4.Examiner's Comment Regarding Requirement for Deposit of Biological Material

Don P Le/
Primary Examiner, Art Unit 2819
2/12/2011

\section*{EAST Search History}

EAST Search History (Prior Art)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Ref \# & Hits & Search Query & DBs & Default Operator & Plurals & Time Stamp \\
\hline L11 & 11 & (("3753008") or ("4594682") or ("5996048") or ("6260114") or ("6496902")).PN. & US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 02 / 12 \\
& 18: 29
\end{aligned}
\] \\
\hline L12 & 4 & \[
\begin{aligned}
& ((" 20020073282 ") \text { or } \\
& (" 20030070059 ") \text { or } \\
& (" 20050091468 ") \text { or } \\
& (" 20080313383 ")) . P N .
\end{aligned}
\] & US-PGPUB & OR & OFF & \[
\begin{aligned}
& 2011 / 02 / 12 \\
& 18: 31
\end{aligned}
\] \\
\hline L13 & 41781 & runtime and interface & US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB & OR & ON & \[
\begin{aligned}
& 2011 / 02 / 12 \\
& 18: 31
\end{aligned}
\] \\
\hline L14 & 37275 & 13 and memory & \begin{tabular}{l}
US-PGPUB; USPAT; \\
USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB
\end{tabular} & OR & ON & \[
\begin{aligned}
& 2011 / 02 / 12 \\
& 18: 31
\end{aligned}
\] \\
\hline L15 & 14944 & 14 and register & US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB & OR & ON & \[
\begin{aligned}
& 2011 / 02 / 12 \\
& 18: 32
\end{aligned}
\] \\
\hline L16 & 6146 & 15 and pointer & US-PGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM_TDB & OR & ON & \[
\begin{aligned}
& 2011 / 02 / 12 \\
& 18: 32
\end{aligned}
\] \\
\hline L17 & 3591 & 16 and cache & US-PGPUB; USPAT; USOCR; FPRS; EEPO; JPO; DERWENT; IBM_TDB & OR & ON & \[
\begin{aligned}
& 2011 / 02 / 12 \\
& 18: 32
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline L18 & 676 & 17 and decoder & US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB & OR & ON & \[
\begin{aligned}
& 2011 / 02 / 12 \\
& 18: 33
\end{aligned}
\] \\
\hline L19 & 210 & 18 and mmu & US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB & OR & ON & \[
\begin{aligned}
& 2011 / 02 / 12 \\
& 18: 33
\end{aligned}
\] \\
\hline
\end{tabular}

2/ 12/2011 6:37:52 PM
C:\Documents and Settings\dle1\My Documents\EAST\Workspaces\default.wsp
\begin{tabular}{|c|c|c|}
\hline Index of Claims & Application/Control No.
\[
12836364
\] & \begin{tabular}{l}
Applicant(s)/Patent Under Reexamination \\
VORBACH, MARTIN
\end{tabular} \\
\hline  & \begin{tabular}{l}
Examiner \\
Don P Le
\end{tabular} & \begin{tabular}{l}
Art Unit \\
2819
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline\(\checkmark\) & Rejected \\
\hline\(=\) & Allowed \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline- & Cancelled \\
\hline\(\div\) & Restricted \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \(\mathbf{N}\) & Non-Elected \\
\hline \(\mathbf{I}\) & Interference \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline A & Appeal \\
\hline O & Objected \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Index of Claims & Application/Control No.
\[
12836364
\] & \begin{tabular}{l}
Applicant(s)/Patent Under Reexamination \\
VORBACH, MARTIN
\end{tabular} \\
\hline  & \begin{tabular}{l}
Examiner \\
Don P Le
\end{tabular} & Art Unit 2819 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline\(\checkmark\) & Rejected \\
\hline\(=\) & Allowed \\
\hline & \(\boxed{ }\) \\
\hline\(\square\) & Restricted \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \(\mathbf{N}\) & Non-Elected \\
\hline \(\mathbf{I}\) & Interference \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline A & Appeal \\
\hline O & Objected \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\(\square\) Claims renumbered in the same order as presented by applicant} & & \(\square \mathrm{CPA}\) & \(\square\) T.D. & \(\square\) & R.1.47 \\
\hline \multicolumn{2}{|c|}{CLAIM} & \multicolumn{9}{|c|}{DATE} \\
\hline Final & Original & 11/07/2010 & 02:12:2011 & & & & & & & \\
\hline 20 & 37 & = & = & & & & & & & \\
\hline 21 & 38 & \(=\) & \(=\) & & & & & & & \\
\hline 22 & 39 & \(=\) & \(=\) & & & & & & & \\
\hline 23 & 40 & \(=\) & \(=\) & & & & & & & \\
\hline 24 & 41 & \(=\) & \(=\) & & & & & & & \\
\hline 25 & 42 & \(=\) & \(=\) & & & & & & & \\
\hline 26 & 43 & \(=\) & \(=\) & & & & & & & \\
\hline 27 & 44 & \(=\) & \(=\) & & & & & & & \\
\hline 28 & 45 & \(=\) & \(=\) & & & & & & & \\
\hline 29 & 46 & = & \(=\) & & & & & & & \\
\hline 30 & 47 & \(=\) & \(=\) & & & & & & & \\
\hline 31 & 48 & & \(=\) & & & & & & & \\
\hline 32 & 49 & & \(=\) & & & & & & & \\
\hline 33 & 50 & & \(=\) & & & & & & & \\
\hline 34 & 51 & & \(=\) & & & & & & & \\
\hline 35 & 52 & & \(=\) & & & & & & & \\
\hline 36 & 53 & & \(=\) & & & & & & & \\
\hline 37 & 54 & & = & & & & & & & \\
\hline 38 & 55 & & \(=\) & & & & & & & \\
\hline 39 & 56 & & \(=\) & & & & & & & \\
\hline 40 & 57 & & \(=\) & & & & & & & \\
\hline 41 & 58 & & = & & & & & & & \\
\hline 42 & 59 & & \(=\) & & & & & & & \\
\hline 43 & 60 & & \(=\) & & & & & & & \\
\hline 44 & 61 & & \(=\) & & & & & & & \\
\hline 45 & 62 & & = & & & & & & & \\
\hline 46 & 63 & & \(=\) & & & & & & & \\
\hline 47 & 64 & & \(=\) & & & & & & & \\
\hline 48 & 65 & & \(=\) & & & & & & & \\
\hline 49 & 66 & & = & & & & & & & \\
\hline 50 & 67 & & = & & & & & & & \\
\hline 51 & 68 & & \(=\) & & & & & & & \\
\hline 52 & 69 & & \(=\) & & & & & & & \\
\hline 53 & 70 & & = & & & & & & & \\
\hline 54 & 71 & & \(=\) & & & & & & & \\
\hline 55 & 72 & & \(=\) & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Index of Claims & Application/Control No.
\[
12836364
\] & \begin{tabular}{l}
Applicant(s)/Patent Under Reexamination \\
VORBACH, MARTIN
\end{tabular} \\
\hline \(\qquad\) & \begin{tabular}{l}
Examiner \\
Don P Le
\end{tabular} & Art Unit 2819 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline\(\checkmark\) & Rejected \\
\hline\(=\) & Allowed \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline- & Cancelled \\
\hline\(\div\) & Restricted \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \(\mathbf{N}\) & Non-Elected \\
\hline \(\mathbf{I}\) & Interference \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline A & Appeal \\
\hline O & Objected \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\(\square\) Claims renumbered in the same order as presented by applicant} & & \(\square\) & CPA & \(\square\) & T. \({ }^{\text {d }}\) & \(\square\) & R.1.47 \\
\hline & & \multicolumn{11}{|c|}{DATE} \\
\hline Final & Original & 11/07/2010 & 02:12:2011 & & & & & & & & & \\
\hline 56 & 73 & & = & & & & & & & & & \\
\hline 57 & 74 & & = & & & & & & & & & \\
\hline 58 & 75 & & = & & & & & & & & & \\
\hline 59 & 76 & & = & & & & & & & & & \\
\hline 60 & 77 & & = & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Search Notes & Application/Control No.
\[
12836364
\] & \begin{tabular}{l}
Applicant(s)/Patent Under Reexamination \\
VORBACH, MARTIN
\end{tabular} \\
\hline  & \begin{tabular}{l}
Examiner \\
Don P Le
\end{tabular} & \begin{tabular}{l}
Art Unit \\
2819
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|c|c|}
\hline \multicolumn{6}{|c|}{ SEARCHED } \\
\hline \multicolumn{1}{|c|}{ Class } & Subclass & Date & Examiner \\
\hline 326 & \(37-41,46\) & & \(11 / 05 / 2010\) & dl \\
\hline 326 & updated above & \(2 / 10 / 2011\) & dl \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline \multicolumn{3}{|c|}{ SEARCH NOTES } \\
\hline Search Notes & Date & Examiner \\
\hline east + interference & \(11 / 7 / 2010\) & dl \\
\hline east updated + interference & \(2 / 12 / 2011\) & dl \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ INTERFERENCE SEARCH } \\
\hline Class & Subclass & Date & Examiner \\
\hline & see search notes & \(11 / 7 / 2010\) & dl \\
\hline & see search notes & \(2 / 12 / 2011\) & dl \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\square\) & \multicolumn{7}{|l|}{Claims renumbered in the same order as presented by applicant} & \multicolumn{2}{|c|}{\(\square\)} & \multicolumn{2}{|r|}{\(\square \quad\) T.D.} & \multicolumn{3}{|c|}{\(\square \quad \mathrm{R} .1 .47\)} & \multirow[b]{2}{*}{Original} \\
\hline Final & Original & Final & \\
\hline & 1 & & 17 & 16 & 33 & 32 & 49. & 48 & 65 & & & & & & \\
\hline & 2 & 1 & 18 & 17 & 34 & 33 & 50 & 49 & \(\infty\) & & & & & & \\
\hline & 3 & 2 & 19 & 18 & 35 & 34 & 51 & 50 & 67 & & & & & & \\
\hline & 4 & 3 & 20 & 19 & 36 & 35 & 52 & 51 & 68 & & & & & & \\
\hline & 5 & 4 & 21 & 20 & 37 & 38 & 53 & 52 & 69 & & & & & & \\
\hline & 6 & 5 & 22 & 21 & 38 & 37 & 54 & 53 & 70 & & & & & & \\
\hline & 7 & 6 & 23 & 22 & 39 & 38 & 55 & 54 & 71 & & & & & & \\
\hline & 8 & 7 & 24 & 23 & 40 & 39 & 56 & 55 & 72 & & & & & & \\
\hline & 9 & 8 & 25 & 24 & 41 & 40 & 57 & 56 & 73 & & & & & & \\
\hline & 10 & 9 & 26 & 25 & 42 & 41 & 58 & 57 & 74 & & & & & & \\
\hline & 11 & 10 & 27 & 26 & 43 & 42 & 59 & 58 & 75 & & & & & & \\
\hline & 12 & 11 & 28 & 27 & 44 & 43 & 60 & 59 & 76 & & & & & & \\
\hline & 13 & 12 & 29 & 28 & 45 & 44 & 61 & 60 & 77 & & & & & & \\
\hline & 14 & 13 & 30 & 29 & 46 & 45 & 62 & & & & & & & & \\
\hline & 15 & 14 & 31 & 30 & 47 & 45 & 63 & & & & & & & & \\
\hline & 16 & 15 & 32 & 31 & 48 & 47 & 64 & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
NONE \\
(Assistant Examiner)
\end{tabular} & (Date) & \multicolumn{2}{|l|}{\begin{tabular}{l}
Total Claims Allowed: \\
60
\end{tabular}} \\
\hline \begin{tabular}{l}
Don P Lei \\
Primary Examinel, Art Unit 2819 \\
(Primary Examiner)
\end{tabular} & \begin{tabular}{l}
02/12/2011 \\
(Date)
\end{tabular} & \begin{tabular}{l}
O.G. Print Claim(s) \\
1
\end{tabular} & O.G. Print Figure
\[
2 A
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Altorney Docket No. & \begin{tabular}{l} 
Serial No. \\
\(2885 / 139\)
\end{tabular} \\
\hline Applicant(s) & \(12 / 836,364\) \\
VORBACH & \\
\hline Filing Date & Group Ar Unit \\
July 14,2010 & 2819 \\
\hline
\end{tabular}

\section*{U.S. PATENT DOCUMENTS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline EXAMINER'S
INITIALS & PATENT/ PUBLICATION NUMBER & PATENT/PUBLICATION
DATE & NAME & CLASS & SUBCLASS & \[
\begin{aligned}
& \text { FILING } \\
& \text { DATE }
\end{aligned}
\] \\
\hline & 3,753,008 & August 14, 1973 & Guarnaschelli & & & \\
\hline & 4,594,682 & June 10,1986 & Drimak & & & \\
\hline & 5,996,048 & November 30, 1999 & Cherabuddi et al. & & & \\
\hline & 6,260,114 & July 10, 2001 & Schug & & & \\
\hline & 6,496,902 & December 17,2002 & Faanes et al. & & & \\
\hline & 2002/0073282 & Func 13, 2002 & Chanvel et al. & & & \\
\hline & 2003/0070059 & April 10,2003 & Dally et al. & & & \\
\hline & 2005/0091468 & April 28, 2005 & Morita et al. & & & \\
\hline & 2008/0313383 & December 18,2008 & Morita et al. & & & \\
\hline
\end{tabular}

\section*{FOREIGN PATENT DOCUMENTS}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
EXAMINER'S \\
MITIALS
\end{tabular} & \begin{tabular}{c} 
DOCUMENT \\
NUMBER
\end{tabular} & DATE & COUNTRY & CLASS & SUBCLASS & YES & NO \\
\hline & & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

\section*{OTHER DOCUMENTS}
\begin{tabular}{|c|c|}
\hline EXAMINER'S
INITIALS & AUTHOR, TITLE, DATE, PERTINENT PAGES, ETC. \\
\hline & ARM Limited, "ARM Architecture Reference Manual," December 6, 2000, pp. Al0-6-A10-7. \\
\hline & Li, Zhiyuan, et al., "Configuration prefetching techniques for partial reconfigurable coprocessor with relocation and defragmentation," International Symposium on Field Programmable Gate Arrays, February 1, 2002, pp. 187-195. \\
\hline & Melvin, Stephen et al, "Hardware Suppor for Large Atomic Units in Dynamically Scheduled Machines," Computer Science Division, University of Califormia, Berkeley, IEEE (1988), pp. 60-63. \\
\hline & Roterberg, Eric., et al., "Trace Cache: a Low Latency Approach to High Bandwidth Instruction Fetching," Proceedings of the 29"1 Annual Internatinoal Symposium on Michonrchitecture, Paris, France, IEEE (1996), 12 pages. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline EXAMNER & DOn Le/ & DATE CONSIDERED \\
\hline \begin{tabular}{l} 
EXAMINER: Initial if citation considered, whether or not citation is in conformance with M.P.E.P. \(609 ;\) draw line through citation if not in conformance and not \\
considered. Include copy of this form with next communication to applicant.
\end{tabular} \\
\hline
\end{tabular}

\section*{PART B - FEE(S) TRANSMITTTAL}

\section*{Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE Commissioner for Patents P.O. Box 1450 \\ Alexandria, Virginia 22313-1450 \\ or Fax (571)-273-2885}

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indiculed unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications.

CURRENT CORRESPONDENCE ADDRESS (Note: Use Block I for any change of address)
\(26546 \quad 7590 \quad\) 02/28/2011

KENYON \& KENYON LLP
ONE BROADWAY
NEW YORK, NY 10004

Note: A certificate of mailing can only be used for domestic mailings of the Fee(s) Transmittal. This certificate cannot be used for any other accompanying papers. Each additional paper, such as an assignment or formal drawing, must have its own certificate of mailing or transmission.

\section*{Certificate of Mailing or Transmission}

I hereby certify that this Fee(s) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope addressed to the Mail Stop ISSUE FEE address above, or being facsimile transmitted to the USPTO (571) 273-2885, on the date indicated below.
\begin{tabular}{|c|c|c|c|c|}
\hline APPLICATION NO. & FILING DATE & FIRST NAMED INVENTOR & ATTORNEY DOCKET NO. & CONFIRMATION NO. \\
\hline \(12 / 836,364\) & \(07 / 14 / 2010\) & Martin Vorbach & \(2885 / 139\)
\end{tabular}

TITLE OF INVENTION: MULTI-CORE PROCESSING SYSTEM
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline APPLN. TYPE & SMALL ENTITY & ISSUE FEE DUE & PUBLICATION FEE DUE & PREV. PADI ISSUE FEE & TOTAL FEE(S) DUE & DATE DUE \\
\hline nonprovisional & YES & \$755 & \$300 & \$0 & \$1055 & 05/31/2011 \\
\hline & & ART UNTT & CLASS-SUBCLASS & & & \\
\hline & & 2819 & 326-038000 & & & \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
1. Change of correspondence address or indication of "Fee Address" (37 CFR 1.363). \\
Change of correspondence address (or Change of Correspondence Address form \(\mathrm{PTO} / \mathrm{SB} / 122\) ) attached. \\
"Fee Address" indication (or "Fee Address" Indication form PTO/SB/47; Rev 03-02 or more recent) altached. Use of a Customer Number is required.
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
2. For printing on the patent front page, list \\
(1) the names of up to 3 registered patent attomeys or agents OR, alternatively,
\end{tabular}} & \begin{tabular}{ll}
1 Kenyon \& \\
a & 2 \\
is & 3
\end{tabular} & LLP \\
\hline
\end{tabular}
3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for recordation as set forth in 37 CFR 3.I1. Completion of this form is NOT a substitute for filing an assignment.
(A) NAME OF ASSIGNEE
(B) RESIDENCE: (CITY and STATE OR COUNTRY)

Please check the appropriate assignee category or categories (will not be printed on the patent): \(\square\) Individual \(\square\) Corporation or other private group entity \(\square\) Government

4a. The following fee(s) are submitted:
\(\square\) Issue Fee
Publication Fee (No small entity discount permitted)
Advance Order - \# of Copies


4b. Payment of Fee(s): (Please first reapply any previously paid issue fee shown above) A check is enclosed.
\(\boxed{Z}\) Payment by credit card. Form PTO-2038 is attached.
\(\square\) The Director is hereby authorized to charge the required fee(s), any deficiency, or credit any overpayment, to Deposit Account Number___ (enclose an extra copy of this form).
5. Change in Entity Status (from status indicated above)

NOTE: The Issue Fee and Publication Fee (if required) will not be accepted from anyone other than the applicant; a registered attorney or agent; or the assignee or other party in interest as shown by the records of the Uniled States Patent and Trademark Office.
\begin{tabular}{l} 
Authorized Signature___ Aaron Grunberger/ \\
Typed or printed name _ Aaron Grunberger \\
\hline
\end{tabular}
Date March 9, 2011

Registration No. \(\quad 59,210\)
This collection of information is required by 37 CFR 1.311 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14 . This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450 , Alexandria, Virginia 22313-1450.
Under the Paperwork Reduction Act of 1995 , no persons are required to respond to a collection of information unless it displays a valid OMB control number.
\begin{tabular}{|l|l|}
\hline Application Number: & 12836364 \\
\hline & \\
\hline & \\
& \\
\hline & \\
\hline Tiling Date: & \\
\hline Jul-2010 Invention: & MULTI-CORE PROCESSING SYSTEM \\
\hline First Named Inventor/Applicant Name: & Martin Vorbach \\
\hline Filer: & Aaron Grunberger/Eunice Chang \\
\hline Attorney Docket Number: & \(2885 / 139\) \\
\hline
\end{tabular}

Filed as Small Entity

\section*{Utility under 35 USC 111 (a) Filing Fees}
\begin{tabular}{|c|c|c|c|c|}
\hline Description & Fee Code & Quantity & Amount & Sub-Total in USD(\$) \\
\hline \multicolumn{5}{|l|}{Basic Filing:} \\
\hline \multicolumn{5}{|l|}{Pages:} \\
\hline \multicolumn{5}{|l|}{Claims:} \\
\hline \multicolumn{5}{|l|}{Miscellaneous-Filing:} \\
\hline \multicolumn{5}{|l|}{Petition:} \\
\hline \multicolumn{5}{|l|}{Patent-Appeals-and-Interference:} \\
\hline \multicolumn{5}{|l|}{Post-Allowance-and-Post-Issuance:} \\
\hline Utility Appl issue fee & 2501 & 1 & 755 & 755 \\
\hline Publ. Fee- early, voluntary, or normal & 1504 & 1 & \[
300
\]
\(\square\) & \[
100^{300}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|}
\hline Description & Fee Code & Quantity & Amount & \begin{tabular}{c} 
Sub-Total in \\
USD(\$)
\end{tabular} \\
\hline Extension-of-Time: & & \\
\hline Miscellaneous: & Total in USD (\$) & 1055 \\
\hline
\end{tabular}

INTEL - 1004
Page 518 of 539
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Electronic Acknowledgement Receipt} \\
\hline EFS ID: & 9622713 \\
\hline Application Number: & 12836364 \\
\hline International Application Number: & \\
\hline Confirmation Number: & 2050 \\
\hline Title of Invention: & MULTI-CORE PROCESSING SYSTEM \\
\hline First Named Inventor/Applicant Name: & Martin Vorbach \\
\hline Customer Number: & 26646 \\
\hline Filer: & Aaron Grunberger/Eunice Chang \\
\hline Filer Authorized By: & Aaron Grunberger \\
\hline Attorney Docket Number: & 2885/139 \\
\hline Receipt Date: & 09-MAR-2011 \\
\hline Filing Date: & 14-JUL-2010 \\
\hline Time Stamp: & 16:13:27 \\
\hline Application Type: & Utility under 35 USC 111(a) \\
\hline
\end{tabular}

\section*{Payment information:}
\begin{tabular}{|c|c|}
\hline Submitted with Payment & yes \\
\hline Payment Type & Credit Card \\
\hline Payment was successfully received in RAM & \$1055 \\
\hline RAM confirmation Number & 2689 \\
\hline Deposit Account & 110600 \\
\hline Authorized User & GRUNBERGER,AARON \\
\hline \multicolumn{2}{|l|}{The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: Charge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees) Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination NFTfELE fe95 004} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline APPJ.ICATKN No. & Isstif. DATE & Patent No. & ATTORNFY DECKFT NO & COnfirmation no. \\
\hline 12/836,364 & 04/19/2011 & \multirow[t]{3}{*}{792876} & \multirow[t]{3}{*}{2885/1.39} & \multirow[t]{3}{*}{2050} \\
\hline 26646 & \multirow[t]{2}{*}{7597)
NYON LLP
AY
13/23/2011} & & & \\
\hline KENYON \& ONE BROAD NEW YORK, & & & & \\
\hline
\end{tabular}

\section*{ISSUE NOTIFICATION}

The projected patent number and issue date are specified above.
Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)
(application filed on or after May 29, 2000)
The Patent Term Adjustment is 0 day(s). Any patent to issue from the above-identified application will include an indication of the adjustment on the front page.

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Application Assistance Unit (AAU) of the Office of Data Management (ODM) at (571)-272-4200.

APPLICANT(s) (Please see PAIR WEB site hitpp//pair:uspto gov for additional applicants):

\footnotetext{
Martin Vorbach, Munich, GERMANY;
}


\section*{UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION}

PATENT NO. : 7,928,763
APPLICATION NO.: 12/836,364
ISSUE DATE : April 19, 2011
INVENTOR(S) : Martin VORBACH
\(\qquad\)
ereby corrected as shown below:

On the face of the patent:
Related U.S. Application Data
(63)
change
"Continuation of application No. 12/541,299, filed on Aug. 14, 2009, now Pat. No. \(7,782,087\), which is a continuation of application No. 12/082,073, filed on Apr. 7, 2008, now Pat. No. 7,602,214, which is a continuation of application No. 10/526,595, filed as application No. PCT/EP03/38599 on Sep. 8, 2003, now Pat. No. \(7,394,284^{\prime \prime}\)
to --Continuation of application No. 12/541,299, filed on Aug. 14, 2009, now Pat. No. \(7,782,087\), which is a continuation of application No. 12/082,073, filed on Apr. 7, 2008, now Pat. No. 7,602,214, which is a continuation of application No. 10/526,595, filed as application No. PCT/EP03/09957 on Sep. 8, 2003, now Pat. No. 7,394,284--

Column 1, line 14:
change "PCT/EP03/38599" to --PCT/EP03/09957-

MAILING ADDRESS OF SENDER (Please do not use customer number below):
Kenyon \& Kenyon LLP
One Broadway
New York, NY 10004
This collection of information is required by 37 CFR \(1.322,1.323\), and 1.324. The information is required to obtain or retain a beneff by the public which is to flle (and by the USPTO to process) an application. Confidentiality Is govemed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 1.0 hour to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief information Officer, U.S. Patent and Trademark Offce, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA \(22313-1450\). DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Attention Certificate of Corrections Branch, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.
\begin{tabular}{|c|c|c|c|c|}
\hline Application Number: & \multicolumn{4}{|l|}{12836364} \\
\hline Filing Date: & \multicolumn{4}{|l|}{14-Jul-2010} \\
\hline Title of Invention: & \multicolumn{4}{|l|}{MULTI-CORE PROCESSING SYSTEM} \\
\hline First Named Inventor/Applicant Name: & \multicolumn{4}{|l|}{Martin Vorbach} \\
\hline Filer: & \multicolumn{4}{|l|}{Aaron Grunberger/Eunice Kim} \\
\hline Attorney Docket Number: & \multicolumn{4}{|l|}{2885/139} \\
\hline \multicolumn{5}{|l|}{Filed as Large Entity} \\
\hline \multicolumn{5}{|l|}{Utility under 35 USC 111 (a) Filing Fees} \\
\hline Description & Fee Code & Quantity & Amount & Sub-Total in USD(\$) \\
\hline \multicolumn{5}{|l|}{Basic Filing:} \\
\hline \multicolumn{5}{|l|}{Pages:} \\
\hline \multicolumn{5}{|l|}{Claims:} \\
\hline \multicolumn{5}{|l|}{Miscellaneous-Filing:} \\
\hline \multicolumn{5}{|l|}{Petition:} \\
\hline \multicolumn{5}{|l|}{Patent-Appeals-and-Interference:} \\
\hline \multicolumn{5}{|l|}{Post-Allowance-and-Post-Issuance:} \\
\hline Certificate of correction & 1811 & 1 & 100 & 100 \\
\hline \multicolumn{3}{|l|}{Extension-of-Time:} & \multicolumn{2}{|l|}{INTEL-1004} \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|}
\hline Description & Fee Code & Quantity & Amount & \begin{tabular}{c} 
Sub-Total in \\
USD(\$)
\end{tabular} \\
\hline Miscellaneous: & Total in USD (\$) & 100 \\
\hline
\end{tabular}

INTEL - 1004
Page 525 of 539
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Electronic Acknowledgement Receipt} \\
\hline EFS ID: & 13821550 \\
\hline Application Number: & 12836364 \\
\hline International Application Number: & \\
\hline Confirmation Number: & 2050 \\
\hline Title of Invention: & MULTI-CORE PROCESSING SYSTEM \\
\hline First Named Inventor/Applicant Name: & Martin Vorbach \\
\hline Customer Number: & 26646 \\
\hline Filer: & Aaron Grunberger/Eunice Kim \\
\hline Filer Authorized By: & Aaron Grunberger \\
\hline Attorney Docket Number: & 2885/139 \\
\hline Receipt Date: & 24-SEP-2012 \\
\hline Filing Date: & 14-JUL-2010 \\
\hline Time Stamp: & 16:01:16 \\
\hline Application Type: & Utility under 35 USC 111(a) \\
\hline
\end{tabular}

\section*{Payment information:}
\begin{tabular}{|c|c|}
\hline Submitted with Payment & yes \\
\hline Payment Type & Credit Card \\
\hline Payment was successfully received in RAM & \$100 \\
\hline RAM confirmation Number & 3088 \\
\hline Deposit Account & 110600 \\
\hline Authorized User & GRUNBERGER, AARON \\
\hline \multicolumn{2}{|l|}{The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: Charge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees) Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination NFTfELE fe95 004} \\
\hline
\end{tabular}


\section*{DATE : 10/4/2012}

TO SPE OF : ART UNIT 2819
SUBJECT : Request for Certificate of Correction for Appl. No.: 12/836,364_Patent No.: 7,928,763
CofC mailroom date: 9/24/2012
Please respond to this request for a certificate of correction within 7 days.
FOR IFW FILES:
Please review the requested changes/corrections as shown in the COCIN document(s) in the IFW application image. No new matter should be introduced nor should the scope or meaning of the claims be changed.
Please complete the response (see below) and forward the completed response to scanning using document code COCX.

\section*{FOR PAPER FILES:}

Please review the requested changes/corrections as shown in the attached certificate of correction. Please complete this form (see below) and forward it with the file to:

Certificates of Correction Branch (CofC)
Randolph Square - 9D10-A
Palm Location 7580
In particular note: Continuning data

\section*{Ernest T. WFirte 571272 -3385}

Certificates of Correction Branch
703-756-1814

\section*{Thank You For Your Assistance}

The request for issuing the above-identified correction(s) is hereby:
Note your decision on the appropriate box.
- Approved
- Approved in Part
- Denied

All changes apply.
Specify below which changes do not apply.
State the reasons for denial below.

Comments: \(\qquad\)
\(\qquad\)
\(\qquad\)

SPE

DATE : October 05, 2012
TO SPE OF : ART UNIT 2819
SUBJECT : Request for Certificate of Correction on Patent No.: 7,928,763
A response is requested with respect to the accompanying request for a certificate of correction.
Please complete this form and return with file, within 7 days to:
Certificates of Correction Branch - ST (South Tower) 9A22
Palm location 7590-Tel. No. (703) 305-8309
With respect to the change(s) requested, correcting Office and/or Applicant's errors, should the patent read as shown in the certificate of correction? No new matter should be introduced, nor should the scope or meaning of the claims be changed.

Thank You For Your Assistance

\section*{Certificates of Correction Branch}

The request for issuing the above-identified correction(s) is hereby:
Note your decision on the appropriated box.
- Approved
\(\square\) Approved in Part
\(\square\) Denied

All changes apply.

Specify below which changes do not apply.

State the reasons for denial below.

\section*{Comments:}

\title{
UNITED STATES PATENT AND TRADEMARK OFFICE \\ CERTIFICATE OF CORRECTION
}
\begin{tabular}{lll} 
PATENT NO. & \(: 7,928,763\) B2 & Page 1 of 1 \\
APPLICATION NO. & \(: 12 / 836364\) & \\
DATED & \(:\) April 19,2011 & \\
INVENTOR(S) & \(:\) Martin Vorbach &
\end{tabular}

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Title Page, Item (63):
Related U.S. Application Data
change
"Continuation of application No. 12/541,299, filed on Aug. 14, 2009, now Pat. No. 7,782,087, which is a continuation of application No. 12/082,073, filed on Apr. 7, 2008, now Pat. No. 7,602,214, which is a continuation of application No. 10/526,595, filed as application No. PCT/EP03/38599 on Sep. 8, 2003, now Pat. No. 7,394,284"
to --Continuation of application No. 12/541,299, filed on Aug. 14, 2009, now Pat. No. 7,782,087, which is a continuation of application No. 12/082,073, filed on Apr. 7, 2008, now Pat. No. 7,602,214, which is a continuation of application No. 10/526,595, filed as application No. PCT/EP03/09957 on Sep. 8, 2003, now Pat. No. 7,394,284--

Column 1, line 14:
change "PCT/EP03/38599" to --PCT/EP03/09957--

Signed and Sealed this Sixth Day of November, 2012


David J. Kappos
Director of the United States Patent and Trademark Office

\section*{POWER OF ATTORNEY TO PROSECUTE APPLICATIONS BEFORE THE USPTO}

I hereby revoke all previous powers of altorney given in the application identified in the attached statement under 37 CFR 3.73(c).
I hereby appoint:
Practifioners associaled with Customar Number:

\section*{OR}

\section*{73481}

Practitioner(s) named below if more than sen patent praclitioners are to be named, then a customer number must be used):


As altomey(s) or agent(s) to represent the undersigned before the United Staps Patent and Trademark Office (USFTO) in connection whh any and ail patent applications assigned only to the undersigned according to the USPTO assignment racords or assignments documents attached to this form in accordance wilh 37 CFR 3.73 (c).

Phase changa the carrespondence address for the application tifentified in the allached slaiement under 37 CFR 3.73(c) to:
The address associated with Customer Number:
\begin{tabular}{rl} 
Assignee Name and Addrass: & PACT XPP TECHNOLOGIES AG \\
& Walter-Gropius-Str. 15 \\
& 80807 Munich Germany
\end{tabular}

A copy of this form, together with a statement under 37 CFR 3.73 (c) (Form ProlalA/96 or equivalent) is required to be Fifed in each application in which this form is used. The statemert under 37 CFR 3.73 (c) may be completed by one of The practitoners appointed in this form, and must ldentify the application in whlch this Power of Attorney ba to be filed.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{\begin{tabular}{l}
SIGNATURE of Assignee of Record \\
The individual yotose signalure and tive is supplied below is authorized to act on behalf of the assignee
\end{tabular}} \\
\hline Signature & \% \(/ 2\). &  \\
\hline Name & Sartin Vorbach & Telephone \\
\hline Title & (") mm\()\) & \\
\hline
\end{tabular}
 by the USPTO to process) an application. Confidendetlly is govemed by 35 U.S.C 122 and 37 CFR 1.14 and \(\ddagger .14\) Thes coliection is osit:maled to take 3 murutes
 comments on the amound of time you require to comptete this form andior suggessions for reducing this bijrden, shouid be sent to the Chief information Officer, U.S. Patent and Tradomarh Otuce, U.S. Department of Commerce. PO. Bax 3450 , Abexandra, VA 22313.1450 . DO NOT SENO FEES OR COMPEETED FORMS TO THIS ADCRESS. SEND TO: Commalssionser for Patents, P.O. Zox 1450, Aloxandria, VA 223131450.

If you need assistance in compleling the form, call 1-800-PTO-9+99 and select option 2.

\section*{Privacy Act Statement}

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:
1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

\section*{}


MEN：MUITHGORE FROCESSME SYSTMEN
PABT KPF TEEMNOLOEIES MC




 \(\qquad\)




\(\square\)




\(\square\)






 \(\qquad\) \＃rins \(\qquad\)
 kesontis misashak＂

\＃以ण\％








\＃M\＆


\section*{K納 \＃人}








\section*{}
，\(\# \%\) \(\qquad\)

\＆\＆ \(\qquad\)
FACT XPE TECMNOLOSICS MG

 Finma． 1893

，W5M\％ \(\qquad\) 3\％． \(\qquad\)
 apel \(\qquad\) ＂\＃3Mes \(\qquad\) M 介 \＄

S．Wrm\％ \(\qquad\) Ws \(\qquad\)
 \＄ow \(\qquad\) \＆wams \(\qquad\)


4．Froms \(\qquad\) \％ \(\qquad\)
 seal \(\qquad\) ＂Marys \(\qquad\)










3makss
Martin Vorbach

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Electronic Acknowledgement Receipt} \\
\hline EFS ID: & 19867922 \\
\hline Application Number: & 12836364 \\
\hline International Application Number: & \\
\hline Confirmation Number: & 2050 \\
\hline Title of Invention: & MULTI-CORE PROCESSING SYSTEM \\
\hline First Named Inventor/Applicant Name: & Martin Vorbach \\
\hline Customer Number: & 26646 \\
\hline Filer: & Edward Peter Heller/Emi Rhodes \\
\hline Filer Authorized By: & Edward Peter Heller \\
\hline Attorney Docket Number: & 2885/139 \\
\hline Receipt Date: & 14-AUG-2014 \\
\hline Filing Date: & 14-JUL-2010 \\
\hline Time Stamp: & 15:06:56 \\
\hline Application Type: & Utility under 35 USC 111(a) \\
\hline
\end{tabular}

\section*{Payment information:}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Submitted with Payment} & \multicolumn{4}{|l|}{no} \\
\hline \multicolumn{6}{|l|}{File Listing:} \\
\hline Document Number & Document Description & File Name & File Size(Bytes)/ Message Digest & Multi Part /.zip & Pages (if appl.) \\
\hline \multirow{2}{*}{1} & \multirow{2}{*}{Power of Attorney} & \multirow{2}{*}{PACT_POA_140210.pdf} & 128954 & \multirow{2}{*}{no} & \multirow{2}{*}{2} \\
\hline & & & \(\underset{\substack{\text { dib7e26a7b4flefeof9elda9794fe2098352 } \\ \text { 4999 }}}{ }\) & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline
\end{tabular}

The page size in the PDF is too large. The pages should be \(8.5 \times 11\) or A4. If this PDF is submitted, the pages will be resized upon entry into the Image File Wrapper and may affect subsequent processing
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Information:} \\
\hline \multirow{2}{*}{2} & \multirow[t]{2}{*}{Assignee showing of ownership per 37 CFR 3.73.} & \multirow[t]{2}{*}{\begin{tabular}{l}
PACT-034-DE-PCT- \\
US-3C1_CFR373c_Signed.pdf
\end{tabular}} & 358357 & \multirow{2}{*}{no} & \multicolumn{2}{|c|}{\multirow{2}{*}{2}} \\
\hline & & &  & & & \\
\hline \multicolumn{7}{|l|}{Warnings:} \\
\hline \multicolumn{7}{|l|}{Information:} \\
\hline \multicolumn{3}{|r|}{Total Files Size (in bytes):} & \multicolumn{4}{|c|}{487311} \\
\hline \multicolumn{7}{|l|}{This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.} \\
\hline \multicolumn{7}{|l|}{New Applications Under 35 U.S.C. 111} \\
\hline \multicolumn{7}{|l|}{National Stage of an International Application under 35 U.S.C. 371} \\
\hline \multicolumn{7}{|l|}{If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.} \\
\hline \multicolumn{7}{|l|}{New International Application Filed with the USPTO as a Receiving Office} \\
\hline \multicolumn{7}{|l|}{If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.} \\
\hline
\end{tabular}

United States Patent and Trademark Office
 United States Patent and Trademark Office dedress. COMMISSIV NFR FGR PATENTS

Alexandia.
arie \(22313-1450\)
APPLICATIONNTMBER
12/836,364
FIIING OR 374CIDATE
ATTY. DOCKET NO/TITLE
Marlin Vorbach 2885/139

CONFIRMATION NO. 2050
73481
Alliacense Limited LLC
4880 Stevens Creek Boulevard
Suite 103
San Jose, CA 95129
Date Mailed: 09/04/2014

\section*{NOTICE OF ACCEPTANCE OF POWER OF ATTORNEY}

This is in response to the Power of Attorney filed 08/14/2014.
The Power of Attorney in this application is accepted Correspondence in this application will be mailed to the above address as provided by 37 CFR 1.33.
/mbeyend

Office of Data Management, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101

United States Patent and Trademark Office
IJNITED STATVG DFPARTWFVT OF COMMFRCF United States Patent and Trademark Office Edidess. COMMISSIV NFR FGR PATENTS

Alexantia. Vim
mise \(22313-1450\)

APPLICATIONNTIMBER

26646
KENYON \& KENYON LLP
ONE BROADWAY
NEW YORK, NY 10004

\section*{NOTICE REGARDING CHANGE OF POWER OF ATTORNEY}

This is in response to the Power of Attorney filed 08/14/2014.
- The Power of Attorney to you in this application has been revoked by the assignee who has intervened as provided by 37 CFR 3.71. Future correspondence will be mailed to the new address of record(37 CFR 1.33).
/mbeyene/

Office of Data Management, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101

Schedule A - Patents assigned to *Assignee*
\begin{tabular}{|c|c|c|c|}
\hline Patent number & Issue Date & Application number & Filing Date \\
\hline 8686549 & 01-Apr 14 & 12/571173 & 30-Sep 09 \\
\hline 7840842 & 23- Nov 10 & 11/890094 & 03-Aug 07 \\
\hline 7650448 & 19. Jan 10 & 12/008543 & 10- Jan OB \\
\hline 7782087 & 24-Aug 10 & 12/541299 & 14-Aug 09 \\
\hline 7928763 & 19. Apr 11 & 12/836364 & 14- Jul 10 \\
\hline 7210129 & 24. Apr 07 & 09/967847 & 28. Sep 01 \\
\hline 7266725 & 09. Apr 07 & 09/967497 & 28-Sep 01 \\
\hline 7003660. & 21. Feb 06 & 10/297959 & 19-Jun 03 \\
\hline 7010667 & 07-Mrz 06 & 10/216986 & 05-Apr 02 \\
\hline 6968452 & 22-Nov 05 & 10/373595 & 24-Feb 03 \\
\hline 7657877 & 02-Feb 10 & 10/480003 & 18-Jun 04 \\
\hline 6990555 & 24-Jan 06 & 10/764159 & 24-Jan 04 \\
\hline 7996827 & 09-Aug 11 & 10/486771 & 20-Sep 04 \\
\hline 7243175 & 10- Jul 07 & 10/792168 & 02-Mrz 04 \\
\hline 7657861 & 02- Feb 10 & 10/523763 & 22-Nov 05 \\
\hline
\end{tabular}```


[^0]:    Office of Data Management, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101

[^1]:    ${ }^{2}$ TN: omitting "von" (eine von Speicherzelle...)

[^2]:    ${ }^{1}$ TN: omitting "von" (eine von Speicherzelle..)

